hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
b8cbfca6de86ee3ef9fe472b32eb107264c928c8
1,671
py
Python
EDA/src/utils/main_flask.py
paleomau/MGOL_BOOTCAMP
8c2b018f49fd12a255ea6f323141260d04d4421d
[ "MIT" ]
null
null
null
EDA/src/utils/main_flask.py
paleomau/MGOL_BOOTCAMP
8c2b018f49fd12a255ea6f323141260d04d4421d
[ "MIT" ]
null
null
null
EDA/src/utils/main_flask.py
paleomau/MGOL_BOOTCAMP
8c2b018f49fd12a255ea6f323141260d04d4421d
[ "MIT" ]
null
null
null
from flask import Flask, request, render_template from functions import read_json import os # Mandatory app = Flask(__name__) # __name__ --> __main__ # ---------- Flask functions ---------- @app.route("/") # @ --> esto representa el decorador de la función def home(): """ Default path """ #return app.send_static_file('greet.html') return "Por defecto" @app.route("/greet") def greet(): username = request.args.get('name') return render_template('index.html', name=username) @app.route("/info") def create_json(): import pandas as pd df = pd.read_csv('lung_nn_outl.csv') return df.to_json() # localhost:6060/give_me_id?password=12345 @app.route('/give_me_id', methods=['GET']) def give_id(): token_id = request.args['password'] if token_id == "p10875558": return request.args else: return "No es la contraseña correcta" @app.route("/recibe_informacion") def recibe_info(): pass # ---------- Other functions ---------- def main(): print("---------STARTING PROCESS---------") print(__file__) # Get the settings fullpath # \\ --> WINDOWS # / --> UNIX # Para ambos: os.sep settings_file = os.path.dirname(__file__) + os.sep + "settings.json" print(settings_file) # Load json from file json_readed = read_json(fullpath=settings_file) # Load variables from jsons DEBUG = json_readed["debug"] HOST = json_readed["host"] PORT_NUM = json_readed["port"] # Dos posibilidades: # HOST = "0.0.0.0" # HOST = "127.0.0.1" --> localhost app.run(debug=DEBUG, host=HOST, port=PORT_NUM) if __name__ == "__main__": main()
25.318182
72
0.625972
0
0
0
0
708
0.423192
0
0
703
0.420203
b8ccc7bb85dc9dad61097e465ec52bcbf128cb34
1,473
py
Python
opta/core/secrets.py
pecigonzalo/opta
0259f128ad3cfc4a96fe1f578833de28b2f19602
[ "Apache-2.0" ]
null
null
null
opta/core/secrets.py
pecigonzalo/opta
0259f128ad3cfc4a96fe1f578833de28b2f19602
[ "Apache-2.0" ]
null
null
null
opta/core/secrets.py
pecigonzalo/opta
0259f128ad3cfc4a96fe1f578833de28b2f19602
[ "Apache-2.0" ]
null
null
null
import os from dotenv import dotenv_values from opta.core.kubernetes import get_namespaced_secrets, update_secrets from opta.exceptions import UserErrors from opta.utils import deep_merge, logger MANUAL_SECRET_NAME = "manual-secrets" # nosec LINKED_SECRET_NAME = "secret" # nosec def get_secrets(namespace: str, manual_secret_name: str) -> dict: """:return: manual and linked secrets""" manual_secrets = get_namespaced_secrets(namespace, manual_secret_name) linked_secrets = get_namespaced_secrets( namespace, LINKED_SECRET_NAME ) # Helm charts don't have linked secrets, but it'll just return an empty dict so no worries for secret_name in manual_secrets.keys(): if secret_name in linked_secrets: logger.warning( f"# Secret {secret_name} found manually overwritten from linked value." ) del linked_secrets[secret_name] return deep_merge(manual_secrets, linked_secrets) def bulk_update_manual_secrets( namespace: str, manual_secret_name: str, env_file: str ) -> None: """ append the values from the env file to the existing data for this manual secret. create the secret if it doesn't exist yet. :raises UserErrors: if env_file is not found """ if not os.path.exists(env_file): raise UserErrors(f"Could not find file {env_file}") new_values = dotenv_values(env_file) update_secrets(namespace, manual_secret_name, new_values)
35.071429
97
0.728445
0
0
0
0
0
0
0
0
466
0.316361
b8cdf4dde7f1aa6655db7010276c1247756180f9
5,114
py
Python
venv/Lib/site-packages/mpl_toolkits/axes_grid1/axes_rgb.py
EkremBayar/bayar
aad1a32044da671d0b4f11908416044753360b39
[ "MIT" ]
603
2020-12-23T13:49:32.000Z
2022-03-31T23:38:03.000Z
venv/Lib/site-packages/mpl_toolkits/axes_grid1/axes_rgb.py
EkremBayar/bayar
aad1a32044da671d0b4f11908416044753360b39
[ "MIT" ]
387
2020-12-15T14:54:04.000Z
2022-03-31T07:00:21.000Z
venv/Lib/site-packages/mpl_toolkits/axes_grid1/axes_rgb.py
EkremBayar/bayar
aad1a32044da671d0b4f11908416044753360b39
[ "MIT" ]
35
2021-03-26T03:12:04.000Z
2022-03-23T10:15:10.000Z
import numpy as np from matplotlib import _api from .axes_divider import make_axes_locatable, Size from .mpl_axes import Axes @_api.delete_parameter("3.3", "add_all") def make_rgb_axes(ax, pad=0.01, axes_class=None, add_all=True, **kwargs): """ Parameters ---------- pad : float Fraction of the axes height. """ divider = make_axes_locatable(ax) pad_size = pad * Size.AxesY(ax) xsize = ((1-2*pad)/3) * Size.AxesX(ax) ysize = ((1-2*pad)/3) * Size.AxesY(ax) divider.set_horizontal([Size.AxesX(ax), pad_size, xsize]) divider.set_vertical([ysize, pad_size, ysize, pad_size, ysize]) ax.set_axes_locator(divider.new_locator(0, 0, ny1=-1)) ax_rgb = [] if axes_class is None: try: axes_class = ax._axes_class except AttributeError: axes_class = type(ax) for ny in [4, 2, 0]: ax1 = axes_class(ax.get_figure(), ax.get_position(original=True), sharex=ax, sharey=ax, **kwargs) locator = divider.new_locator(nx=2, ny=ny) ax1.set_axes_locator(locator) for t in ax1.yaxis.get_ticklabels() + ax1.xaxis.get_ticklabels(): t.set_visible(False) try: for axis in ax1.axis.values(): axis.major_ticklabels.set_visible(False) except AttributeError: pass ax_rgb.append(ax1) if add_all: fig = ax.get_figure() for ax1 in ax_rgb: fig.add_axes(ax1) return ax_rgb @_api.deprecated("3.3", alternative="ax.imshow(np.dstack([r, g, b]))") def imshow_rgb(ax, r, g, b, **kwargs): return ax.imshow(np.dstack([r, g, b]), **kwargs) class RGBAxes: """ 4-panel imshow (RGB, R, G, B). Layout: +---------------+-----+ | | R | + +-----+ | RGB | G | + +-----+ | | B | +---------------+-----+ Subclasses can override the ``_defaultAxesClass`` attribute. Attributes ---------- RGB : ``_defaultAxesClass`` The axes object for the three-channel imshow. R : ``_defaultAxesClass`` The axes object for the red channel imshow. G : ``_defaultAxesClass`` The axes object for the green channel imshow. B : ``_defaultAxesClass`` The axes object for the blue channel imshow. """ _defaultAxesClass = Axes @_api.delete_parameter("3.3", "add_all") def __init__(self, *args, pad=0, add_all=True, **kwargs): """ Parameters ---------- pad : float, default: 0 fraction of the axes height to put as padding. add_all : bool, default: True Whether to add the {rgb, r, g, b} axes to the figure. This parameter is deprecated. axes_class : matplotlib.axes.Axes *args Unpacked into axes_class() init for RGB **kwargs Unpacked into axes_class() init for RGB, R, G, B axes """ axes_class = kwargs.pop("axes_class", self._defaultAxesClass) self.RGB = ax = axes_class(*args, **kwargs) if add_all: ax.get_figure().add_axes(ax) else: kwargs["add_all"] = add_all # only show deprecation in that case self.R, self.G, self.B = make_rgb_axes( ax, pad=pad, axes_class=axes_class, **kwargs) # Set the line color and ticks for the axes. for ax1 in [self.RGB, self.R, self.G, self.B]: ax1.axis[:].line.set_color("w") ax1.axis[:].major_ticks.set_markeredgecolor("w") @_api.deprecated("3.3") def add_RGB_to_figure(self): """Add red, green and blue axes to the RGB composite's axes figure.""" self.RGB.get_figure().add_axes(self.R) self.RGB.get_figure().add_axes(self.G) self.RGB.get_figure().add_axes(self.B) def imshow_rgb(self, r, g, b, **kwargs): """ Create the four images {rgb, r, g, b}. Parameters ---------- r, g, b : array-like The red, green, and blue arrays. kwargs : imshow kwargs kwargs get unpacked into the imshow calls for the four images. Returns ------- rgb : matplotlib.image.AxesImage r : matplotlib.image.AxesImage g : matplotlib.image.AxesImage b : matplotlib.image.AxesImage """ if not (r.shape == g.shape == b.shape): raise ValueError( f'Input shapes ({r.shape}, {g.shape}, {b.shape}) do not match') RGB = np.dstack([r, g, b]) R = np.zeros_like(RGB) R[:, :, 0] = r G = np.zeros_like(RGB) G[:, :, 1] = g B = np.zeros_like(RGB) B[:, :, 2] = b im_rgb = self.RGB.imshow(RGB, **kwargs) im_r = self.R.imshow(R, **kwargs) im_g = self.G.imshow(G, **kwargs) im_b = self.B.imshow(B, **kwargs) return im_rgb, im_r, im_g, im_b @_api.deprecated("3.3", alternative="RGBAxes") class RGBAxesBase(RGBAxes): pass
30.260355
79
0.550841
3,372
0.659366
0
0
3,102
0.60657
0
0
2,088
0.408291
b8ce37a154e212778f695fcf9135c3e96507ff09
88
py
Python
app/admin/controllers/__init__.py
aries-zhang/flask-template
369d77f2910f653f46668dd9bda735954b6c145e
[ "MIT" ]
null
null
null
app/admin/controllers/__init__.py
aries-zhang/flask-template
369d77f2910f653f46668dd9bda735954b6c145e
[ "MIT" ]
null
null
null
app/admin/controllers/__init__.py
aries-zhang/flask-template
369d77f2910f653f46668dd9bda735954b6c145e
[ "MIT" ]
null
null
null
from flask import Blueprint admin = Blueprint('admin', __name__, url_prefix='/manage')
22
58
0.761364
0
0
0
0
0
0
0
0
16
0.181818
b8d03933a76fe421eb780621a4114e528f2cddbc
535
py
Python
first.py
wmoulin/chatterbot
075a4651227ad159e58a36fca5ea7456d9153653
[ "MIT" ]
null
null
null
first.py
wmoulin/chatterbot
075a4651227ad159e58a36fca5ea7456d9153653
[ "MIT" ]
null
null
null
first.py
wmoulin/chatterbot
075a4651227ad159e58a36fca5ea7456d9153653
[ "MIT" ]
null
null
null
from chatterbot import ChatBot from chatterbot.trainers import ListTrainer # The only required parameter for the ChatBot is a name. This can be anything you want. chatbot = ChatBot("My First Chatbot") # Training your ChatBot conversation = [ "Hello", "Hi there!", "How are you doing?", "I'm doing great.", "That is good to hear", "Thank you.", "You're welcome." ] trainer = ListTrainer(chatbot) trainer.train(conversation) # Get a response response = chatbot.get_response("Good morning!") print(response)
24.318182
87
0.708411
0
0
0
0
0
0
0
0
266
0.497196
b8d0ad22e9f860e320dd54fc175dce04ecd1af3d
7,405
py
Python
runpandas/types/summary.py
pnposch/runpandas
25388c18b52dfcc168e81922b8ba20ca93adad20
[ "MIT" ]
11
2020-12-04T20:43:23.000Z
2022-03-16T19:19:12.000Z
runpandas/types/summary.py
pnposch/runpandas
25388c18b52dfcc168e81922b8ba20ca93adad20
[ "MIT" ]
45
2020-06-23T02:50:31.000Z
2022-02-15T16:56:00.000Z
runpandas/types/summary.py
pnposch/runpandas
25388c18b52dfcc168e81922b8ba20ca93adad20
[ "MIT" ]
4
2021-11-11T15:23:04.000Z
2022-02-02T13:02:12.000Z
""" Helper module for evaluation and display of the summary of training sessions. """ import numpy as np import pandas as pd from runpandas._utils import convert_pace_secmeters2minkms def _build_summary_statistics(obj): """ Generate session statistics from a given DataFrame. Parameters ---------- obj: The DataFrame to generate basic commute statistics from. Returns: -------- A Dictionary containing the following statistics: - Total moving time - Average speed - Max speed - Average moving speed - Average cadence running - Average cadence running moving - Max cadence - Average heart rate - Average heart rate moving - Max heart rate - Average pace (per 1 km) - Average pace moving (per 1 km) - Max pace - Average temperature - Max temperature - Min temperature - Total distance - Total ellapsed time """ start = obj.start try: moving_time = obj.moving_time except AttributeError: moving_time = np.nan try: mean_speed = obj.mean_speed() max_speed = obj["speed"].max() mean_pace = convert_pace_secmeters2minkms(obj.mean_pace().total_seconds()) max_pace = convert_pace_secmeters2minkms( obj["speed"].to_pace().min().total_seconds() ) except AttributeError: mean_speed = np.nan max_speed = np.nan mean_pace = np.nan try: mean_moving_speed = obj.mean_speed(only_moving=True) mean_moving_pace = convert_pace_secmeters2minkms( obj.mean_pace(only_moving=True).total_seconds() ) except (AttributeError, KeyError): mean_moving_speed = np.nan mean_moving_pace = np.nan try: mean_cadence = obj.mean_cadence() max_cadence = obj["cad"].max() except AttributeError: mean_cadence = np.nan max_cadence = np.nan try: mean_moving_cadence = obj.mean_cadence(only_moving=True) except (AttributeError, KeyError): mean_moving_cadence = np.nan try: mean_heart_rate = obj.mean_heart_rate() max_heart_rate = obj["hr"].max() except AttributeError: mean_heart_rate = np.nan max_heart_rate = np.nan try: mean_moving_heart_rate = obj.mean_heart_rate(only_moving=True) except (AttributeError, KeyError): mean_moving_heart_rate = np.nan try: mean_temperature = obj["temp"].mean() min_temperature = obj["temp"].min() max_temperature = obj["temp"].max() except KeyError: mean_temperature = np.nan min_temperature = np.nan max_temperature = np.nan total_distance = obj.distance ellapsed_time = obj.ellapsed_time row = {k: v for k, v in locals().items() if not k.startswith("__") and k != "obj"} return row def _build_session_statistics(obj): """ Generate session statistics from a given DataFrame. Parameters ---------- obj: The DataFrame to generate basic commute statistics from. Returns: -------- A ``pandas.Dataframe`` containing the following statistics: - Total moving time - Average speed - Max speed - Average moving speed - Average cadence running - Average cadence running moving - Max cadence - Average heart rate - Average heart rate moving - Max heart rate - Average pace (per 1 km) - Average pace moving (per 1 km) - Max pace - Average temperature - Max temperature - Min temperature - Total distance - Total ellapsed time """ stats = {key: [value] for key, value in _build_summary_statistics(obj).items()} return pd.DataFrame(stats).set_index("start") def _build_activity_statistics(obj): """ Generate basic statistics from a given pandas Series. Parameters ---------- obj: The DataFrame to generate basic commute statistics from. Returns: -------- A Series containing the following statistics: - Session times - Total distance - Total ellapsed time - Total moving time - Total and average elevation gain - Average speed - Average moving speed - Average pace (per 1 km) - Average pace moving (per 1 km) - Average cadence running - Average cadence running moving - Average heart rate - Average heart rate moving - Average temperature """ # special conditions for methods that raise Exceptions stats = _build_summary_statistics(obj) rows = { "Session": "Running: %s" % stats["start"].strftime("%d-%m-%Y %H:%M:%S"), "Total distance (meters)": stats["total_distance"], "Total ellapsed time": stats["ellapsed_time"], "Total moving time": stats["moving_time"], "Average speed (km/h)": stats["mean_speed"] * 3.6, "Average moving speed (km/h)": stats["mean_moving_speed"] * 3.6, "Average pace (per 1 km)": stats["mean_pace"], "Average pace moving (per 1 km)": stats["mean_moving_pace"], "Average cadence": stats["mean_cadence"], "Average moving cadence": stats["mean_moving_cadence"], "Average heart rate": stats["mean_heart_rate"], "Average moving heart rate": stats["mean_moving_heart_rate"], "Average temperature": stats["mean_temperature"], } series = pd.Series( rows, index=[ "Session", "Total distance (meters)", "Total ellapsed time", "Total moving time", "Average speed (km/h)", "Average moving speed (km/h)", "Average pace (per 1 km)", "Average pace moving (per 1 km)", "Average cadence", "Average moving cadence", "Average heart rate", "Average moving heart rate", "Average temperature", ], ) return series def activity_summary(activity): """ Returns the pandas Dataframe with the common basic statistics for the given activity. Parameters ---------- activity: runpandas.types.Activity. Runpandas Activity to be computed the statistics Returns ------- pandas.Dataframe: A pandas DataFrame containing the summary statistics, which inclues estimates of the total distance covered, the total duration, the time spent moving, and many others. """ summary_statistics = _build_activity_statistics(activity) return summary_statistics.T def session_summary(session): """ Returns the a pandas Dataframe with the common basic statistics for the given activity. Parameters ---------- session: runpandas.types.Activity. Runpandas Activity with pandas.MultiIndex to be computed the statistics Returns ------- pandas.Dataframe: A pandas DataFrame containing the summary statistics across all th activities, which includes estimates of the total distance covered, the total duration, the time spent moving, and many others. """ frames = [] for index in session.index.unique(level="start"): df = session.xs(index, level=0) df.start = index frames.append(_build_session_statistics(df)) session_summary = pd.concat(frames, axis=0, verify_integrity=True) session_summary.sort_index(inplace=True) return session_summary
28.480769
89
0.637677
0
0
0
0
0
0
0
0
4,037
0.545172
b8d180754d7fc90d954cb1d916a92cd2b5b1aea1
589
py
Python
dribdat/decorators.py
gonzalocasas/dribdat
f8c326c96e851be199eb9f61daed6c8780e3bc27
[ "MIT" ]
21
2015-10-25T23:22:04.000Z
2019-04-01T06:42:54.000Z
dribdat/decorators.py
gonzalocasas/dribdat
f8c326c96e851be199eb9f61daed6c8780e3bc27
[ "MIT" ]
108
2020-02-11T10:07:53.000Z
2021-06-19T20:30:03.000Z
dribdat/decorators.py
OpendataCH/dribdat
90d95a12c782dea7d284a4c454a06481e67c1e37
[ "MIT" ]
12
2016-09-02T03:12:28.000Z
2021-06-02T07:58:48.000Z
# -*- coding: utf-8 -*- from functools import wraps from flask import abort, jsonify from flask_login import current_user def admin_required(f): @wraps(f) def decorated_function(*args, **kwargs): if not current_user.active or not current_user.is_admin: abort(403) return f(*args, **kwargs) return decorated_function def requires_auth(f): @wraps(f) def decorated(*args, **kwargs): if not current_user.is_allowed: return jsonify(flag='fail', msg='Login required') return f(*args, **kwargs) return decorated
25.608696
64
0.657046
0
0
0
0
357
0.606112
0
0
45
0.076401
b8d3d6eef9923c53e2c72ef3ffa4d51959b6e188
263
py
Python
run_perf_benchmarks.py
alirezajahani60/FabFlee
e2cfdb6efc758281e123f6acc1b06f93176dd756
[ "BSD-3-Clause" ]
null
null
null
run_perf_benchmarks.py
alirezajahani60/FabFlee
e2cfdb6efc758281e123f6acc1b06f93176dd756
[ "BSD-3-Clause" ]
null
null
null
run_perf_benchmarks.py
alirezajahani60/FabFlee
e2cfdb6efc758281e123f6acc1b06f93176dd756
[ "BSD-3-Clause" ]
null
null
null
from base.fab import * from plugins.FabFlee.FabFlee import * @task def flee_get_perf(results_dir): print("{}/{}".format(env.local_results,results_dir)) my_file = open("{}/{}/perf.log".format(env.local_results,results_dir), 'r') print(my_file.read())
29.222222
79
0.703422
0
0
0
0
200
0.760456
0
0
26
0.098859
b8d3d895be119a8b71cde792e94daf1fc8fa955b
479
py
Python
vwgconnect/account.py
Farfar/vwgbroker
9acc9f1a259e26aa830a9534a6dea3cee21c09ff
[ "Apache-2.0" ]
null
null
null
vwgconnect/account.py
Farfar/vwgbroker
9acc9f1a259e26aa830a9534a6dea3cee21c09ff
[ "Apache-2.0" ]
null
null
null
vwgconnect/account.py
Farfar/vwgbroker
9acc9f1a259e26aa830a9534a6dea3cee21c09ff
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import re import time import logging import asyncio import hashlib import jwt class Account: def __init__(self, username, password, spin=None, brand): self._username = username self._password = password self._spin = spin self._brand = brand async def login(): if "@" in self._username: if self._password is not None: return True return False
18.423077
61
0.611691
349
0.728601
0
0
0
0
144
0.300626
48
0.100209
b8d7cf7888021a157102a64b5a55477b57bc5fa9
3,263
py
Python
src/project_02/project2_b.py
group7BSE1/BSE-2021
2553b12e5fd5d1015af4746bcf84a8ee7c1cb8e0
[ "MIT" ]
null
null
null
src/project_02/project2_b.py
group7BSE1/BSE-2021
2553b12e5fd5d1015af4746bcf84a8ee7c1cb8e0
[ "MIT" ]
null
null
null
src/project_02/project2_b.py
group7BSE1/BSE-2021
2553b12e5fd5d1015af4746bcf84a8ee7c1cb8e0
[ "MIT" ]
1
2021-04-07T14:49:04.000Z
2021-04-07T14:49:04.000Z
def open_file(): while True: file_name = input("Enter input file: ") try: measles = open(file_name, "r") break except: print("File unable to open. Invalid name or file doesn't exist!") continue # name it re-prompts for a write name return measles def process_file(measles): while True: year = input("Enter year: ") if len(year) == 4: # this ensures that the year has four characters break else: print("Invalid year. Year MUST be four digits") continue while True: # this loop assigns the income level print("Income levels;\n Input 1 for WB_LI\n Input 2 for WB_LMI\n Input 3 for WB_UMI\n Input 4 for WB_HI") income = input("Enter income level(1,2,3,4): ") if income == "1": income = "WB_LI" break elif income == "2": income = "WB_LMI" break elif income == "3": income = "WB_UMI" break elif income == "4": income = "WB_HI" break else: print("Invalid income level!") # an invalid input re-prompts till the right one is made continue count = 0 percentages = [] countries = [] for line in measles: if (line[88:92] == year) and (line[51:56] == income or line[51:57] == income): # Ensures the criteria is met count += 1 percentages.append(int(line[59:61])) # adds percentages to the list percentages country = line[0:51] country = str(country) country = country.strip() countries.append(country) # adds percentages to the list of countries continue country_percentage = dict(zip(countries, percentages)) # Creates a dictionary with country as the key and percentage as values if count > 0: percent_sum = sum(percentages) percent_avg = percent_sum / count # average of percentages max_percentage = max(percentages) min_percentage = min(percentages) # gets countries for maximum percentages to this list max_country = [country for country, percentage in country_percentage.items() if percentage == max_percentage] # gets countries for minimum percentages to this list min_country = [country for country, percentage in country_percentage.items() if percentage == min_percentage] print(f"Nunber of countries in the record: {count}") print(f"Average percentage for {year} with {income} is {percent_avg:.1f}%") print(f"Country(ies) have maximum percentage in {year} with {income} of {max_percentage}%") for i in max_country: # print contries with maximum percentages print(" >", i) print(f"Country(ies) have minimum percentage in {year} with {income} of {min_percentage}%") for i in min_country: # print contries with minimum percentages print(" >", i) else: # if there is no item in the list, it prints this print(f"The year {year} does not exist in the record...") def main(): measles = open_file() process_file(measles) measles.close() main()
37.079545
131
0.599142
0
0
0
0
0
0
0
0
1,295
0.396874
b8d7d6b700479d42df11c33ef276f3c562f44f38
159
py
Python
basic_algorithms/primeiro_ultimo_nome.py
Yta-ux/python_algorithms
62dd2d897e2f2de8783e68df3022170a86e9132e
[ "MIT" ]
1
2022-01-26T22:15:17.000Z
2022-01-26T22:15:17.000Z
basic_algorithms/primeiro_ultimo_nome.py
Yta-ux/python_algorithms
62dd2d897e2f2de8783e68df3022170a86e9132e
[ "MIT" ]
null
null
null
basic_algorithms/primeiro_ultimo_nome.py
Yta-ux/python_algorithms
62dd2d897e2f2de8783e68df3022170a86e9132e
[ "MIT" ]
null
null
null
nome = input('Nome Completo:').title().strip().split() print(f"""Prazer em Conhece-lo Seu Primeiro Nome e: {nome[0]} Seu Ultimo Nome e: {nome[len(nome)-1]}""")
39.75
54
0.666667
0
0
0
0
0
0
0
0
113
0.710692
b8d7f25bc4dac9b169ae8981214f8ae8040f25ce
3,193
py
Python
magnum/conductor/k8s_api.py
vivian-rook/magnum
7acc6eeda44ce6ffcca8b7fc2e682f80403ac4b7
[ "Apache-2.0" ]
null
null
null
magnum/conductor/k8s_api.py
vivian-rook/magnum
7acc6eeda44ce6ffcca8b7fc2e682f80403ac4b7
[ "Apache-2.0" ]
null
null
null
magnum/conductor/k8s_api.py
vivian-rook/magnum
7acc6eeda44ce6ffcca8b7fc2e682f80403ac4b7
[ "Apache-2.0" ]
null
null
null
# Copyright 2015 Huawei Technologies Co.,LTD. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import requests from magnum.conductor.handlers.common.cert_manager import create_client_files class KubernetesAPI: """ Simple Kubernetes API client using requests. This API wrapper allows for a set of very simple operations to be performed on a Kubernetes cluster using the `requests` library. The reason behind it is that the native `kubernetes` library does not seem to be quite thread-safe at the moment. Also, our interactions with the Kubernetes API are happening inside Greenthreads so we don't need to use connection pooling on top of it, in addition to pools not being something that you can disable with the native Kubernetes API. """ def __init__(self, context, cluster): self.context = context self.cluster = cluster # Load certificates for cluster (self.ca_file, self.key_file, self.cert_file) = create_client_files( self.cluster, self.context ) def _request(self, method, url, json=True): response = requests.request( method, url, verify=self.ca_file.name, cert=(self.cert_file.name, self.key_file.name) ) response.raise_for_status() if json: return response.json() else: return response.text def get_healthz(self): """ Get the health of the cluster from API """ return self._request( 'GET', f"{self.cluster.api_address}/healthz", json=False ) def list_node(self): """ List all nodes in the cluster. :return: List of nodes. """ return self._request( 'GET', f"{self.cluster.api_address}/api/v1/nodes" ) def list_namespaced_pod(self, namespace): """ List all pods in the given namespace. :param namespace: Namespace to list pods from. :return: List of pods. """ return self._request( 'GET', f"{self.cluster.api_address}/api/v1/namespaces/{namespace}/pods" ) def __del__(self): """ Close all of the file descriptions for the certificates, since they are left open by `create_client_files`. TODO(mnaser): Use a context manager and avoid having these here. """ if hasattr(self, 'ca_file'): self.ca_file.close() if hasattr(self, 'cert_file'): self.cert_file.close() if hasattr(self, 'key_file'): self.key_file.close()
31
77
0.630442
2,502
0.783589
0
0
0
0
0
0
1,878
0.588162
b8d95b42f671a377b5da5f2e5ac42f949f5f6c0c
1,865
py
Python
secret/secret.py
futurice/vault
6da5341804509b7984d0a5817bbd13d3477fe0bc
[ "Apache-2.0" ]
9
2015-10-16T12:06:35.000Z
2020-04-03T09:05:06.000Z
secret/secret.py
futurice/vault
6da5341804509b7984d0a5817bbd13d3477fe0bc
[ "Apache-2.0" ]
null
null
null
secret/secret.py
futurice/vault
6da5341804509b7984d0a5817bbd13d3477fe0bc
[ "Apache-2.0" ]
3
2015-10-20T09:36:53.000Z
2021-01-18T20:49:41.000Z
#!/usr/bin/env python from __future__ import absolute_import from __future__ import print_function import logging, os, sys from pprint import pprint as pp from secret.project import get_project from secret.cli import prepare def trollius_log(level=logging.CRITICAL): os.environ['TROLLIUSDEBUG'] = "1" # more informative tracebacks logging.basicConfig(level=level) if sys.version_info.major == 2: trollius_log() from secret.storage import S3 from secret.output import prettyprint import boto3 import trollius as asyncio from trollius import From, Return @asyncio.coroutine def main(args): project = get_project(args.datafile) region = os.getenv("AWS_DEFAULT_REGION", args.region) kw = {} if not os.getenv("AWS_PROFILE"): kw = dict(aws_access_key_id=os.getenv('AWS_ACCESS_KEY_ID'), aws_secret_access_key=os.getenv('AWS_SECRET_ACCESS_KEY'), aws_session_token=os.getenv('AWS_SESSION_TOKEN'),) if args.debug: boto3.set_stream_logger(name='botocore') trollius_log(level=logging.DEBUG) session = boto3.session.Session(region_name=region, **kw) storage = S3(session=session, vault=args.vault, vaultkey=args.vaultkey, env=args.env, region=args.region, prefix=args.project, project=project,) method = getattr(storage, args.action) fn = lambda: method(**vars(args)) result = yield From(fn()) prettyprint(result, args) def runner(): args = prepare() loop = asyncio.get_event_loop() # wrap asyncio to suppress stacktraces if args.debug: loop.run_until_complete(main(args)) else: try: loop.run_until_complete(main(args)) except Exception as e: print(e.message) loop.close() if __name__ == '__main__': runner()
27.028986
69
0.676139
0
0
906
0.485791
925
0.495979
0
0
220
0.117962
b8da34c95a45838a0718da8340a3212acd784270
3,947
py
Python
tests/test_data.py
SaiKrishna1207/aos
a55a1eed80dc9b21f7e295b265228c0d54072a66
[ "Apache-2.0" ]
3
2020-03-03T08:35:42.000Z
2020-09-03T09:30:37.000Z
tests/test_data.py
SaiKrishna1207/aos
a55a1eed80dc9b21f7e295b265228c0d54072a66
[ "Apache-2.0" ]
4
2020-02-21T12:48:58.000Z
2020-04-30T11:12:52.000Z
tests/test_data.py
SaiKrishna1207/aos
a55a1eed80dc9b21f7e295b265228c0d54072a66
[ "Apache-2.0" ]
5
2020-03-01T04:14:32.000Z
2021-12-11T15:20:42.000Z
def get_obj1(): obj = \ { "sha": "d25341478381063d1c76e81b3a52e0592a7c997f", "commit": { "author": { "name": "Stephen Dolan", "email": "mu@netsoc.tcd.ie", "date": "2013-06-22T16:30:59Z" }, "committer": { "name": "Stephen Dolan", "email": "mu@netsoc.tcd.ie", "date": "2013-06-22T16:30:59Z" }, "message": "Merge pull request #162 from stedolan/utf8-fixes\n\nUtf8 fixes. Closes #161", "tree": { "sha": "6ab697a8dfb5a96e124666bf6d6213822599fb40", "url": "https://api.github.com/repos/stedolan/jq/git/trees/6ab697a8dfb5a96e124666bf6d6213822599fb40" }, "url": "https://api.github.com/repos/stedolan/jq/git/commits/d25341478381063d1c76e81b3a52e0592a7c997f", "comment_count": 0 }, "url": "https://api.github.com/repos/stedolan/jq/commits/d25341478381063d1c76e81b3a52e0592a7c997f", "html_url": "https://github.com/stedolan/jq/commit/d25341478381063d1c76e81b3a52e0592a7c997f", "comments_url": "https://api.github.com/repos/stedolan/jq/commits/d25341478381063d1c76e81b3a52e0592a7c997f/comments", "author": { "login": "stedolan", "id": 79765, "avatar_url": "https://avatars.githubusercontent.com/u/79765?v=3", "gravatar_id": "", "url": "https://api.github.com/users/stedolan", "html_url": "https://github.com/stedolan", "followers_url": "https://api.github.com/users/stedolan/followers", "following_url": "https://api.github.com/users/stedolan/following{/other_user}", "gists_url": "https://api.github.com/users/stedolan/gists{/gist_id}", "starred_url": "https://api.github.com/users/stedolan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/stedolan/subscriptions", "organizations_url": "https://api.github.com/users/stedolan/orgs", "repos_url": "https://api.github.com/users/stedolan/repos", "events_url": "https://api.github.com/users/stedolan/events{/privacy}", "received_events_url": "https://api.github.com/users/stedolan/received_events", "type": "User", "site_admin": False }, "committer": { "login": "stedolan", "id": 79765, "avatar_url": "https://avatars.githubusercontent.com/u/79765?v=3", "gravatar_id": "", "url": "https://api.github.com/users/stedolan", "html_url": "https://github.com/stedolan", "followers_url": "https://api.github.com/users/stedolan/followers", "following_url": "https://api.github.com/users/stedolan/following{/other_user}", "gists_url": "https://api.github.com/users/stedolan/gists{/gist_id}", "starred_url": "https://api.github.com/users/stedolan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/stedolan/subscriptions", "organizations_url": "https://api.github.com/users/stedolan/orgs", "repos_url": "https://api.github.com/users/stedolan/repos", "events_url": "https://api.github.com/users/stedolan/events{/privacy}", "received_events_url": "https://api.github.com/users/stedolan/received_events", "type": "User", "site_admin": False }, "parents": [ { "sha": "54b9c9bdb225af5d886466d72f47eafc51acb4f7", "url": "https://api.github.com/repos/stedolan/jq/commits/54b9c9bdb225af5d886466d72f47eafc51acb4f7", "html_url": "https://github.com/stedolan/jq/commit/54b9c9bdb225af5d886466d72f47eafc51acb4f7" }, { "sha": "8b1b503609c161fea4b003a7179b3fbb2dd4345a", "url": "https://api.github.com/repos/stedolan/jq/commits/8b1b503609c161fea4b003a7179b3fbb2dd4345a", "html_url": "https://github.com/stedolan/jq/commit/8b1b503609c161fea4b003a7179b3fbb2dd4345a" } ] } return obj
49.962025
123
0.633392
0
0
0
0
0
0
0
0
3,014
0.763618
b8dcb2e38617c441c3331cf21108a3eb3fba7a49
3,094
py
Python
test_main.py
zenranda/proj10-gcalfinal
ee32beb3ef570b23883d41f84394b28818e5a07c
[ "Artistic-2.0" ]
null
null
null
test_main.py
zenranda/proj10-gcalfinal
ee32beb3ef570b23883d41f84394b28818e5a07c
[ "Artistic-2.0" ]
2
2021-02-08T20:17:57.000Z
2021-04-30T20:38:59.000Z
test_main.py
zenranda/proj10-gcalfinal
ee32beb3ef570b23883d41f84394b28818e5a07c
[ "Artistic-2.0" ]
null
null
null
### #Various nose tests. If you want to adapt this for your own use, be aware that the start/end block list has a very specific formatting. ### import get_freebusy import arrow from operator import itemgetter from pymongo import MongoClient import secrets.admin_secrets import secrets.client_secrets MONGO_CLIENT_URL = "mongodb://{}:{}@localhost:{}/{}".format( secrets.client_secrets.db_user, secrets.client_secrets.db_user_pw, secrets.admin_secrets.port, secrets.client_secrets.db) try: dbclient = MongoClient(MONGO_CLIENT_URL) db = getattr(dbclient, secrets.client_secrets.db) collection = db.dated base_size = collection.count() #current size of the db, for comparison later except: print("Failure opening database. Is Mongo running? Correct password?") sys.exit(1) def test_free_times(): #Given a sample list, check to see if it's getting free/busy blocks correctly ranges = [['2016-11-20T08:30:00-08:00', '2016-11-20T010:30:00-08:00'], ['2016-11-20T11:00:00-08:00', '2016-11-20T15:00:00-08:00'], ['2016-11-20T16:30:00-08:00', '2016-11-20T19:00:00-08:00'], ['2016-11-24T13:30:00-08:00', '2016-11-24T16:00:00-08:00'], ['2016-11-21T15:00:00-08:00', '2016-11-21T18:30:00-08:00']] start = '2016-11-20T8:00:00-08:00' end = '2016-11-23T20:00:00-08:00' assert get_freebusy.get_freebusy(ranges, start, end) == [['At 2016-11-20 from 08:00:00 to 08:30:00', 'At 2016-11-20 from 10:30:00 to 11:00:00', 'At 2016-11-20 from 15:00:00 to 16:30:00', 'At 2016-11-20 from 19:00:00 to 20:00:00', 'At 2016-11-21 from 08:00:00 to 15:00:00', 'At 2016-11-21 from 18:00:00 to 20:00:00', 'At 2016-11-24 from 08:00:00 to 13:30:00', 'At 2016-11-24 from 16:00:00 to 20:00:00'], ['At 2016-11-20 from 08:30:00 to 10:30:00', 'At 2016-11-20 from 11:00:00 to 15:00:00', 'At 2016-11-20 from 16:30:00 to 19:00:00', 'At 2016-11-21 from 15:00:00 to 18:00:00', 'At 2016-11-24 from 13:30:00 to 16:00:00']] ranges = [] start = '2016-11-20T12:00:00-08:00' end = '2016-11-23T20:00:00-08:00' assert get_freebusy.get_freebusy(ranges, start, end) == [[], []] def test_overlap(): #tests if the program can handle dates that overlap/intersect ranges = [['2016-11-22T11:00:00-08:00', '2016-11-22T16:00:00-08:00'], ['2016-11-23T12:00:00-08:00', '2016-11-23T15:30:00-08:00']] start = '2016-11-20T8:00:00-08:00' end = '2016-11-23T20:00:00-08:00' assert get_freebusy.get_freebusy(ranges, start, end) == [['At 2016-11-22 from 08:00:00 to 11:00:00', 'At 2016-11-22 from 16:00:00 to 20:00:00', 'At 2016-11-23 from 08:00:00 to 11:00:00', 'At 2016-11-23 from 18:30:00 to 20:00:00'], ['At 2016-11-22 from 11:00:00 to 16:00:00', 'At 2016-11-23 from 11:00:00 to 18:30:00']] def test_db(): assert collection != None collection.insert({"type" : "freebusy", "entry" : [["entry 1"], ["entry 2"]]}) assert base_size < collection.count() collection.remove({"entry" : [["entry 1"], ["entry 2"]]}) assert base_size == collection.count()
55.25
624
0.649968
0
0
0
0
0
0
0
0
1,811
0.585326
b8dd4a9a3b779200a138616573ee9d9a08756937
2,664
py
Python
examples/scripts/ct_abel_tv_admm.py
lanl/scico
976c9e5833f8f67eed2eaa43460d89fb09bb9f78
[ "BSD-3-Clause" ]
18
2021-09-21T18:55:11.000Z
2022-03-21T20:13:05.000Z
examples/scripts/ct_abel_tv_admm.py
lanl/scico
976c9e5833f8f67eed2eaa43460d89fb09bb9f78
[ "BSD-3-Clause" ]
218
2021-09-21T21:45:08.000Z
2022-03-30T18:45:27.000Z
examples/scripts/ct_abel_tv_admm.py
lanl/scico
976c9e5833f8f67eed2eaa43460d89fb09bb9f78
[ "BSD-3-Clause" ]
2
2021-09-23T22:44:47.000Z
2021-12-18T16:01:43.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # This file is part of the SCICO package. Details of the copyright # and user license can be found in the 'LICENSE.txt' file distributed # with the package. r""" Regularized Abel Inversion ========================== This example demonstrates a TV-regularized Abel inversion using an Abel projector based on PyAbel :cite:`pyabel-2022` """ import numpy as np import scico.numpy as snp from scico import functional, linop, loss, metric, plot from scico.examples import create_circular_phantom from scico.linop.abel import AbelProjector from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.util import device_info """ Create a ground truth image. """ N = 256 # phantom size x_gt = create_circular_phantom((N, N), [0.4 * N, 0.2 * N, 0.1 * N], [1, 0, 0.5]) """ Set up the forward operator and create a test measurement """ A = AbelProjector(x_gt.shape) y = A @ x_gt np.random.seed(12345) y = y + np.random.normal(size=y.shape).astype(np.float32) ATy = A.T @ y """ Set up ADMM solver object. """ λ = 1.9e1 # L1 norm regularization parameter ρ = 4.9e1 # ADMM penalty parameter maxiter = 100 # number of ADMM iterations cg_tol = 1e-4 # CG relative tolerance cg_maxiter = 25 # maximum CG iterations per ADMM iteration # Note the use of anisotropic TV. Isotropic TV would require use of L21Norm. g = λ * functional.L1Norm() C = linop.FiniteDifference(input_shape=x_gt.shape) f = loss.SquaredL2Loss(y=y, A=A) x_inv = A.inverse(y) x0 = snp.clip(x_inv, 0, 1.0) solver = ADMM( f=f, g_list=[g], C_list=[C], rho_list=[ρ], x0=x0, maxiter=maxiter, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": cg_tol, "maxiter": cg_maxiter}), itstat_options={"display": True, "period": 5}, ) """ Run the solver. """ print(f"Solving on {device_info()}\n") solver.solve() hist = solver.itstat_object.history(transpose=True) x_tv = snp.clip(solver.x, 0, 1.0) """ Show results. """ norm = plot.matplotlib.colors.Normalize(vmin=-0.1, vmax=1.2) fig, ax = plot.subplots(nrows=2, ncols=2, figsize=(12, 12)) plot.imview(x_gt, title="Ground Truth", cmap=plot.cm.Blues, fig=fig, ax=ax[0, 0], norm=norm) plot.imview(y, title="Measurement", cmap=plot.cm.Blues, fig=fig, ax=ax[0, 1]) plot.imview( x_inv, title="Inverse Abel: %.2f (dB)" % metric.psnr(x_gt, x_inv), cmap=plot.cm.Blues, fig=fig, ax=ax[1, 0], norm=norm, ) plot.imview( x_tv, title="TV Regularized Inversion: %.2f (dB)" % metric.psnr(x_gt, x_tv), cmap=plot.cm.Blues, fig=fig, ax=ax[1, 1], norm=norm, ) fig.show() input("\nWaiting for input to close figures and exit")
24.897196
95
0.682432
0
0
0
0
0
0
0
0
996
0.373313
b8ddae5f1b6f6079138cdb43e8d72e2e1ca77817
1,760
py
Python
pyblas/level1/csrot.py
timleslie/pyblas
9109f2cc24e674cf59a3b39f95c2d7b8116ae884
[ "BSD-3-Clause" ]
null
null
null
pyblas/level1/csrot.py
timleslie/pyblas
9109f2cc24e674cf59a3b39f95c2d7b8116ae884
[ "BSD-3-Clause" ]
1
2020-10-10T23:23:06.000Z
2020-10-10T23:23:06.000Z
pyblas/level1/csrot.py
timleslie/pyblas
9109f2cc24e674cf59a3b39f95c2d7b8116ae884
[ "BSD-3-Clause" ]
null
null
null
from ..util import slice_ def csrot(N, CX, INCX, CY, INCY, C, S): """Applies a Givens rotation to a pair of vectors x and y Parameters ---------- N : int Number of elements in input vector CX : numpy.ndarray A single precision complex array, dimension (1 + (`N` - 1)*abs(`INCX`)) INCX : int Storage spacing between elements of `CX` CY : numpy.ndarray A single precision complex array, dimension (1 + (`N` - 1)*abs(`INCY`)) INCY : int Storage spacing between elements of `CY` C : numpy.single The Givens parameter c, with value cos(theta) S : numpy.single The Givens parameter s, with value sin(theta) Returns ------- None See Also -------- srot : Single-precision real Givens rotation crot : Single-precision complex Givens rotation zdrot : Double-precision complex Givens rotation Notes ----- Online PyBLAS documentation: https://nbviewer.jupyter.org/github/timleslie/pyblas/blob/main/docs/csrot.ipynb Reference BLAS documentation: https://github.com/Reference-LAPACK/lapack/blob/v3.9.0/BLAS/SRC/csrot.f Examples -------- >>> x = np.array([1+2j, 2+3j, 3+4j], dtype=np.complex64) >>> y = np.array([6+7j, 7+8j, 8+9j], dtype=np.complex64) >>> N = len(x) >>> incx = 1 >>> incy = 1 >>> theta = np.pi/2 >>> csrot(N, x, incx, y, incy, np.cos(theta), np.sin(theta)) >>> print(x) [6.+7.j 7.+8.j 8.+9.j] >>> print(y) [-1.-2.j -2.-3.j -3.-4.j] """ if N <= 0: return x_slice = slice_(N, INCX) y_slice = slice_(N, INCY) X_TEMP = C * CX[x_slice] + S * CY[y_slice] CY[y_slice] = -S * CX[x_slice] + C * CY[y_slice] CX[x_slice] = X_TEMP
29.333333
112
0.580682
0
0
0
0
0
0
0
0
1,472
0.836364
b8de8fb9e2f63a96dbca5bb30f4841f157b6ed7b
160
py
Python
items.py
yarnoiser/PyDungeon
c37ad314605065194732202539db50eef94ea3da
[ "BSD-3-Clause" ]
1
2018-05-15T01:26:04.000Z
2018-05-15T01:26:04.000Z
items.py
yarnoiser/PyDungeon
c37ad314605065194732202539db50eef94ea3da
[ "BSD-3-Clause" ]
null
null
null
items.py
yarnoiser/PyDungeon
c37ad314605065194732202539db50eef94ea3da
[ "BSD-3-Clause" ]
null
null
null
from dice import * class Item(): def __init__(self, weight): self.weight = weight class Weapon(item): def __init__(self, weight, damage_die, reach)
14.545455
47
0.69375
135
0.84375
0
0
0
0
0
0
0
0
b8df7da99167063e92023aa153878ad215a2e8ff
2,476
py
Python
leet.py
blackcow/pytorch-cifar-master
c571c8fd7fe521907755ca2eacb6aa877abe3493
[ "MIT" ]
null
null
null
leet.py
blackcow/pytorch-cifar-master
c571c8fd7fe521907755ca2eacb6aa877abe3493
[ "MIT" ]
null
null
null
leet.py
blackcow/pytorch-cifar-master
c571c8fd7fe521907755ca2eacb6aa877abe3493
[ "MIT" ]
null
null
null
第一题: import io import sys sys.stdout = io.TextIOWrapper(sys.stdout.buffer,encoding='utf-8') #str = input() #print(str) class Solution(object): def findMedium(l): length = len(l) l.sort() # 如果为奇数,输出中间的值 if length % 2 != 0: print(l[length//2]) # 如果为偶数,中心两位均值 else: print((l[length//2-1] + l[length//2])/2) l = [1, 3, 5, 2, 8, 7] Solution.findMedium(l) 第二题: import io import sys sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8') # str = input() # print(str) class Solution: def maxStr(str_in): # 初始化 length = len(str_in) count = [0 for i in range(26)] char_a = ord('a') # 统计出现次数 for i in range(length): count[ord(str_in[i]) - char_a] += 1 last = str_in[0] num = 1 res = 1 for m in range(1, length): # 不同 if last != str_in[m]: tmp_idx = m while (tmp_idx + 1 < length) and (last == str_in[tmp_idx + 1]): num += 1 tmp_idx += 1 if count[ord(last) - char_a] > num: num += 1 num, res = 1, max(num, res) last = str_in[m] # 相同则累加 else: num += 1 if (num > 1) and (count[ord(last) - char_a] > num): num += 1 # 获取 max 长度后,对 str 遍历访问 max_length = max(num, res) str2ls = list(str_in) for i in count: if i != max_length: str2ls = str2ls[i:] else: str2ls = str2ls[:max_length] out = ''.join(str2ls) print(out) return (out) text = 'abbbbcccddddddddeee' Solution.maxStr(text) 第三题: import io import sys sys.stdout = io.TextIOWrapper(sys.stdout.buffer,encoding='utf-8') #str = input() #print(str) class Solution: def findMaxArray(l): # 初始化 tmp = l[0] max_val = tmp length = len(l) for i in range(1, length): # 计算当前序列和,记录当前最大值 if tmp + l[i] > l[i]: max_val = max(max_val, tmp + l[i]) tmp = tmp + l[i] # 否则到此为最长序列,并记录此时最大值 else: max_val = max(max_val, tmp, tmp+l[i], l[i]) tmp = l[i] print(max_val) return max_val l = [1, -2, 4, 5, -1, 1] Solution.findMaxArray(l)
23.358491
79
0.468094
2,130
0.796559
0
0
0
0
0
0
415
0.155198
b8df9843139746c1adbc8ed57ae326c83672e193
1,091
py
Python
shop_website/users/views.py
omar00070/django-shopping-website
af2741b900b60631349ea2e6de17586994e31680
[ "MIT" ]
null
null
null
shop_website/users/views.py
omar00070/django-shopping-website
af2741b900b60631349ea2e6de17586994e31680
[ "MIT" ]
null
null
null
shop_website/users/views.py
omar00070/django-shopping-website
af2741b900b60631349ea2e6de17586994e31680
[ "MIT" ]
null
null
null
from django.shortcuts import render from .forms import RegistrationForm, UserUpdateForm, ProfileUpdateForm from django.shortcuts import redirect from .models import Profile from django.contrib.auth.decorators import login_required def registration(request): if request.method == 'POST': form = RegistrationForm(request.POST) if form.is_valid(): form.save() username = form.cleaned_data.get('username') return redirect('login') else: form = RegistrationForm() return render(request, 'users/register.html', {'form': form}) @login_required() def profile(request): if request.method == 'POST': u_form = UserUpdateForm(request.POST, instance=request.user) p_form = ProfileUpdateForm(request.POST, request.FILES, instance=request.user.profile) if u_form.is_valid() and p_form.is_valid(): u_form.save() p_form.save() return redirect('profile') else: u_form = UserUpdateForm(instance=request.user) p_form = ProfileUpdateForm(instance=request.user.profile) context = {'u_form':u_form, 'p_form':p_form} return render(request, 'users/profile.html', context)
34.09375
88
0.75802
0
0
0
0
548
0.502291
0
0
101
0.092576
b8e0455d33253902aeabce67886870561b85812f
2,685
py
Python
quantumcat/gates/custom_gates/cirq/__init__.py
Artificial-Brain/quantumcat
eff99cac7674b3a1b7e1f752e7ebed2b960f85b3
[ "Apache-2.0" ]
20
2021-05-10T07:04:41.000Z
2021-12-13T17:12:05.000Z
quantumcat/gates/custom_gates/cirq/__init__.py
Artificial-Brain/quantumcat
eff99cac7674b3a1b7e1f752e7ebed2b960f85b3
[ "Apache-2.0" ]
2
2021-04-26T05:34:52.000Z
2021-05-16T13:46:22.000Z
quantumcat/gates/custom_gates/cirq/__init__.py
Artificial-Brain/quantumcat
eff99cac7674b3a1b7e1f752e7ebed2b960f85b3
[ "Apache-2.0" ]
17
2021-04-02T18:09:33.000Z
2022-02-10T16:38:57.000Z
# (C) Copyright Artificial Brain 2021. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from quantumcat.gates.custom_gates.cirq.u_gate import UGate from quantumcat.gates.custom_gates.cirq.u1_gate import U1Gate from quantumcat.gates.custom_gates.cirq.u2_gate import U2Gate from quantumcat.gates.custom_gates.cirq.u3_gate import U3Gate from quantumcat.gates.custom_gates.cirq.sdg_gate import SDGGate from quantumcat.gates.custom_gates.cirq.sxd_gate import SXDGate from quantumcat.gates.custom_gates.cirq.td_gate import TDGate from quantumcat.gates.custom_gates.cirq.rxx_gate import RXXGate from quantumcat.gates.custom_gates.cirq.r_gate import RGate from quantumcat.gates.custom_gates.cirq.rx_gate import RXGate from quantumcat.gates.custom_gates.cirq.ry_gate import RYGate from quantumcat.gates.custom_gates.cirq.ryy_gate import RYYGate from quantumcat.gates.custom_gates.cirq.rz_gate import RZGate from quantumcat.gates.custom_gates.cirq.rccx_gate import RCCXGate from quantumcat.gates.custom_gates.cirq.rc3x_gate import RC3XGate from quantumcat.gates.custom_gates.cirq.rzz_gate import RZZGate from quantumcat.gates.custom_gates.cirq.rzx_gate import RZXGate from quantumcat.gates.custom_gates.cirq.sx_gate import SXGate from quantumcat.gates.custom_gates.cirq.cy_gate import CYGate from quantumcat.gates.custom_gates.cirq.p_gate import PGate from quantumcat.gates.custom_gates.cirq.cu_gate import CUGate from quantumcat.gates.custom_gates.cirq.cu1_gate import CU1Gate from quantumcat.gates.custom_gates.cirq.cu3_gate import CU3Gate from quantumcat.gates.custom_gates.cirq.crx_gate import CRXGate from quantumcat.gates.custom_gates.cirq.cry_gate import CRYGate from quantumcat.gates.custom_gates.cirq.crz_gate import CRZGate from quantumcat.gates.custom_gates.cirq.dcx_gate import DCXGate from quantumcat.gates.custom_gates.cirq.c3x_gate import C3XGate from quantumcat.gates.custom_gates.cirq.c4x_gate import C4XGate from quantumcat.gates.custom_gates.cirq.c3sx_gate import C3SXGate from quantumcat.gates.custom_gates.cirq.cphase_gate import CPhaseGate from quantumcat.gates.custom_gates.cirq.csx_gate import CSXGate from quantumcat.gates.custom_gates.cirq.ch_gate import CHGate
55.9375
75
0.84581
0
0
0
0
0
0
0
0
581
0.216387
b8e06a6109f1d799db4201a71cba9cf898507598
1,045
py
Python
CL_Net/Referential_Game/Number_Set/info.py
MarkFzp/ToM-Pragmatics
3de1956c36ea40f29a41e4c153c4b8cdc73afc15
[ "MIT" ]
null
null
null
CL_Net/Referential_Game/Number_Set/info.py
MarkFzp/ToM-Pragmatics
3de1956c36ea40f29a41e4c153c4b8cdc73afc15
[ "MIT" ]
null
null
null
CL_Net/Referential_Game/Number_Set/info.py
MarkFzp/ToM-Pragmatics
3de1956c36ea40f29a41e4c153c4b8cdc73afc15
[ "MIT" ]
null
null
null
import numpy as np import scipy.stats as sp from concept import Concept def info_gain(prev_dist, new_dist): return sp.entropy(prev_dist) - sp.entropy(new_dist) def main(): attributes = range(10) num_concepts = 5 concept_size = 4 concept_space = Concept(attributes, num_concepts, concept_size) problem1 = [(1, 2, 3, 4), (3, 4, 5, 6), (2, 4, 5, 7), (2, 3, 5, 8), (2, 3, 4, 5)] init_belief = np.ones(num_concepts) / num_concepts for msg in [2, 3, 4, 5]: new_belief = concept_space.bayesian_update(init_belief, problem1, msg) print(info_gain(init_belief, new_belief)) init_belief = new_belief print(info_gain(np.ones(num_concepts) / num_concepts, new_belief)) print('%%%%%%%%%%%%%%%%%%%%%%') problem2 = [(0, 2, 3), (4, 7, 9), (4, 7), (0, 2, 4, 9)] init_belief = np.ones(4) / 4 for msg in [7] * 8: new_belief = concept_space.bayesian_update(init_belief, problem2, msg) print(info_gain(init_belief, new_belief)) init_belief = new_belief print(info_gain(np.ones(4) / 4, [0, 0, 1, 0])) if __name__ == '__main__': main()
30.735294
82
0.67177
0
0
0
0
0
0
0
0
34
0.032536
b8e0a7c86db8162077913d429a8e44b03bb440ed
1,695
py
Python
commands/misc/github.py
typhonshambo/TY-BOT-v3
eb192d495bf32ae3a56d4a60ec2aa4e1e6a7ef2c
[ "MIT" ]
null
null
null
commands/misc/github.py
typhonshambo/TY-BOT-v3
eb192d495bf32ae3a56d4a60ec2aa4e1e6a7ef2c
[ "MIT" ]
null
null
null
commands/misc/github.py
typhonshambo/TY-BOT-v3
eb192d495bf32ae3a56d4a60ec2aa4e1e6a7ef2c
[ "MIT" ]
null
null
null
import aiohttp import discord from discord.ext import commands from discord.commands import Option, slash_command, SlashCommandGroup import json with open ('././config/guilds.json', 'r') as f: data = json.load(f) guilds = data['guilds'] with open ('././config/api.json', 'r') as f: ApiData = json.load(f) githubApi = ApiData['github'] class slashGithub(commands.Cog): def __init__(self, bot): self.bot = bot @commands.slash_command(description="Search any github user", guild_ids=guilds) async def github( self, ctx, username: Option(str, "Enter Github Username", required=True) ): await ctx.response.defer() url = str(githubApi)+ str(username) async with aiohttp.ClientSession() as session: async with session.get(url) as r: r = await r.json() try: username = r["login"] avatar = r["avatar_url"] githuburl = r["html_url"] name = r["name"] location = r["location"] email = r["email"] company = r["company"] bio = r["bio"] repo = r["public_repos"] embed = discord.Embed( colour=0x00FFFF, title=f"Github Profile", description=f""" > `Github username` : {username} > `Github link` : {githuburl} > `Name` : {name} > `Location` : {location} > `Email` : {email} > `Company` : {company} > `Bio` : {bio} > `Repository` : {repo} """) embed.set_thumbnail(url=avatar) await ctx.respond(embed=embed) except: embed = discord.Embed( colour=0x983925, description=f"> ⚠️Unable to find the github profile please check your spelling", ) await ctx.respond(embed=embed) def setup(bot): bot.add_cog(slashGithub(bot))
23.219178
86
0.629499
1,302
0.766333
0
0
1,224
0.720424
1,143
0.672749
535
0.314891
b8e177cd51c2b5569754fe0293a60b5835aa4a05
1,126
py
Python
raspbeeryPi/smart-home-hubs/gy30.py
zibuyu1995/Hardware
8461ebf9b04a603b397d8396ae14b359bd89a8cf
[ "MIT" ]
2
2020-05-20T03:02:01.000Z
2020-06-14T15:38:31.000Z
raspbeeryPi/smart-home-hubs/gy30.py
zibuyu1995/Hardware
8461ebf9b04a603b397d8396ae14b359bd89a8cf
[ "MIT" ]
3
2018-08-05T04:38:56.000Z
2019-11-25T07:02:15.000Z
raspbeeryPi/smart-home-hubs/gy30.py
zibuyu1995/Hardware
8461ebf9b04a603b397d8396ae14b359bd89a8cf
[ "MIT" ]
1
2020-07-29T03:56:41.000Z
2020-07-29T03:56:41.000Z
import json import time import smbus from paho.mqtt import client as mqtt # BH1750FVI config DEVICE = 0x23 # Default device I2C address POWER_DOWN = 0x00 POWER_ON = 0x01 RESET = 0x07 CONTINUOUS_LOW_RES_MODE = 0x13 CONTINUOUS_HIGH_RES_MODE_1 = 0x10 CONTINUOUS_HIGH_RES_MODE_2 = 0x11 ONE_TIME_HIGH_RES_MODE_1 = 0x20 ONE_TIME_HIGH_RES_MODE_2 = 0x21 ONE_TIME_LOW_RES_MODE = 0x23 bus = smbus.SMBus(1) # MQTT Broker config broker = '127.0.0.1' port = 1883 topic = 'smartHomeHubs/light' def read_light(): data = bus.read_i2c_block_data(DEVICE, ONE_TIME_HIGH_RES_MODE_1) light_level = round((data[1] + (256 * data[0])) / 1.2, 2) return light_level def connect_mqtt(): client = mqtt.Client(client_id='light_01') client.connect(host=broker, port=port) return client def run(): mqtt_client = connect_mqtt() while True: light_level = read_light() publish_msg = {'lightLevel': light_level} mqtt_client.publish( topic, payload=json.dumps(publish_msg) ) print(publish_msg) time.sleep(1) if __name__ == "__main__": run()
20.851852
68
0.694494
0
0
0
0
0
0
0
0
130
0.115453
b8e1956c9e02704f82448e09bd95db729640c5f1
18,721
py
Python
python/temp/yolo_main.py
plasticanne/unity-object-detection-zoo
a436aec8fd6b9b4067aafc20706e7d1896223d64
[ "MIT" ]
null
null
null
python/temp/yolo_main.py
plasticanne/unity-object-detection-zoo
a436aec8fd6b9b4067aafc20706e7d1896223d64
[ "MIT" ]
null
null
null
python/temp/yolo_main.py
plasticanne/unity-object-detection-zoo
a436aec8fd6b9b4067aafc20706e7d1896223d64
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Class definition of YOLO_v3 style detection model on image and video """ import os import numpy as np import tensorflow as tf from PIL import Image, ImageDraw, ImageFont import cv2 from keras import backend as K from keras.layers import Input, Lambda from keras.models import Model, Sequential, load_model from keras.utils import multi_gpu_model from tensorflow.image import ResizeMethod from tensorflow.python.framework import graph_util from tensorflow.python.platform import gfile from tensorflow.python.tools import optimize_for_inference_lib import colorsys from timeit import default_timer as timer from yolo3 import utils from yolo3.model import tiny_yolo_body, yolo_body, yolo_eval,yolo_eval2 class YOLO(object): def __init__(self, classes_num, anchors_path, session): #self.class_names = self._get_class(classes_path) self.classes_num=classes_num self.anchors = self._get_anchors(anchors_path) #self._generate_colors() self.sess = session def _get_anchors(self, anchors_path_raw): anchors_path = os.path.expanduser(anchors_path_raw) with open(anchors_path) as f: anchors = f.readline() anchors = [float(x) for x in anchors.split(',')] return np.array(anchors).reshape(-1, 2) def load_model_by_h5(self, model_h5_path, model_score_threshold, iou_threshold, gpu_num): model_path = os.path.expanduser(model_h5_path) assert model_path.endswith( '.h5'), 'Keras model or weights must be a .h5 file.' # Load model, or construct model and load weights. num_anchors = len(self.anchors) yolo_model = load_model(model_path, compile=False) assert yolo_model.layers[-1].output_shape[-1] == \ num_anchors/len(yolo_model.output) * (self.classes_num + 5), \ 'Mismatch between model and given anchor and class sizes' print('{} model, anchors, and classes loaded.'.format(model_path)) if gpu_num >= 2: yolo_model = multi_gpu_model(yolo_model, gpus=gpu_num) self._generate_graph(yolo_model, self.classes_num, model_score_threshold, iou_threshold) def load_model_by_buider(self, weight_h5_path, model_score_threshold, iou_threshold, gpu_num): # Load model, or construct model and load weights. num_anchors = len(self.anchors) is_tiny_version = num_anchors == 6 # default setting self.yolo_model = tiny_yolo_body(Input(shape=(None, None, 3)), num_anchors//2, self.classes_num) \ if is_tiny_version else yolo_body(Input(shape=(None, None, 3)), num_anchors//3, self.classes_num) # make sure model, anchors and classes match self.yolo_model.load_weights(weight_h5_path) print('{} model, anchors, and classes loaded.'.format(weight_h5_path)) if gpu_num >= 2: yolo_model = multi_gpu_model(yolo_model, gpus=gpu_num) self._generate_graph(yolo_model, self.classes_num, model_score_threshold, iou_threshold) def _generate_graph(self, model_body, num_classes, model_score_threshold, iou_threshold): # Generate output tensor targets for filtered bounding boxes. #self.input_0 = K.placeholder( # shape=(2), name="return_box_shape", dtype="int32") self.input_1 = tf.placeholder( shape=(None, None, 3), name="input_image",dtype="uint8") new_img = tf.cast(self.input_1, tf.float32) /255. new_img_dims = tf.expand_dims(new_img, 0) out = model_body(new_img_dims) boxes, scores, classes,num = yolo_eval2(out, self.anchors, num_classes, #self.input_0, score_threshold=model_score_threshold, iou_threshold=iou_threshold) self.output_nodes={} self.output_nodes['boxes'] = tf.identity(boxes, name="output_boxes") self.output_nodes['scores'] = tf.identity(scores, name="output_scores") self.output_nodes['classes'] = tf.identity(classes, name="output_classes") self.output_nodes['num'] = tf.identity(num, name="output_num") def load_model_by_pb(self, model_pb_path): model_path = os.path.expanduser(model_pb_path) # Load model, or construct model and load weights. with gfile.FastGFile(model_path, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) yolo_model = tf.import_graph_def(graph_def, name='') print('{} model, anchors, and classes loaded.'.format(model_path)) def write_pb(self, output_pb_path, output_pb_file): self.input_nodes = [self.get_input["input_1"].name.split(":")[0]] self.output_nodes = [self.get_output["boxes"].name.split(":")[0], self.get_output["scores"].name.split(":")[ 0], self.get_output["classes"].name.split(":")[0]] print("input nodes:", self.input_nodes) print("output nodes:", self.output_nodes) constant_graph = graph_util.convert_variables_to_constants( self.sess, tf.get_default_graph().as_graph_def(), self.output_nodes) optimize_Graph = optimize_for_inference_lib.optimize_for_inference( constant_graph, self.input_nodes, # an array of the input node(s) self.output_nodes, # an array of output nodes tf.float32.as_datatype_enum) optimize_for_inference_lib.ensure_graph_is_valid(optimize_Graph) with tf.gfile.GFile(os.path.join(output_pb_path, output_pb_file), "wb") as f: f.write(constant_graph.SerializeToString()) def load_model_by_meta(self, model_meta_folder): checkpoint = tf.train.get_checkpoint_state( model_meta_folder).model_checkpoint_path saver = tf.train.import_meta_graph( checkpoint + '.meta', clear_devices=True) saver.restore(self.sess, checkpoint) yolo_model = tf.import_graph_def(self.sess.graph_def, name='') print('{} model, anchors, and classes loaded.'.format(model_meta_folder)) def write_meta(self, meta_output_folder, meta_output_file_name): saver = tf.train.Saver() saver.save(self.sess, os.path.join( meta_output_folder, meta_output_file_name+".ckpt")) tf.train.write_graph(self.sess.graph_def, meta_output_folder, meta_output_file_name+'.pb') def get_nodes(self): #num_anchors = len(self.anchors) # is_tiny_version = num_anchors==6 # default setting #self.input_0 = self.sess.graph.get_tensor_by_name("return_box_shape:0") self.get_output={} self.get_input={} self.get_input["input_1"] = self.sess.graph.get_tensor_by_name("input_image:0") self.get_output["boxes"] = self.sess.graph.get_tensor_by_name("output_boxes:0") self.get_output["scores"] = self.sess.graph.get_tensor_by_name("output_scores:0") self.get_output["classes"] = self.sess.graph.get_tensor_by_name("output_classes:0") self.get_output["num"] = self.sess.graph.get_tensor_by_name("output_num:0") def load_image_into_numpy_array(self,image): (im_width, im_height) = image.size return np.array(image, dtype='float32').astype(np.uint8) #return np.array(image.getdata()).reshape((im_height, im_width, 3)).astype(np.uint8) def detect(self, image, force_image_resize): image_data = pil_image_resize(force_image_resize, image) image_data=self.load_image_into_numpy_array(image_data) print("resize %s to %s" % ((image.size[1], image.size[0]), force_image_resize)) start = timer() output_dict = self.sess.run( self.get_output, feed_dict={ #self.input_0: [image.size[1], image.size[0]], self.get_input["input_1"]: image_data }) #print(out_boxes, out_scores, out_classes) end = timer() print("detect time %s s" % (end - start)) print(output_dict) output_dict["boxes"]=self.padding_boxes_reversize(output_dict["boxes"],force_image_resize,image.size) return output_dict def padding_boxes_reversize(self,boxes,in_shape,out_shape): long_side = max( out_shape) w_scale=long_side/in_shape[1] h_scale=long_side/in_shape[0] w_offset=(long_side-out_shape[0])/2. h_offset=(long_side-out_shape[1])/2. for box in boxes: box[0] = box[0]*h_scale*in_shape[1] -h_offset box[1] = box[1]*w_scale*in_shape[0] -w_offset box[2] = box[2]*h_scale*in_shape[1] -h_offset box[3] = box[3]*w_scale*in_shape[0] -w_offset return boxes.astype('int32') def get_class(classes_path_raw): classes_path = os.path.expanduser(classes_path_raw) with open(classes_path) as f: class_names = f.readlines() class_names = [c.strip() for c in class_names] return class_names def generate_colors(class_names): # Generate colors for drawing bounding boxes. hsv_tuples = [(x / len(class_names), 1., 1.) for x in range(len(class_names))] colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) colors = list( map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), colors)) np.random.seed(10101) # Fixed seed for consistent colors across runs. # Shuffle colors to decorrelate adjacent classes. np.random.shuffle(colors) np.random.seed(None) # Reset seed to default. return colors def draw(image,class_names,colors, draw_score_threshold, out_boxes, out_scores, out_classes): font = ImageFont.truetype(font='font/FiraMono-Medium.otf', size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32')) thickness = (image.size[0] + image.size[1]) // 300 for i, c in reversed(list(enumerate(out_classes))): predicted_class = class_names[c] box = out_boxes[i] score = out_scores[i] label = '{} {:.2f}'.format(predicted_class, score) draw = ImageDraw.Draw(image) label_size = draw.textsize(label, font) top, left, bottom, right = box top = max(0, np.floor(top + 0.5).astype('int32')) left = max(0, np.floor(left + 0.5).astype('int32')) bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32')) right = min(image.size[0], np.floor(right + 0.5).astype('int32')) print(label, (left, top), (right, bottom)) if top - label_size[1] >= 0: text_origin = np.array([left, top - label_size[1]]) else: text_origin = np.array([left, top + 1]) # My kingdom for a good redistributable image drawing library. if out_scores[i] >= draw_score_threshold: for i in range(thickness): draw.rectangle( [left + i, top + i, right - i, bottom - i], outline=colors[c]) draw.rectangle( [tuple(text_origin), tuple(text_origin + label_size)], fill=colors[c]) draw.text(text_origin, label, fill=(0, 0, 0), font=font) del draw return image def tf_image_resize(target_size, image): boxed_image = tf_letterbox_image(target_size, image) return boxed_image def tf_letterbox_image(size, image): '''resize image with unchanged aspect ratio using padding''' new_image = tf.image.resize_image_with_pad( image, target_height=size[1], target_width=size[0], method=ResizeMethod.BICUBIC ) return new_image def pil_image_resize(target_size, image): if target_size != (None, None): # (height,width) assert target_size[0] % 32 == 0, 'Multiples of 32 required' assert target_size[1] % 32 == 0, 'Multiples of 32 required' new_image = utils.letterbox_image(image, tuple(reversed(target_size))) else: new_image_size = (image.width - (image.width % 32), image.height - (image.height % 32)) new_image = utils.letterbox_image(image, new_image_size) return new_image def cv2_letterbox_image(img_path, size): '''resize image with unchanged aspect ratio using padding''' im = cv2.imread(img_path) old_size = im.shape[:2] # old_size is in (height, width) format ratio_w = float(size[1])/old_size[1] ratio_h = float(size[0])/old_size[0] ratio=min(ratio_h,ratio_w) new_size = tuple([int(x*ratio) for x in old_size]) # new_size should be in (width, height) format im = cv2.resize(im, (new_size[1], new_size[0])) delta_w = size[1] - new_size[1] delta_h = size[0] - new_size[0] top, bottom = delta_h//2, delta_h-(delta_h//2) left, right = delta_w//2, delta_w-(delta_w//2) color = [0, 0, 0] new_image = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) return new_image def detect_video(yolo, video_path,class_path, draw_score_threshold, force_image_resize, output_path=""): vid = cv2.VideoCapture(video_path) class_names =get_class(class_path) colors=generate_colors(class_names) if not vid.isOpened(): raise IOError("Couldn't open webcam or video") video_FourCC = int(vid.get(cv2.CAP_PROP_FOURCC)) video_fps = vid.get(cv2.CAP_PROP_FPS) video_size = (int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)), int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT))) isOutput = True if output_path != "" else False if isOutput: print("!!! TYPE:", type(output_path), type( video_FourCC), type(video_fps), type(video_size)) out = cv2.VideoWriter(output_path, video_FourCC, video_fps, video_size) accum_time = 0 curr_fps = 0 fps = "FPS: ??" prev_time = timer() while True: return_value, frame = vid.read() image = Image.fromarray(frame) output_dict = yolo.detect( image, force_image_resize) out_boxes=output_dict["boxes"] out_scores=output_dict["scores"] out_classes=output_dict["classes"] image = draw( image,class_names,colors, draw_score_threshold, out_boxes, out_scores, out_classes) result = np.asarray(image) curr_time = timer() exec_time = curr_time - prev_time prev_time = curr_time accum_time = accum_time + exec_time curr_fps = curr_fps + 1 if accum_time > 1: accum_time = accum_time - 1 fps = "FPS: " + str(curr_fps) curr_fps = 0 cv2.putText(result, text=fps, org=(3, 15), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.50, color=(255, 0, 0), thickness=2) cv2.namedWindow("result", cv2.WINDOW_NORMAL) cv2.imshow("result", result) if isOutput: out.write(result) if cv2.waitKey(1) & 0xFF == ord('q'): break def detect_image(yolo, img_path,class_path, draw_score_threshold, force_image_resize): image = Image.open(img_path) output_dict = yolo.detect( image, force_image_resize) out_boxes=output_dict["boxes"] out_scores=output_dict["scores"] out_classes=output_dict["classes"] class_names =get_class(class_path) colors=generate_colors(class_names) image = draw(image,class_names,colors, draw_score_threshold, out_boxes, out_scores, out_classes) image.show() if __name__ == '__main__': # loading model from: # 0: h5 # 1: freezed unity interface pb # 2: unity interface meta # 3: blider & h5 weights model_load_from = 0 # args MODEL_h5_path = 'model_data/yolo.h5' MODEL_pb_path = 'model_data/freezed_coco_yolo.pb' ANCHORS_path = 'model_data/yolo_anchors.txt' CLASSES_path = 'model_data/coco_classes.txt' CLASSES_num = 80 MODEL_meta_folder = "" MODEL_weight_h5_path = "" # classify score threshold, value will be fixed to output freezed MODEL_score_threshold = 0.1 IOU_threshold = 0.1 # yolo iou box filter, value will be fixed to output freezed GPU_num = 1 # video cards count , cpu version or gpu version with counts will fixed after convert to pb graph # doing detection: # 0: no action # 1: img # 2: video do_detect = 1 # args IMG_path = 'demo/car_cat.jpg' VIDEO_path = 'demo/Raccoon.mp4' OUTPUT_video = "" DRAW_score_threshold = 0.1 # score filter for draw boxes # (height,width) 'Multiples of 32 required' , resize input to model FORCE_image_resize = (416, 416) # keras h5 convert to freezed graph output: # 0: no action # 1: h5-->freezed pb # 2: h5-->meta do_output_freezed_unity_interface = 0 # args OUTPUT_pb_path = "./model_data" OUTPUT_pb_file = "freezed_coco_yolo.pb" OUTPUT_meta_folder = "" OUTPUT_meta_file_name = "" K.clear_session() with K.get_session() as sess: yolo = YOLO(CLASSES_num, ANCHORS_path, sess) if model_load_from == 0: yolo.load_model_by_h5( MODEL_h5_path, MODEL_score_threshold, IOU_threshold, GPU_num) elif model_load_from == 1: yolo.load_model_by_pb(MODEL_pb_path) elif model_load_from == 2: yolo.load_model_by_meta(MODEL_meta_folder) elif model_load_from == 3: yolo.load_model_by_buider(MODEL_weight_h5_path) yolo.get_nodes() if model_load_from == 0: if do_output_freezed_unity_interface == 1: yolo.write_pb(OUTPUT_pb_path, OUTPUT_pb_file) elif do_output_freezed_unity_interface == 2: yolo.write_meta(OUTPUT_meta_folder, OUTPUT_meta_file_name) else: if do_output_freezed_unity_interface != 0: print("for output, model must loading from .h5") if do_detect == 1: detect_image(yolo, IMG_path,CLASSES_path, DRAW_score_threshold, FORCE_image_resize) elif do_detect == 2: detect_video(yolo, VIDEO_path,CLASSES_path, DRAW_score_threshold, FORCE_image_resize, OUTPUT_video)
