hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
4959b0c95664f6b5e44804e1d10f0d164fcb9038
2,335
py
Python
setup.py
sankethvedula/flowtorch
44a0f0eff842dd33ca17b01f4e02d8cdda005aa8
[ "MIT" ]
29
2020-12-19T00:29:42.000Z
2021-08-12T19:11:47.000Z
setup.py
sankethvedula/flowtorch
44a0f0eff842dd33ca17b01f4e02d8cdda005aa8
[ "MIT" ]
30
2020-12-29T04:42:38.000Z
2021-02-19T22:29:38.000Z
setup.py
sankethvedula/flowtorch
44a0f0eff842dd33ca17b01f4e02d8cdda005aa8
[ "MIT" ]
1
2021-05-06T21:25:45.000Z
2021-05-06T21:25:45.000Z
# Copyright (c) Meta Platforms, Inc import os import sys from setuptools import find_packages, setup REQUIRED_MAJOR = 3 REQUIRED_MINOR = 7 TEST_REQUIRES = ["numpy", "pytest", "pytest-cov", "scipy"] DEV_REQUIRES = TEST_REQUIRES + [ "black", "flake8", "flake8-bugbear", "mypy", "toml", "usort", ] # Check for python version if sys.version_info < (REQUIRED_MAJOR, REQUIRED_MINOR): error = ( "Your version of python ({major}.{minor}) is too old. You need " "python >= {required_major}.{required_minor}." ).format( major=sys.version_info.major, minor=sys.version_info.minor, required_minor=REQUIRED_MINOR, required_major=REQUIRED_MAJOR, ) sys.exit(error) # read in README.md as the long description with open("README.md", "r") as fh: long_description = fh.read() setup( name="flowtorch", description="Normalizing Flows for PyTorch", author="FlowTorch Development Team", author_email="info@stefanwebb.me", license="MIT", url="https://flowtorch.ai/users", project_urls={ "Documentation": "https://flowtorch.ai/users", "Source": "https://www.github.com/facebookincubator/flowtorch", }, keywords=[ "Deep Learning", "Bayesian Inference", "Statistical Modeling", "Variational Inference", "PyTorch", ], classifiers=[ "Development Status :: 3 - Alpha", "Programming Language :: Python :: 3 :: Only", "License :: OSI Approved :: MIT License", "Topic :: Scientific/Engineering", "Intended Audience :: Science/Research", "Intended Audience :: Developers", ], long_description=long_description, long_description_content_type="text/markdown", python_requires=">={}.{}".format(REQUIRED_MAJOR, REQUIRED_MINOR), install_requires=[ "torch>=1.8.1", ], setup_requires=["setuptools_scm"], use_scm_version={ "root": ".", "relative_to": __file__, "write_to": os.path.join("flowtorch", "version.py"), }, packages=find_packages( include=["flowtorch", "flowtorch.*"], exclude=["debug", "tests", "website", "examples", "scripts"], ), extras_require={ "dev": DEV_REQUIRES, "test": TEST_REQUIRES, }, )
26.534091
72
0.616702
0
0
0
0
0
0
0
0
1,036
0.443683
495c1efa0fbbd4eda9cf54a8e5e4784dac2375f0
12,923
py
Python
nn/train.py
julian-carpenter/airynet
7ad87bbc717107f72d69547e4243373c05dadf70
[ "MIT" ]
8
2019-03-17T10:45:19.000Z
2022-01-13T17:36:54.000Z
nn/train.py
julian-carpenter/airynet
7ad87bbc717107f72d69547e4243373c05dadf70
[ "MIT" ]
null
null
null
nn/train.py
julian-carpenter/airynet
7ad87bbc717107f72d69547e4243373c05dadf70
[ "MIT" ]
1
2019-07-24T05:59:38.000Z
2019-07-24T05:59:38.000Z
from __future__ import absolute_import from __future__ import division from __future__ import print_function import nn import tensorflow as tf from tensorflow.python.client import device_lib from numpy import min, max def model_fn(features, labels, mode, params): """Model function for airynet network""" def select_architecture(arc="resnet"): if arc == "resnet": model_fn = nn.airynet_resnet_variant(cfg.resnet_size, cfg.num_classes, cfg.data_format, cfg.relu_leakiness) elif arc == "vgg": model_fn = nn.airynet_vgg_variant(cfg.vgg_size, cfg.num_classes, cfg.data_format) return model_fn if mode == tf.estimator.ModeKeys.PREDICT: labels = features["lbl"] features = features["imgs"] labels = tf.identity(labels, name="bids") features = tf.identity(features, name="images") feat_converted = tf.map_fn( lambda x: tf.image.convert_image_dtype(x, tf.float32), features) tf.summary.image("images", feat_converted, max_outputs=3) cfg = params["config"] if mode == tf.estimator.ModeKeys.TRAIN: global_step = tf.train.get_or_create_global_step() # Multiply the learning rate by 0.1 at 30, 60, 120 and 150 epochs. batches_per_epoch = cfg.dataset_size / cfg.batch_size boundaries = [ int(batches_per_epoch * epoch) for epoch in [30, 60, 120, 150] ] # Scale the learning rate linearly with the batch size. When the # batch size is 128, the learning rate should be 0.1. lr = cfg.lr * cfg.batch_size / 128 values = [lr * decay for decay in [1, 0.1, 0.01, 1e-3, 1e-4]] learning_rate = tf.train.piecewise_constant( tf.cast(global_step, tf.int32), boundaries, values) # Create a tensor named learning_rate for logging purposes tf.identity(learning_rate, name="learning_rate") tf.summary.scalar("learning_rate", learning_rate) optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=cfg.gamma, use_nesterov=True) avail_gpus = get_available_gpus() tower_grads = [] reuse = False with tf.variable_scope(tf.get_variable_scope()): print(cfg.resnet_size, cfg.num_classes, cfg.data_format, cfg.relu_leakiness) network = select_architecture(cfg.airynet_type) for dev in avail_gpus: print("Building inference on: {}".format(dev)) if int(dev[-1]) != 0: # set scope to reuse if more than one gpu are available tf.get_variable_scope().reuse_variables() reuse = True with tf.device(dev), tf.name_scope( dev.replace(":", "_").replace("/", "")): logits = network(features, mode == tf.estimator.ModeKeys.TRAIN, reuse) if mode == tf.estimator.ModeKeys.TRAIN: if cfg.dataset == "cifar10": cross_entropy = tf.losses.softmax_cross_entropy( logits=logits, onehot_labels=labels) else: cross_entropy = tf.losses.sigmoid_cross_entropy( logits=logits, multi_class_labels=labels) # get l1_regularizer loss reg_penalty = tf.reduce_mean( tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)) # get trainable variables trainable_variables = tf.get_collection( tf.GraphKeys.TRAINABLE_VARIABLES) # get weight decay_loss if cfg.use_weight_decay: loss_weight_decay = tf.reduce_sum( tf.stack([ tf.nn.l2_loss(i) for i in trainable_variables ])) * cfg.weight_decay else: loss_weight_decay = 0. # define loss, consider to add the weight_decay loss = cross_entropy + reg_penalty + loss_weight_decay comp_grad_op = optimizer.compute_gradients( loss, trainable_variables) tower_grads.append(comp_grad_op) if mode == tf.estimator.ModeKeys.TRAIN: grads = average_gradients(tower_grads, tf.get_default_graph()) if mode == tf.estimator.ModeKeys.TRAIN: # Batch norm requires update ops to be # added as a dependency to the train_op update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): train_op = optimizer.apply_gradients(grads, global_step) else: train_op = None loss = tf.constant(0.) if cfg.dataset == "cifar10": fc_out_activation_fun = tf.nn.softmax fc_out_activation_name = "softmax_output" else: fc_out_activation_fun = tf.nn.sigmoid fc_out_activation_name = "sigmoid_output" predictions = { "classes": tf.round( fc_out_activation_fun(logits, name=fc_out_activation_name + "_classes")), "probabilities": fc_out_activation_fun(logits, name=fc_out_activation_name), "bunchID": labels } print(logits.get_shape()) if mode == tf.estimator.ModeKeys.PREDICT: # We calculate the gradients between the output and tha last # convolutional layer for the GradCam graph = tf.get_default_graph() conv_ = graph.get_operation_by_name( "device_GPU_0/fourth_block/last_block_before_fc").outputs[0] out_ = graph.get_operation_by_name( "device_GPU_0/nn_out/final_dense").outputs[0] out_ = tf.nn.sigmoid(out_) out_ *= tf.round(out_) heat_loss_ = [] grads = [] norm = [] normed_grads = [] for class_idx in range(out_.get_shape()[-1]): print("Building GradCam for class: {}".format(class_idx)) heat_loss_.append( tf.reduce_mean(out_[:, class_idx], name="class_loss_{}".format(class_idx))) curr_grad = tf.gradients( heat_loss_, conv_, name="class_grads_{}".format(class_idx))[0] grads.append(curr_grad) norm.append( tf.sqrt(tf.reduce_mean(tf.square(curr_grad)), name="class_norm_{}".format(class_idx))) normed_grads.append( tf.divide(tf.convert_to_tensor(grads[class_idx]), tf.convert_to_tensor(norm[class_idx]) + tf.constant(1e-5), name="normalized_grads_{}".format(class_idx))) tf.identity(tf.convert_to_tensor(normed_grads), name="normalized_grads") return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions) # Create some metrics for logging purposes lbl = tf.to_float(labels) prediction = predictions["classes"] if mode == tf.estimator.ModeKeys.TRAIN: # Create a tensor named cross_entropy for logging purposes. tf.identity(cross_entropy, name="cross_entropy") tf.summary.scalar("metrics/cross_entropy", cross_entropy) tf.summary.scalar("metrics/reg_penalty", reg_penalty) # tf.summary.scalar("metrics/weight_decay_loss", weight_decay_loss) # Calculate the confusion matrix confusion_matr = tf.to_float( tf.confusion_matrix(tf.reshape(lbl, [-1]), tf.reshape(prediction, [-1]), num_classes=2)) tf.identity(confusion_matr, name="confusion_matr") # Matthews Correlation Coefficient TP = confusion_matr[1][1] TN = confusion_matr[0][0] FP = confusion_matr[0][1] FN = confusion_matr[1][0] MCC = (TP * TN - FP * FN) / (tf.sqrt( (TP + FP) * (TP + FN) * (TN + FP) * (TN + FN))) tf.identity(MCC, name="mcc") tf.summary.scalar("metrics/mcc", MCC) # Stack lbl and predictions as image for the summary lbl_vs_prediction = tf.multiply(tf.ones_like(lbl), 255) lbl_vs_prediction = tf.expand_dims(tf.stack([ tf.multiply(lbl_vs_prediction, lbl), tf.multiply(lbl_vs_prediction, prediction), tf.zeros_like(lbl) ], axis=-1), axis=0) tf.identity(lbl_vs_prediction, name="lbl_vs_prediction") tf.summary.image("metrics/lbl_vs_prediction", lbl_vs_prediction) lbl_image = tf.expand_dims(tf.expand_dims(lbl, axis=-1), axis=0) tf.identity(lbl_image, name="lbl_image") tf.summary.image("metrics/lbl_image", lbl_image) prediction_image = tf.expand_dims(tf.expand_dims(prediction, axis=-1), axis=0) tf.identity(prediction_image, name="prediction_image") tf.summary.image("metrics/prediction_image", prediction_image) accuracy = tf.metrics.accuracy(lbl, prediction) tf.identity(accuracy[1], name="train_accuracy") tf.summary.scalar("metrics/train_accuracy", accuracy[1]) eval_tp = tf.metrics.true_positives(lbl, prediction) eval_fp = tf.metrics.false_positives(lbl, prediction) eval_fn = tf.metrics.false_negatives(lbl, prediction) eval_precision = tf.metrics.precision(lbl, prediction) eval_mean_per_class = tf.metrics.mean_per_class_accuracy( lbl, prediction, cfg.num_classes) metrics = { "accuracy": accuracy, "mean_per_class_accuracy": eval_mean_per_class, "precision": eval_precision, "true_positives": eval_tp, "false_positives": eval_fp, "false_negatives": eval_fn } return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions, loss=loss, train_op=train_op, eval_metric_ops=metrics) def get_available_gpus(): """ Get a list of available GPU"s """ local_device_protos = device_lib.list_local_devices() return [x.name for x in local_device_protos if x.device_type == "GPU"] def average_gradients(tower_grads, graph): """ Calculate the average gradient for each shared variable across all towers. Note that this function provides a synchronization point across all towers. Args: tower_grads: List of lists of (gradient, variable) tuples. The outer list is over individual gradients. The inner list is over the gradient calculation for each tower. Returns: List of pairs of (gradient, variable) where the gradient has been averaged across all towers. """ with graph.name_scope("averaging_gradients"): average_grads = [] for grad_and_vars in zip(*tower_grads): # Note that each grad_and_vars looks like the following: # ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN)) grads = [] for g_idx, _ in grad_and_vars: # Add 0 dimension to the gradients to represent the tower. expanded_g = tf.expand_dims(g_idx, 0) # Append on a "tower" dimension which we will # average over below. grads.append(expanded_g) # Average over the "tower" dimension. grad = tf.concat(grads, 0) grad = tf.reduce_mean(grad, 0) # Keep in mind that the Variables are redundant because they are # shared across towers. So .. we will just return the first # tower"s pointer to the Variable. vals = grad_and_vars[0][1] grad_and_var = (grad, vals) average_grads.append(grad_and_var) return average_grads def rescale(vals, new_min, new_max): old_min = min(vals) old_max = max(vals) # range check if old_min == old_max: print("Warning: Zero input range") return vals if new_min == new_max: print("Warning: Zero output range") return vals portion = (vals - old_min) * (new_max - new_min) / (old_max - old_min) portion = (old_max - vals) * (new_max - new_min) / (old_max - old_min) result = portion + new_min result = new_max - portion return result
40.384375
79
0.583998
0
0
0
0
0
0
0
0
2,765
0.21396
495c925b5444da2267f89a8db3c5a875669b6a75
310
py
Python
retrobiocat_web/app/db_analysis/__init__.py
ihayhurst/RetroBioCat
d674897459c0ab65faad5ed3017c55cf51bcc020
[ "MIT" ]
9
2020-12-01T16:33:02.000Z
2022-01-19T20:02:42.000Z
retrobiocat_web/app/db_analysis/__init__.py
ihayhurst/RetroBioCat
d674897459c0ab65faad5ed3017c55cf51bcc020
[ "MIT" ]
4
2020-10-02T14:38:32.000Z
2021-08-02T09:23:58.000Z
retrobiocat_web/app/db_analysis/__init__.py
ihayhurst/RetroBioCat
d674897459c0ab65faad5ed3017c55cf51bcc020
[ "MIT" ]
6
2021-01-14T07:48:36.000Z
2022-03-20T17:34:27.000Z
from flask import Blueprint bp = Blueprint('db_analysis', __name__, template_folder='templates', static_folder='static', static_url_path='/db_analysis/static' ) from retrobiocat_web.app.db_analysis.routes import bioinformatics, ssn
25.833333
70
0.616129
0
0
0
0
0
0
0
0
53
0.170968
495d8b60f3e72589eb60ba4876bee12c223e7de1
10,249
py
Python
tasks.py
pycopia/devtest
9ec93045ba4bab5b20ce99dc61cebd5b5a234d01
[ "Apache-2.0" ]
null
null
null
tasks.py
pycopia/devtest
9ec93045ba4bab5b20ce99dc61cebd5b5a234d01
[ "Apache-2.0" ]
null
null
null
tasks.py
pycopia/devtest
9ec93045ba4bab5b20ce99dc61cebd5b5a234d01
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3.9 """Tasks file used by the *invoke* command. This simplifies some common development tasks. Run these tasks with the `invoke` tool. """ from __future__ import annotations import sys import os import shutil import getpass from glob import glob from pathlib import Path import keyring import semver from setuptools_scm import get_version from invoke import task, run, Exit SIGNERS = ["keith"] PYTHONBIN = os.environ.get("PYTHONBIN", sys.executable) # Put the path in quotes in case there is a space in it. PYTHONBIN = f'"{PYTHONBIN}"' GPG = "gpg2" CURRENT_USER = getpass.getuser() # Putting pypi info here eliminates the need for user-private ~/.pypirc file. PYPI_HOST = "upload.pypi.org" PYPI_URL = f"https://{PYPI_HOST}/legacy/" PYPI_USER = "__token__" PYPI_INDEX = f"{PYPI_URL}simple" @task def info(ctx): """Show information about the current Python and environment.""" version = get_version() suffix = get_suffix() print(f"Python being used: {PYTHONBIN}") print(f"Python extension suffix: {suffix}") print(f"Package version: {version}") venv = get_virtualenv() if venv: print(f"Virtual environment:", venv) @task def flake8(ctx, pathname="devtest"): """Run flake8 linter on the package.""" ctx.run(f"{PYTHONBIN} -m flake8 {pathname}") @task def format(ctx, pathname="devtest", check=False): """Run yapf formatter on the specified file, or recurse into directory.""" option = "-d" if check else "-i" recurse = "--recursive" if os.path.isdir(pathname) else "" ctx.run(f"{PYTHONBIN} -m yapf --style setup.cfg {option} {recurse} {pathname}") @task def format_changed(ctx, check=False, untracked=False): """Run yapf formatter on currently modified python files. If check option given then just show the diff. """ option = "-d" if check else "-i" files = get_modified_files(untracked) if files: ctx.run(f'{PYTHONBIN} -m yapf --style setup.cfg {option} {" ".join(files)}') else: print("No changed python files.") @task def set_pypi_token(ctx): """Set the token in the local key ring. """ pw = getpass.getpass(f"Enter pypi token? ") if pw: keyring.set_password(PYPI_HOST, PYPI_USER, pw) else: raise Exit("No password entered.", 3) @task def build(ctx): """Build the intermediate package components.""" ctx.run(f"{PYTHONBIN} setup.py build") @task def dev_requirements(ctx): """Install development requirements.""" ctx.run(f"{PYTHONBIN} -m pip install --index-url {PYPI_INDEX} --trusted-host {PYPI_HOST} " f"-r dev-requirements.txt --user") @task(pre=[dev_requirements]) def develop(ctx, uninstall=False): """Start developing in developer mode.""" if uninstall: ctx.run(f"{PYTHONBIN} setup.py develop --uninstall --user") else: ctx.run(f'{PYTHONBIN} setup.py develop --index-url "{PYPI_INDEX}" --user') @task def clean(ctx): """Clean out build and cache files. Remove extension modules.""" ctx.run(f"{PYTHONBIN} setup.py clean") ctx.run(r"find . -depth -type d -name __pycache__ -exec rm -rf {} \;") ctx.run('find devtest -name "*.so" -delete') with ctx.cd("docs"): ctx.run('rm -f modules/devtest.*.rst') ctx.run(f"{PYTHONBIN} -m sphinx.cmd.build -M clean . _build") @task def cleandist(ctx): """Clean out dist subdirectory.""" if os.path.isdir("dist"): shutil.rmtree("dist", ignore_errors=True) os.mkdir("dist") @task def test(ctx, testfile=None, ls=False): """Run unit tests. Use ls option to only list them.""" if ls: ctx.run(f"{PYTHONBIN} -m pytest --collect-only -qq tests") elif testfile: ctx.run(f"{PYTHONBIN} -m pytest -s {testfile}") else: ctx.run(f"{PYTHONBIN} -m pytest tests", hide=False, in_stream=False) @task def tag(ctx, tag=None, major=False, minor=False, patch=False): """Tag or bump release with a semver tag. Makes a signed tag if you're a signer.""" latest = None if tag is None: tags = get_tags() if not tags: latest = semver.VersionInfo(0, 0, 0) else: latest = tags[-1] if patch: nextver = latest.bump_patch() elif minor: nextver = latest.bump_minor() elif major: nextver = latest.bump_major() else: nextver = latest.bump_patch() else: if tag.startswith("v"): tag = tag[1:] try: nextver = semver.parse_version_info(tag) except ValueError: raise Exit("Invalid semver tag.", 2) print(latest, "->", nextver) tagopt = "-s" if CURRENT_USER in SIGNERS else "-a" ctx.run(f'git tag {tagopt} -m "Release v{nextver}" v{nextver}') @task def tag_delete(ctx, tag=None): """Delete a tag, both local and remote.""" if tag: ctx.run(f"git tag -d {tag}") ctx.run(f"git push origin :refs/tags/{tag}") @task(cleandist) def sdist(ctx): """Build source distribution.""" ctx.run(f"{PYTHONBIN} setup.py sdist") @task def build_ext(ctx): """Build compiled extension modules, in place.""" ctx.run(f"{PYTHONBIN} setup.py build_ext --inplace") @task(sdist) def bdist(ctx): """Build a standard wheel file, an installable format.""" ctx.run(f"{PYTHONBIN} setup.py bdist_wheel") @task(bdist) def sign(ctx): """Cryptographically sign dist with your default GPG key.""" if CURRENT_USER in SIGNERS: ctx.run(f"{GPG} --detach-sign -a dist/devtest-*.whl") ctx.run(f"{GPG} --detach-sign -a dist/devtest-*.tar.gz") else: print("Not signing.") @task(pre=[sign]) def publish(ctx): """Publish built wheel file to package repo.""" token = get_pypi_token() distfiles = glob("dist/*.whl") distfiles.extend(glob("dist/*.tar.gz")) if not distfiles: raise Exit("Nothing in dist folder!") distfiles = " ".join(distfiles) ctx.run(f'{PYTHONBIN} -m twine upload --repository-url \"{PYPI_URL}\" ' f'--username {PYPI_USER} --password {token} {distfiles}') @task def docs(ctx): """Build the HTML documentation.""" ctx.run("rm docs/modules/devtest.*.rst", warn=True) ctx.run(f"{PYTHONBIN} -m sphinx.ext.apidoc --force --separate --no-toc --output-dir " f"docs/modules devtest") with ctx.cd("docs"): ctx.run(f"{PYTHONBIN} -m sphinx.cmd.build -M html . _build") if os.environ.get("DISPLAY"): ctx.run("xdg-open docs/_build/html/index.html") @task def branch(ctx, name=None): """start a new branch, both local and remote tracking.""" if name: ctx.run(f"git checkout -b {name}") ctx.run(f"git push -u origin {name}") else: ctx.run("git --no-pager branch") @task def branch_delete(ctx, name=None): """Delete local, remote and tracking branch by name.""" if name: ctx.run(f"git branch -d {name}", warn=True) # delete local branch ctx.run(f"git branch -d -r {name}", warn=True) # delete local tracking info ctx.run(f"git push origin --delete {name}", warn=True) # delete remote (origin) branch. else: print("Supply a branch name: --name <name>") @task(pre=[sdist]) def docker_build(ctx): """Build docker image.""" version = get_version() if not version: raise Exit("Need to tag a version first.", 2) environ = { "PYVER": "{}.{}".format(sys.version_info.major, sys.version_info.minor), "VERSION": version, "PYPI_REPO": PYPI_INDEX, "PYPI_HOST": PYPI_HOST, } ctx.run( f"docker build " f"--build-arg PYVER --build-arg VERSION " f"--build-arg PYPI_REPO --build-arg PYPI_HOST -t devtest:{version} .", env=environ) print(f"Done. To run it:\n docker run -it devtest:{version}") @task def logfile(ctx, name="devtester"): """Dump the system log file with optional name filter.""" if WINDOWS: ctx.run(f'wevtutil.exe qe Application /query:"*[System[Provider[@Name={name!r}]]]" /f:text') elif LINUX: ctx.run(f'journalctl --identifier={name!r} --no-pager --priority=debug') elif DARWIN: # May need a tweak ctx.run(f'log stream --predicate \'senderImagePath contains "Python"\' --level debug') # Helper functions follow. def get_virtualenv(): venv = os.environ.get("VIRTUAL_ENV") if venv and os.path.isdir(venv): return venv return None def get_tags(): rv = run('git tag -l "v*"', hide="out") vilist = [] for line in rv.stdout.split(): try: vi = semver.parse_version_info(line[1:]) except ValueError: pass else: vilist.append(vi) vilist.sort() return vilist def get_pypi_token(): cred = keyring.get_credential(PYPI_HOST, PYPI_USER) if not cred: raise Exit("You must set the pypi token with the set-pypi-token target.", 1) return cred.password def get_suffix(): return run( f'{PYTHONBIN} -c \'import sysconfig; print(sysconfig.get_config_vars()["EXT_SUFFIX"])\'', hide=True, ).stdout.strip() # noqa def resolve_path(base, p): p = Path(p) return str(base / p) def find_git_base(): """Find the base directory of this git repo. The git status output is always relative to this directory. """ start = Path.cwd().resolve() while start: if (start / ".git").exists(): return start start = start.parent raise Exit("Not able to find git repo base.") def get_modified_files(untracked): """Find the list of modified and, optionally, untracked Python files. If `untracked` is True, also include untracked Python files. """ filelist = [] gitbase = find_git_base() gitout = run('git status --porcelain=1 -z', hide=True) for line in gitout.stdout.split("\0"): if line: if not line.endswith(".py"): continue if line[0:2] == " M": filelist.append(resolve_path(gitbase, line[3:])) if untracked and line[0:2] == "??": filelist.append(resolve_path(gitbase, line[3:])) return filelist
28.469444
100
0.623085
0
0
0
0
7,445
0.726412
0
0
4,757
0.464143
495dad09c3d51139d0567841ccbcb4d16adb5840
3,846
py
Python
sandbox/lib/jumpscale/Jumpscale/servers/gedis/tests/3_threebot_redis_registration.py
threefoldtech/threebot_prebuilt
1f0e1c65c14cef079cd80f73927d7c8318755c48
[ "Apache-2.0" ]
null
null
null
sandbox/lib/jumpscale/Jumpscale/servers/gedis/tests/3_threebot_redis_registration.py
threefoldtech/threebot_prebuilt
1f0e1c65c14cef079cd80f73927d7c8318755c48
[ "Apache-2.0" ]
null
null
null
sandbox/lib/jumpscale/Jumpscale/servers/gedis/tests/3_threebot_redis_registration.py
threefoldtech/threebot_prebuilt
1f0e1c65c14cef079cd80f73927d7c8318755c48
[ "Apache-2.0" ]
null
null
null
from Jumpscale import j from io import BytesIO import binascii def main(self): """ kosmos -p 'j.servers.gedis.test("threebot_redis_registration")' """ ####THREEBOT REGISTRATION phonebook = j.threebot.package.phonebook.client_get() if j.sal.nettools.tcpPortConnectionTest("www.google.com", 443): phonebook.actors.phonebook.wallet_create("test") j.data.nacl.configure(name="client_test", generate=True, interactive=False) client_nacl = j.data.nacl.get(name="client_test") cl = j.clients.redis.get(port=8901) def register_threebot_redis(): cl.execute_command("config_format", "json") # get a nacl config (to act as a virtual person) myname = "test.ibiza" data_return_json = cl.execute_command( "default.phonebook.name_register", j.data.serializers.json.dumps({"name": myname, "pubkey": client_nacl.verify_key_hex}), ) data_return = j.data.serializers.json.loads(data_return_json) assert data_return["pubkey"] == client_nacl.verify_key_hex assert data_return["name"] == myname data = { "tid": data_return["id"], "name": data_return["name"], "email": "something@threefold.com", "ipaddr": "212.3.247.26", "description": "", "pubkey": client_nacl.verify_key_hex, } def sign(nacl, *args): buffer = BytesIO() for item in args: if isinstance(item, str): item = item.encode() elif isinstance(item, int): item = str(item).encode() elif isinstance(item, bytes): pass else: raise RuntimeError() buffer.write(item) payload = buffer.getvalue() print(payload) signature = nacl.sign(payload) return binascii.hexlify(signature).decode() # we sign the different records to come up with the right 'sender_signature_hex' sender_signature_hex = sign( client_nacl, data["tid"], data["name"], data["email"], data["ipaddr"], data["description"], data["pubkey"] ) data["sender_signature_hex"] = sender_signature_hex data2 = j.data.serializers.json.dumps(data) data_return_json = cl.execute_command("default.phonebook.record_register", data2) data_return = j.data.serializers.json.loads(data_return_json) print(data) return data_return def query_threebot_redis(tid): cl.execute_command("config_format", "json") myname = "test.ibiza" data2 = j.data.serializers.json.dumps({"name": myname}) res_json = cl.execute_command("default.phonebook.get", data2) threebot_info3 = j.data.serializers.json.loads(res_json) data2 = j.data.serializers.json.dumps({"tid": tid}) res_json = cl.execute_command("default.phonebook.get", data2) threebot_info4 = j.data.serializers.json.loads(res_json) assert threebot_info3 == threebot_info4 # verify the data (is same logic as above in register threebot, to see if record is valid) rc = j.data.nacl.payload_verify( threebot_info4["id"], threebot_info4["name"], threebot_info4["email"], threebot_info4["ipaddr"], threebot_info4["description"], threebot_info4["pubkey"], verifykey=threebot_info4["pubkey"], signature=threebot_info4["signature"], die=True, ) return threebot_info4 threebot_info = register_threebot_redis() threebot_info2 = query_threebot_redis(threebot_info["id"]) assert threebot_info == threebot_info2 print("**DONE**")
32.871795
118
0.607904
0
0
0
0
0
0
0
0
835
0.217109
495f237d0412eaba51c51ff1ebcf25e4b6ae6465
2,803
py
Python
font/gen.py
smaji-org/cjkv_info_sample
12440b938a58b2384a3c9d11c0897dd4101d6fe6
[ "MIT" ]
null
null
null
font/gen.py
smaji-org/cjkv_info_sample
12440b938a58b2384a3c9d11c0897dd4101d6fe6
[ "MIT" ]
null
null
null
font/gen.py
smaji-org/cjkv_info_sample
12440b938a58b2384a3c9d11c0897dd4101d6fe6
[ "MIT" ]
null
null
null
#!/usr/bin/env python2 # -*- coding:utf-8 -*- import os import argparse import glob from functools import partial import fontforge import psMat import source opt_parser= argparse.ArgumentParser() opt_parser.add_argument("--cjkv_info", type= str, help= u"the path of cjkv_info") opt_parser.add_argument("--region", type= str, help= u"the region from where to select characters") opt_parser.add_argument("--start", type= partial(int, base=16), help= u"the start point of unicode") opt_parser.add_argument("--end", type= partial(int, base=16), help= u"the end point of unicode") opt_parser.add_argument("--name", type= str, help= u"the name of the new font") opt_parser.add_argument("--adjust", type= int, help= u"adjust the position of the outline") opt_parser.add_argument("--output", type= str, help= u"the path and filename of the new font") class Opts: def __init__(self): self.cjkv_info= "." self.region= "China" self.start= 0 self.end= 0 self.name= "my font" self.adjust= 0 self.output= (".", "out.ttf") def setup_opt(): opts= Opts() args= opt_parser.parse_args() opts.cjkv_info= args.cjkv_info or opts.cjkv_info opts.region= args.region or opts.region opts.start= args.start or opts.start opts.end= args.end or opts.end opts.name= args.name or opts.name opts.adjust= args.adjust or opts.adjust if args.output: d= os.path.dirname(args.output) or opts.output[0] f= os.path.basename(args.output) or opts.output[1] opts.output= (d, f) try: os.mkdir(opts.output[0]) except OSError: pass return opts def get_code(path): basename= os.path.basename(path) (root, ext)= os.path.splitext(basename) code_tag= root.split("_") code= int(code_tag[0], 16) return code def read_src(path): with open(path, "r") as f: src= f.readline() return src def get_region(src): return source.rev.get(src.split("-")[0]) def is_region(region): return region == opts.region def filter_src(path): code= get_code(path) if opts.start <= code and code <= opts.end: src= read_src(path) region= get_region(src) return is_region(region) else: return False opts= setup_opt() src_files= glob.glob(os.path.join(opts.cjkv_info, "data", "*", "*.src")) src_files= filter(filter_src, src_files) newfont= fontforge.font() newfont.em= 1024 newfont.fontname= opts.name for src_file in src_files: code= get_code(src_file); glyph= newfont.createChar(code) (root, ext)= os.path.splitext(src_file) glyph.importOutlines(root + ".svg") glyph.transform(psMat.translate(0, opts.adjust)) newfont.generate(os.path.join(opts.output[0], opts.output[1]))
26.951923
72
0.662861
224
0.079914
0
0
0
0
0
0
402
0.143418
496001f2e20c60b98e9d4d0701aee95ac8df87b1
3,692
py
Python
alarm_control_panel.py
rs1932/homeassistant-ring_alarm_component
b65b8ee1bc7e7408c3bc1adb6fd4e3f4ebf330d6
[ "Apache-2.0" ]
4
2019-09-07T23:15:54.000Z
2020-04-20T22:47:37.000Z
alarm_control_panel.py
rs1932/homeassistant-ring_alarm_component
b65b8ee1bc7e7408c3bc1adb6fd4e3f4ebf330d6
[ "Apache-2.0" ]
3
2019-09-10T00:03:24.000Z
2020-10-02T13:26:08.000Z
alarm_control_panel.py
rs1932/homeassistant-ring_alarm_component
b65b8ee1bc7e7408c3bc1adb6fd4e3f4ebf330d6
[ "Apache-2.0" ]
3
2019-11-19T11:03:01.000Z
2021-05-12T20:11:16.000Z
import logging import pandas as pd from homeassistant.components.alarm_control_panel import ( AlarmControlPanel ) from homeassistant.core import callback from homeassistant.util import convert from .ringalarmdevice import RingAlarmDevice from .constants import * from homeassistant.const import ( STATE_ALARM_ARMED_AWAY, STATE_ALARM_ARMED_HOME, STATE_ALARM_DISARMED ) _LOGGER = logging.getLogger(__name__) def setup_platform(hass, config, add_devices, device): # for index, device in devices.iterrows(): add_devices([RingAlarmControlPanel(device)], True) class RingAlarmControlPanel(RingAlarmDevice, AlarmControlPanel): def __init__(self, ringalarm_device): super().__init__(ringalarm_device) try: if ringalarm_device[DEVICE_ALARM_MODE] == "none": self._state = STATE_ALARM_DISARMED except: pass try: if ringalarm_device[DEVICE_ALARM_MODE] == "some": self._state = STATE_ALARM_ARMED_HOME except: pass try: if ringalarm_device[DEVICE_ALARM_MODE] == "all": self._state = STATE_ALARM_ARMED_AWAY except: pass try: self._tamper_status = ringalarm_device[DEVICE_TAMPER_STATUS] except: pass def update(self): pass def alarm_disarm(self, code=None): """Send disarm command.""" try: self.controller.ring_api.send_command_ring(self.ringalarm_device[DEVICE_ZID], self.ringalarm_device[DEVICE_SOURCE], 'security-panel.switch-mode', data={'mode': 'none', "bypass": None}) except: pass def alarm_arm_home(self, code=None): """Send arm home command.""" try: self.controller.ring_api.send_command_ring(self.ringalarm_device[DEVICE_ZID], self.ringalarm_device[DEVICE_SOURCE], 'security-panel.switch-mode', data={'mode': 'some', "bypass": None}) except: pass def alarm_arm_away(self, code=None): """Send arm away command.""" try: self.controller.ring_api.send_command_ring(self.ringalarm_device[DEVICE_ZID], self.ringalarm_device[DEVICE_SOURCE], 'security-panel.switch-mode', data={'mode': 'all', "bypass": None}) except: pass def update_callback(self, data): try: if data[DEVICE_ALARM_MODE] == "none": self._state = STATE_ALARM_DISARMED except: pass try: if data[DEVICE_ALARM_MODE] == "some": self._state = STATE_ALARM_ARMED_HOME except: pass try: if data[DEVICE_ALARM_MODE] == "all": self._state = STATE_ALARM_ARMED_AWAY except: pass self.schedule_update_ha_state(True) @property def changed_by(self): """Last change triggered by.""" return None @property def code_arm_required(self): """Whether the code is required for arm actions.""" return True @property def state(self): """Get the state of the device.""" return self._state
31.288136
93
0.54117
3,104
0.840737
0
0
317
0.085861
0
0
417
0.112947
4960a6159309ea3987628a9491068ccbc097d8ac
4,224
py
Python
bot/game.py
thequeenofspades/AlphaGOLADZero
f057f249bcda21ef570a5d8d8753544bf743aaec
[ "Apache-2.0" ]
1
2018-11-01T01:56:26.000Z
2018-11-01T01:56:26.000Z
bot/game.py
thequeenofspades/AlphaGOLADZero
f057f249bcda21ef570a5d8d8753544bf743aaec
[ "Apache-2.0" ]
7
2018-02-17T00:35:26.000Z
2018-06-06T23:55:22.000Z
bot/game.py
thequeenofspades/AlphaGOLADZero
f057f249bcda21ef570a5d8d8753544bf743aaec
[ "Apache-2.0" ]
null
null
null
from sys import stdin, stdout, stderr import traceback import time from player import Player from field.field import Field class Game: def __init__(self): self.time_per_move = -1 self.timebank = -1 self.last_update = None self.max_rounds = -1 self.round = 0 self.player_names = [] self.players = {} self.me = None self.opponent = None self.field = Field() def update(self, data): # start timer self.last_update = time.time() for line in data.split('\n'): line = line.strip() if len(line) <= 0: continue tokens = line.split() if tokens[0] == "settings": self.parse_settings(tokens[1], tokens[2]) elif tokens[0] == "update": if tokens[1] == "game": self.parse_game_updates(tokens[2], tokens[3]) else: self.parse_player_updates(tokens[1], tokens[2], tokens[3]) elif tokens[0] == "action": self.timebank = int(tokens[2]) # Launching bot logic happens after setup finishes def parse_settings(self, key, value): if key == "timebank": self.timebank = int(value) elif key == "time_per_move": self.time_per_move = int(value) elif key == "player_names": self.player_names = value.split(',') self.players = {name: Player(name) for name in self.player_names} elif key == "your_bot": self.me = self.players[value] self.opponent = self.players[[name for name in self.player_names if name != value][0]] elif key == "your_botid": self.me.id = value self.opponent.id = str(2 - (int(value) + 1)) elif key == "field_width": self.field.width = int(value) elif key == "field_height": self.field.height = int(value) elif key == "max_rounds": self.max_rounds = int(value) else: stderr.write('Cannot parse settings input with key {}'.format(key)) def parse_game_updates(self, key, value): if key == "round": self.round = int(value) elif key == "field": self.field.parse(value) else: stderr.write('Cannot parse game update with key {}'.format(key)) def parse_player_updates(self, player_name, key, value): player = self.players.get(player_name) if player is None: stderr.write('Cannot find player with name {}'.format(player_name)) return if key == "living_cells": player.living_cells = int(value) elif key == "move": player.previous_move = value else: stderr.write('Cannot parse {} update with key {}'.format(player_name, key)) def time_remaining(self): return self.timebank - int(1000 * (time.clock() - self.last_update)) @staticmethod def print_move(move): """issue an order""" stdout.write('{}\n'.format(move)) stdout.flush() def run(self, bot): """parse input, update game state and call the bot classes do_turn method""" not_finished = True data = '' while not stdin.closed and not_finished: try: current_line = stdin.readline().rstrip('\r\n') if len(current_line) <= 0: time.sleep(1) continue data += current_line + "\n" if current_line.lower().startswith("action"): self.update(data) move = bot.make_move(self) self.print_move(move) data = '' elif current_line.lower().startswith("quit"): not_finished = False except EOFError: break except KeyboardInterrupt: raise except: # don't raise error or return so that bot attempts to stay alive traceback.print_exc(file=stderr) stderr.flush()
33
98
0.529356
4,098
0.97017
0
0
133
0.031487
0
0
578
0.136837
4960c8757588886d5cee0b290cbf124fc76beb18
552
py
Python
config/ConfigSices.py
atosborges00/sereno_bot
06bedb02847eff050adeadb6bcc5440bcd2283c3
[ "FSFAP" ]
null
null
null
config/ConfigSices.py
atosborges00/sereno_bot
06bedb02847eff050adeadb6bcc5440bcd2283c3
[ "FSFAP" ]
null
null
null
config/ConfigSices.py
atosborges00/sereno_bot
06bedb02847eff050adeadb6bcc5440bcd2283c3
[ "FSFAP" ]
null
null
null
from os import path from config.ConfigPaths import ConfigPaths class ConfigSices: """ Sices platform useful URLs """ LOGIN_URL = 'https://monitoramento.sicessolar.com.br/login' ANALYTICS_PAGE = 'https://monitoramento.sicessolar.com.br/analytics?und={code}' """ Sices platform default directories """ RAW_DATA_PATH = path.join(ConfigPaths.RAW_DATA_PATH, "sices") """ Sices platform options settings """ PREFERENCES = { 'download.default_directory': RAW_DATA_PATH, 'safebrowsing.enabled': 'false'}
26.285714
83
0.697464
486
0.880435
0
0
0
0
0
0
288
0.521739
4961b43029a0917649b5f3a648e7d599051b3b4f
757
py
Python
main.py
leonli/codename-gen
53a66124184e9691d22bfd7db6274f1d44fe0a75
[ "MIT" ]
null
null
null
main.py
leonli/codename-gen
53a66124184e9691d22bfd7db6274f1d44fe0a75
[ "MIT" ]
null
null
null
main.py
leonli/codename-gen
53a66124184e9691d22bfd7db6274f1d44fe0a75
[ "MIT" ]
null
null
null
import click import random from pyfiglet import Figlet from termcolor import colored, cprint import imagenet @click.command() @click.option("--count", default=10, help="Yield number of codenames.") def codename_gen(count): """Enjoy the codenames 🍺""" imagenet_cls = imagenet.imagenet1000_labels() f = Figlet(font='slant') print(f.renderText('Codename Gen')) c_tag = ['red', 'green', 'yellow', 'blue', 'magenta', 'cyan', 'white'] for _ in range(count): print(colored(random.choice(imagenet_cls), random.choice(c_tag))) cprint('>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>', 'green') cprint('Done! Enjoy the codenames 🍺', 'grey', 'on_green') if __name__ == '__main__': codename_gen()
32.913043
95
0.611625
0
0
0
0
604
0.791612
0
0
275
0.360419
4961cb44515f6694bce4182b84680ae488d272d1
14,882
py
Python
binder/plugins/views/userview.py
asma-oueslati/django-binder
0a16a928664b4be2b2b8e3f5f65c29301f0096fe
[ "MIT" ]
null
null
null
binder/plugins/views/userview.py
asma-oueslati/django-binder
0a16a928664b4be2b2b8e3f5f65c29301f0096fe
[ "MIT" ]
null
null
null
binder/plugins/views/userview.py
asma-oueslati/django-binder
0a16a928664b4be2b2b8e3f5f65c29301f0096fe
[ "MIT" ]
null
null
null
import logging import json from abc import ABCMeta, abstractmethod from django.contrib import auth from django.contrib.auth import update_session_auth_hash, password_validation from django.contrib.auth.tokens import default_token_generator from django.core.exceptions import ValidationError, PermissionDenied from django.http import HttpResponse from django.utils.decorators import method_decorator from django.views.decorators.debug import sensitive_post_parameters from django.views.decorators.cache import never_cache from django.utils.translation import ugettext as _ from binder.permissions.views import no_scoping_required from binder.exceptions import BinderForbidden, BinderReadOnlyFieldError, BinderMethodNotAllowed, BinderIsNotDeleted, \ BinderIsDeleted, BinderNotAuthenticated, BinderFieldTypeError, BinderRequestError, BinderValidationError, \ BinderNotFound from binder.router import list_route, detail_route from binder.json import JsonResponse from binder.views import annotate logger = logging.getLogger(__name__) class UserBaseMixin: __metaclass__ = ABCMeta def respond_with_user(self, request, user_id): return JsonResponse( self._get_objs( annotate(self.get_queryset(request).filter(pk=user_id), request), request=request, )[0] ) class MasqueradeMixin(UserBaseMixin): __metaclass__ = ABCMeta @detail_route(name='masquerade') @no_scoping_required() def masquerade(self, request, pk=None): from hijack.helpers import login_user if request.method != 'POST': raise BinderMethodNotAllowed() try: user = self.model._default_manager.get(pk=pk) except self.model.DoesNotExist: raise BinderNotFound() self._require_model_perm('masquerade', request) login_user(request, user) # Ignore returned redirect response object return self.respond_with_user(request, user.id) @list_route(name='endmasquerade') @no_scoping_required() def endmasquerade(self, request): from hijack.helpers import release_hijack if request.method != 'POST': raise BinderMethodNotAllowed() self._require_model_perm('unmasquerade', request) release_hijack(request) # Ignore returned redirect response object return self.respond_with_user(request, request.user.id) def _logout(self, request): from hijack.helpers import release_hijack # Release masquerade on logout if masquerading try: release_hijack(request) except PermissionDenied: # Means we are not hijacked super()._logout(request) class UserViewMixIn(UserBaseMixin): __metaclass__ = ABCMeta log_request_body = False token_generator = default_token_generator default_authentication_backend = None def _require_model_perm(self, perm_type, request, pk=None): """ Overwrite the _require_model_perm, to make sure that you can not modify a superuser as non superuser We need to be very careful about permission assumptions after this point """ # If the user is trying to change a superuser and is not a superuser, disallow if pk and self.model.objects.get(pk=int(pk)).is_superuser and not request.user.is_superuser: # Maybe BinderRequestError? raise BinderForbidden('modify superuser', request.user) # Everything normal return super()._require_model_perm(perm_type, request, pk) def _store__groups(self, obj, field, value, request, pk=None): """ Store the groups of the user. If we get here, the user might not actually have admin permissions; If the user does not have user change perms, disallow setting groups. """ try: self._require_model_perm('changegroups', request) return self._store_field(obj, field, value, request, pk=pk) except BinderForbidden: # convert to read-only error, so the field is ignored raise BinderReadOnlyFieldError(self.model.__name__, field) def authenticate(self, request, **kwargs): return auth.authenticate(request, **kwargs) def auth_login(self, request, user, backend=None): return auth.login(request, user, backend=( backend or getattr(user, 'backend', None) or self.default_authentication_backend )) @method_decorator(sensitive_post_parameters()) @list_route(name='login', unauthenticated=True) @no_scoping_required() def login(self, request): """ Login the user Request: POST user/login/ { "username": "foo", "password": "password" } Response: returns the same parameters as GET user/{id}/ """ if request.method != 'POST': raise BinderMethodNotAllowed() try: decoded = request.body.decode() body = json.loads(decoded) username = body.get(self.model.USERNAME_FIELD, '') password = body.get('password', '') except Exception: username = request.POST.get(self.model.USERNAME_FIELD, '') password = request.POST.get('password', '') user = self.authenticate(request, **{ self.model.USERNAME_FIELD: username.lower(), 'password': password, }) self._require_model_perm('login', request) if user is None: logger.info('login failed for "{}"'.format(username)) raise BinderNotAuthenticated() else: self.auth_login(request, user) logger.info('login for {}/{}'.format(user.id, user)) return self.respond_with_user(request, user.id) def _logout(self, request): auth.logout(request) @list_route(name='logout') @no_scoping_required() def logout(self, request): """ Logout the user Request: POST /user/logout/ {} Response: 204 {} """ if request.method != 'POST': raise BinderMethodNotAllowed() self._require_model_perm('logout', request) logger.info('logout for {}/{}'.format(request.user.id, request.user)) self._logout(request) return HttpResponse(status=204) def get_users(self, request, username): """ Given a username, return matching user(s) who should receive a reset. This allows subclasses to more easily customize the default policies that prevent inactive users and users with unusable passwords from resetting their password. Copied from django.contrib.auth.forms.PasswordResetForm """ active_users = self.model._default_manager.filter(**{ self.model.USERNAME_FIELD + '__iexact': username, 'is_active': True, }) return (u for u in active_users if u.has_usable_password()) def _store__username(self, user, field, value, request, pk=None): """ Makes sure the username is always stored as a lowercase """ if not isinstance(value, str): raise BinderFieldTypeError(self.model.__name__, field) return self._store_field(user, field, value.lower(), request, pk=pk) def filter_deleted(self, queryset, pk, deleted, request=None): """ Can be used to filter deleted users, or unfilter them. """ if pk or deleted == 'true': return queryset if deleted is None: return queryset.filter(is_active=True) if deleted == 'only': return queryset.filter(is_active=False) raise BinderRequestError(_('Invalid value: deleted=%s.') % request.GET.get('deleted')) def soft_delete(self, user, undelete=False, request=None): """ Allows the user to be soft deleted, and undeleted. What actually needs to be done on soft deletion can be implemented in _after_soft_delete """ try: if not user.is_active and not undelete: raise BinderIsDeleted() if not not user.is_active and undelete: raise BinderIsNotDeleted() except AttributeError: raise BinderMethodNotAllowed() user.is_active = undelete user.save() self._after_soft_delete(request, user, undelete) @list_route(name='reset_request', unauthenticated=True) @no_scoping_required() def reset_request(self, request): """ Adds an endpoint to do a reset request. Generates a token, and calls the _send_reset_mail callback if the reset request is successful Request: POST user/reset_request/ { 'username': 'foo' } Response: 204 { } """ if request.method != 'POST': raise BinderMethodNotAllowed() self._require_model_perm('reset_password', request) decoded = request.body.decode() try: body = json.loads(decoded) except ValueError: raise BinderRequestError(_('Invalid request body: not a JSON document.')) logger.info('password reset attempt for {}'.format(body.get(self.model.USERNAME_FIELD, ''))) for user in self.get_users(request, body.get(self.model.USERNAME_FIELD, '').lower()): token = self.token_generator.make_token(user) self._send_reset_mail(request, user, token) return HttpResponse(status=204) @never_cache @list_route(name='send_activation_email', unauthenticated=True) @no_scoping_required() def send_activation_email(self, request): """ Endpoint that can be used to send an activation mail for an user. Calls the _send_activation_email callback if the user is succesfully activated Request: POST { "email": "email" } Response: { "code": code } Possible codes: sent Mail is send sucessfully already active User is already active, no mail was send blacklisted User was not activated """ if request.method != 'PUT': raise BinderMethodNotAllowed() # For lack of a better check self._require_model_perm('reset_password', request) decoded = request.body.decode() try: body = json.loads(decoded) except ValueError: raise BinderRequestError(_('Invalid request body: not a JSON document.')) logger.info('activation email attempt for {}'.format(body.get('email', ''))) if body.get('email') is None: raise BinderValidationError({'email': ['missing']}) try: user = self.model._default_manager.get(email=body.get('email')) except self.model.DoesNotExist: raise BinderNotFound() if user.is_active: if user.last_login is None: # TODO: Figure out a way to make this customisable without # allowing injection of arbitrary URLs (phishing!) self._send_activation_email(request, user) response = JsonResponse({'code': 'sent'}) response.status_code = 201 else: response = JsonResponse({'code': 'already active'}) else: response = JsonResponse({'code': 'blacklisted'}) response.status_code = 400 return response @method_decorator(sensitive_post_parameters()) @never_cache @detail_route(name='activate', unauthenticated=True) @no_scoping_required() def activate(self, request, pk=None): """ Adds an endpoint to activate an user. Also logs in the user Request: PUT user/{id}/activate/ { "activation_code": string } Response: Same as GET user/{id}/ """ if request.method != 'PUT': raise BinderMethodNotAllowed() self._require_model_perm('activate', request) decoded = request.body.decode() try: body = json.loads(decoded) except ValueError: raise BinderRequestError(_('Invalid request body: not a JSON document.')) errors = {} for item in ['activation_code']: if body.get(item) is None: errors[item] = ['missing'] if len(errors) != 0: raise BinderValidationError(errors) try: user = self.model._default_manager.get(pk=pk) except (TypeError, ValueError, OverflowError, self.model.DoesNotExist): user = None if user is None or not self.token_generator.check_token(user, body.get('activation_code')): raise BinderNotFound() logger.info('login for {}/{} via successful activation'.format(user.id, user)) user.is_active = True user.save() self.auth_login(request, user) return self.respond_with_user(request, user.id) @method_decorator(sensitive_post_parameters()) @never_cache @detail_route(name='reset_password', unauthenticated=True, methods=['PUT']) @no_scoping_required() def reset_password(self, request, pk=None): """ Resets the password from an reset code Request: POST user/reset_password/ { "reset_code": str, "password": str } Response: Same as GET user/{id}/ """ self._require_model_perm('reset_password', request) decoded = request.body.decode() try: body = json.loads(decoded) except ValueError: raise BinderRequestError(_('Invalid request body: not a JSON document.')) errors = {item: 'missing' for item in ['reset_code', 'password'] if item not in body} if errors: raise BinderValidationError(errors) return self._reset_pass_for_user(request, int(pk), body['reset_code'], body['password']) def _reset_pass_for_user(self, request, user_id, token, password): """ Helper function that actually resets the password for an user """ try: user = self.model._default_manager.get(pk=user_id) except (TypeError, ValueError, OverflowError, self.model.DoesNotExist): user = None if user is None or not self.token_generator.check_token(user, token): raise BinderNotFound() logger.info('login for {}/{} via successful password reset'.format(user.id, user)) try: password_validation.validate_password(password, user) except ValidationError as ve: raise BinderValidationError({'password': ve.messages}) user.set_password(password) user.save() self.auth_login(request, user) return self.respond_with_user(request, user.id) @method_decorator(sensitive_post_parameters()) @never_cache @list_route(name='change_password') @no_scoping_required() def change_password(self, request): """ Change the password from an old password Request: POST user/change_password/ { "old_password": str, "new_password": str } Response: Same as GET user/{id}/ """ if request.method != 'PUT': raise BinderMethodNotAllowed() self._require_model_perm('change_own_password', request) decoded = request.body.decode() try: body = json.loads(decoded) except ValueError: raise BinderRequestError(_('Invalid request body: not a JSON document.')) user = request.user errors = {} for item in ['old_password', 'new_password']: if body.get(item) is None: errors[item] = ['missing'] if not user.check_password(body.get('old_password')): errors['old_password'] = ['incorrect'] if len(errors) != 0: raise BinderValidationError(errors) password = body.get('new_password') try: password_validation.validate_password(password, user) except ValidationError as ve: validation_errors = {'new_password': ve.messages} raise BinderValidationError(validation_errors) user.set_password(password) user.save() logger.info('password changed for {}/{}'.format(user.id, user)) if user == request.user: """ No need to change the password of an user that is not our own """ update_session_auth_hash(request, user) return self.respond_with_user(request, user.id) @abstractmethod def _after_soft_delete(self, request, user, undelete): """ Callback called after an user is softdeleted or softundeleted """ pass @abstractmethod def _send_reset_mail(self, request, user, token): """ Callback to send the actual reset mail using the token. """ pass @abstractmethod def _send_activation_email(self, request, user): """ Callback to send a mail notifying that the user is activated. """ pass
