hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
b1a88bc7e1241c7e280f5c4ac943fa677100e8e2
7,651
py
Python
utilities/tag-bumper.py
stackrox/collector
4c3913176eb62636e32a8a56f889e611c638de73
[ "Apache-2.0" ]
1
2022-03-31T15:25:16.000Z
2022-03-31T15:25:16.000Z
utilities/tag-bumper.py
stackrox/collector
4c3913176eb62636e32a8a56f889e611c638de73
[ "Apache-2.0" ]
4
2022-03-31T16:16:00.000Z
2022-03-31T23:24:33.000Z
utilities/tag-bumper.py
stackrox/collector
4c3913176eb62636e32a8a56f889e611c638de73
[ "Apache-2.0" ]
null
null
null
#! /usr/bin/env python3 from sh import git, ErrorReturnCode import argparse import sys import os import atexit import re def exit_handler(repo): """ Rollback the repo to the branch passed as an argument. Parameters: repo: An sh.Command baked for git on the working repository. """ print('Rolling back to starting branch') repo.checkout('-') def validate_version(version: str): """ Validates the provided version is in the form 'M.m'. Returns: The same string provided as input if the format is valid. Raises: ValueError If the provided version does not match the expected pattern. """ version_re = re.compile(r'(:?^\d+\.\d+$)') if not version_re.match(version): raise ValueError return version def get_repo_handle(path: str): """ Provides a sh.Command baked to run git commands on a repository. Parameters: path: A path to a repository, if it is empty, the returned handle points to the directory this script lives in. Returns: An sh.Command ready to run git commands. """ if path != '': return git.bake('--no-pager', C=path) return git.bake('--no-pager', C=os.path.dirname(os.path.realpath(__file__))) def get_release_branch(version: str) -> str: """ Helper function, simply formats the release branch for the provided version. Parameters: version: A string with a valid version. Returns: A string with the name of the corresponding release branch. """ return f'release/{version}.x' def fetch_all(repo): """ Fetches all branches and tags from all remotes configured in the repository. Parameters: repo: An sh.Command baked for git on the working repository. """ try: repo.fetch('--all', '--tags') except ErrorReturnCode as e: print(f'Failed to fetch remote. {e}') sys.exit(1) def get_branch(repo, version: str) -> str: """ Validates the release branch exists and returns a string with its name. Parameters: repo: An sh.Command baked for git on the working repository. version: A string with a valid version. Returns: A string with the name of the release branch. """ release_branch = get_release_branch(version) try: repo('rev-parse', '--verify', release_branch) except ErrorReturnCode as e: print(f'The branch {release_branch} does not exist. {e}') sys.exit(1) return release_branch def checkout_release_branch(repo, version: str): """ Checks out the release branch for the provided version. Parameters: repo: An sh.Command baked for git on the working repository. version: A string with a valid version. """ branch = get_branch(repo, version) print(f'Checking out {branch}') try: repo.checkout(branch).wait() except ErrorReturnCode as e: print(f'Failed to checkout release branch {branch}. {e}') sys.exit(1) def find_tag_version(repo, version: str) -> str: """ Finds the latest tag for the provided version. This is done by iterating over the tags in the repository, checking against the provided major and minor versions and using the highest patch number found once the iteration is done. Parameters: repo: An sh.Command baked for git on the working repository. version: The major and minor versions we want to create a new tag for in the format 'M.m' Returns: The new tag to be created. """ patch_version = -1 version_regex = re.compile(fr'^{re.escape(version)}\.(\d+)$') for tag in repo.tag().splitlines(): matched = version_regex.match(tag) if matched: patch = int(matched[1]) if patch > patch_version: patch_version = patch if patch_version == -1: print(f'Failed to find an existing tag for {".".join(version)}') sys.exit(1) return f'{version}.{patch_version + 1}' def create_empty_commit(repo): """ Creates an empty commit on the current branch. Uses defaults for author, signature, etc. """ print('Creating empty commit.') try: repo.commit('--allow-empty', '-m', 'Empty commit') except ErrorReturnCode as e: print(f'Failed to create empty commit: {e}') sys.exit(1) def create_new_tag(repo, new_tag: str): """ Creates a new tag on the current commit. Parameters: new_tag: The new tag to be created. i.e: 3.8.5 """ print(f'Creating new tag: {new_tag}') try: git.tag(new_tag) except ErrorReturnCode as e: print(f'Failed to create new tag {new_tag}. {e}') sys.exit(1) def push_branch(repo): """ Executes a push on the current branch. Parameters: repo: An sh.Command baked for git on the working repository. """ print('Pushing release branch...') try: repo.push() except ErrorReturnCode as e: print(f'Failed to push empty commit to release branch. {e}') sys.exit(1) def push_tag(repo, new_tag: str, remote: str): """ Push a new tag to the provided remote. Parameters: repo: An sh.Command baked for git on the working repository. new_tag: The new tag to be pushed. i.e: 3.8.5 remote: The remote in the repository the tag will be pushed to. i.e: origin """ print(f'Pushing {new_tag} to {remote}...') try: repo.push(remote, new_tag) except ErrorReturnCode as e: print(f'Failed to push tag {new_tag} to {remote}. {e}') def main(version: str, dry_run: bool, push: bool, path: str, remote: str): repo = get_repo_handle(path) new_tag = find_tag_version(repo, version) print(f'New tag to be created: {new_tag}') if dry_run: print('This is a dry run, no tag created.') return # Before doing anything else, ensure branch rolls back to current working one atexit.register(exit_handler, repo) fetch_all(repo) checkout_release_branch(repo, version) create_empty_commit(repo) create_new_tag(repo, new_tag) if not push: print(f'Created empty commit and new tag {new_tag}') print("Run") print(f"git checkout {get_release_branch(version)} && git push && git push {remote} {new_tag}") print("to publish them") return push_branch(repo) push_tag(repo, new_tag) if __name__ == "__main__": description = """Creates a new patch tag with an empty commit. Useful when we need to simply rebuild a collector image.""" parser = argparse.ArgumentParser(description=description, formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('version', help='Version to bump in the vormat X.Y', type=validate_version) parser.add_argument('-d', '--dry-run', help='Run all checks without actually modifying the repo', default=False, action='store_true') parser.add_argument('-p', '--push', help="Push the newly create tag", default=False, action='store_true') parser.add_argument('-C', '--cwd', help='Path to the repository to run in, defaults to the directory this script is in', default='') parser.add_argument('-r', '--remote', help="Remote repoditory to push tags to, defaults to 'origin'") args = parser.parse_args() version = args.version dry_run = args.dry_run push = args.push path = args.cwd remote = args.remote main(version, dry_run, push, path, remote)
29.091255
119
0.640439
0
0
0
0
0
0
0
0
4,247
0.555091
b1a911035784142a39959873000505c8b7d79b40
2,455
py
Python
openshift/helper/openshift.py
flaper87/openshift-restclient-python
13d5d86ca89035b9f596032e7a34f3cc33bf8f18
[ "Apache-2.0" ]
null
null
null
openshift/helper/openshift.py
flaper87/openshift-restclient-python
13d5d86ca89035b9f596032e7a34f3cc33bf8f18
[ "Apache-2.0" ]
null
null
null
openshift/helper/openshift.py
flaper87/openshift-restclient-python
13d5d86ca89035b9f596032e7a34f3cc33bf8f18
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import absolute_import import json from kubernetes.client import models as k8s_models from kubernetes.client import apis as k8s_apis from kubernetes.client.rest import ApiException from urllib3.exceptions import MaxRetryError from . import VERSION_RX from .. import config from ..client import models as openshift_models from ..client import apis as openshift_apis from ..client import ApiClient, ConfigurationObject from .base import BaseObjectHelper from .exceptions import OpenShiftException class OpenShiftObjectHelper(BaseObjectHelper): @staticmethod def client_from_config(config_file, context): if not config_file: return ApiClient(config=ConfigurationObject()) return config.new_client_from_config(config_file, context) @classmethod def available_apis(cls): apis = ['OapiApi'] apis.extend([x for x in dir(openshift_apis) if VERSION_RX.search(x)]) apis.extend([x for x in dir(k8s_apis) if VERSION_RX.search(x)]) return apis @staticmethod def get_exception_class(): return OpenShiftException @staticmethod def model_class_from_name(model_name): try: return getattr(openshift_models, model_name) except AttributeError: return getattr(k8s_models, model_name) @staticmethod def api_class_from_name(api_name): try: return getattr(openshift_apis, api_name) except AttributeError: return getattr(k8s_apis, api_name) def create_project(self, metadata, display_name=None, description=None): """ Creating a project requires using the project_request endpoint. """ # TODO: handle admin-level project creation w, stream = self._create_stream(None) try: proj_req = openshift_models.V1ProjectRequest(metadata=metadata, display_name=display_name, description=description) openshift_apis.OapiApi(self.api_client).create_project_request(proj_req) except ApiException as exc: msg = json.loads(exc.body).get('message', exc.reason) if exc.body.startswith('{') else exc.body raise OpenShiftException(msg, status=exc.status) except MaxRetryError as ex: raise OpenShiftException(str(ex.reason)) self._read_stream(w, stream, metadata.name) return self._wait_for_response(metadata.name, None, 'create')
35.071429
127
0.712424
1,914
0.779633
0
0
937
0.38167
0
0
166
0.067617
b1a93d370fc62aa987aa9250ab1bac4da3444f9c
35
py
Python
tests/__init__.py
jsta/nhdpy
38f52a68907e4d838715c77b18e61450eb775c72
[ "MIT" ]
null
null
null
tests/__init__.py
jsta/nhdpy
38f52a68907e4d838715c77b18e61450eb775c72
[ "MIT" ]
8
2020-11-12T16:42:23.000Z
2021-03-04T19:00:09.000Z
tests/__init__.py
jsta/nhdpy
38f52a68907e4d838715c77b18e61450eb775c72
[ "MIT" ]
null
null
null
"""Unit test package for nhdpy."""
17.5
34
0.657143
0
0
0
0
0
0
0
0
34
0.971429
b1a94a4b34655e087c8464bf5e2ca43f8d328eaa
10,423
py
Python
ltcl/modules/lvae_nonlinear.py
anonymous-authors-iclr2022-481/ltcl
0d8902228fa6c37f875bb60c4d16988462a9655a
[ "MIT" ]
8
2021-10-16T08:35:37.000Z
2022-02-10T09:25:50.000Z
leap/modules/lvae_nonlinear.py
weirayao/leap
8d10b8413d02d3be49d5c02a13a0aa60a741d8da
[ "MIT" ]
null
null
null
leap/modules/lvae_nonlinear.py
weirayao/leap
8d10b8413d02d3be49d5c02a13a0aa60a741d8da
[ "MIT" ]
1
2021-11-30T04:06:43.000Z
2021-11-30T04:06:43.000Z
"""Temporal VAE with gaussian margial and laplacian transition prior""" import torch import numpy as np import ipdb as pdb import torch.nn as nn import pytorch_lightning as pl import torch.distributions as D from torch.nn import functional as F from .components.beta import BetaVAE_MLP from .metrics.correlation import compute_mcc from .components.base import GroupLinearLayer from .components.transforms import ComponentWiseSpline def reconstruction_loss(x, x_recon, distribution): batch_size = x.size(0) assert batch_size != 0 if distribution == 'bernoulli': recon_loss = F.binary_cross_entropy_with_logits( x_recon, x, size_average=False).div(batch_size) elif distribution == 'gaussian': recon_loss = F.mse_loss(x_recon, x, size_average=False).div(batch_size) elif distribution == 'sigmoid': x_recon = F.sigmoid(x_recon) recon_loss = F.mse_loss(x_recon, x, size_average=False).div(batch_size) return recon_loss def compute_cross_ent_normal(mu, logvar): return 0.5 * (mu**2 + torch.exp(logvar)) + np.log(np.sqrt(2 * np.pi)) def compute_ent_normal(logvar): return 0.5 * (logvar + np.log(2 * np.pi * np.e)) def compute_sparsity(mu, normed=True): # assume couples, compute normalized sparsity diff = mu[::2] - mu[1::2] if normed: norm = torch.norm(diff, dim=1, keepdim=True) norm[norm == 0] = 1 # keep those that are same, dont divide by 0 diff = diff / norm return torch.mean(torch.abs(diff)) class AfflineVAESynthetic(pl.LightningModule): def __init__( self, input_dim, lag=1, beta=1, alpha=1, lr=1e-4, z_dim=10, gamma=10, rate_prior=1, hidden_dim=128, diagonal=False, decoder_dist='gaussian', nonlinear_type='gaussian' ): '''Import Beta-VAE as encoder/decoder''' super().__init__() self.net = BetaVAE_MLP(input_dim=input_dim, z_dim=z_dim, hidden_dim=hidden_dim) self.trans_func = GroupLinearLayer(din=z_dim, dout=z_dim, num_blocks=lag, diagonal=diagonal) self.spline = ComponentWiseSpline(input_dim=z_dim, bound=5, count_bins=8, order="linear") self.f1 = nn.Sequential(nn.Linear(z_dim, z_dim), nn.LeakyReLU(0.2)) self.f2 = nn.Sequential(nn.Linear(z_dim, z_dim), nn.LeakyReLU(0.2)) self.coff = nn.Linear(z_dim, z_dim) # self.spline.load_state_dict(torch.load("/home/yuewen/spline.pth")) self.lr = lr self.lag = lag self.beta = beta self.z_dim = z_dim self.alpha = alpha self.gamma = gamma self.input_dim = input_dim self.rate_prior = rate_prior self.decoder_dist = decoder_dist self.nonlinear_type = nonlinear_type self.b = nn.Parameter(0.01 * torch.randn(1, z_dim)) # base distribution for calculation of log prob under the model self.register_buffer('base_dist_var', torch.eye(self.z_dim)) self.register_buffer('base_dist_mean', torch.zeros(self.z_dim)) @property def base_dist(self): return D.MultivariateNormal(self.base_dist_mean, self.base_dist_var) def forward(self, batch): xt, xt_ = batch["xt"], batch["xt_"] batch_size, _, _ = xt.shape x = torch.cat((xt, xt_), dim=1) x = x.view(-1, self.input_dim) return self.net(x) def compute_cross_ent_laplace(self, mean, logvar, rate_prior): var = torch.exp(logvar) sigma = torch.sqrt(var) ce = - torch.log(rate_prior / 2) + rate_prior * sigma *\ np.sqrt(2 / np.pi) * torch.exp(- mean**2 / (2 * var)) -\ rate_prior * mean * ( 1 - 2 * self.normal_dist.cdf(mean / sigma)) return ce def training_step(self, batch, batch_idx): xt, xt_ = batch["xt"], batch["xt_"] batch_size, _, _ = xt.shape x = torch.cat((xt, xt_), dim=1) x = x.view(-1, self.input_dim) x_recon, mu, logvar, z = self.net(x) # Normal VAE loss: recon_loss + kld_loss recon_loss = reconstruction_loss(x, x_recon, self.decoder_dist) mu = mu.view(batch_size, -1, self.z_dim) logvar = logvar.view(batch_size, -1, self.z_dim) z = z.view(batch_size, -1, self.z_dim) mut, mut_ = mu[:,:-1,:], mu[:,-1:,:] logvart, logvart_ = logvar[:,:-1,:], logvar[:,-1:,:] zt, zt_ = z[:,:-1,:], z[:,-1:,:] # Past KLD divergenve p1 = D.Normal(torch.zeros_like(mut), torch.ones_like(logvart)) q1 = D.Normal(mut, torch.exp(logvart / 2)) log_qz_normal = q1.log_prob(zt) log_pz_normal = p1.log_prob(zt) kld_normal = log_qz_normal - log_pz_normal kld_normal = torch.sum(torch.sum(kld_normal,dim=-1),dim=-1).mean() ''' have question on this part... ''' # Current KLD divergence if self.nonlinear_type == "gaussian": zt_mid = self.f1(zt) noise_term = nn.Parameter(torch.randn(zt.shape).cuda()) zt_mid = zt_mid + self.coff(noise_term) zt_bar = self.f2(zt_mid) recon_zt_ = reconstruction_loss(zt_, zt_bar, self.decoder_dist) else: zt_mid = self.f1(zt) noise_term = nn.Parameter(torch.distributions.laplace.Laplace(0,1).rsample(zt.shape).cuda()) zt_mid = zt_mid + self.coff(noise_term) zt_bar = self.f2(zt_mid) recon_zt_ = reconstruction_loss(zt_, zt_bar, self.decoder_dist) coff = torch.abs(self.coff.weight).mean() # # Current KLD divergence # ut = self.trans_func(zt) # ut = torch.sum(ut, dim=1) + self.b # epst_ = zt_.squeeze() + ut # et_, logabsdet = self.spline(epst_) # log_pz_laplace = self.base_dist.log_prob(et_) + logabsdet # q_laplace = D.Normal(mut_, torch.exp(logvart_ / 2)) # log_qz_laplace = q_laplace.log_prob(zt_) # kld_laplace = torch.sum(torch.sum(log_qz_laplace,dim=-1),dim=-1) - log_pz_laplace # kld_laplace = kld_laplace.mean() loss = (self.lag+1) * recon_loss + self.beta * kld_normal + self.gamma * recon_zt_ + self.alpha * coff # loss = (self.lag+1) * recon_loss + self.beta * kld_normal zt_recon = mu[:,-1,:].T.detach().cpu().numpy() zt_true = batch["yt_"].squeeze().T.detach().cpu().numpy() mcc = compute_mcc(zt_recon, zt_true, "Pearson") self.log("train_mcc", mcc) self.log("train_coff", coff) self.log("train_elbo_loss", loss) self.log("train_recon_zt_", recon_zt_) self.log("train_recon_loss", recon_loss) self.log("train_kld_normal", kld_normal) return loss def validation_step(self, batch, batch_idx): xt, xt_ = batch["xt"], batch["xt_"] batch_size, _, _ = xt.shape x = torch.cat((xt, xt_), dim=1) x = x.view(-1, self.input_dim) x_recon, mu, logvar, z = self.net(x) # Normal VAE loss: recon_loss + kld_loss recon_loss = reconstruction_loss(x, x_recon, self.decoder_dist) mu = mu.view(batch_size, -1, self.z_dim) logvar = logvar.view(batch_size, -1, self.z_dim) z = z.view(batch_size, -1, self.z_dim) mut, mut_ = mu[:,:-1,:], mu[:,-1:,:] logvart, logvart_ = logvar[:,:-1,:], logvar[:,-1:,:] zt, zt_ = z[:,:-1,:], z[:,-1:,:] # Past KLD divergenve p1 = D.Normal(torch.zeros_like(mut), torch.ones_like(logvart)) q1 = D.Normal(mut, torch.exp(logvart / 2)) log_qz_normal = q1.log_prob(zt) log_pz_normal = p1.log_prob(zt) kld_normal = log_qz_normal - log_pz_normal kld_normal = torch.sum(torch.sum(kld_normal,dim=-1),dim=-1).mean() # Current KLD divergence if self.nonlinear_type == "gaussian": zt_mid = self.f1(zt) noise_term = nn.Parameter(torch.randn(zt.shape).cuda()) zt_mid = zt_mid + self.coff(noise_term) zt_bar = self.f2(zt_mid) recon_zt_ = reconstruction_loss(zt_, zt_bar, self.decoder_dist) else: zt_mid = self.f1(zt) noise_term = nn.Parameter(torch.distributions.laplace.Laplace(0,1).rsample(zt.shape).cuda()) zt_mid = zt_mid + self.coff(noise_term) zt_bar = self.f2(zt_mid) recon_zt_ = reconstruction_loss(zt_, zt_bar, self.decoder_dist) coff = torch.abs(self.coff.weight).mean() loss = (self.lag+1) * recon_loss + self.beta * kld_normal + self.gamma * recon_zt_ + self.alpha * coff # loss = (self.lag+1) * recon_loss + self.beta * kld_normal zt_recon = mu[:,-1,:].T.detach().cpu().numpy() zt_true = batch["yt_"].squeeze().T.detach().cpu().numpy() mcc = compute_mcc(zt_recon, zt_true, "Pearson") self.log("val_mcc", mcc) self.log("val_coff", coff) self.log("val_elbo_loss", loss) self.log("val_recon_zt_", recon_zt_) self.log("val_recon_loss", recon_loss) self.log("val_kld_normal", kld_normal) return loss def sample(self, xt): batch_size = xt.shape[0] e = torch.randn(batch_size, self.z_dim).to(xt.device) eps, _ = self.spline.inverse(e) return eps def reconstruct(self): return self.forward(batch)[0] def configure_optimizers(self): optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, self.parameters()), lr=self.lr) # An scheduler is optional, but can help in flows to get the last bpd improvement scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1, gamma=0.99) return [optimizer], [scheduler]
40.399225
111
0.570469
8,849
0.848988
0
0
113
0.010841
0
0
1,549
0.148614
b1a94cda8b0a8f59129a19a7e19f329084618c94
7,196
py
Python
cargame/camera.py
jocelynthiojaya/Self-Learning-Cars
5dbd47f4f34155cf50cd6c6a6daef70449f96398
[ "Apache-2.0" ]
null
null
null
cargame/camera.py
jocelynthiojaya/Self-Learning-Cars
5dbd47f4f34155cf50cd6c6a6daef70449f96398
[ "Apache-2.0" ]
null
null
null
cargame/camera.py
jocelynthiojaya/Self-Learning-Cars
5dbd47f4f34155cf50cd6c6a6daef70449f96398
[ "Apache-2.0" ]
null
null
null
import arcade from cargame.globals import conf from cargame import util # This math is for getting the ratio from zoom. I honestly # don't know what it is called, i just constructed it by hand # Long form is 1 - (x - 1) / 2 zoom_multiplexer = lambda x : (3 - x)/2 # TODO: Implement anchor class Camera: def __init__(self, left_bound, bottom_bound, right_bound, top_bound): """ Set every camera variables s_width: Screen width s_height: Screen height """ self.x = 0 self.y = 0 self.right = conf["screen_width"] self.top = conf["screen_height"] # Camera bounds self.left_bound = left_bound self.bottom_bound = bottom_bound self.right_bound = right_bound self.top_bound = top_bound # The zoom of the main canvas self.zoom = 1 # Whether zoom is enabled. self.can_zoom = True # Marker when camera port will be updated this frame self.moved = False def on_start_update(self): """ Will be run at the beginning of them main update function """ self.moved = False def handle_border(self): """ Handles if the camera went out of bounds """ bound_left = self.x < self.left_bound bound_right = self.right > self.right_bound if bound_left or bound_right: x_diff = self.left_bound - self.x if bound_left else self.right_bound - self.right self.x += x_diff self.right += x_diff bound_bot = self.y < self.bottom_bound bound_top = self.top > self.top_bound if bound_bot or bound_top: y_diff = self.bottom_bound - self.y if bound_bot else self.top_bound - self.top self.y += y_diff self.top += y_diff def update_camera_pos(self, x=None, y=None, zoom=None): """ Updates the position according to the x, y, and zoom """ # Mark camera as moved this frame self.moved = True # Move and do maths zoom_mult = zoom_multiplexer(self.zoom) if x != None: self.right = x + conf["screen_width"] * zoom_mult self.x = x if y != None: self.top = y + conf["screen_height"] * zoom_mult self.y = y self.handle_border() # print("Port size: ({}, {}) zoom: {}".format(self.right - self.x, self.top - self.y, self.zoom)) def update_zoom(self, zoom, anchor_x, anchor_y): """ Updates the zoom of the main canvas """ # Check first whether zoom is enabled if not self.can_zoom: return # Mark camera as moved self.moved = True # Clamp the zoom zoom = util.clamp(zoom, -5.0, 2.95) # Calculate zoom increment zoom_inc = self.zoom - zoom # Get the linear interpolation so that the zoom is # focused on the anchor x_lerp = util.invlerp(0, conf["screen_width"], anchor_x) y_lerp = util.invlerp(0, conf["screen_height"], anchor_y) # print("x: {} y: {} right: {} top: {}".format(self.x, self.y, self.right, self.top)) # print("xlerp: {} ylerp: {}".format(x_lerp, y_lerp)) # Camera view ports lp = self.x - (x_lerp * conf["screen_width"] * zoom_inc) / 2 bp = self.y - (y_lerp * conf["screen_height"] * zoom_inc) / 2 rp = self.right + ((1-x_lerp) * conf["screen_width"] * zoom_inc) / 2 tp = self.top + ((1-y_lerp) * conf["screen_height"] * zoom_inc) / 2 # If camera view port is within the bounds, do the zoom. if (rp - lp) < (self.right_bound - self.left_bound) and (tp - bp) < (self.top_bound - self.bottom_bound): # Calculate the camera maths here self.x = lp self.y = bp self.right = rp self.top = tp self.zoom = round(zoom, 3) self.handle_border() # print("x: {} y: {} right: {} top: {}".format(self.x, self.y, self.right, self.top)) # print("Port size: ({}, {}) zoom: {}".format(self.right - self.x, self.top - self.y, self.zoom)) def move_camera_pos(self, dx, dy): """ Moves the camera by appending the variables to the individual coordinates. """ self.update_camera_pos(self.x + dx, self.y + dy) def update_viewport(self): """ Updates the camera by updating the viewport of arcade """ arcade.set_viewport(self.x, self.right, self.y, self.top) def handle_pan(self, dx, dy): """ Handles the camera pan from data gotten from mouse drag """ # Here, we adjust the pan speed according to the level of zoom too. zoom_mult = zoom_multiplexer(self.zoom) self.move_camera_pos(-dx * zoom_mult, -dy * zoom_mult) def handle_zoom(self, mouse_x, mouse_y, scroll_y): """ Handles the camera scroll from data gotten from mouse scroll """ # Must adjust according to where the pointer is. self.update_zoom(self.zoom + scroll_y * 0.05, mouse_x, mouse_y) def get_viewport(self): """ Gets the size of the viewport """ return (self.right - self.x, self.top - self.y) def reset_zoom(self): """ Reset the zoom of the camera to 1x """ self.update_zoom(1, conf["screen_width"]/2, conf["screen_height"]/2) def set_can_zoom(self, state): self.can_zoom = state class Grid(): grid_size = 128 def __init__(self, camera): """ Detects the camera movement """ self.grid_lines = [] self.camera: Camera = camera self.recreate_grid() def update(self): """ Update """ def recreate_grid(self): """ Recreate the grid from the ground up This will recreate the grids with an offset based on the camera position. Therefore, grids will be only drawn in the place of the camera, not outside.""" # Reset the grid lines self.grid_lines = [] # Recreate the vertical lines viewport = self.camera.get_viewport() for i in range(int(viewport[0]) // Grid.grid_size + 2): self.grid_lines.append([self.camera.x + Grid.grid_size * i - (self.camera.x % Grid.grid_size), self.camera.y + -Grid.grid_size]) self.grid_lines.append([self.camera.x + Grid.grid_size * i - (self.camera.x % Grid.grid_size), self.camera.y + viewport[1] + Grid.grid_size]) # Horizontal lines for i in range(int(viewport[1]) // Grid.grid_size + 2): self.grid_lines.append([self.camera.x + -Grid.grid_size, self.camera.y + Grid.grid_size * i - (self.camera.y % Grid.grid_size)]) self.grid_lines.append([self.camera.x + viewport[0] + Grid.grid_size, self.camera.y + Grid.grid_size * i - (self.camera.y % Grid.grid_size)]) def draw_grid(self): """ Draws the grid based on the configuration """ # Only update grid when camera is moved. if self.camera.moved: # Recreate every line grid self.recreate_grid() arcade.draw_lines(self.grid_lines, (235, 235, 235))
34.932039
153
0.591857
6,903
0.959283
0
0
0
0
0
0
2,540
0.352974
b1ac9e7af9abde201568a2b9eff7f851241bb02a
168
py
Python
configs/tsmnet/tsmnet_r50-d1_769x769_40k_cityscapes_video.py
labdeeman7/TRDP_temporal_stability_semantic_segmentation
efe0f13c2ed4e203d1caa41810e39e09152b508e
[ "Apache-2.0" ]
null
null
null
configs/tsmnet/tsmnet_r50-d1_769x769_40k_cityscapes_video.py
labdeeman7/TRDP_temporal_stability_semantic_segmentation
efe0f13c2ed4e203d1caa41810e39e09152b508e
[ "Apache-2.0" ]
null
null
null
configs/tsmnet/tsmnet_r50-d1_769x769_40k_cityscapes_video.py
labdeeman7/TRDP_temporal_stability_semantic_segmentation
efe0f13c2ed4e203d1caa41810e39e09152b508e
[ "Apache-2.0" ]
null
null
null
_base_ = [ '../_base_/models/tsm_r50-d8.py', '../_base_/datasets/cityscapes_769x769.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' ]
42
81
0.684524
0
0
0
0
0
0
0
0
141
0.839286
b1aca6b126eaf2078a24e5384b735f4060abd7a2
1,883
py
Python
abc/104/c_retry2.py
515hikaru/solutions
9fb3e4600f9a97b78211a5736c98354d4cbebc38
[ "MIT" ]
null
null
null
abc/104/c_retry2.py
515hikaru/solutions
9fb3e4600f9a97b78211a5736c98354d4cbebc38
[ "MIT" ]
9
2019-12-29T17:57:39.000Z
2020-02-16T16:36:04.000Z
abc104/c_retry2.py
515hikaru/abc-sandbox
6445dd9d6583bd48a285d6e5693173529933da51
[ "MIT" ]
null
null
null
from itertools import combinations def exclude_combi_idx(combis, scores): a = [score[1] for score in combis] v = [] for score in scores: if score[1] in a: continue v.append(score) return v def set_all_solve(combi): current = 0 num = 0 for item in combi: num += item[0] current += item[2] return num, current def track_residue(num, score, current, target): for i in range(num): current += score if current >= target: return i + 1 return None def main(): D, G = [int(c) for c in input().split()] items = [] for idx in range(1, 1+D): num, bonasu = [int(c) for c in input().split()] items.append((idx * 100, num, bonasu)) scores = [(num, idx,idx * num + bonasu) for idx, num, bonasu in items] max_prob = sum([num for num,_, _ in scores]) min_prob = max_prob for i in range(0, D+1): combis = list(combinations(scores, i)) # print('i = {}, combinations = {}'.format(i, combis)) for combi in combis: s = 0 prob = 0 # print('combi = {}'.format(combi)) tmp, tmp2 = set_all_solve(combi) prob += tmp s += tmp2 # print('all solves num = {} score = {}'.format(prob, s)) if s >= G: if prob < min_prob: min_prob = prob continue else: v = exclude_combi_idx(combi, scores)[-1] # 値が最大のもののみ必要 res = track_residue(v[0], v[1], s, G) if res is None: continue if res + prob < min_prob: # print('track solve: num = {}, score = {}'.format(res + prob, s)) min_prob = res + prob print(min_prob) if __name__ == '__main__': main()
29.888889
86
0.495486
0
0
0
0
0
0
0
0
257
0.134908
b1acfa5bf6bd71ea82cf922fd4900527c2980874
4,418
py
Python
merlin/celery.py
robinson96/merlin
962b97ac037465f0fe285ceee6b77e554d8a29fe
[ "MIT" ]
null
null
null
merlin/celery.py
robinson96/merlin
962b97ac037465f0fe285ceee6b77e554d8a29fe
[ "MIT" ]
null
null
null
merlin/celery.py
robinson96/merlin
962b97ac037465f0fe285ceee6b77e554d8a29fe
[ "MIT" ]
null
null
null
############################################################################### # Copyright (c) 2019, Lawrence Livermore National Security, LLC. # Produced at the Lawrence Livermore National Laboratory # Written by the Merlin dev team, listed in the CONTRIBUTORS file. # <merlin@llnl.gov> # # LLNL-CODE-797170 # All rights reserved. # This file is part of Merlin, Version: 1.5.0. # # For details, see https://github.com/LLNL/merlin. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. ############################################################################### """Updated celery configuration.""" from __future__ import ( absolute_import, print_function, ) import logging import os import billiard import psutil from celery import Celery from celery.signals import worker_process_init import merlin.common.security.encrypt_backend_traffic from merlin.config import ( broker, results_backend, ) from merlin.log_formatter import FORMATS from merlin.router import route_for_task LOG = logging.getLogger(__name__) broker_ssl = True results_ssl = False try: BROKER_URI = broker.get_connection_string() LOG.info(f"broker: {broker.get_connection_string(include_password=False)}") broker_ssl = broker.get_ssl_config() LOG.info(f"broker_ssl = {broker_ssl}") RESULTS_BACKEND_URI = results_backend.get_connection_string() results_ssl = results_backend.get_ssl_config(celery_check=True) LOG.info( f"results: {results_backend.get_connection_string(include_password=False)}" ) LOG.info(f"results: redis_backed_use_ssl = {results_ssl}") except ValueError: # These variables won't be set if running with '--local'. BROKER_URI = None RESULTS_BACKEND_URI = None app = Celery( "merlin", broker=BROKER_URI, backend=RESULTS_BACKEND_URI, broker_use_ssl=broker_ssl, redis_backend_use_ssl=results_ssl, ) app.conf.update( task_serializer="pickle", accept_content=["pickle"], result_serializer="pickle" ) app.autodiscover_tasks(["merlin.common"]) app.conf.update( task_acks_late=True, task_reject_on_worker_lost=True, task_publish_retry_policy={ "interval_start": 10, "interval_step": 10, "interval_max": 60, }, redis_max_connections=100000, ) # Set a one hour timeout to acknowledge a task before it's available to grab # again. app.conf.broker_transport_options = {"visibility_timeout": 7200, "max_connections": 100} app.conf.update(broker_pool_limit=0) # Task routing: call our default queue merlin app.conf.task_routes = (route_for_task,) app.conf.task_default_queue = "merlin" # Log formatting app.conf.worker_log_color = True app.conf.worker_log_format = FORMATS["DEFAULT"] app.conf.worker_task_log_format = FORMATS["WORKER"] @worker_process_init.connect() def setup(**kwargs): """ Set affinity for the worker on startup (works on toss3 nodes) :param `**kwargs`: keyword arguments """ if "CELERY_AFFINITY" in os.environ and int(os.environ["CELERY_AFFINITY"]) > 1: # Number of cpus between workers. cpu_skip = int(os.environ["CELERY_AFFINITY"]) npu = psutil.cpu_count() p = psutil.Process() current = billiard.current_process() prefork_id = current._identity[0] - 1 # range 0:nworkers-1 cpu_slot = (prefork_id * cpu_skip) % npu p.cpu_affinity(list(range(cpu_slot, cpu_slot + cpu_skip)))
33.218045
88
0.715708
0
0
0
0
645
0.145994
0
0
2,369
0.536215
b1ad3f5981efc006ce7e36a91015794cd61586bc
648
py
Python
webapi/apps/web/management/mockup.py
NovaSBE-DSKC/retention-evaluation
5b68b9282f0b5479a9dc5238faef68067c76b861
[ "MIT" ]
null
null
null
webapi/apps/web/management/mockup.py
NovaSBE-DSKC/retention-evaluation
5b68b9282f0b5479a9dc5238faef68067c76b861
[ "MIT" ]
null
null
null
webapi/apps/web/management/mockup.py
NovaSBE-DSKC/retention-evaluation
5b68b9282f0b5479a9dc5238faef68067c76b861
[ "MIT" ]
null
null
null
import random import pandas as pd import json def get_random_name(): names = ["Miguel", "Susana", " Pedro", "Mateus", "Ângelo", "Beatriz", "Ana", " Maria", "Carlos", "José"] return names[random.randint(0, len(names) - 1)] def add_random_names(data): for x in data: x["name"] = get_random_name() return data def get_mockup_data(grade='9'): # read file df = pd.read_csv("mockup_data/dummy_" + grade + "grade.csv") # dataframe to json result = df.to_json(orient="values") result = json.loads(result) # add columns columns = list(df.columns) result.insert(0, columns) return result
20.903226
108
0.634259
0
0
0
0
0
0
0
0
169
0.26
b1ad704b385cea93f718a905833492ee873ae1bf
1,332
py
Python
migrations/versions/e91e2508f055_.py
ifat-mohit/flask-microblog
f4f5f0df600779caecbe442d30a7ecc517ad515f
[ "MIT" ]
1
2021-02-13T23:47:46.000Z
2021-02-13T23:47:46.000Z
migrations/versions/e91e2508f055_.py
ifat-mohit/flask-microblog
f4f5f0df600779caecbe442d30a7ecc517ad515f
[ "MIT" ]
2
2021-02-14T17:04:53.000Z
2021-06-02T00:35:49.000Z
migrations/versions/e91e2508f055_.py
mohidex/flask-microblog
f4f5f0df600779caecbe442d30a7ecc517ad515f
[ "MIT" ]
1
2020-04-07T11:56:22.000Z
2020-04-07T11:56:22.000Z
"""empty message Revision ID: e91e2508f055 Revises: a064e677a1f1 Create Date: 2019-11-04 22:59:00.701304 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'e91e2508f055' down_revision = 'a064e677a1f1' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('comment', sa.Column('id', sa.Integer(), nullable=False), sa.Column('comment', sa.String(length=255), nullable=True), sa.Column('commneted_on', sa.Integer(), nullable=True), sa.Column('commented_by', sa.Integer(), nullable=True), sa.Column('timestamp', sa.DateTime(), nullable=True), sa.ForeignKeyConstraint(['commented_by'], ['user.id'], ), sa.ForeignKeyConstraint(['commneted_on'], ['post.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_comment_timestamp'), 'comment', ['timestamp'], unique=False) op.add_column('post', sa.Column('title', sa.String(length=140), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('post', 'title') op.drop_index(op.f('ix_comment_timestamp'), table_name='comment') op.drop_table('comment') # ### end Alembic commands ###
31.714286
89
0.682432
0
0
0
0
0
0
0
0
579
0.434685
490a5d4dee030077442db885609423fe0007703e
758
py
Python
cli/cli_cloudformation.py
reneses/cloud-cli
1f765cfb67cb9ffde1633fffe0da11893fb1503f
[ "MIT" ]
null
null
null
cli/cli_cloudformation.py
reneses/cloud-cli
1f765cfb67cb9ffde1633fffe0da11893fb1503f
[ "MIT" ]
null
null
null
cli/cli_cloudformation.py
reneses/cloud-cli
1f765cfb67cb9ffde1633fffe0da11893fb1503f
[ "MIT" ]
null
null
null
from menu import Menu, MenuEntry from logic.cloudformation import CloudFormation class CloudFormationCli: """ Menu for the AWS CloudFormation operations """ def __init__(self): """ Run the menu """ # Init the logic handler self.cloudformation = CloudFormation() # Init the menu Menu('Amazon Web Services (AWS) Elastic Load Balancer', [ MenuEntry('Go back', None), MenuEntry('Generate web bucket', self.generate_web_bucket), ]).run() def generate_web_bucket(self): """ Generate a web bucket """ print '# Generating web bucket' self.cloudformation.generate_web_bucket() print 'Web bucket generated'
25.266667
71
0.604222
675
0.890501
0
0
0
0
0
0
304
0.401055
490a7e4e927bf1f9002b7ce41d2b092342ed19da
3,107
py
Python
bot/models/__init__.py
masterbpro/radio-archive
c612cd845d969a6577a3facbdd8183048f8db2de
[ "MIT" ]
null
null
null
bot/models/__init__.py
masterbpro/radio-archive
c612cd845d969a6577a3facbdd8183048f8db2de
[ "MIT" ]
null
null
null
bot/models/__init__.py
masterbpro/radio-archive
c612cd845d969a6577a3facbdd8183048f8db2de
[ "MIT" ]
null
null
null
from datetime import datetime, timedelta from peewee import SqliteDatabase, Model, PrimaryKeyField, IntegerField, CharField, BooleanField, DateTimeField from bot.data.config import STATIC_DIR from bot.utils.logging import logger db = SqliteDatabase(f"{STATIC_DIR}/db.sqlite3") class User(Model): """ Клас описывающий поля в таблице для юзера """ id = PrimaryKeyField(null=False, unique=True) user_id = IntegerField(null=False, unique=True) full_name = CharField(null=False, max_length=255) username = CharField(null=True, max_length=128) is_subscribe = BooleanField(null=False, default=False) created = DateTimeField(default=datetime.now()) def add_user(self, user_id: int, full_name: str, username: str) -> bool: """ Функция для добавления пользователя в Базу данных :param user_id: ID пользователя в Телеграме :param username: Имя пользователя :param full_name: Полное имя аккаунта :return: """ try: return self.create(user_id=user_id, full_name=full_name, username=username) except Exception as addUserError: print(addUserError) def get_user(self, user_id: int) -> [Model, bool]: """ Функция для проверки наличия пользователя в Базе Данных :param user_id: ID пользователя в Телегрме :return: Булевое значения True если пользователь найден """ res = self.get_or_none(User.user_id == user_id) if res: # User is find return res return False class Meta: database = db class Archive(Model): """ Модель дял хранения записей """ id = PrimaryKeyField(null=False, unique=True) start_date = DateTimeField(null=False) finish_date = DateTimeField(null=False) file_id = CharField(null=False, max_length=50) class Meta: database = db def get_archive(self, hour, day, month, year): """ Получения архима исходя из часа, дня, месяца и года :param hour: :param day: :param month: :param year: :return: """ archive_date = datetime.strptime(f"{year}/{month}/{day}-{hour}", "%Y/%m/%d-%H").strftime("%Y-%m-%d %H") return self.get_or_none(Archive.start_date >= archive_date) def add_archive(self, start_date, file_id): """ Добавления архива записи в базу :param start_date: :param file_id: :return: """ check = self.get_or_none(Archive.start_date == start_date) if check: check.file_id = file_id check.save() logger.info(f"Update archive [{start_date}] with file [{file_id}]") return self.get(Archive.start_date == start_date) return self.create( start_date=start_date, finish_date=start_date + timedelta(hours=1), file_id=file_id ) User.create_table(safe=True) Archive.create_table(safe=True) user = User() archive = Archive()
30.762376
111
0.620856
3,054
0.888566
0
0
0
0
0
0
1,303
0.37911
490c3a09e90ac7741bc5df730d26dac2764368fc
40,373
py
Python
TrainingExtensions/tensorflow/src/python/aimet_tensorflow/utils/op/fusedbatchnorm.py
quic-ykota/aimet
c897bd4c360e3a0fb7a329c6bb98b569f66bace1
[ "BSD-3-Clause" ]
945
2020-04-30T02:23:55.000Z
2022-03-31T08:44:32.000Z
TrainingExtensions/tensorflow/src/python/aimet_tensorflow/utils/op/fusedbatchnorm.py
seaun163/aimet
de94e5522e0c9250fb422d064b77ef9ecc70f239
[ "BSD-3-Clause" ]
563
2020-05-01T03:07:22.000Z
2022-03-30T05:35:58.000Z
TrainingExtensions/tensorflow/src/python/aimet_tensorflow/utils/op/fusedbatchnorm.py
seaun163/aimet
de94e5522e0c9250fb422d064b77ef9ecc70f239
[ "BSD-3-Clause" ]
186
2020-04-30T00:55:26.000Z
2022-03-30T09:54:51.000Z
# /usr/bin/env python3.5 # -*- mode: python -*- # ============================================================================= # @@-COPYRIGHT-START-@@ # # Copyright (c) 2019-2020, Qualcomm Innovation Center, Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # SPDX-License-Identifier: BSD-3-Clause # # @@-COPYRIGHT-END-@@ # ============================================================================= """ utilities for fused batchnorm op """ from typing import Union import numpy as np import tensorflow as tf from tensorflow.contrib import graph_editor as ge from aimet_common.utils import AimetLogger from aimet_tensorflow.utils import constants logger = AimetLogger.get_area_logger(AimetLogger.LogAreas.Utils) _BN_STRUCTURE_ERROR_MSG = "BN op doesn't have the expected structure" class BNUtils: """ Batch Norm/ fused Batch Norm op related utils""" @staticmethod def skip_bn_op(sess: tf.compat.v1.Session, bn_op: tf.Operation, in_tensor: tf.Tensor, out_tensor: tf.Tensor): """ Skip given bn op specified (fused batch norm op). Note: supports only Fused bn op types. :param sess: Tensorflow session :param bn_op: Batchnorm op to be skipped :param in_tensor: Input tensor to the batchnorm op :param out_tensor: Output tensor of the batchnorm op """ if in_tensor is None or out_tensor is None: logger.error("Error, input and output tensors must be provided for skipping the op") assert False else: with sess.graph.as_default(): if bn_op.type in ['FusedBatchNormV3', 'FusedBatchNorm']: ge.detach_outputs(in_tensor.op) ge.reroute_ts(in_tensor, out_tensor) BNUtils.remove_bn_op_from_update_ops(sess, bn_op) else: logger.error("Error, Unknown BN op") assert False @staticmethod def _get_tensor_read_var_op_trainable_bn_op(input_tensor: tf.Tensor) -> tf.Tensor: """ Generic helper to find a read op tensor associated with input tensor that can be evaluated, when the bn op is marked trainable. :param input_tensor: Input tensor to find corresponding read op tensor that can be evaluated :return: read var op type tensor as tf.Tensor type. """ logger.debug('Fetching params from trainable BN op type') assert input_tensor.op.inputs[0].op.inputs is not None # inputs of 0 is beta tensor , get readVarOp associated with it var_tensor = input_tensor.op.inputs[0].op.inputs[0] assert var_tensor.op.outputs is not None assert len(var_tensor.consumers()) >= 3 tensor_consumers = var_tensor.consumers() var_read_tensor = None # get read variable op tensor from these consumers # do not pick the one with _1 , it is not fetch-able for consumer in tensor_consumers: if consumer.type == 'ReadVariableOp' and 'ReadVariableOp_1' not in consumer.name: assert consumer.outputs is not None var_read_tensor = consumer.outputs[0] break assert var_read_tensor is not None return var_read_tensor @staticmethod def get_beta_read_op(bn_op: tf.Operation) -> tf.Operation: """ Get beta read op from BN op specified. :param bn_op: bn_op obtained from connected graph using get_modules (is mul_1 op inside BN scope) :return: beta read op """ if bn_op.type in ['Mul']: # For regular BN # mul_1 -> add_1 <-- sub <-- beta_read assert len(bn_op.outputs) >= 1, _BN_STRUCTURE_ERROR_MSG add_1 = bn_op.outputs[0].consumers()[0] assert len(add_1.inputs) >= 2, _BN_STRUCTURE_ERROR_MSG sub = add_1.inputs[1].op assert len(sub.inputs) >= 1, _BN_STRUCTURE_ERROR_MSG beta_read = sub.inputs[0].op elif bn_op.type in ['FusedBatchNormV3', 'FusedBatchNorm']: assert len(bn_op.inputs) == 5 beta_read = bn_op.inputs[constants.BN_OP_PARAM_INDICES['beta']].op if beta_read.type == 'Switch': # tf slim bn using training tensor form beta_read = beta_read.inputs[0].op assert 'read' in beta_read.name else: logger.error("Error, unknown BN op") assert False assert beta_read.type in ['ReadVariableOp', 'Identity'] # Will be identity for tf slim BNs return beta_read @staticmethod def _get_beta_read_var_op_tensor_using_structure(bn_op: tf.Operation) -> tf.Tensor: """ Get beta readVariableOp tensor from BN op specified. :param bn_op: FusedBatchNorm as tf.Operation :return: tensor associated with bn op beta readVariableOp type, as tf.Tensor """ assert bn_op.type in ['FusedBatchNormV3', 'FusedBatchNorm', 'Mul'] beta_read_tensor = BNUtils.get_beta_read_op(bn_op).outputs[0] assert beta_read_tensor is not None if beta_read_tensor.op.inputs[0].op.type == 'Switch': logger.debug('Fetching params from trainable BN op type') beta_read_tensor = BNUtils._get_tensor_read_var_op_trainable_bn_op(beta_read_tensor) return beta_read_tensor @staticmethod def get_beta_read_var_op_tensor(graph: tf.Graph, bn_op: tf.Operation) -> tf.Tensor: """ Get beta readVariableOp tensor from BN op specified. :param graph: TensorFlow graph :param bn_op: FusedBatchNorm as tf.Operation :return: tensor associated with bn op beta readVariableOp type, as tf.Tensor """ try: # try name based tensor look up for Keras layers beta_read_tensor = BNUtils._get_bn_param_tensor_using_name(graph, bn_op, constants.BNOpParamType.beta) except KeyError: # if we can't find the tensor name, use structure match # to figure out the read tensor for param beta_read_tensor = BNUtils._get_beta_read_var_op_tensor_using_structure(bn_op) return beta_read_tensor @staticmethod def get_beta_as_numpy_data(sess: tf.compat.v1.Session, bn_op: tf.Operation) -> np.ndarray: """ Get beta param from BN op specified. :param sess: tensorflow session :param bn_op: bn_op as tf.Operation :return: beta tensor as numpy data """ beta_tensor = BNUtils.get_beta_read_var_op_tensor(sess.graph, bn_op) with sess.graph.as_default(): numpy_data = sess.run(beta_tensor) return numpy_data @staticmethod def get_gamma_as_read_op(bn_op: tf.Operation) -> tf.Operation: """ Get gamma read op from BN op specified. :param bn_op: bn_op obtained from connected graph using get_modules (is mul_1 op inside BN scope) :return: gamma read op """ if bn_op.type in ['Mul']: # For regular BN # mul_1 <-- mul <-- gamma_read <-- gamma_tensor assert len(bn_op.inputs) >= 2, _BN_STRUCTURE_ERROR_MSG mul = bn_op.inputs[1].op assert len(mul.inputs) >= 2, _BN_STRUCTURE_ERROR_MSG gamma_read = mul.inputs[1].op elif bn_op.type in ['FusedBatchNormV3', 'FusedBatchNorm']: assert len(bn_op.inputs) == 5 gamma_read = bn_op.inputs[constants.BN_OP_PARAM_INDICES['gamma']].op if gamma_read.type == 'Switch': # tf slim bn using training tensor form gamma_read = gamma_read.inputs[0].op assert 'read' in gamma_read.name or gamma_read.type == 'Const' else: logger.error("Error, unknown BN op") assert False assert gamma_read.type in ['ReadVariableOp', 'Identity', 'Const'] # Will be identity for tf slim BNs return gamma_read @staticmethod def _get_gamma_read_var_op_tensor_using_structure(bn_op: tf.Operation) -> tf.Tensor: """ Get the gamma read var op tensor associated with the batchnorm op. :param bn_op: Batchnorm op to get gamma read var op tensor from :return: Gamma read var op tensor associated with bn_op """ assert bn_op.type in ['FusedBatchNormV3', 'FusedBatchNorm', 'Mul'] gamma_read_tensor = BNUtils.get_gamma_as_read_op(bn_op).outputs[0] assert gamma_read_tensor is not None if gamma_read_tensor.op.inputs and gamma_read_tensor.op.inputs[0].op.type == 'Switch': logger.debug('Fetching params from trainable BN op type') gamma_read_tensor = BNUtils._get_tensor_read_var_op_trainable_bn_op(gamma_read_tensor) return gamma_read_tensor @staticmethod def get_gamma_read_var_op_tensor(graph: tf.Graph, bn_op: tf.Operation) -> tf.Tensor: """ Get the gamma read var op tensor associated with the batchnorm op. :param graph: TensorFlow graph :param bn_op: Batchnorm op to get gamma read var op tensor from :return: Gamma read var op tensor associated with bn_op """ try: # try name based tensor look up for Keras layers gamma_read_tensor = BNUtils._get_bn_param_tensor_using_name(graph, bn_op, constants.BNOpParamType.gamma) except KeyError: # if we can't find the tensor name, use structure match # to figure out the read tensor for param gamma_read_tensor = BNUtils._get_gamma_read_var_op_tensor_using_structure(bn_op) return gamma_read_tensor @staticmethod def get_gamma_as_numpy_data(sess: tf.compat.v1.Session, bn_op: tf.Operation) -> np.ndarray: """ Get gamma param from BN op specified. :param sess: tensorflow session :param bn_op: bn_op obtained from connected graph using get_modules (is mul_1 op inside BN scope) :return: gamma as numpy data """ gamma_tensor = BNUtils.get_gamma_read_var_op_tensor(sess.graph, bn_op) with sess.graph.as_default(): numpy_data = sess.run(gamma_tensor) return numpy_data @staticmethod def _bn_op_var_struct_1(bn_op: tf.Operation) -> Union[tf.Operation, None]: """ Return moving_variance op corresponding to batchnorm with training tensor. :param bn_op: bn_op obtained from connected graph using get_modules a mul_1 op inside BN scope. :return: Read operation for moving_variance """ try: mul_op = bn_op.inputs[1].op assert mul_op.type == 'Mul' rsqrt_op = mul_op.inputs[0].op assert rsqrt_op.type == 'Rsqrt' add_op = rsqrt_op.inputs[0].op assert add_op.type == 'AddV2' merge_op = add_op.inputs[0].op assert merge_op.type == 'Merge' read_op = merge_op.inputs[0].op assert read_op.type in ['ReadVariableOp'] return read_op except: # pylint: disable=bare-except return None @staticmethod def _bn_op_var_struct_2(bn_op: tf.Operation) -> Union[tf.Operation, None]: """ Return moving_variance op corresponding to batchnorm with training=True. :param bn_op: bn_op obtained from connected graph using get_modules a mul_1 op inside BN scope. :return: Read operation for moving_variance """ try: mul_op = bn_op.inputs[1].op assert mul_op.type == 'Mul' rsqrt_op = mul_op.inputs[0].op assert rsqrt_op.type == 'Rsqrt' add_op = rsqrt_op.inputs[0].op assert add_op.type == 'AddV2' squeeze_1_op = add_op.inputs[0].op assert squeeze_1_op.type == 'Squeeze' sub_op = squeeze_1_op.outputs[0].consumers()[0] assert sub_op.type == 'Sub' read_op = sub_op.inputs[0].op assert read_op.type in ['ReadVariableOp'] return read_op except: # pylint: disable=bare-except return None @staticmethod def _bn_op_var_struct_3(bn_op: tf.Operation) -> Union[tf.Operation, None]: """ Return moving_variance op corresponding to batchnorm with training=False. :param bn_op: bn_op obtained from connected graph using get_modules a mul_1 op inside BN scope. :return: Read operation for moving_variance """ try: mul_op = bn_op.inputs[1].op assert mul_op.type == 'Mul' rsqrt_op = mul_op.inputs[0].op assert rsqrt_op.type == 'Rsqrt' add_op = rsqrt_op.inputs[0].op assert add_op.type == 'AddV2' read_op = add_op.inputs[0].op assert read_op.type in ['ReadVariableOp'] return read_op except: # pylint: disable=bare-except return None @staticmethod def get_moving_variance_as_read_op(bn_op: tf.Operation) -> Union[tf.Operation, None]: """ Get moving variance read op from BN op specified. :param bn_op: bn_op obtained from connected graph using get_modules a mul_1 op inside BN scope. :return: moving variance as read op """ # register handlers for different structures bn_op_struct_for_variance_handlers = [BNUtils._bn_op_var_struct_1, BNUtils._bn_op_var_struct_2, BNUtils._bn_op_var_struct_3] if bn_op.type in ['FusedBatchNormV3', 'FusedBatchNorm']: assert len(bn_op.inputs) == 5 moving_var_read = bn_op.inputs[constants.BN_OP_PARAM_INDICES['movingvariance']].op if moving_var_read.type == 'Switch': # tf slim bn using training tensor form moving_var_read = moving_var_read.inputs[0].op assert 'read' in moving_var_read.name elif bn_op.type in ['Mul']: # For regular BN moving_var_read = None # try all handlers available for handler in bn_op_struct_for_variance_handlers: if moving_var_read is None: moving_var_read = handler(bn_op) else: break assert moving_var_read is not None, _BN_STRUCTURE_ERROR_MSG else: logger.error("Error, unknown BN op") assert False if moving_var_read.type == 'Identity': assert len(moving_var_read.inputs) == 1, _BN_STRUCTURE_ERROR_MSG assert moving_var_read.type in ['ReadVariableOp', 'Const', 'Identity'] return moving_var_read @staticmethod def _get_moving_variance_read_var_op_tensor_using_structure(bn_op: tf.Operation) -> tf.Tensor: """ Get moving variance readVariableOp tensor from BN op specified. :param bn_op: FusedBatchNorm as tf.Operation :return: tensor associated with bn op moving variance readVariableOp type, as tf.Tensor """ # only support fused BN assert bn_op.type in ['FusedBatchNormV3', 'FusedBatchNorm', 'Mul'] moving_var_read_tensor = BNUtils.get_moving_variance_as_read_op(bn_op).outputs[0] assert moving_var_read_tensor is not None if moving_var_read_tensor.op.type == 'Const': logger.debug("BN op has const type op for moving variance") # get the sub_1 op associated with moving variance read op assert len(bn_op.outputs) >= 2 moving_avg_1_sub_1 = bn_op.outputs[2].consumers()[0] all_inputs = moving_avg_1_sub_1.inputs # among inputs figure out the read var op type that can be "evaluated" for input_t in all_inputs: if input_t.op.type == 'ReadVariableOp': moving_var_read_tensor = input_t elif input_t.op.type == 'Identity' and 'read:0' in input_t.name: # tf slim form moving_var_read_tensor = input_t elif moving_var_read_tensor.op.inputs[0].op.type == 'Switch': logger.debug("Fetch moving var from a trainable BN op structure") moving_var_read_tensor = BNUtils._get_tensor_read_var_op_trainable_bn_op(moving_var_read_tensor) return moving_var_read_tensor @staticmethod def get_moving_variance_read_var_op_tensor(graph: tf.Graph, bn_op: tf.Operation) -> tf.Tensor: """ Get moving variance readVariableOp tensor from BN op specified. :param graph: TensorFlow graph :param bn_op: FusedBatchNorm as tf.Operation :return: tensor associated with bn op moving variance readVariableOp type, as tf.Tensor """ try: # try name based tensor look up for Keras layers moving_var_read_tensor = BNUtils._get_bn_param_tensor_using_name(graph, bn_op, constants.BNOpParamType.moving_variance) except KeyError: # if we can't find the tensor name, use structure match # to figure out the read tensor for param moving_var_read_tensor = BNUtils._get_moving_variance_read_var_op_tensor_using_structure(bn_op) return moving_var_read_tensor @staticmethod def get_moving_variance_as_numpy_data(sess: tf.compat.v1.Session, bn_op: tf.Operation) -> np.ndarray: """ Get moving variance param from BN op specified. :param sess: tensorflow session :param bn_op: bn_op obtained from connected graph using get_modules a mul_1 op inside BN scope. :return: moving variance as numpy data """ moving_var_tensor = BNUtils.get_moving_variance_read_var_op_tensor(sess.graph, bn_op) with sess.graph.as_default(): numpy_data = sess.run(moving_var_tensor) return numpy_data @staticmethod def _bn_op_mean_struct_1(bn_op: tf.Operation) -> Union[tf.Operation, None]: """ Return moving_mean op corresponding to batchnorm with training tensor. :param bn_op: bn_op obtained from connected graph using get_modules a mul_1 op inside BN scope. :return: Read operation for moving_mean """ try: mul_op = bn_op.inputs[1].op assert mul_op.type == 'Mul' mul_2_op = mul_op.outputs[0].consumers()[1] assert mul_2_op.type == 'Mul' merge_op = mul_2_op.inputs[0].op assert merge_op.type == 'Merge' read_op = merge_op.inputs[0].op assert read_op.type in ['ReadVariableOp'] return read_op except: # pylint: disable=bare-except return None @staticmethod def _bn_op_mean_struct_2(bn_op: tf.Operation) -> Union[tf.Operation, None]: """ Return moving_mean op corresponding to batchnorm with training=True. :param bn_op: bn_op obtained from connected graph using get_modules a mul_1 op inside BN scope. :return: Read operation for moving_mean """ try: mul_op = bn_op.inputs[1].op assert mul_op.type == 'Mul' mul_2_op = mul_op.outputs[0].consumers()[1] assert mul_2_op.type == 'Mul' squeeze_op = mul_2_op.inputs[0].op assert squeeze_op.type == 'Squeeze' sub_op = squeeze_op.outputs[0].consumers()[0] assert sub_op.type == 'Sub' read_op = sub_op.inputs[0].op assert read_op.type in ['ReadVariableOp'] return read_op except: # pylint: disable=bare-except return None @staticmethod def _bn_op_mean_struct_3(bn_op: tf.Operation) -> Union[tf.Operation, None]: """ Return moving_mean op corresponding to batchnorm with training=False. :param bn_op: bn_op obtained from connected graph using get_modules a mul_1 op inside BN scope. :return: Read operation for moving_mean """ try: mul_op = bn_op.inputs[1].op assert mul_op.type == 'Mul' mul_2_op = mul_op.outputs[0].consumers()[1] assert mul_2_op.type == 'Mul' read_op = mul_2_op.inputs[0].op assert read_op.type in ['ReadVariableOp'] return read_op except: # pylint: disable=bare-except return None @staticmethod def get_moving_mean_as_read_op(bn_op: tf.Operation) -> Union[tf.Operation, None]: """ Get moving mean read op from BN op specified. :param bn_op: bn_op obtained from connected graph using get_modules a mul_1 op inside BN scope. :return: moving mean read op """ if bn_op.type in ['FusedBatchNormV3', 'FusedBatchNorm']: assert len(bn_op.inputs) == 5 moving_mean_read = bn_op.inputs[constants.BN_OP_PARAM_INDICES['movingmean']].op if moving_mean_read.type == 'Switch': # tf slim bn using training tensor form moving_mean_read = moving_mean_read.inputs[0].op assert 'read' in moving_mean_read.name elif bn_op.type in ['Mul']: # For regular BN # mul_1 << - mul --> mul_2 <-- cond/merge <-- switch2 <-- moving mean read < moving mean tensor # inputs[1] is mul .op.inputs[1] is gamma:read op whose input is gamma tensor as variable v2 # register handlers for different structures bn_op_struct_for_mean_handlers = [BNUtils._bn_op_mean_struct_1, BNUtils._bn_op_mean_struct_2, BNUtils._bn_op_mean_struct_3] moving_mean_read = None # try all handlers available for handler in bn_op_struct_for_mean_handlers: if moving_mean_read is None: moving_mean_read = handler(bn_op) else: break assert moving_mean_read is not None, _BN_STRUCTURE_ERROR_MSG else: logger.error("Error, unknown BN op") assert False if moving_mean_read.type == 'Identity': assert len(moving_mean_read.inputs) == 1, _BN_STRUCTURE_ERROR_MSG assert moving_mean_read.type in ['ReadVariableOp', 'Const', 'Identity'] return moving_mean_read @staticmethod def _get_moving_mean_read_var_op_tensor_using_structure(bn_op: tf.Operation) -> tf.Tensor: """ Get moving mean readVariableOp tensor from BN op specified. :param bn_op: FusedBatchNorm as tf.Operation :return: tensor associated with bn op moving mean readVariableOp type, as tf.Tensor """ # only support fused BN assert bn_op.type in ['FusedBatchNormV3', 'FusedBatchNorm', 'Mul'] moving_mean_read_tensor = BNUtils.get_moving_mean_as_read_op(bn_op).outputs[0] assert moving_mean_read_tensor is not None if moving_mean_read_tensor.op.type == 'Const': logger.debug("BN op has const type op for moving variance") # get the read var type from bn op # get the sub_1 op associated with moving mean read op assert len(bn_op.outputs) > 1 moving_avg_sub_1 = bn_op.outputs[1].consumers()[0] all_inputs = moving_avg_sub_1.inputs # among inputs figure out the read var op type that can be "evaluated" for input_t in all_inputs: if input_t.op.type == 'ReadVariableOp': moving_mean_read_tensor = input_t elif input_t.op.type == 'Identity' and 'read:0' in input_t.name: # tf slim form moving_mean_read_tensor = input_t elif moving_mean_read_tensor.op.inputs[0].op.type == 'Switch': logger.debug("Fetch moving var from a trainable BN op structure") moving_mean_read_tensor = BNUtils._get_tensor_read_var_op_trainable_bn_op(moving_mean_read_tensor) return moving_mean_read_tensor @staticmethod def get_moving_mean_read_var_op_tensor(graph: tf.Graph, bn_op: tf.Operation) -> tf.Tensor: """ Get moving mean readVariableOp tensor from BN op specified. :param graph: TensorFlow graph :param bn_op: FusedBatchNorm as tf.Operation :return: tensor associated with bn op moving mean readVariableOp type, as tf.Tensor """ try: # try name based tensor look up for Keras layers moving_mean_read_tensor = BNUtils._get_bn_param_tensor_using_name(graph, bn_op, constants.BNOpParamType.moving_mean) except KeyError: # if we can't find the tensor name, use structure match # to figure out the read tensor for param moving_mean_read_tensor = BNUtils._get_moving_mean_read_var_op_tensor_using_structure(bn_op) return moving_mean_read_tensor @staticmethod def get_moving_mean_as_numpy_data(sess: tf.compat.v1.Session, bn_op: tf.Operation) -> np.ndarray: """ Get moving mean param from BN op specified. :param sess: tensorflow session :param bn_op: bn_op obtained from connected graph using get_modules a mul_1 op inside BN scope. :return: moving mean as numpy data """ moving_mean_tensor = BNUtils.get_moving_mean_read_var_op_tensor(sess.graph, bn_op) with sess.graph.as_default(): numpy_data = sess.run(moving_mean_tensor) return numpy_data @staticmethod def get_epsilon(bn_op: tf.Operation) -> float: """ Returns epsilon extracted from given bn op. :param bn_op: bn_op obtained from connected graph using get_modules a mul_1 op inside BN scope. :return: epsilon value """ if bn_op.type in ['Mul']: assert len(bn_op.inputs) >= 2, _BN_STRUCTURE_ERROR_MSG mul = bn_op.inputs[1].op assert len(mul.inputs) >= 1, _BN_STRUCTURE_ERROR_MSG rsqrt = mul.inputs[0].op assert len(rsqrt.inputs) >= 1, _BN_STRUCTURE_ERROR_MSG add = rsqrt.inputs[0].op assert len(add.inputs) >= 2, _BN_STRUCTURE_ERROR_MSG epsilon = add.inputs[1].op numpy_epsilon = epsilon.get_attr('value').float_val[0] elif bn_op.type in ['FusedBatchNormV3', 'FusedBatchNorm']: # epsilon can be derived as attribute value numpy_epsilon = bn_op.get_attr("epsilon") else: logger.error("Error, unknown BN op") assert False return numpy_epsilon @staticmethod def get_assign_moving_avg_op(bn_op: tf.Operation) -> Union[tf.Operation, None]: """ Get assign_moving_avg op corresponding with the bn_op, if it exists. :param bn_op: Batchnorm op to search for corresponding assign_moving_avg op :return: assign_moving_op corresponding with the bn op, or None if it does not exist. """ assert bn_op.type in ['FusedBatchNormV3', 'FusedBatchNorm'] assert len(bn_op.outputs) == 6 or len(bn_op.outputs) == 5 if bn_op.outputs[1].consumers(): child_op = bn_op.outputs[1].consumers()[0] if child_op.type == 'Merge': sub_op = child_op.outputs[0].consumers()[0] else: sub_op = child_op assert sub_op.type == 'Sub' mul_op = sub_op.outputs[0].consumers()[0] assert mul_op.type == 'Mul' assign_moving_avg_op = mul_op.outputs[0].consumers()[0] assert assign_moving_avg_op.type in ['AssignSub', 'AssignSubVariableOp'] return assign_moving_avg_op return None @staticmethod def get_assign_moving_avg_1_op(bn_op: tf.Operation) -> Union[tf.Operation, None]: """ Get assign_moving_avg_1 op corresponding with the bn_op, if it exists. :param bn_op: Batchnorm op to search for corresponding assign_moving_avg_1 op :return: assign_moving_avg_1 corresponding with the bn op, or None if it does not exist. """ assert bn_op.type in ['FusedBatchNormV3', 'FusedBatchNorm'] assert len(bn_op.outputs) == 6 or len(bn_op.outputs) == 5 if bn_op.outputs[2].consumers(): child_op = bn_op.outputs[2].consumers()[0] if child_op.type == 'Merge': sub_op = child_op.outputs[0].consumers()[0] else: sub_op = child_op assert sub_op.type == 'Sub' mul_op = sub_op.outputs[0].consumers()[0] assert mul_op.type == 'Mul' assign_moving_avg_op = mul_op.outputs[0].consumers()[0] assert assign_moving_avg_op.type in ['AssignSub', 'AssignSubVariableOp'] return assign_moving_avg_op return None @staticmethod def remove_bn_op_from_update_ops(sess: tf.compat.v1.Session, bn_op: tf.Operation): """ Remove batchnorm assign_moving_avg and assign_moving_avg_1 ops from update ops. :param sess: tf.compat.v1.Session :param bn_op: BatchNorm operation whose assign_moving_avg and assign_moving_avg_1 ops should be removed. """ with sess.graph.as_default(): update_ops = tf.compat.v1.get_collection_ref(tf.compat.v1.GraphKeys.UPDATE_OPS) assign_moving_avg_op = BNUtils.get_assign_moving_avg_op(bn_op) assign_moving_avg_op_1 = BNUtils.get_assign_moving_avg_1_op(bn_op) if assign_moving_avg_op and assign_moving_avg_op in update_ops: update_ops.remove(assign_moving_avg_op) logger.debug('Removed %s from update ops', assign_moving_avg_op.name) if assign_moving_avg_op_1 and assign_moving_avg_op_1 in update_ops: update_ops.remove(assign_moving_avg_op_1) logger.debug('Removed %s from update ops', assign_moving_avg_op_1.name) @staticmethod def _get_bn_param_tensor_using_name(graph: tf.Graph, bn_op: tf.Operation, param_type: constants.BNOpParamType): """ Helper to get BN op param read tensor. :param graph: TensorFlow graph :param bn_op: BN op from which param read tensor is to be extracted :param param_type: param type for which param tensor is to be extracted, as constants.BNOpParamType (supported types are beta, gamma, moving_mean or moving_variance) :return: param read tensor """ if param_type not in vars(constants.BNOpParamType).values(): assert 0, 'Error, get_bn_param_using_name() invalid param type requested' # name of the fused bn contains bn_name/FusedBatchNormV3 or # bn_name/cond/FusedBatchNormV3_1 # we need only the bn_name to make param tensor names op_name = bn_op.name.split('/')[0] param_tensor_name = op_name + constants.BN_OP_PARAM_NAME_SUFFIX[param_type] param_tensor = graph.get_tensor_by_name(param_tensor_name) return param_tensor @staticmethod def _bn_op_momentum_struct_1(bn_op: tf.Operation) -> Union[float, None]: """ Return momentum value corresponding to batchnorm with training tensor. :param bn_op: bn_op obtained from connected graph using get_modules a mul_1 op inside BN scope. :return: momentum value """ try: mul_op = bn_op.inputs[1].op assert mul_op.type == 'Mul' mul_2_op = mul_op.outputs[0].consumers()[1] assert mul_2_op.type == 'Mul' merge_op = mul_2_op.inputs[0].op assert merge_op.type == 'Merge' switch_1_op = merge_op.outputs[0].consumers()[0] assert switch_1_op.type == 'Switch' sub_op = switch_1_op.outputs[1].consumers()[0] assert sub_op.type == 'Sub' assign_moving_avg_mul_op = sub_op.outputs[0].consumers()[0] assert assign_moving_avg_mul_op.type == 'Mul' decay_op = assign_moving_avg_mul_op.inputs[1].op assert decay_op.type == 'Const' decay = decay_op.get_attr('value').float_val[0] return 1 - decay except: # pylint: disable=bare-except return None @staticmethod def _bn_op_momentum_struct_2(bn_op: tf.Operation) -> Union[float, None]: """ Return momentum value corresponding to batchnorm with training=True. :param bn_op: bn_op obtained from connected graph using get_modules a mul_1 op inside BN scope. :return: momentum value """ try: mul_op = bn_op.inputs[1].op assert mul_op.type == 'Mul' mul_2_op = mul_op.outputs[0].consumers()[1] assert mul_2_op.type == 'Mul' squeeze_op = mul_2_op.inputs[0].op assert squeeze_op.type == 'Squeeze' sub_op = squeeze_op.outputs[0].consumers()[0] assert sub_op.type == 'Sub' assign_moving_avg_mul_op = sub_op.outputs[0].consumers()[0] assert assign_moving_avg_mul_op.type == 'Mul' decay_op = assign_moving_avg_mul_op.inputs[1].op assert decay_op.type == 'Const' decay = decay_op.get_attr('value').float_val[0] return 1 - decay except: # pylint: disable=bare-except return None @staticmethod def _fused_bn_op_momentum_struct_1(bn_op: tf.Operation) -> Union[float, None]: """ Return momentum value corresponding to fused batchnorm with training tensor. :param bn_op: bn_op obtained from connected graph using get_modules a mul_1 op inside BN scope. :return: momentum value """ try: merge_1_op = bn_op.outputs[1].consumers()[0] assert merge_1_op.type == 'Merge' sub_op = merge_1_op.outputs[0].consumers()[0] assert sub_op.type == 'Sub' mul_op = sub_op.outputs[0].consumers()[0] assert mul_op.type == 'Mul' sub_2_op = mul_op.inputs[1].op assert sub_2_op.type == 'Sub' merge_op = sub_2_op.inputs[1].op assert merge_op.type == 'Merge' decay_op = merge_op.inputs[1].op assert decay_op.type == 'Const' decay = decay_op.get_attr('value').float_val[0] return decay except: # pylint: disable=bare-except return None @staticmethod def _fused_bn_op_momentum_struct_2(bn_op: tf.Operation) -> Union[float, None]: """ Return momentum value corresponding to fused batchnorm with training=True. :param bn_op: bn_op obtained from connected graph using get_modules a mul_1 op inside BN scope. :return: momentum value """ try: sub_op = bn_op.outputs[1].consumers()[0] assert sub_op.type == 'Sub' mul_op = sub_op.outputs[0].consumers()[0] assert mul_op.type == 'Mul' sub_2_op = mul_op.inputs[1].op assert sub_2_op.type == 'Sub' decay_op = sub_2_op.inputs[1].op assert decay_op.type == 'Const' decay = decay_op.get_attr('value').float_val[0] return decay except: # pylint: disable=bare-except return None @staticmethod def get_momentum(bn_op: tf.Operation) -> float: """ Returns momentum extracted from given bn op. If bn op is training=False mode, momentum will be none. :param bn_op: bn_op obtained from connected graph using get_modules a mul_1 op inside BN scope. :return: momentum value """ # register handlers for different structures bn_op_struct_for_momentum_handlers = [BNUtils._bn_op_momentum_struct_1, BNUtils._bn_op_momentum_struct_2] fused_bn_op_struct_for_momentum_handlers = [BNUtils._fused_bn_op_momentum_struct_1, BNUtils._fused_bn_op_momentum_struct_2] decay = None if bn_op.type in ['Mul']: # try all handlers available for handler in bn_op_struct_for_momentum_handlers: if decay is None: decay = handler(bn_op) else: break elif bn_op.type in ['FusedBatchNormV3', 'FusedBatchNorm']: # try all handlers available for handler in fused_bn_op_struct_for_momentum_handlers: if decay is None: decay = handler(bn_op) else: break else: logger.error("Error, unknown BN op") assert False return decay @staticmethod def get_training(bn_op: tf.Operation) -> Union[None, bool, tf.Tensor]: """ Returns either a boolean of whether the BN op training mode is True or False, or the is_training tensor feeding into the BN op if it is using a tensor to determine the mode dynamically. :param bn_op: bn_op obtained in the connected graph :return: True or False for training mode, or tf.Tensor that determines the mode dynamically. """ assert bn_op.type in ['FusedBatchNormV3', 'FusedBatchNorm', 'Mul'] if bn_op.type == 'FusedBatchNormV3' or bn_op.type == 'FusedBatchNorm': if 'FusedBatchNormV3_1' in bn_op.name: switch_op = bn_op.inputs[0].op pred_id_op = switch_op.inputs[1].op training = pred_id_op.inputs[0] else: training = bn_op.get_attr('is_training') return training # Non fused batchnorm case mul_op = bn_op.inputs[1].op assert mul_op.type == 'Mul' rsqrt_op = mul_op.inputs[0].op assert rsqrt_op.type == 'Rsqrt' add_op = rsqrt_op.inputs[0].op assert add_op.type == 'AddV2' add_input_op = add_op.inputs[0].op if add_input_op.type == 'Squeeze': return True if add_input_op.type == 'ReadVariableOp': return False if add_input_op.type == 'Merge': switch_op = add_input_op.inputs[1].op assert switch_op.type == 'Switch' pred_id_op = switch_op.inputs[1].op assert pred_id_op.type == 'Identity' return pred_id_op.inputs[0] logger.error('Error, unknown BN structure') return None
43.552319
118
0.626112
38,088
0.943403
0
0
37,807
0.936443
0
0
15,564
0.385505
490d54319f77117f33898d0f301f950c860478c3
4,878
py
Python
flaskex.py
DesuDeluxe/simple_rest_api
c9bed666269882adae97db974c29f9f8e406ce80
[ "MIT" ]
null
null
null
flaskex.py
DesuDeluxe/simple_rest_api
c9bed666269882adae97db974c29f9f8e406ce80
[ "MIT" ]
null
null
null
flaskex.py
DesuDeluxe/simple_rest_api
c9bed666269882adae97db974c29f9f8e406ce80
[ "MIT" ]
null
null
null
import os from flask import Flask, Response, render_template, redirect from flask_restful import reqparse,request, abort, Api, Resource, fields, marshal_with from flask_sqlalchemy import SQLAlchemy import sqlite3 app = Flask(__name__) p_dir = os.path.dirname(os.path.abspath(__file__)) db_file = "sqlite:///{}".format(os.path.join(p_dir, "notes.db")) app.config['SQLALCHEMY_DATABASE_URI'] = db_file api = Api(app) db = SQLAlchemy(app) def copy_data(note, to): note = to(title = note.title, note_id = note.id, content = note.content, created_date = note.created_date, modified_date = note.modified_date) db.session.add(note) return note def find_and_abort_if_doesnt_exist(number): note = DB_Notes.query.filter_by(id=number).first() if note is None: abort(404, message="Note number {} doesn't exist".format(number)) else: return note parser = reqparse.RequestParser(bundle_errors=True) #parser.add_argument('id', required=False,help='No id provided') parser.add_argument('title', required=True, help='No title provided') parser.add_argument('content', required=True, help='No content provided') parserPut = reqparse.RequestParser(bundle_errors=True) parserPut.add_argument('content', required=True, help='No content provided') ## sqlalchemy classes to be mapped to db class DB_BaseColumns(object): id = db.Column(db.Integer, primary_key=True) title = db.Column(db.String(200)) content = db.Column(db.String(800)) class DB_Notes(DB_BaseColumns,db.Model): created_date = db.Column(db.DateTime, default=db.func.now()) modified_date = db.Column(db.DateTime, default=db.func.now(), onupdate=db.func.now()) class DB_NotesHistory(DB_BaseColumns,db.Model): note_id = db.Column(db.Integer) created_date = db.Column(db.DateTime) modified_date = db.Column(db.DateTime) class DB_NotesDeleted(DB_BaseColumns, db.Model): note_id = db.Column(db.Integer) created_date = db.Column(db.DateTime) modified_date = db.Column(db.DateTime) deletion_date = db.Column(db.DateTime, default=db.func.now(), onupdate=db.func.now()) ## fields needed for json output note_fields = { 'id': fields.Integer, 'title': fields.String, 'content': fields.String, 'created_date': fields.DateTime, 'modified_date': fields.DateTime } noteH_fields = dict(note_fields) noteH_fields.update({ 'note_id': fields.Integer, } ) noteD_fields = dict(noteH_fields) noteD_fields.update({ 'deletion_date': fields.DateTime, } ) class Home(Resource): def get(self): return Response(render_template('home.html', Notes = DB_Notes.query.all(), NotesHistory = DB_NotesHistory.query.all(), NotesDeleted = DB_NotesDeleted.query.all()), mimetype='text/html') ##flask classes for routing class Note(Resource): @marshal_with(note_fields) def get(self, number): return find_and_abort_if_doesnt_exist(number), 200 def delete(self, number): note = find_and_abort_if_doesnt_exist(number) copy_data(note,DB_NotesHistory) copy_data(note,DB_NotesDeleted) db.session.delete(note) db.session.commit() #return redirect("/"), 204 return "", 204 def put(self, number): args = parserPut.parse_args() note = find_and_abort_if_doesnt_exist(number) noteH = copy_data(note,DB_NotesHistory) note.content = args['content'] noteH.modified_date = db.func.now() db.session.commit() return args['content'], 201 class NotesList(Resource): @marshal_with(note_fields) def get(self): return DB_Notes.query.all(), 200 def post(self): args = parser.parse_args() note = DB_Notes(title = args['title'], content = args['content']) db.session.add(note) db.session.commit() return 201 class NotesHistory(Resource): @marshal_with(noteH_fields) def get(self, number): note = DB_NotesHistory.query.filter_by(note_id=number).order_by(DB_NotesHistory.modified_date.desc()).all() if note is None: abort(404, message="History of note number {} doesn't exist".format(number)) return note, 200 #return Response([note.title, "\n",note.content, "\n", note.created_date.strftime('%m/%d/%Y'), "\n", note.modified_date.strftime('%m/%d/%Y')]) class NotesDeleted(Resource): @marshal_with(noteD_fields) def get(self): note = DB_NotesDeleted.query.all() if note is None: abort(404, message="No deleted notes") return note, 200 ##setup the Api resource routing api.add_resource(Home, '/') api.add_resource(Note, '/note/<int:number>') api.add_resource(NotesHistory, '/note/<int:number>/history') api.add_resource(NotesList, '/notes') api.add_resource(NotesDeleted, '/deleted') if __name__ == '__main__': app.run(debug=False)
32.304636
193
0.693727
2,790
0.571956
0
0
848
0.173842
0
0
797
0.163387
491193c73d24c3c74876c7aa66287f19f2f09a60
6,203
py
Python
backend/server/device_legacy/routes.py
kristof-g/TempHum-Supervisor-Sys
aa7343c5dab5941b905333fd0172b688f8b4896f
[ "MIT" ]
null
null
null
backend/server/device_legacy/routes.py
kristof-g/TempHum-Supervisor-Sys
aa7343c5dab5941b905333fd0172b688f8b4896f
[ "MIT" ]
null
null
null
backend/server/device_legacy/routes.py
kristof-g/TempHum-Supervisor-Sys
aa7343c5dab5941b905333fd0172b688f8b4896f
[ "MIT" ]
null
null
null
import sys import os import json import csv from time import strftime from datetime import timedelta, date, datetime from flask import Blueprint, render_template, redirect, request, url_for, flash import server.configuration as cfg from server.postalservice import checkTemp from server.helpers import LoginRequired, pwIsValid, resource_path from server.models import SzenzorAdatok app = sys.modules['__main__'] device_bp = Blueprint('device_bp', __name__, template_folder='templates') @device_bp.route('/allomas/<id>', methods=['GET']) @LoginRequired def allomas(id): print(id) if os.listdir(resource_path("logs/{}/".format(id))): if request.method == 'GET' and request.args.get('sdate') and request.args.get('edate'): start_date = datetime.strptime(request.args.get('sdate'), '%Y-%m-%d') end_date = datetime.strptime(request.args.get('edate'), '%Y-%m-%d') if start_date > datetime.now(): flash("Hiba a bevitt adatokban!", category='danger') start_date = date.today() - timedelta(days=0) end_date = date.today() + timedelta(days=1) elif start_date == end_date: start_date = start_date end_date = start_date + timedelta(days=1) elif start_date > end_date: flash("Hiba a bevitt adatokban! a záró dátum korábbi, mint a kezdő dátum.", category='danger') start_date = date.today() - timedelta(days=0) end_date = date.today() + timedelta(days=1) else: # Past 24h as deafault start_date = date.today() - timedelta(days=0) end_date = date.today() + timedelta(days=1) path = os.path.join(app.GLOBAL_CONFIG['SERVER']['WORKDIR'], "allomasok.json") allomasok = json.load(open(path, encoding="utf-8")) jelenlegiAllomas = allomasok[id] print('DATES: [{}]-[{}]'.format(start_date, end_date)) adatok = SzenzorAdatok(start_date, end_date, id) try: fajlnev = adatok.generateCsv() except Exception as error: flash(error) print(adatok.nev) try: latest = SzenzorAdatok(date.today() - timedelta(days=0), date.today() + timedelta(days=1), id) latest.adatok = latest.adatok[::-1] latest = latest.adatok[0] # Legfrissebb adatok latest['homerseklet'] = round(Decimal(str(latest['homerseklet']).replace(",", ".")), 1) latest['paratartalom'] = round(Decimal(str(latest['paratartalom']).replace(",", ".")), 1) except Exception as error: pass ctx = { "jallomas": app.GLOBAL_STATION_CONFIG[id], "id": id, "mero_nev": jelenlegiAllomas['allomasnev'], "datumok": {"ma": date.today() - timedelta(days=0), "holnap": date.today() + timedelta(days=1), "hetmulva": date.today() - timedelta(days=7), "honapmulva": date.today() - timedelta(days=30)}, "stat": adatok.stat, "latest": latest, "adatok": adatok, "fajlnev": fajlnev, "sdate": start_date.strftime("%Y-%m-%d"), "edate": end_date.strftime("%Y-%m-%d") } return render_template("layout.html", ctx=ctx) else: flash("Ezen az állomáson még nincs felvett adat", category="warning") return redirect(url_for('allomasok')) @device_bp.route('/log/<id>', methods=['GET']) def log(id): if request.method == 'GET': print("[SERVER] GET REQUEST FROM: {}".format(request.remote_addr)) app.GLOBAL_STATION_CONFIG[id]['ip'] = str(request.remote_addr) cfg.save_allomas() homerseklet = request.args.get('homerseklet') # Hőmérséklet határérték ellenörzése: checkTemp(homerseklet, id) paratartalom = request.args.get('paratartalom') currDate = strftime("%Y/%m/%d") currTime = strftime("%H:%M:%S") try: dir = os.path.dirname(__file__) filename = os.path.join(dir, strftime("logs/{}/%Y/%m/%d.csv".format(id))) os.makedirs(os.path.dirname(filename), exist_ok=True) ofile = open(filename, "a") writer = csv.writer(ofile, delimiter=';', lineterminator='\n') writer.writerow([currDate] + [currTime] + [homerseklet] + [paratartalom]) ofile.close() return "Siker!" except Exception as error: return str(error) else: return "Not Get" @device_bp.route('/deletestation', methods=['POST']) @LoginRequired def deletestation(): password_candidate = request.form['password'] if request.method == 'POST' and pwIsValid(password_candidate, app.GLOBAL_CONFIG['HozzaferesiKulcs']): app.GLOBAL_STATION_CONFIG.pop(request.form['id'], None) flash("Sikeresen törölve a " + str(request.form['id']) + " állomás!", category='success') cfg.save_allomas() return redirect(url_for('allomasok')) else: flash("Helytelen kulcs! Hozzáférés megtagadva!", category='danger') return redirect(url_for('allomasok')) @device_bp.route('/addnewstation') @LoginRequired def newstation(): if request.method == 'GET': dict = { request.args.get('id'): {"allomasnev": request.args.get('megnev'), "allomashely": request.args.get('hely')}} print("bevitt adatok:") print(dict) app.GLOBAL_STATION_CONFIG[request.args.get('id')] = {"allomasnev": request.args.get('megnev'), "allomashely": request.args.get('hely'), "ip": "0.0.0.0", "minT": float(request.args.get('mint')), "maxT": float(request.args.get('maxt'))} dir = os.path.dirname(__file__) path = os.path.join(dir, strftime("logs/{}/".format(request.args.get('id')))) os.makedirs(os.path.dirname(path), exist_ok=True) flash("Sikeresen hozzáadva!", category='success') cfg.save_allomas() return redirect(url_for('allomasok'))
44.307143
120
0.59036
0
0
0
0
5,727
0.919557
0
0
1,217
0.195408
4912467ee29fbe811c78fea1ef046cb9707fcd7e
2,507
py
Python
gdsfactory/components/resistance_sheet.py
simbilod/gdsfactory
4d76db32674c3edb4d16260e3177ee29ef9ce11d
[ "MIT" ]
null
null
null
gdsfactory/components/resistance_sheet.py
simbilod/gdsfactory
4d76db32674c3edb4d16260e3177ee29ef9ce11d
[ "MIT" ]
null
null
null
gdsfactory/components/resistance_sheet.py
simbilod/gdsfactory
4d76db32674c3edb4d16260e3177ee29ef9ce11d
[ "MIT" ]
null
null
null
from functools import partial from gdsfactory.cell import cell from gdsfactory.component import Component from gdsfactory.components.compass import compass from gdsfactory.components.via_stack import via_stack_slab_npp_m3 from gdsfactory.types import ComponentSpec, Floats, LayerSpecs, Optional pad_via_stack_slab_npp = partial(via_stack_slab_npp_m3, size=(80, 80)) @cell def resistance_sheet( width: float = 10, layers: LayerSpecs = ("SLAB90", "NPP"), layer_offsets: Floats = (0, 0.2), pad: ComponentSpec = pad_via_stack_slab_npp, pad_pitch: float = 100.0, ohms_per_square: Optional[float] = None, port_orientation1: int = 180, port_orientation2: int = 0, ) -> Component: """Returns Sheet resistance. keeps connectivity for pads and first layer in layers Args: width: in um. layers: for the middle part. layer_offsets: from edge, positive: over, negative: inclusion. pad: function to create a pad. pad_pitch: in um. ohms_per_square: optional sheet resistance to compute info.resistance. port_orientation1: in degrees. port_orientation2: in degrees. """ c = Component() pad = pad() length = pad_pitch - pad.get_setting("size")[0] pad1 = c << pad pad2 = c << pad r0 = c << compass( size=(length + layer_offsets[0], width + layer_offsets[0]), layer=layers[0] ) for layer, offset in zip(layers[1:], layer_offsets[1:]): c << compass(size=(length + 2 * offset, width + 2 * offset), layer=layer) pad1.connect("e3", r0.ports["e1"]) pad2.connect("e1", r0.ports["e3"]) c.info["resistance"] = ohms_per_square * width * length if ohms_per_square else None c.add_port( "pad1", port_type="vertical_dc", midpoint=pad1.center, layer=list(layers)[-1], width=width, orientation=port_orientation1, ) c.add_port( "pad2", port_type="vertical_dc", midpoint=pad2.center, layer=list(layers)[-1], width=width, orientation=port_orientation2, ) return c if __name__ == "__main__": # import gdsfactory as gf # sweep = [resistance_sheet(width=width, layers=((1,0), (1,1))) for width in [1, 10, 100]] # c = gf.pack(sweep)[0] c = resistance_sheet(width=40) c.show() # import gdsfactory as gf # sweep_resistance = list(map(resistance_sheet, (5, 10, 80))) # c = gf.grid(sweep_resistance) # c.show()
28.816092
94
0.643797
0
0
0
0
1,757
0.700838
0
0
818
0.326286
4912d26a22acac060d471e8872438c7e944e8077
17,008
py
Python
cogdl/trainers/sampled_trainer.py
zhangdan0602/cogdl
35a338f29066e4b1a5d7f46217f09ebceaf13106
[ "MIT" ]
null
null
null
cogdl/trainers/sampled_trainer.py
zhangdan0602/cogdl
35a338f29066e4b1a5d7f46217f09ebceaf13106
[ "MIT" ]
null
null
null
cogdl/trainers/sampled_trainer.py
zhangdan0602/cogdl
35a338f29066e4b1a5d7f46217f09ebceaf13106
[ "MIT" ]
null
null
null
from abc import abstractmethod import argparse import copy import numpy as np import torch from tqdm import tqdm from cogdl.data import Dataset from cogdl.data.sampler import ( SAINTSampler, NeighborSampler, ClusteredLoader, ) from cogdl.models.supervised_model import SupervisedModel from cogdl.trainers.base_trainer import BaseTrainer from . import register_trainer class SampledTrainer(BaseTrainer): @staticmethod def add_args(parser): # fmt: off parser.add_argument("--num-workers", type=int, default=4) parser.add_argument("--eval-step", type=int, default=3) parser.add_argument("--batch-size", type=int, default=128) parser.add_argument("--no-self-loop", action="store_true") # fmt: on @abstractmethod def fit(self, model: SupervisedModel, dataset: Dataset): raise NotImplementedError @abstractmethod def _train_step(self): raise NotImplementedError @abstractmethod def _test_step(self, split="val"): raise NotImplementedError def __init__(self, args): super(SampledTrainer, self).__init__(args) self.device = "cpu" if not torch.cuda.is_available() or args.cpu else args.device_id[0] self.patience = args.patience self.max_epoch = args.max_epoch self.lr = args.lr self.weight_decay = args.weight_decay self.loss_fn, self.evaluator = None, None self.data, self.train_loader, self.optimizer = None, None, None self.eval_step = args.eval_step if hasattr(args, "eval_step") else 1 self.num_workers = args.num_workers if hasattr(args, "num_workers") else 0 self.batch_size = args.batch_size self.self_loop = not (hasattr(args, "no_self_loop") and args.no_self_loop) @classmethod def build_trainer_from_args(cls, args): return cls(args) def train(self): epoch_iter = tqdm(range(self.max_epoch)) patience = 0 max_score = 0 min_loss = np.inf best_model = copy.deepcopy(self.model) for epoch in epoch_iter: self._train_step() if (epoch + 1) % self.eval_step == 0: acc, loss = self._test_step() train_acc = acc["train"] val_acc = acc["val"] val_loss = loss["val"] epoch_iter.set_description( f"Epoch: {epoch:03d}, Train Acc/F1: {train_acc:.4f}, Val Acc/F1: {val_acc:.4f}" ) self.model = self.model.to(self.device) if val_loss <= min_loss or val_acc >= max_score: if val_loss <= min_loss: best_model = copy.deepcopy(self.model) min_loss = np.min((min_loss, val_loss.cpu())) max_score = np.max((max_score, val_acc)) patience = 0 else: patience += 1 if patience == self.patience: epoch_iter.close() break return best_model @register_trainer("graphsaint") class SAINTTrainer(SampledTrainer): @staticmethod def add_args(parser: argparse.ArgumentParser): """Add trainer-specific arguments to the parser.""" # fmt: off SampledTrainer.add_args(parser) parser.add_argument("--eval-cpu", action="store_true") parser.add_argument("--method", type=str, default="node", help="graph samplers") parser.add_argument("--sample-coverage", default=20, type=float, help="sample coverage ratio") parser.add_argument("--size-subgraph", default=1200, type=int, help="subgraph size") args = parser.parse_args() if args.method == "rw" or args.method == "mrw": parser.add_argument("--num-walks", default=50, type=int, help="number of random walks") parser.add_argument("--walk-length", default=20, type=int, help="random walk length") parser.add_argument("--size-frontier", default=20, type=int, help="frontier size in multidimensional random walks") # fmt: on @staticmethod def get_args4sampler(args): args4sampler = { "method": args.method, "sample_coverage": args.sample_coverage, "size_subgraph": args.size_subgraph, } if args.method == "rw" or args.method == "mrw": args4sampler["num_walks"] = args.num_walks args4sampler["walk_length"] = args.walk_length if args.method == "mrw": args4sampler["size_frontier"] = args.size_frontier return args4sampler @classmethod def build_trainer_from_args(cls, args): return cls(args) def __init__(self, args): super(SAINTTrainer, self).__init__(args) self.args4sampler = self.get_args4sampler(args) self.eval_cpu = args.eval_cpu if hasattr(args, "eval_cpu") else False def fit(self, model: SupervisedModel, dataset: Dataset): self.dataset = dataset self.data = dataset.data if self.self_loop: self.data.add_remaining_self_loops() self.model = model.to(self.device) self.evaluator = dataset.get_evaluator() self.loss_fn = dataset.get_loss_fn() self.sampler = SAINTSampler(dataset, self.args4sampler)() # self.train_dataset = SAINTDataset(dataset, self.args_sampler) # self.train_loader = SAINTDataLoader( # dataset=train_dataset, # num_workers=self.num_workers, # persistent_workers=True, # pin_memory=True # ) # self.set_data_model(dataset, model) self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr, weight_decay=self.weight_decay) return self.train() def _train_step(self): self.data = self.sampler.one_batch("train") self.data.to(self.device) self.model = self.model.to(self.device) self.model.train() self.optimizer.zero_grad() mask = self.data.train_mask if len(self.data.y.shape) > 1: logits = self.model.predict(self.data) weight = self.data.norm_loss[mask].unsqueeze(1) loss = torch.nn.BCEWithLogitsLoss(reduction="sum", weight=weight)(logits[mask], self.data.y[mask].float()) else: logits = torch.nn.functional.log_softmax(self.model.predict(self.data), dim=-1) loss = ( torch.nn.NLLLoss(reduction="none")(logits[mask], self.data.y[mask]) * self.data.norm_loss[mask] ).sum() loss.backward() self.optimizer.step() def _test_step(self, split="val"): self.data = self.sampler.one_batch(split) if split != "train" and self.eval_cpu: self.model = self.model.cpu() else: self.data.apply(lambda x: x.to(self.device)) self.model.eval() masks = {"train": self.data.train_mask, "val": self.data.val_mask, "test": self.data.test_mask} with torch.no_grad(): logits = self.model.predict(self.data) loss = {key: self.loss_fn(logits[val], self.data.y[val]) for key, val in masks.items()} metric = {key: self.evaluator(logits[val], self.data.y[val]) for key, val in masks.items()} return metric, loss @register_trainer("neighborsampler") class NeighborSamplingTrainer(SampledTrainer): model: torch.nn.Module @staticmethod def add_args(parser: argparse.ArgumentParser): """Add trainer-specific arguments to the parser.""" # fmt: off SampledTrainer.add_args(parser) # fmt: on def __init__(self, args): super(NeighborSamplingTrainer, self).__init__(args) self.hidden_size = args.hidden_size self.sample_size = args.sample_size def fit(self, model, dataset): self.data = dataset[0] if self.self_loop: self.data.add_remaining_self_loops() self.evaluator = dataset.get_evaluator() self.loss_fn = dataset.get_loss_fn() settings = dict( batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False, persistent_workers=True, pin_memory=True, ) if torch.__version__.split("+")[0] < "1.7.1": settings.pop("persistent_workers") self.data.train() self.train_loader = NeighborSampler( dataset=dataset, mask=self.data.train_mask, sizes=self.sample_size, **settings, ) settings["batch_size"] *= 5 self.data.eval() self.test_loader = NeighborSampler( dataset=dataset, mask=None, sizes=[-1], **settings, ) self.model = model.to(self.device) self.model.set_data_device(self.device) self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr, weight_decay=self.weight_decay) best_model = self.train() self.model = best_model acc, loss = self._test_step() return dict(Acc=acc["test"], ValAcc=acc["val"]) def _train_step(self): self.data.train() self.model.train() self.train_loader.shuffle() x_all = self.data.x.to(self.device) y_all = self.data.y.to(self.device) for target_id, n_id, adjs in self.train_loader: self.optimizer.zero_grad() n_id = n_id.to(x_all.device) target_id = target_id.to(y_all.device) x_src = x_all[n_id].to(self.device) y = y_all[target_id].to(self.device) loss = self.model.node_classification_loss(x_src, adjs, y) loss.backward() self.optimizer.step() def _test_step(self, split="val"): self.model.eval() self.data.eval() masks = {"train": self.data.train_mask, "val": self.data.val_mask, "test": self.data.test_mask} with torch.no_grad(): logits = self.model.inference(self.data.x, self.test_loader) loss = {key: self.loss_fn(logits[val], self.data.y[val]) for key, val in masks.items()} acc = {key: self.evaluator(logits[val], self.data.y[val]) for key, val in masks.items()} return acc, loss @classmethod def build_trainer_from_args(cls, args): return cls(args) @register_trainer("clustergcn") class ClusterGCNTrainer(SampledTrainer): @staticmethod def add_args(parser: argparse.ArgumentParser): """Add trainer-specific arguments to the parser.""" # fmt: off SampledTrainer.add_args(parser) parser.add_argument("--n-cluster", type=int, default=1000) parser.add_argument("--batch-size", type=int, default=20) # fmt: on @staticmethod def get_args4sampler(args): args4sampler = { "method": "metis", "n_cluster": args.n_cluster, } return args4sampler def __init__(self, args): super(ClusterGCNTrainer, self).__init__(args) self.n_cluster = args.n_cluster self.batch_size = args.batch_size def fit(self, model, dataset): self.data = dataset[0] if self.self_loop: self.data.add_remaining_self_loops() self.model = model.to(self.device) self.evaluator = dataset.get_evaluator() self.loss_fn = dataset.get_loss_fn() self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr, weight_decay=self.weight_decay) settings = dict( batch_size=self.batch_size, num_workers=self.num_workers, persistent_workers=True, pin_memory=True ) if torch.__version__.split("+")[0] < "1.7.1": settings.pop("persistent_workers") self.data.train() self.train_loader = ClusteredLoader( dataset, self.n_cluster, method="metis", **settings, ) best_model = self.train() self.model = best_model metric, loss = self._test_step() return dict(Acc=metric["test"], ValAcc=metric["val"]) def _train_step(self): self.model.train() self.data.train() self.train_loader.shuffle() total_loss = 0 for batch in self.train_loader: self.optimizer.zero_grad() batch = batch.to(self.device) loss = self.model.node_classification_loss(batch) loss.backward() total_loss += loss.item() self.optimizer.step() def _test_step(self, split="val"): self.model.eval() self.data.eval() data = self.data self.model = self.model.cpu() masks = {"train": self.data.train_mask, "val": self.data.val_mask, "test": self.data.test_mask} with torch.no_grad(): logits = self.model(data) loss = {key: self.loss_fn(logits[val], self.data.y[val]) for key, val in masks.items()} metric = {key: self.evaluator(logits[val], self.data.y[val]) for key, val in masks.items()} return metric, loss @register_trainer("random_cluster") class RandomClusterTrainer(SampledTrainer): @staticmethod def add_args(parser): # fmt: off SampledTrainer.add_args(parser) parser.add_argument("--n-cluster", type=int, default=10) parser.add_argument("--val-n-cluster", type=int, default=-1) # fmt: on def __init__(self, args): super(RandomClusterTrainer, self).__init__(args) self.patience = args.patience // args.eval_step self.n_cluster = args.n_cluster self.val_n_cluster = args.val_n_cluster if hasattr(args, "val_n_cluster") else -1 self.eval_step = args.eval_step self.data, self.optimizer, self.evaluator, self.loss_fn = None, None, None, None def fit(self, model, dataset): self.model = model.to(self.device) self.data = dataset[0] if self.self_loop: self.data.add_remaining_self_loops() self.loss_fn = dataset.get_loss_fn() self.evaluator = dataset.get_evaluator() settings = dict(num_workers=self.num_workers, persistent_workers=True, pin_memory=True) if torch.__version__.split("+")[0] < "1.7.1": settings.pop("persistent_workers") self.train_loader = ClusteredLoader(dataset=dataset, n_cluster=self.n_cluster, method="random", **settings) if self.val_n_cluster > 0: self.test_loader = ClusteredLoader( dataset=dataset, n_cluster=self.val_n_cluster, method="random", num_workers=self.num_workers, persistent_workers=True, shuffle=False, ) self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr, weight_decay=self.weight_decay) best_model = self.train() self.model = best_model metric, loss = self._test_step() return dict(Acc=metric["test"], ValAcc=metric["val"]) def _train_step(self): self.model.train() self.data.train() self.train_loader.shuffle() for batch in self.train_loader: self.optimizer.zero_grad() batch = batch.to(self.device) loss_n = self.model.node_classification_loss(batch) loss_n.backward() self.optimizer.step() def _test_step(self, split="val"): self.model.eval() self.data.eval() if self.val_n_cluster > 0: return self.batch_eval(split) self.model = self.model.to("cpu") data = self.data self.model = self.model.cpu() masks = {"train": self.data.train_mask, "val": self.data.val_mask, "test": self.data.test_mask} with torch.no_grad(): logits = self.model.predict(data) loss = {key: self.loss_fn(logits[val], self.data.y[val]) for key, val in masks.items()} metric = {key: self.evaluator(logits[val], self.data.y[val]) for key, val in masks.items()} return metric, loss def batch_eval(self, split="val"): preds = {"train": [], "val": [], "test": []} ys = {"train": [], "val": [], "test": []} with torch.no_grad(): for batch in self.test_loader: batch = batch.to(self.device) pred = self.model.predict(batch) for item in ["train", "val", "test"]: preds[item].append(pred[batch[f"{item}_mask"]]) ys[item].append(batch.y[batch[f"{item}_mask"]]) metric = dict() loss = dict() for key in preds.keys(): pred = torch.cat(preds[key], dim=0) y = torch.cat(ys[key], dim=0) _metric = self.evaluator(pred, y) _loss = self.loss_fn(pred, y) metric[key] = _metric loss[key] = _loss return metric, loss
36.893709
127
0.602305
16,474
0.968603
0
0
14,592
0.857949
0
0
1,618
0.095132
491377c3b97184cf6e4325a1301a6746ac433ea2
7,448
py
Python
sample-input/sph-factors/pin-cell/sph-factors.py
AI-Pranto/OpenMOC
7f6ce4797aec20ddd916981a56a4ba54ffda9a06
[ "MIT" ]
97
2015-01-02T02:13:45.000Z
2022-03-09T14:12:45.000Z
sample-input/sph-factors/pin-cell/sph-factors.py
AI-Pranto/OpenMOC
7f6ce4797aec20ddd916981a56a4ba54ffda9a06
[ "MIT" ]
325
2015-01-07T17:43:14.000Z
2022-02-21T17:22:00.000Z
sample-input/sph-factors/pin-cell/sph-factors.py
AI-Pranto/OpenMOC
7f6ce4797aec20ddd916981a56a4ba54ffda9a06
[ "MIT" ]
73
2015-01-17T19:11:58.000Z
2022-03-24T16:31:37.000Z
import openmoc import openmc.openmoc_compatible import openmc.mgxs import numpy as np import matplotlib # Enable Matplotib to work for headless nodes matplotlib.use('Agg') import matplotlib.pyplot as plt plt.ioff() opts = openmoc.options.Options() openmoc.log.set_log_level('NORMAL') ############################################################################### # Eigenvalue Calculation w/o SPH Factors ############################################################################### # Initialize 2-group OpenMC multi-group cross section library for a pin cell mgxs_lib = openmc.mgxs.Library.load_from_file(filename='mgxs', directory='.') # Create an OpenMOC Geometry from the OpenMOC Geometry openmoc_geometry = \ openmc.openmoc_compatible.get_openmoc_geometry(mgxs_lib.geometry) # Load cross section data openmoc_materials = \ openmoc.materialize.load_openmc_mgxs_lib(mgxs_lib, openmoc_geometry) # Initialize FSRs openmoc_geometry.initializeFlatSourceRegions() # Initialize an OpenMOC TrackGenerator track_generator = openmoc.TrackGenerator( openmoc_geometry, opts.num_azim, opts.azim_spacing) track_generator.generateTracks() # Initialize an OpenMOC Solver solver = openmoc.CPUSolver(track_generator) solver.setConvergenceThreshold(opts.tolerance) solver.setNumThreads(opts.num_omp_threads) # Run an eigenvalue calulation with the MGXS from OpenMC solver.computeEigenvalue(opts.max_iters) solver.printTimerReport() keff_no_sph = solver.getKeff() # Extract the OpenMOC scalar fluxes fluxes_no_sph = openmoc.process.get_scalar_fluxes(solver) ############################################################################### # Eigenvalue Calculation with SPH Factors ############################################################################### # Compute SPH factors sph, sph_mgxs_lib, sph_indices = \ openmoc.materialize.compute_sph_factors( mgxs_lib, azim_spacing=opts.azim_spacing, num_azim=opts.num_azim, num_threads=opts.num_omp_threads) # Load the SPH-corrected MGXS library data materials = \ openmoc.materialize.load_openmc_mgxs_lib(sph_mgxs_lib, openmoc_geometry) # Run an eigenvalue calculation with the SPH-corrected modified MGXS library solver.computeEigenvalue(opts.max_iters) solver.printTimerReport() keff_with_sph = solver.getKeff() # Report the OpenMC and OpenMOC eigenvalues openmoc.log.py_printf('RESULT', 'OpenMOC keff w/o SPH: \t%1.5f', keff_no_sph) openmoc.log.py_printf('RESULT', 'OpenMOC keff w/ SPH: \t%1.5f', keff_with_sph) openmoc.log.py_printf('RESULT', 'OpenMC keff: \t\t1.17574 +/- 0.00086') ############################################################################### # Extracting Scalar Fluxes ############################################################################### openmoc.log.py_printf('NORMAL', 'Plotting data...') # Plot the cells openmoc.plotter.plot_cells(openmoc_geometry) # Extract the OpenMOC scalar fluxes fluxes_sph = openmoc.process.get_scalar_fluxes(solver) fluxes_sph *= sph # Extract the OpenMC scalar fluxes num_fsrs = openmoc_geometry.getNumFSRs() num_groups = openmoc_geometry.getNumEnergyGroups() openmc_fluxes = np.zeros((num_fsrs, num_groups), dtype=np.float64) nufission_xs = np.zeros((num_fsrs, num_groups), dtype=np.float64) # Get the OpenMC flux in each FSR for fsr in range(num_fsrs): # Find the OpenMOC cell and volume for this FSR openmoc_cell = openmoc_geometry.findCellContainingFSR(fsr) cell_id = openmoc_cell.getId() fsr_volume = track_generator.getFSRVolume(fsr) # Store the volume-averaged flux mgxs = mgxs_lib.get_mgxs(cell_id, 'nu-fission') flux = mgxs.tallies['flux'].mean.flatten() flux = np.flipud(flux) / fsr_volume openmc_fluxes[fsr, :] = flux nufission_xs[fsr, :] = mgxs.get_xs(nuclide='all') # Extract energy group edges group_edges = mgxs_lib.energy_groups.group_edges group_edges += 1e-3 # Adjust lower bound to 1e-3 eV (for loglog scaling) # Compute difference in energy bounds for each group group_edges = np.flipud(group_edges) # Normalize fluxes with the fission source openmc_fluxes /= np.sum(openmc_fluxes * nufission_xs) fluxes_sph /= np.sum(fluxes_sph * nufission_xs) fluxes_no_sph /= np.sum(fluxes_no_sph * nufission_xs) ############################################################################### # Plot the OpenMC, OpenMOC Scalar Fluxes ############################################################################### # Extend the mgxs values array for matplotlib's step plot of fluxes openmc_fluxes = np.insert(openmc_fluxes, 0, openmc_fluxes[:,0], axis=1) fluxes_no_sph = np.insert(fluxes_no_sph, 0, fluxes_no_sph[:,0], axis=1) fluxes_sph = np.insert(fluxes_sph, 0, fluxes_sph[:,0], axis=1) # Plot OpenMOC and OpenMC fluxes in each FSR for fsr in range(num_fsrs): # Get the OpenMOC cell and material for this FSR cell = openmoc_geometry.findCellContainingFSR(fsr) material_name = cell.getFillMaterial().getName() # Create a step plot for the MGXS fig = plt.figure() plt.plot(group_edges, openmc_fluxes[fsr,:], drawstyle='steps', color='r', linewidth=2) plt.plot(group_edges, fluxes_no_sph[fsr,:], drawstyle='steps', color='b', linewidth=2) plt.plot(group_edges, fluxes_sph[fsr,:], drawstyle='steps', color='g', linewidth=2) plt.yscale('log') plt.xscale('log') plt.xlabel('Energy [eV]') plt.ylabel('Flux') plt.title('Normalized Flux ({0})'.format(material_name)) plt.xlim((min(group_edges), max(group_edges))) plt.legend(['openmc', 'openmoc w/o sph', 'openmoc w/ sph'], loc='best') plt.grid() filename = 'plots/flux-{0}.png'.format(material_name.replace(' ', '-')) plt.savefig(filename, bbox_inches='tight') plt.close() ############################################################################### # Plot OpenMC-to-OpenMOC Scalar Flux Errors ############################################################################### # Compute the percent relative error in the flux rel_err_no_sph = np.zeros(openmc_fluxes.shape) rel_err_sph = np.zeros(openmc_fluxes.shape) for fsr in range(num_fsrs): delta_flux_no_sph = fluxes_no_sph[fsr,:] - openmc_fluxes[fsr,:] delta_flux_sph = fluxes_sph[fsr,:] - openmc_fluxes[fsr,:] rel_err_no_sph[fsr,:] = delta_flux_no_sph / openmc_fluxes[fsr,:] * 100. rel_err_sph[fsr,:] = delta_flux_sph / openmc_fluxes[fsr,:] * 100. # Plot OpenMOC relative flux errors in each FSR for fsr in range(num_fsrs): # Get the OpenMOC cell and material for this FSR cell = openmoc_geometry.findCellContainingFSR(fsr) material_name = cell.getFillMaterial().getName() # Create a step plot for the MGXS fig = plt.figure() plt.plot(group_edges, rel_err_no_sph[fsr,:], drawstyle='steps', color='r', linewidth=2) plt.plot(group_edges, rel_err_sph[fsr,:], drawstyle='steps', color='b', linewidth=2) plt.xscale('log') plt.xlabel('Energy [eV]') plt.ylabel('Relative Error [%]') plt.title('OpenMOC-to-OpenMC Flux Rel. Err. ({0})'.format(material_name)) plt.xlim((min(group_edges), max(group_edges))) plt.legend(['openmoc w/o sph', 'openmoc w/ sph'], loc='best') plt.grid() filename = 'plots/rel-err-{0}.png'.format(material_name.replace(' ', '-')) plt.savefig(filename, bbox_inches='tight') plt.close()
36.509804
79
0.649436
0
0
0
0
0
0
0
0
2,893
0.388426
4913c3ea285b469820f3898e3feff4274634fe9e
494
py
Python
VerifyServer.py
ACueva/Avi-Playground
cb1768999630ed884cff5d40c0faa86d24802754
[ "Apache-2.0" ]
null
null
null
VerifyServer.py
ACueva/Avi-Playground
cb1768999630ed884cff5d40c0faa86d24802754
[ "Apache-2.0" ]
null
null
null
VerifyServer.py
ACueva/Avi-Playground
cb1768999630ed884cff5d40c0faa86d24802754
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python import os import urllib2, json from urlparse import urlparse def ParseURL(agsURL): ags = [] print agsURL ags = urlparse(agsURL) return ags def GetFolders(agsURL): f = urllib2.urlopen(agsURL) j = json.loads(f.read()) for item in j["folders"]: print item def MapServiceQuery(agsURL): f = urllib2.urlopen(agsURL) #print f.read() j = json.loads(f.read()) for item in j["layers"]: print item["name"]
21.478261
31
0.61336
0
0
0
0
0
0
0
0
59
0.119433
4915e964647e8f80103fac2c1f5e742bca3ba265
809
py
Python
data_io/export_camera_poses.py
tumcms/aerial2pdsm
1dc4f9c49d3f682dac4a665d081d547baaa0c877
[ "BSD-3-Clause" ]
null
null
null
data_io/export_camera_poses.py
tumcms/aerial2pdsm
1dc4f9c49d3f682dac4a665d081d547baaa0c877
[ "BSD-3-Clause" ]
null
null
null
data_io/export_camera_poses.py
tumcms/aerial2pdsm
1dc4f9c49d3f682dac4a665d081d547baaa0c877
[ "BSD-3-Clause" ]
1
2021-11-30T13:02:26.000Z
2021-11-30T13:02:26.000Z
import plyfile from config import SparseModel, project_path from colmap_scripts.read_model import Image import numpy as np project = SparseModel("/home/felix/pointclouds/_working/2019_11_07_Muenchen_26_10_2018", model_path="/home/felix/pointclouds/_working/2019_11_07_Muenchen_26_10_2018/sparse/1") images = project.images cameras = project.cameras poses = [] dt = np.dtype([('x', np.float64), ('y', np.float64), ('z', np.float64), ('img', np.int32)]) for nr, img in images.items(): R = img.qvec2rotmat() T = img.tvec cp = np.dot(-R.T, T) pose = (cp[0], cp[1], cp[2], nr) poses.append(pose) vertex = np.array(poses, dtype=dt) v = plyfile.PlyElement.describe(vertex, "vertices") plyfile.PlyData([v], text=True).write(project.model_path + "/camera_locations.ply")
32.36
108
0.697157
0
0
0
0
0
0
0
0
186
0.229913
491612be631c7616e895777f18a1f1f4ec09ba72
15,815
py
Python
src/goesrecv/support/generate_interpolator_taps.py
codient/goestools
862600960681a1a1f3942f18f40b1f17dcdffc40
[ "BSD-2-Clause" ]
244
2017-11-07T12:12:23.000Z
2022-03-24T07:24:53.000Z
src/goesrecv/support/generate_interpolator_taps.py
codient/goestools
862600960681a1a1f3942f18f40b1f17dcdffc40
[ "BSD-2-Clause" ]
116
2018-03-07T04:02:26.000Z
2022-03-27T12:08:01.000Z
src/goesrecv/support/generate_interpolator_taps.py
codient/goestools
862600960681a1a1f3942f18f40b1f17dcdffc40
[ "BSD-2-Clause" ]
65
2018-05-28T02:44:21.000Z
2022-03-18T12:27:58.000Z
