hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
b1d089298e5f4bb67268690bc90d7e531a39929b
7,710
py
Python
aleph/model/document.py
gazeti/aleph
f6714c4be038471cfdc6408bfe88dc9e2ed28452
[ "MIT" ]
1
2017-07-28T12:54:09.000Z
2017-07-28T12:54:09.000Z
aleph/model/document.py
gazeti/aleph
f6714c4be038471cfdc6408bfe88dc9e2ed28452
[ "MIT" ]
7
2017-08-16T12:49:23.000Z
2018-02-16T10:22:11.000Z
aleph/model/document.py
gazeti/aleph
f6714c4be038471cfdc6408bfe88dc9e2ed28452
[ "MIT" ]
6
2017-07-26T12:29:53.000Z
2017-08-18T09:35:50.000Z
import logging from datetime import datetime, timedelta from normality import ascii_text from sqlalchemy import func from sqlalchemy.dialects.postgresql import JSONB from sqlalchemy.orm.attributes import flag_modified from aleph.core import db from aleph.model.metadata import Metadata from aleph.model.validate import validate from aleph.model.collection import Collection from aleph.model.reference import Reference from aleph.model.common import DatedModel from aleph.model.document_record import DocumentRecord from aleph.model.document_tag import DocumentTag from aleph.text import index_form log = logging.getLogger(__name__) class Document(db.Model, DatedModel, Metadata): _schema = 'document.json#' SCHEMA = 'Document' TYPE_TEXT = 'text' TYPE_TABULAR = 'tabular' TYPE_OTHER = 'other' STATUS_PENDING = 'pending' STATUS_SUCCESS = 'success' STATUS_FAIL = 'fail' id = db.Column(db.BigInteger, primary_key=True) content_hash = db.Column(db.Unicode(65), nullable=True, index=True) foreign_id = db.Column(db.Unicode, unique=False, nullable=True) type = db.Column(db.Unicode(10), nullable=False, index=True) status = db.Column(db.Unicode(10), nullable=True, index=True) meta = db.Column(JSONB, default={}) crawler = db.Column(db.Unicode(), index=True) crawler_run = db.Column(db.Unicode()) error_type = db.Column(db.Unicode(), nullable=True) error_message = db.Column(db.Unicode(), nullable=True) parent_id = db.Column(db.BigInteger, db.ForeignKey('document.id'), nullable=True) # noqa children = db.relationship('Document', backref=db.backref('parent', uselist=False, remote_side=[id])) # noqa collection_id = db.Column(db.Integer, db.ForeignKey('collection.id'), nullable=False, index=True) # noqa collection = db.relationship(Collection, backref=db.backref('documents', lazy='dynamic')) # noqa def __init__(self, **kw): self.meta = {} super(Document, self).__init__(**kw) def update(self, data): validate(data, self._schema) self.title = data.get('title') self.summary = data.get('summary') self.languages = data.get('languages') self.countries = data.get('countries') db.session.add(self) def update_meta(self): flag_modified(self, 'meta') def delete_records(self): pq = db.session.query(DocumentRecord) pq = pq.filter(DocumentRecord.document_id == self.id) # pq.delete(synchronize_session='fetch') pq.delete() db.session.flush() def delete_tags(self): pq = db.session.query(DocumentTag) pq = pq.filter(DocumentTag.document_id == self.id) # pq.delete(synchronize_session='fetch') pq.delete() db.session.flush() def delete_references(self, origin=None): pq = db.session.query(Reference) pq = pq.filter(Reference.document_id == self.id) if origin is not None: pq = pq.filter(Reference.origin == origin) # pq.delete(synchronize_session='fetch') pq.delete() db.session.flush() def delete(self, deleted_at=None): self.delete_references() self.delete_records() db.session.delete(self) def insert_records(self, sheet, iterable, chunk_size=1000): chunk = [] for index, data in enumerate(iterable): chunk.append({ 'document_id': self.id, 'index': index, 'sheet': sheet, 'data': data }) if len(chunk) >= chunk_size: db.session.bulk_insert_mappings(DocumentRecord, chunk) chunk = [] if len(chunk): db.session.bulk_insert_mappings(DocumentRecord, chunk) def text_parts(self): pq = db.session.query(DocumentRecord) pq = pq.filter(DocumentRecord.document_id == self.id) for record in pq.yield_per(1000): for text in record.text_parts(): yield text @classmethod def crawler_last_run(cls, crawler_id): q = db.session.query(func.max(cls.updated_at)) q = q.filter(cls.crawler == crawler_id) return q.scalar() @classmethod def is_crawler_active(cls, crawler_id): # TODO: add a function to see if a particular crawl is still running # this should be defined as having "pending" documents. last_run_time = cls.crawler_last_run(crawler_id) if last_run_time is None: return False return last_run_time > (datetime.utcnow() - timedelta(hours=1)) @classmethod def crawler_stats(cls, crawler_id): # Check if the crawler was active very recently, if so, don't # allow the user to execute a new run right now. stats = { 'updated': cls.crawler_last_run(crawler_id), 'running': cls.is_crawler_active(crawler_id) } q = db.session.query(cls.status, func.count(cls.id)) q = q.filter(cls.crawler == crawler_id) q = q.group_by(cls.status) for (status, count) in q.all(): stats[status] = count return stats @classmethod def by_keys(cls, parent_id=None, collection=None, foreign_id=None, content_hash=None): """Try and find a document by various criteria.""" q = cls.all() if collection is not None: q = q.filter(Document.collection_id == collection.id) if parent_id is not None: q = q.filter(Document.parent_id == parent_id) if foreign_id is not None: q = q.filter(Document.foreign_id == foreign_id) elif content_hash is not None: q = q.filter(Document.content_hash == content_hash) else: raise ValueError("No unique criterion for document.") document = q.first() if document is None: document = cls() document.type = cls.TYPE_OTHER document.collection_id = collection.id document.collection = collection document.parent_id = parent_id document.foreign_id = foreign_id document.content_hash = content_hash document.status = document.STATUS_PENDING db.session.add(document) return document def to_dict(self): data = self.to_meta_dict() try: from flask import request # noqa data['public'] = request.authz.collection_public(self.collection_id) # noqa except: data['public'] = None data.update({ 'id': self.id, 'type': self.type, 'status': self.status, 'parent_id': self.parent_id, 'foreign_id': self.foreign_id, 'content_hash': self.content_hash, 'crawler': self.crawler, 'crawler_run': self.crawler_run, 'error_type': self.error_type, 'error_message': self.error_message, 'collection_id': self.collection_id, 'created_at': self.created_at, 'updated_at': self.updated_at }) return data def to_index_dict(self): data = self.to_dict() data['text'] = index_form(self.text_parts()) data['schema'] = self.SCHEMA data['schemata'] = [self.SCHEMA] data['name_sort'] = ascii_text(data.get('title')) data['title_latin'] = ascii_text(data.get('title')) data['summary_latin'] = ascii_text(data.get('summary')) data.pop('tables') return data def __repr__(self): return '<Document(%r,%r,%r)>' % (self.id, self.type, self.title)
35.366972
113
0.623476
7,073
0.91738
243
0.031518
2,283
0.296109
0
0
981
0.127237
b1d1d0561cf49238a4a8252a8f7aae4e72eed16d
1,613
py
Python
pyInet/__main__.py
LcfherShell/pynet
80284d7147d7b8d69c631fd6fe1236bb73e50b1b
[ "MIT" ]
null
null
null
pyInet/__main__.py
LcfherShell/pynet
80284d7147d7b8d69c631fd6fe1236bb73e50b1b
[ "MIT" ]
null
null
null
pyInet/__main__.py
LcfherShell/pynet
80284d7147d7b8d69c631fd6fe1236bb73e50b1b
[ "MIT" ]
null
null
null
try: from main import ClassA, ClassB except: try: from pyInet import ClassA, ClassB except: from pyInet.main import ClassA, ClassB if __name__ == "__main__": child = ClassA #Public Class network = ClassB #Private Class print("Call function using public class") for i in range(3): for ipv4 in child.IPv4(i): print("IPv4:", ipv4) for ipv6 in child.IPv6(i): print("IPv6:", ipv6) print("MacAddresss:", child.MacAddresss(),"\n") i = 0 print("\nCall function using private class") for i in range(3): for ipv4 in network.IPv4(i): print("IPv4:", ipv4) for ipv6 in network.IPv6(i): print("IPv6:", ipv6) print("MacAddresss:", network.MacAddresss(),"\n") ipv4 = "192.230.212.159" ipv6 = "f18d:5980:50d1:cf2d:b204:dc2:ad87:6a58" print("Check Version and Class Ip addresses") print("IP version:", child.Validate_IP(ipv4)) print("IPv4 Class:", child.IPv4_Class(ipv4)) print("\nIP version:", child.Validate_IP(ipv6)) print("IPv6 Class:", child.IPv6_Class(ipv6)) print("\nManipulate IPv4 :") for x in range(1, 33): child.IPv4_Calculator("{}/{}".format(ipv4, x)) print(child.saving.output) print("\nManipulate IPv6 :") for y in range(0, 33): ipv6range = "{}/{}".format(ipv6, y) child.IPv6_Calculator(ipv6range) print(child.saving.output)
33.604167
62
0.543707
0
0
0
0
0
0
0
0
379
0.234966
b1d42f3d03c0a3e27b14e56be2c1099412ba4e94
3,854
py
Python
dope/filespec/__init__.py
gwappa/pydope
c8beb315177a850e9d275902a6303e68a319c123
[ "MIT" ]
null
null
null
dope/filespec/__init__.py
gwappa/pydope
c8beb315177a850e9d275902a6303e68a319c123
[ "MIT" ]
5
2020-05-13T13:09:45.000Z
2020-05-14T14:18:43.000Z
dope/filespec/__init__.py
gwappa/pydope
c8beb315177a850e9d275902a6303e68a319c123
[ "MIT" ]
null
null
null
# # MIT License # # Copyright (c) 2020 Keisuke Sehara # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # import collections as _collections from ..core import SelectionStatus as _SelectionStatus class FileSpec(_collections.namedtuple("_FileSpec", ("suffix", "trial", "run", "channel")), _SelectionStatus): DIGITS = 5 def __new__(cls, suffix=None, trial=None, run=None, channel=None): return super(cls, FileSpec).__new__(cls, suffix=suffix, trial=trial, run=run, channel=channel) @classmethod def empty(cls): return FileSpec(suffix=None, trial=None, run=None, channel=None) @property def status(self): return self.compute_status(None) def compute_status(self, context=None): # TODO if context is None: unspecified = (((self.trial is None) and (self.run is None)), self.channel is None, self.suffix is None) if all(unspecified): return self.UNSPECIFIED elif any(callable(fld) for fld in self): return self.DYNAMIC elif any(unspecified): return self.MULTIPLE else: return self.SINGLE else: raise NotImplementedError("FileSpec.compute_status()") def compute_path(self, context): """context: Predicate""" return context.compute_domain_path() / self.format_name(context) def format_name(self, context, digits=None): """context: Predicate""" runtxt = self.format_run(digits=digits) chtxt = self.format_channel(context) sxtxt = self.format_suffix() return f"{context.subject}_{context.session.name}_{context.domain}{runtxt}{chtxt}{sxtxt}" def format_run(self, digits=None): if digits is None: digits = self.DIGITS if self.trial is None: if self.run is None: return "" else: return "_" + str(self.run).zfill(digits) else: return "_" + str(self.trial).zfill(digits) def format_channel(self, context): if self.channel is None: return "" elif isinstance(self.channel, str): return f"_{self.channel}" elif iterable(self.channel): return "_" + "-".join(self.channel) else: raise ValueError(f"cannot compute channel from: {self.channel}") def format_suffix(self): return self.suffix if self.suffix is not None else "" def with_values(self, **kwargs): spec = dict(**kwargs) for fld in self._fields: if fld not in spec.keys(): spec[fld] = getattr(self, fld) return self.__class__(**spec) def cleared(self): return self.__class__()
37.417476
102
0.639855
2,649
0.687338
0
0
177
0.045926
0
0
1,375
0.356772
b1d4408048c2582c035650ab9faddb5edccff6fd
2,498
py
Python
city_scrapers_core/extensions/status.py
jtotoole/city-scrapers-core
0c091d91bf8883c6f361a19fbb055abc3b306835
[ "MIT" ]
null
null
null
city_scrapers_core/extensions/status.py
jtotoole/city-scrapers-core
0c091d91bf8883c6f361a19fbb055abc3b306835
[ "MIT" ]
null
null
null
city_scrapers_core/extensions/status.py
jtotoole/city-scrapers-core
0c091d91bf8883c6f361a19fbb055abc3b306835
[ "MIT" ]
null
null
null
from datetime import datetime import pytz from scrapy import signals RUNNING = "running" FAILING = "failing" STATUS_COLOR_MAP = {RUNNING: "#44cc11", FAILING: "#cb2431"} STATUS_ICON = """ <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="144" height="20"> <linearGradient id="b" x2="0" y2="100%"> <stop offset="0" stop-color="#bbb" stop-opacity=".1"/> <stop offset="1" stop-opacity=".1"/> </linearGradient> <clipPath id="a"> <rect width="144" height="20" rx="3" fill="#fff"/> </clipPath> <g clip-path="url(#a)"> <path fill="#555" d="M0 0h67v20H0z"/> <path fill="{color}" d="M67 0h77v20H67z"/> <path fill="url(#b)" d="M0 0h144v20H0z"/> </g> <g fill="#fff" text-anchor="middle" font-family="DejaVu Sans,Verdana,Geneva,sans-serif" font-size="110"> <text x="345" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)">{status}</text> <text x="345" y="140" transform="scale(.1)">{status}</text> <text x="1045" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)">{date}</text> <text x="1045" y="140" transform="scale(.1)">{date}</text> </g> </svg> """ # noqa class StatusExtension: """ Scrapy extension for maintaining an SVG badge for each scraper's status. TODO: Track how many items are scraped on each run. """ def __init__(self, crawler): self.crawler = crawler self.has_error = False @classmethod def from_crawler(cls, crawler): ext = cls(crawler) crawler.signals.connect(ext.spider_closed, signal=signals.spider_closed) crawler.signals.connect(ext.spider_error, signal=signals.spider_error) return ext def spider_closed(self): if self.has_error: return svg = self.create_status_svg(self.crawler.spider, RUNNING) self.update_status_svg(self.crawler.spider, svg) def spider_error(self): self.has_error = True svg = self.create_status_svg(self.crawler.spider, FAILING) self.update_status_svg(self.crawler.spider, svg) def create_status_svg(self, spider, status): tz = pytz.timezone(spider.timezone) return STATUS_ICON.format( color=STATUS_COLOR_MAP[status], status=status, date=tz.localize(datetime.now()).strftime("%Y-%m-%d"), ) def update_status_svg(self, spider, svg): raise NotImplementedError
34.694444
108
0.6249
1,269
0.508006
0
0
254
0.101681
0
0
1,229
0.491994
b1d542377c13c57ca40f0aad4217a57a0a2f3e27
5,438
py
Python
tests/test_filters.py
maniospas/pygrank
a92f6bb6d13553dd960f2e6bda4c041a8027a9d1
[ "Apache-2.0" ]
19
2019-10-07T14:42:40.000Z
2022-03-24T15:02:02.000Z
tests/test_filters.py
maniospas/pygrank
a92f6bb6d13553dd960f2e6bda4c041a8027a9d1
[ "Apache-2.0" ]
13
2021-08-25T12:54:37.000Z
2022-03-05T03:31:34.000Z
tests/test_filters.py
maniospas/pygrank
a92f6bb6d13553dd960f2e6bda4c041a8027a9d1
[ "Apache-2.0" ]
4
2019-09-25T09:54:51.000Z
2020-12-09T00:11:21.000Z