27.009074
118
0.73216
13,837
0.929781
0
0
9,088
0.610671
0
0
4,468
0.300228
4961f5ae237c556abd210443e12861307b7068fa
362
py
Python
libra_client/crypto/x25519.py
violas-core/violas-client
e8798f7d081ac218b78b81fd7eb2f8da92631a16
[ "MIT" ]
null
null
null
libra_client/crypto/x25519.py
violas-core/violas-client
e8798f7d081ac218b78b81fd7eb2f8da92631a16
[ "MIT" ]
null
null
null
libra_client/crypto/x25519.py
violas-core/violas-client
e8798f7d081ac218b78b81fd7eb2f8da92631a16
[ "MIT" ]
1
2022-01-05T06:49:42.000Z
2022-01-05T06:49:42.000Z
from libra_client.canoser import DelegateT, BytesT # Size of a X25519 private key PRIVATE_KEY_SIZE = 32 # Size of a X25519 public key PUBLIC_KEY_SIZE = 32 # Size of a X25519 shared secret SHARED_SECRET_SIZE = 32 class PrivateKey(DelegateT): delegate_type = BytesT(PRIVATE_KEY_SIZE) class PublicKey(DelegateT): delegate_type = BytesT(PUBLIC_KEY_SIZE)
22.625
50
0.787293
144
0.39779
0
0
0
0
0
0
91
0.251381
49633e3a1fe78865b9e181ac00df94f57d6194b3
3,303
py
Python
plenum/test/plugin/demo_plugin/main.py
SchwiftyRick/indy-plenum
d23b99423eb805971e50446d7e89ada892aa6811
[ "Apache-2.0" ]
null
null
null
plenum/test/plugin/demo_plugin/main.py
SchwiftyRick/indy-plenum
d23b99423eb805971e50446d7e89ada892aa6811
[ "Apache-2.0" ]
1
2021-07-14T17:10:04.000Z
2021-07-14T17:10:04.000Z
plenum/test/plugin/demo_plugin/main.py
SchwiftyRick/indy-plenum
d23b99423eb805971e50446d7e89ada892aa6811
[ "Apache-2.0" ]
2
2021-02-19T15:36:50.000Z
2021-07-20T11:37:54.000Z
from plenum.common.constants import DOMAIN_LEDGER_ID from plenum.server.client_authn import CoreAuthNr from plenum.test.plugin.demo_plugin import AUCTION_LEDGER_ID from plenum.test.plugin.demo_plugin.batch_handlers.auction_batch_handler import AuctionBatchHandler from plenum.test.plugin.demo_plugin.config import get_config from plenum.test.plugin.demo_plugin.request_handlers.auction_end_handler import AuctionEndHandler from plenum.test.plugin.demo_plugin.request_handlers.auction_start_handler import AuctionStartHandler from plenum.test.plugin.demo_plugin.request_handlers.get_bal_handler import GetBalHandler from plenum.test.plugin.demo_plugin.request_handlers.place_bid_handler import PlaceBidHandler from plenum.test.plugin.demo_plugin.storage import get_auction_hash_store, \ get_auction_ledger, get_auction_state def integrate_plugin_in_node(node): node.config = get_config(node.config) hash_store = get_auction_hash_store(node.dataLocation) ledger = get_auction_ledger(node.dataLocation, node.config.auctionTransactionsFile, hash_store, node.config) state = get_auction_state(node.dataLocation, node.config.auctionStateDbName, node.config) if AUCTION_LEDGER_ID not in node.ledger_ids: node.ledger_ids.append(AUCTION_LEDGER_ID) node.ledgerManager.addLedger(AUCTION_LEDGER_ID, ledger, postTxnAddedToLedgerClbk=node.postTxnFromCatchupAddedToLedger) node.on_new_ledger_added(AUCTION_LEDGER_ID) node.register_state(AUCTION_LEDGER_ID, state) auctions = {} node.write_manager.register_req_handler(AuctionStartHandler(node.db_manager, auctions)) node.write_manager.register_req_handler(AuctionEndHandler(node.db_manager, auctions)) node.write_manager.register_req_handler(PlaceBidHandler(node.db_manager, auctions)) node.read_manager.register_req_handler(GetBalHandler(node.db_manager)) # FIXME: find a generic way of registering DBs node.db_manager.register_new_database(lid=AUCTION_LEDGER_ID, ledger=ledger, state=state) node.write_manager.register_batch_handler(AuctionBatchHandler(node.db_manager), ledger_id=AUCTION_LEDGER_ID, add_to_begin=True) node.write_manager.register_batch_handler(node.write_manager.node_reg_handler, ledger_id=AUCTION_LEDGER_ID) node.write_manager.register_batch_handler(node.write_manager.primary_reg_handler, ledger_id=AUCTION_LEDGER_ID) node.write_manager.register_batch_handler(node.write_manager.audit_b_handler, ledger_id=AUCTION_LEDGER_ID) auction_authnr = CoreAuthNr(node.write_manager.txn_types, node.read_manager.txn_types, node.action_manager.txn_types, node.states[DOMAIN_LEDGER_ID]) node.clientAuthNr.register_authenticator(auction_authnr) return node
58.982143
101
0.693612
0
0
0
0
0
0
0
0
46
0.013927
496648c5898f258ebf19c8b06ad31502f0290680
5,213
py
Python
biobakery_workflows/document_templates/quality_control_paired_dna_rna.template.py
shbrief/biobakery_workflows
2037f45caa8e4af9a40b5c1d2886cde15bc00381
[ "MIT" ]
1
2020-11-16T20:04:15.000Z
2020-11-16T20:04:15.000Z
biobakery_workflows/document_templates/quality_control_paired_dna_rna.template.py
mlwright97/biobakery_workflows
b3e74f25253d7354bebd02936ac25986281e85d6
[ "MIT" ]
null
null
null
biobakery_workflows/document_templates/quality_control_paired_dna_rna.template.py
mlwright97/biobakery_workflows
b3e74f25253d7354bebd02936ac25986281e85d6
[ "MIT" ]
null
null
null
#+ echo=False import numpy from biobakery_workflows import utilities, visualizations, files from anadama2 import PweaveDocument document=PweaveDocument() # get the variables for this document generation task vars = document.get_vars() # determine the document format pdf_format = True if vars["format"] == "pdf" else False # read in the DNA samples (dna_paired_columns, dna_orphan_columns), dna_samples, (dna_paired_data, dna_orphan_data) = visualizations.qc_read_counts(document, vars["dna_read_counts"]) # read in the RNA samples (rna_paired_columns, rna_orphan_columns), rna_samples, (rna_paired_data, rna_orphan_data) = visualizations.qc_read_counts(document, vars["rna_read_counts"]) #' # Quality Control #' <% visualizations.ShotGun.print_qc_intro_caption("{} DNA and {} RNA ".format(len(dna_samples),len(rna_samples)), rna_paired_columns[2:], paired=True) %> #+ echo=False #' ## DNA Samples Quality Control #' ### DNA Samples Tables of Filtered Reads #+ echo=False document.write_table(["# Sample"]+dna_paired_columns, dna_samples, dna_paired_data, files.ShotGunVis.path("qc_counts_paired",document.data_folder)) table_message=visualizations.show_table_max_rows(document, dna_paired_data, dna_samples, dna_paired_columns, "DNA Paired end reads", files.ShotGunVis.path("qc_counts_paired"), format_data_comma=True) #' <%= table_message %> #+ echo=False document.write_table(["# Sample"]+dna_orphan_columns, dna_samples, dna_orphan_data, files.ShotGunVis.path("qc_counts_orphan",document.data_folder)) table_message=visualizations.show_table_max_rows(document, dna_orphan_data, dna_samples, dna_orphan_columns, "DNA Orphan reads", files.ShotGunVis.path("qc_counts_orphan"), format_data_comma=True) #' <%= table_message %> #' <% if pdf_format: print("\clearpage") %> #+ echo=False # plot the microbial reads ratios dna_microbial_reads, dna_microbial_labels = utilities.microbial_read_proportion_multiple_databases( dna_paired_data, dna_paired_columns, dna_orphan_data) document.write_table(["# Sample"]+dna_microbial_labels, dna_samples, dna_microbial_reads, files.ShotGunVis.path("microbial_counts",document.data_folder)) table_message=visualizations.show_table_max_rows(document, dna_microbial_reads, dna_samples, dna_microbial_labels, "DNA microbial read proportion", files.ShotGunVis.path("microbial_counts")) #' <%= visualizations.ShotGun.captions["microbial_ratios"] %> #' <%= table_message %> #' ### DNA Samples Plots of Filtered Reads #+ echo=False document.plot_grouped_barchart(numpy.transpose(dna_paired_data), row_labels=dna_paired_columns, column_labels=dna_samples, title="DNA Paired end reads", ylabel="Read count (in millions)", legend_title="Filter", yaxis_in_millions=True) #+ echo=False document.plot_grouped_barchart(numpy.transpose(dna_orphan_data), row_labels=dna_orphan_columns, column_labels=dna_samples, title="DNA Orphan reads", ylabel="Read count (in millions)", legend_title="Filter", yaxis_in_millions=True) #' ## RNA Samples Quality Control #' ### RNA Samples Tables of Filtered Reads #+ echo=False document.write_table(["# Sample"]+rna_paired_columns, rna_samples, rna_paired_data, files.ShotGunVis.path("rna_qc_counts_paired",document.data_folder)) table_message=visualizations.show_table_max_rows(document, rna_paired_data, rna_samples, rna_paired_columns, "RNA Paired end reads", files.ShotGunVis.path("rna_qc_counts_paired"), format_data_comma=True) #' <%= table_message %> #+ echo=False document.write_table(["# Sample"]+rna_orphan_columns, rna_samples, rna_orphan_data, files.ShotGunVis.path("rna_qc_counts_orphan",document.data_folder)) table_message=visualizations.show_table_max_rows(document, rna_orphan_data, rna_samples, rna_orphan_columns, "RNA Orphan reads", files.ShotGunVis.path("rna_qc_counts_orphan"), format_data_comma=True) #' <%= table_message %> #' <% if pdf_format: print("\clearpage") %> #+ echo=False # write and plot the microbial reads ratios rna_microbial_reads, rna_microbial_labels = utilities.microbial_read_proportion_multiple_databases( rna_paired_data, rna_paired_columns, rna_orphan_data) document.write_table(["# Sample"]+rna_microbial_labels, rna_samples, rna_microbial_reads, files.ShotGunVis.path("rna_microbial_counts",document.data_folder)) table_message=visualizations.show_table_max_rows(document, rna_microbial_reads, rna_samples, rna_microbial_labels, "RNA microbial read proportion", files.ShotGunVis.path("rna_microbial_counts")) #' <%= visualizations.ShotGun.captions["microbial_ratios"] %> #' <%= table_message %> #' ### RNA Samples Plots of Filtered Reads #+ echo=False document.plot_grouped_barchart(numpy.transpose(rna_paired_data), row_labels=rna_paired_columns, column_labels=rna_samples, title="RNA Paired end reads", ylabel="Read count (in millions)", legend_title="Filter", yaxis_in_millions=True) #+ echo=False document.plot_grouped_barchart(numpy.transpose(rna_orphan_data), row_labels=rna_orphan_columns, column_labels=rna_samples, title="RNA Orphan reads", ylabel="Read count (in millions)", legend_title="Filter", yaxis_in_millions=True)
38.330882
156
0.782851
0
0
0
0
0
0
0
0
1,834
0.351813
49665a0b0e4dd98e4c598bd1960650361ca30dc7
1,604
py
Python
Other_notebooks/Shapefile_Demo.py
gamedaygeorge/datacube-applications-library
1b6314ee3465f9f17930391a4c241e981a9e200e
[ "Apache-2.0" ]
null
null
null
Other_notebooks/Shapefile_Demo.py
gamedaygeorge/datacube-applications-library
1b6314ee3465f9f17930391a4c241e981a9e200e
[ "Apache-2.0" ]
null
null
null
Other_notebooks/Shapefile_Demo.py
gamedaygeorge/datacube-applications-library
1b6314ee3465f9f17930391a4c241e981a9e200e
[ "Apache-2.0" ]
1
2021-02-25T14:19:05.000Z
2021-02-25T14:19:05.000Z
# Code behind module for Shapefile_Demo.ipynb ################################ ## ## Import Statments ## ################################ # Import standard Python modules import sys import datacube import numpy as np import fiona import xarray as xr from rasterio.features import geometry_mask import shapely from shapely.ops import transform from shapely.geometry import shape from functools import partial import pyproj ################################ ## ## Function Definitions ## ################################ def shapefile_mask(dataset: xr.Dataset, shapefile) -> np.array: """Extracts a mask from a shapefile using dataset latitude and longitude extents. Args: dataset (xarray.Dataset): The dataset with the latitude and longitude extents. shapefile (string): The shapefile to be used for extraction. Returns: A boolean mask array. """ with fiona.open(shapefile, 'r') as source: collection = list(source) geometries = [] for feature in collection: geom = shape(feature['geometry']) project = partial( pyproj.transform, pyproj.Proj(init=source.crs['init']), # source crs pyproj.Proj(init='epsg:4326')) # destination crs geom = transform(project, geom) # apply projection geometries.append(geom) geobox = dataset.geobox mask = geometry_mask( geometries, out_shape=geobox.shape, transform=geobox.affine, all_touched=True, invert=True) return mask
28.642857
86
0.596633
0
0
0
0
0
0
0
0
632
0.394015
496664e291d159374bf05460e543caa52023fc6f
272
py
Python
Day 02/Day 02.1.py
Mraedis/AoC2021
4d198f8b227ce8f8f2f3fd2fed9396d7898e9d2a
[ "Apache-2.0" ]
1
2021-11-30T22:41:09.000Z
2021-11-30T22:41:09.000Z
Day 02/Day 02.1.py
Mraedis/AoC2021
4d198f8b227ce8f8f2f3fd2fed9396d7898e9d2a
[ "Apache-2.0" ]
null
null
null
Day 02/Day 02.1.py
Mraedis/AoC2021
4d198f8b227ce8f8f2f3fd2fed9396d7898e9d2a
[ "Apache-2.0" ]
null
null
null
linelist = [line for line in open('Day 02.input').readlines()] hor = 0 dep = 0 for line in linelist: mov, amount = line.split(' ') if mov == 'forward': hor += int(amount) else: dep += int(amount) * (-1 if mov == 'up' else 1) print(hor * dep)
20.923077
62
0.555147
0
0
0
0
0
0
0
0
30
0.110294
49670dd8b225f1420aba3e75006477f4bfe63dc1
1,879
py
Python
examples/simple1d/driver.py
michael-a-hansen/jalapeno
2f0d47467a78395e42854e11abebcf1b7721e0be
[ "MIT" ]
1
2019-11-09T15:13:38.000Z
2019-11-09T15:13:38.000Z
examples/simple1d/driver.py
michael-a-hansen/jalapeno
2f0d47467a78395e42854e11abebcf1b7721e0be
[ "MIT" ]
3
2016-10-05T22:57:46.000Z
2016-10-06T06:26:22.000Z
examples/simple1d/driver.py
michael-a-hansen/jalapeno
2f0d47467a78395e42854e11abebcf1b7721e0be
[ "MIT" ]
null
null
null
''' This example provides three examples of a simple plot of 1-D data. 1. a publication-ready single column figure, which is printed to png (600 dpi), pdf, and svg 2. a presentation-ready figure on a black background Four steps are involved in each figure: - load/generate the data - construct a 1d plot (figure, axis, line series) for the spectrum - size the figure and font - print the figure to a pdf ''' import jalapeno.colors.svgcolors as jc import jalapeno.plots.plots as jpp import jalapeno.plots.colorscheme as jpc import numpy as np # generate the data x = np.linspace(0, 2*np.pi, 600) y = np.abs(np.cos(2*x)) # make a 1d plot fig, ax, line = jpp.make_1d_plot(linecolor=jc.darkorange, maxx=max(x/np.pi), maxy=1.01, xname='x/pi', yname='cos(2x)') # plot the data on our 1d plot line.set_data(x/np.pi,y) # size the figure and print it to pdf jpp.SquareFigure().set_size(fig) jpp.print_fig(fig, 'xy-for-publication', ['pdf', 'png', 'svg'], dpi=600) # make another 1d plot fig, ax, line = jpp.make_1d_plot(colorscheme=jpc.FigColors.scheme('black'), linecolor=jc.coral, linewidth=4, showgrid='off', maxx=max(x/np.pi), maxy=1.01, xname='x/pi', yname='cos(2x)') # plot the data on our 1d plot line.set_data(x/np.pi, y) # size the figure and print it to pdf jpp.SquareFigure(width=4, fontsize=12).set_size(fig) jpp.print_fig(fig, 'xy-for-presentation', exts=['pdf']) # way 1, use print_fig and provide exts=['pdf'] jpp.print_fig_to_pdf(fig, 'xy-for-presentation') # way 2, use print_fig_to_pdf
33.553571
104
0.581692
0
0
0
0
0
0
0
0
800
0.425758
4968c48330c18edd322258fb79f85333f213b40b
2,306
py
Python
process/1_embed_keep_ge.py
omarmaddouri/GCNCC_1
ec858bbe8246e4af15f7b870ca0ccafdea93d627
[ "MIT" ]
4
2020-12-03T11:57:15.000Z
2021-12-09T05:20:44.000Z
process/1_embed_keep_ge.py
alkaidone/GCNCC
3270b4c2d48e0090a18a0ab1df3b9fd81627029d
[ "MIT" ]
5
2020-01-28T23:14:40.000Z
2021-08-25T15:55:23.000Z
process/1_embed_keep_ge.py
alkaidone/GCNCC
3270b4c2d48e0090a18a0ab1df3b9fd81627029d
[ "MIT" ]
3
2021-11-23T05:13:27.000Z
2021-12-30T08:12:48.000Z
from __future__ import division from __future__ import print_function from pathlib import Path import sys project_path = Path(__file__).resolve().parents[1] sys.path.append(str(project_path)) from keras.layers import Dense, Activation, Dropout from keras.models import Model, Sequential from keras.regularizers import l2 from keras.optimizers import Adam import keras.backend as K import numpy as np import time import tensorflow as tf import os from core.utils import * from core.layers.graph_cnn_layer import GraphCNN from sklearn.preprocessing import normalize # Set random seed seed = 123 np.random.seed(seed) tf.random.set_seed(seed) # Settings flags = tf.compat.v1.flags FLAGS = flags.FLAGS flags.DEFINE_string('dataset', 'brc_microarray_usa', 'Dataset string.') flags.DEFINE_string('embedding_method', 'ge', 'Name of the embedding method.') #Check dataset availability if not os.path.isdir("{}/data/parsed_input/{}".format(project_path, FLAGS.dataset)): sys.exit("{} dataset is not available under data/parsed_input/".format(FLAGS.dataset)) if not os.path.isdir("{}/data/output/{}/embedding/{}".format(project_path, FLAGS.dataset, FLAGS.embedding_method)): os.makedirs("{}/data/output/{}/embedding/{}".format(project_path, FLAGS.dataset, FLAGS.embedding_method)) print("--------------------------------------------") print("--------------------------------------------") print("Hyper-parameters:") print("Dataset: {}".format(FLAGS.dataset)) print("Embedding method: {}".format(FLAGS.embedding_method)) print("--------------------------------------------") print("--------------------------------------------") # Prepare Data X, A, Y = load_training_data(dataset=FLAGS.dataset) Y_train, Y_val, Y_test, train_idx, val_idx, test_idx, train_mask = get_splits_for_learning(Y, dataset=FLAGS.dataset) # Normalize gene expression X = normalize(X, norm='l1') #for positive non-zero entries, it's equivalent to: X /= X.sum(1).reshape(-1, 1) #Save the node emmbeddings np.savetxt("{}/data/output/{}/embedding/{}/embeddings.txt".format(project_path, FLAGS.dataset, FLAGS.embedding_method), X, delimiter="\t") print("Embeddings saved in /data/output/{}/embedding/{}/embeddings.txt".format(FLAGS.dataset, FLAGS.embedding_method))
38.433333
139
0.685603
0
0
0
0
0
0
0
0
808
0.35039
496956f2c24db98208ca44b218ea029a5dcff3f8
832
py
Python
docs/modelserving/detect/aif/germancredit/simulate_predicts.py
chinhuang007/website
c5324e9ee3e7f202c226836de0aca9ebd33b61b2
[ "Apache-2.0" ]
1,146
2019-03-27T21:14:34.000Z
2021-09-22T08:36:46.000Z
docs/modelserving/detect/aif/germancredit/simulate_predicts.py
chinhuang007/website
c5324e9ee3e7f202c226836de0aca9ebd33b61b2
[ "Apache-2.0" ]
1,803
2019-03-27T22:16:02.000Z
2021-09-22T15:27:44.000Z
docs/modelserving/detect/aif/germancredit/simulate_predicts.py
chinhuang007/website
c5324e9ee3e7f202c226836de0aca9ebd33b61b2
[ "Apache-2.0" ]
573
2019-03-27T21:14:58.000Z
2021-09-20T21:15:52.000Z
import sys import json import time import requests if len(sys.argv) < 3: raise Exception("No endpoint specified. ") endpoint = sys.argv[1] headers = { 'Host': sys.argv[2] } with open('input.json') as file: sample_file = json.load(file) inputs = sample_file["instances"] # Split inputs into chunks of size 15 and send them to the predict server print("Sending prediction requests...") time_before = time.time() res = requests.post(endpoint, json={"instances": inputs}, headers=headers) for x in range(0, len(inputs), 15): query_inputs = inputs[x: x+20] payload = {"instances": query_inputs} res = requests.post(endpoint, json=payload, headers=headers) print(res) if not res.ok: res.raise_for_status() print("TIME TAKEN: ", time.time() - time_before) print("Last response: ", res.json())
25.212121
74
0.689904
0
0
0
0
0
0
0
0
212
0.254808
496a50df8aab51c7339b1ff94cb179d8c9744ace
1,272
py
Python
sdc/ysdc_dataset_api/utils/serialization.py
sty61010/shifts
d3bb3086d8f2581f74644585701f4b1db4338483
[ "Apache-2.0" ]
156
2021-07-16T08:54:39.000Z
2022-03-24T11:49:36.000Z
sdc/ysdc_dataset_api/utils/serialization.py
sty61010/shifts
d3bb3086d8f2581f74644585701f4b1db4338483
[ "Apache-2.0" ]
18
2021-07-21T14:02:46.000Z
2022-02-26T04:07:12.000Z
sdc/ysdc_dataset_api/utils/serialization.py
sty61010/shifts
d3bb3086d8f2581f74644585701f4b1db4338483
[ "Apache-2.0" ]
41
2021-07-21T05:38:07.000Z
2022-01-13T15:25:51.000Z
import io import zlib import numpy as np def maybe_compress(str, compress): return zlib.compress(str) if compress else str def maybe_decompress(str, decompress): return zlib.decompress(str) if decompress else str def serialize_numpy(arr: np.ndarray, compress: bool = False) -> str: """Serializes numpy array to string with optional zlib compression. Args: arr (np.ndarray): Numpy array to serialize. compress (bool, optional): Whether to compress resulting string with zlib or not. Defaults to False. Returns: str: serialized string """ buf = io.BytesIO() assert isinstance(arr, np.ndarray) np.save(buf, arr) result = buf.getvalue() return maybe_compress(result, compress) def deserialize_numpy(serialized_string: str, decompress: bool = False) -> np.ndarray: """Deserializes numpy array from compressed string. Args: serialized_string (str): Serialized numpy array decompress (bool, optional): Whether to decompress string with zlib before laoding. Defaults to False. Returns: np.ndarray: deserialized numpy array """ str = maybe_decompress(serialized_string, decompress) buf = io.BytesIO(str) return np.load(buf)
27.06383
91
0.687893
0
0
0
0
0
0
0
0
612
0.481132
496b0cdd9c9c0a2581d8be6db775211985c0614c
278
py
Python
hubspot/discovery/crm/extensions/videoconferencing/discovery.py
fakepop/hubspot-api-python
f04103a09f93f5c26c99991b25fa76801074f3d3
[ "Apache-2.0" ]
117
2020-04-06T08:22:53.000Z
2022-03-18T03:41:29.000Z
hubspot/discovery/crm/extensions/videoconferencing/discovery.py
fakepop/hubspot-api-python
f04103a09f93f5c26c99991b25fa76801074f3d3
[ "Apache-2.0" ]
62
2020-04-06T16:21:06.000Z
2022-03-17T16:50:44.000Z
hubspot/discovery/crm/extensions/videoconferencing/discovery.py
fakepop/hubspot-api-python
f04103a09f93f5c26c99991b25fa76801074f3d3
[ "Apache-2.0" ]
45
2020-04-06T16:13:52.000Z
2022-03-30T21:33:17.000Z
import hubspot.crm.extensions.videoconferencing as api_client from ....discovery_base import DiscoveryBase class Discovery(DiscoveryBase): @property def settings_api(self) -> api_client.SettingsApi: return self._configure_api_client(api_client, "SettingsApi")
30.888889
68
0.78777
168
0.604317
0
0
132
0.47482
0
0
13
0.046763
496b6450d30926a47dd2ad486b0b0f71fa6e56dd
10,910
py
Python
train_margin.py
youmingdeng/DMLPlayground
37070c10278597a4413303061d60d69ce2c4f87e
[ "Apache-2.0" ]
1
2021-11-11T16:05:56.000Z
2021-11-11T16:05:56.000Z
train_margin.py
youmingdeng/DMLPlayground
37070c10278597a4413303061d60d69ce2c4f87e
[ "Apache-2.0" ]
null
null
null
train_margin.py
youmingdeng/DMLPlayground
37070c10278597a4413303061d60d69ce2c4f87e
[ "Apache-2.0" ]
1
2020-04-01T04:50:36.000Z
2020-04-01T04:50:36.000Z
from __future__ import division import logging import mxnet as mx import numpy as np from mxnet import autograd as ag, nd from mxnet import gluon from tqdm import tqdm from common.evaluate import evaluate from common.parser import TrainingParser from common.utils import average_results, format_results, get_context, parse_steps, get_lr, append_postfix from dataset import get_dataset_iterator, get_dataset from dataset.dataloader import DatasetIterator from models import get_feature_model from models.marginmodels import MarginNet, MarginLoss def parse_args(): parser = TrainingParser(description='Distance metric learning with marginloss and distance-weighted sampling.', default_logfile='train_margin.log', default_model_prefix='margin_loss_model') parser.add_argument('--batch-size', type=int, default=125, help='Number of samples in a batch per compute unit. Default is 125.' 'Must be divisible with batch-k.') parser.add_argument('--batch-k', type=int, default=5, help='number of images per class in a batch. default is 5.') parser.add_argument('--epochs', type=int, default=20, help='number of training epochs. default is 20.') parser.add_argument('--lr', type=float, default=0.0001, help='learning rate. default is 0.0001.') parser.add_argument('--lr-beta', type=float, default=0.1, help='learning rate for the beta in margin based loss. default is 0.1.') parser.add_argument('--margin', type=float, default=0.2, help='margin for the margin based loss. default is 0.2.') parser.add_argument('--beta', type=float, default=1.2, help='initial value for beta. default is 1.2.') parser.add_argument('--nu', type=float, default=0.0, help='regularization parameter for beta. default is 0.0.') parser.add_argument('--factor', type=float, default=0.5, help='learning rate schedule factor. default is 0.5.') parser.add_argument('--steps', type=str, default='12,14,16,18', help='epochs to update learning rate. default is 12,14,16,18.') parser.add_argument('--wd', type=float, default=0.00001, help='weight decay rate. default is 0.00001.') parser.add_argument('--iteration-per-epoch', type=int, default=200, help='Number of iteration per epoch. default=200.') opt = parser.parse_args() if opt.logfile.lower() != 'none': logging.basicConfig(filename=append_postfix(opt.logfile, opt.log_postfix), level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler()) return opt def validate(net, val_data, ctx, use_threads=True): """Test a model.""" outputs = [] labels = [] ctx_cpu = mx.cpu() for batch in tqdm(val_data, desc='Computing test embeddings'): data = mx.gluon.utils.split_and_load(batch[0], ctx_list=ctx, batch_axis=0, even_split=False) label = mx.gluon.utils.split_and_load(batch[1], ctx_list=ctx, batch_axis=0, even_split=False) for x in data: outputs.append(net(x).as_in_context(ctx_cpu)) labels += [l.as_in_context(ctx_cpu) for l in label] outputs = mx.nd.concatenate(outputs, axis=0) labels = mx.nd.concatenate(labels, axis=0) return evaluate(outputs, labels, val_data._dataset.num_classes(), use_threads=use_threads) def train(net, beta, opt, train_dataloader, val_dataloader, batch_size, context, run_id): """Training function.""" if not opt.skip_pretrain_validation: validation_results = validate(net, val_dataloader, context, use_threads=opt.num_workers > 0) for name, val_acc in validation_results: logging.info('Pre-train validation: %s=%f' % (name, val_acc)) steps = parse_steps(opt.steps, opt.epochs, logging) opt_options = {'learning_rate': opt.lr, 'wd': opt.wd} if opt.optimizer == 'sgd': opt_options['momentum'] = 0.9 if opt.optimizer == 'adam': opt_options['epsilon'] = 1e-7 trainer = gluon.Trainer(net.collect_params(), opt.optimizer, opt_options, kvstore=opt.kvstore) train_beta = not isinstance(beta, float) if train_beta: # Jointly train class-specific beta beta.initialize(mx.init.Constant(opt.beta), ctx=context) trainer_beta = gluon.Trainer(beta.collect_params(), 'sgd', {'learning_rate': opt.lr_beta, 'momentum': 0.9}, kvstore=opt.kvstore) loss = MarginLoss(batch_size, opt.batch_k, beta, margin=opt.margin, nu=opt.nu, train_beta=train_beta) if not opt.disable_hybridize: loss.hybridize() best_results = [] # R@1, NMI for epoch in range(1, opt.epochs + 1): prev_loss, cumulative_loss = 0.0, 0.0 # Learning rate schedule. trainer.set_learning_rate(get_lr(opt.lr, epoch, steps, opt.factor)) logging.info('Epoch %d learning rate=%f', epoch, trainer.learning_rate) if train_beta: trainer_beta.set_learning_rate(get_lr(opt.lr_beta, epoch, steps, opt.factor)) logging.info('Epoch %d beta learning rate=%f', epoch, trainer_beta.learning_rate) p_bar = tqdm(train_dataloader, desc='[Run %d/%d] Epoch %d' % (run_id, opt.number_of_runs, epoch), total=opt.iteration_per_epoch) for batch in p_bar: data = gluon.utils.split_and_load(batch[0][0], ctx_list=context, batch_axis=0) label = gluon.utils.split_and_load(batch[1][0].astype('float32'), ctx_list=context, batch_axis=0) Ls = [] with ag.record(): for x, y in zip(data, label): embedings = net(x) L = loss(embedings, y) Ls.append(L) cumulative_loss += nd.mean(L).asscalar() for L in Ls: L.backward() trainer.step(batch[0].shape[1]) if opt.lr_beta > 0.0: trainer_beta.step(batch[0].shape[1]) p_bar.set_postfix({'loss': cumulative_loss - prev_loss}) prev_loss = cumulative_loss logging.info('[Epoch %d] training loss=%f' % (epoch, cumulative_loss)) validation_results = validate(net, val_dataloader, context, use_threads=opt.num_workers > 0) for name, val_acc in validation_results: logging.info('[Epoch %d] validation: %s=%f' % (epoch, name, val_acc)) if (len(best_results) == 0) or (validation_results[0][1] > best_results[0][1]): best_results = validation_results if opt.save_model_prefix.lower() != 'none': filename = '%s.params' % opt.save_model_prefix logging.info('Saving %s.' % filename) net.save_parameters(filename) logging.info('New best validation: R@1: %f NMI: %f' % (best_results[0][1], best_results[-1][1])) return best_results def train_margin(opt): logging.info(opt) # Set random seed mx.random.seed(opt.seed) np.random.seed(opt.seed) # Setup computation context context = get_context(opt.gpus, logging) # Adjust batch size to each compute context batch_size = opt.batch_size * len(context) run_results = [] # Get model if opt.model == 'inception-bn': feature_net, feature_params = get_feature_model(opt.model, ctx=context) feature_net.collect_params().load(feature_params, ctx=context, ignore_extra=True) data_shape = 224 scale_image_data = False elif opt.model == 'resnet50_v2': feature_params = None feature_net = mx.gluon.model_zoo.vision.resnet50_v2(pretrained=True, ctx=context).features data_shape = 224 scale_image_data = True else: raise RuntimeError('Unsupported model: %s' % opt.model) net = MarginNet(feature_net, opt.embed_dim) if opt.model == 'resnet50_v2': # Use a smaller learning rate for pre-trained convolutional layers. for v in net.base_net.collect_params().values(): if 'conv' in v.name: setattr(v, 'lr_mult', 0.01) # Get data iterators train_dataset, val_dataset = get_dataset(opt.dataset, opt.data_path, data_shape=data_shape, use_crops=opt.use_crops, use_aug=True, scale_image_data=scale_image_data) train_dataiter, _ = get_dataset_iterator(opt.dataset, opt.data_path, batch_k=opt.batch_k, batch_size=batch_size, data_shape=data_shape, use_crops=opt.use_crops, scale_image_data=scale_image_data, batchify=False) train_dataloader = mx.gluon.data.DataLoader(DatasetIterator(train_dataiter, opt.iteration_per_epoch, 'next'), batch_size=1, shuffle=False, num_workers=opt.num_workers, last_batch='keep') val_dataloader = mx.gluon.data.DataLoader(val_dataset, batch_size=opt.batch_size, shuffle=False, num_workers=opt.num_workers, last_batch='keep') logging.info('Training with %d classes, validating with %d classes' % ( train_dataset.num_classes(), val_dataset.num_classes())) # main run loop for multiple training runs for run in range(1, opt.number_of_runs + 1): logging.info('Starting run %d/%d' % (run, opt.number_of_runs)) # Re-init embedding layers and reload pretrained layers if opt.model == 'inception-bn': net.init(mx.init.Xavier(magnitude=0.2), ctx=context, init_basenet=False) net.base_net.collect_params().load(feature_params, ctx=context, ignore_extra=True) elif opt.model == 'resnet50_v2': net.init(mx.init.Xavier(magnitude=2), ctx=context, init_basenet=False) net.base_net = mx.gluon.model_zoo.vision.resnet50_v2(pretrained=True, ctx=context).features else: raise RuntimeError('Unknown model type: %s' % opt.model) if not opt.disable_hybridize: net.hybridize() if opt.lr_beta > 0.0: logging.info('Learning beta margin') beta = mx.gluon.nn.Embedding(train_dataset.num_classes(), 1) else: beta = opt.beta run_result = train(net, beta, opt, train_dataloader, val_dataloader, batch_size, context, run) run_results.append(run_result) logging.info('Run %d finished with %f' % (run, run_result[0][1])) logging.info( 'Average validation of %d runs:\n%s' % (opt.number_of_runs, format_results(average_results(run_results)))) if __name__ == '__main__': train_margin(parse_args())
44.530612
120
0.634372
0
0
0
0
0
0
0
0
1,949
0.178643
496d5dcb74bbf5f2fa198d1e5b24c0ea5fec7ece
6,187
py
Python
doc/tools/doc_merge.py
N0hbdy/godot
d4a222cd9d849a63f0535f70cbf78700bc5c815b
[ "CC-BY-3.0", "Apache-2.0", "MIT" ]
39
2018-12-17T07:11:37.000Z
2021-09-28T10:02:45.000Z
doc/tools/doc_merge.py
N0hbdy/godot
d4a222cd9d849a63f0535f70cbf78700bc5c815b
[ "CC-BY-3.0", "Apache-2.0", "MIT" ]
38
2021-07-29T01:15:35.000Z
2022-03-20T01:01:28.000Z
doc/tools/doc_merge.py
N0hbdy/godot
d4a222cd9d849a63f0535f70cbf78700bc5c815b
[ "CC-BY-3.0", "Apache-2.0", "MIT" ]
3
2021-09-06T18:28:23.000Z
2021-09-11T11:59:54.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import xml.etree.ElementTree as ET tree = ET.parse(sys.argv[1]) old_doc = tree.getroot() tree = ET.parse(sys.argv[2]) new_doc = tree.getroot() f = file(sys.argv[3], "wb") tab = 0 old_classes = {} def write_string(_f, text, newline=True): for t in range(tab): _f.write("\t") _f.write(text) if (newline): _f.write("\n") def escape(ret): ret = ret.replace("&", "&amp;") ret = ret.replace("<", "&gt;") ret = ret.replace(">", "&lt;") ret = ret.replace("'", "&apos;") ret = ret.replace("\"", "&quot;") return ret def inc_tab(): global tab tab += 1 def dec_tab(): global tab tab -= 1 write_string(f, '<?xml version="1.0" encoding="UTF-8" ?>') write_string(f, '<doc version="' + new_doc.attrib["version"] + '">') def get_tag(node, name): tag = "" if (name in node.attrib): tag = ' ' + name + '="' + escape(node.attrib[name]) + '" ' return tag def find_method_descr(old_class, name): methods = old_class.find("methods") if(methods != None and len(list(methods)) > 0): for m in list(methods): if (m.attrib["name"] == name): description = m.find("description") if (description != None and description.text.strip() != ""): return description.text return None def find_signal_descr(old_class, name): signals = old_class.find("signals") if(signals != None and len(list(signals)) > 0): for m in list(signals): if (m.attrib["name"] == name): description = m.find("description") if (description != None and description.text.strip() != ""): return description.text return None def find_constant_descr(old_class, name): if (old_class is None): return None constants = old_class.find("constants") if(constants != None and len(list(constants)) > 0): for m in list(constants): if (m.attrib["name"] == name): if (m.text.strip() != ""): return m.text return None def write_class(c): class_name = c.attrib["name"] print("Parsing Class: " + class_name) if (class_name in old_classes): old_class = old_classes[class_name] else: old_class = None category = get_tag(c, "category") inherits = get_tag(c, "inherits") write_string(f, '<class name="' + class_name + '" ' + category + inherits + '>') inc_tab() write_string(f, "<brief_description>") if (old_class != None): old_brief_descr = old_class.find("brief_description") if (old_brief_descr != None): write_string(f, escape(old_brief_descr.text.strip())) write_string(f, "</brief_description>") write_string(f, "<description>") if (old_class != None): old_descr = old_class.find("description") if (old_descr != None): write_string(f, escape(old_descr.text.strip())) write_string(f, "</description>") methods = c.find("methods") if(methods != None and len(list(methods)) > 0): write_string(f, "<methods>") inc_tab() for m in list(methods): qualifiers = get_tag(m, "qualifiers") write_string(f, '<method name="' + escape(m.attrib["name"]) + '" ' + qualifiers + '>') inc_tab() for a in list(m): if (a.tag == "return"): typ = get_tag(a, "type") write_string(f, '<return' + typ + '>') write_string(f, '</return>') elif (a.tag == "argument"): default = get_tag(a, "default") write_string(f, '<argument index="' + a.attrib["index"] + '" name="' + escape(a.attrib["name"]) + '" type="' + a.attrib["type"] + '"' + default + '>') write_string(f, '</argument>') write_string(f, '<description>') if (old_class != None): old_method_descr = find_method_descr(old_class, m.attrib["name"]) if (old_method_descr): write_string(f, escape(escape(old_method_descr.strip()))) write_string(f, '</description>') dec_tab() write_string(f, "</method>") dec_tab() write_string(f, "</methods>") signals = c.find("signals") if(signals != None and len(list(signals)) > 0): write_string(f, "<signals>") inc_tab() for m in list(signals): write_string(f, '<signal name="' + escape(m.attrib["name"]) + '">') inc_tab() for a in list(m): if (a.tag == "argument"): write_string(f, '<argument index="' + a.attrib["index"] + '" name="' + escape(a.attrib["name"]) + '" type="' + a.attrib["type"] + '">') write_string(f, '</argument>') write_string(f, '<description>') if (old_class != None): old_signal_descr = find_signal_descr(old_class, m.attrib["name"]) if (old_signal_descr): write_string(f, escape(old_signal_descr.strip())) write_string(f, '</description>') dec_tab() write_string(f, "</signal>") dec_tab() write_string(f, "</signals>") constants = c.find("constants") if(constants != None and len(list(constants)) > 0): write_string(f, "<constants>") inc_tab() for m in list(constants): write_string(f, '<constant name="' + escape(m.attrib["name"]) + '" value="' + m.attrib["value"] + '">') old_constant_descr = find_constant_descr(old_class, m.attrib["name"]) if (old_constant_descr): write_string(f, escape(old_constant_descr.strip())) write_string(f, "</constant>") dec_tab() write_string(f, "</constants>") dec_tab() write_string(f, "</class>") for c in list(old_doc): old_classes[c.attrib["name"]] = c for c in list(new_doc): write_class(c) write_string(f, '</doc>\n')
28.643519
170
0.537902
0
0
0
0
0
0
0
0
1,014
0.163892
496d668dab143daad188848fbd26c751e580633a
357
py
Python
contentcuration/contentcuration/migrations/0059_merge.py
Tlazypanda/studio
cd1c2f169c705027cdd808cbbcae907d0a9b21d2
[ "MIT" ]
1
2019-03-30T18:14:25.000Z
2019-03-30T18:14:25.000Z
contentcuration/contentcuration/migrations/0059_merge.py
Tlazypanda/studio
cd1c2f169c705027cdd808cbbcae907d0a9b21d2
[ "MIT" ]
4
2016-05-06T17:19:30.000Z
2019-03-15T01:51:24.000Z
contentcuration/contentcuration/migrations/0059_merge.py
Tlazypanda/studio
cd1c2f169c705027cdd808cbbcae907d0a9b21d2
[ "MIT" ]
4
2016-10-18T22:49:08.000Z
2019-09-17T11:20:51.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2017-03-29 19:12 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('contentcuration', '0058_auto_20170223_1636'), ('contentcuration', '0057_assessmentitem_deleted'), ] operations = [ ]
21
59
0.680672
208
0.582633
0
0
0
0
0
0
158
0.442577
496df5ac2b816d0d93ed95d0c8119c0af62b55d9
91
py
Python
controller/ORCA_CLEAN/execute.py
nestorcalvo/Backend-AudioClean
7edb373c518193bc5643e9524d78d9ba32163b3f
[ "MIT" ]
null
null
null
controller/ORCA_CLEAN/execute.py
nestorcalvo/Backend-AudioClean
7edb373c518193bc5643e9524d78d9ba32163b3f
[ "MIT" ]
null
null
null
controller/ORCA_CLEAN/execute.py
nestorcalvo/Backend-AudioClean
7edb373c518193bc5643e9524d78d9ba32163b3f
[ "MIT" ]
null
null
null
from predict import predict if __name__ == "__main__": # predict() print("A ")
15.166667
27
0.604396
0
0
0
0
0
0
0
0
28
0.307692
496f6fa945313ae8eb812d0256476b19fbb908f6
174
py
Python
fperms_iscore/main.py
druids/django-fperms-iscore
8e919cdc70ed57e0eb6407469de9ef2441ae06ad
[ "MIT" ]
1
2019-10-07T12:40:38.000Z
2019-10-07T12:40:38.000Z
fperms_iscore/main.py
druids/django-fperms-iscore
8e919cdc70ed57e0eb6407469de9ef2441ae06ad
[ "MIT" ]
3
2019-08-09T14:10:21.000Z
2022-02-01T13:48:01.000Z
fperms_iscore/main.py
druids/django-fperms-iscore
8e919cdc70ed57e0eb6407469de9ef2441ae06ad
[ "MIT" ]
null
null
null
from is_core.main import DjangoUiRestCore from fperms_iscore.mixins import PermCoreMixin class PermDjangoUiRestCore(PermCoreMixin, DjangoUiRestCore): abstract = True
19.333333
60
0.833333
81
0.465517
0
0
0
0
0
0
0
0
496f9fb09ed8ca073a1b323b69ca4902f734d230
1,269
py
Python
distanceCalc.py
jmoehler/CityDistance
0a7eb898db8ea0dbada43239652ae4aad935dda3
[ "MIT" ]
null
null
null
distanceCalc.py
jmoehler/CityDistance
0a7eb898db8ea0dbada43239652ae4aad935dda3
[ "MIT" ]
null
null
null
distanceCalc.py
jmoehler/CityDistance
0a7eb898db8ea0dbada43239652ae4aad935dda3
[ "MIT" ]
null
null
null
from math import cos, acos, pi, sqrt, sin class City: def __init__(self, name, lat, lon, temp): self.name = name self.lat = lat self.lon = lon self.temp = temp def describe(self): print("Die Koordinaten von %s sind %f Lat und %f Lon. Die Temperatur beträgt %.1f Grad Celcius." %(self.name, self.lat, self.lon, self.temp)) def info(self): print("Die Koordinaten von %s sind %.1f Lat und %.1f Lon." %(self.name, self.lat, self.lon)) def __str__(self): return "Die Koordinaten von %s sind %.1f Lat und %.1f Lon." %(self.name, self.lat, self.lon) def __repr__(self): return self.__str__() def diffGamma(alpha, beta): # differenz von winkel alpha zu Winkel beta dGamma = alpha - beta dGammaRad = pi / 180 * dGamma # Erdradius in km r = 6378 # länge auf lat berechnen return r*sqrt(2*(1-cos(dGammaRad))) def distanceBase(dilat, dilon): # insgesammte länge berechnen return sqrt(dilon**2 + dilat**2) def distance(city1, city2): dilat = diffGamma(city1.lat, city2.lat) dilon = diffGamma(city1.lon, city2.lon) return distanceBase(dilat, dilon) def tempDiff(city1, city2): return abs(city1.temp - city2.temp)
34.297297
149
0.624901
627
0.492925
0
0
0
0
0
0
326
0.256289
496fe4328017b0a5588279aa7e57db6731bb4964
95
py
Python
zoo/auditing/apps.py
uliana291/the-zoo
a15a4162c39553abe91224f4feff5d3b66f9413e
[ "MIT" ]
90
2018-11-20T10:58:24.000Z
2022-02-19T16:12:46.000Z
zoo/auditing/apps.py
uliana291/the-zoo
a15a4162c39553abe91224f4feff5d3b66f9413e
[ "MIT" ]
348
2018-11-21T09:22:31.000Z
2021-11-03T13:45:08.000Z
zoo/auditing/apps.py
aexvir/the-zoo
7816afb9a0a26c6058b030b4a987c73e952d92bd
[ "MIT" ]
11
2018-12-08T18:42:07.000Z
2021-02-21T06:27:58.000Z
from django.apps import AppConfig class AuditingConfig(AppConfig): name = "zoo.auditing"
15.833333
33
0.757895
58
0.610526
0
0
0
0
0
0
14
0.147368
49706257061fd5cb42e071e2e21ada1c26eefe8c
593
py
Python
graviteeio_cli/commands/apim/apis/definition.py
Shaker5191/graviteeio-cli
318748bb8e631743ea58afaee24333249ca3d227
[ "Apache-2.0" ]
null
null
null
graviteeio_cli/commands/apim/apis/definition.py
Shaker5191/graviteeio-cli
318748bb8e631743ea58afaee24333249ca3d227
[ "Apache-2.0" ]
null
null
null
graviteeio_cli/commands/apim/apis/definition.py
Shaker5191/graviteeio-cli
318748bb8e631743ea58afaee24333249ca3d227
[ "Apache-2.0" ]
null
null
null
import click from .definition_group.apply import apply from .definition_group.diff import diff from .definition_group.generate import generate from .definition_group.create import create # from .definition_group.lint import lint @click.group(short_help="Manage API definition configuration") @click.pass_context def definition(ctx): """This group allow handling API definition commands from templating and value files""" pass definition.add_command(apply) definition.add_command(diff) definition.add_command(create) definition.add_command(generate) # definition.add_command(lint)
26.954545
91
0.819562
0
0
0
0
204
0.344013
0
0
195
0.328836
497231bff7e8e9d345553a23f55adb1bd3c5a759
1,761
py
Python
graphx.py
clever-username/baseball-card-inventory
9940ba746072892961b7ade586e63f7deb26d2e6
[ "MIT" ]
1
2021-05-18T21:32:43.000Z
2021-05-18T21:32:43.000Z
graphx.py
clever-username/baseball-card-inventory
9940ba746072892961b7ade586e63f7deb26d2e6
[ "MIT" ]
null
null
null
graphx.py
clever-username/baseball-card-inventory
9940ba746072892961b7ade586e63f7deb26d2e6
[ "MIT" ]
2
2015-05-18T14:52:01.000Z
2015-05-19T18:21:51.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- """Simple color picker program.""" BANNER = """ .::::::::::::::::::::::::::::::::::::::::::::::::. .. .... .. .. ...... ... .. |S .F.Cards.. F.G ia nt sS.F.Gi||BASE BAL LB AS EBALLBASEBA||S .F. Gi an tsS.F.Giants S. F. Gi ||BASEBALLBA SE BA LL BASEBA||N.Y.Yankees.F .Gia nt sS .F.Gi||BASEBALLBASEBALLBASEB A| |S .F.MetsS.F.GiantsS.F.Gi||BASE BA LL BA SEBALLBASEBA||S.T.L.Cards.Reds S. F. Gi||B ASEBALLBASEBALLBASEBA||S.F.GiantsS.F .G ia nt sS.F.Gi||BASEBALLBASEBALLBASEBA||S.F .G ia ntsT.B.Rayss.F.Gi||BASEBALL BA S EBALLBASEBA|'`''''''''''' S ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ____ ____ ____ _ ____ ____ ____ | __ )| __ ) / ___| / \ | _ \| _ \/ ___| | _ \| _ \ _____| | / _ \ | |_) | | | \___ \ | |_) | |_) |_____| |___ / ___ \| _ <| |_| |___) | |____/|____/ \____/_/ \_|_| \_|____/|____/ """
60.724138
76
0.244747
0
0
0
0
0
0
0
0
1,747
0.99205
4972f556700ff0374ba0d495d120ef3679c33357
1,176
py
Python
src/examples/colors.py
schneiderfelipe/kay
a7bf69e3bbd1b845286667b20eb1fba88faf9ea4
[ "MIT" ]
14
2021-11-18T14:56:48.000Z
2022-03-26T08:02:13.000Z
src/examples/colors.py
getcuia/cuia
685d258b3cb366d40100e6a563661b307aef5ae3
[ "MIT" ]
8
2021-11-25T13:47:12.000Z
2022-03-25T12:01:09.000Z
src/examples/colors.py
schneiderfelipe/kay
a7bf69e3bbd1b845286667b20eb1fba88faf9ea4
[ "MIT" ]
null
null
null
"""An example of using colors module.""" import asyncio from typing import Text import cuia class ColorfulExample(cuia.Store): """A store class that shows how to use colors.""" def __str__(self) -> Text: """Show me some colors.""" res = "Colors (backgrounds):\n\n" res += "\033[40mBlack!\n" res += "\033[41mRed!\n" res += "\033[42mGreen!\n" res += "\033[43mYellow!\n" res += "\033[44mBlue!\n" res += "\033[45mMagenta!\n" res += "\033[46mCyan!\n" res += "\033[47mWhite!\n" res += "\033[m\n" res += "Colors (foregrounds):\n\n" res += "\033[38;5;240mBlack!\n" # some medium shade of gray res += "\033[91mRed!\n" res += "\033[92mGreen!\n" res += "\033[93mYellow!\n" res += "\033[38;2;100;149;237mBlue!\n" # cornflower blue res += "\033[95mMagenta!\n" res += "\033[96mCyan!\n" res += "\033[97mWhite!\n" return res async def main() -> None: """Run the application.""" program = cuia.Program(ColorfulExample()) await program.start() if __name__ == "__main__": asyncio.run(main())
26.727273
68
0.536565
895
0.761054
0
0
0
0
128
0.108844
565
0.480442
49733958b3756fb3220a69c0ceb6f8c4a2dd5ef8
2,571
py
Python
app/voxity/channel.py
voxity/vox-ui-api
9da442a2ae8e5fec92485cf7dc4adf1a560aa8f5
[ "MIT" ]
null