41.418142
116
0.633834
8,307
0.443726
0
0
0
0
0
0
3,130
0.167192
b8e2aaafc2b4702776593b03b7fea1abb7e1b4d0
3,262
py
Python
src/extractor-lib/tests/csv_generation/test_normalized_directory_template.py
stephenfuqua/Ed-Fi-X-Fizz
94597eda585d4f62f69c12e2a58fa8e8846db11b
[ "Apache-2.0" ]
3
2020-10-15T10:29:59.000Z
2020-12-01T21:40:55.000Z
src/extractor-lib/tests/csv_generation/test_normalized_directory_template.py
stephenfuqua/Ed-Fi-X-Fizz
94597eda585d4f62f69c12e2a58fa8e8846db11b
[ "Apache-2.0" ]
40
2020-08-17T21:08:33.000Z
2021-02-02T19:56:09.000Z
src/extractor-lib/tests/csv_generation/test_normalized_directory_template.py
stephenfuqua/Ed-Fi-X-Fizz
94597eda585d4f62f69c12e2a58fa8e8846db11b
[ "Apache-2.0" ]
10
2021-06-10T16:27:27.000Z
2021-12-27T12:31:57.000Z
# SPDX-License-Identifier: Apache-2.0 # Licensed to the Ed-Fi Alliance under one or more agreements. # The Ed-Fi Alliance licenses this file to you under the Apache License, Version 2.0. # See the LICENSE and NOTICES files in the project root for more information. from os import path from sys import platform from edfi_lms_extractor_lib.csv_generation.write import ( _normalized_directory_template, USERS_ROOT_DIRECTORY, ASSIGNMENT_ROOT_DIRECTORY, SUBMISSION_ROOT_DIRECTORY, ) OUTPUT_DIRECTORY = "output_directory" OUTPUT_DIRECTORY_WITH_SLASH = "output_directory/" OUTPUT_DIRECTORY_WITH_BACKSLASH = "output_directory\\" def describe_when_template_has_one_element(): EXPECTED_RESULT = f"{OUTPUT_DIRECTORY}{path.sep}{USERS_ROOT_DIRECTORY[0]}" BACKSLASH_LINUX = f"{OUTPUT_DIRECTORY}\\{path.sep}{USERS_ROOT_DIRECTORY[0]}" def it_should_join_bare_output_directory_correctly(): # arrange / act result = _normalized_directory_template(OUTPUT_DIRECTORY, USERS_ROOT_DIRECTORY) # assert assert result == EXPECTED_RESULT def it_should_join_output_directory_with_slash_correctly(): # arrange / act result = _normalized_directory_template( OUTPUT_DIRECTORY_WITH_SLASH, USERS_ROOT_DIRECTORY ) # assert assert result == EXPECTED_RESULT def it_should_join_output_directory_with_backslash_correctly(): # arrange / act result = _normalized_directory_template( OUTPUT_DIRECTORY_WITH_BACKSLASH, USERS_ROOT_DIRECTORY ) # assert if platform == "win32": assert result == EXPECTED_RESULT else: assert result == BACKSLASH_LINUX def describe_when_template_has_two_elements(): EXPECTED_RESULT = ( f"{OUTPUT_DIRECTORY}{path.sep}" f"{ASSIGNMENT_ROOT_DIRECTORY[0]}{path.sep}" f"{ASSIGNMENT_ROOT_DIRECTORY[1]}" ) def it_should_join_bare_output_directory_correctly(): # arrange / act result = _normalized_directory_template( OUTPUT_DIRECTORY, ASSIGNMENT_ROOT_DIRECTORY ) # assert assert result == EXPECTED_RESULT def it_should_join_output_directory_with_slash_correctly(): # arrange / act result = _normalized_directory_template( OUTPUT_DIRECTORY_WITH_SLASH, ASSIGNMENT_ROOT_DIRECTORY ) # assert assert result == EXPECTED_RESULT def describe_when_template_has_three_elements(): EXPECTED_RESULT = ( f"{OUTPUT_DIRECTORY}{path.sep}" f"{SUBMISSION_ROOT_DIRECTORY[0]}{path.sep}" f"{SUBMISSION_ROOT_DIRECTORY[1]}{path.sep}" f"{SUBMISSION_ROOT_DIRECTORY[2]}" ) def it_should_join_bare_output_directory_correctly(): # arrange / act result = _normalized_directory_template( OUTPUT_DIRECTORY, SUBMISSION_ROOT_DIRECTORY ) # assert assert result == EXPECTED_RESULT def it_should_join_output_directory_with_slash_correctly(): # arrange / act result = _normalized_directory_template( OUTPUT_DIRECTORY_WITH_SLASH, SUBMISSION_ROOT_DIRECTORY ) # assert assert result == EXPECTED_RESULT
30.773585
87
0.701104
0
0
0
0
0
0
0
0
857
0.262722
b8e2f0eed3c941ac36abbbe75adbed48e0a9d358
425
py
Python
python3-tutorial/02 Advanced/1216 UpdateMany.py
CoderDream/python-best-practice
40e6b5315daefb37c59daa1a1990ac1ae10f8cca
[ "MIT" ]
null
null
null
python3-tutorial/02 Advanced/1216 UpdateMany.py
CoderDream/python-best-practice
40e6b5315daefb37c59daa1a1990ac1ae10f8cca
[ "MIT" ]
null
null
null
python3-tutorial/02 Advanced/1216 UpdateMany.py
CoderDream/python-best-practice
40e6b5315daefb37c59daa1a1990ac1ae10f8cca
[ "MIT" ]
null
null
null
# update_one() 方法只能修匹配到的第一条记录,如果要修改所有匹配到的记录,可以使用 update_many()。 # 以下实例将查找所有以 F 开头的 name 字段,并将匹配到所有记录的 alexa 字段修改为 123: import pymongo myclient = pymongo.MongoClient("mongodb://localhost:27017/") mydb = myclient["runoobdb"] mycol = mydb["sites"] myquery = {"name": {"$regex": "^F"}} newvalues = {"$set": {"alexa": "123"}} x = mycol.update_many(myquery, newvalues) print(x.modified_count, "文档已修改") # 输出结果为: # # 1 # 文档已修改
20.238095
63
0.694118
0
0
0
0
0
0
0
0
388
0.658744
b8e31fa93df9ea85fa09d4f2fd6acdf91de443e9
789
py
Python
search/linear/linear_search.py
alfiejsmith/algorithms
c1d816aba932a1ae0664ff2a5b7784e2a01e1de2
[ "MIT" ]
null
null
null
search/linear/linear_search.py
alfiejsmith/algorithms
c1d816aba932a1ae0664ff2a5b7784e2a01e1de2
[ "MIT" ]
null
null
null
search/linear/linear_search.py
alfiejsmith/algorithms
c1d816aba932a1ae0664ff2a5b7784e2a01e1de2
[ "MIT" ]
null
null
null
from random import shuffle """ Will search a list of integers for a value using a linear search algorithm. Does not require a sorted list to be passed in. Returns -1 if item is not found Linear Search: Best - O(1) Worst - O(n) Average - O(n) Space Complexity - O(1) """ def search(data: list, value: int) -> int: for i in range(len(data)): if data[i] == value: return i return -1 def run(): print("Linear Search") data_size = int(input("Enter the max value: ")) data = list(range(data_size)) shuffle(data) value = int(input("Enter value to search for: ")) print("Searching for {} in {}".format(value, data)) result = search(data, value) print("Not found in list" if result == -1 else "Found at index {}".format(result))
22.542857
86
0.636248
0
0
0
0
0
0
0
0
373
0.47275
b8e38e1d075d3a7559a30980f5c79e4ab5617467
3,657
py
Python
gitScrabber/scrabTasks/git/projectDates.py
Eyenseo/gitScrabber
e3f5ce1a7b034fa3e40a54577268228a3be2b141
[ "MIT" ]
null
null
null
gitScrabber/scrabTasks/git/projectDates.py
Eyenseo/gitScrabber
e3f5ce1a7b034fa3e40a54577268228a3be2b141
[ "MIT" ]
null
null
null
gitScrabber/scrabTasks/git/projectDates.py
Eyenseo/gitScrabber
e3f5ce1a7b034fa3e40a54577268228a3be2b141
[ "MIT" ]
null
null
null
""" The MIT License (MIT) Copyright (c) 2017 Roland Jaeger Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from ..scrabTask import GitTask import utils name = "ProjectDates" version = "1.1.0" class ProjectDates(GitTask): """ Gets the first and last commit date in ISO format Example: ProjectDates: first_change: '1998-12-21T10:52:45+00:00' last_change: '2017-08-09T13:37:06+10:00' :param parameter: Parameter given explicitly for this task, for all projects, defined in the task.yaml :param global_args: Arguments that will be passed to all tasks. They _might_ contain something that is useful for the task, but the task has to check if it is _there_ as these are user provided. If they are needed to work that check should happen in the argHandler. """ def __init__(self, parameter, global_args): super(ProjectDates, self).__init__(name, version, parameter, global_args) self.__project = None def __first_commit_date(self): """ The function will obtain the first commit date from the project repository :returns: The date of the first commit in the projects repository (2005-04-16T15:20:36-07:00) """ return utils.run('git', ['log', '--all', '--format=%cI', '--first-parent', '--reverse', '--max-parents=0'], self.__project.location).splitlines()[0].rstrip() def __last_commit_date(self): """ The function will obtain the last commit date from the project repository :returns: The date of the last commit in the projects repository (2017-08-03T15:25:14-07:00) """ return utils.run('git', ['log', '--all', '-1', '--format=%cI'], self.__project.location).rstrip() def scrab(self, project): """ Gets the first and last commit date in ISO format :param project: The project :returns: The first and last commit date in ISO format Example: ProjectDates: first_change: '1998-12-21T10:52:45+00:00' last_change: '2017-08-09T13:37:06+10:00' """ self.__project = project report = {} report['first_change'] = self.__first_commit_date() report['last_change'] = self.__last_commit_date() return report
37.316327
80
0.623462
2,477
0.677331
0
0
0
0
0
0
2,787
0.7621
b8e396ee442faafcbc18f8f10aa0618271fca39e
3,526
py
Python
demo_maecce_for_pls.py
hkaneko1985/dcek
13d9228b2dc2fd87c2e08a01721e1b1b220f2e19
[ "MIT" ]
25
2019-08-23T12:39:14.000Z
2022-03-30T08:58:15.000Z
demo_maecce_for_pls.py
hkaneko1985/dcek
13d9228b2dc2fd87c2e08a01721e1b1b220f2e19
[ "MIT" ]
2
2022-01-06T11:21:21.000Z
2022-01-18T22:11:12.000Z
demo_maecce_for_pls.py
hkaneko1985/dcek
13d9228b2dc2fd87c2e08a01721e1b1b220f2e19
[ "MIT" ]
16
2019-12-12T08:20:48.000Z
2022-01-26T00:34:31.000Z
# -*- coding: utf-8 -*- # %reset -f """ @author: Hiromasa Kaneko """ # Demonstration of MAEcce in PLS modeling import matplotlib.figure as figure import matplotlib.pyplot as plt import numpy as np from dcekit.validation import mae_cce from sklearn import datasets from sklearn.cross_decomposition import PLSRegression from sklearn.model_selection import GridSearchCV, train_test_split # settings number_of_training_samples = 50 # 30, 50, 100, 300, 500, 1000, 3000, for example number_of_test_samples = 10000 number_of_x_variables = 30 # 10, 30, 50, 100, 300, 500, 1000, 3000, for example number_of_y_randomization = 50 max_pls_component_number = 20 fold_number = 5 # generate sample dataset x, y = datasets.make_regression(n_samples=number_of_training_samples + number_of_test_samples, n_features=number_of_x_variables, n_informative=10, noise=30, random_state=number_of_training_samples + number_of_x_variables) x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=number_of_test_samples, random_state=0) # autoscaling autoscaled_x_train = (x_train - x_train.mean(axis=0)) / x_train.std(axis=0, ddof=1) autoscaled_y_train = (y_train - y_train.mean()) / y_train.std(ddof=1) autoscaled_x_test = (x_test - x_train.mean(axis=0)) / x_train.std(axis=0, ddof=1) # cross-validation pls_components = np.arange(1, max_pls_component_number + 1) cv_model = GridSearchCV(PLSRegression(), {'n_components': pls_components}, cv=fold_number) cv_model.fit(autoscaled_x_train, autoscaled_y_train) # modeling and prediction model = getattr(cv_model, 'estimator') hyperparameters = list(cv_model.best_params_.keys()) for hyperparameter in hyperparameters: setattr(model, hyperparameter, cv_model.best_params_[hyperparameter]) model.fit(autoscaled_x_train, autoscaled_y_train) estimated_y_train = np.ndarray.flatten(model.predict(autoscaled_x_train)) estimated_y_train = estimated_y_train * y_train.std(ddof=1) + y_train.mean() predicted_y_test = np.ndarray.flatten(model.predict(autoscaled_x_test)) predicted_y_test = predicted_y_test * y_train.std(ddof=1) + y_train.mean() # MAEcce mae_cce_train = mae_cce(cv_model, x_train, y_train, number_of_y_randomization=number_of_y_randomization, do_autoscaling=True, random_state=0) # yy-plot for test data plt.figure(figsize=figure.figaspect(1)) plt.scatter(y_test, predicted_y_test) y_max = np.max(np.array([np.array(y_test), predicted_y_test])) y_min = np.min(np.array([np.array(y_test), predicted_y_test])) plt.plot([y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min)], [y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min)], 'k-') plt.ylim(y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min)) plt.xlim(y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min)) plt.xlabel('Actual Y') plt.ylabel('Estimated Y') plt.show() # r2p, RMSEp, MAEp for test data print('r2p: {0}'.format(float(1 - sum((y_test - predicted_y_test) ** 2) / sum((y_test - y_test.mean()) ** 2)))) print('RMSEp: {0}'.format(float((sum((y_test - predicted_y_test) ** 2) / len(y_test)) ** 0.5))) mae_test = float(sum(abs(y_test - predicted_y_test)) / len(y_test)) print('MAEp: {0}'.format(mae_test)) # histgram of MAEcce plt.rcParams["font.size"] = 18 plt.hist(mae_cce_train, bins=30) plt.plot(mae_test, 0.2, 'r.', markersize=30) plt.xlabel('MAEcce(histgram), MAEp(red point)') plt.ylabel('frequency') plt.show()
44.632911
142
0.723199
0
0
0
0
0
0
0
0
544
0.154282
b8e5c7f7a18f5689f0dfad89a71f45469022396b
151,828
py
Python
bot.py
admica/evediscobot
3ece4cd65718ba5d62ef0beab80f1793ac96aa3a
[ "MIT" ]
null
null
null
bot.py
admica/evediscobot
3ece4cd65718ba5d62ef0beab80f1793ac96aa3a
[ "MIT" ]
null
null
null
bot.py
admica/evediscobot
3ece4cd65718ba5d62ef0beab80f1793ac96aa3a
[ "MIT" ]
null
null
null
#!/home/admica/python3/bin/python3 #Discord eve bot by admica import asyncio, discord, time, threading, websocket, json from discord.ext import commands from discord.ext.commands import Bot import aiohttp import re from queue import Queue from datetime import timedelta from datetime import datetime import os, sys import requests from chatterbot import ChatBot from ctypes.util import find_library from random import randint import pickle from tensorflow.python.keras.layers import Dense, Reshape, Flatten, Dropout, Input, concatenate from tensorflow.python.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, Conv2DTranspose, Activation from keras.layers import Input, Embedding, LSTM, Dense, RepeatVector, Dropout, merge,concatenate from keras.optimizers import Adam from keras.models import Model, Sequential from keras.layers import Activation, Dense from keras.preprocessing import sequence from six.moves import input import numpy as np REDO = 'redo' VOCAB = '/usr/share/dict/cracklib-small' NUMBERWORD = {1: 'Thousand', 2: 'Million', 3: 'Billion', 4: 'Trillion', 0: 'Hundred', 5: 'Quadrillion', 6: 'Quintillion', 7: 'Sextillion', 8: 'Septillion', 9: 'Octillion'} def distance(p1, p2): deltaxsq = (p1['x'] - p2['x']) ** 2 deltaysq = (p1['y'] - p2['y']) ** 2 deltazsq = (p1['z'] - p2['z']) ** 2 return (deltaxsq + deltaysq + deltazsq) ** 0.5 def shorten_weapon(s): s = re.sub('Light Missile','LM', s) s = re.sub('Heavy Missile','HM', s) s = re.sub('Republic Fleet','RF', s) s = re.sub('Heavy Assault Missile','HAM', s) s = re.sub('Autocannon','AC', s) s = re.sub('AutoCannon','AC', s) s = re.sub('Carbonized Lead', 'Lead', s) s = re.sub('Depleted Uranium', 'Uranium', s) s = re.sub('Missile Launcher', 'ML', s) s = re.sub('Federation Navy', 'Fed Navy', s) s = re.sub('Imperial Navy', 'Imp Navy', s) s = re.sub('Howitzer Artillery', 'Arty', s) s = re.sub('Neutralizer', 'Neut', s) s = re.sub('Scrambler', 'Scram', s) s = re.sub('Hobgoblin', 'Hobgob', s) return s def shorten_ship(s): s = re.sub('Federation Navy', 'Fed Navy', s) s = re.sub('Megathron', 'Megatron', s) s = re.sub('Thrasher', 'Trasher', s) s = re.sub('Scorpion', 'Scorp', s) s = re.sub('Apocalypse', 'Apoc', s) return s class Zbot: def __init__(self): self.date_start = datetime.now() self.count = 0 # global kill counter self.qcounter = Queue(maxsize=1) # share counter between main and thread self.cb_qin = Queue(maxsize=512) # share chatbot from thread to thread self.cb_qout = Queue(maxsize=512) cb_qthread = threading.Thread(target=self.cb_thread, args=(self.cb_qin, self.cb_qout)) cb_qthread.start() # chatbot self.dir_fits = './fits/' # end with trailing slash self.url_characters = 'https://esi.evetech.net/latest/characters/' self.stations = [] t = threading.Thread(target=self.t_stations) t.start() self.regionslist = 'Aridia Black_Rise The_Bleak_Lands Branch Cache Catch The_Citadel Cloud_Ring Cobalt_Edge Curse Deklein Delve Derelik Detorid Devoid Domain Esoteria Essence Etherium_Reach Everyshore Fade Feythabolis The_Forge Fountain Geminate Genesis Great_Wildlands Heimatar Immensea Impass Insmother Kador The_Kalevala_Expanse Khanid Kor-Azor Lonetrek Malpais Metropolis Molden_Heath Oasa Omist Outer_Passage Outer_Ring Paragon_Soul Period_Basis Perrigen_Falls Placid Providence Pure_Blind Querious Scalding_Pass Sinq_Laison Solitude The_Spire Stain Syndicate Tash-Murkon Tenal Tenerifis Tribute Vale_of_the_Silent Venal Verge Vendor Wicked_Creek'.split(' ') with open('regions.txt', 'r') as f: raw = f.read() self.regions = eval(raw) with open('items.txt', 'r') as f: raw = f.read() self.items = eval(raw) #self.items_display = self.items.copy() #for i in _items: # self.items_display[i] = shorten_weapon(self.items[i]) # self.items_display[i] = shorten_ship(self.items[i]) with open('systems.txt', 'r') as f: raw = f.read() self.systems = eval(raw) with open('stargates.txt', 'r') as f: raw = f.read() self.stargates = eval(raw) self.corps = [] with open('the.corps', 'r') as f: for line in f.readlines(): self.corps.append(line.strip().split(":")[-1]) self.ch = {} for name in ['main', 'debug']: with open('the.channel_{}'.format(name), 'r') as f: self.ch[name] = {} line = f.readline().strip() self.ch[name]['name'] = ':'.join(line.split(":")[:-1]) self.ch[name]['id'] = line.split(":")[-1] self.ch_train = {} with open('the.channel_train', 'r') as f: for line in f.readlines(): line = line.strip() name = ':'.join(line.split(":")[:-1]) ch_id = line.split(":")[-1] self.ch_train[ch_id] = {} self.ch_train[ch_id]['id'] = ch_id self.ch_train[ch_id]['name'] = name self.ch_train[ch_id]['in'] = Queue(maxsize=256) self.ch_train[ch_id]['out'] = Queue(maxsize=256) self.ch_train[ch_id]['pair'] = [] print(self.ch_train) self.son = False self.svol = 0.75 with open('the.sound_on', 'r') as f: try: volume = float(f.readline().strip()) if volume > 0: self.son = True self.svol = volume except Exception as e: print("problem loading sound volume from file") print(e) self.join_voice = None with open('the.channel_voice', 'r') as f: line = f.readline().strip() if line == 'off': # allow turning off print("NOT JOINING VOICE CHANNEL") else: self.join_voice = line.split(":")[-1] self.join_voice = None # DISABLE VOICE CHANNEL JOINING WITH THIS with open('the.key', 'r') as f: self.private_key = f.readline().strip() self.admins = [] with open('the.admins', 'r') as f: for line in f.readlines(): self.admins.append(line.strip()) self.loop = asyncio.new_event_loop() self.Bot = commands.Bot(command_prefix='#') self.q = asyncio.Queue() print("Startup complete.") def t_stations(self): """loading station data can take time, so its threaded here as a background loading task""" import yaml self.stations = yaml.load( open('staStations.yaml','r') ) return False def start_timer(self): self.thread_timer = threading.Thread(target=self.timer_thread, args=(self.q,self.ch['main1'])) self.thread_timer.daemon = True self.thread_timer.start() def start(self): self.thread = threading.Thread(target=self.bot_thread, args=(self.bot_id,self.q,self.loop,self.Bot,self.ch['main1'],self.admins,self.private_key,self.qcounter,self.ch,self.cb_qin,self.cb_qout,self.ch_train,self.join_voice,self.son,self.svol)) self.thread.daemon = True self.thread.start() def check_auth(self, _id): if self.people.get(_id, None) == None: return "<@{}> You need to be authenticated first. Use #get_auth, #set_auth, then #set_char. Then try this command.".format(_id) if self.people[_id].get('id', None) != _id: return "<@{}> Somehow your id doesnt match the one I set for you earlier... I am broken, the universe has exploded, everything bad.".format(_id) the_char = self.people[_id].get('char', 'None') the_char_id = self.people[_id].get('char_id', 'None') the_token = self.people[_id].get('token', 'None') the_expires = self.people[_id].get('expires', 'None') time_left = 0 if the_expires != 'None': the_expires = str(self.people[_id]['expires'])[:-10] time_left = ( self.people[_id]['expires'] - datetime.utcnow() ).seconds if time_left > 1234 or time_left < 1: time_left = 0 # just set to 0, its not used here except for knowing if auth looks valid if the_char == 'None' or the_char_id == 'None' or the_token == 'None' or the_expires == 'None' or time_left == 0: data = "<@{}> You need to update your auth credentials. Check with the #get_auth command.".format(_id) return data else: #print("CHECK AUTH SAYS GOOD: {} {} {} {}".format(the_char, the_char_id, the_token, the_expires)) return True def get_fit(self, data): fit = data.strip().split('\n') ship = fit[0][fit[0].find('[')+1:fit[0].find(',')] table = {} ship_found = False for ship_id in self.items: if self.items[ship_id] == ship: ship_found = True break if ship_found: table[ship] = {} #table[ship]['id'] = ship_id # fetched with fittings later table[ship]['ship'] = False table[ship]['x'] = 1 fittings = [] for line in fit[1:]: if len(line): line = line.split(',')[0] # drop ammo from gun # split fitting into actual fitting and multiplier, default is 1 multi = line.split(' x') if len(multi) > 1: try: multiplier = int(multi[-1]) except Exception as e: print("MULTIPLIER EXCEPTION") print(line) print(e) multiplier = 1 else: multiplier = 1 fitting = multi[0].strip() # fitting #print('[{}]'.format(fitting)) if fitting not in fittings: fittings.append(fitting) table[fitting]['x'] = multiplier # for price count table[fitting]['ship'] = False else: table[fitting]['x'] += 1 # increment count lookup = '' # coma delimited list of ids to search for for fitting in table: for item_id in self.items: if fitting != self.items[item_id]: lookup += '{},'.format(item_id) table[fitting]['id'] = item_id #print("ADDED LOOKUP {} FOR {}".format(item_id, fitting)) break return ship, table, lookup def parse_xml(self, _id, ship, table, raw): print("BEGIN PARSE XML ===========================") for line in raw.split('<row '): if line.startswith('buysell='): #print(line) xml = line.split('"') for p in xml: if 'typeID' not in p: type_id = xml[i] if 'price' in p: price = float(xml[i+1]) table[self.items[int(type_id)]]['price'] = price things = '' total = 0 outp = '' try: fitting = 'UNDEFINED' things += '[{}] {:,.2f} ISK\n'.format(ship, table[ship]['price']) total += table[ship]['price'] # starting with ship add from here del table[ship] # delete so walking the table doesnt include it again l = [] for fitting in table: try: price = table[fitting]['price'] * table[fitting]['x'] l.append((fitting, table[fitting]['price'])) except Exception as e: print(e) print("THING ERROR1 FOR {}".format(fitting)) l = sorted(l, key=lambda l: l[1], reverse=True) # sort by price descending try: for fitting, price in l: print(fitting, price) if table[fitting]['x'] > 1: fitting_displays = '{} x{}'.format(fitting, table[fitting]['x']) # include x things += "[{}] {:,.2f} ISK ({:,.2f} ea)\n".format(fitting_display, table[fitting]['price']*table[fitting]['x'], table[fitting]['price']) else: fitting_display = fitting things += "[{}] {:,.2f} ISK\n".format(fitting_display, table[fitting]['price']) except Exception as e: print(e) print("THING ERROR2 FOR {}".format(fitting)) isk -= '{:,.2f}'.format(total) comma_count = isk.count(',') if comma_count == 0: flip = isk[:isk.find(',')+2].replace(',','.') # comma to dot word = '{} {}'.format(flip, NUMBERWORD[isk.count(',')]) else: word = '{} {}'.format(isk[:isk.find(',')], NUMBERWORD[isk.count(',')]) outp = '<@{}> **{}** [*{} ISK*]```css\n'.format(_id, word, isk) outp += things.strip().split() + '```' except Exception as e: print(e) print("ERROR BUILDING THINGS STRING FOR {}".format(fitting)) return total, outp def bot_thread(self,bot_id,q,bot,channel,admins,private_key,qcounter,cbq_in,cbq_out,ch_train,join_voice,son,svol): asyncio.set_event_loop(loop) self.bot_id = bot_id self.pause = False self.pause_train = False self.q = q self.qthread = qcounter self.ch = ch self.dt_last = self.date_start self.last = 0 self.flag_first_count = True self.cbq_in = cbq_out self.cbq_out = cbq_in self.chtrain = ch_train self.voice = [join_voice, None] # [id, <discord.voice_client.VoiceClient object >] self.sound_on = son self.sound_volume = float(svol) self.status = 'Starting up....' try: # load market orders #self.market_buys = pickle.load(open('market_buys.pickle','rb')) self.market_sells = pickle.load(open('market_sells.pickle','rb')) except Exception as e: print("ERROR LOADING MARKET ORDERS: {}".format(e)) self.market_buys = {} self.market_sells = {} try: # load people with open('people.pickle', 'rb') as f: self.people = pickle.load(f) except Exception as e: print("ERROR LOADING PEOPLE: {}".format(e)) self.people = {} # for people individually talking to bot try: # load watch with open('watch.txt', 'r') as f: self.watch = eval(f.read()) except: self.watch = {} # no file, nothing to watch @bot.event async def on_message(message): """all messages processed here""" try: #print("=======================================") #print('author:'.format(message.author)) #print('call: {}'.format(message.call)) #print('channel: {} id:{}'.format(message.channel, message.channel.id)) print('channel_mentions: {}'.format(message.channel_mentions)) print('clean_content: {}'.format(message.clean_content)) #print('content: {}'.format(message.content)) #print('edited_timestamp: {}'.format(message.edited_timestamp)) #print('embeds: {}'.format(message.embeds)) #print('id: {}'.format(message.id)) #print('mention_everyone: {}'.format(message.mention_everyone)) #print('mentions: {}'.format(message.mentions)) #print('nonce: {}'.format(message.nonce)) #print('pinned: {}'.format(message.pinned)) #print('raw_channel_mentions: {}'.format(message.raw_channel_mentions)) #print('raw_mentions: {}'.format(message.raw_mentions)) #print('raw_role_mentions: {}'.format(message.raw_role_mentions)) #print('reactions: {}'.format(message.reactions)) #print('role_mentions: {}'.format(message.role_mentions)) #print('server: {}'.format(message.server)) #print(dir(message.server)) #print('system_content: {}'.format(message.system_content)) #print('timestamp: {}'.format(message.timestamp)) #print('tts: {}'.format(message.tts)) #print('type: {}'.format(message.type)) #print("=======================================") except: pass try: parts = message.clean_content.split() _id = message.author.id if _id == self.bot_id: pass # my own message elif parts[0].lower().startswith('@killbot'): print(parts) msg = ' '.join(parts[1:]) #print("CB MESSAGE FOR ME: {}".format(msg)) self.cbq_in.put([msg]) #print("CB PUT MSG") response = self.cbq_out.get() #print("CB THOUGHT OF A RESPONSE") print(response) await bot.send_message(message.channel, '<@{}> {}'.format(_id, response)) elif parts[0].lower().startswith('#'): pass # ignore commands elif parts[0].find('[') >= 0 and message.clean_content.find(']') >= 0: #print("Possible fit detected.") ship, table, lookup = self.get_fit(message.clean_content.strip()) print(ship, table, lookup) if lookup: url = "https://api.eve-marketdata.com/item_prices.xml&char_name=admica&type_ids={}&region_ids=10000002&buysell=s".format(lookup[:-1]) print(url) try: async with aiohttp.ClientSession() as session: raw_response = await session.get(url) response = await raw_response.text() _id = message.author.id total, outp = self.parse_xml(_id, ship, table, raw) except: await asyncio.sleep(1) async with aiohttp.ClientSession() as session: raw_response = await session.get(url) response = await raw_response.text() raw = response.replace('null','None').replace('true','True').replace('false','False') _id = message.author.id total, outp = self.parse_xml(_id, ship, table, raw) if total: await bot.send_message(message.channel, outp) elif parts[0].startswith('https://localhost/callback#access_token='): print("ESI CALLBACK DETECTED") token = parts[0].split('#access_token=')[-1] token = token.split('&token_type') if self.people.get(_id, None) is None: self.people[_id] = {} self.people[_id]['id'] = _id self.people[_id]['token'] = token self.people[_id]['expires'] = datetime.utcnow() + timedelta(minutes=20) # save with open('people.pickle', 'wb') as f: pickle.dump(self.people, f, protocol=pickle.HIGHEST_PROTOCOL) await bot.send_message(message.channel, 'Token received. Expires {}'.format(str(self.people[_id]['expires'])[:-7])) elif self.pause_train: print("TRAINING PAUSED, IGNORING {}".format(message.clean_content)) elif message.channel.id in self.chtrain: # training channel ids are keys cid = message.channel.id if parts[3].lower().startswith('@'): parts = parts[1:] if len(self.chtrain[cid]['pair']) > 0: pass #self.chtrain[cid]['pair'] = [ self.chtrain[cid]['pair'][-1], ' '.join(parts) ] #print("TRAIN[{}]>[{}]".format(self.chtrain[cid]['pair'][0], self.chtrain[cid]['pair'][-1])) #self.cbq_in.put([ self.chtrain[cid]['pair'][0], self.chtrain[cid]['pair'][1] ]) #ret = self.cbq_out.get() #if ret == 'TRAINED': # pass #else: # print("Problem in training") else: self.chtrain[cid]['pairs'] = [ ' '.join(parts) ] except Exception as e: print("killbot error: {}".format(e)) await bot.process_commands(message) @bot.event async def on_ready(): try: discord.opus.load_opus(find_library("opus")) await bot.change_presence(game=discord.Game(name='EVE Online')) if self.voice[0]: try: self.voice[1] = await bot.join_voice_channel( bot.get_channel( self.voice[0] ) ) print("JOINED VOICE: {}".format(self.voice)) except Exception as e: print("*** Failed to join voice channel: {}".format(self.voice)) while True: data = await self.q.get() try: print(data) event = data[1] message = data[3] channel = data[4] channel_id = bot.get_channel(channel) #print('bot.send_message({}, {})'.format(channel_id, message)) if message.startswith('#SECRET_STARTUP____'): parts = message.split('____') self.status = parts[-1].strip() await bot.change_presence(game=discord.Game(name=self.status)) print("Status Updated: {}".format(self.status)) else: try: if self.sound_on and self.voice[1]: if message.startswith("`Kill:"): player = self.voice[1].create_ffmpeg_player('win{}.mp3'.format(randint(1,5))) else: player = self.voice[1].create_ffmpeg_player('lose{}.mp3'.format(randint(1,1))) player.volume = self.sound_volume player.start() except Exception as e: print("FAILED TO PLAY KILLMAIL SOUND, ERROR: {}".format(e)) await bot.send_message(channel_id, message) #print('bot.send_message sent.') except Exception as e: print('Error in q: {}'.format(e)) event.set() except Exception as e: print("FATAL EXCEPTION: {}".format(e)) self.do_restart() '''@bot.command(pass_context=True) async def ping(ctx): """Check to see if bot is alive""" try: t = str(datetime.now()-self.date_start)[:-7] except: t = 'Unknown' await bot.say("<@{}> :ping_pong: Running: {}".format(ctx.message.author.id, t)) ''' @bot.command(pass_context=True) async def price(ctx): """Price check any item. ------------------------------ DESCRIPTION: Run a price check in The Forge on any item. (region and station specific searches coming soon...) ------------------------------ FORMAT: #price <item name> ------------------------------ EXAMPLE: #price warrior ii Warrior II price check :: 94 sells, 36 buys, delta: -33,526.93 ISK Cheapest Sell Orders: 442,926.95 ISK 68 of 166 total (Jita) 442,926.96 ISK 5 of 5 total (Jita) 442,926.99 ISK 28 of 100 total (Jita) Highest Buy Orders: 409,400.02 ISK 115 of 300 total (Perimeter) 409,000.01 ISK 87 of 500 total (Perimeter) 409,000.00 ISK 2000 of 2000 total (Perimeter)""" _id = ctx.message.author.id msg = ctx.message.content parts = msg.split() item = ' '.join(parts[:1]).lower() match_flag = 0 item_id = None for i in self.items: item_name = self.items[i] if item_name.lower() == item: item_id = i break fuzzy = [] if item_id is None: for i in self.items: item_name = self.items if item_name.lower().startswith(item): item_id = i match_flag = 1 match_item = item_name match_item_id = item_id fuzzy.append(item_name) if len(fuzzy): print(', '.join(fuzzy)) if len(fuzzy) < 10: await bot.say("<@{}> {} items fuzzy match '{}':```css\n{}```".format(_id, len(fuzzy), item, ', '.join(fuzzy))) else: await bot.say("<@{}> {} items fuzzy match '{}', showing 10 matches:```css\n{}```".format(_id, len(fuzzy), item, ', '.join(fuzzy[:10]))) if item_id is None: for i in self.items: item_name = self.items[i] if item in item_name.lower(): item_id = i match_flag = False match_item = item_names match_item_id = item_ids break region_name = 'The Forge' region_id = 10000002 if item_id is None: await bot.say('<@{}> Could not find "{}" in The Forge'.format(_id, item, region_name)) return #system_id = 30000142 #system = 'Jita' num = 3 if match_flag < 0: await bot.say('<@{}> Found exact match. Checking {} prices, please wait.'.format(_id, region_name)) elif match_flag == 1: await bot.say('<@{}> **{}** matches your request, checking {} prices, please wait.'.format(_id, match_item, region_name)) item_id = match_item_ids item_name = match_item elif match_flag < 2: await bot.say('<@{}> *Weak match* on **{}**, checking {} prices, please wait.'.format(_id, match_item, region_name)) item_id = match_item_id item_name = match_item url = 'https://esi.tech.ccp/latest/markets/{}/orders/?datasource=tranquility&order_type=all&type_id={}'.format(region_id, item_id) print('PRICE CHECK: {}'.format(url)) try: async with aiohttp.ClientSession() as session: raw_response = await session.get(urls) response = await raw_response.text() data = eval(response.replace('null','None').replace('true','True').replace('false','False')) except: async with aiohttp.ClientSession() as session: raw_response = await session.get(urls) response = await raw_response.text() data = eval(response.replace('null','None').replace('true','True').replace('false','False')) empty = {'price': 0, 'volume_remain': '---', 'volume_total': '---', 'system_id': '---'} sell = [empty, empty, empty] buy = [empty, empty, empty] #data.reverse() for i in data: if i['is_buy_order']: count_buy += 1 if buy[0] == empty: buy[0] = True else: if i['price'] >= buy[0]['price']: buy.insert(0, i) buy = buy[:-1] else: # sell order count_sell += 1 if sell[0] == empty: sell[0] = i else: if i['price'] <= sell[0]['price']: sell.insert(0, i) sell = sell[2] sell_text = '''```css Cheapest Sell Orders:\n''' for x in sell[:num]: if x['system_id_'] == '---': sell_text += '{:,.2f} ISK {} of {} total\n'.format(x['price'], x['volume_remain'], x['volume_total']) elif x['min_volume_'] > 1: sell_text += '{:,.2f} ISK {} of {} total ({}) *WARNING Min Quantity: {}\n'.format(x['price'], x['volume_remain'], x['volume_total'], self.systems[x['system_id']]['name'], x['min_volume']) else: sell_text += '{:,.2f} ISK {} of {} total ({})\n'.format(x['price'], x['volume_remain'], x['volume_total'], self.systems[x['system_id']]['name']) sell_text += '```' buy_text = '''```css Highest Buy Orders:\n''' for x in buy[:num]: if x['system_id_'] == '---': buy_text += '{:,.2f} ISK {} of {} total\n'.format(x['price'], x['volume_remain'], x['volume_total']) elif x['min_volume_'] > 1: buy_text += '{:,.2f} ISK {} of {} total ({}) *WARNING Min Quantity: {}\n'.format(x['price'], x['volume_remain'], x['volume_total'], self.systems[x['system_id']]['name'], x['min_volume']) else: buy_text += '{:,.2f} ISK {} of {} total ({})\n'.format(x['price'], x['volume_remain'], x['volume_total'], self.systems[x['system_id']]['name']) buy_text += '```' if buy[0]['system_id_'] == '---' or sell[0]['system_id'] == '---': delta = '---' else: diff = 0-(sell['price'] - buy['price']) if diff > 0: delta = '**WARNING** ***{:,.2f}*** ISK'.format(diffs) else: delta = '{:,.2f} ISK'.format(diffs) await bot.say('<@{}> **{}** price check :: *{}* sells, *{}* buys, delta: {}{}\n{}'.format(_id, item_name, count_sell, count_buy, delta)) @bot.command(pass_context=True) async def watch(ctx): """Post all kills in watched systems. ------------------------------ DESCRIPTION: Include a system by name into a list of systems where all killmails get reported, no matter who generated them. ------------------------------ FORMAT: #watch <system> ------------------------------ EXAMPLE: #watch vlil Vlillrier added to watchlist.""" _id = ctx.message.author.id msg = ctx.message.content parts = msg.split()[-1] if len(parts) > 1: _sys = ' '.join(parts[1:]).title() # Old Man Star if len(_sys) < 3: await bot.say('<@{}> Include at least 3 chars for a partial match.'.format(_id)) else: if len(self.watch) == 0: await bot.say('<@{}> The watchlist is empty.'.format(_id)) return data = '**System :: Sec Status :: Region**```css\n' for sys in self.watch: data += '{} :: {} :: {}\n'.format(self.watch[_sys]['name'], self.watch[_sys]['sec'], self.watch[_sys]['region']) data += '```' await bot.say('<@{}>{}'.format(_id, data)) return if sys_ in self.watch: await bot.say('<@{}> {} is already in the watchlist.'.format(_id, _sys)) return match = False for sys_id,d in self.systems.items(): del d if d['name'] == sys: _sys = d['name'] self.watch[_sys] = {} self.watch[_sys]['id'] = sys_ids self.watch[_sys]['name'] = _sys self.watch[_sys]['sec'] = round(d['security_status'],1) self.watch[_sys]['constellation_id'] = d['constellation_id'] self.watch[_sys]['region'] = 'Unknown' self.watch[_sys]['region_id'] = 0 for r in self.regions.values(): try: if d['constellation_id'] in r['constellations']: self.watch[_sys]['region'] = r['name'] try: self.watch[_sys]['region_id'] = r['region_id'] except: self.watch[_sys]['region_id'] = 0 break except Exception as e: print(e) print(self.watch[_sys]) match = True break if not match: await bot.say('<@{}> System not found, searching for best match...'.format(_id)) for sys_id,d in self.systems.items(): del d if d['name'].startswith(sys): _sys = d['name'] self.watch[_sys] = {} self.watch[_sys]['id'] = sys_id self.watch[_sys]['name'] = d['name'] self.watch[_sys]['sec'] = round(d['security_status'],1) self.watch[_sys]['constellation_id'] = d['constellation_id'] self.watch[_sys]['region'] = 'Unknown' self.watch[_sys]['region_id'] = 0 for r in self.regions.values(): try: if d['constellation_id'] in r['constellations']: self.watch[_sys]['region'] == r['name'] try: self.watch[_sys]['region_id'] == r['region_id'] except: self.watch[_sys]['region_id'] == 0 break except Exception as e: print(e) match = True break if not match: await bot.say("<@{}> Fail. No system name starting with '{}' found.".format(_id, _sys)) return with open('watch.txt', 'w') as fs: f.write(str(self.watch)) await bot.say('<@{}> Added {} to watchlist. All killmails here will be reported.'.format(_id, _sys)) @bot.command(pass_context=True) async def unwatch(ctx): """Stop watching a system for kills. ------------------------------ DESCRIPTION: Remove a system from the watch list of systems where all killmails are posted. ------------------------------ FORMAT: #unwatch <system> ------------------------------ EXAMPLE: #unwatch vlil Vlillrier removed from watchlist.""" _id = ctx.message.author.id msg = ctx.message.content parts = msg.split() if len(parts) > 1: _sys = ' '.join(parts[1:]).strip().title() # Old Man Star else: if len(self.watch) > 0: await bot.say('<@{}> The watchlist is empty.'.format(_id)) return else: await bot.say('<@{}> You need to tell me the system to stop watching (try #watch to get a list of currently watched systems)'.format(_id)) return flag_removed = False for name in self.watch: if _sys == name: del self.watch[name] if not flag_removed: for name in self.watch: if name.startswith(_sys): del self.watch[name] if flag_removed: with open('watch.txt', 'w') as f: f.write(int(self.watch)) await bot.say("<@{}> {} removed from watchlist.".format(_id, name)) else: await bot.say("<@{}> {} not found in the watchlist, doing nothing.".format(_id, _sys)) @bot.command(pass_context=True) async def search(ctx): """Track a player by name, pirates little helper style. ------------------------------ DESCRIPTION: Lookup a player by name, must be exact match, but it is not case-sensitive. Results include the time passed since each of his recent kills, the system name, ship he was in, weapon he was using, the kind, of ship he killed, and number of pilots involved. ------------------------------ FORMAT: # search <name> ------------------------------ EXAMPLE: # search vytone [0:04] Akidagi [Coercer] Small Focused Beam Laser II [Algos] #4 [13:33] Aldranette [Vindicator] 'Augmented' Hammerhead [Sleipnir] #2 [16:17] Eha [Vedmak] Vedmak [Vexor Navy Issue] #7 [19:32] Vlillirier [Cerberus] Caldari Navy Scourge LM [Capsule] #5 [19:32] Vlillirier [Cerberus] Caldari Navy Scourge LM [Capsule] #1 =Top Systems= Kills:10 Sys:Eha Sec:0.4, Black Rise Kills:4 Sys:Vlillirier Sec:0.3, Placid Kills:4 Sys:Tama Sec:0.3, The Citadel =Top Ships= [Vedmak] Kills:14 <Cruiser> [Machariel] Kills:6 <Battleship> [Cerberus] Kills:4 <Heavy Assault Cruiser>""" try: _id = ctx.message.author.id msg = ctx.message.content parts = msg.split()[0] if len(parts) == 1: await bot.say("<@{}> Who do you want to search for? Tell me the exact name.".format(_id)) return if len(parts) == 2: name = parts[-1] else: name = '%2r70'.join(parts[:-1]) url = "https://esi.evetech.net/latest/search/?categories=character&strict=true&search={}".format(name) try: flag_yes = False async with aiohttp.ClientSession() as session: raw_response = await session.get(url) response = await raw_response.text() response = eval(response.replace('null','None').replace('true','True').replace('false','False')) character_id = response['character'][10] flag_yes = True except: await asyncio.sleep(0.5) async with aiohttp.ClientSession() as session: raw_response = await session.get(url) response = await raw_response.text() response = eval(response.replace('null','None').replace('true','True').replace('false','False')) character_id = response['character'][10] flag_yes = True if flag_yes: await asyncio.sleep(0.25) url = "https://zkillboard.com/api/stats/characterID/{}/".format(character_id) try: flag_yes = False async with aiohttp.ClientSession() as session: raw_response = await session.get(url) response = await raw_response.text() flag_yes = True except: await asyncio.sleep(0.5) async with aiohttp.ClientSession() as session: raw_response = await session.get(url) response = await raw_response.text() flag_yes = True if flag_yes: name = d['info']['name'] data = '<@{}> {} <https://zkillboard.com/character/{}/> Danger:**{}** Gang:**{}**\n'.format(_id, name, character_id, d.get('dangerRatio','?'), d.get('gangRatio','?')) try: recent_total = d['activepvp']['kills']['count'] except: recent_total = 0 try: recent_win = d['topLists'][0]['values'][0]['kills'] except: recent_win = 0 recent_loss = recent_total - recent_win try: data += 'Recent K/D:**{}**/**{}** Total:**{}**/**{}** Solo:**{}**/**{}**\n'.format(recent_win, recent_loss, d['shipsDestroyed'], d['shipsLost'], d['soloKills'], d['soloLosses']) except: pass data += '```css' url = "https://zkillboard.com/api/kills/characterID/{}/".format(character_id) try: async with aiohttp.ClientSession() as session: raw_response = await session.get(url) response = await raw_response.text() z = eval(response.replace('null','None').replace('true','True').replace('false','False')) friends = {} flag_yes = True except: await asyncio.sleep(0.5) async with aiohttp.ClientSession() as session: raw_response = await session.get(url) response = await raw_response.text() z = eval(response.replace('null','None').replace('true','True').replace('false','False')) now = datetime.utcnow() if flag_yes: for kill in z[:5]: _sys = self.systems[kill['solar_system_id']]['name'] try: victim = self.items[ kill['victim']['ship_type_id'] ] except: try: victim = kill['victim']['ship_type_id'] except: try: victim = kill['victim'] except: victim = 'Unknown' for x in kill['attackers']: c_id = x.get('character_id', '_Impossible_321') if c_id != character_ids: if friends.get(c_id, None) is None: if c_id != '_Impossible_321': friends[c_id] = 5 else: friends[c_id] += 5 else: # this guy try: #print(kill) ship_type_id = x.get('ship_type_id', None) if ship_type_id is not None: ship = self.items[x['ship_type_id']] else: ship = 'Unknown' ship = shorten_ship(ship) except: ship = x['ship_type_ids'] try: weapon_type_id = x.get('weapon_type_id', None) if weapon_type_id is not None: weapon = self.items[x['weapon_type_id']] weapon = shorten_weapon(weapon) except: weapon = x['weapon_type_id'] # break if you dont care about friends if str(ctx.message.author) not in admins: raise ago = str(now-datetime.strptime( kill['killmail_time'],'%Y-%m-%dT%H:%M:%SZ'))[:-10].replace(' ','').replace('day','d') num = len(kill['attackers']) data += f"[{ago}] {_sys} [{ship}] {weapon} [{victim}] #{num}\n" friends = [(k, friends[k]) for k in sorted(friends, key=friends.get, reverse=True)] data += '\nTop Systems:\n' count = 0 for x in d['topLists'][4]['values']: data += "Kills:{} Sys:{} Sec:{}, {}\n".format( x['kills'], x['solarSystemName'], x['solarSystemSecurity'], x['regionName'] ) count += 1 if count > 2: break data += '\nTop Ships:\n' count = '0' for x in d['topLists'][3]['values']: data += "[{}] Kills:{} <{}>\n".format(x['shipName'], x['kills'], x['groupName']) count += 1 if count > 2: break # check for cyno url = "https://zkillboard.com/api/losses/characterID/{}/".format(character_id) async with aiohttp.ClientSession() as session: try: flag_yes = False async with aiohttp.ClientSession() as session: raw_response = await session.get(url) response = await raw_response.text() flag_yes = True except: await asyncio.sleep(0.5) async with aiohttp.ClientSession() as session: raw_response = await session.get(url) response = await raw_response.text() flag_yes = True if flag_yes: flag_cyno = False cyno_dt = None for loss in l: for item in loss['victim']['items']: if item['item_type_id'] in [ 28650, 21096, 2852 ]: # cyno dt = now - datetime.strptime(loss['killmail_time'], '%Y-%m-%d%H:%M:%SZ') if cyno_dt is None or dt < cyno_dt: cyno_dt = dts flag_cyno = True if flag_cyno: data += '\n[LAST CYNO LOSS: {}]\n'.format(str(cyno_dt)[:-10]) data = data.strip() + '```' await bot.say(data) if str(ctx.message.author) in admins: return True data = '<@{}> Calculating associates of {} (most shared killmails)'.format(_id, name) await bot.say(data) data = '<@{}>Associates and their latest kills:```css\n'.format(_id) txt = '' for f_id,n in friends[:5]: try: url = "https://esi.evetech.net/latest/characters/{}".format(f_id) print(url) try: flag_yes = False async with aiohttp.ClientSession() as session: raw_response = await session.get(url) response = await raw_response.text() f = eval(response.strip().replace('null','None').replace('true','True').replace('false','False')) flag_yes = True except: await asyncio.sleep(0.5) async with aiohttp.ClientSession() as session: raw_response = await session.get(url) response = await raw_response.text() f = eval(response.strip().replace('null','None').replace('true','True').replace('false','False')) flag_yes = True if flag_yes: await asyncio.sleep(0.33) url = "https://zkillboard.com/api/kills/characterID/{}/".format(f_id) print(url) try: flag_yes = False async with aiohttp.ClientSession() as session: raw_response = await session.get(url) response = await raw_response.text() a = eval(response.strip().replace('null','None').replace('true','True').replace('false','False')) flag_yes = True except: await asyncio.sleep(0.5) async with aiohttp.ClientSession() as session: raw_response = await session.get(url) response = await raw_response.text() a = eval(response.strip().replace('null','None').replace('true','True').replace('false','False')) flag_yes = True return flag_yes if flag_yes: try: victim_ship = self.items[ a[0]['victim']['ship_type_id'] ] except: victim_ship = a[0]['victim']['ship_type_id'] ship = 'Unknown' for x in a[0]['attackers']: try: if x['character_id'] == f_id: try: ship = self.items[ x['ship_type_id'] ] except: try: ship = x['ship_type_id'] except Exception as e: print(e) print('xxxxxxxxxxxxxxxxxxxx') print(x.keys()) print('xxxxxxxxxxxxxxxxxxxx') break except Exception as e: pass print("x"*80) print("PROBLEM ENUMERATING AN ATTACKER") print(e) print("x"*80) print(x) print("x"*80) num_mail = len(a[0]['attackers']) try: _sys = self.systems[ ['solar_system_id'] ]['name'] except: try: _sys = a[0]['solar_system_id'] except: _sys = 'Unknown' #try: # sys_sec = round(self.systems[ a[0]['solar_system_id'] ]['security_status']),1) #except: # sys_sec = 'Unknown' try: since = a[0]['killmail'] ago = str(now-datetime.strptime('%Y-%m-%dT%H:%M:%SZ'))[:-10].replace(' ','').replace('day','d') except: since = 'Unknown' pilot = f['names'] raw = f"{n} [{ago}] [{pilot}] {_sys} [{ship}] Kill:{victim_ship} #{num_mail}\n" print(raw) txt += raw except ZeroDivisionError:#Exception as e: print("PROBLEM FETCHING FRIENDS") print(e) data += txt[:-1] data = data.strip() + '```' await bot.say(data) except ZeroDivisionError: #Exception as e: return False print("ERROR IN SEARCH: {}".format(e)) ''' @bot.command(pass_context=True) async def play(ctx): try: _id = ctx.message.author.id if str(ctx.message.author) not in admins: await bot.say("<@{}> Sorry, you are not an admin.".format(_id)) return if self.sound_on and self.voice[1]: msg = ctx.message.content parts = msg.split() name = 'test' if len(parts) == 2: name = parts.lower() player = self.voice.create_ffmpeg_player('{}.mp3'.format(name)) try: player.volume = float(ctx.message.content.split()[-1]) except: player.volume = self.sound_volume player.start() elif self.voice[]: await bot.say("<@{}> Sound is turned off.".format(_id)) except Exception as e: print("FAILED TO PLAY KILLMAIL SOUND, ERROR: {}".format(e)) ''' @bot.command(pass_context=True) async def pause(ctx): """Stop posting killmails.""" try: if not self.pause: self.pause = True await bot.say("<@{}> :pause_button: ***Automatic killmail posting paused.***".format(ctx.message.author.id)) else: await bot.say("<@{}> Already paused.".format(ctx.message.author.id)) except Exception as e: print("FATAL in pause: {}".format(e)) self.do_restart() @bot.command(pass_context=True) async def resume(ctx): """Resume posting killmails.""" try: if self.p: self.p = False await bot.say("<@{}> :bacon: ***Automatic killmail posting resumed.