import networkx as nx import pygrank as pg import pytest from .test_core import supported_backends def test_zero_personalization(): assert pg.sum(pg.PageRank()(next(pg.load_datasets_graph(["graph9"])), {}).np) == 0 def test_abstract_filter_types(): graph = next(pg.load_datasets_graph(["graph5"])) with pytest.raises(Exception): pg.GraphFilter().rank(graph) with pytest.raises(Exception): pg.RecursiveGraphFilter().rank(graph) with pytest.raises(Exception): pg.ClosedFormGraphFilter().rank(graph) with pytest.raises(Exception): pg.Tuner().rank(graph) def test_filter_invalid_parameters(): graph = next(pg.load_datasets_graph(["graph5"])) with pytest.raises(Exception): pg.HeatKernel(normalization="unknown").rank(graph) with pytest.raises(Exception): pg.HeatKernel(coefficient_type="unknown").rank(graph) def test_convergence_string_conversion(): # TODO: make convergence trackable from wrapping objects graph = next(pg.load_datasets_graph(["graph5"])) ranker = pg.PageRank() ranker(graph) assert str(ranker.convergence.iteration)+" iterations" in str(ranker.convergence) def test_pagerank_vs_networkx(): graph = next(pg.load_datasets_graph(["graph9"])) for _ in supported_backends(): ranker = pg.Normalize("sum", pg.PageRank(normalization='col', tol=1.E-9)) test_result = ranker(graph) test_result2 = nx.pagerank(graph, tol=1.E-9) # TODO: assert that 2.5*epsilon is indeed a valid limit assert pg.Mabs(test_result)(test_result2) < 2.5*pg.epsilon() def test_prevent_node_lists_as_graphs(): graph = next(pg.load_datasets_graph(["graph5"])) with pytest.raises(Exception): pg.PageRank().rank(list(graph)) def test_non_convergence(): graph = next(pg.load_datasets_graph(["graph9"])) with pytest.raises(Exception): pg.PageRank(max_iters=5).rank(graph) def test_custom_runs(): graph = next(pg.load_datasets_graph(["graph9"])) for _ in supported_backends(): ranks1 = pg.Normalize(pg.PageRank(0.85, tol=pg.epsilon(), max_iters=1000, use_quotient=False)).rank(graph, {"A": 1}) ranks2 = pg.Normalize(pg.GenericGraphFilter([0.85**i*len(graph) for i in range(80)], tol=pg.epsilon())).rank(graph, {"A": 1}) assert pg.Mabs(ranks1)(ranks2) < 1.E-6 def test_completion(): graph = next(pg.load_datasets_graph(["graph9"])) for _ in supported_backends(): pg.PageRank().rank(graph) pg.HeatKernel().rank(graph) pg.AbsorbingWalks().rank(graph) pg.HeatKernel().rank(graph) assert True def test_quotient(): graph = next(pg.load_datasets_graph(["graph9"])) for _ in supported_backends(): test_result = pg.PageRank(normalization='symmetric', tol=max(1.E-9, pg.epsilon()), use_quotient=True).rank(graph) norm_result = pg.PageRank(normalization='symmetric', tol=max(1.E-9, pg.epsilon()), use_quotient=pg.Normalize("sum")).rank(graph) assert pg.Mabs(test_result)(norm_result) < pg.epsilon() def test_automatic_graph_casting(): graph = next(pg.load_datasets_graph(["graph9"])) for _ in supported_backends(): signal = pg.to_signal(graph, {"A": 1}) test_result1 = pg.PageRank(normalization='col').rank(signal, signal) test_result2 = pg.PageRank(normalization='col').rank(personalization=signal) assert pg.Mabs(test_result1)(test_result2) < pg.epsilon() with pytest.raises(Exception): pg.PageRank(normalization='col').rank(personalization={"A": 1}) with pytest.raises(Exception): pg.PageRank(normalization='col').rank(graph.copy(), signal) def test_absorbing_vs_pagerank(): graph = next(pg.load_datasets_graph(["graph9"])) personalization = {"A": 1, "B": 1} for _ in supported_backends(): pagerank_result = pg.PageRank(normalization='col').rank(graph, personalization) absorbing_result = pg.AbsorbingWalks(0.85, normalization='col', max_iters=1000).rank(graph, personalization) assert pg.Mabs(pagerank_result)(absorbing_result) < pg.epsilon() def test_kernel_locality(): graph = next(pg.load_datasets_graph(["graph9"])) personalization = {"A": 1, "B": 1} for _ in supported_backends(): for kernel_algorithm in [pg.HeatKernel, pg.BiasedKernel]: pagerank_result = pg.Normalize("sum", pg.PageRank(max_iters=1000)).rank(graph, personalization) kernel_result = pg.Normalize("sum", kernel_algorithm(max_iters=1000)).rank(graph, personalization) assert pagerank_result['A'] < kernel_result['A'] assert pagerank_result['I'] > kernel_result['I'] def test_optimization_dict(): from timeit import default_timer as time graph = next(pg.load_datasets_graph(["bigraph"])) personalization = {str(i): 1 for i in range(200)} preprocessor = pg.preprocessor(assume_immutability=True) preprocessor(graph) tic = time() for _ in range(10): pg.ParameterTuner(preprocessor=preprocessor, tol=1.E-9).rank(graph, personalization) unoptimized = time()-tic optimization = dict() tic = time() for _ in range(10): pg.ParameterTuner(optimization_dict=optimization, preprocessor=preprocessor, tol=1.E-9).rank(graph, personalization) optimized = time() - tic assert len(optimization) == 20 assert unoptimized > optimized
39.693431
136
0.685914
0
0
0
0
0
0
0
0
368
0.067672
b1d70b532712bd846f1a70f021a50fadff6b4449
9,816
py
Python
src/preprocess.py
vkola-lab/ajpa2021
67a76ae184b4c9c40c9bc104c8d87ffa5ea69d91
[ "MIT" ]
null
null
null
src/preprocess.py
vkola-lab/ajpa2021
67a76ae184b4c9c40c9bc104c8d87ffa5ea69d91
[ "MIT" ]
null
null
null
src/preprocess.py
vkola-lab/ajpa2021
67a76ae184b4c9c40c9bc104c8d87ffa5ea69d91
[ "MIT" ]
null
null
null
import os import PIL from PIL import Image from PIL import Image, ImageStat PIL.Image.MAX_IMAGE_PIXELS = 10000000000 import numpy as np import cv2 import openslide import time PATCH_SIZE = 224 STRIDE = 224 DOWN_SIZE = 508 def preprocess_mask(path_ori, path_mask, width_resize=2560, height_resize=1920): start_time = time.time() all_files = os.listdir(path_ori) for file_ in all_files: ori = openslide.OpenSlide(os.path.join(path_ori, file_)) name = file_.split('.')[0] if os.path.exists(os.path.join(path_mask, '{}-annotations.png'.format(name))): annt = Image.open(os.path.join(path_mask, '{}-annotations.png'.format(name))) width, height = annt.size width_r = width/width_resize height_r = height/height_resize annt_resize = annt.resize((width_resize,height_resize)) annt_resize_img = np.array(annt_resize) os.makedirs(os.path.join('data/masks/'), exist_ok=True) cv2.imwrite('data/masks/{}_annt.jpg'.format(name), annt_resize_img) print('{} finished'.format(name)) time.s print("--- %s seconds ---" % (time.time() - start_time_total)) def preprocess_global(path_ori, width_resize=2560, height_resize=1920): start_time = time.time() all_files = os.listdir(path_ori) for file_ in all_files: ori = openslide.OpenSlide(os.path.join(path_ori, file_)) name = file_.split('.')[0] width, height = ori.dimensions x_resize_mins = [] x_resize_maxs = [] y_resize_mins = [] y_resize_maxs = [] if os.path.exists('data/masks/{}_annt.jpg'.format(name)): annt_resized = cv2.imread('data/masks/{}_annt.jpg'.format(name), 0) height_annt, width_annt = annt_resized.shape ret, score = cv2.threshold(annt_resized, 128, 1, 0) nLabels, labels, stats, centroids = cv2.connectedComponentsWithStats(score.astype(np.uint8), connectivity=4) for k in range(1,nLabels): size = stats[k, cv2.CC_STAT_AREA] if size < 10000: continue segmap = np.zeros(annt_resized.shape, dtype=np.uint8) segmap[labels==k] = 255 np_contours = np.roll(np.array(np.where(segmap!=0)),1,axis=0).transpose().reshape(-1,2) x_resize_min, x_resize_max = min(np_contours[:,1]), max(np_contours[:,1]) y_resize_min, y_resize_max = min(np_contours[:,0]), max(np_contours[:,0]) x_resize_mins.append(x_resize_min) x_resize_maxs.append(x_resize_max) y_resize_mins.append(y_resize_min) y_resize_maxs.append(y_resize_max) width_r = width/width_resize height_r = height/height_resize if len(x_resize_maxs) != 0: x_resize_min, x_resize_max, y_resize_min, y_resize_max = min(x_resize_mins), max(x_resize_maxs), min(y_resize_mins), max(y_resize_maxs) else: for k in range(1,nLabels): size = stats[k, cv2.CC_STAT_AREA] if size < 150: continue segmap = np.zeros(annt_resized.shape, dtype=np.uint8) segmap[labels==k] = 255 np_contours = np.roll(np.array(np.where(segmap!=0)),1,axis=0).transpose().reshape(-1,2) x_resize_min, x_resize_max = min(np_contours[:,1]), max(np_contours[:,1]) y_resize_min, y_resize_max = min(np_contours[:,0]), max(np_contours[:,0]) x_resize_mins.append(x_resize_min) x_resize_maxs.append(x_resize_max) y_resize_mins.append(y_resize_min) y_resize_maxs.append(y_resize_max) x_resize_min, x_resize_max, y_resize_min, y_resize_max = min(x_resize_mins), max(x_resize_maxs), min(y_resize_mins), max(y_resize_maxs) x_min, x_max = int(x_resize_min * height_r), int(x_resize_max * height_r) y_min, y_max = int(y_resize_min * width_r), int(y_resize_max * width_r) crop = ori.read_region((y_min,x_min), 0, (y_max-y_min,x_max-x_min)) crop = crop.resize((DOWN_SIZE,DOWN_SIZE)) crop_np = np.array(crop) crop_np = cv2.cvtColor(crop_np, cv2.COLOR_RGBA2RGB) os.makedirs(os.path.join('data/globals/'), exist_ok=True) cv2.imwrite('data/globals/{}.png'.format(name), crop_np) print('{} finished'.format(name)) time.s print("--- %s seconds ---" % (time.time() - start_time)) def preprocess_patch(path_ori, width_resize=2560, height_resize=1920): start_time = time.time() all_files = os.listdir(path_ori) os.makedirs(os.path.join('data/locals/'), exist_ok=True) for file_ in all_files: ori = openslide.OpenSlide(os.path.join(path_ori, file_)) name = file_.split('.')[0] width, height = ori.dimensions x_resize_mins = [] x_resize_maxs = [] y_resize_mins = [] y_resize_maxs = [] if os.path.exists('data/masks/{}_annt.jpg'.format(name)): os.makedirs(os.path.join('data/locals/' + name), exist_ok=True) annt_resized = cv2.imread('data/masks/{}_annt.jpg'.format(name), 0) height_annt, width_annt = annt_resized.shape ret, score = cv2.threshold(annt_resized, 128, 1, 0) nLabels, labels, stats, centroids = cv2.connectedComponentsWithStats(score.astype(np.uint8), connectivity=4) for k in range(1,nLabels): size = stats[k, cv2.CC_STAT_AREA] if size < 10000: continue segmap = np.zeros(annt_resized.shape, dtype=np.uint8) segmap[labels==k] = 255 np_contours = np.roll(np.array(np.where(segmap!=0)),1,axis=0).transpose().reshape(-1,2) x_resize_min, x_resize_max = min(np_contours[:,1]), max(np_contours[:,1]) y_resize_min, y_resize_max = min(np_contours[:,0]), max(np_contours[:,0]) x_resize_mins.append(x_resize_min) x_resize_maxs.append(x_resize_max) y_resize_mins.append(y_resize_min) y_resize_maxs.append(y_resize_max) width_r = width/width_resize height_r = height/height_resize if len(x_resize_maxs) != 0: x_resize_min, x_resize_max, y_resize_min, y_resize_max = min(x_resize_mins), max(x_resize_maxs), min(y_resize_mins), max(y_resize_maxs) else: for k in range(1,nLabels): size = stats[k, cv2.CC_STAT_AREA] if size < 150: continue segmap = np.zeros(annt_resized.shape, dtype=np.uint8) segmap[labels==k] = 255 np_contours = np.roll(np.array(np.where(segmap!=0)),1,axis=0).transpose().reshape(-1,2) x_resize_min, x_resize_max = min(np_contours[:,1]), max(np_contours[:,1]) y_resize_min, y_resize_max = min(np_contours[:,0]), max(np_contours[:,0]) x_resize_mins.append(x_resize_min) x_resize_maxs.append(x_resize_max) y_resize_mins.append(y_resize_min) y_resize_maxs.append(y_resize_max) x_resize_min, x_resize_max, y_resize_min, y_resize_max = min(x_resize_mins), max(x_resize_maxs), min(y_resize_mins), max(y_resize_maxs) x_min, x_max = int(x_resize_min * height_r), int(x_resize_max * height_r) y_min, y_max = int(y_resize_min * width_r), int(y_resize_max * width_r) else: continue roi_h = x_max - x_min roi_w = y_max - y_min wp = int((roi_w - PATCH_SIZE) / STRIDE + 1) hp = int((roi_h - PATCH_SIZE) / STRIDE + 1) total = wp * hp cnt = 0 for w in range(wp): for h in range(hp): y = y_min + w * STRIDE x = x_min + h * STRIDE cnt += 1 if y > width or x > height: continue crop = ori.read_region((y,x), 0, (PATCH_SIZE,PATCH_SIZE)) crop = crop.convert('RGB') if sum(ImageStat.Stat(crop).stddev)/3 < 18 or sum(ImageStat.Stat(crop).median)/3 > 200: continue os.makedirs(os.path.join('data/locals/{}'.format(name)), exist_ok=True) crop.save('data/locals/{}/{}_{}_{}_{}_{}.png'.format(name,name,str(h),str(w),str(roi_h),str(roi_w))) if cnt % 1000 == 0: print('{}/{}'.format(str(cnt), str(total))) print('{} finished'.format(name)) print("--- %s seconds ---" % (time.time() - start_time_total)) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description='Preprocessing') parser.add_argument('--path_ori', type=str, default='/scratch2/zheng/ajpa2021-master/data/OSUWMC/', help='path to dataset where images store') parser.add_argument('--path_mask', type=str, default='/scratch2/zheng/ajpa2021-master/data/OSUWMC_MASK/', help='path to dataset where masks (if possible) store') parser.add_argument('--m', action='store_true', default=False, help='preprocess masks if possible') parser.add_argument('--g', action='store_true', default=False, help='preprocess data at global level') parser.add_argument('--p', action='store_true', default=False, help='preprocess data at patch level') args = parser.parse_args() if args.m: preprocess_mask(args.path_ori, args.path_mask) elif args.g: preprocess_global(args.path_ori) elif args.p: preprocess_patch(args.path_ori)
49.326633
165
0.599124
0
0
0
0
0
0
0
0
786
0.080073
b1d7b3ea3f8d942998560e953fec761fcb002a45
2,433
py
Python
procgen.py
tredfern/rdl2021-tutorial
18f992c9c09ab18ee8e2927cf53d707c251d4948
[ "MIT" ]
null
null
null
procgen.py
tredfern/rdl2021-tutorial
18f992c9c09ab18ee8e2927cf53d707c251d4948
[ "MIT" ]
null
null
null
procgen.py
tredfern/rdl2021-tutorial
18f992c9c09ab18ee8e2927cf53d707c251d4948
[ "MIT" ]
null
null
null
# Copyright (c) 2021 Trevor Redfern # # This software is released under the MIT License. # https://opensource.org/licenses/MIT from __future__ import annotations from typing import Tuple, Iterator, List, TYPE_CHECKING import random import tcod from game_map import GameMap import tile_types if TYPE_CHECKING: from entity import Entity class RectangularRoom: def __init__(self, x: int, y: int, width: int, height: int) -> None: self.x1 = x self.y1 = y self.x2 = x + width self.y2 = y + height @property def center(self) -> Tuple[int, int]: centerX = int((self.x1 + self.x2) / 2) centerY = int((self.y1 + self.y2) / 2) return centerX, centerY @property def inner(self) -> Tuple[slice, slice]: return slice(self.x1 + 1, self.x2), slice(self.y1 + 1, self.y2) def intersects(self, other: RectangularRoom) -> bool: return ( self.x1 <= other.x2 and self.x2 >= other.x1 and self.y1 <= other.y2 and self.y2 >= other.y1 ) def generateDungeon( maxRooms: int, roomMinSize: int, roomMaxSize: int, mapWidth: int, mapHeight: int, player: Entity) -> GameMap: dungeon = GameMap(mapWidth, mapHeight) rooms: List[RectangularRoom] = [] for r in range(maxRooms): roomWidth = random.randint(roomMinSize, roomMaxSize) roomHeight = random.randint(roomMinSize, roomMaxSize) x = random.randint(0, dungeon.width - roomWidth - 1) y = random.randint(0, dungeon.height - roomHeight - 1) newRoom = RectangularRoom(x, y, roomWidth, roomHeight) if any(newRoom.intersects(otherRoom) for otherRoom in rooms): continue dungeon.tiles[newRoom.inner] = tile_types.floor if len(rooms) == 0: player.x, player.y = newRoom.center else: for x, y in tunnelBetween(rooms[-1].center, newRoom.center): dungeon.tiles[x, y] = tile_types.floor rooms.append(newRoom) return dungeon def tunnelBetween( start: Tuple[int, int], end: Tuple[int, int]) -> Iterator[Tuple[int, int]]: x1, y1 = start x2, y2 = end if random.random() < 0.5: cornerX, cornerY = x2, y1 else: cornerX, cornerY = x1, y2 for x, y in tcod.los.bresenham((x1, y1), (cornerX, cornerY)).tolist(): yield x, y for x, y in tcod.los.bresenham((cornerX, cornerY), (x2, y2)).tolist(): yield x, y
25.610526