null
null
app/voxity/channel.py
voxity/vox-ui-api
9da442a2ae8e5fec92485cf7dc4adf1a560aa8f5
[ "MIT" ]
null
null
null
app/voxity/channel.py
voxity/vox-ui-api
9da442a2ae8e5fec92485cf7dc4adf1a560aa8f5
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, unicode_literals from flask import current_app from . import connectors, check_respons, pager_dict from .objects.channel import Channel def get_base_url(): return current_app.config['BASE_URL'] + '/channels/' def create(exten): con = connectors() if con is not None: return con.post( get_base_url(), data={'exten': exten} ).json() return None def get(ret_object=False, **kwargs): """ :retyp: list :return: device list """ con = connectors() if con: resp = con.get(get_base_url(), params=kwargs) if check_respons(resp): ret = resp.json().get('result', []) ret = Channel.litst_obj_from_list(ret, **kwargs) if not ret_object: r = [] for c in ret: r.append(c.to_dict()) return r else: return ret return None def get_local_filter(ret_object=False, **kwargs): ret = list() if not kwargs: return get(ret_object=ret_object) else: channels = get() for c in channels: conditions = list() for k in kwargs.keys(): if (kwargs[k].count('*') == 2 and kwargs[k][0] == '*' and kwargs[k][-1] == '*' and len(kwargs[k]) > 2): conditions.append(str(c[k]).lower() in str(kwargs[k]).lower()) else: conditions.append(str(c[k]).lower() == str(kwargs[k]).lower()) if any(conditions) and ret_object: c = Channel(**c) ret.append(c) elif any(conditions) and not ret_object: ret.append(c) return ret def get_id(d_id, ret_object=False): """ :param str d_ind: device id :retype: dict|Channel :return: one device """ con = connectors() if con: resp = con.get(get_base_url() + d_id) if check_respons(resp): ret = resp.json().get('data', []) if not ret_object: return ret else: return Channel(**ret) return None def get_log(**kwargs): con = connectors() if con is not None: resp = connectors().get( current_app.config['BASE_URL'] + '/calls/logs', params=kwargs ) data = {} data['list'] = resp.json()['result'] data['pager'] = pager_dict(resp.headers) return data return None
25.205882
78
0.525088
0
0
0
0
0
0
0
0
265
0.103073
49736e792f64fdf62a5e05e4cdd1a7fca2758ba4
1,637
py
Python
chapter 2 - linked list/2.7.py
anuraagdjain/cracking_the_coding_interview
09083b4c464f41d5752c7ca3d27ab7c992793619
[ "MIT" ]
null
null
null
chapter 2 - linked list/2.7.py
anuraagdjain/cracking_the_coding_interview
09083b4c464f41d5752c7ca3d27ab7c992793619
[ "MIT" ]
null
null
null
chapter 2 - linked list/2.7.py
anuraagdjain/cracking_the_coding_interview
09083b4c464f41d5752c7ca3d27ab7c992793619
[ "MIT" ]
null
null
null
from linkedlist import LinkedList from node import Node class IRes: def __init__(self, result, node): self.result = result self.node = node def print_nodes(n): while(n != None): print(n.data) n = n.next def tail_and_size(n): ctr = 0 while n.next: ctr += 1 n = n.next return ctr, n def remove_start(n, limit): for i in range(limit): n = n.next return n def intersection(a, b): a_res, b_res = tail_and_size(a), tail_and_size(b) # if tail are different, no need to compare further if a_res[1] != b_res[1]: return IRes(False, None) list_diff = abs(a_res[0]-b_res[0]) # remove start nodes from longer list to ensure both are of same size if a_res[0] > b_res[0]: a = remove_start(a, list_diff) else: b = remove_start(b, list_diff) while a != None and b != None: if a == b: return IRes(True, a) a = a.next b = b.next return IRes(False, None) if __name__ == "__main__": a = Node(1) b = Node(2) c = Node(7) d = Node(6) e = Node(4) f = Node(9) g = Node(5) h = Node(1) i = Node(3) x = Node(1) y = Node(2) z = Node(7) z.next = y y.next = x i.next = h h.next = g g.next = f f.next = c # with intersection # f.next = z # without intersection e.next = d d.next = c c.next = b b.next = a result = intersection(i, e) if result.result: print("Intersection found at node instance: " + str(result.node)) else: print("No intersection")
18.602273
73
0.542456
103
0.06292
0
0
0
0
0
0
240
0.14661
4973e2d2ceab6b66fabf235caf79153e33be991a
2,307
py
Python
app_core/api/comments.py
Great-Li-Xin/LiCMS
9d7f78647766b49a325123f4b5ad59d6a1808eb7
[ "MIT" ]
9
2020-02-18T01:50:17.000Z
2020-05-26T09:25:41.000Z
app_core/api/comments.py
realJustinLee/LiCMS
9d7f78647766b49a325123f4b5ad59d6a1808eb7
[ "MIT" ]
1
2021-04-19T15:26:20.000Z
2021-04-19T15:26:20.000Z
app_core/api/comments.py
Great-Li-Xin/LiCMS
9d7f78647766b49a325123f4b5ad59d6a1808eb7
[ "MIT" ]
5
2020-02-18T01:50:19.000Z
2020-05-26T09:25:45.000Z
from flask import jsonify, request, g, url_for, current_app from app_core import db from app_core.api import api from app_core.api.decorators import permission_required from app_core.models import Post, Permission, Comment @api.route('/comments/') def get_comments(): page = request.args.get('page', 1, type=int) pagination = Comment.query.order_by(Comment.timestamp.desc()).paginate( page, per_page=current_app.config['LICMS_COMMENTS_PER_PAGE'], error_out=False) comments = pagination.items _prev = None if pagination.has_prev: _prev = url_for('api.get_comments', page=page - 1) _next = None if pagination.has_next: _next = url_for('api.get_comments', page=page + 1) return jsonify({ 'comments': [comment.to_json() for comment in comments], 'prev': _prev, 'next': _next, 'count': pagination.total }) @api.route('/comments/<int:comment_id>') def get_comment(comment_id): comment = Comment.query.get_or_404(comment_id) return jsonify(comment.to_json()) @api.route('/posts/<int:post_id>/comments/') def get_post_comments(post_id): post = Post.query.get_or_404(post_id) page = request.args.get('page', 1, type=int) pagination = post.comments.order_by(Comment.timestamp.asc()).paginate( page, per_page=current_app.config['LICMS_COMMENTS_PER_PAGE'], error_out=False) comments = pagination.items _prev = None if pagination.has_prev: _prev = url_for('api.get_post_comments', post_id=post_id, page=page - 1) _next = None if pagination.has_next: _next = url_for('api.get_post_comments', post_id=post_id, page=page + 1) return jsonify({ 'comments': [comment.to_json() for comment in comments], 'prev': _prev, 'next': _next, 'count': pagination.total }) @api.route('/posts/<int:post_id>/comments/', methods=['POST']) @permission_required(Permission.COMMENT) def new_post_comment(post_id): post = Post.query.get_or_404(post_id) comment = Comment.from_json(request.json) comment.author = g.current_user comment.post = post db.session.add(comment) db.session.commit() return jsonify(comment.to_json()), 201, {'Location': url_for('api.get_comment', comment_id=comment.id)}
33.926471
107
0.686173
0
0
0
0
2,071
0.897703
0
0
339
0.146944
4974d4d303e4a516e97419ba5b4f79eb5a463128
2,557
py
Python
ipyhop/state.py
YashBansod/IPyHOP
f3b75b420e470c693606a67cc70bdcb24eccda62
[ "BSD-3-Clause" ]
null
null
null
ipyhop/state.py
YashBansod/IPyHOP
f3b75b420e470c693606a67cc70bdcb24eccda62
[ "BSD-3-Clause" ]
null
null
null
ipyhop/state.py
YashBansod/IPyHOP
f3b75b420e470c693606a67cc70bdcb24eccda62
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python """ File Description: File used for definition of State Class. """ # ****************************************** Libraries to be imported ****************************************** # from copy import deepcopy # ****************************************** Class Declaration Start ****************************************** # class State(object): """ A state is just a collection of variable bindings. * state = State('foo') tells IPyHOP to create an empty state object named 'foo'. To put variables and values into it, you should do assignments such as foo.var1 = val1 """ def __init__(self, name: str): self.__name__ = name # ****************************** Class Method Declaration ****************************************** # def __str__(self): if self: var_str = "\r{state_name}.{var_name} = {var_value}\n" state_str = "" for name, val in self.__dict__.items(): if name != "__name__": _str = var_str.format(state_name=self.__name__, var_name=name, var_value=val) _str = '\n\t\t'.join(_str[i:i+120] for i in range(0, len(_str), 120)) state_str += _str return state_str[:-1] else: return "False" # ****************************** Class Method Declaration ****************************************** # def __repr__(self): return str(self.__class__) + ", " + self.__name__ # ****************************** Class Method Declaration ****************************************** # def update(self, state): self.__dict__.update(state.__dict__) return self # ****************************** Class Method Declaration ****************************************** # def copy(self): return deepcopy(self) # ****************************************** Class Declaration End ****************************************** # # ****************************************** Demo / Test Routine ****************************************** # if __name__ == '__main__': print("Test instantiation of State class ...") test_state = State('test_state') test_state.test_var_1 = {'key1': 'val1'} test_state.test_var_2 = {'key1': 0} test_state.test_var_3 = {'key2': {'key3': 5}, 'key3': {'key2': 5}} print(test_state) """ Author(s): Yash Bansod Repository: https://github.com/YashBansod/IPyHOP """
39.953125
120
0.431756
1,578
0.617129
0
0
0
0
0
0
1,536
0.600704
4974d677e63b39744893c4f6fa71c6ce00ac7913
2,240
py
Python
ckanext/scheming/logic.py
vrk-kpa/ckanext-scheming
b82e20e04acdc4a71163675f843ac9be74f29d41
[ "MIT" ]
null
null
null
ckanext/scheming/logic.py
vrk-kpa/ckanext-scheming
b82e20e04acdc4a71163675f843ac9be74f29d41
[ "MIT" ]
null
null
null
ckanext/scheming/logic.py
vrk-kpa/ckanext-scheming
b82e20e04acdc4a71163675f843ac9be74f29d41
[ "MIT" ]
1
2021-12-15T12:50:40.000Z
2021-12-15T12:50:40.000Z
from ckantoolkit import get_or_bust, side_effect_free, ObjectNotFound from ckanext.scheming.helpers import ( scheming_dataset_schemas, scheming_get_dataset_schema, scheming_group_schemas, scheming_get_group_schema, scheming_organization_schemas, scheming_get_organization_schema, ) @side_effect_free def scheming_dataset_schema_list(context, data_dict): ''' Return a list of dataset types customized with the scheming extension ''' return list(scheming_dataset_schemas()) @side_effect_free def scheming_dataset_schema_show(context, data_dict): ''' Return the scheming schema for a given dataset type :param type: the dataset type :param expanded: True to expand presets (default) ''' t = get_or_bust(data_dict, 'type') expanded = data_dict.get('expanded', True) s = scheming_get_dataset_schema(t, expanded) if s is None: raise ObjectNotFound() return s @side_effect_free def scheming_group_schema_list(context, data_dict): ''' Return a list of group types customized with the scheming extension ''' return list(scheming_group_schemas()) @side_effect_free def scheming_group_schema_show(context, data_dict): ''' Return the scheming schema for a given group type :param type: the group type :param expanded: True to expand presets (default) ''' t = get_or_bust(data_dict, 'type') expanded = data_dict.get('expanded', True) s = scheming_get_group_schema(t, expanded) if s is None: raise ObjectNotFound() return s @side_effect_free def scheming_organization_schema_list(context, data_dict): ''' Return a list of organization types customized with the scheming extension ''' return list(scheming_organization_schemas()) @side_effect_free def scheming_organization_schema_show(context, data_dict): ''' Return the scheming schema for a given organization type :param type: the organization type :param expanded: True to expand presets (default) ''' t = get_or_bust(data_dict, 'type') expanded = data_dict.get('expanded', True) s = scheming_get_organization_schema(t, expanded) if s is None: raise ObjectNotFound() return s
28
78
0.729018
0
0
0
0
1,923
0.858482
0
0
780
0.348214
49755e37e2029b777679857be7a2f1b70a206d0d
2,700
py
Python
omnithinker/api/nytimes.py
stuycs-softdev-fall-2013/proj2-pd6-04-omnithinker
53bf397ce2f67e7d5c5689486ab75475e99b0eba
[ "MIT", "BSD-3-Clause" ]
1
2022-01-18T02:03:15.000Z
2022-01-18T02:03:15.000Z
omnithinker/api/nytimes.py
stuycs-softdev-fall-2013/proj2-pd6-04-omnithinker
53bf397ce2f67e7d5c5689486ab75475e99b0eba
[ "MIT", "BSD-3-Clause" ]
null
null
null
omnithinker/api/nytimes.py
stuycs-softdev-fall-2013/proj2-pd6-04-omnithinker
53bf397ce2f67e7d5c5689486ab75475e99b0eba
[ "MIT", "BSD-3-Clause" ]
null
null
null
#!/usr/bin/python import json from urllib import urlopen # http://api.nytimes.com/svc/search/v2/articlesearch.json?fq=Obama&FACET_FIELD=day_of_week&BEGIN_DATE=19000101 # &API-KEY=5772CD9A42F195C96DA0E930A7182688:14:68439177 # The original link is above. What happens is because we don't specify an end date, the panda article, which was # coincidentally published today, becomes the first article that we see and gives us keywords like zoo. # If we add an end date before then, then we can filter it out. def ReturnRelatedTopics(Topic): NYT_API_URL = 'http://api.nytimes.com/svc/search/v2/articlesearch' API_KEY = "5772CD9A42F195C96DA0E930A7182688:14:68439177" FORMAT = "json" FQ = str(Topic) FACET_FIELD = "day_of_week" BEGIN_DATE = str(19000101) END_DATE = str(20131208) url = ("%s.%s?fq=%s&FACET_FIELD=%s&BEGIN_DATE=%s&END_DATE=%s&API-KEY=%s") % (NYT_API_URL, FORMAT, FQ, FACET_FIELD, BEGIN_DATE, END_DATE, API_KEY) response = urlopen(url) Json_Data = json.loads(response.read()) RELTOPICS = list() for y in Json_Data["response"]["docs"]: for x in y: if x == "keywords": for a in y[x]: RELTOPICS.append(a["value"]) RELTOPICS.pop(0) RELTOPICS.pop(0) RELTOPICS.pop(0) return RELTOPICS class Nytimes(): def __init__(self, Topic): NYT_API_URL = 'http://api.nytimes.com/svc/search/v2/articlesearch' API_KEY = "5772CD9A42F195C96DA0E930A7182688:14:68439177" FORMAT = "json" FQ = str(Topic) FACET_FIELD = "day_of_week" BEGIN_DATE = str(19000101) END_DATE = str(20131208) url = ("%s.%s?fq=%s&FACET_FIELD=%s&BEGIN_DATE=%s&END_DATE=%s&API-KEY=%s") % (NYT_API_URL, FORMAT, FQ, FACET_FIELD, BEGIN_DATE, END_DATE, API_KEY) response = urlopen(url) self.Json_Data = json.loads(response.read()) URL = list() TITLE = list() SNIPPET = list() Counter = 0 for x in self.Json_Data["response"]["docs"]: #print x URL.append(x["web_url"]) TITLE.append(x["headline"]["main"]) SNIPPET.append(x["snippet"]) #print(URL) #print(TITLE) #print(SNIPPET) self.Data = zip(URL, TITLE, SNIPPET) self.counter = 0 #print(Data) def getArticle(self): try: self.counter += 1 return self.Data[self.counter - 1] except: return list() #End of class if __name__ == '__main__': #FindArticles("Obama") print ReturnRelatedTopics("airplane")
35.526316
153
0.605185
1,309
0.484815
0
0
0
0
0
0
1,021
0.378148
4975838c1788d4788a4a9397bb1062a6a910a29e
694
py
Python
tests/test_pydantic_integration.py
bsnacks000/yearmonth
c6a6084931e6cc4696de5f8a7f8e48ceca83b944
[ "MIT" ]
null
null
null
tests/test_pydantic_integration.py
bsnacks000/yearmonth
c6a6084931e6cc4696de5f8a7f8e48ceca83b944
[ "MIT" ]
null
null
null
tests/test_pydantic_integration.py
bsnacks000/yearmonth
c6a6084931e6cc4696de5f8a7f8e48ceca83b944
[ "MIT" ]
null
null
null
from typing import List from yearmonth.yearmonth import YearMonth import pydantic class MyModel(pydantic.BaseModel): ym: YearMonth def test_pydantic_validators(): MyModel(ym=(2021, 1)) MyModel(ym='2021-01') MyModel(ym=('2021', '01')) def test_pydantic_schema(): schema = MyModel.schema() check_examples = ['2021-01', (2021, 1)] check_string = 'ISO 8601 compliant reduced precision calendar date' assert check_examples == schema['properties']['ym']['examples'] assert check_string == schema['properties']['ym']['description'] def test_pydantic_json(): m = MyModel(ym='2021-01') assert m.json() == '{"ym": {"year": 2021, "month": 1}}'
22.387097
71
0.665706
52
0.074928
0
0
0
0
0
0
180
0.259366
4975be83811ebc74df1baade17e5a1895d1cf649
353
py
Python
C_D_Playlist.py
fairoz-ahmed/Casper_Player
f71a26002907e474a9274771565ce781beddcca4
[ "MIT" ]
null
null
null
C_D_Playlist.py
fairoz-ahmed/Casper_Player
f71a26002907e474a9274771565ce781beddcca4
[ "MIT" ]
null
null
null
C_D_Playlist.py
fairoz-ahmed/Casper_Player
f71a26002907e474a9274771565ce781beddcca4
[ "MIT" ]
null
null
null
import tkinter.messagebox from tkinter import * from tkinter import ttk from tkinter import filedialog import threading from pygame import mixer from mutagen.mp3 import MP3 import os import easygui import time import playlist_window as pw import Main as main #from PIL import ImageTk,Image def redirect(path): main.play_music(path)
20.764706
31
0.78187
0
0
0
0
0
0
0
0
31
0.087819
49777977c495be3e64d10459c0324e75b00b5f3b
569
py
Python
docker-image/render-template.py
osism/generics
2dd914f2338c2d60d1595d7cdc4db0c107a9fb47
[ "Apache-2.0" ]
null
null
null
docker-image/render-template.py
osism/generics
2dd914f2338c2d60d1595d7cdc4db0c107a9fb47
[ "Apache-2.0" ]
3
2020-12-10T09:57:02.000Z
2020-12-10T09:57:17.000Z
docker-image/render-template.py
osism/travis
2dd914f2338c2d60d1595d7cdc4db0c107a9fb47
[ "Apache-2.0" ]
null
null
null
import os import sys import jinja2 import yaml with open(".information.yml") as fp: information = yaml.safe_load(fp) loader = jinja2.FileSystemLoader(searchpath="") environment = jinja2.Environment(loader=loader, keep_trailing_newline=True) template = environment.get_template(sys.argv[1]) result = template.render({ "docker_image_name": information.get("docker_image_name", "NONE"), "readme_note": information.get("readme_note", None), "versions": information.get("versions", ["latest"]) }) with open(sys.argv[1], "w+") as fp: fp.write(result)
27.095238
75
0.72935
0
0
0
0
0
0
0
0
122
0.214411
49788254641401f0ac3bea81c52abecf9425c9b7
58
py
Python
test/__init__.py
stungkit/tfidf_matcher
24182504d21f1eb978839b700f1c402c6288df2f
[ "MIT" ]
13
2020-02-24T18:29:15.000Z
2021-12-28T09:41:35.000Z
test/__init__.py
stungkit/tfidf_matcher
24182504d21f1eb978839b700f1c402c6288df2f
[ "MIT" ]
null
null
null
test/__init__.py
stungkit/tfidf_matcher
24182504d21f1eb978839b700f1c402c6288df2f
[ "MIT" ]
3
2020-07-21T04:32:45.000Z
2021-10-21T11:00:56.000Z
# AUTHOR: Louis Tsiattalou # DESCRIPTION: Init for Tests.
19.333333
30
0.758621
0
0
0
0
0
0
0
0
56
0.965517
4978db654876ffc9e3f0801f73bab29baba94038
29,541
py
Python
isitek.py
will-bainbridge/ISITEK
53e90e0511bbd7cd08614b943c1286c56adbee5e
[ "MIT" ]
3
2018-06-26T15:04:46.000Z
2019-09-14T09:23:44.000Z
isitek.py
will-bainbridge/ISITEK
53e90e0511bbd7cd08614b943c1286c56adbee5e
[ "MIT" ]
null
null
null
isitek.py
will-bainbridge/ISITEK
53e90e0511bbd7cd08614b943c1286c56adbee5e
[ "MIT" ]
3
2016-11-28T12:19:37.000Z
2020-02-04T00:18:56.000Z
#!/usr/bin/python ################################################################################ import numpy import os import cPickle as pickle import scipy.misc import scipy.sparse import scipy.sparse.linalg import scipy.special import sys import time class Struct: def __init__(self, **keywords): self.__dict__.update(keywords) class Timer(object): def __init__(self, name=None, multiline=False): self.name = name self.multiline = multiline def __enter__(self): self.start = time.time() if self.name: print '%s ...' % self.name , if self.multiline: print sys.stdout.flush() def __exit__(self, type, value, traceback): if self.multiline: print ' ...' , print 'done in %.3f s' % (time.time() - self.start) ################################################################################ def nodegrid(a,b): return [ x.T for x in numpy.meshgrid(a,b) ] def dot_sequence(*args): if len(args) == 1: return args[0] else: return numpy.dot( args[0] , dot_sequence(*args[1:]) ) def string_multiple_replace(string,dict): for s,r in dict.iteritems(): string = string.replace(s,r) return string ################################################################################ def read_data_file(data_filename): file = open(data_filename,'rb') data = pickle.load(file) file.close() node = data['node'] face = data['face'] element = data['element'] boundary = data['boundary'] u = data['u'] order = data['order'] return node,face,element,boundary,u,order #------------------------------------------------------------------------------# def read_input_file(input_filename): geometry_filename = [] order = [] boundary = [] initial = [] term = [] wind = [] iterations = [] mesh_size = [] constant = [] file = open(input_filename,'r') for line in file.readlines(): lineparts = line.split() if len(lineparts) >= 2 and lineparts[0] == 'geometry_filename': geometry_filename = lineparts[1] if len(lineparts) >= 2 and lineparts[0] == 'order': order = numpy.array([ int(x) for x in lineparts[1:] ]) if len(lineparts) >= 4 and lineparts[0] == 'boundary': boundary.append(Struct( face = sum([ list(z) if len(z) == 1 else range(*z) for z in [ tuple( int(y) for y in x.split(':') ) for x in lineparts[1].split(',') ] ],[]) , variable = int(lineparts[2]) , condition = tuple(sum([ x == y for x in lineparts[3] ]) for y in 'nt') , value = float(lineparts[4]) if len(lineparts) >= 5 else 0.0 )) if len(lineparts) >= 2 and lineparts[0] == 'initial': initial = lineparts[1:] if len(lineparts) >= 2 and lineparts[0] == 'constant': constant = lineparts[1] if len(lineparts) >= 6 and lineparts[0] == 'term': term.append(Struct( equation = int(lineparts[1]) , variable = [ int(x) for x in lineparts[2].split(',') ] , direction = lineparts[3] , differential = [ tuple( sum([ x == y for x in z ]) for y in 'xy' ) for z in lineparts[4].split(',') ] , power = [ int(x) for x in lineparts[5].split(',') ] , constant = lineparts[6] , method = lineparts[7] )) if len(lineparts) >= 2 and lineparts[0] == 'wind': wind = eval( 'lambda n,u,v:' + lineparts[1] , {'numpy':numpy} , {} ) if len(lineparts) >= 2 and lineparts[0] == 'iterations': iterations = int(lineparts[1]) if len(lineparts) >= 2 and lineparts[0] == 'mesh_size': mesh_size = int(lineparts[1]) file.close() if len(constant): constant = dict([ (y[0],float(y[1])) for y in [ x.split('=') for x in constant.split(';') ] ]) else: constant = {} if len(term): for i in range(0,len(term)): term[i].constant = eval(term[i].constant,{},constant) if len(initial): replace = {'pi':'numpy.pi','cos(':'numpy.cos(','sin(':'numpy.sin('} for i in range(0,len(initial)): initial[i] = eval( 'lambda x,y: numpy.ones(x.shape)*(' + string_multiple_replace(initial[i],replace) + ')' , {'numpy':numpy} , constant ) return geometry_filename,order,boundary,initial,term,wind,iterations,mesh_size #------------------------------------------------------------------------------# def element_sequential_indices(e,element,face): n = len(element[e].face) polyline = numpy.array([ list(face[f].node) for f in element[e].face ]) polynode = numpy.unique(polyline) ones = numpy.ones((n,1)) connect = 1*(ones*polyline[:,0] == (ones*polynode).T) + 2*(ones*polyline[:,1] == (ones*polynode).T) side = [0]*n vertex = [0]*n for i in range(1,n): temp = connect[connect[:,side[i-1]] == (int(not vertex[i-1])+1),:].flatten() * (numpy.arange(0,n) != side[i-1]) side[i] = temp.nonzero()[0][0] vertex[i] = temp[side[i]]-1 return [side,vertex] #------------------------------------------------------------------------------# def read_geometry(geometry_filename): # read the geometry file file = open(geometry_filename,'r') data = file.readlines() file.close() # generate the mesh structures i = 0 while i < len(data): if data[i].strip().split()[0] == 'NODES': nn = int(data[i].strip().split()[1]) node = [ Struct(x=(0.0,0.0)) for _ in range(0,nn) ] for n in range(0,nn): node[n].x = tuple( [ float(x) for x in data[i+1+n].strip().split() ] ) i += nn elif data[i].strip().split()[0] == 'FACES': nf = int(data[i].strip().split()[1]) face = [ Struct(node=(0,0),border=[],size=1.0,normal=(0.0,0.0),centre=(0.0,0.0),boundary=[],Q=[]) for temp in range(0,nf) ] for f in range(0,nf): face[f].node = tuple( [ int(x) for x in data[i+1+f].strip().split() ] ) i += nf elif data[i].strip().split()[0] == 'CELLS' or data[i].strip().split()[0] == 'ELEMENTS': ne = int(data[i].strip().split()[1]) element = [ Struct(face=[],orientation=[],size=1.0,area=0.0,centre=(0.0,0.0),unknown=[],V=[],P=[],Q=[],W=[],X=[]) for temp in range(0,ne) ] for e in range(0,ne): element[e].face = [ int(x) for x in data[i+1+e].strip().split() ] i += ne else: i += 1 # generate borders for e in range(0,ne): for f in element[e].face: face[f].border.append(e) # additional element geometry for e in range(0,ne): s,t = element_sequential_indices(e,element,face) index = [ face[element[e].face[i]].node[j] for i,j in zip(s,t) ] cross = [ node[index[i-1]].x[0]*node[index[i]].x[1]-node[index[i]].x[0]*node[index[i-1]].x[1] for i in range(0,len(element[e].face)) ] element[e].area = 0.5*sum(cross) element[e].centre = tuple([ sum([ (node[index[i-1]].x[j]+node[index[i]].x[j])*cross[i] for i in range(0,len(element[e].face)) ])/(6*element[e].area) for j in range(0,2) ]) element[e].orientation = [ 2*t[i]-1 for i in s ] if element[e].area < 0.0: element[e].area = -element[e].area element[e].orientation = [ -x for x in element[e].orientation ] element[e].size = numpy.sqrt(element[e].area) # additional face geometry for f in range(0,nf): face[f].normal = ( -node[face[f].node[1]].x[1]+node[face[f].node[0]].x[1] , +node[face[f].node[1]].x[0]-node[face[f].node[0]].x[0] ) face[f].size = 0.5*numpy.sqrt(numpy.dot(face[f].normal,face[f].normal)) face[f].centre = tuple([ 0.5*(node[face[f].node[1]].x[i]+node[face[f].node[0]].x[i]) for i in range(0,2) ]) # return return node,face,element #------------------------------------------------------------------------------# def assign_boundaries(): nv = len(order) for f in range(0,len(face)): face[f].boundary = [ [] for v in range(0,nv) ] for b in range(0,len(boundary)): for f in boundary[b].face: face[f].boundary[boundary[b].variable].append(b) #------------------------------------------------------------------------------# def generate_unknowns(): nv = len(order) np = order*(order+1)/2 nu = 0 # number by element then variable # > gives a more diagonally dominant system for e in range(0,len(element)): element[e].unknown = [ [] for v in range(0,nv) ] for v in range(0,nv): element[e].unknown[v] = range(nu,nu+np[v]) nu += np[v] ## number by variable then element ## > gives a system with visible blocks corresponding to equations #for e in range(0,len(element)): element[e].unknown = [ [] for v in range(0,nv) ] #for v in range(0,nv): # for e in range(0,len(element)): # element[e].unknown[v] = range(nu,nu+np[v]) # nu += np[v] return numpy.zeros(nu) #------------------------------------------------------------------------------# def generate_constants(order): max_order = max(order) ng = 2*max_order-1 gauss_locations,gauss_weights = [ x.real for x in scipy.special.orthogonal.p_roots(ng) ] #nh = 7 #hammer_locations = numpy.array([ # [0.101286507323456,0.101286507323456],[0.797426958353087,0.101286507323456],[0.101286507323456,0.797426958353087], # [0.470142064105115,0.470142064105115],[0.059715871789770,0.470142064105115],[0.470142064105115,0.059715871789770], # [0.333333333333333,0.333333333333333]]) #hammer_weights = 0.5 * numpy.array([ # 0.125939180544827,0.125939180544827,0.125939180544827,0.132394152788506,0.132394152788506,0.132394152788506, # 0.225000000000000]) #nh = 9 #hammer_locations = numpy.array([ # [0.437525248383384,0.437525248383384],[0.124949503233232,0.437525248383384],[0.437525248383384,0.124949503233232], # [0.165409927389841,0.037477420750088],[0.037477420750088,0.165409927389841],[0.797112651860071,0.165409927389841], # [0.165409927389841,0.797112651860071],[0.037477420750088,0.797112651860071],[0.797112651860071,0.037477420750088]]) #hammer_weights = 0.5 * numpy.array([ # 0.205950504760887,0.205950504760887,0.205950504760887,0.063691414286223,0.063691414286223,0.063691414286223, # 0.063691414286223,0.063691414286223,0.063691414286223]) nh = 12 hammer_locations = numpy.array([ [0.063089014491502,0.063089014491502],[0.873821971016996,0.063089014491502],[0.063089014491502,0.873821971016996], [0.249286745170910,0.249286745170910],[0.501426509658179,0.249286745170910],[0.249286745170910,0.501426509658179], [0.310352451033785,0.053145049844816],[0.053145049844816,0.310352451033785],[0.636502499121399,0.310352451033785], [0.310352451033785,0.636502499121399],[0.053145049844816,0.636502499121399],[0.636502499121399,0.053145049844816]]) hammer_weights = 0.5 * numpy.array([ 0.050844906370207,0.050844906370207,0.050844906370207,0.116786275726379,0.116786275726379,0.116786275726379, 0.082851075618374,0.082851075618374,0.082851075618374,0.082851075618374,0.082851075618374,0.082851075618374]) taylor_coefficients = numpy.array([]) taylor_powers = numpy.zeros((0,2),dtype=int) for i in range(0,2*max_order): taylor_coefficients = numpy.append(taylor_coefficients,scipy.misc.comb(i*numpy.ones(i+1),numpy.arange(0,i+1))/scipy.misc.factorial(i)) taylor_powers = numpy.append(taylor_powers,numpy.array([range(i,-1,-1),range(0,i+1)],dtype=int).T,axis=0) powers_taylor = numpy.zeros((2*max_order,2*max_order),dtype=int) for i in range(0,taylor_powers.shape[0]): powers_taylor[taylor_powers[i][0]][taylor_powers[i][1]] = i factorial = scipy.misc.factorial(numpy.arange(0,2*max_order)) return gauss_locations,gauss_weights,hammer_locations,hammer_weights,taylor_coefficients,taylor_powers,powers_taylor,factorial #------------------------------------------------------------------------------# def basis(x,y,element,n,differential): if taylor_powers[n,0] < differential[0] or taylor_powers[n,1] < differential[1]: return numpy.zeros(x.shape) p = taylor_powers[n] q = taylor_powers[n]-differential constant = taylor_coefficients[n] / numpy.power( element.size , sum(p) ) constant = constant * factorial[p[0]] * factorial[p[1]] / ( factorial[q[0]] * factorial[q[1]] ) return constant * numpy.power(x-element.centre[0],q[0]) * numpy.power(y-element.centre[1],q[1]) #------------------------------------------------------------------------------# def derivative_transform_matrix(A,order): n = order*(order+1)/2 D = numpy.zeros((n,n)) D[0,0] = 1.0 for i in range(0,order-1): old = numpy.nonzero(numpy.sum(taylor_powers,axis=1) == i)[0] temp = numpy.append( taylor_powers[old,:] + [1,0] , taylor_powers[old[taylor_powers[old,0] == 0],:] + [0,1] , axis=0 ) new = powers_taylor[temp[:,0],temp[:,1]] index = nodegrid(old,old) D[nodegrid(new,new)] = numpy.append( A[0,0] * numpy.append( D[index] , numpy.zeros((i+1,1)) , axis=1 ) + A[0,1] * numpy.append( numpy.zeros((i+1,1)) , D[index] , axis=1 ) , A[1,0] * numpy.append( D[old[-1],[old]] , [[0]] , axis=1 ) + A[1,1] * numpy.append( [[0]] , D[old[-1],[old]] , axis=1 ) , axis=0 ) return D #------------------------------------------------------------------------------# def calculate_element_matrices(): nf = len(face) ne = len(element) nv = len(order) max_order = max(order) np = numpy.array([ len(x) for x in element[0].unknown ]) max_np = max(np) ng = len(gauss_weights) nh = len(hammer_weights) # initialise if do.pre: for e in range(0,ne): element[e].V = numpy.zeros((max_np,max_np)) element[e].P = numpy.zeros((max_np,(len(element[e].face)-2)*nh,max_np)) element[e].Q = [ numpy.zeros((ng,max_np)) for i in range(0,len(element[e].face)) ] element[e].W = numpy.zeros((len(element[e].face)-2)*nh) element[e].X = numpy.zeros(((len(element[e].face)-2)*nh,2)) for f in range(0,nf): face[f].Q = [ [] for v in range(0,nv) ] # element vandermonde matrices if do.pre: for e in range(0,ne): for i in range(0,max_np): for j in range(0,max_np): element[e].V[i,j] = basis(numpy.array(element[e].centre[0]),numpy.array(element[e].centre[1]),element[e],i,taylor_powers[j]) # triangulation and element area quadrature for e in range(0,ne): # triangulate nt = len(element[e].face)-2 v = numpy.zeros((nt,3),dtype=int) v[:,0] = face[element[e].face[0]].node[0] j = 0 for i in range(0,len(element[e].face)): f = element[e].face[i] o = int(element[e].orientation[i] < 0) v[j][1:] = numpy.array(face[f].node)[[1-o,o]] j += not any(v[j][1:] == v[j][0]) if j >= nt: break # integration locations in and area of the triangles element[e].X = numpy.zeros(((len(element[e].face)-2)*nh,2)) area = numpy.zeros(nt) for i in range(0,nt): d = numpy.array([ [ node[v[i][j]].x[k] - node[v[i][0]].x[k] for k in range(0,2) ] for j in range(1,3) ]) element[e].X[i*nh:(i+1)*nh] = ( numpy.ones((nh,1))*node[v[i][0]].x + hammer_locations[:,0][numpy.newaxis].T*d[0] + hammer_locations[:,1][numpy.newaxis].T*d[1] ) area[i] = numpy.cross(d[0,:],d[1,:]) # integration weights element[e].W = (numpy.array([area]).T*hammer_weights).flatten() # element FEM numerics matrices if do.pre: for e in range(0,ne): # basis function values at the integration points for i in range(0,max_np): for j in range(0,max_np): element[e].P[i][:,j] = basis(element[e].X[:,0],element[e].X[:,1],element[e],j,taylor_powers[i]) # element DG-FEM numerics matrices if do.pre: for e in range(0,ne): for i in range(0,len(element[e].face)): f = element[e].face[i] # integration locations along the face temp = gauss_locations[numpy.newaxis].T x = 0.5*(1.0-temp)*node[face[f].node[0]].x + 0.5*(1.0+temp)*node[face[f].node[1]].x # basis function values at the integration points for j in range(0,max_np): element[e].Q[i][:,j] = basis(x[:,0],x[:,1],element[e],j,[0,0]) # face IDG-FEM numerics matrices for f in range(0,nf): # adjacent element and boundaries a = numpy.array(face[f].border) na = len(a) b = numpy.array(face[f].boundary,dtype=object) nb = [ len(i) for i in b ] if do.pre or (do.re and any(b)): # rotation to face coordinates R = numpy.array([[-face[f].normal[0],-face[f].normal[1]],[face[f].normal[1],-face[f].normal[0]]]) R /= numpy.sqrt(numpy.dot(face[f].normal,face[f].normal)) # face locations x = 0.5*(1.0-gauss_locations[numpy.newaxis].T)*node[face[f].node[0]].x + 0.5*(1.0+gauss_locations[numpy.newaxis].T)*node[face[f].node[1]].x y = face[f].centre + numpy.dot( x - face[f].centre , R.T ) w = gauss_weights # adjacent integration locations xa = [ element[a[i]].X for i in range(0,na) ] ya = [ face[f].centre + numpy.dot( xa[i] - face[f].centre , R.T ) for i in range(0,na) ] wa = numpy.append(element[a[0]].W,element[a[1]].W) if na == 2 else element[a[0]].W for v in range(0,nv): # face basis indices temp = nodegrid(range(0,2*order[v]),range(0,2*order[v])) # NOTE # not sufficient for boundary faces with 2 bordering elements face_taylor = powers_taylor[ numpy.logical_and( temp[0] + na*temp[1] < na*order[v] + nb[v] , temp[1] < order[v] ) ] # number of interpolation unknowns ni = len(face_taylor) # matrices P = numpy.zeros((na*nh,na*np[v])) for j in range(0,np[v]): for k in range(0,na): P[k*nh:(1+k)*nh,j+k*np[v]] = basis(xa[k][:,0],xa[k][:,1],element[a[k]],j,[0,0]) Q = numpy.zeros((na*nh,ni)) for j in range(0,ni): for k in range(0,na): Q[k*nh:(k+1)*nh,j] = basis(ya[k][:,0],ya[k][:,1],face[f],face_taylor[j],[0,0]) A = dot_sequence( P.T , numpy.diag(wa) , Q ) B = dot_sequence( P.T , numpy.diag(wa) , P ) # boundary parts if nb[v]: dA = numpy.zeros((nb[v]*order[v],ni)) for i in range(0,nb[v]): for j in range(0,ni): for k in range(0,order[v]): dA[k+i*order[v],j] = basis( numpy.array(face[f].centre[0]), numpy.array(face[f].centre[1]), face[f],face_taylor[j], [ sum(temp) for temp in zip([0,k],boundary[b[v][i]].condition) ]) dB = numpy.zeros((nb[v]*order[v],nb[v])) for i in range(0,nb[v]): dB[i*order[v],i] = 1.0 A = numpy.append( A , dA , axis=0 ) B = numpy.append( numpy.append( B , numpy.zeros((B.shape[0],nb[v])) , axis=1 ) , numpy.append( numpy.zeros((nb[v]*order[v],B.shape[1])) , dB , axis=1 ) , axis=0 ) # solve interpolation problem D = numpy.linalg.solve(A,B) # interpolated values F = numpy.zeros((ng,ni)) face[f].Q[v] = numpy.zeros((np[v],ng,D.shape[1])) for j in range(0,np[v]): for k in range(0,ni): F[:,k] = basis(y[:,0],y[:,1],face[f],face_taylor[k],taylor_powers[j]) face[f].Q[v][j] = numpy.dot( F , D ) # transform differentials to x and y T = derivative_transform_matrix(numpy.linalg.inv(R),order[v]) for j in range(0,ng): face[f].Q[v][:,j] = numpy.dot( T , face[f].Q[v][:,j] ) #------------------------------------------------------------------------------# def initialise_unknowns(): ne = len(element) np = [ len(x) for x in element[0].unknown ] nv = len(order) max_order = max(order) max_order_sq = max_order*max_order max_np = max(np) for e in range(0,ne): x = element[e].centre delta = numpy.linspace(-0.1*element[e].size/2,0.1*element[e].size/2,max_order) dx = [ temp.flatten() for temp in nodegrid(delta,delta) ] p = [ taylor_powers[0:max_np,i] for i in range(0,2) ] M = ((numpy.ones((max_np,1)) * dx[0]).T ** (numpy.ones((max_order_sq,1)) * p[0]) * (numpy.ones((max_np,1)) * dx[1]).T ** (numpy.ones((max_order_sq,1)) * p[1]) * (numpy.ones((max_order_sq,1)) * (scipy.misc.comb(p[0]+p[1],p[0])/scipy.misc.factorial(p[0]+p[1])))) inv_M = numpy.linalg.pinv(M) inv_V = numpy.linalg.inv(element[e].V) for v in range(0,nv): u[element[e].unknown[v]] = dot_sequence( inv_V , inv_M , initial[v](dx[0]+x[0],dx[1]+x[1]) )[0:np[v]] #------------------------------------------------------------------------------# def generate_system(): ne = len(element) ng = len(gauss_weights) nh = len(hammer_weights) np = [ len(x) for x in element[0].unknown ] nt = len(term) nv = len(order) max_np = max(np) sum_np = sum(np) sum_np_sq = sum_np*sum_np # local dense jacobian L = Struct(i=[],x=[]) # csr system jacobian J = Struct(p=[],i=[],x=[]) J.p = numpy.zeros(u.shape[0]+1,dtype=int) for e in range(0,ne): temp = sum_np for f in element[e].face: temp += sum_np*(len(face[f].border) == 2) J.p[numpy.array(sum(element[e].unknown,[]))+1] = temp J.p = numpy.cumsum(J.p) J.i = numpy.zeros(J.p[-1],dtype=int) J.x = numpy.zeros(J.p[-1]) # function vector F = numpy.zeros(u.shape) for e in range(0,ne): # number of faces nf = len(element[e].face) # adjacent elements adj = - numpy.ones(nf,dtype=int) for i in range(0,nf): temp = numpy.array(face[element[e].face[i]].border) temp = temp[temp != e] if len(temp): adj[i] = temp[0] n_adj = sum(adj >= 0) i_adj = numpy.arange(0,nf)[adj >= 0] # local matrices to add to the system L.i = numpy.zeros((sum_np,(1+n_adj)*sum_np),dtype=int) L.i[:,0:sum_np] = numpy.tile( sum(element[e].unknown,[]) , (sum_np,1) ) for i in range(0,n_adj): L.i[:,(i+1)*sum_np:(i+2)*sum_np] = numpy.tile( sum(element[adj[i_adj[i]]].unknown,[]) , (sum_np,1) ) L.x = numpy.zeros(L.i.shape) # indices into the local matrices index_e = [ numpy.arange(sum(np[:v]),sum(np[:v+1]))[numpy.newaxis] for v in range(0,nv) ] index_a = [ [] for i in range(0,nf) ] for i in range(0,n_adj): index_a[i_adj[i]] = [ numpy.array([ range(sum(np[:v]),sum(np[:v+1])) + range((i+1)*sum_np+sum(np[:v]),(i+1)*sum_np+sum(np[:v+1])) ]) for v in range(0,nv) ] # loop over terms for t in range(0,nt): # numbers of variables in the term product sequence ns = len(term[t].variable) # direction index direction = powers_taylor[int(term[t].direction == 'x'),int(term[t].direction == 'y')] # powers P = numpy.array(term[t].power)[numpy.newaxis].T # equation matrix A = - term[t].constant * dot_sequence( element[e].P[direction][:,0:np[term[t].equation]].T , numpy.diag(element[e].W) ) # calculate the coefficients and values B = [ [] for s in range(0,ns) ] X = numpy.zeros((ns,nh)) for s,v in zip(range(0,ns),term[t].variable): B[s] = element[e].P[powers_taylor[term[t].differential[s]]][:,0:np[v]] X[s,:] = numpy.dot( B[s] , u[element[e].unknown[v]] ) # add to the local jacobian Y = X ** P for s,v in zip(range(0,ns),term[t].variable): temp = numpy.copy(Y) temp[s,:] = P[s] * X[s,:] ** (P[s]-1) L.x[index_e[term[t].equation].T,index_e[v]] += dot_sequence( A , numpy.diag(numpy.prod(temp,axis=0)) , B[s] ) # add to the function vector F[element[e].unknown[term[t].equation]] += numpy.dot( A , numpy.prod(Y,axis=0) ) # continue if not a flux term if term[t].direction != 'x' and term[t].direction != 'y': continue # face components for i in range(0,nf): f = element[e].face[i] a = adj[i] b = numpy.array(face[f].boundary,dtype=object) # face normal normal = element[e].orientation[i] * numpy.array(face[f].normal) # corresponding face index if a >= 0: j = numpy.arange(0,len(element[a].face))[numpy.array(element[a].face) == f] # wind if a >= 0 and ('u' in term[t].method): ui = [ dot_sequence( gauss_weights , element[e].Q[i][:,0:np[v]] , u[element[e].unknown[v]] ) for v in range(0,nv) ] uo = [ dot_sequence( gauss_weights , element[a].Q[j][:,0:np[v]] , u[element[a].unknown[v]] ) for v in range(0,nv) ] w = wind( normal , ui , uo ) else: w = True # equation matrix A = normal[term[t].direction == 'y'] * term[t].constant * dot_sequence( element[e].Q[i][:,0:np[term[t].equation]].T , numpy.diag(0.5*gauss_weights) ) # calculate the coefficients and values B = [ [] for s in range(0,ns) ] X = numpy.zeros((ns,ng)) for s,v in zip(range(0,ns),term[t].variable): # where there is an adjacent element if a >= 0: # interpolated flux if term[t].method[s] == 'i' or len(b[v]): if face[f].border[0] == e: temp = numpy.array(range(0,2*np[v])) else: temp = numpy.array(range(np[v],2*np[v])+range(0,np[v])) B[s] = face[f].Q[v][powers_taylor[term[t].differential[s]]][:,temp] # averaged flux elif term[t].method[s] == 'a': B[s] = 0.5*numpy.append(element[e].Q[i][:,0:np[v]],element[a].Q[j][:,0:np[v]],axis=1) # upwind flux elif term[t].method[s] == 'u': B[s] = numpy.zeros((ng,2*np[v])) if w: B[s][:,0:np[v]] += element[e].Q[i][:,0:np[v]] else: B[s][:,np[v]:2*np[v]] += element[a].Q[j][:,0:np[v]] # values X[s,:] = numpy.dot( B[s] , numpy.append(u[element[e].unknown[v]],u[element[a].unknown[v]]) ) # interpolated flux where there is no adjacent element else: B[s] = face[f].Q[v][powers_taylor[term[t].differential[s]]][:,0:np[v]] X[s,:] = numpy.dot( B[s] , u[element[e].unknown[v]] ) # interpolated flux at boundaries if len(b[v]): for k in range(0,len(b[v])): X[s,:] += boundary[b[v][k]].value * face[f].Q[v][powers_taylor[term[t].differential[s]]][:,(1+(a>=0))*np[v]+k] # add to the local jacobian Y = X ** P for s,v in zip(range(0,ns),term[t].variable): temp = numpy.copy(Y) temp[s,:] = P[s] * X[s,:] ** (P[s]-1) L.x[index_e[term[t].equation].T,index_a[i][v] if a >= 0 else index_e[v]] += dot_sequence( A , numpy.diag(numpy.prod(temp,axis=0)) , B[s] ) # add to the function vector F[element[e].unknown[term[t].equation]] += numpy.dot( A , numpy.prod(Y,axis=0) ) # add dense local jacobian to csr global jacobian index = sum( nodegrid( J.p[sum(element[e].unknown,[])] , numpy.arange(0,L.i.shape[1]) ) ).flatten() J.i[index] = L.i.flatten() J.x[index] = L.x.flatten() # return the global system return [ scipy.sparse.csr_matrix((J.x,J.i,J.p)) , F ] #------------------------------------------------------------------------------# def write_display_file(display_filename,n): nv = len(order) np = numpy.array([ len(x) for x in element[0].unknown ]) Q = numpy.linalg.inv(numpy.array([[1,-1,-1,1],[1,1,-1,-1],[1,1,1,1],[1,-1,1,-1]])) file = open(display_filename,'w') for e in range(0,len(element)): s,t = element_sequential_indices(e,element,face) for i in range(0,len(element[e].face)): quad = numpy.array( [ element[e].centre , face[element[e].face[s[i-1]]].centre , node[face[element[e].face[s[i]]].node[t[i]]].x , face[element[e].face[s[i]]].centre ] ) a = numpy.dot(Q,quad) mesh = numpy.append( numpy.mgrid[0:n+1,0:n+1]*(2.0/n)-1.0 , numpy.zeros((nv,n+1,n+1)) , axis=0 ) mesh[0:2] = [ a[0,j] + a[1,j]*mesh[0] + a[2,j]*mesh[1] + a[3,j]*mesh[0]*mesh[1] for j in range(0,2) ] for j in range(0,max(np)): phi = basis(mesh[0],mesh[1],element[e],j,[0,0]) for v in numpy.arange(0,nv)[j < np]: mesh[2+v] += u[element[e].unknown[v][j]]*phi file.write( '\n\n'.join([ '\n'.join([ ' '.join(['%e']*(2+nv)) % tuple(mesh[:,i,j]) for j in range(0,n+1) ]) for i in range(0,n+1) ]) + '\n\n\n' ) file.close() #------------------------------------------------------------------------------# def write_data_file(data_filename): file = open(data_filename,'wb') pickle.dump({'node':node,'face':face,'element':element,'boundary':boundary,'order':order,'u':u},file,protocol=pickle.HIGHEST_PROTOCOL) file.close() ################################################################################ path = sys.argv[1] action = sys.argv[2].lower() directory = os.path.dirname(path) name = os.path.basename(path) input_filename = directory + os.sep + name + '.input' data_filename = directory + os.sep + name + '.data' display_filename = directory + os.sep + name + '.display' do = Struct(pre = 'p' in action , re = 'r' in action , init = 'i' in action , solve = 's' in action , display = 'd' in action ) #------------------------------------------------------------------------------# if not do.pre: with Timer('reading data from "%s"' % data_filename): node,face,element,boundary,u,order = read_data_file(data_filename) with Timer('reading input from "%s"' % input_filename): input_data = read_input_file(input_filename) if do.pre: geometry_filename = directory + os.sep + input_data[0] order = input_data[1] if do.pre or do.re: boundary = input_data[2] if do.init: initial = input_data[3] if do.solve: for i in range(0,len(boundary)): boundary[i].value = input_data[2][i].value term = input_data[4] wind = input_data[5] iterations = input_data[6] if do.display: mesh_size = input_data[7] with Timer('generating constants'): (gauss_locations,gauss_weights, hammer_locations,hammer_weights, taylor_coefficients,taylor_powers,powers_taylor, factorial) = generate_constants(order) if do.pre: with Timer('reading and processing geometry from "%s"' % geometry_filename): node,face,element = read_geometry(geometry_filename) with Timer('generating unknowns'): u = generate_unknowns() if do.pre or do.re: with Timer('assigning boundaries to faces'): assign_boundaries() with Timer('calculating element matrices'): calculate_element_matrices() if do.init: with Timer('initialising the unknowns'): initialise_unknowns() if do.solve: with Timer('iterating',True): index = [ numpy.zeros(u.shape,dtype=bool) for v in range(0,len(order)) ] for e in range(0,len(element)): for v in range(0,len(order)): index[v][element[e].unknown[v]] = True for i in range(0,iterations): J,f = generate_system() print ' ' + ' '.join([ '%.4e' % numpy.max(numpy.abs(f[i])) for i in index ]) u += scipy.sparse.linalg.spsolve(J,-f) if do.display: with Timer('saving display to "%s"' % display_filename): write_display_file(display_filename,mesh_size) if do.pre or do.re or do.init or do.solve: with Timer('saving data to "%s"' % data_filename): write_data_file(data_filename) ################################################################################
34.35
173
0.597982
484
0.016384
0
0
0
0
0
0
5,473
0.185268
497a5c9b65658e4fea7858123fdca1c39b46407f
2,343
py
Python
holobot/framework/kernel.py
rexor12/holobot
89b7b416403d13ccfeee117ef942426b08d3651d
[ "MIT" ]
1
2021-05-24T00:17:46.000Z
2021-05-24T00:17:46.000Z
holobot/framework/kernel.py
rexor12/holobot
89b7b416403d13ccfeee117ef942426b08d3651d
[ "MIT" ]
41
2021-03-24T22:50:09.000Z
2021-12-17T12:15:13.000Z
holobot/framework/kernel.py
rexor12/holobot
89b7b416403d13ccfeee117ef942426b08d3651d
[ "MIT" ]
null
null
null
from holobot.framework.lifecycle import LifecycleManagerInterface from holobot.sdk import KernelInterface from holobot.sdk.database import DatabaseManagerInterface from holobot.sdk.integration import IntegrationInterface from holobot.sdk.ioc.decorators import injectable from holobot.sdk.logging import LogInterface from holobot.sdk.system import EnvironmentInterface from holobot.sdk.utils import when_all from typing import Tuple import asyncio @injectable(KernelInterface) class Kernel(KernelInterface): def __init__(self, log: LogInterface, database_manager: DatabaseManagerInterface, environment: EnvironmentInterface, integrations: Tuple[IntegrationInterface, ...], lifecycle_manager: LifecycleManagerInterface) -> None: super().__init__() self.__event_loop = asyncio.get_event_loop() self.__log = log.with_name("Framework", "Kernel") self.__database_manager = database_manager self.__environment = environment self.__integrations = integrations self.__lifecycle_manager = lifecycle_manager def run(self): self.__log.info(f"Starting application... {{ Version = {self.__environment.version} }}") self.__event_loop.run_until_complete(self.__database_manager.upgrade_all()) self.__event_loop.run_until_complete(self.__lifecycle_manager.start_all()) self.__log.debug(f"Starting integrations... {{ Count = {len(self.__integrations)} }}") integration_tasks = tuple([self.__event_loop.create_task(integration.start()) for integration in self.__integrations]) self.__log.info(f"Started integrations. {{ Count = {len(integration_tasks)} }}") try: self.__log.info("Application started.") self.__event_loop.run_forever() except KeyboardInterrupt: self.__log.info("Shutting down due to keyboard interrupt...") for integration in self.__integrations: self.__event_loop.run_until_complete(integration.stop()) finally: self.__event_loop.run_until_complete(when_all(integration_tasks)) self.__event_loop.run_until_complete(self.__lifecycle_manager.stop_all()) self.__event_loop.stop() self.__event_loop.close() self.__log.info("Successful shutdown.")