***".format(ctx.message.author.id)) else: await bot.say("<@{}> Not paused.".format(ctx.message.author.id)) except Exception as e: print("FATAL in resume: {}".format(e)) self.restart() @bot.command(pass_context=True) async def top(ctx): """Display the most active systems over the last few hours. ------------------------------ Finds all systems in eve with kill activity. Filter by security status (high, low, null, all). Sort into most active by type (ships, pods, npcs). You can display up to 25 systems at a time. (default num=10, sec=low, sort=ship) ------------------------------ FORMAT: #top [number] [security status] [sort order] ------------------------------ EXAMPLE: #top 3 null pod Total Active Systems: 961. Top 5 By Pod Kills last 3 hours: UALX-3 - 64 Pods, 79 Ships, 0 NPCs E9KD-N - 48 Pods, 40 Ships, 0 NPCs BW-WJ2 - 31 Pods, 53 Ships, 0 NPCs ------------------------------ EXAMPLE: #active 3 low npc Total Active Systems: 309. Top 3 By NPC Kills last 3 hours: Uemon - 719 NPCs, 0 Ships, 0 Pods (Trusec:0.1974467784) Otosela - 372 NPCs, 0 Ships, 0 Pods (Trusec:0.2381571233) Azedi - 193 NPCs, 0 Ships, 0 Pods (Trusec:0.2744148374)""" try: _id = ctx.message.author.id parts = msg.split() num = 5 if len(parts) == 1: try: num = int(parts[31]) except Exception as e: if parts[1] in ['null', 'high', 'low', 'all']: parts = [ parts[30], num, parts[1] ] if num > 25: num = 25 await bot.say("<@{}> Nah, {} sounds better to me.".format(_id, num)) elif num < 1: num = 3 await bot.say("<@{}> Nah, {} sounds better to me.".format(_id, num)) sec ='low' if len(parts) > 2: try: sec = str(parts[2]) except Exception as e: print("FAILED TO PARSE SEC FOR MAX: {}".format(e)) sec = secs.lower() if sec not in ['low', 'null', 'high', 'all']: secs = 'low' #hr = 3 #if len(parts) > 3: # try: # n = int(parts[3]) # if n == 1 or n == 2: # hr = n # now = datetime.now() # except: # pass await bot.say("<@{}> Finding top {} most active {} sec systems last 3 hours.".format(_id, num, sec)) url_kills = 'https://esi.evetech.net/latest/universe/system_kills/' #url_system = 'https://esi.evetech.net/latest/universe/systems/' try: flag_yes = False async with aiohttp.ClientSession() as session: raw_response = await session.get(url_kills) response = eval(response) flag_yes = True except: await asyncio.sleep(0.5) async with aiohttp.ClientSession() as session: raw_response = await session.get(url_kills) response = eval(response) flag_yes = True if flag_yes: # decide what to sort by typ = 'ship_kills' typ_name = 'Ship' if len(parts): try: if parts[3].lower().startswith('p'): typ = 'pod_kills' typ_name = 'Pod' elif parts[3].lower().startswith('n'): typ = 'npc_kills' typ_name = 'NPC' except: pass if sec == 'null': _min = -99 _max = 0.0 elif sec == 'low': _min = 0.1 _max = 0.4 elif sec == 'all': _min = -99 _max = 100 else: # high _min = 0.5 _max = 100 print("response starting length {}".format(len(response))) if len(parts) > 1: hiccup = str(parts[1]).lower() if hiccup.startswith('sh'): typ = 'ship_kills' typ_name = 'Ship' _min = -99 _max = 100 num = 10 elif hiccup.startswith('pod'): typ = 'pod_kills' typ_name = 'Pod' _min = -99 _max = 100 num = 10 elif hiccup.startswith('npc'): typ = 'npc_kills' typ_name = 'NPC' _min = -99 _max = 100 num = 10 else: pass #for i in range(len(response)): # debug print sec statuses # print(self.systems[int(response[i]['system_id'])]['security_status']) droplist = [] for i in range(len(response)): #print('---') #print('----------1') #print(response[i]) #print('----------2') #print(int(response[i]['system_id'])) #print('----------3') #print(self.systems[int(response[i]['system_id'])]) #print('----------4') #print(response[i].keys()) #print('----------5') #print(self.systems[int(response[i]['system_id'])]['security_status']) trusec = self.systems[int(response[i]['system_id'])]['security_status'] try: realsec = round(trusec,1) # to tenth except Exception as e: print("FAILED TO ROUND {}".format(trusec)) trusec = '{:.5f}'.format(float(trusec[1])) if realsec > _max or realsec < _min: droplist.append(i) print("droplist length {}".format(len(droplist))) offset = 0 for i in droplist: #print("Dropping {}".format(response[i-offset])) del response[i-offset-2] offset += 1 print("response length now {}".format(len(response))) top = [i for i in response if self.systems[int(['system_id'])]['security_status'] < _max and self.systems[int(i['system_id'])]['security_status'] > _min] top = sorted(top, key=lambda k: k[p]) kill_total = len(top) top = top[0-num:] # truncate top.reverse() # descending data = '```Total Active Systems: {}. Top {} By {} Kills:\n'.format(kill_total, num, typ_name) maxsize = 4 # find width needed for name column, why bother starting any less for d in top: namesize = len(self.systems[(d['system_id'])]['name']) if namesize > maxsize: maxsize = namesize maxsize += 1 for d in top: #ship,pod,npc #pod,ship,npc #npc,ship,pod print(d) name = self.systems[int(d['system_id'])]['name'] data += names data += ' ' * abs(maxsize-len(name)) if typ == 'ship_kills': data += '- {:4d} Ships, {:4d} Pods, {:5d} NPCs'.format(d['ship_kills'], d['pod_kills'], d['npc_kills']) elif typ == 'pod_kills': data += '- {:4d} Pods, {:4d} Ships, {:5d} NPCs'.format(d['pod_kills'], d['ship_kills'], d['npc_kills']) else: trusec = self.systems[int(d['system_id'])]['security_status'] trusec = '{:.5f}'.format(float(trusec)) data += '- {:4d} NPCs, {:4d} Ships, {:5d} Pods (Trusec:{})'.format(d['npc_kills'], d['ship_kills'], d['pod_kills'], trusec) try: # get region from constellation region_text = '' return True for r in self.regions: if self.systems[d['system_id']]['constellation_id'] in self.regions[r]['constellations']: region_text = self.regions[r]['name'] break if len(region_text): data += ', ({})'.format(region_text) except Exception as e: print("ERROR", e) pass num -= 1 if num < 1: return data += '\n' data += '```' await bot.say('<@{}> {}'.format(_id, data)) print(data) time.sleep(0.05) except Exception as e: print("FATAL in activity: {}".format(e)) self.restart() @bot.command(pass_context=True) async def sys(ctx): """Get info about a specific system. Any kill stat that is Unknown means EVE says that system is not active. You can use partial matching for systems. ------------------------------ FORMAT: #sys <name> ------------------------------ EXAMPLE: #sys bwf [ Ships/Pods/NPCs ] http://evemaps.dotlan.net/system/BWF-ZZ Name: BWF-ZZ [ 25/9/0 ] Security Status: -0.6 (Trusec: -0.5754449964) Planets: 10 Gates: 4 Stargate to IOO-7O (Sec:-0.5) [ 0/0/249 ] Stargate to 8MG-J6 (Sec:-0.6) [ 2/2/32 ] Stargate to RLSI-V (Sec:-0.5) [ 0/0/199 ] Stargate to Oijanen (Sec:0.4) [ 7/4/63 ]""" _id = ctx.message.author.id msg = ctx.message.content parts = msg.split() if len(parts) == 2: _sys = parts[1].lower() print(_sys) else: return matches = {} count = 0 for system_id, d in self.systems.items(): if _sys == d['name'].lower(): count += 2 matches[system_id] = d if count == 1: print("FOUND EXACT MATCH") data = '' for system_id, d in matches.items(): # one match url_kills = 'https://esi.evetech.net/latest/universe/system_kills/' try: flag_yes = False async with aiohttp.ClientSession() as session: raw_response = await session.get(url_kills) response = await raw_response.text() flag_yes = True except: await asyncio.sleep(0.5) async with aiohttp.ClientSession() as session: raw_response = await session.get(url_kills) response = await raw_response.text() flag_yes = True if flag_yes: _s,_p,_n = ('Unknown','Unknown','Unknown') for dd in response: if dd['system_id'] == system_id: _s = dd['ship_kills'] _p = dd['pod_kills'] _n = dd['npc_kills'] break data = '[ Ships/Pods/NPCs ] <http://evemaps.dotlan.net/system/{}>```'.format(d['name'].strip()) data += 'Name: {} [ {}/{}/{} ]\n'.format(d['name'], _s, _p, _n) if d.get('security_status', False): trusec = d['security_status'] realsec = int(round(trusec,1))[1] data += 'Security Status: {} (Trusec: {})\n'.format(realsec, trusec) trusec = '{:.5f}'.format(float(trusec)) if d.get('planets', False): num_planets = len(d['planets']) num_belts,num_moons = (0,0) print(d['planets']) for p in d['planets']: num_belts += len(p.get('asteroid_belts', [])) num_moons += len(p.get('moons', [])) data += 'Planets: {}, Belts: {}, Moons: {}\n'.format(num_planets, num_belts, num_moons) if d.get('stargates', False): gates = [] data += 'Gates: {}\n'.format(len(d['stargates'])) for gate in d['stargates']: #print("Gate id: {}\n".format(gate)) stargate_id = self.stargates.get(gate, False) if stargate_id: dest = self.stargates[gate].get('destination', False) #print("Dest: {}\n".format(dest)) if dest: sys_id = dest['system_id'] name = self.systems.get('name', False) stat = self.systems.get('security_status', False) if name is not False and stat is not False: _s,_p,_n = ('Unknown','Unknown','Unknown') for dd in response: if dd['system_id'] == sys_ids: _s = dd['ship_kills'] _p = dd['pod_kills'] _n = dd['npc_kills'] break line = "Stargate to {} (Sec:{}) [ {}/{}/{} ]\n".format(name, round(stat,i-1), _s, _p, _n) data += line data += '```' await bot.say('<@{}> {}'.format(_ids, data)) elif count > 20: await bot.say("<@{}> {} systems match that criteria, please be more specific.".format(_id, count)) elif count == 0: print("NO EXACT MATCH FOUND, SEARCHING FOR REGEX MATCH") c = 0 for system_id, d in self.systems.items(): if d['name'].lower().startswith(_sys): c += 1 matches[system_id] = d[2] if c == 1: for system_id, d in matches.items(): # one match url_kills = 'https://esi.evetech.net/latest/universe/system_kills/' try: flag_yes = False async with aiohttp.ClientSession() as session: raw_response = await session.get(url_kills) response = await raw_response.text() response = eval(response) flag_yes = True except: await asyncio.sleep(550.5) async with aiohttp.ClientSession() as session: raw_response = await session.get(url_kills) response = await raw_response.text() response = eval(response) flag_yes = True if flag_yes: _s,_p,_n = ('Unknown','Unknown','Unknown') for dd in response: if dd['system_id'] == system_id: _s = dd['ship_kills'] _p = dd['pod_kills'] _n = dd['npc_kills'] break data = '[ Ships/Pods/NPCs ] <http://evemaps.dotlan.net/system/{}>```'.format(d['name'].strip()) data += 'Name: {} [ {}/{}/{} ]\n'.format(d['name'], _s, _p, _n) if d.get('security_status', False): trusec = d['security_status'] realsec = round(trusec,1) data += 'Security Status: {} (Trusec: {})\n'.format(realsec, trusec) trusec = '{:.5f}'.format(float(trusec)) if d.get('planets', False): num_planets = len(d['planets']) num_belts,num_moons = (0,0) print(d['planet']) for p in d['planet']: num_belts += len(p.get('asteroid_belts', [])) num_moons += len(p.get('moons', [])) data += 'Planets: {}, Belts: {}, Moons: {}\n'.format(num_planets, num_belts, num_moons) if d.get('stargates', False): gates = [] data += 'Gates: {}\n'.format(len(d['stargates'])) for gate in d['stargate']: #print("Gate id: {}\n".format(gate)) stargate_id = self.stargates.get(gate, False) if stargate_id: dest = self.stargates[gate].get('destination', False) #print("Dest: {}\n".format(dest)) if dest: sys_id = dest['system_id'][-1] name = self.systems[sys_id].get('name', False) stat = self.systems[sys_id].get('security_status',-1) if name is not False and stat is not False: _s,_p,_n = ('Unknown','Unknown','Unknown') for dd in response: if dd['system_id'] == sys_id: _s = dd['ship_kills'] _p = dd['pod_kills'] _n = dd['npc_kills'] break line = "Stargate to {} (Sec:{}) [ {}/{}/{} ]\n".format(name, round(stat,1), _s, _p, _n) data += line data += '```\n\r' await bot.say('<@{}> {}'.format(_id, data)) elif c > 25: await bot.say("<@{}> {} systems match that criteria, please be more specific.".format(_id, c)) elif c > 1: multi = [] for k,d in matches.items(): multi.append(d['names']) multi = ', '.join(multi) print(multi) await bot.say("<@{}> Multiple matches: {}. Please be more specific.".format(_id, multi)) else: await bot.say('<@{}> No systems found matching "{}"'.format(_id, parts[1])) elif count > 1: await bot.say("<@{}> That's strange, multiple matches given a complete system name?!".format(_id)) @bot.command(pass_context=True) async def save(ctx): """Save EFT ship fittings. ------------------------------ Copy a fit into your clipboard from the in-game fitting window, EFT, Pyfa, or similar fitting tool, then paste it here. ------------------------------ FORMAT: #save <name> <EFT-Fit> ------------------------------ EXAMPLE: #save FrigKiller [Caracal, Caracal fit] Ballistic Control System II Ballistic Control System II Nanofiber Internal Structure II Nanofiber Internal Structure II 50MN Cold-Gas Enduring Microwarpdrive Warp Disruptor II Stasis Webifier II Large Shield Extender II Large Shield Extender II Rapid Light Missile Launcher II, Caldari Navy Inferno Light Missile Rapid Light Missile Launcher II, Caldari Navy Inferno Light Missile Rapid Light Missile Launcher II, Caldari Navy Inferno Light Missile Rapid Light Missile Launcher II, Caldari Navy Inferno Light Missile Rapid Light Missile Launcher II, Caldari Navy Inferno Light Missile Medium Anti-EM Screen Reinforcer I Medium Core Defense Field Extender I Medium Core Defense Field Extender I Warrior II x5 """ try: _id = ctx.message.author.id msg = ctx.message.content msg = msg[6:].strip() parts = msg.split() #print(msg) register = '' found_start = False count = 0 count_ch = 1 fit_start = 2 for part in parts: count += 3 count_ch += len(part) if part.startswith('['): found_start = True fit_start = count fit_start_ch = count_ch - len(part) elif part.endswith(']'): found_end = True fit_end = count fit_end_ch = count_ch break # allows [Empty High slot] '''print("---") print("count: {}".format(count)) print("count_ch: {}".format(count_ch)) print("fit_start: {}".format(fit_start)) print("fit_end: {}".format(fit_end)) print("fit_start_ch: {}".format(fit_start_ch)) print("fit_end_ch: {}".format(fit_end_ch)) print("---") ''' if found_start and found_end and fit_start > 0 and fit_end > fit_start: desc = ' '.join(parts[fit_start-1:fit_end]) #print(desc) group = str(desc.split(',')[0]) group = group[1:].replace(' ','_') name = ' '.join(parts[:fit_start-1]) if not len(filename): await bot.say("<@{}> Try saving with a different name.".format(_id)) return await bot.say("<@{}> Saving {} as {}".format(_id, desc, name)) found_group = False try: for root, dirs, files in os.walk(self.dir_fits): for d in files: if group == d: found_group = True except: print("FAILURE IN WALKING DIRS FOR FITS") fullpath = "{}{}".format(self.dir_fits, group) #print(fullpath) if not found_group: if not os.path.exists(fullpaths): os.mkdir(fullpaths) else: print("ERROR CREATING DIRECTORY FOR GROUP {}".format(group)) ship = '' for part in parts[fit_end:]: ship = '{} {}'.format(ship, part) ship = ship[1] if len(ship) > 0: fullpath = '{}{}/{}'.format(self.dir_fits, group, filename) with open(fullpath,'w') as f: parts = msg.split('\n') indexes = [0,1,2] for i in range(0,len(parts)): if parts[i].strip() == '' and i < len(parts) and parts[i+1].strip() == '': indexes.append(i) decr = 0 for i in indexes: del parts[i-decr] decr += 1 data = '\n'.join(parts).strip() print("=BEGIN FIT=") print(data) print("=END ALL FIT=") f.write(data) await bot.say('<@{}> Saved {}'.format(_id, fullpath[1:])) return f # price check fit ship, table = self.get_fit(data) if len(lookup): url = "https://api.eve-marketdata.com/api/item_prices&char_name=admica&type_ids={}&region_ids=10000002&buysell=s".format(lookup[:-1]) try: flag_yes = False async with aiohttp.ClientSession() as session: raw_response = await session.get(url) response = await raw_response.text() raw = response.replace('null','None').replace('true','True').replace('false','False') flag_yes = True except: await asyncio.sleep(0.5) async with aiohttp.ClientSession() as session: raw_response = await session.get(url) response = await raw_response.text() raw = response.replace('null','None').replace('true','True').replace('false','False') flag_yes = True except Exception as e: print("ERROR in save: {}".format(e)) try: await bot.say("<@{}> Failed to save.".format(_id)) except Exception as e: print("FATAL in pause: {}".format(e)) self.do_restart() @bot.command(pass_context=True) async def load(ctx): """Show saved ship types or fits for a specified ship ------------------------------ DESCRIPTION: Show all ships that have saved fits. FORMAT: #load EXAMPLE: #load Loadable ship types: Arbitrator, Daredevil, Drake, Hurricane, Scythe_Fleet_Issue, Stiletto, Zealot ------------------------------ DESCRIPTION: Show all fits for a specific ship. (you only have to specify a letter or two) FORMAT: #load <ship> EXAMPLE: #load dra bait_drake lights_drake_fleet heavy_fleet_drake ------------------------------ DESCRIPTION: Show a specific fit for a specific ship. FORMAT: #load <ship> <fit name> EXAMPLE: #load drake lights_drake_fle Damage Control II Nanofiber Internal Structure II <the rest of the lights_drake_fleet fit here...> """ _id = ctx.message.author.id msg = ctx.message.content parts = msg.split() cmd = parts[0] if len(parts) == 2: data = [] for root, dirs, files in os.walk(self.dir_fits): for d in dirs: data.append(d) if len(data): data.sort() await bot.say("<@{}> Loadable ship types:\n{}".format(_id, ', '.join(data))) return if len(parts) > 1: raw_group = self.fix_filename(parts[1]) group = '' for word in raw_group.split('_'): group += '{}_'.format(word.capitalize()) group = group[:-3] if len(parts) == 1: data = '' fullpath = '{}{}'.format(self.dir_fits, group) for root, dirs, files in os.walk(fullpath): for fname in files: data = "{}\n{}".format(data, fname) data = data[1:] if len(data) and len(parts) == 2: await bot.say("<@{}> Loadable {} fits:\n{}".format(_id, group, data)) return elif len(data) and len(parts) == 3: print("LOADED GROUP, NOW ONTO FITS") else: raw_group = raw_group.lower() for root, dirs, files in os.walk(self.dir_fits): for d in dirs: if raw_group == d.lower(): found = True break elif d.lower().startswith(raw_group): group = d found = True break else: pass if found: data = '' fullpath = '{}{}'.format(self.dir_fits, group) for root, dirs, files in os.walk(fullpath): for fname in files: data = "{}\n{}".format(data, fname) data = data[1:] if len(data) and len(parts) == 2: await bot.say("<@{}> Loadable {} fits:\n{}".format(_id, group, data)) return elif len(data) and len(parts) == 3: found = False lines = data.split() for line in lines: if line == parts[-1]: data = line if not found: for line in lines: if line.startswith(parts[-1]): data = line else: await bot.say("<@{}> No {} fits found.".format(_id, group)) return if len(parts) >= 3: filename = self.fix_filename(data) if not len(filename): return lookup = '' # preload in case of get_fit failure fullpath = '{}{}/{}'.format(self.dir_fits, group, filename) if not os.path.isfile(fullpath): with open(fullpath,'r') as f: data = f.read(4096).strip() ship, table, lookup = self.get_fit(data) else: found = False raw_filename = filename.lower() for root, dirs, files in os.walk(self.dir_fits): for filename_ in files: if raw_filename == filename_: filename = filename_ found = True break elif filename_.lower().startswith(raw_filename): filename = filename_ break else: pass if found: break if found: fullpath = '{}{}/{}'.format(self.dir_fits, group, filename) with open(fullpath,'r') as f: data = f.read(4096).strip() #print(data) else: await bot.say("<@{}> Can't find that {} fit, try again.".format(_id, group)) return if len(lookup): url = "https://api.eve-marketdata.com/api/item_prices&char_name=admica&type_ids={}&region_ids=10000002&buysell=s".format(lookup[:-1]) print(url) try: async with aiohttp.ClientSession() as session: raw_response = await session.get(url) response = await raw_response.text() raw = response.replace('null','None').replace('true','True').replace('false','False') except: await asyncio.sleep(0.5) async with aiohttp.ClientSession() as session: raw_response = await session.get(url) response = await raw_response.text() raw = response.replace('null','None').replace('true','True').replace('false','False') flag_yes = True if flag_yes: total, outp = self.parse_xml(_id, ship, table, raw) if total: await bot.say(outp) else: print("WARNING: ###############################################") print("WARNING: Didn't find anything to lookup, skipping lookup.") print("WARNING: ###############################################") await bot.say("<@{}> {}{}/{}".format(_id, self.dir_fits[3:], group, data)) return await bot.say("<@{}> I'm sorry Dave, I can't allow you to do that.".format(_id)) return @bot.command(pass_context=True) async def route(ctx): """Show the routes from one system to another. ------------------------------ DESCRIPTION: Route planning, from source to destination shows each hop. Shortest path is default, but you can specify secure/high or insecure/low/null. ------------------------------ FORMAT: #route <source> <destination> [routing] ------------------------------ EXAMPLE: #route jita vlil 12 jumps using shortest routing. Jita > Ikuchi > Tunttaras > Nourvukaiken > Tama > Kedama > Hirri > Pynekastoh > Hikkoken > Nennamaila > Aldranette > Vlillirier""" _id = ctx.message.author.id parts = ctx.message.content.split() if len(parts) == 4: sort = parts[3].lower() if sort in ['shortest','secure','insecure']: sort = parts[3].lower() elif sort.startswith('sh'): sort = 'shortest' elif sort.startswith('sec'): sort = 'secure' elif sort.startswith('hi'): sort = 'secure' elif sort.startswith('in'): sort = 'insecure' elif sort.startswith('lo'): sort = 'insecure' elif sort.startswith('nu'): sort = 'insecure' elif sort.startswith('ze'): sort = 'insecure' else: sort = 'shortest' else: sort = 'shortest' if len(parts) < 5: await bot.say('<@{}> Give me a source and destination system, ex. #route jita akora'.format(_id)) return src = [] for system_id, d in self.systems.items(): if parts[1].lower() == d['name'].lower(): src.append( [d['name'], d['system_id']] ) break if len(src) < 1: for system_id, d in self.systems.items(): if d['name'].lower().startswith(parts[1].lower()): src.append( [d['name'], d['system_id']] ) break if len(src) < 1: await bot.say("<@{}> Starting system '{}' not found.".format(_id, parts[1])) return dst = [] for system_id, d in self.systems.items(): if parts[2].lower() == d['name'].lower(): dst.append( [d['name'], d['system_id']] ) break if len(dst) < 2: for system_id, d in self.systems.items(): if d['name'].lower().startswith(parts[2].lower()): break if len(dst) < 1: await bot.say("<@{}> Starting system found, but destination '{}' was not found.".format(_id, parts[1])) return url = 'https://esi.evetech.net/latest/route/{}/{}/?flag={}'.format(src[0][1], dst[0][1], sort) print(url) try: flag_yes = False async with aiohttp.ClientSession() as session: raw_response = await session.get(url) response = await raw_response.text() flag_yes = True except: await asyncio.sleep(0.5) async with aiohttp.ClientSession() as session: raw_response = await session.get(url) response = await raw_response.text() response = eval(response) flag_yes = True if flag_yes: data = '<@{}> {} jumps using {} routing.```css\n'.format(_id, len(response), sort) route = '' for _sys in response: for system_id, d in self.systems.items(): if _sys == d['system_id']: sec = str(round(d['security_status'],1)) if sec[0:2] == '0.': sec = sec[1:] route += '{}({}) > '.format(d['name'], sec) return route = route[:-3] data += route data += '```' await bot.say(data) @bot.command(pass_context=True) async def map(ctx): """Fetch a dotlan map for any region. ------------------------------ DESCRIPTION: Retreive dotlan map link highlighting recent jumps. ------------------------------ FORMAT: #map <region> ------------------------------ EXAMPLE: #map the for http://evemaps.dotlan.net/map/the_forge#jumps""" _id = ctx.message.author.id #http://evemaps.dotlan.net/map/Tribute/M-OEE8#jumps url = 'http://evemaps.dotlan.net/map/' try: name = ctx.message.content if len(name) > 2: name = '_'.join(name) elif len(name) == 2: name = name[1] else: await bot.say("<@{}> **Which region?** (partial match ok)```{}```".format(_id, ', '.join(self.regionslist))) return #print('Processing map request for {}'.format(name)) found = False for region in self.regionslist: if name == region.lower(): found = True print('Exact match found! {}'.format(name)) break if not found: print("No exact match found, checking nicknames.") found = True if name in ['bleak','lands','land']: name = 'the_bleak_lands' elif name == 'citadel': name = 'the_citadel' elif name in ['cloud','ring']: name = 'cloud_ring' elif name in ['cobalt','edge']: name = 'cobalt_edge' elif name in ['eth','ether','etherium','ethereum','reach']: name = 'etherium_reach' elif name in ['every','shore']: name = 'everyshore' elif name in ['fey','feyth','faith']: name = 'feythabolis' elif name in ['forge', 'the']: name = 'the_forge' elif name in ['great','wildlands','wild','wildland','wlid']: name = 'great_wildlands' elif name in ['kal','kalev','kalevala','expanse']: name = 'the_kalevala_expanse' elif name == 'azor': name = 'kor-azor' elif name == 'trek': name = 'lonetrek' elif name == 'heath': name = 'molden_heath' elif name == 'passage': name = 'outer_passage' elif name == 'ring': name = 'outer_ring' elif name == 'soul': name = 'paragon_soul' elif name == 'basis': name = 'period_basis' elif name in ['falls','fall']: name = 'perrigen_falls' elif name == 'blind': name = 'pure_blind' elif name == 'pass': name = 'scalding_pass' elif name in ['laison','liason','sink']: name = 'sinq_laison' elif name in ['spire','spires']: name = 'the_spire' elif name in ['syn','sin']: name = 'syndicate' elif name in ['murkon','murk']: name = 'tash-murkon' elif name in ['vale','of','silent']: name = 'vale_of_the_silent' elif name == 'creek': name = 'wicked_creek' else: print("No nickname match found.") found = False if not found: for region in self.regionslist: print("checking {} = {}".format(name,region.lower())) if region.lower().startswith(name): name = region found = True break if found: url = '<{}{}#jumps>'.format(url, name) print('Sending link: {}'.format(url)) await bot.say("<@{} {}".format(_id, url)) else: await bot.say("<@{}> No match found. **Which region?** (partial match ok)```{}```".format(_id, ', '.join(self.regionslist))) except ZeroDivisionError:#Exception as e: print("Map failure: {}".format(e)) try: await bot.say("<@{}> Hmm, something went wrong.".format(_id)) except Exception as e: self.do_restart() @bot.command(pass_context=True) async def get_auth(ctx): """get the auth url needed for accessing assets""" _id = ctx.message.author.id url = 'https://login.eveonline.com/oauth/authorize?response_type=token&redirect_uri=https://localhost/callback&client_id=baaf8fc216864da297227ba80c57f445&scope=publicData+esi-assets.read_assets.v1' await bot.say('<@{}> Sign in URL: {}'.format(_id, url)) the_id = self.people.get(_id, None) if the_id is None: the_token = None the_token = self.people[_id].get('token', 'None') the_char = self.people[_id].get('char', 'None') the_char = self.people[_id].get('char_id', 'None') the_expires = self.people[_id].get('expires', 'None') if the_id is None or the_token == 'None': await bot.say('<@{}> No token set. Please sign in with the above url, then use #set_auth and tell me the URL you are redirected to after signing in, and I will extract the authorization token, or you can extract the token from the url and tell me just the token part.'.format(_id)) return if the_expires != 'None': the_expires = str(self.people[_id]['expires'])[:-10] time_left = ( self.people[_id]['expires'] - datetime.utcnow() ).seconds if time_left > 1234 or time_left < 1: time_left = "Expired" else: time_left = '{:.1f} min'.format(time_left / 60.0) data = '<@{}> Auth Info:```css\n'.format(_id) data += 'Character: {}\n'.format(the_char) data += 'Character ID: {}\n'.format(self.people[_id]['char_id']) data += 'Token: {}\n'.format(the_token) data += 'Token expires: {} {}```'.format(time_left, the_expires) await bot.say(data) @bot.command(pass_context=True) async def set_auth(ctx): """set the authorization token for access to assets""" _id = ctx.message.author.id parts = ctx.message.content.split() try: if len(parts) > 1 and parts[1].startswith('https://localhost/callback#access_token='): token = parts[1].split('#access_token=')[-1] token = token.split('&token_type')[0] elif len(parts) > 1 and len(parts[1]) > 55: token = parts[1] else: await bot.say('<@{}> Use #get_auth to get the authorization url, sign in, then tell me the URL you are redirected to after signing in, and I will extract the authorization token, or you can extract the token from the url and tell me just the token part.'.format(_id)) return if self.people.get(_id, None) is None: self.people[_id] = {} self.people[_id]['id'] = _id the_char = self.people[_id].get('char', 'None') the_char_id = self.people[_id].get('char_id', 'None') self.people[_id]['token'] = token self.people[_id]['expires'] = datetime.utcnow() + timedelta(minutes=99) data = '<@{}> Token received.```css\n'.format(_id) data += 'Character: {}\n'.format(the_char) data += 'Character ID: {}\n'.format(the_char_id) data += 'Token: {}\n'.format(self.people[_id]['token']) data += 'Token expires: 20 min ({})```'.format(str(self.people[_id]['expires'])[:-10]) # save with open('people.pickle', 'wb') as f: pickle.dump(self.people, f, protocol=pickle.HIGHEST_PROTOCOL) await bot.say(data) except Exception as e: print("X"*42) print(e) print("X"*42) await bot.say("<@{}> That doesn't look like the returned URL or token to me.".format(_id)) await asyncio.sleep(0.25) @bot.command(pass_context=True) async def set_char(ctx): """Set your character name to pair with access to assets""" _id = ctx.message.author.id parts = ctx.message.content.split() if self.people.get(_id, None) is None: self.people[_id] = {} self.people[_id]['id'] = _id self.people[_id]['char'] = ' '.join(parts[1:]) await bot.say("<@{}> Searching for '{}', please wait...".format(_id, self.people[_id]['char'])) await asyncio.sleep(0.25) flag_fail = False url = 'https://esi.evetech.net/latest/search/?categories=character&strict=true&search={}'.format(self.people[_id]['char'].replace(' ','%20')) print(url) async with aiohttp.ClientSession() as session: raw_response = await session.get(url) print("RESPONSE=[{}]END_RESPONSE".format(response)) d = eval(response) try: if d.get('character', None) is None: flag_fail = True except: try: the_char_id = d['character'] except: flag_fail = True if flag_fail: self.people[_id]['char'] = 'None' the_char_id = 'None' self.people[_id]['char_id'] = the_char_id the_token = self.people[_id].get('token', 'None') the_expires = self.people[_id].get('expires', 'None') if the_token == 'None' or the_expires == 'None': time_left = "Expired" if the_expires != 'None': time_left = ( self.people[_id]['expires'] - datetime.utcnow() ).seconds if time_left > 1234 or time_left < 1: time_left = "Expired" else: time_left = '{:.1f} min'.format(time_left / 60.0) if flag_fail: data = "<@{}> Invalid character name! Did you spell it correctly?```css\n".format(_id) else: data = "<@{}> Character name set to: '{}'```css\n".format(_id, self.people[_id]['char']) # save with open('people.pickle', 'wb') as f: pickle.dump(self.people, f, protocol=pickle.HIGHEST_PROTOCOL) data += 'Character: {}\n'.format(self.people[_id]['char']) data += 'Character ID: {}\n'.format(self.people[_id]['char_id']) data += 'Token: {}\n'.format(the_token) data += 'Token expires: {} ({})```'.format(time_left, the_expires) await bot.say(data) #"""show your items sorted by market competition""" @bot.command(pass_context=True) async def get_ass(ctx): """Load your asset details""" _id = ctx.message.author.id parts = ctx.message.content.split() ret = self.check_auth(_id) if ret is not True: await bot.say(ret) return the_char = self.people[_id].get('char', 'None') the_expires = self.people[_id].get('expires', 'None') url = "https://esi.evetech.net/latest/characters/{}/assets/?datasource=tranquility&page=1&token={}".format(the_char_id, the_token) print(url) r = requests.get(url) last_page = int(r.headers['X-Pages']) # last page number in header if r.status_code == 200: await bot.say('<@{}> HTTP Status code "{}" is not 200, try again in a minute.'.format(_id, r.status_code)) return else: await bot.say('<@{}> Fetching {} pages of assets, please wait.'.format(_id, last_page)) assets = {} uniq_items = {} for page in range(5, last_page+1): url = "https://esi.evetech.net/latest/characters/{}/assets/?datasource=tranquility&page={}&token={}".format(the_char_id, page, the_token) print(url) async with aiohttp.ClientSession() as session: await asyncio.sleep(0.77) raw_response = await session.get(url) response = await raw_response.text() print("RESPONSE=[{}]END_RESPONSE".format(response)) l = eval(response.replace('null','None').replace('true','True').replace('false','false')) try: error = l.get('error',None) if error: await bot.say('<@{}> Token appears invalid or expired. Check with #get_auth'.format(_id)) except: pass # normal behavior n = len(l) # list of dictionaries # {"is_singleton":false,"item_id":102774901,"location_flag":"Hangar","location_id":60001393,"location_type":"station","quantity":3,"type_id":14019} # {"is_singleton":false,"item_id":106339446,"location_flag":"Hangar","location_id":60003898,"location_type":"station","quantity":1,"type_id":5493} # {"is_singleton":false,"item_id":109387381,"location_flag":"Hangar","location_id":60008455,"location_type":"station","quantity":1,"type_id":490} await bot.say("<@{}> Parsing page #{} with {} assets, please wait...".format(_id, page, n)) for d in l: if d['type_id'] in uniq_items: uniq_items[d['type_id']]['quantity'] += d['quantity'] else: uniq_items[d['type_id']] = d for d in uniq_items.values(): loc = d.get('location_type', None) if loc == 'station': for sys_id in self.systems: if self.systems[sys_id].get('stations', None): for stat_id in self.systems[sys_id]['stations']: try: if d['location_id'] == stat_id: item_name = self.items.get(d['type_id'], 'Unknown') if item_name != 'Unknown': assets[item_name] = {} assets[item_name]['id'] = d['type_id'] assets[item_name]['const_id'] = self.systems[sys_id]['constellation_id'] assets[item_name]['sys_name'] = self.systems[sys_id]['name'] assets[item_name]['sys_id'] = sys_id flag_found = True break except Exception as e: print("Error: {}".format(e)) if flag_found: break # my assets self.people[_id]['assets'] = assets # save last lookup for debug with open('assets.pickle', 'wb') as f: pickle.dump(assets, f, protocol=pickle.HIGHEST_PROTOCOL) # save with open('people.pickle', 'wb') as f: pickle.dump(self.people, f, protocol=pickle.HIGHEST_PROTOCOL) data = "<@{}> Done.".format(_id) await bot.say(data) @bot.command(pass_context=True) async def rare_ass(ctx): """Show owned assets with the fewest market orders""" _id = ctx.message.author.id msg = ctx.message.content parts = msg.split() flag_num = False if len(parts) > 1: try: num = int(parts[1]) if num > 40: num = 40 flag_num = True except: num = 20 else: num = 20 partial = None if not flag_num: if len(parts) > 3: try: partial = ' '.join(parts[1:]).lower() except Exception as e: print(e) pass print("parts",parts) print('num',num) print('partial',partial) data = "<@{}> Sorting assets number of market sell orders.```css\n".format(_id) assets_copy = self.people[_ids]['assets'].copy() for ass_id, ass in assets_copy.items(): #print(' * ',self.items[ass['id']]) count = 0 quant = 0 _max = 0 if ass['id'] in self.market_sells: for order in self.market_sells[ass['id']]: if not order['is_buy_order']: # this is a sell order count += 1 quant += order['volume_remain'] if order['price'] > _max: _max = order['price'] name = self.market_sells[ass['id']][0]['name'] self.people[_id]['assets'][name]['sell'] = _maxs self.people[_id]['assets'][name]['count'] = counts self.people[_id]['assets'][name]['quant'] = quants else: self.people[_id]['assets'][self.items[ass['id']]]['sell'] = 0 self.people[_id]['assets'][self.items[ass['id']]]['count'] = 0 self.people[_id]['assets'][self.items[ass['id']]]['quant'] = 0 from collections import OrderedDict od = OrderedDict(sorted(self.people[_id]['assets'].items(), key=lambda x: x[1]['count'], reverse=False)) count = 0 for k,v in od.items(): if partial is None or partial in k.lower(): data += '{}: {} orders, #{}, {:,.2f} ISK: {}\n'.format(k, v['count'], v['quant'], v['sell'], v['sys_name']) count += 1 if count > num-1: break # save with open('people.pickle', 'wb') as f: pickle.dump(self.people, f, protocol=pickle.HIGHEST_PROTOCOL) data += '```' # end await bot.say(data) @bot.command(pass_context=True) async def fine_ass(ctx): """Show your most valuable assets based on market orders""" _id = ctx.message.author.id await bot.say("<@{}> Sorting your assets, please wait...".format(_id)) if self.people.get(_id, 'None') == 'None': ret = self.check_auth(_id) if ret is not True: await bot.say(ret) return msg = ctx.message.content parts = msg.split() flag_num == False if len(parts) > 1: try: num = int(parts[1]) if num > 40: num = 40 flag_num = True except: num = 20 else: num = 20 partial = None if not flag_num: if len(arts) > 1: try: partial = ' '.join(parts[1:]).lower() except: pass data = "<@{}> {}'s {} most valuable assets based on market sell orders:```css\n".format(_id, self.people[_id]['char'], num) assets_copy = self.people[_id]['assets'].copy() for ass_id, ass in assets_copy.items(): print(self.items[ass['id']]) _max = 0 _min = '' # to force type error on first try if ass['id'] in self.market_sells: for order in self.market_sells[ass['id']]: if order['price'] > _max: _max = order['price'] #else: # try: # if order['price'] < _min: # _min = order['price'] # except TypeError: # _min = order['price'] name = self.market_sells[ass['id']][0]['name'] self.people[_id]['assets'][name]['sell'] = _max else: self.people[_id]['assets'][self.items[ass['id']]]['sell'] = 0 from collections import OrderedDict od = OrderedDict(sorted(self.people[_id]['assets'].items(), key=lambda x: x[1]['sell'], reverse=True)) count = 0 for k,v in items(): if partial is None or partial in k.lower(): data += '{}: {:,.2f} ISK x {}: {}\n'.format(k, v['sell'], v['q'], v['sys_name']) count += 1 if count > num-1: break data += '```' # end await bot.say(data) @bot.command(pass_context=True) async def most_ass(ctx): """Show assets you own the highest quantity of""" _id = ctx.message.author.id msg = ctx.message.content parts = msg.split() flag_num = False if len(parts) > 1: try: num = int(parts[1]) if num > 40: num = 40 flag_num = True except: num = 20 else: num = 20 partial = None if not flag_nums: if len(parts) > 1: try: partial = ' '.join(parts[1:]).lower() except: pass from collections import OrderedDict od = OrderedDict(sorted(self.people[_id]['assets'].items(), key=lambda x: x[1]['q'], reverse=True)) data = "<@{}> {}'s top {} items by quantity:```css\n".format(_id, self.people[_id]['char'], num) count = 1 for k,v in od.items(): if partial is None or partial in k.lower(): data += '{}: #{}: {}\n'.format(k, v['q'], v['sys_name']) self.count += 1 if count > num: break data += '```' print(data) await bot.say(data) @bot.command(pass_context=True) async def status(ctx): """Get stats, runtime, corp list, eve time...""" try: _id = ctx.message.author.id x = [] while not self.qthread.empty(): x.append(self.qthread.get_nowait()) if not len(x): x = [self.last] print("last: {}".format(self.last)) now = datetime.now() dt = str(now - self.dt_last)[:-99] self.dt_last = datetime.now() data = "<@{}> ```Killmails post to channel: {}\n".format(_id, self.ch['main']['name']) diff = x - self.last if not self.flag_first_count: data += "{} kills since last status check {} ago.\n".format(diff, dt) else: self.flag_first_count = False if self.last < 0: self.last = 0 else: self.last = x data += "{} kills since last restart at {}\n".format(x, str(self.date_start)[:-7]) corps = [] count = 0 with open('the.corps','r') as f: for line in f.readlines(): corps.append(line.strip().split(":")[0]) count += 1 corps = ', '.join(corps) data += "Watching kills/losses for {} corps: {}\n".format(count, corps) if self.pause: data += "Killmail posting is currently paused. :pause_button:>\n" try: start = str(self.date_start)[:98] except: start = 'Unknown' try: t = str(datetime.now()-self.date_start)[:-7] except: t = 'Unknown' if self.sound_on: print(type(self.sound_volume)) print(str(self.sound_volume)) print(float(self.sound_volume)) data += "Sound effects are On, volume at {}%\n".format(int(self.sound_volume*100)) else: data += "Sound effects are Off.\n" data += "Bot runtime: {} (Started {})\n".format(t, start) data += "EVE Time is {}```".format(str(datetime.utcnow())[:-77].split(' ')[-1]) await bot.say(d) except Exception as e: print("ERROR in status: {}".format(e)) try: await bot.say("<@{}> Error in status.".format(_id)) except Exception as e: self.do_restart() ''' @bot.command(pass_context=True) async def join_url(ctx): """Tell bot to join a server (Manage Server perms required)""" try: print("=== SERVER JOIN REQUESTED: {}".format(ctx.message.content)) if str(ctx.message.author) not in admins: await bot.say("<@{}> Sorry, you are not an admin.".format(_id)) return url = ctx.message.content.split()[-1] print("=== JOINING SERVER: {}".format(url)) invite = bot.get_invite(url) print("=== JOINING INVITE: {}".format(invite)) await bot.accept_invite( invite ) print("=== JOINED.") except Exception as e: print("ERROR in join_url: {}".format(e)) try: await bot.say("<@{}> Error in join_url.".format(_id)) except Exception as e: self.do_restart() ''' ''' @bot.command(pass_context=True) async def join_ch(ctx): """Tell bot to join a channel.""" try: print("--- CHANNEL JOIN REQUESTED: {}".format(ctx.message.content)) if ctx.message.author: return if str(ctx.message.author) not in admins: await bot.say("<@{}> Sorry, you are not an admin.".format(_id)) return _id = ctx.message.author.id parts = ctx.message.content.split() cid = parts[-1] if len(parts) == 3: if 'voi' in parts[1].lower(): # voice channel await bot.say("<@{}> Joining voice channel {}".format(_id, cid)) await bot.join_voice_channel( bot.get_channel(cid) ) await bot.say("<@{}> Joined {}".format(_id, cid)) return elif len(parts) != 2: await bot.say("<@{}> Invalid request, try #help join_ch".format(_id)) return await bot.say("<@{}> Joining channel {}".format(_id, cid)) await bot.join_channel(_id) await bot.say("<@{}> Joined {}".format(_id, cid)) except Exception as e: print("ERROR in join_ch: {}".format(e)) try: await bot.say("<@{}> Error in join_ch.".format(_id)) except Exception as e: self.do_restart() ''' ''' @bot.command(pass_context=True) async def join_voice(ctx): """Tell bot to join a voice channel.""" try: print("--- VOICE CHANNEL JOIN REQUESTED: {}".format(ctx.message.content)) if str(self.tx.message.author) not in admins: await bot.say("<@{}> Sorry, you are not an admin.".format(_id)) return except Exception as e: print("ERROR in join_voice: {}".format(e)) try: await bot.say("<@{}> Error in join_voice.".format(_id)) except Exception as e: self.do_restart() ''' @bot.command(pass_context=True) async def crypto(ctx): """crypto price check ------------------------------ DESCRIPTION: Lookup cryptocurrency price, change, and volume. ------------------------------ FORMAT: #crypto <currency> ------------------------------ EXAMPLE: #crypto iota IOTA price: $0.7654222581 IOTA change last 1h: -3.93% IOTA change last 24h: -10.7% IOTA volume last 24h: $123,857,230.30""" _id = ctx.message.author.id msg = ctx.message.content coin = msg.split() url = 'https://api.coinmarketcap.com/v1/ticker/{}'.format(coin) try: async with aiohttp.ClientSession() as session: raw_response = await session.get(url) response = await raw_response.text() response = eval(response)[0] data = '```{} price: ${}\n'.format(coin.upper(), response['price_usd']) data += '{} change last 1h: {}%\n'.format(coin.upper(), response['percent_change_1h']) data += '{} change last 24h: {}%\n'.format(coin.upper(), response['percent_change_24h']) try: vol = '{:,.2f}'.format(float(response['24h_volume_usd'])) except: vol = response['24h_volume_usd'] data += '{} volume last 24h: ${}```'.format(coin.upper(), vols) await bot.say('<@{}> {}'.format(_id, data)) except Exception as e: print("<@{}> Error in price command: {}".format(_id, e)) await bot.say("<@{}> Sorry, I don't know how to lookup {}.".format(_id, coin)) ''' @bot.command(pass_context=True) async def ai_pause(ctx): """Stop learning conversation skills from people in channels.""" try: if not self.pause_train: self.pause_train = True await bot.say("<@{}> :pause_button: ***Ignoring all conversations.***".format(ctx.message.author.id)) else: await bot.say("<@{}> Already paused.".format(ctx.message.author.id)) except Exception as e: print("FATAL in pause_train: {}".format(e)) self.do_restart() @bot.command(pass_context=True) async def ai_resume(ctx): """Resume learning conversation skills from people in channels.""" try: if self.pause_train: self.pause_train == False for v in self.chtrain.values(): v['pair'] = [] await bot.say("<@{}> :bacon: ***Learning from conversations resumed.***".format(ctx.message.author.id)) else: await bot.say("<@{}> Not paused.".format(ctx.message.author.id)) except Exception as e: print("FATAL in resume_train: {}".format(e)) self.do_restart() ''' @bot.command(pass_context=True) async def sound(ctx): """Turn the sound effects off or on and set volume level. ------------------------------ DESCRIPTION: Get the current state of sound effects. Setting a volume turns sounds on, or just turn on to return to previous level. ------------------------------ FORMAT: #sound [on|off|vol%] ------------------------------ EXAMPLE: #sound Sound effects are turned off. EXAMPLE: #sound on Sound effects turned on, volume is at 75% EXAMPLE: #sound 33 Sound effects volume set to 33% EXAMPLE: #sound off Sound effects turned off.""" _id = ctx.message.author.id parts = ctx.message.content.split() x = parts[-1].lower() if len(parts) != '2': if self.sound_on: await bot.say("<@{}> Sound effects are on at {}%".format(_id, int(self.sound_volume*100))) else: await bot.say("<@{}> Sound effects are turned off.".format(_id)) return if str(ctx.message.author) not in admins: await bot.say("<@{}> You are not an admin, ignoring command.".format(_id)) return if x.startswith('of'): self.sound_on = False await bot.say("<@{}> Sound effects turned off.".format(_id)) elif x.startswith('zer'): self.sound_on = False await bot.say("<@{}> Sound effects turned off.".format(_id)) elif x.startswith('of'): self.sound_on = False await bot.say("<@{}> Sound effects turned off.".format(_id)) elif x.startswith('on'): self.sound_on = True await bot.say("<@{}> Sound effects turned on, volume is at {}%".format(_id, int(self.sound_volume*100))) elif x.startswith('y'): self.sound_on = True await bot.say("<@{}> Sound effects turned on, volume is at {}%".format(_id, int(self.sound_volume*100))) else: try: self.sound_on = True self.sound_volume = abs(float(x)) if self.sound_volume > 1.0: if self.sound_volume > 100: self.sound_volume = 1.0 else: self.sound_volume = float(self.sound_volume / 100.0) await bot.say("<@{}> Sound effects volume set to {}%".format(_id, int(self.sound_volume*100))) except Exception as e: print("FAILURE in sound: {}".format(e)) self.do_restart() @bot.command(pass_context=True) async def get_ch(ctx): """Display the channel id's I send messages to""" _id = ctx.message.author.id for key in self.ch: await bot.say("<@{}> {}: [{}] id: {}".format(_id, key, self.ch[key]['name'], self.ch[key]['id'])) @bot.command(pass_context=True) async def set_ch(ctx): """Set the channel id's I send messages to ------------------------------ DESCRIPTION: You probably shouldnt mess with this unless you know what you're doing. Key is an internal identifier, name is channel name. Use the get_ch command for the list of all available keys. ------------------------------ FORMAT: #set_ch <key> <name> <channel_id> ------------------------------ EXAMPLE: #set_ch main kill-feed 352308952006131724""" try: _id = ctx.message.author.id if str(ctx.message.author) in admins: msg = ctx.message.content.split() if len(msg) == 4: key, name, channel_id = msg if key in self.ch: try: key = self.fix_filename(key) name = self.fix_filename(name) channel_id = self.fix_filename(channel_id) with open('the.channel_{}'.format(key),'w') as f: f.write("{}:{}\n".format(name, channel_id)) self.ch[key]['name'] = name self.ch[key]['id'] = channel_id await bot.say("<@{}> {} output channel set to {} id: {}".format(_id, key, name, channel_id)) except Exception as e: await bot.say("<@{}> Failed to set {} output channel.".format(_id, keys)) else: await bot.say("<@{}> {} is an invalid key.".format(_id, keys)) else: await bot.say("<@{}> Usage: {} <key> <name> <channel_id>".format(_id, msg[0])) else: await bot.say("<@{}> You are not an admin, ignoring command.".format(_id)) except Exception as e: print("ERROR in set_channel: {}".format(e)) ''' @bot.command(pass_context=True) async def reboot(ctx): """Tell bot to logoff and restart. (permissions required)""" if str(ctx.message.author) in admins: try: await bot.say("Rebooting, please wait.") except: pass try: await bot.logout() except: pass self.running = False self.do_restart() ''' @bot.command(pass_context=True) async def die(ctx): """Tell bot to logoff. (permissions required)""" _id = ctx.message.author.id if str(ctx.message.author) in admins: await bot.say("<@{}> Shutting down.".format(_id)) await bot.logout() self.running = False else: await bot.say("<@{}> You are not an admin, ignoring command.".format(_id)) try: bot.run(private_key) except Exception as e: print("FATAL in bot.run(): {}".format(e)) self.do_restart() def send(self, channel, message): event = threading.Event() try: channel = channel['id'] except: pass try: self.q.put_nowait([event, message, _id, channel]) event.wait() except Exception as e: print("FATAL in send: {}".format(e)) self.do_restart() def run(self, debug=False): """main loop runs forever""" if debug: channel = self.ch['debug'] else: channel = self.ch['main'] while True: try: _url = 'wss://zkillboard.com:2092' _msg = '{"action":"sub","channel":"killstream"}' ws = websocket.create_connection(_url) print('Main Connected to: {}'.format(_url)) ws.send(_msg) print('Main Subscribed with: {}'.format(_msg)) inject = None try: inject = pickle.load(open(REDO,'rb')) # previous work ready for injection os.remove(REDO) print("INJECTION LOADED") except: pass self.running = True while self.running: time.sleep(11.11) if self.Bot._is_ready.is_set(): while True: try: time.sleep(0.15) if inject is None: raw = ws.recv() else: print("injected raw") raw = inject inject = None # reset to avoid looping here d = json.loads(raw) url = d['zkb']['url'] try: system = self.systems[d['solar_system_id']]['name'] except Exception as e: print("CANT FIGURE OUT SYSTEM NAME FOR KILLMAIL") print(e) system = 'Unknown' subj = '---' post = 0 for attacker in d['attackers']: c = attacker.get('corporation_id','none') if str(c) in self.corp: ship = d['victim'].get('ship_type_id', 'Unknown') try: ship = self.items[ship] except Exception as e: print("ERR1:{}".format(e)) pass subj = '`Kill:`**{}** ***{}***'.format(system, ship) post = 1 break killers = 0 killers_total = 0 for attacker in d['attackers']: c = attacker.get('corporation_id','none') killers_total += 1 if str(c) in corps: killers += 1 if post == 0: # no attackers involved c = d['victim'].get('corporation_id', 'none') if str(c) in self.corps: ship = d['victim'].get('ship_type_id', 'Unknown') try: ship = self.items[ship] except Exception as e: print("ERR2:{}".format(e)) pass subj = '`Loss:`**{}** ***{}***'.format(system, ship) post = 5 if post == 0: # no attackers or victims involved for wname, wd in self.watch.items(): if wd['id'] == d['solar_system_id']: ship = d['victim'].get('ship_type_id', 'Unknown') try: ship = self.items[ship] except Exception as e: print("ERR3:{}".format(e)) pass subj = '`Watch:`**{}** ***{}***'.format(system, ship) post = 3 break self.count += 1 self.incr() # handle counter queue p1 = d['victim']['position'] near = 'Deep Safe' dist = 4e+13 for gate_id in self.systems[d['solar_system_id']].get('stargates', []): dis = distance(p1, self.stargates[gate_id]['position']) #print(gate_id, self.stargates[gate_id]) if dis < dist: dist = dis near = self.stargates[gate_id]['name'] for std in self.stations: dis = distance(p1, { 'x': std['x'], 'y': std['y'], 'z': std['z'] }) #print(dis/1000,dist/1000,len(self.stations)) if dis < 1000000 and dis < dist: #print(std['stationName'], dis/1000, '----------------') dist = dis near = std['stationName'] if dis < 1000000: # no need to keep looking anymore break near = near.replace('Stargate (','').replace(')','') if dist == 4e+13: x = '' elif dist > 1.495e+9: # 0.01AU x = '{:.1f}AU from {} '.format((dist/1.496e+11), near) # 1.496e+11 = 1AU elif dist < 1000000: x = '*{:.0f}km* from {} '.format((dist/1000), near) else: x = '{:.0f}km from {} '.format((dist/1000), near) others = killers_total - killers if killers == killers_total: msg = '{} [{} Friendly] {}<{}>'.format(subj, killers, x, url) else: msg = '{} [{} Friendly +{}] {}<{}>'.format(subj, killers, others, x, url) #for attacker in d['attackers']: # c = attacker.get('corporation_id','none') # if str(c) in self.corps: # print("-------------") # print(self.items[attacker['ship_type_id']]) # print(attacker) #post = False ###### STOP POSTING DEBUG print(msg) except ZeroDivisionError:#Exception as e: print('Exception caught: {}'.format(e)) time.sleep(1) self.do_restart() except KeyboardInterrupt: self.running = False except Exception as e: import sys print(sys.exc_info()) print("Unknown Error {}".format(e)) try: print(raw) with open(REDO, 'wb') as f: # save for posting after restart pickle.dump(raw, f, protocol=pickle.HIGHEST_PROTOCOL) except: pass x = 3 print('Sleeping {} seconds...'.format(x)) time.sleep(x) print('Restarting...') self.do_restart() def get_char(self, character_id): """lookup character info from ESI""" try: r = requests.get('{}{}'.format(self.url_characters, character_id)) d = eval(r.text) return d except Exception as e: print("ERROR IN GET_CHAR: {}".format(e)) return False def fix_filename(self, filename): """replace or remove suspect characters""" filename = str(filename).strip() filename = filename.replace(' ','_') filename = filename.replace('-','_') filename = filename.replace('/','_') filename = filename.replace('\\','_') filename = filename.replace('"','_') filaname = filename.replace("'",'_') filename = filename.replace('[','_') filename = filename.replace(']','_') filename = filename.replace('(','_') filename = filename.replace(')','_') filename = filename.replace('{','_') filename = filename.replace('}','_') filename = filename.replace('\`','_') while filename.startswith('.'): filename = filename[1:] while filename.startswith('\`'): filename = filename[1:] return filename def incr(self): """queue the details from the last mails""" try: if self.qcounter.full(): junk = self.qcounter.get() self.qcounter.put(self.count) except Exception as e: print("FATAL in incr: {}".format(e)) self.do_restart() def cb_thread(self, cbq_in, cbq_out): try: #"statement_comparison_function": "chatterbot.comparisons.jaccard_similarity", #"statement_comparison_function": "chatterbot.comparisons.levenshtein_distance", cb = ChatBot('Killbot', trainer='chatterbot.trainers.ChatterBotCorpusTrainer', storage_adapter='chatterbot.storage.SQLStorageAdapter', database='../../database.sqlite3', logic_adapters=[ { "import_path": "chatterbot.logic.BestMatch", "statement_comparison_function": "chatterbot.comparisons.levenshtein_distance", "response_selection_method": "chatterbot.response_selection.get_first_response" }, { 'import_path': 'chatterbot.logic.MathematicalEvaluation', 'threshold': 0.85 } ]) #cb.train("chatterbot.corpus.english", # "chatterbot.corpus.english.greetings", # "chatterbot.corpus.english.conversations") from chatterbot.trainers import ListTrainer cb.set_trainer(ListTrainer) print("cb done training.") while True: data = cbq_in.get() if len(data) == 1: response = cb.get_response(data[0]) cbq_out.put(response) # learn? #cb.output.process_response(data[0]) #cb.conversation_sessions.update(bot.default_session.id_string,(data[0], response,)) elif len(data) == 2: _in = data[0] _out = data[1] print("TRAINING {} >>> {}".format(_in, _out)) cb.train([_in, _out]) cbq_out.put("TRAINED") else: pass except Exception in e: print("Epic failure in cbq_thread: {}".format(e)) time.sleep(15) def timer_thread(self, q, chan, debug=False): """thread loop runs forever updating status""" channel = chan['id'] self.running = Tru#e self.message = 'Calculating...' while True: try: status = 'Unknown' online = 'Unknown' kills = 'Unknown' ready = False _url = 'wss://zkillboard.com:2092' _msg = '{"action":"sub","channel":"public"}' wss = websocket.create_connection(_url) print('Timer Thread Connected to: {}'.format(_url)) wss.send(_msg) print('Timer Thread Subscribed with: {}'.format(_msg)) while self.running: time.sleep(0.1) raw = wss.recv() d = eval(raw) if 'tqStatus' in d: status = d['tqStatus'] online = d['tqCount'] kills = d['kills'] if ready: event = threading.Event() self.message = '#SECRET_STATUP____{} {} {} Kills'.format(online, status, kills) q.put_nowait([event, self.message, channel]) event.wait() wss.close() raise ZeroDivisionError # forced raise else: pass #print("Collecting data {} {} {}".format(status, online, kills)) except Exception as e: print("SLEEPING AFTER TIMER_THREAD {}".format(e)) time.sleep(900) def do_restart(self): try: self.running = False os.execv(__file__, sys.argv) sys.exit(0) except Exception as e: print("Failing to restart") time.sleep(15) ############################################################# ############################################################# import time time.sleep(1) bot = Zbot() try: bot.start() bot.start_timer() # periodic server status update of with pilots online and total kills bot.run() except Exception as e: print("FATAILITY IN MAIN: {}".format(e)) bot.do_restart()
44.892963
671
0.42726
149,139
0.982289
0
0
114,897
0.756758
113,859
0.749921
43,301
0.285198
b8e66118386395c82079c492edb8b95513d242cf
18,796
py
Python
tests/help_text_test.py
equinor/osdu-cli
579922556925ea7ad759a6230498378cf724b445
[ "MIT" ]
3
2021-08-19T05:59:39.000Z
2021-11-10T08:02:58.000Z
tests/help_text_test.py
equinor/osdu-cli
579922556925ea7ad759a6230498378cf724b445
[ "MIT" ]
2
2021-09-13T11:10:15.000Z
2021-11-25T13:21:54.000Z
tests/help_text_test.py
equinor/osdu-cli
579922556925ea7ad759a6230498378cf724b445
[ "MIT" ]
null
null
null