#!/usr/bin/env python # # Create filter taps to use for interpolation filter in # clock recovery algorithm. These taps are copied from # GNU Radio at gnuradio/filter/interpolator_taps.h. # # This file includes them in natural order and I want # them stored in reversed order such that they can be # used directly. # filters = [ [ 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 1.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00 ], [ -1.54700e-04, 8.53777e-04, -2.76968e-03, 7.89295e-03, 9.98534e-01, -5.41054e-03, 1.24642e-03, -1.98993e-04 ], [ -3.09412e-04, 1.70888e-03, -5.55134e-03, 1.58840e-02, 9.96891e-01, -1.07209e-02, 2.47942e-03, -3.96391e-04 ], [ -4.64053e-04, 2.56486e-03, -8.34364e-03, 2.39714e-02, 9.95074e-01, -1.59305e-02, 3.69852e-03, -5.92100e-04 ], [ -6.18544e-04, 3.42130e-03, -1.11453e-02, 3.21531e-02, 9.93082e-01, -2.10389e-02, 4.90322e-03, -7.86031e-04 ], [ -7.72802e-04, 4.27773e-03, -1.39548e-02, 4.04274e-02, 9.90917e-01, -2.60456e-02, 6.09305e-03, -9.78093e-04 ], [ -9.26747e-04, 5.13372e-03, -1.67710e-02, 4.87921e-02, 9.88580e-01, -3.09503e-02, 7.26755e-03, -1.16820e-03 ], [ -1.08030e-03, 5.98883e-03, -1.95925e-02, 5.72454e-02, 9.86071e-01, -3.57525e-02, 8.42626e-03, -1.35627e-03 ], [ -1.23337e-03, 6.84261e-03, -2.24178e-02, 6.57852e-02, 9.83392e-01, -4.04519e-02, 9.56876e-03, -1.54221e-03 ], [ -1.38589e-03, 7.69462e-03, -2.52457e-02, 7.44095e-02, 9.80543e-01, -4.50483e-02, 1.06946e-02, -1.72594e-03 ], [ -1.53777e-03, 8.54441e-03, -2.80746e-02, 8.31162e-02, 9.77526e-01, -4.95412e-02, 1.18034e-02, -1.90738e-03 ], [ -1.68894e-03, 9.39154e-03, -3.09033e-02, 9.19033e-02, 9.74342e-01, -5.39305e-02, 1.28947e-02, -2.08645e-03 ], [ -1.83931e-03, 1.02356e-02, -3.37303e-02, 1.00769e-01, 9.70992e-01, -5.82159e-02, 1.39681e-02, -2.26307e-03 ], [ -1.98880e-03, 1.10760e-02, -3.65541e-02, 1.09710e-01, 9.67477e-01, -6.23972e-02, 1.50233e-02, -2.43718e-03 ], [ -2.13733e-03, 1.19125e-02, -3.93735e-02, 1.18725e-01, 9.63798e-01, -6.64743e-02, 1.60599e-02, -2.60868e-03 ], [ -2.28483e-03, 1.27445e-02, -4.21869e-02, 1.27812e-01, 9.59958e-01, -7.04471e-02, 1.70776e-02, -2.77751e-03 ], [ -2.43121e-03, 1.35716e-02, -4.49929e-02, 1.36968e-01, 9.55956e-01, -7.43154e-02, 1.80759e-02, -2.94361e-03 ], [ -2.57640e-03, 1.43934e-02, -4.77900e-02, 1.46192e-01, 9.51795e-01, -7.80792e-02, 1.90545e-02, -3.10689e-03 ], [ -2.72032e-03, 1.52095e-02, -5.05770e-02, 1.55480e-01, 9.47477e-01, -8.17385e-02, 2.00132e-02, -3.26730e-03 ], [ -2.86289e-03, 1.60193e-02, -5.33522e-02, 1.64831e-01, 9.43001e-01, -8.52933e-02, 2.09516e-02, -3.42477e-03 ], [ -3.00403e-03, 1.68225e-02, -5.61142e-02, 1.74242e-01, 9.38371e-01, -8.87435e-02, 2.18695e-02, -3.57923e-03 ], [ -3.14367e-03, 1.76185e-02, -5.88617e-02, 1.83711e-01, 9.33586e-01, -9.20893e-02, 2.27664e-02, -3.73062e-03 ], [ -3.28174e-03, 1.84071e-02, -6.15931e-02, 1.93236e-01, 9.28650e-01, -9.53307e-02, 2.36423e-02, -3.87888e-03 ], [ -3.41815e-03, 1.91877e-02, -6.43069e-02, 2.02814e-01, 9.23564e-01, -9.84679e-02, 2.44967e-02, -4.02397e-03 ], [ -3.55283e-03, 1.99599e-02, -6.70018e-02, 2.12443e-01, 9.18329e-01, -1.01501e-01, 2.53295e-02, -4.16581e-03 ], [ -3.68570e-03, 2.07233e-02, -6.96762e-02, 2.22120e-01, 9.12947e-01, -1.04430e-01, 2.61404e-02, -4.30435e-03 ], [ -3.81671e-03, 2.14774e-02, -7.23286e-02, 2.31843e-01, 9.07420e-01, -1.07256e-01, 2.69293e-02, -4.43955e-03 ], [ -3.94576e-03, 2.22218e-02, -7.49577e-02, 2.41609e-01, 9.01749e-01, -1.09978e-01, 2.76957e-02, -4.57135e-03 ], [ -4.07279e-03, 2.29562e-02, -7.75620e-02, 2.51417e-01, 8.95936e-01, -1.12597e-01, 2.84397e-02, -4.69970e-03 ], [ -4.19774e-03, 2.36801e-02, -8.01399e-02, 2.61263e-01, 8.89984e-01, -1.15113e-01, 2.91609e-02, -4.82456e-03 ], [ -4.32052e-03, 2.43930e-02, -8.26900e-02, 2.71144e-01, 8.83893e-01, -1.17526e-01, 2.98593e-02, -4.94589e-03 ], [ -4.44107e-03, 2.50946e-02, -8.52109e-02, 2.81060e-01, 8.77666e-01, -1.19837e-01, 3.05345e-02, -5.06363e-03 ], [ -4.55932e-03, 2.57844e-02, -8.77011e-02, 2.91006e-01, 8.71305e-01, -1.22047e-01, 3.11866e-02, -5.17776e-03 ], [ -4.67520e-03, 2.64621e-02, -9.01591e-02, 3.00980e-01, 8.64812e-01, -1.24154e-01, 3.18153e-02, -5.28823e-03 ], [ -4.78866e-03, 2.71272e-02, -9.25834e-02, 3.10980e-01, 8.58189e-01, -1.26161e-01, 3.24205e-02, -5.39500e-03 ], [ -4.89961e-03, 2.77794e-02, -9.49727e-02, 3.21004e-01, 8.51437e-01, -1.28068e-01, 3.30021e-02, -5.49804e-03 ], [ -5.00800e-03, 2.84182e-02, -9.73254e-02, 3.31048e-01, 8.44559e-01, -1.29874e-01, 3.35600e-02, -5.59731e-03 ], [ -5.11376e-03, 2.90433e-02, -9.96402e-02, 3.41109e-01, 8.37557e-01, -1.31581e-01, 3.40940e-02, -5.69280e-03 ], [ -5.21683e-03, 2.96543e-02, -1.01915e-01, 3.51186e-01, 8.30432e-01, -1.33189e-01, 3.46042e-02, -5.78446e-03 ], [ -5.31716e-03, 3.02507e-02, -1.04150e-01, 3.61276e-01, 8.23188e-01, -1.34699e-01, 3.50903e-02, -5.87227e-03 ], [ -5.41467e-03, 3.08323e-02, -1.06342e-01, 3.71376e-01, 8.15826e-01, -1.36111e-01, 3.55525e-02, -5.95620e-03 ], [ -5.50931e-03, 3.13987e-02, -1.08490e-01, 3.81484e-01, 8.08348e-01, -1.37426e-01, 3.59905e-02, -6.03624e-03 ], [ -5.60103e-03, 3.19495e-02, -1.10593e-01, 3.91596e-01, 8.00757e-01, -1.38644e-01, 3.64044e-02, -6.11236e-03 ], [ -5.68976e-03, 3.24843e-02, -1.12650e-01, 4.01710e-01, 7.93055e-01, -1.39767e-01, 3.67941e-02, -6.18454e-03 ], [ -5.77544e-03, 3.30027e-02, -1.14659e-01, 4.11823e-01, 7.85244e-01, -1.40794e-01, 3.71596e-02, -6.25277e-03 ], [ -5.85804e-03, 3.35046e-02, -1.16618e-01, 4.21934e-01, 7.77327e-01, -1.41727e-01, 3.75010e-02, -6.31703e-03 ], [ -5.93749e-03, 3.39894e-02, -1.18526e-01, 4.32038e-01, 7.69305e-01, -1.42566e-01, 3.78182e-02, -6.37730e-03 ], [ -6.01374e-03, 3.44568e-02, -1.20382e-01, 4.42134e-01, 7.61181e-01, -1.43313e-01, 3.81111e-02, -6.43358e-03 ], [ -6.08674e-03, 3.49066e-02, -1.22185e-01, 4.52218e-01, 7.52958e-01, -1.43968e-01, 3.83800e-02, -6.48585e-03 ], [ -6.15644e-03, 3.53384e-02, -1.23933e-01, 4.62289e-01, 7.44637e-01, -1.44531e-01, 3.86247e-02, -6.53412e-03 ], [ -6.22280e-03, 3.57519e-02, -1.25624e-01, 4.72342e-01, 7.36222e-01, -1.45004e-01, 3.88454e-02, -6.57836e-03 ], [ -6.28577e-03, 3.61468e-02, -1.27258e-01, 4.82377e-01, 7.27714e-01, -1.45387e-01, 3.90420e-02, -6.61859e-03 ], [ -6.34530e-03, 3.65227e-02, -1.28832e-01, 4.92389e-01, 7.19116e-01, -1.45682e-01, 3.92147e-02, -6.65479e-03 ], [ -6.40135e-03, 3.68795e-02, -1.30347e-01, 5.02377e-01, 7.10431e-01, -1.45889e-01, 3.93636e-02, -6.68698e-03 ], [ -6.45388e-03, 3.72167e-02, -1.31800e-01, 5.12337e-01, 7.01661e-01, -1.46009e-01, 3.94886e-02, -6.71514e-03 ], [ -6.50285e-03, 3.75341e-02, -1.33190e-01, 5.22267e-01, 6.92808e-01, -1.46043e-01, 3.95900e-02, -6.73929e-03 ], [ -6.54823e-03, 3.78315e-02, -1.34515e-01, 5.32164e-01, 6.83875e-01, -1.45993e-01, 3.96678e-02, -6.75943e-03 ], [ -6.58996e-03, 3.81085e-02, -1.35775e-01, 5.42025e-01, 6.74865e-01, -1.45859e-01, 3.97222e-02, -6.77557e-03 ], [ -6.62802e-03, 3.83650e-02, -1.36969e-01, 5.51849e-01, 6.65779e-01, -1.45641e-01, 3.97532e-02, -6.78771e-03 ], [ -6.66238e-03, 3.86006e-02, -1.38094e-01, 5.61631e-01, 6.56621e-01, -1.45343e-01, 3.97610e-02, -6.79588e-03 ], [ -6.69300e-03, 3.88151e-02, -1.39150e-01, 5.71370e-01, 6.47394e-01, -1.44963e-01, 3.97458e-02, -6.80007e-03 ], [ -6.71985e-03, 3.90083e-02, -1.40136e-01, 5.81063e-01, 6.38099e-01, -1.44503e-01, 3.97077e-02, -6.80032e-03 ], [ -6.74291e-03, 3.91800e-02, -1.41050e-01, 5.90706e-01, 6.28739e-01, -1.43965e-01, 3.96469e-02, -6.79662e-03 ], [ -6.76214e-03, 3.93299e-02, -1.41891e-01, 6.00298e-01, 6.19318e-01, -1.43350e-01, 3.95635e-02, -6.78902e-03 ], [ -6.77751e-03, 3.94578e-02, -1.42658e-01, 6.09836e-01, 6.09836e-01, -1.42658e-01, 3.94578e-02, -6.77751e-03 ], [ -6.78902e-03, 3.95635e-02, -1.43350e-01, 6.19318e-01, 6.00298e-01, -1.41891e-01, 3.93299e-02, -6.76214e-03 ], [ -6.79662e-03, 3.96469e-02, -1.43965e-01, 6.28739e-01, 5.90706e-01, -1.41050e-01, 3.91800e-02, -6.74291e-03 ], [ -6.80032e-03, 3.97077e-02, -1.44503e-01, 6.38099e-01, 5.81063e-01, -1.40136e-01, 3.90083e-02, -6.71985e-03 ], [ -6.80007e-03, 3.97458e-02, -1.44963e-01, 6.47394e-01, 5.71370e-01, -1.39150e-01, 3.88151e-02, -6.69300e-03 ], [ -6.79588e-03, 3.97610e-02, -1.45343e-01, 6.56621e-01, 5.61631e-01, -1.38094e-01, 3.86006e-02, -6.66238e-03 ], [ -6.78771e-03, 3.97532e-02, -1.45641e-01, 6.65779e-01, 5.51849e-01, -1.36969e-01, 3.83650e-02, -6.62802e-03 ], [ -6.77557e-03, 3.97222e-02, -1.45859e-01, 6.74865e-01, 5.42025e-01, -1.35775e-01, 3.81085e-02, -6.58996e-03 ], [ -6.75943e-03, 3.96678e-02, -1.45993e-01, 6.83875e-01, 5.32164e-01, -1.34515e-01, 3.78315e-02, -6.54823e-03 ], [ -6.73929e-03, 3.95900e-02, -1.46043e-01, 6.92808e-01, 5.22267e-01, -1.33190e-01, 3.75341e-02, -6.50285e-03 ], [ -6.71514e-03, 3.94886e-02, -1.46009e-01, 7.01661e-01, 5.12337e-01, -1.31800e-01, 3.72167e-02, -6.45388e-03 ], [ -6.68698e-03, 3.93636e-02, -1.45889e-01, 7.10431e-01, 5.02377e-01, -1.30347e-01, 3.68795e-02, -6.40135e-03 ], [ -6.65479e-03, 3.92147e-02, -1.45682e-01, 7.19116e-01, 4.92389e-01, -1.28832e-01, 3.65227e-02, -6.34530e-03 ], [ -6.61859e-03, 3.90420e-02, -1.45387e-01, 7.27714e-01, 4.82377e-01, -1.27258e-01, 3.61468e-02, -6.28577e-03 ], [ -6.57836e-03, 3.88454e-02, -1.45004e-01, 7.36222e-01, 4.72342e-01, -1.25624e-01, 3.57519e-02, -6.22280e-03 ], [ -6.53412e-03, 3.86247e-02, -1.44531e-01, 7.44637e-01, 4.62289e-01, -1.23933e-01, 3.53384e-02, -6.15644e-03 ], [ -6.48585e-03, 3.83800e-02, -1.43968e-01, 7.52958e-01, 4.52218e-01, -1.22185e-01, 3.49066e-02, -6.08674e-03 ], [ -6.43358e-03, 3.81111e-02, -1.43313e-01, 7.61181e-01, 4.42134e-01, -1.20382e-01, 3.44568e-02, -6.01374e-03 ], [ -6.37730e-03, 3.78182e-02, -1.42566e-01, 7.69305e-01, 4.32038e-01, -1.18526e-01, 3.39894e-02, -5.93749e-03 ], [ -6.31703e-03, 3.75010e-02, -1.41727e-01, 7.77327e-01, 4.21934e-01, -1.16618e-01, 3.35046e-02, -5.85804e-03 ], [ -6.25277e-03, 3.71596e-02, -1.40794e-01, 7.85244e-01, 4.11823e-01, -1.14659e-01, 3.30027e-02, -5.77544e-03 ], [ -6.18454e-03, 3.67941e-02, -1.39767e-01, 7.93055e-01, 4.01710e-01, -1.12650e-01, 3.24843e-02, -5.68976e-03 ], [ -6.11236e-03, 3.64044e-02, -1.38644e-01, 8.00757e-01, 3.91596e-01, -1.10593e-01, 3.19495e-02, -5.60103e-03 ], [ -6.03624e-03, 3.59905e-02, -1.37426e-01, 8.08348e-01, 3.81484e-01, -1.08490e-01, 3.13987e-02, -5.50931e-03 ], [ -5.95620e-03, 3.55525e-02, -1.36111e-01, 8.15826e-01, 3.71376e-01, -1.06342e-01, 3.08323e-02, -5.41467e-03 ], [ -5.87227e-03, 3.50903e-02, -1.34699e-01, 8.23188e-01, 3.61276e-01, -1.04150e-01, 3.02507e-02, -5.31716e-03 ], [ -5.78446e-03, 3.46042e-02, -1.33189e-01, 8.30432e-01, 3.51186e-01, -1.01915e-01, 2.96543e-02, -5.21683e-03 ], [ -5.69280e-03, 3.40940e-02, -1.31581e-01, 8.37557e-01, 3.41109e-01, -9.96402e-02, 2.90433e-02, -5.11376e-03 ], [ -5.59731e-03, 3.35600e-02, -1.29874e-01, 8.44559e-01, 3.31048e-01, -9.73254e-02, 2.84182e-02, -5.00800e-03 ], [ -5.49804e-03, 3.30021e-02, -1.28068e-01, 8.51437e-01, 3.21004e-01, -9.49727e-02, 2.77794e-02, -4.89961e-03 ], [ -5.39500e-03, 3.24205e-02, -1.26161e-01, 8.58189e-01, 3.10980e-01, -9.25834e-02, 2.71272e-02, -4.78866e-03 ], [ -5.28823e-03, 3.18153e-02, -1.24154e-01, 8.64812e-01, 3.00980e-01, -9.01591e-02, 2.64621e-02, -4.67520e-03 ], [ -5.17776e-03, 3.11866e-02, -1.22047e-01, 8.71305e-01, 2.91006e-01, -8.77011e-02, 2.57844e-02, -4.55932e-03 ], [ -5.06363e-03, 3.05345e-02, -1.19837e-01, 8.77666e-01, 2.81060e-01, -8.52109e-02, 2.50946e-02, -4.44107e-03 ], [ -4.94589e-03, 2.98593e-02, -1.17526e-01, 8.83893e-01, 2.71144e-01, -8.26900e-02, 2.43930e-02, -4.32052e-03 ], [ -4.82456e-03, 2.91609e-02, -1.15113e-01, 8.89984e-01, 2.61263e-01, -8.01399e-02, 2.36801e-02, -4.19774e-03 ], [ -4.69970e-03, 2.84397e-02, -1.12597e-01, 8.95936e-01, 2.51417e-01, -7.75620e-02, 2.29562e-02, -4.07279e-03 ], [ -4.57135e-03, 2.76957e-02, -1.09978e-01, 9.01749e-01, 2.41609e-01, -7.49577e-02, 2.22218e-02, -3.94576e-03 ], [ -4.43955e-03, 2.69293e-02, -1.07256e-01, 9.07420e-01, 2.31843e-01, -7.23286e-02, 2.14774e-02, -3.81671e-03 ], [ -4.30435e-03, 2.61404e-02, -1.04430e-01, 9.12947e-01, 2.22120e-01, -6.96762e-02, 2.07233e-02, -3.68570e-03 ], [ -4.16581e-03, 2.53295e-02, -1.01501e-01, 9.18329e-01, 2.12443e-01, -6.70018e-02, 1.99599e-02, -3.55283e-03 ], [ -4.02397e-03, 2.44967e-02, -9.84679e-02, 9.23564e-01, 2.02814e-01, -6.43069e-02, 1.91877e-02, -3.41815e-03 ], [ -3.87888e-03, 2.36423e-02, -9.53307e-02, 9.28650e-01, 1.93236e-01, -6.15931e-02, 1.84071e-02, -3.28174e-03 ], [ -3.73062e-03, 2.27664e-02, -9.20893e-02, 9.33586e-01, 1.83711e-01, -5.88617e-02, 1.76185e-02, -3.14367e-03 ], [ -3.57923e-03, 2.18695e-02, -8.87435e-02, 9.38371e-01, 1.74242e-01, -5.61142e-02, 1.68225e-02, -3.00403e-03 ], [ -3.42477e-03, 2.09516e-02, -8.52933e-02, 9.43001e-01, 1.64831e-01, -5.33522e-02, 1.60193e-02, -2.86289e-03 ], [ -3.26730e-03, 2.00132e-02, -8.17385e-02, 9.47477e-01, 1.55480e-01, -5.05770e-02, 1.52095e-02, -2.72032e-03 ], [ -3.10689e-03, 1.90545e-02, -7.80792e-02, 9.51795e-01, 1.46192e-01, -4.77900e-02, 1.43934e-02, -2.57640e-03 ], [ -2.94361e-03, 1.80759e-02, -7.43154e-02, 9.55956e-01, 1.36968e-01, -4.49929e-02, 1.35716e-02, -2.43121e-03 ], [ -2.77751e-03, 1.70776e-02, -7.04471e-02, 9.59958e-01, 1.27812e-01, -4.21869e-02, 1.27445e-02, -2.28483e-03 ], [ -2.60868e-03, 1.60599e-02, -6.64743e-02, 9.63798e-01, 1.18725e-01, -3.93735e-02, 1.19125e-02, -2.13733e-03 ], [ -2.43718e-03, 1.50233e-02, -6.23972e-02, 9.67477e-01, 1.09710e-01, -3.65541e-02, 1.10760e-02, -1.98880e-03 ], [ -2.26307e-03, 1.39681e-02, -5.82159e-02, 9.70992e-01, 1.00769e-01, -3.37303e-02, 1.02356e-02, -1.83931e-03 ], [ -2.08645e-03, 1.28947e-02, -5.39305e-02, 9.74342e-01, 9.19033e-02, -3.09033e-02, 9.39154e-03, -1.68894e-03 ], [ -1.90738e-03, 1.18034e-02, -4.95412e-02, 9.77526e-01, 8.31162e-02, -2.80746e-02, 8.54441e-03, -1.53777e-03 ], [ -1.72594e-03, 1.06946e-02, -4.50483e-02, 9.80543e-01, 7.44095e-02, -2.52457e-02, 7.69462e-03, -1.38589e-03 ], [ -1.54221e-03, 9.56876e-03, -4.04519e-02, 9.83392e-01, 6.57852e-02, -2.24178e-02, 6.84261e-03, -1.23337e-03 ], [ -1.35627e-03, 8.42626e-03, -3.57525e-02, 9.86071e-01, 5.72454e-02, -1.95925e-02, 5.98883e-03, -1.08030e-03 ], [ -1.16820e-03, 7.26755e-03, -3.09503e-02, 9.88580e-01, 4.87921e-02, -1.67710e-02, 5.13372e-03, -9.26747e-04 ], [ -9.78093e-04, 6.09305e-03, -2.60456e-02, 9.90917e-01, 4.04274e-02, -1.39548e-02, 4.27773e-03, -7.72802e-04 ], [ -7.86031e-04, 4.90322e-03, -2.10389e-02, 9.93082e-01, 3.21531e-02, -1.11453e-02, 3.42130e-03, -6.18544e-04 ], [ -5.92100e-04, 3.69852e-03, -1.59305e-02, 9.95074e-01, 2.39714e-02, -8.34364e-03, 2.56486e-03, -4.64053e-04 ], [ -3.96391e-04, 2.47942e-03, -1.07209e-02, 9.96891e-01, 1.58840e-02, -5.55134e-03, 1.70888e-03, -3.09412e-04 ], [ -1.98993e-04, 1.24642e-03, -5.41054e-03, 9.98534e-01, 7.89295e-03, -2.76968e-03, 8.53777e-04, -1.54700e-04 ], [ 0.00000e+00, 0.00000e+00, 0.00000e+00, 1.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00 ] ] print("static const int NUM_TAPS = 8;") print("static const int NUM_STEPS = 128;") print("static const mmseTaps[NUM_STEPS+1][NUM_TAPS] = {") for taps in filters: body = ", ".join("%.5e" % t for t in reversed(taps)) print("{ " + body + " },") print("};")
104.735099
117
0.613152
0
0
0
0
0
0
0
0
446
0.028201
49172233318b11d598754579aedad36e5f01b8f1
1,688
py
Python
openpype/hosts/blender/plugins/publish/extract_blend_animation.py
jonclothcat/OpenPype
d1208cbebc0a7f378de0062ccd653295c6399195
[ "MIT" ]
1
2022-02-08T15:40:41.000Z
2022-02-08T15:40:41.000Z
openpype/hosts/blender/plugins/publish/extract_blend_animation.py
zafrs/OpenPype
4b8e7e1ed002fc55b31307efdea70b0feaed474f
[ "MIT" ]
2
2022-03-18T01:46:03.000Z
2022-03-18T01:46:16.000Z
openpype/hosts/blender/plugins/publish/extract_blend_animation.py
zafrs/OpenPype
4b8e7e1ed002fc55b31307efdea70b0feaed474f
[ "MIT" ]
null
null
null
import os import bpy import openpype.api class ExtractBlendAnimation(openpype.api.Extractor): """Extract a blend file.""" label = "Extract Blend" hosts = ["blender"] families = ["animation"] optional = True def process(self, instance): # Define extract output file path stagingdir = self.staging_dir(instance) filename = f"{instance.name}.blend" filepath = os.path.join(stagingdir, filename) # Perform extraction self.log.info("Performing extraction..") data_blocks = set() for obj in instance: if isinstance(obj, bpy.types.Object) and obj.type == 'EMPTY': child = obj.children[0] if child and child.type == 'ARMATURE': if child.animation_data and child.animation_data.action: if not obj.animation_data: obj.animation_data_create() obj.animation_data.action = child.animation_data.action obj.animation_data_clear() data_blocks.add(child.animation_data.action) data_blocks.add(obj) bpy.data.libraries.write(filepath, data_blocks) if "representations" not in instance.data: instance.data["representations"] = [] representation = { 'name': 'blend', 'ext': 'blend', 'files': filename, "stagingDir": stagingdir, } instance.data["representations"].append(representation) self.log.info("Extracted instance '%s' to: %s", instance.name, representation)
30.690909
79
0.566943
1,642
0.972749
0
0
0
0
0
0
308
0.182464
4917259ce7d453d0c463913b457ccefb5c69c0f6
2,772
py
Python
src/TamaTou.py
hirmiura/starsector-mod-Font_Replacement_for_Orbitron
ad7b5e3f4d8afd1a2aa97a420a2ec9a3aaf9b3d7
[ "MIT" ]
1
2022-01-17T02:58:46.000Z
2022-01-17T02:58:46.000Z
src/TamaTou.py
hirmiura/starsector-mod-Font_Replacement_for_Orbitron
ad7b5e3f4d8afd1a2aa97a420a2ec9a3aaf9b3d7
[ "MIT" ]
null
null
null
src/TamaTou.py
hirmiura/starsector-mod-Font_Replacement_for_Orbitron
ad7b5e3f4d8afd1a2aa97a420a2ec9a3aaf9b3d7
[ "MIT" ]
null
null
null
# SPDX-License-Identifier: MIT # Copyright 2022 hirmiura (https://github.com/hirmiura) # # TamaTouを生成するスクリプト # # 使い方 # 1. fontforgeでコンソールを出す(fontforge-console.bat) # 2. ディレクトリ移動 # 3. ffpython TamaTou.py # 4. 待つ # # Orbitron → オービトロン → オーブ → 玉 → Tamaやな! # Noto → No Toufu → 豆腐だらけだし → Touやな! # →→ TamaTou # import fontforge for weight in ['Regular', 'Bold']: print('玉改変') fn = fontforge.open(f'Orbitron-{weight}.ttf') fn.encoding = 'UnicodeFull' fn.save(f'tmp1-{weight}.sfd') fn.close() print(f'能登改変 {weight}') fn = fontforge.open(f'NotoSansJP-{weight}.otf') fn.encoding = 'UnicodeFull' fn.cidFlatten() # fn.ascent = 800 # fn.descent = 200 # fn.upos = -125 # fn.em = 1000 fn.save(f'tmp2-{weight}.sfd') fn.close() print('作成') name = 'TamaTou' copyright = 'Copyright (c) 2022, Hiroshi Miura (https://github.com/hirmiura) with Reserved Font Name TamaTou.' version = '1.0.0' license = 'Open Font License' fn = fontforge.open(f'tmp1-{weight}.sfd') fn.fontname = name fn.familyname = name fn.fullname = name fn.weight = weight fn.version = version fn.sfntRevision = None fn.copyright = copyright fn.appendSFNTName(0x411, 0, copyright) fn.appendSFNTName(0x411, 1, name) fn.appendSFNTName(0x411, 2, '') fn.appendSFNTName(0x411, 3, '') fn.appendSFNTName(0x411, 4, name) fn.appendSFNTName(0x411, 5, version) fn.appendSFNTName(0x411, 6, name + '-' + weight) fn.appendSFNTName(0x411, 7, '') fn.appendSFNTName(0x411, 8, '') fn.appendSFNTName(0x411, 9, '') fn.appendSFNTName(0x411, 10, '') fn.appendSFNTName(0x411, 11, '') fn.appendSFNTName(0x411, 12, '') fn.appendSFNTName(0x411, 13, license) fn.appendSFNTName(0x411, 14, '') fn.appendSFNTName(0x411, 15, '') fn.appendSFNTName(0x411, 16, name) fn.appendSFNTName(0x411, 17, '') fn.appendSFNTName(0x409, 0, copyright) fn.appendSFNTName(0x409, 1, name) fn.appendSFNTName(0x409, 2, '') fn.appendSFNTName(0x409, 3, '') fn.appendSFNTName(0x409, 4, name) fn.appendSFNTName(0x409, 5, version) fn.appendSFNTName(0x409, 6, name + '-' + weight) fn.appendSFNTName(0x409, 7, '') fn.appendSFNTName(0x409, 8, '') fn.appendSFNTName(0x409, 9, '') fn.appendSFNTName(0x409, 10, '') fn.appendSFNTName(0x409, 11, '') fn.appendSFNTName(0x409, 12, '') fn.appendSFNTName(0x409, 13, license) fn.appendSFNTName(0x409, 14, '') fn.appendSFNTName(0x409, 15, '') fn.appendSFNTName(0x409, 16, name) fn.appendSFNTName(0x409, 17, '') # fn.mergeFonts(f'tmp1-{weight}.sfd') fn.mergeFonts(f'tmp2-{weight}.sfd') fn.save(f'tmp3-{weight}.sfd') fn.generate(f'TamaTou-{weight}.otf') fn.close()
30.461538
114
0.636724
0
0
0
0
0
0
0
0
964
0.330363
4918381c344c6f579cf53ea1bf560dc12227d2bf
2,623
py
Python
bambu/bambu.py
westurner/pandasrdf
c194b1eb9928488bc19b82d3cab409158cd413a3
[ "BSD-3-Clause" ]
2
2016-07-01T10:48:04.000Z
2017-01-24T16:53:44.000Z
bambu/bambu.py
westurner/pandasrdf
c194b1eb9928488bc19b82d3cab409158cd413a3
[ "BSD-3-Clause" ]
1
2016-06-20T10:54:53.000Z
2017-02-07T05:47:38.000Z
bambu/bambu.py
westurner/pandasrdf
c194b1eb9928488bc19b82d3cab409158cd413a3
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function """ bambu ------ pandas RDF functionality Installation -------------- :: # pip install pandas pip install rdflib """ import sys import pandas as pd import rdflib def bambu(): """ mainfunc """ pass def to_rdf(df): """ Args: df (DataFrame): pandas DataFrame to serialize to RDF kwargs (dict): TODO Returns: rdflib.Graph: a serializable RDFLib Graph """ def read_rdf(path, **kwargs): """ Args: path (str): path to an RDF source kwargs (dict): TODO Returns: DataFrame: pandas DataFrame """ def to_rdfa(df, **kwargs): """ Args: df (DataFrame): pandas DataFrame to serialize to RDF kwargs (dict): TODO Returns: (list, StringIO): namespaces, RDFa table """ def read_rdfa(path, **kwargs): """ Args: path (str): path to an RDF source kwargs (dict): TODO Returns: DataFrame: pandas DataFrame """ def to_jsonld(df, **kwargs): """ Args: df (DataFrame): pandas DataFrame to serialize to RDF kwargs (dict): TODO Returns: (context, StringIO): JSONLD context, JSONLD data """ def read_jsonld(path, **kwargs): """ Args: path (str): path to a JSONLD source kwargs (dict): TODO Returns: DataFrame: pandas DataFrame """ import unittest class Test_bambu(unittest.TestCase): def test_bambu(self): pass def test_10_to_rdf(self): df = pd.DataFrame([[1, 2], [3, 4]], columns=['A', 'B']) output = to_rdf(df) print(output) self.assertTrue(output) def main(*args): import optparse import logging prs = optparse.OptionParser(usage="%prog: [args]") prs.add_option('-v', '--verbose', dest='verbose', action='store_true',) prs.add_option('-q', '--quiet', dest='quiet', action='store_true',) prs.add_option('-t', '--test', dest='run_tests', action='store_true',) args = args and list(args) or sys.argv[1:] (opts, args) = prs.parse_args(args) if not opts.quiet: logging.basicConfig() if opts.verbose: logging.getLogger().setLevel(logging.DEBUG) if opts.run_tests: sys.argv = [sys.argv[0]] + args import unittest sys.exit(unittest.main()) output = bambu() return 0 if __name__ == "__main__": sys.exit(main())
18.602837
63
0.552421
253
0.096454
0
0
0
0
0
0
1,277
0.486847
491871e30f2b60781d5b69aef6ac73571b60d676
19,637
py
Python
homework1/problem3/local/mort_icu.py
criticaldata/hst953-2021
b18c8235a6c878a4a7d3d330a9b69421f0217273
[ "MIT" ]
1
2022-03-15T15:52:45.000Z
2022-03-15T15:52:45.000Z
homework1/problem3/local/mort_icu.py
MDenu/HST-homework
fff0f277ee18735acbe84dfe8c428e92991b28fa
[ "MIT" ]
null
null
null
homework1/problem3/local/mort_icu.py
MDenu/HST-homework
fff0f277ee18735acbe84dfe8c428e92991b28fa
[ "MIT" ]
3
2021-09-10T19:14:54.000Z
2021-09-26T22:23:05.000Z
# Generates the following data files from MIMIC: # adult_icu.gz: data from adult ICUs # n_icu.gz: data from neonatal ICUs # adult_notes.gz: clinical notes from adult ICUs # Import libraries import numpy as np import pandas as pd import psycopg2 from scipy.stats import ks_2samp import os import random # Ouput directory to generate the files mimicdir = os.path.expanduser("./mimic_data/") random.seed(42) # create a database connection sqluser = 'mimicuser' dbname = 'mimic' schema_name = 'mimiciii' # Connect to local postgres version of mimic con = psycopg2.connect(dbname=dbname, user=sqluser, host='127.0.0.1', password='PASSWORD') cur = con.cursor() cur.execute('SET search_path to ' + schema_name) #========helper function for imputing missing values def replace(group): """ takes in a pandas group, and replaces the null value with the mean of the none null values of the same group """ mask = group.isnull() group[mask] = group[~mask].mean() return group #========get the icu details # this query extracts the following: # Unique ids for the admission, patient and icu stay # Patient gender # admission & discharge times # length of stay # age # ethnicity # admission type # in hospital death? # in icu death? # one year from admission death? # first hospital stay # icu intime, icu outime # los in icu # first icu stay? denquery = \ """ -- This query extracts useful demographic/administrative information for patient ICU stays --DROP MATERIALIZED VIEW IF EXISTS icustay_detail CASCADE; --CREATE MATERIALIZED VIEW icustay_detail as --ie is the icustays table --adm is the admissions table SELECT ie.subject_id, ie.hadm_id, ie.icustay_id , pat.gender , adm.admittime, adm.dischtime, adm.diagnosis , ROUND( (CAST(adm.dischtime AS DATE) - CAST(adm.admittime AS DATE)) , 4) AS los_hospital , ROUND( (CAST(adm.admittime AS DATE) - CAST(pat.dob AS DATE)) / 365, 4) AS age , adm.ethnicity, adm.ADMISSION_TYPE --, adm.hospital_expire_flag , CASE when adm.deathtime between ie.intime and ie.outtime THEN 1 ELSE 0 END AS mort_icu , DENSE_RANK() OVER (PARTITION BY adm.subject_id ORDER BY adm.admittime) AS hospstay_seq , CASE WHEN DENSE_RANK() OVER (PARTITION BY adm.subject_id ORDER BY adm.admittime) = 1 THEN 1 ELSE 0 END AS first_hosp_stay -- icu level factors , ie.intime, ie.outtime , ie.FIRST_CAREUNIT , ROUND( (CAST(ie.outtime AS DATE) - CAST(ie.intime AS DATE)) , 4) AS los_icu , DENSE_RANK() OVER (PARTITION BY ie.hadm_id ORDER BY ie.intime) AS icustay_seq -- first ICU stay *for the current hospitalization* , CASE WHEN DENSE_RANK() OVER (PARTITION BY ie.hadm_id ORDER BY ie.intime) = 1 THEN 1 ELSE 0 END AS first_icu_stay FROM icustays ie INNER JOIN admissions adm ON ie.hadm_id = adm.hadm_id INNER JOIN patients pat ON ie.subject_id = pat.subject_id WHERE adm.has_chartevents_data = 1 ORDER BY ie.subject_id, adm.admittime, ie.intime; """ den = pd.read_sql_query(denquery,con) #----drop patients with less than 48 hour den['los_icu_hr'] = (den.outtime - den.intime).astype('timedelta64[h]') den = den[(den.los_icu_hr >= 48)] den = den[(den.age<300)] den.drop('los_icu_hr', axis = 1, inplace = True) # den.isnull().sum() #----clean up # micu --> medical # csru --> cardiac surgery recovery unit # sicu --> surgical icu # tsicu --> Trauma Surgical Intensive Care Unit # NICU --> Neonatal den['adult_icu'] = np.where(den['first_careunit'].isin(['PICU', 'NICU']), 0, 1) den['gender'] = np.where(den['gender']=="M", 1, 0) # no need to yell den.ethnicity = den.ethnicity.str.lower() den.ethnicity.loc[(den.ethnicity.str.contains('^white'))] = 'white' den.ethnicity.loc[(den.ethnicity.str.contains('^black'))] = 'black' den.ethnicity.loc[(den.ethnicity.str.contains('^hisp')) | (den.ethnicity.str.contains('^latin'))] = 'hispanic' den.ethnicity.loc[(den.ethnicity.str.contains('^asia'))] = 'asian' den.ethnicity.loc[~(den.ethnicity.str.contains('|'.join(['white', 'black', 'hispanic', 'asian'])))] = 'other' den = pd.concat([den, pd.get_dummies(den['ethnicity'], prefix='eth')], axis = 1) den = pd.concat([den, pd.get_dummies(den['admission_type'], prefix='admType')], axis = 1) den.drop(['diagnosis', 'hospstay_seq', 'los_icu','icustay_seq', 'admittime', 'dischtime','los_hospital', 'intime', 'outtime', 'ethnicity', 'admission_type', 'first_careunit'], axis = 1, inplace = True) #========= 48 hour vitals query # these are the normal ranges. useful to clean # up the data vitquery = \ """ -- This query pivots the vital signs for the first 48 hours of a patient's stay -- Vital signs include heart rate, blood pressure, respiration rate, and temperature -- DROP MATERIALIZED VIEW IF EXISTS vitalsfirstday CASCADE; -- create materialized view vitalsfirstday as SELECT pvt.subject_id, pvt.hadm_id, pvt.icustay_id -- Easier names , min(case when VitalID = 1 then valuenum else null end) as HeartRate_Min , max(case when VitalID = 1 then valuenum else null end) as HeartRate_Max , avg(case when VitalID = 1 then valuenum else null end) as HeartRate_Mean , min(case when VitalID = 2 then valuenum else null end) as SysBP_Min , max(case when VitalID = 2 then valuenum else null end) as SysBP_Max , avg(case when VitalID = 2 then valuenum else null end) as SysBP_Mean , min(case when VitalID = 3 then valuenum else null end) as DiasBP_Min , max(case when VitalID = 3 then valuenum else null end) as DiasBP_Max , avg(case when VitalID = 3 then valuenum else null end) as DiasBP_Mean , min(case when VitalID = 4 then valuenum else null end) as MeanBP_Min , max(case when VitalID = 4 then valuenum else null end) as MeanBP_Max , avg(case when VitalID = 4 then valuenum else null end) as MeanBP_Mean , min(case when VitalID = 5 then valuenum else null end) as RespRate_Min , max(case when VitalID = 5 then valuenum else null end) as RespRate_Max , avg(case when VitalID = 5 then valuenum else null end) as RespRate_Mean , min(case when VitalID = 6 then valuenum else null end) as TempC_Min , max(case when VitalID = 6 then valuenum else null end) as TempC_Max , avg(case when VitalID = 6 then valuenum else null end) as TempC_Mean , min(case when VitalID = 7 then valuenum else null end) as SpO2_Min , max(case when VitalID = 7 then valuenum else null end) as SpO2_Max , avg(case when VitalID = 7 then valuenum else null end) as SpO2_Mean , min(case when VitalID = 8 then valuenum else null end) as Glucose_Min , max(case when VitalID = 8 then valuenum else null end) as Glucose_Max , avg(case when VitalID = 8 then valuenum else null end) as Glucose_Mean FROM ( select ie.subject_id, ie.hadm_id, ie.icustay_id , case when itemid in (211,220045) and valuenum > 0 and valuenum < 300 then 1 -- HeartRate when itemid in (51,442,455,6701,220179,220050) and valuenum > 0 and valuenum < 400 then 2 -- SysBP when itemid in (8368,8440,8441,8555,220180,220051) and valuenum > 0 and valuenum < 300 then 3 -- DiasBP when itemid in (456,52,6702,443,220052,220181,225312) and valuenum > 0 and valuenum < 300 then 4 -- MeanBP when itemid in (615,618,220210,224690) and valuenum > 0 and valuenum < 70 then 5 -- RespRate when itemid in (223761,678) and valuenum > 70 and valuenum < 120 then 6 -- TempF, converted to degC in valuenum call when itemid in (223762,676) and valuenum > 10 and valuenum < 50 then 6 -- TempC when itemid in (646,220277) and valuenum > 0 and valuenum <= 100 then 7 -- SpO2 when itemid in (807,811,1529,3745,3744,225664,220621,226537) and valuenum > 0 then 8 -- Glucose else null end as VitalID -- convert F to C , case when itemid in (223761,678) then (valuenum-32)/1.8 else valuenum end as valuenum from icustays ie left join chartevents ce on ie.subject_id = ce.subject_id and ie.hadm_id = ce.hadm_id and ie.icustay_id = ce.icustay_id and ce.charttime between ie.intime and ie.intime + interval '48' hour -- exclude rows marked as error and ce.error IS DISTINCT FROM 1 where ce.itemid in ( -- HEART RATE 211, --"Heart Rate" 220045, --"Heart Rate" -- Systolic/diastolic 51, -- Arterial BP [Systolic] 442, -- Manual BP [Systolic] 455, -- NBP [Systolic] 6701, -- Arterial BP #2 [Systolic] 220179, -- Non Invasive Blood Pressure systolic 220050, -- Arterial Blood Pressure systolic 8368, -- Arterial BP [Diastolic] 8440, -- Manual BP [Diastolic] 8441, -- NBP [Diastolic] 8555, -- Arterial BP #2 [Diastolic] 220180, -- Non Invasive Blood Pressure diastolic 220051, -- Arterial Blood Pressure diastolic -- MEAN ARTERIAL PRESSURE 456, --"NBP Mean" 52, --"Arterial BP Mean" 6702, -- Arterial BP Mean #2 443, -- Manual BP Mean(calc) 220052, --"Arterial Blood Pressure mean" 220181, --"Non Invasive Blood Pressure mean" 225312, --"ART BP mean" -- RESPIRATORY RATE 618,-- Respiratory Rate 615,-- Resp Rate (Total) 220210,-- Respiratory Rate 224690, -- Respiratory Rate (Total) -- SPO2, peripheral 646, 220277, -- GLUCOSE, both lab and fingerstick 807,-- Fingerstick Glucose 811,-- Glucose (70-105) 1529,-- Glucose 3745,-- BloodGlucose 3744,-- Blood Glucose 225664,-- Glucose finger stick 220621,-- Glucose (serum) 226537,-- Glucose (whole blood) -- TEMPERATURE 223762, -- "Temperature Celsius" 676, -- "Temperature C" 223761, -- "Temperature Fahrenheit" 678 -- "Temperature F" ) ) pvt group by pvt.subject_id, pvt.hadm_id, pvt.icustay_id order by pvt.subject_id, pvt.hadm_id, pvt.icustay_id; """ vit48 = pd.read_sql_query(vitquery,con) vit48.isnull().sum() #===============48 hour labs query # This query does the following: # it extracts the lab events in the first 48 hours # it labels the lab items and cleans up their values # it will create a set of lab values # 48 hours. labquery = \ """ WITH pvt AS ( --- ie is the icu stay --- ad is the admissions table --- le is the lab events table SELECT ie.subject_id, ie.hadm_id, ie.icustay_id, le.charttime -- here we assign labels to ITEMIDs -- this also fuses together multiple ITEMIDs containing the same data , CASE when le.itemid = 50868 then 'ANION GAP' when le.itemid = 50862 then 'ALBUMIN' when le.itemid = 50882 then 'BICARBONATE' when le.itemid = 50885 then 'BILIRUBIN' when le.itemid = 50912 then 'CREATININE' when le.itemid = 50806 then 'CHLORIDE' when le.itemid = 50902 then 'CHLORIDE' when le.itemid = 50809 then 'GLUCOSE' when le.itemid = 50931 then 'GLUCOSE' when le.itemid = 50810 then 'HEMATOCRIT' when le.itemid = 51221 then 'HEMATOCRIT' when le.itemid = 50811 then 'HEMOGLOBIN' when le.itemid = 51222 then 'HEMOGLOBIN' when le.itemid = 50813 then 'LACTATE' when le.itemid = 50960 then 'MAGNESIUM' when le.itemid = 50970 then 'PHOSPHATE' when le.itemid = 51265 then 'PLATELET' when le.itemid = 50822 then 'POTASSIUM' when le.itemid = 50971 then 'POTASSIUM' when le.itemid = 51275 then 'PTT' when le.itemid = 51237 then 'INR' when le.itemid = 51274 then 'PT' when le.itemid = 50824 then 'SODIUM' when le.itemid = 50983 then 'SODIUM' when le.itemid = 51006 then 'BUN' when le.itemid = 51300 then 'WBC' when le.itemid = 51301 then 'WBC' ELSE null END AS label , -- add in some sanity checks on the values -- the where clause below requires all valuenum to be > 0, -- so these are only upper limit checks CASE when le.itemid = 50862 and le.valuenum > 10 then null -- g/dL 'ALBUMIN' when le.itemid = 50868 and le.valuenum > 10000 then null -- mEq/L 'ANION GAP' when le.itemid = 50882 and le.valuenum > 10000 then null -- mEq/L 'BICARBONATE' when le.itemid = 50885 and le.valuenum > 150 then null -- mg/dL 'BILIRUBIN' when le.itemid = 50806 and le.valuenum > 10000 then null -- mEq/L 'CHLORIDE' when le.itemid = 50902 and le.valuenum > 10000 then null -- mEq/L 'CHLORIDE' when le.itemid = 50912 and le.valuenum > 150 then null -- mg/dL 'CREATININE' when le.itemid = 50809 and le.valuenum > 10000 then null -- mg/dL 'GLUCOSE' when le.itemid = 50931 and le.valuenum > 10000 then null -- mg/dL 'GLUCOSE' when le.itemid = 50810 and le.valuenum > 100 then null -- % 'HEMATOCRIT' when le.itemid = 51221 and le.valuenum > 100 then null -- % 'HEMATOCRIT' when le.itemid = 50811 and le.valuenum > 50 then null -- g/dL 'HEMOGLOBIN' when le.itemid = 51222 and le.valuenum > 50 then null -- g/dL 'HEMOGLOBIN' when le.itemid = 50813 and le.valuenum > 50 then null -- mmol/L 'LACTATE' when le.itemid = 50960 and le.valuenum > 60 then null -- mmol/L 'MAGNESIUM' when le.itemid = 50970 and le.valuenum > 60 then null -- mg/dL 'PHOSPHATE' when le.itemid = 51265 and le.valuenum > 10000 then null -- K/uL 'PLATELET' when le.itemid = 50822 and le.valuenum > 30 then null -- mEq/L 'POTASSIUM' when le.itemid = 50971 and le.valuenum > 30 then null -- mEq/L 'POTASSIUM' when le.itemid = 51275 and le.valuenum > 150 then null -- sec 'PTT' when le.itemid = 51237 and le.valuenum > 50 then null -- 'INR' when le.itemid = 51274 and le.valuenum > 150 then null -- sec 'PT' when le.itemid = 50824 and le.valuenum > 200 then null -- mEq/L == mmol/L 'SODIUM' when le.itemid = 50983 and le.valuenum > 200 then null -- mEq/L == mmol/L 'SODIUM' when le.itemid = 51006 and le.valuenum > 300 then null -- 'BUN' when le.itemid = 51300 and le.valuenum > 1000 then null -- 'WBC' when le.itemid = 51301 and le.valuenum > 1000 then null -- 'WBC' ELSE le.valuenum END AS valuenum FROM icustays ie LEFT JOIN labevents le ON le.subject_id = ie.subject_id AND le.hadm_id = ie.hadm_id -- TODO: they are using lab times 6 hours before the start of the -- ICU stay. AND le.charttime between (ie.intime - interval '6' hour) AND (ie.intime + interval '48' hour) AND le.itemid IN ( -- comment is: LABEL | CATEGORY | FLUID | NUMBER OF ROWS IN LABEVENTS 50868, -- ANION GAP | CHEMISTRY | BLOOD | 769895 50862, -- ALBUMIN | CHEMISTRY | BLOOD | 146697 50882, -- BICARBONATE | CHEMISTRY | BLOOD | 780733 50885, -- BILIRUBIN, TOTAL | CHEMISTRY | BLOOD | 238277 50912, -- CREATININE | CHEMISTRY | BLOOD | 797476 50902, -- CHLORIDE | CHEMISTRY | BLOOD | 795568 50806, -- CHLORIDE, WHOLE BLOOD | BLOOD GAS | BLOOD | 48187 50931, -- GLUCOSE | CHEMISTRY | BLOOD | 748981 50809, -- GLUCOSE | BLOOD GAS | BLOOD | 196734 51221, -- HEMATOCRIT | HEMATOLOGY | BLOOD | 881846 50810, -- HEMATOCRIT, CALCULATED | BLOOD GAS | BLOOD | 89715 51222, -- HEMOGLOBIN | HEMATOLOGY | BLOOD | 752523 50811, -- HEMOGLOBIN | BLOOD GAS | BLOOD | 89712 50813, -- LACTATE | BLOOD GAS | BLOOD | 187124 50960, -- MAGNESIUM | CHEMISTRY | BLOOD | 664191 50970, -- PHOSPHATE | CHEMISTRY | BLOOD | 590524 51265, -- PLATELET COUNT | HEMATOLOGY | BLOOD | 778444 50971, -- POTASSIUM | CHEMISTRY | BLOOD | 845825 50822, -- POTASSIUM, WHOLE BLOOD | BLOOD GAS | BLOOD | 192946 51275, -- PTT | HEMATOLOGY | BLOOD | 474937 51237, -- INR(PT) | HEMATOLOGY | BLOOD | 471183 51274, -- PT | HEMATOLOGY | BLOOD | 469090 50983, -- SODIUM | CHEMISTRY | BLOOD | 808489 50824, -- SODIUM, WHOLE BLOOD | BLOOD GAS | BLOOD | 71503 51006, -- UREA NITROGEN | CHEMISTRY | BLOOD | 791925 51301, -- WHITE BLOOD CELLS | HEMATOLOGY | BLOOD | 753301 51300 -- WBC COUNT | HEMATOLOGY | BLOOD | 2371 ) AND le.valuenum IS NOT null AND le.valuenum > 0 -- lab values cannot be 0 and cannot be negative LEFT JOIN admissions ad ON ie.subject_id = ad.subject_id AND ie.hadm_id = ad.hadm_id ), ranked AS ( SELECT pvt.*, DENSE_RANK() OVER (PARTITION BY pvt.subject_id, pvt.hadm_id,pvt.icustay_id,pvt.label ORDER BY pvt.charttime) as drank FROM pvt ) SELECT r.subject_id, r.hadm_id, r.icustay_id , max(case when label = 'ANION GAP' then valuenum else null end) as ANIONGAP , max(case when label = 'ALBUMIN' then valuenum else null end) as ALBUMIN , max(case when label = 'BICARBONATE' then valuenum else null end) as BICARBONATE , max(case when label = 'BILIRUBIN' then valuenum else null end) as BILIRUBIN , max(case when label = 'CREATININE' then valuenum else null end) as CREATININE , max(case when label = 'CHLORIDE' then valuenum else null end) as CHLORIDE , max(case when label = 'GLUCOSE' then valuenum else null end) as GLUCOSE , max(case when label = 'HEMATOCRIT' then valuenum else null end) as HEMATOCRIT , max(case when label = 'HEMOGLOBIN' then valuenum else null end) as HEMOGLOBIN , max(case when label = 'LACTATE' then valuenum else null end) as LACTATE , max(case when label = 'MAGNESIUM' then valuenum else null end) as MAGNESIUM , max(case when label = 'PHOSPHATE' then valuenum else null end) as PHOSPHATE , max(case when label = 'PLATELET' then valuenum else null end) as PLATELET , max(case when label = 'POTASSIUM' then valuenum else null end) as POTASSIUM , max(case when label = 'PTT' then valuenum else null end) as PTT , max(case when label = 'INR' then valuenum else null end) as INR , max(case when label = 'PT' then valuenum else null end) as PT , max(case when label = 'SODIUM' then valuenum else null end) as SODIUM , max(case when label = 'BUN' then valuenum else null end) as BUN , max(case when label = 'WBC' then valuenum else null end) as WBC FROM ranked r WHERE r.drank = 1 GROUP BY r.subject_id, r.hadm_id, r.icustay_id, r.drank ORDER BY r.subject_id, r.hadm_id, r.icustay_id, r.drank; """ lab48 = pd.read_sql_query(labquery,con) #=========notes notesquery = \ """ SELECT fin.subject_id, fin.hadm_id, fin.icustay_id, string_agg(fin.text, ' ') as chartext FROM ( select ie.subject_id, ie.hadm_id, ie.icustay_id, ne.text from icustays ie left join noteevents ne on ie.subject_id = ne.subject_id and ie.hadm_id = ne.hadm_id and ne.charttime between ie.intime and ie.intime + interval '48' hour --and ne.iserror != '1' ) fin group by fin.subject_id, fin.hadm_id, fin.icustay_id order by fin.subject_id, fin.hadm_id, fin.icustay_id; """ notes48 = pd.read_sql_query(notesquery,con) #=====combine all variables mort_ds = den.merge(vit48,how = 'left', on = ['subject_id', 'hadm_id', 'icustay_id']) mort_ds = mort_ds.merge(lab48,how = 'left', on = ['subject_id', 'hadm_id', 'icustay_id']) #======missing values (following joydeep ghosh's paper) # create means by age group and gender mort_ds['age_group'] = pd.cut(mort_ds['age'], [-1,5,10,15,20, 25, 40,60, 80, 200], labels = ['l5','5_10', '10_15', '15_20', '20_25', '25_40', '40_60', '60_80', '80p']) mort_ds = mort_ds.groupby(['age_group', 'gender']) mort_ds = mort_ds.transform(replace) #mort_ds.drop('age_group', 1, inplace =True ) # one missing variable adult_icu = mort_ds[(mort_ds.adult_icu==1)].dropna() # create training and testing labels msk = np.random.rand(len(adult_icu)) < 0.7 adult_icu['train'] = np.where(msk, 1, 0) adult_icu.to_csv(os.path.join(mimicdir, 'adult_icu.gz'), compression='gzip', index = False) # notes adult_notes = notes48.merge(adult_icu[['train', 'subject_id', 'hadm_id', 'icustay_id', 'mort_icu']], how = 'right', on = ['subject_id', 'hadm_id', 'icustay_id']) adult_notes.to_csv(os.path.join(mimicdir, 'adult_notes.gz'), compression='gzip', index = False)
41.254202
202
0.685135
0
0
0
0
0
0
0
0
17,507
0.891531
4918d6d679945db227bfcba68023e986105933df
14,098
py
Python
release/alert.py
77loopin/ray
9322f6aab53f4ca5baf5a3573e1ffde12feae519
[ "Apache-2.0" ]
21,382
2016-09-26T23:12:52.000Z
2022-03-31T21:47:45.000Z
release/alert.py
77loopin/ray
9322f6aab53f4ca5baf5a3573e1ffde12feae519
[ "Apache-2.0" ]
19,689
2016-09-17T08:21:25.000Z
2022-03-31T23:59:30.000Z
release/alert.py
gramhagen/ray
c18caa4db36d466718bdbcb2229aa0b2dc03da1f
[ "Apache-2.0" ]
4,114
2016-09-23T18:54:01.000Z
2022-03-31T15:07:32.000Z
import argparse from collections import defaultdict, Counter from typing import Any, List, Tuple, Mapping, Optional import datetime import hashlib import json import logging import os import requests import sys import boto3 from e2e import GLOBAL_CONFIG from alerts.default import handle_result as default_handle_result from alerts.rllib_tests import handle_result as rllib_tests_handle_result from alerts.long_running_tests import handle_result as \ long_running_tests_handle_result from alerts.tune_tests import handle_result as tune_tests_handle_result from alerts.xgboost_tests import handle_result as xgboost_tests_handle_result SUITE_TO_FN = { "long_running_tests": long_running_tests_handle_result, "rllib_tests": rllib_tests_handle_result, "tune_tests": tune_tests_handle_result, "xgboost_tests": xgboost_tests_handle_result, } GLOBAL_CONFIG["RELEASE_AWS_DB_STATE_TABLE"] = "alert_state" GLOBAL_CONFIG["SLACK_WEBHOOK"] = os.environ.get("SLACK_WEBHOOK", "") GLOBAL_CONFIG["SLACK_CHANNEL"] = os.environ.get("SLACK_CHANNEL", "#oss-test-cop") RESULTS_LIMIT = 120 logger = logging.getLogger() logger.setLevel(logging.INFO) handler = logging.StreamHandler(stream=sys.stdout) formatter = logging.Formatter(fmt="[%(levelname)s %(asctime)s] " "%(filename)s: %(lineno)d " "%(message)s") handler.setFormatter(formatter) logger.addHandler(handler) def maybe_fetch_slack_webhook(): if GLOBAL_CONFIG["SLACK_WEBHOOK"] in [None, ""]: print("Missing SLACK_WEBHOOK, retrieving from AWS secrets store") GLOBAL_CONFIG["SLACK_WEBHOOK"] = boto3.client( "secretsmanager", region_name="us-west-2" ).get_secret_value( SecretId="arn:aws:secretsmanager:us-west-2:029272617770:secret:" "release-automation/" "slack-webhook-Na0CFP")["SecretString"] def _obj_hash(obj: Any) -> str: json_str = json.dumps(obj, sort_keys=True, ensure_ascii=True) sha = hashlib.sha256() sha.update(json_str.encode()) return sha.hexdigest() def fetch_latest_alerts(rds_data_client): schema = GLOBAL_CONFIG["RELEASE_AWS_DB_STATE_TABLE"] sql = (f""" SELECT DISTINCT ON (category, test_suite, test_name) category, test_suite, test_name, last_result_hash, last_notification_dt FROM {schema} ORDER BY category, test_suite, test_name, last_notification_dt DESC LIMIT {RESULTS_LIMIT} """) result = rds_data_client.execute_statement( database=GLOBAL_CONFIG["RELEASE_AWS_DB_NAME"], secretArn=GLOBAL_CONFIG["RELEASE_AWS_DB_SECRET_ARN"], resourceArn=GLOBAL_CONFIG["RELEASE_AWS_DB_RESOURCE_ARN"], schema=schema, sql=sql, ) for row in result["records"]: category, test_suite, test_name, last_result_hash, \ last_notification_dt = ( r["stringValue"] if "stringValue" in r else None for r in row ) last_notification_dt = datetime.datetime.strptime( last_notification_dt, "%Y-%m-%d %H:%M:%S") yield category, test_suite, test_name, last_result_hash, \ last_notification_dt def fetch_latest_results(rds_data_client, fetch_since: Optional[datetime.datetime] = None): schema = GLOBAL_CONFIG["RELEASE_AWS_DB_TABLE"] sql = (f""" SELECT DISTINCT ON (category, test_suite, test_name) created_on, category, test_suite, test_name, status, results, artifacts, last_logs FROM {schema} """) parameters = [] if fetch_since is not None: sql += "WHERE created_on >= :created_on " parameters = [ { "name": "created_on", "typeHint": "TIMESTAMP", "value": { "stringValue": fetch_since.strftime("%Y-%m-%d %H:%M:%S") }, }, ] sql += "ORDER BY category, test_suite, test_name, created_on DESC " sql += f"LIMIT {RESULTS_LIMIT}" result = rds_data_client.execute_statement( database=GLOBAL_CONFIG["RELEASE_AWS_DB_NAME"], secretArn=GLOBAL_CONFIG["RELEASE_AWS_DB_SECRET_ARN"], resourceArn=GLOBAL_CONFIG["RELEASE_AWS_DB_RESOURCE_ARN"], schema=schema, sql=sql, parameters=parameters, ) for row in result["records"]: created_on, category, test_suite, test_name, status, results, \ artifacts, last_logs = ( r["stringValue"] if "stringValue" in r else None for r in row) # Calculate hash before converting strings to objects result_obj = (created_on, category, test_suite, test_name, status, results, artifacts, last_logs) result_json = json.dumps(result_obj) result_hash = _obj_hash(result_json) # Convert some strings to python objects created_on = datetime.datetime.strptime(created_on, "%Y-%m-%d %H:%M:%S") results = json.loads(results) artifacts = json.loads(artifacts) yield result_hash, created_on, category, test_suite, test_name, \ status, results, artifacts, last_logs def mark_as_handled(rds_data_client, update: bool, category: str, test_suite: str, test_name: str, result_hash: str, last_notification_dt: datetime.datetime): schema = GLOBAL_CONFIG["RELEASE_AWS_DB_STATE_TABLE"] if not update: sql = (f""" INSERT INTO {schema} (category, test_suite, test_name, last_result_hash, last_notification_dt) VALUES (:category, :test_suite, :test_name, :last_result_hash, :last_notification_dt) """) else: sql = (f""" UPDATE {schema} SET last_result_hash=:last_result_hash, last_notification_dt=:last_notification_dt WHERE category=:category AND test_suite=:test_suite AND test_name=:test_name """) rds_data_client.execute_statement( database=GLOBAL_CONFIG["RELEASE_AWS_DB_NAME"], parameters=[ { "name": "category", "value": { "stringValue": category } }, { "name": "test_suite", "value": { "stringValue": test_suite or "" } }, { "name": "test_name", "value": { "stringValue": test_name } }, { "name": "last_result_hash", "value": { "stringValue": result_hash } }, { "name": "last_notification_dt", "typeHint": "TIMESTAMP", "value": { "stringValue": last_notification_dt.strftime( "%Y-%m-%d %H:%M:%S") }, }, ], secretArn=GLOBAL_CONFIG["RELEASE_AWS_DB_SECRET_ARN"], resourceArn=GLOBAL_CONFIG["RELEASE_AWS_DB_RESOURCE_ARN"], schema=schema, sql=sql, ) def post_alerts_to_slack(channel: str, alerts: List[Tuple[str, str, str, str]], non_alerts: Mapping[str, int]): if len(alerts) == 0: logger.info("No alerts to post to slack.") return markdown_lines = [ f"* {len(alerts)} new release test failures found!*", "", ] category_alerts = defaultdict(list) for (category, test_suite, test_name, alert) in alerts: category_alerts[category].append( f" *{test_suite}/{test_name}* failed: {alert}") for category, alert_list in category_alerts.items(): markdown_lines.append(f"Branch: *{category}*") markdown_lines.extend(alert_list) markdown_lines.append("") total_non_alerts = sum(n for n in non_alerts.values()) non_alert_detail = [f"{n} on {c}" for c, n in non_alerts.items()] markdown_lines += [ f"Additionally, {total_non_alerts} tests passed successfully " f"({', '.join(non_alert_detail)})." ] slack_url = GLOBAL_CONFIG["SLACK_WEBHOOK"] resp = requests.post( slack_url, json={ "text": "\n".join(markdown_lines), "channel": channel, "username": "Fail Bot", "icon_emoji": ":red_circle:", }, ) print(resp.status_code) print(resp.text) def post_statistics_to_slack(channel: str, alerts: List[Tuple[str, str, str, str]], non_alerts: Mapping[str, int]): total_alerts = len(alerts) category_alerts = defaultdict(list) for (category, test_suite, test_name, alert) in alerts: category_alerts[category].append(f"`{test_suite}/{test_name}`") alert_detail = [f"{len(a)} on {c}" for c, a in category_alerts.items()] total_non_alerts = sum(n for n in non_alerts.values()) non_alert_detail = [f"{n} on {c}" for c, n in non_alerts.items()] markdown_lines = [ "*Periodic release test report*", "", f"In the past 24 hours, " f"*{total_non_alerts}* release tests finished successfully, and " f"*{total_alerts}* release tests failed." ] markdown_lines.append("") if total_alerts: markdown_lines.append(f"*Failing:* {', '.join(alert_detail)}") for c, a in category_alerts.items(): markdown_lines.append(f" *{c}*: {', '.join(sorted(a))}") else: markdown_lines.append("*Failing:* None") markdown_lines.append("") if total_non_alerts: markdown_lines.append(f"*Passing:* {', '.join(non_alert_detail)}") else: markdown_lines.append("*Passing:* None") slack_url = GLOBAL_CONFIG["SLACK_WEBHOOK"] resp = requests.post( slack_url, json={ "text": "\n".join(markdown_lines), "channel": channel, "username": "Fail Bot", "icon_emoji": ":red_circle:", }, ) print(resp.status_code) print(resp.text) def handle_results_and_get_alerts( rds_data_client, fetch_since: Optional[datetime.datetime] = None, always_try_alert: bool = False, no_status_update: bool = False): # First build a map of last notifications last_notifications_map = {} for category, test_suite, test_name, last_result_hash, \ last_notification_dt in fetch_latest_alerts(rds_data_client): last_notifications_map[(category, test_suite, test_name)] = (last_result_hash, last_notification_dt) alerts = [] non_alerts = Counter() # Then fetch latest results for result_hash, created_on, category, test_suite, test_name, status, \ results, artifacts, last_logs in fetch_latest_results( rds_data_client, fetch_since=fetch_since): key = (category, test_suite, test_name) try_alert = always_try_alert if key in last_notifications_map: # If we have an alert for this key, fetch info last_result_hash, last_notification_dt = last_notifications_map[ key] if last_result_hash != result_hash: # If we got a new result, handle new result try_alert = True # Todo: maybe alert again after some time? else: try_alert = True if try_alert: handle_fn = SUITE_TO_FN.get(test_suite, None) if not handle_fn: logger.warning(f"No handle for suite {test_suite}") alert = default_handle_result(created_on, category, test_suite, test_name, status, results, artifacts, last_logs) else: alert = handle_fn(created_on, category, test_suite, test_name, status, results, artifacts, last_logs) if alert: logger.warning( f"Alert raised for test {test_suite}/{test_name} " f"({category}): {alert}") alerts.append((category, test_suite, test_name, alert)) else: logger.debug( f"No alert raised for test {test_suite}/{test_name} " f"({category})") non_alerts[category] += 1 if not no_status_update: mark_as_handled(rds_data_client, key in last_notifications_map, category, test_suite, test_name, result_hash, datetime.datetime.now()) return alerts, non_alerts if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--stats", action="store_true", default=False, help="Finish quickly for training.") args = parser.parse_args() maybe_fetch_slack_webhook() rds_data_client = boto3.client("rds-data", region_name="us-west-2") if args.stats: # Only update last 24 hour stats fetch_since = datetime.datetime.now() - datetime.timedelta(days=1) alerts, non_alerts = handle_results_and_get_alerts( rds_data_client, fetch_since=fetch_since, always_try_alert=True, no_status_update=True) post_statistics_to_slack(GLOBAL_CONFIG["SLACK_CHANNEL"], alerts, non_alerts) else: alerts, non_alerts = handle_results_and_get_alerts(rds_data_client) post_alerts_to_slack(GLOBAL_CONFIG["SLACK_CHANNEL"], alerts, non_alerts)
34.724138
79
0.589658
0
0
3,227
0.228898
0
0
0
0
3,798
0.2694
4918f13347223ad7457de28e1dde690394ca0299
2,176
py
Python
bios-token.py
emahear/openusm
96bb62b91f4b5520e14d86ae86e1b320404134e6
[ "MIT" ]
4
2019-08-04T05:50:46.000Z
2020-04-16T19:24:11.000Z
bios-token.py
emahear/openusm
96bb62b91f4b5520e14d86ae86e1b320404134e6
[ "MIT" ]
null
null
null
bios-token.py
emahear/openusm
96bb62b91f4b5520e14d86ae86e1b320404134e6
[ "MIT" ]
6
2019-08-03T12:57:47.000Z
2020-06-08T01:50:43.000Z
import os import argparse def _create_parser(): parser = argparse.ArgumentParser(description='Welcome to Universal Systems Manager' 'Bios Token Change') parser.add_argument('--verbose', help='Turn on verbose logging', action='store_true') parser.add_argument('-i', '--idrac', help='iDRAC IP of the Host' ) parser.add_argument('-n', '--nfs', help='NFS server IP address', default=None) parser.add_argument('-s', '--share', help='NFS Share folder' ) parser.add_argument('-c', '--config', help='XML File to be imported' ) parser.add_argument('-f', '--ips', help='IP files to be updated' ) return parser def main(): parser = _create_parser() args = parser.parse_args() nfs_server = args.nfs idrac = args.idrac nfs_share = args.share config = args.config os.system("docker build -t ajeetraina/usm_redfish . ") if(args.ips): ip_file = args.ips ips_file = open(ip_file) ips = ips_file.readlines() for ip in ips: print ("Iteration %s"%ip) ip = ip.strip() command = "docker run --rm --log-driver=syslog --log-opt syslog-address=tcp://0.0.0.0:5000 --log-opt syslog-facility=daemon -itd --name=%s_server -e IDRAC_IP=%s -e NFS_SERVER=%s -e NFS_SERVER_SHARE=%s -e CONFIG_FILE=%s ajeetraina/usm_redfish python import_scp.py &"%(ip,ip,nfs_server,nfs_share,config) print command os.system(command) if (args.idrac): os.system( "docker run --rm --log-driver=syslog --log-opt syslog-address=tcp://0.0.0.0:5000 --log-opt syslog-facility=daemon -itd --name=%s_server -e IDRAC_IP=%s -e NFS_SERVER=%s -e NFS_SERVER_SHARE=%s -e CONFIG_FILE=%s ajeetraina/usm_redfish python import_scp.py &" % ( idrac,idrac, nfs_server, nfs_share, config)) if __name__ == '__main__': main()
32.477612
306
0.552849
0
0
0
0
0
0
0
0
857
0.393842
491929694fdf621f13fc8f553f27ac207d5a59c5
333
py
Python
Examples/user_data/sharptrack.py
FedeClaudi/brainrender
b1d8adcef52615fcd86a083be4dc48c68a8b0bb9
[ "MIT" ]
null
null
null
Examples/user_data/sharptrack.py
FedeClaudi/brainrender
b1d8adcef52615fcd86a083be4dc48c68a8b0bb9
[ "MIT" ]
null
null
null
Examples/user_data/sharptrack.py
FedeClaudi/brainrender
b1d8adcef52615fcd86a083be4dc48c68a8b0bb9
[ "MIT" ]
null
null
null
import brainrender brainrender.SHADER_STYLE = 'cartoon' from brainrender.scene import Scene sharptrack_file = 'Examples/example_files/sharptrack_probe_points.mat' scene = Scene(use_default_key_bindings=True) scene.add_brain_regions('TH', alpha=.2, wireframe=True) scene.add_probe_from_sharptrack(sharptrack_file) scene.render()
23.785714
70
0.831832
0
0
0
0
0
0
0
0
65
0.195195
4919e36bd5888cd73891195c85651a0ab2da447b
7,910
py
Python
homeassistant/components/metoffice/sensor.py
basicpail/core
5cc54618c5af3f75c08314bf2375cc7ac40d2b7e
[ "Apache-2.0" ]
7
2019-08-15T13:36:58.000Z
2020-03-18T10:46:29.000Z
homeassistant/components/metoffice/sensor.py
basicpail/core
5cc54618c5af3f75c08314bf2375cc7ac40d2b7e
[ "Apache-2.0" ]
87
2020-07-06T22:22:54.000Z
2022-03-31T06:01:46.000Z
homeassistant/components/metoffice/sensor.py
winning1120xx/home-assistant
53d4c0ce2d374b5e97bbdc37742656c27adf8eea
[ "Apache-2.0" ]
11
2020-12-16T13:48:14.000Z
2022-02-01T00:28:05.000Z