45.057692
126
0.722151
1,864
0.795561
0
0
1,893
0.807939
0
0
309
0.131882
497a5f4c2e39ef62c200675216c42fbc21c52436
34
py
Python
tests/snmp/test_base.py
zohassadar/netdisc
9ce4d5c2b0f30d36e71118ffbe6b7ffd93e0dfc8
[ "MIT" ]
null
null
null
tests/snmp/test_base.py
zohassadar/netdisc
9ce4d5c2b0f30d36e71118ffbe6b7ffd93e0dfc8
[ "MIT" ]
null
null
null
tests/snmp/test_base.py
zohassadar/netdisc
9ce4d5c2b0f30d36e71118ffbe6b7ffd93e0dfc8
[ "MIT" ]
null
null
null
from netdisc.snmp import snmpbase
17
33
0.852941
0
0
0
0
0
0
0
0
0
0
497aef1b3a2cad12da85ea306e770352bb104646
13,063
py
Python
venv/lib/python2.7/site-packages/ansible/modules/storage/netapp/na_ontap_svm.py
haind27/test01
7f86c0a33eb0874a6c3f5ff9a923fd0cfc8ef852
[ "MIT" ]
37
2017-08-15T15:02:43.000Z
2021-07-23T03:44:31.000Z
venv/lib/python2.7/site-packages/ansible/modules/storage/netapp/na_ontap_svm.py
haind27/test01
7f86c0a33eb0874a6c3f5ff9a923fd0cfc8ef852
[ "MIT" ]
12
2018-01-10T05:25:25.000Z
2021-11-28T06:55:48.000Z
venv/lib/python2.7/site-packages/ansible/modules/storage/netapp/na_ontap_svm.py
haind27/test01
7f86c0a33eb0874a6c3f5ff9a923fd0cfc8ef852
[ "MIT" ]
49
2017-08-15T09:52:13.000Z
2022-03-21T17:11:54.000Z
#!/usr/bin/python # (c) 2018, NetApp, Inc # GNU General Public License v3.0+ # (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' module: na_ontap_svm short_description: Manage NetApp Ontap svm extends_documentation_fragment: - netapp.na_ontap version_added: '2.6' author: Sumit Kumar (sumit4@netapp.com), Archana Ganesan (garchana@netapp.com) description: - Create, modify or delete svm on NetApp Ontap options: state: description: - Whether the specified SVM should exist or not. choices: ['present', 'absent'] default: 'present' name: description: - The name of the SVM to manage. required: true new_name: description: - New name of the SVM to be renamed root_volume: description: - Root volume of the SVM. Required when C(state=present). root_volume_aggregate: description: - The aggregate on which the root volume will be created. - Required when C(state=present). root_volume_security_style: description: - Security Style of the root volume. - When specified as part of the vserver-create, this field represents the security style for the Vserver root volume. - When specified as part of vserver-get-iter call, this will return the list of matching Vservers. - The 'unified' security style, which applies only to Infinite Volumes, cannot be applied to a Vserver's root volume. - Required when C(state=present) choices: ['unix', 'ntfs', 'mixed', 'unified'] allowed_protocols: description: - Allowed Protocols. - When specified as part of a vserver-create, this field represent the list of protocols allowed on the Vserver. - When part of vserver-get-iter call, this will return the list of Vservers which have any of the protocols specified as part of the allowed-protocols. - When part of vserver-modify, this field should include the existing list along with new protocol list to be added to prevent data disruptions. - Possible values - nfs NFS protocol, - cifs CIFS protocol, - fcp FCP protocol, - iscsi iSCSI protocol, - ndmp NDMP protocol, - http HTTP protocol, - nvme NVMe protocol aggr_list: description: - List of aggregates assigned for volume operations. - These aggregates could be shared for use with other Vservers. - When specified as part of a vserver-create, this field represents the list of aggregates that are assigned to the Vserver for volume operations. - When part of vserver-get-iter call, this will return the list of Vservers which have any of the aggregates specified as part of the aggr-list. ''' EXAMPLES = """ - name: Create SVM na_ontap_svm: state: present name: ansibleVServer root_volume: vol1 root_volume_aggregate: aggr1 root_volume_security_style: mixed hostname: "{{ netapp_hostname }}" username: "{{ netapp_username }}" password: "{{ netapp_password }}" """ RETURN = """ """ import traceback import ansible.module_utils.netapp as netapp_utils from ansible.module_utils.basic import AnsibleModule from ansible.module_utils._text import to_native HAS_NETAPP_LIB = netapp_utils.has_netapp_lib() class NetAppOntapSVM(object): def __init__(self): self.argument_spec = netapp_utils.na_ontap_host_argument_spec() self.argument_spec.update(dict( state=dict(required=False, choices=[ 'present', 'absent'], default='present'), name=dict(required=True, type='str'), new_name=dict(required=False, type='str'), root_volume=dict(type='str'), root_volume_aggregate=dict(type='str'), root_volume_security_style=dict(type='str', choices=['unix', 'ntfs', 'mixed', 'unified' ]), allowed_protocols=dict(type='list'), aggr_list=dict(type='list') )) self.module = AnsibleModule( argument_spec=self.argument_spec, supports_check_mode=True ) p = self.module.params # set up state variables self.state = p['state'] self.name = p['name'] self.new_name = p['new_name'] self.root_volume = p['root_volume'] self.root_volume_aggregate = p['root_volume_aggregate'] self.root_volume_security_style = p['root_volume_security_style'] self.allowed_protocols = p['allowed_protocols'] self.aggr_list = p['aggr_list'] if HAS_NETAPP_LIB is False: self.module.fail_json( msg="the python NetApp-Lib module is required") else: self.server = netapp_utils.setup_na_ontap_zapi(module=self.module) def get_vserver(self): """ Checks if vserver exists. :return: True if vserver found False if vserver is not found :rtype: bool """ vserver_info = netapp_utils.zapi.NaElement('vserver-get-iter') query_details = netapp_utils.zapi.NaElement.create_node_with_children( 'vserver-info', **{'vserver-name': self.name}) query = netapp_utils.zapi.NaElement('query') query.add_child_elem(query_details) vserver_info.add_child_elem(query) result = self.server.invoke_successfully(vserver_info, enable_tunneling=False) vserver_details = None if (result.get_child_by_name('num-records') and int(result.get_child_content('num-records')) >= 1): attributes_list = result.get_child_by_name('attributes-list') vserver_info = attributes_list.get_child_by_name('vserver-info') aggr_list = list() ''' vserver aggr-list can be empty by default''' get_list = vserver_info.get_child_by_name('aggr-list') if get_list is not None: aggregates = get_list.get_children() for aggr in aggregates: aggr_list.append(aggr.get_content()) protocols = list() '''allowed-protocols is not empty by default''' get_protocols = vserver_info.get_child_by_name( 'allowed-protocols').get_children() for protocol in get_protocols: protocols.append(protocol.get_content()) vserver_details = {'name': vserver_info.get_child_content( 'vserver-name'), 'aggr_list': aggr_list, 'allowed_protocols': protocols} return vserver_details def create_vserver(self): options = {'vserver-name': self.name, 'root-volume': self.root_volume} if self.root_volume_aggregate is not None: options['root-volume-aggregate'] = self.root_volume_aggregate if self.root_volume_security_style is not None: options['root-volume-security-style'] = self.root_volume_security_style vserver_create = netapp_utils.zapi.NaElement.create_node_with_children( 'vserver-create', **options) try: self.server.invoke_successfully(vserver_create, enable_tunneling=False) except netapp_utils.zapi.NaApiError as e: self.module.fail_json(msg='Error provisioning SVM %s \ with root volume %s on aggregate %s: %s' % (self.name, self.root_volume, self.root_volume_aggregate, to_native(e)), exception=traceback.format_exc()) def delete_vserver(self): vserver_delete = netapp_utils.zapi.NaElement.create_node_with_children( 'vserver-destroy', **{'vserver-name': self.name}) try: self.server.invoke_successfully(vserver_delete, enable_tunneling=False) except netapp_utils.zapi.NaApiError as e: self.module.fail_json(msg='Error deleting SVM %s \ with root volume %s on aggregate %s: %s' % (self.name, self.root_volume, self.root_volume_aggregate, to_native(e)), exception=traceback.format_exc()) def rename_vserver(self): vserver_rename = netapp_utils.zapi.NaElement.create_node_with_children( 'vserver-rename', **{'vserver-name': self.name, 'new-name': self.new_name}) try: self.server.invoke_successfully(vserver_rename, enable_tunneling=False) except netapp_utils.zapi.NaApiError as e: self.module.fail_json(msg='Error renaming SVM %s: %s' % (self.name, to_native(e)), exception=traceback.format_exc()) def modify_vserver(self, allowed_protocols, aggr_list): vserver_modify = netapp_utils.zapi.NaElement.create_node_with_children( 'vserver-modify', **{'vserver-name': self.name}) if allowed_protocols: allowed_protocols = netapp_utils.zapi.NaElement( 'allowed-protocols') for protocol in self.allowed_protocols: allowed_protocols.add_new_child('protocol', protocol) vserver_modify.add_child_elem(allowed_protocols) if aggr_list: aggregates = netapp_utils.zapi.NaElement('aggr-list') for aggr in self.aggr_list: aggregates.add_new_child('aggr-name', aggr) vserver_modify.add_child_elem(aggregates) try: self.server.invoke_successfully(vserver_modify, enable_tunneling=False) except netapp_utils.zapi.NaApiError as e: self.module.fail_json(msg='Error modifying SVM %s: %s' % (self.name, to_native(e)), exception=traceback.format_exc()) def apply(self): changed = False vserver_details = self.get_vserver() if vserver_details is not None: results = netapp_utils.get_cserver(self.server) cserver = netapp_utils.setup_ontap_zapi( module=self.module, vserver=results) netapp_utils.ems_log_event("na_ontap_svm", cserver) rename_vserver = False modify_protocols = False modify_aggr_list = False obj = open('vserver-log', 'a') if vserver_details is not None: if self.state == 'absent': changed = True elif self.state == 'present': if self.new_name is not None and self.new_name != self.name: rename_vserver = True changed = True if self.allowed_protocols is not None: self.allowed_protocols.sort() vserver_details['allowed_protocols'].sort() if self.allowed_protocols != vserver_details['allowed_protocols']: modify_protocols = True changed = True if self.aggr_list is not None: self.aggr_list.sort() vserver_details['aggr_list'].sort() if self.aggr_list != vserver_details['aggr_list']: modify_aggr_list = True changed = True else: if self.state == 'present': changed = True if changed: if self.module.check_mode: pass else: if self.state == 'present': if vserver_details is None: self.create_vserver() else: if rename_vserver: self.rename_vserver() if modify_protocols or modify_aggr_list: self.modify_vserver( modify_protocols, modify_aggr_list) elif self.state == 'absent': self.delete_vserver() self.module.exit_json(changed=changed) def main(): v = NetAppOntapSVM() v.apply() if __name__ == '__main__': main()
37.645533
86
0.580724
9,396
0.719283
0
0
0
0
0
0
4,510
0.34525
497c36a9409e9932ee77efb6c8843fae9cedceac
1,200
py
Python
prompts/wizard_of_wikipedia.py
andreamad8/FSB
a81593590189fa5ad1cc37c5857f974effd9750a
[ "MIT" ]
53
2021-10-11T03:24:14.000Z
2022-03-30T15:17:23.000Z
prompts/wizard_of_wikipedia.py
andreamad8/FSB
a81593590189fa5ad1cc37c5857f974effd9750a
[ "MIT" ]
1
2021-12-26T22:48:38.000Z
2022-01-15T18:05:32.000Z
prompts/wizard_of_wikipedia.py
andreamad8/FSB
a81593590189fa5ad1cc37c5857f974effd9750a
[ "MIT" ]
5
2022-01-27T09:07:39.000Z
2022-03-04T08:58:23.000Z
def convert_sample_to_shot_wow(sample, with_knowledge=True): prefix = "Dialogue:\n" assert len(sample["dialogue"]) == len(sample["meta"]) for turn, meta in zip(sample["dialogue"],sample["meta"]): prefix += f"User: {turn[0]}" +"\n" if with_knowledge: if len(meta)>0: prefix += f"KB: {meta[0]}" +"\n" else: prefix += f"KB: None" +"\n" if turn[1] == "": prefix += f"Assistant:" return prefix else: prefix += f"Assistant: {turn[1]}" +"\n" return prefix def convert_sample_to_shot_wow_interact(sample, with_knowledge=True): prefix = "Dialogue:\n" assert len(sample["dialogue"]) == len(sample["KB_wiki"]) for turn, meta in zip(sample["dialogue"],sample["KB_wiki"]): prefix += f"User: {turn[0]}" +"\n" if with_knowledge: if len(meta)>0: prefix += f"KB: {meta[0]}" +"\n" else: prefix += f"KB: None" +"\n" if turn[1] == "": prefix += f"Assistant:" return prefix else: prefix += f"Assistant: {turn[1]}" +"\n" return prefix
33.333333
69
0.500833
0
0
0
0
0
0
0
0
294
0.245
497d558f6807d6cee34934135fc08d3e5e24fbf5
487
py
Python
server/apps/api/notice/migrations/0003_alter_event_priority.py
NikitaGrishchenko/csp-tender-hack-server
56055f51bf472f0f1e56b419a48d993cc91e0f3a
[ "MIT" ]
null
null
null
server/apps/api/notice/migrations/0003_alter_event_priority.py
NikitaGrishchenko/csp-tender-hack-server
56055f51bf472f0f1e56b419a48d993cc91e0f3a
[ "MIT" ]
null
null
null
server/apps/api/notice/migrations/0003_alter_event_priority.py
NikitaGrishchenko/csp-tender-hack-server
56055f51bf472f0f1e56b419a48d993cc91e0f3a
[ "MIT" ]
null
null
null
# Generated by Django 3.2.9 on 2021-11-27 12:21 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('notice', '0002_auto_20211127_0236'), ] operations = [ migrations.AlterField( model_name='event', name='priority', field=models.IntegerField(choices=[(1, 'Низкий приоритет'), (2, 'Средний приоритет'), (3, 'Высокий приоритет')], verbose_name='Приоритет'), ), ]
25.631579
151
0.616016
450
0.828729
0
0
0
0
0
0
220
0.405157
497e1c5d29374050c770b786c91bc5c1ccabcd85
650
py
Python
gdpr_assist/app_settings.py
mserrano07/django-gdpr-assist
3c23d0aadadc676c128ef57aebc36570f3936ff1
[ "BSD-3-Clause" ]
null
null
null
gdpr_assist/app_settings.py
mserrano07/django-gdpr-assist
3c23d0aadadc676c128ef57aebc36570f3936ff1
[ "BSD-3-Clause" ]
null
null
null
gdpr_assist/app_settings.py
mserrano07/django-gdpr-assist
3c23d0aadadc676c128ef57aebc36570f3936ff1
[ "BSD-3-Clause" ]
null
null
null
""" Settings """ from yaa_settings import AppSettings class PrivacySettings(AppSettings): # Name of the model attribute for a privacy definition GDPR_PRIVACY_CLASS_NAME = "PrivacyMeta" # Name of the model attribute for the privacy definition instance GDPR_PRIVACY_INSTANCE_NAME = "_privacy_meta" # Internal name for the GDPR log database GDPR_LOG_DATABASE_NAME = "gdpr_log" # Whether to write to log database during anonymisation. GDPR_LOG_ON_ANONYMISE = True # Disable anonymise_db command by default - we don't want people running it # on production by accident GDPR_CAN_ANONYMISE_DATABASE = False
28.26087
79
0.755385
593
0.912308
0
0
0
0
0
0
372
0.572308
497f0f54faebc451ce2dc9315e86227db65fd970
2,382
py
Python
config-tests/test_server_details.py
mozilla-services/kinto-integration-tests
ec5199f5e9c7452c78d8f6fb41dcaa02504f34f7
[ "Apache-2.0" ]
2
2017-09-01T19:41:43.000Z
2018-11-08T14:42:00.000Z
config-tests/test_server_details.py
Kinto/kinto-integration-tests
ec5199f5e9c7452c78d8f6fb41dcaa02504f34f7
[ "Apache-2.0" ]
89
2017-01-25T21:44:26.000Z
2021-01-01T08:39:07.000Z
config-tests/test_server_details.py
mozilla-services/kinto-integration-tests
ec5199f5e9c7452c78d8f6fb41dcaa02504f34f7
[ "Apache-2.0" ]
6
2017-03-14T13:40:38.000Z
2020-04-03T15:32:57.000Z
import pytest import requests def aslist_cronly(value): """ Split the input on lines if it's a valid string type""" if isinstance(value, str): value = filter(None, [x.strip() for x in value.splitlines()]) return list(value) def aslist(value, flatten=True): """ Return a list of strings, separating the input based on newlines and, if flatten=True (the default), also split on spaces within each line.""" values = aslist_cronly(value) if not flatten: return values result = [] for value in values: subvalues = value.split() result.extend(subvalues) return result @pytest.fixture(scope="module") def api_url(conf, env, request): api_url = 'dist_api' if 'settings' in request.node.keywords: api_url = 'settings_api' elif 'webextensions' in request.node.keywords: api_url = 'webextensions_api' return conf.get(env, api_url) @pytest.mark.dist @pytest.mark.settings @pytest.mark.webextensions def test_version(conf, env, api_url): data = requests.get(api_url + '__version__').json() fields = set(data.keys()) expected_fields = {"source", "commit", "version", "build"} assert len(fields ^ expected_fields) == 0 @pytest.mark.dist @pytest.mark.settings @pytest.mark.webextensions def test_heartbeat(conf, env, api_url): res = requests.get(api_url + '__heartbeat__') assert res.status_code == 200 data = res.json() fields = set(data.keys()) expected_fields = set(aslist(conf.get(env, 'heartbeat_fields'))) assert len(fields ^ expected_fields) == 0 @pytest.mark.dist @pytest.mark.settings @pytest.mark.webextensions def test_server_info(conf, env, api_url): res = requests.get(api_url) data = res.json() fields = set(data.keys()) expected_fields = { "url", "project_docs", "project_name", "capabilities", "project_version", "settings", "http_api_version" } assert len(fields ^ expected_fields) == 0 @pytest.mark.dist @pytest.mark.settings @pytest.mark.webextensions def test_contribute(conf, env, api_url): res = requests.get(api_url + 'contribute.json') data = res.json() fields = set(data.keys()) expected_fields = { "keywords", "participate", "repository", "description", "urls", "name", } assert len(fields ^ expected_fields) == 0
25.891304
72
0.665407
0
0
0
0
1,717
0.720823
0
0
544
0.22838
49803c62b083c02f67f3cea8900cbba0f19179c1
635
py
Python
tests/db/test_factory.py
albertteoh/data_pipeline
a99f1c7412375b3e9f4115108fcdde517b2e71a6
[ "Apache-2.0" ]
null
null
null
tests/db/test_factory.py
albertteoh/data_pipeline
a99f1c7412375b3e9f4115108fcdde517b2e71a6
[ "Apache-2.0" ]
null
null
null
tests/db/test_factory.py
albertteoh/data_pipeline
a99f1c7412375b3e9f4115108fcdde517b2e71a6
[ "Apache-2.0" ]
null
null
null
import pytest import data_pipeline.db.factory as dbfactory import data_pipeline.constants.const as const from data_pipeline.db.exceptions import UnsupportedDbTypeError @pytest.mark.parametrize("dbtype, expect_class", [ (const.ORACLE, "OracleDb"), (const.MSSQL, "MssqlDb"), (const.POSTGRES, "PostgresDb"), (const.GREENPLUM, "GreenplumDb"), (const.FILE, "FileDb"), ]) def test_build_oracledb(dbtype, expect_class): db = dbfactory.build(dbtype) assert type(db).__name__ == expect_class def test_build_unsupported(): with pytest.raises(ImportError): db = dbfactory.build("AnUnsupportedDatabase")
30.238095
62
0.738583
0
0
0
0
342
0.538583
0
0
97
0.152756
49806a87d676d3fa46db3e3b6f5f01048f4d408e
5,142
py
Python
etl/data_extraction/scrapers/sozialeinsatz.py
Betadinho/einander-helfen
272f11397d80ab5267f39a7b36734495f1c00b0c
[ "MIT" ]
7
2020-04-23T20:16:11.000Z
2022-01-04T14:57:16.000Z
etl/data_extraction/scrapers/sozialeinsatz.py
Betadinho/einander-helfen
272f11397d80ab5267f39a7b36734495f1c00b0c
[ "MIT" ]
361
2020-04-23T17:20:14.000Z
2022-03-02T11:29:45.000Z
etl/data_extraction/scrapers/sozialeinsatz.py
Betadinho/einander-helfen
272f11397d80ab5267f39a7b36734495f1c00b0c
[ "MIT" ]
1
2021-11-29T06:02:52.000Z
2021-11-29T06:02:52.000Z
import math import re from data_extraction.scraper import Scraper class SozialeinsatzScraper(Scraper): """Scrapes the website www.sozialeinsatz.de.""" base_url = 'https://www.sozialeinsatz.de' debug = True def parse(self, response, url): """Handles the soupified response of a detail page in the predefined way and returns it""" self.logger.debug('parse()') content = response.find('div', {'id': 'content'}) title = content.find('h2') if title.text == 'Error 404': return None task = content.find('h2', string=re.compile(r'Stellenbeschreibung.*')).findNext('p') organization = title.findNext('div', {'class': 'row'}).find('p') contact = content.find('h2', string=re.compile(r'Ansprechpartner.*')).findNext('p') details = content.find('h2', string=re.compile(r'Details.*')).findNext('p') category_string = details.find('strong', string=re.compile(r'Aufgaben.*')).nextSibling categories = [x.strip() for x in category_string.split(',')] categories.append(title.find('acronym')['title']) timing = details.find('strong', string=re.compile(r'Zeitraum.*')).nextSibling location = None location_p = content.find('h2', string=re.compile(r'Einsatzort.*')).findNext('p') if location_p.a is not None and 'q=' in location_p.a['href']: location = location_p.a['href'].split('q=')[1] zipcode = None if location is not None: if len(re.findall(r'(\d{5})', location)) > 0: zipcode = re.findall(r'(\d{5})', location)[0] parsed_object = { 'title': title.text.strip(), 'categories': categories, 'location': location, 'task': task.decode_contents().strip(), 'target_group': None, 'prerequisites': None, 'language_skills': None, 'timing': timing.strip(), 'effort': None, 'opportunities': None, 'organization': organization.decode_contents().strip() if organization is not None else None, 'contact': contact.decode_contents().strip() if contact is not None else None, 'link': url or None, 'source': 'www.sozialeinsatz.de', 'geo_location': None, } parsed_object['post_struct'] = { 'title': parsed_object['title'], 'categories': parsed_object['categories'], 'location': { 'country': 'Deutschland', 'zipcode': zipcode, 'city': None, 'street': None, }, 'task': None, 'target_group': None, 'prerequisites': parsed_object['prerequisites'], 'language_skills': parsed_object['language_skills'], 'timing': parsed_object['timing'], 'effort': None, 'opportunities': None, 'organization': None, 'contact': None, 'link': parsed_object['link'], 'source': parsed_object['source'], 'geo_location': parsed_object['geo_location'], } return parsed_object def add_urls(self): """Adds all URLs of detail pages, found on the search pages, for the crawl function to scrape""" self.logger.debug('add_urls()') import time index = 1 index_max = None search_page_url = f'{self.base_url}/stellenangebote/finden?Stellenangebot_page={index}' next_page_url = search_page_url while next_page_url: response = self.soupify(next_page_url) # Get tags of individual results detail_a_tags = response.findAll('a', {'class': 'morelink'}) # Get maximum number of pages if index_max is None: summary_text = response.find('div', {'class': 'summary'}).text entries = int(re.findall(r'(\d+).?$', summary_text)[0]) index_max = math.ceil(entries / 25.0) self.logger.debug(f'Fetched {len(detail_a_tags)} URLs from {next_page_url} [{index}/{index_max}]') self.update_fetching_progress(index, index_max) # Iterate links and add, if not already found for link_tag in detail_a_tags: current_link = self.base_url + link_tag['href'] if current_link in self.urls: self.logger.debug(f'func: add_urls, page_index: {index},' f' search_page: {search_page_url}, ' f'duplicate_index: {current_link}, ' f'duplicate_index: {self.urls.index(current_link)}') else: self.urls.append(current_link) # Get next result page if index < index_max: index += 1 next_page_url = f'{self.base_url}/stellenangebote/finden?Stellenangebot_page={index}' else: next_page_url = None time.sleep(self.delay)
36.992806
110
0.556593
5,072
0.986387
0
0
0
0
0
0
1,595
0.310191
4980cf418b1fec3383b451b2c9e98a8148676569
1,671
py
Python
fitbenchmarking/parsing/base_parser.py
arm61/fitbenchmarking
c745c684e3ca4895a666eb863426746d8f06636c
[ "BSD-3-Clause" ]
null
null
null
fitbenchmarking/parsing/base_parser.py
arm61/fitbenchmarking
c745c684e3ca4895a666eb863426746d8f06636c
[ "BSD-3-Clause" ]
null
null
null
fitbenchmarking/parsing/base_parser.py
arm61/fitbenchmarking
c745c684e3ca4895a666eb863426746d8f06636c
[ "BSD-3-Clause" ]
null
null
null
""" Implements the base Parser as a Context Manager. """ from abc import ABCMeta, abstractmethod class Parser: """ Base abstract class for a parser. Further parsers should inherit from this and override the abstract parse() method. """ __metaclass__ = ABCMeta def __init__(self, filename): """ Store the filename for use by enter. :param filename: The path to the file to be parsed :type filename: string """ self._filename = filename self.file = None self.fitting_problem = None def __enter__(self): """ Called when used as a context manager. Opens the file ready for parsing. """ self.file = open(self._filename, 'r') return self def __exit__(self, exc_type, exc_value, traceback): """ Called when used as a context manager. Closes the file. :param exc_type: Used if an exception occurs. Contains the exception type. :type exc_type: type :param exc_value: Used if an exception occurs. Contains the exception value. :type exc_value: Exception :param traceback: Used if an exception occurs. Contains the exception traceback. :type traceback: traceback """ try: self.file.close() except AttributeError: pass @abstractmethod def parse(self): """ Parse the file into a FittingProblem. :returns: The parsed problem :rtype: FittingProblem """ raise NotImplementedError
26.109375
78
0.581089
1,570
0.939557
0
0
209
0.125075
0
0
1,101
0.658887
498189a8b987526464b2fd92c5dba221e497e78b
10,223
py
Python
src/offline/news/item-feature-update-batch/src/item-feature-update-batch.py
shenshaoyong/recommender-system-dev-workshop-code
ce422627181472ad513f473b65bf42410c46304a
[ "Apache-2.0" ]
1
2021-07-14T09:15:40.000Z
2021-07-14T09:15:40.000Z
src/offline/news/item-feature-update-batch/src/item-feature-update-batch.py
shenshaoyong/recommender-system-dev-workshop-code
ce422627181472ad513f473b65bf42410c46304a
[ "Apache-2.0" ]
null
null
null
src/offline/news/item-feature-update-batch/src/item-feature-update-batch.py
shenshaoyong/recommender-system-dev-workshop-code
ce422627181472ad513f473b65bf42410c46304a
[ "Apache-2.0" ]
null
null
null
from __future__ import print_function # from tqdm import tqdm import argparse import glob import os import pickle import boto3 import numpy as np import pandas as pd import encoding import kg # tqdm.pandas() # pandarallel.initialize(progress_bar=True) # bucket = os.environ.get("BUCKET_NAME", " ") # raw_data_folder = os.environ.get("RAW_DATA", " ") # logger = logging.getLogger() # logger.setLevel(logging.INFO) # tqdm_notebook().pandas() ######################################## # 从s3同步数据 ######################################## def sync_s3(file_name_list, s3_folder, local_folder): for f in file_name_list: print("file preparation: download src key {} to dst key {}".format(os.path.join( s3_folder, f), os.path.join(local_folder, f))) s3client.download_file(bucket, os.path.join( s3_folder, f), os.path.join(local_folder, f)) def write_to_s3(filename, bucket, key): print("upload s3://{}/{}".format(bucket, key)) with open(filename, 'rb') as f: # Read in binary mode # return s3client.upload_fileobj(f, bucket, key) return s3client.put_object( ACL='bucket-owner-full-control', Bucket=bucket, Key=key, Body=f ) def write_str_to_s3(content, bucket, key): print("write s3://{}/{}, content={}".format(bucket, key, content)) s3client.put_object(Body=str(content).encode( "utf8"), Bucket=bucket, Key=key, ACL='bucket-owner-full-control') parser = argparse.ArgumentParser() parser.add_argument('--bucket', type=str) parser.add_argument('--prefix', type=str) parser.add_argument("--region", type=str, help="aws region") args, _ = parser.parse_known_args() print("args:", args) region = None if args.region: region = args.region print("region:", args.region) boto3.setup_default_session(region_name=args.region) bucket = args.bucket prefix = args.prefix print("bucket={}".format(bucket)) print("prefix='{}'".format(prefix)) s3client = boto3.client('s3') out_s3_path = "s3://{}/{}/feature/content/inverted-list".format(bucket, prefix) local_folder = 'info' if not os.path.exists(local_folder): os.makedirs(local_folder) file_name_list = ['complete_dkn_word_embedding.npy'] s3_folder = '{}/model/rank/content/dkn_embedding_latest/'.format(prefix) sync_s3(file_name_list, s3_folder, local_folder) file_name_list = ['item.csv'] s3_folder = '{}/system/item-data'.format(prefix) sync_s3(file_name_list, s3_folder, local_folder) file_name_list = ['entities_dbpedia.dict', 'relations_dbpedia.dict', 'kg_dbpedia.txt', 'entities_dbpedia_train.dict', 'relations_dbpedia_train.dict', 'kg_dbpedia_train.txt', ] s3_folder = '{}/model/meta_files/'.format(prefix) sync_s3(file_name_list, s3_folder, local_folder) df_filter_item = pd.read_csv('info/item.csv', sep='_!_', names=['news_id', 'type_code', 'type', 'title', 'keywords', 'popularity', 'new']) complete_dkn_word_embed = np.load("info/complete_dkn_word_embedding.npy") # prepare model for batch process meta_file_prefix = "{}/model/meta_files".format(prefix) os.environ['GRAPH_BUCKET'] = bucket os.environ['KG_DBPEDIA_KEY'] = '{}/kg_dbpedia.txt'.format(meta_file_prefix) os.environ['KG_ENTITY_KEY'] = '{}/entities_dbpedia.dict'.format( meta_file_prefix) os.environ['KG_RELATION_KEY'] = '{}/relations_dbpedia.dict'.format( meta_file_prefix) os.environ['KG_DBPEDIA_TRAIN_KEY'] = '{}/kg_dbpedia_train.txt'.format( meta_file_prefix) os.environ['KG_ENTITY_TRAIN_KEY'] = '{}/entities_dbpedia_train.dict'.format( meta_file_prefix) os.environ['KG_RELATION_TRAIN_KEY'] = '{}/relations_dbpedia_train.dict'.format( meta_file_prefix) os.environ['KG_ENTITY_INDUSTRY_KEY'] = '{}/entity_industry.txt'.format( meta_file_prefix) os.environ['KG_VOCAB_KEY'] = '{}/vocab.json'.format(meta_file_prefix) os.environ['DATA_INPUT_KEY'] = '' os.environ['TRAIN_OUTPUT_KEY'] = '{}/model/rank/content/dkn_embedding_latest/'.format( prefix) kg_path = os.environ['GRAPH_BUCKET'] dbpedia_key = os.environ['KG_DBPEDIA_KEY'] entity_key = os.environ['KG_ENTITY_KEY'] relation_key = os.environ['KG_RELATION_KEY'] dbpedia_train_key = os.environ['KG_DBPEDIA_TRAIN_KEY'] entity_train_key = os.environ['KG_ENTITY_TRAIN_KEY'] relation_train_key = os.environ['KG_RELATION_TRAIN_KEY'] entity_industry_key = os.environ['KG_ENTITY_INDUSTRY_KEY'] vocab_key = os.environ['KG_VOCAB_KEY'] data_input_key = os.environ['DATA_INPUT_KEY'] train_output_key = os.environ['TRAIN_OUTPUT_KEY'] env = { 'GRAPH_BUCKET': kg_path, 'KG_DBPEDIA_KEY': dbpedia_key, 'KG_ENTITY_KEY': entity_key, 'KG_RELATION_KEY': relation_key, 'KG_DBPEDIA_TRAIN_KEY': dbpedia_train_key, 'KG_ENTITY_TRAIN_KEY': entity_train_key, 'KG_RELATION_TRAIN_KEY': relation_train_key, 'KG_ENTITY_INDUSTRY_KEY': entity_industry_key, 'KG_VOCAB_KEY': vocab_key, 'DATA_INPUT_KEY': data_input_key, 'TRAIN_OUTPUT_KEY': train_output_key } print("Kg env: {}".format(env)) graph = kg.Kg(env, region=region) # Where we keep the model when it's loaded model = encoding.encoding(graph, env, region=region) news_id_news_feature_dict = {} map_words = {} map_entities = {} def analyze_map(raw_idx, map_dict, filter_idx): for idx in raw_idx: if idx == 0: filter_idx.append(0) else: if idx not in map_dict.keys(): map_dict[idx] = len(map_dict) + 1 filter_idx.append(map_dict[idx]) for row in df_filter_item.iterrows(): item_row = row[1] program_id = str(item_row['news_id']) title_result = model[item_row['title']] current_words = title_result[0] current_entities = title_result[1] filter_words = [] filter_entities = [] analyze_map(current_words, map_words, filter_words) analyze_map(current_entities, map_entities, filter_entities) # filter entities & filter words program_dict = { 'entities': filter_entities, 'words': filter_words } news_id_news_feature_dict[program_id] = program_dict # clean data for graph train # path = '/home/ec2-user/workplace/recommender-system-solution/src/offline/news/item-feature-update-batch/aws-gcr-rs-sol-demo-ap-southeast-1-522244679887/sample-data/model/meta_files' path = "info" entities_dbpedia = os.path.join(path, 'entities_dbpedia.dict') relations_dbpedia = os.path.join(path, 'relations_dbpedia.dict') kg_dbpedia = os.path.join(path, 'kg_dbpedia.txt') entities_dbpedia_train_path = os.path.join(path, 'entities_dbpedia_train.dict') relations_dbpedia_train_path = os.path.join( path, 'relations_dbpedia_train.dict') kg_dbpedia_train_path = os.path.join(path, 'kg_dbpedia_train.txt') entities_dbpedia_f = pd.read_csv( entities_dbpedia, header=None, names=['e', 'e_name']) relations_dbpedia_f = pd.read_csv( relations_dbpedia, header=None, names=['e', 'e_name']) kg_dbpedia_f = pd.read_csv(kg_dbpedia, delimiter='\t', header=None, names=['h', 'r', 't']) # map_entities -> train_entites # constrcut from entites: entities_dbpedia_slim = {} relations_dbpedia_slim = {} entities_dbpedia_train = {} relations_dbpedia_train = {} entities_dbpedia_train[0] = '0' relations_dbpedia_train[0] = '0' new_list_kg = [] def analyze_map_hrt(idx, map_dict, raw_content, train_dict): # 原始实体从0开始,所以需要归位进行寻找 idx_test = idx - 1 if idx_test not in map_dict.keys(): map_dict[idx_test] = len(map_dict) + 1 filter_content = raw_content[raw_content.e == idx_test] train_dict[len(map_dict)] = filter_content['e_name'].values[0] return map_dict[idx_test] for raw_entity, new_idx in map_entities.items(): entity_id = raw_entity map_head_id = analyze_map_hrt( entity_id, entities_dbpedia_slim, entities_dbpedia_f, entities_dbpedia_train) kg_found_pd = kg_dbpedia_f[kg_dbpedia_f.h == entity_id] # print(kg_found_pd) for found_row in kg_found_pd.iterrows(): relation_id = found_row[1]['r'] tail_id = found_row[1]['t'] map_relation_id = analyze_map_hrt(relation_id, relations_dbpedia_slim, relations_dbpedia_f, relations_dbpedia_train) map_tail_id = analyze_map_hrt( tail_id, entities_dbpedia_slim, entities_dbpedia_f, entities_dbpedia_train) # create new kg : h-r-t kg_row = {} kg_row['h'] = map_head_id kg_row['r'] = map_relation_id kg_row['t'] = map_tail_id new_list_kg.append(kg_row) kg_dbpedia_slim = pd.DataFrame(new_list_kg) kg_dbpedia_slim.to_csv(kg_dbpedia_train_path, sep='\t', header=False, index=False) with open(entities_dbpedia_train_path, 'w') as f: for key in entities_dbpedia_train.keys(): f.write("%s,%s\n" % (key, entities_dbpedia_train[key])) with open(relations_dbpedia_train_path, 'w') as f: for key in relations_dbpedia_train.keys(): f.write("%s,%s\n" % (key, relations_dbpedia_train[key])) # slim version list_word_embedding = [] list_word_embedding.append([0] * 300) for raw_key, map_v in map_words.items(): list_word_embedding.append(complete_dkn_word_embed[raw_key]) file_name = 'info/dkn_word_embedding.npy' with open(file_name, "wb") as f: np.save(f, np.array(list_word_embedding)) write_to_s3(file_name, bucket, '{}/model/rank/content/dkn_embedding_latest/dkn_word_embedding.npy'.format(prefix)) write_to_s3(kg_dbpedia_train_path, bucket, '{}/kg_dbpedia_train.txt'.format(meta_file_prefix)) write_to_s3(entities_dbpedia_train_path, bucket, '{}/entities_dbpedia_train.dict'.format(meta_file_prefix)) write_to_s3(relations_dbpedia_train_path, bucket, '{}/relations_dbpedia_train.dict'.format(meta_file_prefix)) file_name = 'info/news_id_news_feature_dict.pickle' out_file = open(file_name, 'wb') pickle.dump(news_id_news_feature_dict, out_file) out_file.close() # s3_url = S3Uploader.upload(file_name, out_s3_path) s3_url = write_to_s3(file_name, bucket, '{}/feature/content/inverted-list/news_id_news_feature_dict.pickle'.format(prefix))
35.010274
183
0.702142
0
0
0
0
0
0
0
0
3,125
0.304314
498246054897849d72b07dc078d8b150091d7c85
5,054
py
Python
wirepas_backend_client/tools/utils.py
bencorrado/backend-client
628c9999f8d98b0c1e56d87bfd2dbf1ca1ea138c
[ "Apache-2.0" ]
null
null
null
wirepas_backend_client/tools/utils.py
bencorrado/backend-client
628c9999f8d98b0c1e56d87bfd2dbf1ca1ea138c
[ "Apache-2.0" ]
null
null
null
wirepas_backend_client/tools/utils.py
bencorrado/backend-client
628c9999f8d98b0c1e56d87bfd2dbf1ca1ea138c
[ "Apache-2.0" ]
1
2021-03-12T17:20:56.000Z
2021-03-12T17:20:56.000Z
""" Utils ======= Contains multipurpose utilities for serializing objects and obtaining arguments from the command line. .. Copyright: Copyright 2019 Wirepas Ltd under Apache License, Version 2.0. See file LICENSE for full license details. """ import binascii import datetime import json import threading from google.protobuf import json_format def deferred_thread(fn): """ Decorator to handle a request on its own Thread to avoid blocking the calling Thread on I/O. It creates a new Thread but it shouldn't impact the performances as requests are not supposed to be really frequent (few per seconds) """ def wrapper(*args, **kwargs): thread = threading.Thread(target=fn, args=args, kwargs=kwargs) thread.start() return thread return wrapper class JsonSerializer(json.JSONEncoder): """ JsonSerializer Extends the JSONEncoder base class with object handlers for bytearrya, datetime and proto. """ proto_as_json = False sort_keys = True indent = 4 def __init__(self, proto_as_json: bool = False, **kwargs): super(JsonSerializer, self).__init__(**kwargs) self.proto_as_json = proto_as_json if "indent" in kwargs: self.indent = kwargs["indent"] if "sort_keys" in kwargs: self.sort_keys = kwargs["sort_keys"] def default(self, obj) -> str: """ Lookup table for serializing objects Pylint complains about the method signature, but this is the recommended way of implementing a custom JSON serialization as seen in: https://docs.python.org/3/library/json.html#json.JSONEncoder """ # pylint: disable=locally-disabled, method-hidden, arguments-differ if isinstance(obj, (datetime.datetime, datetime.date)): return obj.isoformat() if isinstance(obj, (bytearray, bytes)): return binascii.hexlify(obj) if isinstance(obj, set): return str(obj) if hasattr(obj, "DESCRIPTOR"): if self.proto_as_json is True: pstr = json_format.MessageToJson( obj, including_default_value_fields=True ) else: pstr = json_format.MessageToDict( obj, including_default_value_fields=True ) return pstr return json.JSONEncoder.default(self, obj) def serialize(self, obj, flatten=False): """ returns a json representation of the object """ if flatten: temp = dict() for key, value in sorted(obj.items()): if isinstance(value, dict): for child_key, child_value in value.items(): temp[f"{key}.{child_key}"] = child_value obj = temp jobj = json.dumps( obj, cls=JsonSerializer, sort_keys=self.sort_keys, indent=self.indent, ) return jobj def flatten(input_dict, separator="/", prefix=""): """ Flattens a dictionary with nested dictionaries and lists into a single dictionary. The key compression is done using the chosen separator. """ output_dict = {} def step(member, parent_key=""): if isinstance(member, dict): for key, value in member.items(): step( value, f"{parent_key}{separator}{key}" if parent_key else str(key), ) elif isinstance(member, list): for index, sublist in enumerate(member, start=0): step( sublist, f"{parent_key}{separator}{index}" if parent_key else str(index), ) else: output_dict[f"{parent_key}"] = member step(input_dict) return output_dict class Signal: """Wrapper around and exit signal""" def __init__(self, signal=None): super(Signal, self).__init__() if signal is None: signal = False self.signal = signal def is_set(self) -> bool: """ Returns the state of the inner event or boolean """ try: ret = self.signal.is_set() except AttributeError: ret = self.signal return ret def set(self) -> bool: """ Sets the event or inner boolean """ try: ret = self.signal.set() except AttributeError: self.signal = True ret = True return ret def chunker(seq, size) -> list(): """ Splits a sequence in multiple parts Args: seq ([]) : an array size (int) : length of each array part Returns: array ([]) : a chunk of SEQ with given SIZE """ return (seq[pos : pos + size] for pos in range(0, len(seq), size))
25.917949
75
0.565295
2,910
0.575782
0
0
0
0
0
0
1,749
0.346063
4984d7b37bc39c03cdb2148c437346639993c3a9
25,733
py
Python
pysph/base/tree/point_tree.py
nauaneed/pysph-nav
66589021f453f25b77549f6f102b6afcc89e338d
[ "BSD-3-Clause" ]
1
2022-03-15T11:48:17.000Z
2022-03-15T11:48:17.000Z
pysph/base/tree/point_tree.py
nauaneed/pysph-nav
66589021f453f25b77549f6f102b6afcc89e338d
[ "BSD-3-Clause" ]
null
null
null
pysph/base/tree/point_tree.py
nauaneed/pysph-nav
66589021f453f25b77549f6f102b6afcc89e338d
[ "BSD-3-Clause" ]
null
null
null
from pysph.base.tree.tree import Tree from pysph.base.tree.helpers import ParticleArrayWrapper, get_helper, \ make_vec_dict, ctype_to_dtype, get_vector_dtype from compyle.opencl import profile_kernel, DeviceWGSException, get_queue, \ named_profile, get_context from compyle.array import Array from pytools import memoize import sys import numpy as np import pyopencl as cl from pyopencl.scan import GenericScanKernel import pyopencl.tools from mako.template import Template class IncompatibleTreesException(Exception): pass @named_profile('neighbor_count_prefix_sum', backend='opencl') @memoize def _get_neighbor_count_prefix_sum_kernel(ctx): return GenericScanKernel(ctx, np.int32, arguments="__global int *ary", input_expr="ary[i]", scan_expr="a+b", neutral="0", output_statement="ary[i] = prev_item") @memoize def _get_macros_preamble(c_type, sorted, dim): result = Template(""" #define IN_BOUNDS(X, MIN, MAX) ((X >= MIN) && (X < MAX)) #define NORM2(X, Y, Z) ((X)*(X) + (Y)*(Y) + (Z)*(Z)) #define NORM2_2D(X, Y) ((X)*(X) + (Y)*(Y)) #define MIN(X, Y) ((X) < (Y) ? (X) : (Y)) #define MAX(X, Y) ((X) > (Y) ? (X) : (Y)) #define AVG(X, Y) (((X) + (Y)) / 2) #define ABS(X) ((X) > 0 ? (X) : -(X)) #define SQR(X) ((X) * (X)) typedef struct { union { float s0; float x; }; } float1; typedef struct { union { double s0; double x; }; } double1; % if sorted: #define PID(idx) (idx) % else: #define PID(idx) (pids[idx]) % endif char contains(${data_t}${dim} node_xmin1, ${data_t}${dim} node_xmax1, ${data_t}${dim} node_xmin2, ${data_t}${dim} node_xmax2) { // Check if node n1 contains node n2 char res = 1; % for i in range(dim): res = res && (node_xmin1.s${i} <= node_xmin2.s${i}) && (node_xmax1.s${i} >= node_xmax2.s${i}); % endfor return res; } char contains_search(${data_t}${dim} node_xmin1, ${data_t}${dim} node_xmax1, ${data_t} node_hmax1, ${data_t}${dim} node_xmin2, ${data_t}${dim} node_xmax2) { // Check if node n1 contains node n2 with n1 having // its search radius extension ${data_t} h = node_hmax1; char res = 1; %for i in range(dim): res = res & (node_xmin1.s${i} - h <= node_xmin2.s${i}) & (node_xmax1.s${i} + h >= node_xmax2.s${i}); %endfor return res; } char intersects(${data_t}${dim} node_xmin1, ${data_t}${dim} node_xmax1, ${data_t} node_hmax1, ${data_t}${dim} node_xmin2, ${data_t}${dim} node_xmax2, ${data_t} node_hmax2) { // Check if node n1 'intersects' node n2 ${data_t} cdist; ${data_t} w1, w2, wavg = 0; char res = 1; ${data_t} h = MAX(node_hmax1, node_hmax2); % for i in range(dim): cdist = fabs((node_xmin1.s${i} + node_xmax1.s${i}) / 2 - (node_xmin2.s${i} + node_xmax2.s${i}) / 2); w1 = fabs(node_xmin1.s${i} - node_xmax1.s${i}); w2 = fabs(node_xmin2.s${i} - node_xmax2.s${i}); wavg = AVG(w1, w2); res &= (cdist - wavg <= h); % endfor return res; } """).render(data_t=c_type, sorted=sorted, dim=dim) return result @memoize def _get_node_bound_kernel_parameters(dim, data_t, xvars): result = {} result['setup'] = Template( r""" ${data_t} xmin[${dim}] = {${', '.join(['INFINITY'] * dim)}}; ${data_t} xmax[${dim}] = {${', '.join(['-INFINITY'] * dim)}}; ${data_t} hmax = 0; """).render(dim=dim, data_t=data_t) result['args'] = Template( r"""int *pids, % for v in xvars: ${data_t} *${v}, % endfor ${data_t} *h, ${data_t} radius_scale, ${data_t}${dim} *node_xmin, ${data_t}${dim} *node_xmax, ${data_t} *node_hmax """).render(dim=dim, data_t=data_t, xvars=xvars) result['leaf_operation'] = Template( r""" for (int j=pbound.s0; j < pbound.s1; j++) { int pid = PID(j); % for d in range(dim): xmin[${d}] = fmin(xmin[${d}], ${xvars[d]}[pid]); xmax[${d}] = fmax(xmax[${d}], ${xvars[d]}[pid]); % endfor hmax = fmax(h[pid] * radius_scale, hmax); } """).render(dim=dim, xvars=xvars) result['node_operation'] = Template( r""" % for i in range(2 ** dim): % for d in range(dim): xmin[${d}] = fmin( xmin[${d}], node_xmin[child_offset + ${i}].s${d} ); xmax[${d}] = fmax( xmax[${d}], node_xmax[child_offset + ${i}].s${d} ); % endfor hmax = fmax(hmax, node_hmax[child_offset + ${i}]); % endfor """).render(dim=dim) result['output_expr'] = Template( """ % for d in range(dim): node_xmin[node_idx].s${d} = xmin[${d}]; node_xmax[node_idx].s${d} = xmax[${d}]; % endfor node_hmax[node_idx] = hmax; """).render(dim=dim) return result @memoize def _get_leaf_neighbor_kernel_parameters(data_t, dim, args, setup, operation, output_expr): result = { 'setup': Template(r""" ${data_t}${dim} node_xmin1; ${data_t}${dim} node_xmax1; ${data_t} node_hmax1; ${data_t}${dim} node_xmin2; ${data_t}${dim} node_xmax2; ${data_t} node_hmax2; node_xmin1 = node_xmin_dst[cid_dst]; node_xmax1 = node_xmax_dst[cid_dst]; node_hmax1 = node_hmax_dst[cid_dst]; %(setup)s; """ % dict(setup=setup)).render( data_t=data_t, dim=dim), 'node_operation': Template(""" node_xmin2 = node_xmin_src[cid_src]; node_xmax2 = node_xmax_src[cid_src]; node_hmax2 = node_hmax_src[cid_src]; if (!intersects(node_xmin1, node_xmax1, node_hmax1, node_xmin2, node_xmax2, node_hmax2) && !contains(node_xmin2, node_xmax2, node_xmin1, node_xmax1)) { flag = 0; break; } """).render(data_t=data_t), 'leaf_operation': Template(""" node_xmin2 = node_xmin_src[cid_src]; node_xmax2 = node_xmax_src[cid_src]; node_hmax2 = node_hmax_src[cid_src]; if (intersects(node_xmin1, node_xmax1, node_hmax1, node_xmin2, node_xmax2, node_hmax2) || contains_search(node_xmin1, node_xmax1, node_hmax1, node_xmin2, node_xmax2)) { %(operation)s; } """ % dict(operation=operation)).render(), 'output_expr': output_expr, 'args': Template(""" ${data_t}${dim} *node_xmin_src, ${data_t}${dim} *node_xmax_src, ${data_t} *node_hmax_src, ${data_t}${dim} *node_xmin_dst, ${data_t}${dim} *node_xmax_dst, ${data_t} *node_hmax_dst, """ + args).render(data_t=data_t, dim=dim) } return result # Support for 1D def register_custom_pyopencl_ctypes(): cl.tools.get_or_register_dtype('float1', np.dtype([('s0', np.float32)])) cl.tools.get_or_register_dtype('double1', np.dtype([('s0', np.float64)])) register_custom_pyopencl_ctypes() class PointTree(Tree): def __init__(self, pa, dim=2, leaf_size=32, radius_scale=2.0, use_double=False, c_type='float'): super(PointTree, self).