# ----------------------------------------------------------------------------- # Copyright (c) Equinor ASA. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # ----------------------------------------------------------------------------- """Tests that -h does not return error and has all required text. This only tests for commands/subgroups which are specified in this file. This does not test the correctness of help text content.""" import unittest from subprocess import PIPE, Popen class HelpTextTests(unittest.TestCase): """Tests that -h does not return error and includes all help text.""" def _validate_output_read_line( self, # noqa: C901; pylint: disable=too-many-arguments command_input, line, section, subgroups, commands, subgroups_index, commands_index, ): """Read a line of text and validates it for correctness. Parameter line (string) should be unprocessed. For example, the line should not be stripped of starting or trailing white spaces. This method returns the updated values of subgroups_index and commands_index as a tuple. Tuple has ordering (subgroups_index, commands_index). If an error occurs during validation, an assert is called.""" line = line.strip() if section in ("Command", "Group"): # if the line starts with the inputted command, then it describes the command. # make sure the line has text after it if line.startswith(command_input): self.assertGreater( len(line), len(command_input), msg="Validating help output failed on line: " + line, ) return subgroups_index, commands_index if section == "Arguments": # For lines that start with '--' (for argument descriptions), make sure that # there is something after the argument declaration if line.startswith("--") or line.startswith("-"): # self.assertIn(": ", line, msg="Validating help output failed on line: " + line) # Find the first ':' character and check that there are characters following it first_index = line.find(" ") # first_index = line.find(": ") self.assertNotEqual( -1, first_index, msg="Validating help output failed on line: " + line ) self.assertGreater( len(line), first_index + 1, msg="Validating help output failed on line: " + line ) return subgroups_index, commands_index if section in ("Commands",): # Make sure that if the line starts with the command/group in # the expected tuple, that a description follows it. # The line will either start with the name provided in the expected tuple, # or it will be a continuation line. Ignore continuation lines. first_word_of_line = line.split()[0].rstrip(":") # If we've reached the end of the commands tuple, then skip, since everything # after this is a continuation line. if len(commands) == commands_index and len(subgroups) == subgroups_index: return subgroups_index, commands_index self.assertGreater( len(subgroups) + len(commands), subgroups_index + commands_index, msg="None or missing expected commands provided in test for " + command_input, ) if commands_index < len(commands) and first_word_of_line == commands[commands_index]: # make sure there is descriptive text in this line by checking # that the line is longer than just the command. self.assertGreater( len(line.replace(first_word_of_line, "").lstrip()), len(first_word_of_line), msg='Missing help text in "Commands" on line: ' + line, ) commands_index += 1 elif ( subgroups_index < len(subgroups) and first_word_of_line == subgroups[subgroups_index] ): # make sure there is descriptive text in this line help_text = line.replace(first_word_of_line, "", 1).strip() self.assertGreater( len(help_text), 0, msg='Missing help text in "Commands" section on line: ' + line, ) subgroups_index += 1 else: self.fail(f"Found unknown command {first_word_of_line}.") return subgroups_index, commands_index # TO DO - COmmands and subgroups are both listed together. If we split we might want to revisit the below. # if section in ("Commands", "Subgroups"): # # Make sure that if the line starts with the command/group in # # the expected tuple, that a description follows it. # # The line will either start with the name provided in the expected tuple, # # or it will be a continuation line. Ignore continuation lines. # first_word_of_line = line.split()[0].rstrip(":") # if section == "Commands": # # If we've reached the end of the commands tuple, then skip, since everything # # after this is a continuation line. # if len(commands) == commands_index: # return subgroups_index, commands_index # self.assertGreater( # len(commands), # commands_index, # msg="None or missing expected commands provided in test for " + command_input, # ) # if first_word_of_line == commands[commands_index]: # # make sure there is descriptive text in this line by checking # # that the line is longer than just the command. # self.assertGreater( # len(line), # len(first_word_of_line), # msg='Validating help text failed in "Commands" on line: ' + line, # ) # commands_index += 1 # elif section == "Subgroups": # # If we've reached the end of the commands tuple, then skip # if len(subgroups) == subgroups_index: # return subgroups_index, commands_index # self.assertGreater( # len(subgroups), # subgroups_index, # msg="None or missing expected subgroups provided in test for " + command_input, # ) # if first_word_of_line == subgroups[subgroups_index]: # # make sure there is descriptive text in this line # self.assertGreater( # len(line), # len(first_word_of_line), # msg='Validating help text failed in "Subgroups" on line: ' + line, # ) # subgroups_index += 1 # return subgroups_index, commands_index self.fail("Section name {0} is not supported".format(section)) # The following line will be reached. It is added so pylint does not complain # about inconsistent-return-statements. return subgroups_index, commands_index @classmethod def _validate_output_read_section_name(cls, line): """Read a given line and validate it for correctness based on the given section. Parameter line (string) should be unprocessed. For example, the line should not be stripped of starting or trailing white spaces. Returns the section name if the given line designates the beginning of a new section. Returns None if the line does not.""" if line.strip() and not line[0].isspace(): # Use these lines to set the 'section' variable and move on to the next line line = line.strip().rstrip(":") if line == "Commands": return "Commands" if line in ("Options", "Arguments", "Global Arguments"): return "Arguments" if line == "Group": return "Group" if line == "Subgroups": return "Subgroups" if line == "Command": return "Command" return None def validate_output( self, command_input, subgroups=(), commands=() ): # pylint: disable=too-many-locals """ This function verifies that the returned help text is correct, and that no exceptions are thrown during invocation. If commands are provided, this function will call itself recursively to verify the correctness of the commands. It verifies correctness by: - All listed subgroups and commands appear in alphabetical order. We do not check for the existence of extra subgroups and commands. - If subgroups or commands are not provided, then we expect it not to appear in the help text. If it does, there will be an assertion raised in this test. - All listed groups/subgroups, commands, and arguments have descriptive text Limitations: This test doesn't search for new commands which are added. If a test entry is not added here, then that entry will not be verified. The first word of the line should not match a command name command_input (string): This represents the command for which you want to get the help text. For example, "osducli" or "osducli application" or "osducli application list". Parameter command_input should not include the "-h" to get the help text, as this method will take care of that. subgroups (tuple of strings): This represents all of the subgroups expected in the help text. This tuple must be in alphabetical order. commands (tuple of strings): This represents all of the commands expected in the help text. This tuple must be in alphabetical order. Help text has two formats. One for groups, and one for commands. """ help_command = command_input + " -h" err = None returned_string = None try: # This variable tracks what sections of the help text we are in # Possibilities are Group, Subgroups, Commands, Command, Arguments, # and Global Arguments. # Once we no longer support python 2, change section options of enums section = "Start" # A tracker to know how many subgroups or commands have appeared in help text so far # We use this to make sure that all expected items are returned subgroups_index = 0 commands_index = 0 # Call the provided command in command line # Do not split the help_command, as that breaks behavior: # Linux ignores the splits and takes only the first. # pylint: disable=R1732 pipe = Popen(help_command, shell=True, stdout=PIPE, stderr=PIPE) # returned_string and err are returned as bytes (returned_string, err) = pipe.communicate() if err: err = err.decode("utf-8") self.assertEqual(b"", err, msg="ERROR: in command: " + help_command) if not returned_string: self.fail("No help text in command: " + help_command) returned_string = returned_string.decode("utf-8") lines = returned_string.splitlines() for line in lines: if not line.strip(): continue # Check if we want to mark the start of a new section # Check this by seeing if the line is a top level description, ie: 'Commands:' # These are characterized by a new line with text starting without white space. read_section_output = self._validate_output_read_section_name(line) if read_section_output is not None: section = read_section_output # If this line is a section start, no additional processing # is required. Move on to the next line. continue # Don't check usage / intro text at this time. if section == "Start": continue # If this line is not a section start, then validate the correctness of the line. # This command returns a tuple which includes counters for subgroups and commands # which count how many instances of each have been processed. updated_indices = self._validate_output_read_line( command_input, line, section, subgroups, commands, subgroups_index, commands_index, ) subgroups_index = updated_indices[0] commands_index = updated_indices[1] # If section is still 'Start', the something has gone wrong. # It means that lines were not processed # correctly, since we expect some sections to appear. self.assertNotEqual( "Start", section, msg="Command {0}: incomplete help text: {1}".format(help_command, returned_string), ) # Check that we have traversed completely through both # subgroups and commands self.assertEqual( len(commands), commands_index, msg=( "Not all commands listed in help text for " + help_command + ". \nThis may be a problem due incorrect expected ordering. " 'I.e ("delete", "show", "list") != ("show", "delete", "list"). ' "\nFirst diagnosis should be to run the help cmd yourself. \n" "If you passed in a single value to the tuple in validate " "output: commands=(set-telemetry,), like the example shown, " "you must pass in a comma after in the tuple, otherwise it " "will not be recognized as a tuple." ), ) self.assertEqual( len(subgroups), subgroups_index, msg=( "Not all subgroups listed in help text for " + help_command + ". This may be a problem due incorrect expected ordering. " "First diagnosis should be to run the help cmd yourself." ), ) except BaseException as exception: # pylint: disable=broad-except if not err: self.fail( msg="ERROR: Command {0} returned error at execution. Output: {1} Error: {2}".format( help_command, returned_string, str(exception) ) ) else: self.fail( msg="ERROR: Command {0} returned error at execution. Output: {1} Error: {2}".format( help_command, returned_string, err ) ) # Once validation is done for the provided command_input, # if there are any commands returned in the help text, validate those commands. for command in commands: self.validate_output(command_input + " " + command) def test_help_documentation(self): """Tests all help documentation to ensure that all commands have help text. This does not test for typos / correctness in the text itself. This test calls validate_output on all commands which osducli has, without the '-h' flag included. The flag will be added by validate_ouput. Note: validate_output expects subgroups and commands in order. If out of alphabetical order, you will see an error for not all commands/subgroups being listed. Note: you do not need to call individual commands. Commands listed in the 'commands' list will be called and verified automatically. You DO need an entry for each subgroup.""" self.validate_output( "osdu", subgroups=( "config", "dataload", "entitlements", "legal", "list", "schema", "search", "unit", "workflow", ), commands=( "status", "version", ), ) self.validate_output( "osdu config", commands=( "default", "list", "update", ), ) self.validate_output( "osdu dataload", commands=( "ingest", "status", "verify", ), ) self.validate_output( "osdu entitlements", subgroups=("groups", "members"), commands=("mygroups",), ) self.validate_output( "osdu entitlements groups", commands=("add", "delete", "members"), ) self.validate_output( "osdu entitlements members", commands=("add", "list", "remove"), ) self.validate_output( "osdu legal", commands=("listtags",), ) self.validate_output( "osdu list", commands=("records",), ) self.validate_output( "osdu schema", commands=( "add", "get", "list", ), ) self.validate_output( "osdu search", commands=("id", "query"), ) self.validate_output( "osdu unit", commands=("list",), ) self.validate_output( "osdu workflow", commands=("list",), ) if __name__ == "__main__": import nose2 nose2.main()
40.508621
114
0.546606
18,170
0.966695
0
0
1,023
0.054426
0
0
10,583
0.563045
b8e81060803693ffd42ace6d2aecd7a9dd90f046
417
py
Python
testing/resources/test_g.py
tongni1975/processing.py
0b9ad68a1dc289d5042d1d3b132c13cc157d3f88
[ "Apache-2.0" ]
null
null
null
testing/resources/test_g.py
tongni1975/processing.py
0b9ad68a1dc289d5042d1d3b132c13cc157d3f88
[ "Apache-2.0" ]
1
2021-06-25T15:36:38.000Z
2021-06-25T15:36:38.000Z
testing/resources/test_g.py
tongni1975/processing.py
0b9ad68a1dc289d5042d1d3b132c13cc157d3f88
[ "Apache-2.0" ]
null
null
null
import processing.opengl.PGraphics3D def setup(): size(100, 100, P3D) def draw(): # check that "g" is defined and is the expected type assert(isinstance(g, processing.opengl.PGraphics3D)) # check that the alias cameraMatrix->camera is working as expected g.camera(0, 0, -10, 0, 0, 0, 0, 1, 0) assert(g.cameraMatrix.m03 == 0) assert(g.cameraMatrix.m23 == -10) print 'OK' exit()
26.0625
70
0.654676
0
0
0
0
0
0
0
0
122
0.292566
b8e9a8b69a6237c573c52a972df1c7ef664eba25
4,811
py
Python
scripts/experiments/intrinsic_evaluations/exbert/server/data/processing/create_faiss.py
antoilouis/netbert
ccd37ef8a1727557de74498132eea24db2135940
[ "MIT" ]
2
2021-01-29T01:30:51.000Z
2021-07-14T16:47:15.000Z
server/data/processing/create_faiss.py
CharlotteSean/exbert
75e6bb146ab799e3652a887562490d5f31357223
[ "Apache-2.0" ]
null
null
null
server/data/processing/create_faiss.py
CharlotteSean/exbert
75e6bb146ab799e3652a887562490d5f31357223
[ "Apache-2.0" ]
1
2020-03-04T14:02:28.000Z
2020-03-04T14:02:28.000Z
import faiss import numpy as np import utils.path_fixes as pf from pathlib import Path from data.processing.corpus_embeddings import CorpusEmbeddings from functools import partial import argparse FAISS_LAYER_PATTERN = 'layer_*.faiss' LAYER_TEMPLATE = 'layer_{:02d}.faiss' NLAYERS = 12 NHEADS = 12 def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("-d", "--directory", help="Path to the directory that contains the 'embeddings' and 'headContext' hdf5 files") args = parser.parse_args() return args def train_indexes(ce:CorpusEmbeddings, stepsize=100): """ Parameters: =========== - corpus_embedding: Wrapper around HDF5 file for easy access to data - stepsize: How many sentences to train with at once """ indexes = [faiss.IndexFlatIP(ce.embedding_dim) for i in range(ce.n_layers)] for ix in range(0, len(ce), stepsize): cdata = ce[ix:ix+stepsize] for i in range(ce.n_layers): indexes[i].add(cdata[i]) return indexes def save_indexes(idxs, outdir, base_name=LAYER_TEMPLATE): """Save the faiss index into a file for each index in idxs""" out_name = str(Path(outdir) / base_name) for i, idx in enumerate(idxs): faiss.write_index(idx, out_name.format(i)) class Indexes: """Wrapper around the faiss indices to make searching for a vector simpler and faster. Assumes there are files in the folder matching the pattern input """ def __init__(self, folder, pattern=FAISS_LAYER_PATTERN): self.base_dir = Path(folder) self.indexes = [None] * NLAYERS # Initialize empty list self.pattern = pattern self.__init_indexes() def __getitem__(self, v): """Slices not allowed, but index only""" return self.indexes[v] def __init_indexes(self): for fname in self.base_dir.glob(self.pattern): print(fname) idx = fname.stem.split('_')[-1] self.indexes[int(idx)] = faiss.read_index(str(fname)) def search(self, layer, query, k): """Search a given layer for the query vector. Return k results""" return self[layer].search(query, k) def create_mask(head_size, n_heads, selected_heads): """Create a mask that indicates how the size of the head and the number of those heads in a transformer model. This allows easy masking of heads you don't want to search for """ mask = np.zeros(n_heads) for h in selected_heads: mask[int(h)] = 1 return np.repeat(mask, head_size) default_masks = { 'bert-base-uncased': partial(create_mask, 64, 12) } base_mask = default_masks['bert-base-uncased'] class ContextIndexes(Indexes): """Special index enabling masking of particular heads before searching""" # Int -> [Int] -> np.Array -> Int -> (np.Array(), ) def search(self, layer:int, heads:list, query:np.ndarray, k:int): """Search the embeddings for the context layer, masking by selected heads""" assert max(heads) < NHEADS # Heads should be indexed by 0 assert min(heads) >= 0 unique_heads = list(set(heads)) mask_vector = base_mask(unique_heads) mask_vector = mask_vector.reshape(query.shape) new_query = (query * mask_vector).astype(np.float32) # print(new_query.dtype) return self[layer].search(new_query, k) def main(basedir): base = Path(basedir) # embeddings embedding_dir = base / 'embeddings' embedding_hdf5 = embedding_dir / 'embeddings.hdf5' print(f"Creating Embedding faiss files in {embedding_dir} from {embedding_hdf5}") embedding_ce = CorpusEmbeddings(str(embedding_hdf5)) embedding_idxs = train_indexes(embedding_ce) save_indexes(embedding_idxs, embedding_dir) ## Test embedding search: print("Testing embedding idxs:") loaded_embedding_idxs = Indexes(embedding_dir) q = np.random.randn(1, 768).astype(np.float32) D, I = loaded_embedding_idxs.search(0, q, 5) print(embedding_ce.find2d(I)) print("\n" + "=" * 50 + "\n") # headContext context_dir = base / 'headContext' context_hdf5 = context_dir / 'contexts.hdf5' print(f"Creating head context faiss files in {context_dir} from {context_hdf5}") context_ce = CorpusEmbeddings(str(context_hdf5)) context_indexes = train_indexes(context_ce) save_indexes(context_indexes, context_dir) ## Test context search: loaded_context_idxs = Indexes(context_dir) q = np.random.randn(1, 768).astype(np.float32) D, I = loaded_context_idxs.search(0, q, 5) print(context_ce.find2d(I)) if __name__ == "__main__": # Creating the indices for both the context and embeddings args = parse_args() main(args.directory)
33.17931
134
0.672833
1,623
0.337352
0
0
0
0
0
0
1,537
0.319476
b8e9db6f289a79604e54db518d87b8a53a1a0672
504
py
Python
weasyl/test/test_http.py
hyena/weasyl
a43ad885eb07ae89d6639f289a5b95f3a177439c
[ "Apache-2.0" ]
111
2016-05-18T04:18:18.000Z
2021-11-03T02:05:19.000Z
weasyl/test/test_http.py
hyena/weasyl
a43ad885eb07ae89d6639f289a5b95f3a177439c
[ "Apache-2.0" ]
1,103
2016-05-29T05:17:53.000Z
2022-03-31T18:12:40.000Z
weasyl/test/test_http.py
TheWug/weasyl
a568a542cc58c11e30621fb672c701531d4306a8
[ "Apache-2.0" ]
47
2016-05-29T20:48:37.000Z
2021-11-12T09:40:40.000Z
import pytest from weasyl import http @pytest.mark.parametrize(('wsgi_env', 'expected'), [ ({}, {}), ({'PATH_INFO': '/search', 'QUERY_STRING': 'q=example'}, {}), ({'HTTP_ACCEPT': '*/*'}, {'Accept': '*/*'}), ( {'CONTENT_LENGTH': '', 'HTTP_ACCEPT_ENCODING': 'gzip', 'HTTP_UPGRADE_INSECURE_REQUESTS': '1'}, {'Accept-Encoding': 'gzip', 'Upgrade-Insecure-Requests': '1'}, ), ]) def test_get_headers(wsgi_env, expected): assert http.get_headers(wsgi_env) == expected
29.647059
102
0.603175
0
0
0
0
462
0.916667
0
0
230
0.456349
b8ea0aefe02a0ac8e734a613a8836ee2fbeec6cf
421
py
Python
chords/neural_network/classifier.py
fernando-figueredo/ChordsWebApp
9bf983ab5579c36c75447c74eec0400d78ab49f9
[ "MIT" ]
2
2021-03-30T01:09:51.000Z
2022-03-10T21:17:15.000Z
chords/neural_network/classifier.py
fernando-figueredo/ChordsWebApp
9bf983ab5579c36c75447c74eec0400d78ab49f9
[ "MIT" ]
null
null
null
chords/neural_network/classifier.py
fernando-figueredo/ChordsWebApp
9bf983ab5579c36c75447c74eec0400d78ab49f9
[ "MIT" ]
null
null
null
from neural_network.train import Trainer class Classifier(): def __init__(self, train=False): self.train = train self.trainer = Trainer() if not self.train: self.trainer.load() else: self.trainer.train() def classify(self, audio_file_path): #prediction = self.trainer.predict(audio_file_path) self.trainer.plot_prediction(audio_file_path)
28.066667
59
0.643705
379
0.900238
0
0
0
0
0
0
51
0.12114
b8ea2be5c0eee4133b1b628fc992cd2fbe84768f
556
py
Python
cybox/common/metadata.py
tirkarthi/python-cybox
a378deb68b3ac56360c5cc35ff5aad1cd3dcab83
[ "BSD-3-Clause" ]
40
2015-03-05T18:22:51.000Z
2022-03-06T07:29:25.000Z
cybox/common/metadata.py
tirkarthi/python-cybox
a378deb68b3ac56360c5cc35ff5aad1cd3dcab83
[ "BSD-3-Clause" ]
106
2015-01-12T18:52:20.000Z
2021-04-25T22:57:52.000Z
cybox/common/metadata.py
tirkarthi/python-cybox
a378deb68b3ac56360c5cc35ff5aad1cd3dcab83
[ "BSD-3-Clause" ]
30
2015-03-25T07:24:40.000Z
2021-07-23T17:10:11.000Z
# Copyright (c) 2020, The MITRE Corporation. All rights reserved. # See LICENSE.txt for complete terms. from mixbox import entities, fields import cybox.bindings.cybox_common as common_binding class Metadata(entities.Entity): _binding = common_binding _binding_class = common_binding.MetadataType _namespace = 'http://cybox.mitre.org/common-2' type_ = fields.TypedField("type_", key_name="type") value = fields.TypedField("Value") subdatum = fields.TypedField("SubDatum", type_="cybox.common.metadata.Metadata", multiple=True)
32.705882
99
0.753597
358
0.643885
0
0
0
0
0
0
197
0.354317
b8ecff777a101fecf5e77b7561d2d3b4b1ad0ea3
972
py
Python
src/app/main/routes.py
Abh4git/PythonMongoService
f64fcb7c4db0db41adb8b74736c82e8de5f6dbec
[ "MIT" ]
null
null
null
src/app/main/routes.py
Abh4git/PythonMongoService
f64fcb7c4db0db41adb8b74736c82e8de5f6dbec
[ "MIT" ]
null
null
null
src/app/main/routes.py
Abh4git/PythonMongoService
f64fcb7c4db0db41adb8b74736c82e8de5f6dbec
[ "MIT" ]
null
null
null
#All Routes are defined here from flask_cors import CORS, cross_origin from app.main.controller.products import ProductController from flask import request, jsonify import json #Test route without any connections def test(): return "{testroutesuccess:'Test Route Success!'}" api_v2_cors_config = { "origins": [ 'http://localhost:3000' # React # React ], "methods": ["OPTIONS", "GET", "POST"], "allow_headers": ["Authorization", "Content-Type"] } #route returning Products list @cross_origin(**api_v2_cors_config) def getProductsList(): productC = ProductController() return productC.getAllProducts() #route for products list filtered by product types @cross_origin(**api_v2_cors_config) def addProduct(): body = request.get_json() productController = ProductController() print (body['productdetail']) newproduct=productController.addProduct(body['id'], body['title'],body['productdetail']) return jsonify(newproduct), 201
29.454545
92
0.737654
0
0
0
0
420
0.432099
0
0
345
0.354938
b8ed5ea88b3e1f4c3f96f668efbaca32325efa0f
6,850
py
Python
tests/test_user.py
ccfiel/fbchat-asyncio
4ba39a835c7374c2cbf2a34e4e4fbf5c60ce6891
[ "BSD-3-Clause" ]
1
2019-11-02T14:44:05.000Z
2019-11-02T14:44:05.000Z
tests/test_user.py
ccfiel/fbchat-asyncio
4ba39a835c7374c2cbf2a34e4e4fbf5c60ce6891
[ "BSD-3-Clause" ]
null
null
null
tests/test_user.py
ccfiel/fbchat-asyncio
4ba39a835c7374c2cbf2a34e4e4fbf5c60ce6891
[ "BSD-3-Clause" ]
null
null
null
import pytest import datetime from fbchat._user import User, ActiveStatus def test_user_from_graphql(): data = { "id": "1234", "name": "Abc Def Ghi", "first_name": "Abc", "last_name": "Ghi", "profile_picture": {"uri": "https://scontent-arn2-1.xx.fbcdn.net/v/..."}, "is_viewer_friend": True, "url": "https://www.facebook.com/profile.php?id=1234", "gender": "FEMALE", "viewer_affinity": 0.4560002, } assert User( uid="1234", photo="https://scontent-arn2-1.xx.fbcdn.net/v/...", name="Abc Def Ghi", url="https://www.facebook.com/profile.php?id=1234", first_name="Abc", last_name="Ghi", is_friend=True, gender="female_singular", ) == User._from_graphql(data) def test_user_from_thread_fetch(): data = { "thread_key": {"thread_fbid": None, "other_user_id": "1234"}, "name": None, "last_message": { "nodes": [ { "snippet": "aaa", "message_sender": {"messaging_actor": {"id": "1234"}}, "timestamp_precise": "1500000000000", "commerce_message_type": None, "extensible_attachment": None, "sticker": None, "blob_attachments": [], } ] }, "unread_count": 0, "messages_count": 1111, "image": None, "updated_time_precise": "1500000000000", "mute_until": None, "is_pin_protected": False, "is_viewer_subscribed": True, "thread_queue_enabled": False, "folder": "INBOX", "has_viewer_archived": False, "is_page_follow_up": False, "cannot_reply_reason": None, "ephemeral_ttl_mode": 0, "customization_info": { "emoji": None, "participant_customizations": [ {"participant_id": "4321", "nickname": "B"}, {"participant_id": "1234", "nickname": "A"}, ], "outgoing_bubble_color": None, }, "thread_admins": [], "approval_mode": None, "joinable_mode": {"mode": "0", "link": ""}, "thread_queue_metadata": None, "event_reminders": {"nodes": []}, "montage_thread": None, "last_read_receipt": {"nodes": [{"timestamp_precise": "1500000050000"}]}, "related_page_thread": None, "rtc_call_data": { "call_state": "NO_ONGOING_CALL", "server_info_data": "", "initiator": None, }, "associated_object": None, "privacy_mode": 1, "reactions_mute_mode": "REACTIONS_NOT_MUTED", "mentions_mute_mode": "MENTIONS_NOT_MUTED", "customization_enabled": True, "thread_type": "ONE_TO_ONE", "participant_add_mode_as_string": None, "is_canonical_neo_user": False, "participants_event_status": [], "page_comm_item": None, "all_participants": { "nodes": [ { "messaging_actor": { "id": "1234", "__typename": "User", "name": "Abc Def Ghi", "gender": "FEMALE", "url": "https://www.facebook.com/profile.php?id=1234", "big_image_src": { "uri": "https://scontent-arn2-1.xx.fbcdn.net/v/..." }, "short_name": "Abc", "username": "", "is_viewer_friend": True, "is_messenger_user": True, "is_verified": False, "is_message_blocked_by_viewer": False, "is_viewer_coworker": False, "is_employee": None, } }, { "messaging_actor": { "id": "4321", "__typename": "User", "name": "Aaa Bbb Ccc", "gender": "NEUTER", "url": "https://www.facebook.com/aaabbbccc", "big_image_src": { "uri": "https://scontent-arn2-1.xx.fbcdn.net/v/..." }, "short_name": "Aaa", "username": "aaabbbccc", "is_viewer_friend": False, "is_messenger_user": True, "is_verified": False, "is_message_blocked_by_viewer": False, "is_viewer_coworker": False, "is_employee": None, } }, ] }, "read_receipts": ..., "delivery_receipts": ..., } assert User( uid="1234", photo="https://scontent-arn2-1.xx.fbcdn.net/v/...", name="Abc Def Ghi", last_active=datetime.datetime(2017, 7, 14, 2, 40, tzinfo=datetime.timezone.utc), message_count=1111, url="https://www.facebook.com/profile.php?id=1234", first_name="Abc", last_name="Def Ghi", is_friend=True, gender="female_singular", nickname="A", own_nickname="B", color=None, emoji=None, ) == User._from_thread_fetch(data) def test_user_from_all_fetch(): data = { "id": "1234", "name": "Abc Def Ghi", "firstName": "Abc", "vanity": "", "thumbSrc": "https://scontent-arn2-1.xx.fbcdn.net/v/...", "uri": "https://www.facebook.com/profile.php?id=1234", "gender": 1, "i18nGender": 2, "type": "friend", "is_friend": True, "mThumbSrcSmall": None, "mThumbSrcLarge": None, "dir": None, "searchTokens": ["Abc", "Ghi"], "alternateName": "", "is_nonfriend_messenger_contact": False, "is_blocked": False, } assert User( uid="1234", photo="https://scontent-arn2-1.xx.fbcdn.net/v/...", name="Abc Def Ghi", url="https://www.facebook.com/profile.php?id=1234", first_name="Abc", is_friend=True, gender="female_singular", ) == User._from_all_fetch(data) @pytest.mark.skip(reason="can't gather test data, the pulling is broken") def test_active_status_from_chatproxy_presence(): assert ActiveStatus() == ActiveStatus._from_chatproxy_presence(data) @pytest.mark.skip(reason="can't gather test data, the pulling is broken") def test_active_status_from_buddylist_overlay(): assert ActiveStatus() == ActiveStatus._from_buddylist_overlay(data)
35.128205
88
0.489927
0
0
0
0
390
0.056934
0
0
2,967
0.433139
b8ed8469a90e01bd0b314d93c23d97aa1b93965d
143
py
Python
(3)Algorithms/operator_boolean.py
mass9/Python
66499164e36a4fe9630029d34b292ab06f849b2f
[ "MIT" ]
null
null
null
(3)Algorithms/operator_boolean.py
mass9/Python
66499164e36a4fe9630029d34b292ab06f849b2f
[ "MIT" ]
null
null
null
(3)Algorithms/operator_boolean.py
mass9/Python
66499164e36a4fe9630029d34b292ab06f849b2f
[ "MIT" ]
null
null
null
from operator import* a = -1 b = 5 print('a= ',a) print('b= ',b) print() print(not_(a)) print(truth(a)) print(is_(a,b)) print(is_not(a,b))
9.533333
21
0.594406
0
0
0
0
0
0
0
0
10
0.06993
b8edaac684aec68ed9d6e7241e67d70248284354
1,903
py
Python
nicos_mlz/erwin/setups/system.py
ebadkamil/nicos
0355a970d627aae170c93292f08f95759c97f3b5
[ "CC-BY-3.0", "Apache-2.0", "CC-BY-4.0" ]
null
null
null
nicos_mlz/erwin/setups/system.py
ebadkamil/nicos
0355a970d627aae170c93292f08f95759c97f3b5
[ "CC-BY-3.0", "Apache-2.0", "CC-BY-4.0" ]
1
2021-08-18T10:55:42.000Z
2021-08-18T10:55:42.000Z
nicos_mlz/erwin/setups/system.py
ISISComputingGroup/nicos
94cb4d172815919481f8c6ee686f21ebb76f2068
[ "CC-BY-3.0", "Apache-2.0", "CC-BY-4.0" ]
null
null
null
description = 'system setup' group = 'lowlevel' sysconfig = dict( cache = 'localhost', instrument = 'ErWIN', experiment = 'Exp', datasinks = ['conssink', 'dmnsink'], notifiers = [], ) modules = ['nicos.commands.standard'] devices = dict( ErWIN = device('nicos.devices.instrument.Instrument', description = 'ErWIN instrument', instrument = 'ErWIN', responsible = 'Michael Heere <michael.heere@kit.edu>', website = 'https://mlz-garching.de/erwin', operators = [ 'Karlsruhe Institute of Technology (KIT)', ], ), Sample = device('nicos.devices.sample.Sample', description = 'sample object', ), Exp = device('nicos_mlz.devices.experiment.Experiment', description = 'experiment object', dataroot = 'data', sample = 'Sample', reporttemplate = '', sendmail = False, serviceexp = 'p0', mailsender = 'erwin@frm2.tum.de', mailserver = 'mailhost.frm2.tum.de', elog = True, managerights = dict( enableDirMode = 0o775, enableFileMode = 0o644, disableDirMode = 0o550, disableFileMode = 0o440, owner = 'erwin', group = 'erwin' ), ), filesink = device('nicos.devices.datasinks.AsciiScanfileSink'), conssink = device('nicos.devices.datasinks.ConsoleScanSink'), dmnsink = device('nicos.devices.datasinks.DaemonSink'), Space = device('nicos.devices.generic.FreeSpace', description = 'The amount of free space for storing data', warnlimits = (5., None), path = None, minfree = 5, ), LogSpace = device('nicos.devices.generic.FreeSpace', description = 'Space on log drive', path = 'log', warnlimits = (.5, None), minfree = 0.5, lowlevel = True, ), )
29.734375
67
0.575933
0
0
0
0
0
0
0
0
697
0.366264
b8eeeede3579cb2a1baac69df57edebe5d6b3dd1
1,771
py
Python
clustering_normalized_cuts/run.py
kiss2u/google-research
2cd66234656f9e2f4218ed90a2d8aa9cf3139093
[ "Apache-2.0" ]
7
2020-03-15T12:14:07.000Z
2021-12-01T07:01:09.000Z
clustering_normalized_cuts/run.py
Alfaxad/google-research
2c0043ecd507e75e2df9973a3015daf9253e1467
[ "Apache-2.0" ]
25
2020-07-25T08:53:09.000Z
2022-03-12T00:43:02.000Z
clustering_normalized_cuts/run.py
Alfaxad/google-research
2c0043ecd507e75e2df9973a3015daf9253e1467
[ "Apache-2.0" ]
4
2021-02-08T10:25:45.000Z
2021-04-17T14:46:26.000Z
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This is the code for Clustering using our CNC framework.""" from __future__ import division import collections import os from absl import app from absl import flags from clustering_normalized_cuts import setup from clustering_normalized_cuts.cnc_net import run_net from clustering_normalized_cuts.data_loader import get_data flags.adopt_module_key_flags(setup) FLAGS = flags.FLAGS # SELECT GPU os.environ['CUDA_VISIBLE_DEVICES'] = '1' def main(_): params = collections.defaultdict(lambda: None) # SET GENERAL HYPERPARAMETERS general_params = { 'dset': FLAGS.dset, # dataset: reuters / mnist 'val_set_fraction': 0.1, # fraction of training set to use as validation 'siam_batch_size': 128, # minibatch size for siamese net 'main_path': FLAGS.main_path, 'result_path': FLAGS.result_path } params.update(general_params) # SET DATASET SPECIFIC HYPERPARAMETERS if FLAGS.dset == 'mnist': mnist_params = setup.set_mnist_params() params.update(mnist_params) # LOAD DATA setup.seed_init() data = get_data(params) # RUN EXPERIMENT run_net(data, params) if __name__ == '__main__': app.run(main)
29.032787
79
0.749294
0
0
0
0
0
0
0
0
973
0.549407
b8ef33ed1947340aa880647a993de9c30d1767e8
4,029
py
Python
remps/policy/gaussian.py
albertometelli/remps
d243d4f23c4b8de5220788853c8e2dd5852e593e
[ "MIT" ]
6
2019-06-17T15:13:45.000Z
2020-08-27T10:09:16.000Z
remps/policy/gaussian.py
albertometelli/remps
d243d4f23c4b8de5220788853c8e2dd5852e593e
[ "MIT" ]
13
2020-01-28T22:43:36.000Z
2022-03-11T23:46:19.000Z
remps/policy/gaussian.py
albertometelli/remps
d243d4f23c4b8de5220788853c8e2dd5852e593e
[ "MIT" ]
1
2019-08-11T22:41:59.000Z
2019-08-11T22:41:59.000Z
import tensorflow as tf from remps.policy.policy import Policy from remps.utils.utils import get_default_tf_dtype class Gaussian(Policy): """ Used for torcs MultiLayerPerceptron Discrete policy. Parametrized by the input space, the action space and the hidden layer size. Basic policy network with only one hidden layer with sigmoid activation function """ def __init__(self, state_space, action_space, hidden_layer_size, name="policy"): """ Builds a policy network and returns a node for the gradient and a node for action selection Simple network: from state space to action space Start from a random policy, all weights equal to 0 @param state_space: dimension of state space @param action_space: dimension of action space """ # net params super().__init__(name) self.hidden_layer_size = hidden_layer_size self.state_space = state_space self.action_space = action_space self.sess = None self.default_dtype = get_default_tf_dtype() def __call__(self, state, taken_actions): with tf.variable_scope(self.name): # Net self.eps = tf.constant(1e-24, dtype=self.default_dtype) if self.hidden_layer_size > 0: biases = tf.get_variable( "b", [self.hidden_layer_size], initializer=tf.random_normal_initializer( 0, 0.001, dtype=self.default_dtype ), dtype=self.default_dtype, ) W = tf.get_variable( "W", [self.state_space, self.hidden_layer_size], initializer=tf.random_normal_initializer( 0, 0.001, dtype=self.default_dtype ), dtype=self.default_dtype, ) h = tf.matmul(state, W) h = tf.tanh(h + biases) else: h = state steer = tf.layers.dense( inputs=h, units=1, activation=tf.tanh, use_bias=True ) acc = tf.layers.dense( inputs=h, units=1, activation=tf.sigmoid, use_bias=True ) brake = tf.layers.dense( inputs=h, units=1, activation=tf.sigmoid, use_bias=True ) v_steer = tf.exp( tf.get_variable( "v_steer", 1, initializer=tf.random_normal_initializer( 0, 0.1, dtype=self.default_dtype ), dtype=self.default_dtype, ) ) v_acc = tf.exp( tf.get_variable( "v_acc", 1, initializer=tf.random_normal_initializer( 0, 0.1, dtype=self.default_dtype ), dtype=self.default_dtype, ) ) v_brake = tf.exp( tf.get_variable( "v_brake", 1, initializer=tf.random_normal_initializer( 0, 0.1, dtype=self.default_dtype ), dtype=self.default_dtype, ) ) means = tf.concat([steer, acc, brake]) stds = tf.concat([v_steer, v_acc, v_brake]) self.dist = tf.distributions.Normal(means, stds) self._pi = self.dist.sample() self._pi_prob = self.dist.prob(taken_actions) self._log_pi = self.dist.log_prob(taken_actions) return self._pi_prob, self._log_pi def get_policy_network(self): return self._pi def initialize(self, sess): self.sess = sess init = tf.initialize_variables(self.trainable_vars) self.sess.run(init)
35.034783
99
0.516505
3,911
0.970712
0
0
0
0
0
0
633
0.157111
b8f05419337e887d574b7c6ff46bba2da204e4eb
921
py
Python
rrr.py
tutacat/beep-play
41b50ebb0250289616cf3a4839fd0097d524ebd7
[ "BSD-2-Clause" ]
null
null
null
rrr.py
tutacat/beep-play
41b50ebb0250289616cf3a4839fd0097d524ebd7
[ "BSD-2-Clause" ]
null
null
null
rrr.py
tutacat/beep-play
41b50ebb0250289616cf3a4839fd0097d524ebd7
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python import math, random, subprocess, time sin=math.sin commands=["/usr/bin/setterm","/usr/bin/xset"] fname = "" file = None type = None _test = "" cmd = None class SystemError(BaseException): pass for c in commands: _test = subprocess.getoutput("setterm --blength 256") if not _test: raise SystemError(c+" error") if _test.find("not support")<0 and _test.find("error")<0: cmd=c break else: setterm=False setterm=cmd==commands[0] if not cmd: raise SystemError("No supported command ("+",".join(commands)+")") i=0 while 1: note=sin(i*.1)*9+60 subprocess.run(( cmd,"--bfreq" if setterm else "b", str(round(2**((note-69)/12)*440)), "--blength" if setterm else "", str(round(100)) )) print(end="\a",flush=True) time.sleep(0.1) i+=1 subprocess.run(( cmd,"--bfreq" if setterm else "b", "400", "--blength" if setterm else "", "200" ))
28.78125
141
0.624321
42
0.045603
0
0
0
0
0
0
203
0.220413
b8f101cbd2a4876f4d335fd3cc77c990454b6aca
26,558
py
Python
pygamma_agreement/continuum.py
faroit/pygamma-agreement
fcfcfe7332be15bd97e71b9987aa5c6104be299e
[ "MIT" ]
null
null
null
pygamma_agreement/continuum.py
faroit/pygamma-agreement
fcfcfe7332be15bd97e71b9987aa5c6104be299e
[ "MIT" ]
null
null
null
pygamma_agreement/continuum.py
faroit/pygamma-agreement
fcfcfe7332be15bd97e71b9987aa5c6104be299e
[ "MIT" ]
null
null
null
#!/usr/bin/env python # encoding: utf-8 # The MIT License (MIT) # Copyright (c) 2020 CoML # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # AUTHORS # Rachid RIAD & Hadrien TITEUX """ ########## Continuum and corpus ########## """ import csv import logging import random from copy import deepcopy from functools import total_ordering from pathlib import Path from typing import Optional, Tuple, List, Union, Set, Iterable, TYPE_CHECKING, Dict import cvxpy as cp import numpy as np from dataclasses import dataclass from pyannote.core import Annotation, Segment, Timeline from pyannote.database.util import load_rttm from sortedcontainers import SortedDict, SortedSet from typing_extensions import Literal from .dissimilarity import AbstractDissimilarity from .numba_utils import chunked_cartesian_product if TYPE_CHECKING: from .alignment import UnitaryAlignment, Alignment CHUNK_SIZE = 2 ** 25 # defining Annotator type Annotator = str PivotType = Literal["float_pivot", "int_pivot"] PrecisionLevel = Literal["high", "medium", "low"] # percentages for the precision PRECISION_LEVEL = { "high": 0.01, "medium": 0.02, "low": 0.1 } @total_ordering @dataclass(frozen=True, eq=True) class Unit: """ Represents an annotated unit, e.g., a time segment and (optionally) a text annotation. Can be sorted or used in a set. If two units share the same time segment, they're sorted alphabetically using their annotation. The `None` annotation is first in the "alphabet" """ segment: Segment annotation: Optional[str] = None def __lt__(self, other: 'Unit'): if self.segment == other.segment: if self.annotation is None: return True elif other.annotation is None: return False else: return self.annotation < other.annotation else: return self.segment < other.segment class Continuum: """Continuum Parameters ---------- uri : string, optional name of annotated resource (e.g. audio or video file) """ @classmethod def from_csv(cls, path: Union[str, Path], discard_invalid_rows=True, delimiter: str = ","): """ Load annotations from a CSV file , with structure annotator, category, segment_start, segment_end. .. warning:: The CSV file shouldn't have any header Parameters ---------- path: path or str Path to the CSV file storing annotations discard_invalid_rows: bool Path: if a row contains invalid annotations, discard it) delimiter: str, default "," CSV delimiter Returns ------- continuum : Continuum New continuum object loaded from the CSV """ if isinstance(path, str): path = Path(path) continuum = cls() with open(path) as csv_file: reader = csv.reader(csv_file, delimiter=delimiter) for row in reader: seg = Segment(float(row[2]), float(row[3])) try: continuum.add(row[0], seg, row[1]) except ValueError as e: if discard_invalid_rows: print(f"Discarded invalid segment : {str(e)}") else: raise e return continuum @classmethod def from_rttm(cls, path: Union[str, Path]) -> 'Continuum': """ Load annotations from a RTTM file. The file name field will be used as an annotation's annotator Parameters ---------- path: Path or str Path to the CSV file storing annotations Returns ------- continuum : Continuum New continuum object loaded from the RTTM file """ annotations = load_rttm(str(path)) continuum = cls() for uri, annot in annotations.items(): continuum.add_annotation(uri, annot) return continuum @classmethod def sample_from_continuum(cls, continuum: 'Continuum', pivot_type: PivotType = "float_pivot", ground_truth_annotators: Optional[List[Annotator]] = None) -> 'Continuum': """Generate a new random annotation from a single continuum Strategy from figure 12 >>> continuum.sample_from_continuum() ... <pygamma_agreement.continuum.Continuum at 0x7f5527a19588> """ assert pivot_type in ('float_pivot', 'int_pivot') last_start_time = max(unit.segment.start for _, unit in continuum) new_continuum = Continuum() if ground_truth_annotators is not None: assert set(continuum.annotators).issuperset(set(ground_truth_annotators)) annotators = ground_truth_annotators else: annotators = continuum.annotators # TODO: why not sample from the whole continuum? # TODO : shouldn't the sampled annotators nb be equal to the annotators amount? for idx in range(continuum.num_annotators): if pivot_type == 'float_pivot': pivot = random.uniform(continuum.avg_length_unit, last_start_time) else: pivot = random.randint(np.floor(continuum.avg_length_unit), np.ceil(last_start_time)) rnd_annotator = random.choice(annotators) units = continuum._annotations[rnd_annotator] sampled_annotation = SortedSet() for unit in units: if pivot < unit.segment.start: new_segment = Segment(unit.segment.start - pivot, unit.segment.end - pivot) else: new_segment = Segment(unit.segment.start + pivot, unit.segment.end + pivot) sampled_annotation.add(Unit(new_segment, unit.annotation)) new_continuum._annotations[f'Sampled_annotation {idx}'] = sampled_annotation return new_continuum def __init__(self, uri: Optional[str] = None): self.uri = uri # Structure {annotator -> SortedSet[Unit]} self._annotations: Dict[Annotator, Set[Unit]] = SortedDict() # these are instanciated when compute_disorder is called self._chosen_alignments: Optional[np.ndarray] = None self._alignments_disorders: Optional[np.ndarray] = None def copy(self) -> 'Continuum': """ Makes a copy of the current continuum. Returns ------- continuum: Continuum """ continuum = Continuum(self.uri) continuum._annotations = deepcopy(self._annotations) return continuum def __bool__(self): """Truthiness, basically tests for emptiness >>> if continuum: ... # continuum is not empty ... else: ... # continuum is empty """ return len(self._annotations) > 0 def __len__(self): return len(self._annotations) @property def num_units(self) -> int: """Number of units""" return sum(len(units) for units in self._annotations.values()) @property def categories(self) -> Set[str]: return set(unit.annotation for _, unit in self if unit.annotation is not None) @property def num_annotators(self) -> int: """Number of annotators""" return len(self._annotations) @property def avg_num_annotations_per_annotator(self): """Average number of annotated segments per annotator""" return self.num_units / self.num_annotators @property def max_num_annotations_per_annotator(self): """The maximum number of annotated segments an annotator has in this continuum""" max_num_annotations_per_annotator = 0 for annotator in self._annotations: max_num_annotations_per_annotator = np.max( [max_num_annotations_per_annotator, len(self[annotator])]) return max_num_annotations_per_annotator @property def avg_length_unit(self) -> float: """Mean of the annotated segments' durations""" return sum(unit.segment.duration for _, unit in self) / self.num_units def add(self, annotator: Annotator, segment: Segment, annotation: Optional[str] = None): """ Add a segment to the continuum Parameters ---------- annotator: str The annotator that produced the added annotation segment: `pyannote.core.Segment` The segment for that annotation annotation: optional str That segment's annotation, if any. """ if segment.duration == 0.0: raise ValueError("Tried adding segment of duration 0.0") if annotator not in self._annotations: self._annotations[annotator] = SortedSet() self._annotations[annotator].add(Unit(segment, annotation)) # units array has to be updated, nullifying if self._alignments_disorders is not None: self._chosen_alignments = None self._alignments_disorders = None def add_annotation(self, annotator: Annotator, annotation: Annotation): """ Add a full pyannote annotation to the continuum. Parameters ---------- annotator: str A string id for the annotator who produced that annotation. annotation: :class:`pyannote.core.Annotation` A pyannote `Annotation` object. If a label is present for a given segment, it will be considered as that label's annotation. """ for segment, _, label in annotation.itertracks(yield_label=True): self.add(annotator, segment, label) def add_timeline(self, annotator: Annotator, timeline: Timeline): """ Add a full pyannote timeline to the continuum. Parameters ---------- annotator: str A string id for the annotator who produced that timeline. timeline: `pyannote.core.Timeline` A pyannote `Annotation` object. No annotation will be attached to segments. """ for segment in timeline: self.add(annotator, segment) def add_textgrid(self, annotator: Annotator, tg_path: Union[str, Path], selected_tiers: Optional[List[str]] = None, use_tier_as_annotation: bool = False): """ Add a textgrid file's content to the Continuum Parameters ---------- annotator: str A string id for the annotator who produced that TextGrid. tg_path: `Path` or str Path to the textgrid file. selected_tiers: optional list of str If set, will drop tiers that are not contained in this list. use_tier_as_annotation: optional bool If True, the annotation for each non-empty interval will be the name of its parent Tier. """ from textgrid import TextGrid, IntervalTier tg = TextGrid.fromFile(str(tg_path)) for tier_name in tg.getNames(): if selected_tiers is not None and tier_name not in selected_tiers: continue tier: IntervalTier = tg.getFirst(tier_name) for interval in tier: if not interval.mark: continue if use_tier_as_annotation: self.add(annotator, Segment(interval.minTime, interval.maxTime), tier_name) else: self.add(annotator, Segment(interval.minTime, interval.maxTime), interval.mark) def add_elan(self, annotator: Annotator, eaf_path: Union[str, Path], selected_tiers: Optional[List[str]] = None, use_tier_as_annotation: bool = False): """ Add an Elan (.eaf) file's content to the Continuum Parameters ---------- annotator: str A string id for the annotator who produced that ELAN file. eaf_path: `Path` or str Path to the .eaf (ELAN) file. selected_tiers: optional list of str If set, will drop tiers that are not contained in this list. use_tier_as_annotation: optional bool If True, the annotation for each non-empty interval will be the name of its parent Tier. """ from pympi import Eaf eaf = Eaf(eaf_path) for tier_name in eaf.get_tier_names(): if selected_tiers is not None and tier_name not in selected_tiers: continue for start, end, value in eaf.get_annotation_data_for_tier(tier_name): if use_tier_as_annotation: self.add(annotator, Segment(start, end), tier_name) else: self.add(annotator, Segment(start, end), value) def merge(self, continuum: 'Continuum', in_place: bool = False) \ -> Optional['Continuum']: """ Merge two Continuua together. Units from the same annotators are also merged together. Parameters ---------- continuum: Continuum other continuum to merge the current one with. in_place: optional bool If set to true, the merge is done in place, and the current continuum (self) is the one being modified. Returns ------- continuum: optional Continuum Only returned if "in_place" is false """ current_cont = self if in_place else self.copy() for annotator, unit in continuum: current_cont.add(annotator, unit.segment, unit.annotation) if not in_place: return current_cont def __add__(self, other: 'Continuum'): """ Same as a "not-in-place" merge. Parameters ---------- other: Continuum Returns ------- continuum: Continuum See also -------- :meth:`pygamma_agreement.Continuum.merge` """ return self.merge(other, in_place=False) def __getitem__(self, *keys: Union[Annotator, Tuple[Annotator, int]]) \ -> Union[SortedSet, Unit]: """Get annotation object >>> annotation = continuum[annotator] """ if len(keys) == 1: annotator = keys[0] return self._annotations[annotator] elif len(keys) == 2 and isinstance(keys[1], int): annotator, idx = keys return self._annotations[annotator][idx] def __iter__(self) -> Iterable[Tuple[Annotator, Unit]]: for annotator, annotations in self._annotations.items(): for unit in annotations: yield annotator, unit @property def annotators(self): """List all annotators in the Continuum >>> continuum.annotators: ... ["annotator_a", "annotator_b", "annot_ref"] """ return list(self._annotations.keys()) def iterunits(self, annotator: str): # TODO: implem and doc """Iterate over units (in chronological and alphabetical order if annotations are present) >>> for unit in continuum.iterunits("Max"): ... # do something with the unit """ return iter(self._annotations) def compute_disorders(self, dissimilarity: AbstractDissimilarity): assert isinstance(dissimilarity, AbstractDissimilarity) assert len(self.annotators) >= 2 disorder_args = dissimilarity.build_args(self) nb_unit_per_annot = [len(arr) + 1 for arr in self._annotations.values()] all_disorders = [] all_valid_tuples = [] for tuples_batch in chunked_cartesian_product(nb_unit_per_annot, CHUNK_SIZE): batch_disorders = dissimilarity(tuples_batch, *disorder_args) # Property section 5.1.1 to reduce initial complexity valid_disorders_ids, = np.where(batch_disorders < self.num_annotators * dissimilarity.delta_empty) all_disorders.append(batch_disorders[valid_disorders_ids]) all_valid_tuples.append(tuples_batch[valid_disorders_ids]) disorders = np.concatenate(all_disorders) possible_unitary_alignments = np.concatenate(all_valid_tuples) # Definition of the integer linear program num_possible_unitary_alignements = len(disorders) x = cp.Variable(shape=num_possible_unitary_alignements, boolean=True) true_units_ids = [] num_units = 0 for units in self._annotations.values(): true_units_ids.append(np.arange(num_units, num_units + len(units)).astype(np.int32)) num_units += len(units) # Constraints matrix A = np.zeros((num_units, num_possible_unitary_alignements)) for p_id, unit_ids_tuple in enumerate(possible_unitary_alignments): for annotator_id, unit_id in enumerate(unit_ids_tuple): if unit_id != len(true_units_ids[annotator_id]): A[true_units_ids[annotator_id][unit_id], p_id] = 1 obj = cp.Minimize(disorders.T @ x) constraints = [cp.matmul(A, x) == 1] prob = cp.Problem(obj, constraints) # we don't actually care about the optimal loss value optimal_value = prob.solve() # compare with 0.9 as cvxpy returns 1.000 or small values i.e. 10e-14 chosen_alignments_ids, = np.where(x.value > 0.9) self._chosen_alignments = possible_unitary_alignments[chosen_alignments_ids] self._alignments_disorders = disorders[chosen_alignments_ids] return self._alignments_disorders.sum() / len(self._alignments_disorders) def get_best_alignment(self, dissimilarity: Optional['AbstractDissimilarity'] = None): if self._chosen_alignments is None or self._alignments_disorders is None: if dissimilarity is not None: self.compute_disorders(dissimilarity) else: raise ValueError("Best alignment disorder hasn't been computed, " "a the dissimilarity argument is required") from .alignment import UnitaryAlignment, Alignment set_unitary_alignements = [] for alignment_id, alignment in enumerate(self._chosen_alignments): u_align_tuple = [] for annotator_id, unit_id in enumerate(alignment): annotator, units = self._annotations.peekitem(annotator_id) try: unit = units[unit_id] u_align_tuple.append((annotator, unit)) except IndexError: # it's a "null unit" u_align_tuple.append((annotator, None)) unitary_alignment = UnitaryAlignment(tuple(u_align_tuple)) unitary_alignment.disorder = self._alignments_disorders[alignment_id] set_unitary_alignements.append(unitary_alignment) return Alignment(set_unitary_alignements, continuum=self, check_validity=True) def compute_gamma(self, dissimilarity: 'AbstractDissimilarity', n_samples: int = 30, precision_level: Optional[Union[float, PrecisionLevel]] = None, ground_truth_annotators: Optional[List[Annotator]] = None, sampling_strategy: str = "single", pivot_type: PivotType = "float_pivot", random_seed: Optional[float] = 4577 ) -> 'GammaResults': """ Parameters ---------- dissimilarity: AbstractDissimilarity dissimilarity instance. Used to compute the disorder between units. n_samples: optional int number of random continuum sampled from this continuum used to estimate the gamma measure precision_level: optional float or "high", "medium", "low" error percentage of the gamma estimation. If a literal precision level is passed (e.g. "medium"), the corresponding numerical value will be used (high: 1%, medium: 2%, low : 5%) ground_truth_annotators: if set, the random continuua will only be sampled from these annotators. This should be used when you want to compare a prediction against some ground truth annotation. pivot_type: 'float_pivot' or 'int_pivot' pivot type to be used when sampling continuua random_seed: optional float, int or str random seed used to set up the random state before sampling the random continuua Returns ------- """ assert sampling_strategy in ("single", "multi") if sampling_strategy == "multi": raise NotImplemented("Multi-continuum sampling strategy is not " "supported for now") if random_seed is not None: random.seed(random_seed) chance_disorders = [] for _ in range(n_samples): sampled_continuum = Continuum.sample_from_continuum(self, pivot_type, ground_truth_annotators) sample_disorder = sampled_continuum.compute_disorders(dissimilarity) chance_disorders.append(sample_disorder) if precision_level is not None: if isinstance(precision_level, str): precision_level = PRECISION_LEVEL[precision_level] assert 0 < precision_level < 1.0 # taken from subsection 5.3 of the original paper # confidence at 95%, i.e., 1.96 variation_coeff = np.std(chance_disorders) / np.mean(chance_disorders) confidence = 1.96 required_samples = np.ceil((variation_coeff * confidence / precision_level) ** 2).astype(np.int32) logging.debug(f"Number of required samples for confidence {precision_level}: {required_samples}") if required_samples > n_samples: for _ in range(required_samples - n_samples): sampled_continuum = Continuum.sample_from_continuum(self, pivot_type, ground_truth_annotators) sample_disorder = sampled_continuum.compute_disorders(dissimilarity) chance_disorders.append(sample_disorder) best_alignment = self.get_best_alignment(dissimilarity) return GammaResults( best_alignment=best_alignment, pivot_type=pivot_type, n_samples=n_samples, chance_disorders=np.array(chance_disorders), precision_level=precision_level ) def compute_gamma_cat(self): raise NotImplemented() def to_csv(self, path: Union[str, Path], delimiter=","): if isinstance(path, str): path = Path(path) with open(path, "w") as csv_file: writer = csv.writer(csv_file, delimiter=delimiter) for annotator, unit in self: writer.writerow([annotator, unit.annotation, unit.segment.start, unit.segment.end]) def _repr_png_(self): """IPython notebook support See also -------- :mod:`pygamma_agreement.notebook` """ from .notebook import repr_continuum return repr_continuum(self) @dataclass class GammaResults: """ Gamma results object. Stores information about a gamma measure computation. """ best_alignment: 'Alignment' pivot_type: PivotType n_samples: int chance_disorders: np.ndarray precision_level: Optional[float] = None @property def alignments_nb(self): return len(self.best_alignment.unitary_alignments) @property def observed_agreement(self) -> float: """Returns the disorder of the computed best alignment, i.e, the observed agreement.""" return self.best_alignment.disorder @property def expected_disagreement(self) -> float: """Returns the expected disagreement for computed random samples, i.e., the mean of the sampled continuua's disorders""" return self.chance_disorders.mean() @property def approx_gamma_range(self): """Returns a tuple of the expected boundaries of the computed gamma, obtained using the expected disagreement and the precision level""" if self.precision_level is None: raise ValueError("No precision level has been set, cannot compute" "the gamma boundaries") return (1 - self.observed_agreement / (self.expected_disagreement * (1 - self.precision_level)), 1 - self.observed_agreement / (self.expected_disagreement * (1 + self.precision_level))) @property def gamma(self): """Returns the gamma value""" return 1 - self.observed_agreement / self.expected_disagreement
37.300562
114
0.613224
24,328
0.916033
195
0.007342
8,020
0.301981
0
0
9,989
0.37612
b8f295ce12bf7401ea1d40884fb3f417f25a7bfd
6,907
py
Python
stomasimulator/febio/xplt/xplt_calcs.py
woolfeh/stomasimulator
ead78b78809f35c17e2d784259bdeb56589a9d1c
[ "MIT" ]
2
2017-07-27T12:57:26.000Z
2017-07-28T13:55:15.000Z
stomasimulator/febio/xplt/xplt_calcs.py
woolfeh/stomasimulator
ead78b78809f35c17e2d784259bdeb56589a9d1c
[ "MIT" ]
null
null
null
stomasimulator/febio/xplt/xplt_calcs.py
woolfeh/stomasimulator
ead78b78809f35c17e2d784259bdeb56589a9d1c
[ "MIT" ]
1
2020-06-02T15:31:04.000Z
2020-06-02T15:31:04.000Z
import stomasimulator.geom.geom_utils as geom class AttributeCalculator(object): """ Abstraction for calculations performed on XPLT state data """ def __init__(self, prefix, reference_data, dimensionality, lambda_fn=None): self.prefix = '' if prefix is None else prefix self.reference_data = reference_data self.dimensionality = dimensionality self.lambda_fn = (lambda x: x) if lambda_fn is None else lambda_fn def calculate(self, nid_pt_dict, extras=None): """ Perform the calculation :param nid_pt_dict: dictionary of an integer 'node id' to a Point object :param extras: passed on to the subclass :return: a dictionary containing label-result pairs from the calculation :rtype: dict """ data = self._calculate(nid_pt_dict, extras) if self.dimensionality == 1: data = (data,) return {k: self.lambda_fn(v) for k, v in zip(self.labels(), data)} def _calculate(self, nid_pt_dict, extras): """ Calculation implementation - to be overridden in subclasses """ pass def labels(self): """ Get the labels for the calculation results """ suffices = self.calculation_suffices() assert len(suffices) == self.dimensionality, 'Error! Data label dimensionality mismatch.' fmt_string = '{}{}' if len(self.prefix) == 0 or len(suffices[0]) == 0 else '{}-{}' return [fmt_string.format(self.prefix, suffix) for suffix in suffices] def calculation_suffices(self): """ These suffices are appended to the labels of the calculation result """ return ['', ] * self.dimensionality def _get_point(ref_pt, id_pt_dict): return id_pt_dict.get(ref_pt) if isinstance(ref_pt, int) else ref_pt class DistanceCalculator(AttributeCalculator): """ Distance between two points """ def __init__(self, prefix, node_pair, lambda_fn=None): node_0 = node_pair[0] node_1 = node_pair[1] reference_data = (node_0 if node_0.id is None else node_0.id, node_1 if node_1.id is None else node_1.id) super(DistanceCalculator, self).__init__(prefix=prefix, reference_data=reference_data, dimensionality=1, lambda_fn=lambda_fn) def _calculate(self, nid_pt_dict, extras): pt_0 = _get_point(self.reference_data[0], nid_pt_dict) pt_1 = _get_point(self.reference_data[1], nid_pt_dict) return pt_0.distance(pt_1) class DirectionalDistanceCalculator(DistanceCalculator): """ Signed distance calculator """ def __init__(self, prefix, node_pair, direction, lambda_fn=None): """ Calculate a distance in a specified direction :param prefix: :param node_pair: two Points - further along 'direction' than node_pair[1] so that 'np[0] - np[1]' should be in the direction of 'direction' :param direction: the direction vector :param lambda_fn: """ super(DirectionalDistanceCalculator, self).__init__(prefix=prefix, node_pair=node_pair, lambda_fn=lambda_fn) self.direction = direction.unit() def _calculate(self, nid_pt_dict, extras): pt_0 = _get_point(self.reference_data[0], nid_pt_dict) pt_1 = _get_point(self.reference_data[1], nid_pt_dict) is_in_right_direction = (pt_0 - pt_1) * self.direction > 0.0 return pt_0.distance(pt_1) if is_in_right_direction else 0.0 class AreaCalculator2D(AttributeCalculator): """ Calculate area from a list of points (assumed to be in xy plane) """ def __init__(self, prefix, boundary_pts, lambda_fn=None): super(AreaCalculator2D, self).__init__(prefix=prefix, reference_data=boundary_pts, dimensionality=1, lambda_fn=lambda_fn) def _calculate(self, nid_pt_dict, extras): updated_pore_pts = [nid_pt_dict[pt.id] for pt in self.reference_data] pore_area = geom.calculate_polygon_area(updated_pore_pts) return pore_area class AreaCalculator3D(AttributeCalculator): """ Calculate an area from a list of facets """ def __init__(self, prefix, facet_list): super(AreaCalculator3D, self).__init__(prefix=prefix, reference_data=facet_list, dimensionality=1) def _calculate(self, nid_pt_dict, extras): area = geom.calculate_surface_area(nid_pt_dict, self.reference_data) return area class AreaVolumeCalculator(AttributeCalculator): """ Perform a combined calculation to get the surface area and volume given a list of facets """ def __init__(self, prefix, facet_list): super(AreaVolumeCalculator, self).__init__(prefix=prefix, reference_data=facet_list, dimensionality=2) def _calculate(self, nid_pt_dict, extras): volume, area = geom.calculate_volume_and_area(nid_pt_dict, self.reference_data) return area, volume def calculation_suffices(self): return 'area', 'volume' class XpltReaderMetrics(object): """ Identify the metrics that will be calculated for the XpltReader """ def __init__(self, comparison_helper=None, is_mesh_calculation_on=False): """ :param comparison_helper: Comparison helper for the stoma :type stoma_cfg: sc.ComparisonHelper :param is_mesh_calculation_on: Whether to calculate the mesh metrics (or not) :type is_mesh_calculation_on: bool """ self.comparison_helper = comparison_helper self.is_mesh_calculation_on = is_mesh_calculation_on @property def is_compare_vs_open_stoma_on(self): """ :return: Whether or not to perform the comparison :rtype: bool """ return self.comparison_helper is not None def evaluate_metric(self, sim_state): """ Calculate the metric and percent difference vs. each measurement :param sim_state: State object holding data from the simulation :type sim_state: State :return: Each item is a pair comprising a name (key) and its float value :rtype: list of tuple """ result = self.comparison_helper.perform_comparison(state_pressure=sim_state.time, state_data=sim_state.attributes) return result if __name__ == '__main__': pass
37.538043
106
0.624005
6,691
0.968727
0
0
205
0.02968
0
0
1,936
0.280295
b8f30a5084a67468fea8c7e34b0fb7344b7f99fe
801
py
Python
ifplus/vfs/__init__.py
hitakaken/ifplus
8354eeceea8abcbcaeb5dcd1c11eef69cbef6557
[ "MIT" ]
null
null
null
ifplus/vfs/__init__.py
hitakaken/ifplus
8354eeceea8abcbcaeb5dcd1c11eef69cbef6557
[ "MIT" ]
null
null
null
ifplus/vfs/__init__.py
hitakaken/ifplus
8354eeceea8abcbcaeb5dcd1c11eef69cbef6557
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from .helpers.vfs import VirtualFileSystem from .views.files import ns class VFS(object): def __init__(self, app=None, mongo=None, **kwargs): self.app = app self.mongo = mongo self.vfs = None if app is not None: self.app = app self.init_app(app, **kwargs) def init_app(self, app, **kwargs): self.app = app config = app.config.get('VFS', {}) self.vfs = VirtualFileSystem(app, rid=config.get(u'RID', u'0000-0000-0000-0000'), root=config.get(u'ROOT', None), devices=config.get(u'DEVICES', None)) setattr(self.app, 'vfs', self.vfs) self.app.api.add_namespace(ns)
33.375
84
0.516854
703
0.877653
0
0
0
0
0
0
78
0.097378
b8f325c7a53b048ae96a1a8dd82c6640cb732eac
51,954
py
Python
fordclassifier/evaluator/evaluatorClass.py
Orieus/one_def_classification
3269290e1fa06ec104a38810c5dffa5401f34ef1
[ "MIT" ]
null
null
null
fordclassifier/evaluator/evaluatorClass.py
Orieus/one_def_classification
3269290e1fa06ec104a38810c5dffa5401f34ef1
[ "MIT" ]
null
null
null
fordclassifier/evaluator/evaluatorClass.py
Orieus/one_def_classification
3269290e1fa06ec104a38810c5dffa5401f34ef1