"""Support for UK Met Office weather service.""" from __future__ import annotations from homeassistant.components.sensor import SensorEntity, SensorEntityDescription from homeassistant.const import ( ATTR_ATTRIBUTION, DEVICE_CLASS_HUMIDITY, DEVICE_CLASS_TEMPERATURE, LENGTH_KILOMETERS, PERCENTAGE, SPEED_MILES_PER_HOUR, TEMP_CELSIUS, UV_INDEX, ) from homeassistant.core import HomeAssistant from homeassistant.helpers.typing import ConfigType from homeassistant.helpers.update_coordinator import CoordinatorEntity from .const import ( ATTRIBUTION, CONDITION_CLASSES, DOMAIN, METOFFICE_COORDINATES, METOFFICE_DAILY_COORDINATOR, METOFFICE_HOURLY_COORDINATOR, METOFFICE_NAME, MODE_3HOURLY_LABEL, MODE_DAILY, MODE_DAILY_LABEL, VISIBILITY_CLASSES, VISIBILITY_DISTANCE_CLASSES, ) ATTR_LAST_UPDATE = "last_update" ATTR_SENSOR_ID = "sensor_id" ATTR_SITE_ID = "site_id" ATTR_SITE_NAME = "site_name" SENSOR_TYPES: tuple[SensorEntityDescription, ...] = ( SensorEntityDescription( key="name", name="Station Name", device_class=None, native_unit_of_measurement=None, icon="mdi:label-outline", entity_registry_enabled_default=False, ), SensorEntityDescription( key="weather", name="Weather", device_class=None, native_unit_of_measurement=None, icon="mdi:weather-sunny", # but will adapt to current conditions entity_registry_enabled_default=True, ), SensorEntityDescription( key="temperature", name="Temperature", device_class=DEVICE_CLASS_TEMPERATURE, native_unit_of_measurement=TEMP_CELSIUS, icon=None, entity_registry_enabled_default=True, ), SensorEntityDescription( key="feels_like_temperature", name="Feels Like Temperature", device_class=DEVICE_CLASS_TEMPERATURE, native_unit_of_measurement=TEMP_CELSIUS, icon=None, entity_registry_enabled_default=False, ), SensorEntityDescription( key="wind_speed", name="Wind Speed", device_class=None, native_unit_of_measurement=SPEED_MILES_PER_HOUR, icon="mdi:weather-windy", entity_registry_enabled_default=True, ), SensorEntityDescription( key="wind_direction", name="Wind Direction", device_class=None, native_unit_of_measurement=None, icon="mdi:compass-outline", entity_registry_enabled_default=False, ), SensorEntityDescription( key="wind_gust", name="Wind Gust", device_class=None, native_unit_of_measurement=SPEED_MILES_PER_HOUR, icon="mdi:weather-windy", entity_registry_enabled_default=False, ), SensorEntityDescription( key="visibility", name="Visibility", device_class=None, native_unit_of_measurement=None, icon="mdi:eye", entity_registry_enabled_default=False, ), SensorEntityDescription( key="visibility_distance", name="Visibility Distance", device_class=None, native_unit_of_measurement=LENGTH_KILOMETERS, icon="mdi:eye", entity_registry_enabled_default=False, ), SensorEntityDescription( key="uv", name="UV Index", device_class=None, native_unit_of_measurement=UV_INDEX, icon="mdi:weather-sunny-alert", entity_registry_enabled_default=True, ), SensorEntityDescription( key="precipitation", name="Probability of Precipitation", device_class=None, native_unit_of_measurement=PERCENTAGE, icon="mdi:weather-rainy", entity_registry_enabled_default=True, ), SensorEntityDescription( key="humidity", name="Humidity", device_class=DEVICE_CLASS_HUMIDITY, native_unit_of_measurement=PERCENTAGE, icon=None, entity_registry_enabled_default=False, ), ) async def async_setup_entry( hass: HomeAssistant, entry: ConfigType, async_add_entities ) -> None: """Set up the Met Office weather sensor platform.""" hass_data = hass.data[DOMAIN][entry.entry_id] async_add_entities( [ MetOfficeCurrentSensor( hass_data[METOFFICE_HOURLY_COORDINATOR], hass_data, True, description, ) for description in SENSOR_TYPES ] + [ MetOfficeCurrentSensor( hass_data[METOFFICE_DAILY_COORDINATOR], hass_data, False, description, ) for description in SENSOR_TYPES ], False, ) class MetOfficeCurrentSensor(CoordinatorEntity, SensorEntity): """Implementation of a Met Office current weather condition sensor.""" def __init__( self, coordinator, hass_data, use_3hourly, description: SensorEntityDescription, ): """Initialize the sensor.""" super().__init__(coordinator) self.entity_description = description mode_label = MODE_3HOURLY_LABEL if use_3hourly else MODE_DAILY_LABEL self._attr_name = f"{hass_data[METOFFICE_NAME]} {description.name} {mode_label}" self._attr_unique_id = f"{description.name}_{hass_data[METOFFICE_COORDINATES]}" if not use_3hourly: self._attr_unique_id = f"{self._attr_unique_id}_{MODE_DAILY}" self.use_3hourly = use_3hourly @property def native_value(self): """Return the state of the sensor.""" value = None if self.entity_description.key == "visibility_distance" and hasattr( self.coordinator.data.now, "visibility" ): value = VISIBILITY_DISTANCE_CLASSES.get( self.coordinator.data.now.visibility.value ) if self.entity_description.key == "visibility" and hasattr( self.coordinator.data.now, "visibility" ): value = VISIBILITY_CLASSES.get(self.coordinator.data.now.visibility.value) elif self.entity_description.key == "weather" and hasattr( self.coordinator.data.now, self.entity_description.key ): value = [ k for k, v in CONDITION_CLASSES.items() if self.coordinator.data.now.weather.value in v ][0] elif hasattr(self.coordinator.data.now, self.entity_description.key): value = getattr(self.coordinator.data.now, self.entity_description.key) if hasattr(value, "value"): value = value.value return value @property def icon(self): """Return the icon for the entity card.""" value = self.entity_description.icon if self.entity_description.key == "weather": value = self.state if value is None: value = "sunny" elif value == "partlycloudy": value = "partly-cloudy" value = f"mdi:weather-{value}" return value @property def extra_state_attributes(self): """Return the state attributes of the device.""" return { ATTR_ATTRIBUTION: ATTRIBUTION, ATTR_LAST_UPDATE: self.coordinator.data.now.date, ATTR_SENSOR_ID: self.entity_description.key, ATTR_SITE_ID: self.coordinator.data.site.id, ATTR_SITE_NAME: self.coordinator.data.site.name, } @property def entity_registry_enabled_default(self) -> bool: """Return if the entity should be enabled when first added to the entity registry.""" return ( self.entity_description.entity_registry_enabled_default and self.use_3hourly )
30.898438
93
0.643236
3,102
0.392162
0
0
2,276
0.287737
756
0.095575
1,282
0.162073
491bbb7a18db6baa7c684edc4d966b84daa2ba53
3,513
py
Python
examples/advanced.py
ajrichardson/formlayout
4b267ad29cbbdab9baf1bef3fcc48f23c699eebc
[ "MIT" ]
null
null
null
examples/advanced.py
ajrichardson/formlayout
4b267ad29cbbdab9baf1bef3fcc48f23c699eebc
[ "MIT" ]
null
null
null
examples/advanced.py
ajrichardson/formlayout
4b267ad29cbbdab9baf1bef3fcc48f23c699eebc
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright © 2009 Pierre Raybaut # Licensed under the terms of the MIT License # (see formlayout.py for details) """ Simple formlayout example Please take a look at formlayout.py for more examples (at the end of the script, after the 'if __name__ == "__main__":' line) """ import datetime # for normal usage from formlayout import fedit # for programming usage from formlayout import QLineEdit def create_datalist_example(): test = [('str *', 'this is a string'), ('str_m *', """this is a MULTILINE string"""), ('file *', 'file'), ('list *', [0, '1', '3', '4']), ('tuple *', (0, '1', '3', '4')), ('list2', ['--', ('none', 'None'), ('--', 'Dashed'), ('-.', 'DashDot'), ('-', 'Solid'), ('steps', 'Steps'), (':', 'Dotted')]), ('float', 1.2), (None, [('fi&rst', first_function), ('s&econd', second_function)]), (None, 'Other:'), ('slider to 30 at 20 with ticks', 'slider:30:@20'), ('slider from -100 to 50 at -10', 'slider:-100:50@-10'), ('int', 12), ('font', ('Arial', 10, False, True)), ('color', '#123409'), ('bool', True), ('date', datetime.date(2010, 10, 10)), ('time', datetime.time(12, 30)), ('datetime', datetime.datetime(2010, 10, 10)), ] return test def create_datagroup_example(): datalist = create_datalist_example() return ((datalist, "Category 1", "Category 1 comment"), (datalist, "Category 2", "Category 2 comment"), (datalist, "Category 3", "Category 3 comment")) def apply_function(result, widgets): print('result:', result) print('widgets:', widgets) for widget in widgets: if isinstance(widget, QLineEdit) and not widget.validator(): widget.setText(widget.text() + ' Apply !') def first_function(result, widgets): print('first') print('result:', result) print('widgets:', widgets) for widget in widgets: if isinstance(widget, QLineEdit) and not widget.validator(): widget.setText(widget.text() + ' First !') def second_function(result, widgets): print('second') print('result:', result) print('widgets:', widgets) for widget in widgets: if isinstance(widget, QLineEdit) and not widget.validator(): widget.setText(widget.text() + ' Second !') #--------- datalist example datalist = create_datalist_example() print("result:", fedit(datalist, title="Example", comment="This is just an <b>example</b>.", apply=('Custom &Apply button', apply_function), ok='Custom &OK button', cancel='Custom &Cancel button', result='dict', type='questions', scrollbar=True)) #--------- datagroup example datagroup = create_datagroup_example() print("result:", fedit(datagroup, "Global title", result='JSON')) #--------- datagroup inside a datagroup example datalist = create_datalist_example() datagroup = create_datagroup_example() print("result:", fedit(((datagroup, "Title 1", "Tab 1 comment"), (datalist, "Title 2", "Tab 2 comment"), (datalist, "Title 3", "Tab 3 comment")), "Global title", result='XML'))
36.216495
79
0.542841
0
0
0
0
0
0
0
0
1,315
0.374217
491c2d65ca77e28affc08be455a8dcb0f85ffc8e
1,527
py
Python
PyBank/main.py
jackaloppy/python-challenge
71690ca4059fee9c31334347275866431f5d9155
[ "RSA-MD" ]
null
null
null
PyBank/main.py
jackaloppy/python-challenge
71690ca4059fee9c31334347275866431f5d9155
[ "RSA-MD" ]
null
null
null
PyBank/main.py
jackaloppy/python-challenge
71690ca4059fee9c31334347275866431f5d9155
[ "RSA-MD" ]
null
null
null
# Import Modules import os import csv # Set the path filepath = os.path.join("Resources","budget_data.csv") # Open the CSV file with open(filepath) as csvfile: csvreader = csv.reader(csvfile, delimiter=",") # Skip the header row next(csvreader) # Set up some numbers month = 0 total = 0 maxpro = 0 minpro = 0 # .reader can only iterate the file once. So you need to get ouput from one single loop. for row in csvreader: month += 1 total += int(row[1]) if maxpro < int(row[1]): maxpro = int(row[1]) maxmon = row[0] if minpro > int(row[1]): minpro = int(row[1]) minmon = row[0] # Direct print to txt file f = open("analysis/output.txt", "a") print("Financial Analysis", file =f) print("----------------------------", file = f) print("Total Months: " + str(month), file = f) print("Total: $" + str(total), file=f) print("Average Change: $" + str(total/month), file = f) print("Greatest Increase in Profits: " + maxmon + " ($" + str(maxpro) +")", file =f) print("Greatest Decrease in Profits: " + minmon + " ($" + str(minpro) +")", file =f) f.close() # Print out to terminal print("Financial Analysis") print("----------------------------") print("Total Months: " + str(month)) print("Total: $" + str(total)) print("Average Change: $" + str(total/month)) print("Greatest Increase in Profits: " + maxmon + " ($" + str(maxpro) +")") print("Greatest Decrease in Profits: " + minmon + " ($" + str(minpro) +")")
33.933333
92
0.579568
0
0
0
0
0
0
0
0
633
0.414538
491cf38094ed0cb56e1412d6daa74c8867a4538f
4,103
py
Python
odoo-13.0/addons/web/models/ir_http.py
VaibhavBhujade/Blockchain-ERP-interoperability
b5190a037fb6615386f7cbad024d51b0abd4ba03
[ "MIT" ]
12
2021-03-26T08:39:40.000Z
2022-03-16T02:20:10.000Z
odoo-13.0/addons/web/models/ir_http.py
VaibhavBhujade/Blockchain-ERP-interoperability
b5190a037fb6615386f7cbad024d51b0abd4ba03
[ "MIT" ]
13
2020-12-20T16:00:21.000Z
2022-03-14T14:55:30.000Z
odoo-13.0/addons/web/models/ir_http.py
VaibhavBhujade/Blockchain-ERP-interoperability
b5190a037fb6615386f7cbad024d51b0abd4ba03
[ "MIT" ]
17
2020-08-31T11:18:49.000Z
2022-02-09T05:57:31.000Z
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. import hashlib import json from odoo import api, models from odoo.http import request from odoo.tools import ustr from odoo.addons.web.controllers.main import module_boot, HomeStaticTemplateHelpers import odoo class Http(models.AbstractModel): _inherit = 'ir.http' def webclient_rendering_context(self): return { 'menu_data': request.env['ir.ui.menu'].load_menus(request.session.debug), 'session_info': self.session_info(), } def session_info(self): user = request.env.user version_info = odoo.service.common.exp_version() user_context = request.session.get_context() if request.session.uid else {} session_info = { "uid": request.session.uid, "is_system": user._is_system() if request.session.uid else False, "is_admin": user._is_admin() if request.session.uid else False, "user_context": request.session.get_context() if request.session.uid else {}, "db": request.session.db, "server_version": version_info.get('server_version'), "server_version_info": version_info.get('server_version_info'), "name": user.name, "username": user.login, "partner_display_name": user.partner_id.display_name, "company_id": user.company_id.id if request.session.uid else None, # YTI TODO: Remove this from the user context "partner_id": user.partner_id.id if request.session.uid and user.partner_id else None, "web.base.url": self.env['ir.config_parameter'].sudo().get_param('web.base.url', default=''), } if self.env.user.has_group('base.group_user'): # the following is only useful in the context of a webclient bootstrapping # but is still included in some other calls (e.g. '/web/session/authenticate') # to avoid access errors and unnecessary information, it is only included for users # with access to the backend ('internal'-type users) mods = module_boot() qweb_checksum = HomeStaticTemplateHelpers.get_qweb_templates_checksum(addons=mods, debug=request.session.debug) lang = user_context.get("lang") translation_hash = request.env['ir.translation'].get_web_translations_hash(mods, lang) menu_json_utf8 = json.dumps(request.env['ir.ui.menu'].load_menus(request.session.debug), default=ustr, sort_keys=True).encode() cache_hashes = { "load_menus": hashlib.sha1(menu_json_utf8).hexdigest(), "qweb": qweb_checksum, "translations": translation_hash, } session_info.update({ # current_company should be default_company "user_companies": {'current_company': (user.company_id.id, user.company_id.name), 'allowed_companies': [(comp.id, comp.name) for comp in user.company_ids]}, "currencies": self.get_currencies(), "show_effect": True, "display_switch_company_menu": user.has_group('base.group_multi_company') and len(user.company_ids) > 1, "cache_hashes": cache_hashes, }) return session_info @api.model def get_frontend_session_info(self): return { 'is_admin': request.session.uid and self.env.user._is_admin() or False, 'is_system': request.session.uid and self.env.user._is_system() or False, 'is_website_user': request.session.uid and self.env.user._is_public() or False, 'user_id': request.session.uid and self.env.user.id or False, 'is_frontend': True, } def get_currencies(self): Currency = request.env['res.currency'] currencies = Currency.search([]).read(['symbol', 'position', 'decimal_places']) return {c['id']: {'symbol': c['symbol'], 'position': c['position'], 'digits': [69,c['decimal_places']]} for c in currencies}
48.845238
172
0.6427
3,788
0.923227
0
0
447
0.108945
0
0
1,150
0.280283
491db1b8d8dc21a65a486fcf67ecab8e646adeff
1,500
py
Python
anonymize-attributes.py
thormeier-fhnw-repos/sna-holaspirit-to-gephi
e83d44e887608d4d584ded825be9cd950d87e590
[ "MIT" ]
2
2018-11-12T22:10:54.000Z
2021-08-30T10:13:53.000Z
anonymize-attributes.py
thormeier-fhnw-repos/sna-holaspirit-to-gephi
e83d44e887608d4d584ded825be9cd950d87e590
[ "MIT" ]
null
null
null
anonymize-attributes.py
thormeier-fhnw-repos/sna-holaspirit-to-gephi
e83d44e887608d4d584ded825be9cd950d87e590
[ "MIT" ]
null
null
null
#!/usr/bin/python import sys import argparse sys.path.append('./') from src.utils.list_to_dict import list_to_dict from src.utils.read_csv import read_csv from src.utils.map_to_list_csv import map_to_list_csv from src.gephi.write_csv import write_csv print("") print("-----------------------------") print("Anonymize attributes") print("-----------------------------") print("") parser = argparse.ArgumentParser(description="Anonymizes a given attributes CSV") required_parser = parser.add_argument_group('required named arguments') required_parser.add_argument("--attributes-file", dest="attrs", help="Attributes, a given file with attributes for Gephi", required=True) required_parser.add_argument("--person-file", dest="persons", help="Personss, a list of persons and their anonymized tokens", required=True) args = parser.parse_args() attributes_file = args.attrs persons_file = args.persons print("Reading attributes file...") attributes_raw = read_csv(attributes_file) attributes = list_to_dict(attributes_raw[1:]) print("Reading persons file...") persons = list_to_dict(read_csv(persons_file)[1:]) print("Anonymizing...") anonymized_attributes = list() for key, value in attributes.items(): name = persons[key][0] row = value row.insert(0, name) anonymized_attributes.append(row) print("Write anonymized attributes to attributes file again") anonymized_attributes.insert(0, attributes_raw[0]) write_csv(anonymized_attributes, attributes_file) print("All done!")
28.846154
140
0.744
0
0
0
0
0
0
0
0
463
0.308667
491f6d6d11d857e14ccaa0306230176130993c29
5,487
py
Python
custom_laboratory/custom_laboratory/doctype/vaccination/vaccination.py
panhavad/custom_laboratory
a86d24bd955dc078ded044e714955cdf0c257176
[ "MIT" ]
null
null
null
custom_laboratory/custom_laboratory/doctype/vaccination/vaccination.py
panhavad/custom_laboratory
a86d24bd955dc078ded044e714955cdf0c257176
[ "MIT" ]
1
2021-01-12T08:27:54.000Z
2021-01-12T08:27:54.000Z
custom_laboratory/custom_laboratory/doctype/vaccination/vaccination.py
panhavad/custom_laboratory
a86d24bd955dc078ded044e714955cdf0c257176
[ "MIT" ]
1
2021-01-12T08:34:12.000Z
2021-01-12T08:34:12.000Z
# -*- coding: utf-8 -*- # Copyright (c) 2020, Duk Panhavad and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe import _ from frappe.model.document import Document from frappe.utils import getdate, cstr from datetime import timedelta class Vaccination(Document): def on_submit(self): frappe.db.set_value(self.doctype,self.name,"submitted_date", getdate()) insert_vaccination_to_medical_record(self) frappe.db.set_value("Vaccination", self.name, "status", "Completed") def on_cancel(self): delete_vaccination_from_medical_record(self) frappe.db.set_value("Vaccination", self.name, "status", "Cancelled") self.reload() @frappe.whitelist() def create_multiple(doctype, docname): vaccination_created = False if doctype == "Sales Invoice": vaccination_created = create_vaccination_from_invoice(docname) if vaccination_created: frappe.msgprint(_("Vaccination(s) {0} created".format(vaccination_created))) else: frappe.msgprint(_("No Vaccinations created")) def create_vaccination_from_invoice(invoice_name): vaccination_names = list() vaccinations_created = False invoice = frappe.get_doc("Sales Invoice", invoice_name) if invoice.patient: patient = frappe.get_doc("Patient", invoice.patient) for item in invoice.items: vaccination_created = 0 print('-------', item.item_group) print('=======', item.reference_dt) if item.reference_dt == "Vaccination Ordered": #check if the invoice created already vaccination_created = 1 vaccinations_created = "Already create before!! Cannot" if vaccination_created != 1: if item.item_group == "Vaccination": template = get_vaccination_template(item.item_code) if template: if template.vaccination_dosage_items: dosage_durations = [0]#today for num_day in template.vaccination_dosage_items.split('-'): dosage_durations.append(int(num_day)) dosage_dates = [getdate() + timedelta(days=each_duration) for each_duration in dosage_durations] for dosage_number, each_dosage_date in enumerate(dosage_dates): vaccination = create_vaccination_doc(True, patient, template, invoice.company, each_dosage_date, dosage_number+1) vaccination.save(ignore_permissions = True) vaccinations_created = True vaccination_names.append(vaccination.name) if not vaccinations_created: vaccinations_created = vaccination.name else: vaccinations_created = ", ".join(vaccination_names) else: vaccination = create_vaccination_doc(True, patient, template, invoice.company, getdate()) vaccination.save(ignore_permissions = True) vaccinations_created = vaccination.name if item.reference_dt != "Vaccination Ordered": frappe.db.set_value("Sales Invoice Item", item.name, "reference_dt", "Vaccination Ordered") frappe.db.set_value("Sales Invoice Item", item.name, "reference_dn", vaccination.name) return vaccinations_created def get_vaccination_template(item): template_id = check_template_exists(item) if template_id: return frappe.get_doc("Vaccination Template", template_id) return False def check_template_exists(item): template_exists = frappe.db.exists( "Vaccination Template", { 'item': item } ) if template_exists: return template_exists return False def create_vaccination_doc(invoiced, patient, template, company, each_dosage_date, dosage_number): vaccination = frappe.new_doc("Vaccination") vaccination.invoiced = invoiced vaccination.patient = patient.name vaccination.patient_age = patient.get_age() vaccination.patient_sex = patient.sex vaccination.email = patient.email vaccination.mobile = patient.mobile vaccination.report_preference = patient.report_preference vaccination.vaccination_template = template.name vaccination.vaccination_name = template.name vaccination.dosage_date = each_dosage_date vaccination.dosage_number = dosage_number vaccination.company = company return vaccination def insert_vaccination_to_medical_record(doc): if doc.vaccination_name: vac_name = frappe.bold(_("Vaccination Conducted: ")) + cstr(doc.vaccination_name) else: vac_name = "" if doc.dosage_number: dos_number = frappe.bold(_("Dosage Number: ")) + cstr(doc.dosage_number) else: dos_number = "" if doc.dosage_date: planed_date = frappe.bold(_("Planed Dosage Date: ")) + cstr(doc.dosage_date) else: planed_date = "" if doc.vaccination_comment: comment = frappe.bold(_("Comment: ")) + cstr(doc.vaccination_comment) else: comment = "" actual_date = frappe.bold(_("Actual Dosage Date: ")) + cstr(getdate()) subject = vac_name + "<br>" + dos_number + "<br>" + planed_date + "<br>" + actual_date + "<br>" + comment medical_record = frappe.new_doc("Patient Medical Record") medical_record.patient = doc.patient medical_record.subject = subject medical_record.status = "Open" medical_record.communication_date = getdate() medical_record.reference_doctype = "Vaccination" medical_record.reference_name = doc.name medical_record.reference_owner = doc.owner medical_record.save(ignore_permissions=True) def delete_vaccination_from_medical_record(self): medical_record_id = frappe.db.sql("select name from `tabPatient Medical Record` where reference_name=%s",(self.name)) if medical_record_id and medical_record_id[0][0]: frappe.delete_doc("Patient Medical Record", medical_record_id[0][0])
38.104167
121
0.755786
398
0.072535
0
0
344
0.062694
0
0
868
0.158192
491fd8107e4c9d56c5674e827165e680a0067c06
4,445
py
Python
FinalRound_ImprovedAccuracy_Functionality/training/utils/detectingCARColor.py
tejasmagia/DetectCarParkingSlot_Contest
e9e38f12347aa3cc40234efb000959df20d28f21
[ "MIT" ]
9
2019-10-20T15:15:06.000Z
2020-09-07T09:44:37.000Z
FinalRound_ImprovedAccuracy_Functionality/training/utils/detectingCARColor.py
tejasmagia/DetectCarParkingSlot_Contest
e9e38f12347aa3cc40234efb000959df20d28f21
[ "MIT" ]
null
null
null
FinalRound_ImprovedAccuracy_Functionality/training/utils/detectingCARColor.py
tejasmagia/DetectCarParkingSlot_Contest
e9e38f12347aa3cc40234efb000959df20d28f21
[ "MIT" ]
null
null
null
from sklearn.cluster import KMeans import cv2 import PIL import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import numpy as np from matplotlib import image as img1 import pandas as pd from scipy.cluster.vq import whiten import os class DominantColors: CLUSTERS = None IMAGEPATH = None IMAGE = None COLORS = None LABELS = None BASEWIDTH = 256 def __init__(self, image, clusters=3): self.CLUSTERS = clusters self.IMAGEPATH = image def dominantColors(self): # read image img = cv2.imread(self.IMAGEPATH) # resize image imgh, imgw, _ = img.shape wpercent = (self.BASEWIDTH / float(imgw)) hsize = int((float(imgh) * float(wpercent))) img = cv2.resize(img, (self.BASEWIDTH, hsize), PIL.Image.ANTIALIAS) # convert to rgb from bgr img = cv2.cvtColor(img, cv2.COLOR_RGB2Luv) # reshaping to a list of pixels img = img.reshape((img.shape[0] * img.shape[1], 3)) # save image after operations self.IMAGE = img # using k-means to cluster pixels kmeans = KMeans(n_clusters=self.CLUSTERS) kmeans.fit(img) # the cluster centers are our dominant colors. self.COLORS = kmeans.cluster_centers_ # save labels self.LABELS = kmeans.labels_ # returning after converting to integer from float return self.COLORS.astype(int) def rgb_to_hex(self, rgb): return '#%02x%02x%02x' % (int(rgb[0]), int(rgb[1]), int(rgb[2])) def analyseRGB(self): r = [] g = [] b = [] image = img1.imread(self.IMAGEPATH) for line in image: for pixel in line: # print(pixel) temp_r, temp_g, temp_b = pixel r.append(temp_r) g.append(temp_g) b.append(temp_b) fig = plt.figure() ax = Axes3D(fig) ax.scatter(r, g, b) plt.show() df = pd.DataFrame({'red': r, 'blue': b, 'green': g}) df['scaled_red'] = whiten(df['red']) df['scaled_blue'] = whiten(df['blue']) df['scaled_green'] = whiten(df['green']) df.sample(n=10) from scipy.cluster.vq import kmeans cluster_centers, distortion = kmeans(df[['scaled_red', 'scaled_green', 'scaled_blue']], 2) print(cluster_centers) colors = [] r_std, g_std, b_std = df[['red', 'green', 'blue']].std() for cluster_center in cluster_centers: scaled_r, scaled_g, scaled_b = cluster_center colors.append((scaled_r * r_std / 255, scaled_g * g_std / 255, scaled_b * b_std / 255)) plt.imshow([colors]) plt.show() def plotClusters(self): # plotting fig = plt.figure() ax = Axes3D(fig) for label, pix in zip(self.LABELS, self.IMAGE): ax.scatter(pix[0], pix[1], pix[2], color=self.rgb_to_hex(self.COLORS[label])) plt.show() def plotHistogram(self): # labels form 0 to no. of clusters numLabels = np.arange(0, self.CLUSTERS + 1) # create frequency count tables (hist, _) = np.histogram(self.LABELS, bins=numLabels) hist = hist.astype("float") hist /= hist.sum() # appending frequencies to cluster centers colors = self.COLORS # descending order sorting as per frequency count colors = colors[(-hist).argsort()] hist = hist[(-hist).argsort()] # creating empty chart chart = np.zeros((50, 500, 3), np.uint8) start = 0 # creating color rectangles for i in range(self.CLUSTERS): end = start + hist[i] * 500 # getting rgb values r = colors[i][0] g = colors[i][1] b = colors[i][2] # using cv2.rectangle to plot colors cv2.rectangle(chart, (int(start), 0), (int(end), 50), (r, g, b), -1) start = end # display chart plt.figure() plt.axis("off") plt.imshow(chart) plt.show() def _main_(): clusters = 8 for img in sorted(os.listdir('output\\predicted\\')): print(img) dc = DominantColors('..\\..\\data\\output\\predicted\\{0}'.format(img), clusters) colors = dc.dominantColors() dc.analyseRGB() if __name__ == '__main__': _main_()
28.49359
99
0.566479
3,889
0.874916
0
0
0
0
0
0
781
0.175703
49206ede4930182521d4ce9c6b49dda8aef894c6
97
py
Python
cash/settings/product.py
anshengme/cash
7b24338ea2f3f92fe82f668335bb2eb6e6479f9e
[ "MIT" ]
18
2019-01-04T01:58:03.000Z
2021-06-25T09:03:58.000Z
cash/settings/product.py
anshengme/cash
7b24338ea2f3f92fe82f668335bb2eb6e6479f9e
[ "MIT" ]
3
2019-02-26T16:24:40.000Z
2020-04-04T10:41:38.000Z
cash/settings/product.py
anshengme/cash
7b24338ea2f3f92fe82f668335bb2eb6e6479f9e
[ "MIT" ]
5
2019-02-26T15:32:52.000Z
2019-04-22T09:35:27.000Z
from .base import * DEBUG = False SECRET_KEY = os.environ.get('DJANGO_SECRET_KEY', SECRET_KEY)
16.166667
60
0.752577
0
0
0
0
0
0
0
0
19
0.195876
492186225f16d44bf92c164978829eca7c8d9540
2,807
py
Python
seqpos/lib/python2.7/site-packages/mercurial/lsprofcalltree.py
guanjue/seqpos
ab9308ad128547ca968a1d944490710e583703bc
[ "MIT" ]
null
null
null
seqpos/lib/python2.7/site-packages/mercurial/lsprofcalltree.py
guanjue/seqpos
ab9308ad128547ca968a1d944490710e583703bc
[ "MIT" ]
null
null
null
seqpos/lib/python2.7/site-packages/mercurial/lsprofcalltree.py
guanjue/seqpos
ab9308ad128547ca968a1d944490710e583703bc
[ "MIT" ]
null
null
null
""" lsprofcalltree.py - lsprof output which is readable by kcachegrind Authors: * David Allouche <david <at> allouche.net> * Jp Calderone & Itamar Shtull-Trauring * Johan Dahlin This software may be used and distributed according to the terms of the GNU General Public License, incorporated herein by reference. """ from __future__ import absolute_import from . import ( pycompat, ) def label(code): if isinstance(code, str): # built-in functions ('~' sorts at the end) return '~' + pycompat.sysbytes(code) else: return '%s %s:%d' % (pycompat.sysbytes(code.co_name), pycompat.sysbytes(code.co_filename), code.co_firstlineno) class KCacheGrind(object): def __init__(self, profiler): self.data = profiler.getstats() self.out_file = None def output(self, out_file): self.out_file = out_file out_file.write(b'events: Ticks\n') self._print_summary() for entry in self.data: self._entry(entry) def _print_summary(self): max_cost = 0 for entry in self.data: totaltime = int(entry.totaltime * 1000) max_cost = max(max_cost, totaltime) self.out_file.write(b'summary: %d\n' % max_cost) def _entry(self, entry): out_file = self.out_file code = entry.code if isinstance(code, str): out_file.write(b'fi=~\n') else: out_file.write(b'fi=%s\n' % pycompat.sysbytes(code.co_filename)) out_file.write(b'fn=%s\n' % label(code)) inlinetime = int(entry.inlinetime * 1000) if isinstance(code, str): out_file.write(b'0 %d\n' % inlinetime) else: out_file.write(b'%d %d\n' % (code.co_firstlineno, inlinetime)) # recursive calls are counted in entry.calls if entry.calls: calls = entry.calls else: calls = [] if isinstance(code, str): lineno = 0 else: lineno = code.co_firstlineno for subentry in calls: self._subentry(lineno, subentry) out_file.write(b'\n') def _subentry(self, lineno, subentry): out_file = self.out_file code = subentry.code out_file.write(b'cfn=%s\n' % label(code)) if isinstance(code, str): out_file.write(b'cfi=~\n') out_file.write(b'calls=%d 0\n' % subentry.callcount) else: out_file.write(b'cfi=%s\n' % pycompat.sysbytes(code.co_filename)) out_file.write(b'calls=%d %d\n' % ( subentry.callcount, code.co_firstlineno)) totaltime = int(subentry.totaltime * 1000) out_file.write(b'%d %d\n' % (lineno, totaltime))
29.861702
77
0.586035
2,069
0.737086
0
0
0
0
0
0
589
0.209833
4921f463d2a5ff012c886046b237e9741fc7a1a8
2,328
py
Python
nats/aio/errors.py
sr34/asyncio-nats
347a8e4b3eab275085858a6c8016feb3457905a3
[ "Apache-2.0" ]
null
null
null
nats/aio/errors.py
sr34/asyncio-nats
347a8e4b3eab275085858a6c8016feb3457905a3
[ "Apache-2.0" ]
null
null
null
nats/aio/errors.py
sr34/asyncio-nats
347a8e4b3eab275085858a6c8016feb3457905a3
[ "Apache-2.0" ]
null
null
null
# Copyright 2016-2018 The NATS Authors # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import asyncio STALE_CONNECTION = b"'Stale Connection'" AUTHORIZATION_VIOLATION = b"'Authorization Violation'" class NatsError(Exception): pass class ErrConnectionClosed(NatsError): def __str__(self): return "nats: Connection Closed" class ErrSecureConnRequired(NatsError): def __str__(self): return "nats: Secure Connection required" class ErrSecureConnWanted(NatsError): def __str__(self): return "nats: Secure Connection not available" class ErrSecureConnFailed(NatsError): def __str__(self): return "nats: Secure Connection failed" class ErrBadSubscription(NatsError): def __str__(self): return "nats: Invalid Subscription" class ErrBadSubject(NatsError): def __str__(self): return "nats: Invalid Subject" class ErrSlowConsumer(NatsError): def __init__(self, subject=None, sid=None): self.subject = subject self.sid = sid def __str__(self): return "nats: Slow Consumer, messages dropped" class ErrTimeout(asyncio.TimeoutError): def __str__(self): return "nats: Timeout" class ErrBadTimeout(NatsError): def __str__(self): return "nats: Timeout Invalid" class ErrAuthorization(NatsError): def __str__(self): return "nats: Authorization Failed" class ErrNoServers(NatsError): def __str__(self): return "nats: No servers available for connection" class ErrJsonParse(NatsError): def __str__(self): return "nats: Connect message, json parse err" class ErrStaleConnection(NatsError): def __str__(self): return "nats: Stale Connection" class ErrMaxPayload(NatsError): def __str__(self): return "nats: Maximum Payload Exceeded"
24.25
74
0.717354
1,590
0.68299
0
0
0
0
0
0
1,041
0.447165
492207457366b7b786ff7beb4e298c9226ecc040
1,912
py
Python
sqlite/app/elephant_queries.py
CurdtMillion/DS-Unit-3-Sprint-2-SQL-and-Databases
ba300b2da1e5fff153d8db76fdf1f67e82cefb9b
[ "MIT" ]
null
null
null
sqlite/app/elephant_queries.py
CurdtMillion/DS-Unit-3-Sprint-2-SQL-and-Databases
ba300b2da1e5fff153d8db76fdf1f67e82cefb9b
[ "MIT" ]
null
null
null
sqlite/app/elephant_queries.py
CurdtMillion/DS-Unit-3-Sprint-2-SQL-and-Databases
ba300b2da1e5fff153d8db76fdf1f67e82cefb9b
[ "MIT" ]
null
null
null
import os import psycopg2 import sqlite3 from psycopg2.extras import DictCursor from dotenv import load_dotenv DB_FILEPATH = os.path.join(os.path.dirname(__file__), "..", "data", "rpg.db") connection = sqlite3.connect(DB_FILEPATH) load_dotenv() DB_NAME = os.getenv("DB_NAME", default="OOPS") DB_USER = os.getenv("DB_USER", default="OOPS") DB_PASSWORD = os.getenv("DB_PASSWORD", default="OOPS") DB_HOST = os.getenv("DB_HOST", default="OOPS") connection_pg = psycopg2.connect(dbname=DB_NAME, user=DB_USER, password=DB_PASSWORD, host=DB_HOST) print("CONNECTION_PG: ", type(connection_pg)) print("CONNECTION: ", type(connection)) cursor = connection.cursor() cursor_pg = connection_pg.cursor() print("CURSOR: ", type(cursor)) print("CURSOR_PG: ", type(cursor_pg)) ## Connecting to SQLite3 DB for RPG data ## characters = cursor.execute('SELECT * FROM charactercreator_character').fetchall() print(characters) ## Create Character Table in Postgres ## create_character_table_query = ''' CREATE TABLE IF NOT EXISTS rpg_characters ( character_id SERIAL PRIMARY KEY, name VARCHAR(30), level INT, exp INT, hp INT, strength INT, intelligence INT, dexterity INT, wisdom INT ) ''' add_data_query = ''' INSERT INTO rpg_characters (name, level, exp, hp, strength, intelligence, dexterity, wisdom) VALUES ( 'Mr. Wizard', 45, 55, 76, 100, 1000, 50, 1000 ), ( 'Honey-Boo-Boo', 15, 2, 3, 5, 1, 1, 1 ), ( 'Igor', 10, 43, 54, 123, 345, 66, 100 ) ''' cursor_pg.execute(create_character_table_query) cursor_pg.execute(add_data_query) for character in characters: insert_query = f''' INSERT INTO rpg_characters (character_id, name, level, exp, hp, strength, intelligence, dexterity, wisdom) VALUES {character} ''' cursor_pg.execute(insert_query) connection.commit() connection.close() connection_pg.commit() connection_pg.close()
25.157895
99
0.710251
0
0
0
0
0
0
0
0
911
0.476464
49227b0882dd3d460d38e78e915ad62615d5837a
12,852
py
Python
models/EmbracementLayer.py
gcunhase/EmbraceBERT
01f04f8e2362c5425359c5758f22794937708095
[ "MIT" ]
7
2020-10-30T06:36:23.000Z
2022-01-07T11:08:49.000Z
models/EmbracementLayer.py
gcunhase/EmbraceBERT
01f04f8e2362c5425359c5758f22794937708095
[ "MIT" ]
null
null
null
models/EmbracementLayer.py
gcunhase/EmbraceBERT
01f04f8e2362c5425359c5758f22794937708095
[ "MIT" ]
null
null
null
import torch from torch import nn import numpy as np from models.AttentionLayer import AttentionLayer from models.SelfAttentionLayer import SelfAttention, SelfAttentionPytorch,\ BertSelfAttentionScores, BertSelfAttentionScoresP, BertMultiSelfAttentionScoresP,\ BertMultiAttentionScoresP, BertAttentionClsQuery from pytorch_transformers.modeling_bert import BertAttention, BertSelfAttention from utils import visualize_attention __author__ = "Gwena Cunha" class EmbracementLayer(nn.Module): def __init__(self, config, hidden_size, p, max_seq_length): super(EmbracementLayer, self).__init__() self.p = p self.hidden_size = hidden_size # 768 self.max_seq_length = max_seq_length # 128 if self.p == 'selfattention': self.self_attention = SelfAttention(self.hidden_size) #self.max_seq_length) # AttentionLayer(self.hidden_size) elif self.p == 'multihead_bertselfattention': self.self_attention = BertSelfAttention(config) elif self.p == 'multihead_bertselfattention_in_p': config.num_attention_heads = 1 self.self_attention = BertSelfAttentionScoresP(config) elif self.p == 'multihead_bertattention': self.self_attention = BertAttention(config) elif self.p == 'multihead_bertattention_clsquery': config.output_attentions = True self.self_attention = BertAttentionClsQuery(config, hidden_size) self.softmax = nn.Softmax() elif self.p == 'attention_clsquery': self.self_attention = AttentionLayer(self.hidden_size) elif self.p == 'attention_clsquery_weights': self.self_attention = AttentionLayer(self.hidden_size, return_att_weights=True) self.softmax = nn.Softmax(dim=-1) elif self.p == 'multiheadattention': config_att = config config_att.output_attentions = True self.self_attention = BertSelfAttentionScores(config_att) elif self.p == 'selfattention_pytorch': self.self_attention = SelfAttentionPytorch(self.max_seq_length) # 128 elif self.p == 'multiple_multihead_bertselfattention_in_p': config.num_attention_heads = 1 self.self_attention = BertMultiSelfAttentionScoresP(config) elif self.p == 'multiple_multihead_bertattention_in_p': config.num_attention_heads = 1 config.output_attentions = True self.self_attention = BertMultiAttentionScoresP(config, max_seq_length) self.softmax = nn.Softmax(dim=-1) def forward(self, output_tokens_from_bert, cls_token=None): # pooled_enc_output = bs x 768 # output_tokens_from_bert = bert_output[0] # cls_output = bert_output[1] # CLS # Note: Docking layer not needed given that all features have the same size # tokens_to_embrace = output_tokens_from_bert[:, 1:, :] # (8, 128, 768) = (bs, sequence_length (where the first index is CLS), embedding_size) tokens_to_embrace = output_tokens_from_bert[:, :, :] # (8, 128, 768) = (bs, sequence_length, embedding_size) [bs, seq_len, emb_size] = tokens_to_embrace.size() tokens_to_embrace = tokens_to_embrace.cpu().detach().numpy() # Note: Consider each token in the sequence of 128 as one modality. embraced_features_token = [] for i_bs in range(bs): # 1. Choose feature indexes to be considered in the Embrace vector if self.p == 'multinomial': # A. Multinomial distribution: randomly choose features from all 128 with same probability for each index feature probability = torch.tensor(np.ones(seq_len), dtype=torch.float) embraced_features_index = torch.multinomial(probability, emb_size, replacement=True) # shape = [768] embraced_features_index = embraced_features_index.cpu().detach().numpy() # shape = 768 elif self.p == 'multihead_bertselfattention' or self.p == 'multihead_bertattention': tokens_to_embrace_bs = tokens_to_embrace[i_bs, :, :] head_mask = torch.ones([1, 1, 1, np.shape(tokens_to_embrace_bs)[0]]).cuda() attention_mask = torch.zeros([1, 1, 1, np.shape(tokens_to_embrace_bs)[0]]).cuda() tokens_to_embrace_bs_tensor = torch.tensor(tokens_to_embrace_bs, dtype=torch.float).unsqueeze(0).cuda() #selfattention_scores = self.self_attention(tokens_to_embrace_bs_tensor, attention_mask, head_mask=None) selfattention_scores = self.self_attention(tokens_to_embrace_bs_tensor, attention_mask, head_mask=head_mask) selfattention_scores = selfattention_scores[0] elif self.p == 'multihead_bertattention_clsquery': print("TODO. Use cls_token - Come back to this") tokens_to_embrace_bs = tokens_to_embrace[i_bs, :, :] cls_token_bs = cls_token[i_bs, :] #cls_token_bs = torch.tensor(cls_token_bs, dtype=torch.float).unsqueeze(0).unsqueeze(0).cuda() attention_mask = torch.ones([1, 1, 1, np.shape(tokens_to_embrace_bs)[0]]).cuda() tokens_to_embrace_bs_tensor = torch.tensor(tokens_to_embrace_bs, dtype=torch.float).unsqueeze(0).cuda() cls_token_bs = torch.tensor(cls_token_bs, dtype=torch.float).unsqueeze(0) cls_token_bs = cls_token_bs.repeat(self.max_seq_length, 1) cls_token_bs = cls_token_bs.unsqueeze(0).cuda() selfattention_scores = self.self_attention(tokens_to_embrace_bs_tensor, head_mask=attention_mask, cls_query=cls_token_bs) selfattention_scores = self.softmax(selfattention_scores[1]) print("") elif self.p == 'attention_clsquery': tokens_to_embrace_bs = tokens_to_embrace[i_bs, :, :] cls_token_bs = cls_token[i_bs, :] tokens_to_embrace_bs_tensor = torch.tensor(tokens_to_embrace_bs, dtype=torch.float).cuda() cls_token_bs = torch.tensor(cls_token_bs, dtype=torch.float).unsqueeze(0).cuda() selfattention_scores = self.self_attention(cls_token_bs, tokens_to_embrace_bs_tensor, unsqueeze_idx=0) selfattention_scores = selfattention_scores[0] elif self.p == 'multiple_multihead_bertselfattention_in_p' or self.p == 'multiple_multihead_bertattention_in_p': tokens_to_embrace_bs = tokens_to_embrace[i_bs, :, :] attention_mask = torch.ones([1, 1, 1, np.shape(tokens_to_embrace_bs)[0]]).cuda() tokens_to_embrace_bs_tensor = torch.tensor(tokens_to_embrace_bs, dtype=torch.float).unsqueeze(0).cuda() selfattention_scores = self.self_attention(tokens_to_embrace_bs_tensor, head_mask=attention_mask, is_visualize_attention=False) if self.p == 'multiple_multihead_bertattention_in_p': selfattention_scores = selfattention_scores.squeeze() selfattention_scores = self.softmax(selfattention_scores) # Choose features using information from self-attention multiple_embrace_vectors = [] for i in range(self.max_seq_length): # 128 score = selfattention_scores[i, :] #attention_probs_img = score.unsqueeze(0).cpu().detach().numpy() #visualize_attention(attention_probs_img) embraced_features_index = torch.multinomial(score, emb_size, replacement=True) # shape = [768] embraced_features_index = embraced_features_index.cpu().detach().numpy() # shape = 768 embraced_features_token_bs = [] for i_emb, e in enumerate(embraced_features_index): embraced_features_token_bs.append(tokens_to_embrace[i_bs, e, i_emb]) multiple_embrace_vectors.append(embraced_features_token_bs) multiple_embrace_vectors = torch.tensor(multiple_embrace_vectors, dtype=torch.float) else: # B. Self-attention used to choose most important indexes -> p = softmax(mean(self_att)) # 'selfattention_scores' shape -> (bs, 128) tokens_to_embrace_bs = tokens_to_embrace[i_bs, :, :] # ADD THE NEXT 2 LINES TO CONDENSED # attention_mask_bs = attention_mask[i_bs, :] # _, selfattention_scores = self.self_attention(tokens_to_embrace_bs, attention_mask_bs) # Original attention_mask ranges from 0 to -1000 # If we want to mask the scores by multiplying between 0 and 1, we should give the attention_mask # as head_mask if self.p == 'selfattention': _, selfattention_scores = self.self_attention(tokens_to_embrace_bs) elif self.p == 'attention_clsquery_weights': tokens_to_embrace_bs = tokens_to_embrace[i_bs, :, :] cls_token_bs = cls_token[i_bs, :] tokens_to_embrace_bs_tensor = torch.tensor(tokens_to_embrace_bs, dtype=torch.float).cuda() cls_token_bs = torch.tensor(cls_token_bs, dtype=torch.float).unsqueeze(0).cuda() selfattention_scores = self.self_attention(cls_token_bs, tokens_to_embrace_bs_tensor, unsqueeze_idx=0) selfattention_scores = selfattention_scores[1] selfattention_scores = self.softmax(selfattention_scores).squeeze() elif self.p == 'multiheadattention': # BertAttention attention_mask = torch.ones([1, 1, 1, np.shape(tokens_to_embrace_bs)[0]]).cuda() tokens_to_embrace_bs_tensor = torch.tensor(tokens_to_embrace_bs, dtype=torch.float).unsqueeze(0).cuda() #selfattention_scores = self.self_attention(tokens_to_embrace_bs_tensor, attention_mask, head_mask=None) selfattention_scores = self.self_attention(tokens_to_embrace_bs_tensor, head_mask=attention_mask) elif self.p == 'multihead_bertselfattention_in_p': attention_mask = torch.ones([1, 1, 1, np.shape(tokens_to_embrace_bs)[0]]).cuda() tokens_to_embrace_bs_tensor = torch.tensor(tokens_to_embrace_bs, dtype=torch.float).unsqueeze(0).cuda() #selfattention_scores = self.self_attention(tokens_to_embrace_bs_tensor, attention_mask, head_mask=None) selfattention_scores = self.self_attention(tokens_to_embrace_bs_tensor, head_mask=attention_mask) else: # 'selfattention_pytorch' tokens_to_embrace_bs_tensor = torch.tensor(tokens_to_embrace_bs, dtype=torch.float).unsqueeze( 0).cuda() selfattention_scores = self.self_attention(tokens_to_embrace_bs_tensor) # Choose features using information from self-attention selfattention_scores = torch.tensor(selfattention_scores, dtype=torch.float) embraced_features_index = torch.multinomial(selfattention_scores, emb_size, replacement=True) # shape = [768] embraced_features_index = embraced_features_index.cpu().detach().numpy() # shape = 768 # 2. Add features into one of size (bs, embedding_size) embraced_features_token_bs = [] if self.p == 'multihead_bertselfattention' or self.p == 'multihead_bertattention': embraced_features_index = torch.sum(selfattention_scores, dim=1) embraced_features_token_bs = embraced_features_index.squeeze() embraced_features_token_bs = embraced_features_token_bs.cpu().detach().numpy() elif self.p == 'multiple_multihead_bertselfattention_in_p' or self.p == 'multiple_multihead_bertattention_in_p': embraced_features_token_bs = torch.sum(multiple_embrace_vectors, dim=0) embraced_features_token_bs = embraced_features_token_bs.squeeze() embraced_features_token_bs = embraced_features_token_bs.cpu().detach().numpy() elif self.p == 'attention_clsquery': embraced_features_token_bs = selfattention_scores.cpu().detach().numpy() else: for i_emb, e in enumerate(embraced_features_index): embraced_features_token_bs.append(tokens_to_embrace[i_bs, e, i_emb]) embraced_features_token.append(embraced_features_token_bs) # (768) embraced_features_token = torch.tensor(embraced_features_token, dtype=torch.float) # (bs, 768) return embraced_features_token
69.847826
151
0.662621
12,384
0.963585
0
0
0
0
0
0
2,851
0.221833
4922ee0740ccdfdc837d0e1e02e2f0bf4fe6c81f
8,227
py
Python
tests/test_csv2bufr.py
tomkralidis/CSV2BUFR
ba7ce4ed2bb41e42fcb9d03f10049ffc6a2073f8
[ "Apache-2.0" ]
null
null
null
tests/test_csv2bufr.py
tomkralidis/CSV2BUFR
ba7ce4ed2bb41e42fcb9d03f10049ffc6a2073f8
[ "Apache-2.0" ]
8
2021-11-04T12:44:46.000Z
2021-11-23T02:23:05.000Z
tests/test_csv2bufr.py
tomkralidis/CSV2BUFR
ba7ce4ed2bb41e42fcb9d03f10049ffc6a2073f8
[ "Apache-2.0" ]
2
2021-11-10T14:43:08.000Z
2021-11-23T01:54:46.000Z
############################################################################### # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # ############################################################################### import csv from io import StringIO import logging from eccodes import (codes_bufr_new_from_samples, codes_release) import pytest from csv2bufr import (validate_mapping, apply_scaling, validate_value, transform, SUCCESS) LOGGER = logging.getLogger(__name__) LOGGER.setLevel("DEBUG") # test data @pytest.fixture def mapping_dict(): return { "inputDelayedDescriptorReplicationFactor": [], "number_header_rows": 1, "names_on_row": 1, "header": [ {"eccodes_key": "edition", "value": 4}, # noqa {"eccodes_key": "masterTableNumber", "value": 0}, # noqa {"eccodes_key": "bufrHeaderCentre", "value": 0}, # noqa {"eccodes_key": "bufrHeaderSubCentre", "value": 0}, # noqa {"eccodes_key": "updateSequenceNumber", "value": 0}, # noqa {"eccodes_key": "dataCategory", "value": 0}, # noqa {"eccodes_key": "internationalDataSubCategory", "value": 6}, # noqa {"eccodes_key": "masterTablesVersionNumber", "value": 36}, # noqa {"eccodes_key": "numberOfSubsets", "value": 1}, # noqa {"eccodes_key": "observedData", "value": 1}, # noqa {"eccodes_key": "compressedData", "value": 0}, # noqa {"eccodes_key": "typicalYear", "csv_column": "year"}, # noqa {"eccodes_key": "typicalMonth", "csv_column": "month"}, # noqa {"eccodes_key": "typicalDay", "csv_column": "day"}, # noqa {"eccodes_key": "typicalHour", "csv_column": "hour"}, # noqa {"eccodes_key": "typicalMinute", "csv_column": "minute"}, # noqa {"eccodes_key": "unexpandedDescriptors","value": [301021, 301011, 301012, 10051, 12101]} # noqa ], "data": [ {"eccodes_key": "#1#year", "csv_column": "year"}, # noqa {"eccodes_key": "#1#month", "csv_column": "month"}, # noqa {"eccodes_key": "#1#day", "csv_column": "day"}, # noqa {"eccodes_key": "#1#hour", "csv_column": "hour"}, # noqa {"eccodes_key": "#1#minute", "csv_column": "minute"}, # noqa {"eccodes_key": "#1#latitude", "csv_column": "latitude"}, # noqa {"eccodes_key": "#1#longitude", "csv_column": "longitude"}, # noqa {"eccodes_key": "#1#pressureReducedToMeanSeaLevel", "csv_column": "pressure"}, # noqa {"eccodes_key": "#1#airTemperature", "csv_column": "air_temperature"} # noqa ] } @pytest.fixture def data_dict(): return { "air_temperature": 290.31, "pressure": 100130, "latitude": 55.154, "longitude": 0.0, "year": 2021, "month": 11, "day": 18, "hour": 18, "minute": 0 } @pytest.fixture def data_to_encode(): return { "edition": 4, "masterTableNumber": 0, "bufrHeaderCentre": 0, "bufrHeaderSubCentre": 0, "updateSequenceNumber": 0, "section1Flags": 0, "dataCategory": 0, "internationalDataSubCategory": 6, "masterTablesVersionNumber": 36, "numberOfSubsets": 1, "observedData": 1, "compressedData": 0, "typicalYear": 2021.0, "typicalMonth": 11.0, "typicalDay": 18.0, "typicalHour": 18.0, "typicalMinute": 0.0, "unexpandedDescriptors": [ 301021, 301011, 301012, 10051, 12101 ], "#1#year": 2021.0, "#1#month": 11.0, "#1#day": 18.0, "#1#hour": 18.0, "#1#minute": 0.0, "#1#latitude": 55.154, "#1#longitude": 0.0, "#1#pressureReducedToMeanSeaLevel": 100130.0, "#1#airTemperature": 290.31 } @pytest.fixture def station_dict(): return { "metadata": { "last-sync": "2021-10-22" }, "data": { "station-name": "test data" }, "wigosIds": [ {"wid": "0-1-2-ABCD"} ] } # test to check whether eccodes is installed def test_eccodes(): # call to eccodes library to test if accessible bufr_msg = codes_bufr_new_from_samples('BUFR4') # call to release the BUFR message codes_release(bufr_msg) assert True # test to check validate_mapping is not broken def test_validate_mapping_pass(mapping_dict): success = validate_mapping(mapping_dict) assert success == SUCCESS # test to check validate_mapping fails when we expect it to def test_validate_mapping_fail(): # not sure on this one, do we need this test and if so have many # different exceptions do we want to test? test_data = { "inputDelayedDescriptorReplicationFactor": [], "header": [], "data": [ {"eccodes_key": "abc", "value": 1, "offset": 1}, # noqa {"eccodes_key": "def", "csv_column": "col1", "valid-min": 0, "valid-max": 10}, # noqa {"eccodes_key": "ghi", "csv_column": "col2", "valid-min": 250.0, "valid-max": 350.0, "scale": 0.0, "offset": 273.15}, # noqa {"eccodes_key": "jkl", "csv_column": "col3", "valid-min": 90000.0, "valid-max": 120000.0, "scale": 2.0, "offset": 0.0} # noqa ] } try: success = validate_mapping(test_data) except Exception: success = False assert success != SUCCESS # test to make sure apply_scaling works as expected def test_apply_scaling(): scale = 1 offset = 20.0 test_value = 10.0 assert 120.0 == apply_scaling(test_value, scale, offset) # test to check that valid_value works def test_validate_value_pass(): input_value = 10.0 try: value = validate_value("test value", input_value, 0.0, 100.0, False) except Exception: assert False assert value == input_value # test to check that valid_value fails when we expect it to def test_validate_value_fail(): input_value = 10.0 try: _ = validate_value("test value", input_value, 0.0, 9.9, False) except Exception: return assert False # test to check that valid_value returns null value when we expect it to def test_validate_value_nullify(): input_value = 10.0 try: value = validate_value("test value", input_value, 0.0, 9.9, True) except Exception: assert False assert value is None # check that test transform works def test_transform(data_dict, station_dict, mapping_dict): # create CSV output = StringIO() writer = csv.DictWriter(output, quoting=csv.QUOTE_NONNUMERIC, fieldnames=data_dict.keys()) writer.writeheader() writer.writerow(data_dict) data = output.getvalue() result = transform(data, station_dict, mapping_dict) for item in result: assert isinstance(item, dict) assert "_meta" in item item_meta_keys = ['data_category', 'data_date', 'identifier', 'md5', 'originating_centre', 'wigos_id'] assert sorted(item["_meta"].keys()) == item_meta_keys assert item["_meta"]["md5"] == "981938dbd97be3e5adc8e7b1c6eb642c"
34.422594
138
0.579312
0
0
0
0
3,847
0.467607
0
0
4,021
0.488757
49233a1586edace305f6bd1e93ae01acb6ace60f
4,381
py
Python
map_methods_to_mach_ports/parseXcodeLogs.py
malus-security/kobold
2ae23b75ec503ef3702ad297ddbb7824ac4da53c
[ "BSD-3-Clause" ]
3
2020-06-26T19:44:46.000Z
2021-03-25T07:00:04.000Z
map_methods_to_mach_ports/parseXcodeLogs.py
malus-security/kobold
2ae23b75ec503ef3702ad297ddbb7824ac4da53c
[ "BSD-3-Clause" ]
null
null
null
map_methods_to_mach_ports/parseXcodeLogs.py
malus-security/kobold
2ae23b75ec503ef3702ad297ddbb7824ac4da53c
[ "BSD-3-Clause" ]
1
2020-09-14T23:46:31.000Z
2020-09-14T23:46:31.000Z
#Input #Xcode logs output by autogenerated method invocations #Requirements #Infer which invocation numbers failed/succeeded #Infer apparent entitlement requirements based on error message from completion handlers #Detect which invocation numbers should have had completion handlers #Map new information to mach-port and method declaration import pickle import re #TODO: this code needs to get a lot smarter as we collect more entitlement samples def lookForEntReqs(id, thisInvocation, knownEntKeyList): errorString = "NSError * var" for line in thisInvocation["logLines"]: if errorString in line: if "entitlement" in line: #We can use a corpus of known entitlement keys and search for those values in the error message for key in knownEntKeyList: if key in line: thisInvocation["entitlementRequirement"].add(key) #If the word entitlement is in the error message, but we don't find a key then something went wrong. if len(thisInvocation["entitlementRequirement"]) == 0: print "ERROR: No known entitlement key found in message that mentions the word 'entitlement'. Likely false negative." #If we find more than one key in the error message, then something went wrong. if len(thisInvocation["entitlementRequirement"]) > 1: print "ERROR: More than one known entitlement key was detected in the same message. Likely false positive." #this is some old code that assumed entitlement keys would be surrounded by fancy quotes, but that is not always the case. """ fancyQuoteSlices= line.split('\xe2\x80\x9c')[1:] for slice in fancyQuoteSlices: thisInvocation["entitlementRequirement"].add(slice.split('\xe2\x80\x9d')[0]) """ def parseRelevantLogs(id, thisInvocation, logLines): #logLines = raw_xcode_logs.split("\n") for line in logLines: idTag = "id "+id+": " if idTag in line: #break off the text before the id tag #TODO this system will miss array output that uses multiple lines. thisInvocation["logLines"].append(line.split(idTag)[-1]) def checkForCompletionStatus(id, thisInvocation): completionString = "Completion message" if completionString in thisInvocation["logLines"]: thisInvocation["valid"] = True raw_xcode_logs = open("input_data/xcode_results.txt","rb").read().strip().split("\n") sanitized_logs = [] for log in raw_xcode_logs: if re.match('^[0-9][0-9][0-9][0-9]\-.*$', log): sanitized_logs.append(log) else: sanitized_logs[-1] += " " + log #TODO I need to know how many invocations to search for. # Perhaps it would be easier to deal with this if I could import a pickle file with data from map_potential_methods_to_mach-ports.py with open('./input_data/invocationDictionary.pk', 'rb') as handle: invocationDictionary = pickle.load(handle) #print invocationDictionary knownEntKeyList = open('./input_data/ent_key_corpus.txt', 'rb').read().strip().split('\n') for id in invocationDictionary: thisInvocation = invocationDictionary[id] id = str(id) thisProtocol = thisInvocation["protocol"] thisMethod = thisInvocation["method"] thisMachPort = thisInvocation["mach-port"] thisInvocation["valid"] = False thisInvocation["entitlementRequirement"] = set() thisInvocation["logLines"] = [] #The invocation is the correct combination of accessible mach-port and remote method #Note that a valid invocation could still be inaccessible due to decentralized checks #run various tests to see if the connection should be considered valid or not parseRelevantLogs(id, thisInvocation, sanitized_logs) #block based tests hasBlockString = "Invocation has a completion handler" if hasBlockString in thisInvocation["logLines"]: checkForCompletionStatus(id, thisInvocation) lookForEntReqs(id, thisInvocation, knownEntKeyList) #if thisInvocation["valid"] and len(thisInvocation["entitlementRequirement"]) == 0: if thisInvocation["valid"]: print id #print " "+thisProtocol print " "+thisMethod print " "+thisMachPort #print " "+str(thisInvocation["valid"]) print " "+str(thisInvocation["entitlementRequirement"]) for line in thisInvocation["logLines"]: print "****"+line #for line in thisInvocation["logLines"]: # print " "+line