__init__(pa.get_number_of_particles(), 2 ** dim, leaf_size) assert (1 <= dim <= 3) self.max_depth = None self.dim = dim self.powdim = 2 ** self.dim self.xvars = ('x', 'y', 'z')[:dim] self.c_type = c_type self.c_type_src = 'double' if use_double else 'float' if use_double and c_type == 'float': # Extend the search radius a little to account for rounding errors radius_scale = radius_scale * (1 + 2e-7) # y and z coordinates need to be present for 1D and z for 2D # This is because the NNPS implementation below assumes them to be # just set to 0. self.pa = ParticleArrayWrapper(pa, self.c_type_src, self.c_type, ('x', 'y', 'z', 'h')) self.radius_scale = radius_scale self.use_double = use_double self.helper = get_helper('tree/point_tree.mako', self.c_type) self.xmin = None self.xmax = None self.hmin = None self.make_vec = make_vec_dict[c_type][self.dim] self.ctx = get_context() def set_index_function_info(self): self.index_function_args = ["sfc"] self.index_function_arg_ctypes = ["ulong"] self.index_function_arg_dtypes = [np.uint64] self.index_function_consts = ['mask', 'rshift'] self.index_function_const_ctypes = ['ulong', 'char'] self.index_code = "((sfc[i] & mask) >> rshift)" def _calc_cell_size_and_depth(self): self.cell_size = self.hmin * self.radius_scale * (1. + 1e-3) # Logic from gpu_domain_manager.py if self.cell_size < 1e-6: self.cell_size = 1 # This lets the tree grow up to log2(128) = 7 layers beyond what it # could have previously. Pretty arbitrary. self.cell_size /= 128 max_width = max((self.xmax[i] - self.xmin[i]) for i in range(self.dim)) self.max_depth = int(np.ceil(np.log2(max_width / self.cell_size))) + 1 def _bin(self): dtype = ctype_to_dtype(self.c_type) fill_particle_data = self.helper.get_kernel("fill_particle_data", dim=self.dim, xvars=self.xvars) pa_gpu = self.pa.gpu args = [getattr(pa_gpu, v).dev for v in self.xvars] args += [dtype(self.cell_size), self.make_vec(*[self.xmin[i] for i in range(self.dim)]), self.sfc.dev, self.pids.dev] fill_particle_data(*args) def get_index_constants(self, depth): rshift = np.uint8(self.dim * (self.max_depth - depth - 1)) mask = np.uint64((2 ** self.dim - 1) << rshift) return mask, rshift def _adjust_domain_width(self): # Convert width of domain to a power of 2 multiple of cell size # (Optimal width for cells) # Note that this makes sure the width in _all_ dimensions is the # same. We want our nodes to be cubes ideally. cell_size = self.hmin * self.radius_scale * (1. + 1e-5) max_width = np.max(self.xmax - self.xmin) new_width = cell_size * 2.0 ** int( np.ceil(np.log2(max_width / cell_size))) diff = (new_width - (self.xmax - self.xmin)) / 2 self.xmin -= diff self.xmax += diff def setup_build(self, xmin, xmax, hmin): self._setup_build() self.pa.sync() self.xmin = np.array(xmin) self.xmax = np.array(xmax) self.hmin = hmin self._adjust_domain_width() self._calc_cell_size_and_depth() self._bin() def build(self, fixed_depth=None): self._build(self.max_depth if fixed_depth is None else fixed_depth) self._get_unique_cids_and_count() def refresh(self, xmin, xmax, hmin, fixed_depth=None): self.setup_build(xmin, xmax, hmin) self.build(fixed_depth) def _sort(self): """Set tree as being sorted The particle array needs to be aligned by the caller! """ if not self.sorted: self.pa.sync() self.sorted = 1 ########################################################################### # General algorithms ########################################################################### def set_node_bounds(self): vector_data_t = get_vector_dtype(self.c_type, self.dim) dtype = ctype_to_dtype(self.c_type) self.node_xmin = self.allocate_node_prop(vector_data_t) self.node_xmax = self.allocate_node_prop(vector_data_t) self.node_hmax = self.allocate_node_prop(dtype) params = _get_node_bound_kernel_parameters(self.dim, self.c_type, self.xvars) set_node_bounds = self.tree_bottom_up( params['args'], params['setup'], params['leaf_operation'], params['node_operation'], params['output_expr'], preamble=_get_macros_preamble(self.c_type, self.sorted, self.dim) ) set_node_bounds = profile_kernel(set_node_bounds, 'set_node_bounds', backend='opencl') pa_gpu = self.pa.gpu dtype = ctype_to_dtype(self.c_type) args = [self, self.pids.dev] args += [getattr(pa_gpu, v).dev for v in self.xvars] args += [pa_gpu.h.dev, dtype(self.radius_scale), self.node_xmin.dev, self.node_xmax.dev, self.node_hmax.dev] set_node_bounds(*args) ########################################################################### # Nearest Neighbor Particle Search (NNPS) ########################################################################### def _leaf_neighbor_operation(self, tree_src, args, setup, operation, output_expr): # Template for finding neighboring cids of a cell. params = _get_leaf_neighbor_kernel_parameters(self.c_type, self.dim, args, setup, operation, output_expr) kernel = tree_src.leaf_tree_traverse( params['args'], params['setup'], params['node_operation'], params['leaf_operation'], params['output_expr'], preamble=_get_macros_preamble(self.c_type, self.sorted, self.dim) ) def callable(*args): return kernel(tree_src, self, tree_src.node_xmin.dev, tree_src.node_xmax.dev, tree_src.node_hmax.dev, self.node_xmin.dev, self.node_xmax.dev, self.node_hmax.dev, *args) return callable def find_neighbor_cids(self, tree_src): neighbor_cid_count = Array(np.uint32, n=self.unique_cid_count + 1, backend='opencl') find_neighbor_cid_counts = self._leaf_neighbor_operation( tree_src, args="uint2 *pbounds, int *cnt", setup="int count=0", operation=""" if (pbounds[cid_src].s0 < pbounds[cid_src].s1) count++; """, output_expr="cnt[i] = count;" ) find_neighbor_cid_counts = profile_kernel( find_neighbor_cid_counts, 'find_neighbor_cid_count', backend='opencl' ) find_neighbor_cid_counts(tree_src.pbounds.dev, neighbor_cid_count.dev) neighbor_psum = _get_neighbor_count_prefix_sum_kernel(self.ctx) neighbor_psum(neighbor_cid_count.dev) total_neighbors = int(neighbor_cid_count.dev[-1].get()) neighbor_cids = Array(np.uint32, n=total_neighbors, backend='opencl') find_neighbor_cids = self._leaf_neighbor_operation( tree_src, args="uint2 *pbounds, int *cnt, int *neighbor_cids", setup="int offset=cnt[i];", operation=""" if (pbounds[cid_src].s0 < pbounds[cid_src].s1) neighbor_cids[offset++] = cid_src; """, output_expr="" ) find_neighbor_cids = profile_kernel( find_neighbor_cids, 'find_neighbor_cids', backend='opencl') find_neighbor_cids(tree_src.pbounds.dev, neighbor_cid_count.dev, neighbor_cids.dev) return neighbor_cid_count, neighbor_cids # TODO?: 1D and 2D NNPS not properly supported here. # Just assuming the other spatial coordinates (y and z in case of 1D, # and z in case of 2D) are set to 0. def find_neighbor_lengths_elementwise(self, neighbor_cid_count, neighbor_cids, tree_src, neighbor_count): self.check_nnps_compatibility(tree_src) pa_gpu_dst = self.pa.gpu pa_gpu_src = tree_src.pa.gpu dtype = ctype_to_dtype(self.c_type) find_neighbor_counts = self.helper.get_kernel( 'find_neighbor_counts_elementwise', sorted=self.sorted ) find_neighbor_counts(self.unique_cids_map.dev, tree_src.pids.dev, self.pids.dev, self.cids.dev, tree_src.pbounds.dev, self.pbounds.dev, pa_gpu_src.x.dev, pa_gpu_src.y.dev, pa_gpu_src.z.dev, pa_gpu_src.h.dev, pa_gpu_dst.x.dev, pa_gpu_dst.y.dev, pa_gpu_dst.z.dev, pa_gpu_dst.h.dev, dtype(self.radius_scale), neighbor_cid_count.dev, neighbor_cids.dev, neighbor_count.dev) def find_neighbors_elementwise(self, neighbor_cid_count, neighbor_cids, tree_src, start_indices, neighbors): self.check_nnps_compatibility(tree_src) pa_gpu_dst = self.pa.gpu pa_gpu_src = tree_src.pa.gpu dtype = ctype_to_dtype(self.c_type) find_neighbors = self.helper.get_kernel( 'find_neighbors_elementwise', sorted=self.sorted) find_neighbors(self.unique_cids_map.dev, tree_src.pids.dev, self.pids.dev, self.cids.dev, tree_src.pbounds.dev, self.pbounds.dev, pa_gpu_src.x.dev, pa_gpu_src.y.dev, pa_gpu_src.z.dev, pa_gpu_src.h.dev, pa_gpu_dst.x.dev, pa_gpu_dst.y.dev, pa_gpu_dst.z.dev, pa_gpu_dst.h.dev, dtype(self.radius_scale), neighbor_cid_count.dev, neighbor_cids.dev, start_indices.dev, neighbors.dev) def _is_valid_nnps_wgs(self): # Max work group size can only be found by building the # kernel. try: find_neighbor_counts = self.helper.get_kernel( 'find_neighbor_counts', sorted=self.sorted, wgs=self.leaf_size ) find_neighbor = self.helper.get_kernel( 'find_neighbors', sorted=self.sorted, wgs=self.leaf_size ) except DeviceWGSException: return False else: return True def find_neighbor_lengths(self, neighbor_cid_count, neighbor_cids, tree_src, neighbor_count, use_partitions=False): self.check_nnps_compatibility(tree_src) wgs = self.leaf_size pa_gpu_dst = self.pa.gpu pa_gpu_src = tree_src.pa.gpu dtype = ctype_to_dtype(self.c_type) def find_neighbor_counts_for_partition(partition_cids, partition_size, partition_wgs, q=None): find_neighbor_counts = self.helper.get_kernel( 'find_neighbor_counts', sorted=self.sorted, wgs=wgs ) find_neighbor_counts(partition_cids.dev, tree_src.pids.dev, self.pids.dev, self.cids.dev, tree_src.pbounds.dev, self.pbounds.dev, pa_gpu_src.x.dev, pa_gpu_src.y.dev, pa_gpu_src.z.dev, pa_gpu_src.h.dev, pa_gpu_dst.x.dev, pa_gpu_dst.y.dev, pa_gpu_dst.z.dev, pa_gpu_dst.h.dev, dtype(self.radius_scale), neighbor_cid_count.dev, neighbor_cids.dev, neighbor_count.dev, gs=(partition_wgs * partition_size,), ls=(partition_wgs,), queue=(get_queue() if q is None else q)) if use_partitions and wgs > 32: if wgs < 128: wgs1 = 32 else: wgs1 = 64 m1, n1 = self.get_leaf_size_partitions(0, wgs1) find_neighbor_counts_for_partition(m1, n1, min(wgs, wgs1)) m2, n2 = self.get_leaf_size_partitions(wgs1, wgs) find_neighbor_counts_for_partition(m2, n2, wgs) else: find_neighbor_counts_for_partition( self.unique_cids, self.unique_cid_count, wgs) def find_neighbors(self, neighbor_cid_count, neighbor_cids, tree_src, start_indices, neighbors, use_partitions=False): self.check_nnps_compatibility(tree_src) wgs = self.leaf_size if self.leaf_size % 32 == 0 else \ self.leaf_size + 32 - self.leaf_size % 32 pa_gpu_dst = self.pa.gpu pa_gpu_src = tree_src.pa.gpu dtype = ctype_to_dtype(self.c_type) def find_neighbors_for_partition(partition_cids, partition_size, partition_wgs, q=None): find_neighbors = self.helper.get_kernel('find_neighbors', sorted=self.sorted, wgs=wgs) find_neighbors(partition_cids.dev, tree_src.pids.dev, self.pids.dev, self.cids.dev, tree_src.pbounds.dev, self.pbounds.dev, pa_gpu_src.x.dev, pa_gpu_src.y.dev, pa_gpu_src.z.dev, pa_gpu_src.h.dev, pa_gpu_dst.x.dev, pa_gpu_dst.y.dev, pa_gpu_dst.z.dev, pa_gpu_dst.h.dev, dtype(self.radius_scale), neighbor_cid_count.dev, neighbor_cids.dev, start_indices.dev, neighbors.dev, gs=(partition_wgs * partition_size,), ls=(partition_wgs,), queue=(get_queue() if q is None else q)) if use_partitions and wgs > 32: if wgs < 128: wgs1 = 32 else: wgs1 = 64 m1, n1 = self.get_leaf_size_partitions(0, wgs1) fraction = (n1 / int(self.unique_cid_count)) if fraction > 0.3: find_neighbors_for_partition(m1, n1, wgs1) m2, n2 = self.get_leaf_size_partitions(wgs1, wgs) assert (n1 + n2 == self.unique_cid_count) find_neighbors_for_partition(m2, n2, wgs) return else: find_neighbors_for_partition( self.unique_cids, self.unique_cid_count, wgs) def check_nnps_compatibility(self, tree): """Check if tree types and parameters are compatible for NNPS Two trees must satisfy a few conditions so that NNPS can be performed on one tree using the other as reference. In this case, the following conditions must be satisfied - 1) Currently both should be instances of point_tree.PointTree 2) Both must have the same sortedness 3) Both must use the same floating-point datatype 4) Both must have the same leaf sizes """ if not isinstance(tree, PointTree): raise IncompatibleTreesException( "Both trees must be of the same type for NNPS" ) if self.sorted != tree.sorted: raise IncompatibleTreesException( "Tree sortedness need to be the same for NNPS" ) if self.c_type != tree.c_type or self.use_double != tree.use_double: raise IncompatibleTreesException( "Tree floating-point data types need to be the same for NNPS" ) if self.leaf_size != tree.leaf_size: raise IncompatibleTreesException( "Tree leaf sizes need to be the same for NNPS (%d != %d)" % ( self.leaf_size, tree.leaf_size) ) return
38.350224
80
0.522636
17,805
0.691913
0
0
7,176
0.278864
0
0
8,623
0.335095
49850af7a6ca8eea66c58c865c235297d9610189
2,815
py
Python
senti_analysis/data.py
hotbaby/sentiment-analysis
efb880870d905c4c02528d7d242ba06b90f0e259
[ "MIT" ]
null
null
null
senti_analysis/data.py
hotbaby/sentiment-analysis
efb880870d905c4c02528d7d242ba06b90f0e259
[ "MIT" ]
2
2020-09-25T21:17:58.000Z
2022-02-10T00:28:19.000Z
senti_analysis/data.py
hotbaby/sentiment-analysis
efb880870d905c4c02528d7d242ba06b90f0e259
[ "MIT" ]
null
null
null
# encoding: utf8 import numpy as np import pandas as pd from collections import OrderedDict from senti_analysis import config from senti_analysis import constants from senti_analysis.preprocess import (load_tokenizer, load_sentences, encode_sentence, label_transform) def load_data_set(): """ Load data set. :return: train_data_set, validation_data_set, test_data_set """ train_data_set = pd.read_csv(config.TRAIN_SET_PATH) validation_data_set = pd.read_csv(config.VALIDATION_SET_PATH) test_data_set = pd.read_csv(config.TEST_SET_PATH) return train_data_set, validation_data_set, test_data_set def x_data(): train_set = pd.read_csv(config.TRAIN_SET_PATH) val_set = pd.read_csv(config.VALIDATION_SET_PATH) tokenizer = load_tokenizer() train_sentences, val_sentences, test_sentences = load_sentences() x_train = encode_sentence(train_sentences, padding=True, max_length=config.MAX_SEQUENCE_LENGTH, tokenizer=tokenizer) x_val = encode_sentence(val_sentences, padding=True, max_length=config.MAX_SEQUENCE_LENGTH, tokenizer=tokenizer) return x_train, x_val def load_val_data_set(): val_set = pd.read_csv(config.VALIDATION_SET_PATH) tokenizer = load_tokenizer() train_sentences, val_sentences, test_sentences = load_sentences() x_val = encode_sentence(val_sentences, padding=True, max_length=config.MAX_SEQUENCE_LENGTH, tokenizer=tokenizer) train_set = pd.read_csv(config.TRAIN_SET_PATH) val_set = pd.read_csv(config.VALIDATION_SET_PATH) _, y_val = transform_y_data(train_set, val_set, constants.COLS) return x_val, y_val def transform_y_data(train_set, val_set, cols): y_train = OrderedDict() y_val = OrderedDict() for col in cols: y_train[col] = np.array(label_transform(train_set[col])) y_val[col] = np.array(label_transform(val_set[col])) return y_train, y_val def y_data(): """ generate y label data. :return: train_label_data dict, validation_label_data dict """ train_set = pd.read_csv(config.TRAIN_SET_PATH) val_set = pd.read_csv(config.VALIDATION_SET_PATH) y_train, y_val = transform_y_data(train_set, val_set, constants.COLS) return y_train, y_val def validate_data(): val_set = pd.read_csv(config.VALIDATION_SET_PATH) tokenizer = load_tokenizer() train_sentences, val_sentences, test_sentences = load_sentences() x_val = encode_sentence(val_sentences, padding=True, max_length=config.MAX_SEQUENCE_LENGTH, tokenizer=tokenizer) y_val = {} for col in constants.COLS: y_val[col] = np.array(label_transform(val_set[col])) return x_val, y_val
30.597826
99
0.713677
0
0
0
0
0
0
0
0
211
0.074956
4985efb3cec903d0cb0d0b5c74721d37a531530f
93
py
Python
pyball/models/config/stats_group.py
SebastianDang/PyBall
d1965aa01477b5ee0db9c0463ec584a7e3997395
[ "MIT" ]
74
2018-03-04T22:58:46.000Z
2021-07-06T12:28:50.000Z
pyball/models/config/stats_group.py
SebastianDang/PyBall
d1965aa01477b5ee0db9c0463ec584a7e3997395
[ "MIT" ]
18
2018-03-10T19:17:54.000Z
2020-01-04T15:42:47.000Z
pyball/models/config/stats_group.py
SebastianDang/PyBall
d1965aa01477b5ee0db9c0463ec584a7e3997395
[ "MIT" ]
13
2018-03-06T02:39:38.000Z
2020-01-17T04:38:53.000Z
from dataclasses import dataclass @dataclass class StatsGroup: displayName: str = None
13.285714
33
0.774194
45
0.483871
0
0
56
0.602151
0
0
0
0
498724366b10f885fa79f500eaf773989a21c6f1
358
py
Python
tests/test_skeleton_says.py
thomascobb/skeleton-says
e2ea189e075a0847a6679dc066bad47ced5d397a
[ "Apache-2.0" ]
null
null
null
tests/test_skeleton_says.py
thomascobb/skeleton-says
e2ea189e075a0847a6679dc066bad47ced5d397a
[ "Apache-2.0" ]
null
null
null
tests/test_skeleton_says.py
thomascobb/skeleton-says
e2ea189e075a0847a6679dc066bad47ced5d397a
[ "Apache-2.0" ]
null
null
null
from skeleton_says import say skeleton_saying_hello = r""" ------- ( Hello ) ------- \ \ .-. \(o.o) |=| __|__ //.=|=.\\ // .=|=. \\ \\ .=|=. // \\(_=_)// (:| |:) || || () () || || || || l42 ==' '== """ def test_say_command_says_hello() -> None: assert say.say("Hello") == skeleton_saying_hello
13.259259
52
0.379888
0
0
0
0
0
0
0
0
211
0.589385
49880bf16640eed07e42f1ea42b7368e4b515269
1,710
py
Python
open_connect/accounts/tests/test_tasks.py
lpatmo/actionify_the_news
998d8ca6b35d0ef1b16efca70f50e59503f5a62d
[ "MIT" ]
66
2015-11-30T20:35:38.000Z
2019-06-12T17:40:32.000Z
open_connect/accounts/tests/test_tasks.py
lpatmo/actionify_the_news
998d8ca6b35d0ef1b16efca70f50e59503f5a62d
[ "MIT" ]
18
2015-11-30T22:03:05.000Z
2019-07-02T00:50:29.000Z
open_connect/accounts/tests/test_tasks.py
lpatmo/actionify_the_news
998d8ca6b35d0ef1b16efca70f50e59503f5a62d
[ "MIT" ]
11
2015-11-30T20:56:01.000Z
2019-07-01T17:06:09.000Z
"""Tests for accounts tasks.""" from datetime import datetime from unittest import TestCase from django.conf import settings from django.utils.timezone import now from mock import patch from model_mommy import mommy from open_connect.accounts.models import Invite from open_connect.accounts.tasks import ( render_and_send_invite_email ) from open_connect.mailer.utils import unsubscribe_url class TestRenderAndSendInviteEmail(TestCase): """Test render_and_send_invite_email""" def test_invite_content(self): """Verify the email content is correct.""" invite = mommy.make('accounts.Invite') self.assertFalse(invite.notified) with patch('open_connect.accounts.tasks.send_email') as mock: render_and_send_invite_email(invite.pk) call_args = mock.call_args[1] self.assertEqual(call_args['email'], invite.email) self.assertEqual(call_args['from_email'], settings.DEFAULT_FROM_EMAIL) # Confirm that the unsubscribe URL is in the message self.assertIn(unsubscribe_url(invite.email), call_args['text']) self.assertIn(unsubscribe_url(invite.email), call_args['html']) invite = Invite.objects.get(pk=invite.pk) self.assertIsInstance(invite.notified, datetime) def test_no_duplicate_sends(self): """If the invite notification has already been sent, do nothing.""" # pylint: disable=assignment-from-none invite = mommy.make('accounts.Invite', notified=now()) with patch('open_connect.accounts.tasks.send_email') as mock: response = render_and_send_invite_email(invite.pk) self.assertIsNone(response) self.assertFalse(mock.called)
38
78
0.724561
1,310
0.766082
0
0
0
0
0
0
414
0.242105
49882b0d53f39e7e8ebf679902e5c955c3e1b55f
944
py
Python
tests/inputs/config.py
hsh-nids/python-betterproto
f5d3b48b1aa49fd64513907ed70124b32758ad3e
[ "MIT" ]
708
2019-10-11T06:23:40.000Z
2022-03-31T09:39:08.000Z
tests/inputs/config.py
hsh-nids/python-betterproto
f5d3b48b1aa49fd64513907ed70124b32758ad3e
[ "MIT" ]
302
2019-11-11T22:09:21.000Z
2022-03-29T11:21:04.000Z
tests/inputs/config.py
hsh-nids/python-betterproto
f5d3b48b1aa49fd64513907ed70124b32758ad3e
[ "MIT" ]
122
2019-12-04T16:22:53.000Z
2022-03-20T09:31:10.000Z
# Test cases that are expected to fail, e.g. unimplemented features or bug-fixes. # Remove from list when fixed. xfail = { "namespace_keywords", # 70 "googletypes_struct", # 9 "googletypes_value", # 9 "import_capitalized_package", "example", # This is the example in the readme. Not a test. } services = { "googletypes_response", "googletypes_response_embedded", "service", "service_separate_packages", "import_service_input_message", "googletypes_service_returns_empty", "googletypes_service_returns_googletype", "example_service", "empty_service", } # Indicate json sample messages to skip when testing that json (de)serialization # is symmetrical becuase some cases legitimately are not symmetrical. # Each key references the name of the test scenario and the values in the tuple # Are the names of the json files. non_symmetrical_json = {"empty_repeated": ("empty_repeated",)}
32.551724
81
0.733051
0
0
0
0
0
0
0
0
785
0.831568
4989cd340b09d2674ba44f9caf4ca76681a1034f
1,476
py
Python
examples/wagsley/wagsley/urls.py
Blogsley/blogsley
0ca17397af5d53c2fac3affb5eacec2f8d941d37
[ "MIT" ]
null
null
null
examples/wagsley/wagsley/urls.py
Blogsley/blogsley
0ca17397af5d53c2fac3affb5eacec2f8d941d37
[ "MIT" ]
null
null
null
examples/wagsley/wagsley/urls.py
Blogsley/blogsley
0ca17397af5d53c2fac3affb5eacec2f8d941d37
[ "MIT" ]
null
null
null
from django.conf import settings from django.urls import include, path, re_path from django.contrib import admin from ariadne_django.views import GraphQLView from wagtail.admin import urls as wagtailadmin_urls from wagtail.core import urls as wagtail_urls from wagtail.documents import urls as wagtaildocs_urls from puput import urls as puput_urls from search import views as search_views from wagsley.schema import schema print(schema) urlpatterns = [ path('django-admin/', admin.site.urls), path('admin/', include(wagtailadmin_urls)), path('documents/', include(wagtaildocs_urls)), #path('search/', search_views.search, name='search'), ] if settings.DEBUG: from django.conf.urls.static import static from django.contrib.staticfiles.urls import staticfiles_urlpatterns # Serve static and media files from development server urlpatterns += staticfiles_urlpatterns() urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) urlpatterns = urlpatterns + [ path('graphql/', GraphQLView.as_view(schema=schema), name='graphql'), path('accounts/', include('accounts.urls')), path('accounts/', include('django.contrib.auth.urls')), path('accounts/', include('allauth.urls')), path('events/', include('events.urls')), re_path(r'^comments/', include('django_comments_xtd.urls')), path("", include(puput_urls)), path("", include(wagtail_urls)), path('', include('home.urls')), ]
28.941176
80
0.735095
0
0
0
0
0
0
0
0
327
0.221545
4989d46fdda2f05efd221caf77a2291b849c31f5
1,311
py
Python
tests/unit/core/test_certify_timestamp.py
sys-git/certifiable
a3c33c0d4f3ac2c53be9eded3fae633fa5f697f8
[ "MIT" ]
null
null
null
tests/unit/core/test_certify_timestamp.py
sys-git/certifiable
a3c33c0d4f3ac2c53be9eded3fae633fa5f697f8
[ "MIT" ]
311
2017-09-14T22:34:21.000Z
2022-03-27T18:30:17.000Z
tests/unit/core/test_certify_timestamp.py
sys-git/certifiable
a3c33c0d4f3ac2c53be9eded3fae633fa5f697f8
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """Tests for `certifiable.core.certify_timestamp` method.""" import datetime import unittest from decimal import Decimal from certifiable import CertifierTypeError from certifiable.core import certify_timestamp class CoreCertifyTimestampTestCase(unittest.TestCase): """Tests for `certifiable.core.certify_timestamp` method.""" def setUp(self): """Set up test fixtures, if any.""" def tearDown(self): """Tear down test fixtures, if any.""" def test_timestamp(self): for i in [ datetime.datetime.utcnow(), ]: self.assertIs( certify_timestamp( i, required=True, ), i, ) def test_not_timestamp(self): from tests import TestEnum1 for i in [ 0, True, False, 3.4, 5L, complex(6, 7), Decimal(8), datetime.date(2017, 11, 1), TestEnum1.X, ]: self.assertRaises( CertifierTypeError, certify_timestamp, i, required=True, ) if __name__ == '__main__': unittest.main()
22.220339
64
0.514111
999
0.762014
0
0
0
0
0
0
247
0.188406
498b4c183ee96795b8b620014ec7c0080e178c36
1,477
py
Python
rtc_handle_example/replace/com_replace_impl.py
takashi-suehiro/rtmtools
56ee92d3b3f2ea73d7fa78dfabe6a098e06f6215
[ "MIT" ]
null
null
null
rtc_handle_example/replace/com_replace_impl.py
takashi-suehiro/rtmtools
56ee92d3b3f2ea73d7fa78dfabe6a098e06f6215
[ "MIT" ]
null
null
null
rtc_handle_example/replace/com_replace_impl.py
takashi-suehiro/rtmtools
56ee92d3b3f2ea73d7fa78dfabe6a098e06f6215
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # -*- Python -*- """ \file com_replace_idl_examplefile.py \brief Python example implementations generated from com_replace.idl \date $Date$ """ import omniORB from omniORB import CORBA, PortableServer import _GlobalIDL, _GlobalIDL__POA class ComReplace_i (_GlobalIDL__POA.ComReplace): """ \class ComReplace_i Example class implementing IDL interface ComReplace """ def __init__(self, repl_rtc): """ \brief standard constructor Initialise member variables here """ self.rtc=repl_rtc # int count_of_replaced_substring() def replace_count(self): #raise CORBA.NO_IMPLEMENT(0, CORBA.COMPLETED_NO) # *** Implement me # Must return: result return self.rtc.repl_count if __name__ == "__main__": import sys # Initialise the ORB orb = CORBA.ORB_init(sys.argv) # As an example, we activate an object in the Root POA poa = orb.resolve_initial_references("RootPOA") # Create an instance of a servant class servant = ComReplace_i() # Activate it in the Root POA poa.activate_object(servant) # Get the object reference to the object objref = servant._this() # Print a stringified IOR for it print( orb.object_to_string(objref)) # Activate the Root POA's manager poa._get_the_POAManager().activate() # Run the ORB, blocking this thread orb.run()
22.723077
69
0.666892
525
0.35545
0
0
0
0
0
0
797
0.539607
498d4cc3d6311bb103e45b049930a347b5d6e562
588
py
Python
pyknp_eventgraph/utils.py
ku-nlp/pyknp-eventgraph
927128ac41098bc45637b02a3c2420d345a41347
[ "BSD-3-Clause" ]
7
2019-11-23T10:57:35.000Z
2021-01-03T22:40:13.000Z
pyknp_eventgraph/utils.py
ku-nlp/pyknp-eventgraph
927128ac41098bc45637b02a3c2420d345a41347
[ "BSD-3-Clause" ]
1
2021-11-05T02:19:17.000Z
2021-11-05T02:19:17.000Z
pyknp_eventgraph/utils.py
ku-nlp/pyknp-eventgraph
927128ac41098bc45637b02a3c2420d345a41347
[ "BSD-3-Clause" ]
null
null
null
from io import open from typing import List from pyknp import KNP, BList def read_knp_result_file(filename: str) -> List[BList]: """Read a KNP result file. Args: filename: A filename. Returns: A list of :class:`pyknp.knp.blist.BList` objects. """ knp = KNP() blists = [] with open(filename, "rt", encoding="utf-8", errors="replace") as f: chunk = "" for line in f: chunk += line if line.strip() == "EOS": blists.append(knp.result(chunk)) chunk = "" return blists
22.615385
71
0.55102
0
0
0
0
0
0
0
0
176
0.29932
498d7bdbff51b3b458f67d9c20042b421a42d945
2,272
py
Python
freshlybuiltimagebol/OCR_Printed_Text.py
komal3120/freshlybuiltimagebol
fc46f687e326d53ec485e74a943e45b786dad36d
[ "MIT" ]
3
2020-08-01T10:27:58.000Z
2020-08-09T20:56:49.000Z
freshlybuiltimagebol/OCR_Printed_Text.py
komal3120/freshlybuiltimagebol
fc46f687e326d53ec485e74a943e45b786dad36d
[ "MIT" ]
null
null
null
freshlybuiltimagebol/OCR_Printed_Text.py
komal3120/freshlybuiltimagebol
fc46f687e326d53ec485e74a943e45b786dad36d
[ "MIT" ]
1
2020-06-28T18:02:52.000Z
2020-06-28T18:02:52.000Z
from cv2 import fastNlMeansDenoisingColored from cv2 import cvtColor from cv2 import bitwise_not,threshold,getRotationMatrix2D from cv2 import warpAffine,filter2D,imread from cv2 import THRESH_BINARY,COLOR_BGR2GRAY,THRESH_OTSU from cv2 import INTER_CUBIC,BORDER_REPLICATE,minAreaRect from numpy import column_stack,array,where from matplotlib.pyplot import imshow,xticks,yticks from pytesseract import image_to_string,pytesseract from PIL import Image class ImageProcess: '''this function is removing noise from the image''' def remove_noise(image): image = fastNlMeansDenoisingColored(image,None,20,10,7,21) return image '''this function is removing skewness. first, it calculate the angle and accordingly rotate image''' def remove_skew(image): in_gray = cvtColor(image, COLOR_BGR2GRAY) in_gray = bitwise_not(in_gray) thresh_pic = threshold(in_gray, 0, 255,THRESH_BINARY | THRESH_OTSU)[1] coords_x_y = column_stack(where(thresh_pic > 0)) angle = minAreaRect(coords_x_y)[-1] if angle < -45: angle = -(90 + angle) else: angle = -angle (h, w) = image.shape[:2] center_of_pic = (w // 2, h // 2) M = getRotationMatrix2D(center_of_pic, angle, 1.0) image = warpAffine(image, M, (w, h),flags=INTER_CUBIC, borderMode=BORDER_REPLICATE) return image '''for removing blurness from the image, this function increase sharpness of the image.''' def shapness_blur(image): sharpen_kernel = array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]]) image = filter2D(image, -1, sharpen_kernel) return image '''using pytesseract, this function extracting text from the image.''' def to_text(image): try: pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe" string_from_image = image_to_string(image,lang='eng') except Exception: pytesseract.tesseract_cmd = r"C:\Program Files(x86)\Tesseract-OCR\tesseract.exe" string_from_image = image_to_string(image,lang='eng') return string_from_image ##plot image in output def plot_image(image): imshow(image) xticks([]) yticks([])
38.508475
92
0.676496
1,816
0.799296
0
0
0
0
0
0
451
0.198504
498dafdb0fb28c8d01da1b1b893e4aaeb5ff08f2
5,944
py
Python
program/tests/integration_tests_output/graph/graph.py
alienbri/audaces-perps
aa5b0e14eae4944dd0a18af60a72b119ff17fd84
[ "MIT" ]
null
null
null
program/tests/integration_tests_output/graph/graph.py
alienbri/audaces-perps
aa5b0e14eae4944dd0a18af60a72b119ff17fd84
[ "MIT" ]
null
null
null
program/tests/integration_tests_output/graph/graph.py
alienbri/audaces-perps
aa5b0e14eae4944dd0a18af60a72b119ff17fd84
[ "MIT" ]
null
null
null
import yaml import matplotlib.pyplot as plt import math from jsonmerge import merge from datetime import datetime import plotly as ply import pandas as pd import plotly.express as px TRANSFORM = False PLOT_MEMORY = True NB_INSTRUCTIONS = 1000 f_value_props = { # [Color, MinOffset, MaxOffset] "total_collateral": ["", 0, 1], "total_fee_balance": ["", 0, 1], "rebalancing_funds": ["#99cc99", 0, 0.5], # # "rebalanced_v_coin": ["", 0, 1], "v_coin_amount": ["", 0, 1], "v_pc_amount": ["", 0, 1], "open_shorts_v_coin": ["", 0, 1], "open_longs_v_coin": ["", 0, 1], # "insurance_fund": ["#808080", 0.2, 1.2], "market_price": ["#008080", 0.5, 1.5], "oracle_price": ["#99cc99", 0.5, 1.5], "equilibrium_price": ["#ff8000", 0.5, 1], # # "signer_nonce", # "market_symbol", # "oracle_address", # "admin_address", # "vault_address", # "quote_decimals", # "coin_decimals", # "total_user_balances", # "last_funding_timestamp", # "last_recording_timestamp", # "funding_samples_offset", # "funding_samples", # "funding_history_offset", # "funding_history", # "funding_balancing_factors", # "number_of_instances", } m_value_props = { "gc_list_lengths", "page_full_ratios", "longs_depths", "shorts_depths" } market_state_line_header = "INFO - MarketDataPoint" date_time = datetime.now().strftime("%d-%m-%Y_%H-%M-%S") infile = open("../log/output.log") outfile = open( "../log/formatted_output_{}.log".format(date_time), "a") market_data_json = [] for line in infile: if (market_state_line_header in line) or ("DEBUG - Program" in line) or ("DEBUG - tx error:" in line) or ("INFO - Tree:" in line) or ("INFO - Initial Conditions:" in line) or ("INFO - Seed for this run:" in line): outfile.write(line) if market_state_line_header in line: market_state_datapoint_str = line[len( market_state_line_header):].replace("Instance", "").replace("PageInfo", "") # Stripping header line_json = yaml.load(market_state_datapoint_str) market_data_json.append(line_json) # Extract market_data = {} value_names = list(f_value_props.keys()) for key in market_data_json[0]: if key in value_names: market_data[key] = [data_point[key] for data_point in market_data_json] # Normalize if TRANSFORM: max_per_value = [max(market_data[key]) for key in value_names] min_per_value = [min(market_data[key]) for key in value_names] max_per_value[value_names.index( "market_price")] = max_per_value[value_names.index("oracle_price")] min_per_value[value_names.index( "market_price")] = min_per_value[value_names.index("oracle_price")] scaled_market_data = [[((1 - f_value_props[value_names[i]][1]) * (data_value_point - min_per_value[i]) / abs((max_per_value[i] / f_value_props[value_names[i]][2]) - min_per_value[i])) + f_value_props[value_names[i]][1] for data_value_point in market_data[value_names[i]]] for i in range(len(value_names))] else: max_per_value = [max(market_data[key]) for key in value_names] total_max = max(max_per_value) scaling_factors = [int(round(math.log10(total_max / value_max))) if value_max != 0 else 1 for value_max in max_per_value] scaled_market_data = [[(10 ** scaling_factors[i]) * data_value_point for data_value_point in market_data[value_names[i]]] for i in range(len(value_names))] # Plotting if PLOT_MEMORY: nb_lines = min(len(market_data_json), NB_INSTRUCTIONS) df = pd.DataFrame(market_data_json) print(df.columns) print(df.shape) df["shorts_depths"] = [k[0] for k in df["shorts_depths"]] df["longs_depths"] = [k[0] for k in df["longs_depths"]] df["gc_list_lengths"] = [k[0] for k in df["gc_list_lengths"]] for k in range(len(df["page_full_ratios"][0][0])): df[f"page_{k}_full_ratio"] = [l[0][k] for l in df["page_full_ratios"]] df.drop("page_full_ratios", axis=1) df = df.stack().reset_index() print(df) fig = px.line(df, x="level_0", y=0, color="level_1") fig.show() # print([len(m["page_full_ratios"]) for m in market_data_json]) page_full_ratios = [ market_data_json[i]["page_full_ratios"][0] for i in range(nb_lines)] longs_depths = [ market_data_json[i]["longs_depths"] for i in range(nb_lines) ] shorts_depths = [ market_data_json[i]["shorts_depths"] for i in range(nb_lines) ] for k in range(len(market_data_json[0]["page_full_ratios"][0])): plt.plot([page_full_ratios[i][k] for i in range(nb_lines)], label=( "page_full_ratios for page " + str(k))) plt.plot() gc_list_lenghts = [ market_data_json[i]["gc_list_lengths"][0] for i in range(nb_lines)] # TODO Mult instances # plt.plot([gc_list_lenghts[i] for i in range(nb_lines)], label=( # "gc_list_length")) plt.plot(longs_depths, label=("longs_depths")) plt.plot(shorts_depths, label=("shorts_depths")) elif TRANSFORM: for (i, key) in enumerate(value_names): if f_value_props[key][0] != "": plt.plot(scaled_market_data[i][:NB_INSTRUCTIONS], label=( key + " x1e"), color=f_value_props[key][0]) else: plt.plot(scaled_market_data[i][:NB_INSTRUCTIONS], label=( key + " x1e")) else: for (i, key) in enumerate(value_names): if f_value_props[key][0] != "": plt.plot(scaled_market_data[i], label=( key + " x1e" + str(scaling_factors[i])), color=f_value_props[key][0]) else: plt.plot(scaled_market_data[i], label=( key + " x1e")) plt.legend(prop={'size': 15}) plt.show() # block=False) # plt.savefig("../log/graph_{}.png".format(date_time), dpi=440) # gc_list_lengths: [0], page_full_ratios: [[], [0.0, 0.0, 0.0, 0.0, 0.0]]
37.383648
275
0.640646
0
0
0
0
0
0
0
0
1,743
0.293237
498e87a7732f2915dd699629baa71c985e250298
143
py
Python
app/sett.py
AndreyKaBelka/MoneySaver
5ad2bc60379aeb0b02e71760e22b260bf29982e2
[ "Apache-2.0" ]
null
null
null
app/sett.py
AndreyKaBelka/MoneySaver
5ad2bc60379aeb0b02e71760e22b260bf29982e2
[ "Apache-2.0" ]
3
2020-12-12T23:33:36.000Z
2020-12-12T23:35:54.000Z
app/sett.py
AndreyKaBelka/MoneySaver
5ad2bc60379aeb0b02e71760e22b260bf29982e2
[ "Apache-2.0" ]
null
null
null
class Settings: BOT_KEY = "" HOST_NAME = "127.0.0.1" USER_NAME = "root" USER_PASS = "Andrey171200" SQL_NAME = "moneysaver"
20.428571
30
0.608392
142
0.993007
0
0
0
0
0
0
45
0.314685
498ebed60829fc81050f096acf226151f138af86
525
py
Python
oTree/consent/__init__.py
jleutgeb/privilege
2a4f15c98d94d9f1dbf1c4685c5e96d018d58abc
[ "MIT" ]
null
null
null
oTree/consent/__init__.py
jleutgeb/privilege
2a4f15c98d94d9f1dbf1c4685c5e96d018d58abc
[ "MIT" ]
11
2021-05-06T09:45:30.000Z
2022-03-01T17:48:35.000Z
oTree/consent/__init__.py
jleutgeb/privilege
2a4f15c98d94d9f1dbf1c4685c5e96d018d58abc
[ "MIT" ]
null
null
null
from otree.api import * c = Currency doc = """ Simple Consent App Players may only continue after clicking the consent button. """ class Constants(BaseConstants): name_in_url = 'consent' players_per_group = None num_rounds = 1 class Subsession(BaseSubsession): pass class Group(BaseGroup): pass class Player(BasePlayer): consent = models.BooleanField(choices=[[True, 'Ja']]) # PAGES class Consent(Page): form_model = "player" form_fields = ["consent"] page_sequence = [Consent]
14.583333
61
0.693333
340
0.647619
0
0
0
0
0
0
125
0.238095
498efc2d71a44fd1bc6d2b0987f9eff5df4001b1
1,192
py
Python
src/pytornado/_util.py
airinnova/pytornado
6127f45af60ab05f15b441bc134089a7e7a59669
[ "Linux-OpenIB" ]
16
2019-08-13T18:49:14.000Z
2022-01-11T15:41:12.000Z
src/pytornado/_util.py
airinnova/pytornado
6127f45af60ab05f15b441bc134089a7e7a59669
[ "Linux-OpenIB" ]
24
2019-09-11T14:48:01.000Z
2022-03-18T08:17:52.000Z
src/pytornado/_util.py
airinnova/pytornado
6127f45af60ab05f15b441bc134089a7e7a59669
[ "Linux-OpenIB" ]
5
2019-09-20T18:45:45.000Z
2020-12-08T01:44:43.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # ---------------------------------------------------------------------- # Copyright 2019-2020 Airinnova AB and the FramAT authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ---------------------------------------------------------------------- """ Utils """ from numbers import Number class Schemas: any_int = {'type': int} any_num = {'type': Number} pos_int = {'type': int, '>': 0} pos_number = {'type': Number, '>': 0} string = {'type': str, '>': 0} vector3x1 = {'type': list, 'min_len': 3, 'max_len': 3, 'item_types': Number} vector6x1 = {'type': list, 'min_len': 6, 'max_len': 6, 'item_types': Number}
34.057143
80
0.59396
348
0.291946
0
0
0
0
0
0
904
0.758389
498f0ce62fa86447888328db5c5d83ceabc8b302
587
py
Python
test/application/test_auth.py
Ashaba/API-Monitor
533eb6698fcb5decb48f746784af6894844b3c69
[ "MIT" ]
null
null
null
test/application/test_auth.py
Ashaba/API-Monitor
533eb6698fcb5decb48f746784af6894844b3c69
[ "MIT" ]
22
2018-02-06T19:53:11.000Z
2021-04-30T20:35:01.000Z
test/application/test_auth.py
Ashaba/API-Monitor
533eb6698fcb5decb48f746784af6894844b3c69
[ "MIT" ]
null
null
null
from test.base import BaseTestCase, user_payload import json class TestAuth(BaseTestCase): def test_authenticate(self): response = self.client.post('/auth', data=json.dumps(user_payload), content_type='application/json') response_data = json.loads(response.data) self.assert200(response) self.assertEqual(response_data["status"], "success") def test_auth_with_no_data(self): response = self.client.post('/auth', content_type='application/json') self.assert400(response) response_data = json.loads(response.data) self.assertEqual(response_data["status"], "fail")
32.611111
102
0.76661
523
0.890971
0
0
0
0
0
0
81
0.13799
498fe8e984fc4170d05d05875ef23082a63dec00
5,918
py
Python
JumpscaleCore/core/generator/JSGenerator.py
grimpy/jumpscaleX_core
c24d6d47fccc0801e578fedb376ef110f7a00bad
[ "Apache-2.0" ]
null
null
null
JumpscaleCore/core/generator/JSGenerator.py
grimpy/jumpscaleX_core
c24d6d47fccc0801e578fedb376ef110f7a00bad
[ "Apache-2.0" ]
null
null
null
JumpscaleCore/core/generator/JSGenerator.py
grimpy/jumpscaleX_core
c24d6d47fccc0801e578fedb376ef110f7a00bad
[ "Apache-2.0" ]
null
null
null
import os import fnmatch from pathlib import Path from jinja2 import Template from .Metadata import Metadata class JSGenerator: def __init__(self, j): """ """ self._j = j self._generated = False def _check_process_file(self, path): bname = os.path.basename(path) if bname.startswith("_"): return False IGNORE = ["/template", "JSLoader.py", "SystemFSDecorators.py", "FixerReplace"] for item in IGNORE: if path.find(item) != -1: return False return True def lib_link(self, path): """ look for ".jumpscalemodules" and link the parent directory to the JSX lib dir :param path: :return: """ j = self._j # can use j here because will never be used in first step for path in j.sal.fs.listFilesInDir(path, True, filter=".jumpscalemodules"): dpath = j.sal.fs.getDirName(path) target = j.core.tools.text_replace("{DIR_BASE}/lib/jumpscale/%s" % j.sal.fs.getBaseName(dpath)) j.sal.fs.symlink(dpath, target, True) def generate(self, methods_find=False, action_method=None, action_args={}, path=None): """ walk over all found jumpscale libraries look for the classes where there is a __jslocation__ inside these are classes which need to be loaded :param reset: :return: """ self.md = Metadata(self._j) # find the directory in which we have all repo's of threefoldtech if path: rootDir = path else: rootDir = os.path.dirname(self._j.core.dir_jumpscale.rstrip("/")) p = Path(rootDir) for dpath in p.iterdir(): if not dpath.is_dir(): continue if dpath.name.startswith("."): continue for dpath2 in dpath.iterdir(): jsmodpath = os.path.join(os.fspath(dpath2), ".jumpscalemodules") if not os.path.exists(jsmodpath): continue js_lib_path = os.path.join(os.fspath(dpath2)) # NOW WE HAVE FOUND A SET OF JUMPSCALE MODULES jumpscale_repo_name = os.path.basename(dpath2) for dirName, subdirList, fileList in os.walk(os.fspath(dpath2), followlinks=True): if dirName.find("egg-info") != -1: self._j.shell() if dirName.find("Jumpscale/core") is not -1: continue if dirName.find("notebooks/") is not -1: continue # skip the core files, they don't need to be read for item in fnmatch.filter(fileList, "*.py"): path = os.path.join(dirName, item) self._log("process", path) if self._check_process_file(path): # self._log("process_ok:") self.md.jsmodule_get( path=path, jumpscale_repo_name=jumpscale_repo_name, js_lib_path=js_lib_path, methods_find=methods_find, action_method=action_method, action_args=action_args, ) self.md.groups_load() # make sure we find all groups # self._j.shell() self._render() self.report() return action_args def _log(self, cat, msg=""): print("- %-15s %s" % (cat, msg)) pass def _render(self): # create the jumpscale dir if it does not exist yet dpath = "%s/jumpscale/" % self._j.dirs.TMPDIR if not os.path.exists(dpath): os.makedirs(dpath) # write the __init__ file otherwise cannot include dpath = "%s/jumpscale/__init__.py" % self._j.dirs.TMPDIR file = open(dpath, "w") file.write("") file.close() if self._j.application._check_debug(): template_name = "template_jumpscale_debug.py" else: template_name = "template_jumpscale.py" template_path = os.path.join(os.path.dirname(__file__), "templates", template_name) template = Path(template_path).read_text() t = Template(template) C = t.render(md=self.md) dpath = self._j.core.application._lib_generation_path file = open(dpath, "w") file.write(C) file.close() self._generated = True def report(self): """ kosmos "j.core.jsgenerator.report()" write reports to /tmp/jumpscale/code_report.md :return: """ # if self._generated is False: # self.generate() for name, jsgroup in self.md.jsgroups.items(): path = "%s/jumpscale/code_report_%s.md" % (self._j.dirs.TMPDIR, jsgroup.name) file = open(path, "w") file.write(jsgroup.markdown) file.close() self.report_errors() self.report_line_changes() def report_errors(self): out = "" for cat, obj, error, trace in self._j.application.errors_init: out += "## %s:%s\n\n" % (cat, obj) out += "%s\n\n" % error out += "%s\n\n" % trace path = "%s/jumpscale/ERRORS_report.md" % (self._j.dirs.TMPDIR) file = open(path, "w") file.write(out) file.close() return len(self._j.application.errors_init) def report_line_changes(self): out = "" for item in self.md.line_changes: out += str(item) path = "%s/jumpscale/LINECHANGES_report.md" % (self._j.dirs.TMPDIR) file = open(path, "w") file.write(out) file.close()
34.811765
109
0.535992
5,804
0.980737
0
0
0
0
0
0
1,398
0.236228
49905454a4a778d8f4095622f9b3c6a78a737493
76,810
py
Python
h1/api/recovery_project_plan_api.py
hyperonecom/h1-client-python
4ce355852ba3120ec1b8f509ab5894a5c08da730
[ "MIT" ]
null
null
null
h1/api/recovery_project_plan_api.py
hyperonecom/h1-client-python
4ce355852ba3120ec1b8f509ab5894a5c08da730
[ "MIT" ]
null
null
null
h1/api/recovery_project_plan_api.py
hyperonecom/h1-client-python
4ce355852ba3120ec1b8f509ab5894a5c08da730
[ "MIT" ]
null
null
null