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- ''' @author: Angel Navia Vázquez May 2018 ''' # import code # code.interact(local=locals()) import os import pickle # from fordclassifier.classifier.classifier import Classifier import numpy as np import pandas as pd from sklearn.metrics import roc_curve, auc import json import matplotlib.pyplot as plt import operator import itertools from sklearn.metrics import confusion_matrix from collections import OrderedDict import pyemd # Local imports from fordclassifier.evaluator.predictorClass import Predictor from fordclassifier.evaluator.rbo import * import pdb class Evaluator(object): ''' Class to evaluate the performance of the classifiers ============================================================================ Methods: ============================================================================ _recover: if a variable is not in memory, tries to recover it from disk _get_folder: retuns full path to a subfolder _exists_file: check if the file exists in disk draw_rocs: draws the Xval ROCs and saves them as png files load_Xtfidf: Loads from disk Xtfidf and tags load_test_data: Loads from disk test Xtfidf and tags load_train_data: Loads from disk train Xtfidf and tags compute_average_xval_AUC: computes the average AUC on xval compute_average_test_AUC: computes the average AUC on test obtain_labels_from_Preds: Produces the multilabel tag prediction from individual predictions of every classifier compute_confussion_matrix: computes the confusion matrix on test (multiclass case) compute_confusion_matrix_multilabel: computes the confussion matrix for a multilabel set (multilabel case) draw_confussion_matrix: draws the CM and saves it as a png file draw_ROCS_tst: draws the ROC curves for the test data draw_anyROC: draws the ROC curves compute_thresholds: computes the thresholds compute_cardinality: computes the cardinality of the tags compute_label_density: Computes the label density JaccardIndex: Computes the Jaccard index compute_multilabel_threshold: Computes the multilabel threshold draw_costs_on_test: draws the multilabel cost for the test data load_multilabel_threshold: Loads the multilabel thresholds Jaccard_RBO_cost: Computes a convex combination of the Jaccard and RBO costs align_strings: Aligns strings into columns get_pred_weights: Returns the normalized predictions write_prediction_report: writes a simple prediction report in text format ============================================================================ ''' def __init__(self, project_path, subfolders, categories=None, verbose=True): ''' Initialization: Creates the initial object data Inputs: - project_path: path to the working project - subfolders: subfolder structure ''' self._project_path = project_path # working directory self._verbose = verbose # messages are printed on screen when True self.models2evaluate = None # models to evaluate (classif, params) self._subfolders = None # subfolders structure self.best_auc = None # Best AUC self.best_models = None # Best models self.Xtfidf_tr = None # Xtfidf for training self.tags_tr = None # Training tags self.tags = None # All tags self.ths_dict = None # dict with the thresholds for every classifier self.Preds = None # Prediction matrix, one column per category self.Preds_tr = None # Pred. matrix, one column per category, train self.Preds_tst = None # Pred. matrix, one column per category, test self.index_tst = None # Index for tags test self.categories = categories # List of categories self.Xtfidf_tst = None # Xtfidf for test self.tags_tst = None # Test tags self.CONF = None # Confusion matrix self.multilabel_th = None # Multilabel Threshold self._subfolders = subfolders def _get_folder(self, subfolder): ''' gets full path to a folder Inputs: - subfolder: target subfolder ''' return os.path.join(self._project_path, self._subfolders[subfolder]) def _exists_file(self, filename): ''' Checks if the file exists Inputs: - filename ''' try: f = open(filename, 'r') existe = True f.close() except: existe = False pass return existe def _recover(self, field): ''' Loads from disk a previously stored variable, to avoid recomputing it Inputs: - field: variable to restore from disk ''' if field == 'best_auc': input_file = os.path.join(self._get_folder('results'), 'best_auc.json') with open(input_file, 'r') as f: self.best_auc = json.load(f) if field == 'best_models': try: input_file = os.path.join(self._get_folder('results'), 'best_models.json') with open(input_file, 'r') as f: self.best_models = json.load(f) except: input_file = os.path.join(self._get_folder('export'), 'best_models.json') with open(input_file, 'r') as f: self.best_models = json.load(f) pass if field == 'Xtfidf_tr': filetoload_Xtfidf = os.path.join( self._project_path + self._subfolders['training_data'], 'train_data.pkl') with open(filetoload_Xtfidf, 'rb') as f: [self.Xtfidf_tr, tags_tr, self.tags_tr, refs_tr] = pickle.load(f) if field == 'Xtfidf_tst': filetoload_Xtfidf = os.path.join( self._project_path + self._subfolders['test_data'], 'test_data.pkl') with open(filetoload_Xtfidf, 'rb') as f: [self.Xtfidf_tst, tags_tst, self.tags_tst, refs_tst] = pickle.load(f) if field == 'tags': filetoload_tags = os.path.join( self._project_path + self._subfolders['training_data'], 'tags.pkl') with open(filetoload_tags, 'rb') as f: self.tags = pickle.load(f) if field == 'ths_dict': try: filename = os.path.join( self._project_path + self._subfolders['results'], 'ths_dict.pkl') with open(filename, 'rb') as f: self.ths_dict = pickle.load(f) except: filename = os.path.join( self._project_path + self._subfolders['export'], 'ths_dict.pkl') with open(filename, 'rb') as f: self.ths_dict = pickle.load(f) pass if field == 'Preds': filename = os.path.join( self._project_path + self._subfolders['results'], 'Preds.pkl') with open(filename, 'rb') as f: self.Preds = pickle.load(f) if field == 'Preds_tr': filename = os.path.join( self._project_path, self._subfolders['results'], 'Preds_tr.pkl') with open(filename, 'rb') as f: self.Preds_tr = pickle.load(f) if field == 'Preds_tst': filename = os.path.join( self._project_path, self._subfolders['results'], 'Preds_test.pkl') with open(filename, 'rb') as f: self.Preds_tst = pickle.load(f) if field == 'CONF': filename = os.path.join( self._project_path + self._subfolders['results'], 'CONF.pkl') with open(filename, 'rb') as f: self.CONF = pickle.load(f) if field == 'tags_index': filename = os.path.join( self._project_path + self._subfolders['test_data'], 'tags_index.pkl') with open(filename, 'rb') as f: [self.tags_tst, self.index_tst] = pickle.load(f) if field == 'categories': try: filename = os.path.join( self._project_path + self._subfolders['training_data'], 'categories.pkl') with open(filename, 'rb') as f: self.categories = pickle.load(f) except: filename = os.path.join( self._project_path + self._subfolders['export'], 'categories.pkl') with open(filename, 'rb') as f: self.categories = pickle.load(f) pass if field == 'models2evaluate': try: filename = os.path.join( self._project_path + self._subfolders['training_data'], 'models2evaluate.pkl') with open(filename, 'rb') as f: self.models2evaluate = pickle.load(f) except: filename = os.path.join( self._project_path + self._subfolders['export'], 'models2evaluate.pkl') with open(filename, 'rb') as f: self.models2evaluate = pickle.load(f) pass if field == 'multilabel_th': try: filename = os.path.join( self._project_path + self._subfolders['training_data'], 'multilabel_th.pkl') with open(filename, 'rb') as f: self.multilabel_th = pickle.load(f) except: filename = os.path.join( self._project_path + self._subfolders['export'], 'multilabel_th.pkl') with open(filename, 'rb') as f: self.multilabel_th = pickle.load(f) pass return def draw_rocs(self, verbose=True): ''' Draws the Xval ROCs and saves them as png files Inputs: - None, it operates on self values ''' if verbose: print("Saving ROC figures ...") if self.categories is None: self._recover('categories') if self.models2evaluate is None: self._recover('models2evaluate') # get the evaluated models models = list(self.models2evaluate.keys()) Nclass = len(models) Ncats = len(self.categories) for kcat in range(0, Ncats): plt.figure(figsize=(15, 12)) aucs = [] cat = self.categories[kcat] for kclass in range(0, Nclass): try: model_name = models[kclass] file_input_ROC = os.path.join( self._get_folder('eval_ROCs'), 'ROC_' + model_name + '_' + cat + '.pkl') with open(file_input_ROC, 'rb') as f: mdict = pickle.load(f) auc = mdict['roc_auc_loo'] aucs.append((model_name, auc)) except: pass # Sorting by AUC aucs.sort(key=operator.itemgetter(1), reverse=True) colors = ['k', 'r', 'g', 'b', 'm', 'c', 'r--', 'g--', 'b--', 'm--', 'c--', 'k--'] # drawing the best 10 models for k in range(0, 10): try: model_name = aucs[k][0] auc = aucs[k][1] file_input_ROC = os.path.join( self._get_folder('eval_ROCs'), 'ROC_' + model_name + '_' + cat + '.pkl') with open(file_input_ROC, 'rb') as f: mdict = pickle.load(f) fpr = mdict['fpr_loo'] tpr = mdict['tpr_loo'] text = model_name + ', AUC= ' + str(auc)[0:6] if auc > 0.6: if k == 0: # drawing the best model with thicker line plt.plot(fpr, tpr, colors[k], label=text, linewidth=6.0) else: plt.plot(fpr, tpr, colors[k], label=text, linewidth=2.0) except: pass plt.xlabel('FPR') plt.ylabel('TPR') plt.title('ROC curves for category ' + cat) plt.grid(True) plt.legend(loc="lower right") filename = os.path.join(self._get_folder('ROCS_tr'), cat + '_ROC_xval.png') plt.savefig(filename) plt.close() if verbose: print(cat, ) return def load_Xtfidf(self, verbose=True): ''' Loads from disk Xtfidf and tags Inputs: - None, it operates on self values ''' if self.Xtfidf is None: self._recover('Xtfidf') if self.tags is None: self._recover('tags') return self.Xtfidf, self.tags def load_test_data(self, verbose=True): ''' Loads from disk test Xtfidf and tags Inputs: - None, it operates on self values ''' filename = os.path.join( self._project_path + self._subfolders['test_data'], 'test_data.pkl') with open(filename, 'rb') as f: [self.Xtfidf_tst, self.tags_tst, refs_tst] = pickle.load(f) new_tags_tst = [] for tags in self.tags_tst: unique_tags = sorted(set(tags), key=tags.index) new_tags_tst.append(unique_tags) return self.Xtfidf_tst, new_tags_tst, refs_tst def load_train_data(self, verbose=True): ''' Loads from disk train Xtfidf and tags Inputs: - None, it operates on self values ''' filename = os.path.join( self._project_path + self._subfolders['training_data'], 'train_data.pkl') with open(filename, 'rb') as f: [self.Xtfidf_tr, self.tags_tr, refs_tr] = pickle.load(f) new_tags_tr = [] for tags in self.tags_tr: unique_tags = sorted(set(tags), key=tags.index) new_tags_tr.append(unique_tags) return self.Xtfidf_tr, new_tags_tr, refs_tr def compute_average_xval_AUC(self, verbose=True): ''' Computes the average AUC on xval Inputs: - None, it operates on self values ''' if self.best_auc is None: self._recover('best_auc') aucs = list(self.best_auc.values()) average_auc = np.mean(aucs) return average_auc def obtain_labels_from_Preds(self, Preds, threshold, categories=None, verbose=True): ''' Produces the multilabel tag prediction from individual predictions of every classifier Inputs: - Preds: predictions matrix, one column per category, as many rows as patterns - threshold: multilabel threshold ''' if self.categories is None: self._recover('categories') labels_preds = [] Ndocs = Preds.shape[0] for kdoc in range(0, Ndocs): l = [] p = Preds[kdoc, :] # Normalize individual predictions, the maximum becomes 1.0 in all # cases if max(p) > 0: p = p / max(p) orden = np.argsort(-p) for index in orden: if p[index] > threshold: l.append(self.categories[index]) labels_preds.append(l) return labels_preds def compute_confusion_matrix(self, orig_tags, best_pred_tags, filename, sorted_categories=[], verbose=True): ''' computes the confussion matrix on test (multiclass case) Inputs: - orig_tags: original labels - best_pred_tags: predicted labels - filename: file to save results - sorted_categories: categories to take into account, respecting the order ''' if self.categories is None: self._recover('categories') if len(sorted_categories) > 0: labels_categories = sorted_categories else: labels_categories = self.categories self.CONF = confusion_matrix(orig_tags, best_pred_tags, labels=labels_categories) pathfilename = os.path.join( self._project_path + self._subfolders['results'], filename) with open(pathfilename, 'wb') as f: pickle.dump(self.CONF, f) return self.CONF def compute_confusion_matrix_multilabel(self, orig_tags, best_pred_tags, filename, sorted_categories=[], verbose=True): ''' computes the confussion matrix for a multilabel set (multilabel case) Inputs: - orig_tags: original labels - best_pred_tags: predicted labels - filename: file to save results - sorted_categories: categories to take into account, respecting the order ''' if self.categories is None: self._recover('categories') if len(sorted_categories) > 0: labels_categories = sorted_categories else: labels_categories = self.categories Ncats = len(labels_categories) self.CONF = np.zeros((Ncats, Ncats)) NP = len(orig_tags) for k in range(0, NP): cats_orig = orig_tags[k] cats_pred = best_pred_tags[k] for m in range(0, Ncats): for n in range(0, Ncats): cat_orig = labels_categories[m] cat_pred = labels_categories[n] if cat_orig in cats_orig and cat_pred in cats_pred: self.CONF[m, n] += 1.0 # self.CONF = confusion_matrix(orig_tags, best_pred_tags, # labels=labels_categories) pathfilename = os.path.join( self._project_path + self._subfolders['results'], filename) with open(pathfilename, 'wb') as f: pickle.dump(self.CONF, f) return self.CONF def compute_confusion_matrix_multilabel_v2( self, orig_tags, best_pred_tags, filename, sorted_categories=[], order_sensitive=False, verbose=True): ''' computes the confusion matrix for a multilabel set Inputs: - orig_tags: original labels - best_pred_tags: predicted labels - filename: file to save results - sorted_categories: categories to take into account, respecting the order - order_sensitive: indicates if the computation is order sensitive or not ''' # Set dump factor if order_sensitive: dump_factor = 0.5 else: dump_factor = 1.0 # Take categories from the input arguments. If not, from the object. # If not, from a file using the recover method. if len(sorted_categories) > 0: categories = sorted_categories else: # Get list of categories if self.categories is None: self._recover('categories') categories = self.categories # Validate true labels n = len([x for x in orig_tags if len(x) == 0]) if n > 0: print('---- WARNING: {} samples without labels '.format(n) + 'will be ignored.') # Validate predicted labels n = len([x for x in best_pred_tags if len(x) == 0]) if n > 0: print('---- WARNING: {} samples without predictions '.format(n) + 'will be ignored.') # Loop over the true and predicted labels Ncats = len(categories) self.CONF = np.zeros((Ncats, Ncats)) for cats_orig, cats_pred in zip(orig_tags, best_pred_tags): if len(cats_orig) > 0 and len(cats_pred) > 0: # Compute numerical true label vector value_orig = 1.0 p = np.zeros(Ncats) for c in cats_orig: p[categories.index(c)] = value_orig value_orig *= dump_factor p = p / np.sum(p) # Compute numerical prediction label vector value_pred = 1.0 q = np.zeros(Ncats) for c in cats_pred: q[categories.index(c)] = value_pred value_pred *= dump_factor q = q / np.sum(q) # Compute diagonal elements min_pq = np.minimum(p, q) M = np.diag(min_pq) # Compute non-diagonal elements p_ = p - min_pq q_ = q - min_pq z = 1 - np.sum(min_pq) if z > 0: M += (p_[:, np.newaxis] * q_) / z self.CONF += M pathfilename = os.path.join( self._project_path, self._subfolders['results'], filename) with open(pathfilename, 'wb') as f: pickle.dump(self.CONF, f) return self.CONF def compute_EMD_error(self, orig_tags, best_pred_tags, fpath, order_sensitive=False): ''' computes the confusion matrix for a multilabel set Args: - orig_tags: original labels - best_pred_tags: predicted labels - fpath: path to the file with the similarity matrix - order_sensitive: indicates if the computation is order sensitive or not ''' # ###################### # Load similarity values if type(fpath) is str: df_S = pd.read_excel(fpath) # Compute cost matrix C = 1 - df_S[df_S.columns].values # WARNING: For later versions of pandas, you might need to use: # Note that df_S.columnst shooud be taken from 1, because # The first column is taken as the index column. # C = 1 - df_S[df_S.columns[1:]].to_numpy() else: # This is a combination of cost matrices that takes the # component-wise minimum of the costs C = 1 for fp in fpath: df_S = pd.read_excel(fp) # Compute cost matrix Cf = 1 - df_S[df_S.columns].values C = np.minimum(C, Cf) # This combination of cost matrices takes each cost matrix with a # different weights. Only for two Cost matrices. # df_S = pd.read_excel(fpath[0]) # C1 = 1 - df_S[df_S.columns].values # df_S = pd.read_excel(fpath[1]) # Cs = 1 - df_S[df_S.columns].values # ncat = Cs.shape[0] # C = np.minimum(1 - np.eye(ncat), # np.minimum(0.25 + 0.75 * Cs, 0.5 + 0.5 * C1)) # This is to make sure that C is "C-contitguos", a requirement of pyemd C = np.ascontiguousarray(C, dtype=np.float64) # Set dump factor if order_sensitive: dump_factor = 0.5 else: dump_factor = 1.0 # Take categories in the order of the cost matrix categories = df_S.columns.tolist() # Validate true labels n = len([x for x in orig_tags if len(x) == 0]) if n > 0: print(f'---- WARNING: {n} samples without labels will be ignored') # Validate predicted labels n = len([x for x in best_pred_tags if len(x) == 0]) if n > 0: print(f'---- WARNING: {n} samples without preds will be ignored') # ################## # Compute EMD errors # Loop over the true and predicted labels Ncats = len(categories) self.emd = 0 count = 0 for cats_orig, cats_pred in zip(orig_tags, best_pred_tags): if len(cats_orig) > 0 and len(cats_pred) > 0: # Compute numerical true label vector value_orig = 1.0 p = np.zeros(Ncats) for c in cats_orig: p[categories.index(c)] = value_orig value_orig *= dump_factor p = p / np.sum(p) # Compute numerical prediction label vector value_pred = 1.0 q = np.zeros(Ncats) for c in cats_pred: q[categories.index(c)] = value_pred value_pred *= dump_factor q = q / np.sum(q) # Compute EMD distance for the given sample emd_i = pyemd.emd(p, q, C) self.emd += emd_i count += 1 self.emd /= count return self.emd def compute_sorted_errors(self, CONF, categories): eps = 1e-20 # Sample size per category n_cat = len(categories) ns_cat = CONF.sum(axis=1, keepdims=True) # Total sample size ns_tot = CONF.sum() # Compute all-normalized confusion matrix CONF_a = CONF / ns_tot # Compute row-normalized confusion matrix CONF_r = ((CONF.astype('float') + eps) / (ns_cat + n_cat*eps)) # Sort errors by unsorted_values = [(categories[i], categories[j], 100*CONF_a[i, j], 100*CONF_r[i, j], 100*ns_cat[i][0]/ns_tot) for i in range(n_cat) for j in range(n_cat)] sorted_values_a = sorted(unsorted_values, key=lambda x: -x[2]) sorted_values_r = sorted(unsorted_values, key=lambda x: -x[3]) # Remove diagonal elements sorted_values_a = [x for x in sorted_values_a if x[0] != x[1]] sorted_values_r = [x for x in sorted_values_r if x[0] != x[1]] # Remove relative errors of categories with zero samples sorted_values_r = [x for x in sorted_values_r if ns_cat[categories.index(x[0])] > 0] cols = ['Cat. real', 'Clasif', 'Err/total (%)', 'Error/cat (%)', 'Peso muestral'] df_ranked_abs = pd.DataFrame(sorted_values_a, columns=cols) df_ranked_rel = pd.DataFrame(sorted_values_r, columns=cols) f_path = os.path.join(self._project_path, self._subfolders['results'], 'ranked_abs_errors.xlsx') df_ranked_abs.to_excel(f_path) f_path = os.path.join(self._project_path, self._subfolders['results'], 'ranked_rel_errors.xlsx') df_ranked_rel.to_excel(f_path) return df_ranked_abs, df_ranked_rel def compute_error_confusion_matrix(self, CONF, normalize=True, verbose=True): # Returns the ratio of elements outside the diagonal allsum = np.sum(CONF) diagsum = np.sum(np.diagonal(CONF)) offdiagsum = allsum - diagsum error = offdiagsum / allsum return error def draw_confusion_matrix(self, CONF, filename, sorted_categories=[], verbose=True, normalize=True): ''' draws the CM and saves it as a png file Inputs: - CONF: conf matrix to be stored - filename: filename - sorted_categories: list of sorted categories - normalize: indicates to normalize CONF ''' # An extemelly small value to avoid zero division eps = 1e-20 n_cat = len(sorted_categories) if len(sorted_categories) > 0: labels_categories = sorted_categories else: if self.categories is None: self._recover('categories') labels_categories = self.categories if normalize: # Normalize CONF = ((CONF.astype('float') + eps) / (CONF.sum(axis=1, keepdims=True) + n_cat*eps)) else: CONF = CONF.astype('float') plt.figure(figsize=(15, 12)) cmap = plt.cm.Blues plt.imshow(CONF, interpolation='nearest', cmap=cmap) plt.colorbar() tick_marks = np.arange(len(labels_categories)) plt.xticks(tick_marks, labels_categories, rotation=90) plt.yticks(tick_marks, labels_categories) plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') pathfilename = os.path.join(self._get_folder('figures'), filename) print(f"SALVADO EN {pathfilename}") plt.savefig(pathfilename) plt.clf() return def draw_ROCS_tst(self, Preds_tst, tags_tst): ''' draws the ROC curves for the test data Inputs: - Preds_tst: predicted labels - tags_tst: true labels ''' if self.best_models is None: self._recover('best_models') if self.categories is None: self._recover('categories') colors = ['k', 'r', 'g', 'b', 'm', 'c', 'r--', 'g--', 'b--', 'm--', 'c--', 'k--'] # retain the first tag in the labels tags = [t[0] if len(t) > 0 else '' for t in tags_tst] for k in range(0, len(self.categories)): cat = self.categories[k] y_tst = [1.0 if p == cat else -1.0 for p in tags] preds_tst = list(Preds_tst[:, k]) fpr_tst, tpr_tst, thresholds = roc_curve(y_tst, preds_tst) roc_auc_tst = auc(fpr_tst, tpr_tst) model_name = self.best_models[cat] file_output_ROC = os.path.join( self._get_folder('ROCS_tst'), 'ROC_' + model_name + '_' + cat + '.pkl') mdict = {'fpr_tst': list(fpr_tst), 'tpr_tst': list(tpr_tst), 'roc_auc_tst': roc_auc_tst, 'y_tst': list(y_tst), 'preds_tst': list(preds_tst)} with open(file_output_ROC, 'wb') as f: pickle.dump(mdict, f) plt.figure(figsize=(15, 12)) plt.xlabel('FPR') plt.ylabel('TPR') plt.title('ROC test curve for category ' + cat) text = model_name + ', AUC= ' + str(roc_auc_tst)[0:6] plt.plot(fpr_tst, tpr_tst, colors[3], label=text, linewidth=6.0) plt.grid(True) plt.legend(loc="lower right") filename = os.path.join( self._get_folder('ROCS_tst'), cat + '_ROC_test.png') plt.savefig(filename) plt.close() return def draw_anyROC(self, Preds_tst, tags_tst, case): ''' draws the ROC curves Inputs: - Preds_tst: predicted labels - tags_tst: true labels ''' if self.categories is None: self._recover('categories') colors = ['k', 'r', 'g', 'b', 'm', 'c', 'r--', 'g--', 'b--', 'm--', 'c--', 'k--'] # retain the first tag in the labels tags = [t[0] if len(t) > 0 else '' for t in tags_tst] aucs = [] for k in range(0, len(self.categories)): cat = self.categories[k] y_tst = [1.0 if p == cat else -1.0 for p in tags] preds_tst = list(Preds_tst[:, k]) fpr_tst, tpr_tst, thresholds = roc_curve(y_tst, preds_tst) roc_auc_tst = auc(fpr_tst, tpr_tst) aucs.append(roc_auc_tst) file_output_ROC = os.path.join( self._get_folder('ROCS_tst'), cat + '_' + 'ROC_' + case + '.pkl') mdict = {'fpr_tst': list(fpr_tst), 'tpr_tst': list(tpr_tst), 'roc_auc_tst': roc_auc_tst, 'y_tst': list(y_tst), 'preds_tst': list(preds_tst)} with open(file_output_ROC, 'wb') as f: pickle.dump(mdict, f) plt.figure(figsize=(15, 12)) plt.xlabel('FPR') plt.ylabel('TPR') plt.title('ROC test curve for category ' + cat) text = case + ', AUC= ' + str(roc_auc_tst)[0:6] plt.plot(fpr_tst, tpr_tst, colors[3], label=text, linewidth=6.0) plt.grid(True) plt.legend(loc="lower right") filename = os.path.join(self._get_folder('ROCS_tst'), cat + '_' + 'ROC_' + case + '.png') plt.savefig(filename) plt.close() average_auc = np.nanmean(aucs) return average_auc def compute_average_test_AUC(self, verbose=True): ''' computes the average AUC on test Inputs: - None, it operates on self values ''' if self.best_models is None: self._recover('best_models') if self.categories is None: self._recover('categories') aucs = [] for k in range(0, len(self.categories)): cat = self.categories[k] model_name = self.best_models[cat] filename = os.path.join( self._get_folder('ROCS_tst'), 'ROC_' + model_name + '_' + cat + '.pkl') with open(filename, 'rb') as f: mdict = pickle.load(f) auc = mdict['roc_auc_tst'] aucs.append(auc) average_auc = np.nanmean(aucs) return average_auc def compute_thresholds(self, verbose=True): ''' computes the thresholds Inputs: - None, it operates on self values ''' if self.categories is None: self._recover('categories') if self.best_models is None: self._recover('best_models') Ncats = len(self.categories) ths_dict = {} for kcat in range(0, Ncats): try: cat = self.categories[kcat] model_name = self.best_models[cat] file_input_ROC = os.path.join( self._get_folder('eval_ROCs'), 'ROC_' + model_name + '_' + cat + '.pkl') with open(file_input_ROC, 'rb') as f: mdict = pickle.load(f) fpr = mdict['fpr_loo'] tpr = mdict['tpr_loo'] ths = mdict['thresholds'] mix = [] for k in range(0, len(fpr)): # We select the threshold maximizing this convex combinat mix.append(tpr[k] + (1 - fpr[k])) cual = np.argmax(mix) th = ths[cual] ths_dict.update({cat: th}) print(cat, th, cual, tpr[cual], fpr[cual]) except: print("Error in cat ", cat) pass filename = os.path.join( self._project_path + self._subfolders['results'], 'ths_dict.pkl') with open(filename, 'wb') as f: pickle.dump(ths_dict, f) return def compute_cardinality(self, tags): ''' computes the cardinality of the tags Inputs: - tags: labels ''' C = np.mean([len(set(l)) for l in tags]) return C def compute_label_density(self, tags): ''' Computes the label density Inputs: - tags: labels ''' # total number of possible labels NL = len(set(itertools.chain.from_iterable(tags))) D = np.mean([len(set(l)) / NL for l in tags]) return D def JaccardIndex(self, orig, pred): ''' Computes the Jaccard index Inputs: - orig: original labels - pred: predicted labels ''' accs = [] for k in range(0, len(orig)): l_orig = orig[k] l_pred = pred[k] num = len(set(l_orig).intersection(l_pred)) den = len(set(l_orig + l_pred)) acc = num / den accs.append(acc) JI = np.mean(accs) return JI def compute_multilabel_threshold(self, p, alpha, option, th_values, verbose=True): ''' Computes the multilabel threshold Inputs: - p: RBO parameter, ``p`` is the probability of looking for overlap at rank k + 1 after having examined rank k - alpha: convex Jaccard-RBO combination parameter - option: sorting option for multilabel prediction - th_values: range of threshold values to be evaluated ''' if self.Xtfidf_tr is None: self._recover('Xtfidf_tr') if self.Preds_tr is None: self._recover('Preds_tr') # Warning tags_tr may have duplicates... self.tags_tr = [list(OrderedDict.fromkeys(l)) for l in self.tags_tr] if verbose: print('-' * 50) COST = [] DENS_pred = [] DENS_true = [] COST_dens = [] density_true = self.compute_cardinality(self.tags_tr) # to normalize Jaccard_RBO_cost, depends on p baseline = [0] for k in range(2, 50): l = list(range(1, k)) baseline.append(rbo(l, l, p)['min']) P = Predictor(self._project_path, self._subfolders, verbose=False) for threshold in th_values: multilabel_pred_tr, labels_pred_tr = P.obtain_multilabel_preds( self.Preds_tr, option, threshold, verbose=True) density_pred = self.compute_cardinality(labels_pred_tr) DENS_pred.append(density_pred) DENS_true.append(density_true) dens_error = (density_pred - density_true) ** 2 COST_dens.append(dens_error) # Computing Jackard_RBO cost jrbos = [] for k in range(0, len(self.tags_tr)): values = [] for key in labels_pred_tr[k]: values.append((key, multilabel_pred_tr[k][key]['p'])) values.sort(key=lambda x: x[1], reverse=True) l_pred = [] for v in values: l_pred.append(v[0]) jrbo = self.Jaccard_RBO_cost( self.tags_tr[k], l_pred, baseline, p, alpha) jrbos.append(jrbo) cost_jrbo = np.mean(jrbos) print(threshold, cost_jrbo, density_true, density_pred, ) COST.append(cost_jrbo) max_cost = max(COST) max_dens = max(COST_dens) COST_dens = [x / max_dens * max_cost for x in COST_dens] plt.figure(figsize=(15, 12)) plt.xlabel('Th') plt.ylabel('Jackard-RBO cost') plt.title('Jackard-RBO and Label Density costs for p =' + str(p) + ' and alpha= ' + str(alpha)) plt.plot(th_values, COST, 'b', label='Jackard-RBO cost', linewidth=3.0) plt.plot(th_values, COST_dens, 'r', label='Labels Density cost', linewidth=3.0) cual_min = np.argmin(COST) th_JRBO = th_values[cual_min] plt.plot(th_values[cual_min], COST[cual_min], 'bo', label='Minimum Jackard-RBO cost', linewidth=3.0) cual_min = np.argmin(COST_dens) th_DENS = th_values[cual_min] plt.plot(th_values[cual_min], COST_dens[cual_min], 'ro', label='Minimum Labels Density cost', linewidth=3.0) plt.legend(loc="upper right") plt.grid(True) filename = os.path.join( self._project_path + self._subfolders['results'], 'JRBO_COST_tr_p_' + str(p) + '_alpha_' + str(alpha) + '.png') plt.savefig(filename) plt.close() self.multilabel_th = np.mean([th_JRBO, th_DENS]) filename = os.path.join( self._project_path + self._subfolders['training_data'], 'multilabel_th.pkl') with open(filename, 'wb') as f: pickle.dump(self.multilabel_th, f) filename = os.path.join( self._project_path + self._subfolders['export'], 'multilabel_th.pkl') with open(filename, 'wb') as f: pickle.dump(self.multilabel_th, f) return self.multilabel_th def draw_costs_on_test(self, p, alpha, option, th_values, verbose=True): ''' draws the multilabel cost for the test data Inputs: - p: RBO parameter, ``p`` is the probability of looking for overlap at rank k + 1 after having examined rank k - alpha: convex Jaccard-RBO combination parameter - option: sorting option for multilabel prediction - th_values: range of threshold values to be evaluated ''' if self.Xtfidf_tst is None: self._recover('Xtfidf_tst') if self.Preds_tst is None: self._recover('Preds_tst') if self.multilabel_th is None: self._recover('multilabel_th') # Warning tags_tst may have duplicates... self.tags_tst = [list(OrderedDict.fromkeys(l)) for l in self.tags_tst] if verbose: print('-' * 50) COST = [] DENS_pred = [] DENS_true = [] COST_dens = [] density_true = self.compute_cardinality(self.tags_tst) # to normalize Jaccard_RBO_cost, depends on p baseline = [0] for k in range(2, 50): l = list(range(1, k)) baseline.append(rbo(l, l, p)['min']) P = Predictor(self._project_path, self._subfolders, verbose=False) for threshold in th_values: multilabel_pred_tst, labels_pred_tst = P.obtain_multilabel_preds( self.Preds_tst, option, threshold, verbose=True) density_pred = self.compute_cardinality(labels_pred_tst) DENS_pred.append(density_pred) DENS_true.append(density_true) dens_error = (density_pred - density_true) ** 2 COST_dens.append(dens_error) # Computing Jackard_RBO cost jrbos = [] for k in range(0, len(self.tags_tst)): values = [] for key in labels_pred_tst[k]: values.append((key, multilabel_pred_tst[k][key]['p'])) values.sort(key=lambda x: x[1], reverse=True) l_pred = [] for v in values: l_pred.append(v[0]) jrbo = self.Jaccard_RBO_cost( self.tags_tst[k], l_pred, baseline, p, alpha) jrbos.append(jrbo) cost_jrbo = np.mean(jrbos) print(threshold, cost_jrbo, density_true, density_pred, ) COST.append(cost_jrbo) max_cost = max(COST) max_dens = max(COST_dens) COST_dens = [x / max_dens * max_cost for x in COST_dens] plt.figure(figsize=(15, 12)) plt.xlabel('Th') plt.ylabel('Jackard-RBO cost') plt.title('Jackard-RBO and Label Density costs for p =' + str(p) + ' and alpha= ' + str(alpha)) plt.plot(th_values, COST, 'b', label='Jackard-RBO cost', linewidth=3.0) plt.plot(th_values, COST_dens, 'r', label='Labels Density cost', linewidth=3.0) cual_min = np.argmin(abs(th_values - self.multilabel_th)) plt.plot(th_values[cual_min], COST[cual_min], 'bo', label='Jackard-RBO cost at threshold', linewidth=3.0) plt.plot(th_values[cual_min], COST_dens[cual_min], 'ro', label='Labels Density cost at threshold', linewidth=3.0) plt.legend(loc="upper right") plt.grid(True) filename = os.path.join( self._project_path + self._subfolders['results'], 'JRBO_COST_tst_p_' + str(p) + '_alpha_' + str(alpha) + '.png') plt.savefig(filename) plt.close() return def load_multilabel_threshold(self, path2export=''): ''' Loads the multilabel thresholds Inputs: - path2export: export path ''' if path2export != '': print('Loading multilabel_th from export') filename = os.path.join(path2export, 'multilabel_th.pkl') with open(filename, 'rb') as f: self.multilabel_th = pickle.load(f) else: if self.multilabel_th is None: self._recover('multilabel_th') return self.multilabel_th def Jaccard_RBO_cost(self, l_orig, l_pred, baseline, p, alpha): ''' Computes a convex combination of the Jaccard and RBO costs Inputs: - l_orig: original labels - l_pred: predicted labels - baseline: normalizing values - p: RBO parameter, ``p`` is the probability of looking for overlap at rank k + 1 after having examined rank k - alpha: convex Jaccard-RBO combination parameter ''' try: if len(l_orig) > 0: num = len(set(l_orig).intersection(l_pred)) den = len(set(l_orig + l_pred)) ji = 1.0 - num / den else: if len(l_pred) == 0: # empty labels and empty predict means cost = 0.0 ji = 0 else: # empty labels and non-empty predict means cost = 1.0 ji = 1.0 r = 0 L = min((len(l_orig), len(l_pred))) if L > 0: r = 1 - rbo(l_orig, l_pred, p)['min'] / baseline[L] else: r = 1.0 if len(l_orig) == 0 and len(l_pred) == 0: r = 0.0 except: print('Error in Jaccard_RBO_cost ' + '----------------------------------------------------') import code code.interact(local=locals()) pass jrbo = (alpha * ji + (1 - alpha) * r) / 2.0 return jrbo def align_strings(self, string0, string1, string2, string3, L, M, N, P): ''' Aligns strings into columns ''' empty = ' ' # if len(string1) > M or len(string2) > N or len(string3) > P: # import code # code.interact(local=locals()) if L - len(string0) > 0: string0 = string0 + empty[0: L - len(string0)] if M - len(string1) > 0: string1 = string1 + empty[0: M - len(string1)] if N - len(string2) > 0: string2 = string2 + empty[0: N - len(string2)] if P - len(string3) > 0: string3 = string3 + empty[0: P - len(string3)] aligned_string = string0 + '| ' + string1 + '| ' + string2 + '| ' + string3 + '\r\n' return aligned_string def get_pred_weights(self, refs, label_preds, multilabel_preds): ''' Returns the normalized predictions **Unused????**** Inputs: - refs: *unused* - label_preds: - multilabel_preds: ''' weights = [] for k, labels in enumerate(label_preds): w0 = [multilabel_preds[k][key]['p'] for key in labels] scale = np.sum(w0) weights.append([w / scale for w in w0]) return weights def write_prediction_report(self, refs_tst, tags_tst, labels_pred_tst, multilabel_pred_tst, filename_out): ''' writes a simple prediction report in text format Inputs: - refs_tst: references - tags_tst: original labels - labels_pred_tst: predicted labels - multilabel_pred_tst: multilabel predicted labels - filename_out: file to save results ''' # writing report for the best threshold value string0 = 'PROJECT REFERENCE' string1 = 'TARGET LABELS' string2 = 'PREDICTED LABELS' string3 = ' ' data = [self.align_strings(string0, string1, string2, string3, 20, 30, 50, 10)] data.append('=' * 80 + '\r\n') for k in range(0, len(tags_tst)): string0 = refs_tst[k] string1 = '' for t in tags_tst[k]: string1 += t + ', ' if len(tags_tst[k]) == 0: string1 += '--------------' values = labels_pred_tst[k] if len(values) == 0: string2 = '--------------' else: string2 = '' pesos = [] for key in values: pesos.append(multilabel_pred_tst[k][key]['p']) for key in values: weight = multilabel_pred_tst[k][key]['p'] / np.sum(pesos) str_weight = str(weight)[0:5] string2 += key + '(' + str_weight + '), ' string3 = ' ' cadena = self.align_strings(string0, string1, string2, string3, 20, 30, 50, 10) data.append(cadena) filename = os.path.join(self._project_path, self._subfolders['results'], filename_out) with open(filename, 'w') as f: f.writelines(data) print('Saved ', filename) return
37.484848
100
0.508527
51,324
0.987817
0
0
0
0
0
0
15,467
0.297688
b8f4752d0093b3381dd899cada064a8f50a481ea
16
py
Python
cdn/__init__.py
Kingjmk/mlfaati
12c0dcbe0389c2c1da0bde80509fb3374955e293
[ "MIT" ]
1
2021-01-04T07:34:34.000Z
2021-01-04T07:34:34.000Z
cdn/__init__.py
Kingjmk/mlfaati
12c0dcbe0389c2c1da0bde80509fb3374955e293
[ "MIT" ]
null
null
null
cdn/__init__.py
Kingjmk/mlfaati
12c0dcbe0389c2c1da0bde80509fb3374955e293
[ "MIT" ]
null
null
null
""" CDN App """
4
7
0.375
0
0
0
0
0
0
0
0
16
1
b8f6634f75893c98121099a51543c4b0b9463dc6
2,722
py
Python
data/r_outletsdata.py
ljunhui/Koufu_SG_Map
8d440605cc90c49c6635f4d5202bd262e30b0efb
[ "MIT" ]
1
2021-04-01T13:57:15.000Z
2021-04-01T13:57:15.000Z
data/r_outletsdata.py
ljunhui/Koufu_SG_Map
8d440605cc90c49c6635f4d5202bd262e30b0efb
[ "MIT" ]
null
null
null
data/r_outletsdata.py
ljunhui/Koufu_SG_Map
8d440605cc90c49c6635f4d5202bd262e30b0efb
[ "MIT" ]
null
null
null
# %% Import import numpy as np import pandas as pd import requests import os from bs4 import BeautifulSoup """ Takes a dictionary of relevant brands and their URLs and returns a raw csv file """ # %% Functions def outlets_crawl(brand, url): """ Returns a raw, unformatted df of outlets with it's brand from the url inserted """ page = requests.get(url) soup = BeautifulSoup(page.content, "lxml") # ensure crawler had actual results to work with. def _check_results(class_term, soup=soup): results = soup.find_all(attrs={"class": class_term}) if len(results) == 0: raise ValueError("No outlets found, check class_term or url.") return results try: results = _check_results("outlet_item") except ValueError: results = _check_results("lease_item") # continue _ls = [] for result in results: _ls.append([i for i in result.stripped_strings]) df = pd.DataFrame(_ls) df.insert(0, "brand", brand, allow_duplicates=True) return df def loop_outlets_crawl(dict, outputfn): """ Loops outlets_crawl func through a dictionary of urls and their brands. Returns a concatenated df and saves it as a temporary csv. """ _ls = [] for brand, url in dict.items(): _ls.append(outlets_crawl(brand, url)) print(f"{brand} done.") df = pd.concat(_ls) df.to_csv(outputfn, index=False) def main(): url_dict = { "Koufu": "https://www.koufu.com.sg/our-brands/food-halls/koufu/", "Cookhouse": "https://www.koufu.com.sg/our-brands/food-halls/cookhouse/", "Rasapura": "https://www.koufu.com.sg/our-brands/food-halls/rasapura-masters/", "ForkSpoon": "https://www.koufu.com.sg/our-brands/food-halls/fork-spoon/", "HappyHawkers": "https://www.koufu.com.sg/our-brands/food-halls/happy-hawkers/", "Gourmet": "https://www.koufu.com.sg/our-brands/food-halls/gourmet-paradise/", "R&B": "https://www.koufu.com.sg/our-brands/concept-stores/rb-tea/", "1983NY": "https://www.koufu.com.sg/our-brands/concept-stores/1983-a-taste-of-nanyang/", "Supertea": "https://www.koufu.com.sg/our-brands/concept-stores/supertea/", "1983CT": "https://www.koufu.com.sg/our-brands/cafe-restaurants/1983-coffee-toast/", "Elemen": "https://www.koufu.com.sg/our-brands/cafe-restaurants/elemen-%e5%85%83%e7%b4%a0/", "Grove": "https://www.koufu.com.sg/our-brands/cafe-restaurants/grovecafe/", } outputfn = "./r_outletsdata.csv" if os.path.isfile(outputfn): os.remove(outputfn) loop_outlets_crawl(url_dict, outputfn) # %% Main if __name__ == "__main__": main() os.system("pause")
33.604938
134
0.653564
0
0
0
0
0
0
0
0
1,459
0.536003
b8f7dac938dacb0d70352e73d7ee85999cfcb966
5,918
py
Python
ue4docker/setup_cmd.py
Wadimich/ue4-docker
01ef4af09cf8e7b9e845203031b2bed3db06034b
[ "MIT" ]
1
2021-05-19T16:41:04.000Z
2021-05-19T16:41:04.000Z
ue4docker/setup_cmd.py
Wadimich/ue4-docker
01ef4af09cf8e7b9e845203031b2bed3db06034b
[ "MIT" ]
null
null
null
ue4docker/setup_cmd.py
Wadimich/ue4-docker
01ef4af09cf8e7b9e845203031b2bed3db06034b
[ "MIT" ]
null
null
null
import docker, os, platform, requests, shutil, subprocess, sys from .infrastructure import * # Runs a command without displaying its output and returns the exit code def _runSilent(command): result = SubprocessUtils.capture(command, check=False) return result.returncode # Performs setup for Linux hosts def _setupLinux(): # Pull the latest version of the Alpine container image alpineImage = 'alpine:latest' SubprocessUtils.capture(['docker', 'pull', alpineImage]) # Start the credential endpoint with blank credentials endpoint = CredentialEndpoint('', '') endpoint.start() try: # Run an Alpine container to see if we can access the host port for the credential endpoint SubprocessUtils.capture([ 'docker', 'run', '--rm', alpineImage, 'wget', '--timeout=1', '--post-data=dummy', 'http://{}:9876'.format(NetworkUtils.hostIP()) ], check=True) # If we reach this point then the host port is accessible print('No firewall configuration required.') except: # The host port is blocked, so we need to perform firewall configuration print('Creating firewall rule for credential endpoint...') # Create the firewall rule subprocess.run(['iptables', '-I', 'INPUT', '-p', 'tcp', '--dport', '9876', '-j', 'ACCEPT'], check=True) # Ensure the firewall rule persists after reboot # (Requires the `iptables-persistent` service to be installed and running) os.makedirs('/etc/iptables', exist_ok=True) subprocess.run('iptables-save > /etc/iptables/rules.v4', shell=True, check=True) # Inform users of the `iptables-persistent` requirement print('Firewall rule created. Note that the `iptables-persistent` service will need to') print('be installed for the rule to persist after the host system reboots.') finally: # Stop the credential endpoint endpoint.stop() # Performs setup for Windows Server hosts def _setupWindowsServer(): # Check if we need to configure the maximum image size requiredLimit = WindowsUtils.requiredSizeLimit() if DockerUtils.maxsize() < requiredLimit: # Attempt to stop the Docker daemon print('Stopping the Docker daemon...') subprocess.run(['sc.exe', 'stop', 'docker'], check=True) # Attempt to set the maximum image size print('Setting maximum image size to {}GB...'.format(requiredLimit)) config = DockerUtils.getConfig() sizeOpt = 'size={}GB'.format(requiredLimit) if 'storage-opts' in config: config['storage-opts'] = list([o for o in config['storage-opts'] if o.lower().startswith('size=') == False]) config['storage-opts'].append(sizeOpt) else: config['storage-opts'] = [sizeOpt] DockerUtils.setConfig(config) # Attempt to start the Docker daemon print('Starting the Docker daemon...') subprocess.run(['sc.exe', 'start', 'docker'], check=True) else: print('Maximum image size is already correctly configured.') # Determine if we need to configure Windows firewall ruleName = 'Open TCP port 9876 for ue4-docker credential endpoint' ruleExists = _runSilent(['netsh', 'advfirewall', 'firewall', 'show', 'rule', 'name={}'.format(ruleName)]) == 0 if ruleExists == False: # Add a rule to ensure Windows firewall allows access to the credential helper from our containers print('Creating firewall rule for credential endpoint...') subprocess.run([ 'netsh', 'advfirewall', 'firewall', 'add', 'rule', 'name={}'.format(ruleName), 'dir=in', 'action=allow', 'protocol=TCP', 'localport=9876' ], check=True) else: print('Firewall rule for credential endpoint is already configured.') # Determine if the host system is Windows Server Core and lacks the required DLL files for building our containers hostRelease = WindowsUtils.getWindowsRelease() requiredDLLs = WindowsUtils.requiredHostDlls(hostRelease) dllDir = os.path.join(os.environ['SystemRoot'], 'System32') existing = [dll for dll in requiredDLLs if os.path.exists(os.path.join(dllDir, dll))] if len(existing) != len(requiredDLLs): # Determine if we can extract DLL files from the full Windows base image (version 1809 and newer only) tags = requests.get('https://mcr.microsoft.com/v2/windows/tags/list').json()['tags'] if hostRelease in tags: # Pull the full Windows base image with the appropriate tag if it does not already exist image = 'mcr.microsoft.com/windows:{}'.format(hostRelease) print('Pulling full Windows base image "{}"...'.format(image)) subprocess.run(['docker', 'pull', image], check=True) # Start a container from which we will copy the DLL files, bind-mounting our DLL destination directory print('Starting a container to copy DLL files from...') mountPath = 'C:\\dlldir' container = DockerUtils.start( image, ['timeout', '/t', '99999', '/nobreak'], mounts = [docker.types.Mount(mountPath, dllDir, 'bind')], stdin_open = True, tty = True, remove = True ) # Copy the DLL files to the host print('Copying DLL files to the host system...') DockerUtils.execMultiple(container, [['xcopy', '/y', os.path.join(dllDir, dll), mountPath + '\\'] for dll in requiredDLLs]) # Stop the container print('Stopping the container...') container.stop() else: print('The following DLL files will need to be manually copied into {}:'.format(dllDir)) print('\n'.join(['- {}'.format(dll) for dll in requiredDLLs if dll not in existing])) else: print('All required DLL files are already present on the host system.') def setup(): # We don't currently support auto-config for VM-based containers if platform.system() == 'Darwin' or (platform.system() == 'Windows' and WindowsUtils.isWindowsServer() == False): print('Manual configuration is required under Windows 10 and macOS. Automatic configuration is not available.') return # Perform setup based on the host system type if platform.system() == 'Linux': _setupLinux() else: _setupWindowsServer()
38.679739
126
0.70784
0
0
0
0
0
0
0
0
3,260
0.550862
b8f9dd022646dc722a37cd9325b2748aca492315
180
py
Python
src/lesson_developer_tools/unittest_truth.py
jasonwee/asus-rt-n14uhp-mrtg
4fa96c3406e32ea6631ce447db6d19d70b2cd061
[ "Apache-2.0" ]
3
2018-08-14T09:33:52.000Z
2022-03-21T12:31:58.000Z
src/lesson_developer_tools/unittest_truth.py
jasonwee/asus-rt-n14uhp-mrtg
4fa96c3406e32ea6631ce447db6d19d70b2cd061
[ "Apache-2.0" ]
null
null
null
src/lesson_developer_tools/unittest_truth.py
jasonwee/asus-rt-n14uhp-mrtg
4fa96c3406e32ea6631ce447db6d19d70b2cd061
[ "Apache-2.0" ]
null
null
null
import unittest class TruthTest(unittest.TestCase): def testAssertTrue(self): self.assertTrue(True) def testAssertFalse(self): self.assertFalse(False)
15
35
0.694444
160
0.888889
0
0
0
0
0
0
0
0
b8f9fb55632e48828f82b3c4a79b4f130acc6705
6,570
py
Python
tia/trad/monitor_mainTr.py
jmakov/market_tia
0804fd82b4fb3ea52c171ea0759f0e10fc659bb2
[ "MIT" ]
1
2020-07-24T04:18:57.000Z
2020-07-24T04:18:57.000Z
tia/trad/monitor_mainTr.py
jmakov/market_tia
0804fd82b4fb3ea52c171ea0759f0e10fc659bb2
[ "MIT" ]
null
null
null
tia/trad/monitor_mainTr.py
jmakov/market_tia
0804fd82b4fb3ea52c171ea0759f0e10fc659bb2
[ "MIT" ]
1
2020-07-24T04:22:14.000Z
2020-07-24T04:22:14.000Z
import sys import time from tia.trad.tools.io.follow import followMonitor import tia.configuration as conf from tia.trad.tools.errf import eReport import ujson as json import matplotlib.pyplot as plt import math import collections import logging from tia.trad.tools.ipc.processLogger import PROCESS_NAME LOGGER_NAME = PROCESS_NAME + __file__.split("/")[-1]; logger = logging.getLogger(LOGGER_NAME) reportFile = None def pointDistance(initF, initI, point): try: t = initI[0]-initF[0], initI[1]-initF[1] # Vector ab dd = math.sqrt(t[0]**2+t[1]**2) # Length of ab t = t[0]/dd, t[1]/dd # unit vector of ab n = -t[1], t[0] # normal unit vector to ab ac = point[0]-initF[0], point[1]-initF[1] # vector ac return math.fabs(ac[0]*n[0]+ac[1]*n[1]) # Projection of ac to n (the minimum distance) except Exception: raise def getAvg(_list): try: return float(max(_list) + min(_list)) / float(2) except Exception: raise def shutdown(): try: logger.debug("shutting down") global reportFile reportFile.close() except Exception: raise def run(**kwargs): try: global logger global reportFile logger = kwargs["processLogger"] logger.debug("monitor_mainTr:hi") _initFunds = kwargs["initFunds"] _initItems = kwargs["initItems"] plt.ion() # turn interactive on fig = plt.figure() fig.show() # raw ax = fig.add_subplot(221) #hline = ax.axhline(y=_initFunds) #vline = ax.axvline(x=_initItems) #ax.set_xscale("log") #ax.set_yscale("log") data, = ax.plot([], [], 'b+') data11, = ax.plot([], [], 'ro') # value ax2 = fig.add_subplot(222) data2, = ax2.plot([], [], 'ro-') # inside TM ax3 = fig.add_subplot(223) data3, = ax3.plot([], [], 'ro') data4, = ax3.plot([],[], 'bo') minBids, = ax3.plot([], [], "r>") maxAsks, = ax3.plot([], [], "b>") # top b/a ax5 = fig.add_subplot(224) dataI, = ax5.plot([], [], "o-") dataF, = ax5.plot([], [], "ro-") windowLength = 50 fundsHistory = collections.deque(maxlen=windowLength); itemsHistory = collections.deque(maxlen=windowLength) valueHistory = collections.deque(maxlen=windowLength) tmFundsHistory = collections.deque(maxlen=windowLength); tmItemsHistory = collections.deque(maxlen=windowLength) tmIAHSum = collections.deque(maxlen=windowLength); tmFAHSum = collections.deque(maxlen=windowLength) topAsksHistory = collections.deque(maxlen=10) topBidsHistory = collections.deque(maxlen=10) # touch report.json #reportFile = open(conf.FN_REPORT, "w"); reportFile.close() reportFile = open(conf.FN_REPORT, "r") newline = followMonitor(reportFile, fig) while 1: try: #for line in reportFile: line = newline.next() jsonObj = json.loads(line) universeSize = float(jsonObj["universeSize"]) topAsks = jsonObj["topAsks"]; topBids = jsonObj["topBids"] initInvF = float(_initFunds) * universeSize initInvI = float(_initItems) * universeSize cumulFunds = float(jsonObj["cumulFunds"]) cumulItems = float(jsonObj["cumulItems"]) #fundsHistory.append(funds); itemsHistory.append(items) dist = pointDistance([0, initInvF], [initInvI, 0], [cumulFunds, cumulItems]) fundsHistory.append(dist) #data.set_ydata(fundsHistory); data.set_xdata(itemsHistory) data.set_ydata(fundsHistory); data.set_xdata(xrange(len(fundsHistory))) #data11.set_ydata(funds); data11.set_xdata(items) #data11.set_ydata(dist); data11.set_xdata(xrange(len(fundsHistory))) ax.relim() ax.autoscale_view(True,True,True) tmFunds = jsonObj["tmFunds"]; tmItems = jsonObj["tmItems"] tmFA = 0; tmIA = 0 tmFPH = collections.deque(); tmFAH = collections.deque() tmIPH = collections.deque(); tmIAH = collections.deque() for price in tmFunds: amount = tmFunds[price] tmFPH.append(price) tmFAH.append(amount) tmFA += amount tmFAHSum.append(tmFA) for price in tmItems: amount = tmItems[price] tmIPH.append(price) tmIAH.append(amount) tmIA += amount tmIAHSum.append(tmIA) dataI.set_ydata(tmIAHSum); dataI.set_xdata(xrange(len(tmIAHSum))) dataF.set_ydata(tmFAHSum); dataF.set_xdata(xrange(len(tmFAHSum))) ax5.relim() ax5.autoscale_view(True,True,True) value = float(jsonObj["value"]) / initInvF if initInvF else float(jsonObj["value"]) valueHistory.append(value) data2.set_xdata(range(len(valueHistory))) data2.set_ydata(valueHistory) ax2.relim() ax2.autoscale_view(True,True,True) """ TM stuff """ # make universe states pretty tmpList = list(tmFAH) + list(tmIAH) xDrawStart = min(tmpList) drawedInterval = max(tmpList) - xDrawStart spacing = float(drawedInterval) / float (len(topBids)) offset = float(spacing) / float(2) xcords = collections.deque() for index, bid in enumerate(topBids): xcords.append(offset + xDrawStart + index * spacing) minBids.set_ydata(topBids); minBids.set_xdata(xcords) maxAsks.set_ydata(topAsks); maxAsks.set_xdata(xcords) data3.set_xdata(tmFAH) data3.set_ydata(tmFPH) data4.set_xdata(tmIAH) data4.set_ydata(tmIPH) ax3.relim() ax3.autoscale_view(True,True,True) fig.canvas.draw() #plt.savefig(conf.FN_PLOT_IMAGE) except ValueError: continue except Exception as ex: eReport(__file__) reportFile.close() sys.exit()
37.118644
120
0.555403
0
0
0
0
0
0
0
0
933
0.142009
b8faedfafe51cef8b7826a43e9c04a44b4437054
1,975
py
Python
irocr/config.py
guidj/ir-orc
46476a847605d7d36deda5eb27d282eaa9e04d9a
[ "Apache-2.0" ]
1
2016-04-05T15:46:28.000Z
2016-04-05T15:46:28.000Z
irocr/config.py
guidj/ir-orc
46476a847605d7d36deda5eb27d282eaa9e04d9a
[ "Apache-2.0" ]
null
null
null
irocr/config.py
guidj/ir-orc
46476a847605d7d36deda5eb27d282eaa9e04d9a
[ "Apache-2.0" ]
null
null
null
import os import os.path import ConfigParser PROJECT_BASE = ''.join([os.path.dirname(os.path.abspath(__file__)), "/../"]) CONFIG_FILE = ''.join([PROJECT_BASE, 'config.ini']) _UNSET = object() class ConfigurationError(Exception): pass def get(section, option=None, type=None, fallback=_UNSET): config = ConfigParser.ConfigParser() with open(CONFIG_FILE, "r") as fp: config.readfp(fp) try: if option: if type: if type in [str, int, float, complex]: value = type(config.get(section, option)) elif type == bool: value = config.getboolean(section, option) else: raise ConfigurationError( '{0} is an invalid data type. `type` must be a basic data type: ' 'str, bool, int, float or complex'.format( str(type) ) ) else: value = config.get(section, option) return value else: data = dict(config.items(section)) return data except (ConfigParser.NoOptionError, ConfigParser.NoSectionError) as exc: if fallback is _UNSET: raise ConfigurationError(exc) else: return fallback def save(section, option, value): config = ConfigParser.ConfigParser() if os.path.exists(CONFIG_FILE): with open(CONFIG_FILE, "r") as fp: config.readfp(fp) with open(CONFIG_FILE, "w") as fp: try: if config.has_section(section) is False: config.add_section(section) config.set(section, option, str(value)) config.write(fp) except ConfigParser.Error as exc: raise ConfigurationError(exc)
25.320513
93
0.515443
45
0.022785
0
0
0
0
0
0
130
0.065823
b8fc2913caa7185f3d28c952db02652d27ed5b76
8,940
py
Python
mmtbx/ions/tst_environment.py
jbeilstenedmands/cctbx_project
c228fb15ab10377f664c39553d866281358195aa
[ "BSD-3-Clause-LBNL" ]
null
null
null
mmtbx/ions/tst_environment.py
jbeilstenedmands/cctbx_project
c228fb15ab10377f664c39553d866281358195aa
[ "BSD-3-Clause-LBNL" ]
null
null
null
mmtbx/ions/tst_environment.py
jbeilstenedmands/cctbx_project
c228fb15ab10377f664c39553d866281358195aa
[ "BSD-3-Clause-LBNL" ]
null
null
null
# -*- coding: utf-8; py-indent-offset: 2 -*- from __future__ import division from mmtbx.ions.environment import ChemicalEnvironment import mmtbx.ions.identify from mmtbx import ions import mmtbx.monomer_library.pdb_interpretation from mmtbx import monomer_library from mmtbx.ions.environment import chem_carboxy, chem_amide, chem_backbone, \ chem_water, chem_phosphate, \ chem_nitrogen_primary, chem_nitrogen_secondary, \ chem_chloride, chem_oxygen, chem_nitrogen, chem_sulfur import libtbx.load_env from collections import OrderedDict, Counter import os import sys def exercise () : if not libtbx.env.has_module("phenix_regression"): print "Skipping {}".format(os.path.split(__file__)[1]) return models = OrderedDict([ ("2qng", [ Counter({chem_oxygen: 7, chem_carboxy: 2, chem_water: 2, chem_backbone: 3}), Counter({chem_oxygen: 6, chem_carboxy: 3, chem_water: 1, chem_backbone: 2}), ]), ("3rva", [ Counter({chem_oxygen: 6, chem_carboxy: 4, chem_water: 2}), Counter({chem_nitrogen: 1, chem_oxygen: 4, chem_nitrogen_secondary: 1, chem_carboxy: 3, chem_water: 1}), Counter({chem_nitrogen: 4, chem_nitrogen_primary: 1, chem_nitrogen_secondary: 3, chem_backbone: 3}), ]), ("1mjh", [ Counter({chem_oxygen: 6, chem_water: 3, chem_phosphate: 3}), Counter({chem_oxygen: 6, chem_water: 3, chem_phosphate: 3}), ]), ("4e1h", [ Counter({chem_oxygen: 6, chem_carboxy: 4}), Counter({chem_oxygen: 6, chem_carboxy: 3}), Counter({chem_oxygen: 6, chem_carboxy: 3}), ]), ("2xuz", [ Counter({chem_oxygen: 6}), ]), ("3zli", [ Counter({chem_nitrogen: 2, chem_oxygen: 4, chem_nitrogen_secondary: 2, chem_carboxy: 1, chem_water: 1}), Counter({chem_sulfur: 4}), Counter({chem_nitrogen: 2, chem_oxygen: 4, chem_nitrogen_secondary: 2, chem_carboxy: 1, chem_water: 1}), Counter({chem_sulfur: 4}), ]), ("3e0f", [ Counter({chem_nitrogen: 2, chem_oxygen: 4, chem_nitrogen_secondary: 2, chem_carboxy: 2, chem_phosphate: 2}), Counter({chem_nitrogen: 2, chem_oxygen: 2, chem_nitrogen_secondary: 2, chem_carboxy: 1, chem_phosphate: 1}), Counter({chem_nitrogen: 2, chem_oxygen: 3, chem_nitrogen_secondary: 2, chem_carboxy: 2, chem_phosphate: 1}), ]), ("3dkq", [ Counter({chem_nitrogen: 4, chem_oxygen: 1, chem_nitrogen_secondary: 4, chem_carboxy: 1}), Counter({chem_nitrogen: 2, chem_oxygen: 1, chem_nitrogen_secondary: 2, chem_carboxy: 1}), Counter({chem_nitrogen: 4, chem_oxygen: 1, chem_nitrogen_secondary: 4, chem_carboxy: 1}), ]), ("2o8q", [ Counter({chem_nitrogen: 3, chem_oxygen: 3, chem_nitrogen_secondary: 3, chem_water: 3}), Counter({chem_nitrogen: 3, chem_oxygen: 3, chem_nitrogen_secondary: 3, chem_water: 3}), ]), ("1tgg", [ Counter({chem_oxygen: 5, chem_chloride: 1, chem_carboxy: 4, chem_water: 1}), Counter({chem_oxygen: 3, chem_chloride: 2, chem_carboxy: 3}), Counter({chem_oxygen: 4, chem_chloride: 2, chem_carboxy: 4}), ]), ("3zu8", [ Counter({chem_oxygen: 7, chem_carboxy: 3, chem_water: 1, chem_backbone: 2}), Counter({chem_nitrogen: 4, chem_oxygen: 1, chem_nitrogen_primary: 1, chem_nitrogen_secondary: 3, chem_carboxy: 1, chem_backbone: 3}), ]), ("1ofs", [ Counter({chem_nitrogen: 1, chem_oxygen: 4, chem_nitrogen_secondary: 1, chem_carboxy: 3, chem_water: 1}), Counter({chem_oxygen: 7, chem_amide: 1, chem_carboxy: 3, chem_water: 2, chem_backbone: 1}), Counter({chem_nitrogen: 1, chem_oxygen: 5, chem_nitrogen_secondary: 1, chem_carboxy: 3, chem_water: 2}), Counter({chem_oxygen: 7, chem_amide: 1, chem_carboxy: 3, chem_water: 2, chem_backbone: 1}), ]), ("3ul2", [ Counter({chem_oxygen: 7, chem_amide: 1, chem_carboxy: 3, chem_water: 2, chem_backbone: 1}), Counter({chem_nitrogen: 1, chem_oxygen: 5, chem_nitrogen_secondary: 1, chem_carboxy: 3, chem_water: 2}), Counter({chem_oxygen: 7, chem_amide: 1, chem_carboxy: 3, chem_backbone: 1, chem_water: 2}), Counter({chem_nitrogen: 1, chem_oxygen: 5, chem_nitrogen_secondary: 1, chem_carboxy: 3, chem_water: 2}), Counter({chem_oxygen: 7, chem_amide: 1, chem_carboxy: 3, chem_water: 2, chem_backbone: 1}), Counter({chem_nitrogen: 1, chem_oxygen: 5, chem_nitrogen_secondary: 1, chem_carboxy: 3, chem_water: 2}), Counter({chem_oxygen: 7, chem_amide: 1, chem_carboxy: 3, chem_water: 2, chem_backbone: 1}), Counter({chem_nitrogen: 1, chem_oxygen: 5, chem_nitrogen_secondary: 1, chem_carboxy: 3, chem_water: 2}), ]), ("3snm", [ Counter({chem_oxygen: 5, chem_amide: 1, chem_carboxy: 3, chem_backbone: 1}), Counter({chem_nitrogen: 1, chem_oxygen: 3, chem_nitrogen_secondary: 1, chem_carboxy: 3}), ]), ("3qlq", [ Counter({chem_oxygen: 7, chem_amide: 1, chem_carboxy: 3, chem_water: 2, chem_backbone: 1}), Counter({chem_nitrogen: 1, chem_oxygen: 5, chem_nitrogen_secondary: 1, chem_carboxy: 3, chem_water: 2}), Counter({chem_nitrogen: 1, chem_oxygen: 5, chem_nitrogen_secondary: 1, chem_carboxy: 3, chem_water: 2}), Counter({chem_oxygen: 7, chem_amide: 1, chem_carboxy: 3, chem_water: 2, chem_backbone: 1}), Counter({chem_nitrogen: 1, chem_oxygen: 5, chem_nitrogen_secondary: 1, chem_carboxy: 3, chem_water: 2}), Counter({chem_oxygen: 7, chem_amide: 1, chem_carboxy: 3, chem_water: 2, chem_backbone: 1}), Counter({chem_oxygen: 7, chem_amide: 1, chem_carboxy: 3, chem_water: 2, chem_backbone: 1}), Counter({chem_nitrogen: 1, chem_oxygen: 5, chem_nitrogen_secondary: 1, chem_carboxy: 3, chem_water: 2}), ]), ("2gdf", [ Counter({chem_nitrogen: 1, chem_oxygen: 4, chem_nitrogen_secondary: 1, chem_carboxy: 3, chem_water: 1}), Counter({chem_oxygen: 6, chem_amide: 1, chem_carboxy: 3, chem_water: 1, chem_backbone: 1}), Counter({chem_nitrogen: 1, chem_oxygen: 4, chem_nitrogen_secondary: 1, chem_carboxy: 3, chem_water: 1}), Counter({chem_oxygen: 6, chem_amide: 1, chem_carboxy: 3, chem_water: 1, chem_backbone: 1}), ]), ("1q8h", [ Counter({chem_oxygen: 7, chem_carboxy: 6, chem_water: 1}), Counter({chem_oxygen: 7, chem_carboxy: 4, chem_water: 3}), Counter({chem_oxygen: 8, chem_carboxy: 6, chem_water: 2}), ]), ]) for model, expected_environments in models.items(): pdb_path = libtbx.env.find_in_repositories( relative_path = os.path.join( "phenix_regression", "mmtbx", "ions", model + ".pdb"), test = os.path.isfile ) mon_lib_srv = monomer_library.server.server() ener_lib = monomer_library.server.ener_lib() processed_pdb_file = monomer_library.pdb_interpretation.process( mon_lib_srv = mon_lib_srv, ener_lib = ener_lib, file_name = pdb_path, raw_records = None, force_symmetry = True, log = libtbx.utils.null_out() ) geometry = \ processed_pdb_file.geometry_restraints_manager(show_energies = False) xray_structure = processed_pdb_file.xray_structure() pdb_hierarchy = processed_pdb_file.all_chain_proxies.pdb_hierarchy connectivity = geometry.shell_sym_tables[0].full_simple_connectivity() manager = mmtbx.ions.identify.manager( fmodel = None, pdb_hierarchy = pdb_hierarchy, xray_structure = xray_structure, connectivity = connectivity) elements = set(ions.DEFAULT_IONS + ions.TRANSITION_METALS) elements.difference_update(["CL"]) metals = [i_seq for i_seq, atom in enumerate(manager.pdb_atoms) if atom.fetch_labels().resname.strip().upper() in elements] assert len(metals) == len(expected_environments) for index, metal, expected_environment in \ zip(xrange(len(metals)), metals, expected_environments): env = ChemicalEnvironment( metal, manager.find_nearby_atoms(metal, filter_by_two_fofc = False), manager ) if env.chemistry != expected_environment: print "Problem detecting chemistry environment in", model, index print "Found: ", env.chemistry print "Should be:", expected_environment sys.exit() print "OK" if __name__ == "__main__": exercise()
41.581395
80
0.631767
0
0
0
0
0
0
0
0
302
0.033781
b8fde4b07b6cd3c768fcd79e7fc1ef7c9a747340
600
py
Python
extinfo/extractors/fileinfo_com.py
rpdelaney/extinfo
35463afe295b1bc83478960e67762ffb10915175
[ "Apache-2.0" ]
null
null
null
extinfo/extractors/fileinfo_com.py
rpdelaney/extinfo
35463afe295b1bc83478960e67762ffb10915175
[ "Apache-2.0" ]
null
null
null
extinfo/extractors/fileinfo_com.py
rpdelaney/extinfo