40.564815
132
0.716047
0
0
0
0
0
0
0
0
2,547
0.581374
49245578c9299525db939b3fe79e00703d3dcb25
10,298
py
Python
inferelator_ng/tests/test_design_response.py
asistradition/inferelator_ng
56ef2ce3b1ace35b9b2b2821a0e78746563c309a
[ "BSD-2-Clause" ]
1
2019-01-10T17:04:43.000Z
2019-01-10T17:04:43.000Z
inferelator_ng/tests/test_design_response.py
asistradition/inferelator_ng
56ef2ce3b1ace35b9b2b2821a0e78746563c309a
[ "BSD-2-Clause" ]
1
2019-01-21T21:05:19.000Z
2019-01-21T21:05:19.000Z
inferelator_ng/tests/test_design_response.py
asistradition/inferelator_ng
56ef2ce3b1ace35b9b2b2821a0e78746563c309a
[ "BSD-2-Clause" ]
null
null
null
import unittest, os import pandas as pd import numpy as np import pdb from .. import design_response_translation from .. import utils my_dir = os.path.dirname(__file__) class TestDR(unittest.TestCase): """ Superclass for common methods """ def calculate_design_and_response(self): #drd = design_response_R.DRDriver() drd = design_response_translation.PythonDRDriver() target = drd.target_directory = os.path.join(my_dir, "artifacts") if not os.path.exists(target): os.makedirs(target) drd.delTmin = self.delT_min drd.delTmax = self.delT_max drd.tau = self.tau (self.design, self.response) = drd.run(self.exp, self.meta) @unittest.skip("I don't know why the special character thing is necessary so I didn't reimplement it") class TestSpecialCharacter(TestDR): def setUp(self): spchrs='~!@#$%^&*()_-+=|\}]{[;:/?.><\\' self.meta = pd.DataFrame() self.meta['isTs']=[True, True, True, True, False] self.meta['is1stLast'] = ['f','m','m','l','e'] self.meta['prevCol'] = ['NA','ts1'+spchrs,'ts2'+spchrs,'ts3'+spchrs, 'NA'] self.meta['del.t'] = ['NA', 3, 2, 5, 'NA'] self.meta['condName'] = ['ts1'+spchrs,'ts2'+spchrs,'ts3'+spchrs,'ts4'+spchrs,'ss'] self.exp = pd.DataFrame(np.reshape(range(10), (2,5)) + 1, index = ['gene' + str(i + 1) + spchrs for i in range(2)], columns = ['ts' + str(i + 1) + spchrs for i in range(4)] + ['ss']) self.delT_min = 2 self.delT_max = 4 self.tau = 2 self.calculate_design_and_response() def testspecialcharacter(self): spchrs='~!@#$%^&*()_-+=|\}]{[;:/?.><\\' ds, resp = (self.design, self.response) expression_1 = np.array(list(self.exp['ts1' + spchrs])) expression_2 = np.array(list(self.exp['ts2' + spchrs])) expected_response_1 = (expression_1 + self.tau * (expression_2 - expression_1) / (float(self.meta['del.t'][1]))) expression_3 = np.array(list(self.exp['ts3' + spchrs])) expected_response_2 = expression_2 + self.tau * (expression_3 - expression_2) / (float(self.meta['del.t'][2])) np.testing.assert_almost_equal(np.array(resp['ts1' + spchrs]), expected_response_1) np.testing.assert_almost_equal(np.array(resp['ts2' + spchrs]), expected_response_2) @unittest.skip("Need to redo this to match the current drd") class TestDRModelOrganisms(TestDR): def test_on_bsubtilis(self): self.exp = utils.df_from_tsv('data/bsubtilis/expression.tsv') self.meta = utils.df_from_tsv('data/bsubtilis/meta_data.tsv', has_index=False) expected_design = utils.df_from_tsv('data/bsubtilis/bsubtilis_design_matrix.tsv') expected_response = utils.df_from_tsv('data/bsubtilis/bsubtilis_response_matrix.tsv') self.delT_min = 0 self.delT_max = 110 self.tau = 45 self.calculate_design_and_response() np.testing.assert_allclose(self.response.values, expected_response.values, atol=1e-15) self.assertEqual(len(set(expected_response.columns)), len(set(self.response.columns))) self.assertEqual(expected_response.columns.tolist(), self.response.columns.tolist()) self.assertEqual(expected_response.index.tolist(), self.response.index.tolist()) self.assertTrue(pd.DataFrame.equals(expected_design, self.design)) class TestDRAboveDeltMax(TestDR): def setUp(self): self.meta = pd.DataFrame() self.meta['isTs']=[True, True, True, True, False] self.meta['is1stLast'] = ['f','m','m','l','e'] self.meta['prevCol'] = ['NA','ts1','ts2','ts3', 'NA'] self.meta['del.t'] = ['NA', 3, 2, 5, 'NA'] self.meta['condName'] = ['ts1','ts2','ts3','ts4','ss'] self.exp = pd.DataFrame(np.reshape(range(10), (2,5)) + 1, index = ['gene' + str(i + 1) for i in range(2)], columns = ['ts' + str(i + 1) for i in range(4)] + ['ss']) self.delT_min = 2 self.delT_max = 4 self.tau = 2 self.calculate_design_and_response() def test_design_matrix_above_delt_max(self): # Set up variables ds, resp = (self.design, self.response) self.assertEqual(ds.shape, (2, 4)) self.assertEqual(list(ds.columns), ['ts1-ts2', 'ts2-ts3', 'ss', 'ts4'], msg = "Guarantee that the ts3-ts4 condition is dropped, " "since its delT of 5 is greater than delt_max of 4") self.assertEqual(list(ds['ss']), [5, 10]) self.assertEqual(list(ds['ss']), list(resp['ss']), msg = 'Steady State design and response should be equal') self.assertTrue((resp['ts2-ts3'].values == [3, 8]).all()) def test_response_matrix_steady_state_above_delt_max(self): ds, resp = (self.design, self.response) self.assertEqual(list(resp.columns), ['ts1-ts2', 'ts2-ts3', 'ss', 'ts4']) self.assertEqual(list(resp['ts4']), list(self.exp['ts4'])) self.assertEqual(list(resp['ss']), list(self.exp['ss'])) def test_response_matrix_time_series_above_delt_max(self): ds, resp = (self.design, self.response) expression_1 = np.array(list(self.exp['ts1'])) expression_2 = np.array(list(self.exp['ts2'])) expected_response_1 = (expression_1 + self.tau * (expression_2 - expression_1) / ( float(self.meta['del.t'][1]))) expression_3 = np.array(list(self.exp['ts3'])) expected_response_2 = expression_2 + self.tau * (expression_3 - expression_2) / ( float(self.meta['del.t'][2])) np.testing.assert_almost_equal(np.array(resp['ts1-ts2']), expected_response_1) np.testing.assert_almost_equal(np.array(resp['ts2-ts3']), expected_response_2) class TestDRMicro(TestDR): def setUp(self): self.meta = pd.DataFrame() self.meta['isTs']=[False, False] self.meta['is1stLast'] = ['e','e'] self.meta['prevCol'] = ['NA','NA'] self.meta['del.t'] = ['NA', 'NA'] self.meta['condName'] = ['ss1', 'ss2'] self.exp = pd.DataFrame( np.reshape(range(4), (2, 2)) + 1, index=['gene' + str(i + 1) for i in range(2)], columns=['ss1', 'ss2']) self.delT_min = 2 self.delT_max = 4 self.tau = 2 self.calculate_design_and_response() def test_micro(self): ds, resp = (self.design, self.response) self.assertEqual(ds.shape, (2, 2)) self.assertTrue((ds['ss1'].values == [1, 3]).all()) self.assertTrue((ds['ss2'].values == [2, 4]).all()) # In steady state, expect design and response to be identical self.assertTrue(ds.equals(resp)) class TestDRBelowDeltMin(TestDR): def setUp(self): self.meta = pd.DataFrame() self.meta['isTs']=[True, True, True, True, False] self.meta['is1stLast'] = ['f','m','m','l','e'] self.meta['prevCol'] = ['NA','ts1','ts2','ts3', 'NA'] self.meta['del.t'] = ['NA', 1, 2, 3, 'NA'] self.meta['condName'] = ['ts1', 'ts2', 'ts3', 'ts4', 'ss'] self.exp = pd.DataFrame( np.reshape(range(10), (2, 5)) + 1, index=['gene' + str(i + 1) for i in range(2)], columns=['ts' + str(i + 1) for i in range(4)] + ['ss']) self.delT_min = 2 self.delT_max = 4 self.tau = 2 self.calculate_design_and_response() @unittest.skip("I'm not sure this is the behavior I want") def test_response_matrix_below_delt_min(self): ds, resp = (self.design, self.response) expression_1 = np.array(list(self.exp['ts1'])) expression_3 = np.array(list(self.exp['ts3'])) expected_response_1 = expression_1 + self.tau * (expression_3 - expression_1) / (float(self.meta['del.t'][1]) + float(self.meta['del.t'][2])) np.testing.assert_almost_equal(np.array(resp['ts1-ts3']), expected_response_1) #pdb.set_trace() @unittest.skip("skipping until we've determined if we want to modify the legacy R code") def test_design_matrix_headers_below_delt_min(self): ds, resp = (self.design, self.response) print(ds.columns) self.assertEqual(list(ds.columns), ['ss', 'ts1', 'ts2', 'ts3'], msg = "Guarantee that the ts4 condition is dropped, since its the last in the time series") class TestBranchingTimeSeries(TestDR): def setUp(self): self.meta = pd.DataFrame() self.meta['isTs']=[True, True, True] self.meta['is1stLast'] = ['f','l','l'] self.meta['prevCol'] = ['NA','ts1','ts1'] self.meta['del.t'] = ['NA', 2, 2] self.meta['condName'] = ['ts1','ts2','ts3'] self.exp = pd.DataFrame(np.reshape(range(9), (3,3)) + 1, index = ['gene' + str(i + 1) for i in range(3)], columns = ['ts' + str(i + 1) for i in range(3)]) self.delT_min = 1 self.delT_max = 4 self.tau = 1 self.calculate_design_and_response() def test_design_matrix_branching_time_series(self): ds, resp = (self.design, self.response) self.assertEqual(ds.shape, (3, 2)) self.assertEqual(list(ds.columns), ['ts1-ts2', 'ts1-ts3'], msg = 'This is how the R code happens to name branching time series') for col in ds: self.assertEqual(list(ds[col]), list(self.exp['ts1']), msg = '{} column in the design matrix should be equal to the branching source, ts1, in the exp matrix'.format(col)) def test_response_matrix_branching_time_series(self): ds, resp = (self.design, self.response) self.assertEqual(resp.shape, (3, 2)) expression_1 = np.array(list(self.exp['ts1'])) expression_2 = np.array(list(self.exp['ts2'])) expected_response_1 = (expression_1 + self.tau * (expression_2 - expression_1) / float(self.meta['del.t'][1])) expression_3 = np.array(list(self.exp['ts3'])) expected_response_2 = (expression_1 + self.tau * (expression_3 - expression_1) / float(self.meta['del.t'][2])) np.testing.assert_almost_equal(np.array(resp['ts1-ts2']), expected_response_1) np.testing.assert_almost_equal(np.array(resp['ts1-ts3']), expected_response_2)
46.809091
150
0.604098
9,950
0.966207
0
0
3,628
0.352301
0
0
1,917
0.186153
4924946192a3e01f6cc5df5f86d6a37b39e0f8e7
94
py
Python
flights/urls.py
olubiyiontheweb/travelworld
ca9d2206108bd59fd222e384bcaab7efd6832e24
[ "MIT" ]
null
null
null
flights/urls.py
olubiyiontheweb/travelworld
ca9d2206108bd59fd222e384bcaab7efd6832e24
[ "MIT" ]
null
null
null
flights/urls.py
olubiyiontheweb/travelworld
ca9d2206108bd59fd222e384bcaab7efd6832e24
[ "MIT" ]
null
null
null
from django.urls import path from flights import views urlpatterns = [path("", views.index)]
18.8
37
0.755319
0
0
0
0
0
0
0
0
2
0.021277
4924d0f3858273f23eb72e262ac3af691158f5e6
835
py
Python
invenio_app_ils/ill/loaders/jsonschemas/borrowing_request.py
equadon/invenio-app-ils
42ba282968d0aa28fb1bfc71d0709685165aaec4
[ "MIT" ]
null
null
null
invenio_app_ils/ill/loaders/jsonschemas/borrowing_request.py
equadon/invenio-app-ils
42ba282968d0aa28fb1bfc71d0709685165aaec4
[ "MIT" ]
null
null
null
invenio_app_ils/ill/loaders/jsonschemas/borrowing_request.py
equadon/invenio-app-ils
42ba282968d0aa28fb1bfc71d0709685165aaec4
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright (C) 2019-2020 CERN. # # invenio-app-ils is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """BorrowingRequest schema for marshmallow loader.""" from invenio_records_rest.schemas import RecordMetadataSchemaJSONV1 from marshmallow import EXCLUDE, fields class BorrowingRequestSchemaV1(RecordMetadataSchemaJSONV1): """BorrowingRequest schema.""" class Meta: """Meta attributes for the schema.""" unknown = EXCLUDE cancel_reason = fields.Str() document_pid = fields.Str(required=True) name = fields.Str(required=True) notes = fields.Str() library_pid = fields.Str(required=True) # TODO: validate status = fields.Str(required=True) # TODO: this should be an enum
29.821429
76
0.718563
458
0.548503
0
0
0
0
0
0
370
0.443114
4925282781ec37ab8cc1089001ebc7822dc2c473
366
py
Python
systemtest/users/apps.py
IBM-Power-SystemTest/systemtest
a29e6d54500ca13f554073cc66a4a2d403ea5b14
[ "BSD-3-Clause" ]
1
2022-03-09T18:07:11.000Z
2022-03-09T18:07:11.000Z
systemtest/users/apps.py
IBM-Power-SystemTest/systemtest
a29e6d54500ca13f554073cc66a4a2d403ea5b14
[ "BSD-3-Clause" ]
null
null
null
systemtest/users/apps.py
IBM-Power-SystemTest/systemtest
a29e6d54500ca13f554073cc66a4a2d403ea5b14
[ "BSD-3-Clause" ]
null
null
null
""" Users app config References: https://docs.djangoproject.com/en/3.1/ref/applications/ """ from django.apps import AppConfig class UsersConfig(AppConfig): name = "systemtest.users" verbose_name = "Users" def ready(self): try: import systemtest.users.signals # noqa F401 except ImportError: pass
19.263158
63
0.628415
223
0.60929
0
0
0
0
0
0
140
0.382514
49252e8b63616c3d05ff08bd21ef0e85c4a7e7b9
1,675
py
Python
setup.py
grigi/configy
86f6bdd3164f39e83e82e3527f5863032c0ed1e7
[ "MIT" ]
3
2015-09-18T13:06:04.000Z
2021-08-10T16:37:21.000Z
setup.py
grigi/configy
86f6bdd3164f39e83e82e3527f5863032c0ed1e7
[ "MIT" ]
null
null
null
setup.py
grigi/configy
86f6bdd3164f39e83e82e3527f5863032c0ed1e7
[ "MIT" ]
null
null
null
import sys from setuptools import setup, find_packages def get_version(fname): import re verstrline = open(fname, "rt").read() mo = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", verstrline, re.M) if mo: return mo.group(1) else: raise RuntimeError("Unable to find version string in %s." % (fname,)) def get_test_requirements(): requirements = [] if sys.version_info[0:2] == (2, 6): requirements.append('unittest2') return requirements setup( name='configy', version=get_version('configy/__init__.py'), description='Simple Configuration manager, plays well with testing', long_description=open('README.rst').read(), author='Nickolas Grigoriadis', author_email='nagrigoriadis@gmail.com', url='https://github.com/grigi/configy', zip_safe=False, test_suite='configy.test_suite', # Dependencies install_requires=[ 'PyYAML', ], tests_require=get_test_requirements(), # Packages packages=find_packages(), include_package_data=True, # Scripts scripts=[], # Classifiers classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Topic :: Software Development :: Libraries :: Python Modules', ] )
28.389831
77
0.62209
0
0
0
0
0
0
0
0
770
0.459701
4925bdb182506624c0e0646cabaacc310b61faa3
2,755
py
Python
opentelemetry-sdk/tests/trace/export/test_in_memory_span_exporter.py
vmihailenco/opentelemetry-python
0a9eba3bb62f4ddf686b55b68286979a5ec84de5
[ "Apache-2.0" ]
2
2020-08-13T21:10:48.000Z
2020-09-30T00:55:05.000Z
opentelemetry-sdk/tests/trace/export/test_in_memory_span_exporter.py
vmihailenco/opentelemetry-python
0a9eba3bb62f4ddf686b55b68286979a5ec84de5
[ "Apache-2.0" ]
1
2021-02-24T01:32:32.000Z
2021-02-24T01:32:32.000Z
opentelemetry-sdk/tests/trace/export/test_in_memory_span_exporter.py
vmihailenco/opentelemetry-python
0a9eba3bb62f4ddf686b55b68286979a5ec84de5
[ "Apache-2.0" ]
2
2020-06-01T12:38:23.000Z
2021-01-07T10:55:47.000Z
# Copyright The OpenTelemetry Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from unittest import mock from opentelemetry import trace as trace_api from opentelemetry.sdk import trace from opentelemetry.sdk.trace import export from opentelemetry.sdk.trace.export.in_memory_span_exporter import ( InMemorySpanExporter, ) class TestInMemorySpanExporter(unittest.TestCase): def setUp(self): self.tracer_provider = trace.TracerProvider() self.tracer = self.tracer_provider.get_tracer(__name__) self.memory_exporter = InMemorySpanExporter() span_processor = export.SimpleExportSpanProcessor(self.memory_exporter) self.tracer_provider.add_span_processor(span_processor) self.exec_scenario() def exec_scenario(self): with self.tracer.start_as_current_span("foo"): with self.tracer.start_as_current_span("bar"): with self.tracer.start_as_current_span("xxx"): pass def test_get_finished_spans(self): span_list = self.memory_exporter.get_finished_spans() spans_names_list = [span.name for span in span_list] self.assertListEqual(["xxx", "bar", "foo"], spans_names_list) def test_clear(self): self.memory_exporter.clear() span_list = self.memory_exporter.get_finished_spans() self.assertEqual(len(span_list), 0) def test_shutdown(self): span_list = self.memory_exporter.get_finished_spans() self.assertEqual(len(span_list), 3) self.memory_exporter.shutdown() # after shutdown no new spans are accepted self.exec_scenario() span_list = self.memory_exporter.get_finished_spans() self.assertEqual(len(span_list), 3) def test_return_code(self): span = trace.Span("name", mock.Mock(spec=trace_api.SpanContext)) span_list = (span,) memory_exporter = InMemorySpanExporter() ret = memory_exporter.export(span_list) self.assertEqual(ret, export.SpanExportResult.SUCCESS) memory_exporter.shutdown() # after shutdown export should fail ret = memory_exporter.export(span_list) self.assertEqual(ret, export.SpanExportResult.FAILURE)
36.25
79
0.717604
1,903
0.690744
0
0
0
0
0
0
684
0.248276
49289bb9e651ac9eb5d083a6d7aaea07feb28a79
2,417
py
Python
lib/acli/commands/ec2.py
jonhadfield/acli
d14abf3ad67bb8cb5ecac93c380544a16eddc7fb
[ "MIT" ]
9
2015-10-06T01:33:39.000Z
2017-08-23T22:32:50.000Z
lib/acli/commands/ec2.py
jonhadfield/acli
d14abf3ad67bb8cb5ecac93c380544a16eddc7fb
[ "MIT" ]
6
2016-05-06T07:30:01.000Z
2020-06-22T08:11:40.000Z
lib/acli/commands/ec2.py
jonhadfield/acli
d14abf3ad67bb8cb5ecac93c380544a16eddc7fb
[ "MIT" ]
1
2020-06-01T10:44:23.000Z
2020-06-01T10:44:23.000Z
# -*- coding: utf-8 -*- """Usage: acli ec2 (ls | list | summary) [options] [--region=<region>] acli ec2 (start | stop | reboot | terminate | info | cpu | vols | net) <instance_id> [options] -f, --filter=<term> filter results by term -s, --start=<start_date> metrics start-date -e, --end=<end_date> metrics end-date -p, --period=<period> metrics period -i, --intervals=<intervals> metrics intervals -h, --help """ from __future__ import (absolute_import, print_function, unicode_literals) from docopt import docopt from acli.services import (ec2, cloudwatch) def ec2_command(argv=None, aws_config=None): ec2_res = docopt(__doc__, argv=argv) if any((ec2_res.get('ls'), ec2_res.get('list'))): ec2.ec2_list(aws_config, filter_term=ec2_res.get('--filter')) elif ec2_res.get('info'): ec2.ec2_info(aws_config, instance_id=ec2_res.get('<instance_id>')) elif ec2_res.get('stop'): ec2.ec2_manage(aws_config, instance_id=ec2_res.get('<instance_id>'), action="stop") elif ec2_res.get('reboot'): ec2.ec2_manage(aws_config, instance_id=ec2_res.get('<instance_id>'), action="reboot") elif ec2_res.get('start'): ec2.ec2_manage(aws_config, instance_id=ec2_res.get('<instance_id>'), action="start") elif ec2_res.get('terminate'): ec2.ec2_manage(aws_config, instance_id=ec2_res.get('<instance_id>'), action="terminate") elif ec2_res.get('cpu'): cloudwatch.ec2_cpu(aws_config=aws_config, instance_id=ec2_res.get('<instance_id>')) elif ec2_res.get('net'): cloudwatch.ec2_net(aws_config=aws_config, instance_id=ec2_res.get('<instance_id>'), start=ec2_res.get('--start'), period=ec2_res.get('--end'), intervals=ec2_res.get('intervals') ) elif ec2_res.get('vols'): cloudwatch.ec2_vol(aws_config=aws_config, instance_id=ec2_res.get('<instance_id>'), start=ec2_res.get('--start'), period=ec2_res.get('--end'), intervals=ec2_res.get('intervals') ) elif ec2_res.get('summary'): ec2.ec2_summary(aws_config=aws_config) if __name__ == '__main__': print(docopt(__doc__))
45.603774
98
0.595366
0
0
0
0
0
0
0
0
787
0.32561
4929eddd19df20bbf2ed2c78fc54f5d2edf96f51
7,630
py
Python
pharedox/gui/gui.py
omarvaneer/pharynx_redox
ffcd5733fd0823244f50590951e9af0bc9ae2518
[ "MIT" ]
2
2018-06-08T12:45:03.000Z
2018-07-13T04:17:01.000Z
pharedox/gui/gui.py
omarvaneer/pharynx_redox
ffcd5733fd0823244f50590951e9af0bc9ae2518
[ "MIT" ]
17
2020-03-18T11:43:39.000Z
2020-07-21T18:04:25.000Z
pharedox/gui/gui.py
half-adder/pharynx_redox
a5b99f6afb4a36a021d0439bb15d2c826de605b1
[ "MIT" ]
3
2021-07-21T16:14:28.000Z
2021-07-27T15:38:39.000Z
""" A Basic GUI based on napari """ import logging import multiprocessing as mp import sys from multiprocessing import Process from pathlib import Path from typing import Optional import matplotlib import napari import numpy as np import xarray as xr from napari.qt.threading import thread_worker from PyQt5.QtCore import pyqtSignal from qtpy.QtWidgets import QMessageBox, QWidget from skimage import morphology from skimage.measure import label from pharedox import experiment, plots, utils from pharedox.gui.qt_py_files.pipeline_buttons import Ui_Form # set matplotlib to use headless backend, otherwise it crashes the app when it tries to save matplotlib.use("agg") def remove_small_objects(label_data, min_obj_size): return xr.apply_ufunc( lambda x: morphology.remove_small_objects(x, min_obj_size), label_data, vectorize=True, input_core_dims=[["y", "x"]], output_core_dims=[["y", "x"]], ) def run_experiment(exp_: experiment.Experiment): exp_.full_pipeline() @thread_worker def run_neuron_analysis(exp_: experiment.Experiment,): exp_.full_pipeline() class PipelineButtonsWidget(QWidget): t_slider_changed = pyqtSignal() def __init__(self, *args, **kwargs): super(PipelineButtonsWidget, self).__init__(*args, **kwargs) self.ui = Ui_Form() self.ui.setupUi(self) self.ui.thresholdSlider.setMinimum(np.iinfo(np.uint16).min) self.ui.thresholdSlider.setMaximum(np.iinfo(np.uint16).max) self.ui.thresholdSlider.valueChanged.connect(self.handle_t_slider_changed) self.ui.thresholdSpinBox.valueChanged.connect( self.handle_threshold_spin_box_changed ) def handle_t_slider_changed(self): self.ui.thresholdSpinBox.setValue(self.ui.thresholdSlider.value()) self.t_slider_changed.emit() def handle_threshold_spin_box_changed(self): self.ui.thresholdSlider.setValue(self.ui.thresholdSpinBox.value()) self.t_slider_changed.emit() class App: viewer = None buttons = None def __init__(self, exp_): self.experiment = exp_ def set_up_viewer(self): self.viewer = napari.Viewer() self.buttons = PipelineButtonsWidget() self.viewer.window.add_dock_widget(self.buttons, name="pipeline", area="left") # connect signals/slots self.buttons.ui.runNeuronsButton.pressed.connect(self.run_neuron_analysis) self.buttons.ui.runPharynxButton.pressed.connect(self.run_pharynx_analysis) self.buttons.t_slider_changed.connect(self.handle_t_slider_changed) self.buttons.ui.removeObjectsButton.pressed.connect( self.handle_remove_objects_pressed ) def run_pharynx_analysis(self): if self.experiment.seg_images is None: self.show_simple_dialog("no masks") else: p = Process(target=run_experiment, args=(self.experiment,)) p.start() self.show_simple_dialog("analysis running in background (check log)") @thread_worker def run_neuron_analysis(self): if self.experiment.seg_images is None: self.show_simple_dialog("no masks") else: worker = run_neuron_analysis(self.experiment) worker.errored.connect( lambda e: self.show_simple_dialog(f"The pipeline had an error {e}") ) worker.start() self.show_simple_dialog("analysis running in background (check log)") def show_dialog(self, message, title=""): msg_box = QMessageBox() msg_box.setIcon(QMessageBox.Information) msg_box.setText(message) msg_box.setWindowTitle(title) msg_box.setStandardButtons(QMessageBox.Open | QMessageBox.Ok) return_value = msg_box.exec() if return_value == QMessageBox.Open: utils.open_folder(self.experiment.analysis_dir) @staticmethod def show_simple_dialog(message, title=""): msg_box = QMessageBox() msg_box.setIcon(QMessageBox.Information) msg_box.setText(message) msg_box.setWindowTitle(title) msg_box.setStandardButtons(QMessageBox.Ok) msg_box.exec() def get_layer(self, name): for layer in self.viewer.layers: if layer.name == name: return layer return None def handle_remove_objects_pressed(self): if self.experiment.seg_images is None: return layer = self.get_layer("masks") min_obj_size = self.buttons.ui.smallObjectSizeSpinBox.value() self.experiment.seg_images = remove_small_objects( self.experiment.seg_images, min_obj_size ) layer.data = self.experiment.seg_images.values layer.refresh() def get_current_wvl(self) -> Optional[str]: """ Get the wavelength of the active layer in Napari, or `None` if the active layer name does not correspond to a wavelength in the experiment's images. """ wvl_candidate = self.viewer.active_layer.name true_wvls = self.experiment.images.wavelength.values if wvl_candidate in true_wvls: return wvl_candidate else: return None def segment_pharynxes(self, t) -> xr.DataArray: wvl = self.get_current_wvl() if wvl is None: self.show_simple_dialog( message="The active layer does not correspond to a wavelength in the data set.", title="Invalid Wavelength Selected", ) return masks = self.experiment.images.sel(wavelength=wvl) > t masks = xr.apply_ufunc( lambda x: label(x), masks, vectorize=True, input_core_dims=[["y", "x"]], output_core_dims=[["y", "x"]], ) return masks def handle_t_slider_changed(self): t = self.buttons.ui.thresholdSlider.value() self.update_threshold(t) def update_threshold(self, t): masks = self.segment_pharynxes(t) if masks is None: return self.experiment.seg_images = masks try: self.get_layer("masks").data = masks except AttributeError: current_layer = self.viewer.active_layer self.viewer.add_labels(self.experiment.seg_images, name="masks") self.viewer.active_layer = current_layer self.get_layer("masks").refresh() def run(self): with napari.gui_qt(): self.set_up_viewer() if self.experiment.images is not None: self.viewer.add_image( plots.imgs_to_rgb( self.experiment.images, r_min=0.9, r_max=1.9, i_max=1500, ), name="R (population-normalized)", ) for wvl in self.experiment.images.wavelength.values: self.viewer.add_image( self.experiment.images.sel(wavelength=wvl), name=wvl, visible=False, ) if self.experiment.seg_images is not None: self.viewer.add_labels( self.experiment.seg_images, name="masks", ) if __name__ == "__main__": logging.basicConfig( format="%(asctime)s %(levelname)s:%(message)s", level=logging.INFO, datefmt="%I:%M:%S", ) exp_dir = sys.argv[1] exp = experiment.Experiment(Path(exp_dir)) app = App(exp_=exp) app.run()
31.399177
96
0.636697
6,217
0.81481
0
0
839
0.109961
0
0
740
0.096986
4929f7cf615e61de5c4f61ef44c5340e9ac4492a
3,290
py
Python
python/paddle/v2/fluid/tests/book/test_understand_sentiment_conv.py
QingshuChen/Paddle
25a92be3e123ed21fd98c7be6bd7e3a6320756a3
[ "Apache-2.0" ]
null
null
null
python/paddle/v2/fluid/tests/book/test_understand_sentiment_conv.py
QingshuChen/Paddle
25a92be3e123ed21fd98c7be6bd7e3a6320756a3
[ "Apache-2.0" ]
9
2017-09-13T07:39:31.000Z
2017-10-18T05:58:23.000Z
python/paddle/v2/fluid/tests/book/test_understand_sentiment_conv.py
QingshuChen/Paddle
25a92be3e123ed21fd98c7be6bd7e3a6320756a3
[ "Apache-2.0" ]
null
null
null
import numpy as np import paddle.v2 as paddle import paddle.v2.fluid.core as core import paddle.v2.fluid.evaluator as evaluator import paddle.v2.fluid.framework as framework import paddle.v2.fluid.layers as layers import paddle.v2.fluid.nets as nets from paddle.v2.fluid.executor import Executor from paddle.v2.fluid.optimizer import AdamOptimizer def convolution_net(input_dim, class_dim=2, emb_dim=32, hid_dim=32): data = layers.data(name="words", shape=[1], data_type="int64") label = layers.data(name="label", shape=[1], data_type="int64") emb = layers.embedding(input=data, size=[input_dim, emb_dim]) conv_3 = nets.sequence_conv_pool( input=emb, num_filters=hid_dim, filter_size=3, act="tanh", pool_type="sqrt") conv_4 = nets.sequence_conv_pool( input=emb, num_filters=hid_dim, filter_size=4, act="tanh", pool_type="sqrt") prediction = layers.fc(input=[conv_3, conv_4], size=class_dim, act="softmax") cost = layers.cross_entropy(input=prediction, label=label) avg_cost = layers.mean(x=cost) adam_optimizer = AdamOptimizer(learning_rate=0.002) opts = adam_optimizer.minimize(avg_cost) accuracy, acc_out = evaluator.accuracy(input=prediction, label=label) return avg_cost, accuracy, acc_out def to_lodtensor(data, place): seq_lens = [len(seq) for seq in data] cur_len = 0 lod = [cur_len] for l in seq_lens: cur_len += l lod.append(cur_len) flattened_data = np.concatenate(data, axis=0).astype("int64") flattened_data = flattened_data.reshape([len(flattened_data), 1]) res = core.LoDTensor() res.set(flattened_data, place) res.set_lod([lod]) return res def main(): BATCH_SIZE = 100 PASS_NUM = 5 word_dict = paddle.dataset.imdb.word_dict() dict_dim = len(word_dict) class_dim = 2 cost, accuracy, acc_out = convolution_net( input_dim=dict_dim, class_dim=class_dim) train_data = paddle.batch( paddle.reader.shuffle( paddle.dataset.imdb.train(word_dict), buf_size=1000), batch_size=BATCH_SIZE) place = core.CPUPlace() exe = Executor(place) exe.run(framework.default_startup_program()) for pass_id in xrange(PASS_NUM): accuracy.reset(exe) for data in train_data(): tensor_words = to_lodtensor(map(lambda x: x[0], data), place) label = np.array(map(lambda x: x[1], data)).astype("int64") label = label.reshape([BATCH_SIZE, 1]) tensor_label = core.LoDTensor() tensor_label.set(label, place) outs = exe.run(framework.default_main_program(), feed={"words": tensor_words, "label": tensor_label}, fetch_list=[cost, acc_out]) cost_val = np.array(outs[0]) acc_val = np.array(outs[1]) pass_acc = accuracy.eval(exe) print("cost=" + str(cost_val) + " acc=" + str(acc_val) + " pass_acc=" + str(pass_acc)) if cost_val < 1.0 and pass_acc > 0.8: exit(0) exit(1) if __name__ == '__main__': main()
32.254902
73
0.620669
0
0
0
0
0
0
0
0
125
0.037994
492b44bce7d8334fd49f7ee0f9eda198e717c6cb
6,847
py
Python
sem.py
sree314/simple-abstract-interpreter
6445db9ea2c8418ece4ec1436e552fb427d7ae2f
[ "CC0-1.0" ]
3
2020-05-04T20:09:30.000Z
2022-01-29T20:34:03.000Z
sem.py
sree314/simple-abstract-interpreter
6445db9ea2c8418ece4ec1436e552fb427d7ae2f
[ "CC0-1.0" ]
null
null
null
sem.py
sree314/simple-abstract-interpreter
6445db9ea2c8418ece4ec1436e552fb427d7ae2f
[ "CC0-1.0" ]
null
null
null
#!/usr/bin/env python3 # # sem.py # # An implementation of the concrete semantics, including an # interpreter # # Author: Sreepathi Pai # # Written for CSC2/455 Spring 2020 # # To the extent possible under law, Sreepathi Pai has waived all # copyright and related or neighboring rights to sem.py. This work # is published from: United States. from typing import Dict, List from tinyast import * import random import logging logger = logging.getLogger(__name__) # map of variables (here str, instead of Var) -> values #TODO: we could use var if we defined hash to be on the name of Var? Memory = Dict[str, int] def f_binop(op: BinaryOps, left: Scalar, right: Scalar) -> Scalar: if op == '+': return left + right elif op == '-': return left - right elif op == '*': return left * right elif op == '/': return left // right else: raise NotImplementedError(f"Unknown operator: {op}") def f_cmpop(op: ComparisonOps, left: Scalar, right: Scalar) -> bool: if op == '<': return left < right elif op == '>': return left > right elif op == '<=': return left <= right elif op == '>=': return left >= right elif op == '!=': return left != right else: raise NotImplementedError(f"Unknown comparison operator: {op}") def evaluate_Expr(E: Expr, m: Memory) -> Scalar: if isinstance(E, Scalar): return E elif isinstance(E, Var): return m[E.name] elif isinstance(E, BinOp): return f_binop(E.op, evaluate_Expr(E.left, m), evaluate_Expr(E.right, m)) def evaluate_BoolExpr(B: BoolExpr, m: Memory) -> bool: return f_cmpop(B.op, m[B.left.name], B.right) def filter_memory(B: BoolExpr, M: List[Memory], res = True) -> List[Memory]: out = [m for m in M if evaluate_BoolExpr(B, m) == res] return list(out) #TODO: why materialize this generator? def union_memories(M0: List[Memory], M1: List[Memory]) -> List[Memory]: # this is, of course, ridiculous # convert everything to sets M0_set = set([frozenset(m.items()) for m in M0]) M1_set = set([frozenset(m.items()) for m in M1]) M_set = M0_set.union(M1_set) # convert back to lists of dicts return list([dict(m) for m in M_set]) # M is a set of memory states, it belongs to Powerset(Memory) # We're using List, because set would choke on Dict and we don't have a frozendict type... def evaluate_Cmd(C: Cmd, M: List[Memory]) -> List[Memory]: def update_memories(var, value_lambda): out = [] for m in M: # not sure using dicts is gaining us anything when we're copying dicts around... m_out = dict(m) m_out[var] = value_lambda(m) out.append(m_out) return out if isinstance(C, Skip): return M elif isinstance(C, Program): return evaluate_Cmd(C.program, M) elif isinstance(C, Assign): return update_memories(C.left.name, lambda m: evaluate_Expr(C.right, m)) elif isinstance(C, Input): n = random.randint(0, 100) # could be anything, actually return update_memories(C.var.name, lambda _: n) elif isinstance(C, Seq): return evaluate_Cmd(C.cmd1, evaluate_Cmd(C.cmd0, M)) elif isinstance(C, IfThenElse): then_memory = evaluate_Cmd(C.then_, filter_memory(C.cond, M)) else_memory = evaluate_Cmd(C.else_, filter_memory(C.cond, M, res = False)) return union_memories(then_memory, else_memory) elif isinstance(C, While): # L0 but we apply filter at the end out = [m for m in M] # copy all input states # the next loop computes L1, L2, L3, .... # identify those memories where condition is true pre_iter_memories = filter_memory(C.cond, out) accum: List[Memory] = [] while len(pre_iter_memories): logger.debug(f"pre_iter_memories: {pre_iter_memories}") after_iter_memories = evaluate_Cmd(C.body, pre_iter_memories) logger.debug(f"after_iter_memories: {after_iter_memories}") accum = union_memories(accum, after_iter_memories) logger.debug(f"accum: {accum}") # only keep memories where the condition is true for the next iteration pre_iter_memories = filter_memory(C.cond, after_iter_memories) # This computes L0 U (L1 U L2...) and retains only those memory states where the loop has # terminated. # # we have exited the loop, so only keep those memories where condition is false out = filter_memory(C.cond, union_memories(out, accum), res=False) return out else: raise NotImplementedError(f"Don't know how to interpret {type(C).__name__}({C})") def test_evaluate_Expr(): x = Var('x') y = Var('y') m = {'x': 5, 'y': 6} x1 = BinOp('+', x, y) ex1 = evaluate_Expr(x1, m) assert ex1 == 11, ex1 def test_evaluate_BoolExpr(): x = Var('x') y = Var('y') m = {'x': 5, 'y': 6} b1 = BoolExpr('<', x, 6) eb1 = evaluate_BoolExpr(b1, m) assert eb1 == True, eb1 def test_evaluate_Cmd(): #TODO: actually put in asserts for testing. Right now, rely on visual inspection... x = Var('x') y = Var('y') m1 = {'x': 5, 'y': 6} m2 = {'x': 8, 'y': 7} M_in = [m1, m2] s = Program(Skip()) M_out = evaluate_Cmd(s, M_in) print(M_out) pasgn = Program(Assign(x, 9)) M_out = evaluate_Cmd(pasgn, M_in) print(M_out) pinput = Program(Input(y)) M_out = evaluate_Cmd(pinput, M_in) print(M_out) pseq = Program(sequence([Assign(x, 10), Assign(y, 11)])) M_out = evaluate_Cmd(pseq, M_in) print(M_out) pite = Program(IfThenElse(BoolExpr('>', x, 7), Assign(y, BinOp('-', x, 7)), Assign(y, BinOp('-', 7, x)) ) ) M_out = evaluate_Cmd(pite, M_in) print(M_out) ploop = Program(While(BoolExpr('<', x, 7), Seq(Assign(y, BinOp('-', y, 1)), Assign(x, BinOp('+', x, 1))) )) M_out = evaluate_Cmd(ploop, M_in) print(M_in, M_out) def test_While(): x = Var('x') y = Var('y') m1 = {x.name: 4, y.name: 0} m2 = {x.name: 8, y.name: 0} m3 = {x.name: 5, y.name: 0} M_in = [m1, m2, m3] print(M_in) p = Program(While(BoolExpr('<', x, 7), Seq(Assign(y, BinOp('+', y, 1)), Assign(x, BinOp('+', x, 1))))) print(p) M_out = evaluate_Cmd(p, M_in) print(M_out) if __name__ == "__main__": logging.basicConfig(level = logging.DEBUG) test_evaluate_Expr() test_evaluate_BoolExpr() test_evaluate_Cmd() test_While()
30.162996
97
0.590916
0
0
0
0
0
0
0
0
1,665
0.243172
492e98f0563190adbf1aba90431f35623fa73162
4,925
py
Python
python_script/neutron.py
namptit307/openstack_upgrade_test
a6a4ce57a931ce6959f85b7bafa95e10a0d0ed52
[ "MIT" ]
1
2018-06-26T03:37:17.000Z
2018-06-26T03:37:17.000Z
python_script/neutron.py
namptit307/openstack_upgrade_test
a6a4ce57a931ce6959f85b7bafa95e10a0d0ed52
[ "MIT" ]
null
null
null
python_script/neutron.py
namptit307/openstack_upgrade_test
a6a4ce57a931ce6959f85b7bafa95e10a0d0ed52
[ "MIT" ]
null
null
null
import json from requests import ConnectionError from config import * from utils import * from get_auth import TOKEN # Create network create_network_url = "http://{}:9696/v2.0/networks".format(IP) token_headers = { 'X-Auth-Token': TOKEN, 'Content-Type': 'application/json' } # Create router create_router_url = "http://{}:9696/v2.0/routers".format(IP) # Get network for DELETE get_network_list_url = create_network_url future = send_request(get_network_list_url, 'GET', headers=token_headers) result = future.result().content result = json.loads(result) list_networks = result.get("networks") list_networks = [network for network in list_networks if "testing" in network.get('name')] # Get routers for DELETE get_router_list_url = create_router_url future = send_request(get_router_list_url, 'GET', headers=token_headers) result = future.result().content result = json.loads(result) list_routers = result.get("routers") list_routers = [router for router in list_routers if "testing" in router.get('name')] # Update network # We should have separate network for updating --> ensure have network for update, that is. NETWORK_ID = "f6e3556e-29ab-4ee7-ba64-7fab0c423e26" # Update router # We should have separate router for updating --> ensure have router for update, that is. ROUTER_ID = "b0e19990-d9ba-4981-9da7-5aeec2957c77" if __name__ == '__main__': i = 1 while continue_test: time.sleep(0.3) try: # Create network create_network_data = { "network": { "name": "new_network_{}".format(i) } } i += 1 future = send_request(create_network_url, 'POST', headers=token_headers, data=json.JSONEncoder().encode(create_network_data)) try: result = future.result().content result = json.loads(result) network = result.get('network') if type(network) is dict: network_id = result['network']['id'] create_subnet_data = { "subnet": { "network_id": network_id, "ip_version": 4, "cidr": "192.168.199.0/24" } } create_subnet_url = "http://{}:9696/v2.0/subnets".format(IP) send_request(create_subnet_url, 'POST', headers=token_headers, data=json.JSONEncoder().encode(create_subnet_data)) except: pass # Get and delete network if not (len(list_networks) == 0): delete_network = list_networks.pop() delete_network_id = delete_network.get("id") get_network_url = "http://{}:9696/v2.0/networks/{}".format(IP, delete_network_id) send_request(get_network_url, 'GET', headers=token_headers) send_request(get_network_url, 'DELETE', headers=token_headers) # Update network name update_network_data = { "network": { "name": "new_name_{}".format(i) } } update_network_url = "http://{}:9696/v2.0/networks/{}".format(IP, NETWORK_ID) send_request(update_network_url, 'PUT', headers=token_headers, data=json.JSONEncoder().encode(update_network_data)) # Create router create_router_data = { "router": { "name": "new_router_{}".format(i) } } future = send_request(create_router_url, 'POST', headers=token_headers, data=json.JSONEncoder().encode(create_router_data)) # Get and delete network if not (len(list_routers) == 0): delete_router = list_routers.pop() delete_router_id = delete_router.get("id") get_router_url = "http://{}:9696/v2.0/routers/{}".format(IP, delete_router_id) send_request(get_router_url, 'GET', headers=token_headers) send_request(get_router_url, 'DELETE', headers=token_headers) # Update router name update_router_data = { "router": { "name": "new_name_{}".format(i) } } update_router_url = "http://{}:9696/v2.0/routers/{}".format(IP, ROUTER_ID) send_request(update_router_url, 'PUT', headers=token_headers, data=json.JSONEncoder().encode(update_router_data)) except ConnectionError: pass
39.087302
97
0.552081
0
0
0
0
0
0
0
0
1,074
0.218071
492f40da8141b4f392fd82f2242b755c0bb7c8b7
1,406
py
Python
app/view/forms.py
weizy1981/WatsonRobot
bb718a589a8f2d394fbc86582bff29c1015e79fc
[ "Apache-2.0" ]
null
null
null
app/view/forms.py
weizy1981/WatsonRobot
bb718a589a8f2d394fbc86582bff29c1015e79fc
[ "Apache-2.0" ]
null
null
null
app/view/forms.py
weizy1981/WatsonRobot
bb718a589a8f2d394fbc86582bff29c1015e79fc
[ "Apache-2.0" ]
null
null
null
from flask_wtf import FlaskForm from wtforms import StringField, PasswordField, SubmitField, FileField from wtforms.validators import DataRequired from app.view import errormessage class LoginForm(FlaskForm): username = StringField(label='username', validators=[DataRequired(errormessage.LOGIN002)]) password = PasswordField(label='password', validators=[DataRequired(errormessage.LOGIN003)]) submit = SubmitField(label='GO') class FileForm(FlaskForm): file = FileField(label='File') submit = SubmitField(label='GO') class QuestionForm(FlaskForm): question = StringField(label='Question', validators=[DataRequired(errormessage.ONLINE_SERVICE001)]) submit = SubmitField(label='GO') class QuerySNForm(FlaskForm): customer_id = StringField(label='Customer_Id', validators=[DataRequired(errormessage.QUERY_SN001)]) submit = SubmitField(label='GO') action = '' class CustomerForm(FlaskForm): customer_id = StringField(label='Customer_Id', validators=[DataRequired(errormessage.CUSTOMER_INPUT001)]) name = StringField(label='Name', validators=[DataRequired(errormessage.CUSTOMER_INPUT002)]) age = StringField(label='Age', validators=[DataRequired(errormessage.CUSTOMER_INPUT003)]) sex = StringField(label='Sex', validators=[DataRequired(errormessage.CUSTOMER_INPUT004)]) submit = SubmitField(label='GO') action = ''
43.9375
109
0.753201
1,215
0.864154
0
0
0
0
0
0
102
0.072546
492f4214ee6f18acfc6f5dd9c2a40c4761fa8d61
2,519
py
Python
setup.py
alexweav/nisystemlink-clients-python
f19a30907a7fef536043ecbddc5a755e5fedf846
[ "MIT" ]
null
null
null
setup.py
alexweav/nisystemlink-clients-python
f19a30907a7fef536043ecbddc5a755e5fedf846
[ "MIT" ]
null
null
null
setup.py
alexweav/nisystemlink-clients-python
f19a30907a7fef536043ecbddc5a755e5fedf846
[ "MIT" ]
null
null
null
from setuptools import find_namespace_packages, find_packages, setup # type: ignore from setuptools.command.test import test as TestCommand # type: ignore class PyTest(TestCommand): def finalize_options(self): TestCommand.finalize_options(self) self.test_args = [] self.test_suite = True def run_tests(self): import pytest # type: ignore pytest.main(self.test_args) pypi_name = "nisystemlink-clients" packages = find_namespace_packages(include=["systemlink.*"]) + find_packages( exclude=["systemlink", "examples", "tests"] ) def _get_version(name): import os version = None script_dir = os.path.dirname(os.path.realpath(__file__)) script_dir = os.path.join(script_dir, name) if not os.path.exists(os.path.join(script_dir, "VERSION")): version = "0.1.3" else: with open(os.path.join(script_dir, "VERSION"), "r") as version_file: version = version_file.read().rstrip() return version def _read_contents(file_to_read): with open(file_to_read, "r") as f: return f.read() setup( name=pypi_name, version=_get_version(pypi_name), description="NI-SystemLink Python API", long_description=_read_contents("README.rst"), author="National Instruments", maintainer="Paul Spangler, Alex Weaver", maintainer_email="paul.spangler@ni.com, alex.weaver@ni.com", keywords=["nisystemlink", "systemlink"], license="MIT", packages=packages, install_requires=[ 'aenum;python_version<"3.6"', "events", 'httpx;python_version>="3.6"', 'requests;python_version<"3.6"', "typing-extensions", ], tests_require=["pytest", "pytest-asyncio", "mypy"], classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "Intended Audience :: Manufacturing", "Intended Audience :: Science/Research", "License :: OSI Approved :: MIT License", "Operating System :: Microsoft :: Windows", "Operating System :: POSIX", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: Implementation :: CPython", "Topic :: System :: Hardware :: Hardware Drivers", ], cmdclass={"test": PyTest}, package_data={"": ["VERSION", "*.pyi", "py.typed"]}, )
31.4875
84
0.639143
261
0.103613
0
0
0
0
0
0
1,006
0.399365
492f9041b41552075a47cd3267bbbce97f7550d5
13,534
py
Python
shell_ui/__init__.py
conducto/conducto
b480780905f5a25e8c803b60ca7cdf6976ce5ef6
[ "Apache-2.0" ]
25
2020-05-07T22:51:11.000Z
2021-11-17T16:14:42.000Z
shell_ui/__init__.py
conducto/conducto
b480780905f5a25e8c803b60ca7cdf6976ce5ef6
[ "Apache-2.0" ]
3
2020-04-21T06:38:02.000Z
2020-05-31T01:57:19.000Z
shell_ui/__init__.py
conducto/conducto
b480780905f5a25e8c803b60ca7cdf6976ce5ef6
[ "Apache-2.0" ]
2
2020-05-14T01:47:32.000Z
2020-06-03T21:58:12.000Z
import os import sys import signal import asyncio import json import time import traceback import typing import socket import re import select import websockets if sys.platform != "win32": import termios import tty else: import msvcrt import win32api from .. import api from ..shared import constants, log, types as t from ..shared.constants import State import conducto.internal.host_detection as hostdet if sys.version_info < (3, 7): # create_task is stdlib in 3.7, but we can declare it as a synonym for the # 3.6 ensure_future asyncio.create_task = asyncio.ensure_future STATE_TO_COLOR = { State.PENDING: log.Color.TRUEWHITE, State.QUEUED: log.Color.GRAY, State.RUNNING: log.Color.BLUE, State.DONE: log.Color.GREEN, State.ERROR: log.Color.RED, State.WORKER_ERROR: log.Color.PURPLE, } class Listener(object): def update_node(self, name, data): pass async def background_task(self, title): pass async def key_press(self, char): # Listeners are passed the quit_func so that they can decide when to exit pass def render(self): pass def shutdown(self): pass def connect(token: t.Token, pipeline_id: t.PipelineId, starthelp: str): pipeline = api.Pipeline().get(pipeline_id, token=token) ui = ShellUI(token, pipeline, starthelp) if sys.platform == "win32": win32api.SetConsoleCtrlHandler(ui.ctrl_c, True) try: asyncio.get_event_loop().run_until_complete(ui.run()) except Exception: ui.reset_stdin() traceback.print_exc() class ShellUI(object): def __init__(self, token, pipeline: dict, starthelp: str): self.pipeline = pipeline self.quitting = False self.loop = asyncio.get_event_loop() self.gw_socket = None self.start_func_complete = None self.starthelp = starthelp from . import one_line, full_screen self.listeners: typing.List[Listener] = [one_line.OneLineDisplay(self)] @property def allow_sleep(self): # TODO: This is an ugly time-out to avoid shutting down the shell UI # because the NS cache still believes the pipeline is sleeping. return self.start_func_complete and time.time() > self.start_func_complete + 3.0 async def view_loop(self): """ Every 0.25 seconds render the pipeline """ log.info("[view] starting") while True: await asyncio.sleep(0.25) for listener in self.listeners: listener.render() def set_gw(self, gw_socket): self.gw_socket = gw_socket async def wait_gw(self): while self.gw_socket is None: await asyncio.sleep(0.1) async def start_pipeline(self): if self.gw_socket is None: pipeline_id = self.pipeline["pipeline_id"] api.Manager().launch(pipeline_id) await self.wait_gw() payload = {"type": "SET_AUTORUN", "payload": {"value": True}} await self.gw_socket.send(json.dumps(payload)) async def sleep_pipeline(self): if self.gw_socket is None: pipeline_id = self.pipeline["pipeline_id"] api.Pipeline().sleep_standby(pipeline_id) else: payload = {"type": "CLOSE_PROGRAM", "payload": None} await self.gw_socket.send(json.dumps(payload)) async def reset(self): if self.gw_socket is None: pipeline_id = self.pipeline["pipeline_id"] api.Manager().launch(pipeline_id) await self.wait_gw() payload = {"type": "RESET", "payload": ["/"]} await self.gw_socket.send(json.dumps(payload)) async def gw_socket_loop(self): """ Loop and listen for socket messages """ start_tasks = await self.run_start_func() pl = constants.PipelineLifecycle while True: if ( self.pipeline is None or self.pipeline.get("status", None) not in pl.active ): await asyncio.sleep(0.5) continue if start_tasks is not None: tasks = start_tasks # we clear the start_tasks now since later reconnects should # show reconnecting. start_tasks = None else: msg = "Connection lost. Reconnecting" pretasks = [xx.background_task(msg) for xx in self.listeners] tasks = [asyncio.create_task(task) for task in pretasks] try: websocket = await api.connect_to_pipeline(self.pipeline["pipeline_id"]) except PermissionError: print() print("You are not permitted to connect to this pipeline.") self.quit() break except ConnectionError: self.quit() break for task in tasks: task.cancel() for listener in self.listeners: listener.install_normal_key_mode() self.set_gw(websocket) was_slept = False try: await websocket.send( json.dumps({"type": "RENDER_NODE", "payload": "/"}) ) log.info("[gw_socket_loop] starting") async for msg_text in websocket: msg = json.loads(msg_text) if msg["type"] in ("NODES_STATE_UPDATE", "RENDER_NODE"): log.debug(f"incoming gw message {msg['type']}") for name, data in msg["payload"].items(): for listener in self.listeners: listener.update_node(name, data) elif msg["type"] == "SLEEP": was_slept = True # we are done here, do not try to reconnect. break except websockets.ConnectionClosedError as e: log.debug(f"ConnectionClosedError {e.code} {e.reason}") self.set_gw(None) if was_slept: break def get_ns_url(self): url = api.Config().get_url() url = re.sub("^http", "ws", url) + "/ns/" return url async def reconnect_ns(self): ns_url = self.get_ns_url() log.debug("[run] Connecting to", ns_url) header = {"Authorization": f"bearer {api.Config().get_token(refresh=False)}"} # we retry connection for roughly 2 minutes for i in range(45): try: websocket = await websockets.connect(ns_url, extra_headers=header) break except ( websockets.ConnectionClosedError, websockets.InvalidStatusCode, socket.gaierror, ): log.debug(f"cannot connect to ns ... waiting {i}") await asyncio.sleep(min(3.0, (2 ** i) / 8)) else: self.quit() return None log.debug("[run] ns Connected") return websocket async def ns_socket_loop(self): """ Loop and listen for socket messages """ while True: msg = "Connection lost. Reconnecting" if self.start_func_complete is not None: pretasks = [xx.background_task(msg) for xx in self.listeners] else: pretasks = [] tasks = [asyncio.create_task(task) for task in pretasks] websocket = await self.reconnect_ns() for task in tasks: task.cancel() if websocket is None: if self.start_func_complete is not None: for listener in self.listeners: listener.install_disconnect_mode() self.quit() break if self.start_func_complete is not None: for listener in self.listeners: listener.install_normal_key_mode() subscribe = { "type": "SUBSCRIBE", "payload": {"pipeline_id": self.pipeline["pipeline_id"]}, } await websocket.send(json.dumps(subscribe)) try: log.info("[ns_socket_loop] starting") async for msg_text in websocket: msg = json.loads(msg_text) if msg["type"] in ("FULL_INFO_UPDATE",): log.debug(f"incoming ns message {msg['type']}") progs = msg["payload"]["programIdToInfo"] try: self.pipeline = progs[self.pipeline["pipeline_id"]] except KeyError: # TODO: the NS cache may not yet have the pipeline, # this is to allow for that. if self.allow_sleep: raise else: continue if "state" not in self.pipeline["meta"]: self.pipeline["meta"] = { "state": "pending", "stateCounts": {x: 0 for x in STATE_TO_COLOR.keys()}, } pl = constants.PipelineLifecycle if self.pipeline["status"] in pl.sleeping and self.allow_sleep: self.quit() elif self.pipeline["status"] not in pl.active: for listener in self.listeners: listener.update_node("/", self.pipeline["meta"]) except websockets.ConnectionClosedError: pass def ctrl_c(self, a, b=None): # This is the windows control C handler self.quit() return True async def key_loop(self): """ Loop and listen for key inputs """ log.info("[key_loop] starting") if sys.platform != "win32": self.old_settings = termios.tcgetattr(sys.stdin.fileno()) tty.setraw(sys.stdin.fileno()) async for char in stream_as_char_generator(self.loop, sys.stdin): if ord(char) in (3, 4): # Ctrl+c (sigint) & Ctrl+d (eof) get captured as a non-printing # characters with ASCII code 3 & 4 respectively. Quit # gracefully. self.quit() elif ord(char) == 26: # Ctrl+z gets captured as a non-printing character with ASCII # code 26. Send SIGSTOP and reset the terminal. self.reset_stdin() os.kill(os.getpid(), signal.SIGSTOP) if sys.platform != "win32": self.old_settings = termios.tcgetattr(sys.stdin.fileno()) tty.setraw(sys.stdin.fileno()) for listener in self.listeners: await listener.key_press(char) self.reset_stdin() def reset_stdin(self): if hasattr(self, "old_settings"): termios.tcsetattr(sys.stdin.fileno(), termios.TCSADRAIN, self.old_settings) async def run_start_func(self): pretasks = [ xx.background_task(self.starthelp, immediate=True) for xx in self.listeners ] tasks = [asyncio.create_task(task) for task in pretasks] self.start_func_complete = time.time() return tasks async def run(self): # Start all the loops. The view and socket loops are nonblocking The # key_loop needs to be run separately because it blocks on user input tasks = [ self.loop.create_task(self.view_loop()), self.loop.create_task(self.gw_socket_loop()), self.loop.create_task(self.ns_socket_loop()), self.loop.create_task(self.key_loop()), ] # Wait on all of them. The `gather` variable can be cancelled in # `key_task()` if the user Ctrl+c's, which will cause the other loops # to be cancelled gracefully. self.gather_handle = asyncio.gather(*tasks) try: await self.gather_handle except asyncio.CancelledError: return except websockets.ConnectionClosedError: self.reset_stdin() return else: log.error("gather_handle returned but it shouldn't have!") raise Exception("gather_handle returned but it shouldn't have!") finally: for listener in self.listeners: listener.shutdown() def disconnect(self): self.quit() def quit(self): """ Make all event loops quit """ self.reset_stdin() self.quitting = True self.gather_handle.cancel() def stdin_data(): return select.select([sys.stdin], [], [], 0) == ([sys.stdin], [], []) async def stream_as_char_generator(loop, stream): if sys.platform != "win32": has_key = stdin_data read_key = lambda: stream.read(1) else: has_key = msvcrt.kbhit read_key = lambda: msvcrt.getch().decode("ascii") while True: await asyncio.sleep(0.05) if has_key(): char = read_key() if not char: # EOF. break yield char
33.417284
88
0.547362
11,737
0.867223
432
0.03192
275
0.020319
10,537
0.778558
2,472
0.182651
492f97e1b2f70e9fa3789d450a9a566094a9d2fe
8,772
py
Python
processing_components/simulation/ionospheric_screen.py
cnwangfeng/algorithm-reference-library
9605eb01652fbfcb9ff003cc12b44c84093b7fb1
[ "Apache-2.0" ]
null
null
null
processing_components/simulation/ionospheric_screen.py