95
0.628442
690
0.2836
416
0.170982
289
0.118783
0
0
128
0.05261
b1d821122ad47a7fa47c073b2ce27f383a3871d3
1,492
py
Python
examples/plot_simulate_bo.py
pmdaly/supereeg
750f55db3cbfc2f3430e879fecc7a1f5407282a6
[ "MIT" ]
1
2018-12-10T01:38:48.000Z
2018-12-10T01:38:48.000Z
examples/plot_simulate_bo.py
pmdaly/supereeg
750f55db3cbfc2f3430e879fecc7a1f5407282a6
[ "MIT" ]
null
null
null
examples/plot_simulate_bo.py
pmdaly/supereeg
750f55db3cbfc2f3430e879fecc7a1f5407282a6
[ "MIT" ]
1
2019-06-25T21:34:12.000Z
2019-06-25T21:34:12.000Z
# -*- coding: utf-8 -*- """ ============================= Simulating a brain object ============================= In this example, we demonstrate the simulate_bo function. First, we'll load in some example locations. Then we'll simulate 1 brain object specifying a noise parameter and the correlational structure of the data (a toeplitz matrix). We'll then subsample 10 locations from the original brain object. """ # Code source: Lucy Owen & Andrew Heusser # License: MIT import supereeg as se from supereeg.helpers import _corr_column import numpy as np # simulate 100 locations locs = se.simulate_locations(n_elecs=100) # simulate brain object bo = se.simulate_bo(n_samples=1000, sample_rate=100, cov='random', locs=locs, noise =.1) # sample 10 locations, and get indices sub_locs = locs.sample(90, replace=False).sort_values(['x', 'y', 'z']).index.values.tolist() # index brain object to get sample patient bo_sample = bo[: ,sub_locs] # plot sample patient locations bo_sample.plot_locs() # plot sample patient data bo_sample.plot_data() # make model from brain object r_model = se.Model(data=bo, locs=locs) # predict bo_s = r_model.predict(bo_sample, nearest_neighbor=False) # find indices for reconstructed locations recon_labels = np.where(np.array(bo_s.label) != 'observed') # find correlations between predicted and actual data corrs = _corr_column(bo.get_data().as_matrix(), bo_s.get_data().as_matrix()) # index reconstructed correlations corrs[recon_labels].mean()
27.127273
92
0.731233
0
0
0
0
0
0
0
0
850
0.569705
b1d8a19c3055e7f0d5aa484065ba5f44c533be7b
420
py
Python
poc/classes/AuxSTRuleOfInference.py
bookofproofs/fpl
527b43b0f8bb3d459ee906e5ed8524a676ce3a2c
[ "MIT" ]
4
2021-11-08T10:09:46.000Z
2021-11-13T22:25:46.000Z
poc/classes/AuxSTRuleOfInference.py
bookofproofs/fpl
527b43b0f8bb3d459ee906e5ed8524a676ce3a2c
[ "MIT" ]
1
2020-09-04T13:02:09.000Z
2021-06-16T07:07:44.000Z
poc/classes/AuxSTRuleOfInference.py
bookofproofs/fpl
527b43b0f8bb3d459ee906e5ed8524a676ce3a2c
[ "MIT" ]
1
2021-11-08T10:10:12.000Z
2021-11-08T10:10:12.000Z
from poc.classes.AuxSTBlockWithSignature import AuxSTBlockWithSignature from poc.classes.AuxSymbolTable import AuxSymbolTable class AuxSTRuleOfInference(AuxSTBlockWithSignature): def __init__(self, i): super().__init__(AuxSymbolTable.block_ir, i) self.zfrom = i.last_positions_by_rule['PredicateIdentifier'].pos_to_str() self.zto = i.last_positions_by_rule['RuleOfInference'].pos_to_str()
38.181818
81
0.785714
291
0.692857
0
0
0
0
0
0
38
0.090476
b1d8cc75992fcd005adcc90ea90aa099fbd29007
5,031
py
Python
examples/fmanipulator.py
mateusmoutinho/python-cli-args
40b758db808e96b3c12a3e0a87b6904660e90d9b
[ "MIT" ]
null
null
null
examples/fmanipulator.py
mateusmoutinho/python-cli-args
40b758db808e96b3c12a3e0a87b6904660e90d9b
[ "MIT" ]
null
null
null
examples/fmanipulator.py
mateusmoutinho/python-cli-args
40b758db808e96b3c12a3e0a87b6904660e90d9b
[ "MIT" ]
null
null
null
from io import TextIOWrapper from typing import IO, Text from cli_args_system import Args from cli_args_system import Args, FlagsContent from sys import exit HELP = """this is a basic file manipulator to demonstrate args_system usage with file flags -------------------flags---------------------------- -join: join the files passed and save in the --out flag -replace: replace the text on file and save in the --out flag if there is no out flag, it will save in the same file -remove: remove the given text in the file -------------------usage---------------------------- $ python3 fmanipulator.py -join a.txt b.txt -out c.txt will join the content on a.txt and b.txt, and save in c.txt $ python3 fmanipulator.py a.txt -replace a b will replace the char a for char b in the a.txt file $ python3 fmanipulator.py a.txt -replace a b -out b.txt will replace the char a for char b and save in b.txt $ python3 fmanipulator.py a.txt -r test will remove the text: test in the file a.txt $ python3 fmanipulator.py a.txt -r test -out b.txt will remove the text: test in the file a.txt and save in b.txt""" def exit_with_mensage(mensage:str): """kills the aplcation after printing the mensage \n mensage: the mensage to print""" print(mensage) exit(1) def get_file_text(args:Args) ->str: """returns the file text of args[0] (argv[0]) \n args:The args Object""" try: with open(args[0],'r') as f: return f.read() except (FileNotFoundError,IndexError): #if doenst find the file text,kilss the aplcation exit_with_mensage(mensage='no file') def get_out_wraper(args:Args,destroy_if_dont_find=True)->TextIOWrapper or None: """returns the out wraper of out[0] flag\n args: The args Object \n destroy_if_dont_find: if True it will destroy the aplication if doesnt find out[0] flag""" out = args.flags_content('out','o','out-file','outfile','out_file') if out.filled(): return open(out[0],'w') else: #check if is to destroy if destroy_if_dont_find: exit_with_mensage(mensage='not out file') def write_text_in_out_file_or_same_file(text:str,args:Args): """write text in out flag if exist, otherwhise write on same file args(0)\n text: the text to write \n args: The args Object \n """ out = get_out_wraper(args,destroy_if_dont_find=False) #if out is not passed it replace in the same file if out is None: open(args[0],'w').write(text) else: #otherwise write in the out file out.write(text) def join_files(join:FlagsContent,args:Args): """join the files of join flag, in the out flag content join: the join FlagsContent \n args: The args Object""" if len(join) < 2: print('must bee at least 2 files') exit(1) full_text = '' #make a iteration on join flag for file_path in join: try: #try to open and add in the full text, the content of #file path with open(file_path,'r') as file: full_text+=file.read() except FileNotFoundError: print(f'file {file_path} not exist') exit(1) #write the changes in the out file get_out_wraper(args).write(full_text) def replace_elements(replace:FlagsContent,args:Args): """replace in file (args[0) with replace[0] to replace[1] replace: the replace FlagsContent args: The args Object """ if len(replace) != 2: exit_with_mensage(mensage='must bee two elements to replace') #get the file of args[0] file = get_file_text(args) #make the replace replaced_text = file.replace(replace[0],replace[1]) write_text_in_out_file_or_same_file(text=replaced_text,args=args) def remove_text(remove:FlagsContent,args:Args): """this function remove the text in passed in the remove flags \n remove: the remove FlagsContent \n args: The args Object """ if not remove.filled(): exit_with_mensage('not text to remove') text_file = get_file_text(args) #goes in a iteration in remove flags for text in remove: text_file = text_file.replace(text,'') write_text_in_out_file_or_same_file(text=text_file,args=args) if __name__ == '__main__': #construct the args args = Args(convert_numbers=False) #for help flag help = args.flags_content('h','help') if help.exist(): print(HELP);exit(0) join = args.flags_content('join','j') #if join flag exist, call the join_files if join.exist(): join_files(join,args) replace = args.flags_content('replace','substitute') #if replace flag exist call the replace_elements function if replace.exist(): replace_elements(replace,args) remove = args.flags_content('r','remove','pop') #if remove flag exist call the remove_text if remove.exist(): remove_text(remove,args)
29.25
79
0.650566
0
0
0
0
0
0
0
0
2,602
0.517193
b1d9ea1eac536432c7382cf5532afaf25887bbe6
276
py
Python
test/test_main.py
KY64/python-starter-template
6ba734cec57668db6246e85bf0c324ff04359482
[ "MIT" ]
null
null
null
test/test_main.py
KY64/python-starter-template
6ba734cec57668db6246e85bf0c324ff04359482
[ "MIT" ]
2
2021-09-24T12:57:15.000Z
2021-09-24T19:55:01.000Z
test/test_main.py
KY64/python-starter-template
6ba734cec57668db6246e85bf0c324ff04359482
[ "MIT" ]
null
null
null
import unittest from src.main import substract, add class TestMain(unittest.TestCase): def test_add(self): result = add(9, 7) self.assertEqual(result, 16) def test_substract(self): result = substract(9, 7) self.assertEqual(result, 2)
23
36
0.655797
222
0.804348
0
0
0
0
0
0
0
0
b1da25a95c5118697812a66adf7849f4cbae7363
441
py
Python
usage.py
nicogetaz/cfile
305a8e5fd133e4fd36d8958ede4627b008d4664a
[ "MIT" ]
45
2017-11-17T04:44:29.000Z
2022-03-30T12:30:17.000Z
usage.py
nicogetaz/cfile
305a8e5fd133e4fd36d8958ede4627b008d4664a
[ "MIT" ]
4
2019-03-25T15:43:26.000Z
2021-02-09T12:26:03.000Z
usage.py
nicogetaz/cfile
305a8e5fd133e4fd36d8958ede4627b008d4664a
[ "MIT" ]
18
2017-10-12T13:24:00.000Z
2021-12-09T05:29:54.000Z
import cfile as C hello = C.cfile('hello.c') hello.code.append(C.sysinclude('stdio.h')) hello.code.append(C.blank()) hello.code.append(C.function('main', 'int',).add_param(C.variable('argc', 'int')).add_param(C.variable('argv', 'char', pointer=2))) body = C.block(innerIndent=3) body.append(C.statement(C.fcall('printf').add_arg(r'"Hello World!\n"'))) body.append(C.statement('return 0')) hello.code.append(body) print(str(hello))
40.090909
132
0.693878
0
0
0
0
0
0
0
0
89
0.201814
b1da8715774b114e58c022d18b5599a966be0c83
116
py
Python
question_model.py
sangethmathewjohn/PyQuiz_OOP
a9fdcab3884cee1b80951c1e279f5e58db981c3d
[ "Unlicense" ]
2
2021-06-27T08:33:58.000Z
2021-07-20T06:59:53.000Z
question_model.py
sangethmathewjohn/PyQuiz_OOP
a9fdcab3884cee1b80951c1e279f5e58db981c3d
[ "Unlicense" ]
null
null
null
question_model.py
sangethmathewjohn/PyQuiz_OOP
a9fdcab3884cee1b80951c1e279f5e58db981c3d
[ "Unlicense" ]
null
null
null
class Question: def __init__(self, qtext, qanswer): self.text =qtext self.answer =qanswer
19.333333
40
0.603448
114
0.982759
0
0
0
0
0
0
0
0
b1daaac896ddc4849cfd241b1e6031646b780a40
156
py
Python
data-science/exercicios/livro-introducao-a-programacao-com-python/capitulo-5/exercicio5-2.py
joaovictor-loureiro/data-science
21ad240e1db94d614e54fcb3fbf6ef74a78af9d8
[ "MIT" ]
null
null
null
data-science/exercicios/livro-introducao-a-programacao-com-python/capitulo-5/exercicio5-2.py
joaovictor-loureiro/data-science
21ad240e1db94d614e54fcb3fbf6ef74a78af9d8
[ "MIT" ]
null
null
null
data-science/exercicios/livro-introducao-a-programacao-com-python/capitulo-5/exercicio5-2.py
joaovictor-loureiro/data-science
21ad240e1db94d614e54fcb3fbf6ef74a78af9d8
[ "MIT" ]
null
null
null
# Exercício 5.2 - Modifique o programa para exibir os números de 50 a 100. i = 50 print('\n') while i <= 100: print('%d' % i) i += 1 print('\n')
14.181818
74
0.570513
0
0
0
0
0
0
0
0
88
0.556962
b1dab95c84aa79d34c26b83dc05fe89c1233edca
14,141
py
Python
scripts/BaxterArmClient.py
mkrizmancic/qlearn_baxter
0498315212cacb40334cbb97a858c6ba317f52a3
[ "MIT" ]
4
2017-11-11T18:16:22.000Z
2018-11-08T13:31:09.000Z
scripts/BaxterArmClient.py
mkrizmancic/qlearn_baxter
0498315212cacb40334cbb97a858c6ba317f52a3
[ "MIT" ]
null
null
null
scripts/BaxterArmClient.py
mkrizmancic/qlearn_baxter
0498315212cacb40334cbb97a858c6ba317f52a3
[ "MIT" ]
2
2019-09-04T12:28:58.000Z
2021-09-27T13:02:48.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- """ CREDIT: Main layout of this file was done by Lucija Kopic (graduation thesis) at Faculty of Electrical Engineering and Computing, University of Zagreb. """ import math from threading import Thread import actionlib import tf from tf.transformations import quaternion_from_euler from geometry_msgs.msg import Pose from baxter_moveit_config.msg import baxterAction, baxterGoal from baxter_interface import Limb import Errors from Util import * # Comments beginning with "noinspection" are PyCharm auto-generated comments # noinspection PyMethodMayBeStatic,PyUnusedLocal,PyNoneFunctionAssignment,PyRedundantParentheses,PyTypeChecker class BaxterArmClient: """Actionlib client for Baxter's arm. See more here: http://wiki.ros.org/actionlib""" def __init__(self): """Initialize and start actionlib client.""" self.left_client = actionlib.SimpleActionClient("baxter_action_server_left", baxterAction) self.left_client.wait_for_server(rospy.Duration(10.0)) self.listener = tf.TransformListener() self.left_arm = Limb('left') # Get ROS parameters set up from launch file self.left_rod_offset = rospy.get_param('~left_rod') self.right_rod_offset = rospy.get_param('~right_rod') self.center_rod_offset = rospy.get_param('~center_rod') def transformations(self): """Transform rods' coordinate system to the Baxter's coordinate system.""" self.listener.waitForTransform("/base", "/rods", rospy.Time(0), rospy.Duration(8.0)) (trans, rot) = self.listener.lookupTransform('/base', '/rods', rospy.Time(0)) return trans def position(self, target_position, trans, height): """ Calculate simple position of the robot's arm. Args: target_position (Pose): Wanted coordinates of robot's tool trans: Calculated transformation height (float): Height offset, depends on the number of disks on the rod Returns: target_position (Pose): Modified coordinates and orientation of robot's tool """ roll = -math.pi / 2 pitch = 0 yaw = -math.pi / 2 quaternion = tf.transformations.quaternion_from_euler(roll, pitch, yaw) target_position.orientation.x = quaternion[0] target_position.orientation.y = quaternion[1] target_position.orientation.z = quaternion[2] target_position.orientation.w = quaternion[3] target_position.position.x = trans[0] target_position.position.y = trans[1] target_position.position.z = trans[2] + height return target_position def go_to_position(self, task, destination, height, offset_x, offset_y, offset_z): """ Calculate goal position, send that to the robot and wait for response. Args: task (string): Pick or place action destination (int): Destination rod [0, 1, 2] height (float): Height of the goal position (based on number of disk on the rod) offset_x (float): Offset in robot's x axis offset_y (float): Offset in robot's y axis offset_z (float): Offset in robot's z axis """ goal = Pose() trans = self.transformations() if task == 'pick': height = get_pick_height(height) else: height = get_place_height(height) goal = self.position(goal, trans, height) # Calculate offset from the markers if destination == 0: offset_y += self.left_rod_offset if destination == 1: offset_y += 0 if destination == 2: offset_y -= self.right_rod_offset offset_x -= self.center_rod_offset offset_x -= 0.1 # Moving from rod to rod should be done 10 cm in front of them offset_x -= 0.03 # Back up a little to compensate for the width of the disks # Update goal with calculated offsets goal.position.x += offset_x goal.position.y += offset_y goal.position.z += offset_z goal_final = baxterGoal(id=1, pose=goal) # Send goal to Baxter arm server and wait for result self.left_client.send_goal_and_wait(goal_final) result = self.left_client.get_result() if result.status: return 1 else: return Errors.RaiseGoToFailed(task, destination, height, offset_x, offset_y, offset_z) def close_gripper(self): """Send the instruction to the robot to close the gripper.""" goal = Pose() goal_final = baxterGoal(id=3, pose=goal) status = self.left_client.send_goal_and_wait(goal_final) result = self.left_client.wait_for_result() return result def open_gripper(self): """Send the instruction to the robot to open the gripper.""" goal = Pose() goal_final = baxterGoal(id=2, pose=goal) self.left_client.send_goal_and_wait(goal_final) result = self.left_client.wait_for_result() return result def pick(self, pick_destination, pick_height): """ Execute the pick action. Args: pick_destination (int): Describes the rod from which to pick up the disk [0, 1, 2] pick_height (float): Height from which to pick up the disk Returns: 1 if successful, 0 otherwise """ self.left_arm.set_joint_position_speed(0.4) # Set higher speed for non-delicate movements starting_height = get_pick_height(pick_height) # Go in front of the selected rod with the necessary height pick1 = self.go_to_position('pick', pick_destination, pick_height, 0, 0, 0) if pick1: user_print("PICK 1 ok", 'info') # Move towards the rod pick2 = self.go_to_position('pick', pick_destination, pick_height, 0.1, 0, 0) if pick2: user_print("PICK 2 ok", 'info') # Close the gripper pick3 = self.close_gripper() if pick3: user_print("PICK 3 ok", 'info') # Lift vertically above the rod - 0.30 is height just above the rods if pick_height < 3: self.left_arm.set_joint_position_speed(0.1) # Set lower speed for delicate movements pick4 = self.go_to_position('pick', pick_destination, pick_height, 0.1, 0, 0.30 - starting_height) if pick4: user_print("PICK 4 ok", 'info') return 1 return Errors.RaisePickFailed() def place(self, place_destination, place_height): """ Execute the place action. Args: place_destination (int): Describes the rod on which to place the disk [0, 1, 2] place_height (float): Height to which disk should be placed Returns: 1 if successful, 0 otherwise """ starting_height = get_place_height(place_height) # Go directly above the selected rod - 0.30 is height just above the rods self.left_arm.set_joint_position_speed(0.4) # Set higher speed for non-delicate movements place1 = self.go_to_position('place', place_destination, place_height, 0.1, 0, 0.30 - starting_height) if place1: if place_height < 3: self.left_arm.set_joint_position_speed(0.08) # Set lower speed for delicate movements user_print("PLACE 1 OK", 'info') # Lower vertically to the necessary height place2 = self.go_to_position('place', place_destination, place_height, 0.1, 0, 0) self.left_arm.set_joint_position_speed(0.4) # Set higher speed for non-delicate movements if place2: user_print("PLACE 2 OK", 'info') # Open the gripper place3 = self.open_gripper() if place3: user_print("PLACE 3 OK", 'info') # Lower the arm slightly more to avoid hitting the disk place4 = self.go_to_position('place', place_destination, place_height, 0.1, 0, -0.015) if place4: user_print("PLACE 4 OK", 'info') # Move away from the rod place5 = self.go_to_position('place', place_destination, place_height, 0, 0, -0.015) if place5: user_print("PLACE 5 OK", 'info') return 1 return Errors.RaisePlaceFailed() def pick_and_place(self, pick_destination, pick_height, place_destination, place_height): """ Execute 'pick and place' action. Args: pick_destination (int): Describes the rod from which to pick up the disk [0, 1, 2] pick_height (int): Height from which to pick up the disk (in number of disks) place_destination (int): Describes the rod on which to place the disk [0, 1, 2] place_height (int): Height to which disk should be placed (in number of disks) Returns: 1 if successful, 0 otherwise """ user_print("------PICK---------------", 'info') print pick_destination, pick_height pick = self.pick(pick_destination, pick_height) if pick == 0: return Errors.RaisePickAndPlaceFailed() else: user_print("------PLACE--------------", 'info') print place_destination, place_height place = self.place(place_destination, place_height, ) if place == 0: return Errors.RaisePickAndPlaceFailed() else: return 1 def test_absolute(self): """Test robot's ability to position its gripper in absolute coordinates (base frame).""" goal = Pose() roll = -math.pi / 2 pitch = 0 yaw = -math.pi / 2 quaternion = tf.transformations.quaternion_from_euler(roll, pitch, yaw) goal.orientation.x = quaternion[0] goal.orientation.y = quaternion[1] goal.orientation.z = quaternion[2] goal.orientation.w = quaternion[3] while True: end = user_input("Zelite li nastaviti? d/n") if end != 'd': break goal.position.x = float(user_input("X?")) goal.position.y = float(user_input("Y?")) goal.position.z = float(user_input("Z?")) goal_final = baxterGoal(id=1, pose=goal) self.left_client.send_goal_and_wait(goal_final) result = self.left_client.get_result() def test_relative(self): """Test robot's ability to position its gripper relative to a given marker.""" goal = Pose() roll = -math.pi / 2 pitch = 0 yaw = -math.pi / 2 quaternion = tf.transformations.quaternion_from_euler(roll, pitch, yaw) goal.orientation.x = quaternion[0] goal.orientation.y = quaternion[1] goal.orientation.z = quaternion[2] goal.orientation.w = quaternion[3] while True: end = user_input("Zelite li nastaviti? d/n") if end != 'd': break trans = self.transformations() goal.position.x = trans[0] goal.position.y = trans[1] goal.position.z = trans[2] offset_x = float(user_input("X?")) offset_y = float(user_input("Y?")) offset_z = float(user_input("Z?")) # Uncomment for testing movement speed as well # brzina = float(user_input("Brzina?")) # self.left_arm.set_joint_position_speed(brzina) goal.position.x += offset_x goal.position.y += offset_y goal.position.z += offset_z goal_final = baxterGoal(id=1, pose=goal) self.left_client.send_goal_and_wait(goal_final) result = self.left_client.get_result() def calibration_single(self, rod): """Calibrate disk positions.""" # Go to 1st disk self.go_to_position('pick', rod, 3, 0, 0, 0) self.go_to_position('pick', rod, 3, 0.1, 0, 0) rospy.sleep(2) self.go_to_position('pick', rod, 3, 0, 0, -0.015) self.go_to_position('pick', rod, 3, 0, 0, 0) # Go to 2nd disk self.go_to_position('pick', rod, 2, 0, 0, 0) self.go_to_position('pick', rod, 2, 0.1, 0, 0) rospy.sleep(2) self.go_to_position('pick', rod, 2, 0, 0, -0.015) self.go_to_position('pick', rod, 2, 0, 0, 0) # Go to 3rd disk self.go_to_position('pick', rod, 1, 0, 0, 0) self.go_to_position('pick', rod, 1, 0.1, 0, 0) rospy.sleep(2) self.go_to_position('pick', rod, 1, 0, 0, -0.015) self.go_to_position('pick', rod, 1, 0, 0, 0) def calibration_all(self): """Calibrate each rod.""" # Go to 1st, 2nd and 3rd rod and calibrate self.calibration_single(0) self.calibration_single(1) self.calibration_single(2) def start(self, pick_destination, pick_height, place_destination, place_height): thread = Thread(target=self.pick_and_place, args=(pick_destination, pick_height, place_destination, place_height)) thread.start() thread.join() def calibration(self): thread = Thread(target=self.calibration_all) thread.start() thread.join() if __name__ == '__main__': rospy.init_node('Baxter_Client', disable_signals=True) try: client = BaxterArmClient() client.start() except rospy.ROSInterruptException: rospy.loginfo('Terminating baxter_client.')
42.851515
119
0.592391
13,173
0.931547
0
0
0
0
0
0
4,639
0.328053
b1dbac0f835a64d0cbdbae3be2827e7023234d2d
107
py
Python
Factorial.py
conbopbi/TEchMasterHK
81452694de6b5d46a51bdf1eceb7a4346b93cc85
[ "MIT" ]
null
null
null
Factorial.py
conbopbi/TEchMasterHK
81452694de6b5d46a51bdf1eceb7a4346b93cc85
[ "MIT" ]
null
null
null
Factorial.py
conbopbi/TEchMasterHK
81452694de6b5d46a51bdf1eceb7a4346b93cc85
[ "MIT" ]
null
null
null
import math n=int(input('Nhap mot so:')) output=math.factorial(n) print('Giai thua cua ',n,' la: ',output)
21.4
40
0.682243
0
0
0
0
0
0
0
0
37
0.345794
b1dbc2b8aaeac4063785ede18a17f1f56b8d7356
86
py
Python
flytekit/__init__.py
flytehub/flytekit
f8f53567594069b29fcd3f99abd1da71a5ef0e22
[ "Apache-2.0" ]
null
null
null
flytekit/__init__.py
flytehub/flytekit
f8f53567594069b29fcd3f99abd1da71a5ef0e22
[ "Apache-2.0" ]
null
null
null
flytekit/__init__.py
flytehub/flytekit
f8f53567594069b29fcd3f99abd1da71a5ef0e22
[ "Apache-2.0" ]
null
null
null
from __future__ import absolute_import import flytekit.plugins __version__ = '0.3.1'
17.2
38
0.813953
0
0
0
0
0
0
0
0
7
0.081395
b1dc9ba592a6ef41c372eaa2cd477c8b9c68c9a0
7,289
py
Python
src/Navigate.py
Qu-Xiangjun/CQU_NK_Research_Project
8634ce3496801610bc94aa3a424bcd9cff8d042e
[ "MIT" ]
1
2021-04-14T12:52:47.000Z
2021-04-14T12:52:47.000Z
src/Navigate.py
Qu-Xiangjun/CQU_NK_Research_Project
8634ce3496801610bc94aa3a424bcd9cff8d042e
[ "MIT" ]
null
null
null
src/Navigate.py
Qu-Xiangjun/CQU_NK_Research_Project
8634ce3496801610bc94aa3a424bcd9cff8d042e
[ "MIT" ]
null
null
null
""" @Author: Qu Xiangjun @Time: 2021.01.26 @Describe: 此文件负责根据雷达数据进行导航的线程类定义 """ import socket import time from threading import Thread import threading import numpy as np # python3.8.0 64位(python 32位要用32位的DLL) from ctypes import * from Navigation_help import * from Can_frame_help import * VCI_USBCAN2 = 4 # 设备类型 USBCAN-2A或USBCAN-2C或CANalyst-II STATUS_OK = 1 # 定义初始化CAN的数据类型 class VCI_INIT_CONFIG(Structure): _fields_ = [("AccCode", c_uint), # 接收滤波验收码 ("AccMask", c_uint), # 接收滤波屏蔽码 ("Reserved", c_uint), ("Filter", c_ubyte), # '滤波方式 0,1接收所有帧。2标准帧滤波,3是扩展帧滤波。 # 500kbps Timing0=0x00 Timing1=0x1C ("Timing0", c_ubyte), # 波特率参数1,具体配置,请查看二次开发库函数说明书。 ("Timing1", c_ubyte), # 波特率参数1 ("Mode", c_ubyte) # '模式,0表示正常模式,1表示只听模式,2自测模式 ] # 定义CAN信息帧的数据类型。 class VCI_CAN_OBJ(Structure): _fields_ = [("ID", c_uint), ("TimeStamp", c_uint), # 时间标识 ("TimeFlag", c_ubyte), # 是否使用时间标识 ("SendType", c_ubyte), # 发送标志。保留,未用 ("RemoteFlag", c_ubyte), # 是否是远程帧 ("ExternFlag", c_ubyte), # 是否是扩展帧 ("DataLen", c_ubyte), # 数据长度 ("Data", c_ubyte*8), # 数据 ("Reserved", c_ubyte*3) # 保留位 ] CanDLLName = './ControlCAN.dll' # 把DLL放到对应的目录下 canDLL = windll.LoadLibrary('./ControlCAN.dll') # Linux系统下使用下面语句,编译命令:python3 python3.8.0.py #canDLL = cdll.LoadLibrary('./libcontrolcan.so') class Navigate_Thread(threading.Thread): """ 导航线程 """ def __init__(self,thread_draw_lidar, socket_server_thread): """ :param thread_draw_lidar: 绘画雷达图线程类实例 :param socket_server_thread: 远程Socket传输数据类实例 """ threading.Thread.__init__(self) # 初始化父类 # 绘制雷达 self.thread_draw_lidar = thread_draw_lidar # 改变雷达数据远程传输线程内容 self.socket_server_thread = socket_server_thread def run(self): """ Can接口连接scout——mini 底盘 """ # 打开设备 ret = canDLL.VCI_OpenDevice(VCI_USBCAN2, 0, 0) if ret == STATUS_OK: print('调用 VCI_OpenDevice成功\r\n') if ret != STATUS_OK: print('调用 VCI_OpenDevice出错\r\n') # 初始0通道 vci_initconfig = VCI_INIT_CONFIG(0x80000008, 0xFFFFFFFF, 0, 0, 0x00, 0x1C, 0) # 波特率500k,正常模式 ret = canDLL.VCI_InitCAN(VCI_USBCAN2, 0, 0, byref(vci_initconfig)) if ret == STATUS_OK: print('调用 VCI_InitCAN0成功\r\n') if ret != STATUS_OK: print('调用 VCI_InitCAN0出错\r\n') # 开启通道 ret = canDLL.VCI_StartCAN(VCI_USBCAN2, 0, 0) if ret == STATUS_OK: print('调用 VCI_StartCAN0成功\r\n') if ret != STATUS_OK: print('调用 VCI_StartCAN0出错\r\n') # 设置底盘为指令控制模式 ret = canDLL.VCI_Transmit( VCI_USBCAN2, 0, 0, byref(get_start_controller_inst()), 1) if ret == STATUS_OK: print('CAN1通道发送成功\r\n') if ret != STATUS_OK: print('CAN1通道发送失败\r\n') ''' socket配置 ''' server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server.bind(("localhost", 8888)) # 服务器端,将Socket与网络地址和端口绑定起来, server.listen(0) # backlog 指定最大的连接数 connection, address = server.accept() print("socket connect:", connection) print("socket ip address:", address) global lidar_data_list lidar_data_list = [0 for i in range(1536)] # 初始化 register_direct = 0 # 记忆上一次转动方向,1位左,0位前进,-1位右 ''' 执行导航 ''' while True: # get lidar data try: recv_str = connection.recv(9216) # 1536个数据,每个为6bytes except(ConnectionResetError): print("[ConnectionResetError] Lost lidar socket connnetion.") break # recv_str=str(recv_str) 这样不行带有了b'' recv_str = recv_str.decode("GBK") # type(recv_str) = str lidar_data_bytes = recv_str.split(",") lidar_data_bytes = lidar_data_bytes[0:-1] dirty_count = 0 for i in range(len(lidar_data_bytes)): # 1536个数据 lidar_data_bytes[i] = int(lidar_data_bytes[i]) # 单位从毫米 if(lidar_data_bytes[i] == 0): if(i == 0): # 起始处不管 lidar_data_bytes[i] = 0 else: lidar_data_bytes[i] = lidar_data_bytes[i-1] dirty_count += 1 for i in range(125): lidar_data_bytes[i] = 0 for i in range(1411,1536): lidar_data_bytes[i] = 0 lidar_data_list = lidar_data_bytes # if(dirty_count > 200): # 脏点太多,设置界限报错 # print("[WARNING] Lidar is very dirty.") # exit(1) print("lidar_data_list",lidar_data_list) # 数据不规整报错 if(len(lidar_data_list) != 1536): print("[ERROR] Lidar frame's length is not 1536*6 bytes.") continue # 写入文件查看数据 # f = open('test.txt', 'w') # f.write(str(lidar_data_list)) # f.close() self.thread_draw_lidar.lidar_data_list = lidar_data_list # 更新绘图线程的雷达数据 self.socket_server_thread.lidar_data_list = lidar_data_list # 更新发送雷达数据线程的雷达数据 # get direction best_direction = navigate(lidar_data_list) # 导航得到的方向 print("best_direction", best_direction) # time.sleep(1) # 发送控制命令给小车 if(best_direction == None): # 没有方向时就自转找方向 best_direction = 5 register_direct = 1 ret = canDLL.VCI_Transmit( VCI_USBCAN2, 0, 0, get_move_inst(best_direction, 0), 1) if ret == STATUS_OK: print('CAN1通道发送成功\r\n') if ret != STATUS_OK: print('CAN1通道发送失败\r\n') continue # 记忆转动方向 if(register_direct == -1 ): # 曾经是右转 if(best_direction == 0): register_direct = 0 else: best_direction = -5 elif(register_direct == 1 ): # 曾经左转 if(best_direction == 0): register_direct = 0 else: best_direction = 5 else: if(best_direction < 0): register_direct = -1 best_direction = -5 elif(best_direction > 0): register_direct = 1 best_direction = 5 else: register_direct = 0 for i in range(1): # 只用发送一次即可,这里可设置循环增强控制效果 ret = canDLL.VCI_Transmit(VCI_USBCAN2, 0, 0, get_move_inst( best_direction, best_speed=default_best_speed), 1) if ret == STATUS_OK: print('CAN1通道发送成功\r\n') if ret != STATUS_OK: print('CAN1通道发送失败\r\n') connection.close()
33.589862
89
0.522568
7,640
0.910066
0
0
0
0
0
0
3,045
0.362716
b1dd89557115038bb1f6354ded5195f9ead07ccf
233
py
Python
list02/exer_02.py
pedrolucas27/exercising-python
4b30bbce6b860fb617baf4600d8da83b68023e82
[ "MIT" ]
null
null
null
list02/exer_02.py
pedrolucas27/exercising-python
4b30bbce6b860fb617baf4600d8da83b68023e82
[ "MIT" ]
null
null
null
list02/exer_02.py
pedrolucas27/exercising-python
4b30bbce6b860fb617baf4600d8da83b68023e82
[ "MIT" ]
null
null
null
#Faça um Programa que peça um valor e mostre na tela se o valor é positivo ou negativo. valor = int(input("Dígite um número:")) if valor < 0: print("O número",valor,"é negativo!") else: print("O número",valor,"é positivo!")