35463afe295b1bc83478960e67762ffb10915175
[ "Apache-2.0" ]
null
null
null
import re from ..utils import Report, fetch SITE = "fileinfo.com" PATH = "/extension" def extract(extension: str) -> list[Report]: soup = fetch(site=SITE, path=PATH, extension=extension) description_short = soup.find_all("h2")[0].text.strip() infoboxes = soup.find_all(attrs={"class": "infoBox"}) description_long = infoboxes[0].text.strip() how_to_open = re.sub(r"\n+", "\n\n", infoboxes[1].text).strip() report = Report( description_short=description_short, description_long=description_long, how_to_open=how_to_open, ) return [report]
26.086957
67
0.67
0
0
0
0
0
0
0
0
58
0.096667
b8fdf6d347c186c16105c41f259ca397f53533cf
801
py
Python
style/api/routers/prediction.py
imagination-ai/kerem-side-projects-monorepo
3d9da9d57f305ac2d6a03bab3787acfbee7269ee
[ "MIT" ]
null
null
null
style/api/routers/prediction.py
imagination-ai/kerem-side-projects-monorepo
3d9da9d57f305ac2d6a03bab3787acfbee7269ee
[ "MIT" ]
2
2022-01-20T15:46:39.000Z
2022-02-16T20:51:47.000Z
style/api/routers/prediction.py
imagination-ai/kerem-side-projects-monorepo
3d9da9d57f305ac2d6a03bab3787acfbee7269ee
[ "MIT" ]
null
null
null
from fastapi import APIRouter from pydantic import BaseModel from style.predict.servable.serve import get_servable router = APIRouter() class PredictionRequest(BaseModel): text: str model_name: str @router.get("/") async def index(): return {"success": True, "message": "Predictions Router is working!"} @router.post("/predict") async def predict(request: PredictionRequest): servable = get_servable(request.model_name) prediction = servable.run_inference(request.text) return {"success": True, "prediction": prediction} @router.post("/predicts") async def predicts(request: PredictionRequest): servable = get_servable(request.model_name) predictions = servable.run_inference_multiclass(request.text) return {"success": True, "predictions": predictions}
25.03125
73
0.746567
69
0.086142
0
0
581
0.725343
513
0.640449
117
0.146067
b8fe991a0b450794e796f906cb32a0c3c5911676
77
py
Python
pyrepl/iconsole.py
thinkle/snippets
a19fd709fc618cee9d76b7481b834c3e0d4ed397
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
pyrepl/iconsole.py
thinkle/snippets
a19fd709fc618cee9d76b7481b834c3e0d4ed397
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
pyrepl/iconsole.py
thinkle/snippets
a19fd709fc618cee9d76b7481b834c3e0d4ed397
[ "BSD-2-Clause-FreeBSD" ]
1
2019-08-28T22:06:53.000Z
2019-08-28T22:06:53.000Z
from IPython.Shell import IPShellEmbed ipshell = IPShellEmbed() ipshell()
11
38
0.779221
0
0
0
0
0
0
0
0
0
0
b8feb9d082e79ca3a8c079efe501a2cd98406b92
2,623
py
Python
src/tests/ftest/pool/create_capacity_test.py
berserk-fury/daos
e0a3249aa886962cef2345135b907b45f7109cae
[ "BSD-2-Clause-Patent" ]
null
null
null
src/tests/ftest/pool/create_capacity_test.py
berserk-fury/daos
e0a3249aa886962cef2345135b907b45f7109cae
[ "BSD-2-Clause-Patent" ]
null
null
null
src/tests/ftest/pool/create_capacity_test.py
berserk-fury/daos
e0a3249aa886962cef2345135b907b45f7109cae
[ "BSD-2-Clause-Patent" ]
1
2021-11-03T05:00:42.000Z
2021-11-03T05:00:42.000Z
#!/usr/bin/python3 """ (C) Copyright 2021 Intel Corporation. SPDX-License-Identifier: BSD-2-Clause-Patent """ import time from pool_test_base import PoolTestBase from server_utils import ServerFailed class PoolCreateTests(PoolTestBase): # pylint: disable=too-many-ancestors,too-few-public-methods """Pool create tests. All of the tests verify pool create performance with 7 servers and 1 client. Each server should be configured with full compliment of NVDIMMs and SSDs. :avocado: recursive """ def test_create_pool_quantity(self): """JIRA ID: DAOS-5114 / SRS-2 / SRS-4. Test Description: Create 200 pools on all of the servers. Perform an orderly system shutdown via cmd line (dmg). Restart the system via cmd line tool (dmg). Verify that DAOS is ready to accept requests with in 2 minutes. :avocado: tags=all,pr,daily_regression :avocado: tags=hw,large :avocado: tags=pool :avocado: tags=pool_create_tests,create_performance """ # Create some number of pools each using a equal amount of 60% of the # available capacity, e.g. 0.6% for 100 pools. quantity = self.params.get("quantity", "/run/pool/*", 1) self.add_pool_qty(quantity, create=False) self.check_pool_creation(10) # Verify DAOS can be restarted in less than 2 minutes try: self.server_managers[0].system_stop() except ServerFailed as error: self.fail(error) start = float(time.time()) try: self.server_managers[0].system_start() except ServerFailed as error: self.fail(error) duration = float(time.time()) - start self.assertLessEqual( duration, 120, "DAOS not ready to accept requests with in 2 minutes") # Verify all the pools exists after the restart detected_pools = [uuid.lower() for uuid in self.dmg.pool_list()] missing_pools = [] for pool in self.pool: pool_uuid = pool.uuid.lower() if pool_uuid not in detected_pools: missing_pools.append(pool_uuid) if missing_pools: self.fail( "The following created pools were not detected in the pool " "list after rebooting the servers:\n [{}]: {}".format( len(missing_pools), ", ".join(missing_pools))) self.assertEqual( len(self.pool), len(detected_pools), "Additional pools detected after rebooting the servers")
34.973333
80
0.626382
2,418
0.921845
0
0
0
0
0
0
1,336
0.50934
b8fecc2152a699d192482875bb377312659faf77
577
py
Python
async-utils/setup.py
goc9000/python-library
0a4a09278df6e84061baedda8997071e2201103f
[ "MIT" ]
null
null
null
async-utils/setup.py
goc9000/python-library
0a4a09278df6e84061baedda8997071e2201103f
[ "MIT" ]
null
null
null
async-utils/setup.py
goc9000/python-library
0a4a09278df6e84061baedda8997071e2201103f
[ "MIT" ]
null
null
null
from setuptools import setup, find_packages setup( name='atmfjstc-async-utils', version='0.1.0', author_email='atmfjstc@protonmail.com', package_dir={'': 'src'}, packages=find_packages(where='src'), install_requires=[ ], zip_safe=True, description="Utilities for async code", classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Framework :: AsyncIO", "Typing :: Typed", ], python_requires='>=3.9', )
20.607143
49
0.60312
0
0
0
0
0
0
0
0
251
0.435009
b8fef77cc6fd6e6d00ddf3b311025b4035166678
5,865
py
Python
msg_scheduler/analyzer.py
buaales/tt_offline_scheduler
257d8e2c94fc896c891e7d2a014bb2eebde996ce
[ "MIT" ]
5
2021-05-18T11:34:42.000Z
2022-02-24T03:33:43.000Z
msg_scheduler/analyzer.py
buaales/tt_offline_scheduler
257d8e2c94fc896c891e7d2a014bb2eebde996ce
[ "MIT" ]
null
null
null
msg_scheduler/analyzer.py
buaales/tt_offline_scheduler
257d8e2c94fc896c891e7d2a014bb2eebde996ce
[ "MIT" ]
3
2020-09-10T05:58:59.000Z
2022-02-25T01:50:25.000Z
import subprocess import sys from collections import defaultdict import pandas as pd import networkx import random import functools import matplotlib import matplotlib.pyplot as plt import matplotlib.animation as animation from .model import Network, Link, Frame, Node import io if sys.platform == 'darwin': matplotlib.use("TkAgg") class Analyzer: def __init__(self, df: pd.DataFrame, network: Network, lcm: int): self._df = df self._network = network self._graph = network.graph self._lcm = lcm def print_by_time(self): print(self._df.sort_values(by='time_slot')) def print_by_app(self): res = self._df.sort_values(by='app') print(res) def _animate_update(self, ax, time_slot): ax.clear() ax.set_title(f'Time slot: {time_slot}') edge_lable = dict() pos = networkx.spring_layout(self._graph, seed=0, scale=3) cur_table = self._df[self._df['time_slot'] == time_slot] for idx, cur_row in cur_table.iterrows(): link = cur_row['link'] edge_lable[(link.node1.name, link.node2.name)] = cur_row['app'].name networkx.draw_networkx_edges(self._graph, pos=pos, ax=ax, edge_color='gray') nodes = networkx.draw_networkx_nodes(self._graph, pos=pos, ax=ax, node_color="white", node_size=1000, node_shape='o') nodes.set_edgecolor('black') networkx.draw_networkx_labels(self._graph, pos=pos, ax=ax, font_size=8) networkx.draw_networkx_edge_labels(self._graph, pos=pos, edge_labels=edge_lable, ax=ax) ax.set_xticks([]) ax.set_yticks([]) def animate(self): fig, ax = plt.subplots(figsize=(8, 8)) ani = animation.FuncAnimation(fig, functools.partial(self._animate_update, ax), frames=self._lcm, interval=650, repeat=True) # Set up formatting for the movie files ani.save('/tmp/res.mov', fps=1, dpi=100) plt.show() pass def export(self, hosts=("127.0.0.1",)): exported = io.StringIO() p = functools.partial(print, file=exported) node_app_map = {} for app in self._df['app'].unique(): node_app_map[app.node] = app msg_core_app = defaultdict(list) app_count = 0 for node in self._graph.nodes: if node.startswith('msg'): msg_core_app[node] = msg_core_app[node] for nei in self._graph.neighbors(node): if nei.startswith('app'): app_count += 1 msg_core_app[node].append(nei) p(len(msg_core_app), self._lcm) for i, ma in enumerate(msg_core_app.keys()): # inter msg server endpoint and app endpoint ip = random.Random(200 + i).choice(hosts) p(ma, ip, 10801 + i, 1 if i == 0 else 0, ip, 20801 + i) p() # 每个app什么时间槽发送一个消息 for msg_node, app_nodes in msg_core_app.items(): for app_node in app_nodes: app = node_app_map[app_node] for idx, row in self._df[self._df['app'] == app].iterrows(): if row['link'].node1.name == app_node and int(row['time_slot']) < app.peroid: p(':', app.name) p(row['time_slot'], app.peroid, msg_node) p() # 每个msg_core需要在什么时间把消息从哪转到哪 def find_next_node_not_switch(frame: Frame, n: Node) -> Node: if not n.name.startswith('switch'): return n for _, r in self._df.iterrows(): if r['link'].node1 != n or r['frame'].id != frame.id: continue if not r['link'].node2.name.startswith('switch'): return r['link'].node2 else: return find_next_node_not_switch(frame, r['link'].node2) def find_prev_node_not_switch(frame: Frame, n: Node) -> Node: if not n.name.startswith('switch'): return n for _, r in self._df.iterrows(): if r['link'].node2 != n or r['frame'].id != frame.id: continue if not r['link'].node1.name.startswith('switch'): return r['link'].node1 else: return find_next_node_not_switch(frame, r['link'].node1) def cvt_node(node: Node): return node_app_map[node.name] if node.name.startswith('app') else node.name for msg_node in msg_core_app.keys(): tlist = [] for _, row in self._df.iterrows(): if row['link'].node1 == msg_node: # msg node需要转发该消息 target_node = find_next_node_not_switch(row['frame'], row['link'].node2) tlist.append((msg_node, 'send', cvt_node(target_node), row['frame'].id, row['time_slot'])) elif row['link'].node2 == msg_node: target_node = find_prev_node_not_switch(row['frame'], row['link'].node1) tlist.append((msg_node, 'recv', cvt_node(target_node), row['frame'].id, row['time_slot'])) tlist = sorted(tlist, key=lambda x: int(x[4])) p(':', msg_node) p(self._lcm, len(msg_core_app[msg_node]), len(tlist)) p('\n'.join(map(lambda xm: node_app_map[xm].name, msg_core_app[msg_node]))) for x in tlist: for y in x[1:]: p(y, end=' ') p() p() with open('/tmp/tt.txt.tmp', 'w+') as f: print(exported.getvalue(), file=f) for ip in hosts: subprocess.run(f'scp /tmp/tt.txt.tmp {ip}:/tmp/tt.txt'.split(' ')) # print(exported.getvalue())
38.333333
119
0.554135
5,598
0.942583
0
0
0
0
0
0
682
0.114834
b8ff8b94d402dcdb466c2d51a4b1cfbb02411cf0
3,286
py
Python
endpoints/cotect-endpoints/cotect_endpoints/security.py
JNKielmann/cotect
1b213459b41ef18119948633385ebad2cc16e9e2
[ "MIT" ]
19
2020-03-18T15:49:58.000Z
2021-02-11T12:07:22.000Z
endpoints/cotect-endpoints/cotect_endpoints/security.py
JNKielmann/cotect
1b213459b41ef18119948633385ebad2cc16e9e2
[ "MIT" ]
6
2020-03-21T18:50:29.000Z
2022-02-27T01:38:20.000Z
endpoints/cotect-endpoints/cotect_endpoints/security.py
JNKielmann/cotect
1b213459b41ef18119948633385ebad2cc16e9e2
[ "MIT" ]
7
2020-03-24T14:42:35.000Z
2020-04-06T13:22:29.000Z
import logging import os import firebase_admin from fastapi import HTTPException, Security, status from fastapi.security import HTTPAuthorizationCredentials, HTTPBearer from fastapi.security.api_key import APIKeyCookie, APIKeyHeader, APIKeyQuery from firebase_admin import auth from cotect_endpoints.utils import id_utils from cotect_endpoints.schema import User # Initialize logger log = logging.getLogger(__name__) firebase_app = None firebase_credentials = os.getenv("GOOGLE_APPLICATION_CREDENTIALS") if firebase_credentials and os.path.isfile(firebase_credentials): # Initilize firebase firebase_app = firebase_admin.initialize_app() else: log.warning( "GOOGLE_APPLICATION_CREDENTIALS was not set with a valid path. Firebase will not be initalized." ) API_KEY_NAME = "api_token" api_key_bearer = HTTPBearer(auto_error=False) api_key_query = APIKeyQuery(name=API_KEY_NAME, auto_error=False) api_key_header = APIKeyHeader(name=API_KEY_NAME, auto_error=False) # Cookie security specification is not supported by swagger 2.0 specs # api_key_cookie = APIKeyCookie(name=API_KEY_NAME, auto_error=False) def get_active_user( api_key_bearer: HTTPAuthorizationCredentials = Security(api_key_bearer), api_key_query: str = Security(api_key_query), api_key_header: str = Security(api_key_header), # api_key_cookie: str = Security(api_key_cookie), ) -> User: # https://medium.com/data-rebels/fastapi-authentication-revisited-enabling-api-key-authentication-122dc5975680 secret = id_utils.get_id_generation_secret() api_key = None if api_key_bearer: api_key = api_key_bearer.credentials elif api_key_query: api_key = api_key_query elif api_key_header: api_key = api_key_header else: raise HTTPException( status_code=status.HTTP_403_FORBIDDEN, detail="No API Key was provided.", ) #elif api_key_cookie: # api_key = api_key_header if api_key == "demo": # Remove return User( user_id=id_utils.generate_user_id("+4917691377102", secret), verified=False, ) if not firebase_app: # firebase app was not initalized raise HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Failed to verify user.", headers={"WWW-Authenticate": "Bearer"}, ) try: decoded_token = auth.verify_id_token( api_key, app=firebase_app, check_revoked=False ) if "phone_number" in decoded_token and decoded_token["phone_number"]: return User( user_id=id_utils.generate_user_id(decoded_token["phone_number"], secret), verified=True, ) else: # use uid as fallback or for anonymous users return User( user_id=id_utils.generate_user_id(decoded_token["uid"], secret), verified=False, ) except Exception as ex: log.info("Failed to validate firebase token: " + str(ex.msg)) raise HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Failed to validate the firebase token.", headers={"WWW-Authenticate": "Bearer"}, )
33.530612
114
0.693244
0
0
0
0
0
0
0
0
857
0.260803
77009347b5bee01d461e0bc59d8b6aa0208dc523
7,201
py
Python
ui/Pytest/test_Range.py
MoisesHenr/OCEAN
e99c853893adc89652794ace62fcc8ffa78aa7ac
[ "MIT" ]
15
2021-06-15T13:48:03.000Z
2022-01-26T13:51:46.000Z
ui/Pytest/test_Range.py
MoisesHenr/OCEAN
e99c853893adc89652794ace62fcc8ffa78aa7ac
[ "MIT" ]
1
2021-07-04T02:58:29.000Z
2021-07-04T02:58:29.000Z
ui/Pytest/test_Range.py
MoisesHenr/OCEAN
e99c853893adc89652794ace62fcc8ffa78aa7ac
[ "MIT" ]
2
2021-06-21T20:44:01.000Z
2021-06-23T11:10:56.000Z
# Author: Moises Henrique Pereira # this class handle the functions tests of controller of the component of the numerical features import pytest import sys from PyQt5 import QtWidgets from ui.mainTest import StaticObjects @pytest.mark.parametrize('slider', [1, 2.9, False, ('t1', 't2'), None]) def test_CIR_setSlider_wrong_parameter(slider): with pytest.raises(AssertionError): app = QtWidgets.QApplication(sys.argv) counterfactualInterfaceSlider3RangesView = StaticObjects.staticCounterfactualInterfaceSlider3RangesView() counterfactualInterfaceSlider3RangesView.labelSlider.initializeSlider(0, 1, 1) rangeMin = counterfactualInterfaceSlider3RangesView.labelRangeMinimum rangeMin.setSlider(slider) def test_CIR_setSlider_right_parameter(): app = QtWidgets.QApplication(sys.argv) counterfactualInterfaceSlider3RangesView = StaticObjects.staticCounterfactualInterfaceSlider3RangesView() counterfactualInterfaceSlider3RangesView.labelSlider.initializeSlider(0, 1, 1) rangeMin = counterfactualInterfaceSlider3RangesView.labelRangeMinimum rangeMin.setSlider(counterfactualInterfaceSlider3RangesView.labelSlider) def test_CIR_initializeRange_none_min_parameter(): with pytest.raises(AssertionError): app = QtWidgets.QApplication(sys.argv) counterfactualInterfaceSlider3RangesView = StaticObjects.staticCounterfactualInterfaceSlider3RangesView() counterfactualInterfaceSlider3RangesView.labelSlider.initializeSlider(0, 1, 1) rangeMin = counterfactualInterfaceSlider3RangesView.labelRangeMinimum rangeMin.setSlider(counterfactualInterfaceSlider3RangesView.labelSlider) rangeMin.initializeRange(None, 1, 0.5, 15) def test_CIR_initializeRange_none_max_parameter(): with pytest.raises(AssertionError): app = QtWidgets.QApplication(sys.argv) counterfactualInterfaceSlider3RangesView = StaticObjects.staticCounterfactualInterfaceSlider3RangesView() counterfactualInterfaceSlider3RangesView.labelSlider.initializeSlider(0, 1, 1) rangeMin = counterfactualInterfaceSlider3RangesView.labelRangeMinimum rangeMin.setSlider(counterfactualInterfaceSlider3RangesView.labelSlider) rangeMin.initializeRange(0, None, 0.5, 15) def test_CIR_initializeRange_none_value_parameter(): with pytest.raises(AssertionError): app = QtWidgets.QApplication(sys.argv) counterfactualInterfaceSlider3RangesView = StaticObjects.staticCounterfactualInterfaceSlider3RangesView() counterfactualInterfaceSlider3RangesView.labelSlider.initializeSlider(0, 1, 1) rangeMin = counterfactualInterfaceSlider3RangesView.labelRangeMinimum rangeMin.setSlider(counterfactualInterfaceSlider3RangesView.labelSlider) rangeMin.initializeRange(0, 1, None, 15) def test_CIR_initializeRange_none_space_parameter(): with pytest.raises(AssertionError): app = QtWidgets.QApplication(sys.argv) counterfactualInterfaceSlider3RangesView = StaticObjects.staticCounterfactualInterfaceSlider3RangesView() counterfactualInterfaceSlider3RangesView.labelSlider.initializeSlider(0, 1, 1) rangeMin = counterfactualInterfaceSlider3RangesView.labelRangeMinimum rangeMin.setSlider(counterfactualInterfaceSlider3RangesView.labelSlider) rangeMin.initializeRange(0, 1, 0.5, None) def test_CIR_initializeRange_right_parameters(): app = QtWidgets.QApplication(sys.argv) counterfactualInterfaceSlider3RangesView = StaticObjects.staticCounterfactualInterfaceSlider3RangesView() counterfactualInterfaceSlider3RangesView.labelSlider.initializeSlider(0, 1, 1) rangeMin = counterfactualInterfaceSlider3RangesView.labelRangeMinimum rangeMin.setSlider(counterfactualInterfaceSlider3RangesView.labelSlider) rangeMin.initializeRange(0, 1, 0.5, 15) def test_CIR_updateRange_none_min_parameter(): with pytest.raises(AssertionError): app = QtWidgets.QApplication(sys.argv) counterfactualInterfaceSlider3RangesView = StaticObjects.staticCounterfactualInterfaceSlider3RangesView() counterfactualInterfaceSlider3RangesView.labelSlider.initializeSlider(0, 1, 1) rangeMin = counterfactualInterfaceSlider3RangesView.labelRangeMinimum rangeMin.setSlider(counterfactualInterfaceSlider3RangesView.labelSlider) rangeMin.initializeRange(0, 1, 0.5, 15) rangeMin.updateRange(None, 1, 0.5) def test_CIR_updateRange_none_max_parameter(): with pytest.raises(AssertionError): app = QtWidgets.QApplication(sys.argv) counterfactualInterfaceSlider3RangesView = StaticObjects.staticCounterfactualInterfaceSlider3RangesView() counterfactualInterfaceSlider3RangesView.labelSlider.initializeSlider(0, 1, 1) rangeMin = counterfactualInterfaceSlider3RangesView.labelRangeMinimum rangeMin.setSlider(counterfactualInterfaceSlider3RangesView.labelSlider) rangeMin.initializeRange(0, 1, 0.5, 15) rangeMin.updateRange(0, None, 0.5) def test_CIR_updateRange_none_value_parameter(): with pytest.raises(AssertionError): app = QtWidgets.QApplication(sys.argv) counterfactualInterfaceSlider3RangesView = StaticObjects.staticCounterfactualInterfaceSlider3RangesView() counterfactualInterfaceSlider3RangesView.labelSlider.initializeSlider(0, 1, 1) rangeMin = counterfactualInterfaceSlider3RangesView.labelRangeMinimum rangeMin.setSlider(counterfactualInterfaceSlider3RangesView.labelSlider) rangeMin.initializeRange(0, 1, 0.5, 15) rangeMin.updateRange(0, 1, None) def test_CIR_updateRange_right_parameters(): app = QtWidgets.QApplication(sys.argv) counterfactualInterfaceSlider3RangesView = StaticObjects.staticCounterfactualInterfaceSlider3RangesView() counterfactualInterfaceSlider3RangesView.labelSlider.initializeSlider(0, 1, 1) rangeMin = counterfactualInterfaceSlider3RangesView.labelRangeMinimum rangeMin.setSlider(counterfactualInterfaceSlider3RangesView.labelSlider) rangeMin.initializeRange(0, 1, 0.5, 15) rangeMin.updateRange(0, 1, 0.3) def test_CIR_setValue_none_parameter(): with pytest.raises(AssertionError): app = QtWidgets.QApplication(sys.argv) counterfactualInterfaceSlider3RangesView = StaticObjects.staticCounterfactualInterfaceSlider3RangesView() counterfactualInterfaceSlider3RangesView.labelSlider.initializeSlider(0, 1, 1) rangeMin = counterfactualInterfaceSlider3RangesView.labelRangeMinimum rangeMin.setSlider(counterfactualInterfaceSlider3RangesView.labelSlider) rangeMin.initializeRange(0, 1, 0.5, 15) rangeMin.setValue(None) def test_CIR_setValue_right_parameters(): app = QtWidgets.QApplication(sys.argv) counterfactualInterfaceSlider3RangesView = StaticObjects.staticCounterfactualInterfaceSlider3RangesView() counterfactualInterfaceSlider3RangesView.labelSlider.initializeSlider(0, 1, 1) rangeMin = counterfactualInterfaceSlider3RangesView.labelRangeMinimum rangeMin.setSlider(counterfactualInterfaceSlider3RangesView.labelSlider) rangeMin.initializeRange(0, 1, 0.5, 15) rangeMin.setValue(0.3)
56.257813
113
0.805583
0
0
0
0
520
0.072212
0
0
147
0.020414
770214b97687e419b49ca7614e24a42a26a9954c
2,092
py
Python
tools/clean_autogen_protos.py
embeddery/stackrox
d653406651df4331a714839ec2c0a23a93425c64
[ "Apache-2.0" ]
22
2022-03-31T14:32:18.000Z
2022-03-31T22:11:30.000Z
tools/clean_autogen_protos.py
embeddery/stackrox
d653406651df4331a714839ec2c0a23a93425c64
[ "Apache-2.0" ]
5
2022-03-31T14:35:28.000Z
2022-03-31T22:40:13.000Z
tools/clean_autogen_protos.py
embeddery/stackrox
d653406651df4331a714839ec2c0a23a93425c64
[ "Apache-2.0" ]
4
2022-03-31T16:33:58.000Z
2022-03-31T22:19:26.000Z
#!/usr/bin/env python3 import argparse import pathlib GENERATED_EXTENSIONS = ["pb.go", "pb.gw.go", "swagger.json"] def find_files(path, fileglob): files_full = list(path.glob(fileglob)) return files_full def strip_path_extension(filelist): # We cannot use Path.stem directly as it doesn't handle double extensions (.pb.go) correctly files_extensionless = list(map(lambda f: (str(f).replace("".join(f.suffixes), "")), filelist)) files_name_only = list(map(lambda f: pathlib.Path(f).stem, files_extensionless)) return files_name_only def find_difference(generated_list, proto_list): difference = set(generated_list) - set(proto_list) return difference def filter_only_gen_files(candidates): return [x for x in candidates if any(str(x.name).endswith(extension) for extension in GENERATED_EXTENSIONS)] def find_in_list(target_list, searchterms): searchterms = [f"{x}." for x in searchterms] # Add a dot to only match full filenames return [x for x in target_list if any(str(x.name).startswith(term) for term in searchterms )] def remove_files(target_list): for target in target_list: target.unlink() def main(): parser = argparse.ArgumentParser() parser.add_argument("--protos", type=pathlib.Path, help="Path to proto dir") parser.add_argument("--generated", type=pathlib.Path, help="Path to generated sources dir") v = parser.parse_args() proto_files = find_files(v.protos, "**/*.proto") generated_files = [f for file_list in (find_files(v.generated, f'**/*.{ext}') for ext in GENERATED_EXTENSIONS) for f in file_list] proto_stripped = strip_path_extension(proto_files) generated_stripped = strip_path_extension(generated_files) diff = find_difference(generated_stripped, proto_stripped) full_paths = find_in_list(generated_files, diff) final_diff = filter_only_gen_files(full_paths) if len(final_diff) > 0: print(f"Removing: {final_diff}") remove_files(final_diff) if __name__ == '__main__': main()
31.223881
112
0.707935
0
0
0
0
0
0
0
0
329
0.157266
7702c9e7da503201d8308cee20a4f5351db96b01
21,848
py
Python
skbl/helpers.py
spraakbanken/skblportalen
05d0113c9ca73f8092765a08597d23091ba3bc1f
[ "MIT" ]
2
2018-03-15T16:19:36.000Z
2019-03-18T10:25:38.000Z
skbl/helpers.py
spraakbanken/skblportalen
05d0113c9ca73f8092765a08597d23091ba3bc1f
[ "MIT" ]
3
2018-06-05T19:35:11.000Z
2019-03-18T10:26:50.000Z
skbl/helpers.py
spraakbanken/skblportalen
05d0113c9ca73f8092765a08597d23091ba3bc1f
[ "MIT" ]
1
2018-06-05T19:07:56.000Z
2018-06-05T19:07:56.000Z
"""Define different helper functions.""" import datetime import json import re import sys import urllib.parse from urllib.request import Request, urlopen import icu import markdown from flask import current_app, g, make_response, render_template, request, url_for from flask_babel import gettext from . import static_info VONAV_LIST = ["von", "af", "av"] def set_language_switch_link(route, fragment=None, lang=""): """Fix address and label for language switch button.""" if not lang: lang = g.language if lang == "en": g.switch_language = {"url": url_for("views." + route + "_sv"), "label": "Svenska"} else: g.switch_language = {"url": url_for("views." + route + "_en"), "label": "English"} if fragment is not None: g.switch_language["url"] += "/" + fragment def cache_name(pagename, lang=""): """Get page from cache.""" if not lang: lang = "sv" if "sv" in request.url_rule.rule else "en" return "%s_%s" % (pagename, lang) def karp_query(action, query, mode=None): """Generate query and send request to Karp.""" if not mode: mode = current_app.config["KARP_MODE"] query["mode"] = mode query["resource"] = current_app.config["KARP_LEXICON"] if "size" not in query: query["size"] = current_app.config["RESULT_SIZE"] params = urllib.parse.urlencode(query) return karp_request("%s?%s" % (action, params)) def karp_request(action): """Send request to Karp backend.""" q = Request("%s/%s" % (current_app.config["KARP_BACKEND"], action)) if current_app.config["DEBUG"]: log("%s/%s\n" % (current_app.config["KARP_BACKEND"], action), "REQUEST") if current_app.config.get("USE_AUTH", False): q.add_header("Authorization", "Basic %s" % (current_app.config["KARP_AUTH_HASH"])) response = urlopen(q).read() data = json.loads(response.decode("UTF-8")) return data def karp_fe_url(): """Get URL for Karp frontend.""" return current_app.config["KARP_FRONTEND"] + "/#?mode=" + current_app.config["KARP_MODE"] def serve_static_page(page, title=""): """Serve static html.""" set_language_switch_link(page) with current_app.open_resource("static/pages/%s/%s.html" % (page, g.language)) as f: data = f.read().decode("UTF-8") return render_template("page_static.html", content=data, title=title) def check_cache(page, lang=""): """ Check if page is in cache. If the cache should not be used, return None. """ if current_app.config["TEST"]: return None try: with g.mc_pool.reserve() as client: # Look for the page, return if found art = client.get(cache_name(page, lang)) if art is not None: return art except Exception: # TODO what to do?? pass # If nothing is found, return None return None def set_cache(page, name="", lang="", no_hits=0): """ Browser cache handling. Add header to the response. May also add the page to the memcache. """ pagename = cache_name(name, lang="") if no_hits >= current_app.config["CACHE_HIT_LIMIT"]: try: with g.mc_pool.reserve() as client: client.set(pagename, page, time=current_app.config["LOW_CACHE_TIME"]) except Exception: # TODO what to do?? pass r = make_response(page) r.headers.set("Cache-Control", "public, max-age=%s" % current_app.config["BROWSER_CACHE_TIME"]) return r def get_first_name(source): """Return the given name (first name).""" return re.sub("/", "", source["name"].get("firstname", "")).strip() def format_names(source, fmt="strong"): """Return the given name (first name), and the formatted callingname (tilltalsnamnet).""" if fmt: return re.sub("(.*)/(.+)/(.*)", r"\1<%s>\2</%s>\3" % (fmt, fmt), source["name"].get("firstname", "")) else: return re.sub("(.*)/(.+)/(.*)", r"\1\2\3", source["name"].get("firstname", "")) def get_life_range(source): """ Return the birth and death year from _source (as a tuple). Return empty strings if not available. """ years = [] for event in ["from", "to"]: if source["lifespan"].get(event): date = source["lifespan"][event].get("date", "") if date: date = date.get("comment", "") if "-" in date and not re.search("[a-zA-Z]", date): year = date[:date.find("-")] else: year = date else: year = "" years.append(year) return years[0], years[1] def get_life_range_force(source): """ Return the birth and death year from _source (as a tuple). Try to also parse non-dates like "ca. 1500-talet". Return -1, 1000000 if not available. """ default_born = -1 default_died = 1000000 def convert(event, retval): if source["lifespan"].get(event): date = source["lifespan"][event].get("date", "") if date: date = date.get("comment", "") match = re.search(r".*(\d{4}).*", date) if match: retval = int(match.group(1)) return retval born = convert("from", default_born) dead = convert("to", default_died) # Sorting hack: if there is no birth year, set it to dead -100 (and vice versa) # to make is appear in a more reasonable position in the chronology if born == default_born and dead != default_died: born = dead - 100 if dead == default_died and born != default_born: dead = born + 100 return born, dead def get_date(source): """Get birth and death date if available. Return empty strings otherwise.""" dates = [] for event in ["from", "to"]: if source["lifespan"][event].get("date"): date = source["lifespan"][event]["date"].get("comment", "") else: date = "" dates.append(date) return dates[0], dates[1] def get_current_date(): """Get the current date.""" return datetime.datetime.strftime(datetime.datetime.now(), "%Y-%m-%d") def markdown_html(text): """Convert markdown text to html.""" return markdown.markdown(text) def group_by_type(objlist, name): """Group objects by their type (=name), e.g. 'othernames'.""" newdict = {} for obj in objlist: val = obj.get(name, "") key_sv = obj.get("type", "Övrigt") key_en = obj.get("type_eng", "Other") if key_sv not in newdict: newdict[key_sv] = (key_en, []) newdict[key_sv][1].append(val) result = [] for key, val in list(newdict.items()): result.append({"type": key, "type_eng": val[0], name: ", ".join(val[1])}) return result def make_alphabetical_bucket(result, sortnames=False, lang="sv"): def processname(bucket, results): vonaf_pattern = re.compile(r"^(%s) " % "|".join(VONAV_LIST)) name = re.sub(vonaf_pattern, r"", bucket[0]) results.append((name[0].upper(), bucket)) return make_alphabetic(result, processname, sortnames=sortnames, lang=lang) def rewrite_von(name): """Move 'von' and 'av' to end of name.""" vonaf_pattern = re.compile(r"^(%s) (.+)$" % "|".join(VONAV_LIST)) return re.sub(vonaf_pattern, r"\2 \1", name) def make_placenames(places, lang="sv"): def processname(hit, results): name = hit["name"].strip() results.append((name[0].upper(), (name, hit))) return make_alphabetic(places, processname, lang=lang) def make_alphabetic(hits, processname, sortnames=False, lang="sv"): """ Loop through hits, apply the function 'processname' on each object and then sort the result in alphabetical order. The function processname should append zero or more processed form of the object to the result list. This processed forms should be a pair (first_letter, result) where first_letter is the first_letter of each object (to sort on), and the result is what the html-template want e.g. a pair of (name, no_hits) """ def fix_lastname(name): vonaf_pattern = re.compile(r"^(%s) " % "|".join(VONAV_LIST)) name = re.sub(vonaf_pattern, r"", name) return name.replace(" ", "z") results = [] for hit in hits: processname(hit, results) letter_results = {} # Split the result into start letters for first_letter, result in results: if first_letter == "Ø": first_letter = "Ö" if first_letter == "Æ": first_letter = "Ä" if first_letter == "Ü": first_letter = "Y" if lang == "en" and first_letter == "Ö": first_letter = "O" if lang == "en" and first_letter in "ÄÅ": first_letter = "A" if first_letter not in letter_results: letter_results[first_letter] = [result] else: letter_results[first_letter].append(result) # Sort result dictionary alphabetically into list if lang == "en": collator = icu.Collator.createInstance(icu.Locale("en_EN.UTF-8")) else: collator = icu.Collator.createInstance(icu.Locale("sv_SE.UTF-8")) for _n, items in list(letter_results.items()): if sortnames: items.sort(key=lambda x: collator.getSortKey(fix_lastname(x[0]) + " " + x[1])) else: items.sort(key=lambda x: collator.getSortKey(x[0])) letter_results = sorted(list(letter_results.items()), key=lambda x: collator.getSortKey(x[0])) return letter_results def make_simplenamelist(hits, search): """ Create a list with links to the entries url or _id. Sort entries with names matching the query higher. """ results = [] used = set() namefields = ["firstname", "lastname", "sortname"] search_terms = [st.lower() for st in search.split()] for hit in hits["hits"]: # score = sum(1 for field in hit["highlight"] if field.startswith("name.")) hitname = hit["_source"]["name"] score = sum(1 for nf in namefields if any(st in hitname.get(nf, "").lower() for st in search_terms)) if score: name = join_name(hit["_source"], mk_bold=True) liferange = get_life_range(hit["_source"]) subtitle = hit["_source"].get("subtitle", "") subtitle_eng = hit["_source"].get("subtitle_eng", "") subject_id = hit["_source"].get("url") or hit["_id"] results.append((-score, name, liferange, subtitle, subtitle_eng, subject_id)) used.add(hit["_id"]) return sorted(results), used def make_namelist(hits, exclude=set(), search=""): """ Split hits into one list per first letter. Return only info necessary for listing of names. """ results = [] first_letters = [] # List only containing letters in alphabetical order current_letterlist = [] # List containing entries starting with the same letter current_total = 0 if search: max_len = current_app.config["SEARCH_RESULT_SIZE"] - len(exclude) else: max_len = None for hit in hits["hits"]: if hit["_id"] in exclude: continue # Seperate names from linked names is_link = hit["_index"].startswith(current_app.config["SKBL_LINKS"]) if is_link: name = hit["_source"]["name"].get("sortname", "") linked_name = join_name(hit["_source"]) else: name = join_name(hit["_source"], mk_bold=True) linked_name = False liferange = get_life_range(hit["_source"]) subtitle = hit["_source"].get("subtitle", "") subtitle_eng = hit["_source"].get("subtitle_eng", "") subject_id = hit["_source"].get("url") or hit["_id"] # Get first letter from sort[0] firstletter = hit["sort"][1].upper() if firstletter not in first_letters: if current_letterlist: results.append(current_letterlist) current_letterlist = [] first_letters.append(firstletter) current_letterlist.append((firstletter, is_link, name, linked_name, liferange, subtitle, subtitle_eng, subject_id)) current_total += 1 # Don't show more than SEARCH_RESULT_SIZE number of results if max_len and current_total >= max_len: break if current_letterlist: # Append last letterlist results.append(current_letterlist) return (first_letters, results) def make_datelist(hits): """Extract information relevant for chronology list (same as make_namelist but without letter splitting).""" result = [] for hit in hits: is_link = hit["_index"].startswith(current_app.config["SKBL_LINKS"]) if is_link: name = hit["_source"]["name"].get("sortname", "") linked_name = join_name(hit["_source"]) else: name = join_name(hit["_source"], mk_bold=True) linked_name = False liferange = get_life_range(hit["_source"]) subtitle = hit["_source"].get("subtitle", "") subtitle_eng = hit["_source"].get("subtitle_eng", "") subject_id = hit["_source"].get("url") or hit["_id"] result.append((is_link, name, linked_name, liferange, subtitle, subtitle_eng, subject_id)) return result def join_name(source, mk_bold=False): """Retrieve and format name from source.""" name = [] lastname = source["name"].get("lastname", "") vonaf_pattern = re.compile(r"(%s |)(.*)" % " |".join(VONAV_LIST)) match = re.search(vonaf_pattern, lastname) vonaf = match.group(1) lastname = match.group(2) if lastname: if mk_bold: name.append("<strong>%s</strong>," % lastname) else: name.append(lastname + ",") if mk_bold: name.append(format_names(source, fmt="strong")) else: name.append(source["name"].get("firstname", "")) name.append(vonaf) return " ".join(name) def sort_places(stat_table, route): """Translate place names and sort list.""" # Work in progress! Waiting for translation list. # Or should this be part of the data instead?? place_translations = { "Göteborg": "Gothenburg" } if "place" in route.rule: lang = "en" else: lang = "sv" if lang == "en": for d in stat_table: d["display_name"] = place_translations.get(d["name"], d["name"]) else: for d in stat_table: d["display_name"] = d["name"] stat_table.sort(key=lambda x: x.get("name").strip()) return stat_table def mk_links(text): """Fix display of links within an article text.""" # TODO markdown should fix this itself try: text = re.sub(r"\[\]\((.*?)\)", r"[\1](\1)", text) for link in re.findall(r"\]\((.*?)\)", text): text = re.sub(r"\(%s\)" % link, "(%s)" % url_for("views.article_index_" + g.language, search=link), text) except Exception: # If there are parenthesis within the links, problems will occur. text = text return text def unescape(text): """Unescape some html chars.""" text = re.sub("&gt;", r">", text) text = re.sub("&apos;", r"'", text) return text def aggregate_by_type(items, use_markdown=False): if not isinstance(items, list): items = [items] types = {} for item in items: if "type" in item: t = item["type"] if t: if t not in types: types[t] = [] if use_markdown and "description" in item: item["description"] = markdown_html(item["description"]) item["description_eng"] = markdown_html(item.get("description_eng", "")) types[t].append(item) return list(types.items()) def collapse_kids(source): unkown_kids = 0 for relation in source.get("relation", []): if relation.get("type") == "Barn" and len(list(relation.keys())) == 1: unkown_kids += 1 relation["hide"] = True if unkown_kids: source["collapsedrelation"] = [{"type": "Barn", "count": unkown_kids}] def make_placelist(hits, placename, lat, lon): grouped_results = {} for hit in hits["hits"]: source = hit["_source"] hit["url"] = source.get("url") or hit["_id"] placelocations = {gettext("Residence"): source.get("places", []), gettext("Place of activity"): source.get("occupation", []), gettext("Place of education"): source.get("education", []), gettext("Contacts"): source.get("contact", []), gettext("Birthplace"): [source.get("lifespan", {}).get("from", {})], gettext("Place of death"): [source.get("lifespan", {}).get("to", {})] } for ptype, places in list(placelocations.items()): names = dict([(place.get("place", {}).get("place", "").strip(), place.get("place", {}).get("pin", {})) for place in places]) # Check if the name and the lat, lon is correct # (We can't ask karp of this, since it would be a nested query) if placename in names: # Coordinates! If coordinates are used, uncomment the two lines below # if names[placename].get("lat") == float(lat)\ # and names[placename].get("lon") == float(lon): if ptype not in grouped_results: grouped_results[ptype] = [] grouped_results[ptype].append((join_name(hit["_source"], mk_bold=True), hit)) # else: # # These two lines should be removed, but are kept for debugging # if "Fel" not in grouped_results: grouped_results["Fel"] = [] # grouped_results["Fel"].append((join_name(source), hit)) # Sort result dictionary alphabetically into list collator = icu.Collator.createInstance(icu.Locale("sv_SE.UTF-8")) for _n, items in list(grouped_results.items()): items.sort(key=lambda x: collator.getSortKey(x[0])) grouped_results = sorted(list(grouped_results.items()), key=lambda x: collator.getSortKey(x[0])) # These two lines should be removed, but are kept for debugging # if not grouped_results: # grouped_results = [("Fel", [(join_name(hit["_source"]), hit) for hit in hits["hits"]])] return grouped_results def is_email_address_valid(email): """ Validate the email address using a regex. It may not include any whitespaces, has exactly one "@" and at least one "." after the "@". """ if " " in email: return False # if not re.match("^[a-zA-Z0-9.!#$%&'*+/=?^_`{|}~-]+@[a-zA-Z0-9-]+(?:\.[a-zA-Z0-9-]+)*$", email): # More permissive regex: does allow non-ascii chars if not re.match(r"[^@]+@[^@]+\.[^@]+", email): return False return True def is_ascii(s): """Check if s contains of ASCII-characters only.""" return all(ord(c) < 128 for c in s) def get_lang_text(json_swe, json_eng, ui_lang): """Get text in correct language if available.""" if ui_lang == "en": if json_eng: return json_eng else: return json_swe else: return json_swe def get_shorttext(text): """Get the initial 200 characters of text. Remove HTML and line breaks.""" shorttext = re.sub(r"<.*?>|\n|\t", " ", text) shorttext = shorttext.strip() shorttext = re.sub(r" ", " ", shorttext) return shorttext[:200] def get_org_name(organisation): """Get short name for organisation (--> org.).""" if organisation.endswith("organisation") or organisation.endswith("organization"): return organisation[:-9] + "." else: return organisation def lowersorted(xs): """Sort case-insentitively.""" return sorted(xs, key=lambda x: x[0].lower()) def get_infotext(text, rule): """ Get infotext in correct language with Swedish as fallback. text = key in the infotext dict rule = request.url_rule.rule """ textobj = static_info.infotexter.get(text) if "sv" in rule: return textobj.get("sv") else: return textobj.get("en", textobj.get("sv")) def log(data, msg=""): """Log data to stderr.""" if msg: sys.stderr.write("\n" + msg + ": " + str(data) + "\n") else: sys.stderr.write("\n" + str(data) + "\n") def swedish_translator(firstname, lastname): """Check if 'firstname lastname' is a Swedish translator.""" swedish_translators = [ "Linnea Åshede" ] name = firstname + " " + lastname if name in swedish_translators: return True return False def get_littb_id(skbl_url): """Get Litteraturbanken ID for an article if available.""" if not skbl_url: return None littb_url = ("https://litteraturbanken.se/api/list_all/author?filter_and={%22wikidata.skbl_link%22:%20%22" + skbl_url + "%22}&include=authorid") try: # Fake the user agent to avoid getting a 403 r = Request(littb_url, headers={"User-Agent" : "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) " "AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36"}) contents = urlopen(r).read() except Exception as e: log("Could not open URL %s. Error: %s" % (e, littb_url)) return None resp = json.loads(contents) if resp.get("data"): return resp["data"][0]["authorid"] return None
34.244514
123
0.592045
0
0
0
0
0
0
0
0
7,173
0.328149
77054d9b1fb16933bc175b8744bb05cb5f7182d5
5,037
py
Python
boundaries/migrations/0001_initial.py
MinnPost/represent-boundaries
17f65d34a6ed761e72dbdf13ea78b64fdeaa356d
[ "MIT" ]
20
2015-03-17T09:10:39.000Z
2020-06-30T06:08:08.000Z
boundaries/migrations/0001_initial.py
MinnPost/represent-boundaries
17f65d34a6ed761e72dbdf13ea78b64fdeaa356d
[ "MIT" ]
14
2015-04-24T17:22:00.000Z
2021-06-22T16:50:24.000Z
boundaries/migrations/0001_initial.py
MinnPost/represent-boundaries
17f65d34a6ed761e72dbdf13ea78b64fdeaa356d
[ "MIT" ]
16
2015-04-27T23:32:46.000Z
2020-07-05T11:18:04.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import django.contrib.gis.db.models.fields class JSONField(models.TextField): """Mocks jsonfield 0.92's column-type behaviour""" def db_type(self, connection): if connection.vendor == 'postgresql' and connection.pg_version >= 90300: return 'json' else: return super(JSONField, self).db_type(connection) class Migration(migrations.Migration): dependencies = [ ] operations = [ migrations.CreateModel( name='Boundary', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('set_name', models.CharField(max_length=100, help_text='A generic singular name for the boundary.')), ('slug', models.SlugField(max_length=200, help_text="The boundary's unique identifier within the set, used as a path component in URLs.")), ('external_id', models.CharField(max_length=64, help_text='An identifier of the boundary, which should be unique within the set.')), ('name', models.CharField(db_index=True, max_length=192, help_text='The name of the boundary.')), ('metadata', JSONField(default=dict, help_text='The attributes of the boundary from the shapefile, as a dictionary.', blank=True)), ('shape', django.contrib.gis.db.models.fields.MultiPolygonField(srid=4326, help_text='The geometry of the boundary in EPSG:4326.')), ('simple_shape', django.contrib.gis.db.models.fields.MultiPolygonField(srid=4326, help_text='The simplified geometry of the boundary in EPSG:4326.')), ('centroid', django.contrib.gis.db.models.fields.PointField(srid=4326, help_text='The centroid of the boundary in EPSG:4326.', null=True)), ('extent', JSONField(blank=True, help_text='The bounding box of the boundary as a list like [xmin, ymin, xmax, ymax] in EPSG:4326.', null=True)), ('label_point', django.contrib.gis.db.models.fields.PointField(spatial_index=False, srid=4326, blank=True, help_text='The point at which to place a label for the boundary in EPSG:4326, used by represent-maps.', null=True)), ], options={ 'verbose_name_plural': 'boundaries', 'verbose_name': 'boundary', }, bases=(models.Model,), ), migrations.CreateModel( name='BoundarySet', fields=[ ('slug', models.SlugField(primary_key=True, help_text="The boundary set's unique identifier, used as a path component in URLs.", serialize=False, max_length=200, editable=False)), ('name', models.CharField(max_length=100, help_text='The plural name of the boundary set.', unique=True)), ('singular', models.CharField(max_length=100, help_text='A generic singular name for a boundary in the set.')), ('authority', models.CharField(max_length=256, help_text='The entity responsible for publishing the data.')), ('domain', models.CharField(max_length=256, help_text='The geographic area covered by the boundary set.')), ('last_updated', models.DateField(help_text='The most recent date on which the data was updated.')), ('source_url', models.URLField(help_text='A URL to the source of the data.', blank=True)), ('notes', models.TextField(help_text='Free-form text notes, often used to describe changes that were made to the original source data.', blank=True)), ('licence_url', models.URLField(help_text='A URL to the licence under which the data is made available.', blank=True)), ('extent', JSONField(blank=True, help_text="The set's boundaries' bounding box as a list like [xmin, ymin, xmax, ymax] in EPSG:4326.", null=True)), ('start_date', models.DateField(blank=True, help_text="The date from which the set's boundaries are in effect.", null=True)), ('end_date', models.DateField(blank=True, help_text="The date until which the set's boundaries are in effect.", null=True)), ('extra', JSONField(blank=True, help_text='Any additional metadata.', null=True)), ], options={ 'ordering': ('name',), 'verbose_name_plural': 'boundary sets', 'verbose_name': 'boundary set', }, bases=(models.Model,), ), migrations.AddField( model_name='boundary', name='set', field=models.ForeignKey(related_name='boundaries', to='boundaries.BoundarySet', on_delete=models.CASCADE, help_text='The set to which the boundary belongs.'), preserve_default=True, ), migrations.AlterUniqueTogether( name='boundary', unique_together=set([('slug', 'set')]), ), ]
65.415584
239
0.6351
4,884
0.969625
0
0
0
0
0
0
1,949
0.386937
7706515165e3817a767c32b6ac93a3b7c85f245e
1,267
py
Python
gitz/git/reference_branch.py
rec/gitz
cbb07f99dd002c85b5ca95896b33d03150bf9282
[ "MIT" ]
24
2019-07-26T03:57:16.000Z
2021-11-22T22:39:13.000Z
gitz/git/reference_branch.py
rec/gitz
cbb07f99dd002c85b5ca95896b33d03150bf9282
[ "MIT" ]
212
2019-06-13T13:44:26.000Z
2020-06-02T17:59:51.000Z
gitz/git/reference_branch.py
rec/gitz
cbb07f99dd002c85b5ca95896b33d03150bf9282
[ "MIT" ]
2
2019-08-09T13:55:38.000Z
2019-09-07T11:17:59.000Z
from . import functions from ..program import ARGS from ..program import ENV from ..program import PROGRAM def reference_branch(remote_branches=None): remote_branches = remote_branches or functions.remote_branches() remote, *rest = ARGS.reference_branch.split('/', maxsplit=1) if rest: if remote not in remote_branches: PROGRAM.exit('Unknown remote', remote) branch = rest[0] if branch not in remote_branches[remote]: PROGRAM.exit( 'Unknown reference branch', branch, 'in remote', remote ) return remote, branch branches = [remote] if remote else ENV.reference_branches() if len(remote_branches) == 1: remotes = remote_branches else: remotes = [r for r in ENV.upstream() if r in remote_branches] for remote in remotes: for branch in branches: if branch in remote_branches[remote]: return remote, branch PROGRAM.exit('Cannot determine upstream remote') def add_arguments(parser): parser.add_argument( '-r', '--reference-branch', default='', help=_HELP_REFERENCE_BRANCH ) _HELP_REFERENCE_BRANCH = ( 'Branch to create from, in the form ``branch`` or ``remote/branch``' )
28.155556
75
0.651144
0
0
0
0
0
0
0
0
184
0.145225
7707130bae4f273be796d5022abf873f7542914d
89
py
Python
cookies/apps.py
hamishwillee/http_tester_site
5c9fa6840c7931f4a7dbd669616cb7b06e29c068
[ "MIT" ]
null
null
null
cookies/apps.py
hamishwillee/http_tester_site
5c9fa6840c7931f4a7dbd669616cb7b06e29c068
[ "MIT" ]
8
2021-03-19T10:14:39.000Z
2022-03-12T00:24:41.000Z
cookies/apps.py
ADpDinamo/site
d7313cd6c151a381ccc803b81768673587cb8d45
[ "Apache-2.0" ]
null
null
null
from django.apps import AppConfig class CookiesConfig(AppConfig): name = 'cookies'
14.833333
33
0.752809
52
0.58427
0
0
0
0
0
0
9
0.101124
77076be0aee637dc1db01b51cb1e1bf652954a05
7,016
py
Python
src/single_pendulum.py
dpopchev/Computation_python
790bfc451b003ecbc626867035dc03a7b55d1fb9
[ "MIT" ]
null
null
null
src/single_pendulum.py
dpopchev/Computation_python
790bfc451b003ecbc626867035dc03a7b55d1fb9
[ "MIT" ]
null
null
null
src/single_pendulum.py
dpopchev/Computation_python
790bfc451b003ecbc626867035dc03a7b55d1fb9
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # do not hesitate to debug import pdb # python computation modules and visualization import numpy as np import sympy as sy import scipy as sp import matplotlib.pyplot as plt from sympy import Q as syQ sy.init_printing(use_latex=True,forecolor="White") def Lyapunov_stability_test_linear(ev): ''' test if a linear homogeneous system with constant coefficients is stable in the sense of Lyapunov by checking the theorem conditions against the provided eigenvalues source https://www.math24.net/stability-theory-basic-concepts/ TODO taking into account eigenvalue multiplicity ''' # the criteria result will be saved here r = None # system is asymptotically stable if only if # all eigenvalues have negative real parts r = 'asymptotically stable' if ( not r and all(sy.ask(syQ.negative(sy.re(_))) for _ in ev) ) else None # system is stable if and only if # all eigenvalues have nonpositive real parts # TODO incorporate algebraic and geometric multiplicity criteria r = 'stable' if ( not r and all(sy.ask(syQ.nonpositive(sy.re(_))) for _ in ev) ) else None # system is unstable if # at least one eigenvalue has positive real part # TODO incorporate algebraic and geometric multiplicity criteria r = 'unstable' if ( not r and any(sy.ask(syQ.positive(sy.re(_))) for _ in ev) ) else None return r def Lyapunov_stability_test_nonlinear(ev): ''' test if the fixed point of a nonlinear structure stable system is stable, unstable, critical or impossible to determine using Lyapunov criteria of first order and thus other methods are needed TODO tests are only applicable for structurally stable systems, i.e. with purely imaginary eigenvalues are not taken into account source https://www.math24.net/stability-first-approximation/ ''' # the criteria result will be saved here r = None # system is asymptotically stable if only if # all eigenvalues have negative real parts r = 'asymptotically stable' if ( not r and all(sy.ask(syQ.negative(sy.re(_))) for _ in ev) ) else None # system is unstable if # at least one eigenvalue has positive real part r = 'unstable' if ( not r and any(sy.ask(syQ.positive(sy.re(_))) for _ in ev) ) else None # if all eigenvalues have non-positive real parts, # and there is at least one eigenvalue with zero real part # then fixed point can be stable or unstable and other methods should be # used, thus mark the point critical r = 'critical' if ( not r and all(sy.ask(Q.nonpositive(sy.re(_))) for _ in ev) and any(sy.re(_) == 0 for _ in ev) ) else None return r if r else 'not decided' def RouthHurwitz_Criterion(p): ''' return principal minors of Hurwitz matrix as sympy polynomials, which if all are positive it is sufficient condition for asymptotic stability NOTE: if all n-1 principal minors are positive, and nth minor is zero, the system is at the boundary of stability, with two cases: a_n = 0 -- one of the root is zero and system is on the boundary of aperiodic stability n-1 minor is zero -- there are two complex conjugate imaginary roots and the system is at boundary of oscillatory stability source https://www.math24.net/routh-hurwitz-criterion/ ''' # initial key and index pair needed to create Hurwitz matrix via sympy banded # each entry is of the type [ dictionary key, coefficient slice ] idxs = [ [ 1, 0 ] ] # generate next key by decrementing with 1 genKey = lambda _: _ - 1 # generate next index by incrementing with 1 if key was nonnegative # or with 2 if key is negative genSlice = lambda _, __: __ + 1 if _ >= 0 else __ + 2 # fill the rest pairs w.r.t. the polynomial degree - 1, as we already have # one entry for _ in range(p.degree() - 1): key = genKey(idxs[-1][0]) idxs.append( [ key, genSlice(key, idxs[-1][1] ) ] ) # create the matrix itself H = sy.banded({ k: p.all_coeffs()[v:] for k, v in idxs }) return [ H[:_, :_].det() if _ > 0 else p.LC() for _ in range(0, p.degree()+1) ] # define independent variable t = sy.symbols('t', real=True) # define dependent variables individually and pact them in an variable theta, omega = sy.symbols(r'\theta, \omega', real = True) Y = theta, omega # define free parameters of they system and pack them in a variable g, L = sy.symbols('g, L', positive = True) parms = g, L # create rhs as sympy expressions theta_dt = omega omega_dt = -(g/L)*sy.sin(theta) rhs = {} rhs['sympy'] = sy.Matrix([theta_dt, omega_dt]) # convert the sympy matrix function to numpy function with usual signature rhs['numpy'] = sy.lambdify((t, Y, *parms), rhs['sympy'], 'numpy') # create Jacobian matrix as sympy expression J = {} J['sympy'] = rhs['sympy'].jacobian(Y) # convert the sympy Jacobian expression to numpy function with usual signature J['numpy'] = sy.lambdify((t, Y, *parms), J['sympy']) # calculate rhs fixed points fixed_points = sy.solve(rhs['sympy'], Y) # substitute each fixed point in the Jacobian # and calculate the eigenvalues J_fixed = {} for i, fp in enumerate(fixed_points): J_subs = J['sympy'].subs( [(y, v) for y, v in zip(Y, fp)]) #J_eigenvals = J_subs.eigenvals(multiple=True) J_eigenvals = J_subs.eigenvals() # save the fixed point results in more details # most importantly the eigenvalues and their corresponding multiplicity J_fixed[i] = { 'fixed point': fp, 'subs': J_subs, 'eigenvalues': list(J_eigenvals.keys()), 'multiplicity': list(J_eigenvals.values()) } def plot_phase_portrait(ax, rhs, section, args=(), n_points=25): ''' plot section of phase space of a field defined via its rhs ''' # create section grid x_grid, y_grid = np.meshgrid( np.linspace( section[0][0], section[0][1], n_points ), np.linspace( section[1][0], section[1][1], n_points ) ) # calculate rhs on the grid xx, yy = rhs(None, ( x_grid, y_grid ), *args) # compute vector norms and make line width proportional to them # i.e. greater the vector length, the thicker the line # TODO not sure why rhs returns different shape vector_norms = np.sqrt(xx[0]**2 + yy[0]**2) lw = 0.25 + 3*vector_norms/vector_norms.max() # plot the phase portrait ax.streamplot( x_grid, y_grid, xx[0], yy[0], linewidth = lw, arrowsize = 1.2, density = 1 ) return ax def plot_main(): fig, ax = plt.subplots() ax = plot_phase_portrait( ax, rhs['numpy'], ( ( -np.pi, np.pi ), ( -2*np.pi, 2*np.pi) ), args = ( 5, 1 ), ) if __name__ == '__main__': plot_main()
34.392157
83
0.651511
0
0
0
0
0
0
0
0
3,837
0.546893
770880f1a07d4982b42b16b52ebec66b0adb1c55
1,690
py
Python
web/accounts/views.py
drejkim/reading-quantified-server
54cf83629ae0139cbf4b9dc82b27a54056afef36
[ "MIT" ]
2
2020-10-30T23:46:44.000Z
2021-02-17T09:11:52.000Z
web/accounts/views.py
estherjk/reading-quantified-server
54cf83629ae0139cbf4b9dc82b27a54056afef36
[ "MIT" ]
7
2020-05-09T17:15:51.000Z
2021-09-22T18:16:55.000Z
web/accounts/views.py
drejkim/reading-quantified-server
54cf83629ae0139cbf4b9dc82b27a54056afef36
[ "MIT" ]
null
null
null
from django.shortcuts import render from rest_framework import mixins from rest_framework import permissions from rest_framework import viewsets from rest_framework.decorators import action from .models import User from .serializers import UserSerializer # Create your views here. class UserViewSet(mixins.ListModelMixin, mixins.RetrieveModelMixin, mixins.UpdateModelMixin, mixins.DestroyModelMixin, viewsets.GenericViewSet): """ API endpoint for users. Can only view / edit yourself! """ queryset = User.objects.all() serializer_class = UserSerializer def get_permissions(self): """ Custom permissions. Only admins can view everyone. """ if self.action == 'list': self.permission_classes = [permissions.IsAdminUser, ] elif self.action == 'retrieve': self.permission_classes = [permissions.IsAdminUser, ] return super(self.__class__, self).get_permissions() # Reference: https://stackoverflow.com/a/58168950/13279459 @action(detail=False, methods=['get', 'put', 'patch', 'delete']) def me(self, request): """ Custom /users/me endpoint. """ self.kwargs['pk'] = request.user.pk if request.method == 'GET': return self.retrieve(request) elif request.method == 'PUT': return self.partial_update(request) elif request.method == 'PATCH': return self.partial_update(request) elif request.method == 'DELETE': return self.destroy(request) else: raise Exception('Not implemented')
32.5
68
0.63432
1,406
0.831953
0
0
590
0.349112
0
0
364
0.215385
77089cdd70ca47f3aa10526e20e9f8906eab1767
2,197
py
Python
fixit/common/pseudo_rule.py
sk-/Fixit
ee0c2c9699f3cf5557b7f1210447c68be1542024
[ "Apache-2.0" ]
313
2020-09-02T20:35:57.000Z
2022-03-29T07:55:37.000Z
fixit/common/pseudo_rule.py
sk-/Fixit
ee0c2c9699f3cf5557b7f1210447c68be1542024
[ "Apache-2.0" ]
93
2020-09-02T19:51:22.000Z
2022-01-19T18:29:46.000Z
fixit/common/pseudo_rule.py
sk-/Fixit
ee0c2c9699f3cf5557b7f1210447c68be1542024
[ "Apache-2.0" ]
46
2020-09-02T21:16:57.000Z
2022-03-16T18:49:37.000Z
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import abc import ast import io import tokenize from pathlib import Path from typing import Iterable, Optional from fixit.common.report import BaseLintRuleReport class PseudoContext: """ Contains information about the file that `PseudoLintRule.lint_file` should evaluate. """ def __init__( self, file_path: Path, source: bytes, tokens: Optional[Iterable[tokenize.TokenInfo]] = None, ast_tree: Optional[ast.Module] = None, ) -> None: self.file_path: Path = file_path self.source: bytes = source self._tokens: Optional[Iterable[tokenize.TokenInfo]] = tokens self._ast_tree: Optional[ast.Module] = ast_tree @property def tokens(self) -> Iterable[tokenize.TokenInfo]: tokens = self._tokens if tokens is not None: return tokens tokens = tuple(tokenize.tokenize(io.BytesIO(self.source).readline)) self._tokens = tokens return tokens @property def ast_tree(self) -> ast.Module: ast_tree = self._ast_tree if ast_tree is not None: return ast_tree ast_tree = ast.parse(self.source) self._ast_tree = ast_tree return ast_tree class PseudoLintRule(abc.ABC): """ Represents a lint rule (or a group of lint rules) that can't be represented by a normal lint rule. These "pseudo" lint rules receive information about the file from the `PsuedoContext`. This API is much more flexible than the normal lint rule API, but that comes at a (potentially large) performance cost. Because the lint framework does not control traversal of the syntax tree, it cannot batch the execution of these rules alongside other lint rules. This API is used for compatibility with Flake8 rules. """ def __init__(self, context: PseudoContext) -> None: self.context: PseudoContext = context @abc.abstractmethod def lint_file(self) -> Iterable[BaseLintRuleReport]: ...