cnwangfeng/algorithm-reference-library
9605eb01652fbfcb9ff003cc12b44c84093b7fb1
[ "Apache-2.0" ]
null
null
null
processing_components/simulation/ionospheric_screen.py
cnwangfeng/algorithm-reference-library
9605eb01652fbfcb9ff003cc12b44c84093b7fb1
[ "Apache-2.0" ]
null
null
null
""" Functions for ionospheric modelling: see SDP memo 97 """ import astropy.units as u import numpy from astropy.coordinates import SkyCoord from data_models.memory_data_models import BlockVisibility from processing_components.calibration.operations import create_gaintable_from_blockvisibility, \ create_gaintable_from_rows from processing_components.calibration.iterators import gaintable_timeslice_iter from processing_components.image.operations import copy_image, create_empty_image_like from processing_components.visibility.base import create_visibility_from_rows from processing_components.visibility.iterators import vis_timeslice_iter from processing_library.util.coordinate_support import xyz_to_uvw, skycoord_to_lmn import logging log = logging.getLogger(__name__) def find_pierce_points(station_locations, ha, dec, phasecentre, height): """Find the pierce points for a flat screen at specified height :param station_locations: All station locations [:3] :param ha: Hour angle :param dec: Declination :param phasecentre: Phase centre :param height: Height of screen :return: """ source_direction = SkyCoord(ra=ha, dec=dec, frame='icrs', equinox='J2000') local_locations = xyz_to_uvw(station_locations, ha, dec) local_locations -= numpy.average(local_locations, axis=0) lmn = numpy.array(skycoord_to_lmn(source_direction, phasecentre)) lmn[2] += 1.0 pierce_points = local_locations + height * numpy.array(lmn) return pierce_points def create_gaintable_from_screen(vis, sc, screen, height=3e5, vis_slices=None, scale=1.0, **kwargs): """ Create gaintables from a screen calculated using ARatmospy :param vis: :param sc: Sky components for which pierce points are needed :param screen: :param height: Height (in m) of screen above telescope e.g. 3e5 :param scale: Multiply the screen by this factor :return: """ assert isinstance(vis, BlockVisibility) station_locations = vis.configuration.xyz nant = station_locations.shape[0] t2r = numpy.pi / 43200.0 gaintables = [create_gaintable_from_blockvisibility(vis, **kwargs) for i in sc] # The time in the Visibility is hour angle in seconds! for iha, rows in enumerate(vis_timeslice_iter(vis, vis_slices=vis_slices)): v = create_visibility_from_rows(vis, rows) ha = numpy.average(v.time) number_bad = 0 number_good = 0 for icomp, comp in enumerate(sc): pp = find_pierce_points(station_locations, (comp.direction.ra.rad + t2r * ha) * u.rad, comp.direction.dec, height=height, phasecentre=vis.phasecentre) scr = numpy.zeros([nant]) for ant in range(nant): pp0 = pp[ant][0:2] worldloc = [pp0[0], pp0[1], ha, 1e8] try: pixloc = screen.wcs.wcs_world2pix([worldloc], 0)[0].astype('int') scr[ant] = scale * screen.data[pixloc[3], pixloc[2], pixloc[1], pixloc[0]] number_good += 1 except: number_bad += 1 scr[ant] = 0.0 gaintables[icomp].gain[iha, :, :, :] = numpy.exp(1j * scr[:, numpy.newaxis, numpy.newaxis, numpy.newaxis]) gaintables[icomp].phasecentre = comp.direction if number_bad > 0: log.warning("create_gaintable_from_screen: %d pierce points are inside the screen image" % (number_good)) log.warning("create_gaintable_from_screen: %d pierce points are outside the screen image" % (number_bad)) return gaintables def grid_gaintable_to_screen(vis, gaintables, screen, height=3e5, gaintable_slices=None, scale=1.0, **kwargs): """ Grid a gaintable to a screen image The phases are just average per grid cell, no phase unwrapping is performed. :param vis: :param sc: Sky components for which pierce points are needed :param screen: :param height: Height (in m) of screen above telescope e.g. 3e5 :param scale: Multiply the screen by this factor :return: gridded screen image, weights image """ assert isinstance(vis, BlockVisibility) station_locations = vis.configuration.xyz nant = station_locations.shape[0] t2r = numpy.pi / 43200.0 newscreen = create_empty_image_like(screen) weights = create_empty_image_like(screen) nchan, ntimes, ny, nx = screen.shape # The time in the Visibility is hour angle in seconds! number_no_weight = 0 for gaintable in gaintables: for iha, rows in enumerate(gaintable_timeslice_iter(gaintable, gaintable_slices=gaintable_slices)): gt = create_gaintable_from_rows(gaintable, rows) ha = numpy.average(gt.time) pp = find_pierce_points(station_locations, (gt.phasecentre.ra.rad + t2r * ha) * u.rad, gt.phasecentre.dec, height=height, phasecentre=vis.phasecentre) scr = numpy.angle(gt.gain[0, :, 0, 0, 0]) wt = gt.weight[0, :, 0, 0, 0] for ant in range(nant): pp0 = pp[ant][0:2] worldloc = [pp0[0], pp0[1], ha, 1e8] pixloc = newscreen.wcs.wcs_world2pix([worldloc], 0)[0].astype('int') assert pixloc[0] >= 0 assert pixloc[0] < nx assert pixloc[1] >= 0 assert pixloc[1] < ny newscreen.data[pixloc[3], pixloc[2], pixloc[1], pixloc[0]] += wt[ant] * scr[ant] weights.data[pixloc[3], pixloc[2], pixloc[1], pixloc[0]] += wt[ant] if wt[ant] == 0.0: number_no_weight += 1 if number_no_weight > 0: print("grid_gaintable_to_screen: %d pierce points are have no weight" % (number_no_weight)) log.warning("grid_gaintable_to_screen: %d pierce points are have no weight" % (number_no_weight)) newscreen.data[weights.data > 0.0] = newscreen.data[weights.data > 0.0] / weights.data[weights.data > 0.0] return newscreen, weights def calculate_sf_from_screen(screen): """ Calculate structure function image from screen Screen axes are ['XX', 'YY', 'TIME', 'FREQ'] :param screen: :return: """ from scipy.signal import fftconvolve nchan, ntimes, ny, nx = screen.data.shape sf = numpy.zeros([nchan, 1, 2 * ny - 1, 2 * nx - 1]) for chan in range(nchan): sf[chan, 0, ...] = fftconvolve(screen.data[chan, 0, ...], screen.data[chan, 0, ::-1, ::-1]) for itime in range(ntimes): sf += fftconvolve(screen.data[chan, itime, ...], screen.data[chan, itime, ::-1, ::-1]) sf[chan, 0, ...] /= numpy.max(sf[chan, 0, ...]) sf[chan, 0, ...] = 1.0 - sf[chan, 0, ...] sf_image = copy_image(screen) sf_image.data = sf[:, :, (ny - ny // 4):(ny + ny // 4), (nx - nx // 4):(nx + nx // 4)] sf_image.wcs.wcs.crpix[0] = ny // 4 + 1 sf_image.wcs.wcs.crpix[1] = ny // 4 + 1 sf_image.wcs.wcs.crpix[2] = 1 return sf_image def plot_gaintable_on_screen(vis, gaintables, height=3e5, gaintable_slices=None, plotfile=None): """ Plot a gaintable on an ionospheric screen :param vis: :param sc: Sky components for which pierce points are needed :param height: Height (in m) of screen above telescope e.g. 3e5 :param scale: Multiply the screen by this factor :return: gridded screen image, weights image """ import matplotlib.pyplot as plt assert isinstance(vis, BlockVisibility) station_locations = vis.configuration.xyz t2r = numpy.pi / 43200.0 # The time in the Visibility is hour angle in seconds! plt.clf() for gaintable in gaintables: for iha, rows in enumerate(gaintable_timeslice_iter(gaintable, gaintable_slices=gaintable_slices)): gt = create_gaintable_from_rows(gaintable, rows) ha = numpy.average(gt.time) pp = find_pierce_points(station_locations, (gt.phasecentre.ra.rad + t2r * ha) * u.rad, gt.phasecentre.dec, height=height, phasecentre=vis.phasecentre) phases = numpy.angle(gt.gain[0, :, 0, 0, 0]) plt.scatter(pp[:,0],pp[:,1], c=phases, cmap='hsv', alpha=0.75, s=0.1) plt.title('Pierce point phases') plt.xlabel('X (m)') plt.ylabel('Y (m)') if plotfile is not None: plt.savefig(plotfile) plt.show()
40.611111
118
0.621181
0
0
0
0
0
0
0
0
1,991
0.226972
4930f596737a00ba148f8145ee070ebfb4b9133d
7,311
py
Python
build.py
Slaals/narval
3b811fb3854760a34a3875b35bd6088d4299ce8f
[ "CNRI-Python" ]
null
null
null
build.py
Slaals/narval
3b811fb3854760a34a3875b35bd6088d4299ce8f
[ "CNRI-Python" ]
null
null
null
build.py
Slaals/narval
3b811fb3854760a34a3875b35bd6088d4299ce8f
[ "CNRI-Python" ]
null
null
null
''' This file is part of Narval : an opensource and free rights static blog generator. ''' #!/usr/bin/python3 #-*- coding: utf-8 -*- import os, filecmp, random, webbrowser from shutil import copyfile params = __import__('config') helpers = __import__('helpers') tmps = __import__('template') def build(params, helpers, tmps, isLocal=False): if isLocal == True: params.folder = params.folder + '-local' params.blogUrl = os.path.abspath('') + '/' + params.folder pathPosts, pathPages, myPosts, myPages, nbPosts, catsList = 'posts/', 'pages/', [], [], 0, [] ### Build vars (categories, myPosts, myPages) using the source files # posts folder listing = os.listdir(pathPosts) for infile in listing: fileNum = int(infile.split('.')[0]) with open(os.path.join(pathPosts, infile), 'r') as post: myPost = {'title': '', 'date': '', 'cats': '', 'intro': '', 'desc': '', 'author': '', 'content': '', 'id': fileNum, 'titleHead': '', 'thumb': ''} while 1: line = post.readline().rstrip('\n\r') if line != '---': lineElts = line.split() if lineElts[0] == 'title': myPost['title'] = ' '.join(lineElts[2:]) elif lineElts[0] == 'date': myPost['date'] = ' '.join(lineElts[2:]) elif lineElts[0] == 'cats': myPost['cats'] = ' '.join(lineElts[2:]).split('+') elif lineElts[0] == 'intro': myPost['intro'] = ' '.join(lineElts[2:]) elif lineElts[0] == 'author': myPost['author'] = ' '.join(lineElts[2:]) elif lineElts[0] == 'desc': myPost['desc'] = ' '.join(lineElts[2:]) elif lineElts[0] == 'thumb': myPost['thumb'] = ' '.join(lineElts[2:]) else: break myPost['content'] = post.read() myPosts.append(myPost) for cat in myPost['cats']: catsList.append(cat) myPosts = sorted(myPosts, key=lambda k: k['id'], reverse=True) catsList = sorted(set(catsList)) catsList2 = [] for cat in catsList: catsList2.append({"name": cat, "path": helpers.niceURL(cat, '/')}) categories = tuple(catsList2) for post in myPosts: myList = [] for cat in post['cats']: match = next((c for c in categories if c['name'] == cat), None) myList.append(match) post['cats'] = tuple(myList) # pages folder listing = os.listdir(pathPages) for infile in listing: with open(os.path.join(pathPages, infile), 'r') as page: myPage = {'title': '', 'desc': '', 'content': ''} while 1: line = page.readline().rstrip('\n\r') if line != '---': lineElts = line.split() if lineElts[0] == 'title': myPage['title'] = ' '.join(lineElts[2:]) elif lineElts[0] == 'desc': myPage['desc'] = ' '.join(lineElts[2:]) else: break myPage['content'] = page.read() myPages.append(myPage) header = tmps.TMP_header(params, helpers, tmps, categories, myPages, 0) #0 pour une liste footer = tmps.TMP_footer(params, helpers, tmps) ### Build tree (folders & files) def copyFolderFiles(src, dest): # source folder, destination folder srcFiles = os.listdir(src) # all files in source folder for srcFile in srcFiles: if os.path.isfile(dest + srcFile) == True: # exists if filecmp.cmp(src + srcFile, dest + srcFile) == False: # not same files copyfile(src + srcFile, dest + srcFile) else: # not exists copyfile(src + srcFile, dest + srcFile) # clean folder (remove all files who isn't in source folder) destFiles = os.listdir(dest) for destFile in destFiles: if os.path.isfile(src + destFile) == False: os.remove(dest + destFile) # si le dossier du blog généré n'existe pas, on le crée if os.path.isdir(params.folder) == False: os.mkdir(params.folder) if os.path.isdir(params.folder + '/posts') == False: os.mkdir(params.folder + '/posts') if os.path.isdir(params.folder + '/theme') == False: os.mkdir(params.folder + '/theme') if os.path.isdir(params.folder + '/cats') == False: os.mkdir(params.folder + '/cats') if os.path.isdir(params.folder + '/medias') == False: os.mkdir(params.folder + '/medias') if os.path.isdir(params.folder + '/thumbs') == False: os.mkdir(params.folder + '/thumbs') with open(params.folder + '/RSSfeed.xml', 'w') as rssRender: rssRender.write(tmps.TMP_rss(params, helpers, tmps, myPosts)) with open(params.folder + '/README.md', 'w') as rmRender: rmRender.write(tmps.TMP_readme(params, helpers, tmps, myPosts)) copyFolderFiles('theme/', params.folder + '/theme/') copyFolderFiles('medias/', params.folder + '/medias/') copyFolderFiles('thumbs/', params.folder + '/thumbs/') copyfile('favicon.ico', params.folder + '/favicon.ico') copyfile('ui.js', params.folder + '/ui.js') for categorie in categories: path = params.folder + '/cats/' + categorie['path'] if os.path.isdir(path) == False: os.mkdir(path) myPostsFiltred = [] for post in myPosts: if categorie in post['cats']: myPostsFiltred.append(post) array = [myPostsFiltred[i:i+params.blogNbPostsByPage] for i in range(0, len(myPostsFiltred), params.blogNbPostsByPage)] i, nbLots = 1, len(array) for lot in array: result = tmps.TMP_posts(params, helpers, tmps, categorie['name'], header, footer, lot, (i, nbLots), '../../') if i == 1: with open(path + 'index.html', 'w') as r: r.write(result) with open(path + 'page1.html', 'w') as r: r.write(result) else: with open(path + 'page' + str(i) + '.html', 'w') as r: r.write(result) i += 1 array = [myPosts[i:i+params.blogNbPostsByPage] for i in range(0, len(myPosts), params.blogNbPostsByPage)] i = 1 nbLots = len(array) for lot in array: if i == 1: result = tmps.TMP_posts(params, helpers, tmps, '', header, footer, lot, (i, nbLots)) with open(params.folder + '/index.html', 'w') as r: r.write(result) with open(params.folder + '/page1.html', 'w') as r: r.write(result) else: with open(params.folder + '/page' + str(i) + '.html', 'w') as r: r.write(tmps.TMP_posts(params, helpers, tmps, '', header, footer, lot, (i, nbLots))) i += 1 header = tmps.TMP_header(params, helpers, tmps, categories, myPages, 1) #1 pour un post ou une page for post in myPosts: with open(params.folder + '/posts/' + helpers.niceURL(post['title'], '.html'), 'w') as r: r.write(tmps.TMP_post(params, helpers, tmps, header, post, footer)) for page in myPages: with open(params.folder + '/' + helpers.niceURL(page['title'], '.html'), 'w') as r: r.write(tmps.TMP_page(params, helpers, tmps, header, page, footer)) build(params, helpers, tmps) build(params, helpers, tmps, True) exprs = [ 'Nom d\'une corne !', 'Bien joué !', 'Bravo !', 'Hihihi !', 'Félicitations !', 'La corne du narval est une dent !', 'Les femelles narval, sauf exceptions, n\'ont pas de corne.', 'Une corne de narval peut mesurer 3 mètres !', 'Une corne de narval peut peser jusqu\'à 10 kg !', 'Le narval vivrait en moyenne une cinquantaine d\'années.', 'Le narval est un cétacé à dents.', 'Outre l\'humain, le narval a 2 prédateurs : l\'orque et l\'ours polaire.', 'Le narval raffole des flétans, des raies et des morues.', 'Le narval peut descendre à 1500 mètres de profondeur.', 'Le narval peut rester en apnée près d\'une demi heure.' ] print('\033[92m>>> ' + random.choice(exprs) + '\033[0m') resp = input('Le blog est consultable hors ligne dans "' + params.folder + '".\nVoir dans un navigateur ? (O/n)').lower() if resp != 'n': webbrowser.open(params.folder + '/index.html', new=2)
39.518919
148
0.646286
0
0
0
0
0
0
0
0
2,052
0.279984
493212d8687f50b52ca98a00b02e9f83e3d17403
247
py
Python
examples/simple/regression/sample_skipped.py
jonwesneski/end2
708c7b96c1086959565e2889a0818451e6e2c931
[ "MIT" ]
null
null
null
examples/simple/regression/sample_skipped.py
jonwesneski/end2
708c7b96c1086959565e2889a0818451e6e2c931
[ "MIT" ]
1
2022-03-12T19:43:00.000Z
2022-03-12T19:43:00.000Z
examples/simple/regression/sample_skipped.py
jonwesneski/end2
708c7b96c1086959565e2889a0818451e6e2c931
[ "MIT" ]
null
null
null
from src import ( RunMode, setup ) __run_mode__ = RunMode.PARALLEL @setup def my_setup(logger): assert False, "FAILING SETUP ON PURPOSE" def test_skipped(logger): assert False, "THIS TEST SHOULD NOT RUN BECAUSE SETUP FAILED"
14.529412
65
0.712551
0
0
0
0
73
0.295547
0
0
73
0.295547
493289a9cede0d970c6e0473eaec236052421c6b
1,276
py
Python
structure/DoublyLinkedList.py
Jaidev810/Data-Structures-package
f651615275817f182662892b2b57b200310d3dba
[ "MIT" ]
2
2021-02-27T06:13:11.000Z
2021-02-27T06:15:03.000Z
structure/DoublyLinkedList.py
Jaidev810/Data-Structures-package
f651615275817f182662892b2b57b200310d3dba
[ "MIT" ]
null
null
null
structure/DoublyLinkedList.py
Jaidev810/Data-Structures-package
f651615275817f182662892b2b57b200310d3dba
[ "MIT" ]
null
null
null
class Node: def __init__(self, val: int): self.val = val self.prev = None self.next = None class DoublyLinkedList: def takeinput(self) -> Node: inputlist = [int(x) for x in input().split()] head = None temp = None for curr in inputlist: if curr == -1: break Newnode = Node(curr) if head is None: head = Newnode temp = head else: temp.next = Newnode Newnode.prev = temp temp = temp.next return head def printLL(self, head: Node) -> None: temp = head while temp is not None: print(temp.val, end='->') temp = temp.next print("None") def getLength(self, head: Node) -> int: count = 0 temp = head while temp is not None: count += 1 temp = temp.next return temp def getMiddle(self, head: Node) -> int: slow = head fast = head while fast and fast.next is not None: slow = slow.next fast = fast.next.next return slow.val def reverseLL(self, head: Node) -> Node: pass
23.62963
53
0.471787
1,273
0.997649
0
0
0
0
0
0
10
0.007837
49328cd4da5fd3b0c69d9699b45e853d2628cbd7
9,297
py
Python
reference_parsing/scripts/reference_script.py
ScholarIndex/LinkedBooks
0cae008427ed1eb34a882e9d85f24b42b3ee3a28
[ "MIT" ]
null
null
null
reference_parsing/scripts/reference_script.py
ScholarIndex/LinkedBooks
0cae008427ed1eb34a882e9d85f24b42b3ee3a28
[ "MIT" ]
6
2020-03-20T18:10:01.000Z
2021-09-29T17:31:17.000Z
reference_parsing/scripts/reference_script.py
ScholarIndex/LinkedBooks
0cae008427ed1eb34a882e9d85f24b42b3ee3a28
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ USED una tantum to refactor the journal_references collection. Note that the old collection references (monograph reference lists) is discarded: monographs are going to ba parsed again. this script: 1- copies the journal_references collection to another collection: sand, test and production databases 2- uniforms the data model in so doing 3- updated Processing 4- validates everything using the mongoengine """ __author__ = """Giovanni Colavizza""" from collections import OrderedDict import logging logging.basicConfig(filename="logs/xml_parser.log", level=logging.INFO) logger = logging.getLogger(__name__) from configparser import ConfigParser from datetime import datetime # Mongo from pymongo import MongoClient, TEXT, ASCENDING from mongoengine import connect as engineconnect # Test models from commons.dbmodels import * # Establish Mongo connections config = ConfigParser(allow_no_value=False) config.read("config.conf") logger.info('Read configuration file.') # SANDBOX the playground db = "mongo_sand" mongo_user = config.get(db, 'username') mongo_pwd = config.get(db, 'password') mongo_auth = config.get(db, 'auth-db') mongo_host = config.get(db, 'db-host') mongo_port = config.get(db, 'db-port') con = MongoClient(mongo_host,port=int(mongo_port), **{"socketKeepAlive":True}) con.linkedbooks_sandbox.authenticate(mongo_user, mongo_pwd, source=mongo_auth) db_sand = con.linkedbooks_sandbox # SOURCE the collection where journal_references is db = "mongo_source" mongo_user = config.get(db, 'username') mongo_pwd = config.get(db, 'password') mongo_auth = config.get(db, 'auth-db') mongo_host = config.get(db, 'db-host') mongo_port = config.get(db, 'db-port') con = MongoClient(mongo_host,port=int(mongo_port), **{"socketKeepAlive":True}) con.linkedbooks_dev.authenticate(mongo_user, mongo_pwd, source=mongo_auth) db_source = con.linkedbooks_dev # DEV the development DB db = "mongo_dev" mongo_user = config.get(db, 'username') mongo_pwd = config.get(db, 'password') mongo_auth = config.get(db, 'auth-db') mongo_host = config.get(db, 'db-host') mongo_port = config.get(db, 'db-port') con = MongoClient(mongo_host,port=int(mongo_port), **{"socketKeepAlive":True}) con.linkedbooks_refactored.authenticate(mongo_user, mongo_pwd, source=mongo_auth) db_dev = con.linkedbooks_refactored # PROD the production DB, only connect if explicitly called db = "mongo_prod" mongo_user = config.get(db, 'username') mongo_pwd = config.get(db, 'password') mongo_auth = config.get(db, 'auth-db') mongo_host = config.get(db, 'db-host') mongo_port = config.get(db, 'db-port') con = MongoClient(mongo_host,port=int(mongo_port), connect=False, **{"socketKeepAlive":True}) con.linkedbooks_refactored.authenticate(mongo_user, mongo_pwd, source=mongo_auth) db_prod = con.linkedbooks_refactored logger.info('Loaded Mongo dbs configs.') def transfer_collection(destination_db,db): """ Transfer the journal_references collection to other databases, after refactoring :param destination_db: Mongo connector to the right destination database :param db: config.conf name of the destination database :return: Nothing. """ # IMPORT journal_references collection from SOURCE to new database references = list() pages_dict = dict() # index of items from metadata which are valid valid_documents = list() for m in destination_db.metadata.find(): if m["marked_as_removed"]: continue if m["type_document"] == "monograph": continue # we only have journals here else: for d in m["issues"]: if d["marked_as_removed"]: continue else: valid_documents.append((m["bid"], d["foldername"])) for reference in db_source.journal_references.find(no_cursor_timeout=True): contents = OrderedDict(sorted(reference["contents"].items(),key=lambda x:int(x[0]))) pages = set([x["page_id"] for x in contents.values()]) for p in pages: if p not in pages_dict.keys(): try: items = p.split("-") bid = items[0] image = items[-1] issue = "-".join(items[1:-2]) image = int(image) except: print(p) continue if (bid,issue) in valid_documents: document = destination_db.documents.find_one({"bid":bid,"number":issue}) else: split_issue = issue.split("_") issue = "_".join(split_issue[:-1]) issue = issue + "." + split_issue[-1] if (bid, issue) in valid_documents: document = destination_db.documents.find_one({"bid": bid, "number": issue}) else: logger.info("MISSING DOCUMENT: %s, %s, %s" % (bid, issue, p)) continue logger.info("Found a mark as removed: %s, %s" % (bid, issue)) #logger.warning("MISSING DOCUMENT: %s, %s, %s"%(bid,issue,p)) #continue try: page = destination_db.pages.find_one({"single_page_file_number":image,"_id":{"$in":document["pages"]}}) except: logger.warning("MISSING PAGE: %s, %s, %s" % (bid, issue, p)) continue pages_dict[p] = {"id":page["_id"],"issue":issue} issue = reference["issue"] for c in contents.values(): try: c["page_mongo_id"] = pages_dict[c["page_id"]]["id"] issue = pages_dict[c["page_id"]]["issue"] except: logger.warning("MISSING PAGE IN DICT: %s" % c["page_id"]) c["page_mongo_id"] = "" r = {"ref_type":reference["ref_type"], "reference_string":" ".join([x["surface"] for x in contents.values()]), "in_golden":reference["in_golden"], "order_in_page":reference["order_in_page"], "continuation_candidate_in":reference["continuation_candidate_in"], "continuation_candidate_out":reference["continuation_candidate_out"], "continuation":reference["continuation"], "bid":reference["bid"], "issue":issue, "contents":contents, "updated_at":datetime.now() } references.append(r) destination_db.drop_collection("references") destination_db.references.insert_many(references) destination_db.references.create_index([('reference_string', TEXT),('bid', TEXT),('issue', TEXT)], default_language='none') destination_db.references.create_index([('contents.1.single_page_file_number',ASCENDING)],unique=False) logger.info('Created journal_references collection into database %s'%db) def updates_checks(destination_db,db): """ Checkes the new references collection is properly done, updates the Processing collection. Note that this assumes the references collection contains objects that have been fully parsed (reason why we do not consider monograph reference lists for now: they have not!) :param destination_db: Mongo connector to the right destination database :param db: config.conf name of the destination database :return: Nothing. """ issues_dict = list() # update processing collection # get all bids and issues just dumped for r in destination_db.references.find(): issues_dict.append((r["bid"],r["issue"])) mongo_db = config.get(db, 'db-name') mongo_user = config.get(db, 'username') mongo_pwd = config.get(db, 'password') mongo_auth = config.get(db, 'auth-db') mongo_host = config.get(db, 'db-host') mongo_port = config.get(db, 'db-port') logger.debug(engineconnect(mongo_db , username=mongo_user , password=mongo_pwd , authentication_source=mongo_auth , host=mongo_host , port=int(mongo_port))) for bid,issue in list(set(issues_dict)): try: if not issue or len(issue) == 0: processing_info = Processing.objects(type_document="monograph", bid=bid).get() else: processing_info = Processing.objects(type_document="issue", number=issue, bid=bid).get() if not processing_info.is_parsed: processing_info.is_parsed = True processing_info.updated_at = datetime.now() processing_info.save() except: logger.warning("Missing item in Processing: %s, %s"%(bid,issue)) continue logger.info('Updated Processing collection into database %s'%db) # AT THE END, TEST COLLECTION objects = Reference.objects logger.info("The database contains %d Reference objects"%len(objects)) transfer_collection(db_sand,"mongo_sand") updates_checks(db_sand,"mongo_sand") #transfer_collection(db_dev,"mongo_dev") #updates_checks(db_dev,"mongo_dev") #transfer_collection(db_prod,"mongo_prod") #updates_checks(db_prod,"mongo_prod")
43.443925
179
0.64182
0
0
0
0
0
0
0
0
3,281
0.35291
493417e0fff28d76a0a6a6c06dec19aa851fdaf9
20,534
py
Python
simpysql/Eloquent/SqlServerBuilder.py
wjtxlliubin/simpysql
c135ce42d0bda8b11632f4003bb60995d24a7392
[ "MIT" ]
29
2019-05-22T08:08:34.000Z
2021-11-16T08:15:10.000Z
simpysql/Eloquent/SqlServerBuilder.py
wjtxlliubin/simpysql
c135ce42d0bda8b11632f4003bb60995d24a7392
[ "MIT" ]
4
2019-05-20T08:34:07.000Z
2019-09-11T11:26:57.000Z
simpysql/Eloquent/SqlServerBuilder.py
wjtxlliubin/simpysql
c135ce42d0bda8b11632f4003bb60995d24a7392
[ "MIT" ]
5
2019-05-20T09:15:49.000Z
2021-09-04T19:08:59.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import collections from simpysql.Util.Expression import expression as expr, Expression from simpysql.Util.Response import Response from .BaseBuilder import BaseBuilder from simpysql.Util.Dynamic import Dynamic class SqlServerBuilder(BaseBuilder): operators = [ '=', '<', '>', '<=', '>=', '<>', '!=', 'like', 'like binary', 'not like', 'between', 'ilike', '&', '|', '^', '<<', '>>', 'rlike', 'regexp', 'not regexp', '~', '~*', '!~', '!~*', 'similar to', 'not similar to', 'not ilike', '~~*', '!~~*', 'in', 'not in', 'not between' ] def __init__(self, model, alias=None): self.__model__ = model self.__alias__ = alias self.__where__ = [] self.__orwhere__ = [] # orwhere处理逻辑 self.__whereor__ = [] # orwhere处理逻辑 self.__select__ = [] # 检索的字段 self.__limit__ = 0 # 检索的数据条数 self.__orderby__ = [] # 排序字段 self.__groupby__ = [] # 排序字段 self.__offset__ = None # offset self.__lock__ = None # lock self.__join__ = [] # leftjoin self.__union__ = [] # union & unionall self.__on__ = [] # leftjoin self.__having__ = None # having self.__subquery__ = [] # subquery def first(self): self.__limit__ = 1 data = self.get() if data: return data.pop() return data def one(self): data = self.get() if data: return data.pop() return data def get(self): return [Dynamic(index) for index in self._get_connection().execute(self._compile_select())] def lists(self, columns): return Response(self._get_connection().execute(self._compile_select())).tolist(columns) def data(self): return Response(self._get_connection().execute(self._compile_select())).data() def response(self): return Response(self._get_connection().execute(self._compile_select())) def max(self, column): if isinstance(column, str) and column in self.__model__.columns: self.__select__ = ['max({}) as aggregate'.format(column)] data = self.one() return data['aggregate'] if data else None raise Exception('param invalid in function max') def min(self, column): if isinstance(column, str) and column in self.__model__.columns: self.__select__ = ['min({}) as aggregate'.format(column)] data = self.one() return data['aggregate'] if data else None raise Exception('param invalid in function min') def avg(self, column): if isinstance(column, str) and column in self.__model__.columns: self.__select__ = ['avg({}) as aggregate'.format(column)] data = self.one() return data['aggregate'] if data else None raise Exception('param invalid in function avg') def sum(self, column): if isinstance(column, str) and column in self.__model__.columns: self.__select__ = ['sum({}) as aggregate'.format(column)] data = self.one() return data['aggregate'] if data else None raise Exception('param invalid in function sum') def count(self): self.__select__ = ['count(*) as aggregate'] data = self.one() return data['aggregate'] if data else None def exist(self): return True if self.count() > 0 else False def update(self, data): if data and isinstance(data, dict): data = self._set_update_time(data) return self._get_connection().execute(self._compile_update(data)) def increment(self, key, amount=1): if isinstance(amount, int) and amount > 0: data = collections.defaultdict(dict) data[key] = '{}+{}'.format(expr.format_column(key), str(amount)) data = self._set_update_time(data) return self._get_connection().execute(self._compile_increment(data)) def decrement(self, key, amount=1): if isinstance(amount, int) and amount > 0: data = collections.defaultdict(dict) data[key] = '{}-{}'.format(expr.format_column(key), str(amount)) data = self._set_update_time(data) return self._get_connection().execute(self._compile_increment(data)) def create(self, data): if data: if data and isinstance(data, dict): data = [data] data = self._set_create_time(data) self._get_connection().execute(self._compile_create(data)) return self def insert(self, columns, data): self._get_connection().execute(self._compile_insert(columns, data)) return self def lastid(self): data = self._get_connection().execute(self._compile_lastid()) return data[0][0] if data and data[0] and data[0][0] else None def delete(self): return self._get_connection().execute(self._compile_delete()) def take(self, number): if number <= 0: raise Exception('take number invalid') self.__limit__ = int(number) return self def select(self, *args): self.__select__ = self._format_columns(list(args)) return self def groupby(self, *args): self.__groupby__ = self._format_columns(list(args)) return self def offset(self, number): if number <= 0: raise Exception('offset number invalid') self.__offset__ = int(number) return self def tosql(self): return self._compile_select() def where(self, *args): length = args.__len__() if length == 1 and isinstance(args[0], dict): self.__where__.append(args[0]) elif length == 2: self.__where__.append({args[0]: self._check_columns_value(args[1])}) elif length == 3: if args[1] in self.operators: if args[1] == '=': self.__where__.append({args[0]: self._check_columns_value(args[2])}) else: self.__where__.append((args[0], args[1], self._check_columns_value(args[2]))) else: raise Exception('operator key world not found: "{}"'.format(args[1])) else: raise Exception('bad parameters in where function') return self def orwhere(self, *args): length = args.__len__() if length == 1 and isinstance(args[0], dict): self.__orwhere__.append(args[0]) elif length == 1 and isinstance(args[0], list): self.__orwhere__.append(args[0]) elif length == 2: self.__orwhere__.append({args[0]: args[1]}) elif length == 3: if args[1] in self.operators: if args[1] == '=': self.__orwhere__.append({args[0]: args[2]}) else: self.__orwhere__.append((args[0], args[1], args[2])) else: raise Exception('operator key world not found: "{}"'.format(args[1])) else: raise Exception('bad parameters in where function') return self def whereor(self, *args): length = args.__len__() if length == 1 and isinstance(args[0], list): self.__whereor__.append(args[0]) else: raise Exception('bad parameters in where function') return self def orderby(self, column, direction='asc'): if direction.lower() == 'asc': self.__orderby__.append(expr.format_column(column)) else: self.__orderby__.append(expr.format_column(column) + ' desc') return self def execute(self, sql): return self._get_connection().execute(sql) def having(self, *args): length = args.__len__() if length == 2: self.__having__ = ' having {} {} {}'.format(args[0], '=', expr.format_string(args[1])) elif length == 3: self.__having__ = ' having {} {} {}'.format(args[0], args[1], expr.format_string(args[2])) else: raise Exception('invalid parameter in having function') return self def lock_for_update(self): self.__lock__ = ' for update' return self def lock_for_share(self): self.__lock__ = ' lock in share mode' return self def leftjoin(self, model): if not (isinstance(model, BaseBuilder)): raise TypeError('invalid parameter type in leftjoin') self.__join__.append(('left join', model)) return self def rightjoin(self, model): if not (isinstance(model, BaseBuilder)): raise TypeError('invalid parameter type in rightjoin') self.__join__.append(('right join', model)) return self def join(self, model): return self.innerjoin(model) def innerjoin(self, model): if not (isinstance(model, BaseBuilder)): raise TypeError('invalid parameter type in innerjoin') self.__join__.append(('inner join', model)) return self def union(self, model): if not (isinstance(model, BaseBuilder)): raise TypeError('invalid parameter type in union') self.__union__.append(('union', model)) return self def unionall(self, model): if not (isinstance(model, BaseBuilder)): raise TypeError('invalid parameter type in unionall') self.__union__.append(('union all', model)) return self def on(self, *args): length = args.__len__() if length == 2: self.__on__.append((args[0], '=', args[1])) elif length == 3: self.__on__.append((args[0], args[1], args[2])) else: raise Exception('invalid parameter in on function') return self def subquery(self, model, alias='tmp'): self.__subquery__.append((alias, model)) return self def _compile_select(self): if len(self.__select__) == 0: self.__select__.append('*') subsql = ''.join( [self._compile_where(), self._compile_whereor(), self._compile_orwhere(), self._compile_groupby(), self._compile_orderby(), self._compile_having(), self._compile_offset(), self._compile_lock()]) joinsql = ''.join(self._compile_leftjoin()) returnsql = "select {}{} from {}{}{}".format(self._compile_limit(), ','.join(self.__select__), self._tablename(), joinsql, subsql) if self.__union__: return '{}'.format(returnsql) + self._compile_union() return returnsql def _compile_create(self, data): return "insert into {} {} values {}".format(self._tablename(), self._columnize(data[0]), self._valueize(data)) def _compile_insert(self, columns, data): return "insert into {} {} values {}".format(self._tablename(), self._columnize(columns), ','.join([tuple(index).__str__() for index in data])) def _compile_update(self, data): return "update {} set {}{}".format(self._tablename(), ','.join(self._compile_dict(data)), self._compile_where()) def _compile_increment(self, data): subsql = ','.join(['{}={}'.format(expr.format_column(index), value) for index, value in data.items()]) return "update {} set {}{}".format(self._tablename(), subsql, self._compile_where()) def _compile_delete(self): return 'delete from {}{}'.format(self._tablename(), self._compile_where()) def _compile_lastid(self): return 'select last_insert_id() as lastid' def _columnize(self, columns): return tuple(columns).__str__().replace('\'', '`') def _valueize(self, data): return ','.join([tuple(index.values()).__str__() for index in data]) def _compile_groupby(self): return '' if len(self.__groupby__) == 0 else ' group by ' + ','.join(self.__groupby__) def _compile_orderby(self): return '' if len(self.__orderby__) == 0 else ' order by ' + ','.join(self.__orderby__) def _compile_limit(self): return '' if self.__limit__ == 0 else 'top ({}) '.format(self.__limit__) def _compile_offset(self): if self.__offset__: if self.__orderby__: return '' if self.__offset__ is None else ' offset {} rows fetch next {} rows only'.format(self.__offset__, self.__limit__) raise Exception('orderby function not set exception') return '' def _compile_lock(self): return '' if self.__lock__ is None else self.__lock__ def _compile_leftjoin(self): if self.__join__: return ' ' + ' '.join(['{} {} on {}'.format(index, value._tablename(), value._compile_on()) for (index, value) in self.__join__]) return '' def _compile_union(self): if self.__union__: return ' ' + ' '.join(['{} ({})'.format(index, value.tosql()) for (index, value) in self.__union__]) return '' def _compile_on(self): sqlstr = ['{} {} {}'.format(index[0], index[1], index[2]) for index in self.__on__] return ' and '.join(sqlstr) def _compile_having(self): if self.__having__: return self.__having__ return '' def _compile_where(self): if len(self.__where__) > 0: sqlstr = [] for index in self.__where__: if isinstance(index, dict): sqlstr.append(' and '.join(self._compile_dict(index))) elif isinstance(index, tuple): sqlstr.append(self._compile_tuple(index)) return ' where {}'.format(' and '.join(sqlstr)) return '' def _compile_orwhere(self): if len(self.__orwhere__) > 0: sqlstr = [] for index in self.__orwhere__: if isinstance(index, dict): subsql = self._compile_dict(index) if len(subsql) == 1: sqlstr.append(subsql.pop()) else: sqlstr.append('({})'.format(' and '.join(subsql))) elif isinstance(index, tuple): sqlstr.append(self._compile_tuple(index)) elif isinstance(index, list): subsql = [] for items in index: if len(items) == 2: subsql.append(self._compile_keyvalue(items[0], items[1])) if len(items) == 3: subsql.append(self._compile_tuple((items[0], items[1], items[2]))) sqlstr.append('({})'.format(' and '.join(subsql))) else: raise Exception('undefined query condition {}'.format(index.__str__())) if len(self.__where__) > 0: return ' or {}'.format(' or '.join(sqlstr)) return ' where {}'.format(' or '.join(sqlstr)) return '' def _compile_whereor(self): if len(self.__whereor__) > 0: sqlstr = [] for index in self.__whereor__: subsql = [] for item in index: if isinstance(item, dict): if len(item) == 1: subsql.append(self._compile_dict(item).pop()) else: subsql.append('(' + ' and '.join(self._compile_dict(item)) + ')') elif isinstance(item, list): if isinstance(item[0], str): subsql.append(self._compile_tuple(tuple(item))) else: subsql.append(self._compile_lists(item)) elif isinstance(item, tuple): subsql.append(self._compile_tuple(item)) else: raise Exception('whereor param invalid') sqlstr.append(' or '.join(subsql)) if len(self.__where__) > 0: return ' and ({})'.format(' or '.join(sqlstr)) return ' where ({})'.format(' or '.join(sqlstr)) return '' def _compile_dict(self, data): return ['{}={}'.format(expr.format_column(index), expr.format_string(value)) for index, value in data.items()] def _compile_tuple(self, data): if data[1] in ['in', 'not in']: return self._compile_in((data[0], data[1], data[2])) elif data[1] in ['between', 'not between']: return self._compile_between((data[0], data[1], data[2])) return '{} {} {}'.format(expr.format_column(data[0]), data[1], expr.format_string(data[2])) def _compile_in(self, data): return '{} {} {}'.format(expr.format_column(data[0]), data[1], expr.list_to_str(data[2])) def _compile_list(self, data): length = len(data) if length == 2: return self._compile_keyvalue(data[0], data[1]) if length == 3: return self._compile_tuple((data[0], data[1], data[2])) def _compile_lists(self, data): return_data = [] for index in data: if isinstance(index, list): return_data.append(self._compile_list(index)) if isinstance(index, tuple): return_data.append(self._compile_tuple(index)) return '(' + ' and '.join(return_data) + ')' def _compile_between(self, data): if not (len(data) == 3 and len(data[2]) == 2): raise Exception('between param invalid') return '{} {} {} and {}'.format(expr.format_column(data[0]), data[1], expr.format_string(data[2][0]), expr.format_string(data[2][1])) def _compile_keyvalue(self, key, value): return '{}={}'.format(expr.format_column(key), expr.format_string(value)) def _compile_subquery(self): subquery = [] for index, value in self.__subquery__: if isinstance(value, str): subquery.append('{} as {}'.format(value, index)) else: subquery.append('({}) as {}'.format(value.tosql(), index)) return ','.join(subquery) def _get_connection(self): return self.connect(self.__model__) def _check_columns_value(self, value): if self.__subquery__ and len(self.__subquery__) >= 2 and isinstance(value, str): tmp = value.split('.') if len(tmp) == 2 and tmp[0] in self._get_subquery_alias(): return Expression(value) return value def _get_subquery_alias(self): return [index for index, value in self.__subquery__] def database(self, name): self.__model__.__database__ = name return self def _tablename(self): if self.__subquery__: return self._compile_subquery() if self.__alias__ is None: return self.__model__.__tablename__ return self.__model__.__tablename__ + ' as {}'.format(self.__alias__) def _format_columns(self, columns): return list(map(lambda index: expr.format_column(index), columns)) def _set_create_time(self, data): currtime = self.__model__.fresh_timestamp() update_column = self.__model__.update_time_column() create_column = self.__model__.create_time_column() for index in data: if create_column and create_column not in index: index[create_column] = currtime if update_column and update_column not in index: index[update_column] = currtime return data def _set_update_time(self, data): currtime = self.__model__.fresh_timestamp() update_column = self.__model__.update_time_column() if update_column and update_column not in data: data[update_column] = currtime return data def transaction(self, callback): return self._get_connection().transaction(callback) def transaction_wrapper(self, callback): return self._get_connection().transaction_wrapper(callback)
39.564547
150
0.564868
20,329
0.987324
0
0
0
0
0
0
2,116
0.102768
49352eca9c4b127887b5b697dac9363a8f43de19
18,955
py
Python
openBMC/terminal_cmd.py
kevinkellyspacey/openBMC-rpi
468f3ec39a29e7d89e0601ba6d51279cd4617b93
[ "MIT" ]
null
null
null
openBMC/terminal_cmd.py
kevinkellyspacey/openBMC-rpi
468f3ec39a29e7d89e0601ba6d51279cd4617b93
[ "MIT" ]
null
null
null
openBMC/terminal_cmd.py
kevinkellyspacey/openBMC-rpi
468f3ec39a29e7d89e0601ba6d51279cd4617b93
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import logging from openBMC.smbpbi import smbpbi_read import smbus from openBMC.fan_control import set_dbus_data,get_dbus_data,pwm_reqest_set,TMP451_7bit_ADDR,GPU0_7bit_ADDR,GPU1_7bit_ADDR import dbus import argparse import socket import sys import os def show(string,serial): if serial: serial.write(string) else: print(string) class CMDManager(object): def __init__(self, *args, **kwargs): # cmd sample:cmd_name:[cmd_function,max_args_length,description,ret] self.cmd_list ={"help":[self.help_command, 1, """ Try `help [command]`,\n Display helpful information about builtin commands.\n If PATTERN is specified, gives detailed help on all\n commands matching PATTERN, otherwise a list of the\n builtins is printed. The -s option restricts the output\n for each builtin command matching PATTERN to a short usage synopsis""", False], "version":[self.version_command, 1, """ none\n will show the git hash associated with the firmware version\n print the version of firmware""", True], "dmesg":[self.dmesg_command, 1, """ none\n print the system log to shell\n just type dmesg""", False], "smbpbi":[self.smbpbi_command, 3, """ <dev_addr> <data_in(32bits)> <command(32bit)>\n SMBPBI read from a specific device\n""", True], "power":[self.smbpbi_sub_command, 1, """ <gpu index>\n read GPU power for gpu [0-1]\n example arguments: \n power 0\n read specified GPU power""", True], "temp":[self.i2c_sub_command, 1, """ <index>\n read temperature for gpu/LR10 [0-2]\n example arguments: 0 for GPU0, 1 for GPU1, 2 for LR10\n temp 0\n read specified GPU temperature""", False], "get_pwm":[self.dbus_command, 1, """ <pwm index[0-3]>\n get current PWM[0-3] duty cycle\n 0:GPU1, 1:GPU2, 2:LR, 3:ALL\n example arguments: \n pwm 1\n get current PWM duty cycle""", False], "pwm_restore":[self.dbus_command, 1, """ <pwm index[0-3]>\n resotre PWM[0-3] for control based on temperature\n 0:GPU1, 1:GPU2, 2:LR, 3:ALL\n example arguments: \n pwm_restore 1\n restore PWM duty cycle for control based on temperature""", False], "pwm":[self.dbus_command, 2, """ <pwm index[0-3]> <duty cycle percentage[0-100]>\n specify PWM[0-3] for fans [0-100]\n 0:GPU1, 1:GPU2, 2:LR, 3:ALL\n example: \n pwm 0 50\n set GPU1 to 50% duty cycle set PWM duty cycle""", False], "hsc":[self.i2c_sub_command, 2, """hsc number([0-3])> <info type(power,temp,alert)>\n ead HS power, temperature, alert state\n example arguments: \n hsc 1 power\n hsc 1 temp\n hsc 1 alert\n read specified HSC power , temp ,alert""", False], "i2c_block_write":[self.i2c_command, 100, """<dev_addr> <reg_addr> <byte_count> <reg_val[0]> <reg_val[1]> .... \n write block data to a specified smbus device's register""", False], "i2c_block_read":[self.i2c_command, 3, """<dev_addr> <reg_addr> <byte_count>\n read the block data from a specified device's register""", True], "i2c_word_write":[self.i2c_command, 3, """<dev_addr> <dev_reg_addr> <reg_val>\n write word data to a specified smbus device's register""", False], "i2c_word_read":[self.i2c_command, 2, """<dev_addr> <dev_reg_addr>\n read the word data from a specified device's register""", True], "i2c_byte_write":[self.i2c_command, 3, """<dev_addr> <dev_reg_addr> <reg_val>\n write one byte data to a specified smbus device's register""", False], "i2c_byte_read":[self.i2c_command, 2, """<dev_addr> <reg_addr>\n read the byte data from a specified device's register""", True], "i2c_dump":[self.i2c_command, 1, """<i2c_dev_addr>\n dump the data from a specified smbus address""", False], "i2c_probe":[self.i2c_command, 0, """No agrment need\n probe to find physical addresses that ack""", False], "ip":[self.ip_command, 0, """No agrment need\n show the ip address of current openBMC RPI module""", True], } def add_cmd(self,cmd_name,*args): if not self.search_cmd(cmd_name): self.cmd_list[cmd_name] = [] for para in args: self.cmd_list[cmd_name].append(para) def remove_cmd(self,cmd_name): if self.search_cmd(cmd_name): del self.cmd_list[cmd_name] def update_cmd(self,cmd_name,*args): if self.search_cmd(cmd_name): for i,para in enumerate(args): self.cmd_list[cmd_name][i] = para return True else: return False def search_cmd(self,cmd_name): if cmd_name in self.cmd_list.keys(): return True else: return False def apply_cmd(self,cmd_name,serial=None,*args): if self.search_cmd(cmd_name): #print(len(args),args) if len(args) <= self.cmd_list[cmd_name][1]: f = self.cmd_list[cmd_name][0] try: if self.cmd_list[cmd_name][3]: ret = f(cmd_name,serial,*args) show(str(ret),serial) else: f(cmd_name,serial,*args) except Exception as err: logging.error(err) else: show("the parametes of the cmd {} is not valid\n".format(cmd_name),serial) else: show("this {} is not in the commad list\n".format(cmd_name),serial) def help_command(self,name,serial=None,cmd_name=None): def print_command_list(serial=None): cmd_list = "" for key in self.cmd_list: cmd_list += "{0}:{1}\n".format(key,self.cmd_list[key][2]) show(cmd_list,serial) if not cmd_name: print_command_list(serial) return if self.search_cmd(cmd_name): show("{0}:{1}\n".format(cmd_name,self.cmd_list[cmd_name][2]),serial) else: show("commad list doesn't have the cmd [{}]\n".format(cmd_name),serial) def version_command(self,name,serial=None): return 1.0 def dmesg_command(self,name,serial=None): os.system("dmesg") def smbpbi_command(self,name,serial=None,*args): if len(args) <3: show("Need SMBPBI slave address, data_in(32 bits) ,command(32 bits) \n",serial) return -1 address = int(args[0],0) data_in = int(args[1],0) command_in = int(args[2],0) dbus_iface = dbus.Interface(dbus.SystemBus().get_object('com.openBMC.RPI','/RPI'),'com.openBMC.RPI') pre_user_status = [] for i in range(3): pre_user_status.append(get_dbus_data(i,"user",dbus_iface)) set_dbus_data(i,"user",1,dbus_iface) val,status = smbpbi_read(address,command_in,None,data_in) for i in range(3): set_dbus_data(i,"user",pre_user_status.pop(0),dbus_iface) if status == 0x1f: return val elif status == 0x08: show("Requested parameter is not supported on given configuration.\n",serial) return -1 def smbpbi_sub_command(self,name,serial=None,*args): if name == "power": if len(args) <1: show("Error: invalid argument\n",serial) return -1 gpu_index = int(args[0]) #print(gpu_index,type(gpu_index)) if gpu_index >1 or gpu_index <0: show("Error: invalid gpu index\n",serial) return -1 if gpu_index == 0: address = GPU0_7bit_ADDR else: address = GPU1_7bit_ADDR try: val = self.smbpbi_command(None,None,str(address),"0x0","0x80000004") return val except Exception as err: logging.error(err) return -1 def dbus_command(self,name,serial=None,*args): gpu_index = None percent = None bus = smbus.SMBus(1) dbus_iface = dbus.Interface(dbus.SystemBus().get_object('com.openBMC.RPI','/RPI'),'com.openBMC.RPI') if name == "pwm": if len(args) <2: show("error, must specify PWM index 0-3 and duty cycle 0-100\n",serial) return -1 gpu_index = int(args[0]) if gpu_index > 3 or gpu_index <0: show("Error: invalid PWM index\n",serial) return -1 percent = int(args[1]) if percent > 100: percent = 100 elif percent < 0: percent = 0 if gpu_index == 3: for i in range(3): set_dbus_data(i,"user",1,dbus_iface) pwm_reqest_set(i,percent,bus,dbus_iface) else: set_dbus_data(gpu_index,"user",1,dbus_iface) pwm_reqest_set(gpu_index,percent,bus,dbus_iface) if name == "pwm_restore": if len(args) <1: show("error, must specify PWM0/1/2/3\n",serial) return -1 gpu_index = int(args[0]) if gpu_index > 3 or gpu_index < 0: show("Error: invalid PWM index\n",serial) return -1 if gpu_index == 3: for i in range(3): set_dbus_data(i,"user",0,dbus_iface) else: set_dbus_data(gpu_index,"user",0,dbus_iface) if name == "get_pwm": if len(args) <1: show("Error: invalid argument\n",serial) return -1 gpu_index = int(args[0]) if gpu_index > 3 or gpu_index < 0: show("Error: invalid PWM index\n",serial) return -1 if gpu_index == 3: for i in range(3): show("{0}: {1}%\n".format(i,get_dbus_data(i,"percent",dbus_iface)),serial) else: show("{}%".format(get_dbus_data(gpu_index,"percent",dbus_iface)),serial) def i2c_sub_command(self,name,serial=None,*args): if name == "hsc": address_list = [0x40,0x42,0x44,0x46] if len(args) <2: show("Need HSC Number([0-3]),info_type(power,temp,alert)\n",serial) return -1 if int(args[0]) > 3 and int(args[0]) <0: show("Error, HSC parameters wrong. Only support [0-3]\n",serial) return -1 address = address_list[int(args[0])] if args[1] == "temp": offset = 0x8d elif args[1] == "power": offset = 0x97 elif args[1] == "alert": offset = 0x79 else: show("Error, info type parameters wrong. Only support power,temp,alert\n",serial) return -1 try: val = self.i2c_command("i2c_word_read",serial,address,offset) if args[1] == "temp": show("HSC 0x{0:02x} 0x{1:02x}: {2} C".format(address,offset,(val&0xff)+((val&0xff00)>>8)*256),serial) elif args[1] == "power": show("HSC 0x{0:02x} 0x{1:02x}: {2} w".format(address,offset,(val&0xff)+((val&0xff00)>>8)*256),serial) elif args[1] == "alert": show("HSC 0x{0:02x} 0x{1:02x}: 0x{3:02X}{2:02X}".format(address,offset,(val&0xff),((val&0xff00)>>8)),serial) except Exception as err: show(err,serial) if name == "temp": if len(args) <1: show("Error: invalid argument\n",serial) return -1 gpu_index = int(args[0]) if gpu_index > 3 and gpu_index <0: show("Error: invalid gpu index\n",serial) return -1 if gpu_index == 0: address = GPU0_7bit_ADDR offset = 0 elif gpu_index == 1: address = GPU1_7bit_ADDR offset = 0 else: address = TMP451_7bit_ADDR offset = 1 try: val = self.i2c_command("i2c_byte_read",serial,address,offset) if gpu_index == 2: show("{0:3d} C".format(val-64),serial) else: show("{0:3d} C".format(val),serial) except Exception as err: show(err,serial) def i2c_command(self,name,serial=None,*args): # init val = None address = None offset = None count = None # get i2c1 bus bus = smbus.SMBus(1) if name == "i2c_probe": if len(args) > 0: show("error, no need argument\n",serial) return -1 os.system("i2cdetect -y 1") if name == "i2c_dump": if len(args) < 1: show("Need i2c_dev_addr\n",serial) return -1 address = int(args[0],0) os.system("i2cdump -y 1 {}".format(address)) if name == "i2c_byte_read": if len(args) < 2: show("Need i2c_dev_addr, dev_reg_addr\n",serial) address = int(args[0]) offset = int(args[1]) val = bus.read_byte_data(address,offset) if val < 0: show("Error reading device register 0x{0:x} from addr 0x{1:x} \nI2c bus collision may detect, please try again\n".format(address,offset),serial) return val if name == "i2c_byte_write": if len(args) < 3: show("Need i2c_dev_addr, dev_reg_addr, reg_val\n",serial) address = int(args[0]) offset = int(args[1]) val = int(args[2]) bus.write_byte_data(address,offset,val) if name == "i2c_word_read": if len(args) < 2: show("Need i2c_dev_addr, dev_reg_addr\n",serial) address = int(args[0]) offset = int(args[1]) val = bus.read_word_data(address,offset) if val < 0: show("Error reading device register 0x{0:x} from addr 0x{1:x} \nI2c bus collision may detect, please try again\n".format(address,offset),serial) return val if name == "i2c_word_write": if len(args) < 3: show("Need i2c_dev_addr, dev_reg_addr, reg_val\n",serial) address = int(args[0]) offset = int(args[1]) val = int(args[2]) bus.write_word_data(address,offset,val) if name == "i2c_block_read": if len(args) < 3: show("Need i2c_dev_addr, dev_reg_addr, byte_count\n",serial) address = int(args[0]) offset = int(args[1]) count = int(args[2]) try: val = bus.read_i2c_block_data(address,offset,count) except Exception as err: show("Error reading device register 0x{0:x} from addr 0x{1:x} \nI2c bus collision may detect, please try again\n{2}".format(address,offset,err),serial) return val if name == "i2c_block_write": num = len(args) if num < 4: show("Need i2c_dev_addr, dev_reg_addr, byte_count ,reg_val[0] , reg_val[1] ....\n",serial) address = int(args[0]) offset = int(args[1]) count = int(args[2]) if count == num - 3: try: val = args[3:] bus.write_i2c_block_data(address,offset,val) except Exception as err: show("Error writing device register 0x{0:x} from addr 0x{1:x} \nI2c bus collision may detect, please try again\n{2}".format(address,offset,err),serial) else: show("the count is not equal to value list num\n",serial) def ip_command(self,name,serial=None): try: s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.connect(('8.8.8.8', 80)) ip = s.getsockname()[0] finally: s.close() return ip if __name__ == '__main__': # python terminal_cmd.py cmd_name arg1 arg2 arg3 terminal_command = CMDManager() if len(sys.argv) == 1: terminal_command.apply_cmd("help") sys.exit(0) cmd_name = sys.argv[1] args = tuple(sys.argv[2:]) # print(sys.argv) terminal_command.apply_cmd(cmd_name,None,*args)
39.737945
171
0.482564