33.285714
88
0.682403
0
0
0
0
0
0
0
0
162
0.669421
b1de66542e990852570d0825e181d49c32975991
48
py
Python
python/testData/intentions/PyConvertToFStringIntentionTest/percentOperatorWidthAndPrecision_after.py
jnthn/intellij-community
8fa7c8a3ace62400c838e0d5926a7be106aa8557
[ "Apache-2.0" ]
2
2019-04-28T07:48:50.000Z
2020-12-11T14:18:08.000Z
python/testData/intentions/PyConvertToFStringIntentionTest/percentOperatorWidthAndPrecision_after.py
jnthn/intellij-community
8fa7c8a3ace62400c838e0d5926a7be106aa8557
[ "Apache-2.0" ]
173
2018-07-05T13:59:39.000Z
2018-08-09T01:12:03.000Z
python/testData/intentions/PyConvertToFStringIntentionTest/percentOperatorWidthAndPrecision_after.py
jnthn/intellij-community
8fa7c8a3ace62400c838e0d5926a7be106aa8557
[ "Apache-2.0" ]
2
2020-03-15T08:57:37.000Z
2020-04-07T04:48:14.000Z
f'{1:.5d} {2:3.5d} {3:3d} {"spam":>20} {4:<#d}'
24
47
0.395833
0
0
0
0
0
0
0
0
47
0.979167
b1dea7e1058a7eee3b72428c420020b2fdd458a2
6,346
py
Python
ansys/dpf/core/operators/math/make_one_on_comp.py
jfthuong/pydpf-core
bf2895ebc546e0004f759289bfc9a23196559ac3
[ "MIT" ]
18
2021-10-16T10:38:29.000Z
2022-03-29T11:26:42.000Z
ansys/dpf/core/operators/math/make_one_on_comp.py
jfthuong/pydpf-core
bf2895ebc546e0004f759289bfc9a23196559ac3
[ "MIT" ]
79
2021-10-11T23:18:54.000Z
2022-03-29T14:53:14.000Z
ansys/dpf/core/operators/math/make_one_on_comp.py
jfthuong/pydpf-core
bf2895ebc546e0004f759289bfc9a23196559ac3
[ "MIT" ]
5
2021-11-29T18:35:37.000Z
2022-03-16T16:49:21.000Z
""" make_one_on_comp =============== Autogenerated DPF operator classes. """ from warnings import warn from ansys.dpf.core.dpf_operator import Operator from ansys.dpf.core.inputs import Input, _Inputs from ansys.dpf.core.outputs import Output, _Outputs from ansys.dpf.core.operators.specification import PinSpecification, Specification class make_one_on_comp(Operator): """take the input field's scoping and create a field full of zeros, except for the indexes from pin 1 that will hold 1.0. Parameters ---------- fieldA : Field scalar_int : int Examples -------- >>> from ansys.dpf import core as dpf >>> # Instantiate operator >>> op = dpf.operators.math.make_one_on_comp() >>> # Make input connections >>> my_fieldA = dpf.Field() >>> op.inputs.fieldA.connect(my_fieldA) >>> my_scalar_int = int() >>> op.inputs.scalar_int.connect(my_scalar_int) >>> # Instantiate operator and connect inputs in one line >>> op = dpf.operators.math.make_one_on_comp( ... fieldA=my_fieldA, ... scalar_int=my_scalar_int, ... ) >>> # Get output data >>> result_field = op.outputs.field() """ def __init__(self, fieldA=None, scalar_int=None, config=None, server=None): super().__init__(name="make_one_on_comp", config=config, server=server) self._inputs = InputsMakeOneOnComp(self) self._outputs = OutputsMakeOneOnComp(self) if fieldA is not None: self.inputs.fieldA.connect(fieldA) if scalar_int is not None: self.inputs.scalar_int.connect(scalar_int) @staticmethod def _spec(): description = """take the input field's scoping and create a field full of zeros, except for the indexes from pin 1 that will hold 1.0.""" spec = Specification( description=description, map_input_pin_spec={ 0: PinSpecification( name="fieldA", type_names=["field"], optional=False, document="""""", ), 1: PinSpecification( name="scalar_int", type_names=["int32"], optional=False, document="""""", ), }, map_output_pin_spec={ 0: PinSpecification( name="field", type_names=["field"], optional=False, document="""""", ), }, ) return spec @staticmethod def default_config(server=None): """Returns the default config of the operator. This config can then be changed to the user needs and be used to instantiate the operator. The Configuration allows to customize how the operation will be processed by the operator. Parameters ---------- server : server.DPFServer, optional Server with channel connected to the remote or local instance. When ``None``, attempts to use the the global server. """ return Operator.default_config(name="make_one_on_comp", server=server) @property def inputs(self): """Enables to connect inputs to the operator Returns -------- inputs : InputsMakeOneOnComp """ return super().inputs @property def outputs(self): """Enables to get outputs of the operator by evaluationg it Returns -------- outputs : OutputsMakeOneOnComp """ return super().outputs class InputsMakeOneOnComp(_Inputs): """Intermediate class used to connect user inputs to make_one_on_comp operator. Examples -------- >>> from ansys.dpf import core as dpf >>> op = dpf.operators.math.make_one_on_comp() >>> my_fieldA = dpf.Field() >>> op.inputs.fieldA.connect(my_fieldA) >>> my_scalar_int = int() >>> op.inputs.scalar_int.connect(my_scalar_int) """ def __init__(self, op: Operator): super().__init__(make_one_on_comp._spec().inputs, op) self._fieldA = Input(make_one_on_comp._spec().input_pin(0), 0, op, -1) self._inputs.append(self._fieldA) self._scalar_int = Input(make_one_on_comp._spec().input_pin(1), 1, op, -1) self._inputs.append(self._scalar_int) @property def fieldA(self): """Allows to connect fieldA input to the operator. Parameters ---------- my_fieldA : Field Examples -------- >>> from ansys.dpf import core as dpf >>> op = dpf.operators.math.make_one_on_comp() >>> op.inputs.fieldA.connect(my_fieldA) >>> # or >>> op.inputs.fieldA(my_fieldA) """ return self._fieldA @property def scalar_int(self): """Allows to connect scalar_int input to the operator. Parameters ---------- my_scalar_int : int Examples -------- >>> from ansys.dpf import core as dpf >>> op = dpf.operators.math.make_one_on_comp() >>> op.inputs.scalar_int.connect(my_scalar_int) >>> # or >>> op.inputs.scalar_int(my_scalar_int) """ return self._scalar_int class OutputsMakeOneOnComp(_Outputs): """Intermediate class used to get outputs from make_one_on_comp operator. Examples -------- >>> from ansys.dpf import core as dpf >>> op = dpf.operators.math.make_one_on_comp() >>> # Connect inputs : op.inputs. ... >>> result_field = op.outputs.field() """ def __init__(self, op: Operator): super().__init__(make_one_on_comp._spec().outputs, op) self._field = Output(make_one_on_comp._spec().output_pin(0), 0, op) self._outputs.append(self._field) @property def field(self): """Allows to get field output of the operator Returns ---------- my_field : Field Examples -------- >>> from ansys.dpf import core as dpf >>> op = dpf.operators.math.make_one_on_comp() >>> # Connect inputs : op.inputs. ... >>> result_field = op.outputs.field() """ # noqa: E501 return self._field
29.654206
89
0.578159
6,001
0.945635
0
0
3,372
0.531358
0
0
3,657
0.576269
b1e15b56feda70e36690890e29f9ba4efcc55495
8,716
py
Python
cheshire3/web/www_utils.py
cheshire3/cheshire3
306348831ec110229c78a7c5f0f2026a0f394d2c
[ "Python-2.0", "Unlicense" ]
3
2015-08-02T09:03:28.000Z
2017-12-06T09:26:14.000Z
cheshire3/web/www_utils.py
cheshire3/cheshire3
306348831ec110229c78a7c5f0f2026a0f394d2c
[ "Python-2.0", "Unlicense" ]
5
2015-08-17T01:16:35.000Z
2015-09-16T21:51:27.000Z
cheshire3/web/www_utils.py
cheshire3/cheshire3
306348831ec110229c78a7c5f0f2026a0f394d2c
[ "Python-2.0", "Unlicense" ]
6
2015-05-17T15:32:20.000Z
2020-04-22T08:43:16.000Z
# # Program: www_utils.py # Version: 0.10 # Description: # Generic search functions for Cheshire 3 # # Language: Python # Author: John Harrison <john.harrison@liv.ac.uk> # Date: 19 December 2007 # # Copyright: &copy; University of Liverpool 2005-2007 # # Version History: # 0.01 - 13/04/2005 - JH - Ported from Cheshire II compatible scripts # 0.02 - 14/06/2005 - JH - Improved CGI encoding/decoding # - Mixed phrase and plain term searching handled # (e.g. wyndham "science fiction" triffids) # 0.03 - 17/10/2005 - JH - File logger class added # keeps all logs for a single request in mem until complete, then flushes to file # - html_encode() added to allow display of raw SGML in the browser # 0.04 - 26/01/2006 - JH - Modifications to cgiReplacements # 0.05 - 31/01/2006 - JH - More tweaks to cgiReplacement characters # - Speech marks handled sensibly in exact or /string searches # 0.06 - 27/02/2006 - JH - Booleans extracted first in generate_cqlQuery() - debugs 'NOT' searches # 0.07 - 04/01/2007 - JH - Check for noComponents moved out of generic generate_cqlQuery function # - Allow limit to collection # 0.08 - 25/01/2007 - JH - Mods to allow date searching - decode < > etc from form # 0.09 - 07/09/2007 - JH - renamed: wwwSearch.py --> www_utils.py # 0.10 - 19/12/2007 - JH - handling of form character set implemented # - can handle multiple indexes to be specified in fieldidx # multiple indexes combine with or/relevant/proxinfo # import re import time import urlparse from urllib import unquote class FieldStorageDict(dict): """A sub-class of dict to behave like FieldStorage for testing. Note, does not support multiple values for the same key. """ def getfirst(self, key, default=None): return self.get(key, default) def getlist(self, key): val = self.get(key) if val: return [val] return [] def generate_cqlQuery(form): global phraseRe formcodec = form.getfirst('_charset_', 'utf-8') qClauses = [] bools = [] i = 1 while 'fieldcont{0}'.format(i) in form: boolean = form.getfirst('fieldbool{0}'.format(i - 1), 'and/relevant/proxinfo' ) bools.append(boolean) i += 1 i = 1 while 'fieldcont{0}'.format(i) in form: cont = form.getfirst('fieldcont{0}'.format(i)) if isinstance(cont, unicode): # Encode any unicode back to raw byte string for compatibility # with legacy code cont = cont.encode(formcodec) idxs = unquote( form.getfirst('fieldidx{0}'.format(i), 'cql.anywhere' ) ) rel = unquote( form.getfirst('fieldrel{0}'.format(i), 'all/relevant/proxinfo' ) ) idxClauses = [] # In case they're trying to do phrase searching if ( rel.startswith('exact') or rel.startswith('=') or '/string' in rel ): # Don't allow phrase searching for exact or /string searches cont = cont.replace('"', '\\"') for idx in idxs.split('||'): subClauses = [] if (rel.startswith('all')): subBool = ' and/relevant/proxinfo ' else: subBool = ' or/relevant/proxinfo ' # In case they're trying to do phrase searching if ( 'exact' in rel or '=' in rel or '/string' in rel ): # Don't allow phrase searching for exact or /string searches # we already did quote escaping subcont = cont else: phrases = phraseRe.findall(cont) for ph in phrases: subClauses.append( '({0} =/relevant/proxinfo {1})'.format(idx, ph) ) subcont = phraseRe.sub('', cont) if (idx and rel and subcont): subClauses.append( '{0} {1} "{2}"'.format(idx, rel, subcont.strip()) ) if (len(subClauses)): idxClauses.append('({0})'.format(subBool.join(subClauses))) qClauses.append( '({0})'.format(' or/rel.combine=sum/proxinfo '.join(idxClauses)) ) # If there's another clause and a corresponding boolean try: qClauses.append(bools[i]) except: break i += 1 qString = ' '.join(qClauses) return qString.decode(formcodec).encode('utf8') def parse_url(url): u"""Parse a URL to split it into its component parts.""" bits = urlparse.urlsplit(url) print bits transport = bits[0] uphp = bits[1].split('@') user = '' passwd = '' if len(uphp) == 2: (user, passwd) = uphp.pop(0).split(':') hp = uphp[0].split(':') host = hp[0] if len(hp) == 2: port = int(hp[1]) else: # Require subclass to default port = 0 dirname, filename = bits[2].rsplit('/', 1) # params = map(lambda x: x.split('='), bits[3].split('&')) params = [x.split('=') for x in bits[3].split('&')] try: params = dict(params) except ValueError: params = {} anchor = bits[4] return (transport, user, passwd, host, port, dirname, filename, params, anchor) phraseRe = re.compile('".*?"') cgiReplacements = { #'%': '%25', '+': '%2B', ' ': '%20', '<': '%3C', '>': '%3E', '#': '%23', '{': '%7B', '}': '%7D', '|': '%7C', '"': '%22', "'": '%27', '^': '%5E', '~': '%7E', '[': '%5B', ']': '%5D', '`': '%60', ';': '%3B', '/': '%2F', '?': '%3F', ':': '%3A', '@': '%40', '=': '%3D', '&': '%26', '$': '%24' #'=': "%3D", #'\n\t': "%0A", #',': "%2C", #'\'': "%27", #'/': "%2F", #'"': "%22", #'@': "%40", #'#': "%23", #'{': "%7B", #'}': "%7D", #'[': "%5B", #']': "%5D", #'\\': "%5C", #';': "%3B" } def cgi_encode(txt): global cgiReplacements txt = txt.replace('%', '%25') #txt = txt.strip() for key, val in cgiReplacements.iteritems(): txt = txt.replace(key, val) return txt #- end cgi_encode def cgi_decode(txt): global cgiReplacements #txt = txt.strip() for key, val in cgiReplacements.iteritems(): txt = txt.replace(val, key) txt = txt.replace('%25', '%') return txt #- end cgi_decode rawSgmlReplacements = {'<': '&lt;' ,'>': '&gt;' ,"'": '&apos;' ,'"': '&quot;' } def html_encode(txt): global rawSgmlReplacements txt = txt.replace('&', '&amp;') for key, val in rawSgmlReplacements.iteritems(): txt = txt.replace(key, val) return txt #- end html_encode def multiReplace(txt, params): for k,v in params.iteritems(): try: txt = txt.replace(k,unicode(v).encode('ascii', 'xmlcharrefreplace')) except UnicodeDecodeError: txt = txt.replace(k,unicode(v, 'utf8').encode('ascii', 'xmlcharrefreplace')) return txt #- end multiReplace def read_file(fileName): fileH = open(fileName, 'r') cont = fileH.read() fileH.close() return cont #- end read_file() def write_file(fileName, txt): fileH = open(fileName, 'w') cont = fileH.write(txt) fileH.close() #- end write_file() class FileLogger: u"""DEPRECATED: A quick and dirty transaction logger that isn't actually a Cheshire3 object and doesn't match the API. Please use cheshire3.web.logger.TransactionLogger instead. """ st = None llt = None fp = None rh = None lsl = None def __init__(self, path, rh): self.st = time.time() self.llt = self.st self.fp = path self.rh = rh self.lsl = ['\n[%s]: Request received from %s' % (time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.st)), self.rh)] def log(self,txt): now = time.time() diff = now - self.llt self.lsl.append('...[+%f s]: %s' % (diff, txt)) self.llt = now def flush(self): now = time.time() total = now - self.st self.lsl.append('...Total time: %f secs' % (total)) fileh = file(self.fp, 'a') fileh.write('\n'.join(self.lsl)) fileh.close() #- end class FileLogger ---------------------------------------------------
27.495268
128
0.519504
1,321
0.15156
0
0
0
0
0
0
3,695
0.423933
b1e3076f57089de6bfe7eeff45ef0b802cbca8fa
5,057
py
Python
superviselySDK/supervisely_lib/geometry/bitmap_base.py
nicehuster/mmdetection-supervisely-person-datasets
ff1b57e16a71378510571dbb9cebfdb712656927
[ "Apache-2.0" ]
40
2019-05-05T08:08:18.000Z
2021-10-17T00:07:58.000Z
superviselySDK/supervisely_lib/geometry/bitmap_base.py
nicehuster/mmdetection-supervisely-person-datasets
ff1b57e16a71378510571dbb9cebfdb712656927
[ "Apache-2.0" ]
8
2019-06-13T06:00:08.000Z
2021-07-24T05:25:33.000Z
superviselySDK/supervisely_lib/geometry/bitmap_base.py
nicehuster/mmdetection-supervisely-person-datasets
ff1b57e16a71378510571dbb9cebfdb712656927
[ "Apache-2.0" ]
6
2019-07-30T06:36:27.000Z
2021-06-03T11:57:36.000Z