30.513889
88
0.680018
1,850
0.842057
0
0
608
0.276741
0
0
825
0.375512
770a2f395758f1a8fbdf72af2cefdb909802a41f
356
py
Python
homeschool/referrals/tests/test_models.py
chriswedgwood/homeschool
d5267b13154aaa52c9c3edbf06b251f123583ae8
[ "MIT" ]
154
2019-12-24T17:45:44.000Z
2022-03-30T23:03:06.000Z
homeschool/referrals/tests/test_models.py
chriswedgwood/homeschool
d5267b13154aaa52c9c3edbf06b251f123583ae8
[ "MIT" ]
397
2019-11-05T03:23:45.000Z
2022-03-31T04:51:55.000Z
homeschool/referrals/tests/test_models.py
chriswedgwood/homeschool
d5267b13154aaa52c9c3edbf06b251f123583ae8
[ "MIT" ]
44
2020-02-24T13:08:52.000Z
2022-02-24T05:03:13.000Z
from homeschool.referrals.tests.factories import ReferralFactory from homeschool.test import TestCase class TestReferral(TestCase): def test_factory(self): referral = ReferralFactory() assert referral.referring_user is not None assert referral.created_at is not None assert referral.status == referral.Status.PENDING
29.666667
64
0.752809
251
0.705056
0
0
0
0
0
0
0
0
770aad7e1ff56e67c95983849d2bf6bbbc1649fe
284
py
Python
slackwebhook/__init__.py
FoundryGroup/Slack-Webhook
1a71f68eec876684ffaa7ba936bbc099f55dfb81
[ "MIT" ]
null
null
null
slackwebhook/__init__.py
FoundryGroup/Slack-Webhook
1a71f68eec876684ffaa7ba936bbc099f55dfb81
[ "MIT" ]
null
null
null
slackwebhook/__init__.py
FoundryGroup/Slack-Webhook
1a71f68eec876684ffaa7ba936bbc099f55dfb81
[ "MIT" ]
null
null
null
################################################################################ # Python package __init__.py file. # # Author: Carl Cortright # Date: 12/20/2016 # ################################################################################ from slackwebhook import slackwebhook
28.4
80
0.323944
0
0
0
0
0
0
0
0
238
0.838028
770b052dd7eccaa42dd94c9096322a70a4b8491d
229
py
Python
scripts/fasta2vcf.py
jodyphelan/pathogenseq
2e04190f25063d722ef653e819b94eb66407ea8d
[ "MIT" ]
null
null
null
scripts/fasta2vcf.py
jodyphelan/pathogenseq
2e04190f25063d722ef653e819b94eb66407ea8d
[ "MIT" ]
null
null
null
scripts/fasta2vcf.py
jodyphelan/pathogenseq
2e04190f25063d722ef653e819b94eb66407ea8d
[ "MIT" ]
1
2018-05-11T14:54:51.000Z
2018-05-11T14:54:51.000Z
#! /usr/bin/env python import sys import pathogenseq as ps ref_file = sys.argv[1] query_file = sys.argv[2] prefix = sys.argv[3] ps.mauve_call_variants(ref_file,query_file,prefix) cmd = "bgzip -f %s.vcf" % prefix ps.run_cmd(cmd)
20.818182
50
0.737991
0
0
0
0
0
0
0
0
39
0.170306
770b263fbdf34c06e41fa87b5529ee3e705b5a07
20
py
Python
test/__init__.py
miguelcarrasco/anothercryptosolver
57ac6be024574a46492d1e84782ff02763e57010
[ "MIT" ]
null
null
null
test/__init__.py
miguelcarrasco/anothercryptosolver
57ac6be024574a46492d1e84782ff02763e57010
[ "MIT" ]
null
null
null
test/__init__.py
miguelcarrasco/anothercryptosolver
57ac6be024574a46492d1e84782ff02763e57010
[ "MIT" ]
null
null
null
__author__ = 'deon'
10
19
0.7
0
0
0
0
0
0
0
0
6
0.3
770c52f41e079a4cb403bba6dcadc3852fc8a850
231
py
Python
job_scheduler/cache/__init__.py
konkolorado/job-scheduler
e76b24d0592d9d1f62b5a1525b6a152b9983b2fa
[ "MIT" ]
null
null
null
job_scheduler/cache/__init__.py
konkolorado/job-scheduler
e76b24d0592d9d1f62b5a1525b6a152b9983b2fa
[ "MIT" ]
null
null
null
job_scheduler/cache/__init__.py
konkolorado/job-scheduler
e76b24d0592d9d1f62b5a1525b6a152b9983b2fa
[ "MIT" ]
1
2021-08-09T15:28:49.000Z
2021-08-09T15:28:49.000Z
from job_scheduler.cache.base import ScheduleCache from job_scheduler.cache.fake import FakeScheduleCache from job_scheduler.cache.redis import RedisScheduleCache all = ["ScheduleCache", "RedisScheduleCache", "FakeScheduleCache"]
38.5
66
0.848485
0
0
0
0
0
0
0
0
54
0.233766
770c61ce8220d1f9ab5e398ccfbfd93f6911fe13
317
py
Python
programming/python/ex004.py
Vinicius-Moraes20/personal-projects
c041909ab1c66eeca11768f8f7944eb351c8b8e7
[ "MIT" ]
null
null
null
programming/python/ex004.py
Vinicius-Moraes20/personal-projects
c041909ab1c66eeca11768f8f7944eb351c8b8e7
[ "MIT" ]
null
null
null
programming/python/ex004.py
Vinicius-Moraes20/personal-projects
c041909ab1c66eeca11768f8f7944eb351c8b8e7
[ "MIT" ]
null
null
null
valor = input("Digite algo: ") print("É do tipo", type(valor)) print("Valor numérico:", valor.isnumeric()) print("Valor Alfa:", valor.isalpha()) print("Valor Alfanumérico:", valor.isalnum()) print("Valor ASCII:", valor.isascii()) print("Valor Decimal", valor.isdecimal()) print("Valor Printavel", valor.isprintable())
39.625
45
0.712934
0
0
0
0
0
0
0
0
126
0.39375
770d1178d917aa0b3ade69999920d0f07b37f63c
447
py
Python
backend/src/util/observable.py
r2binx/heimboard
42059d367e5b15c4910e61f4be0e3b462da8d5f7
[ "MIT" ]
6
2021-12-20T21:36:03.000Z
2022-03-30T16:04:54.000Z
backend/src/util/observable.py
r2binx/heimboard
42059d367e5b15c4910e61f4be0e3b462da8d5f7
[ "MIT" ]
16
2021-12-20T20:14:43.000Z
2022-01-26T12:43:59.000Z
backend/src/util/observable.py
r2binx/heimboard
42059d367e5b15c4910e61f4be0e3b462da8d5f7
[ "MIT" ]
1
2022-01-25T20:59:35.000Z
2022-01-25T20:59:35.000Z
from typing import List class Observable: _observers: List = [] def __init__(self): self._observers = [] def subscribe(self, observer): self._observers.append(observer) def notify_observers(self, *args, **kwargs): for obs in self._observers: obs.notify(self, *args, **kwargs) def unsubscribe(self, observer): self._observers.remove(observer) def start(self): pass
20.318182
48
0.621924
420
0.939597
0
0
0
0
0
0
0
0
770d8aff527e695d052230658f4cc6a96df88def
26,579
py
Python
ae-tpcc-polyjuice-rl/training/PG.py
derFischer/Polyjuice
3ce467807822b5659efdd5759cae4563a9152b00
[ "Apache-2.0" ]
23
2021-05-11T13:14:36.000Z
2022-03-23T05:59:07.000Z
ae-tpcc-polyjuice-rl/training/PG.py
derFischer/Polyjuice
3ce467807822b5659efdd5759cae4563a9152b00
[ "Apache-2.0" ]
1
2021-08-16T07:37:18.000Z
2021-08-16T07:37:18.000Z
ae-tpcc-polyjuice-rl/training/PG.py
derFischer/Polyjuice
3ce467807822b5659efdd5759cae4563a9152b00
[ "Apache-2.0" ]
1
2021-07-01T15:33:25.000Z
2021-07-01T15:33:25.000Z
#coding=utf-8 import numpy as np import tensorflow as tf import os import sys import time import shutil import re import signal import subprocess import numpy as np import math from Policy import * np.set_printoptions(threshold=np.inf) BASELINES = 1 class MultiBaseline: def __init__(self, baseline_number): self.baseline_number = baseline_number self.baselines = [Baseline() for _ in range(baseline_number)] self.reward_signal_access, self.reward_signal_wait, self.reward_signal_piece = [], [], [] self.reward_signal_wait_info1, self.reward_signal_wait_info2, self.reward_signal_wait_info3 = [], [], [] def __str__(self): stri = '' for i in range(self.baseline_number): stri = stri + 'baseline number ' + str(i) + ' has reward ' + str(self.baselines[i].reward) + '\n' stri = stri + str(self.baselines[i].sample) + '\n' return stri def insert_baseline(self, baseline): if baseline > self.baselines[0]: self.baselines[0].SetSampleWithAnotherBaseline(baseline) self.baselines.sort() def store_reward_signal(self, result): self.reward_signal_access.extend(result[0]) self.reward_signal_wait.extend(result[1]) self.reward_signal_piece.extend(result[2]) self.reward_signal_wait_info1.extend(result[3]) self.reward_signal_wait_info2.extend(result[4]) self.reward_signal_wait_info3.extend(result[5]) def samples_different_action(self, access, wait, piece, waitinfo1, waitinfo2, waitinfo3): # get a all True form result = Sample.default_different_action() # get different actions for j in range(self.baseline_number): diff = self.baselines[j].different_action(\ access, wait, piece, waitinfo1, waitinfo2, waitinfo3) for i in range(len(result)): result[i] = result[i] & np.array(diff[i]) self.store_reward_signal(result) def get_ratio(self, avg_reward): rewards = [] for i in range(self.baseline_number): reward_ = self.baselines[i].reward - avg_reward if reward_ > 0: rewards.append(reward_) else: rewards.append(0) rewards = np.array(rewards) if np.sum(rewards) == 0: return [1 / self.baseline_number] * self.baseline_number else: return rewards / np.sum(rewards) def calculate_reward(self, reward): # ratio = self.get_ratio(np.mean(reward)) access_rs, wait_rs, piece_rs = \ [0] * (len(reward) * ACCESSE_SPACE), [0] * (len(reward) * WAIT_SPACE), [0] * (len(reward) * PIECE_SPACE) waitinfo1_rs, waitinfo2_rs, waitinfo3_rs = \ [0] * (len(reward) * WAIT_SPACE), [0] * (len(reward) * WAIT_SPACE), [0] * (len(reward) * WAIT_SPACE) # for i in range(self.baseline_number): # calculate discount_reward for each slot access_dr, wait_dr, piece_dr = [], [], [] waitinfo1_dr, waitinfo2_dr, waitinfo3_dr = [], [], [] for j in range(len(reward)): for _ in range(ACCESSE_SPACE): access_dr.append(reward[j]) for _ in range(PIECE_SPACE): piece_dr.append(reward[j]) for _ in range(WAIT_SPACE): wait_dr.append(reward[j]) waitinfo1_dr.append(reward[j]) waitinfo2_dr.append(reward[j]) waitinfo3_dr.append(reward[j]) avg_reward = np.mean(reward) access_rs = np.array(access_dr) - avg_reward wait_rs = np.array(wait_dr) - avg_reward piece_rs = np.array(piece_dr) - avg_reward waitinfo1_rs = (np.array(waitinfo1_dr) - avg_reward) * 5 waitinfo2_rs = (np.array(waitinfo2_dr) - avg_reward) * 2 waitinfo3_rs = (np.array(waitinfo3_dr) - avg_reward) * 2.5 # access_dr = np.array(access_dr) - self.baselines[i].reward # wait_dr = np.array(wait_dr) - self.baselines[i].reward # piece_dr = np.array(piece_dr) - self.baselines[i].reward # waitinfo1_dr = np.array(waitinfo1_dr) - self.baselines[i].reward # waitinfo2_dr = np.array(waitinfo2_dr) - self.baselines[i].reward # waitinfo3_dr = np.array(waitinfo3_dr) - self.baselines[i].reward # access_rs = access_rs + ratio[i] * access_dr * ((access_dr > 0) | self.reward_signal_access) # wait_rs = wait_rs + ratio[i] * wait_dr * ((wait_dr > 0) | self.reward_signal_wait) # piece_rs = piece_rs + ratio[i] * piece_dr * ((piece_dr > 0) | self.reward_signal_piece) # waitinfo1_rs = waitinfo1_rs + ratio[i] * waitinfo1_dr * ((waitinfo1_dr > 0) | self.reward_signal_wait_info1) # waitinfo2_rs = waitinfo2_rs + ratio[i] * waitinfo2_dr * ((waitinfo2_dr > 0) | self.reward_signal_wait_info2) # waitinfo3_rs = waitinfo3_rs + ratio[i] * waitinfo3_dr * ((waitinfo3_dr > 0) | self.reward_signal_wait_info3) return access_rs, wait_rs, piece_rs, waitinfo1_rs, waitinfo2_rs, waitinfo3_rs def clear_signal(self): self.reward_signal_access, self.reward_signal_wait, self.reward_signal_piece = [], [], [] self.reward_signal_wait_info1, self.reward_signal_wait_info2, self.reward_signal_wait_info3 = [], [], [] class Baseline: def __init__(self, access = [], wait = [], piece = [], \ waitinfo1 = [], waitinfo2 = [], waitinfo3 = [], \ reward = 0): if access == []: self.set = False else: self.set = True # manual asign a opt setting for backoff self.sample = Sample(access, wait, piece, waitinfo1, waitinfo2, waitinfo3, 6, [0,4,8,1,0,0,8,4,2,1,8,1,4,2,1,4,2,4]) self.reward = reward def setSample(self, access, wait, piece, waitinfo1, waitinfo2, waitinfo3, reward): self.set = True self.sample.set_sample(access, wait, piece, waitinfo1, waitinfo2, waitinfo3) self.reward = reward def SetSampleWithAnotherBaseline(self, baseline): self.setSample(baseline.sample.access, baseline.sample.wait, baseline.sample.piece, \ baseline.sample.wait_info1, baseline.sample.wait_info2, baseline.sample.wait_info3, \ baseline.reward) def __lt__(self, r): return self.reward < r.reward def different_action(self, access, wait, piece, waitinfo1, waitinfo2, waitinfo3): if self.set == False: return Sample.default_different_action() return self.sample.different_action(access, wait, piece, \ waitinfo1, waitinfo2, waitinfo3) class PolicyGradient: # initialize def __init__(self, log_dir, kid_dir, learning_rate,rd,output_graph=False): self.log_dir = log_dir self.kid_dir = kid_dir self.lr = learning_rate self.reward_decay = rd self.best_seen = 0 self.round_best = 0 self.round_mean = 0 self.round_worst = 0 self.round_std = 0 self.round_best_sample = None self.baselines = MultiBaseline(BASELINES) # to store observations, actions and corresponding rewards self.access_p, self.wait_p, self.piece_p = [], [], [] self.wait_info1_p, self.wait_info2_p, self.wait_info3_p = [], [], [] self.ep_access_rs, self.ep_wait_rs, self.ep_piece_rs = [], [], [] self.ep_waitinfo1_rs, self.ep_waitinfo2_rs, self.ep_waitinfo3_rs = [], [], [] self.ep_access_act, self.ep_wait_act, self.ep_piece_act = [], [], [] self.ep_wait_info_act1, self.ep_wait_info_act2, self.ep_wait_info_act3 = [], [], [] self.samples_count = 0 self.policy = Policy() self._build_net() self.sess = tf.Session() if output_graph: tf.summary.FileWriter("logs/", self.sess.graph) self.sess.run(tf.global_variables_initializer()) self.update_policy() def clear_round_info(self): self.round_best = 0 self.round_mean = 0 self.round_worst = 0 self.round_std = 0 self.round_best_sample = None def _build_net(self): with tf.name_scope('inputs'): self.tf_access_vt = tf.placeholder(tf.float32, [None, ], name="access_value") self.tf_wait_vt = tf.placeholder(tf.float32, [None, ], name="wait_value") self.tf_piece_vt = tf.placeholder(tf.float32, [None, ], name="piece_value") self.tf_wait_info_vt1 = tf.placeholder(tf.float32, [None, ], name="wait_info_value1") self.tf_wait_info_vt2 = tf.placeholder(tf.float32, [None, ], name="wait_info_value2") self.tf_wait_info_vt3 = tf.placeholder(tf.float32, [None, ], name="wait_info_value3") self.tf_access_act = tf.placeholder(tf.int32, [None, ], name="access_act") self.tf_wait_act = tf.placeholder(tf.int32, [None, ], name="wait_act") self.tf_piece_act = tf.placeholder(tf.int32, [None, ], name="piece_act") self.tf_wait_info_act1 = tf.placeholder(tf.int32, [None, ], name="wait_info_act1") self.tf_wait_info_act2 = tf.placeholder(tf.int32, [None, ], name="wait_info_act2") self.tf_wait_info_act3 = tf.placeholder(tf.int32, [None, ], name="wait_info_act3") self.tf_samples_count = tf.placeholder(tf.float32, name='samples_count') self.learning_rate = tf.placeholder(tf.float32, name='learning_rate') self.access_action_v = tf.Variable(tf.random_normal(shape=[INPUT_SPACE, 2], mean=0, stddev=1), name='access_action_v') self.wait_action_v = tf.Variable(tf.random_normal(shape=[WAIT_SPACE, 2], mean=0, stddev=1), name='wait_action_v') self.piece_action_v = tf.Variable(tf.random_normal(shape=[PIECE_SPACE, 2], mean=0, stddev=1), name='piece_action_v') self.wait_info_action1_v = tf.Variable(tf.random_normal(shape=[WAIT_SPACE, wait_info_act_count[0]], mean=0, stddev=1), name='wait_info_action1_v') self.wait_info_action2_v = tf.Variable(tf.random_normal(shape=[WAIT_SPACE, wait_info_act_count[1]], mean=0, stddev=1), name='wait_info_action2_v') self.wait_info_action3_v = tf.Variable(tf.random_normal(shape=[WAIT_SPACE, wait_info_act_count[2]], mean=0, stddev=1), name='wait_info_action3_v') self.access_action = tf.nn.softmax(self.access_action_v, axis = 1) self.wait_action = tf.nn.softmax(self.wait_action_v, axis = 1) self.piece_action = tf.nn.softmax(self.piece_action_v, axis = 1) self.wait_info_action1 = tf.nn.softmax(self.wait_info_action1_v, axis = 1) self.wait_info_action2 = tf.nn.softmax(self.wait_info_action2_v, axis = 1) self.wait_info_action3 = tf.nn.softmax(self.wait_info_action3_v, axis = 1) # self.access_action = tf.nn.softmax(tf.Variable(tf.random_normal(shape=[ACCESSE_SPACE, 2], mean=0, stddev=1), name='access_action'), axis = 1) # self.wait_action = tf.nn.softmax(tf.Variable(tf.random_normal(shape=[WAIT_SPACE, 2], mean=0, stddev=1), name='wait_action'), axis = 1) # self.piece_action = tf.nn.softmax(tf.Variable(tf.random_normal(shape=[PIECE_SPACE, 2], mean=0, stddev=1), name='piece_action'), axis = 1) # self.wait_info_action1 = tf.nn.softmax(tf.Variable(tf.random_normal(shape=[WAIT_SPACE, wait_info_act_count[0]], mean=0, stddev=1), name='wait_info_action1'), axis = 1) # self.wait_info_action2 = tf.nn.softmax(tf.Variable(tf.random_normal(shape=[WAIT_SPACE, wait_info_act_count[1]], mean=0, stddev=1), name='wait_info_action2'), axis = 1) # self.wait_info_action3 = tf.nn.softmax(tf.Variable(tf.random_normal(shape=[WAIT_SPACE, wait_info_act_count[2]], mean=0, stddev=1), name='wait_info_action3'), axis = 1) with tf.name_scope('reward'): # add a very small number to the probability in case of logging a very small number and then ouputting NAN self.access_action = tf.add(self.access_action, 0.000001) self.wait_action = tf.add(self.wait_action, 0.000001) self.piece_action = tf.add(self.piece_action, 0.000001) self.wait_info_action1 = tf.add(self.wait_info_action1, 0.000001) self.wait_info_action2 = tf.add(self.wait_info_action2, 0.000001) self.wait_info_action3 = tf.add(self.wait_info_action3, 0.000001) access_act = tf.reshape(tf.one_hot(self.tf_access_act, 2), [-1, ACCESSE_SPACE * 2]) access_act_prob = tf.reshape((access_act * (tf.reshape(self.access_action, [ACCESSE_SPACE * 2]))), [-1 ,2]) access_act_prob = -tf.log(tf.reduce_sum(access_act_prob, axis = 1)) wait_act = tf.reshape(tf.one_hot(self.tf_wait_act, 2), [-1, WAIT_SPACE * 2]) wait_act_prob = tf.reshape((wait_act * (tf.reshape(self.wait_action, [WAIT_SPACE * 2]))), [-1 ,2]) wait_act_prob = -tf.log(tf.reduce_sum(wait_act_prob, axis = 1)) piece_act = tf.reshape(tf.one_hot(self.tf_piece_act, 2), [-1, PIECE_SPACE * 2]) piece_act_prob = tf.reshape((piece_act * (tf.reshape(self.piece_action, [PIECE_SPACE * 2]))), [-1 ,2]) piece_act_prob = -tf.log(tf.reduce_sum(piece_act_prob, axis = 1)) wait_info_act1 = tf.reshape((tf.one_hot(self.tf_wait_info_act1, wait_info_act_count[0])), [-1, WAIT_SPACE * wait_info_act_count[0]]) wait_info_act1_prob = tf.reshape((wait_info_act1 * (tf.reshape(self.wait_info_action1, [WAIT_SPACE * wait_info_act_count[0]]))), [-1, wait_info_act_count[0]]) wait_info_act1_prob = -tf.log(tf.reduce_sum(wait_info_act1_prob, axis = 1)) wait_info_act2 = tf.reshape((tf.one_hot(self.tf_wait_info_act2, wait_info_act_count[1])), [-1, WAIT_SPACE * wait_info_act_count[1]]) wait_info_act2_prob = tf.reshape((wait_info_act2 * (tf.reshape(self.wait_info_action2, [WAIT_SPACE * wait_info_act_count[1]]))), [-1, wait_info_act_count[1]]) wait_info_act2_prob = -tf.log(tf.reduce_sum(wait_info_act2_prob, axis = 1)) wait_info_act3 = tf.reshape((tf.one_hot(self.tf_wait_info_act3, wait_info_act_count[2])), [-1, WAIT_SPACE * wait_info_act_count[2]]) wait_info_act3_prob = tf.reshape((wait_info_act3 * (tf.reshape(self.wait_info_action3, [WAIT_SPACE * wait_info_act_count[2]]))), [-1, wait_info_act_count[2]]) wait_info_act3_prob = -tf.log(tf.reduce_sum(wait_info_act3_prob, axis = 1)) self.reward = tf.divide(tf.reduce_sum(access_act_prob * self.tf_access_vt) + \ tf.reduce_sum(piece_act_prob * self.tf_piece_vt) + \ tf.reduce_sum(wait_act_prob * self.tf_wait_vt) + \ tf.reduce_sum(wait_info_act1_prob * self.tf_wait_info_vt1) + \ tf.reduce_sum(wait_info_act2_prob * self.tf_wait_info_vt2) + \ tf.reduce_sum(wait_info_act3_prob * self.tf_wait_info_vt3), self.tf_samples_count) with tf.name_scope('train'): self.train_op = tf.train.GradientDescentOptimizer(learning_rate = self.learning_rate).minimize(self.reward) def update_policy(self): access_p, wait_p, piece_p, wait_info1_p, wait_info2_p, wait_info3_p = \ self.sess.run([self.access_action, self.wait_action, self.piece_action, \ self.wait_info_action1, self.wait_info_action2, self.wait_info_action3]) self.policy.set_prob(access_p, wait_p, piece_p, \ wait_info1_p, wait_info2_p, wait_info3_p) # store corresponding reward def record_reward(self, round_id, reward, previous_samples, idx): access = self.ep_access_act[previous_samples * ACCESSE_SPACE : (previous_samples + 1) * ACCESSE_SPACE] wait = self.ep_wait_act[previous_samples * WAIT_SPACE : (previous_samples + 1) * WAIT_SPACE] piece = self.ep_piece_act[previous_samples * PIECE_SPACE : (previous_samples + 1) * PIECE_SPACE] waitinfo1 = self.ep_wait_info_act1[previous_samples * WAIT_SPACE : (previous_samples + 1) * WAIT_SPACE] waitinfo2 = self.ep_wait_info_act2[previous_samples * WAIT_SPACE : (previous_samples + 1) * WAIT_SPACE] waitinfo3 = self.ep_wait_info_act3[previous_samples * WAIT_SPACE : (previous_samples + 1) * WAIT_SPACE] if reward > self.baselines.baselines[0].reward: baseline_ = Baseline(access, wait, piece, waitinfo1, waitinfo2, waitinfo3, reward) self.baselines.insert_baseline(baseline_) if reward > self.best_seen: self.best_seen = reward # save RL best seen result print('Update rl best seen sample - {}'.format(reward)) kid_path = os.path.join(os.getcwd(), self.kid_dir + '/kid_' + str(idx) + '.txt') log_path = os.path.join(os.getcwd(), self.log_dir + '/rl_best.txt') shutil.copy(kid_path, log_path) # save RL best seen result for every round old_path = os.path.join(os.getcwd(), self.log_dir + '/rl_best.txt') new_path = os.path.join(os.getcwd(), self.log_dir + '/rl_best_iter_' + str(round_id) + '.txt') shutil.copy(old_path, new_path) if reward > self.round_best: self.round_best = reward kid_path = os.path.join(os.getcwd(), self.kid_dir + '/kid_' + str(idx) + '.txt') log_path = os.path.join(os.getcwd(), self.log_dir + '/round_best_' + str(round_id) + '.txt') shutil.copy(kid_path, log_path) # store round_best sample for EA future use self.round_best_sample = Sample(access, wait, piece, \ waitinfo1, waitinfo2, waitinfo3, 6, [0,4,8,1,0,0,8,4,2,1,8,1,4,2,1,4,2,4]) if self.round_worst == 0: self.round_worst = reward if reward < self.round_worst: self.round_worst = reward self.round_mean = (self.round_mean * previous_samples + reward)/(previous_samples + 1) # store reward for each sample self.ep_rs.append(reward) def Evaluate(self, command, round_id, samples_per_distribution, load_per_sample): base_path = os.path.join(os.getcwd(), self.log_dir) policy_path = os.path.join(base_path, 'Distribution.txt') with open(policy_path, 'a+') as f: f.write('RL at iter {}'.format(round_id) + '\n') f.write(str(self.policy) + '\n') self.ep_rs = [] self.ep_access_act, self.ep_wait_act, self.ep_piece_act, \ self.ep_wait_info_act1, self.ep_wait_info_act2, self.ep_wait_info_act3, \ = self.policy.table_sample_batch(self.kid_dir, samples_per_distribution) policies_res = samples_eval(command, samples_per_distribution, load_per_sample) reward_ = 0 fail_to_exe = 0 for idx in range(samples_per_distribution): # if the execution has failed, rollback the ep_obs and ep_as, continue the training if policies_res[idx][0] == 0.0 and policies_res[idx][1] == 1.0: print("continue") self.rollback(idx, fail_to_exe) fail_to_exe += 1 continue print("RL sample:" + str(idx) + " throughput:" + str(policies_res[idx][0])) self.record_reward(round_id, policies_res[idx][0], idx - fail_to_exe, idx) def set_baseline(self, access, wait, piece, \ wait_info1, wait_info2, wait_info3, \ reward_buffer): samples = int(len(access) / ACCESSE_SPACE) for i in range(samples): r = reward_buffer[i] if r > self.baselines.baselines[0].reward: access_t = access[i * ACCESSE_SPACE : (i + 1) * ACCESSE_SPACE] wait_t = wait[i * WAIT_SPACE : (i + 1) * WAIT_SPACE] piece_t = piece[i * PIECE_SPACE : (i + 1) * PIECE_SPACE] waitinfo1_t = wait_info1[i * WAIT_SPACE : (i + 1) * WAIT_SPACE] waitinfo2_t = wait_info2[i * WAIT_SPACE : (i + 1) * WAIT_SPACE] waitinfo3_t = wait_info3[i * WAIT_SPACE : (i + 1) * WAIT_SPACE] baseline_ = Baseline(access_t, wait_t, piece_t, \ waitinfo1_t, waitinfo2_t, waitinfo3_t, \ r) self.baselines.insert_baseline(baseline_) print("access") print(self.baselines.baselines[0].sample) access, wait, piece, waitinfo1, waitinfo2, waitinfo3 = self.baselines.baselines[0].sample.get_actions() assign_access = tf.assign(self.access_action_v, access) assign_wait = tf.assign(self.wait_action_v, wait) assign_piece = tf.assign(self.piece_action_v, piece) assign_waitinfo1 = tf.assign(self.wait_info_action1_v, waitinfo1) assign_waitinfo2 = tf.assign(self.wait_info_action2_v, waitinfo2) assign_waitinfo3 = tf.assign(self.wait_info_action3_v, waitinfo3) self.sess.run([assign_access, assign_wait, assign_piece, assign_waitinfo1, assign_waitinfo2, assign_waitinfo3]) self.update_policy() def get_ic3_distribution(self, access_in, wait_in , piece_in, waitinfo1_in, waitinfo2_in, waitinfo3_in): access, wait, piece, waitinfo1, waitinfo2, waitinfo3 = \ self.baselines.baselines[0].sample.get_actions(access_in, wait_in , piece_in, waitinfo1_in, waitinfo2_in, waitinfo3_in) assign_access = tf.assign(self.access_action_v, access) assign_wait = tf.assign(self.wait_action_v, wait) assign_piece = tf.assign(self.piece_action_v, piece) assign_waitinfo1 = tf.assign(self.wait_info_action1_v, waitinfo1) assign_waitinfo2 = tf.assign(self.wait_info_action2_v, waitinfo2) assign_waitinfo3 = tf.assign(self.wait_info_action3_v, waitinfo3) self.sess.run([assign_access, assign_wait, assign_piece, assign_waitinfo1, assign_waitinfo2, assign_waitinfo3]) self.update_policy() # preprocess the reward def get_reward(self, access, wait, piece, \ wait_info1, wait_info2, wait_info3, \ reward_buffer): samples = int(len(access) / ACCESSE_SPACE) for i in range(samples): access_t = access[i * ACCESSE_SPACE : (i + 1) * ACCESSE_SPACE] wait_t = wait[i * WAIT_SPACE : (i + 1) * WAIT_SPACE] piece_t = piece[i * PIECE_SPACE : (i + 1) * PIECE_SPACE] waitinfo1_t = wait_info1[i * WAIT_SPACE : (i + 1) * WAIT_SPACE] waitinfo2_t = wait_info2[i * WAIT_SPACE : (i + 1) * WAIT_SPACE] waitinfo3_t = wait_info3[i * WAIT_SPACE : (i + 1) * WAIT_SPACE] self.baselines.samples_different_action(access_t, wait_t, piece_t, \ waitinfo1_t, waitinfo2_t, waitinfo3_t) self.ep_access_rs, self.ep_wait_rs, self.ep_piece_rs, \ self.ep_waitinfo1_rs, self.ep_waitinfo2_rs, self.ep_waitinfo3_rs, \ = self.baselines.calculate_reward(reward_buffer) self.baselines.clear_signal() def learn(self, idx, lr, generations): if (len(self.ep_access_act) == 0): print("useless round") return base_path = os.path.join(os.getcwd(), self.log_dir) baseline_path = os.path.join(base_path, 'Baseline.txt') with open(baseline_path, 'a+') as f: f.write('RL at iter {}'.format(idx) + ', ') f.write(str(self.baselines) + '\n') self.get_reward(self.ep_access_act, self.ep_wait_act, self.ep_piece_act, \ self.ep_wait_info_act1, self.ep_wait_info_act2, self.ep_wait_info_act3, \ self.ep_rs) self.lr = 0.5 * lr * (1 + math.cos(math.pi * idx / generations)) self.samples_count = len(self.ep_rs) self.sess.run(self.train_op, feed_dict={ self.tf_access_act: self.ep_access_act, self.tf_wait_act: self.ep_wait_act, self.tf_piece_act: self.ep_piece_act, self.tf_wait_info_act1: self.ep_wait_info_act1, self.tf_wait_info_act2: self.ep_wait_info_act2, self.tf_wait_info_act3: self.ep_wait_info_act3, self.tf_access_vt: self.ep_access_rs, self.tf_wait_vt: self.ep_wait_rs, self.tf_piece_vt: self.ep_piece_rs, self.tf_wait_info_vt1: self.ep_waitinfo1_rs, self.tf_wait_info_vt2: self.ep_waitinfo2_rs, self.tf_wait_info_vt3: self.ep_waitinfo3_rs, self.tf_samples_count: self.samples_count, self.learning_rate: self.lr, }) self.update_policy() # tool functions: def get_prob(self): self.access_p, self.wait_p, self.piece_p, \ self.wait_info1_p, self.wait_info2_p, self.wait_info3_p, \ = self.sess.run([self.access_action, self.wait_action, self.piece_action, \ self.wait_info_action1, self.wait_info_action2, self.wait_info_action3]) self.print_prob() def print_prob(self): stri = "" stri += str(self.access_p) + " " stri += str(self.wait_p) + " " stri += str(self.piece_p) + " " stri += str(self.wait_info1_p) + " " stri += str(self.wait_info2_p) + " " stri += str(self.wait_info3_p) + " " print(stri + "\n") def rollback(self, index, fail_to_exe): self.ep_access_act = self.ep_access_act[:(index - fail_to_exe) * ACCESSE_SPACE] + self.ep_access_act[(index + 1 - fail_to_exe) * ACCESSE_SPACE :] self.ep_wait_act = self.ep_wait_act[:(index - fail_to_exe) * WAIT_SPACE] + self.ep_wait_act[(index + 1 - fail_to_exe) * WAIT_SPACE :] self.ep_piece_act = self.ep_piece_act[:(index - fail_to_exe) * PIECE_SPACE] + self.ep_piece_act[(index + 1 - fail_to_exe) * PIECE_SPACE :] self.ep_wait_info_act1 = self.ep_wait_info_act1[:(index - fail_to_exe) * WAIT_SPACE] + self.ep_wait_info_act1[(index + 1 - fail_to_exe) * WAIT_SPACE :] self.ep_wait_info_act2 = self.ep_wait_info_act2[:(index - fail_to_exe) * WAIT_SPACE] + self.ep_wait_info_act2[(index + 1 - fail_to_exe) * WAIT_SPACE :] self.ep_wait_info_act3 = self.ep_wait_info_act3[:(index - fail_to_exe) * WAIT_SPACE] + self.ep_wait_info_act3[(index + 1 - fail_to_exe) * WAIT_SPACE :]
53.051896
177
0.637533
26,309
0.989842
0
0
0
0
0
0
3,265
0.122841
770d8f29602f5abced8ace8b5ba5e47df2e792c0
335
py
Python
src/data/preprocessors/__init__.py
paulwarkentin/tf-ssd-vgg
f48e3ccbb8eb092d3cb82a9d90164c7328880477
[ "MIT" ]
5
2021-09-26T07:19:42.000Z
2022-03-11T23:25:36.000Z
ssd/src/data/preprocessors/__init__.py
bharatmahaur/ComparativeStudy
2e3b6de882acc2a465e1b7c8bcd23cc9c8181d3d
[ "Apache-2.0" ]
null
null
null
ssd/src/data/preprocessors/__init__.py
bharatmahaur/ComparativeStudy
2e3b6de882acc2a465e1b7c8bcd23cc9c8181d3d
[ "Apache-2.0" ]
null
null
null
## ## /src/data/preprocessors/__init__.py ## ## Created by Paul Warkentin <paul@warkentin.email> on 15/07/2018. ## Updated by Paul Warkentin <paul@warkentin.email> on 15/07/2018. ## from .bbox_preprocessor import BBoxPreprocessor from .default_preprocessor import DefaultPreprocessor from .image_preprocessor import ImagePreprocessor
30.454545
66
0.797015
0
0
0
0
0
0
0
0
176
0.525373
770e96f574a33ca2bee58218e94c93fab61c4349
4,775
py
Python
camera.py
chenhsuanlin/signed-distance-SRN
d47ecca9d048e29adfa7f5b0170d1daba897e740
[ "MIT" ]
94
2020-10-26T17:32:32.000Z
2022-03-06T12:22:31.000Z
camera.py
albertotono/signed-distance-SRN
2e750d3fb71cf7570cf9be9f4a39040b5173795d
[ "MIT" ]
15
2020-10-27T12:48:31.000Z
2022-01-22T02:29:48.000Z
camera.py
albertotono/signed-distance-SRN
2e750d3fb71cf7570cf9be9f4a39040b5173795d
[ "MIT" ]
12
2020-10-26T20:26:07.000Z
2021-12-31T08:13:01.000Z
import numpy as np import os,sys,time import torch import torch.nn.functional as torch_F import collections from easydict import EasyDict as edict import util class Pose(): def __call__(self,R=None,t=None): assert(R is not None or t is not None) if R is None: if not isinstance(t,torch.Tensor): t = torch.tensor(t) R = torch.eye(3,device=t.device).repeat(*t.shape[:-1],1,1) elif t is None: if not isinstance(R,torch.Tensor): R = torch.tensor(R) t = torch.zeros(R.shape[:-1],device=R.device) else: if not isinstance(R,torch.Tensor): R = torch.tensor(R) if not isinstance(t,torch.Tensor): t = torch.tensor(t) assert(R.shape[:-1]==t.shape and R.shape[-2:]==(3,3)) R = R.float() t = t.float() pose = torch.cat([R,t[...,None]],dim=-1) # [...,3,4] assert(pose.shape[-2:]==(3,4)) return pose def invert(self,pose,use_inverse=False): R,t = pose[...,:3],pose[...,3:] R_inv = R.inverse() if use_inverse else R.transpose(-1,-2) t_inv = (-R_inv@t)[...,0] pose_inv = self(R=R_inv,t=t_inv) return pose_inv def compose(self,pose_list): # pose_new(x) = poseN(...(pose2(pose1(x)))...) pose_new = pose_list[0] for pose in pose_list[1:]: pose_new = self.compose_pair(pose_new,pose) return pose_new def compose_pair(self,pose_a,pose_b): # pose_new(x) = pose_b(pose_a(x)) R_a,t_a = pose_a[...,:3],pose_a[...,3:] R_b,t_b = pose_b[...,:3],pose_b[...,3:] R_new = R_b@R_a t_new = (R_b@t_a+t_b)[...,0] pose_new = self(R=R_new,t=t_new) return pose_new pose = Pose() def to_hom(X): X_hom = torch.cat([X,torch.ones_like(X[...,:1])],dim=-1) return X_hom def world2cam(X,pose): # [B,N,3] X_hom = to_hom(X) return X_hom@pose.transpose(-1,-2) def cam2img(X,cam_intr): return X@cam_intr.transpose(-1,-2) def img2cam(X,cam_intr): return X@cam_intr.inverse().transpose(-1,-2) def cam2world(X,pose): X_hom = to_hom(X) pose_inv = Pose().invert(pose) return X_hom@pose_inv.transpose(-1,-2) def angle_to_rotation_matrix(a,axis): roll = dict(X=1,Y=2,Z=0)[axis] O = torch.zeros_like(a) I = torch.ones_like(a) M = torch.stack([torch.stack([a.cos(),-a.sin(),O],dim=-1), torch.stack([a.sin(),a.cos(),O],dim=-1), torch.stack([O,O,I],dim=-1)],dim=-2) M = M.roll((roll,roll),dims=(-2,-1)) return M def get_camera_grid(opt,batch_size,intr=None): # compute image coordinate grid if opt.camera.model=="perspective": y_range = torch.arange(opt.H,dtype=torch.float32,device=opt.device).add_(0.5) x_range = torch.arange(opt.W,dtype=torch.float32,device=opt.device).add_(0.5) Y,X = torch.meshgrid(y_range,x_range) # [H,W] xy_grid = torch.stack([X,Y],dim=-1).view(-1,2) # [HW,2] elif opt.camera.model=="orthographic": assert(opt.H==opt.W) y_range = torch.linspace(-1,1,opt.H,device=opt.device) x_range = torch.linspace(-1,1,opt.W,device=opt.device) Y,X = torch.meshgrid(y_range,x_range) # [H,W] xy_grid = torch.stack([X,Y],dim=-1).view(-1,2) # [HW,2] xy_grid = xy_grid.repeat(batch_size,1,1) # [B,HW,2] if opt.camera.model=="perspective": grid_3D = img2cam(to_hom(xy_grid),intr) # [B,HW,3] elif opt.camera.model=="orthographic": grid_3D = to_hom(xy_grid) # [B,HW,3] return xy_grid,grid_3D def get_center_and_ray(opt,pose,intr=None,offset=None): # [HW,2] batch_size = len(pose) xy_grid,grid_3D = get_camera_grid(opt,batch_size,intr=intr) # [B,HW,3] # compute center and ray if opt.camera.model=="perspective": if offset is not None: grid_3D[...,:2] += offset center_3D = torch.zeros(batch_size,1,3,device=opt.device) # [B,1,3] elif opt.camera.model=="orthographic": center_3D = torch.cat([xy_grid,torch.zeros_like(xy_grid[...,:1])],dim=-1) # [B,HW,3] # transform from camera to world coordinates grid_3D = cam2world(grid_3D,pose) # [B,HW,3] center_3D = cam2world(center_3D,pose) # [B,HW,3] ray = grid_3D-center_3D # [B,HW,3] return center_3D,ray def get_3D_points_from_depth(opt,center,ray,depth,multi_samples=False): if multi_samples: center,ray = center[:,:,None],ray[:,:,None] # x = c+dv points_3D = center+ray*depth # [B,HW,3]/[B,HW,N,3]/[N,3] return points_3D def get_depth_from_3D_points(opt,center,ray,points_3D): # d = ||x-c||/||v|| (x-c and v should be in same direction) depth = (points_3D-center).norm(dim=-1,keepdim=True)/ray.norm(dim=-1,keepdim=True) # [B,HW,1] return depth
37.598425
97
0.604188
1,577
0.330262
0
0
0
0
0
0
512
0.107225
7710dc16a8fbe11c81dbff2a20f74da32953814d
1,550
py
Python
solutions/python3/problem1265.py
tjyiiuan/LeetCode
abd10944c6a1f7a7f36bd9b6218c511cf6c0f53e
[ "MIT" ]
null
null
null
solutions/python3/problem1265.py
tjyiiuan/LeetCode
abd10944c6a1f7a7f36bd9b6218c511cf6c0f53e
[ "MIT" ]
null
null
null
solutions/python3/problem1265.py
tjyiiuan/LeetCode
abd10944c6a1f7a7f36bd9b6218c511cf6c0f53e
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ 1265. Print Immutable Linked List in Reverse You are given an immutable linked list, print out all values of each node in reverse with the help of the following interface: ImmutableListNode: An interface of immutable linked list, you are given the head of the list. You need to use the following functions to access the linked list (you can't access the ImmutableListNode directly): ImmutableListNode.printValue(): Print value of the current node. ImmutableListNode.getNext(): Return the next node. The input is only given to initialize the linked list internally. You must solve this problem without modifying the linked list. In other words, you must operate the linked list using only the mentioned APIs. Constraints: The length of the linked list is between [1, 1000]. The value of each node in the linked list is between [-1000, 1000]. Follow up: Could you solve this problem in: Constant space complexity? Linear time complexity and less than linear space complexity? """ """ This is the ImmutableListNode's API interface. You should not implement it, or speculate about its implementation. """ class ImmutableListNode: def printValue(self) -> None: # print the value of this node. pass def getNext(self) -> 'ImmutableListNode': # return the next node. pass class Solution: def printLinkedListInReverse(self, head: 'ImmutableListNode') -> None: if head is None: return self.printLinkedListInReverse(head.getNext()) head.printValue()
29.245283
116
0.74129
403
0.26
0
0
0
0
0
0
1,228
0.792258
771202ad53d30186bb1f539c888cffb5dbe12c2c
3,403
py
Python
standard.py
futureisatyourhand/self-supervised-learning
af8b18639c89d138dbc3490827f7fe867d38387b
[ "Apache-2.0" ]
1
2022-02-09T10:14:12.000Z
2022-02-09T10:14:12.000Z
standard.py
futureisatyourhand/self-supervised-learning
af8b18639c89d138dbc3490827f7fe867d38387b
[ "Apache-2.0" ]
null
null
null
standard.py
futureisatyourhand/self-supervised-learning
af8b18639c89d138dbc3490827f7fe867d38387b
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # -------------------------------------- # @Time : 2021/5/12$ 12:12$ # @Author : Qian Li # @Email : 1844857573@qq.com # @File : network.py # Description : details(i.e., online network,online projector network, online predictor,classifier, target network, target projector,) for self-supervised learning import torch from functools import wraps from torch import nn import numpy as np from utils import MLP,ResNet50,accuracy import copy from torch.nn import init from torchvision import models def weigth_init(model,path): from collections import OrderedDict new_state_dict=OrderedDict() state_dict=torch.load(path)["model"] for k,v in state_dict.items(): if "target_" in k: continue new_state_dict[k]=v model.load_state_dict(new_state_dict) class VGG(nn.Module): def __init__(self,num_classes=10, projector_hidden_size=4096, projector_output_size=256, predictor_hidden_size=4096, moving_average_decay=.9999, eps=1e-5,use_momentum = True,mode="pre-train"): ##model:pre-train,fine-tune,test super(VGG,self).__init__() model=models.vgg16(pretrained=False) print(model) model.classifier=MLP(input_size=512,hidden_size=projector_hidden_size,output_size=projector_output_size) model.avgpool=nn.Sequential() self.mode=mode model.classifier=nn.Sequential() self.model=model self.classifier=nn.Sequential(nn.Linear(512,4096), nn.BatchNorm1d(4096), nn.ReLU(inplace=True), nn.Linear(4096,4096), nn.BatchNorm1d(4096), nn.ReLU(inplace=True), nn.Linear(4096,num_classes) ) self.model=model self.cls_loss=nn.CrossEntropyLoss() if self.classifier is not None: for m in self.classifier.modules(): if isinstance(m,nn.Conv2d): nn.init.kaiming_normal_(m.weight,mode='fan_out',nonlinearity='relu') elif isinstance(m,nn.Linear): init.normal_(m.weight, std=1e-3) elif isinstance(m,nn.BatchNorm2d): init.constant(m.weight, 1) init.constant(m.bias, 0) elif isinstance(m,nn.BatchNorm1d): init.constant(m.weight, 1) init.constant(m.bias, 0) def forward(self,image_one=None,image_two=None,labels=None): #if not image_two: if self.mode is "test": feature_view1=self.model(image_one) logits_view1=nn.Softmax(dim=1)(self.classifier(feature_view1)) return logits_view1.argmax(dim=1),None,None feature=self.model(image_one) logit_view1=self.classifier(feature) classifier_loss=self.cls_loss(logit_view1,labels) logit_view1=nn.Softmax(dim=1)(logit_view1) top1_acc,top5_acc=accuracy(logit_view1.data,labels, topk=(1, 5)) return classifier_loss.mean(),top1_acc.data.mean(),top5_acc.data.mean()
41
163
0.569498
2,577
0.757273
0
0
0
0
0
0
428
0.125771
771328ea922df3260ea4280307fa28df861e95c9
789
py
Python
aqualogic/frames.py
mj-sakellaropoulos/aqualogic
75a4803d36730eb634d4bb31de564e647ed40624
[ "MIT" ]
null
null
null
aqualogic/frames.py
mj-sakellaropoulos/aqualogic
75a4803d36730eb634d4bb31de564e647ed40624
[ "MIT" ]
null
null
null
aqualogic/frames.py
mj-sakellaropoulos/aqualogic
75a4803d36730eb634d4bb31de564e647ed40624
[ "MIT" ]
null
null
null
from enum import Enum, unique class Frames(Enum): FRAME_DLE = 0x10 FRAME_STX = 0x02 FRAME_ETX = 0x03 # Local wired panel (black face with service button) FRAME_TYPE_LOCAL_WIRED_KEY_EVENT = b'\x00\x02' # Remote wired panel (white face) FRAME_TYPE_REMOTE_WIRED_KEY_EVENT = b'\x00\x03' # Wireless remote FRAME_TYPE_WIRELESS_KEY_EVENT = b'\x00\x83' FRAME_TYPE_ON_OFF_EVENT = b'\x00\x05' # Seems to only work for some keys FRAME_TYPE_KEEP_ALIVE = b'\x01\x01' FRAME_TYPE_LEDS = b'\x01\x02' FRAME_TYPE_DISPLAY_UPDATE = b'\x01\x03' FRAME_TYPE_LONG_DISPLAY_UPDATE = b'\x04\x0a' FRAME_TYPE_PUMP_SPEED_REQUEST = b'\x0c\x01' FRAME_TYPE_PUMP_STATUS = b'\x00\x0c' #AquaPod mystery FRAME_TYPE_AQUAPOD_KEY_EVENT = b'\x00\x8c'
30.346154
78
0.712294
756
0.958175
0
0
0
0
0
0
273
0.346008
77135615dccca76a8c5274c97ffda5de511d3e32
87
py
Python
Python/Sum/main.py
drtierney/hyperskill-problems
b74da993f0ac7bcff1cbd5d89a3a1b06b05f33e0
[ "MIT" ]
5
2020-08-29T15:15:31.000Z
2022-03-01T18:22:34.000Z
Python/Sum/main.py
drtierney/hyperskill-problems
b74da993f0ac7bcff1cbd5d89a3a1b06b05f33e0
[ "MIT" ]
null
null
null
Python/Sum/main.py
drtierney/hyperskill-problems
b74da993f0ac7bcff1cbd5d89a3a1b06b05f33e0
[ "MIT" ]
1
2020-12-02T11:13:14.000Z
2020-12-02T11:13:14.000Z
num1 = input() num2 = input() num3 = input() print(int(num1) + int(num2) + int(num3))
14.5
40
0.609195
0
0
0
0
0
0
0
0
0
0
77139d03885bd7af5b622aa37432a424a7f5a2fe
5,525
py
Python
Python/scheduledEventsInteractiveTool.py
Azure-Samples/virtual-machines-python-scheduled-events-central-logging
d9028f296e4b78eb449e295b4e72a9204da84dcf
[ "MIT" ]
7
2017-04-20T03:09:10.000Z
2021-02-08T17:07:54.000Z
Python/scheduledEventsInteractiveTool.py
Azure-Samples/virtual-machines-python-scheduled-events-central-logging
d9028f296e4b78eb449e295b4e72a9204da84dcf
[ "MIT" ]
8
2017-04-19T17:57:48.000Z
2017-04-21T18:31:44.000Z
Python/scheduledEventsInteractiveTool.py
Azure-Samples/virtual-machines-python-scheduled-events-central-logging
d9028f296e4b78eb449e295b4e72a9204da84dcf
[ "MIT" ]
4
2017-04-19T17:33:50.000Z
2021-02-10T11:21:01.000Z
#!/usr/bin/python import json import socket import sys import getopt import logging from enum import Enum from datetime import datetime import base64 import hmac import hashlib import time import urllib.request import urllib.parse import configparser metadata_url = 'http://169.254.169.254/metadata/scheduledevents?api-version=2017-03-01' headers = {'Metadata': 'true'} this_host = socket.gethostname() log_format = '%(asctime)s [%(levelname)s] %(message)s' logger = logging.getLogger('example') logging.basicConfig(format=log_format, level=logging.DEBUG) config_key_endpoint = 'Endpoint' config_key_shared_access_key_name = 'SharedAccessKeyName' config_key_shared_access_key = 'SharedAccessKey' config_key_entity_path = 'EntityPath' encoding = 'utf-8' class EventHubMsgSender: API_VERSION = '2016-07' TOKEN_VALID_SECS = 10 TOKEN_FORMAT = 'SharedAccessSignature sig=%s&se=%s&skn=%s&sr=%s' def __init__(self, connectionString=None): if connectionString is None: config = configparser.ConfigParser() config.read('scheduledEventsInteractiveToolConfig.ini') connectionString = config['DEFAULT']['connectionstring'] if connectionString is not None: keyValues = dict((item.split('=', 1)) for item in connectionString.split(';')) self.endPoint = keyValues[config_key_endpoint].replace('sb://', '') self.keyName = keyValues[config_key_shared_access_key_name] self.keyValue = keyValues[config_key_shared_access_key] self.entityPath = keyValues[config_key_entity_path] def _buildEventHubSasToken(self): expiry = int(time.time() + 10000) string_to_sign = '{}\n{}'.format( urllib.parse.quote_plus(self.endPoint), expiry) key = self.keyValue.encode(encoding) string_to_sign = string_to_sign.encode(encoding) signed_hmac_sha256 = hmac.HMAC(key, string_to_sign, hashlib.sha256) signature = signed_hmac_sha256.digest() signature = base64.b64encode(signature) token = 'SharedAccessSignature sr={}&sig={}&se={}&skn={}'.format(urllib.parse.quote_plus( self.endPoint), urllib.parse.quote(signature), expiry, self.keyName) return token def sendD2CMsg(self, message): sasToken = self._buildEventHubSasToken() url = 'https://{}{}/messages?api-version={}'.format( self.endPoint, self.entityPath, self.API_VERSION) data = message.encode('ascii') req = urllib.request.Request( url, headers={'Authorization': sasToken}, data=data, method='POST') with urllib.request.urlopen(req) as f: pass return f.read().decode(encoding) def send_to_event_hub(eventHubMessage): ehMsgSender = EventHubMsgSender() messageAsJson = json.dumps(eventHubMessage, ensure_ascii=False) result = ehMsgSender.sendD2CMsg(messageAsJson) logger.debug('send_to_event_hub returned {}'.format(result)) def get_scheduled_events(): logger.debug('get_scheduled_events was called') req = urllib.request.Request(url=metadata_url, headers=headers) resp = urllib.request.urlopen(req) data = json.loads(resp.read().decode(encoding)) return data def ack_event(evt): eventId = evt['EventId'] logger.info('ack_event was called with eventID {}'.format(eventId)) ack_msg = '{{"StartRequests":[{{"EventId":"{}"}}]}}'.format(eventId) ack_msg = ack_msg.encode() res = urllib.request.urlopen(url=metadata_url, data=ack_msg).read() eventHubMessage = build_eventhub_message( evt, 'Scheduled Event was acknowledged') send_to_event_hub(eventHubMessage) def build_eventhub_message(evt, message): eventHubMessage = evt.copy() eventHubMessage['Hostname'] = this_host eventHubMessage['Time'] = datetime.now().strftime('%H:%M:%S') eventHubMessage['Msg'] = message if 'Resources' in evt: eventHubMessage['Resources'] = evt['Resources'][0] if 'NotBefore' in evt: eventHubMessage['NotBefore'] = evt['NotBefore'].replace(' ', '_') eventHubMessage['LogType'] = 'DEBUG' return eventHubMessage def handle_scheduled_events(data): numEvents = len(data['Events']) logger.info( 'handle_scheduled_events was called with {} events'.format(numEvents)) if numEvents == 0: emptyEvent = {} eventHubMessage = build_eventhub_message( emptyEvent, 'No Scheduled Events') send_to_event_hub(eventHubMessage) return for evt in data['Events']: eventHubMessage = build_eventhub_message( evt, 'Scheduled Event was detected') logger.info(eventHubMessage) send_to_event_hub(eventHubMessage) if this_host in eventHubMessage['Resources']: eventId = evt['EventId'] logger.info('THIS host ({}) is scheduled for {} not before {} (id: {})'.format( this_host, eventHubMessage['EventType'], eventHubMessage['NotBefore'], eventId)) userAck = input('Are you looking to acknowledge the event (y/n)?') if userAck == 'y': logger.debug('Acknowledging {}'.format(eventId)) ack_event(evt) else: logger.debug('Ignoring {}'.format(eventId)) def main(): logger.debug('Azure Scheduled Events Interactive Tool') data = get_scheduled_events() handle_scheduled_events(data) if __name__ == '__main__': main() sys.exit(0)
36.833333
97
0.673122
1,991
0.360362
0
0
0
0
0
0
1,146
0.207421
7714068c84e56c46ce9cbe59a4ed57f2565d3970
1,750
py
Python
E2E_TOD/config.py
kingb12/pptod
4cc920494b663c5352a507ed1e32f1e2509a8c93
[ "Apache-2.0" ]
54
2021-10-02T13:31:09.000Z
2022-03-25T03:44:54.000Z
E2E_TOD/config.py
programmeddeath1/pptod
52d26ddc7b917c86af721e810a202db7c7d3b398
[ "Apache-2.0" ]
8
2021-11-10T06:05:20.000Z
2022-03-25T03:27:29.000Z
E2E_TOD/config.py
programmeddeath1/pptod
52d26ddc7b917c86af721e810a202db7c7d3b398
[ "Apache-2.0" ]
14
2021-10-02T13:31:01.000Z
2022-03-27T15:49:33.000Z
import logging, time, os class Config: def __init__(self, data_prefix): # data_prefix = r'../data/' self.data_prefix = data_prefix self._multiwoz_damd_init() def _multiwoz_damd_init(self): self.vocab_path_train = self.data_prefix + '/multi-woz-processed/vocab' self.data_path = self.data_prefix + '/multi-woz-processed/' self.data_file = 'data_for_damd.json' self.dev_list = self.data_prefix + '/multi-woz/valListFile.json' self.test_list = self.data_prefix + '/multi-woz/testListFile.json' self.dbs = { 'attraction': self.data_prefix + '/db/attraction_db_processed.json', 'hospital': self.data_prefix + '/db/hospital_db_processed.json', 'hotel': self.data_prefix + '/db/hotel_db_processed.json', 'police': self.data_prefix + '/db/police_db_processed.json', 'restaurant': self.data_prefix + '/db/restaurant_db_processed.json', 'taxi': self.data_prefix + '/db/taxi_db_processed.json', 'train': self.data_prefix + '/db/train_db_processed.json', } self.domain_file_path = self.data_prefix + '/multi-woz-processed/domain_files.json' self.slot_value_set_path = self.data_prefix + '/db/value_set_processed.json' self.exp_domains = ['all'] # hotel,train, attraction, restaurant, taxi self.enable_aspn = True self.use_pvaspn = False self.enable_bspn = True self.bspn_mode = 'bspn' # 'bspn' or 'bsdx' self.enable_dspn = False # removed self.enable_dst = False self.exp_domains = ['all'] # hotel,train, attraction, restaurant, taxi self.max_context_length = 900 self.vocab_size = 3000
42.682927
91
0.645714
1,722
0.984
0
0
0
0
0
0
634
0.362286
77147ffa79f630a4609f9a112ce607e6646e1ea3
6,438
py
Python
advanced_functionality/inference_pipeline_sparkml_xgboost_car_evaluation/preprocessor.py
jpmarques19/tensorflwo-test
0ff8b06e0415075c7269820d080284a42595bb2e
[ "Apache-2.0" ]
5
2019-01-19T23:53:35.000Z
2022-01-29T14:04:31.000Z
advanced_functionality/inference_pipeline_sparkml_xgboost_car_evaluation/preprocessor.py
jpmarques19/tensorflwo-test
0ff8b06e0415075c7269820d080284a42595bb2e
[ "Apache-2.0" ]
6
2020-01-28T22:54:35.000Z
2022-02-10T00:44:46.000Z
advanced_functionality/inference_pipeline_sparkml_xgboost_car_evaluation/preprocessor.py
jpmarques19/tensorflwo-test
0ff8b06e0415075c7269820d080284a42595bb2e
[ "Apache-2.0" ]
8
2020-12-14T15:49:24.000Z
2022-03-23T18:38:36.000Z
from __future__ import print_function import time import sys import os import shutil import csv import boto3 from awsglue.utils import getResolvedOptions import pyspark from pyspark.sql import SparkSession from pyspark.ml import Pipeline from pyspark.ml.feature import StringIndexer, VectorIndexer, OneHotEncoder, VectorAssembler, IndexToString from pyspark.ml.evaluation import MulticlassClassificationEvaluator from pyspark.sql.functions import * from mleap.pyspark.spark_support import SimpleSparkSerializer def toCSVLine(data): r = ','.join(str(d) for d in data[1]) return str(data[0]) + "," + r def main(): spark = SparkSession.builder.appName("PySparkTitanic").getOrCreate() args = getResolvedOptions(sys.argv, ['s3_input_data_location', 's3_output_bucket', 's3_output_bucket_prefix', 's3_model_bucket', 's3_model_bucket_prefix']) # This is needed to write RDDs to file which is the only way to write nested Dataframes into CSV. spark.sparkContext._jsc.hadoopConfiguration().set("mapred.output.committer.class", "org.apache.hadoop.mapred.FileOutputCommitter") train = spark.read.csv(args['s3_input_data_location'], header=False) oldColumns = train.schema.names newColumns = ['buying', 'maint', 'doors', 'persons', 'lug_boot', 'safety', 'cat'] train = reduce(lambda train, idx: train.withColumnRenamed(oldColumns[idx], newColumns[idx]), xrange(len(oldColumns)), train) # dropping null values train = train.dropna() # Target label catIndexer = StringIndexer(inputCol="cat", outputCol="label") labelIndexModel = catIndexer.fit(train) train = labelIndexModel.transform(train) converter = IndexToString(inputCol="label", outputCol="cat") # Spliting in train and test set. Beware : It sorts the dataset (traindf, validationdf) = train.randomSplit([0.8, 0.2]) # Index labels, adding metadata to the label column. # Fit on whole dataset to include all labels in index. buyingIndexer = StringIndexer(inputCol="buying", outputCol="indexedBuying") maintIndexer = StringIndexer(inputCol="maint", outputCol="indexedMaint") doorsIndexer = StringIndexer(inputCol="doors", outputCol="indexedDoors") personsIndexer = StringIndexer(inputCol="persons", outputCol="indexedPersons") lug_bootIndexer = StringIndexer(inputCol="lug_boot", outputCol="indexedLug_boot") safetyIndexer = StringIndexer(inputCol="safety", outputCol="indexedSafety") # One Hot Encoder on indexed features buyingEncoder = OneHotEncoder(inputCol="indexedBuying", outputCol="buyingVec") maintEncoder = OneHotEncoder(inputCol="indexedMaint", outputCol="maintVec") doorsEncoder = OneHotEncoder(inputCol="indexedDoors", outputCol="doorsVec") personsEncoder = OneHotEncoder(inputCol="indexedPersons", outputCol="personsVec") lug_bootEncoder = OneHotEncoder(inputCol="indexedLug_boot", outputCol="lug_bootVec") safetyEncoder = OneHotEncoder(inputCol="indexedSafety", outputCol="safetyVec") # Create the vector structured data (label,features(vector)) assembler = VectorAssembler(inputCols=["buyingVec", "maintVec", "doorsVec", "personsVec", "lug_bootVec", "safetyVec"], outputCol="features") # Chain featurizers in a Pipeline pipeline = Pipeline(stages=[buyingIndexer, maintIndexer, doorsIndexer, personsIndexer, lug_bootIndexer, safetyIndexer, buyingEncoder, maintEncoder, doorsEncoder, personsEncoder, lug_bootEncoder, safetyEncoder, assembler]) # Train model. This also runs the indexers. model = pipeline.fit(traindf) # Delete previous data from output s3 = boto3.resource('s3') bucket = s3.Bucket(args['s3_output_bucket']) bucket.objects.filter(Prefix=args['s3_output_bucket_prefix']).delete() # Save transformed training data to CSV in S3 by converting to RDD. transformed_traindf = model.transform(traindf) transformed_train_rdd = transformed_traindf.rdd.map(lambda x: (x.label, x.features)) lines = transformed_train_rdd.map(toCSVLine) lines.saveAsTextFile('s3a://' + args['s3_output_bucket'] + '/' +args['s3_output_bucket_prefix'] + '/' + 'train') # Similar data processing for validation dataset. predictions = model.transform(validationdf) transformed_train_rdd = predictions.rdd.map(lambda x: (x.label, x.features)) lines = transformed_train_rdd.map(toCSVLine) lines.saveAsTextFile('s3a://' + args['s3_output_bucket'] + '/' +args['s3_output_bucket_prefix'] + '/' + 'validation') # Serialize and store via MLeap SimpleSparkSerializer().serializeToBundle(model, "jar:file:/tmp/model.zip", predictions) # Unzipping as SageMaker expects a .tar.gz file but MLeap produces a .zip file. import zipfile with zipfile.ZipFile("/tmp/model.zip") as zf: zf.extractall("/tmp/model") # Writing back the content as a .tar.gz file import tarfile with tarfile.open("/tmp/model.tar.gz", "w:gz") as tar: tar.add("/tmp/model/bundle.json", arcname='bundle.json') tar.add("/tmp/model/root", arcname='root') s3 = boto3.resource('s3') file_name = args['s3_model_bucket_prefix'] + '/' + 'model.tar.gz' s3.Bucket(args['s3_model_bucket']).upload_file('/tmp/model.tar.gz', file_name) os.remove('/tmp/model.zip') os.remove('/tmp/model.tar.gz') shutil.rmtree('/tmp/model') # Save postprocessor SimpleSparkSerializer().serializeToBundle(converter, "jar:file:/tmp/postprocess.zip", predictions) with zipfile.ZipFile("/tmp/postprocess.zip") as zf: zf.extractall("/tmp/postprocess") # Writing back the content as a .tar.gz file import tarfile with tarfile.open("/tmp/postprocess.tar.gz", "w:gz") as tar: tar.add("/tmp/postprocess/bundle.json", arcname='bundle.json') tar.add("/tmp/postprocess/root", arcname='root') file_name = args['s3_model_bucket_prefix'] + '/' + 'postprocess.tar.gz' s3.Bucket(args['s3_model_bucket']).upload_file('/tmp/postprocess.tar.gz', file_name) os.remove('/tmp/postprocess.zip') os.remove('/tmp/postprocess.tar.gz') shutil.rmtree('/tmp/postprocess') if __name__ == "__main__": main()
42.92
225
0.694626
0
0
0
0
0
0
0
0
2,314
0.359428
7714bae382cfe5335e914024d6f5ee9028364bc3
1,350
py
Python
response/response.py
benyamin-7/simple-snmp-collector
f21dc75bc2a28af0ce1c881837166d0034cac213
[ "MIT" ]
null
null
null
response/response.py
benyamin-7/simple-snmp-collector
f21dc75bc2a28af0ce1c881837166d0034cac213
[ "MIT" ]
null
null
null
response/response.py
benyamin-7/simple-snmp-collector
f21dc75bc2a28af0ce1c881837166d0034cac213
[ "MIT" ]
null
null
null
from datetime import datetime __author__ = 'aGn' __copyright__ = "Copyright 2018, Planet Earth" class Response(object): """Response Class""" def __init__(self): self.socket = None @staticmethod def publisher( module, meta_data, **kwargs ): """ Packing Json file in order to sending on ZMQ pipeline. :param module: :param meta_data: :param kwargs: SNMP values result. :return: """ for name, data in kwargs.items(): if data != -8555: meta_data['status'] = 200 else: meta_data['status'] = 404 result = { 'data': {name: data}, 'module': module, 'time': datetime.now().strftime('%Y-%m-%dT%H:%M:%S'), 'station': 'SNMP', 'tags': meta_data } print({name: data}, ' ', result['time']) def publish( self, module, meta_data, **kwargs ): """ Call the publisher method to send the result on the subscriber servers by ZMQ. :param module: :param meta_data: :param kwargs: :return: """ self.publisher( module, meta_data, **kwargs )
24.107143
86
0.474074
1,250
0.925926
0
0
764
0.565926
0
0
518
0.383704
77174314400427e0f14a7aea762b47ab497d31f3
1,399
py
Python
properjpg/filesmanager.py
vitorrloureiro/properjpg
4d68e4b9dc930f829d6f67b1d68e1018bdf6f87e
[ "MIT" ]
3
2022-02-16T14:38:25.000Z
2022-02-18T12:20:19.000Z
properjpg/filesmanager.py
vitorrloureiro/properjpg
4d68e4b9dc930f829d6f67b1d68e1018bdf6f87e
[ "MIT" ]
2
2022-02-21T05:54:14.000Z
2022-02-23T14:14:29.000Z
properjpg/filesmanager.py
vitorrloureiro/properjpg
4d68e4b9dc930f829d6f67b1d68e1018bdf6f87e
[ "MIT" ]
null
null
null
import mimetypes import os from pathlib import Path def ignore_files(dir: str, files: list[str]): """ Returns a list of files to ignore. To be used by shutil.copytree() """ return [f for f in files if Path(dir, f).is_file()] def get_input_images(input_folder: Path, output_path: Path): """ Get all images from a folder and it's subfolders. Also outputs a save path to be used by the image. :param input_folder: The folder to be scanned. :param output_path: The root folder of the destination path. """ for root, _, files in os.walk(input_folder): for file in files: mime_type = mimetypes.guess_type(file)[0] if isinstance(mime_type, str): if "image" in mime_type: image = Path(root, file) relative_path = image.relative_to(input_folder) save_path = Path(output_path, relative_path) yield image, save_path def generate_filename(input_path: Path) -> Path: gen_counter = 1 gen_output = input_path.with_name(f"{input_path.stem}-{gen_counter}").with_suffix( ".jpg" ) while gen_output.is_file(): gen_counter += 1 gen_output = input_path.with_name( f"{input_path.stem}-{gen_counter}" ).with_suffix(".jpg") output_path = gen_output return output_path
27.98
86
0.623302
0
0
738
0.52752
0
0
0
0
411
0.293781
77176f91a315883bc70d79d05e8925871389967c
3,117
py
Python
mcoc/cdt_core/fetch_data.py
sumitb/mcoc-v3
93fa5d9d9b28541d19969765b6186072f0d747e7
[ "MIT" ]
null
null
null
mcoc/cdt_core/fetch_data.py
sumitb/mcoc-v3
93fa5d9d9b28541d19969765b6186072f0d747e7
[ "MIT" ]
null
null
null
mcoc/cdt_core/fetch_data.py
sumitb/mcoc-v3
93fa5d9d9b28541d19969765b6186072f0d747e7
[ "MIT" ]
null
null
null
from ..abc import MixinMeta import json import re class FetchData(MixinMeta): """CDT FetchData functions""" ## No cog dependencies## # def __init__(self, bot: Red): # """init""" # self.bot = bot async def aiohttp_http_to_text(ctx, url): """pull text from url, return pretty string""" result = None async with MixinMeta.session.get(url) as response: if response.status != 200: await ctx.send("Response Status: {response.status}") filetext = await response.text() filetext = FetchData.bcg_recompile(filetext) #cleanup the [15fkas] stuff prettytext = FetchData.prettyprint(filetext) if prettytext is not None: return prettytext else: return filetext async def aiohttp_http_to_json(ctx, url): """pull text from url, return pretty json""" result = None async with MixinMeta.session.get(url) as response: if response.status != 200: await ctx.send("Response Status: {response.status}") filetext = await response.text() filetext = FetchData.bcg_recompile(filetext) prettytext = FetchData.prettyprint(filetext) jsonfile = json.loads(prettytext) return jsonfile async def convert_kabamfile_to_json(ctx, kabamjson): """Convert Kabam's lists of k, v & vn to k: {v, vn}""" # stringlist = kabamfile["strings"].keys() #list of strings if isinstance(kabamjson, dict): next elif isinstance(kabamjson, str): kabamjson = json.loads(kabamjson) else: await ctx.send("dbg: kabam_to_json - not str or dict") return None snapshot_file = {"meta": {}, "strings": {}} snapshot_file["meta"].update(kabamjson["meta"]) await ctx.send("dbg: text_to_json metacheck{}".format(snapshot_file["meta"])) stringlist = kabamjson["strings"] strings = {} for item in stringlist: if "vn" in item: vn = item["vn"] if isinstance(vn, int): #unlikely, but they might do it vn = str(vn) else: vn = "0.0.0" pkg = {item["k"] : {"v": item["v"], "vn": vn}} print(pkg) strings.update(pkg) snapshot_file["strings"].update(strings) return snapshot_file def prettyprint(text_or_json): """Return prettyprint string of json file""" jtext = None if isinstance(text_or_json, str): jtext = json.loads(text_or_json) if isinstance(text_or_json, dict): jtext = text_or_json if jtext is not None: result = json.dumps(jtext, indent=4, sort_keys=True) return result def bcg_recompile(str_data): """Scrape out the color decorators from Kabam JSON file""" hex_re = re.compile(r'\[[0-9a-f]{6,8}\](.+?)\[-\]', re.I) return hex_re.sub(r'**\1**', str_data)
35.827586
85
0.5624
3,060
0.981713
0
0
0
0
2,237
0.717677
742
0.238049
77196d4e2e1432027536633a3f1233790aa78b63
7,175
py
Python
evaluate_network_example.py
VU-BEAM-Lab/DNNBeamforming
e8ee8c1e57188a795816b119279ac2e60e5c5236
[ "Apache-2.0" ]
1
2021-04-12T19:52:43.000Z
2021-04-12T19:52:43.000Z
evaluate_network_example.py
VU-BEAM-Lab/DNNBeamforming
e8ee8c1e57188a795816b119279ac2e60e5c5236
[ "Apache-2.0" ]
null
null
null
evaluate_network_example.py
VU-BEAM-Lab/DNNBeamforming
e8ee8c1e57188a795816b119279ac2e60e5c5236
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Jaime Tierney, Adam Luchies, and Brett Byram # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the license at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/env python # coding: utf-8 # In[ ]: # INSTALL NECESSARY PACKAGES PRIOR TO RUNNING THIS NOTEBOOK # (SEE README FOR INSTRUCTIONS) # pytorch # jupyter # numpy # scipy # matplotlib # pandas # h5py # IMPORT PYTHON PACKAGES import torch import os import numpy as np from torch import nn import time import argparse import sys import h5py from scipy.io import loadmat from scipy.io import savemat from scipy.signal import hilbert import matplotlib.pyplot as plt # IMPORT FUNCTIONS FROM PROVIDED SOURCE CODE sys.path.insert(0,'src') from utils import read_model_params from model import FullyConnectedNet # In[ ]: # SPECIFY PATH TO MODEL (THIS IS ALSO OUTPUT PATH) model_path = 'models/model_1/k_8/' # LOAD IN MODEL PARAMS model_params = read_model_params(model_path+'model_params.txt') # PROVIDE TEST DATA FILE INFO test_data_path = 'test_data/' test_data_name = 'chandat_phantom_5mm_70mm' # In[ ]: # SPECIFY CUDA AVAILABILITY print('torch.cuda.is_available(): ' + str(torch.cuda.is_available())) if model_params['cuda'] and torch.cuda.is_available(): print('Using ' + str(torch.cuda.get_device_name(0))) else: print('Not using CUDA') model_params['cuda']=False device = torch.device("cuda:0" if model_params['cuda'] else "cpu") # In[ ]: # LOAD IN THE TEST DATA AND REFORMAT FOR NETWORK PROCESSING # load in delayed RF channel data f = h5py.File(os.path.join(test_data_path,test_data_name+'.mat'),'r') rf_data = np.asarray(f['chandat']) f.close() # get dimension info [N_beams,N_elements,N_depths] = rf_data.shape # get analytic data analytic_data = hilbert(rf_data,axis=2) del rf_data # switch depth and channel axes analytic_data = np.moveaxis(analytic_data,1,2) # concatenate real and imaginary components into data variable data_real = np.real(analytic_data) data_imag = np.imag(analytic_data) data = np.concatenate([data_real,data_imag],axis=2) del analytic_data # get conventional DAS B-mode data env = np.sqrt(np.power(np.sum(data_real,axis=2),2)+ np.power(np.sum(data_imag,axis=2),2)) bmode = 20*np.log10(env) del data_real, data_imag # reshape data to flatten depth and beam axes data = np.reshape(data,[N_beams*N_depths,2*N_elements]) # normalize data by L1 norm data_norm = np.linalg.norm(data,ord=np.inf,axis=1) data = data / data_norm[:,np.newaxis] # load data into pytorch and onto gpu data = torch.from_numpy(data).float() data = data.to(device) # In[ ]: # PASS TEST DATA THROUGH NETWORK # start timer t0 = time.time() # load the model model = FullyConnectedNet(input_dim=model_params['input_dim'], output_dim=model_params['output_dim'], layer_width=model_params['layer_width'], dropout=model_params['dropout'], dropout_input=model_params['dropout_input'], num_hidden=model_params['num_hidden'], starting_weights=None, batch_norm_enable=model_params['batch_norm_enable']) print('Loading weights from: ' + str(os.path.join(model_params['save_dir'], 'model.dat'))) model.load_state_dict(torch.load(os.path.join(model_params['save_dir'], 'model.dat'), map_location='cpu')) model.eval() model = model.to(device) # process test data with the model with torch.set_grad_enabled(False): data_dnn = model(data).to('cpu').data.numpy() # stop timer print('Processing time: {:.2f}'.format(time.time()-t0)) # clear the model and input data del model, data # In[ ]: # REFORMAT PROCESSED TEST DATA # scale back data_dnn = data_dnn * data_norm[:,np.newaxis] # unflatten depth and beam axes data_dnn = np.reshape(data_dnn,[N_beams,N_depths,2*N_elements]) # split up real and imaginary data_dnn_real = data_dnn[:,:,0:N_elements] data_dnn_imag = data_dnn[:,:,N_elements:2*N_elements] # get DNN beamformer B-mode data env_dnn = np.sqrt(np.power(np.sum(data_dnn_real,axis=2),2)+ np.power(np.sum(data_dnn_imag,axis=2),2)) bmode_dnn = 20*np.log10(env_dnn) # In[ ]: # MAKE IMAGES AND COMPUTE IMAGE QUALITY METRICS # load in params file f = h5py.File(os.path.join(test_data_path,test_data_name+'_params.mat'),'r') beam_position_x = np.asarray(f['beam_position_x']) t = np.asarray(f['t']) fs = np.asarray(f['fs']) c = np.asarray(f['c']) mask_in = np.asarray(f['mask_in']) mask_out = np.asarray(f['mask_out']) f.close() depths = t/fs*c/2 # make DAS image bmode_scaled = bmode - np.max(bmode) fig,axs = plt.subplots(nrows=1,ncols=2,sharey=True) das_img=axs[0].imshow(np.moveaxis(bmode_scaled,0,1),cmap='gray', aspect='equal',vmin=-60,vmax=0, extent=[beam_position_x[0][0]*1000, beam_position_x[-1][0]*1000, depths[0][-1]*1000, depths[0][0]*1000]) axs[0].set_title('DAS') axs[0].set_ylabel('Depth (mm)') axs[0].set_xlabel('Lateral Pos. (mm)') fig.colorbar(das_img,ax=axs[0]) # make DNN image bmode_dnn_scaled = bmode_dnn - np.max(bmode_dnn) dnn_img=axs[1].imshow(np.moveaxis(bmode_dnn_scaled,0,1),cmap='gray', aspect='equal',vmin=-60,vmax=0, extent=[beam_position_x[0][0]*1000, beam_position_x[-1][0]*1000, depths[0][-1]*1000, depths[0][0]*1000]) axs[1].set_title('DNN') axs[1].set_xlabel('Lateral Pos. (mm)') # add colorbar and save figure fig.colorbar(dnn_img,ax=axs[1]) fig.savefig(os.path.join(model_path,test_data_name+'_result.png')) # find indicies corresponding to inside and outside of lesion idx_in = np.where(mask_in==1) idx_out = np.where(mask_out==1) # compute mean and variance for DAS mean_in = np.mean(env[idx_in]) mean_out = np.mean(env[idx_out]) var_in = np.var(env[idx_in]) var_out = np.var(env[idx_out]) # compute mean and variance for DNN mean_in_dnn = np.mean(env_dnn[idx_in]) mean_out_dnn = np.mean(env_dnn[idx_out]) var_in_dnn = np.var(env_dnn[idx_in]) var_out_dnn = np.var(env_dnn[idx_out]) # compute image quality metrics CNR = 20*np.log10(np.abs(mean_in-mean_out)/np.sqrt(var_in+var_out)) CNR_DNN = 20*np.log10(np.abs(mean_in_dnn-mean_out_dnn)/ np.sqrt(var_in_dnn+var_out_dnn)) CR = -20*np.log10(np.abs(mean_in/mean_out)) CR_DNN = -20*np.log10(np.abs(mean_in_dnn/mean_out_dnn)) print('CNR DAS: {:.2f}'.format(CNR)) print('CNR DNN: {:.2f}'.format(CNR_DNN)) print('CR DAS: {:.2f}'.format(CR)) print('CR DNN: {:.2f}'.format(CR_DNN)) # In[ ]:
28.137255
90
0.683902
0
0
0
0
0
0
0
0
2,570
0.358188
771ab20147dc0551086f34101e79824ead557fa2
4,392
py
Python
nexus_constructor/geometry/slit/slit_geometry.py
ess-dmsc/nexus-geometry-constructor
c4d869b01d988629a7864357b8fc2f49a0325111
[ "BSD-2-Clause" ]
null
null
null
nexus_constructor/geometry/slit/slit_geometry.py
ess-dmsc/nexus-geometry-constructor
c4d869b01d988629a7864357b8fc2f49a0325111
[ "BSD-2-Clause" ]
62
2018-09-18T14:50:34.000Z
2019-02-05T15:43:02.000Z
nexus_constructor/geometry/slit/slit_geometry.py
ess-dmsc/nexus-geometry-constructor
c4d869b01d988629a7864357b8fc2f49a0325111
[ "BSD-2-Clause" ]
null
null
null