18,207
0.960538
0
0
0
0
0
0
5,321
0.280717
4935f536cd95ba674ac2e9ef0ae15b9cb27cb00e
5,436
py
Python
other/wget_files.py
arlewis/galaxy_cutouts
02c7eac9a6251a36290e7c620ff6a76c012fd53b
[ "MIT" ]
null
null
null
other/wget_files.py
arlewis/galaxy_cutouts
02c7eac9a6251a36290e7c620ff6a76c012fd53b
[ "MIT" ]
null
null
null
other/wget_files.py
arlewis/galaxy_cutouts
02c7eac9a6251a36290e7c620ff6a76c012fd53b
[ "MIT" ]
null
null
null
from __future__ import print_function import numpy as np import astropy.io.fits import gal_data import config import argparse import os import sys from collections import defaultdict from pdb import set_trace _WORK_DIR = '/Users/lewis.1590/research/galbase' _GALDATA_DIR = '/Users/lewis.1590/python/galbase/gal_data' _OUTPUT_DIR = '/Users/lewis.1590/research/z0mgs' BAND = 'fuv' #galex_file_suffixes = ['-int', '-cnt', '-exp', '-rrhr', '-skybg', '-intbgsub', '-wt', '-flags', '-objmask', '-cat'] galex_file_suffixes = ['-int', '-intbgsub', '-rrhr'] def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--galaxy_list', nargs='+', help='list of tilenames to gather') parser.add_argument('--output_file', default='wget_commands.sh', help='file to write commands to') return parser.parse_args() def calc_tile_overlap(ra_ctr, dec_ctr, pad=0.0, min_ra=0., max_ra=180., min_dec=-90., max_dec=90.): """ Find all tiles that fall within a given overlap (pad) of (ra_ctr, dec_ctr) Parameters ---------- ra_ctr : float Central RA dec_ctr : float Central Dec pad : float, optional Size of region about center (Default: 0.0) min_ra : float. optional Min RA of box to search in for overlaps (Default: 0.) max_ra : float, optional Max RA of box to search in (Default 180.) min_dec : float, optional Min Dec of box to search in (Default: -90.) max_dec : float, optional Max Dec of box to search in (Default: 90.) Returns ------- overlap : bool array Bool arrat indicatinng which tiles in the index file fall within the given region """ overlap = ((min_dec - pad) < dec_ctr) & ((max_dec + pad) > dec_ctr) #TRAP HIGH LATITUDE CASE AND (I GUESS) TOSS BACK ALL TILES. DO BETTER LATER mean_dec = (min_dec + max_dec) * 0.5 if np.abs(dec_ctr) + pad > 88.0: return overlap ra_pad = pad / np.cos(np.radians(mean_dec)) # MERIDIAN CASES merid = np.where(max_ra < min_ra) overlap[merid] = overlap[merid] & ( ((min_ra-ra_pad) < ra_ctr) | ((max_ra+ra_pad) > ra_ctr) )[merid] # BORING CASE normal = np.where(max_ra > min_ra) overlap[normal] = overlap[normal] & ((((min_ra-ra_pad) < ra_ctr) & ((max_ra+ra_pad) > ra_ctr)))[normal] return overlap def main(**kwargs): orig_wgetfile = os.path.join(_WORK_DIR, 'code/adam/MyAllSkyTable_akleroy.csv') outfile = kwargs.get('output_file', 'wget_commands.sh') with open(orig_wgetfile, 'r') as f: lines = f.readlines() galaxy_list = kwargs.get('galaxy_list', None) if galaxy_list is None: print('No galaxies requested!') sys.exit() gals = gal_data.gal_data(names=kwargs['galaxy_list'], galdata_dir=_GALDATA_DIR) n_gals = len(gals) size_deg = 30. * 60. / 3600. #tile_list = [] for i in range(n_gals): this_gal = np.rec.fromarrays(gals[i], names=list(config.COLUMNS)) galname = str(this_gal.name).replace(' ', '').upper() # open the index file which provides information about all the galex tiles indexfile = os.path.join(_OUTPUT_DIR, 'galex_index_file.fits') ext = 1 index, hdr = astropy.io.fits.getdata(indexfile, ext, header=True) # CALCULATE TILE OVERLAP tile_overlaps = calc_tile_overlap(this_gal.ra_deg, this_gal.dec_deg, pad=size_deg, min_ra=index['MIN_RA'], max_ra=index['MAX_RA'], min_dec=index['MIN_DEC'], max_dec=index['MAX_DEC']) # FIND OVERLAPPING TILES WITH RIGHT BAND # index file set up such that index['fuv'] = 1 if fuv and index['nuv'] = 1 if nuv ind = np.where((index[BAND]) & tile_overlaps)[0] # pull out the tilenames of the overlapping tiles infiles = index[ind]['fname'] tile_list = [os.path.basename(infile.split('.')[0]) for infile in infiles] # setup the output directory and command file output_dir = os.path.join(_OUTPUT_DIR, galname) if not os.path.exists(output_dir): os.makedirs(output_dir) newcommandfile = os.path.join(output_dir, galname + '_' + outfile) # in the original wget file, select out all of the filenames and paths of the retrieved files goodlines = lines[1:] # lines with a wget command allfiles = [f.split(' ')[-1].strip('"\n').split('/')[-1].split('.')[0] for f in goodlines] # find the locations in the allfiles list that correspond to tiles for the given galaxy inds = np.where(np.in1d(allfiles, tile_list))[0] names = np.asarray(allfiles)[inds] # just a check to make sure the tiles do match # now select out the lines with the correct tiles # we'll use this list to create our list of tiles to grab with various endings filestarts = np.asarray(goodlines)[inds] # populate the wget command file by replacing -int at the end of the filename with the desired file type with open(newcommandfile, 'w') as g: for s in galex_file_suffixes: for f in filestarts: newline = f.replace('-int', s) g.writelines(newline) if __name__ == '__main__': args = get_args() main(**vars(args))
36.979592
116
0.625276
0
0
0
0
0
0
0
0
2,260
0.415747
49373d99cd60462ee40755d32e9fd17e9129e6bd
478
py
Python
jessie_bot/help/help.py
KNNCreative/jessie-bot
de6994b6a58b742f1e943cdfbd84af6c0c183851
[ "MIT" ]
1
2017-08-06T06:08:29.000Z
2017-08-06T06:08:29.000Z
jessie_bot/help/help.py
KNNCreative/jessie-bot
de6994b6a58b742f1e943cdfbd84af6c0c183851
[ "MIT" ]
null
null
null
jessie_bot/help/help.py
KNNCreative/jessie-bot
de6994b6a58b742f1e943cdfbd84af6c0c183851
[ "MIT" ]
null
null
null
import json import logging from pathlib import Path from hermes.common.lex_utils import success, error logger = logging.getLogger(__name__) script_path = Path.cwd().joinpath('hermes/help/script.json') with script_path.open() as f: script = json.load(f) def handler(event, context): help_text = '\n'.join(script['help_text']) return success(message=help_text) if __name__ == '__main__': res = handler(event={}, context={}) print(json.dumps(res, indent=3))
22.761905
60
0.719665
0
0
0
0
0
0
0
0
50
0.104603
493744bd4e38a4f634bfc5490a7a5a2f5c5b9cc9
4,733
py
Python
MyStudy/app/Stateful_Firewall.py
OucMan/ryu
6ca460ec16f967945643fc7b3846898c571ad6cf
[ "Apache-2.0" ]
null
null
null
MyStudy/app/Stateful_Firewall.py
OucMan/ryu
6ca460ec16f967945643fc7b3846898c571ad6cf
[ "Apache-2.0" ]
null
null
null
MyStudy/app/Stateful_Firewall.py
OucMan/ryu
6ca460ec16f967945643fc7b3846898c571ad6cf
[ "Apache-2.0" ]
null
null
null
from ryu.base import app_manager from ryu.ofproto import ofproto_v1_3 from ryu.controller import ofp_event from ryu.controller.handler import set_ev_cls, MAIN_DISPATCHER, CONFIG_DISPATCHER from ryu.lib.packet.packet import packet, ether_types from ryu.lib.packet.ethernet import ethernet from ryu.lib.packet.ethernet import arp from ryu.lib.packet.ipv4 import ipv4 from ryu.lib.packet.tcp import tcp from ryu.lib.packet import in_proto from ryu.lib import addrconv from ryu.lib import mac import struct import time class FireWall(app_manager.RyuApp): OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION] def __init__(self,*args,**kwargs): super(FireWall,self).__init__(*args,**kwargs) self.mac_to_port = {} self.ip_to_port = {} self.internal_host = ['10.0.0.1', '10.0.0.2'] @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER) def switch_features_handler(self, ev): datapath = ev.msg.datapath ofproto = datapath.ofproto parser = datapath.ofproto_parser match = parser.OFPMatch() actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER, ofproto.OFPCML_NO_BUFFER)] self.add_flow(datapath, 0, match, actions, 0, 0) def add_flow(self, datapath, priority, match, actions, idle_timeout, hard_timeout): ofproto = datapath.ofproto parser = datapath.ofproto_parser inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, actions)] mod = parser.OFPFlowMod(datapath=datapath, priority=priority, idle_timeout=idle_timeout, hard_timeout=hard_timeout, match=match, instructions=inst) datapath.send_msg(mod) @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER) def packet_in_handler(self, ev): msg = ev.msg datapath = msg.datapath ofproto = datapath.ofproto ofp_parser = datapath.ofproto_parser in_port = msg.match['in_port'] pkt = packet.Packet(msg.data) eth = pkt.get_protocols(ethernet.ethernet)[0] dst = eth.dst src = eth.src dpid = datapath.id self.mac_to_port.setdefault(dpid, {}) self.mac_to_port[dpid][src] = in_port if dst in self.mac_to_port[dpid]: out_port = self.mac_to_port[dpid][dst] else: out_port = ofproto.OFPP_FLOOD pkt_arp = pkt.get_protocol(arp.arp) if pkt_arp: arp_ip_src = pkt_arp.src_ip self.ip_to_port[dpid][arp_ip_src] = in_port actions = [ofp_parser.OFPActionOutput(out_port, ofproto.OFPCML_NO_BUFFER)] out = ofp_parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id, in_port=in_port, actions=actions, data=msg.data) datapath.send_msg(out) return pkt_ipv4 = pkt.get_protocol(ipv4.ipv4) if pkt_ipv4: ipv4_src = pkt_ipv4.src ipv4_dst = pkt_ipv4.dst self.ip_to_port[dpid][ipv4_src] = in_port ipv4_proto = pkt_ipv4.proto if ipv4_proto == in_proto.IPPROTO_TCP: pkt_tcp = pkt.get_protocol(tcp.tcp) if pkt_tcp.bits == tcp.TCP_SYN and ipv4_src not in self.internal_host: #增加优先级高一些的流表项,(src, dst, tcp, syn, drop) actions = [] match = ofp_parser.OFPMatch(eth_type=ether_types.ETH_TYPE_IP, ip_proto=ipv4_proto, ipv4_src=ipv4_src, ipv4_dst=ipv4_dst, tcp_flags=tcp.TCP_SYN) self.add_flow(datapath, 10, match, actions) if ipv4_dst in self.ip_to_port[dpid]: out_port = self.ip_to_port[dpid][ipv4_dst] else: out_port = ofproto.OFPP_FLOOD actions = [ofp_parser.OFPActionOutput(out_port, ofproto.OFPCML_NO_BUFFER)] if out_port != ofproto.OFPP_FLOOD: match = ofp_parser.OFPMatch(eth_type=ether_types.ETH_TYPE_IP, ip_proto=ipv4_proto, ipv4_src=ipv4_src, ipv4_dst=ipv4_dst) self.add_flow(datapath, 1, match, actions) out = ofp_parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id, in_port=in_port, actions=actions, data=msg.data) datapath.send_msg(out)
45.509615
110
0.592225
4,246
0.891455
0
0
3,395
0.712786
0
0
99
0.020785
493827951fe9c01069f538a18ee56a8c22b8b962
1,355
py
Python
screenpy/questions/body_of_the_last_response.py
perrygoy/screenpy
862c0d7e5ff9f1265e520ab383c04ddbd4d060eb
[ "MIT" ]
39
2019-03-22T15:18:23.000Z
2022-02-23T17:32:03.000Z
screenpy/questions/body_of_the_last_response.py
perrygoy/screenpy
862c0d7e5ff9f1265e520ab383c04ddbd4d060eb
[ "MIT" ]
63
2019-07-17T06:25:19.000Z
2022-01-13T07:03:53.000Z
screenpy/questions/body_of_the_last_response.py
bandophahita/screenpy
db0f3ef91a891b9d095016d83fa4b589620808ce
[ "MIT" ]
15
2019-07-09T11:02:56.000Z
2021-12-24T07:43:56.000Z
""" Investigate the body of the last API response received by the Actor. """ from json.decoder import JSONDecodeError from typing import Union from screenpy import Actor from screenpy.abilities import MakeAPIRequests from screenpy.exceptions import UnableToAnswer from screenpy.pacing import beat class BodyOfTheLastResponse: """Ask about the body of the last API response received by the Actor. Abilities Required: |MakeAPIRequests| Examples:: the_actor.should( See.the(BodyOfTheLastResponse(), ContainsTheEntry(play="Hamlet")) ) the_actor.should( See.the(BodyOfTheLastResponse(), ReadsExactly("To be, or not to be")) ) """ def describe(self) -> str: """Describe the Question..""" return "The body of the last response." @beat("{} examines the body of the last response they received.") def answered_by(self, the_actor: Actor) -> Union[dict, str]: """Direct the Actor to investigate the body of the last response.""" responses = the_actor.ability_to(MakeAPIRequests).responses if len(responses) < 1: raise UnableToAnswer(f"{the_actor} has not yet received any API responses.") try: return responses[-1].json() except JSONDecodeError: return responses[-1].text
30.111111
88
0.667159
1,053
0.777122
0
0
518
0.382288
0
0
695
0.512915
493855de80e96da6e183d61540552721c4471e12
2,973
py
Python
d3rlpy/algos/torch/td3_impl.py
ningyixue/AIPI530_Final_Project
b95353ffd003692a37a59042dfcd744a18b7e802
[ "MIT" ]
565
2020-08-01T02:44:28.000Z
2022-03-30T15:00:54.000Z
d3rlpy/algos/torch/td3_impl.py
ningyixue/AIPI530_Final_Project
b95353ffd003692a37a59042dfcd744a18b7e802
[ "MIT" ]
144
2020-08-01T03:45:10.000Z
2022-03-30T14:51:16.000Z
d3rlpy/algos/torch/td3_impl.py
ningyixue/AIPI530_Final_Project
b95353ffd003692a37a59042dfcd744a18b7e802
[ "MIT" ]
103
2020-08-26T13:27:34.000Z
2022-03-31T12:24:27.000Z
from typing import Optional, Sequence import torch from ...gpu import Device from ...models.encoders import EncoderFactory from ...models.optimizers import OptimizerFactory from ...models.q_functions import QFunctionFactory from ...preprocessing import ActionScaler, RewardScaler, Scaler from ...torch_utility import TorchMiniBatch from .ddpg_impl import DDPGImpl class TD3Impl(DDPGImpl): _target_smoothing_sigma: float _target_smoothing_clip: float def __init__( self, observation_shape: Sequence[int], action_size: int, actor_learning_rate: float, critic_learning_rate: float, actor_optim_factory: OptimizerFactory, critic_optim_factory: OptimizerFactory, actor_encoder_factory: EncoderFactory, critic_encoder_factory: EncoderFactory, q_func_factory: QFunctionFactory, gamma: float, tau: float, n_critics: int, target_reduction_type: str, target_smoothing_sigma: float, target_smoothing_clip: float, use_gpu: Optional[Device], scaler: Optional[Scaler], action_scaler: Optional[ActionScaler], reward_scaler: Optional[RewardScaler], ): super().__init__( observation_shape=observation_shape, action_size=action_size, actor_learning_rate=actor_learning_rate, critic_learning_rate=critic_learning_rate, actor_optim_factory=actor_optim_factory, critic_optim_factory=critic_optim_factory, actor_encoder_factory=actor_encoder_factory, critic_encoder_factory=critic_encoder_factory, q_func_factory=q_func_factory, gamma=gamma, tau=tau, n_critics=n_critics, target_reduction_type=target_reduction_type, use_gpu=use_gpu, scaler=scaler, action_scaler=action_scaler, reward_scaler=reward_scaler, ) self._target_smoothing_sigma = target_smoothing_sigma self._target_smoothing_clip = target_smoothing_clip def compute_target(self, batch: TorchMiniBatch) -> torch.Tensor: assert self._targ_policy is not None assert self._targ_q_func is not None with torch.no_grad(): action = self._targ_policy(batch.next_observations) # smoothing target noise = torch.randn(action.shape, device=batch.device) scaled_noise = self._target_smoothing_sigma * noise clipped_noise = scaled_noise.clamp( -self._target_smoothing_clip, self._target_smoothing_clip ) smoothed_action = action + clipped_noise clipped_action = smoothed_action.clamp(-1.0, 1.0) return self._targ_q_func.compute_target( batch.next_observations, clipped_action, reduction=self._target_reduction_type, )
36.703704
73
0.670703
2,604
0.875883
0
0
0
0
0
0
18
0.006054
49389ecac90c405c9c35bd0a48479aa66ba8e1c6
9,086
py
Python
mod_modPackInformer/source/mod_modPackInformer.py
stealthz67/spoter-mods-1
4ebd859fbb705b085ae5c4cb621edfbab476e378
[ "WTFPL" ]
null
null
null
mod_modPackInformer/source/mod_modPackInformer.py
stealthz67/spoter-mods-1
4ebd859fbb705b085ae5c4cb621edfbab476e378
[ "WTFPL" ]
null
null
null
mod_modPackInformer/source/mod_modPackInformer.py
stealthz67/spoter-mods-1
4ebd859fbb705b085ae5c4cb621edfbab476e378
[ "WTFPL" ]
1
2019-12-10T19:11:55.000Z
2019-12-10T19:11:55.000Z
# -*- coding: utf-8 -*- import json import os import threading import urllib import urllib2 import BigWorld import ResMgr from gui.Scaleform.daapi.view.dialogs import DIALOG_BUTTON_ID, ConfirmDialogButtons, SimpleDialogMeta from gui.Scaleform.daapi.view.lobby.LobbyView import LobbyView from gui import DialogsInterface, SystemMessages, makeHtmlString from notification.NotificationListView import NotificationListView from constants import AUTH_REALM from helpers import getLanguageCode from adisp import process from gui.Scaleform.daapi.view.common.BaseTicker import BaseTicker from helpers import dependency from skeletons.gui.game_control import IBrowserController, IExternalLinksController class Config(object): def __init__(self): self.data = { 'version' : '', 'name' : '', 'serverMain' : '', 'serverBackup' : '', 'statistic' : False, 'statisticTid' : '', 'openLinkInGameBrowser': False } xml = ResMgr.openSection('scripts/client/gui/mods/mod_modPackInformer.xml') if xml is not None: self.data['version'] = '%s' % xml.readString('version', '') self.data['name'] = '%s' % xml.readString('name', '') self.data['serverMain'] = '%s' % xml.readString('serverMain', '') self.data['serverBackup'] = '%s' % xml.readString('serverBackup', '') self.data['statistic'] = xml.readBool('statistic', False) self.data['statisticTid'] = '%s' % xml.readString('statisticTid', '') self.data['openLinkInGameBrowser'] = xml.readBool('openLinkInGameBrowser', False) class Updater(object): def __init__(self): self.show = True self.count = 0 self.lin1 = '' def start(self): if not updater.show: return try: f = urllib2.urlopen(config.data['serverMain']) except StandardError: f = None if f is None or f.getcode() is not 200: try: f = urllib2.urlopen(config.data['serverBackup']) except StandardError: f = None if f is not None and f.getcode() is 200: mod_text = '' json_text = json.loads(f.read().decode('utf-8-sig')) if config.data['version'] != '%s' % json_text['version']: self.show = False if json_text['header']: mod_text += '%s' % json_text['header'].format(**json_text) if json_text['image']: try: image = 'img://gui/html/%s' % json_text['imageName'] path = os.path.realpath(os.path.join('./res/gui/html', '%s' % json_text['imageName'])) if not os.path.exists(path): urllib.urlretrieve('%s' % json_text['imageLink'], path) except StandardError: image = '' path = '' if image and path and os.path.exists(path): mod_text += '<br/><img src=\"%s\" width=\"%s\" height=\"%s\">' % (image, json_text['imageWidth'], json_text['imageHeight']) if json_text['message']: mod_text += '<br/>%s' % json_text['message'].format(**json_text) self.lin1 = '%s' % json_text['link'] DialogsInterface.showDialog(SimpleDialogMeta(json_text['windowName'], mod_text, ConfirmDialogButtons(json_text['buttonNameOpen'], json_text['buttonNameClose']), None), self.click) link = makeHtmlString('html_templates:lobby/system_messages', 'link', { 'text' : '%s' % json_text['messageLinkName'], 'linkType': '%s' % self.lin1 }) p__msg = '%s<br><br>' % json_text['header'].format(**json_text) p__msg += '<font color="#E2D2A2" size="15"><b>%s</b></font>' % link SystemMessages.pushMessage(p__msg, SystemMessages.SM_TYPE.GameGreeting) def click(self, isConfirmed): if isConfirmed and self.lin1: if self.lin1.lower().startswith('http:') or self.lin1.lower().startswith('https:'): if config.data['openLinkInGameBrowser']: browser.open(self.lin1) else: BigWorld.wg_openWebBrowser(self.lin1) def openLink(self, action): if self.lin1 is None or self.lin1 == '': return if self.lin1 in action: self.click(True) class Statistics(object): def __init__(self): self.analytics_started = False self.thread_analytics = None self.user = None self.old_user = None def analytics_start(self): if not self.analytics_started: lang = str(getLanguageCode()).upper() param = urllib.urlencode({ 'v' : 1, # Version. 'tid': config.data['statisticTid'], 'cid': self.user, # Anonymous Client ID. 't' : 'screenview', # Screenview hit type. 'an' : 'modPackInformer "%s"' % config.data['name'], # App name. 'av' : 'modPackInformer "%s" %s' % (config.data['name'], config.data['version']), 'cd' : 'Cluster: [%s], lang: [%s]' % (AUTH_REALM, lang), # Screen name / content description. 'ul' : '%s' % lang, 'sc' : 'start' }) urllib2.urlopen(url='http://www.google-analytics.com/collect?', data=param).read() self.analytics_started = True self.old_user = BigWorld.player().databaseID def start(self): player = BigWorld.player() if self.user and self.user != player.databaseID: self.old_user = player.databaseID self.thread_analytics = threading.Thread(target=self.end, name='Thread') self.thread_analytics.start() self.user = player.databaseID self.thread_analytics = threading.Thread(target=self.analytics_start, name='Thread') self.thread_analytics.start() def end(self): if self.analytics_started: lang = str(getLanguageCode()).upper() param = urllib.urlencode({ 'v' : 1, # Version. 'tid': config.data['statisticTid'], 'cid': self.user, # Anonymous Client ID. 't' : 'screenview', # Screenview hit type. 'an' : 'modPackInformer "%s"' % config.data['name'], # App name. 'av' : 'modPackInformer "%s" %s' % (config.data['name'], config.data['version']), 'cd' : 'Cluster: [%s], lang: [%s]' % (AUTH_REALM, lang), # Screen name / content description. 'ul' : '%s' % lang, 'sc' : 'end' }) urllib2.urlopen(url='http://www.google-analytics.com/collect?', data=param).read() self.analytics_started = False class p__Browser(BaseTicker): externalBrowser = dependency.descriptor(IExternalLinksController) internalBrowser = dependency.descriptor(IBrowserController) def __init__(self): super(p__Browser, self).__init__() self.__browserID = 'modPackInformer' return def _dispose(self): self.__browserID = 'modPackInformer' super(p__Browser, self)._dispose() return def open(self, link, internal=True): if internal: if self.internalBrowser is not None: self.__showInternalBrowser(link) else: self.__showExternalBrowser(link) else: self.__showExternalBrowser(link) return @process def __showInternalBrowser(self, link): self.__browserID = yield self.internalBrowser.load(url=link, browserID=self.__browserID) def __showExternalBrowser(self, link): if self.externalBrowser is not None: self.externalBrowser.open(link) def hookedGetLabels(self): return [{ 'id' : DIALOG_BUTTON_ID.SUBMIT, 'label' : self._submit, 'focused': True }, { 'id' : DIALOG_BUTTON_ID.CLOSE, 'label' : self._close, 'focused': False }] def hookedLobbyPopulate(self): hookLobbyPopulate(self) start = threading.Thread(target=updater.start, name='updater.start') start.start() if config.data['statistic']: stat.start() def hookedOnClickAction(*args): updater.openLink(args[3]) hookOnClickAction(*args) def init(): print '[LOAD_MOD]: [modPackInformer, by spoter]' def fini(): stat.end() config = Config() browser = p__Browser() updater = Updater() stat = Statistics() ConfirmDialogButtons.getLabels = hookedGetLabels hookLobbyPopulate = LobbyView._populate LobbyView._populate = hookedLobbyPopulate hookOnClickAction = NotificationListView.onClickAction NotificationListView.onClickAction = hookedOnClickAction
38.5
195
0.575171
7,395
0.81371
135
0.014855
148
0.016285
0
0
1,680
0.184859
49397d33975fc946c23e0dd90e4f51ce16027f86
1,978
py
Python
tests/dummypredictor/predictors.py
kiconiaworks/igata
1d8a4b82a65eb936d5d8f8ff70747ba82ddef31a
[ "BSD-2-Clause" ]
1
2021-12-31T14:29:44.000Z
2021-12-31T14:29:44.000Z
tests/dummypredictor/predictors.py
kiconiaworks/igata
1d8a4b82a65eb936d5d8f8ff70747ba82ddef31a
[ "BSD-2-Clause" ]
6
2019-11-25T04:20:26.000Z
2021-12-13T05:23:16.000Z
tests/dummypredictor/predictors.py
kiconiaworks/igata
1d8a4b82a65eb936d5d8f8ff70747ba82ddef31a
[ "BSD-2-Clause" ]
null
null
null
from time import sleep from igata.predictors import PredictorBase class DummyPredictorNoInputNoOutput(PredictorBase): def predict(self, inputs, meta): result = {"result": 0.222, "class": "car", "is_valid": True} return result class DummyPredictorNoInputNoOutputVariableOutput(PredictorBase): def __init__(self, *args, **kwargs): default_result = {"result": 0.222, "class": "car", "is_valid": True} self.result = kwargs.get("result", default_result) def predict(self, input, meta=None): return self.result class DummyPredictorNoOutput(PredictorBase): def preprocess_input(self, record, meta=None): return {} def predict(self, record, meta): return record class DummyPredictorNoInputNoOutputWithPredictTimeout5s(PredictorBase): def predict(self, inputs, meta): self.set_predict_timeout(3) sleep(10) result = {"result": 0.222, "class": "car", "is_valid": True} return result class DummyPredictorOptionalValidStaticMethods(PredictorBase): @staticmethod def get_pandas_read_csv_kwargs(self): return {"x": 1} def predict(self, inputs, meta): return {"result": 0.222, "class": "car", "is_valid": True} @staticmethod def get_pandas_to_csv_kwargs(self): return {"y": 2} @staticmethod def set_additional_dynamodb_request_update_attributes(self): return {"v": True} class DummyPredictorOptionalInValidStaticMethods(PredictorBase): def get_pandas_read_csv_kwargs(self): return {"x": 1} def predict(self, inputs, meta): return {"result": 0.222, "class": "car", "is_valid": True} def get_pandas_to_csv_kwargs(self): return {"y": 2} def set_additional_dynamodb_request_update_attributes(self): return {"v": True} class DummyInPandasDataFrameOutPandasCSVPredictor(PredictorBase): def predict(self, inputs, meta): raise NotImplementedError
27.859155
76
0.68453
1,890
0.955511
0
0
261
0.131951
0
0
176
0.088979
493a4dbeaaa60cda9d709c7b5d41a2f09db7205c
2,134
py
Python
ML/wrapper.py
NVombat/ReadAssist
11e107a7387f97024fa9e16d58a5b25e8291d343
[ "MIT" ]
5
2021-04-27T09:18:42.000Z
2022-03-22T17:24:33.000Z
ML/wrapper.py
SanahSidhu/ReadAssist
abbe910d0583bc504c3f2b318ccf263bb7170900
[ "MIT" ]
null
null
null
ML/wrapper.py
SanahSidhu/ReadAssist
abbe910d0583bc504c3f2b318ccf263bb7170900
[ "MIT" ]
4
2021-03-30T06:18:09.000Z
2021-04-05T08:05:16.000Z
#Encapsulates all models #Caches the models and uses the preexisting model instead of reloading it from .OCR import get_text from .ptt import get_pdf import pytesseract from .question import secondary_pipeline from transformers import pipeline class customwrapper(): def __init__(self): self.questionmodel = None self.summarizemodel = None self.tessearct = None self.generatemodel = None def question(self, text : str): if self.questionmodel == None: self.questionmodel = secondary_pipeline('question-generation') return self.questionmodel(text) def summarize(self, text : str, min_length, max_lenght ): if self.summarizemodel == None: self.summarizemodel = pipeline('summarization') return self.summarizemodel(text, min_length=min_length, max_lenght=max_lenght) def generate_text(self, text : str): if self.generatemodel == None: self.generatemodel = pipeline('text2text-generation') return self.generatemodel(text) if __name__ == '__main__': # gpt = pipeline('text-generation', model='gpt') trans = cutomwrapper() text = ''' The physical nature of time is addressed by general relativity with respect to events in space-time. Examples of events are the collision or two particles, the explosion of a supernova, or the arrival of a rocket ship. Every event can be assigned four numbers representing its time and position (the event's coordinates). However, the numerical values are different for different observers. In general relativity, the question of what time it is now only has meaning relative to a particular observer. Distance and time are intimately related and the time required for light to travel a specific distance is the same for all observers, as first publicly demonstrated by Michelson and Morley. General relativity does not address the nature of time for extremely small intervals where quantum mechanics holds. At this time, there is no generally accepted theory of quantum general relativity. ''' print(trans.question(text=text))
54.717949
894
0.735708
825
0.386598
0
0
0
0
0
0
1,119
0.524367
493bd803d4c7823847afa2537f0ada612dffc26a
154
py
Python
unicode_urls/cms/__init__.py
Alexx-G/django-unicode-urls
fd4f89181c7172412ddf499efd050119c16c7d43
[ "MIT" ]
null
null
null
unicode_urls/cms/__init__.py
Alexx-G/django-unicode-urls
fd4f89181c7172412ddf499efd050119c16c7d43
[ "MIT" ]
null
null
null
unicode_urls/cms/__init__.py
Alexx-G/django-unicode-urls
fd4f89181c7172412ddf499efd050119c16c7d43
[ "MIT" ]
null
null
null
from .urlutils import any_path_re def patch_djangocms_urls(): import cms.utils.urlutils as cms_urlutils cms_urlutils.any_path_re = any_path_re
19.25
45
0.792208
0
0
0
0
0
0
0
0
0
0
493bdcbcdb59f9dfe146c2a5250f13347ddc9c85
4,242
py
Python
mailpile/plugins/demos.py
pyarnold/Mailpile
a7c0a0c6257da167207200f3b214b0e66bb93a10
[ "Apache-2.0" ]
2
2017-02-03T07:00:57.000Z
2020-12-18T01:07:34.000Z
mailpile/plugins/demos.py
cz8s/Mailpile
a7c0a0c6257da167207200f3b214b0e66bb93a10
[ "Apache-2.0" ]
null
null
null
mailpile/plugins/demos.py
cz8s/Mailpile
a7c0a0c6257da167207200f3b214b0e66bb93a10
[ "Apache-2.0" ]
null
null
null
# This is a collection of very short demo-plugins to illustrate how # to create and register hooks into the various parts of Mailpile # # To start creating a new plugin, it may make sense to copy this file, # globally search/replace the word "Demo" with your preferred plugin # name and then go delete sections you aren't going to use. # # Happy hacking! from gettext import gettext as _ import mailpile.plugins ##[ Pluggable configuration ]################################################# # FIXME ##[ Pluggable keyword extractors ]############################################ # FIXME ##[ Pluggable search terms ]################################################## # Pluggable search terms allow plugins to enhance the behavior of the # search engine in various ways. Examples of basic enhanced search terms # are the date: and size: keywords, which accept human-friendly ranges # and input, and convert those to a list of "low level" keywords to # actually search for. # FIXME ##[ Pluggable vcard functions ]############################################### from mailpile.vcard import * class DemoVCardImporter(VCardImporter): """ This VCard importer simply generates VCards based on data in the configuration. This is not particularly useful, but it demonstrates how each importer can define (and use) its own settings. """ FORMAT_NAME = _('Demo Contacts') FORMAT_DESCRPTION = _('This is the demo importer') SHORT_NAME = 'demo' CONFIG_RULES = { 'active': [_('Activate demo importer'), bool, True], 'name': [_('Contact name'), str, 'Mr. Rogers'], 'email': [_('Contact email'), 'email', 'mr@rogers.com'] } def get_vcards(self): """Returns just a single contact, based on data from the config.""" # Notes to implementors: # # - It is important to only return one card per (set of) # e-mail addresses, as internal overwriting may cause # unexpected results. # - If data is to be deleted from the contact list, it # is important to return a VCard for that e-mail address # which has the relevant data removed. # if not self.config.active: return [] return [SimpleVCard( VCardLine(name='fn', value=self.config.name), VCardLine(name='email', value=self.config.email) )] mailpile.plugins.register_vcard_importers(DemoVCardImporter) ##[ Pluggable cron jobs ]##################################################### def TickJob(session): """ This is a very minimal cron job - just a function that runs within a session. Note that generally it is a better pattern to create a Command which is then invoked by the cron job, so power users can access the functionality directly. It is also a good idea to make the interval configurable by registering a setting and referencing that instead of a fixed number. See compose.py for an example of how this is done. """ session.ui.notify('Tick!') mailpile.plugins.register_fast_periodic_job('tick-05', # Job name 5, # Interval in seconds TickJob) # Callback mailpile.plugins.register_slow_periodic_job('tick-15', 15, TickJob) ##[ Pluggable commands ]###################################################### from mailpile.commands import Command from mailpile.util import md5_hex class md5sumCommand(Command): """This command calculates MD5 sums""" SYNOPSIS = (None, 'md5sum', 'md5sum', '[<data to hash>]') SPLIT_ARG = False HTTP_CALLABLE = ('GET', 'POST') HTTP_QUERY_VARS = { 'data': 'Data to hash' } def command(self): if 'data' in self.data: data = self.data['data'] else: data = ''.join(self.args) if 'gross' in data or not data: return self._error(_('I refuse to work with empty or gross data'), info={'data': data}) return self._success(_('I hashed your data for you, yay!'), result=md5_hex(data)) mailpile.plugins.register_commands(md5sumCommand)
32.883721
78
0.599481
1,989
0.468883
0
0
0
0
0
0
2,631
0.620226
493d7925c52f4ec18bce691a24e25dd57a737ace
2,523
py
Python
cqi_cpp/src/wrapper/cqi_test.py
AMR-/Conservative-Q-Improvement
f9d47b33fe757475d3216d3c406d147206738c90
[ "MIT" ]
null
null
null
cqi_cpp/src/wrapper/cqi_test.py
AMR-/Conservative-Q-Improvement
f9d47b33fe757475d3216d3c406d147206738c90
[ "MIT" ]
null
null
null
cqi_cpp/src/wrapper/cqi_test.py
AMR-/Conservative-Q-Improvement
f9d47b33fe757475d3216d3c406d147206738c90
[ "MIT" ]
null
null
null
import argparse import gym import math from qtree_wrapper import PyBox as Box from qtree_wrapper import PyDiscrete as Discrete from qtree_wrapper import PyQTree as QTree from qtree_wrapper import PyVector as Vector from train import Train from utils import convert_to_pybox env = gym.make('CartPole-v0') def truncate(number, digits): stepper = 10.0 ** digits return math.trunc(stepper * number) / stepper box = convert_to_pybox(env.observation_space) discrete = Discrete(env.action_space.n) # Optional command line args parser = argparse.ArgumentParser() parser.add_argument("--gamma") parser.add_argument("--alpha") parser.add_argument("--visit_decay") parser.add_argument("--split_thresh_max") parser.add_argument("--split_thresh_decay") parser.add_argument("--num_splits") parser.add_argument("--grid_search") parser.add_argument("--steps") args = parser.parse_args() gamma = float(args.gamma) if args.gamma else 0.99 alpha = float(args.alpha) if args.alpha else 0.01 visit_decay = float(args.visit_decay) if args.visit_decay else 0.999 split_thresh_max = float(args.split_thresh_max) if args.split_thresh_max else 0.1 split_thresh_decay = float(args.split_thresh_decay) if args.split_thresh_decay else 0.99 num_splits = int(args.num_splits) if args.num_splits else 2 grid_search = bool(args.grid_search) if args.grid_search else False qfunc = QTree(box, discrete, None, # Hyperparameters gamma, alpha, visit_decay, split_thresh_max, split_thresh_decay, num_splits) t = Train(qfunc, env) eps_func = (lambda step: max(0.05, 1 - step/1e5)) train_steps = int(args.steps) if args.steps else int(3e7) # Training history = t.train(train_steps, eps_func, verbose=True, qfunc_hist=None) # Evaluation: results, history2, avg_r_per_ep, _ = t.train(50000, lambda step: 0.05, \ verbose=True, eval_only=True, penalty_check=lambda s, r: r <= -1000, \ track_data_per=1, run_tag="some descriptive tag for logging") qfunc.print_structure() nodes = f"\nNumber of nodes: {qfunc.num_nodes()}\n" reward = f"\nAverage reward per episode: {truncate(avg_r_per_ep, 3)}\n" hparams_str = f"gamma={gamma}, alpha={alpha}, visit_decay={visit_decay}, " hparams_str += f"split_thresh_max={split_thresh_max}, " hparams_str += f"split_thresh_decay={split_thresh_decay}, num_splits={num_splits}" if grid_search: with open("grid_search_results.txt", "a") as myfile: myfile.write(nodes + reward + hparams_str) myfile.close() else: print(nodes + reward + hparams_str)
31.148148
88
0.752675
0
0
0
0
0
0
0
0
528
0.209275
493e1e1955403325340bec49f18afa1cd0849a0e
621
py
Python
mcu-controller/main.py
KongoPL/lego-rc-car
6e731cd8a6787d69a83d5a92a290bbea074ef588
[ "BSD-3-Clause" ]
null
null
null
mcu-controller/main.py
KongoPL/lego-rc-car
6e731cd8a6787d69a83d5a92a290bbea074ef588
[ "BSD-3-Clause" ]
null
null
null
mcu-controller/main.py
KongoPL/lego-rc-car
6e731cd8a6787d69a83d5a92a290bbea074ef588
[ "BSD-3-Clause" ]
null
null
null
# Yea, there is probably some good framework waiting for me, # but I just want to have fun. Sometimes reinventing the wheel will serve you. # But...don't do that in professional work :) import config import time from Controller import Controller print("Hello!") root = Controller() # try: if True: lastLoopExecution = time.time() while True: loopStartExecution = time.time() deltaTime = loopStartExecution - lastLoopExecution if deltaTime < 0.001: continue for object in root.createdObjects: object.update(deltaTime) lastLoopExecution = loopStartExecution # except: # print("An error occured")
20.7
78
0.742351
0
0
0
0
0
0
0
0
234
0.376812
493f41de8fbe0f2e07f4b04ada75db7783d58023
803
py
Python
thread_test.py
mrabedini/playground_threading
664bcae4a9328779170551d7d0e271707635e85d
[ "MIT" ]
null
null
null
thread_test.py
mrabedini/playground_threading
664bcae4a9328779170551d7d0e271707635e85d
[ "MIT" ]
null
null
null
thread_test.py
mrabedini/playground_threading
664bcae4a9328779170551d7d0e271707635e85d
[ "MIT" ]
null
null
null
import concurrent.futures import logging from logging import StreamHandler import time import timeit logging.basicConfig( level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", ) logger = logging.getLogger(__name__) def do_something(wait_time): logger.info("Waiting for %d seconds.", wait_time) time.sleep(wait_time) return f"Wait was done for {wait_time} seconds." start = timeit.default_timer() with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executer: secs = [5, 4, 3, 2, 1] results = [executer.submit(do_something, sec) for sec in secs] for f in concurrent.futures.as_completed(results): logger.info("result %s", f.result()) end = timeit.default_timer() logger.info("Execution took %f seconds", end - start)
25.09375
71
0.716065
0
0
0
0
0
0
0
0
158
0.196762
4940523067b88b49cb6f2210898a5f21bd9601ae
1,249
py
Python
iv/Backtracking/combinations.py
iamsuman/iv
bf68d3fd45455b6041e74b09272f69503bf7a8ac
[ "MIT" ]
2
2020-09-19T22:28:15.000Z
2020-10-03T01:44:53.000Z
iv/Backtracking/combinations.py
iamsuman/iv
bf68d3fd45455b6041e74b09272f69503bf7a8ac
[ "MIT" ]
null
null
null
iv/Backtracking/combinations.py
iamsuman/iv
bf68d3fd45455b6041e74b09272f69503bf7a8ac
[ "MIT" ]
1
2020-10-03T01:43:30.000Z
2020-10-03T01:43:30.000Z
class Combo(): def combine(self,n, k): A = list(range(1,n + 1)) res = self.comb(A, k) return res def comb(self, A, n): if n == 0: return [[]] l = [] for i in range(0, len(A)): m = A[i] remLst = A[i + 1:] for p in self.comb(remLst, n - 1): l.append([m] + p) return l def combinations(n, list, combos=[]): # initialize combos during the first pass through if combos is None: combos = [] if len(list) == n: # when list has been dwindeled down to size n # check to see if the combo has already been found # if not, add it to our list if combos.count(list) == 0: combos.append(list) combos.sort() return combos else: # for each item in our list, make a recursive # call to find all possible combos of it and # the remaining items for i in range(len(list)): refined_list = list[:i] + list[i+1:] combos = combinations(n, refined_list, combos) return combos a = Combo() A = 4 B = 2 # print(a.combine(A,B)) print(a.comb([1,2,3,4], 2)) print(a.comb([1,2,3,4,5], 2))
22.709091
58
0.506005
394
0.315452
0
0
0
0
0
0
305
0.244195
4941a07b8598fcd71acf4d8decca54a679038504
1,257
py
Python
urlbrevity/test_urlconf.py
kezabelle/django-urlbrevity
a8b779587986c60c4e0597aead908d954480f0f9
[ "BSD-2-Clause-FreeBSD" ]
4
2015-02-13T16:20:41.000Z
2020-07-02T18:45:50.000Z
urlbrevity/test_urlconf.py
kezabelle/django-urlbrevity
a8b779587986c60c4e0597aead908d954480f0f9
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
urlbrevity/test_urlconf.py
kezabelle/django-urlbrevity
a8b779587986c60c4e0597aead908d954480f0f9
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
# -*- coding: utf-8 -*- from pytest import raises from django.contrib import admin from django.core.urlresolvers import reverse from django.core.urlresolvers import resolve from django.core.urlresolvers import NoReverseMatch from django.core.urlresolvers import Resolver404 from django.http import HttpResponse import urlbrevity try: from django.conf.urls import patterns, url, include except ImportError: # pragma: no cover from django.conf.urls.defaults import patterns, url, include finally: def just_a_view(request, pk): return HttpResponse(str(pk)) urlpatterns = patterns("", url(regex=r'^test_user/(?P<pk>\d+)/?$', view=just_a_view), url(r'redirect/', include(urlbrevity.redirects)), url(r'admin/', include(admin.site.urls)), ) def test_reversing(): assert (reverse('urlbrevity:short', kwargs={'encoded_value': 'rQuX'}) == '/redirect/rQuX') def test_reversing_badchars(): with raises(NoReverseMatch): reverse('urlbrevity:short', kwargs={'encoded_value': 'rQu1'}) def test_resolving(): assert resolve('/redirect/rQuX').func == urlbrevity.do_redirect def test_resolving_badchars(): with raises(Resolver404): resolve('/redirect/rQu1')
28.568182
73
0.703262
0
0
0
0
0
0
0
0
218
0.173429
4945214eb5cf61ec5b89774833abf449ace18614
7,845
py
Python
test/unittest/datafinder_test/persistence/metadata/value_mapping/custom_format_test.py
schlauch/DataFinder
958fda4f3064f9f6b2034da396a20ac9d9abd52f
[ "BSD-3-Clause" ]
9
2016-05-25T06:12:52.000Z
2021-04-30T07:22:48.000Z
test/unittest/datafinder_test/persistence/metadata/value_mapping/custom_format_test.py
schlauch/DataFinder
958fda4f3064f9f6b2034da396a20ac9d9abd52f
[ "BSD-3-Clause" ]
6
2016-03-29T13:38:18.000Z
2017-01-18T15:57:42.000Z
test/unittest/datafinder_test/persistence/metadata/value_mapping/custom_format_test.py
schlauch/DataFinder
958fda4f3064f9f6b2034da396a20ac9d9abd52f
[ "BSD-3-Clause" ]
7
2016-06-15T12:01:22.000Z
2022-03-05T08:50:25.000Z
# $Filename$ # $Authors$ # Last Changed: $Date$ $Committer$ $Revision-Id$ # # Copyright (c) 2003-2011, German Aerospace Center (DLR) # # All rights reserved. #Redistribution and use in source and binary forms, with or without #modification, are permitted provided that the following conditions are # #met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the # distribution. # # * Neither the name of the German Aerospace Center nor the names of # its contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # #THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT #LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR #A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT #OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, #SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT #LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, #DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY #THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT #(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE #OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ Implements test cases for the custom meta data persistence format. """ from datetime import datetime import decimal import sys import unicodedata import unittest from datafinder.persistence.error import PersistenceError from datafinder.persistence.metadata.value_mapping import\ MetadataValue, getPersistenceRepresentation __version__ = "$Revision-Id$" _AE = unicodedata.lookup("LATIN SMALL LETTER A WITH DIAERESIS") class MetadataValueTestCase(unittest.TestCase): def testInvalidPersistenceValue(self): self.assertRaises(PersistenceError, MetadataValue, None) def testComparison(self): self.assertEquals(MetadataValue("a"), MetadataValue("a")) self.assertEquals(hash(MetadataValue("a")), hash(MetadataValue("a"))) self.assertNotEquals(MetadataValue("a"), MetadataValue("b")) self.assertNotEquals(hash(MetadataValue("a")), hash(MetadataValue("b"))) self.assertNotEquals(MetadataValue("a"), None) self.assertNotEquals(hash(MetadataValue("a")), hash(None)) def testRepresentation(self): self.assertEquals(str(MetadataValue("a")), "'a'") def testBoolValue(self): self.assertTrue(MetadataValue("1").value) self.assertFalse(MetadataValue("0").value) def testStringValue(self): self.assertEquals(MetadataValue(u"test").value, u"test") self.assertEquals(MetadataValue("test").value, "test") # Special escaped sequences self.assertEquals(MetadataValue("\\____EMPTY____LIST____").value, "____EMPTY____LIST____") self.assertEquals(MetadataValue("\\;").value, ";") def testNumericValue(self): self.assertEquals(MetadataValue(u"4.5").value, decimal.Decimal("4.5")) self.assertEquals(MetadataValue(u"5").value, decimal.Decimal("5")) def testDatetimeValue(self): # From time stamp metdataValue = MetadataValue("0", expectedType=datetime) self.assertEquals(metdataValue.value, datetime(1970, 1, 1, 1, 0)) # From RFC 822. persistedValue = u"Wed, 02 Oct 2002 13:00:00 GMT" metdataValue = MetadataValue(persistedValue) self.assertEquals(metdataValue.value, datetime(2002, 10, 2, 15, 0)) # From Iso8601. persistedValue = u"2006-10-16T08:19:39Z" metdataValue = MetadataValue(persistedValue) self.assertEquals(metdataValue.value, datetime(2006, 10, 16, 10, 19, 39)) def testListValue(self): # Success self.assertEquals(MetadataValue("a;b;1").value, ["a", "b", decimal.Decimal(1)]) # Special cases persistedValue = u"____EMPTY____LIST____" metdataValue = MetadataValue(persistedValue) self.assertEquals(metdataValue.value, list()) self.assertEquals(MetadataValue(";").value, ";") self.assertEquals(MetadataValue("a\\;b;c").value, ["a;b", "c"]) def testDictValues(self): metdataValue = MetadataValue("{}") self.assertEquals(metdataValue.value, dict()) def testGuessRepresentation(self): # Success self.assertEquals(MetadataValue("").guessRepresentation(), [None]) self.assertEquals(MetadataValue("1").guessRepresentation(), [True, decimal.Decimal("1"), datetime(1970, 1, 1, 1, 0, 1), u"1"]) class GetPersistenceRepresentationTestCase(unittest.TestCase): def testBoolValue(self): self.assertEquals(getPersistenceRepresentation(True), "1") self.assertEquals(getPersistenceRepresentation(False), "0") def testNoneValue(self): self.assertEquals(getPersistenceRepresentation(None), "") self.assertRaises(PersistenceError, getPersistenceRepresentation, tuple()) def testStringValue(self): self.assertEquals(getPersistenceRepresentation(u"test"), u"test") self.assertEquals(getPersistenceRepresentation("test"), u"test") # Special escaped sequences self.assertEquals(getPersistenceRepresentation(";"), "\\;") self.assertEquals(getPersistenceRepresentation("____EMPTY____LIST____"), "\\____EMPTY____LIST____") # Invalid raw string orignalFunction = sys.getdefaultencoding sys.getdefaultencoding = lambda: None # Mock encoding determination try: self.assertRaises( PersistenceError, getPersistenceRepresentation, _AE.encode("Latin-1)")) finally: sys.getdefaultencoding = orignalFunction def testNumericValue(self): # Decimals persistedValue = decimal.Decimal("4.5") self.assertEquals(getPersistenceRepresentation(persistedValue), u"4.5") persistedValue = decimal.Decimal("5") self.assertEquals(getPersistenceRepresentation(persistedValue), u"5") # Raw integer self.assertEquals(getPersistenceRepresentation(5), u"5") #Raw float self.assertEquals(getPersistenceRepresentation(4.5), u"4.5") def testDatetimeValue(self): persistedValue = datetime(2006, 10, 16, 10, 19, 39) self.assertEquals(getPersistenceRepresentation(persistedValue), u"2006-10-16T08:19:39Z") def testListValue(self): persistedValue = [decimal.Decimal("2006"), decimal.Decimal("10"), decimal.Decimal("16"), decimal.Decimal("10")] self.assertEquals(getPersistenceRepresentation(persistedValue), u"2006;10;16;10;") persistedValue = list() self.assertEquals(getPersistenceRepresentation(persistedValue), u"____EMPTY____LIST____") def testDictValue(self): self.assertEquals(getPersistenceRepresentation(dict()), u"{}")
42.405405
88
0.653792
5,675
0.723391
0
0
0
0
0
0
2,511
0.320076
49477b4b9fb8484c659b6dfe9a98235bbdb4b218
3,629
py
Python
programmers/kakao2022/kakao2022/grader.py
jiyolla/StudyForCodingTestWithDongbinNa
c070829dd9c7b02b139e56511832c4a3b9f5982f
[ "MIT" ]
null
null
null
programmers/kakao2022/kakao2022/grader.py
jiyolla/StudyForCodingTestWithDongbinNa
c070829dd9c7b02b139e56511832c4a3b9f5982f
[ "MIT" ]
null
null
null
programmers/kakao2022/kakao2022/grader.py
jiyolla/StudyForCodingTestWithDongbinNa
c070829dd9c7b02b139e56511832c4a3b9f5982f
[ "MIT" ]
null
null
null
import random from .api import put_change_grade # grades[id] = grade for user #{id}. # grades[0] is not used. Since user id starts from 1. def change_grade_randomshuffle(grades): changed_users_id = set(range(len(grades))) changed_users_id.remove(0) grades = list(range(len(grades))) random.shuffle(grades) commands = [] for changed_user_id in changed_users_id: commands.append({'id': changed_user_id, 'grade': grades[changed_user_id]}) put_change_grade(commands) def change_grade_simplelinear(grades, game_results): MAX_TAKEN = 40 changed_users_id = set() for game_result in game_results: changed_users_id.add(game_result['win']) changed_users_id.add(game_result['lose']) grades[game_result['win']] += MAX_TAKEN - game_result['taken'] grades[game_result['lose']] -= MAX_TAKEN - game_result['taken'] commands = [] for changed_user_id in changed_users_id: commands.append({'id': changed_user_id, 'grade': grades[changed_user_id]}) put_change_grade(commands) def change_grade_discountedlinear(grades, game_results): BASE_SCORE = 100 MIN_TAKEN = 3 MAX_TAKEN = 40 changed_users_id = set() for game_result in game_results: changed_users_id.add(game_result['win']) changed_users_id.add(game_result['lose']) grades[game_result['win']] += BASE_SCORE * (2 - 1.6*(game_result['taken'] - MIN_TAKEN)/(MAX_TAKEN - MIN_TAKEN)) grades[game_result['lose']] -= BASE_SCORE * (2 - 1.6*(game_result['taken'] - MIN_TAKEN)/(MAX_TAKEN - MIN_TAKEN)) commands = [] for changed_user_id in changed_users_id: commands.append({'id': changed_user_id, 'grade': grades[changed_user_id]}) put_change_grade(commands) def change_grade_simplequadratic(grades, game_results): MAX_TAKEN = 40 changed_users_id = set() for game_result in game_results: changed_users_id.add(game_result['win']) changed_users_id.add(game_result['lose']) grades[game_result['win']] += (MAX_TAKEN - game_result['taken'])**2 grades[game_result['lose']] -= (MAX_TAKEN - game_result['taken'])**2 commands = [] for changed_user_id in changed_users_id: commands.append({'id': changed_user_id, 'grade': grades[changed_user_id]}) put_change_grade(commands) def change_grade_preventabusediscountedlinear(grades, game_results, suspicion_marks): BASE_SCORE = 4000 MIN_TAKEN = 3 MAX_TAKEN = 40 changed_users_id = set() for game_result in game_results: winner = game_result['win'] loser = game_result['lose'] game_time = game_result['taken'] changed_users_id.add(winner) changed_users_id.add(loser) if game_time < 11: expected_game_time = 40 - abs(grades[winner] - grades[loser])/99000*35 tolerance = 5 + 5 if game_time < expected_game_time - tolerance: suspicion_marks[loser] += 1 if suspicion_marks[loser] > 2: continue expected_win_rate = grades[winner]/(grades[winner] + grades[loser]) win_rate_modifier = expected_win_rate # (expected_win_rate - 0.3)*2 + 0.2 grades[winner] += win_rate_modifier*BASE_SCORE*(3 - 2.5*(game_time - MIN_TAKEN)/(MAX_TAKEN - MIN_TAKEN)) grades[loser] -= win_rate_modifier*BASE_SCORE*(3 - 2.5*(game_time - MIN_TAKEN)/(MAX_TAKEN - MIN_TAKEN)) commands = [] for changed_user_id in changed_users_id: commands.append({'id': changed_user_id, 'grade': grades[changed_user_id]}) put_change_grade(commands)
36.656566
120
0.673188
0
0
0
0
0
0
0
0
305
0.084045
4947e1cc23f3c7930219fe180c751c514d914052
2,188
py
Python
resources/benchmark.py
HPI-SWA-Lab/TargetSpecific-ICOOOLPS
2936fe010103cfbe4b0131313abcee3a59bb8fbc
[ "MIT" ]
1
2015-04-10T17:25:56.000Z
2015-04-10T17:25:56.000Z
resources/benchmark.py
HPI-SWA-Lab/TargetSpecific-ICOOOLPS
2936fe010103cfbe4b0131313abcee3a59bb8fbc
[ "MIT" ]
null
null
null
resources/benchmark.py
HPI-SWA-Lab/TargetSpecific-ICOOOLPS
2936fe010103cfbe4b0131313abcee3a59bb8fbc
[ "MIT" ]
null
null
null
import numpy as np import matplotlib.pyplot as plt N = 4 ind = np.arange(N) # the x locations for the groups width = 0.4 # the width of the bars fig, ax = plt.subplots() ax.set_ylim(0,11) # outliers only #ax2.set_ylim(0,35) # most of the data #ax.spines['bottom'].set_visible(False) #ax2.spines['top'].set_visible(False) ax.xaxis.tick_top() #ax.tick_params(labeltop='off') # don't put tick labels at the top ax.xaxis.tick_bottom() fig.subplots_adjust(hspace=0.1) # call-site-specific noneV = (5.729, 6.966, 7.953, 8.524) rectsNone = ax.bar(ind, noneV, width, color='w', hatch=' ') #ax2.bar(ind, noneV, width, color='w') # call-target-specific uncached classCached = (2.560, 3.616, 5.357, 6.846) rectsClassCached = ax.bar(ind+width, classCached, width, color='w', hatch='o') #ax2.bar(ind+width, classCached, width, color='w', hatch='/') # call-target-specific cached #classUncached = (2.634, 3.358, 5.583, 6.838) #rectsClassUncached = ax.bar(ind+2*width, classUncached, width, color='w', hatch='o') #ax2.bar(ind+2*width, classUncached, width, color='w', hatch='o') # add some text for labels, title and axes ticks #ax2.set_ylabel('Runtime (ms)') #ax.set_title('Average rendering runtime per frame') ax.set_ylabel('Runtime (s) / 100.000 invocations') ax.set_xticks(ind+width+0.14) ax.set_xticklabels( ('(a) 1 target \n (10 kwargs)', '(b) 2 targets \n (10 kwargs; \n 10 kwargs)', '(c) 2 targets \n (10 kwargs; \n 5 kwargs + rest kwargs)', '(d) 1 target \n (5 kwargs + rest kwargs)') ) #ax2.set_yticks(ax2.get_yticks()[:-1]) ax.set_yticks(ax.get_yticks()[1:]) ax.legend( (rectsNone[0], rectsClassCached[0]), ('call-site-specific', 'call-target-specific') , loc=4) def autolabel(rects): # attach some text labels for rect in rects: height = rect.get_height() if height == 0: ax.text(rect.get_x()+rect.get_width()/2., height+2, 'n/a', ha='center', va='bottom', rotation='vertical') else: ax.text(rect.get_x()+rect.get_width()/2., height+0.2, '%.2f'%float(height), ha='center', va='bottom', rotation='vertical') autolabel(rectsNone) autolabel(rectsClassCached) plt.show()
32.656716
202
0.66042
0
0
0
0
0
0
0
0
1,142
0.521938
4948d466851a602b9bcffdd7a6596bee89b1c959
3,829
py
Python
talktracker/analysis.py
alTeska/talktracker
7d2c507bda78a6faf92568291190ea9300e878dc
[ "MIT" ]
1
2018-08-22T09:07:04.000Z
2018-08-22T09:07:04.000Z
talktracker/analysis.py
alTeska/talktracker
7d2c507bda78a6faf92568291190ea9300e878dc
[ "MIT" ]
1
2018-10-14T20:06:51.000Z
2018-10-14T20:06:51.000Z
talktracker/analysis.py
alTeska/talktracker
7d2c507bda78a6faf92568291190ea9300e878dc
[ "MIT" ]
3
2018-09-21T15:09:26.000Z
2018-10-13T13:58:06.000Z