""" HyperOne HyperOne API # noqa: E501 The version of the OpenAPI document: 0.1.0 Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from h1.api_client import ApiClient, Endpoint as _Endpoint from h1.model_utils import ( # noqa: F401 check_allowed_values, check_validations, date, datetime, file_type, none_type, validate_and_convert_types ) from h1.model.event import Event from h1.model.inline_response400 import InlineResponse400 from h1.model.plan import Plan from h1.model.recovery_project_plan_create import RecoveryProjectPlanCreate from h1.model.recovery_project_plan_update import RecoveryProjectPlanUpdate from h1.model.resource_service import ResourceService from h1.model.tag import Tag from h1.model.tag_array import TagArray class RecoveryProjectPlanApi(object): """NOTE: This class is auto generated by OpenAPI Generator Ref: https://openapi-generator.tech Do not edit the class manually. """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def __recovery_project_plan_create( self, project_id, location_id, recovery_project_plan_create, **kwargs ): """Create recovery/plan # noqa: E501 Create plan # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.recovery_project_plan_create(project_id, location_id, recovery_project_plan_create, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id recovery_project_plan_create (RecoveryProjectPlanCreate): Keyword Args: x_idempotency_key (str): Idempotency key. [optional] x_dry_run (str): Dry run. [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Plan If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['recovery_project_plan_create'] = \ recovery_project_plan_create return self.call_with_http_info(**kwargs) self.recovery_project_plan_create = _Endpoint( settings={ 'response_type': (Plan,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/recovery/{locationId}/project/{projectId}/plan', 'operation_id': 'recovery_project_plan_create', 'http_method': 'POST', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'recovery_project_plan_create', 'x_idempotency_key', 'x_dry_run', ], 'required': [ 'project_id', 'location_id', 'recovery_project_plan_create', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'recovery_project_plan_create': (RecoveryProjectPlanCreate,), 'x_idempotency_key': (str,), 'x_dry_run': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'x_idempotency_key': 'x-idempotency-key', 'x_dry_run': 'x-dry-run', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'recovery_project_plan_create': 'body', 'x_idempotency_key': 'header', 'x_dry_run': 'header', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__recovery_project_plan_create ) def __recovery_project_plan_delete( self, project_id, location_id, plan_id, **kwargs ): """Delete recovery/plan # noqa: E501 Delete plan # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.recovery_project_plan_delete(project_id, location_id, plan_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id plan_id (str): Plan Id Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: None If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['plan_id'] = \ plan_id return self.call_with_http_info(**kwargs) self.recovery_project_plan_delete = _Endpoint( settings={ 'response_type': None, 'auth': [ 'BearerAuth' ], 'endpoint_path': '/recovery/{locationId}/project/{projectId}/plan/{planId}', 'operation_id': 'recovery_project_plan_delete', 'http_method': 'DELETE', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'plan_id', ], 'required': [ 'project_id', 'location_id', 'plan_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'plan_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'plan_id': 'planId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'plan_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__recovery_project_plan_delete ) def __recovery_project_plan_event_get( self, project_id, location_id, plan_id, event_id, **kwargs ): """Get recovery/plan.event # noqa: E501 Get recovery/plan.event # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.recovery_project_plan_event_get(project_id, location_id, plan_id, event_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id plan_id (str): Plan Id event_id (str): eventId Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Event If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['plan_id'] = \ plan_id kwargs['event_id'] = \ event_id return self.call_with_http_info(**kwargs) self.recovery_project_plan_event_get = _Endpoint( settings={ 'response_type': (Event,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/recovery/{locationId}/project/{projectId}/plan/{planId}/event/{eventId}', 'operation_id': 'recovery_project_plan_event_get', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'plan_id', 'event_id', ], 'required': [ 'project_id', 'location_id', 'plan_id', 'event_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'plan_id': (str,), 'event_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'plan_id': 'planId', 'event_id': 'eventId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'plan_id': 'path', 'event_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__recovery_project_plan_event_get ) def __recovery_project_plan_event_list( self, project_id, location_id, plan_id, **kwargs ): """List recovery/plan.event # noqa: E501 List recovery/plan.event # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.recovery_project_plan_event_list(project_id, location_id, plan_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id plan_id (str): Plan Id Keyword Args: limit (float): $limit. [optional] if omitted the server will use the default value of 100 skip (float): $skip. [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [Event] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['plan_id'] = \ plan_id return self.call_with_http_info(**kwargs) self.recovery_project_plan_event_list = _Endpoint( settings={ 'response_type': ([Event],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/recovery/{locationId}/project/{projectId}/plan/{planId}/event', 'operation_id': 'recovery_project_plan_event_list', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'plan_id', 'limit', 'skip', ], 'required': [ 'project_id', 'location_id', 'plan_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ 'limit', ] }, root_map={ 'validations': { ('limit',): { 'inclusive_maximum': 1000, 'inclusive_minimum': 1, }, }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'plan_id': (str,), 'limit': (float,), 'skip': (float,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'plan_id': 'planId', 'limit': '$limit', 'skip': '$skip', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'plan_id': 'path', 'limit': 'query', 'skip': 'query', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__recovery_project_plan_event_list ) def __recovery_project_plan_get( self, project_id, location_id, plan_id, **kwargs ): """Get recovery/plan # noqa: E501 Returns a single plan # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.recovery_project_plan_get(project_id, location_id, plan_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id plan_id (str): Plan Id Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Plan If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['plan_id'] = \ plan_id return self.call_with_http_info(**kwargs) self.recovery_project_plan_get = _Endpoint( settings={ 'response_type': (Plan,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/recovery/{locationId}/project/{projectId}/plan/{planId}', 'operation_id': 'recovery_project_plan_get', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'plan_id', ], 'required': [ 'project_id', 'location_id', 'plan_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'plan_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'plan_id': 'planId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'plan_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__recovery_project_plan_get ) def __recovery_project_plan_list( self, project_id, location_id, **kwargs ): """List recovery/plan # noqa: E501 List plan # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.recovery_project_plan_list(project_id, location_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id Keyword Args: name (str): Filter by name. [optional] tag_value (str): Filter by tag.value. [optional] tag_key (str): Filter by tag.key. [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [Plan] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id return self.call_with_http_info(**kwargs) self.recovery_project_plan_list = _Endpoint( settings={ 'response_type': ([Plan],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/recovery/{locationId}/project/{projectId}/plan', 'operation_id': 'recovery_project_plan_list', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'name', 'tag_value', 'tag_key', ], 'required': [ 'project_id', 'location_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'name': (str,), 'tag_value': (str,), 'tag_key': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'name': 'name', 'tag_value': 'tag.value', 'tag_key': 'tag.key', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'name': 'query', 'tag_value': 'query', 'tag_key': 'query', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__recovery_project_plan_list ) def __recovery_project_plan_service_get( self, project_id, location_id, plan_id, service_id, **kwargs ): """Get recovery/plan.service # noqa: E501 Get recovery/plan.service # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.recovery_project_plan_service_get(project_id, location_id, plan_id, service_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id plan_id (str): Plan Id service_id (str): serviceId Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: ResourceService If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['plan_id'] = \ plan_id kwargs['service_id'] = \ service_id return self.call_with_http_info(**kwargs) self.recovery_project_plan_service_get = _Endpoint( settings={ 'response_type': (ResourceService,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/recovery/{locationId}/project/{projectId}/plan/{planId}/service/{serviceId}', 'operation_id': 'recovery_project_plan_service_get', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'plan_id', 'service_id', ], 'required': [ 'project_id', 'location_id', 'plan_id', 'service_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'plan_id': (str,), 'service_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'plan_id': 'planId', 'service_id': 'serviceId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'plan_id': 'path', 'service_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__recovery_project_plan_service_get ) def __recovery_project_plan_service_list( self, project_id, location_id, plan_id, **kwargs ): """List recovery/plan.service # noqa: E501 List recovery/plan.service # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.recovery_project_plan_service_list(project_id, location_id, plan_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id plan_id (str): Plan Id Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [ResourceService] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['plan_id'] = \ plan_id return self.call_with_http_info(**kwargs) self.recovery_project_plan_service_list = _Endpoint( settings={ 'response_type': ([ResourceService],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/recovery/{locationId}/project/{projectId}/plan/{planId}/service', 'operation_id': 'recovery_project_plan_service_list', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'plan_id', ], 'required': [ 'project_id', 'location_id', 'plan_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'plan_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'plan_id': 'planId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'plan_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__recovery_project_plan_service_list ) def __recovery_project_plan_tag_create( self, project_id, location_id, plan_id, tag, **kwargs ): """Create recovery/plan.tag # noqa: E501 Create recovery/plan.tag # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.recovery_project_plan_tag_create(project_id, location_id, plan_id, tag, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id plan_id (str): Plan Id tag (Tag): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Tag If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['plan_id'] = \ plan_id kwargs['tag'] = \ tag return self.call_with_http_info(**kwargs) self.recovery_project_plan_tag_create = _Endpoint( settings={ 'response_type': (Tag,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/recovery/{locationId}/project/{projectId}/plan/{planId}/tag', 'operation_id': 'recovery_project_plan_tag_create', 'http_method': 'POST', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'plan_id', 'tag', ], 'required': [ 'project_id', 'location_id', 'plan_id', 'tag', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'plan_id': (str,), 'tag': (Tag,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'plan_id': 'planId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'plan_id': 'path', 'tag': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__recovery_project_plan_tag_create ) def __recovery_project_plan_tag_delete( self, project_id, location_id, plan_id, tag_id, **kwargs ): """Delete recovery/plan.tag # noqa: E501 Delete recovery/plan.tag # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.recovery_project_plan_tag_delete(project_id, location_id, plan_id, tag_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id plan_id (str): Plan Id tag_id (str): tagId Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: None If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['plan_id'] = \ plan_id kwargs['tag_id'] = \ tag_id return self.call_with_http_info(**kwargs) self.recovery_project_plan_tag_delete = _Endpoint( settings={ 'response_type': None, 'auth': [ 'BearerAuth' ], 'endpoint_path': '/recovery/{locationId}/project/{projectId}/plan/{planId}/tag/{tagId}', 'operation_id': 'recovery_project_plan_tag_delete', 'http_method': 'DELETE', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'plan_id', 'tag_id', ], 'required': [ 'project_id', 'location_id', 'plan_id', 'tag_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'plan_id': (str,), 'tag_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'plan_id': 'planId', 'tag_id': 'tagId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'plan_id': 'path', 'tag_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__recovery_project_plan_tag_delete ) def __recovery_project_plan_tag_get( self, project_id, location_id, plan_id, tag_id, **kwargs ): """Get recovery/plan.tag # noqa: E501 Get recovery/plan.tag # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.recovery_project_plan_tag_get(project_id, location_id, plan_id, tag_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id plan_id (str): Plan Id tag_id (str): tagId Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Tag If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['plan_id'] = \ plan_id kwargs['tag_id'] = \ tag_id return self.call_with_http_info(**kwargs) self.recovery_project_plan_tag_get = _Endpoint( settings={ 'response_type': (Tag,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/recovery/{locationId}/project/{projectId}/plan/{planId}/tag/{tagId}', 'operation_id': 'recovery_project_plan_tag_get', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'plan_id', 'tag_id', ], 'required': [ 'project_id', 'location_id', 'plan_id', 'tag_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'plan_id': (str,), 'tag_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'plan_id': 'planId', 'tag_id': 'tagId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'plan_id': 'path', 'tag_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__recovery_project_plan_tag_get ) def __recovery_project_plan_tag_list( self, project_id, location_id, plan_id, **kwargs ): """List recovery/plan.tag # noqa: E501 List recovery/plan.tag # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.recovery_project_plan_tag_list(project_id, location_id, plan_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id plan_id (str): Plan Id Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [Tag] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['plan_id'] = \ plan_id return self.call_with_http_info(**kwargs) self.recovery_project_plan_tag_list = _Endpoint( settings={ 'response_type': ([Tag],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/recovery/{locationId}/project/{projectId}/plan/{planId}/tag', 'operation_id': 'recovery_project_plan_tag_list', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'plan_id', ], 'required': [ 'project_id', 'location_id', 'plan_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'plan_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'plan_id': 'planId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'plan_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__recovery_project_plan_tag_list ) def __recovery_project_plan_tag_put( self, project_id, location_id, plan_id, tag_array, **kwargs ): """Replace recovery/plan.tag # noqa: E501 Replace recovery/plan.tag # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.recovery_project_plan_tag_put(project_id, location_id, plan_id, tag_array, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id plan_id (str): Plan Id tag_array (TagArray): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [Tag] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['plan_id'] = \ plan_id kwargs['tag_array'] = \ tag_array return self.call_with_http_info(**kwargs) self.recovery_project_plan_tag_put = _Endpoint( settings={ 'response_type': ([Tag],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/recovery/{locationId}/project/{projectId}/plan/{planId}/tag', 'operation_id': 'recovery_project_plan_tag_put', 'http_method': 'PUT', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'plan_id', 'tag_array', ], 'required': [ 'project_id', 'location_id', 'plan_id', 'tag_array', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'plan_id': (str,), 'tag_array': (TagArray,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'plan_id': 'planId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'plan_id': 'path', 'tag_array': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__recovery_project_plan_tag_put ) def __recovery_project_plan_update( self, project_id, location_id, plan_id, recovery_project_plan_update, **kwargs ): """Update recovery/plan # noqa: E501 Returns modified plan # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.recovery_project_plan_update(project_id, location_id, plan_id, recovery_project_plan_update, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id plan_id (str): Plan Id recovery_project_plan_update (RecoveryProjectPlanUpdate): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Plan If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['plan_id'] = \ plan_id kwargs['recovery_project_plan_update'] = \ recovery_project_plan_update return self.call_with_http_info(**kwargs) self.recovery_project_plan_update = _Endpoint( settings={ 'response_type': (Plan,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/recovery/{locationId}/project/{projectId}/plan/{planId}', 'operation_id': 'recovery_project_plan_update', 'http_method': 'PATCH', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'plan_id', 'recovery_project_plan_update', ], 'required': [ 'project_id', 'location_id', 'plan_id', 'recovery_project_plan_update', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'plan_id': (str,), 'recovery_project_plan_update': (RecoveryProjectPlanUpdate,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'plan_id': 'planId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'plan_id': 'path', 'recovery_project_plan_update': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__recovery_project_plan_update )
36.524013
137
0.442833
75,970
0.989064
0
0
0
0
0
0
41,418
0.539227
4992878d55b3a8da195170f6eea9d69be14347a9
2,059
py
Python
days/day5.py
vanHavel/AdventOfCode2021
a83ee21cffff56ba3f49de7af5113bf0b11fea7a
[ "MIT" ]
null
null
null
days/day5.py
vanHavel/AdventOfCode2021
a83ee21cffff56ba3f49de7af5113bf0b11fea7a
[ "MIT" ]
null
null
null
days/day5.py
vanHavel/AdventOfCode2021
a83ee21cffff56ba3f49de7af5113bf0b11fea7a
[ "MIT" ]
null
null
null
from collections import defaultdict from typing import List, Tuple from aocd import get_data, submit DAY = 5 YEAR = 2021 def part1(data: str) -> str: segments = read(data) covered = defaultdict(int) for segment in segments: x1, y1, x2, y2 = segment if x1 != x2 and y1 != y2: continue if x1 == x2: for y in range(min(y1, y2), max(y1, y2)+1): covered[(x1, y)] += 1 elif y1 == y2: for x in range(min(x1, x2), max(x1, x2)+1): covered[(x, y1)] += 1 ans = 0 for point in covered: if covered[point] > 1: ans += 1 return str(ans) def part2(data: str) -> str: segments = read(data) covered = defaultdict(int) for segment in segments: x1, y1, x2, y2 = segment if x1 == x2: for y in range(min(y1, y2), max(y1, y2)+1): covered[(x1, y)] += 1 elif y1 == y2: for x in range(min(x1, x2), max(x1, x2)+1): covered[(x, y1)] += 1 else: if x1 > x2: x1, y1, x2, y2 = x2, y2, x1, y1 if y1 < y2: for x in range(x1, x2+1): covered[(x, y1+(x-x1))] += 1 else: for x in range(x1, x2+1): covered[(x, y1-(x-x1))] += 1 ans = 0 for point in covered: if covered[point] > 1: ans += 1 return str(ans) def read(data: str) -> List[Tuple[int, int, int, int]]: lines = data.splitlines() segments = [] for line in lines: left, right = line.split('->') x1, y1 = left.split(',') x2, y2 = right.split(',') segments.append((int(x1), int(y1), int(x2), int(y2))) return segments if __name__ == '__main__': input_data = get_data(day=DAY, year=YEAR) ans1 = part1(input_data) print(ans1) #submit(answer=ans1, day=DAY, year=YEAR, part=1) ans2 = part2(input_data) print(ans2) submit(answer=ans2, day=DAY, year=YEAR, part=2)
27.092105
61
0.4949
0
0
0
0
0
0
0
0
68
0.033026
49936fb891f5aa506d6883922c089dfe1817eb4b
1,108
py
Python
215.kthLargestElementInAnArray2.py
ColinTing/Algorithm
02c8087503298f050deb0fbee6cb887b3aeb6592
[ "MIT" ]
null
null
null
215.kthLargestElementInAnArray2.py
ColinTing/Algorithm
02c8087503298f050deb0fbee6cb887b3aeb6592
[ "MIT" ]
null
null
null
215.kthLargestElementInAnArray2.py
ColinTing/Algorithm
02c8087503298f050deb0fbee6cb887b3aeb6592
[ "MIT" ]
null
null
null
import random class Solution: def findKthLargest(self, nums, k): """ :type nums: List[int] :type k: int :rtype: int """ if nums is None or len(nums)==0: return nums nums = self.quickSort(nums,0,len(nums)-1,k) return nums[k-1] def partition(self,nums,p,q): ra = random.randint(p,q) nums[p],nums[ra] = nums[ra],nums[p] x = nums[p] i = p for j in range(p+1,q+1,1): if nums[j]>=x: #左边是nums[j]而不是nums[i] i+=1 nums[i],nums[j] = nums[j],nums[i] nums[p],nums[i] = nums[i],nums[p] return i def quickSort(self,nums,p,q,k): if p<=q: r = self.partition(nums,p,q) if r == k-1: return nums if r < k-1: p = r+1 return self.quickSort(nums,p,q,k) if r > k-1: q = r-1 return self.quickSort(nums,p,q,k) list = [3,2,3,1,2,4,5,5,6] k = 4 s = Solution() print(s.findKthLargest(list,k))
25.767442
51
0.445848
1,024
0.914286
0
0
0
0
0
0
119
0.10625
4994b9856023b95cccc4144927c2909950d9bad5
383
gyp
Python
binding.gyp
mceSystems/node-windows-pac-resolver
a1eaaa6b74d4e82218e6d975582aab121e12da6f
[ "MIT" ]
1
2021-11-14T01:26:45.000Z
2021-11-14T01:26:45.000Z
binding.gyp
mceSystems/node-windows-pac-resolver
a1eaaa6b74d4e82218e6d975582aab121e12da6f
[ "MIT" ]
1
2021-08-31T21:38:42.000Z
2021-08-31T21:38:42.000Z
binding.gyp
mceSystems/node-windows-pac-resolver
a1eaaa6b74d4e82218e6d975582aab121e12da6f
[ "MIT" ]
1
2021-11-14T01:26:12.000Z
2021-11-14T01:26:12.000Z
{ "targets": [ { "target_name": "binding", "sources": [ "native\\winhttpBindings.cpp" ], "include_dirs": [ "<!@(node -p \"require('node-addon-api').include\")" ], "libraries": [ "WinHTTP.lib", "-DelayLoad:node.exe" ], "msbuild_settings": { "ClCompile": { "RuntimeLibrary": "MultiThreaded" } } } ] }
16.652174
68
0.48564
0
0
0
0
0
0
0
0
240
0.626632
4994cdca869fe06dd8910a681063b2822b7a3d86
2,122
py
Python
diplom_test/data_reader.py
CrackedSTone/algorithm-detects-liver-pathology
d52d08e4e6931b3502f083f20d6332f7b6839a3b
[ "Apache-2.0" ]
8
2019-04-09T07:11:26.000Z
2020-02-27T16:51:26.000Z
diplom_test/data_reader.py
il-yanko/algorithm-detects-liver-pathology
d52d08e4e6931b3502f083f20d6332f7b6839a3b
[ "Apache-2.0" ]
null
null
null
diplom_test/data_reader.py
il-yanko/algorithm-detects-liver-pathology
d52d08e4e6931b3502f083f20d6332f7b6839a3b
[ "Apache-2.0" ]
2
2019-04-04T07:13:02.000Z
2020-02-06T04:58:34.000Z
import glob import numpy as np #import cv2 from PIL import Image #import os.path class ImgReader: def __init__(self): pass @staticmethod def read_directory(dir_path, file_format=None): try: images = [np.asarray(Image.open(img_path).convert('L'), dtype=np.uint8) for img_path in glob.glob(dir_path + "*" + (("." + file_format) if file_format else ""))] print("It was loaded", len(images), "images from", dir_path) return images except Exception as e: print(e) return class DataReader: def __init__(self): pass @staticmethod def read_directory(dir_path, file_format=None): try: images = [np.asarray(np.genfromtxt(img_path, delimiter=','), dtype=np.float64) for img_path in glob.glob(dir_path + "*" + (("." + file_format) if file_format else ""))] print("It was loaded", len(images), "datafiles from", dir_path) return images except Exception as e: print(e) return # ALTERNATIVE LOADER: ''' # process RGB/grayscale def rgb_to_gray(rgb): # scalar product of colors with certain theoretical coefficients according to the YUV system return np.dot(rgb[..., :3], [0.299, 0.587, 0.114]).round(3).astype(int) # download folder BMP def get_all_bmp(full_dir): # to calculate number of files in the folder file_number = len(next(os.walk(full_dir))[2]) # print(fileNumber, "files were found") img_arr = list() for i in range(1, file_number + 1): img_arr.append(cv2.imread(full_dir + '/' + str(i) + ".bmp")) print(len(img_arr), "images were downloaded") return img_arr def get_all_img_make_gray(cwd, folder_name): path = cwd + "/" + folder_name print("\nPath = ", path) img_arr = get_all_bmp(path) for i in range(len(img_arr)): img_arr[i] = rgb_to_gray(img_arr[i]) return img_arr ''' # test load .csv ''' import os.path cwd = os.getcwd() a = cwd + "/glcm/auh/csv/" data = DataReader.read_directory(a) print(data[0]) '''
29.068493
111
0.615928
1,017
0.479265
0
0
898
0.423186
0
0
1,122
0.528746
49983ba3d7a780b5fb33eabb069b3531df6c3624
3,351
py
Python
docs/conf.py
arashbm/dag-python
a62761d516daf3a129f6a75359e1b09047ede6f2
[ "MIT" ]
null
null
null
docs/conf.py
arashbm/dag-python
a62761d516daf3a129f6a75359e1b09047ede6f2
[ "MIT" ]
null
null
null
docs/conf.py
arashbm/dag-python
a62761d516daf3a129f6a75359e1b09047ede6f2
[ "MIT" ]
null
null
null
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # -- Project information ----------------------------------------------------- project = 'Reticula' copyright = '2022' author = 'Arash Badie-Modiri' # The full version, including alpha/beta/rc tags release = '0.0.4' # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinxcontrib.bibtex' ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] primary_domain = None nitpicky = True rst_prolog = """ .. role:: py(code) :language: python :class: highlight .. role:: cpp(code) :language: cpp :class: highlight """ # REs for Python signatures with types import re typed_py_re = re.compile( r'''^ ([\w.]*\.)? # class name(s) (\w+(?: \[[^\]]+\])?) \s* # thing name (?: \(\s*(.*)\s*\) # optional: arguments (?:\s* -> \s* (.*))? # return annotation )? $ # and nothing more ''', re.VERBOSE) import sphinx.domains.python sphinx.domains.python.py_sig_re = typed_py_re # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'furo' pygments_style = "sphinx" pygments_dark_style = "monokai" html_title = "Reticula" import os.path def read_icon(path: str): with open(os.path.join(os.path.dirname(__file__), path), 'r') as f: return f.read() html_theme_options = { "source_repository": "https://github.com/reticula-network/reticula-python", "source_branch": "main", "source_directory": "docs/", "footer_icons": [ { "name": "GitHub", "url": "https://github.com/reticula-network", "html": read_icon("github.svg"), "class": "", }, { "name": "PyPi", "url": "https://pypi.org/project/reticula/", "html": read_icon("pypi.svg"), "class": "", }, ], } bibtex_bibfiles = ['references.bib'] bibtex_default_style = 'unsrt' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static']
28.887931
79
0.617428
0
0
0
0
0
0
0
0
2,561
0.764249
4998582ea46c71688c285dfd2591280666ab63f8
1,455
py
Python
libs/cloner.py
Rookout/log-scanner
bd8b940660a9f40068151dfca514e85aa730bfc0
[ "Apache-2.0" ]
null
null
null
libs/cloner.py
Rookout/log-scanner
bd8b940660a9f40068151dfca514e85aa730bfc0
[ "Apache-2.0" ]
3
2021-05-05T18:30:21.000Z
2022-03-10T11:32:52.000Z
libs/cloner.py
Rookout/log-scanner
bd8b940660a9f40068151dfca514e85aa730bfc0
[ "Apache-2.0" ]
1
2019-12-16T22:27:45.000Z
2019-12-16T22:27:45.000Z
import os import sys import shutil import random import stat import string import logging from git import Repo try: # macOS BASE_CLONE_LOCATION = os.path.join(os.path.dirname(sys.modules['__main__'].__file__), "current_clone") except: # Windows BASE_CLONE_LOCATION = os.path.join(os.getcwd(), "current_clone") try: GITHUB_TOKEN = os.environ["GITHUB_TOKEN"] except: logging.basicConfig(level=logging.INFO, format="%(levelname)s - %(message)s") logging.error("GITHUB_TOKEN must be supplied as environment variable") quit() def generate_random_key(): letters = string.ascii_lowercase return ''.join(random.choice(letters) for i in range(12)) def clone_repository(repo_url): current_clone_location = os.path.join(BASE_CLONE_LOCATION, generate_random_key()) creator = repo_url.split("/")[-2] project_name = repo_url.split("/")[-1] tokenized_repo_url = f"https://{GITHUB_TOKEN}:x-oauth-basic@github.com/{creator}/{project_name}" os.makedirs(current_clone_location, exist_ok=True) Repo.clone_from(tokenized_repo_url, current_clone_location) return current_clone_location # handles deleting readonly files with shutil def remove_readonly(func, path, excinfo): os.chmod(path, stat.S_IWRITE) func(path) def delete_currently_cloned_repository(current_clone_location): if (os.path.exists(current_clone_location)): shutil.rmtree(current_clone_location, onerror=remove_readonly)
30.957447
106
0.754639
0
0
0
0
0
0
0
0
282
0.193814
499a41cfbffd9bf9473869aaf693707dd595ba03
6,671
py
Python
tests/test_formDef.py
swhume/odmlib
597f71c60f4c6bd8639c92e9fc0ae71b8a5416a7
[ "MIT" ]
9
2021-09-15T12:26:30.000Z
2022-03-30T10:14:14.000Z
tests/test_formDef.py
swhume/odmlib
597f71c60f4c6bd8639c92e9fc0ae71b8a5416a7
[ "MIT" ]
1
2021-09-28T09:05:01.000Z
2021-09-28T09:05:01.000Z
tests/test_formDef.py
swhume/odmlib
597f71c60f4c6bd8639c92e9fc0ae71b8a5416a7
[ "MIT" ]
1
2021-09-29T04:50:23.000Z
2021-09-29T04:50:23.000Z
from unittest import TestCase import json import odmlib.odm_1_3_2.model as ODM class TestFormDef(TestCase): def setUp(self) -> None: attrs = self.set_formdef_attributes() self.formdef = ODM.FormDef(**attrs) def test_add_description(self): tt1 = ODM.TranslatedText(_content="this is the first test description", lang="en") tt2 = ODM.TranslatedText(_content="this is the second test description", lang="en") self.formdef.Description = ODM.Description() self.formdef.Description.TranslatedText = [tt1, tt2] self.assertEqual(len(self.formdef.Description.TranslatedText), 2) self.assertEqual(self.formdef.Description.TranslatedText[1]._content, 'this is the second test description') def test_add_item_group_ref(self): igr = ODM.ItemGroupRef(ItemGroupOID="ODM.IG.COMMON", Mandatory="Yes", OrderNumber=1) self.formdef.ItemGroupRef.append(igr) igr = ODM.ItemGroupRef(ItemGroupOID="ODM.IG.VS_GENERAL", Mandatory="Yes", OrderNumber=2) self.formdef.ItemGroupRef.append(igr) igr = ODM.ItemGroupRef(ItemGroupOID="ODM.IG.VS", Mandatory="Yes", OrderNumber=3) self.formdef.ItemGroupRef.append(igr) self.assertEqual(self.formdef.ItemGroupRef[0].ItemGroupOID, "ODM.IG.COMMON") self.assertEqual(self.formdef.ItemGroupRef[2].OrderNumber, 3) def test_append_item_group_ref(self): fd = ODM.FormDef(OID="ODM.F.VS", Name="Vital Signs Form", Repeating="Yes") fd.Description = ODM.Description() fd.Description.TranslatedText.append(ODM.TranslatedText(_content="this is the first test description", lang="en")) fd.ItemGroupRef.append(ODM.ItemGroupRef(ItemGroupOID="ODM.IG.COMMON", Mandatory="Yes", OrderNumber=1)) fd.ItemGroupRef.append(ODM.ItemGroupRef(ItemGroupOID="ODM.IG.VS_GENERAL", Mandatory="Yes", OrderNumber=2)) fd.ItemGroupRef.append(ODM.ItemGroupRef(ItemGroupOID="ODM.IG.VS", Mandatory="Yes", OrderNumber=3)) self.assertEqual(fd.ItemGroupRef[0].ItemGroupOID, "ODM.IG.COMMON") self.assertEqual(fd.ItemGroupRef[2].OrderNumber, 3) self.assertEqual(fd.Description.TranslatedText[0]._content, "this is the first test description") def test_add_alias(self): self.formdef.Alias.append(ODM.Alias(Context="SDTMIG", Name="VS")) self.formdef.Alias.append(ODM.Alias(Context="CDASHIG", Name="VS")) self.assertEqual(len(self.formdef.Alias), 2) self.assertEqual(self.formdef.Alias[1].Context, "CDASHIG") def test_add_not_alias(self): item = ODM.ItemDef(OID="ODM.IT.VSPOS", Name="VS Position", DataType="text") with self.assertRaises(TypeError): self.formdef.Alias = [item] self.formdef.Alias.append(ODM.Alias(Context="SDTMIG", Name="VS")) # list accepts invalid objects self.formdef.Alias.append(ODM.ItemDef(OID="ODM.IT.VSDT", Name="VS Date", DataType="text")) self.assertEqual(len(self.formdef.Alias), 2) self.assertEqual(self.formdef.Alias[0].Context, "SDTMIG") def test_to_json(self): attrs = self.set_formdef_attributes() fd = ODM.FormDef(**attrs) tt = ODM.TranslatedText(_content="this is the first test description", lang="en") fd.Description = ODM.Description() fd.Description.TranslatedText = [tt] fd.ItemGroupRef.append(ODM.ItemGroupRef(ItemGroupOID="ODM.IG.COMMON", Mandatory="Yes", OrderNumber=1)) fd.ItemGroupRef.append(ODM.ItemGroupRef(ItemGroupOID="ODM.IG.VS_GENERAL", Mandatory="Yes", OrderNumber=2)) fd.ItemGroupRef.append(ODM.ItemGroupRef(ItemGroupOID="ODM.IG.VS", Mandatory="Yes", OrderNumber=3)) fd.Alias.append(ODM.Alias(Context="SDTMIG", Name="VS")) fd_json = fd.to_json() fd_dict = json.loads(fd_json) print(fd_dict) self.assertEqual(fd_dict["OID"], "ODM.F.VS") self.assertDictEqual(fd_dict, self.expected_dict()) def test_to_dict(self): attrs = self.set_formdef_attributes() fd = ODM.FormDef(**attrs) fd.Description = ODM.Description() fd.Description.TranslatedText.append(ODM.TranslatedText(_content="this is the first test description", lang="en")) fd.ItemGroupRef.append(ODM.ItemGroupRef(ItemGroupOID="ODM.IG.COMMON", Mandatory="Yes", OrderNumber=1)) fd.ItemGroupRef.append(ODM.ItemGroupRef(ItemGroupOID="ODM.IG.VS_GENERAL", Mandatory="Yes", OrderNumber=2)) fd.ItemGroupRef.append(ODM.ItemGroupRef(ItemGroupOID="ODM.IG.VS", Mandatory="Yes", OrderNumber=3)) fd.Alias.append(ODM.Alias(Context="SDTMIG", Name="VS")) fd_dict = fd.to_dict() self.assertEqual(fd_dict["OID"], "ODM.F.VS") self.assertDictEqual(fd_dict, self.expected_dict()) def test_to_xml(self): attrs = self.set_formdef_attributes() fd = ODM.FormDef(**attrs) fd.Description = ODM.Description() fd.Description.TranslatedText.append(ODM.TranslatedText(_content="this is the first test description", lang="en")) fd.ItemGroupRef.append(ODM.ItemGroupRef(ItemGroupOID="ODM.IG.COMMON", Mandatory="Yes", OrderNumber=1)) fd.ItemGroupRef.append(ODM.ItemGroupRef(ItemGroupOID="ODM.IG.VS_GENERAL", Mandatory="Yes", OrderNumber=2)) fd.ItemGroupRef.append(ODM.ItemGroupRef(ItemGroupOID="ODM.IG.VS", Mandatory="Yes", OrderNumber=3)) fd.Alias.append(ODM.Alias(Context="SDTMIG", Name="VS")) fd_xml = fd.to_xml() self.assertEqual(fd_xml.attrib["OID"], "ODM.F.VS") igr = fd_xml.findall("ItemGroupRef") self.assertEqual(len(igr), 3) self.assertEqual(igr[0].attrib, {"ItemGroupOID": "ODM.IG.COMMON", "Mandatory": "Yes", "OrderNumber": "1"}) @staticmethod def set_formdef_attributes(): """ set some FormDef element attributes using test data :return: dictionary with FormDef attribute information """ return {"OID": "ODM.F.VS", "Name": "Vital Signs Form", "Repeating": "Yes"} @staticmethod def expected_dict(): return {'OID': 'ODM.F.VS', 'Name': 'Vital Signs Form', 'Repeating': 'Yes', 'ItemGroupRef': [{'ItemGroupOID': 'ODM.IG.COMMON', 'Mandatory': 'Yes', 'OrderNumber': 1}, {'ItemGroupOID': 'ODM.IG.VS_GENERAL', 'Mandatory': 'Yes', 'OrderNumber': 2}, {'ItemGroupOID': 'ODM.IG.VS', 'Mandatory': 'Yes', 'OrderNumber': 3}], 'Description': {'TranslatedText': [{'_content': 'this is the first test description', 'lang': 'en'}]}, 'Alias': [{'Context': 'SDTMIG', 'Name': 'VS'}]}
57.017094
122
0.665867
6,589
0.987708
0
0
932
0.139709
0
0
1,533
0.229801
499a70e266d8579796d64d1f4d58f86d8e09e3c3
143
py
Python
src/Utilities/__init__.py
sigseg5/nometa-tg
7d0d9f0cf5d8fd98a3808c07a5c44d30f1b13032
[ "MIT" ]
3
2020-12-15T07:44:58.000Z
2022-03-11T18:57:44.000Z
src/Utilities/__init__.py
sigseg5/nometa-tg
7d0d9f0cf5d8fd98a3808c07a5c44d30f1b13032
[ "MIT" ]
null
null
null
src/Utilities/__init__.py
sigseg5/nometa-tg
7d0d9f0cf5d8fd98a3808c07a5c44d30f1b13032
[ "MIT" ]
null
null
null
from src.Utilities import cmd_logger from src.Utilities import metadata_worker from src.Utilities import misc from src.Utilities import runner
28.6
41
0.86014
0
0
0
0
0
0
0
0
0
0
499c8c68960d9d5e2ecf3da660784d02e54b3419
9,062
py
Python
db_eplusout_reader/processing/esofile_time.py
DesignBuilderSoftware/db-esofile-reader
a5a80a8069e7eeb30af8ceeca28eb33e9e4f7a50
[ "MIT" ]
1
2021-07-15T14:16:10.000Z
2021-07-15T14:16:10.000Z
db_eplusout_reader/processing/esofile_time.py
DesignBuilderSoftware/db-esofile-reader
a5a80a8069e7eeb30af8ceeca28eb33e9e4f7a50
[ "MIT" ]
1
2022-03-02T08:30:20.000Z
2022-03-08T07:57:57.000Z
db_eplusout_reader/processing/esofile_time.py
DesignBuilderSoftware/db-esofile-reader
a5a80a8069e7eeb30af8ceeca28eb33e9e4f7a50
[ "MIT" ]
null
null
null
import calendar import logging from collections import namedtuple from datetime import datetime, timedelta from db_eplusout_reader.constants import RP, TS, A, D, H, M from db_eplusout_reader.exceptions import LeapYearMismatch, StartDayMismatch EsoTimestamp = namedtuple("EsoTimestamp", "month day hour end_minute") def parse_eso_timestamp(year, month, day, hour, end_minute): """ Convert E+ time format to format acceptable by datetime module. EnergyPlus date and time format is not compatible with datetime.datetime module. This because hourly information can be '24' and end minute can be '60' - which is not allowed. To get around the issue, logic is in place to convert raw input into format as required for datetime (or datetime like) module. """ if hour == 24 and end_minute == 60: shifted_datetime = datetime(year, month, day, hour - 1) corrected_datetime = shifted_datetime + timedelta(hours=1) elif end_minute == 60: # Convert last timestep of an hour corrected_datetime = datetime(year, month, day, hour, 0) elif hour == 0: corrected_datetime = datetime(year, month, day, hour, end_minute) else: corrected_datetime = datetime(year, month, day, hour - 1, end_minute) return corrected_datetime def get_month_n_days_from_cumulative(monthly_cumulative_days): """ Transform consecutive number of days in monthly data to actual number of days. EnergyPlus monthly results report a total consecutive number of days for each day. Raw data reports table as 31, 59..., this function calculates and returns actual number of days for each month 31, 28... """ old_num = monthly_cumulative_days.pop(0) m_actual_days = [old_num] for num in monthly_cumulative_days: new_num = num - old_num m_actual_days.append(new_num) old_num += new_num return m_actual_days def find_num_of_days_annual(ann_num_of_days, rp_num_of_days): """Use runperiod data to calculate number of days for each annual period.""" days = rp_num_of_days[0] // len(ann_num_of_days) return [days for _ in ann_num_of_days] def get_num_of_days(cumulative_days): """Split num of days and date.""" num_of_days = {} for table, values in cumulative_days.items(): if table == M: # calculate actual number of days for monthly table num_of_days[M] = get_month_n_days_from_cumulative(values) else: num_of_days[table] = values # calculate number of days for annual table for # an incomplete year run or multi year analysis if A in cumulative_days.keys() and RP in cumulative_days.keys(): num_of_days[A] = find_num_of_days_annual(num_of_days[A], num_of_days[RP]) return num_of_days def check_year_increment(first_step_data, current_step_data): """Check if year value should be incremented inside environment table.""" if first_step_data is current_step_data: # do not increment first step return False return first_step_data >= current_step_data def generate_datetime_dates(raw_dates, year): """Generate datetime index for a given period.""" dates = [] for i in range(0, len(raw_dates)): # based on the first, current and previous # steps decide if the year should be incremented if check_year_increment(raw_dates[0], raw_dates[i]): year += 1 # year can be incremented automatically when converting to datetime date = parse_eso_timestamp(year, *raw_dates[i]) dates.append(date) return dates def update_start_dates(dates): """Set accurate first date for monthly+ tables.""" def set_start_date(orig, refs): for ref in refs.values(): orig[0] = ref[0].replace(hour=0, minute=0) return orig timestep_to_monthly_dates = {k: dates[k] for k in dates if k in [TS, H, D, M]} if timestep_to_monthly_dates: for frequency in (M, A, RP): if frequency in dates: dates[frequency] = set_start_date( dates[frequency], timestep_to_monthly_dates ) return dates def get_n_days_from_cumulative(cumulative_days): """Convert cumulative days to number of days pers step.""" if cumulative_days: # Separate number of days data if any M to RP table is available num_of_days = get_num_of_days(cumulative_days) else: num_of_days = None return num_of_days def validate_year(year, is_leap, date, day): """Check if date for given and day corresponds to specified year.""" if calendar.isleap(year) is is_leap: test_datetime = datetime(year, date.month, date.day) test_day = test_datetime.strftime("%A") if day != test_day and day not in ( "SummerDesignDay", "WinterDesignDay", ): max_year = datetime.now().year + 10 # give some choices from future suitable_years = get_allowed_years( is_leap, date, day, max_year, n_samples=3 ) formatted_day = test_datetime.strftime("%Y-%m-%d") raise StartDayMismatch( "Start day '{}' for given day '{}'" " does not correspond to real calendar day '{}'!" "\nEither set 'year' kwarg as 'None' to identify year automatically" " or use one of '{}'.".format( day, formatted_day, test_day, suitable_years ) ) else: raise LeapYearMismatch( "Specified year '{0}' does not match expected calendar data!" " Outputs are reported for {1} year" " but given year '{0}' is {2}." " Either set 'year' kwarg as 'None' to seek year automatically" " or use {1} year.".format( year, "leap" if is_leap else "standard", "standard" if is_leap else "leap", ) ) def is_leap_year_ts_to_d(raw_dates_arr): """Check if first year is leap based on timestep, hourly or daily data.""" for tup in raw_dates_arr: if (tup.month, tup.day) == (2, 29): return True if check_year_increment(raw_dates_arr[0], tup): # stop once first year is covered return False return False def seek_year(is_leap, date, day, max_year): """Find first year matching given criteria.""" for year in range(max_year, 0, -1): if day in ("SummerDesignDay", "WinterDesignDay"): logging.info("Sizing simulation, setting year to 2002.") year = 2002 break if calendar.isleap(year) is is_leap: test_datetime = datetime(year, date.month, date.day) test_start_day = test_datetime.strftime("%A") if day == test_start_day: break else: raise ValueError( "Failed to automatically find year for following arguments" " is_leap='{}', date='{}' and day='{}'." " It seems that there ins't a year between 0 - {} matching" " date and day of week combination.".format(is_leap, date, day, max_year) ) return year def get_allowed_years( is_leap, first_date, first_day, max_year, n_samples=4, ): """Get a sample of allowed years for given conditions.""" allowed_years = [] for _ in range(n_samples): year = seek_year(is_leap, first_date, first_day, max_year) max_year = year - 1 allowed_years.append(year) return allowed_years def get_lowest_frequency(all_frequencies): """Find the shortest frequency from given ones.""" return next((freq for freq in (TS, H, D, M, A, RP) if freq in all_frequencies)) def convert_raw_dates(raw_dates, year): """Transform raw E+ date and time data into datetime.datetime objects.""" dates = {} for frequency, value in raw_dates.items(): dates[frequency] = generate_datetime_dates(value, year) return dates def convert_raw_date_data( raw_dates, #: Dict[str, List[EsoTimestamp]], days_of_week, #: Dict[str, List[str]], year, #: Optional[int], ): # -> Dict[str, List[datetime]]: """Convert EnergyPlus dates into standard datetime format.""" lowest_frequency = get_lowest_frequency(list(raw_dates.keys())) if lowest_frequency in {TS, H, D}: lowest_frequency_values = raw_dates[lowest_frequency] is_leap = is_leap_year_ts_to_d(lowest_frequency_values) first_date = lowest_frequency_values[0] first_day = days_of_week[lowest_frequency][0] if year is None: year = seek_year(is_leap, first_date, first_day, 2020) else: validate_year(year, is_leap, first_date, first_day) else: # allow any year defined or set EnergyPlus default 2002 year = year if year else 2002 dates = convert_raw_dates(raw_dates, year) return update_start_dates(dates)
36.688259
86
0.647318
0
0
0
0
0
0
0
0
2,924
0.322666
499ce59557a4ca3973fb3d83ed14750b0515612a
772
py
Python
setup.py
EliRibble/parentopticon
8593d7f72fac9706f1bd8e8326ac932f5af95a32
[ "MIT" ]
null
null
null
setup.py
EliRibble/parentopticon
8593d7f72fac9706f1bd8e8326ac932f5af95a32
[ "MIT" ]
null
null
null
setup.py
EliRibble/parentopticon
8593d7f72fac9706f1bd8e8326ac932f5af95a32
[ "MIT" ]
null
null
null
import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="parentopticon", version="0.0.1", author="Eli Ribble", author_email="junk@theribbles.org", description="A system for controlling kids access to computers.", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/eliribble/parentopticon", packages=setuptools.find_packages(), install_requires = [ "arrow==0.15.5", "chryso==2.1", "flask==1.1.2", "flask-login==0.5.0", "Jinja2==2.11.1", "psutil==5.6.6", "requests==2.23.0", "toml==0.10.0", ], classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], )
24.125
66
0.682642
0
0
0
0
0
0
0
0
418
0.541451
499cfa9ec9626bc8ee462071e912f59d22f18419
11,701
py
Python
src/race/src/my_lane_detection/slidewindow_ver2.py
young43/ISCC_2020
2a7187410bceca901bd87b753a91fd35b73ca036
[ "MIT" ]
3
2020-11-13T04:59:27.000Z
2021-04-02T06:36:03.000Z
src/race/src/my_lane_detection/slidewindow_ver2.py
yongbeomkwak/ISCC_2021
7e7e5a8a14b9ed88e1cfbe2ee585fe24e4701015
[ "MIT" ]
null
null
null
src/race/src/my_lane_detection/slidewindow_ver2.py
yongbeomkwak/ISCC_2021
7e7e5a8a14b9ed88e1cfbe2ee585fe24e4701015
[ "MIT" ]
5
2020-09-13T09:06:16.000Z
2021-06-19T02:31:23.000Z
import cv2 import numpy as np import matplotlib.pyplot as plt from findpoint import FindPoint class LineDetector: def __init__(self,img): self.frame = None self.leftx = None self.rightx = None # self.output = None self.frame = 0 self.frame_list = [] self.findpoint = FindPoint(img) def sliding_window(self,x_start_L,x_start_R,img): x_location = None out_img = np.dstack((img,img,img)) height = img.shape[0] width = img.shape[1] window_height = 5 nwindows = 30 nonzero = img.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) point_list_left = list() point_list_right = list() margin = 20 minpix = 10 left_lane_inds = [] right_lane_inds = [] good_left_inds = \ ((nonzerox >= x_start_L-20) & (nonzeroy >= 300)& (nonzeroy <= 400) & (nonzerox <= x_start_L+20)).nonzero()[ 0] good_right_inds = ((nonzerox >= x_start_R-40) & (nonzeroy >= 300)& (nonzeroy <= 400) & ( nonzerox <= x_start_R+20)).nonzero()[0] line_exist_flag = None y_current = None x_current = None good_center_inds = None p_cut = None # check the minpix before left start line # if minpix is enough on left, draw left, then draw right depends on left # else draw right, then draw left depends on right # lx_current = 120 # ly_current = 350 # rx_current = 550 # ry_current = 350 if len(good_left_inds) > minpix and len(good_right_inds) > minpix: line_flag = 3 lx_current = np.int(np.mean(nonzerox[good_left_inds])) ly_current = np.int(np.mean(nonzeroy[good_left_inds])) rx_current = np.int(np.mean(nonzerox[good_right_inds])) ry_current = np.int(np.mean(nonzeroy[good_right_inds])) elif len(good_left_inds) > minpix: line_flag = 1 lx_current = np.int(np.mean(nonzerox[good_left_inds])) ly_current = np.int(np.mean(nonzeroy[good_left_inds])) rx_current = None ry_current = None max_y = y_current elif len(good_right_inds) > minpix: line_flag = 2 rx_current = nonzerox[good_right_inds[np.argmax(nonzeroy[good_right_inds])]] ry_current = np.int(np.max(nonzeroy[good_right_inds])) lx_current = None ly_current = None else: line_flag = 4 # rx_current # ry_current # if line_flag ==3: # for i in range(len(good_left_inds)): # cv2.circle(out_img, (nonzerox[good_left_inds[i]], nonzeroy[good_left_inds[i]]), 1, (0, 255, 0), -1) # for i in range(len(good_right_inds)): # cv2.circle(out_img, (nonzerox[good_right_inds[i]], nonzeroy[good_right_inds[i]]), 1, (255,0, 0), -1) # for window in range(0, nwindows): # print('x',x_location) if line_flag != 4: # it's just for visualization of the valid inds in the region for i in range(len(good_left_inds)): cv2.circle(out_img, (nonzerox[good_left_inds[i]], nonzeroy[good_left_inds[i]]), 1, (0, 255, 0), -1) for i in range(len(good_right_inds)): cv2.circle(out_img, (nonzerox[good_right_inds[i]], nonzeroy[good_right_inds[i]]), 1, (255,0, 0), -1) # window sliding and draw # print(lx_current) # print(rx_current) for window in range(0, nwindows): # if lx_current and rx_current: # # print(line_flag) # cv2.circle(out_img,(lx_current,ly_current-window*window_height-3),3,(0,0,255),-1) # cv2.circle(out_img,(rx_current,ry_current-window*window_height-3),3,(0,0,255),-1) # mean_x = (lx_current + rx_current)/2 # cv2.circle(out_img,(mean_x,ry_current-window*window_height-3),3,(0,255,255),-1) # point_list_left.append((lx_current, ly_current-window*window_height-3)) # point_list_right.append((rx_current,ry_current-window*window_height-3)) if lx_current and rx_current: cv2.circle(out_img,(lx_current,ly_current-window*window_height-3),3,(0,0,255),-1) cv2.circle(out_img,(rx_current,ry_current-window*window_height-3),3,(0,0,255),-1) mean_x = (lx_current + rx_current)/2 cv2.circle(out_img,(mean_x,ry_current-window*window_height-3),3,(0,255,255),-1) point_list_left.append((lx_current, ly_current-window*window_height-3)) point_list_right.append((rx_current,ry_current-window*window_height-3)) elif lx_current: cv2.circle(out_img,(lx_current,ly_current-window*window_height-3),3,(0,0,255),-1) mean_x = (lx_current + width/2) cv2.circle(out_img,(mean_x,ly_current-window*window_height-3),3,(0,255,255),-1) point_list_left.append((lx_current, ly_current-window*window_height-3)) elif rx_current: # cv2.circle(out_img,(lx_current,ly_current-window*window_height-3),3,(0,0,255),-1) cv2.circle(out_img,(rx_current,ry_current-window*window_height-3),3,(0,0,255),-1) mean_x = (rx_current-width/2)/2 cv2.circle(out_img,(mean_x,ry_current-window*window_height-3),3,(0,255,255),-1) # point_list_left.append((lx_current, ly_current-window*window_height-3)) point_list_right.append((rx_current,ry_current-window*window_height-3)) if line_flag == 3: l_win_y_low = ly_current - (window + 1) * window_height l_win_y_high = ly_current - (window) * window_height l_win_x_low = lx_current - margin l_win_x_high = lx_current + margin r_win_y_low = ry_current - (window + 1) * window_height r_win_y_high = ry_current - (window) * window_height r_win_x_low = rx_current - margin r_win_x_high = rx_current + margin # draw rectangle # 0.33 is for width of the road cv2.rectangle(out_img, (l_win_x_low, l_win_y_low), (l_win_x_high, l_win_y_high), (0, 255, 0), 1) cv2.rectangle(out_img, (r_win_x_low, r_win_y_low), (r_win_x_high, r_win_y_high), (255,0, 0), 1) good_left_inds = ((nonzeroy >= l_win_y_low) & (nonzeroy < l_win_y_high) & (nonzerox >= l_win_x_low) & ( nonzerox < l_win_x_high)).nonzero()[0] good_right_inds = ((nonzeroy >= r_win_y_low) & (nonzeroy < r_win_y_high) & (nonzerox >= r_win_x_low) & ( nonzerox < r_win_x_high)).nonzero()[0] # check num of indicies in square and put next location to current if len(good_left_inds) > minpix: lx_current = np.int(np.mean(nonzerox[good_left_inds])) if len(good_right_inds) > minpix: rx_current = np.int(np.mean(nonzerox[good_right_inds])) # 338~344 is for recognize line which is yellow line in processed image(you can check in imshow) # if (l_win_y_low >= 338 and l_win_y_low < 344) and (r_win_y_low >= 338 and r_win_y_low < 344): # # 0.165 is the half of the road(0.33) x_location = rx_current - lx_current + 75 elif line_flag == 1: # rectangle x,y range init win_y_low = ly_current - (window + 1) * window_height win_y_high = ly_current - (window) * window_height win_x_low = lx_current - margin win_x_high = lx_current + margin # draw rectangle # 0.33 is for width of the road cv2.rectangle(out_img, (win_x_low, win_y_low), (win_x_high, win_y_high), (0, 255, 0), 1) # cv2.rectangle(out_img, (win_x_low + int(width * 0.33), win_y_low), # (win_x_high + int(width * 0.33), win_y_high), (255, 0, 0), 1) # indicies of dots in nonzerox in one square good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_x_low) & ( nonzerox < win_x_high)).nonzero()[0] # check num of indicies in square and put next location to current if len(good_left_inds) > minpix: # x_current = np.int(np.mean(nonzerox[good_left_inds])) lx_current = np.int(np.mean(nonzerox[good_left_inds])) # elif nonzeroy[left_lane_inds] != [] and nonzerox[left_lane_inds] != []: # p_left = np.polyfit(nonzeroy[left_lane_inds], nonzerox[left_lane_inds], 2) # x_current = np.int(np.polyval(p_left, win_y_high)) # # 338~344 is for recognize line which is yellow line in processed image(you can check in imshow) # if win_y_low >= 338 and win_y_low < 344: # # 0.165 is the half of the road(0.33) # x_location = x_current + 180 elif line_flag ==2: win_y_low = ry_current - (window + 1) * window_height win_y_high = ry_current - (window) * window_height win_x_low = rx_current - margin win_x_high = rx_current + margin # cv2.rectangle(out_img, (win_x_low , win_y_low), # (win_x_high, win_y_high), (0, 255, 0), 1) cv2.rectangle(out_img, (win_x_low, win_y_low), (win_x_high, win_y_high), (255, 0, 0), 1) good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_x_low) & ( nonzerox < win_x_high)).nonzero()[0] if len(good_right_inds) > minpix: # x_current = np.int(np.mean(nonzerox[good_right_inds])) rx_current = np.int(np.mean(nonzerox[good_right_inds])) # elif nonzeroy[right_lane_inds] != [] and nonzerox[right_lane_inds] != []: # p_right = np.polyfit(nonzeroy[right_lane_inds], nonzerox[right_lane_inds], 2) # x_current = np.int(np.polyval(p_right, win_y_high)) # if win_y_low >= 338 and win_y_low < 344: # # 0.165 is the half of the road(0.33) # x_location = x_current - 250 # left_lane_inds.extend(good_left_inds) # right_lane_inds.extend(good_right_inds) # left_lane_inds = np.concatenate(left_lane_inds) # right_lane_inds = np.concatenate(right_lane_inds) # else: return out_img, x_location, point_list_left, point_list_right def main(self,img): x_start_l,x_start_r = self.findpoint.findpoint(img) output , x_location, point_list_left, point_list_right = self.sliding_window(x_start_l,x_start_r,img) return output, x_location, point_list_left, point_list_right