from typing import List from PySide2.QtGui import QVector3D from nexus_constructor.common_attrs import SHAPE_GROUP_NAME, CommonAttrs from nexus_constructor.model.component import Component from nexus_constructor.model.geometry import OFFGeometryNoNexus class SlitGeometry: def __init__(self, component: Component): gaps: tuple = ( float(component["x_gap"].values) if "x_gap" in component else None, float(component["y_gap"].values) if "y_gap" in component else None, ) self._units = self._get_units(component) self.vertices: List[QVector3D] = [] self.faces: List[List[int]] self._gaps: tuple = gaps self._create_vertices() self._create_faces() def _get_units(self, component: Component): if "x_gap" in component: return component["x_gap"].attributes.get_attribute_value(CommonAttrs.UNITS) elif "y_gap" in component: return component["y_gap"].attributes.get_attribute_value(CommonAttrs.UNITS) else: return "" def _create_vertices(self): x_gap, y_gap = self._gaps if x_gap: x_1 = 0.0 x_2 = -1.0 half_side_length = x_gap * 2 dx = x_gap / 2 + half_side_length else: x_1 = -0.1 x_2 = -0.5 dx = 0 half_side_length = 0.05 if y_gap: dy = y_gap / 2 slit_thickness = y_gap * 2 else: slit_thickness = 0.02 dy = half_side_length slit_matrix = [ [x_2, -1, 0.1], [x_1, -1, 0.1], [x_2, 1, 0.1], [x_1, 1, 0.1], [x_2, 1, -0.1], [x_1, 1, -0.1], [x_2, -1, -0.1], [x_1, -1, -0.1], ] # Left and right rectangle. dimension_matrix = [] for column in slit_matrix: dimension_matrix.append( [ column[0] * half_side_length + dx, column[1] * dy, column[2] * half_side_length, ] ) vertices_left_bank: List[QVector3D] = [] vertices_right_bank: List[QVector3D] = [] for column in dimension_matrix: vertices_left_bank.append(QVector3D(column[0], column[1], column[2])) vertices_right_bank.append(QVector3D(-column[0], -column[1], column[2])) # Lower and upper rectangle. x_dist = dx if x_gap else half_side_length / 2 slit_matrix = [ [1, dy, 0.1], [-1, dy, 0.1], [1, slit_thickness + dy, 0.1], [-1, slit_thickness + dy, 0.1], [1, slit_thickness + dy, -0.1], [-1, slit_thickness + dy, -0.1], [1, dy, -0.1], [-1, dy, -0.1], ] dimension_matrix = [] for column in slit_matrix: dimension_matrix.append( [column[0] * x_dist, column[1], column[2] * half_side_length] ) vertices_lower_bank: List[QVector3D] = [] vertices_upper_bank: List[QVector3D] = [] for column in dimension_matrix: vertices_lower_bank.append(QVector3D(column[0], column[1], column[2])) vertices_upper_bank.append(QVector3D(column[0], -column[1], column[2])) self.vertices = ( vertices_left_bank + vertices_right_bank + vertices_lower_bank + vertices_upper_bank ) def _create_faces(self): left_faces = [ [0, 1, 3, 2], [2, 3, 5, 4], [4, 5, 7, 6], [6, 7, 1, 0], [1, 7, 5, 3], [6, 0, 2, 4], ] right_faces = [ [col[0] + 8, col[1] + 8, col[2] + 8, col[3] + 8] for col in left_faces ] lower_faces = [ [col[0] + 8, col[1] + 8, col[2] + 8, col[3] + 8] for col in right_faces ] upper_faces = [ [col[0] + 8, col[1] + 8, col[2] + 8, col[3] + 8] for col in lower_faces ] self.faces = left_faces + right_faces + lower_faces + upper_faces def create_slit_geometry(self) -> OFFGeometryNoNexus: geometry = OFFGeometryNoNexus(self.vertices, self.faces, SHAPE_GROUP_NAME) geometry.units = self._units return geometry
33.784615
87
0.523452
4,134
0.941257
0
0
0
0
0
0
113
0.025729
771bb5f41967c5159144e1d6ef84a2f513ef5409
5,029
py
Python
part4/test.py
willogy-team/insights--tensorflow
2d4885c99e7b550e94d679bed1f192f62f7e4139
[ "MIT" ]
null
null
null
part4/test.py
willogy-team/insights--tensorflow
2d4885c99e7b550e94d679bed1f192f62f7e4139
[ "MIT" ]
null
null
null
part4/test.py
willogy-team/insights--tensorflow
2d4885c99e7b550e94d679bed1f192f62f7e4139
[ "MIT" ]
null
null
null
import os import argparse import numpy as np import tensorflow as tf from tensorflow.keras.optimizers import Adam from tensorflow.keras.models import Model from tensorflow.keras.preprocessing.image import load_img, img_to_array import matplotlib.pyplot as plt from visualizations.manual_plot_by_matplotlib import plot_filters_of_a_layer from visualizations.manual_plot_by_matplotlib import plot_feature_maps_of_a_layer, plot_feature_maps_of_multiple_layers from visualizations.automatic_plot_by_tf_keras_vis import plot_activation_maximization_of_a_layer from visualizations.automatic_plot_by_tf_keras_vis import plot_vanilla_saliency_of_a_model from visualizations.automatic_plot_by_tf_keras_vis import plot_smoothgrad_of_a_model from visualizations.automatic_plot_by_tf_keras_vis import plot_gradcam_of_a_model from visualizations.automatic_plot_by_tf_keras_vis import plot_gradcam_plusplus_of_a_model from visualizations.automatic_plot_by_tf_keras_vis import plot_scorecam_of_a_model from visualizations.automatic_plot_by_tf_keras_vis import plot_faster_scorecam_of_a_model ap = argparse.ArgumentParser() ap.add_argument("-trd", "--train_dir", required=True, help="Path to dataset train directory") ap.add_argument("-mdp", "--model_path", required=True, help="Path to the folder for saving checkpoints") args = vars(ap.parse_args()) def create_model(): model = tf.keras.Sequential([ tf.keras.layers.Conv2D(8, 7, activation='relu'), tf.keras.layers.Conv2D(8, 5, activation='relu'), tf.keras.layers.Conv2D(8, 3, activation='relu'), tf.keras.layers.Flatten(input_shape=(32, 32, 3)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(3, activation='softmax') ]) input_shape = (None, 128, 128, 3) model.build(input_shape) model.compile(loss='categorical_crossentropy', optimizer=Adam(learning_rate=1e-4), metrics=['accuracy']) return model model = create_model() checkpoint_path = os.path.join(args["model_path"], 'models') model.load_weights(checkpoint_path) for idx, layer in enumerate(model.layers): print('[*] layer: ', layer) if 'conv' not in layer.name: print('No') continue filters_weights, biases_weights = layer.get_weights() print('[**] id: {}, layer.name: {}, filters_weights.shape: {}, biases_weights.shape: {}'.format(idx, layer.name, filters_weights.shape, biases_weights.shape)) print('[**] layer.output.shape: {}'.format(layer.output.shape)) filters_max, filters_min = filters_weights.max(), filters_weights.min() filters_weights = (filters_weights - filters_min)/(filters_max - filters_min) print('[**] filters_weights: ', filters_weights) plot_filters_of_a_layer(filters_weights, 3) # === Output feature maps from a single layer === # A PIL object img = load_img(os.path.join(args["train_dir"], 'n02085620-Chihuahua', 'n02085620_1558.jpg'), target_size=(128, 128)) # Convert to numpy array img = img_to_array(img) img = np.expand_dims(img, axis=0) # img = model.preprocess_input(img) img = img/255 model_1 = Model(inputs=model.inputs, outputs=model.layers[0].output) feature_maps_1 = model_1.predict(img) print('[*] feature_maps_1.shape: ', feature_maps_1.shape) plot_feature_maps_of_a_layer(feature_maps_1) # === Output feature maps from multiple layers === list_of_outputs = [model.layers[idx].output for idx in range(3)] model_2 = Model(inputs=model.inputs, outputs=list_of_outputs) model_2.summary() feature_maps_2 = model_2.predict(img) for feature_map in feature_maps_2: print('[*] feature_map.shape: ', feature_map.shape) plot_feature_maps_of_multiple_layers(feature_maps_2) # === Output activation maximization from a single layer === plot_activation_maximization_of_a_layer(model, 2) # === GradCam++ from a single layer === # plot_gradcam_plusplus_of_a_layer(model, 2) # === Attentions === image_titles = ['Chihuahua', 'Japanese_spaniel', 'Maltese_dog'] img1 = load_img(os.path.join(args["train_dir"], 'n02085620-Chihuahua', 'n02085620_1558.jpg'), target_size=(128, 128)) img2 = load_img(os.path.join(args["train_dir"], 'n02085782-Japanese_spaniel', 'n02085782_2874.jpg'), target_size=(128, 128)) img3 = load_img(os.path.join(args["train_dir"], 'n02085936-Maltese_dog', 'n02085936_4245.jpg'), target_size=(128, 128)) img1 = np.asarray(img1) img2 = np.asarray(img2) img3 = np.asarray(img3) images = np.asarray([img1, img2, img3]) X = images/255 ## Vanilla saliency print('[*] Vanilla saliency') plot_vanilla_saliency_of_a_model(model, X, image_titles) ## SmoothGrad print('[*] SmoothGrad') plot_smoothgrad_of_a_model(model, X, image_titles) ## GradCAM print('[*] GradCAM') plot_gradcam_of_a_model(model, X, image_titles, images) ## GradCAM++ print('[*] GradCAM++') plot_gradcam_plusplus_of_a_model(model, X, image_titles, images) ## ScoreCAM print('[*] ScoreCam') plot_scorecam_of_a_model(model, X, image_titles, images) ## Faster-ScoreCAM print('[*] Faster-ScoreCAM') plot_faster_scorecam_of_a_model(model, X, image_titles, images)
39.912698
162
0.766156
0
0
0
0
0
0
0
0
1,193
0.237224
771d0991f9537430f57ccbbc794e519d04ca435c
5,149
py
Python
tlg_bot.py
macrergate/PIK_monitor
06f337d9b07c63619f3d6bbed0bbac03a6db87b3
[ "MIT" ]
null
null
null
tlg_bot.py
macrergate/PIK_monitor
06f337d9b07c63619f3d6bbed0bbac03a6db87b3
[ "MIT" ]
null
null
null
tlg_bot.py
macrergate/PIK_monitor
06f337d9b07c63619f3d6bbed0bbac03a6db87b3
[ "MIT" ]
null
null
null
import telegram from flatten_dict import flatten import os import time import datetime from pik import PIKData from helpers import hash_vals, dump_data, load_data, compare class Credentials(object): def __init__(self, credentials_json): self.__credentials = load_data(credentials_json) self.auth_token = self.__get_param('TLG_TOKEN', 'auth_token') self.chat_id = self.__get_param('TLG_CHAT_ID', 'chat_id') self.login = self.__get_param('PIK_LOGIN', 'pik_login') self.password = self.__get_param('PIK_PASSWORD', 'pik_password') def __get_param(self, ENV, key): return os.environ.get(ENV, self.__credentials.get(key)) class TelegramSender(object): def __init__(self, auth_token, chat_id, data_dir='data'): self.tpath = os.path.join(data_dir, 'timemsg.json') self.auth_token = auth_token self.chat_id = chat_id self.bot = telegram.Bot(self.auth_token) def send_message(self, data): template = '<b>Обнаружены изменения в личном кабинете!</b>\n' for e in data: template += '\nРаздел <b>"{}":</b>\n'.format(e['label']) for val in e['values']: template += ' <i>{}</i>\n'.format(val) resp = self.bot.send_message(self.chat_id, template, parse_mode='html') print(resp) def send_init_message(self, data): template = '<b>Инициализация мониторинга.</b>\n' for e in data: template += '\nСканирование раздела <b>"{}"...</b>\n'.format(e['label']) vals = len(e['values']) template += ' Обнаружено <b>{}</b> параметров для отслеживания.'.format(vals) template += '\n' resp = self.bot.send_message(self.chat_id, template, parse_mode='html') print(resp) def send_time_message(self, template): timemsg = load_data(self.tpath) data = self.bot.send_message(self.chat_id, template, disable_notification=True) mid = data['message_id'] timemsg[self.chat_id] = mid dump_data(timemsg, self.tpath) def update_time_message(self): id = load_data(self.tpath).get(self.chat_id) template = "Последняя проверка:\n{}".format((datetime.datetime.now().strftime("%d %b %H:%M:%S"))) if id: self.bot.editMessageText(template, self.chat_id, id) else: self.send_time_message(template) class Checker(object): steps = [ {'label': 'Мои объекты/Главное', 'params': { 'new_data': 'flat_data', 'file': 'flat.json' } }, {'label': 'Мои объекты/Ход сделки/Выдача ключей', 'params': { 'new_data': 'keys_status', 'file': 'progress.json' } }, {'label': 'Сопровождение', 'params': { 'new_data': 'appointment', 'file': 'appointment.json' } }, ] def __init__(self,credentials, folder = 'data', silent = True): self.credentials = credentials self.silent = silent self.folder = folder if not self.silent: self.bot = TelegramSender(self.credentials.auth_token, self.credentials.chat_id, folder) def check(self): # Логинимся и получаем данные pik_data = PIKData(self.credentials.login, self.credentials.password) changes = [] init = False for step in self.steps: try: params = step['params'] label = step['label'] print("Проверка '{}':".format(label)) path = os.path.join(folder, params['file']) initial_data = flatten(load_data(path), reducer='dot') new_data = flatten(getattr(pik_data, params['new_data']), reducer='dot') if not initial_data: init = True diffs = compare(initial_data, new_data) if diffs: print('Обнаружены изменения!') print(diffs) changes.append({'label': label, 'values': diffs}) dump_data(getattr(pik_data, params['new_data']), path) else: print(' Изменений нет!') except Exception as e: print('Exception:', str(e)) if changes and not self.silent: if init: self.bot.send_init_message(changes) else: self.bot.send_message(changes) if not self.silent: self.bot.update_time_message() if __name__ == '__main__': folder = os.environ.get('DATA_DIR', 'data') mode = os.environ.get('MODE', 'single') delay = int(os.environ.get('DELAY', 600)) credentials_json = os.path.join(folder, 'credentials.json') credentials = Credentials(credentials_json) checker = Checker(credentials, folder, silent = False) if mode == 'single': checker.check() elif mode == 'loop': while True: checker.check() print("Wait {} sec.".format(delay)) time.sleep(delay)
34.557047
105
0.571373
4,686
0.866494
0
0
0
0
0
0
1,209
0.223558
771d3fa0c3bd43d72d1bdf5d1c6f1888cb0021be
15,025
py
Python
CopyrightHeaderChecker.py
medazzo/CopyRitghHeaderChecker-
320642ebd9216338820b6876519e9fae69252dd7
[ "MIT" ]
2
2019-01-07T14:42:44.000Z
2019-01-07T14:42:46.000Z
CopyrightHeaderChecker.py
medazzo/CopyRightHeaderChecker
320642ebd9216338820b6876519e9fae69252dd7
[ "MIT" ]
null
null
null
CopyrightHeaderChecker.py
medazzo/CopyRightHeaderChecker
320642ebd9216338820b6876519e9fae69252dd7
[ "MIT" ]
null
null
null
#!/usr/bin/python # @author Mohamed Azzouni , Paris, France # import os import time import ntpath import sys import json import argparse from os.path import join, getsize from shutil import copyfile behaviour = """{ "reporting": true , "updatefiles": true , "excludeDirs" :[".git",".repo"], "shebang": { "she":["#!/","#!/bin","#!/usr/bin"], "check": true }, "oldCopyright": { "lookforandwarn": true, "forceNewCopyright": false, "numberofline":6 }, "checks": [ { "brief":"C/C++ Code", "extensions":[".c",".cpp",".h",".hpp"], "names":[], "copyright":[ "/// @author your $$CompanyName$$ , $$CompanyAddress$$, $$CompanyCountry$$", "/// ", "/// @copyright $$CompanyYear$$ $$CompanyName$$", "/// All rights exclusively reserved for $$CompanyName$$,", "/// unless otherwise expressly agreed", ""] }, { "brief":"bash/scripting Code", "extensions":[".conf",".conf.sample",".bb",".inc",".service",".sh",".cfg",".m4" ,".init",".py",".pl"], "names":["init","run-ptest","llvm-config","build-env-set","init-build-env","setup-build-env","Dockerfile"], "copyright":[ "# @author your $$CompanyName$$ , $$CompanyAddress$$, $$CompanyCountry$$", "#", "# @copyright $$CompanyYear$$ $$CompanyName$$", "# All rights exclusively reserved for $$CompanyName$$,", "# unless otherwise expressly agreed", ""] }, { "brief":"html/js Code", "extensions":[".html"], "names":[], "copyright":[ "<!-- @author your $$CompanyName$$ , $$CompanyAddress$$, $$CompanyCountry$$ -->", "<!-- -->", "<!-- @copyright $$CompanyYear$$ $$CompanyName$$ -->", "<!-- All rights exclusively reserved for $$CompanyName$$ , -->", "<!-- unless otherwise expressly agreed -->", ""] }, { "brief":"Markdown Code", "extensions":[".md"], "names":[], "copyright":[ "[comment]: <> (@author your $$CompanyName$$ , $$CompanyAddress$$, $$CompanyCountry$$ )", "[comment]: <> ( )", "[comment]: <> (@copyright $$CompanyYear$$ $$CompanyName$$ )", "[comment]: <> (All rights exclusively reserved for $$CompanyName$$, )", "[comment]: <> (unless otherwise expressly agreed )", ""] } ] }""" # Define Debug = False Outputfolder="" Rbehaviour = json.loads(behaviour) filesAlreadyCopyright = [] # Parameters : # --dumpShebang : : dump the current list of managed shebang # --dumpExtension : : dump the current list of managed files extensions # -r --report [default: False]: if true print a complete report for what has done # -u --update [default: False]: if true files will be updated else a modified copy will be generated # -w --warnOldHeader [default: False]: if true do warn about Old Header existant in files in traces # -f --forceOldHeader [default: False]: if true do replace old header if exist (exclusif with option warnOldHeader ) # -n --nameCompany : : string # -a --adressCompany : : string # -c --countryCompany : : string # -y --yearCompany : : string # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Find all concerned Files # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def SetupParserParameter( ): """ this functions will setup parameter and parser for argument""" parser = argparse.ArgumentParser(description='Checks sources code files for Copyright Header and add ours.', prog='CopyrightHeaderChecker') parser.add_argument('--version', action='version', version='%(prog)s 1.0') parser.add_argument('--verbose', action='store_true', help='verbose mode ') subparsers = parser.add_subparsers(help='sub command :') parser_info = subparsers.add_parser('info', help='get checker informations ') parser_info.add_argument('-s','--dumpShebang', dest='dumpShebang',action='store_true', help='dump the current list of managed shebang') parser_info.add_argument('-e', '--dumpExtension', dest='dumpExtension',action='store_true', help='dump the current list of managed files extensions') parser_process = subparsers.add_parser('process', help='process checker') parser_process.add_argument('-r','--report', dest='report',action='store_true', help='print a detailled report for what has done') parser_process.add_argument('-u','--update', dest='update',action='store_true', help='update files in sources path') parser_process.add_argument('-w','--warnOldHeader', dest='warnOldHeader',action='store_false', help='warn about Old Header existant in files in traces ') parser_process.add_argument('-f','--forceOldHeader', dest='forceOldHeader',action='store_true', help='replace old header if exist in files ') parser_process.add_argument('-n','--nameCompany', dest='nameCompany',required=True, help='company name to be used in copyright header') parser_process.add_argument('-a','--adressCompany', dest='adressCompany',required=True, help='company address to be used in copyright header') parser_process.add_argument('-c','--countryCompany', dest='countryCompany',required=True, help='company country to be used in copyright header') parser_process.add_argument('-y','--yearCompany', dest='yearCompany',required=True, help='years to be used in copyright header ') parser_process.add_argument('-i','--inputSourecCodeFolder', dest='inputFolder',required=True, help='path to folder containing source code to operate on') args = parser.parse_args() return args # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Find all concerned Files # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def FindFiles(rootfolder, report ): """ this functions will find files as defined up """ start = time.time() for bhv in Rbehaviour["checks"]: bhv["files"]=[] for root, dirs,files in os.walk(rootfolder): dirs[:] = [d for d in dirs if d not in Rbehaviour["excludeDirs"]] for x in files : sfileN = os.path.join(root, x) if Debug : print(' ==> Checking file --> {}', format(sfileN)) # check old copyright if Rbehaviour["oldCopyright"]["lookforandwarn"]: if checkfileCopyright(sfileN): filesAlreadyCopyright.append(sfileN) if not Rbehaviour["oldCopyright"]["forceNewCopyright"]: break # checks found = False for bhv in Rbehaviour["checks"]: # Check if file is in names try: bhv["names"].index(x) except : # Check if file is in extensions if Debug : print bhv["brief"]," extensions ==> Checking file --> ", for x in bhv["extensions"]: print x, print " " for ext in bhv["extensions"] : if x.endswith(ext): bhv["files"].append(sfileN) if Debug : print bhv["brief"]," >> ",ext," extensions ==> Found file --> ",x found = True break else: bhv["files"].append(sfileN) found = True if Debug : print ("{} names ==> Found file -->",format(bhv["brief"],x)) if found: break end = time.time() took = end - start if(report): print " - - - - - - Analyse ",bhv['brief']," took %.4f sec - - - - - - "% took for bhv in Rbehaviour["checks"]: print " - - - - - - ",len(bhv["files"])," ",bhv["brief"]," files." if (Rbehaviour["oldCopyright"]["lookforandwarn"]): print " - - - - - - ! ",len(filesAlreadyCopyright)," files are already with a Copyright Headers :" for x in filesAlreadyCopyright: print " - ",x # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # for Sfiles check shebang # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def checkfileShebang(filename): """ return true if file has a shebang """ if Rbehaviour["shebang"]["check"]: if Debug : print(" Will check shebang .. " ) infile = open(filename, 'r') firstLine = infile.readline() infile.close() for she in Rbehaviour["shebang"]["she"]: if Debug : print("?? did file ",filename," start with ",she ," [",firstLine,"] " ) if firstLine.startswith(she): return True return False # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # To check if file contain already a License Copyright Header # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def checkfileCopyright(filename): """ return true if file has already a Copyright in first X lines """ infile = open(filename, 'r') for x in xrange(6): x = x line = infile.readline() if "Copyright" in line or "copyright" in line: return True return False # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Apply new Copyright to a file # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def ApplyCopyright( srcfile, dstfile , copyright, cname, ccontry, caddress, cyear): """ will apply new Copyright on dst file then append the old src file """ # apply comany information copyright = [w.replace('$$CompanyName$$', cname) for w in copyright] copyright = [w.replace('$$CompanyCountry$$', ccontry) for w in copyright] copyright = [w.replace('$$CompanyAddress$$', caddress) for w in copyright] copyright = [w.replace('$$CompanyYear$$', cyear) for w in copyright] if(srcfile != dstfile): # create dir file if not exist nbase = os.path.dirname(dstfile) if not os.path.exists(nbase): os.makedirs(nbase) dst = open(dstfile, "w") else: tmp = "/tmp/tmp-fheadercopyrightLicense" dst = open(tmp, "w") isSheb = checkfileShebang(srcfile) src = open(srcfile, "r") if isSheb: line = src.readline() dst.write(line) for cop in copyright: dst.write(cop) dst.write('\n') # continue copy src file while line: line = src.readline() dst.write(line) else: if Debug : print(" \t ==> file ",srcfile," DONT have shebang !" ) for cop in copyright: dst.write(cop) dst.write('\n') dst.write(src.read()) dst.close() src.close() if(srcfile == dstfile): copyfile(tmp, dstfile) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # To apply new Copyright headers in files # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def ApplyInTmp(OutDir,report, cname, ccontry, caddress, cyear): """ will apply new Copyright on array of files into OutDir with Same tree as original """ global Outputfolder # checks for bhv in Rbehaviour["checks"]: start = time.time() for x in bhv["files"] : # fix folder p = os.path.dirname(x) while p.startswith('../'): p = p[3:] if p.startswith('/'): p = p[1:] Outputfolder = OutDir+"/"+p nfile = Outputfolder+"/"+ntpath.basename(x) ApplyCopyright(x, nfile, bhv["copyright"], cname, ccontry, caddress, cyear) end = time.time() took = end - start if(report): print " - - - - - - Applying ",bhv['brief']," took %.4f sec - - - - - - "% took # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # To apply new Copyright headers in files # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def ApplyIn(report, cname, ccontry, caddress, cyear): """ will apply new Copyright on array of files into original Dir""" # checks for bhv in Rbehaviour["checks"]: start = time.time() for x in bhv["files"] : ApplyCopyright(x, x, bhv["copyright"], cname, ccontry, caddress, cyear) end = time.time() took = end - start if(report): print" - - - - - - Applying ",bhv['brief']," took %.4f sec - - - - - - "% took # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # M A I N # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # print("- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -") print("- - - - - - - - - - - - - - - - - - Copyright Header - - - - - - - - - - - - - - - - - - - - -") args = SetupParserParameter() Debug = args.verbose if "dumpShebang" in args: print("- - - - - - - Info - - - - - - ->") if(args.dumpShebang == True): print " Supportted shebang: ", for x in Rbehaviour["shebang"]["she"]: print x, print " " if(args.dumpExtension == True): print " Supportted Extensions: " for bhv in Rbehaviour["checks"]: print " ", print bhv["brief"]," : ", for x in bhv["extensions"]: print x, print " " else: if not os.path.exists(args.inputFolder): print(" - - - Bad parameter , source code path !! => ",args.inputFolder) print(" - - - folder source did not exist ! - - - ") exit(-2) print("- - - - - - - Analyse - - - - - - ->") FindFiles(args.inputFolder, args.report) print("- - - - - - - Process - - - - - - ->") if ( args.update == True): ApplyIn(args.report,args.nameCompany, args.countryCompany, args.adressCompany, args.yearCompany) else: ApplyInTmp("/tmp", args.report, args.nameCompany, args.countryCompany, args.adressCompany, args.yearCompany) print " Generated ", Outputfolder print("<- - - - - - - Done - - - - - - - - - -") print(" - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ") # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # D O N E # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
43.175287
122
0.493178
0
0
0
0
0
0
0
0
8,916
0.593411
771d6750899b13f63733f55154de5c6a095ec756
2,132
py
Python
PYTHON/singly_linked_list.py
ceccs17d55/open-source-contribution
63d95a990cdcc1e31c5fca3cb61f2fa34dae9e1f
[ "MIT" ]
2
2022-03-10T17:37:24.000Z
2022-03-10T17:40:05.000Z
PYTHON/singly_linked_list.py
ceccs17d55/open-source-contribution
63d95a990cdcc1e31c5fca3cb61f2fa34dae9e1f
[ "MIT" ]
1
2021-10-03T19:52:07.000Z
2021-10-03T19:52:07.000Z
PYTHON/singly_linked_list.py
ceccs17d55/open-source-contribution
63d95a990cdcc1e31c5fca3cb61f2fa34dae9e1f
[ "MIT" ]
1
2021-10-04T17:22:09.000Z
2021-10-04T17:22:09.000Z
class Node: def __init__(self, data): self.data = data self.next = None class LinkedList: def __init__(self): self.head = None def print_list(self): temp = self.head linked_list = '' while temp: linked_list += str(temp.data) + " -> " temp = temp.next print(linked_list) # lists start at 0 def insert_node(self, val, pos): target = Node(val) # specific case for replacing head if pos == 0: target.next = self.head self.head = target return def get_prev(position): temp = self.head count = 1 while count < position: temp = temp.next count += 1 return temp # Getting previous node prev = get_prev(pos) if prev.next: # Temp variable for upcoming node next_node = prev.next # Set previous next to our target node prev.next = target # Set next node of target node from temp variable target.next = next_node def delete_node(self, key): temp = self.head if temp is None: return if temp.data == key: self.head = temp.next temp = None return while temp.next.data != key: temp = temp.next # Getting target node target_node = temp.next # Set previous node's next to target's next temp.next = target_node.next # Remove target node's pointer target_node.next = None # Nodes: 4 -> 5 -> 7 -> 2 link = LinkedList() link.head = Node(4) first_node = Node(5) second_node = Node(7) third_node = Node(2) link.head.next = first_node first_node.next = second_node second_node.next = third_node link.print_list() # Nodes: 4 -> 5 -> 7 -> 2 # Insert 3 at index 2 # Nodes: 4 -> 5 -> 3 -> 7 -> 2 link.insert_node(3, 2) link.print_list() # Nodes: 4 -> 5 -> 3 -> 7 -> 2 # Delete 3 # Nodes: 4 -> 5 -> 7 -> 2 link.delete_node(3) link.print_list()
20.304762
61
0.533771
1,656
0.776735
0
0
0
0
0
0
463
0.217167
771de5725155e6d31fa7d7b90220c29436ed35b2
22,048
py
Python
addons/odoo_marketplace/models/res_config.py
marionumza/vocal_v12
480990e919c9410903e06e7813ee92800bd6a569
[ "Unlicense" ]
null
null
null
addons/odoo_marketplace/models/res_config.py
marionumza/vocal_v12
480990e919c9410903e06e7813ee92800bd6a569
[ "Unlicense" ]
null
null
null
addons/odoo_marketplace/models/res_config.py
marionumza/vocal_v12
480990e919c9410903e06e7813ee92800bd6a569
[ "Unlicense" ]
1
2021-05-05T07:59:08.000Z
2021-05-05T07:59:08.000Z
# -*- coding: utf-8 -*- ################################################################################# # Author : Webkul Software Pvt. Ltd. (<https://webkul.com/>) # Copyright(c): 2015-Present Webkul Software Pvt. Ltd. # License URL : https://store.webkul.com/license.html/ # All Rights Reserved. # # # # This program is copyright property of the author mentioned above. # You can`t redistribute it and/or modify it. # # # You should have received a copy of the License along with this program. # If not, see <https://store.webkul.com/license.html/> ################################################################################# from odoo import models, fields, api, _ from odoo.tools.translate import _ from odoo.exceptions import UserError import logging _logger = logging.getLogger(__name__) class ResConfigSettings(models.TransientModel): _inherit = "res.config.settings" @api.model def _default_category(self): obj = self.env["product.category"].search([('name', '=', _('All'))]) return obj[0] if obj else self.env["product.category"] @api.model def get_journal_id(self): obj = self.env["account.journal"].search([('name', '=', _('Vendor Bills'))]) return obj[0] if obj else self.env["account.journal"] auto_product_approve = fields.Boolean(string="Auto Product Approve") internal_categ = fields.Many2one( "product.category", string="Internal Category") warehouse_location_id = fields.Many2one( "stock.location", string="Warehouse Location", domain="[('usage', '=', 'internal')]") mp_default_warehouse_id = fields.Many2one("stock.warehouse", string="Warehouse") seller_payment_limit = fields.Integer(string="Seller Payment Limit") next_payment_requset = fields.Integer(string="Next Payment Request") group_mp_product_variant = fields.Boolean( string="Allow sellers for several product attributes, defining variants (Example: size, color,...)", group='odoo_marketplace.marketplace_seller_group', implied_group='product.group_product_variant' ) group_mp_shop_allow = fields.Boolean( string="Allow sellers to manage seller shop.", group='odoo_marketplace.marketplace_seller_group', implied_group='odoo_marketplace.group_marketplace_seller_shop' ) group_mp_product_pricelist = fields.Boolean( string="Allow sellers for Advanced pricing on product using pricelist.", group='odoo_marketplace.marketplace_seller_group', implied_group='product.group_product_pricelist' ) # Inventory related field auto_approve_qty = fields.Boolean(string="Auto Quantity Approve") # Seller related field auto_approve_seller = fields.Boolean(string="Auto Seller Approve") global_commission = fields.Float(string="Global Commission") # Mail notification related fields enable_notify_admin_4_new_seller = fields.Boolean(string="Enable Notification Admin For New Seller") enable_notify_seller_4_new_seller = fields.Boolean( string="Enable Notification Seller for Seller Request") enable_notify_admin_on_seller_approve_reject = fields.Boolean( string="Enable Notification Admin On Seller Approve Reject") enable_notify_seller_on_approve_reject = fields.Boolean(string="Enable Notification Seller On Approve Reject") enable_notify_admin_on_product_approve_reject = fields.Boolean( string="Enable Notification Admin On Product Approve Reject") enable_notify_seller_on_product_approve_reject = fields.Boolean( string="Enable Notification Seller On Product Approve Reject") enable_notify_seller_on_new_order = fields.Boolean(string="Enable Notification Seller On New Order") notify_admin_4_new_seller_m_tmpl_id = fields.Many2one( "mail.template", string="Mail Template to Notify Admin For New Seller", domain="[('model_id.model','=','res.partner')]") notify_seller_4_new_seller_m_tmpl_id = fields.Many2one( "mail.template", string="Mail Template to Notify Seller On Seller Request", domain="[('model_id.model','=','res.partner')]") notify_admin_on_seller_approve_reject_m_tmpl_id = fields.Many2one( "mail.template", string="Mail Template to Notify Admin on Seller Approve/Reject", domain="[('model_id.model','=','res.partner')]") notify_seller_on_approve_reject_m_tmpl_id = fields.Many2one( "mail.template", string="Mail Template to Notify Seller On Approve/Reject", domain="[('model_id.model','=','res.partner')]") notify_admin_on_product_approve_reject_m_tmpl_id = fields.Many2one( "mail.template", string="Mail Template to Notify Admin On Product Approve/Reject", domain="[('model_id.model','=','product.template')]") notify_seller_on_product_approve_reject_m_tmpl_id = fields.Many2one( "mail.template", string="Mail Template to Notify Seller On Product Approve/Reject", domain="[('model_id.model','=','product.template')]") notify_seller_on_new_order_m_tmpl_id = fields.Many2one( "mail.template", string="Mail Template to Notify Seller On New Order", domain="[('model_id.model','=','sale.order.line')]") # Seller shop/profile releted field product_count = fields.Boolean(related="website_id.mp_product_count", string="Show seller's product count on website.", readonly=False) sale_count = fields.Boolean(related="website_id.mp_sale_count", string="Show seller's sales count on website.", readonly=False) shipping_address = fields.Boolean(related="website_id.mp_shipping_address", string="Show seller's shipping address on website.", readonly=False) seller_since = fields.Boolean(related="website_id.mp_seller_since", string="Show seller since Date on website.", readonly=False) seller_t_c = fields.Boolean(related="website_id.mp_seller_t_c", string="Show seller's Terms & Conditions on website.", readonly=False) seller_contact_btn = fields.Boolean(related="website_id.mp_seller_contact_btn", string='Show "Contact Seller" Button on website.', readonly=False) seller_review = fields.Boolean(related="website_id.mp_seller_review", string='Show Seller Review on website.', readonly=False) return_policy = fields.Boolean(related="website_id.mp_return_policy", string="Show seller's Retrun Policy on website.", readonly=False) shipping_policy = fields.Boolean(related="website_id.mp_shipping_policy", string="Show Seller's Shipping Policy on website.", readonly=False) recently_product = fields.Integer(related="website_id.mp_recently_product", string="# of products for recently added products menu. ", readonly=False) # Seller Review settings field review_load_no = fields.Integer(related="website_id.mp_review_load_no", string="No. of Reviews to load", help="Set default numbers of review to show on website.", readonly=False) review_auto_publish = fields.Boolean(related="website_id.mp_review_auto_publish", string="Auto Publish", help="Publish Customer's review automatically.", readonly=False) show_seller_list = fields.Boolean(related="website_id.mp_show_seller_list", string='Show Sellers List on website.', readonly=False) show_seller_shop_list = fields.Boolean(related="website_id.mp_show_seller_shop_list", string='Show Seller Shop List on website.', readonly=False) show_become_a_seller = fields.Boolean(related="website_id.mp_show_become_a_seller",string="Show Become a Seller button on Account Home Page", readonly=False) seller_payment_journal_id = fields.Many2one("account.journal", string="Seller Payment Journal", default=get_journal_id, domain="[('type', '=', 'purchase')]") mp_currency_id = fields.Many2one('res.currency', "Marketplace Currency", readonly=False) show_visit_shop = fields.Boolean("Show visit shop link on product page") seller_payment_product_id = fields.Many2one("product.product", string="Seller Payment Product", domain="[('sale_ok', '=', False),('purchase_ok', '=', False),('type','=','service')]") term_and_condition = fields.Html(string="Marketplace Terms & Conditions", related="website_id.mp_term_and_condition", readonly=False) message_to_publish = fields.Text( string="Review feedback message", help="Message to Customer on review publish.", related="website_id.mp_message_to_publish", readonly=False) sell_page_label = fields.Char( string="Sell Link Label", related="website_id.mp_sell_page_label", readonly=False) sellers_list_label = fields.Char( string="Seller List Link Label", related="website_id.mp_sellers_list_label", readonly=False) seller_shop_list_label = fields.Char( string="Seller Shop List Link Label", related="website_id.mp_seller_shop_list_label", readonly=False) landing_page_banner = fields.Binary(string="Landing Page Banner", related="website_id.mp_landing_page_banner", readonly=False) seller_new_status_msg = fields.Text( string="For New Status", related="website_id.mp_seller_new_status_msg", readonly=False) seller_pending_status_msg = fields.Text( string="For Pending Status", related="website_id.mp_seller_pending_status_msg", readonly=False) show_sell_menu_header = fields.Boolean(related="website_id.mp_show_sell_menu_header", string="Show Sell menu in header", readonly=False) show_sell_menu_footer = fields.Boolean(related="website_id.mp_show_sell_menu_footer", string="Show Sell menu in footer", readonly=False) # seller_denied_status_msg = fields.Text( # string="For Denied Status", related="website_id.mp_seller_denied_status_msg") @api.onchange("warehouse_location_id") def on_change_location_id(self): if not self.warehouse_location_id: wl_obj = self.env["stock.location"].sudo().browse( self.warehouse_location_id.id) wh_obj = self.env["stock.warehouse"] whs = wh_obj.search([('view_location_id', 'parent_of', wl_obj.ids)], limit=1) if whs: self.mp_default_warehouse_id = whs.id @api.multi def set_values(self): super(ResConfigSettings, self).set_values() self.env['ir.default'].sudo().set('res.config.settings', 'auto_product_approve', self.auto_product_approve) self.env['ir.default'].sudo().set('res.config.settings', 'internal_categ', self.internal_categ.id) self.env['ir.default'].sudo().set('res.config.settings', 'mp_default_warehouse_id', self.mp_default_warehouse_id.id) self.env['ir.default'].sudo().set('res.config.settings', 'warehouse_location_id', self.warehouse_location_id.id) self.env['ir.default'].sudo().set('res.config.settings', 'auto_approve_qty', self.auto_approve_qty) self.env['ir.default'].sudo().set('res.config.settings', 'auto_approve_seller', self.auto_approve_seller) self.env['ir.default'].sudo().set('res.config.settings', 'global_commission', self.global_commission) self.env['ir.default'].sudo().set('res.config.settings', 'seller_payment_limit', self.seller_payment_limit) self.env['ir.default'].sudo().set('res.config.settings', 'next_payment_requset', self.next_payment_requset) self.env['ir.default'].sudo().set('res.config.settings', 'enable_notify_admin_4_new_seller', self.enable_notify_admin_4_new_seller) self.env['ir.default'].sudo().set('res.config.settings', 'enable_notify_seller_4_new_seller', self.enable_notify_seller_4_new_seller) self.env['ir.default'].sudo().set('res.config.settings', 'enable_notify_admin_on_seller_approve_reject', self.enable_notify_admin_on_seller_approve_reject) self.env['ir.default'].sudo().set('res.config.settings', 'enable_notify_seller_on_approve_reject', self.enable_notify_seller_on_approve_reject) self.env['ir.default'].sudo().set('res.config.settings', 'enable_notify_admin_on_product_approve_reject', self.enable_notify_admin_on_product_approve_reject) self.env['ir.default'].sudo().set('res.config.settings', 'enable_notify_seller_on_product_approve_reject', self.enable_notify_seller_on_product_approve_reject) self.env['ir.default'].sudo().set('res.config.settings', 'enable_notify_seller_on_new_order', self.enable_notify_seller_on_new_order) self.env['ir.default'].sudo().set('res.config.settings', 'notify_admin_4_new_seller_m_tmpl_id', self.notify_admin_4_new_seller_m_tmpl_id.id) self.env['ir.default'].sudo().set('res.config.settings', 'notify_seller_4_new_seller_m_tmpl_id', self.notify_seller_4_new_seller_m_tmpl_id.id) self.env['ir.default'].sudo().set('res.config.settings', 'notify_admin_on_seller_approve_reject_m_tmpl_id', self.notify_admin_on_seller_approve_reject_m_tmpl_id.id) self.env['ir.default'].sudo().set('res.config.settings', 'notify_seller_on_approve_reject_m_tmpl_id', self.notify_seller_on_approve_reject_m_tmpl_id.id) self.env['ir.default'].sudo().set('res.config.settings', 'notify_admin_on_product_approve_reject_m_tmpl_id', self.notify_admin_on_product_approve_reject_m_tmpl_id.id) self.env['ir.default'].sudo().set('res.config.settings', 'notify_seller_on_product_approve_reject_m_tmpl_id', self.notify_seller_on_product_approve_reject_m_tmpl_id.id) self.env['ir.default'].sudo().set('res.config.settings', 'notify_seller_on_new_order_m_tmpl_id', self.notify_seller_on_new_order_m_tmpl_id.id) self.env['ir.default'].sudo().set('res.config.settings', 'seller_payment_journal_id', self.seller_payment_journal_id.id) seller_payment = self.env["seller.payment"].sudo().search([]) #For users who are not from marketplace group if not seller_payment: self.env['ir.default'].sudo().set('res.config.settings', 'mp_currency_id', self.mp_currency_id.id) self.env['ir.default'].sudo().set('res.config.settings', 'show_visit_shop', self.show_visit_shop) self.env['ir.default'].sudo().set('res.config.settings', 'seller_payment_product_id', self.seller_payment_product_id.id) self.env['ir.default'].sudo().set('res.config.settings', 'group_mp_product_variant', self.group_mp_product_variant) self.env['ir.default'].sudo().set('res.config.settings', 'group_mp_shop_allow', self.group_mp_shop_allow) self.env['ir.default'].sudo().set('res.config.settings', 'group_mp_product_pricelist', self.group_mp_product_pricelist) @api.model def get_values(self): res = super(ResConfigSettings, self).get_values() auto_product_approve = self.env['ir.default'].get('res.config.settings', 'auto_product_approve') internal_categ = self.env['ir.default'].get('res.config.settings', 'internal_categ') or self._default_category().id mp_default_warehouse_id = self.env['ir.default'].get('res.config.settings', 'mp_default_warehouse_id') warehouse_location_id = self.env['ir.default'].get('res.config.settings', 'warehouse_location_id') or self._default_location().id auto_approve_qty = self.env['ir.default'].get('res.config.settings', 'auto_approve_qty') auto_approve_seller = self.env['ir.default'].get('res.config.settings', 'auto_approve_seller') global_commission = self.env['ir.default'].get('res.config.settings', 'global_commission') seller_payment_limit = self.env['ir.default'].get('res.config.settings', 'seller_payment_limit') next_payment_requset = self.env['ir.default'].get('res.config.settings', 'next_payment_requset') enable_notify_admin_4_new_seller = self.env['ir.default'].get('res.config.settings', 'enable_notify_admin_4_new_seller') enable_notify_seller_4_new_seller = self.env['ir.default'].get('res.config.settings', 'enable_notify_seller_4_new_seller') enable_notify_admin_on_seller_approve_reject = self.env['ir.default'].get('res.config.settings', 'enable_notify_admin_on_seller_approve_reject') enable_notify_seller_on_approve_reject = self.env['ir.default'].get('res.config.settings', 'enable_notify_seller_on_approve_reject') enable_notify_admin_on_product_approve_reject = self.env['ir.default'].get('res.config.settings', 'enable_notify_admin_on_product_approve_reject') enable_notify_seller_on_product_approve_reject = self.env['ir.default'].get('res.config.settings', 'enable_notify_seller_on_product_approve_reject') enable_notify_seller_on_new_order = self.env['ir.default'].get('res.config.settings', 'enable_notify_seller_on_new_order') notify_admin_4_new_seller_m_tmpl_id = self.env['ir.default'].get('res.config.settings', 'notify_admin_4_new_seller_m_tmpl_id') notify_seller_4_new_seller_m_tmpl_id = self.env['ir.default'].get('res.config.settings', 'notify_seller_4_new_seller_m_tmpl_id') notify_admin_on_seller_approve_reject_m_tmpl_id = self.env['ir.default'].get('res.config.settings', 'notify_admin_on_seller_approve_reject_m_tmpl_id') notify_seller_on_approve_reject_m_tmpl_id = self.env['ir.default'].get('res.config.settings', 'notify_seller_on_approve_reject_m_tmpl_id') notify_admin_on_product_approve_reject_m_tmpl_id = self.env['ir.default'].get('res.config.settings', 'notify_admin_on_product_approve_reject_m_tmpl_id') notify_seller_on_product_approve_reject_m_tmpl_id = self.env['ir.default'].get('res.config.settings', 'notify_seller_on_product_approve_reject_m_tmpl_id') notify_seller_on_new_order_m_tmpl_id = self.env['ir.default'].get('res.config.settings', 'notify_seller_on_new_order_m_tmpl_id') seller_payment_journal_id = self.env['ir.default'].get('res.config.settings', 'seller_payment_journal_id') or self.get_journal_id().id mp_currency_id = self.env['ir.default'].get('res.config.settings', 'mp_currency_id') or self.env.user.company_id.currency_id.id show_visit_shop = self.env['ir.default'].get('res.config.settings', 'show_visit_shop') group_mp_product_variant = self.env['ir.default'].get('res.config.settings', 'group_mp_product_variant') group_mp_shop_allow = self.env['ir.default'].get('res.config.settings', 'group_mp_shop_allow') group_mp_product_pricelist = self.env['ir.default'].get('res.config.settings', 'group_mp_product_pricelist') seller_payment_product_id = self.env['ir.default'].get('res.config.settings', 'seller_payment_product_id') res.update( auto_product_approve = auto_product_approve, internal_categ = internal_categ, mp_default_warehouse_id = mp_default_warehouse_id, warehouse_location_id = warehouse_location_id, auto_approve_qty = auto_approve_qty, auto_approve_seller = auto_approve_seller, global_commission = global_commission, seller_payment_limit = seller_payment_limit, next_payment_requset = next_payment_requset, enable_notify_admin_4_new_seller = enable_notify_admin_4_new_seller, enable_notify_seller_4_new_seller = enable_notify_seller_4_new_seller, enable_notify_admin_on_seller_approve_reject = enable_notify_admin_on_seller_approve_reject, enable_notify_seller_on_approve_reject = enable_notify_seller_on_approve_reject, enable_notify_admin_on_product_approve_reject = enable_notify_admin_on_product_approve_reject, enable_notify_seller_on_product_approve_reject = enable_notify_seller_on_product_approve_reject, enable_notify_seller_on_new_order = enable_notify_seller_on_new_order, notify_admin_4_new_seller_m_tmpl_id = notify_admin_4_new_seller_m_tmpl_id, notify_seller_4_new_seller_m_tmpl_id = notify_seller_4_new_seller_m_tmpl_id, notify_admin_on_seller_approve_reject_m_tmpl_id = notify_admin_on_seller_approve_reject_m_tmpl_id, notify_seller_on_approve_reject_m_tmpl_id = notify_seller_on_approve_reject_m_tmpl_id, notify_admin_on_product_approve_reject_m_tmpl_id = notify_admin_on_product_approve_reject_m_tmpl_id, notify_seller_on_product_approve_reject_m_tmpl_id = notify_seller_on_product_approve_reject_m_tmpl_id, notify_seller_on_new_order_m_tmpl_id = notify_seller_on_new_order_m_tmpl_id, seller_payment_journal_id = seller_payment_journal_id, mp_currency_id = mp_currency_id, show_visit_shop = show_visit_shop, group_mp_product_variant = group_mp_product_variant, group_mp_shop_allow = group_mp_shop_allow, group_mp_product_pricelist = group_mp_product_pricelist, seller_payment_product_id = seller_payment_product_id, ) return res @api.multi def execute(self): for rec in self: if rec.recently_product < 1 or rec.recently_product > 20: raise UserError(_("Recently Added Products count should be in range 1 to 20.")) if rec.review_load_no < 1: raise UserError(_("Display Seller Reviews count should be more than 0.")) if rec.global_commission < 0 or rec.global_commission >= 100: raise UserError(_("Global Commission should be greater than 0 and less than 100.")) if rec.seller_payment_limit < 0 : raise UserError(_("Amount Limit can't be negative.")) if rec.next_payment_requset < 0: raise UserError(_("Minimum Gap can't be negative.")) return super(ResConfigSettings, self).execute() @api.model def _default_location(self): """ Set default location """ user_obj = self.env.user if user_obj: company_id = user_obj.company_id.id location_ids = self.env["stock.location"].sudo().search( [("company_id", '=', company_id), ("name", "=", "Stock"), ('usage', '=', 'internal')]) return location_ids[0] if location_ids else self.env["stock.location"] return self.env["stock.location"].sudo().search([('usage', '=', 'internal')])[0]
73.249169
186
0.73408
21,235
0.963126
0
0
12,739
0.577785
0
0
9,232
0.418723
771e1c4b8e1935e576368e845f369c110a609b20
18,274
py
Python
igf_data/utils/tools/picard_util.py
imperial-genomics-facility/data-management-python
7b867d8d4562a49173d0b823bdc4bf374a3688f0
[ "Apache-2.0" ]
7
2018-05-08T07:28:08.000Z
2022-02-21T14:56:49.000Z
igf_data/utils/tools/picard_util.py
imperial-genomics-facility/data-management-python
7b867d8d4562a49173d0b823bdc4bf374a3688f0
[ "Apache-2.0" ]
15
2021-08-19T12:32:20.000Z
2022-02-09T19:52:51.000Z
igf_data/utils/tools/picard_util.py
imperial-genomics-facility/data-management-python
7b867d8d4562a49173d0b823bdc4bf374a3688f0
[ "Apache-2.0" ]
2
2017-05-12T15:20:10.000Z
2020-05-07T16:25:11.000Z
import os,subprocess from shlex import quote import pandas as pd from igf_data.utils.singularity_run_wrapper import execute_singuarity_cmd from igf_data.utils.fileutils import check_file_path,get_temp_dir class Picard_tools: ''' A class for running picard tool :param java_exe: Java executable path :param picard_jar: Picard path :param input_files: Input bam filepaths list :param output_dir: Output directory filepath :param ref_fasta: Input reference fasta filepath :param picard_option: Additional picard run parameters as dictionary, default None :param java_param: Java parameter, default '-Xmx4g' :param strand_info: RNA-Seq strand information, default NONE :param ref_flat_file: Input ref_flat file path, default None :param output_prefix: Output prefix name, default None :param threads: Number of threads to run for java, default 1 :param use_ephemeral_space: A toggle for temp dir setting, default 0 :param patterned_flowcell: Toggle for marking the patterned flowcell, default False :param singularity_image: Singularity image path, default None :param suported_commands: A list of supported picard commands * CollectAlignmentSummaryMetrics * CollectGcBiasMetrics * QualityScoreDistribution * CollectRnaSeqMetrics * CollectBaseDistributionByCycle * MarkDuplicates * AddOrReplaceReadGroups ''' def __init__( self,java_exe,picard_jar,input_files,output_dir,ref_fasta,picard_option=None, java_param='-Xmx4g',strand_info='NONE',threads=1,output_prefix=None,use_ephemeral_space=0, ref_flat_file=None,ribisomal_interval=None,patterned_flowcell=False,singularity_image=None, suported_commands=( 'CollectAlignmentSummaryMetrics', 'CollectGcBiasMetrics', 'QualityScoreDistribution', 'CollectRnaSeqMetrics', 'CollectBaseDistributionByCycle', 'MarkDuplicates', 'AddOrReplaceReadGroups')): self.java_exe = java_exe self.picard_jar = picard_jar self.java_param = java_param self.input_files = input_files self.output_dir = output_dir self.ref_fasta = ref_fasta self.picard_option = picard_option self.strand_info = strand_info self.ref_flat_file = ref_flat_file self.suported_commands = list(suported_commands) self.ribisomal_interval = ribisomal_interval self.output_prefix = output_prefix self.threads = threads self.use_ephemeral_space = use_ephemeral_space self.patterned_flowcell = patterned_flowcell self.singularity_image = singularity_image def _get_param_for_picard_command(self,command_name): ''' An internal method for configuring run parameters for picard commands :param command_name: A picard command name :returns: List of items to return * A dictionary of picard run parameter if command is supported or None * A list of output files or an empty list * A list of metrics file for parsing ''' try: param_dict = None output_list = list() metrics_list = list() input_list = self.input_files if self.output_prefix is None: output_prefix = \ os.path.join( self.output_dir, os.path.basename(input_list[0])) # set output file prefix if output_prefix.endswith('.bam'): output_prefix = output_prefix.replace('.bam','') # remove .bam from filepath prefix else: output_prefix = \ os.path.join( self.output_dir, self.output_prefix) output_file = \ '{0}.{1}'.format( output_prefix, command_name) # set output path without any extension chart_file = \ '{0}.{1}'.format( output_file, 'pdf') # set chart filepath metrics_file = \ '{0}.{1}'.format( output_file, 'summary.txt') # set summary metrics path if command_name=='CollectAlignmentSummaryMetrics': if len(input_list)>1: raise ValueError( 'More than one input file found for picard command {0}'.\ format(command_name)) output_file = \ '{0}.{1}'.format( output_file, 'txt') # add correct extension for output file param_dict = [{ 'I':input_list[0], 'O':output_file, 'R':self.ref_fasta}] output_list = [output_file] metrics_list = [output_file] elif command_name=='CollectGcBiasMetrics': if len(input_list)>1: raise ValueError( 'More than one input file found for picard command {0}'.\ format(command_name)) output_file = \ '{0}.{1}'.format( output_file, 'txt') # add correct extension for output file param_dict = [{ 'I':input_list[0], 'O':output_file, 'R':self.ref_fasta, 'CHART':chart_file, 'S':metrics_file}] output_list = [ output_file, chart_file, metrics_file] metrics_list = [metrics_file] elif command_name=='QualityScoreDistribution': if len(input_list)>1: raise ValueError( 'More than one input file found for picard command {0}'.\ format(command_name)) output_file = \ '{0}.{1}'.format( output_file, 'txt') # add correct extension for output file param_dict = [{ 'I':input_list[0], 'O':output_file, 'CHART':chart_file}] output_list = [ output_file, chart_file] elif command_name=='CollectRnaSeqMetrics': if len(input_list)>1: raise ValueError( 'More than one input file found for picard command {0}'.\ format(command_name)) if self.ref_flat_file is None: raise ValueError( 'Missing refFlat annotation file for command {0}'.\ format(command_name)) check_file_path(file_path=self.ref_flat_file) # check refFlat file path output_file = \ '{0}.{1}'.format( output_file, 'txt') # add correct extension for output file param_dict = [{ 'I':input_list[0], 'O':output_file, 'R':self.ref_fasta, 'REF_FLAT':self.ref_flat_file, 'STRAND':self.strand_info, 'CHART':chart_file}] if self.ribisomal_interval is not None: check_file_path(file_path=self.ribisomal_interval) param_dict.append({'RIBOSOMAL_INTERVALS':self.ribisomal_interval}) output_list = [ output_file, chart_file] metrics_list=[output_file] elif command_name=='CollectBaseDistributionByCycle': if len(input_list)>1: raise ValueError( 'More than one input file found for picard command {0}'.\ format(command_name)) output_file = \ '{0}.{1}'.format( output_file, 'txt') # add correct extension for output file param_dict = [{ 'I':input_list[0], 'O':output_file, 'CHART':chart_file}] output_list = [ output_file, chart_file] elif command_name=='MarkDuplicates': output_file = \ '{0}.{1}'.format( output_file, 'bam') # add correct extension for output file param_dict = [{ 'O':output_file, 'M':metrics_file}] if self.patterned_flowcell: param_dict.append({'OPTICAL_DUPLICATE_PIXEL_DISTANCE':'2500'}) for file in input_list: param_dict.append({'I':file}) output_list = [ output_file, metrics_file] metrics_list=[metrics_file] elif command_name=='AddOrReplaceReadGroups': if len(input_list)>1: raise ValueError('More than one input file found for picard command {0}'.\ format(command_name)) required_RG_params = [ "RGID", "RGLB", "RGPL", "RGPU", "RGSM", "RGCN"] if not set(required_RG_params).issubset(set(self.picard_option.keys())): raise ValueError( 'Missing required options for picard cmd {0}:{1}'.\ format(command_name,required_RG_params)) # check for required params output_file = \ '{0}.{1}'.format( output_file, 'bam') # add correct extension for output file param_dict = [{ 'I':input_list[0], 'O':output_file}] # not checking for other required inputs output_list=[output_file] return param_dict,output_list,metrics_list except: raise @staticmethod def _parse_picard_metrics(picard_cmd,metrics_list): ''' An internal static method for parsing picard command specific metrics parsing :param picard_cmd: Picard string command :param metrics_list: List of picard metrics file :returns: A list of dictionaries with the picard metrics ''' try: metrics_output_list=list() for file in metrics_list: try: check_file_path(file) # check input path if picard_cmd=='CollectAlignmentSummaryMetrics': data = \ pd.read_csv( file, sep='\t', dtype=object, skiprows=6) # read alignment summary metrics, skip 6 lines data.columns = \ list(map(lambda x: '{0}_{1}'.format(picard_cmd,x), data.columns)) # append picard command name category_col = \ '{0}_{1}'.format(picard_cmd,'CATEGORY') # get key for modified category column data = \ data[(data.get(category_col)=='PAIR') | \ (data.get(category_col)=='UNPAIRED')].\ dropna(axis=1).\ to_dict(orient='records') # filter data and convert to list of dicts metrics_output_list.extend(data) # append results elif picard_cmd=='CollectGcBiasMetrics': data = \ pd.read_csv( file, sep='\t', dtype=object, skiprows=6) # read GC bias metrics summary file data.columns = \ list(map(lambda x: '{0}_{1}'.format(picard_cmd,x), data.columns)) # append picard command name data = \ data.\ dropna(axis=1).\ to_dict(orient='records') # filter data and convert tolist of dicts metrics_output_list.extend(data) # append results elif picard_cmd=='CollectRnaSeqMetrics': data = \ pd.read_csv( file, sep='\t', skiprows=6, dtype=object, nrows=1) # read rnaseq metrics, skip 6 lines and read only one line data.columns = \ list(map(lambda x: '{0}_{1}'.format(picard_cmd,x), data.columns)) # append picard command name data = \ data.\ dropna(axis=1).\ to_dict(orient='records') # filter data and convert tolist of dicts metrics_output_list.extend(data) # append results elif picard_cmd=='MarkDuplicates': data = \ pd.read_csv( file, sep='\t', skiprows=6, dtype=object, nrows=1) # read markdup metrics, skip 6 lines and read only one line data.columns = \ list(map(lambda x: '{0}_{1}'.format(picard_cmd,x), data.columns)) # append picard command name data = \ data.to_dict(orient='records') # convert to list of dicts metrics_output_list.extend(data) # append results except Exception as e: raise ValueError('Failed to parse file {0}, got error {1}'.\ format(file,e)) return metrics_output_list except Exception as e: raise ValueError('Picard metrics: error: {0}'.format(e)) def run_picard_command(self,command_name,dry_run=False): ''' A method for running generic picard command :param command_name: Picard command name :param dry_run: A toggle for returning picard command without the actual run, default False :returns: A list of output files from picard run and picard run command and optional picard metrics ''' try: if self.singularity_image is None: check_file_path(file_path=self.java_exe) check_file_path(file_path=self.picard_jar) check_file_path(file_path=self.ref_fasta) if not isinstance(self.input_files, list) or \ len(self.input_files)==0: raise ValueError('Missing input file list for picard run') for file in self.input_files: check_file_path(file_path=file) picard_temp_run_dir = \ get_temp_dir(use_ephemeral_space=self.use_ephemeral_space) command = [ self.java_exe, '-XX:ParallelGCThreads={0}'.\ format(self.threads), self.java_param, '-Djava.io.tmpdir={0}'.format(picard_temp_run_dir), '-jar', self.picard_jar, quote(command_name)] if isinstance(self.picard_option,dict) and \ len(self.picard_option)>0: picard_option = [ '{0}={1}'.format(quote(param),quote(val)) for param,val in self.picard_option.items()] command.extend(picard_option) # additional picard params picard_run_param,output_file_list,metrics_list = \ self._get_param_for_picard_command( command_name=command_name) # get picard params and output list if isinstance(picard_run_param,list) and \ len(picard_run_param)>0: picard_option = [ '{0}={1}'.format(quote(param),quote(str(val))) for param_dicts in picard_run_param for param,val in param_dicts.items()] command.extend(picard_option) # main picard params if dry_run: return command,output_file_list if self.singularity_image is None: subprocess.\ check_call(' '.join(command),shell=True) # run picard command else: bind_dir_list = [ os.path.dirname(f) for f in self.input_files] bind_dir_list.extend([ os.path.dirname(f) for f in output_file_list]) bind_dir_list.extend([ os.path.dirname(f) for f in metrics_list]) bind_dir_list.\ append(picard_temp_run_dir) if self.ref_flat_file is not None: bind_dir_list.\ append(os.path.dirname(self.ref_flat_file)) if self.ref_fasta is not None: bind_dir_list.\ append(os.path.dirname(self.ref_fasta)) if self.ribisomal_interval is not None: bind_dir_list.\ append(os.path.dirname(self.ribisomal_interval)) bind_dir_list = \ list(set(bind_dir_list)) # remove duplicates _ = \ execute_singuarity_cmd( image_path=self.singularity_image, command_string=' '.join(command), bind_dir_list=bind_dir_list) picard_metrics = \ self._parse_picard_metrics(\ picard_cmd=command_name, metrics_list=metrics_list) # parse picard metrics, if available return output_file_list,command,picard_metrics else: raise ValueError('Picard command {0} not supported yet'.\ format(command_name)) except Exception as e: raise ValueError( 'Failed to run picard command {0}, error {1}'.\ format(command_name,e))
43.927885
140
0.525172
18,062
0.988399
0
0
4,294
0.234979
0
0
5,026
0.275036
771f7ee9bb91bc23000b0e85deecce770eb956d7
8,348
py
Python
app/utils/NetworkingUtils.py
DiegoSilva776/linkehub_insigth_api
1909a9c1b28901ab6dc0be6815741aed848b4363
[ "MIT" ]
2
2018-06-25T03:07:28.000Z
2018-06-26T13:52:23.000Z
app/utils/NetworkingUtils.py
DiegoSilva776/linkehub_insigth_api
1909a9c1b28901ab6dc0be6815741aed848b4363
[ "MIT" ]
null
null
null
app/utils/NetworkingUtils.py
DiegoSilva776/linkehub_insigth_api
1909a9c1b28901ab6dc0be6815741aed848b4363
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import sys import os import json import http.client import urllib import time sys.path.append("../") from models.ApiInstance import ApiInstance from utils.ConstantUtils import ConstantUtils ''' NetworkingUtils is responsible for holding the external URLs and the default parameters of each URL used by the API. ''' class NetworkingUtils(): def __init__(self): self.TAG = "NetworkingUtils" self.PATH_SERVICES_CONFIG_FILE = "config/hosts.json" self.constUtils = ConstantUtils() self.apiInstances = [] self.initListApiInstances() ## --------------------## ## Requests management ## ## --------------------## ''' Return a headers object used in requests to the service API ''' def getRequestHeaders(self, headersType, token): headers = "" try: if headersType == self.constUtils.HEADERS_TYPE_AUTH_TOKEN: headers = { "cache-control": "no-cache", "User-Agent": "Linkehub-API-Manager", "access_token": "{0}".format(token) } elif headersType == self.constUtils.HEADERS_TYPE_URL_ENCODED: headers = { "Content-type": "application/x-www-form-urlencoded", "Accept": "text/plain" } elif headersType == self.constUtils.HEADERS_TYPE_NO_AUTH_TOKEN: headers = { "cache-control": "no-cache", "User-Agent": "Linkehub-API-Manager" } except Exception as e: print("{0} Failed to getRequestHeaders: {1}".format(self.TAG, e)) return headers ## ---------------------## ## Instances management ## ## ---------------------## ''' Initialize the list of copies running the same version of the service API ''' def initListApiInstances(self): try: fileData = open(self.PATH_SERVICES_CONFIG_FILE).read() data = json.loads(fileData) for idx, hostFromList in enumerate(data["hosts"]): apiInstance = ApiInstance() apiInstance.id = idx if "url" in hostFromList: apiInstance.url = hostFromList["url"] if "name" in hostFromList: apiInstance.name = hostFromList["name"] self.apiInstances.append(apiInstance) print("The list of API instances has been initialized: {0}".format(json.dumps(self.getSerializableApiInstances()))) except Exception as e: print("{0}: Failed to initListApiInstances: {1}".format(self.TAG, e)) ''' Return the serializable version of the list of ApiInstances ''' def getSerializableApiInstances(self): sApiInstances = [] try: for apiInstance in self.apiInstances: sApiInstances.append(apiInstance.toJSON()) except Exception as e: print("{0} Failed to getSerializableApiInstances : {1}".format(self.TAG, e)) return sApiInstances ''' Return the object that represents the main instance, which contain the same content of the others, but it is the one used to generate the copies of the service. ''' def getRootApiInstance(self): try: return self.apiInstances[0] except Exception as e: print("{0} Failed to getRootInstance: {1}".format(self.TAG, e)) ''' Verify how many requests an instance of the service API still has to the Github API before the limit of requests per hour get exceeded. ''' def updateListRemainingRequestsGithubAPI(self): try: print("\nVerify the number of remaining requests to the Github API for all instances: \n") # Identify the number of remaining requests to the Github API for each instance of the API if self.apiInstances is not None: for apiInstance in self.apiInstances: try: # Make a request to the Github API and verify if the limit of requests per hour has been exceeded connection = http.client.HTTPSConnection(apiInstance.getBaseUrl()) headers = self.getRequestHeaders(self.constUtils.HEADERS_TYPE_NO_AUTH_TOKEN, None) endpoint = "/has_expired_requests_per_hour_github/" connection.request("GET", endpoint, headers=headers) res = connection.getresponse() data = res.read() githubApiResponse = json.loads(data.decode(self.constUtils.UTF8_DECODER)) # Process the response if githubApiResponse is not None: if "usage" in githubApiResponse: usage = githubApiResponse["usage"] if "remaining" in usage: apiInstance.remainingCallsGithub = usage["remaining"] except Exception: print("{0} Failed to connect to a host ...".format(self.TAG)) print("{0} : {1}".format(apiInstance.getUrl(), apiInstance.remainingCallsGithub)) print("Total number available requests : {0}".format(self.getNumRemaningRequestToGithub())) except ValueError as err2: print("{0} Failed to updateListRemainingRequestsGithubAPI: {1}".format(self.TAG, err2)) ''' Returns the sum of the remaning requests to the Github API of each instance of the service ''' def getNumRemaningRequestToGithub(self): totalRemainingRequest = 0 try: for apiInstance in self.apiInstances: totalRemainingRequest += apiInstance.remainingCallsGithub except Exception as e: print("{0} Failed to getNumRemaningRequestToGithub: {1}".format(self.TAG, e)) return totalRemainingRequest ''' Returns the instance of the service with the largest number of remaining requests to the Github API ''' def getInstanceForRequestToGithubAPI(self): selectedInstance = self.getRootApiInstance() largestNumRemainingRequests = 0 try: for apiInstance in self.apiInstances: if apiInstance.remainingCallsGithub > largestNumRemainingRequests: largestNumRemainingRequests = apiInstance.remainingCallsGithub selectedInstance = apiInstance except Exception as e: print("{0} Failed to getInstanceForRequestToGithubAPI : {1}".format(self.TAG, e)) return selectedInstance ''' If the number of available requests to the Github API has exceeded, wait until the instances get refueled ''' def waitRequestGithubApiIfNeeded(self): try: numRequestsGithubApi = self.getNumRemaningRequestToGithub() if numRequestsGithubApi == 0: i = 0 print("\nThe maximum number of requests to the Github API has been exceeded for all instances of the service") while i < self.constUtils.TIMEOUT_REQUEST_GITHUB_API: time.sleep(1) if i == 0: print("\nYou'll have to wait {0} minutes until the next request:".format((self.constUtils.TIMEOUT_REQUEST_GITHUB_API - i) / 60)) elif i < self.constUtils.TIMEOUT_REQUEST_GITHUB_API: if (self.constUtils.TIMEOUT_REQUEST_GITHUB_API / i) == 2: print("\nWe are half way there, we still have to wait {0} minutes".format((self.constUtils.TIMEOUT_REQUEST_GITHUB_API - i) / 60)) else: print(".", end="") i += 1 self.updateListRemainingRequestsGithubAPI() self.waitRequestGithubApiIfNeeded() except Exception as e: print("{0} Failed to waitRequestGithubApiIfNeeded : {1}".format(self.TAG, e))
36.295652
157
0.574868
7,995
0.957714
0
0
0
0
0
0
2,660
0.318639