# coding: utf-8 import numpy as np from supervisely_lib.geometry.constants import DATA, ORIGIN from supervisely_lib.geometry.geometry import Geometry from supervisely_lib.geometry.point_location import PointLocation from supervisely_lib.geometry.rectangle import Rectangle from supervisely_lib.imaging.image import resize_inter_nearest, restore_proportional_size # TODO: rename to resize_bitmap_and_origin def resize_origin_and_bitmap(origin: PointLocation, bitmap: np.ndarray, in_size, out_size): new_size = restore_proportional_size(in_size=in_size, out_size=out_size) row_scale = new_size[0] / in_size[0] col_scale = new_size[1] / in_size[1] # TODO: Double check (+restore_proportional_size) or not? bitmap.shape and in_size are equal? # Make sure the resulting size has at least one pixel in every direction (i.e. limit the shrinkage to avoid having # empty bitmaps as a result). scaled_rows = max(round(bitmap.shape[0] * row_scale), 1) scaled_cols = max(round(bitmap.shape[1] * col_scale), 1) scaled_origin = PointLocation(row=round(origin.row * row_scale), col=round(origin.col * col_scale)) scaled_bitmap = resize_inter_nearest(bitmap, (scaled_rows, scaled_cols)) return scaled_origin, scaled_bitmap class BitmapBase(Geometry): def __init__(self, data: np.ndarray, origin: PointLocation=None, expected_data_dims=None): """ :param origin: PointLocation :param data: np.ndarray """ if origin is None: origin = PointLocation(row=0, col=0) if not isinstance(origin, PointLocation): raise TypeError('BitmapBase "origin" argument must be "PointLocation" object!') if not isinstance(data, np.ndarray): raise TypeError('BitmapBase "data" argument must be numpy array object!') data_dims = len(data.shape) if expected_data_dims is not None and data_dims != expected_data_dims: raise ValueError('BitmapBase "data" argument must be a {}-dimensional numpy array. ' 'Instead got {} dimensions'.format(expected_data_dims, data_dims)) self._origin = origin.clone() self._data = data.copy() @classmethod def _impl_json_class_name(cls): """Descendants must implement this to return key string to look up serialized representation in a JSON dict.""" raise NotImplementedError() @staticmethod def base64_2_data(s: str) -> np.ndarray: raise NotImplementedError() @staticmethod def data_2_base64(data: np.ndarray) -> str: raise NotImplementedError() def to_json(self): return { self._impl_json_class_name(): { ORIGIN: [self.origin.col, self.origin.row], DATA: self.data_2_base64(self.data) } } @classmethod def from_json(cls, json_data): json_root_key = cls._impl_json_class_name() if json_root_key not in json_data: raise ValueError( 'Data must contain {} field to create MultichannelBitmap object.'.format(json_root_key)) if ORIGIN not in json_data[json_root_key] or DATA not in json_data[json_root_key]: raise ValueError('{} field must contain {} and {} fields to create MultichannelBitmap object.'.format( json_root_key, ORIGIN, DATA)) col, row = json_data[json_root_key][ORIGIN] data = cls.base64_2_data(json_data[json_root_key][DATA]) return cls(data=data, origin=PointLocation(row=row, col=col)) @property def origin(self) -> PointLocation: return self._origin.clone() @property def data(self) -> np.ndarray: return self._data.copy() def translate(self, drow, dcol): translated_origin = self.origin.translate(drow, dcol) return self.__class__(data=self.data, origin=translated_origin) def fliplr(self, img_size): flipped_mask = np.flip(self.data, axis=1) flipped_origin = PointLocation(row=self.origin.row, col=(img_size[1] - flipped_mask.shape[1] - self.origin.col)) return self.__class__(data=flipped_mask, origin=flipped_origin) def flipud(self, img_size): flipped_mask = np.flip(self.data, axis=0) flipped_origin = PointLocation(row=(img_size[0] - flipped_mask.shape[0] - self.origin.row), col=self.origin.col) return self.__class__(data=flipped_mask, origin=flipped_origin) def scale(self, factor): new_rows = round(self._data.shape[0] * factor) new_cols = round(self._data.shape[1] * factor) mask = self._resize_mask(self.data, new_rows, new_cols) origin = self.origin.scale(factor) return self.__class__(data=mask, origin=origin) @staticmethod def _resize_mask(mask, out_rows, out_cols): return resize_inter_nearest(mask.astype(np.uint8), (out_rows, out_cols)).astype(np.bool) def to_bbox(self): return Rectangle.from_array(self._data).translate(drow=self._origin.row, dcol=self._origin.col)
40.782258
120
0.686969
3,796
0.750643
0
0
1,431
0.282974
0
0
842
0.166502
b1e369fb08913d130b89cec1f5483abc5621f780
851
py
Python
src/secml/ml/classifiers/gradients/mixin_classifier_gradient_sgd.py
zangobot/secml
95a293e1201c24256eb7fe2f1d2125cd5f318c8c
[ "Apache-2.0" ]
63
2020-04-20T16:31:16.000Z
2022-03-29T01:05:35.000Z
src/secml/ml/classifiers/gradients/mixin_classifier_gradient_sgd.py
zangobot/secml
95a293e1201c24256eb7fe2f1d2125cd5f318c8c
[ "Apache-2.0" ]
5
2020-04-21T11:31:39.000Z
2022-03-24T13:42:56.000Z
src/secml/ml/classifiers/gradients/mixin_classifier_gradient_sgd.py
zangobot/secml
95a293e1201c24256eb7fe2f1d2125cd5f318c8c
[ "Apache-2.0" ]
8
2020-04-21T09:16:42.000Z
2022-02-23T16:28:43.000Z
""" .. module:: CClassifierGradientSGDMixin :synopsis: Mixin for SGD classifier gradients. .. moduleauthor:: Ambra Demontis <ambra.demontis@unica.it> .. moduleauthor:: Marco Melis <marco.melis@unica.it> """ from secml.array import CArray from secml.ml.classifiers.gradients import CClassifierGradientLinearMixin class CClassifierGradientSGDMixin(CClassifierGradientLinearMixin): """Mixin class for CClassifierSGD gradients.""" # train derivatives: def grad_tr_params(self, x, y): """ Derivative of the classifier training objective function w.r.t. the classifier parameters Parameters ---------- x : CArray Features of the dataset on which the training objective is computed. y : CArray dataset labels """ raise NotImplementedError
26.59375
80
0.680376
531
0.623972
0
0
0
0
0
0
585
0.687427
b1e811f35a54f18497c53bcd1b57a0f2b90a05d1
455
py
Python
src/epyodbc/constructs/base_class.py
kingspp/epyodbc
601ea659c243e7128f946fed264a095f82b25f8a
[ "MIT" ]
null
null
null
src/epyodbc/constructs/base_class.py
kingspp/epyodbc
601ea659c243e7128f946fed264a095f82b25f8a
[ "MIT" ]
null
null
null
src/epyodbc/constructs/base_class.py
kingspp/epyodbc
601ea659c243e7128f946fed264a095f82b25f8a
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ | **@created on:** 9/4/20, | **@author:** prathyushsp, | **@version:** v0.0.1 | | **Description:** | | | **Sphinx Documentation Status:** """ from abc import ABCMeta, abstractmethod import json class BaseClass(metaclass=ABCMeta): @abstractmethod def pretty(self): pass def toJSON(self): return json.dumps(self, default=lambda o: o.__dict__, sort_keys=True, indent=2)
18.2
61
0.586813
228
0.501099
0
0
50
0.10989
0
0
170
0.373626
b1e81c6b8160d531e4161ae5339f729307b428e9
1,891
py
Python
madlib4.py
Leorodr501/Mad-Libs
0d619908ad4b1f73365e86345dd4023f9aa7f72d
[ "MIT" ]
null
null
null
madlib4.py
Leorodr501/Mad-Libs
0d619908ad4b1f73365e86345dd4023f9aa7f72d
[ "MIT" ]
null
null
null
madlib4.py
Leorodr501/Mad-Libs
0d619908ad4b1f73365e86345dd4023f9aa7f72d
[ "MIT" ]
null
null
null
adjective = input("Enter an adjective: ") adjective = input("Enter another adjective: ") noun = input("Enter a noun: ") noun = input("Enter another noun: ") plural_noun = input("Enter a plural noun: ") game = input("Enter a game: ") plural_noun = input("Enter another plural noun: ") verb = input("Enter a verb ending in 'ing': ") verb = input("Enter another verb ending in 'ing': ") plural_noun = input("Enter another plural noun: ") verb = input("Enter another verb ending in 'ing': ") noun = input("Enter another noun: ") plant = input("Enter a plant; ") body_part = input("Enter a part of the body: ") place = input("Enter a place: ") verb = input("Enter another verb ending in 'ing': ") adjective = input("Enter another adjective: ") number = input("Enter a number <100: ") plural_noun = input("Enter another plural noun: ") print("A vacation is when you take a trip to some " + adjective + " place"), print(" with you " + adjective + " family.") print("Usually you go to some place thatis near a/an " + noun ), print(" or up on a/an " + noun + ".") print("A good vacation place is one where you can ride " + plural_noun ), print(" or play " + game + " or go hunting for " + plural_noun + ".") print("I like to spend my time " + verb + " or " + verb + ".") print("When parents go on a vacation, they spend their time eating three " + plural_noun + " a day,") print(" and fathers play golf, and mothers sit around " + verb + ".") print("Last summer, my little brother fell in a/an " + noun + " and got poison " + plant ), print(" all over his " + body_part + ".") print("My family is going to go to (the) " + place + ", and I will practice " + verb + ".") print("Parents need vacations more than kids because parents are always very " + adjective + " and because they have to work " + number + " hours every day all year making enough " + plural_noun + " to pay for the vacation.")
51.108108
225
0.668429
0
0
0
0
0
0
0
0
1,205
0.637229
b1ea115bb0ded34de6025f440ccc8b24a383a6be
5,854
py
Python
proto_5/connect/__main__.py
jadnohra/connect
8eb21e6f122898094447bc3d5edb3053d5a2adf2
[ "Unlicense" ]
null
null
null
proto_5/connect/__main__.py
jadnohra/connect
8eb21e6f122898094447bc3d5edb3053d5a2adf2
[ "Unlicense" ]
6
2021-03-19T12:06:56.000Z
2022-03-12T00:23:09.000Z
proto_5/connect/__main__.py
jadnohra/connect
8eb21e6f122898094447bc3d5edb3053d5a2adf2
[ "Unlicense" ]
null
null
null
import argparse import os import logging import sys from types import SimpleNamespace from .util.print_tree import print_tree def data_to_card_path(card_dir, fpath): return os.path.splitext("/" + os.path.relpath(fpath, start=card_dir))[0] class Card: def __init__(self, card_dir, fpath): self._fpath = fpath self._card_path = data_to_card_path(card_dir, fpath) @property def card_path(self): return self._card_path @property def card_dir(self): return Card.to_card_dir(self._card_path) @property def card_name(self): return Card.to_card_name(self._card_path) def to_card_dir(card_path): return os.path.dirname(card_path) def to_card_name(card_path): return os.path.basename(card_path) def is_connect_script_file(filename): return os.path.basename(filename) == "CONNECT" def is_card_file(filename): return filename.endswith('.yaml') or filename == "CONNECT" def is_connect_file(filename): return any([predicate(filename) for predicate in [is_card_file, is_connect_script_file]]) def parse_connect_files(card_dir): connect_files = [] for dirpath, dirnames, filenames in os.walk(card_dir): for filename in filenames: if is_connect_file(filename): connect_files.append(os.path.join(dirpath, filename)) return connect_files class CardTree: class Node: def __init__(self, name): self._name = name def print(self): print_tree(self, lambda node: node.children.values() if type(node) == CardTree.DirNode else [], lambda node: node.name) @property def name(self): return self._name class DirNode(Node): def __init__(self, name): super().__init__(name) self.children = {} class CardNode(Node): def __init__(self, card): super().__init__(card.card_name) self.card = card def __init__(self): self._root_node = self.DirNode(".") def _ensure_child_dir_node(self, parent_dir, nodename): if nodename not in parent_dir.children: parent_dir.children[nodename] = self.DirNode(nodename) return parent_dir.children[nodename] def _get_card_dir_node(self, card_dir): dir_parts = card_dir.split(os.sep)[1:] path_node = self._root_node for dirname in dir_parts: path_node = self._ensure_child_dir_node(path_node, dirname) return path_node def add_card_node(self, card): dir_node = self._get_card_dir_node(card.card_dir) dir_node.children[card.card_name] = self.CardNode(card) def get_card(self, card_path): dir_node = self._get_card_dir_node(Card.to_card_dir(card_path)) return dir_node.children.get(Card.to_card_name(card_path), None) @property def root(): return self._root_node def print(self): self._root_node.print() def apply_connect_script(card_dir, script_file, card_tree): def get_card(card_path, card_tree): card = card_tree.get_card(card_path) if card is None: logging.error(f"Card {card_path} mentioned in {script_file} not found") return card def get_cards(script_card_dir, pattern, card_tree): if pattern.startswith("/"): return [get_card(pattern, card_tree)] elif pattern == "*": # TODO this is slow, we need a tree structure return [] else: return [get_card(os.path.join(script_card_dir, pattern), card_tree)] def apply_relate_cmd(script_card_dir, cmd, card_tree): src_pat, rel_pat, target_pat = cmd src_cards = get_cards(script_card_dir, src_pat, card_tree) rel_cards = get_cards(script_card_dir, rel_pat, card_tree) target_cards = get_cards(script_card_dir, target_pat, card_tree) script_lines = open(script_file).readlines() line_index = 0 relate_cmds = [] while line_index < len(script_lines): line = script_lines[line_index] if line.strip() == "relate": cmd = tuple([arg.strip() for arg in script_lines[line_index+1: line_index+4]]) relate_cmds.append(cmd) line_index = line_index + 4 else: line_index = line_index + 1 script_card_dir = data_to_card_path(card_dir, os.path.dirname(script_file)) for relate_cmd in relate_cmds: apply_relate_cmd(script_card_dir, relate_cmd, card_tree) def parse_card_tree_from_files(card_dir, connect_files): card_tree = CardTree() script_files = [] for connect_file in connect_files: if is_card_file(connect_file): card = Card(card_dir, connect_file) card_tree.add_card_node(card) elif is_connect_script_file(connect_file): script_files.append(connect_file) card_tree.print() for script_file in script_files: apply_connect_script(card_dir, script_file, card_tree) return card_tree def parse_card_tree(data_dir): connect_files = parse_connect_files(data_dir) print(connect_files) card_tree = parse_card_tree_from_files(data_dir, connect_files) card_tree.print() def main(args): logging.basicConfig(format='%(levelname)s: %(message)s', level="DEBUG" if args.log_debug else "INFO") parse_card_tree(args.data_dir) return os.EX_OK parser = argparse.ArgumentParser() parser.add_argument("data_dir", help="The directory containing our data") parser.add_argument("--log-debug", help="Log debug information", default=False, action="store_true") sys.exit(main(parser.parse_args()))
34.233918
83
0.654766
2,249
0.384182
0
0
350
0.059788
0
0
280
0.047831
b1ea3252892ba4485f0734ae364981f2c8a20c18
35,322
py
Python
arcadia.py
ntw1103/arcadia
bfefc433a97c13739c9c1b329e0b9af63dba9d1b
[ "BSD-2-Clause" ]
1
2018-12-11T04:36:53.000Z
2018-12-11T04:36:53.000Z
arcadia.py
ntw1103/arcadia
bfefc433a97c13739c9c1b329e0b9af63dba9d1b
[ "BSD-2-Clause" ]
null
null
null
arcadia.py
ntw1103/arcadia
bfefc433a97c13739c9c1b329e0b9af63dba9d1b
[ "BSD-2-Clause" ]
1
2018-12-11T04:37:35.000Z
2018-12-11T04:37:35.000Z