52.470852
124
0.557217
11,604
0.99171
0
0
0
0
0
0
3,275
0.279891
499d165572daf46e08305c7a946da82bbf43582f
767
py
Python
broadcasts/managers.py
foolwealth/django-site-broadcasts
f870fbf96cde7ea29fc8179e71ab738d2192628f
[ "MIT" ]
5
2016-08-08T07:31:53.000Z
2020-01-21T00:10:22.000Z
broadcasts/managers.py
foolwealth/django-site-broadcasts
f870fbf96cde7ea29fc8179e71ab738d2192628f
[ "MIT" ]
2
2015-05-22T00:47:14.000Z
2018-08-15T19:07:21.000Z
broadcasts/managers.py
bennylope/django-site-broadcasts
0c7556462e7aa09a48ccce4ca8d0b4827a2ce190
[ "MIT" ]
2
2015-05-21T23:23:16.000Z
2018-08-15T17:03:51.000Z
from django.db import models from django.db.models import Q from django.utils import timezone class BroadcastManager(models.Manager): """ Manager class to show only active broadcast messages """ def active(self): """Return only active messages""" return super(BroadcastManager, self).filter(is_published=True) def current(self): """Return only current and active messages""" return self.active().filter(end_time__gte=timezone.now()).filter( Q(Q(start_time__lte=timezone.now()) | Q(start_time=None))) def latest(self): """Return the broadcast message to display""" try: return self.current().order_by("end_time")[0] except IndexError: return None
29.5
73
0.65189
670
0.873533
0
0
0
0
0
0
201
0.26206
499e17c024651f588861f4597a8d8cf5d56a914e
11,114
py
Python
google/cloud/gkehub_v1/types/membership.py
googleapis/python-gke-hub
9f620c83af1da8f27fc6933716142164d26647f2
[ "Apache-2.0" ]
3
2021-06-04T06:10:44.000Z
2021-12-30T02:19:30.000Z
google/cloud/gkehub_v1/types/membership.py
renovate-bot/python-gke-hub
9f620c83af1da8f27fc6933716142164d26647f2
[ "Apache-2.0" ]
43
2021-03-16T14:10:35.000Z
2022-03-07T16:07:33.000Z
google/cloud/gkehub_v1/types/membership.py
renovate-bot/python-gke-hub
9f620c83af1da8f27fc6933716142164d26647f2
[ "Apache-2.0" ]
3
2021-03-15T20:46:05.000Z
2022-01-29T08:11:13.000Z
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore from google.protobuf import timestamp_pb2 # type: ignore __protobuf__ = proto.module( package="google.cloud.gkehub.v1", manifest={ "Membership", "MembershipEndpoint", "GkeCluster", "KubernetesMetadata", "MembershipState", "Authority", }, ) class Membership(proto.Message): r"""Membership contains information about a member cluster. .. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields Attributes: endpoint (google.cloud.gkehub_v1.types.MembershipEndpoint): Optional. Endpoint information to reach this member. This field is a member of `oneof`_ ``type``. name (str): Output only. The full, unique name of this Membership resource in the format ``projects/*/locations/*/memberships/{membership_id}``, set during creation. ``membership_id`` must be a valid RFC 1123 compliant DNS label: 1. At most 63 characters in length 2. It must consist of lower case alphanumeric characters or ``-`` 3. It must start and end with an alphanumeric character Which can be expressed as the regex: ``[a-z0-9]([-a-z0-9]*[a-z0-9])?``, with a maximum length of 63 characters. labels (Sequence[google.cloud.gkehub_v1.types.Membership.LabelsEntry]): Optional. GCP labels for this membership. description (str): Output only. Description of this membership, limited to 63 characters. Must match the regex: ``[a-zA-Z0-9][a-zA-Z0-9_\-\.\ ]*`` This field is present for legacy purposes. state (google.cloud.gkehub_v1.types.MembershipState): Output only. State of the Membership resource. create_time (google.protobuf.timestamp_pb2.Timestamp): Output only. When the Membership was created. update_time (google.protobuf.timestamp_pb2.Timestamp): Output only. When the Membership was last updated. delete_time (google.protobuf.timestamp_pb2.Timestamp): Output only. When the Membership was deleted. external_id (str): Optional. An externally-generated and managed ID for this Membership. This ID may be modified after creation, but this is not recommended. The ID must match the regex: ``[a-zA-Z0-9][a-zA-Z0-9_\-\.]*`` If this Membership represents a Kubernetes cluster, this value should be set to the UID of the ``kube-system`` namespace object. last_connection_time (google.protobuf.timestamp_pb2.Timestamp): Output only. For clusters using Connect, the timestamp of the most recent connection established with Google Cloud. This time is updated every several minutes, not continuously. For clusters that do not use GKE Connect, or that have never connected successfully, this field will be unset. unique_id (str): Output only. Google-generated UUID for this resource. This is unique across all Membership resources. If a Membership resource is deleted and another resource with the same name is created, it gets a different unique_id. authority (google.cloud.gkehub_v1.types.Authority): Optional. How to identify workloads from this Membership. See the documentation on Workload Identity for more details: https://cloud.google.com/kubernetes- engine/docs/how-to/workload-identity """ endpoint = proto.Field( proto.MESSAGE, number=4, oneof="type", message="MembershipEndpoint", ) name = proto.Field(proto.STRING, number=1,) labels = proto.MapField(proto.STRING, proto.STRING, number=2,) description = proto.Field(proto.STRING, number=3,) state = proto.Field(proto.MESSAGE, number=5, message="MembershipState",) create_time = proto.Field(proto.MESSAGE, number=6, message=timestamp_pb2.Timestamp,) update_time = proto.Field(proto.MESSAGE, number=7, message=timestamp_pb2.Timestamp,) delete_time = proto.Field(proto.MESSAGE, number=8, message=timestamp_pb2.Timestamp,) external_id = proto.Field(proto.STRING, number=9,) last_connection_time = proto.Field( proto.MESSAGE, number=10, message=timestamp_pb2.Timestamp, ) unique_id = proto.Field(proto.STRING, number=11,) authority = proto.Field(proto.MESSAGE, number=12, message="Authority",) class MembershipEndpoint(proto.Message): r"""MembershipEndpoint contains information needed to contact a Kubernetes API, endpoint and any additional Kubernetes metadata. Attributes: gke_cluster (google.cloud.gkehub_v1.types.GkeCluster): Optional. GKE-specific information. Only present if this Membership is a GKE cluster. kubernetes_metadata (google.cloud.gkehub_v1.types.KubernetesMetadata): Output only. Useful Kubernetes-specific metadata. """ gke_cluster = proto.Field(proto.MESSAGE, number=1, message="GkeCluster",) kubernetes_metadata = proto.Field( proto.MESSAGE, number=2, message="KubernetesMetadata", ) class GkeCluster(proto.Message): r"""GkeCluster contains information specific to GKE clusters. Attributes: resource_link (str): Immutable. Self-link of the GCP resource for the GKE cluster. For example: //container.googleapis.com/projects/my- project/locations/us-west1-a/clusters/my-cluster Zonal clusters are also supported. """ resource_link = proto.Field(proto.STRING, number=1,) class KubernetesMetadata(proto.Message): r"""KubernetesMetadata provides informational metadata for Memberships representing Kubernetes clusters. Attributes: kubernetes_api_server_version (str): Output only. Kubernetes API server version string as reported by ``/version``. node_provider_id (str): Output only. Node providerID as reported by the first node in the list of nodes on the Kubernetes endpoint. On Kubernetes platforms that support zero-node clusters (like GKE-on-GCP), the node_count will be zero and the node_provider_id will be empty. node_count (int): Output only. Node count as reported by Kubernetes nodes resources. vcpu_count (int): Output only. vCPU count as reported by Kubernetes nodes resources. memory_mb (int): Output only. The total memory capacity as reported by the sum of all Kubernetes nodes resources, defined in MB. update_time (google.protobuf.timestamp_pb2.Timestamp): Output only. The time at which these details were last updated. This update_time is different from the Membership-level update_time since EndpointDetails are updated internally for API consumers. """ kubernetes_api_server_version = proto.Field(proto.STRING, number=1,) node_provider_id = proto.Field(proto.STRING, number=2,) node_count = proto.Field(proto.INT32, number=3,) vcpu_count = proto.Field(proto.INT32, number=4,) memory_mb = proto.Field(proto.INT32, number=5,) update_time = proto.Field( proto.MESSAGE, number=100, message=timestamp_pb2.Timestamp, ) class MembershipState(proto.Message): r"""MembershipState describes the state of a Membership resource. Attributes: code (google.cloud.gkehub_v1.types.MembershipState.Code): Output only. The current state of the Membership resource. """ class Code(proto.Enum): r"""Code describes the state of a Membership resource.""" CODE_UNSPECIFIED = 0 CREATING = 1 READY = 2 DELETING = 3 UPDATING = 4 SERVICE_UPDATING = 5 code = proto.Field(proto.ENUM, number=1, enum=Code,) class Authority(proto.Message): r"""Authority encodes how Google will recognize identities from this Membership. See the workload identity documentation for more details: https://cloud.google.com/kubernetes- engine/docs/how-to/workload-identity Attributes: issuer (str): Optional. A JSON Web Token (JWT) issuer URI. ``issuer`` must start with ``https://`` and be a valid URL with length <2000 characters. If set, then Google will allow valid OIDC tokens from this issuer to authenticate within the workload_identity_pool. OIDC discovery will be performed on this URI to validate tokens from the issuer. Clearing ``issuer`` disables Workload Identity. ``issuer`` cannot be directly modified; it must be cleared (and Workload Identity disabled) before using a new issuer (and re-enabling Workload Identity). workload_identity_pool (str): Output only. The name of the workload identity pool in which ``issuer`` will be recognized. There is a single Workload Identity Pool per Hub that is shared between all Memberships that belong to that Hub. For a Hub hosted in {PROJECT_ID}, the workload pool format is ``{PROJECT_ID}.hub.id.goog``, although this is subject to change in newer versions of this API. identity_provider (str): Output only. An identity provider that reflects the ``issuer`` in the workload identity pool. oidc_jwks (bytes): Optional. OIDC verification keys for this Membership in JWKS format (RFC 7517). When this field is set, OIDC discovery will NOT be performed on ``issuer``, and instead OIDC tokens will be validated using this field. """ issuer = proto.Field(proto.STRING, number=1,) workload_identity_pool = proto.Field(proto.STRING, number=2,) identity_provider = proto.Field(proto.STRING, number=3,) oidc_jwks = proto.Field(proto.BYTES, number=4,) __all__ = tuple(sorted(__protobuf__.manifest))
40.414545
110
0.65557
10,114
0.910023
0
0
0
0
0
0
8,656
0.778838
499e67a21d0dc3cde30c8234f79e3aae5c8b02f5
1,728
py
Python
tests/test_tasks.py
alarig/peeringdb-py
917cda69f7bc05be008faa66875827d408328609
[ "Apache-2.0" ]
71
2015-11-10T04:55:54.000Z
2022-02-25T20:03:48.000Z
tests/test_tasks.py
alarig/peeringdb-py
917cda69f7bc05be008faa66875827d408328609
[ "Apache-2.0" ]
53
2016-01-29T12:15:38.000Z
2022-03-04T07:03:41.000Z
tests/test_tasks.py
alarig/peeringdb-py
917cda69f7bc05be008faa66875827d408328609
[ "Apache-2.0" ]
28
2016-02-03T07:59:34.000Z
2022-02-27T19:25:06.000Z
# Units tests to directly cover both task wrapper modules - # not possible with pytest parametrization import pytest import sys from collections import defaultdict from peeringdb import _tasks_sequential TASKS_MODS = [_tasks_sequential] # pre-async compat. import if sys.version_info >= (3, 5): from peeringdb import _tasks_async TASKS_MODS.append(_tasks_async) # dummy resources for task objects class ResOne: tag = "one" class ResTwo: tag = "two" DATA_EXPECTED = {ResOne: [1, 2], ResTwo: [1, 2]} # dummy context classes parameterized on tasks module def make_context(tasks): class Context: def __init__(self): self.jobs = defaultdict(dict) self.db = {} @tasks.run_task def do_sync(self, res): return tasks.gather(self.schedule(res)) def schedule(self, res): return [self.set_job(res, k) for k in DATA_EXPECTED[res]] def set_job(self, res, k): job = self.jobs[res].get(k) if not job: job = tasks.UpdateTask(self._sync_impl(res, k), (res, k)) self.jobs[res][k] = job return job @tasks.wrap_generator def _sync_impl(self, res, k): d = self.db.setdefault(res, []) # pretend ResOne has dependency on a ResTwo if res is ResOne: yield self.set_job(ResTwo, k) d.append(k) return Context @pytest.mark.parametrize("tasks_mod", TASKS_MODS) def test_basic(tasks_mod): # generate class Context = make_context(tasks_mod) # do a dummy sync ctx = Context() for res in DATA_EXPECTED: ctx.do_sync(res) assert ctx.db == DATA_EXPECTED
24.338028
73
0.622106
886
0.512731
877
0.507523
627
0.362847
0
0
311
0.179977
499e8f87034a01b4664449514e2ad3632e9bb2a1
1,074
py
Python
dp/kadane.py
williamsmj/prakhar1989-algorithms
82e64ce9d451b33c1bce64a63276d6341a1f13b0
[ "WTFPL" ]
2,797
2015-01-01T15:52:13.000Z
2022-03-28T20:52:37.000Z
dp/kadane.py
williamsmj/prakhar1989-algorithms
82e64ce9d451b33c1bce64a63276d6341a1f13b0
[ "WTFPL" ]
35
2015-01-07T03:11:18.000Z
2021-06-27T09:09:55.000Z
dp/kadane.py
williamsmj/prakhar1989-algorithms
82e64ce9d451b33c1bce64a63276d6341a1f13b0
[ "WTFPL" ]
887
2015-01-02T06:38:19.000Z
2022-03-26T20:33:11.000Z
""" Problem: The maximum subarray problem is the task of finding the contiguous subarray within a one-dimensional array of numbers (containing at least one positive number) which has the largest sum. Solution: The recurrence relation that we solve at each step is the following - Let S[i] = be the max value contigous subsequence till the ith element of the array. Then S[i] = max(A[i], A[i] + S[i - 1]) At each step, we have two options 1) We add the ith element to the sum till the i-1th elem 2) We start a new array starting at i We take a max of both these options and accordingly build up the array. """ def max_value_contigous_subsequence(arr): A = [arr[0]] + [0] * (len(arr) - 1) max_to_here = arr[0] for i in range(1, len(arr)): A[i] = max(arr[i], arr[i] + A[i-1]) max_to_here = max(max_to_here, A[i]) return max_to_here if __name__ == "__main__": x = [-2, -3, 4, -1, -2, 1, 5, -3] y = [-2, 1, -3, 4, -1, 2, 1, -5, 4] z = [-1, 3, -5, 4, 6, -1, 2, -7, 13, -3] print map(max_value_contigous_subsequence, [x, y, z])
33.5625
71
0.645251
0
0
0
0
0
0
0
0
622
0.579143
499ea6990d99f7681e517c981073364d93c42de3
3,215
py
Python
online_recommend/full_main.py
hfhfn/db_recommend
3a9f03157bb81e295f8cff30fbc7ad2a8cfdf963
[ "MIT" ]
null
null
null
online_recommend/full_main.py
hfhfn/db_recommend
3a9f03157bb81e295f8cff30fbc7ad2a8cfdf963
[ "MIT" ]
null
null
null
online_recommend/full_main.py
hfhfn/db_recommend
3a9f03157bb81e295f8cff30fbc7ad2a8cfdf963
[ "MIT" ]
null
null
null
from user_portrait import SaveUserProfile from action_profile_recall import save_inverted_table, SaveUserRecall from movie_recall import SaveMovieRecall from movie_portrait import save_topic_weights_normal, save_predata, save_textrank, save_cut_words, save_tfidf, \ save_topK_idf_textrank, save_topK_tfidf_textrank, save_keyword_weights, save_topic_words, save_movie_profile, \ save_topic_weights, get_cv_idf_model from stat_factor import save_movie_hot_sort, save_movie_hot_factor, save_movie_time, save_movie_year_factor, \ save_movie_score_factor from action_similar_recall import SaveUserSimilarRecall from utils import user_recall_db from content_recall import Update def movie_protrait_run(): # save_predata() save_cut_words() get_cv_idf_model() # 保存cv和idf模型,基于全量数据,需定期更新 # save_textrank() # save_tfidf() # save_topK_idf_textrank() # save_topK_tfidf_textrank() # save_keyword_weights() # save_topic_words() # save_movie_profile() # save_topic_weights() # save_topic_weights_normal() def filter_factor_run(cate_id): save_movie_hot_sort() save_movie_hot_factor() save_movie_score_factor() save_movie_time() save_movie_year_factor(cate_id) pass def movie_recall_run(channel, cate_id): mr = SaveMovieRecall(channel=channel, cate_id=cate_id) # mr.save_movie_vector() # 有默认参数refit为True,默认重新训练模型,False为集群加载已训练好的模型 # mr.save_bkmeans_cluster() # 有默认参数refit为True, 默认重新训练模型,False为集群加载已训练好的模型 # mr.save_cos_similar(start_group=0) # 有默认参数start_group=0, 中间报错可以接着序号运行,修改start_group参数就好 # mr.save_movie_recall() # mr.save_movie_filter_version_recall() # mr.save_movie_filter_hot_score_year() mr.save_movie_latest_recall() def user_profile_run(): up = SaveUserProfile() Update().update_user_history(update=False, cal_history=False) up.save_action_weight() # up.save_action_weight_normal() # up.save_action_topic_weight() # 基于 topic_weights # up.save_action_topic_sort() # up.save_user_profile() def user_profile_recall_run(cate_id): save_inverted_table(cate_id) # 基于 topic_weights ur = SaveUserRecall(cate_id) # ur.save_pre_user_recall() # ur.save_pre2_user_recall() # ur.save_pre3_user_recall() # ur.save_user_recall() ur.save_user_tmp_recall_topK() ur.save_user_filter_history_recall() ur.save_user_filter_version_recall() ur.save_user_recall_hot_score_year_factor() ur.save_user_profile_latest_recall() # # 单独生成cate_history, 用于导入mysql作为测试的历史行为 # ur.save_user_history_cate() # # 以下两个方法基于 merge_action 一般只需要在更新用户历史数据时重新运行,统计行为数据 # ur.save_action_stat() # ur.save_action_stat_cate() def user_similar_recall_run(cate_id): usr = SaveUserSimilarRecall(cate_id) # usr.save_user_similar_recall() usr.save_filter_same_recall() usr.save_filter_history_recall() usr.save_user_similar_latest_recall() if __name__ == '__main__': # 除了上面基于 merge_action 的 3个方法, 其他的方法遵循从上往下的继承链, 前面的改变需要重新运行后面的方法 # movie_protrait_run() # filter_factor_run() # movie_recall_run() user_profile_run() # user_profile_recall_run() # user_similar_recall_run() pass
33.489583
115
0.765163
0
0
0
0
0
0
0
0
1,629
0.451372
499ebc213eb730a6668f7fe2c42632f4551f69a9
1,962
py
Python
libcst/codemod/commands/strip_strings_from_types.py
rowillia/LibCST
621d9a949a57a9100b7f2d1465ebd32aaeddb05c
[ "Apache-2.0" ]
null
null
null
libcst/codemod/commands/strip_strings_from_types.py
rowillia/LibCST
621d9a949a57a9100b7f2d1465ebd32aaeddb05c
[ "Apache-2.0" ]
null
null
null
libcst/codemod/commands/strip_strings_from_types.py
rowillia/LibCST
621d9a949a57a9100b7f2d1465ebd32aaeddb05c
[ "Apache-2.0" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # # pyre-strict from typing import Union import libcst import libcst.matchers as m from libcst import parse_expression from libcst.codemod import VisitorBasedCodemodCommand from libcst.codemod.visitors import AddImportsVisitor from libcst.metadata import QualifiedNameProvider class StripStringsCommand(VisitorBasedCodemodCommand): DESCRIPTION: str = "Converts string type annotations to 3.7-compatible forward references." METADATA_DEPENDENCIES = (QualifiedNameProvider,) # We want to gate the SimpleString visitor below to only SimpleStrings inside # an Annotation. @m.call_if_inside(m.Annotation()) # We also want to gate the SimpleString visitor below to ensure that we don't # erroneously strip strings from a Literal. @m.call_if_not_inside( m.Subscript( # We could match on value=m.Name("Literal") here, but then we might miss # instances where people are importing typing_extensions directly, or # importing Literal as an alias. value=m.MatchMetadataIfTrue( QualifiedNameProvider, lambda qualnames: any( qualname.name == "typing_extensions.Literal" for qualname in qualnames ), ) ) ) def leave_SimpleString( self, original_node: libcst.SimpleString, updated_node: libcst.SimpleString ) -> Union[libcst.SimpleString, libcst.BaseExpression]: AddImportsVisitor.add_needed_import(self.context, "__future__", "annotations") # Just use LibCST to evaluate the expression itself, and insert that as the # annotation. return parse_expression( updated_node.evaluated_value, config=self.module.config_for_parsing )
38.470588
95
0.700306
1,504
0.766565
0
0
1,190
0.606524
0
0
785
0.400102
49a041d58cf1e03640f9ec85a2adef02ee0d008f
1,309
py
Python
nasa_fevo/InMemoryCache.py
lradomski10m/nasa-fevo
92cc11097766e94346bc2b0b0819e9191f8b04bf
[ "MIT" ]
null
null
null
nasa_fevo/InMemoryCache.py
lradomski10m/nasa-fevo
92cc11097766e94346bc2b0b0819e9191f8b04bf
[ "MIT" ]
null
null
null
nasa_fevo/InMemoryCache.py
lradomski10m/nasa-fevo
92cc11097766e94346bc2b0b0819e9191f8b04bf
[ "MIT" ]
null
null
null
from typing import Dict, Union from nasa_fevo.Cache import Cache from datetime import datetime CACHE_EXPIRATION_TIMER_MINUTES = 10 # very simple in-memory cache # meant for small # of items class InMemoryCache(Cache): def __init__(self): self.store: Dict[str, object] = {} def get(self, key: str) -> Union[object, None]: val_exp = self.store.get(key, None) if val_exp is None: return None else: print(f"Cache hit: {key}") return val_exp[0] def put(self, key: str, value: object, expiration: datetime) -> None: if value is None: raise ValueError("Value mustn't be None") self.store[key] = (value, expiration) def purge_expired(self) -> None: print("Trying to purge ...") keys_to_delete = [] now = datetime.now() for item in self.store.items(): key = item[0] # value = item[1][0] expiration = item[1][1] if expiration < now: # print(f"Purging cache: key={key}, now={now} > exp={expiration}") keys_to_delete.append(key) for key in keys_to_delete: del self.store[key] def clear(self, key: str): if key in self.store: del self.store[key]
29.088889
82
0.571429
1,116
0.852559
0
0
0
0
0
0
206
0.157372
49a08ee15b6bd0370e65813bd6b2e298574e430e
5,079
py
Python
get_embeddings.py
PauPerezT/WEBERT
e189f84de14de6d4bae785e48c8a36eb1afaa46f
[ "Apache-1.1" ]
3
2020-07-28T10:00:44.000Z
2021-01-25T17:48:01.000Z
get_embeddings.py
PauPerezT/WEBERT
e189f84de14de6d4bae785e48c8a36eb1afaa46f
[ "Apache-1.1" ]
3
2020-12-07T18:45:16.000Z
2020-12-07T18:45:27.000Z
get_embeddings.py
PauPerezT/WEBERT
e189f84de14de6d4bae785e48c8a36eb1afaa46f
[ "Apache-1.1" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jul 27 20:45:40 2020 @author: P.A. Perez-Toro """ #%%Libraries import argparse from utils import create_fold,str2bool import csv from tqdm import tqdm import os import gc import numpy as np import pandas as pd from WEBERT import BERT, BETO, SciBERT #%% if __name__ == '__main__': parser = argparse.ArgumentParser(add_help=True) parser.add_argument('-f','--files_path', default='./texts/',help='File folder of the set of documents', action="store") parser.add_argument('-sv','--save_path', default='./bert_embeddings/',help='Path to save the embeddings', action="store") parser.add_argument('-bm','--bert_model', default='Bert',help='Choose between three different BERT models: Bert, Beto and SciBert. By default BERT', choices=('Bert','Beto', 'SciBert')) parser.add_argument('-d','--dynamic', type=str2bool, nargs='?',const=False, default=True, help='Boolean value to get dynamic features= True. By default True.', choices=(True, False)) parser.add_argument('-st','--static', type=str2bool, nargs='?',const=True, default=False, help='Boolean value to get static features= True from the embeddings such as mean, standard deviation, kurtosis, skeweness, min and max. By default False.', choices=(True, False)) parser.add_argument('-l','--language', default='english',help='Chosen language (only available for BERT model). Here is available only english or spanish. By default english.', choices=('english', 'spanish')) parser.add_argument('-sw','--stopwords', type=str2bool, nargs='?',const=True, default=False, help='Boolean value, set True if you want to remove stopwords, By default False.' , choices=(True, False)) parser.add_argument('-m','--model', default='base', help='Bert models, two options base and large. By default base.', choices=('base', 'large')) parser.add_argument('-ca','--cased', type=str2bool, nargs='?',const=True, default=False, help='Boolean value for cased= True o lower-cased= False models. By defaul False.', choices=(True, False)) parser.add_argument('-cu','--cuda', type=str2bool, nargs='?', const=True, default=False, help='Boolean value for using cuda to compute the embeddings (True). By defaul False.', choices=(True, False)) #parser.print_help() args = parser.parse_args() files_path=args.files_path save_path=args.save_path bert_model=str(args.bert_model) language=str(args.language) stopwords=args.stopwords model=str(args.model) cased=args.cased dynamic=args.dynamic static=args.static cuda=args.cuda files=np.hstack(sorted([f for f in os.listdir(files_path) if f.endswith('.txt')])) file_names=np.hstack([".".join(f.split(".")[:-1]) for f in files ]) folder_path_static=save_path+'/Static/' folder_path=save_path+'/Dynamic/' create_fold(folder_path) create_fold(folder_path_static) j=0 neurons=768 if (model=='large') & (bert_model!='SciBert'): neurons=1024 if static: labelstf=[] labelstf.append('File') for n in range (neurons): labelstf.append('Avg Neuron'+str(n+1)) for n in range (neurons): labelstf.append('STD Neuron'+str(n+1)) for n in range (neurons): labelstf.append('Skew Neuron'+str(n+1)) for n in range (neurons): labelstf.append('Kurt Neuron'+str(n+1)) for n in range (neurons): labelstf.append('Min Neuron'+str(n+1)) for n in range (neurons): labelstf.append('Max Neuron'+str(n+1)) with open(folder_path_static+bert_model+'_Static_Features.csv', 'w', newline='') as csvfile: writer = csv.writer(csvfile) writer.writerow(labelstf) pbar=tqdm(files) for file in pbar: pbar.set_description("Processing %s" % file) data = pd.read_csv(files_path+'/'+file, sep='\t', header=None) file_name=file_names[j] data_input=list(data[0]) if bert_model=='Bert': bert=BERT(data_input,file_name, language=language, stopwords=stopwords, model=model, cased=cased, cuda=cuda) elif bert_model=='Beto': bert=BETO(data_input,file_name, stopwords=stopwords, model=model, cased=cased, cuda=cuda) elif bert_model=='SciBert': bert=SciBERT(data_input,file_name, stopwords=stopwords, cased=cased, cuda=cuda) j+=1 if static: data_stat=bert.get_bert_embeddings(folder_path, dynamic=dynamic, static=static) with open(folder_path_static+bert_model+'_Static_Features.csv', 'a') as f: writer = csv.writer(f) writer.writerow(np.hstack((file_name, data_stat))) gc.collect() else: bert.get_bert_embeddings(folder_path, dynamic=dynamic, static=static) gc.collect()
40.309524
273
0.638905
0
0
0
0
0
0
0
0
1,444
0.284308
49a17ebec39db4cc9cf78ab25d40d4459000d689
264
py
Python
AiSD_03/Zadanie_7.py
DLQuake/Algorytmy_i_struktury_danych
210d0b4e868e5cc9d6aa730a2297d8074e4d52a1
[ "MIT" ]
null
null
null
AiSD_03/Zadanie_7.py
DLQuake/Algorytmy_i_struktury_danych
210d0b4e868e5cc9d6aa730a2297d8074e4d52a1
[ "MIT" ]
null
null
null
AiSD_03/Zadanie_7.py
DLQuake/Algorytmy_i_struktury_danych
210d0b4e868e5cc9d6aa730a2297d8074e4d52a1
[ "MIT" ]
null
null
null
# Zaimplementować funkcję n_sums(n: int) -> listint, która zwróci wszystkie n-cyfrowe liczby o takich samych sumach na indeksach parzystych i nieparzystych. Przykładowo, dla 3 cyfr będą to liczby m.in. 198, 220, 891, 990 def n_sums(n: int): print(n_sums(3))
44
220
0.75
0
0
0
0
0
0
0
0
227
0.837638
49a34879fe64e92596a7c6eaecaaa74f1636d0c6
2,327
py
Python
wsgiservice/xmlserializer.py
beekpr/wsgiservice
9ba21060ff19cbff984424b184a5b2829fe644bb
[ "BSD-2-Clause" ]
1
2018-01-19T10:44:15.000Z
2018-01-19T10:44:15.000Z
wsgiservice/xmlserializer.py
beekpr/wsgiservice
9ba21060ff19cbff984424b184a5b2829fe644bb
[ "BSD-2-Clause" ]
2
2015-10-12T07:53:57.000Z
2016-06-17T11:13:08.000Z
wsgiservice/xmlserializer.py
beekpr/wsgiservice
9ba21060ff19cbff984424b184a5b2829fe644bb
[ "BSD-2-Clause" ]
null
null
null
"""Helper to convert Python data structures into XML. Used so we can return intuitive data from resource methods which are usable as JSON but can also be returned as XML. """ import re from xml.sax.saxutils import escape as xml_escape # Regular expression matching all the illegal XML characters. RE_ILLEGAL_XML = re.compile( u'([\u0000-\u0008\u000b-\u000c\u000e-\u001f\ufffe-\uffff])|([%s-%s][^%s-%s])|([^%s-%s][%s-%s])|([%s-%s]$)|(^[%s-%s])' % \ (unichr(0xd800),unichr(0xdbff),unichr(0xdc00),unichr(0xdfff), unichr(0xd800),unichr(0xdbff),unichr(0xdc00),unichr(0xdfff), unichr(0xd800),unichr(0xdbff),unichr(0xdc00),unichr(0xdfff))) def dumps(obj, root_tag): """Serialize :arg:`obj` to an XML :class:`str`. """ xml = _get_xml_value(obj) if xml: # Remove invalid XML xml = RE_ILLEGAL_XML.sub('', xml) if root_tag is None: return xml else: root = root_tag return '<' + root + '>' + xml + '</' + root + '>' def _get_xml_value(value): """Convert an individual value to an XML string. Calls itself recursively for dictionaries and lists. Uses some heuristics to convert the data to XML: - In dictionaries, the keys become the tag name. - In lists the tag name is 'child' with an order-attribute giving the list index. - All other values are included as is. All values are escaped to fit into the XML document. :param value: The value to convert to XML. :type value: Any valid Python value :rtype: string """ retval = [] if isinstance(value, dict): for key, value in value.iteritems(): retval.append('<' + xml_escape(str(key)) + '>') retval.append(_get_xml_value(value)) retval.append('</' + xml_escape(str(key)) + '>') elif isinstance(value, list): for key, value in enumerate(value): retval.append('<child order="' + xml_escape(str(key)) + '">') retval.append(_get_xml_value(value)) retval.append('</child>') elif isinstance(value, bool): retval.append(xml_escape(str(value).lower())) elif isinstance(value, unicode): retval.append(xml_escape(value.encode('utf-8'))) else: retval.append(xml_escape(str(value))) return "".join(retval)
35.8
125
0.627417
0
0
0
0
0
0
0
0
1,030
0.44263
b8c51a5a3052b41343351c2e050b600648c80729
45,700
py
Python
sql/query.py
real-fire/archer
8e9e82a51125859c61d23496ad0cab0a4bbc5181
[ "Apache-2.0" ]
null
null
null
sql/query.py
real-fire/archer
8e9e82a51125859c61d23496ad0cab0a4bbc5181
[ "Apache-2.0" ]
null
null
null
sql/query.py
real-fire/archer
8e9e82a51125859c61d23496ad0cab0a4bbc5181
[ "Apache-2.0" ]
null
null
null
import re import simplejson as json from django.core.urlresolvers import reverse from django.db.models import Q, Min, F, Sum from django.db import connection from django.conf import settings from django.db.models.functions import Concat from django.views.decorators.csrf import csrf_exempt from django.shortcuts import render, get_object_or_404 from django.http import HttpResponse, HttpResponseRedirect from django.core import serializers from django.db import transaction from datetime import date from django.db.models import Value as V import datetime import time from sql.extend_json_encoder import ExtendJSONEncoder from .aes_decryptor import Prpcrypt from .sendmail import MailSender from .dao import Dao from .const import WorkflowDict from .inception import InceptionDao from .models import users, master_config, slave_config, QueryPrivilegesApply, QueryPrivileges, QueryLog, SlowQuery, \ SlowQueryHistory from .data_masking import Masking from .workflow import Workflow from .permission import role_required, superuser_required if settings.ALIYUN_RDS_MANAGE: from .aliyun_function import slowquery_review as aliyun_rds_slowquery_review, \ slowquery_review_history as aliyun_rds_slowquery_review_history dao = Dao() prpCryptor = Prpcrypt() inceptionDao = InceptionDao() datamasking = Masking() workflowOb = Workflow() mailSenderOb = MailSender() # 查询权限申请用于工作流审核回调 def query_audit_call_back(workflow_id, workflow_status): # 更新业务表状态 apply_info = QueryPrivilegesApply() apply_info.apply_id = workflow_id apply_info.status = workflow_status apply_info.save(update_fields=['status']) # 审核通过插入权限信息,批量插入,减少性能消耗 if workflow_status == WorkflowDict.workflow_status['audit_success']: apply_queryset = QueryPrivilegesApply.objects.get(apply_id=workflow_id) # 库权限 if apply_queryset.priv_type == 1: insertlist = [QueryPrivileges( user_name=apply_queryset.user_name, cluster_name=apply_queryset.cluster_name, db_name=db_name, table_name=apply_queryset.table_list, valid_date=apply_queryset.valid_date, limit_num=apply_queryset.limit_num, priv_type=apply_queryset.priv_type) for db_name in apply_queryset.db_list.split(',')] # 表权限 elif apply_queryset.priv_type == 2: insertlist = [QueryPrivileges( user_name=apply_queryset.user_name, cluster_name=apply_queryset.cluster_name, db_name=apply_queryset.db_list, table_name=table_name, valid_date=apply_queryset.valid_date, limit_num=apply_queryset.limit_num, priv_type=apply_queryset.priv_type) for table_name in apply_queryset.table_list.split(',')] QueryPrivileges.objects.bulk_create(insertlist) # 查询权限校验 def query_priv_check(loginUserOb, cluster_name, dbName, sqlContent, limit_num): finalResult = {'status': 0, 'msg': 'ok', 'data': {}} # 检查用户是否有该数据库/表的查询权限 loginUser = loginUserOb.username if loginUserOb.is_superuser == 1 or loginUserOb.role == 'DBA': user_limit_num = getattr(settings, 'ADMIN_QUERY_LIMIT') if int(limit_num) == 0: limit_num = int(user_limit_num) else: limit_num = min(int(limit_num), int(user_limit_num)) pass # 查看表结构和执行计划,inception会报错,故单独处理,explain直接跳过不做校验 elif re.match(r"^show\s+create\s+table", sqlContent.lower()): tb_name = re.sub('^show\s+create\s+table', '', sqlContent, count=1, flags=0).strip() # 先判断是否有整库权限 db_privileges = QueryPrivileges.objects.filter(user_name=loginUser, cluster_name=cluster_name, db_name=dbName, priv_type=1, valid_date__gte=datetime.datetime.now(), is_deleted=0) # 无整库权限再验证表权限 if len(db_privileges) == 0: tb_privileges = QueryPrivileges.objects.filter(user_name=loginUser, cluster_name=cluster_name, db_name=dbName, table_name=tb_name, priv_type=2, valid_date__gte=datetime.datetime.now(), is_deleted=0) if len(tb_privileges) == 0: finalResult['status'] = 1 finalResult['msg'] = '你无' + dbName + '.' + tb_name + '表的查询权限!请先到查询权限管理进行申请' return finalResult # sql查询, 可以校验到表级权限 else: # 首先使用inception的语法树打印获取查询涉及的的表 table_ref_result = datamasking.query_table_ref(sqlContent + ';', cluster_name, dbName) # 正确解析拿到表数据,可以校验表权限 if table_ref_result['status'] == 0: table_ref = table_ref_result['data'] # 获取表信息,校验是否拥有全部表查询权限 QueryPrivilegesOb = QueryPrivileges.objects.filter(user_name=loginUser, cluster_name=cluster_name) # 先判断是否有整库权限 for table in table_ref: db_privileges = QueryPrivilegesOb.filter(db_name=table['db'], priv_type=1, valid_date__gte=datetime.datetime.now(), is_deleted=0) # 无整库权限再验证表权限 if len(db_privileges) == 0: tb_privileges = QueryPrivilegesOb.filter(db_name=table['db'], table_name=table['table'], valid_date__gte=datetime.datetime.now(), is_deleted=0) if len(tb_privileges) == 0: finalResult['status'] = 1 finalResult['msg'] = '你无' + table['db'] + '.' + table['table'] + '表的查询权限!请先到查询权限管理进行申请' return finalResult # 获取表数据报错,检查配置文件是否允许继续执行,并进行库权限校验 else: table_ref = None # 校验库权限,防止inception的语法树打印错误时连库权限也未做校验 privileges = QueryPrivileges.objects.filter(user_name=loginUser, cluster_name=cluster_name, db_name=dbName, valid_date__gte=datetime.datetime.now(), is_deleted=0) if len(privileges) == 0: finalResult['status'] = 1 finalResult['msg'] = '你无' + dbName + '数据库的查询权限!请先到查询权限管理进行申请' return finalResult if settings.CHECK_QUERY_ON_OFF: return table_ref_result else: pass # 获取查询涉及表的最小limit限制 if table_ref: db_list = [table_info['db'] for table_info in table_ref] table_list = [table_info['table'] for table_info in table_ref] user_limit_num = QueryPrivileges.objects.filter(user_name=loginUser, cluster_name=cluster_name, db_name__in=db_list, table_name__in=table_list, valid_date__gte=datetime.datetime.now(), is_deleted=0).aggregate(Min('limit_num'))['limit_num__min'] if user_limit_num is None: # 如果表没获取到则获取涉及库的最小limit限制 user_limit_num = QueryPrivileges.objects.filter(user_name=loginUser, cluster_name=cluster_name, db_name=dbName, valid_date__gte=datetime.datetime.now(), is_deleted=0).aggregate(Min('limit_num'))[ 'limit_num__min'] else: # 如果表没获取到则获取涉及库的最小limit限制 user_limit_num = QueryPrivileges.objects.filter(user_name=loginUser, cluster_name=cluster_name, db_name=dbName, valid_date__gte=datetime.datetime.now(), is_deleted=0).aggregate(Min('limit_num'))['limit_num__min'] if int(limit_num) == 0: limit_num = user_limit_num else: limit_num = min(int(limit_num), user_limit_num) finalResult['data'] = limit_num return finalResult # 获取所有集群名称 @csrf_exempt def getClusterList(request): slaves = slave_config.objects.all().order_by('cluster_name') result = {'status': 0, 'msg': 'ok', 'data': []} # 获取所有集群名称 listAllClusterName = [slave.cluster_name for slave in slaves] result['data'] = listAllClusterName return HttpResponse(json.dumps(result), content_type='application/json') # 获取集群里面的数据库集合 @csrf_exempt def getdbNameList(request): clusterName = request.POST.get('cluster_name') is_master = request.POST.get('is_master') result = {'status': 0, 'msg': 'ok', 'data': []} if is_master: try: master_info = master_config.objects.get(cluster_name=clusterName) except Exception: result['status'] = 1 result['msg'] = '找不到对应的主库配置信息,请配置' return HttpResponse(json.dumps(result), content_type='application/json') try: # 取出该集群主库的连接方式,为了后面连进去获取所有databases listDb = dao.getAlldbByCluster(master_info.master_host, master_info.master_port, master_info.master_user, prpCryptor.decrypt(master_info.master_password)) # 要把result转成JSON存进数据库里,方便SQL单子详细信息展示 result['data'] = listDb except Exception as msg: result['status'] = 1 result['msg'] = str(msg) else: try: slave_info = slave_config.objects.get(cluster_name=clusterName) except Exception: result['status'] = 1 result['msg'] = '找不到对应的从库配置信息,请配置' return HttpResponse(json.dumps(result), content_type='application/json') try: # 取出该集群的连接方式,为了后面连进去获取所有databases listDb = dao.getAlldbByCluster(slave_info.slave_host, slave_info.slave_port, slave_info.slave_user, prpCryptor.decrypt(slave_info.slave_password)) # 要把result转成JSON存进数据库里,方便SQL单子详细信息展示 result['data'] = listDb except Exception as msg: result['status'] = 1 result['msg'] = str(msg) return HttpResponse(json.dumps(result), content_type='application/json') # 获取数据库的表集合 @csrf_exempt def getTableNameList(request): clusterName = request.POST.get('cluster_name') db_name = request.POST.get('db_name') is_master = request.POST.get('is_master') result = {'status': 0, 'msg': 'ok', 'data': []} if is_master: try: master_info = master_config.objects.get(cluster_name=clusterName) except Exception: result['status'] = 1 result['msg'] = '找不到对应的主库配置信息,请配置' return HttpResponse(json.dumps(result), content_type='application/json') try: # 取出该集群主库的连接方式,为了后面连进去获取所有的表 listTb = dao.getAllTableByDb(master_info.master_host, master_info.master_port, master_info.master_user, prpCryptor.decrypt(master_info.master_password), db_name) # 要把result转成JSON存进数据库里,方便SQL单子详细信息展示 result['data'] = listTb except Exception as msg: result['status'] = 1 result['msg'] = str(msg) else: try: slave_info = slave_config.objects.get(cluster_name=clusterName) except Exception: result['status'] = 1 result['msg'] = '找不到对应的从库配置信息,请配置' return HttpResponse(json.dumps(result), content_type='application/json') try: # 取出该集群从库的连接方式,为了后面连进去获取所有的表 listTb = dao.getAllTableByDb(slave_info.slave_host, slave_info.slave_port, slave_info.slave_user, prpCryptor.decrypt(slave_info.slave_password), db_name) # 要把result转成JSON存进数据库里,方便SQL单子详细信息展示 result['data'] = listTb except Exception as msg: result['status'] = 1 result['msg'] = str(msg) return HttpResponse(json.dumps(result), content_type='application/json') # 获取表里面的字段集合 @csrf_exempt def getColumnNameList(request): clusterName = request.POST.get('cluster_name') db_name = request.POST.get('db_name') tb_name = request.POST.get('tb_name') is_master = request.POST.get('is_master') result = {'status': 0, 'msg': 'ok', 'data': []} if is_master: try: master_info = master_config.objects.get(cluster_name=clusterName) except Exception: result['status'] = 1 result['msg'] = '找不到对应的主库配置信息,请配置' return HttpResponse(json.dumps(result), content_type='application/json') try: # 取出该集群主库的连接方式,为了后面连进去获取所有字段 listCol = dao.getAllColumnsByTb(master_info.master_host, master_info.master_port, master_info.master_user, prpCryptor.decrypt(master_info.master_password), db_name, tb_name) # 要把result转成JSON存进数据库里,方便SQL单子详细信息展示 result['data'] = listCol except Exception as msg: result['status'] = 1 result['msg'] = str(msg) else: try: slave_info = slave_config.objects.get(cluster_name=clusterName) except Exception: result['status'] = 1 result['msg'] = '找不到对应的从库配置信息,请配置' return HttpResponse(json.dumps(result), content_type='application/json') try: # 取出该集群的连接方式,为了后面连进去获取表的所有字段 listCol = dao.getAllColumnsByTb(slave_info.slave_host, slave_info.slave_port, slave_info.slave_user, prpCryptor.decrypt(slave_info.slave_password), db_name, tb_name) # 要把result转成JSON存进数据库里,方便SQL单子详细信息展示 result['data'] = listCol except Exception as msg: result['status'] = 1 result['msg'] = str(msg) return HttpResponse(json.dumps(result), content_type='application/json') # 获取查询权限申请列表 @csrf_exempt def getqueryapplylist(request): # 获取用户信息 loginUser = request.session.get('login_username', False) loginUserOb = users.objects.get(username=loginUser) limit = int(request.POST.get('limit')) offset = int(request.POST.get('offset')) limit = offset + limit # 获取搜索参数 search = request.POST.get('search') if search is None: search = '' # 获取列表数据,申请人只能查看自己申请的数据,管理员可以看到全部数据 if loginUserOb.is_superuser == 1 or loginUserOb.role == 'DBA': applylist = QueryPrivilegesApply.objects.all().filter(title__contains=search).order_by('-apply_id')[ offset:limit].values( 'apply_id', 'title', 'cluster_name', 'db_list', 'priv_type', 'table_list', 'limit_num', 'valid_date', 'user_name', 'status', 'create_time' ) applylistCount = QueryPrivilegesApply.objects.all().filter(title__contains=search).count() else: applylist = QueryPrivilegesApply.objects.filter(user_name=loginUserOb.username).filter( title__contains=search).order_by('-apply_id')[offset:limit].values( 'apply_id', 'title', 'cluster_name', 'db_list', 'priv_type', 'table_list', 'limit_num', 'valid_date', 'user_name', 'status', 'create_time' ) applylistCount = QueryPrivilegesApply.objects.filter(user_name=loginUserOb.username).filter( title__contains=search).count() # QuerySet 序列化 rows = [row for row in applylist] result = {"total": applylistCount, "rows": rows} # 返回查询结果 return HttpResponse(json.dumps(result, cls=ExtendJSONEncoder, bigint_as_string=True), content_type='application/json') # 申请查询权限 @csrf_exempt def applyforprivileges(request): title = request.POST['title'] cluster_name = request.POST['cluster_name'] priv_type = request.POST['priv_type'] db_name = request.POST['db_name'] valid_date = request.POST['valid_date'] limit_num = request.POST['limit_num'] try: workflow_remark = request.POST['apply_remark'] except Exception: workflow_remark = '' # 获取用户信息 loginUser = request.session.get('login_username', False) # 服务端参数校验 result = {'status': 0, 'msg': 'ok', 'data': []} if int(priv_type) == 1: db_list = request.POST['db_list'] if title is None or cluster_name is None or db_list is None or valid_date is None or limit_num is None: result['status'] = 1 result['msg'] = '请填写完整' return HttpResponse(json.dumps(result), content_type='application/json') elif int(priv_type) == 2: table_list = request.POST['table_list'] if title is None or cluster_name is None or db_name is None or valid_date is None or table_list is None or limit_num is None: result['status'] = 1 result['msg'] = '请填写完整' return HttpResponse(json.dumps(result), content_type='application/json') # 判断是否需要限制到表级别的权限 # 库权限 if int(priv_type) == 1: db_list = db_list.split(',') # 检查申请账号是否已拥整个库的查询权限 own_dbs = QueryPrivileges.objects.filter(cluster_name=cluster_name, user_name=loginUser, db_name__in=db_list, valid_date__gte=datetime.datetime.now(), priv_type=1, is_deleted=0).values('db_name') own_db_list = [table_info['db_name'] for table_info in own_dbs] if own_db_list is None: pass else: for db_name in db_list: if db_name in own_db_list: result['status'] = 1 result['msg'] = '你已拥有' + cluster_name + '集群' + db_name + '库的全部查询权限,不能重复申请' return HttpResponse(json.dumps(result), content_type='application/json') # 表权限 elif int(priv_type) == 2: table_list = table_list.split(',') # 检查申请账号是否已拥有该表的查询权限 own_tables = QueryPrivileges.objects.filter(cluster_name=cluster_name, user_name=loginUser, db_name=db_name, table_name__in=table_list, valid_date__gte=datetime.datetime.now(), priv_type=2, is_deleted=0).values('table_name') own_table_list = [table_info['table_name'] for table_info in own_tables] if own_table_list is None: pass else: for table_name in table_list: if table_name in own_table_list: result['status'] = 1 result['msg'] = '你已拥有' + cluster_name + '集群' + db_name + '.' + table_name + '表的查询权限,不能重复申请' return HttpResponse(json.dumps(result), content_type='application/json') # 使用事务保持数据一致性 try: with transaction.atomic(): # 保存申请信息到数据库 applyinfo = QueryPrivilegesApply() applyinfo.title = title applyinfo.user_name = loginUser applyinfo.cluster_name = cluster_name if int(priv_type) == 1: applyinfo.db_list = ','.join(db_list) applyinfo.table_list = '' elif int(priv_type) == 2: applyinfo.db_list = db_name applyinfo.table_list = ','.join(table_list) applyinfo.priv_type = int(priv_type) applyinfo.valid_date = valid_date applyinfo.status = WorkflowDict.workflow_status['audit_wait'] # 待审核 applyinfo.limit_num = limit_num applyinfo.create_user = loginUser applyinfo.save() apply_id = applyinfo.apply_id # 调用工作流插入审核信息,查询权限申请workflow_type=2 auditresult = workflowOb.addworkflowaudit(request, WorkflowDict.workflow_type['query'], apply_id, title, loginUser, workflow_remark) if auditresult['status'] == 0: # 更新业务表审核状态,判断是否插入权限信息 query_audit_call_back(apply_id, auditresult['data']['workflow_status']) except Exception as msg: result['status'] = 1 result['msg'] = str(msg) else: result = auditresult return HttpResponse(json.dumps(result), content_type='application/json') # 用户的查询权限管理 @csrf_exempt def getuserprivileges(request): user_name = request.POST.get('user_name') limit = int(request.POST.get('limit')) offset = int(request.POST.get('offset')) limit = offset + limit # 获取搜索参数 search = request.POST.get('search') if search is None: search = '' # 判断权限,除了管理员外其他人只能查看自己的权限信息 result = {'status': 0, 'msg': 'ok', 'data': []} loginUser = request.session.get('login_username', False) loginUserOb = users.objects.get(username=loginUser) # 获取用户的权限数据 if loginUserOb.is_superuser == 1 or loginUserOb.role == 'DBA': if user_name != 'all': privilegeslist = QueryPrivileges.objects.all().filter(user_name=user_name, is_deleted=0, table_name__contains=search, valid_date__gte=datetime.datetime.now()).order_by( '-privilege_id')[offset:limit] privilegeslistCount = QueryPrivileges.objects.all().filter(user_name=user_name, is_deleted=0, table_name__contains=search, valid_date__gte=datetime.datetime.now()).count() else: privilegeslist = QueryPrivileges.objects.all().filter(is_deleted=0, table_name__contains=search, valid_date__gte=datetime.datetime.now()).order_by( '-privilege_id')[offset:limit] privilegeslistCount = QueryPrivileges.objects.all().filter(is_deleted=0, table_name__contains=search, valid_date__gte=datetime.datetime.now()).count() else: privilegeslist = QueryPrivileges.objects.filter(user_name=loginUserOb.username, is_deleted=0).filter( table_name__contains=search).order_by('-privilege_id')[offset:limit] privilegeslistCount = QueryPrivileges.objects.filter(user_name=loginUserOb.username, is_deleted=0).filter( table_name__contains=search).count() # QuerySet 序列化 privilegeslist = serializers.serialize("json", privilegeslist) privilegeslist = json.loads(privilegeslist) privilegeslist_result = [] for i in range(len(privilegeslist)): privilegeslist[i]['fields']['id'] = privilegeslist[i]['pk'] privilegeslist_result.append(privilegeslist[i]['fields']) result = {"total": privilegeslistCount, "rows": privilegeslist_result} # 返回查询结果 return HttpResponse(json.dumps(result), content_type='application/json') # 变更权限信息 @csrf_exempt @superuser_required def modifyqueryprivileges(request): privilege_id = request.POST.get('privilege_id') type = request.POST.get('type') result = {'status': 0, 'msg': 'ok', 'data': []} # type=1删除权限,type=2变更权限 privileges = QueryPrivileges() if int(type) == 1: # 删除权限 privileges.privilege_id = int(privilege_id) privileges.is_deleted = 1 privileges.save(update_fields=['is_deleted']) return HttpResponse(json.dumps(result), content_type='application/json') elif int(type) == 2: # 变更权限 valid_date = request.POST.get('valid_date') limit_num = request.POST.get('limit_num') privileges.privilege_id = int(privilege_id) privileges.valid_date = valid_date privileges.limit_num = limit_num privileges.save(update_fields=['valid_date', 'limit_num']) return HttpResponse(json.dumps(result), content_type='application/json') # 查询权限审核 @csrf_exempt def queryprivaudit(request): apply_id = int(request.POST['apply_id']) audit_status = int(request.POST['audit_status']) audit_remark = request.POST.get('audit_remark') if audit_remark is None: audit_remark = '' # 获取用户信息 loginUser = request.session.get('login_username', False) # 使用事务保持数据一致性 try: with transaction.atomic(): # 获取audit_id audit_id = workflowOb.auditinfobyworkflow_id(workflow_id=apply_id, workflow_type=WorkflowDict.workflow_type['query']).audit_id # 调用工作流接口审核 auditresult = workflowOb.auditworkflow(audit_id, audit_status, loginUser, audit_remark) # 按照审核结果更新业务表审核状态 auditInfo = workflowOb.auditinfo(audit_id) if auditInfo.workflow_type == WorkflowDict.workflow_type['query']: # 更新业务表审核状态,插入权限信息 query_audit_call_back(auditInfo.workflow_id, auditresult['data']['workflow_status']) # 给拒绝和审核通过的申请人发送邮件 if settings.MAIL_ON_OFF == "on": email_reciver = users.objects.get(username=auditInfo.create_user).email email_content = "发起人:" + auditInfo.create_user + "\n审核人:" + auditInfo.audit_users \ + "\n工单地址:" + request.scheme + "://" + request.get_host() + "/workflowdetail/" \ + str(audit_id) + "\n工单名称: " + auditInfo.workflow_title \ + "\n审核备注: " + audit_remark if auditresult['data']['workflow_status'] == WorkflowDict.workflow_status['audit_success']: email_title = "工单审核通过 # " + str(auditInfo.audit_id) mailSenderOb.sendEmail(email_title, email_content, [email_reciver]) elif auditresult['data']['workflow_status'] == WorkflowDict.workflow_status['audit_reject']: email_title = "工单被驳回 # " + str(auditInfo.audit_id) mailSenderOb.sendEmail(email_title, email_content, [email_reciver]) except Exception as msg: context = {'errMsg': msg} return render(request, 'error.html', context) return HttpResponseRedirect(reverse('sql:queryapplydetail', args=(apply_id,))) # 获取SQL查询结果 @csrf_exempt def query(request): cluster_name = request.POST.get('cluster_name') sqlContent = request.POST.get('sql_content') dbName = request.POST.get('db_name') limit_num = request.POST.get('limit_num') finalResult = {'status': 0, 'msg': 'ok', 'data': {}} # 服务器端参数验证 if sqlContent is None or dbName is None or cluster_name is None or limit_num is None: finalResult['status'] = 1 finalResult['msg'] = '页面提交参数可能为空' return HttpResponse(json.dumps(finalResult), content_type='application/json') sqlContent = sqlContent.strip() if sqlContent[-1] != ";": finalResult['status'] = 1 finalResult['msg'] = 'SQL语句结尾没有以;结尾,请重新修改并提交!' return HttpResponse(json.dumps(finalResult), content_type='application/json') # 获取用户信息 loginUser = request.session.get('login_username', False) loginUserOb = users.objects.get(username=loginUser) # 过滤注释语句和非查询的语句 sqlContent = ''.join( map(lambda x: re.compile(r'(^--\s+.