from datetime import timedelta from random import sample, randint import talktracker as tt def time_diff(time1, time2): """calculate the time different""" time1_info = timedelta(hours=time1[0], minutes=time1[1], seconds=time1[2]) time2_info = timedelta(hours=time2[0], minutes=time2[1], seconds=time2[2]) diff_in_sec = (time1_info - time2_info).seconds diff_hours, diff_minutes, diff_seconds = dissect_time(diff_in_sec) return diff_hours, diff_minutes, diff_seconds def time_add(time1, time2): """calculate the time different""" time1_info = timedelta(hours=time1[0], minutes=time1[1], seconds=time1[2]) time2_info = timedelta(hours=time2[0], minutes=time2[1], seconds=time2[2]) add_in_sec = (time1_info + time2_info).seconds add_hours, add_minutes, add_seconds = dissect_time(add_in_sec) return add_hours, add_minutes, add_seconds def dissect_time(sec): """changes total seconds into hours, minutes, seconds""" seconds = sec % 60 minutes = (sec // 60) % 60 hours = (sec // 60) // 60 return hours, minutes, seconds def to_seconds(*args): """Converts (hour, min, sec) to seconds only""" if len(args) == 3: return args[0] * 60 * 60 + args[1] * 60 + args[2] elif len(args) == 1: return args[0][0] * 60 * 60 + args[0][1] * 60 + args[0][2] else: raise ValueError("Input must be either three integers, or a tuple of three integers") def gen_fake_data(teams_n=0, members_n=[], duration=(2, 30, 0)): """ Sudo code 1. create teams_n teams with randomly generated names 2. for each team create corresponding number of members with randomly generated attributes. attributes might include: - age (int) - country (str, category) - batch (int) 3. create a session and add the teams to the session 4. randomly pick a team 5. randomly pick a member and assign a time to him/her 6. do 4 and 5 again and again until the total time of the session (total time of the total times of the teams) becomes greater than the given duration """ team_names = team_name_list.copy() member_names = member_name_list.copy() teams = [] for ind in range(teams_n): members = [] for _ in range(members_n[ind]): name = sample(member_names, 1)[0] member_names.remove(name) # remove this name from the list (without replacement) age = randint(1, 40) batch = randint(1, 3) country = 'Germany' members.append(tt.Member(name, age=age, batch=batch, country=country)) name = sample(team_names, 1)[0] team_names.remove(name) teams.append(tt.Team(name, members=members)) session = tt.Session('Untitled', teams=teams) return session """ Generates data for a fake session Args: teams_n (int): number of teams members_n (int or a list): a single number or a list of numbers. of a single number os passed all the team will have similar number of members. Returns: a session object with fake data """ team_name_list = ["RockStars", "ShadowWalkers", "MiddleEasterns", "Newrons", "Persians", "Baghalies", "Golabies", "Loosers"] member_name_list = ["Mohammad", "Annika", "Amir", "Yasaman", "Arman", "Nick", "Nicholas" , "Michael", "Aleksndra", "Fati", "Rasoul", "Janne", "Yagmur", "Raja", "Abdallah", "Viktorja", "Alex", "James", "Marie", "Auguste", "Nora", "Mathew", "Stefan", "Steffen", "Darya", "Tamara", "Ali", "Niloufar", "Christoph", "Werner", "Florian", "Bernhard", "Samuel", "Karan", "Elisa", "Atena", "Milad", "Nazanin", "Rahaa", "Amin", "Ehsan", "Shahab", "Sepideh"]
36.122642
154
0.629146
0
0
0
0
0
0
0
0
1,639
0.428049
494aa2d4e0d2a060a9ff51a1b37123a087e51342
2,692
py
Python
app/internal/module/video_del/queue.py
penM000/eALPluS-video-api
4ec8f850bd98450b76279f5e30da854dbfaed776
[ "MIT" ]
null
null
null
app/internal/module/video_del/queue.py
penM000/eALPluS-video-api
4ec8f850bd98450b76279f5e30da854dbfaed776
[ "MIT" ]
null
null
null
app/internal/module/video_del/queue.py
penM000/eALPluS-video-api
4ec8f850bd98450b76279f5e30da854dbfaed776
[ "MIT" ]
null
null
null
import asyncio from dataclasses import dataclass, field from typing import Any from .encode import encoder from .database import database from ..logger import logger @dataclass(order=True) class QueueItem: """ キューアイテム """ priority: int item: Any = field(compare=False) queue = None encode_tasks = [] async def encode_worker(queue: QueueItem): while True: # Get a "work item" out of the queue. queue_item = await queue.get() encode_config = queue_item.item # DBにprogressの更新 result = await encoder.encode( folderpath=encode_config["folderpath"], filename=encode_config["filename"], resolution=encode_config["height"]) await database.encode_result(encode_config["folderpath"], encode_config["height"], result) # 入力動画の削除判定 # await filemanager.delete_original_video() # DBにdoneの更新 queue.task_done() async def add_encode_queue(folderpath, filename, encode_resolution="Auto"): global queue global encode_workers if queue is None: queue = asyncio.PriorityQueue() await encoder.encode_test() for i in range(encoder.encode_worker): task = asyncio.create_task(encode_worker(queue)) encode_tasks.append(task) # 動画の形式確認 input_video_info = await encoder.get_video_info(folderpath, filename) # 映像がなければエラー if not input_video_info.is_video: logger.warning(f"{folderpath} not video file") await database.encode_error(folderpath, "not video file") return else: await encoder.thumbnail(folderpath, filename) # 解像度ごとにエンコードキューを追加 if encode_resolution == "Auto": video_size = [360, 480, 720, 1080] for height in video_size: # 入力解像度が超えていれば追加 if input_video_info.height >= height or height == 360: await database.encode_task(folderpath, height) encode_config = { "folderpath": folderpath, "filename": filename, "height": height } queue_item = QueueItem(priority=height, item=encode_config) queue.put_nowait(queue_item) else: # エンコードの再追加用 height = int(encode_resolution) await database.encode_task(folderpath, height) encode_config = { "folderpath": folderpath, "filename": filename, "height": height } queue_item = QueueItem(priority=height, item=encode_config) queue.put_nowait(queue_item)
29.26087
75
0.609955
113
0.039566
0
0
136
0.047619
2,510
0.878852
542
0.189776
494b2faa96115baf8681d111a98a087de5ebcb59
476
py
Python
lib/dyson/utils/module.py
luna-test/luna
6d94439f2747daf96e295837684bdc6607f507dc
[ "Apache-2.0" ]
3
2018-05-21T14:35:11.000Z
2021-03-25T12:32:25.000Z
lib/dyson/utils/module.py
dyson-framework/dyson
e5a2e12c7bb0ba21ff274feff34c184576d08ff5
[ "Apache-2.0" ]
13
2018-05-22T01:01:08.000Z
2018-09-16T22:12:10.000Z
lib/dyson/utils/module.py
luna-test/luna
6d94439f2747daf96e295837684bdc6607f507dc
[ "Apache-2.0" ]
1
2018-05-21T14:35:17.000Z
2018-05-21T14:35:17.000Z
import os from dyson import constants from abc import abstractmethod import sys from dyson.constants import to_boolean class DysonModule: def __init__(self): pass @abstractmethod def run(self, webdriver, params): pass def fail(self, msg): print(msg, file=sys.stderr) if not to_boolean(constants.DEFAULT_SELENIUM_PERSIST): exit(2) def get_module_path(): return os.path.dirname(os.path.realpath(__file__))
18.307692
62
0.686975
272
0.571429
0
0
66
0.138655
0
0
0
0
494cefc1f9462c0538e6c405bcec6cc75cbab494
1,136
py
Python
misc/texteditor.py
disc0nnctd/myPythonCodesDC
378b0cf749124ef8b7f8d70f6f298faa6c9f73de
[ "MIT" ]
1
2017-04-30T18:20:32.000Z
2017-04-30T18:20:32.000Z
misc/texteditor.py
disc0nnctd/myPythonCodesDC
378b0cf749124ef8b7f8d70f6f298faa6c9f73de
[ "MIT" ]
1
2017-04-30T10:09:45.000Z
2017-04-30T12:39:19.000Z
misc/texteditor.py
disc0nnctd/myPythonCodesDC
378b0cf749124ef8b7f8d70f6f298faa6c9f73de
[ "MIT" ]
1
2017-04-30T09:54:08.000Z
2017-04-30T09:54:08.000Z
"""A simple text editor made in Python 2.7.""" from os import path, chdir workingdir = path.join(path.dirname(__file__), 'texts') chdir(workingdir) from Tkinter import Tk, Text, Button import tkFileDialog root = Tk("Text Editor") text = Text(root) text.grid() def saveas(): """Save file.""" try: t = text.get("1.0", "end-1c") # "1.0" means read from beginning # "end-1c" means delete last character savelocation = tkFileDialog.asksaveasfilename() file1 = open(savelocation, "w") file1.write(t) file1.close except IOError: pass def openfile(): """Open file.""" try: location = tkFileDialog.askopenfilename() file1 = open(location, "r") fileContents = file1.read() text.delete(1.0, "end") text.insert(1.0, fileContents) except IOError: pass button = Button(root, text="Open", command=openfile) button.grid() button = Button(root, text="Save As", command=saveas) button.grid() root.mainloop() workingdir = path.join(path.dirname(__file__)) chdir(workingdir)
25.244444
73
0.611796
0
0
0
0
0
0
0
0
210
0.184859
494e2056309882919070e0989e358cb4f828bbd0
397
py
Python
21_DivdeConquer/Step05/gamjapark.py
StudyForCoding/BEAKJOON
84e1c5e463255e919ccf6b6a782978c205420dbf
[ "MIT" ]
null
null
null
21_DivdeConquer/Step05/gamjapark.py
StudyForCoding/BEAKJOON
84e1c5e463255e919ccf6b6a782978c205420dbf
[ "MIT" ]
3
2020-11-04T05:38:53.000Z
2021-03-02T02:15:19.000Z
21_DivdeConquer/Step05/gamjapark.py
StudyForCoding/BEAKJOON
84e1c5e463255e919ccf6b6a782978c205420dbf
[ "MIT" ]
null
null
null
import sys n, k= map(int, sys.stdin.readline().split()) def power(a, b): if b == 0: return 1 if b % 2: return (power(a, b//2) ** 2 * a) % P else: return (power(a, b//2) ** 2) % P P = 1000000007 f = [1 for _ in range(n + 1)] for i in range(2, n + 1): f[i] = (f[i - 1] * i) % P A = f[n] B = (f[n-k]*f[k])%P print((A % P) * (power(B, P-2) %P) % P) #페르마의 소정리: N!%P * (K!(N-K)!)^(p-2)%P
18.045455
76
0.476071
0
0
0
0
0
0
0
0
50
0.121655
494e7be275c169f4f4b49f4a379016a1594a2a8b
135
py
Python
quicksilver.py
binaryflesh/quicksilver
0d65259f305beb05efe00f096e48c41b62bfdf57
[ "MIT" ]
1
2018-12-01T07:52:13.000Z
2018-12-01T07:52:13.000Z
quicksilver.py
binaryflesh/quicksilver
0d65259f305beb05efe00f096e48c41b62bfdf57
[ "MIT" ]
7
2018-12-02T23:31:38.000Z
2018-12-03T07:44:41.000Z
quicksilver.py
binaryflesh/quicksilver
0d65259f305beb05efe00f096e48c41b62bfdf57
[ "MIT" ]
null
null
null
# Quicksilver.py - Agnostic project analyzer that generates resourceful diagrams. WIP # Copyright (C) 2018 Logan Campos - @binaryflesh
45
85
0.792593
0
0
0
0
0
0
0
0
133
0.985185
494e987723a6b2a0236a0a1b1f66efc147868431
4,830
py
Python
action_controller/scripts/ActionControllerNode.py
FablabHome/The_Essense_of_the_Grey_Region
6385ada0879bdc6c00cb707192841fdab9ab7bf1
[ "MIT" ]
1
2021-09-23T09:42:32.000Z
2021-09-23T09:42:32.000Z
action_controller/scripts/ActionControllerNode.py
FablabHome/The_Essense_of_the_Grey_Region
6385ada0879bdc6c00cb707192841fdab9ab7bf1
[ "MIT" ]
null
null
null
action_controller/scripts/ActionControllerNode.py
FablabHome/The_Essense_of_the_Grey_Region
6385ada0879bdc6c00cb707192841fdab9ab7bf1
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """ MIT License Copyright (c) 2020 rootadminWalker Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import json import rospy from core.Nodes import ActionEvaluator class ActionControllerNode(ActionEvaluator): def __init__(self): # Initialize the intent to callback map, must have NotRecognized situation self.intent2callback = { 'Introduce': self.__introduce, 'GiveMenu': self.__show_menu, 'OrderFood': self.__order_food, 'OrderFoodTakeOut': self.__order_food, 'NotRecognized': self.__not_recognized } super(ActionControllerNode, self).__init__() def __introduce(self, intent, slots, raw_text, session): introduce_dialog = ''' Ah, Forgive me for not introducing myself, masters. I'm snippy, your virtual assistant in this restaurant, I'm still under development, so you could only see me talking right now. ''' self.speaker.say_until_end(introduce_dialog) @staticmethod def __show_menu(intent, slots, raw_text, session): menu = ''' Menu Price ------------------------------------- French Fries $7 meat salad $20 spaghetti $23 hot chocolate $14 cappucino $19 tea $0 water $0 Hamburger $19 Ketchup $0 Tacos $15 Marshmellos $10 Steak $27 hot dog $10 ''' print(f"Sorry for your inconvenience, here's the menu\n\n{menu}") def __order_food(self, intent, slots, raw_text, session): order_what = False orders = {} i = 0 if session is not None: rospy.loginfo(json.loads(session.custom_data)) while i < len(slots): if slots[i]['slotName'] == 'amount': amount = int(slots[i]['value']['value']) try: next_slot = slots[i + 1] if next_slot['slotName'] == 'food': orders[next_slot['value']['value']] = amount i += 2 elif next_slot['slotName'] == 'amount': orders[f'Unknown{i}'] = amount i += 1 order_what = True except IndexError: order_what = True orders[f'Unknown{i}'] = amount i += 1 elif slots[i]['slotName'] == 'food': orders[slots[i]['value']['value']] = 1 i += 1 if order_what or len(slots) == 0: self.speaker.say_until_end("I'm sorry, but could you repeat it again?") self.start_session(next_intents=['OrderFood', 'NotRecognized'], custom_data=orders) return if self.on_session(): if set(session.possible_next_intents) == {'OrderFood'}: if not order_what: self.stop_session() self.speaker.say_until_end('Ok, Gotcha') print(orders) def __not_recognized(self, intent, slots, raw_text, session): if len(session) == 0: rospy.loginfo(f"Currently there isn't an action for '{raw_text}'") elif session[0] == 'OrderFood': rospy.loginfo('Sorry, I could not understand what do you want to order, please say it again') self.stop_session() def reset(self): pass if __name__ == '__main__': node = ActionControllerNode()
37.44186
105
0.561698
3,594
0.744099
0
0
822
0.170186
0
0
2,568
0.531677
494ed3dffeb5ac99649e1cc394c891c7296dc5fc
5,174
py
Python
model.py
Wentao-Shi/Molecule-RNN
e00d89c7a6c0c341fb790da800087b9e34be5ab8
[ "MIT" ]
3
2021-08-22T21:26:38.000Z
2022-01-09T11:16:40.000Z
model.py
shiwentao00/Molecule-RNN
e00d89c7a6c0c341fb790da800087b9e34be5ab8
[ "MIT" ]
null
null
null
model.py
shiwentao00/Molecule-RNN
e00d89c7a6c0c341fb790da800087b9e34be5ab8
[ "MIT" ]
null
null
null
# Copyright: Wentao Shi, 2021 import torch import torch.nn as nn from torch.nn.utils.rnn import pack_padded_sequence from torch.nn.functional import softmax class RNN(torch.nn.Module): def __init__(self, rnn_config): super(RNN, self).__init__() self.embedding_layer = nn.Embedding( num_embeddings=rnn_config['num_embeddings'], embedding_dim=rnn_config['embedding_dim'], padding_idx=rnn_config['num_embeddings'] - 1 ) if rnn_config['rnn_type'] == 'LSTM': self.rnn = nn.LSTM( input_size=rnn_config['input_size'], hidden_size=rnn_config['hidden_size'], num_layers=rnn_config['num_layers'], batch_first=True, dropout=rnn_config['dropout'] ) elif rnn_config['rnn_type'] == 'GRU': self.rnn = nn.GRU( input_size=rnn_config['input_size'], hidden_size=rnn_config['hidden_size'], num_layers=rnn_config['num_layers'], batch_first=True, dropout=rnn_config['dropout'] ) else: raise ValueError( "rnn_type should be either 'LSTM' or 'GRU'." ) # output does not include <sos> and <pad>, so # decrease the num_embeddings by 2 self.linear = nn.Linear( rnn_config['hidden_size'], rnn_config['num_embeddings'] - 2 ) def forward(self, data, lengths): embeddings = self.embedding_layer(data) # pack the padded input # the lengths are decreased by 1 because we don't # use <eos> for input and we don't need <sos> for # output during traning. embeddings = pack_padded_sequence( input=embeddings, lengths=lengths, batch_first=True, enforce_sorted=False ) # recurrent network, discard (h_n, c_n) in output. # Tearcher-forcing is used here, so we directly feed # the whole sequence to model. embeddings, _ = self.rnn(embeddings) # linear layer to generate input of softmax embeddings = self.linear(embeddings.data) # return the packed representation for backpropagation, # the targets will also be packed. return embeddings def sample(self, batch_size, vocab, device, max_length=140): """Use this function if device is GPU""" # get integer of "start of sequence" start_int = vocab.vocab['<sos>'] # create a tensor of shape [batch_size, seq_step=1] sos = torch.ones( [batch_size, 1], dtype=torch.long, device=device ) sos = sos * start_int # sample first output output = [] x = self.embedding_layer(sos) x, hidden = self.rnn(x) x = self.linear(x) x = softmax(x, dim=-1) x = torch.multinomial(x.squeeze(), 1) output.append(x) # a tensor to indicate if the <eos> token is found # for all data in the mini-batch finish = torch.zeros(batch_size, dtype=torch.bool).to(device) # sample until every sequence in the mini-batch # has <eos> token for _ in range(max_length): # forward rnn x = self.embedding_layer(x) x, hidden = self.rnn(x, hidden) x = self.linear(x) x = softmax(x, dim=-1) # sample x = torch.multinomial(x.squeeze(), 1) output.append(x) # terminate if <eos> is found for every data eos_sampled = (x == vocab.vocab['<eos>']).data finish = torch.logical_or(finish, eos_sampled.squeeze()) if torch.all(finish): return torch.cat(output, -1) return torch.cat(output, -1) def sample_cpu(self, vocab): """Use this function if device is CPU""" output = [] # get integer of "start of sequence" start_int = vocab.vocab['<sos>'] # create a tensor of shape [batch_size=1, seq_step=1] sos = torch.tensor( start_int, dtype=torch.long ).unsqueeze(dim=0 ).unsqueeze(dim=0) # sample first output x = self.embedding_layer(sos) x, hidden = self.rnn(x) x = self.linear(x) x = softmax(x, dim=-1) x = torch.multinomial(x.squeeze(), 1) output.append(x.item()) # use first output to iteratively sample until <eos> occurs while output[-1] != vocab.vocab['<eos>']: x = x.unsqueeze(dim=0) x = self.embedding_layer(x) x, hidden = self.rnn(x, hidden) x = self.linear(x) x = softmax(x, dim=-1) x = torch.multinomial(x.squeeze(), 1) output.append(x.item()) # convert integers to tokens output = [vocab.int2tocken[x] for x in output] # popout <eos> output.pop() # convert to a single string output = vocab.combine_list(output) return output
32.3375
71
0.55547
5,014
0.969076
0
0
0
0
0
0
1,426
0.275609
49503dbeb658d944f139ed75ff92cfc671b7acd3
86
py
Python
day5.py
GuiltyD/Python_code
db03c491824b66d842a7b4ff8aa45644233526a6
[ "MIT" ]
null
null
null
day5.py
GuiltyD/Python_code
db03c491824b66d842a7b4ff8aa45644233526a6
[ "MIT" ]
null
null
null
day5.py
GuiltyD/Python_code
db03c491824b66d842a7b4ff8aa45644233526a6
[ "MIT" ]
null
null
null
f = open('./day4.py') for chunk in iter(lambda :f.read(10),''): print(chunk)
17.2
41
0.55814
0
0
0
0
0
0
0
0
13
0.151163
4950672898e66d691bf307ac9e23c9fb67819cb1
701
py
Python
Latest/venv/Lib/site-packages/apptools/io/h5/utils.py
adamcvj/SatelliteTracker
49a8f26804422fdad6f330a5548e9f283d84a55d
[ "Apache-2.0" ]
1
2022-01-09T20:04:31.000Z
2022-01-09T20:04:31.000Z
Latest/venv/Lib/site-packages/apptools/io/h5/utils.py
adamcvj/SatelliteTracker
49a8f26804422fdad6f330a5548e9f283d84a55d
[ "Apache-2.0" ]
1
2022-02-15T12:01:57.000Z
2022-03-24T19:48:47.000Z
Latest/venv/Lib/site-packages/apptools/io/h5/utils.py
adamcvj/SatelliteTracker
49a8f26804422fdad6f330a5548e9f283d84a55d
[ "Apache-2.0" ]
null
null
null
from contextlib import contextmanager from .file import H5File @contextmanager def open_h5file(filename, mode='r+', **kwargs): """Context manager for reading an HDF5 file as an H5File object. Parameters ---------- filename : str HDF5 file name. mode : str Mode to open the file: 'r' : Read-only 'w' : Write; create new file (an existing file would be deleted). 'a' : Read and write to file; create if not existing 'r+': Read and write to file; must already exist See `H5File` for additional keyword arguments. """ h5 = H5File(filename, mode=mode, **kwargs) try: yield h5 finally: h5.close()
24.172414
73
0.611983
0
0
618
0.881598
634
0.904422
0
0
465
0.663338
4950f58ba8e9dd8055eb104d658977925fab01b1
202
py
Python
src/success_backup_check/tests/test_success_backup_check.py
linuxluigi/success-backup-check
aa3be2dbd8b0106b931bf226614e05af68034077
[ "MIT" ]
null
null
null
src/success_backup_check/tests/test_success_backup_check.py
linuxluigi/success-backup-check
aa3be2dbd8b0106b931bf226614e05af68034077
[ "MIT" ]
7
2017-10-20T08:14:08.000Z
2017-10-31T10:04:19.000Z
src/success_backup_check/tests/test_success_backup_check.py
linuxluigi/success-backup-check
aa3be2dbd8b0106b931bf226614e05af68034077
[ "MIT" ]
null
null
null
import pytest import success_backup_check def test_project_defines_author_and_version(): assert hasattr(success_backup_check, '__author__') assert hasattr(success_backup_check, '__version__')
25.25
55
0.826733
0
0
0
0
0
0
0
0
25
0.123762
4953b0d0a882cec4862d24ffe94ed3594bc14dec
1,816
py
Python
insighioNode/lib/networking/modem/modem_sequans.py
insighio/insighioNode
396b0858ffb265ac66075e8b9d90713ffae7ffb8
[ "MIT" ]
5
2021-06-11T09:03:12.000Z
2021-12-22T09:04:57.000Z
insighioNode/lib/networking/modem/modem_sequans.py
insighio/insighioNode
396b0858ffb265ac66075e8b9d90713ffae7ffb8
[ "MIT" ]
1
2021-06-11T14:15:05.000Z
2021-06-11T14:15:33.000Z
insighioNode/lib/networking/modem/modem_sequans.py
insighio/insighioNode
396b0858ffb265ac66075e8b9d90713ffae7ffb8
[ "MIT" ]
null
null
null
from modem_base import Modem from network import LTE import logging class ModemSequans(Modem): def __init__(self): self.lte = LTE() def power_on(self): self.lte.init() def power_off(self): self.lte.deinit(dettach=True, reset=True) def init(self): return True def connect(self, timeoutms=30000): (status, lines) = self.send_at_cmd('AT+CGDATA="PPP",1', 30000, "CONNECT") if not status: return False import network self.ppp = network.PPP(self.uart) self.ppp.active(True) self.ppp.connect() start_timestamp = utime.ticks_ms() timeout_timestamp = start_timestamp + timeoutms while utime.ticks_ms() < timeout_timestamp: self.connected = self.is_connected() if self.connected: break utime.sleep_ms(100) return self.connected def is_connected(self): return self.lte.isconnected() def disconnect(self): if self.ppp: self.ppp.active(False) self.connected = False (status, _) = self.send_at_cmd("AT+CGACT=0,1") return status # to be overriden by children def set_gps_state(self, poweron=True): pass # to be overriden by children def is_gps_on(self): return False def get_gps_position(self, timeoutms=300000): return None def send_at_cmd(self, command, timeoutms=30000, success_condition="OK"): response = "" status = False logging.debug(command) response = self.lte.send_at_cmd(command) if response: response = response.strip().splitlines() logging.debug(response) status = (response.find("OK") != -1) return (status, response)
24.540541
81
0.601872
1,745
0.960903
0
0
0
0
0
0
110
0.060573
4953cc8e9258070e70193f6a8e92ffeda65bac35
1,824
py
Python
ravendb/tests/jvm_migrated_tests/crud_tests/test_track_entity.py
ravendb/RavenDB-Python-Client
6286b459b501e755fe8e8591a48acf8616605ccd
[ "MIT" ]
8
2016-10-08T17:45:44.000Z
2018-05-29T12:16:43.000Z
ravendb/tests/jvm_migrated_tests/crud_tests/test_track_entity.py
ravendb/RavenDB-Python-Client
6286b459b501e755fe8e8591a48acf8616605ccd
[ "MIT" ]
5
2017-02-12T15:50:53.000Z
2017-09-18T12:25:01.000Z
ravendb/tests/jvm_migrated_tests/crud_tests/test_track_entity.py
ravendb/RavenDB-Python-Client
6286b459b501e755fe8e8591a48acf8616605ccd
[ "MIT" ]
8
2016-07-03T07:59:12.000Z
2017-09-18T11:22:23.000Z
from ravendb.exceptions.exceptions import NonUniqueObjectException, InvalidOperationException from ravendb.tests.test_base import UserWithId, TestBase class TestTrackEntity(TestBase): def setUp(self): super(TestTrackEntity, self).setUp() def test_storing_document_with_the_same_id_in_the_same_session_should_throw(self): with self.store.open_session() as session: user = UserWithId("User1", None, "users/1") session.store(user) session.save_changes() new_user = UserWithId("User2", None, "users/1") ex_message = "Attempted to associate a different object with id 'users/1'." self.assertRaisesWithMessage(session.store, NonUniqueObjectException, ex_message, new_user) def test_deleting_entity_that_is_not_tracked_should_throw(self): with self.store.open_session() as session: user = UserWithId(None, None) ex_message = f"{user} is not associated with the session, cannot delete unknown entity instance." self.assertRaisesWithMessage(session.delete, InvalidOperationException, ex_message, user) def test_loading_deleted_document_should_return_null(self): with self.store.open_session() as session: user1 = UserWithId("John", None, "users/1") user2 = UserWithId("Jonathan", None, "users/2") session.store(user1) session.store(user2) session.save_changes() with self.store.open_session() as session: session.delete("users/1") session.delete("users/2") session.save_changes() with self.store.open_session() as session: self.assertIsNone(session.load("users/1", UserWithId)) self.assertIsNone(session.load("users/2", UserWithId))
44.487805
109
0.679276
1,670
0.91557
0
0
0
0
0
0
248
0.135965
4953e3a0846206727edbbb495ede380b618ab266
1,781
py
Python
PluginSDK/PythonRecon/Python/excel_helper.py
PengJinFa/YAPNew
fafee8031669b24d0cc74876a477c97d0d7ebadc
[ "MIT" ]
20
2016-07-05T05:23:04.000Z
2021-11-07T14:25:59.000Z
PluginSDK/PythonRecon/Python/excel_helper.py
PengJinFa/YAPNew
fafee8031669b24d0cc74876a477c97d0d7ebadc
[ "MIT" ]
20
2016-06-08T06:36:55.000Z
2018-04-25T09:52:18.000Z
PluginSDK/PythonRecon/Python/excel_helper.py
PengJinFa/YAPNew
fafee8031669b24d0cc74876a477c97d0d7ebadc
[ "MIT" ]
21
2016-05-31T15:34:09.000Z
2021-11-07T14:26:03.000Z
from openpyxl import Workbook from openpyxl.utils import get_column_letter import numbers wb = Workbook() def XL_Location(row, column): return get_column_letter(column) + str(row) def Save_Column_Title(file_dir, features, row_index, column_start): ws = wb.active keys = [x[0] for x in features.items()] try: for index in range(len(keys)): loc = XL_Location(index + row_index, column_start) if ws[loc].value is None: ws[loc] = keys[index] else: assert (ws[loc].value == keys[index]) wb.save(file_dir) except: return False return True # save to excel data def Save_Column_Exel(file_dir, features, row_index, column_start): ws = wb.active vals = [x[1] for x in features.items()] try: for index in range(len(vals)): loc = XL_Location(index + row_index, column_start) if isinstance(vals[index], numbers.Number): ws[XL_Location(index + row_index, column_start)] = vals[index] else: ws[XL_Location(index + row_index, column_start)] = str(vals[index]) wb.save(file_dir) except: return False return True def Save_Row_Exel(file_dir, features, row_index, column_start): ws = wb.active vals = [x[1] for x in features.items()] try: for index in range(len(vals)): loc = XL_Location(index + row_index, column_start) if isinstance(vals[index], numbers.Number): ws[XL_Location(row_index, index + column_start)] = vals[index] else: ws[XL_Location(row_index, index + column_start)] = str(vals[index]) wb.save(file_dir) except: return False return True
30.706897
83
0.60977
0
0
0
0
0
0
0
0
20
0.01123
4955e96c4c0b436986516c1c0b6010caa5dbeec8
1,971
py
Python
src/semantic_segmentation/utils/image.py
alteia-ai/ICSS
088ddb7a8b92c71cc0b95e55d186069b8af50b0a
[ "MIT" ]
7
2022-01-10T19:04:34.000Z
2022-03-16T03:19:48.000Z
src/semantic_segmentation/utils/image.py
alteia-ai/ICSS
088ddb7a8b92c71cc0b95e55d186069b8af50b0a
[ "MIT" ]
null
null
null
src/semantic_segmentation/utils/image.py
alteia-ai/ICSS
088ddb7a8b92c71cc0b95e55d186069b8af50b0a
[ "MIT" ]
null
null
null
import colorsys import itertools import numpy as np import torch def sliding_window(top, step=10, window_size=(20, 20)): """ Slide a window_shape window across the image with a stride of step """ for x in range(0, top.shape[1], step): if x + window_size[0] > top.shape[1]: x = top.shape[1] - window_size[0] for y in range(0, top.shape[2], step): if y + window_size[1] > top.shape[2]: y = top.shape[2] - window_size[1] yield x, y, window_size[0], window_size[1] def grouper(n, iterable): """ Browse an iterator by chunk of n elements """ it = iter(iterable) while True: chunk = tuple(itertools.islice(it, n)) if not chunk: return yield chunk def random_colors(n, bright=True): """ Generate random colors. To get visually distinct colors, generate them in HSV space then convert to RGB. """ brightness = 1.0 if bright else 0.7 hsv = [(i / n, 1, brightness) for i in range(n)] colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv)) np.random.shuffle(colors) return colors def apply_mask(image, mask, color, i=1, alpha=0.5): """Apply the given mask(==i) to the image. Binary mask. """ target = image.copy() for c in range(3): target[:, :, c] = np.where( mask == i, image[:, :, c] * (1 - alpha) + alpha * color[c], image[:, :, c] ) return target def from_coord_to_patch(img, coords, device): """Returns patches of the input image. coors is an output of grouper(n, sliding window(...))""" if isinstance(img, np.ndarray): img = torch.from_numpy(img) image_patches = [img[:, x : x + w, y : y + h] for x, y, w, h in coords] # image_patches = np.asarray(image_patches) # image_patches = torch.from_numpy(image_patches).type(torch.FloatTensor) image_patches = torch.stack(image_patches).to(device) return image_patches
31.790323
99
0.609335
0
0
698
0.354135
0
0
0
0
525
0.266362
495701e22432966b0a7ba235c137600209fc7f19
578
py
Python
website/error.py
TWoolhouse/Libraries
26079ed387cb800cb97f20980720ae094008c7bf
[ "MIT" ]
1
2020-10-11T15:34:56.000Z
2020-10-11T15:34:56.000Z
website/error.py
TWoolhouse/Libraries
26079ed387cb800cb97f20980720ae094008c7bf
[ "MIT" ]
null
null
null
website/error.py
TWoolhouse/Libraries
26079ed387cb800cb97f20980720ae094008c7bf
[ "MIT" ]
null
null
null
class WebsiteBaseError(Exception): pass class TreeTraversal(WebsiteBaseError): def __init__(self, tree, request, segment, req=None): super().__init__() self.tree, self.request, self.segment, self.req = tree, request, segment, req def __str__(self) -> str: return f"{self.tree} > {self.request}[{self.segment}] {'' if self.req is None else self.req}" class BufferRead(WebsiteBaseError): def __init__(self, buffer): super().__init__() self.buffer = buffer def __str__(self) -> str: return f"{self.buffer}"
27.52381
101
0.647059
573
0.991349
0
0
0
0
0
0
102
0.176471
4958f00172a7990bcba76c17970e13446ea6dcfc
8,498
py
Python
backend/src/contaxy/operations/deployment.py
ml-tooling/contaxy
3317a866c2ef641667a2d318885c8b0f5096b56a
[ "MIT" ]
3
2021-10-17T23:25:05.000Z
2022-02-03T21:40:59.000Z
backend/src/contaxy/operations/deployment.py
ml-tooling/contaxy
3317a866c2ef641667a2d318885c8b0f5096b56a
[ "MIT" ]
14
2021-11-09T15:24:29.000Z
2022-03-11T13:26:04.000Z
backend/src/contaxy/operations/deployment.py
ml-tooling/contaxy
3317a866c2ef641667a2d318885c8b0f5096b56a
[ "MIT" ]
3
2022-01-27T08:31:57.000Z
2022-02-11T13:38:00.000Z
from abc import ABC, abstractmethod from datetime import datetime from typing import Any, List, Literal, Optional from contaxy.schema import Job, JobInput, ResourceAction, Service, ServiceInput from contaxy.schema.deployment import DeploymentType # TODO: update_service functionality class ServiceOperations(ABC): @abstractmethod def list_services( self, project_id: str, deployment_type: Literal[ DeploymentType.SERVICE, DeploymentType.EXTENSION ] = DeploymentType.SERVICE, ) -> List[Service]: """Lists all services associated with the given project. Args: project_id (str): The project ID to filter the services. deployment_type (One of [DeploymentType.SERVICE, DeploymentType.JOB]): The deployment type of either Service or Extension (which is a subtype of Service). Returns: List[Service]: The list of services associated with the project. """ pass @abstractmethod def deploy_service( self, project_id: str, service: ServiceInput, action_id: Optional[str] = None, deployment_type: Literal[ DeploymentType.SERVICE, DeploymentType.EXTENSION ] = DeploymentType.SERVICE, ) -> Service: """Deploys a service for the specified project. If no `action_id` is provided, the system will automatically select the best deployment option. Available deployment options (actions) can be requested via the [list_deploy_service_actions](#services/list_deploy_service_actions) operation. If the action is from an extension, the `action_id` must be a composite ID with the following format: `{extension_id}~{action_id}`. The action mechanism is further explained in the description of the [list_deploy_service_actions](#services/list_deploy_service_actions). Args: project_id (str): [description] service (ServiceInput): [description] action_id (Optional[str], optional): The ID of the selected action. Defaults to `None`. deployment_type (One of [DeploymentType.SERVICE, DeploymentType.JOB]): The deployment type of either Service or Extension (which is a subtype of Service). Returns: Service: The metadata of the deployed service. """ pass @abstractmethod def list_deploy_service_actions( self, project_id: str, service: ServiceInput, ) -> List[ResourceAction]: """Lists all available service deployment options (actions). Args: project_id (str): The project ID associated with the service. service_id (str): The ID of the service. Returns: List[ResourceAction]: Available deployment actions. """ pass @abstractmethod def get_service_metadata( self, project_id: str, service_id: str, ) -> Service: """Returns the metadata of a single service. Args: project_id (str): The project ID associated with the service. service_id (str): The ID of the service. Returns: Service: The service metadata. """ pass @abstractmethod def delete_service( self, project_id: str, service_id: str, delete_volumes: bool = False, ) -> None: """Deletes a service. Args: project_id (str): The project ID associated with the service. service_id (str): The ID of the service. delete_volumes (bool, optional): If `True`, all attached volumes will be deleted. Defaults to `False`. Raises: RuntimeError: If an error occurs during the deletion of the service. """ pass @abstractmethod def delete_services( self, project_id: str, ) -> None: """Deletes all services associated with a project. Args: project_id (str): The project ID. """ pass @abstractmethod def get_service_logs( self, project_id: str, service_id: str, lines: Optional[int], since: Optional[datetime], ) -> str: """Returns the logs of a service. Args: project_id (str): The ID of the project into which the service is deployed in. service_id (str): The ID of the service. lines (Optional[int]): If provided, just the last `n` lines are returned from the log. Defaults to `None`. since (Optional[datetime]): If provided, just the logs since the given timestamp are returned. Defaults to `None`. Raises: NotImplementedError: [description] RuntimeError: If reading the logs of the given service fails. Returns: str: The logs of the service. """ pass @abstractmethod def suggest_service_config( self, project_id: str, container_image: str, ) -> ServiceInput: """Suggests an input configuration based on the provided `container_image`. The suggestion is based on metadata extracted from the container image (e.g. labels) as well as suggestions based on previous project deployments with the same image. Args: project_id (str): The project ID associated with the service. container_image (str): The container image to use as context for the suggestion. Returns: ServiceInput: The suggested service configuration. """ pass @abstractmethod def list_service_actions( self, project_id: str, service_id: str, ) -> List[ResourceAction]: """Lists all actions available for the specified service. See the endpoint documentation for more information on the action mechanism. Args: project_id (str): The project ID associated with the service. service_id (str): The ID of the service. Returns: List[ResourceAction]: Available actions for given services. """ pass @abstractmethod def execute_service_action( self, project_id: str, service_id: str, action_id: str, ) -> Any: """Executes the selected service action. The actions need to be first requested from the list_service_actions operation. If the action is from an extension, the `action_id` must be a composite ID with the following format: `{extension_id}~{action_id}`. Args: project_id (str): The project ID associated with the service. service_id (str): The ID of the service. action_id (str): The ID of the selected action. Returns: `None` or a redirect response to another URL. """ pass class JobOperations(ABC): @abstractmethod def list_jobs(self, project_id: str) -> List[Job]: pass @abstractmethod def deploy_job( self, project_id: str, job: JobInput, action_id: Optional[str] = None, ) -> Job: pass @abstractmethod def list_deploy_job_actions( self, project_id: str, job: JobInput, ) -> List[ResourceAction]: pass @abstractmethod def suggest_job_config(self, project_id: str, container_image: str) -> JobInput: pass @abstractmethod def get_job_metadata(self, project_id: str, job_id: str) -> Job: pass @abstractmethod def delete_job(self, project_id: str, job_id: str) -> None: pass @abstractmethod def delete_jobs( self, project_id: str, ) -> None: """Deletes all jobs associated with a project. Args: project_id (str): The project ID. """ pass @abstractmethod def get_job_logs( self, project_id: str, job_id: str, lines: Optional[int] = None, since: Optional[datetime] = None, ) -> str: pass @abstractmethod def list_job_actions( self, project_id: str, job_id: str, ) -> List[ResourceAction]: pass @abstractmethod def execute_job_action(self, project_id: str, job_id: str, action_id: str) -> Any: pass class DeploymentOperations(ServiceOperations, JobOperations, ABC): pass
29.922535
166
0.619087
8,203
0.965286
0
0
7,956
0.93622
0
0
4,820
0.567192
4959390b2ca88e67ed8b8674132fbee54a9cccd4
15,604
py
Python
perfkitbenchmarker/providers/openstack/os_virtual_machine.py
Nowasky/PerfKitBenchmarker
cfa88e269eb373780910896ed4bdc8db09469753
[ "Apache-2.0" ]
3
2018-04-28T13:06:14.000Z
2020-06-09T02:39:44.000Z
perfkitbenchmarker/providers/openstack/os_virtual_machine.py
Nowasky/PerfKitBenchmarker
cfa88e269eb373780910896ed4bdc8db09469753
[ "Apache-2.0" ]
1
2018-03-15T21:01:27.000Z
2018-03-15T21:01:27.000Z
perfkitbenchmarker/providers/openstack/os_virtual_machine.py
Nowasky/PerfKitBenchmarker
cfa88e269eb373780910896ed4bdc8db09469753
[ "Apache-2.0" ]
6
2019-06-11T18:59:57.000Z
2021-03-02T19:14:42.000Z
# Copyright 2015 PerfKitBenchmarker Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Class to represent an OpenStack Virtual Machine. Regions: User defined Machine types, or flavors: run 'openstack flavor list' Images: run 'openstack image list' """ import json import logging import threading from absl import flags from perfkitbenchmarker import errors from perfkitbenchmarker import providers from perfkitbenchmarker import virtual_machine, linux_virtual_machine from perfkitbenchmarker import vm_util from perfkitbenchmarker.providers.openstack import os_disk from perfkitbenchmarker.providers.openstack import os_network from perfkitbenchmarker.providers.openstack import utils as os_utils from six.moves import range NONE = 'None' VALIDATION_ERROR_MESSAGE = '{0} {1} could not be found.' FLAGS = flags.FLAGS class OpenStackVirtualMachine(virtual_machine.BaseVirtualMachine): """Object representing an OpenStack Virtual Machine""" CLOUD = providers.OPENSTACK DEFAULT_IMAGE = None _lock = threading.Lock() # _lock guards the following: command_works = False validated_resources_set = set() uploaded_keypair_set = set() deleted_keypair_set = set() created_server_group_dict = {} deleted_server_group_set = set() floating_network_id = None def __init__(self, vm_spec): """Initialize an OpenStack virtual machine. Args: vm_spec: virtual_machine.BaseVirtualMachineSpec object of the vm. """ super(OpenStackVirtualMachine, self).__init__(vm_spec) self.key_name = 'perfkit_key_%s' % FLAGS.run_uri self.user_name = FLAGS.openstack_image_username self.image = self.image or self.DEFAULT_IMAGE # FIXME(meteorfox): Remove --openstack_public_network and # --openstack_private_network once depreciation time has expired self.network_name = (FLAGS.openstack_network or FLAGS.openstack_private_network) self.floating_ip_pool_name = (FLAGS.openstack_floating_ip_pool or FLAGS.openstack_public_network) self.id = None self.boot_volume_id = None self.server_group_id = None self.floating_ip = None self.firewall = None self.public_network = None self.subnet_id = None self.post_provisioning_script = FLAGS.openstack_post_provisioning_script @property def group_id(self): """Returns the security group ID of this VM.""" return 'perfkit_sc_group' def _CreateDependencies(self): """Validate and Create dependencies prior creating the VM.""" self._CheckPrerequisites() self.firewall = os_network.OpenStackFirewall.GetFirewall() self.public_network = os_network.OpenStackFloatingIPPool( OpenStackVirtualMachine.floating_network_id) self._UploadSSHPublicKey() source_range = self._GetInternalNetworkCIDR() self.firewall.AllowPort(self, os_network.MIN_PORT, os_network.MAX_PORT, source_range) self.firewall.AllowICMP(self) # Allowing ICMP traffic (i.e. ping) self.AllowRemoteAccessPorts() def _Create(self): """Creates an OpenStack VM instance and waits until it is ACTIVE.""" if FLAGS.openstack_boot_from_volume: vol_name = '%s_volume' % self.name disk_resp = os_disk.CreateBootVolume(self, vol_name, self.image) self.boot_volume_id = disk_resp['id'] os_disk.WaitForVolumeCreation(self, self.boot_volume_id) self._CreateInstance() @vm_util.Retry(max_retries=4, poll_interval=2) def _PostCreate(self): self._SetIPAddresses() def _Delete(self): if self.id is None: return self._DeleteInstance() if self.floating_ip: self.public_network.release(self, self.floating_ip) if self.server_group_id: self._DeleteServerGroup() if self.boot_volume_id: os_disk.DeleteVolume(self, self.boot_volume_id) self.boot_volume_id = None def _DeleteDependencies(self): """Delete dependencies that were needed for the VM after the VM has been deleted.""" self._DeleteSSHPublicKey() def _Exists(self): if self.id is None: return False show_cmd = os_utils.OpenStackCLICommand(self, 'server', 'show', self.id) stdout, _, _ = show_cmd.Issue(suppress_warning=True) try: resp = json.loads(stdout) return resp except ValueError: return False def _Suspend(self): """Suspends the vm.""" raise NotImplementedError() def _Resume(self): """Resumes the VM.""" raise NotImplementedError() def _CheckCanaryCommand(self): if OpenStackVirtualMachine.command_works: # fast path return with self._lock: if OpenStackVirtualMachine.command_works: return logging.info('Testing OpenStack CLI command is installed and working') cmd = os_utils.OpenStackCLICommand(self, 'image', 'list') stdout, stderr, _ = cmd.Issue() if stderr: raise errors.Config.InvalidValue( 'OpenStack CLI test command failed. Please make sure the OpenStack ' 'CLI client is installed and properly configured') OpenStackVirtualMachine.command_works = True def _CheckPrerequisites(self): """Checks prerequisites are met otherwise aborts execution.""" self._CheckCanaryCommand() if self.zone in self.validated_resources_set: return # No need to check again with self._lock: if self.zone in self.validated_resources_set: return logging.info('Validating prerequisites.') self._CheckImage() self._CheckFlavor() self._CheckNetworks() self.validated_resources_set.add(self.zone) logging.info('Prerequisites validated.') def _CheckImage(self): """Tries to get image, if found continues execution otherwise aborts.""" cmd = os_utils.OpenStackCLICommand(self, 'image', 'show', self.image) err_msg = VALIDATION_ERROR_MESSAGE.format('Image', self.image) self._IssueCommandCheck(cmd, err_msg) def _CheckFlavor(self): """Tries to get flavor, if found continues execution otherwise aborts.""" cmd = os_utils.OpenStackCLICommand(self, 'flavor', 'show', self.machine_type) err_msg = VALIDATION_ERROR_MESSAGE.format('Machine type', self.machine_type) self._IssueCommandCheck(cmd, err_msg) def _CheckNetworks(self): """Tries to get network, if found continues execution otherwise aborts.""" if not self.network_name: if self.floating_ip_pool_name: msg = ('Cannot associate floating-ip address from pool %s without ' 'an internally routable network. Make sure ' '--openstack_network flag is set.') else: msg = ('Cannot build instance without a network. Make sure to set ' 'either just --openstack_network or both ' '--openstack_network and --openstack_floating_ip_pool flags.') raise errors.Error(msg) self._CheckNetworkExists(self.network_name) if self.floating_ip_pool_name: floating_network_dict = self._CheckFloatingIPNetworkExists( self.floating_ip_pool_name) OpenStackVirtualMachine.floating_network_id = floating_network_dict['id'] def _CheckFloatingIPNetworkExists(self, floating_network_name_or_id): network = self._CheckNetworkExists(floating_network_name_or_id) if network['router:external'] not in ('External', True): raise errors.Config.InvalidValue('Network "%s" is not External' % self.floating_ip_pool_name) return network def _CheckNetworkExists(self, network_name_or_id): cmd = os_utils.OpenStackCLICommand(self, 'network', 'show', network_name_or_id) err_msg = VALIDATION_ERROR_MESSAGE.format('Network', network_name_or_id) stdout = self._IssueCommandCheck(cmd, err_msg) network = json.loads(stdout) return network def _IssueCommandCheck(self, cmd, err_msg=None): """Issues command and, if stderr is non-empty, raises an error message Args: cmd: The command to be issued. err_msg: string. Error message if command fails. """ if err_msg is None: err_msg = '' stdout, stderr, _ = cmd.Issue() if stderr: raise errors.Config.InvalidValue(err_msg) return stdout def _UploadSSHPublicKey(self): """Uploads SSH public key to the VM's region.""" with self._lock: if self.zone in self.uploaded_keypair_set: return cmd = os_utils.OpenStackCLICommand(self, 'keypair', 'create', self.key_name) cmd.flags['public-key'] = self.ssh_public_key cmd.IssueRetryable() self.uploaded_keypair_set.add(self.zone) if self.zone in self.deleted_keypair_set: self.deleted_keypair_set.remove(self.zone) def _DeleteSSHPublicKey(self): """Deletes SSH public key used for the VM.""" with self._lock: if self.zone in self.deleted_keypair_set: return cmd = os_utils.OpenStackCLICommand(self, 'keypair', 'delete', self.key_name) del cmd.flags['format'] # keypair delete does not support json output cmd.Issue() self.deleted_keypair_set.add(self.zone) if self.zone in self.uploaded_keypair_set: self.uploaded_keypair_set.remove(self.zone) def _CreateInstance(self): """Execute command for creating an OpenStack VM instance.""" create_cmd = self._GetCreateCommand() stdout, stderr, _ = create_cmd.Issue() if stderr: raise errors.Error(stderr) resp = json.loads(stdout) self.id = resp['id'] def _GetCreateCommand(self): cmd = os_utils.OpenStackCLICommand(self, 'server', 'create', self.name) cmd.flags['flavor'] = self.machine_type cmd.flags['security-group'] = self.group_id cmd.flags['key-name'] = self.key_name cmd.flags['availability-zone'] = self.zone cmd.flags['nic'] = 'net-id=%s' % self.network_name cmd.flags['wait'] = True if FLAGS.openstack_config_drive: cmd.flags['config-drive'] = 'True' hints = self._GetSchedulerHints() if hints: cmd.flags['hint'] = hints if FLAGS.openstack_boot_from_volume: cmd.flags['volume'] = self.boot_volume_id else: cmd.flags['image'] = self.image if self.post_provisioning_script: cmd.flags['user-data'] = self.post_provisioning_script return cmd def _GetSchedulerHints(self): if FLAGS.openstack_scheduler_policy == NONE: return None with self._lock: group_name = 'perfkit_server_group_%s' % FLAGS.run_uri hint_temp = 'group=%s' if self.zone in self.created_server_group_dict: hint = hint_temp % self.created_server_group_dict[self.zone]['id'] return hint server_group = self._CreateServerGroup(group_name) self.server_group_id = server_group['id'] self.created_server_group_dict[self.zone] = server_group if self.zone in self.deleted_server_group_set: self.deleted_server_group_set.remove(self.zone) return hint_temp % server_group['id'] def _CreateServerGroup(self, group_name): cmd = os_utils.OpenStackCLICommand(self, 'server group', 'create', group_name) cmd.flags['policy'] = FLAGS.openstack_scheduler_policy stdout, stderr, _ = cmd.Issue() if stderr: raise errors.Error(stderr) server_group = json.loads(stdout) return server_group def _DeleteServerGroup(self): with self._lock: if self.zone in self.deleted_server_group_set: return cmd = os_utils.OpenStackCLICommand(self, 'server group', 'delete', self.server_group_id) del cmd.flags['format'] # delete does not support json output cmd.Issue() self.deleted_server_group_set.add(self.zone) if self.zone in self.created_server_group_dict: del self.created_server_group_dict[self.zone] def _DeleteInstance(self): cmd = os_utils.OpenStackCLICommand(self, 'server', 'delete', self.id) del cmd.flags['format'] # delete does not support json output cmd.flags['wait'] = True cmd.Issue(suppress_warning=True) def _SetIPAddresses(self): show_cmd = os_utils.OpenStackCLICommand(self, 'server', 'show', self.name) stdout, _, _ = show_cmd.Issue() server_dict = json.loads(stdout) self.ip_address = self._GetNetworkIPAddress(server_dict, self.network_name) self.internal_ip = self.ip_address if self.floating_ip_pool_name: self.floating_ip = self._AllocateFloatingIP() self.internal_ip = self.ip_address self.ip_address = self.floating_ip.floating_ip_address def _GetNetworkIPAddress(self, server_dict, network_name): addresses = server_dict['addresses'].split(',') for address in addresses: if network_name in address: _, ip = address.split('=') return ip def _GetInternalNetworkCIDR(self): """Returns IP addresses source range of internal network.""" net_cmd = os_utils.OpenStackCLICommand(self, 'network', 'show', self.network_name) net_stdout, _, _ = net_cmd.Issue() network = json.loads(net_stdout) if isinstance(network['subnets'], list): self.subnet_id = network['subnets'][0] else: self.subnet_id = network['subnets'] subnet_cmd = os_utils.OpenStackCLICommand(self, 'subnet', 'show', self.subnet_id) stdout, _, _ = subnet_cmd.Issue() subnet_dict = json.loads(stdout) return subnet_dict['cidr'] def _AllocateFloatingIP(self): floating_ip = self.public_network.associate(self) logging.info('floating-ip associated: {}'.format( floating_ip.floating_ip_address)) return floating_ip def CreateScratchDisk(self, disk_spec): disks_names = ('%s_data_%d_%d' % (self.name, len(self.scratch_disks), i) for i in range(disk_spec.num_striped_disks)) disks = [os_disk.OpenStackDisk(disk_spec, name, self.zone) for name in disks_names] self._CreateScratchDiskFromDisks(disk_spec, disks) def GetResourceMetadata(self): """Returns a dict containing metadata about the VM. Returns: dict mapping string property key to value. """ result = super(OpenStackVirtualMachine, self).GetResourceMetadata() if self.post_provisioning_script: result['post_provisioning_script'] = self.post_provisioning_script return result class Rhel7BasedOpenStackVirtualMachine(OpenStackVirtualMachine, linux_virtual_machine.Rhel7Mixin): DEFAULT_IMAGE = 'rhel-7.2' class CentOs7BasedOpenStackVirtualMachine(OpenStackVirtualMachine, linux_virtual_machine.CentOs7Mixin): DEFAULT_IMAGE = 'centos7' class ClearBasedOpenStackVirtualMachine(OpenStackVirtualMachine, linux_virtual_machine.ClearMixin): DEFAULT_IMAGE = 'upstream-clear'
36.543326
80
0.692771
14,237
0.912394
0
0
211
0.013522
0
0
3,713
0.237952
49594197e0bf3a8d4220d5dcfdcb6644bf95fa9a
5,933
py
Python
model.py
kevincho840430/CarND-Behavioral-Cloning-P3-master-1
042707a17c6dffb19717737b3f78169428bf31f6
[ "MIT" ]
null
null
null
model.py
kevincho840430/CarND-Behavioral-Cloning-P3-master-1
042707a17c6dffb19717737b3f78169428bf31f6
[ "MIT" ]
null
null
null
model.py
kevincho840430/CarND-Behavioral-Cloning-P3-master-1
042707a17c6dffb19717737b3f78169428bf31f6
[ "MIT" ]
null
null
null
## Self-driven car project based on nvidia's CNN model ## Package #torch = 0.4.1.post2 #torchvision = 0.2.1 #numpy = 1.15.2 #opencv-python =3.4.3 # -*- coding: utf-8 -*- # Import the Stuff import torch import torch.nn as nn import torch.optim as optim from torch.utils import data from torch.utils.data import DataLoader import torchvision.transforms as transforms import cv2 import numpy as np import csv # Step1: Read from the log file samples = [] with open('../data/driving_log.csv') as csvfile: reader = csv.reader(csvfile) next(reader, None) for line in reader: samples.append(line) # Step2: Divide the data into training set and validation set train_len = int(0.8*len(samples)) valid_len = len(samples) - train_len train_samples, validation_samples = data.random_split(samples, lengths=[train_len, valid_len]) # Step3a: Define the augmentation, transformation processes, parameters and dataset for dataloader def augment(imgName, angle): name = '../data/IMG/' + imgName.split('/')[-1] current_image = cv2.imread(name) current_image = current_image[65:-25, :, :] if np.random.rand() < 0.5: current_image = cv2.flip(current_image, 1) angle = angle * -1.0 return current_image, angle class Dataset(data.Dataset): def __init__(self, samples, transform=None): self.samples = samples self.transform = transform def __getitem__(self, index): batch_samples = self.samples[index] steering_angle = float(batch_samples[3]) center_img, steering_angle_center = augment(batch_samples[0], steering_angle) left_img, steering_angle_left = augment(batch_samples[1], steering_angle + 0.4) right_img, steering_angle_right = augment(batch_samples[2], steering_angle - 0.4) center_img = self.transform(center_img) left_img = self.transform(left_img) right_img = self.transform(right_img) return (center_img, steering_angle_center), (left_img, steering_angle_left), (right_img, steering_angle_right) def __len__(self): return len(self.samples) # Step3b: Creating generator using the dataloader to parallasize the process transformations = transforms.Compose([transforms.Lambda(lambda x: (x / 255.0) - 0.5)]) params = {'batch_size': 32, 'shuffle': True, 'num_workers': 4} training_set = Dataset(train_samples, transformations) training_generator = data.DataLoader(training_set, **params) validation_set = Dataset(validation_samples, transformations) validation_generator = data.DataLoader(validation_set, **params) # Step4: Define the network class NetworkLight(nn.Module): def __init__(self): super(NetworkLight, self).__init__() self.conv_layers = nn.Sequential( nn.Conv2d(3, 24, 3, stride=2), nn.ELU(), nn.Conv2d(24, 48, 3, stride=2), nn.MaxPool2d(4, stride=4), nn.Dropout(p=0.25) ) self.linear_layers = nn.Sequential( nn.Linear(in_features=48*4*19, out_features=50), nn.ELU(), nn.Linear(in_features=50, out_features=10), nn.Linear(in_features=10, out_features=1) ) def forward(self, input): input = input.view(input.size(0), 3, 70, 320) output = self.conv_layers(input) output = output.view(output.size(0), -1) output = self.linear_layers(output) return output # Step5: Define optimizer model = NetworkLight() optimizer = optim.Adam(model.parameters(), lr=0.0001) criterion = nn.MSELoss() # Step6: Check the device and define function to move tensors to that device device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print('device is: ', device) def toDevice(datas, device): imgs, angles = datas return imgs.float().to(device), angles.float().to(device) # Step7: Train and validate network based on maximum epochs defined max_epochs = 22 for epoch in range(max_epochs): model.to(device) # Training train_loss = 0 model.train() for local_batch, (centers, lefts, rights) in enumerate(training_generator): # Transfer to GPU centers, lefts, rights = toDevice(centers, device), toDevice(lefts, device), toDevice(rights, device) # Model computations optimizer.zero_grad() datas = [centers, lefts, rights] for data in datas: imgs, angles = data # print("training image: ", imgs.shape) outputs = model(imgs) loss = criterion(outputs, angles.unsqueeze(1)) loss.backward() optimizer.step() train_loss += loss.data[0].item() if local_batch % 100 == 0: print('Loss: %.3f ' % (train_loss/(local_batch+1))) # Validation model.eval() valid_loss = 0 with torch.set_grad_enabled(False): for local_batch, (centers, lefts, rights) in enumerate(validation_generator): # Transfer to GPU centers, lefts, rights = toDevice(centers, device), toDevice(lefts, device), toDevice(rights, device) # Model computations optimizer.zero_grad() datas = [centers, lefts, rights] for data in datas: imgs, angles = data # print("Validation image: ", imgs.shape) outputs = model(imgs) loss = criterion(outputs, angles.unsqueeze(1)) valid_loss += loss.data[0].item() if local_batch % 100 == 0: print('Valid Loss: %.3f ' % (valid_loss/(local_batch+1))) # Step8: Define state and save the model wrt to state state = { 'model': model.module if device == 'cuda' else model, } torch.save(state, 'model.h5')
31.062827
118
0.632901
1,712
0.288556
0
0
0
0
0
0
1,054
0.17765