# -*- coding: utf-8 -*- #!/usr/bin/env python2 import fileinput import json import random import socket import thread # import urllib2 # import collections import time import traceback import re from decimal import Decimal as D from datetime import datetime import MySQLdb # import math username = 'Arcadia2' oper_key = 'ee82aeb94474fcc21f05061043cb4' #This is not the actual key #weather_api="http://api.openweathermap.org/data/2.5/weather?q=" #weather_api="http://api.openweathermap.org/data/2.5/find?q=" weather_api="http://api.openweathermap.org/data/2.5/find?APPID=c61b24ac1edeb6837b377df=" # This is not the actual key API_KEY="&APPID=c61b24ac1edeb6837b377df" #This is not the actual key CHANNEL = "#main" # TODO: @Arcadia.msg_register(name: str, requires_auth: bool, secret: bool, floodrule: str) # @Arcadia.data_register(....) # would inspect function for name and arguments, and get docstring, to add as a response to !help. # would add the decoratee function as a msg or data callback. # IDEA: floodrule is similar to unrealircd +f channel flag: [*]<attempts>:<seconds> # TODO: Log !sudo commands to #opers (unless it's issued from #opers), or to file, or to /helpops or /globops or /chatops # Failed attempts should be logged unobtrusively, to file # IDEA: Allow user to pipe the output of a command to another channel they are in. class Connection: #This should work similarly to the singleton. __shared_state = {} sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) network = '192.102.0.203' port = 6667 channel = CHANNEL #sock.connect((network, port)) def __init__(self): self.__dict__ = self.__shared_state # and whatever else you want in your class -- that's all! def connect(self): self.sock.connect((self.network, self.port)) def get_names_list(self, channel=None): if channel is None or not is_chan(channel): channel = self.channel self.sendPacket ( 'names %s :' %(channel)) all_names = [] while True: # I don't like having our own little recv loop here # but it's probably fine for IRC. Better solution would involve # moving to asyncio, threading and queues, or 'callback hell'. data = self.sock.recv ( 1024 ) print("Listening for NAMES:", data) for line in data.splitlines(): numeric = line.split(" ")[1] if numeric == "353": # line of NAMES response names_part = line.split(channel + " :")[1] for namemask in names_part.split(" "): name = namemask.split("!")[0].lstrip("&~@") all_names.append(name) else: if numeric != "366": # end of NAMES response print("Odd data received while listening for NAMES:", data) return all_names return all_names def get_names(self, channel=None): return " ".join(self.get_names_list(channel)) def sendPacket(self, packet): self.sock.send ( packet + '\r\n' ) def sendPacket_split(self, prefix, suffix, split_size=250): # TODO: Need a maximum number of lines to send, with possibly a !continue callback. # TODO: Need to delay or queue our output without disrupting comms. Would require a timer. for i in range(0, len(suffix), split_size): self.sendPacket(prefix + suffix[i:i+split_size]) class Message: """ Represents a message from a user in a channel or PM window. """ def __init__(self, bot, data): self.timestamp = time.time() self.bot = bot self.server = bot.server self.data = data self.msgtxt = ':'.join(data.split(':')[2:]) self.nick = data.split( '!' )[0].replace(':', '') self.channel = get_chan_from_data(data, self.nick) self.type = data.split(" ")[1] # PRIVMSG, NOTICE, etc self.is_channel = is_chan(self.channel) self.msgparts = self.msgtxt.strip().split(' ') def reply(self, message, highlight=None): h = self.nick + ": " if highlight is None: highlight = self.is_channel if is_badword(self.nick): highlight = False prefix = "PRIVMSG %s : %s" % (self.channel, h*highlight) return self.server.sendPacket_split(prefix, message) def said(self, s): return self.msgtxt.lower().find(s.lower()) == 0 def find_raw(self, s): return self.data.find(s) class database: host = "localhost" user = "arcadia" passwd = "hoi22h33" db = "Arcadia" conn = None cursor = None def connect(self): self.conn = MySQLdb.connect(self.host, self.user, self.passwd, self.db) self.cursor = self.conn.cursor() def disconnect(self): self.cursor.close() self.conn.close() def escape(self, toclean): return MySQLdb.escape_string(toclean) def insert(self,query,params): self.cursor.execute(query, ( params )) def run(self, query): self.cursor.execute(query) row = self.cursor.fetchone() return row """def set_note(user,text): def get_note(user): return notes""" """class clue: db=database() db.connect() def get_location: db.connect() db.run("SELECT * FROM `locations` ORDER BY rand() LIMIT 1") db.disconnect() def add_location: def get_weapon: def add_weapon:""" class brain: filename = "arcadias_brain.txt" def load(self): print("trying to load the brain") file = open(self.filename, "r") lines = file.readlines() print("I loaded the brain") return lines def save(self,lines): print("saving brain to file.") file = open(self.filename, "w") for line in lines: file.write("%s\n" % line) file.close() def clean(self,lines): for lines in fileinput.FileInput(self.filename, inplace=1): lines = lines.strip() if lines == '': continue print lines print("cleaned the brain") def ago(past_timestamp): """ Returns a string, the number of days, hours, minutes, or seconds ago a timestamp is. Example output: 5h30m ago 3d5h ago 2m30s ago """ time_diff = int(time.time() - past_timestamp) time_diff_units = [] for unit, unitname in [(86400, "d"), (3600, "h"), (60, "m"), (1, "s")]: u = time_diff // unit if u > 0: time_diff_units.append(str(u)) time_diff_units.append(unitname) time_diff -= u * unit if len(time_diff_units) >= 4: break return "".join(time_diff_units) + " ago" class last_message: chans = collections.defaultdict(list) # {"#chan": [(time, txt), (time, txt), ...], ...} def __init__(self, default_channel): self.default_channel = default_channel def push(self, timestamp, data, channel=None): if channel is None: channel = self.default_channel arr = self.chans[channel] if len(arr) >5: arr.pop(0) arr.append((timestamp, data.replace ( '\r\n', '' ))) def pop(self, channel=None): if channel is None: channel = self.default_channel arr = self.chans[channel] if len(arr) > 0: return arr.pop(0) return (0, "") def pop_all(self, channel=None): if channel is None: channel = self.default_channel return self.chans[channel] """class user_tracker: db = database() db.connect() #m = db.escape(message) def check_name(name): clean_name = self.db.escape(name) #print "Checking: " + word[:-4] query = "SELECT COUNT(*) from `users` WHERE `username` = '"+clean_name+"'" row = db.run(query) #print row[0] if(row[0] ==1): return 1 else: return 0 def insert_name(name): clean_name = self.db.escape(name) query = "INSERT INTO `users` VALUES('"+clean_name+"','9')" row = db.run(query)""" """class trivia_engine: db = database() db.connect() #m = db.escape(message) state = 0 question_id =0 players =[] def restart(self): self.players =[] self.state =0 def question(self,message,nick): if self.state != 0: return "A question was already asked: " +self.state m = self.db.escape(message) m = m.replace ( '\r\n', '' ) parts = m.split(' ') bleh = parts[1::] #one_line = ' '.join([str(i) for i in bleh])[:-4:] #question = "Who was luke skywalker's father?" db = database() db.connect() m = db.escape(message) query ="SELECT count(*)FROM `trivia`;" row = db.run(query) count = row[0] next_id = str(random.randint(0,count-1)) self.question_id = next_id print("Next_ID:"+ next_id) query ="SELECT `question` FROM `trivia` WHERE id="+next_id+";" row = db.run(query) self.state = row[0] # set the state to the current question. return self.state+" "+nick def answer(self,message,nick): if self.state ==0: return "The game hasn't started yet." else: if "darth vader" in message: return "Good job." else: db = database() db.connect() m = db.escape(message) query ="SELECT `id` from `trivia` WHERE `answer` LIKE '%"+m[3:-4:]+"%'" print query row = db.run(query) if row is None: return "I'm sorry, wrong answer." print("id: " + str(row[0]) +"Current question id: "+ str(self.question_id)) if(str(row[0]) == str(self.question_id)): self.state =0 return "Good Job!" else: return "Wrong answer" return "I'm sorry, wrong answer." """ def get_weather(message): try: search = '%20'.join(message.msgparts[1:]) if (search == 'hoth'): search = 'Hell%20,MI' print(weather_api+search) try: usock = urllib2.urlopen(weather_api+search) except urllib2.HTTPError as e: return "Communication error (HTTP %s: %s). Try again later or notify developer." % (e.code, e.reason) data = usock.read() usock.close() weather = json.loads(data) try: weather = weather['list'][0] except KeyError: return "Error. You must provide a location. OpenWeatherMap says: %s (code %s)" % (weather['message'], weather['cod']) print(weather['weather']) status = weather['weather'] temp = weather['main']['temp'] location = str(weather['name']) + ', '+ str(weather['sys']['country']) print("Location" + location) return str(k2f(temp))+'°F|'+str(k2c(temp))+'°C, '+str(status[0]['description']) + ' | ' + location except: print "Unkown error in get_weather." traceback.print_exc() return "Unknown error." def get_time(zone="-5"): return "Eastern: "+str(datetime.now().time())+" UTC: "+str(datetime.utcnow().time()) def k2f(K): F =(K - 273.15) *1.8000+32.00 return F def k2c(K): C= K- 273.15 return C def get_response(message): #sendPacket ( 'PRIVMSG %s : %s' % (channel, 'Trying to respond to: '+message)) db = database() db.connect() m = db.escape(message.msgtxt) parts = m.split(' ') # for part in parts: #print(part) #sendPacket ( 'PRIVMSG %s : %s' % (channel, 'filtered before db: '+m[:-4:])) row = db.run("SELECT `response` from `responses` WHERE `message`='"+m[:-4:]+"'") #db.disconnect() if(row != None): #sendPacket ( 'PRIVMSG %s : %s' % (channel, 'I found a response for: '+row)) response = row[0] if "|names|" in response: print (response) #response = 'Bah Humbug! '# response.replace("|names|", message.server.get_names(message.channel)) # response = ' '.join(response.split()) print (response) if "|nick|" in response: response = response.replace("|nick|", message.nick) #if "||" in response: # sendPacket("PRIVMSG %s : %s") if(response.startswith('|action|')): return '\001ACTION ' + response.replace("|action|", "") + '\001' db.disconnect() return response else: return False def handle_badwords(message): print "handling badwords" msgtxt = message.msgtxt for l in ('"', "'", "\\"): msgtxt = msgtxt.replace(l, "") words = msgtxt.split(" ") for word in words: if is_badword(word) == 1: print "Stop swearing!" + word if not message.is_channel: # Can't kick in a PM. message.reply("Hey, watch your language") else: #sendPacket ( 'PRIVMSG %s : %s' % (channel, 'Hey, watch your language') ) kick = 'KICK %s %s %s' % (message.channel, message.nick, 'Hey, watch your language') print(kick) message.server.sendPacket(kick) #Todo add a handling of the swearing, so it marks them saying it, and kicks them and stuff. break def is_badword(dirty_word): return #Currently, I haven't dumped the swearword database. db = database() db.connect() word = db.escape(dirty_word) #print "Checking: " + word[:-4] query = "SELECT COUNT(*) from `badwords`" query = query + " WHERE `words` = '" + word[:-4]+"'" query = query + " OR `words` = '"+word[:-4]+".'" query = query + " OR `words` = '"+word[:-4]+",'" query = query + " OR `words` = '"+word[:-4]+"!'" row = db.run(query) #print row[0] if(row[0] ==1): return 1 else: return 0 def get_verse(message): return #Currently I haven't dumped the bible database. print('In get_verse') db = database() db.connect() m = db.escape(message.msgtxt) m = m.replace ('\r\n', '').replace("\\r\\n", '') parts = m.split(' ') for part in parts: print(part) print "Length: " + str(len(parts)) #parts.pop(1) is_range = all(i.isdigit() for i in parts[-3:]) if is_range: chapt = parts[-3] start = parts[-2] end = parts[-1] book = " ".join(parts[1:-3]) else: chapt = parts[-2] start = end = parts[-1] book = " ".join(parts[1:-2]) start = int(start) end = int(end) response = "" if end - start > 7: end = start + 7 response += "[Limited verses: %s to %s] " % (start, end) print "Start: " + str(start) + " , END " + str(end) for i in range(start,end+1): query = "SELECT `VerseText` from `BibleKJV` WHERE `book`='" +book+"' AND `Chapter`='"+chapt+"' AND `Verse`='"+str(i)+"'" print query row = db.run(query) if row is None: return 'Verse(s) not found. Format example (looking up 1 Corinthians 3:18-20): ".bible 1 Corinthians 3 18 20" -- Another (looking up John 3:16): ".bible John 3 16"' if len(row) > 0: print "Multiverse" for i in row: print "verse: " + i response += " " + i else: response = row[0] print "response" + response return response def AI_intel_response(message,storage): for word in message.split(' '): print("printing input word:"+ word) if word in ['hi','hello','yo','hey','greetings']: matching = [s for s in storage if "hello" in s] return random.choice(matching) return random.choice(storage) def AI_response(message, storage_=None): global storage if storage_ is None: storage_ = storage db = database() db.connect() m = db.escape(message.msgtxt) m = m.replace ( '\r\n', '' ) parts = m.split(' ') bleh = parts[1::] one_line = ' '.join([str(i) for i in bleh])[:-4:] print("storing:" + one_line) if "pug" not in one_line: storage.append(one_line) #return random.choice(storage_)#[:-4:] return AI_intel_response(one_line,storage_) def arithmatic ( args ): args [ 0 ] = args [ 0 ].replace ( '\r\n', '' ) for letter in 'abcdefghijklmnopqrstuvwxyz': args [ 0 ] = args [ 0 ].replace ( letter, '' ) solution = str ( eval ( args [ 0 ], { '__builtins__' : {} } ) ) return solution def sine ( args ): solution = str ( math.sin ( float ( args [ 0 ] ) * ( 2 * math.pi ) / 360 ) ) return solution def cosine ( args ): solution = str ( math.cos ( float ( args [ 0 ] ) * ( 2 * math.pi ) / 360 ) ) return solution def tangent ( args ): solution = str ( math.tan ( float ( args [ 0 ] ) * ( 2 * math.pi ) / 360 ) ) return solution def send_last_msgs(bot, nick, channel, show_error=False): server = bot.server if not is_chan(channel): channel = server.channel channel_nicks = server.get_names_list(channel) if nick not in channel_nicks: server.sendPacket ( 'NOTICE %s : %s' % (nick, 'You must be in a channel to see its last messages.') ) elif "[m]" in nick: print("ignoring matrix") else: response = bot.last.pop_all(channel) print(response) if len(response) > 0: server.sendPacket ( 'NOTICE %s : %s %s:' % (nick, 'Last messages on channel', channel) ) for timestamp, text in response: server.sendPacket ( 'NOTICE %s : %s %s' % (nick, ago(timestamp), text) ) elif show_error: server.sendPacket ( 'NOTICE %s : %s %s.' % (nick, 'I don\'t remember any previous messages on the channel', channel) ) def is_chan(channel): return (channel.startswith("&") or channel.startswith("#")) def get_chan_from_data(data, nick): channel = data.split(" ")[2] # may be our own nick in a PM. if not is_chan(channel): return nick return channel def procss_data(bot, data, msgtxt, nick, b, last): if data.find ( 'PING' ) != -1: bot.server.sendPacket ( 'PONG ' + data.split() [ 1 ] ) # elif data.find( 'NICK') != -1: # if "has changed his/her nickname to" in message: # print data # new_nick = message.split(':') # server.sendPacket ( 'PRIVMSG %s : %s' % (server.channel, nick + ' Changed to: '+message.split(':')[1])) else: not_blocked = bot.run_callbacks(data) if not_blocked: if data.find("JOIN :#")!= -1: #:Bart_Roberts!bartrobert@fanta.net JOIN :#main" if "Arcadia" not in data: channel = data.split('JOIN :')[1].rstrip() join_nick = data.split (':')[1].split('!')