*|^/\*.*\*/;\s*$)').sub('', x, count=1), sqlContent.splitlines(1))).strip() # 去除空行 sqlContent = re.sub('[\r\n\f]{2,}', '\n', sqlContent) sql_list = sqlContent.strip().split('\n') for sql in sql_list: if re.match(r"^select|^show|^explain", sql.lower()): break else: finalResult['status'] = 1 finalResult['msg'] = '仅支持^select|^show|^explain语法,请联系管理员!' return HttpResponse(json.dumps(finalResult), content_type='application/json') # 取出该集群的连接方式,查询只读账号,按照分号截取第一条有效sql执行 slave_info = slave_config.objects.get(cluster_name=cluster_name) sqlContent = sqlContent.strip().split(';')[0] # 查询权限校验,以及limit_num获取 priv_check_info = query_priv_check(loginUserOb, cluster_name, dbName, sqlContent, limit_num) if priv_check_info['status'] == 0: limit_num = priv_check_info['data'] else: return HttpResponse(json.dumps(priv_check_info), content_type='application/json') if re.match(r"^explain", sqlContent.lower()): limit_num = 0 # 对查询sql增加limit限制 if re.match(r"^select", sqlContent.lower()): if re.search(r"limit\s+(\d+)$", sqlContent.lower()) is None: if re.search(r"limit\s+\d+\s*,\s*(\d+)$", sqlContent.lower()) is None: sqlContent = sqlContent + ' limit ' + str(limit_num) sqlContent = sqlContent + ';' # 执行查询语句,统计执行时间 t_start = time.time() sql_result = dao.mysql_query(slave_info.slave_host, slave_info.slave_port, slave_info.slave_user, prpCryptor.decrypt(slave_info.slave_password), str(dbName), sqlContent, limit_num) t_end = time.time() cost_time = "%5s" % "{:.4f}".format(t_end - t_start) sql_result['cost_time'] = cost_time # 数据脱敏,同样需要检查配置,是否开启脱敏,语法树解析是否允许出错继续执行 t_start = time.time() if settings.DATA_MASKING_ON_OFF: # 仅对查询语句进行脱敏 if re.match(r"^select", sqlContent.lower()): try: masking_result = datamasking.data_masking(cluster_name, dbName, sqlContent, sql_result) except Exception: if settings.CHECK_QUERY_ON_OFF: finalResult['status'] = 1 finalResult['msg'] = '脱敏数据报错,请联系管理员' return HttpResponse(json.dumps(finalResult), content_type='application/json') else: if masking_result['status'] != 0: if settings.CHECK_QUERY_ON_OFF: return HttpResponse(json.dumps(masking_result), content_type='application/json') t_end = time.time() masking_cost_time = "%5s" % "{:.4f}".format(t_end - t_start) sql_result['masking_cost_time'] = masking_cost_time finalResult['data'] = sql_result # 成功的查询语句记录存入数据库 if sql_result.get('Error'): pass else: query_log = QueryLog() query_log.username = loginUser query_log.db_name = dbName query_log.cluster_name = cluster_name query_log.sqllog = sqlContent if int(limit_num) == 0: limit_num = int(sql_result['effect_row']) else: limit_num = min(int(limit_num), int(sql_result['effect_row'])) query_log.effect_row = limit_num query_log.cost_time = cost_time # 防止查询超时 try: query_log.save() except: connection.close() query_log.save() # 返回查询结果 return HttpResponse(json.dumps(finalResult, cls=ExtendJSONEncoder, bigint_as_string=True), content_type='application/json') # 获取sql查询记录 @csrf_exempt def querylog(request): # 获取用户信息 loginUser = request.session.get('login_username', False) loginUserOb = users.objects.get(username=loginUser) limit = int(request.POST.get('limit')) offset = int(request.POST.get('offset')) limit = offset + limit # 获取搜索参数 search = request.POST.get('search') if search is None: search = '' # 查询个人记录,超管查看所有数据 if loginUserOb.is_superuser == 1 or loginUserOb.role == 'DBA': sql_log_count = QueryLog.objects.all().filter(Q(sqllog__contains=search) | Q(username__contains=search)).count() sql_log_list = QueryLog.objects.all().filter( Q(sqllog__contains=search) | Q(username__contains=search)).order_by( '-id')[offset:limit] else: sql_log_count = QueryLog.objects.filter(username=loginUser).filter( Q(sqllog__contains=search) | Q(username__contains=search)).count() sql_log_list = QueryLog.objects.filter(username=loginUser).filter( Q(sqllog__contains=search) | Q(username__contains=search)).order_by('-id')[offset:limit] # QuerySet 序列化 sql_log_list = serializers.serialize("json", sql_log_list) sql_log_list = json.loads(sql_log_list) sql_log = [log_info['fields'] for log_info in sql_log_list] result = {"total": sql_log_count, "rows": sql_log} # 返回查询结果 return HttpResponse(json.dumps(result), content_type='application/json') # 获取SQL执行计划 @csrf_exempt def explain(request): if request.is_ajax(): sqlContent = request.POST.get('sql_content') clusterName = request.POST.get('cluster_name') dbName = request.POST.get('db_name') else: sqlContent = request.POST['sql_content'] clusterName = request.POST['cluster_name'] dbName = request.POST.get('db_name') finalResult = {'status': 0, 'msg': 'ok', 'data': []} # 服务器端参数验证 if sqlContent is None or clusterName is None: finalResult['status'] = 1 finalResult['msg'] = '页面提交参数可能为空' return HttpResponse(json.dumps(finalResult), content_type='application/json') sqlContent = sqlContent.rstrip() if sqlContent[-1] != ";": finalResult['status'] = 1 finalResult['msg'] = 'SQL语句结尾没有以;结尾,请重新修改并提交!' return HttpResponse(json.dumps(finalResult), content_type='application/json') # 过滤非查询的语句 if re.match(r"^explain", sqlContent.lower()): pass else: finalResult['status'] = 1 finalResult['msg'] = '仅支持explain开头的语句,请检查' return HttpResponse(json.dumps(finalResult), content_type='application/json') # 取出该集群的连接方式,按照分号截取第一条有效sql执行 masterInfo = master_config.objects.get(cluster_name=clusterName) sqlContent = sqlContent.strip().split(';')[0] # 执行获取执行计划语句 sql_result = dao.mysql_query(masterInfo.master_host, masterInfo.master_port, masterInfo.master_user, prpCryptor.decrypt(masterInfo.master_password), str(dbName), sqlContent) finalResult['data'] = sql_result # 返回查询结果 return HttpResponse(json.dumps(finalResult, cls=ExtendJSONEncoder, bigint_as_string=True), content_type='application/json') # 获取SQL慢日志统计 @csrf_exempt def slowquery_review(request): cluster_name = request.POST.get('cluster_name') # 判断是RDS还是其他实例 cluster_info = master_config.objects.get(cluster_name=cluster_name) if settings.ALIYUN_RDS_MANAGE: # 调用阿里云慢日志接口 result = aliyun_rds_slowquery_review(request) else: StartTime = request.POST.get('StartTime') EndTime = request.POST.get('EndTime') DBName = request.POST.get('db_name') limit = int(request.POST.get('limit')) offset = int(request.POST.get('offset')) limit = offset + limit # 时间处理 EndTime = datetime.datetime.strptime(EndTime, '%Y-%m-%d') + datetime.timedelta(days=1) # DBName非必传 if DBName: # 获取慢查数据 slowsql_obj = SlowQuery.objects.filter( slowqueryhistory__hostname_max=(cluster_info.master_host + ':' + str(cluster_info.master_port)), slowqueryhistory__db_max=DBName, slowqueryhistory__ts_min__range=(StartTime, EndTime), last_seen__range=(StartTime, EndTime) ).annotate(CreateTime=F('last_seen'), SQLId=F('checksum'), DBName=F('slowqueryhistory__db_max'), # 数据库 SQLText=F('fingerprint'), # SQL语句 ).values( 'CreateTime', 'SQLId', 'DBName', 'SQLText' ).annotate( MySQLTotalExecutionCounts=Sum('slowqueryhistory__ts_cnt'), # 执行总次数 MySQLTotalExecutionTimes=Sum('slowqueryhistory__query_time_sum'), # 执行总时长 ParseTotalRowCounts=Sum('slowqueryhistory__rows_examined_sum'), # 扫描总行数 ReturnTotalRowCounts=Sum('slowqueryhistory__rows_sent_sum'), # 返回总行数 ).order_by('-MySQLTotalExecutionCounts')[offset:limit] # 执行总次数倒序排列 slowsql_obj_count = SlowQuery.objects.filter( slowqueryhistory__hostname_max=(cluster_info.master_host + ':' + str(cluster_info.master_port)), slowqueryhistory__db_max=DBName, slowqueryhistory__ts_min__range=(StartTime, EndTime), last_seen__range=(StartTime, EndTime) ).annotate(CreateTime=F('last_seen'), SQLId=F('checksum'), DBName=F('slowqueryhistory__db_max'), # 数据库 SQLText=F('fingerprint'), # SQL语句 ).values( 'CreateTime', 'SQLId', 'DBName', 'SQLText' ).annotate( MySQLTotalExecutionCounts=Sum('slowqueryhistory__ts_cnt'), # 执行总次数 MySQLTotalExecutionTimes=Sum('slowqueryhistory__query_time_sum'), # 执行总时长 ParseTotalRowCounts=Sum('slowqueryhistory__rows_examined_sum'), # 扫描总行数 ReturnTotalRowCounts=Sum('slowqueryhistory__rows_sent_sum'), # 返回总行数 ).count() else: # 获取慢查数据 slowsql_obj = SlowQuery.objects.filter( slowqueryhistory__hostname_max=(cluster_info.master_host + ':' + str(cluster_info.master_port)), slowqueryhistory__ts_min__range=(StartTime, EndTime), last_seen__range=(StartTime, EndTime) ).annotate(CreateTime=F('last_seen'), SQLId=F('checksum'), DBName=F('slowqueryhistory__db_max'), # 数据库 SQLText=F('fingerprint'), # SQL语句 ).values( 'CreateTime', 'SQLId', 'DBName', 'SQLText' ).annotate( MySQLTotalExecutionCounts=Sum('slowqueryhistory__ts_cnt'), # 执行总次数 MySQLTotalExecutionTimes=Sum('slowqueryhistory__query_time_sum'), # 执行总时长 ParseTotalRowCounts=Sum('slowqueryhistory__rows_examined_sum'), # 扫描总行数 ReturnTotalRowCounts=Sum('slowqueryhistory__rows_sent_sum'), # 返回总行数 ).order_by('-MySQLTotalExecutionCounts')[offset:limit] # 执行总次数倒序排列 slowsql_obj_count = SlowQuery.objects.filter( slowqueryhistory__hostname_max=(cluster_info.master_host + ':' + str(cluster_info.master_port)), slowqueryhistory__ts_min__range=(StartTime, EndTime), last_seen__range=(StartTime, EndTime) ).annotate(CreateTime=F('last_seen'), SQLId=F('checksum'), DBName=F('slowqueryhistory__db_max'), # 数据库 SQLText=F('fingerprint'), # SQL语句 ).values( 'CreateTime', 'SQLId', 'DBName', 'SQLText' ).annotate( MySQLTotalExecutionCounts=Sum('slowqueryhistory__ts_cnt'), # 执行总次数 MySQLTotalExecutionTimes=Sum('slowqueryhistory__query_time_sum'), # 执行总时长 ParseTotalRowCounts=Sum('slowqueryhistory__rows_examined_sum'), # 扫描总行数 ReturnTotalRowCounts=Sum('slowqueryhistory__rows_sent_sum'), # 返回总行数 ).count() # QuerySet 序列化 SQLSlowLog = [SlowLog for SlowLog in slowsql_obj] result = {"total": slowsql_obj_count, "rows": SQLSlowLog} # 返回查询结果 return HttpResponse(json.dumps(result, cls=ExtendJSONEncoder, bigint_as_string=True), content_type='application/json') # 获取SQL慢日志明细 @csrf_exempt def slowquery_review_history(request): cluster_name = request.POST.get('cluster_name') # 判断是RDS还是其他实例 cluster_info = master_config.objects.get(cluster_name=cluster_name) if settings.ALIYUN_RDS_MANAGE: # 调用阿里云慢日志接口 result = aliyun_rds_slowquery_review_history(request) else: StartTime = request.POST.get('StartTime') EndTime = request.POST.get('EndTime') DBName = request.POST.get('db_name') SQLId = request.POST.get('SQLId') limit = int(request.POST.get('limit')) offset = int(request.POST.get('offset')) # 时间处理 EndTime = datetime.datetime.strptime(EndTime, '%Y-%m-%d') + datetime.timedelta(days=1) limit = offset + limit # SQLId、DBName非必传 if SQLId: # 获取慢查明细数据 slowsql_record_obj = SlowQueryHistory.objects.filter( hostname_max=(cluster_info.master_host + ':' + str(cluster_info.master_port)), checksum=int(SQLId), ts_min__range=(StartTime, EndTime) ).annotate(ExecutionStartTime=F('ts_min'), # 执行开始时间 DBName=F('db_max'), # 数据库名 HostAddress=Concat(V('\''), 'user_max', V('\''), V('@'), V('\''), 'client_max', V('\'')), # 用户名 SQLText=F('sample'), # SQL语句 QueryTimes=F('query_time_sum'), # 执行时长(秒) LockTimes=F('lock_time_sum'), # 锁定时长(秒) ParseRowCounts=F('rows_examined_sum'), # 解析行数 ReturnRowCounts=F('rows_sent_sum') # 返回行数 ).values( 'ExecutionStartTime', 'DBName', 'HostAddress', 'SQLText', 'QueryTimes', 'LockTimes', 'ParseRowCounts', 'ReturnRowCounts' )[offset:limit] slowsql_obj_count = SlowQueryHistory.objects.filter( hostname_max=(cluster_info.master_host + ':' + str(cluster_info.master_port)), checksum=int(SQLId), ts_min__range=(StartTime, EndTime) ).count() else: if DBName: # 获取慢查明细数据 slowsql_record_obj = SlowQueryHistory.objects.filter( hostname_max=(cluster_info.master_host + ':' + str(cluster_info.master_port)), db_max=DBName, ts_min__range=(StartTime, EndTime) ).annotate(ExecutionStartTime=F('ts_min'), # 执行开始时间 DBName=F('db_max'), # 数据库名 HostAddress=Concat(V('\''), 'user_max', V('\''), V('@'), V('\''), 'client_max', V('\'')), # 用户名 SQLText=F('sample'), # SQL语句 QueryTimes=F('query_time_sum'), # 执行时长(秒) LockTimes=F('lock_time_sum'), # 锁定时长(秒) ParseRowCounts=F('rows_examined_sum'), # 解析行数 ReturnRowCounts=F('rows_sent_sum') # 返回行数 ).values( 'ExecutionStartTime', 'DBName', 'HostAddress', 'SQLText', 'QueryTimes', 'LockTimes', 'ParseRowCounts', 'ReturnRowCounts' )[offset:limit] # 执行总次数倒序排列 slowsql_obj_count = SlowQueryHistory.objects.filter( hostname_max=(cluster_info.master_host + ':' + str(cluster_info.master_port)), db_max=DBName, ts_min__range=(StartTime, EndTime) ).count() else: # 获取慢查明细数据 slowsql_record_obj = SlowQueryHistory.objects.filter( hostname_max=(cluster_info.master_host + ':' + str(cluster_info.master_port)), ts_min__range=(StartTime, EndTime) ).annotate(ExecutionStartTime=F('ts_min'), # 执行开始时间 DBName=F('db_max'), # 数据库名 HostAddress=F('user_max'), # 用户名 SQLText=F('sample'), # SQL语句 QueryTimes=F('query_time_sum'), # 执行时长(秒) LockTimes=F('lock_time_sum'), # 锁定时长(秒) ParseRowCounts=F('rows_examined_sum'), # 解析行数 ReturnRowCounts=F('rows_sent_sum') # 返回行数 ).values( 'ExecutionStartTime', 'DBName', 'HostAddress', 'SQLText', 'QueryTimes', 'LockTimes', 'ParseRowCounts', 'ReturnRowCounts' )[offset:limit] # 执行总次数倒序排列 slowsql_obj_count = SlowQueryHistory.objects.filter( hostname_max=(cluster_info.master_host + ':' + str(cluster_info.master_port)), ts_min__range=(StartTime, EndTime) ).count() # QuerySet 序列化 SQLSlowRecord = [SlowRecord for SlowRecord in slowsql_record_obj] result = {"total": slowsql_obj_count, "rows": SQLSlowRecord} # 返回查询结果 return HttpResponse(json.dumps(result, cls=ExtendJSONEncoder, bigint_as_string=True), content_type='application/json') # 获取邮件抄送人 @csrf_exempt def getEmailCc(request): result = {'status': 0, 'msg': 'ok', 'data': []} try: listDb = [username['display'] for username in users.objects.exclude(role__icontains="DBA").exclude(username__icontains="root").values('username', 'display')] result['data'] = listDb except Exception as e: result['status'] = 1 result['msg'] = str(e) return HttpResponse(json.dumps(result), content_type='application/json')
44.197292
136
0.596521
0
0
0
0
39,870
0.803118
0
0
11,775
0.237189
b8c640f9283d5b83c08e12647497d33055a9e83f
13,671
py
Python
pyTooling/CLIAbstraction/__init__.py
pyTooling/pyTooling.CLIAbstraction
3b17490ae729e126799328198a814b6c741b1ac7
[ "Apache-2.0" ]
null
null
null
pyTooling/CLIAbstraction/__init__.py
pyTooling/pyTooling.CLIAbstraction
3b17490ae729e126799328198a814b6c741b1ac7
[ "Apache-2.0" ]
8
2021-12-19T19:58:31.000Z
2022-03-02T10:45:16.000Z
pyTooling/CLIAbstraction/__init__.py
pyTooling/pyTooling.CLIAbstraction
3b17490ae729e126799328198a814b6c741b1ac7
[ "Apache-2.0" ]
null
null
null
# ==================================================================================================================== # # _____ _ _ ____ _ ___ _ _ _ _ _ # # _ __ _ |_ _|__ ___ | (_)_ __ __ _ / ___| | |_ _| / \ | |__ ___| |_ _ __ __ _ ___| |_(_) ___ _ __ # # | '_ \| | | || |/ _ \ / _ \| | | '_ \ / _` || | | | | | / _ \ | '_ \/ __| __| '__/ _` |/ __| __| |/ _ \| '_ \ # # | |_) | |_| || | (_) | (_) | | | | | | (_| || |___| |___ | | / ___ \| |_) \__ \ |_| | | (_| | (__| |_| | (_) | | | | # # | .__/ \__, ||_|\___/ \___/|_|_|_| |_|\__, (_)____|_____|___/_/ \_\_.__/|___/\__|_| \__,_|\___|\__|_|\___/|_| |_| # # |_| |___/ |___/ # # ==================================================================================================================== # # Authors: # # Patrick Lehmann # # # # License: # # ==================================================================================================================== # # Copyright 2017-2022 Patrick Lehmann - Bötzingen, Germany # # Copyright 2007-2016 Technische Universität Dresden - Germany, Chair of VLSI-Design, Diagnostics and Architecture # # # # Licensed under the Apache License, Version 2.0 (the "License"); # # you may not use this file except in compliance with the License. # # You may obtain a copy of the License at # # # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, software # # distributed under the License is distributed on an "AS IS" BASIS, # # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # # limitations under the License. # # # # SPDX-License-Identifier: Apache-2.0 # # ==================================================================================================================== # # """Basic abstraction layer for executables.""" __author__ = "Patrick Lehmann" __email__ = "Paebbels@gmail.com" __copyright__ = "2014-2022, Patrick Lehmann" __license__ = "Apache License, Version 2.0" __version__ = "0.4.0" __keywords__ = ["abstract", "executable", "cli", "cli arguments"] from pathlib import Path from platform import system from shutil import which as shutil_which from subprocess import ( Popen as Subprocess_Popen, PIPE as Subprocess_Pipe, STDOUT as Subprocess_StdOut ) from typing import Dict, Optional, ClassVar, Type, List, Tuple, Iterator, Generator from pyTooling.Decorators import export from pyTooling.Exceptions import ExceptionBase, PlatformNotSupportedException from pyAttributes import Attribute from .Argument import ( CommandLineArgument, ExecutableArgument, NamedAndValuedArgument, ValuedArgument, PathArgument, PathListArgument, NamedTupledArgument ) from .ValuedFlag import ValuedFlag @export class CLIAbstractionException(ExceptionBase): pass @export class DryRunException(CLIAbstractionException): """This exception is raised if an executable is launched while in dry-run mode.""" @export class CLIArgument(Attribute): """An attribute to annotate nested classes as an CLI argument.""" @export class Program: """Represent a simple command line interface (CLI) executable (program or script).""" _platform: str #: Current platform the executable runs on (Linux, Windows, ...) _executableNames: ClassVar[Dict[str, str]] #: Dictionary of platform specific executable names. _executablePath: Path #: The path to the executable (binary, script, ...). _dryRun: bool #: True, if program shall run in *dry-run mode*. __cliOptions__: ClassVar[Dict[Type[CommandLineArgument], int]] #: List of all possible CLI options. __cliParameters__: Dict[Type[CommandLineArgument], Optional[CommandLineArgument]] #: List of all CLI parameters (used CLI options). def __init_subclass__(cls, *args, **kwargs): """ Whenever a subclass is derived from :class:``Program``, all nested classes declared within ``Program`` and which are marked with pyAttribute ``CLIOption`` are collected and then listed in the ``__cliOptions__`` dictionary. """ super().__init_subclass__(*args, **kwargs) # register all available CLI options (nested classes marked with attribute 'CLIOption') cls.__cliOptions__: Dict[Type[CommandLineArgument], int] = {} order: int = 0 for option in CLIArgument.GetClasses(scope=cls): cls.__cliOptions__[option] = order order += 1 def __init__(self, executablePath: Path = None, binaryDirectoryPath: Path = None, dryRun: bool = False): self._platform = system() self._dryRun = dryRun if executablePath is not None: if isinstance(executablePath, Path): if not executablePath.exists(): if dryRun: self.LogDryRun(f"File check for '{executablePath}' failed. [SKIPPING]") else: raise CLIAbstractionException(f"Program '{executablePath}' not found.") from FileNotFoundError(executablePath) else: raise TypeError(f"Parameter 'executablePath' is not of type 'Path'.") elif binaryDirectoryPath is not None: if isinstance(binaryDirectoryPath, Path): if not binaryDirectoryPath.exists(): if dryRun: self.LogDryRun(f"Directory check for '{binaryDirectoryPath}' failed. [SKIPPING]") else: raise CLIAbstractionException(f"Binary directory '{binaryDirectoryPath}' not found.") from FileNotFoundError(binaryDirectoryPath) try: executablePath = binaryDirectoryPath / self._executableNames[self._platform] except KeyError: raise CLIAbstractionException(f"Program is not supported on platform '{self._platform}'.") from PlatformNotSupportedException(self._platform) if not executablePath.exists(): if dryRun: self.LogDryRun(f"File check for '{executablePath}' failed. [SKIPPING]") else: raise CLIAbstractionException(f"Program '{executablePath}' not found.") from FileNotFoundError(executablePath) else: raise TypeError(f"Parameter 'binaryDirectoryPath' is not of type 'Path'.") else: try: executablePath = Path(self._executableNames[self._platform]) except KeyError: raise CLIAbstractionException(f"Program is not supported on platform '{self._platform}'.") from PlatformNotSupportedException(self._platform) resolvedExecutable = shutil_which(str(executablePath)) if dryRun: if resolvedExecutable is None: pass # XXX: log executable not found in PATH # self.LogDryRun(f"Which '{executablePath}' failed. [SKIPPING]") else: fullExecutablePath = Path(resolvedExecutable) if not fullExecutablePath.exists(): pass # XXX: log executable not found # self.LogDryRun(f"File check for '{fullExecutablePath}' failed. [SKIPPING]") else: if resolvedExecutable is None: raise CLIAbstractionException(f"Program could not be found in PATH.") from FileNotFoundError(executablePath) fullExecutablePath = Path(resolvedExecutable) if not fullExecutablePath.exists(): raise CLIAbstractionException(f"Program '{fullExecutablePath}' not found.") from FileNotFoundError(fullExecutablePath) # TODO: log found executable in PATH # TODO: check if found executable has execute permissions # raise ValueError(f"Neither parameter 'executablePath' nor 'binaryDirectoryPath' was set.") self._executablePath = executablePath self.__cliParameters__ = {} @staticmethod def _NeedsParameterInitialization(key): return issubclass(key, (ValuedFlag, ValuedArgument, NamedAndValuedArgument, NamedTupledArgument, PathArgument, PathListArgument)) def __getitem__(self, key): """Access to a CLI parameter by CLI option (key must be of type :class:`CommandLineArgument`), which is already used.""" if not issubclass(key, CommandLineArgument): raise TypeError(f"Key '{key}' is not a subclass of 'CommandLineArgument'.") # TODO: is nested check return self.__cliParameters__[key] def __setitem__(self, key, value): if not issubclass(key, CommandLineArgument): raise TypeError(f"Key '{key}' is not a subclass of 'CommandLineArgument'.") elif key not in self.__cliOptions__: raise KeyError(f"Option '{key}' is not allowed on executable '{self.__class__.__name__}'") elif key in self.__cliParameters__: raise KeyError(f"Option '{key}' is already set to a value.") if self._NeedsParameterInitialization(key): self.__cliParameters__[key] = key(value) else: self.__cliParameters__[key] = key() @property def Path(self) -> Path: return self._executablePath def ToArgumentList(self) -> List[str]: result: List[str] = [] result.append(str(self._executablePath)) def predicate(item: Tuple[Type[CommandLineArgument], int]) -> int: return self.__cliOptions__[item[0]] for key, value in sorted(self.__cliParameters__.items(), key=predicate): param = value.AsArgument() if isinstance(param, str): result.append(param) elif isinstance(param, (Tuple, List)): result += param else: raise TypeError(f"") # XXX: needs error message return result def __repr__(self): return "[" + ", ".join([f"\"{item}\"" for item in self.ToArgumentList()]) + "]" def __str__(self): return " ".join([f"\"{item}\"" for item in self.ToArgumentList()]) # @export # class Environment: # def __init__(self): # self.Variables = {} @export class Executable(Program): # (ILogable): """Represent a CLI executable derived from :class:`Program`, that adds an abstraction of :class:`subprocess.Popen`.""" _BOUNDARY = "====== BOUNDARY pyTooling.CLIAbstraction BOUNDARY ======" _environment: Dict[str, str] = None _process: Subprocess_Popen = None _iterator: Iterator = None def __init__(self, executablePath: Path = None, binaryDirectoryPath: Path = None, dryRun: bool = False): #, environment: Environment = None): super().__init__(executablePath, binaryDirectoryPath, dryRun) def StartProcess(self): # start child process if self._dryRun: self.LogDryRun(f"Start process: {self!r}") return if (self._environment is not None): envVariables = self._environment.Variables else: envVariables = None # FIXME: verbose log start process # FIXME: debug log - parameter list try: self._process = Subprocess_Popen( self.ToArgumentList(), stdin=Subprocess_Pipe, stdout=Subprocess_Pipe, stderr=Subprocess_StdOut, env=envVariables, universal_newlines=True, bufsize=256 ) except OSError as ex: raise CLIAbstractionException(f"Error while launching a process for '{self._executablePath}'.") from ex def Send(self, line: str, end: str="\n") -> None: try: self._process.stdin.write(line + end) self._process.stdin.flush() except Exception as ex: raise CLIAbstractionException(f"") from ex # XXX: need error message # This is TCL specific ... # def SendBoundary(self): # self.Send("puts \"{0}\"".format(self._pyIPCMI_BOUNDARY)) def GetLineReader(self) -> Generator[str, None, None]: if self._dryRun: raise DryRunException() # XXX: needs a message try: for line in iter(self._process.stdout.readline, ""): # FIXME: can it be improved? yield line[:-1] except Exception as ex: raise CLIAbstractionException() from ex # XXX: need error message # finally: # self._process.terminate() def Terminate(self): self._process.terminate() # This is TCL specific # def ReadUntilBoundary(self, indent=0): # __indent = " " * indent # if (self._iterator is None): # self._iterator = iter(self.GetReader()) # # for line in self._iterator: # print(__indent + line) # if (self._pyIPCMI_BOUNDARY in line): # break # self.LogDebug("Quartus II is ready")
44.676471
147
0.575744
8,904
0.65121
384
0.028085
8,944
0.654136
0
0
7,151
0.523002
b8c7afa99f880ad851ed3d1e2b329906d0d376a5
1,601
py
Python
ingest_to_dynamodb/lambda_function.py
fladdimir/csa-simulation-based-sc-forecast
80f176a783496f8859609f63b56c6199a73d9909
[ "MIT" ]
2
2020-11-04T17:34:38.000Z
2021-08-13T07:55:23.000Z
ingest_to_dynamodb/lambda_function.py
fladdimir/csa-simulation-based-sc-forecast
80f176a783496f8859609f63b56c6199a73d9909
[ "MIT" ]
null
null
null
ingest_to_dynamodb/lambda_function.py
fladdimir/csa-simulation-based-sc-forecast
80f176a783496f8859609f63b56c6199a73d9909
[ "MIT" ]
2
2021-05-28T02:55:44.000Z
2021-08-03T13:56:10.000Z
import base64 import json import logging import os from decimal import Decimal import boto3 """ environment variables: export AWS_ENDPOINT=http://localhost:4566 export TABLE_NAME=table_xy # for direct local execution: export AWS_DEFAULT_REGION=localhost export AWS_ACCESS_KEY_ID=access_key_id export AWS_SECRET_ACCESS_KEY=secret_access_key """ AWS_ENDPOINT = os.getenv("AWS_ENDPOINT") TABLE_NAME = os.getenv("TABLE_NAME") # localstack specific url processing LOCALSTACK_HOSTNAME = "LOCALSTACK_HOSTNAME" if LOCALSTACK_HOSTNAME in AWS_ENDPOINT: localstack_hostname = os.getenv(LOCALSTACK_HOSTNAME, "localstack_main") AWS_ENDPOINT = AWS_ENDPOINT.replace(LOCALSTACK_HOSTNAME, localstack_hostname) dynamodb = boto3.resource("dynamodb", endpoint_url=AWS_ENDPOINT) table = dynamodb.Table(TABLE_NAME) def handler(event, context): datas = [record["kinesis"]["data"] for record in event["Records"]] bodies = [base64.b64decode(data) for data in datas] deserialized_bodies = [json.loads(body) for body in bodies] for data in deserialized_bodies: update_item(data) def update_item(item: dict): # e.g.: data = {"order_name": "entity_1", "attribute": "time_of_acceptance", "value": 0.0, "timestamp": 0.0} logging.info(f"updating item: {item}") table.update_item( Key={"order_name": item["order_name"]}, UpdateExpression=f"SET {item['attribute']} = :value, last_update = :ts", ExpressionAttributeValues={ ":value": Decimal(item["value"]), ":ts": Decimal(item["timestamp"]), }, )
30.788462
112
0.715178
0
0
0
0
0
0
0
0
650
0.405996
b8c91e32bf4a536211d6e1b856f0e33473d42a4f
3,816
py
Python
modules/sfp_psbdmp.py
IronFireFA/spiderfoot
e75428e7584666de52a20b0d2f1fb80dffd6f39c
[ "MIT" ]
null
null
null
modules/sfp_psbdmp.py
IronFireFA/spiderfoot
e75428e7584666de52a20b0d2f1fb80dffd6f39c
[ "MIT" ]
null
null
null
modules/sfp_psbdmp.py
IronFireFA/spiderfoot
e75428e7584666de52a20b0d2f1fb80dffd6f39c
[ "MIT" ]
null
null
null
# ------------------------------------------------------------------------------- # Name: sfp_psbdmp # Purpose: Query psbdmp.cc for potentially hacked e-mail addresses. # # Author: Steve Micallef <steve@binarypool.com> # # Created: 21/11/2016 # Copyright: (c) Steve Micallef # Licence: MIT # ------------------------------------------------------------------------------- import json import re from spiderfoot import SpiderFootEvent, SpiderFootPlugin class sfp_psbdmp(SpiderFootPlugin): meta = { 'name': "Psbdmp", 'summary': "Check psbdmp.cc (PasteBin Dump) for potentially hacked e-mails and domains.", 'flags': [], 'useCases': ["Footprint", "Investigate", "Passive"], 'categories': ["Leaks, Dumps and Breaches"], 'dataSource': { 'website': "https://psbdmp.cc/", 'model': "FREE_NOAUTH_UNLIMITED", 'references': [ "https://psbdmp.cc/" ], 'favIcon': "", 'logo': "", 'description': "Search dump(s) by some word.\n" "Search dump(s) by email.\n" "Search dump(s) by domain.\n" "Search dump(s) from specific date.", } } opts = { } optdescs = { } results = None def setup(self, sfc, userOpts=dict()): self.sf = sfc self.results = self.tempStorage() for opt in list(userOpts.keys()): self.opts[opt] = userOpts[opt] def watchedEvents(self): return ["EMAILADDR", "DOMAIN_NAME", "INTERNET_NAME"] def producedEvents(self): return ["LEAKSITE_URL", "LEAKSITE_CONTENT"] def query(self, qry): ret = None if "@" in qry: url = "https://psbdmp.cc/api/search/email/" + qry else: url = "https://psbdmp.cc/api/search/domain/" + qry res = self.sf.fetchUrl(url, timeout=15, useragent="SpiderFoot") if res['code'] == "403" or res['content'] is None: self.info("Unable to fetch data from psbdmp.cc right now.") return None try: ret = json.loads(res['content']) except Exception as e: self.error(f"Error processing JSON response from psbdmp.cc: {e}") return None ids = list() if 'count' not in ret: return None if ret['count'] <= 0: return None for d in ret['data']: ids.append("https://pastebin.com/" + d['id']) return ids def handleEvent(self, event): eventName = event.eventType srcModuleName = event.module eventData = event.data self.debug(f"Received event, {eventName}, from {srcModuleName}") if eventData in self.results: self.debug(f"Skipping {eventData}, already checked.") return self.results[eventData] = True data = self.query(eventData) if data is None: return for n in data: e = SpiderFootEvent("LEAKSITE_URL", n, self.__name__, event) self.notifyListeners(e) res = self.sf.fetchUrl( n, timeout=self.opts['_fetchtimeout'], useragent=self.opts['_useragent'] ) if res['content'] is None: self.debug(f"Ignoring {n} as no data returned") continue if re.search( r"[^a-zA-Z\-\_0-9]" + re.escape(eventData) + r"[^a-zA-Z\-\_0-9]", res['content'], re.IGNORECASE ) is None: continue evt = SpiderFootEvent("LEAKSITE_CONTENT", res['content'], self.__name__, e) self.notifyListeners(evt) # End of sfp_psbdmp class
28.058824
97
0.508124
3,305
0.86609
0
0
0
0
0
0
1,454
0.381027
b8c9483c89fccb1526f7a1b94d89843858f14cf3
3,216
py
Python
dcr/scenarios/agent-bvt/test_agent_basics.py
sshedi/WALinuxAgent
99d07d29b7843293588bec4b961e4ef2d1daabb2
[ "Apache-2.0" ]
null
null
null
dcr/scenarios/agent-bvt/test_agent_basics.py
sshedi/WALinuxAgent
99d07d29b7843293588bec4b961e4ef2d1daabb2
[ "Apache-2.0" ]
null
null
null
dcr/scenarios/agent-bvt/test_agent_basics.py
sshedi/WALinuxAgent
99d07d29b7843293588bec4b961e4ef2d1daabb2
[ "Apache-2.0" ]
null
null
null
import os import re import socket from dotenv import load_dotenv from dcr.scenario_utils.common_utils import execute_command_and_raise_on_error from dcr.scenario_utils.models import get_vm_data_from_env def test_agent_version(): stdout, _ = execute_command_and_raise_on_error(['waagent', '-version'], timeout=30) # release_file contains: # AGENT_VERSION = 'x.y.z' load_dotenv() expected_version = os.environ.get("AGENTVERSION") if "Goal state agent: {0}".format(expected_version) not in stdout: raise Exception("expected version {0} not found".format(expected_version)) return stdout def check_hostname(): vm_name = get_vm_data_from_env().name stdout, _ = execute_command_and_raise_on_error(['hostname'], timeout=30) if vm_name.lower() != stdout.lower(): raise Exception("Hostname does not match! Expected: {0}, found: {1}".format(vm_name, stdout.strip())) return stdout def check_ns_lookup(): hostname, _ = execute_command_and_raise_on_error(['hostname'], timeout=30) ip = socket.gethostbyname(hostname) msg = "Resolved IP: {0}".format(ip) print(msg) return msg def check_root_login(): stdout, _ = execute_command_and_raise_on_error(['cat', '/etc/shadow'], timeout=30) root_passwd_line = next(line for line in stdout.splitlines() if 'root' in line) print(root_passwd_line) root_passwd = root_passwd_line.split(":")[1] if any(val in root_passwd for val in ("!", "*", "x")): return 'root login disabled' else: raise Exception('root login appears to be enabled: {0}'.format(root_passwd)) def check_agent_processes(): daemon_pattern = r'.*python.*waagent -daemon$' handler_pattern = r'.*python.*-run-exthandlers' status_pattern = r'^(\S+)\s+' std_out, _ = execute_command_and_raise_on_error(['ps', 'axo', 'stat,args'], timeout=30) daemon = False ext_handler = False agent_processes = [line for line in std_out.splitlines() if 'python' in line] for process in agent_processes: if re.match(daemon_pattern, process): daemon = True elif re.match(handler_pattern, process): ext_handler = True else: continue status = re.match(status_pattern, process).groups(1)[0] if not(status.startswith('S') or status.startswith('R')): raise Exception('process is not running: {0}'.format(process)) if not daemon: raise Exception('daemon process not found:\n\n{0}'.format(std_out)) if not ext_handler: raise Exception('extension handler process not found:\n\n{0}'.format(std_out)) return 'expected processes found running' def check_sudoers(user): found = False root = '/etc/sudoers.d/' for f in os.listdir(root): sudoers = os.path.join(root, f) with open(sudoers) as fh: for entry in fh.readlines(): if entry.startswith(user) and 'ALL=(ALL)' in entry: print('entry found: {0}'.format(entry)) found = True if not found: raise Exception('user {0} not found'.format(user)) return "Found user {0} in list of sudoers".format(user)
30.923077
109
0.661692
0
0
0
0
0
0
0
0
670
0.208333
b8ca7c27c5d04fb6e63bdc64ba80458973c7d303
9,033
py
Python
src/DrawingEpisodes.py
Benykoz/simcom
ffe1c3636ef65a037a34e71d5cbcdb2e483d5b93
[ "MIT" ]
null
null
null
src/DrawingEpisodes.py
Benykoz/simcom
ffe1c3636ef65a037a34e71d5cbcdb2e483d5b93
[ "MIT" ]
null
null
null
src/DrawingEpisodes.py
Benykoz/simcom
ffe1c3636ef65a037a34e71d5cbcdb2e483d5b93
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # # This file includes mainly a class "randomEpisode" that: # - draws localization of vehicle # - draws number of rocks # - draws position of each rock # - save in a json file # Author: Michele # Project: SmartLoader - Innovation import json import random from geometry_msgs.msg import PoseStamped, Quaternion, Vector3 import math from math import pi as pi import src.Unity2RealWorld as toRW import os def deleteFileIfExists(filename): if os.path.exists(filename): os.remove(filename) else: print("The file does not exist") def find(name, path): for root, dirs, files in os.walk(path): if name in files or name in dirs: return os.path.join(root, name) def determinePathToConfig(): user=os.getenv("HOME") simcomloc = find("simcom", user) confpath = simcomloc+"/config" return confpath class randomEpisode: actual_seed=0 # data = {} # data['Objects'] = [] # NumberOfRocks = 0 # VehiclePosition= PoseStamped() def __init__(self, typeOfRand, newseed): data = {} data['Objects'] = [] NumberOfRocks = 0 VehiclePosition = PoseStamped() if newseed != 0: actual_seed = random.seed(None,2) if typeOfRand == "verysimple": NumberOfRocks = random.randint(1,10) else: NumberOfRocks = random.randint(1,10) VehiclePosition.pose.position.x = random.uniform(0,500) VehiclePosition.pose.position.y = 0 VehiclePosition.pose.position.z = random.uniform(0,500) euler_orient = Vector3() euler_orient.x = 0 euler_orient.y = random.uniform(-pi,pi) euler_orient.z = 0 #random.uniform(-pi,pi) quat_orient = toRW.euler_to_quaternion(euler_orient.x, euler_orient.y, euler_orient.z) VehiclePosition.pose.orientation.x = quat_orient[0] #random.uniform(-1,1) VehiclePosition.pose.orientation.y = quat_orient[1] #random.uniform(-1,1) VehiclePosition.pose.orientation.z = quat_orient[2] #random.uniform(-1,1) VehiclePosition.pose.orientation.w = quat_orient[3] #random.uniform(-1,1) data['Objects'].append({ 'Name': 'BobCat', 'Id': 'BobCat', 'Position': { 'x': VehiclePosition.pose.position.x, 'y': VehiclePosition.pose.position.y, 'z': VehiclePosition.pose.position.z }, 'Rotation': { 'x': VehiclePosition.pose.orientation.x, 'y': VehiclePosition.pose.orientation.y, 'z': VehiclePosition.pose.orientation.z, 'w': VehiclePosition.pose.orientation.w }, 'Scale': { 'x': 1, 'y': 1, 'z': 1 } }) BobcatX = VehiclePosition.pose.position.x BobcatZ = VehiclePosition.pose.position.z XMin = BobcatX - 1 XMax = BobcatX + 1 ZMin = BobcatZ - 1.5 ZMax = BobcatZ + 1.5 for i in range(NumberOfRocks): id = (i+1).__str__() eulerRot = Vector3() eulerRot.x = 0 eulerRot.y = random.uniform(-pi, pi) eulerRot.z = 0 #random.uniform(-pi, pi) quatRot = toRW.euler_to_quaternion(eulerRot.x, eulerRot.y, eulerRot.z) data['Objects'].append({ 'Name': 'Rock', 'Id': id, 'Position': { "x": random.uniform(XMin,XMax), "y": 0, "z": random.uniform(ZMin,ZMax) }, "Rotation": { "x": quatRot[0], #random.uniform(-1,1), "y": quatRot[1], #random.uniform(-1,1), "z": quatRot[2], #random.uniform(-1,1), "w": quatRot[3] #random.uniform(-1,1) }, "Scale": { "x": 0.01, "y": 0.01, "z": 0.01 } }) # deleteFileIfExists('/home/sload/ws/interfaces/src/simcom/config/InitialScene.json') filepath = determinePathToConfig()+"/InitialScene.json" with open(filepath, 'w') as outfile: json.dump(data, outfile) class MultipleRocksEpisode: # actual_seed=0 # data = {} # data['Objects'] = [] # NumberOfRocks = 0 # VehiclePosition= PoseStamped() def __init__(self, newseed, NumberOfRocks, marker): actual_seed = 0 data = {} data['Objects'] = [] VehiclePosition = PoseStamped() if newseed != 0: actual_seed = random.seed(None,2) VehiclePosition.pose.position.x = 250 VehiclePosition.pose.position.y = 0 VehiclePosition.pose.position.z = 250 euler_orient = Vector3() euler_orient.x = 0 euler_orient.y = pi/2 #random.uniform(-pi,pi) euler_orient.z = 0 #random.uniform(-pi,pi) quat_orient = toRW.euler_to_quaternion(euler_orient.x, euler_orient.y, euler_orient.z) VehiclePosition.pose.orientation.x = quat_orient[0] #random.uniform(-1,1) VehiclePosition.pose.orientation.y = quat_orient[1] #random.uniform(-1,1) VehiclePosition.pose.orientation.z = quat_orient[2] #random.uniform(-1,1) VehiclePosition.pose.orientation.w = quat_orient[3] #random.uniform(-1,1) data['Objects'].append({ 'Name': 'BobCat', 'Id': 'BobCat', 'Position': { 'x': VehiclePosition.pose.position.x, 'y': VehiclePosition.pose.position.y, 'z': VehiclePosition.pose.position.z }, 'Rotation': { 'x': VehiclePosition.pose.orientation.x, 'y': VehiclePosition.pose.orientation.y, 'z': VehiclePosition.pose.orientation.z, 'w': VehiclePosition.pose.orientation.w }, 'Scale': { 'x': 1, 'y': 1, 'z': 1 } }) for i in range(NumberOfRocks): id = (i+1).__str__() eulerRot = Vector3() eulerRot.x = 0 eulerRot.y = random.uniform(-pi, pi) eulerRot.z = 0 #random.uniform(-pi, pi) quatRot = toRW.euler_to_quaternion(eulerRot.x, eulerRot.y, eulerRot.z) data['Objects'].append({ 'Name': 'Rock', 'Id': id, 'Position': { "x": 253, "y": 0, "z": 250 + random.uniform(-0.5,0.5) }, "Rotation": { "x": quatRot[0], #random.uniform(-1,1), "y": quatRot[1], #random.uniform(-1,1), "z": quatRot[2], #random.uniform(-1,1), "w": quatRot[3] #random.uniform(-1,1) }, "Scale": { "x": 0.25, "y": 0.25, "z": 0.25 } }) if marker: id = (NumberOfRocks+1).__str__() eulerRot = Vector3() eulerRot.x = 0 eulerRot.y = random.uniform(-pi, pi) eulerRot.z = 0 #random.uniform(-pi, pi) quatRot = toRW.euler_to_quaternion(eulerRot.x, eulerRot.y, eulerRot.z) data['Objects'].append({ 'Name': 'Rock', 'Id': id, 'Position': { # "x": 250 + random.uniform(XMin,XMax), # "x": 258 + random.uniform(-1, 8), "x": 250 + random.uniform(6, 12), "y": 0, "z": 250 }, "Rotation": { "x": quatRot[0], #random.uniform(-1,1), "y": quatRot[1], #random.uniform(-1,1), "z": quatRot[2], #random.uniform(-1,1), "w": quatRot[3] #random.uniform(-1,1) }, "Scale": { "x": 0.1, "y": 0.1, "z": 0.1 } }) filepath = determinePathToConfig()+"/InitialScene.json" with open(filepath,'w') as outfile: json.dump(data, outfile) if __name__ == '__main__': for j in range(3): scenario = recorderEpisode(j)
35.14786
94
0.469169
8,029
0.888852
0
0
0
0
0
0
1,771
0.196059
b8cbd20dcd81315e2ca364311bd80d356f50ed2d
587
py
Python
gimmemotifs/commands/logo.py
littleblackfish/gimmemotifs
913a6e5db378493155273e2c0f8ab0dc11ab219e
[ "MIT" ]
null
null
null
gimmemotifs/commands/logo.py
littleblackfish/gimmemotifs
913a6e5db378493155273e2c0f8ab0dc11ab219e
[ "MIT" ]
null
null
null
gimmemotifs/commands/logo.py
littleblackfish/gimmemotifs
913a6e5db378493155273e2c0f8ab0dc11ab219e
[ "MIT" ]
null
null
null
#!/usr/bin/env python # Copyright (c) 2009-2016 Simon van Heeringen <simon.vanheeringen@gmail.com> # # This module is free software. You can redistribute it and/or modify it under # the terms of the MIT License, see the file COPYING included with this # distribution. from gimmemotifs.motif import pwmfile_to_motifs def logo(args): inputfile = args.pwmfile motifs = pwmfile_to_motifs(inputfile) if args.ids: ids = args.ids.split(",") motifs = [m for m in motifs if m.id in ids] for motif in motifs: motif.to_img(motif.id, fmt="PNG")
29.35
79
0.688245
0
0
0
0
0
0
0
0
272
0.463373