[0] send_last_msgs(bot, join_nick, channel) elif data.find('PRIVMSG') != -1: procss_privmsg(Message(bot, data)) #def procss_data(server,data,message,nick,b,trivia,last): def procss_privmsg(msg): global storage server = msg.bot.server brain = msg.bot.brain print "nick: " + msg.nick print "channel: " + msg.channel print "message: " + msg.msgtxt #sendPacket ( 'JOIN :#main') handle_badwords(msg) # This will handle the swear words stuff. if msg.said('you\'re lame'): msg.reply("Hey", False) elif msg.said('!main'): server.sendPacket('JOIN ' + CHANNEL) server.sendPacket ('PRIVMSG %s : %s' % (CHANNEL, 'I\'m Back ')) elif msg.said('.bible'): response = get_verse(msg) msg.reply(response, False) elif msg.said('arcadia'): response = AI_response(msg) msg.reply(" " + response, False) elif msg.said("!last"): try: channel = msg.msgparts[1] except IndexError: channel = msg.channel send_last_msgs(msg.bot, msg.nick, channel, show_error=True) elif msg.said('!save'): authed_function_call(msg, brain.save, storage) elif msg.said('!load'): def f(): global storage storage = brain.load() authed_function_call(msg, f) elif msg.said('!clean' or '!fixbrain'): def f(): global storage brain.clean(storage) storage = brain.load() authed_function_call(msg, f) elif msg.said('!timeout'): command = 'SAJOIN ' + msg.msgparts[1] + ' #timeout' print(command) authed_function_call(msg, server.sendPacket, command) elif msg.said('!t_DISABLED'): print("In trivia: " +msg.msgtxt) server.sendPacket ( 'PRIVMSG %s : %s' % (server.channel, ' ') ) #if "start" in msg: #response = trivia.question(message,nick) #server.sendPacket ( 'PRIVMSG %s : %s' % (server.channel, ' '+response) ) #else: #response = trivia.answer(message,nick) #server.sendPacket ( 'PRIVMSG %s : %s' % (server.channel, ' '+response) ) elif msg.said('!sudo'): print("Igot:" + msg.msgtxt) t = " ".join(msg.msgparts[1:]).replace('/msg','PRIVMSG ') authed_function_call(msg, server.sendPacket, t) elif msg.said('!f2c'): f = D(msg.msgparts[1]) c = (f - 32) * D(5/9.) msg.reply('%1.2f' % c) elif msg.said('!c2f'): c = D(msg.msgparts[1]) f = D(9/5.) * c + 32 msg.reply('%1.2f' % f) elif msg.said('!time'): msg.reply(get_time()) elif msg.said('!h7777777777'): msg.reply('Hello room, and hello ' + msg.nick, False) elif msg.said('!me'): server.sendPacket('PRIVMSG %s :%s' % (msg.channel, '\001ACTION waves.\001')) #sendPacket ( 'names %s :' %(channel)) #data = server.sock.recv ( 1024 ) server.sendPacket('PRIVMSG %s : %s' % (msg.channel, 'Response: ' + server.get_names(msg.channel))) else: if msg.said('!id'): global oper_key server.sendPacket ( 'OPER admin '+ oper_key) response = get_response(msg) if msg.said('!weather'): response = get_weather(msg) if(response != False): if msg.said('!test'): data = server.sock.recv ( 1024 ) print "HERE" elif msg.said('!joinbart'): server.sendPacket ( response) data = server.sock.recv ( 1024 ) print "HERE" else: msg.reply(response, False) if ("!id" not in msg.msgtxt and "NOTICE" not in msg.data) and msg.is_channel: #store the last 5 things said/did. if msg.msgtxt.startswith("\001ACTION "): action = msg.msgtxt.replace("\001ACTION ", "", 1).rstrip("\001") topush = "*"+msg.nick+" "+action else: topush = "<"+msg.nick+">"+msg.msgtxt msg.bot.last.push(msg.timestamp, topush, msg.channel) def authed_function_call(trig_msg, function, *args, **kwargs): t = time.time() timeout = t + 10 def cb(whois_code, rest): if time.time() > timeout or whois_code == "318": trig_msg.reply("Auth failed. Make sure that you're OPER'd (and that I'm OPER'd).") # TODO: When we have timers, we can make this error message occur always. return True elif whois_code in ("320", "313"): function(*args, **kwargs) return True return False whois(trig_msg.bot, trig_msg.nick, cb, ["320", "318", "313"]) def whois(bot, target_nick, cb, target_codes=None): """ :param bot: An Arcadia instance. :param target_nick: The nick we have to whois. WHOIS responses from the server pertaining to any other nick are ignored. :param cb: A callable taking two strings, first is the WHOIS RPL numeric code, second is the string the server put at the end. If the server responds: ``` :domainname.com 671 username1 username2 :is using a Secure Connection ``` `cb` gets: ``` cb("671", ":is using a Secure Connection") ``` :param target_codes: The WHOIS RPL numeric codes we should watch out for, others will be ignored. If argument is not passed, we'll watch out for all known WHOIS numerics. """ if target_codes is None: target_codes = [ "311", # hostname (start) "379", # modes "378", # "is connecting from" "307", # "is identified" "319", # channels "312", # server in the net user is connected to "313", # server operator "310", # available for help "671", # using ssl "320", # is root "317", # idle time and signon time "318", # end "401" # no such user ] def whois_cb(bot, data): try: servername, code, me, you, rest = data.split(" ", 4) except ValueError: # not a whois reply. return False, False else: print("whois_cb:", servername, code, me, you, rest) cbresult = None if code in target_codes and you.lower() == target_nick.lower(): cbresult = cb(code, rest) if code == "318" and you == target_nick: # When we get to the end of the relevant WHOIS message, this function # is removed from the list of callbacks in Arcadia. return True, False return cbresult, False bot.callbacks.append(whois_cb) bot.server.sendPacket(" WHOIS {0} {0}".format(target_nick)) class Arcadia: server = Connection() # Callbacks are called with an Arcadia object, and a string with the data # that was received. They are called every time we receive data, before the # normal hardcoded commands are tried. # Callbacks return two values. # (whether_to_remove_me, whether_to_block_callbacks_to_my_right) # If the second value equals 2, we cease processing the message and hardcoded # commands won't be tried (meaning, they will be tried if it isn't 2). callbacks = [] def run_callbacks(self, data): return self._run_callbacks(self.callbacks, self, data) def _run_callbacks(self, cbs, *args): to_remove = [] block = None for f in cbs: remove, block = f(*args) if remove: to_remove.append(f) if block: break for f in to_remove: while f in cbs: cbs.remove(f) return (block != 2) def Arcadia_run(self): global running global username print(running) while running==1: self.server.connect() self.server.sendPacket ( 'NICK %s' % (username) ) self.server.sendPacket ( 'USER %s %s %s: %s' % ('Arcadia', 'Arcadia', 'Arcadia', 'Arcadia') ) trash = self.server.sock.recv ( 1024 ) self.server.sendPacket ( 'JOIN %s' % (self.server.channel) ) self.server.sendPacket ( 'PRIVMSG %s : %s' % (self.server.channel, 'Hey') ) #Other commands: !hiwizard,!easter, !sleep, !good, !whee, # !purple, !batman, !grapefruit, !ben, !friday, !secret, !gps, !christmas. !bunny, !monday, !pirate, !sandwich, !sandvich self.brain = brain() # load arcadia's brain #trivia = trivia_engine() self.last = last_message(self.server.channel) while True: data = self.server.sock.recv ( 1024 ) for line in data.splitlines(True): message = ':'.join ( line.split ( ':' ) [ 2: ] ) nick = line.split ( '!' ) [ 0 ].replace ( ':', '' ) print "Raw: " +line # procss_data(self.server,data,message,nick,b,trivia,last) procss_data(self, line, message, nick, self.brain, self.last) running=1 storage = [] arcadia = Arcadia() try: thread.start_new_thread( arcadia.Arcadia_run, () ) except: traceback.print_exc() print "Error: unable to start thread" try: while 1: user_input = raw_input("enter something: ") if user_input.startswith("#EVAL#"): user_input = user_input[len("#EVAL#"):] try: try: result = eval(user_input) print "Eval result:" print result print "-----" except SyntaxError: exec(user_input) print "(Executed)" except: traceback.print_exc() else: if "/join" in user_input: arcadia.server.sendPacket ( 'JOIN %s' % (user_input[6::]) ) print("trying to") elif user_input == "/start": arcadia.server.sendPacket ( 'OPER ntw1103 '+ oper_key) brain = arcadia.brain global storage storage = brain.load() brain.clean(storage) else: arcadia.server.sendPacket ( 'PRIVMSG %s : %s' % (CHANNEL, ' ' +user_input) ) print user_input except KeyboardInterrupt: running = "stopped" print "done"
43.233782
188
0.46832
9,301
0.263305
0
0
0
0
0
0
12,200
0.345374
b1edfb7e986ee60ac0da1a869a4e400f7398c3fe
1,492
py
Python
app/display_modules/ags/tests/test_tasks.py
MetaGenScope/metagenscope-server
609cd57c626c857c8efde8237a1f22f4d1e6065d
[ "MIT" ]
null
null
null
app/display_modules/ags/tests/test_tasks.py
MetaGenScope/metagenscope-server
609cd57c626c857c8efde8237a1f22f4d1e6065d
[ "MIT" ]
null
null
null
app/display_modules/ags/tests/test_tasks.py
MetaGenScope/metagenscope-server
609cd57c626c857c8efde8237a1f22f4d1e6065d
[ "MIT" ]
null
null
null
"""Test suite for Average Genome Size tasks.""" from app.display_modules.ags.ags_tasks import boxplot, ags_distributions from app.samples.sample_models import Sample from app.tool_results.microbe_census.tests.factory import create_microbe_census from tests.base import BaseTestCase class TestAverageGenomeSizeTasks(BaseTestCase): """Test suite for Average Genome Size tasks.""" def test_boxplot(self): """Ensure boxplot method creates correct boxplot.""" values = [37, 48, 30, 53, 3, 83, 19, 71, 90, 16, 19, 7, 11, 43, 43] result = boxplot(values) self.assertEqual(3, result['min_val']) self.assertEqual(17.5, result['q1_val']) self.assertEqual(37, result['mean_val']) self.assertEqual(50.5, result['q3_val']) self.assertEqual(90, result['max_val']) def test_ags_distributions(self): """Ensure ags_distributions task works.""" def create_sample(i): """Create test sample.""" metadata = {'foo': f'bar{i}'} return Sample(name=f'SMPL_{i}', metadata=metadata, microbe_census=create_microbe_census()) samples = [create_sample(i).fetch_safe() for i in range(15)] result = ags_distributions.delay(samples).get() self.assertIn('foo', result) self.assertIn('bar0', result['foo']) self.assertIn('bar1', result['foo']) self.assertIn('min_val', result['foo']['bar0'])
38.25641
79
0.635389
1,205
0.807641
0
0
0
0
0
0
329
0.220509
b1ee21b42e49b37ad9977b9259b77f5d847cdf1c
491
py
Python
tsim/serialization/__init__.py
eduardomezencio/tsim
60ac63152a98fd7dabb59c66367bca216e6a7370
[ "MIT" ]
2
2021-04-24T06:48:13.000Z
2022-01-25T02:38:44.000Z
tsim/serialization/__init__.py
eduardomezencio/tsim
60ac63152a98fd7dabb59c66367bca216e6a7370
[ "MIT" ]
null
null
null
tsim/serialization/__init__.py
eduardomezencio/tsim
60ac63152a98fd7dabb59c66367bca216e6a7370
[ "MIT" ]
null
null
null
"""Global serialization configuration.""" from importlib import import_module import os def configure_serialization(): """Configure serialization for all classes in folder.""" for name in filter( lambda s: not s.startswith('_') and s.endswith('.py'), os.listdir(os.path.dirname(os.path.abspath(__file__)))): module_name = os.path.splitext(name)[0] module = import_module(f'.{module_name}', 'tsim.serialization') module.configure()
30.6875
71
0.668024
0
0
0
0
0
0
0
0
142
0.289206
b1eeecae89c5a75d2089876662644291654428d3
4,678
py
Python
windows/winobject/handle.py
1orenz0/PythonForWindows
f3de7b528b020b45ac6a871c975006fc1db1c3b0
[ "BSD-3-Clause" ]
1
2021-06-22T16:50:31.000Z
2021-06-22T16:50:31.000Z
windows/winobject/handle.py
killvxk/PythonForWindows
b253bc5873e7d97087ed22f2753b51fc6880ec18
[ "BSD-3-Clause" ]
null
null
null
windows/winobject/handle.py
killvxk/PythonForWindows
b253bc5873e7d97087ed22f2753b51fc6880ec18
[ "BSD-3-Clause" ]
1
2021-05-12T12:58:27.000Z
2021-05-12T12:58:27.000Z
import os import ctypes import windows from windows import winproxy from windows.generated_def import windef from windows.generated_def.winstructs import * # Remove this ? class EPUBLIC_OBJECT_TYPE_INFORMATION(PUBLIC_OBJECT_TYPE_INFORMATION): pass current_process_pid = os.getpid() class Handle(SYSTEM_HANDLE): """A handle of the system""" @windows.utils.fixedpropety def process(self): """The process possessing the handle :type: :class:`WinProcess <windows.winobject.process.WinProcess>`""" # "TODO: something smart ? :D" # return [p for p in windows.system.processes if p.pid == self.dwProcessId][0] return windows.WinProcess(pid=self.dwProcessId) @windows.utils.fixedpropety def name(self): """The name of the handle :type: :class:`str`""" return self._get_object_name() @windows.utils.fixedpropety def type(self): """The type of the handle :type: :class:`str`""" return self._get_object_type() @property def infos(self): """TODO: DOC""" return self._get_object_basic_infos() def _get_object_name(self): lh = self.local_handle size_needed = DWORD() yyy = ctypes.c_buffer(0x1000) winproxy.NtQueryObject(lh, ObjectNameInformation, ctypes.byref(yyy), ctypes.sizeof(yyy), ctypes.byref(size_needed)) return LSA_UNICODE_STRING.from_buffer_copy(yyy[:size_needed.value]).str def _get_object_type(self): lh = self.local_handle xxx = EPUBLIC_OBJECT_TYPE_INFORMATION() size_needed = DWORD() try: winproxy.NtQueryObject(lh, ObjectTypeInformation, ctypes.byref(xxx), ctypes.sizeof(xxx), ctypes.byref(size_needed)) except WindowsError as e: if e.code != STATUS_INFO_LENGTH_MISMATCH: # print("ERROR WITH {0:x}".format(lh)) raise size = size_needed.value buffer = ctypes.c_buffer(size) winproxy.NtQueryObject(lh, ObjectTypeInformation, buffer, size, ctypes.byref(size_needed)) xxx = EPUBLIC_OBJECT_TYPE_INFORMATION.from_buffer_copy(buffer) return xxx.TypeName.str def _get_object_basic_infos(self): pass lh = self.local_handle size_needed = DWORD() basic_infos = PUBLIC_OBJECT_BASIC_INFORMATION() winproxy.NtQueryObject(lh, ObjectBasicInformation, ctypes.byref(basic_infos), ctypes.sizeof(basic_infos), ctypes.byref(size_needed)) return basic_infos #PUBLIC_OBJECT_BASIC_INFORMATION @windows.utils.fixedpropety def local_handle(self): """A local copy of the handle, acquired with ``DuplicateHandle`` :type: :class:`int`""" if self.dwProcessId == windows.current_process.pid: return self.wValue res = HANDLE() winproxy.DuplicateHandle(self.process.handle, self.wValue, windows.current_process.handle, ctypes.byref(res), dwOptions=DUPLICATE_SAME_ACCESS) return res.value def description(self): stype = self.type descr_func = getattr(self, "description_" + stype, None) if descr_func is None: return None return descr_func() def description_Process(self): proc = windows.WinProcess(handle=self.wValue) res = str(proc) del proc._handle return res def description_Thread(self): thread = windows.WinThread(handle=self.wValue) res = str(thread) del thread._handle return res def __repr__(self): return "<{0} value=<0x{1:x}> in process pid={2}>".format(type(self).__name__, self.wValue, self.dwProcessId) def __del__(self): if self.dwProcessId == current_process_pid: return if hasattr(self, "_local_handle"): return winproxy.CloseHandle(self._local_handle) def enumerate_handles(): size_needed = ULONG() size = 0x1000 buffer = ctypes.c_buffer(size) try: winproxy.NtQuerySystemInformation(16, buffer, size, ReturnLength=ctypes.byref(size_needed)) except WindowsError as e: pass size = size_needed.value + 0x1000 buffer = ctypes.c_buffer(size) winproxy.NtQuerySystemInformation(16, buffer, size, ReturnLength=ctypes.byref(size_needed)) x = SYSTEM_HANDLE_INFORMATION.from_buffer(buffer) class _GENERATED_SYSTEM_HANDLE_INFORMATION(ctypes.Structure): _fields_ = [ ("HandleCount", ULONG), ("Handles", Handle * x.HandleCount), ] return list(_GENERATED_SYSTEM_HANDLE_INFORMATION.from_buffer_copy(buffer[:size_needed.value]).Handles)
33.898551
150
0.665669
3,870
0.827277
0
0
1,209
0.258444
0
0
653
0.13959
b1efcf80cebb01dff50a1e2a45ff4368cec1958a
4,428
py
Python
metrics.py
efratkohen/Project
d95d20a1be8fe0e0918b3e699c640f36704639f8
[ "MIT" ]
1
2020-07-25T11:27:17.000Z
2020-07-25T11:27:17.000Z
metrics.py
efratkohen/Project
d95d20a1be8fe0e0918b3e699c640f36704639f8
[ "MIT" ]
null
null
null
metrics.py
efratkohen/Project
d95d20a1be8fe0e0918b3e699c640f36704639f8
[ "MIT" ]
null
null
null
import traceback import numpy as np from matplotlib import pyplot, pyplot as plt from sklearn.metrics import ( mean_squared_error, median_absolute_error, roc_curve, auc, f1_score, precision_recall_curve, r2_score, ) from sklearn.metrics import confusion_matrix import column_labeler as clabel from math import sqrt def calc_best_f1(Ytest, Yhat, selected_value=clabel.AMMONIA): max_val = 0 best_i = 0 for i in range(1, 100): accuracy = f1_score(Ytest, (Yhat > 0.01 * i).astype(int)) if accuracy > max_val: max_val = accuracy best_i = i f1_score(Ytest, (Yhat > 0.01 * best_i).astype(int)) return max_val def calc_rmse(Ytest, Yhat, graph=(20, 15)): rmse = sqrt(mean_squared_error(Ytest, Yhat)) if graph: print("RMSE", rmse) pyplot.figure(figsize=graph) pyplot.plot(Yhat, label="predictions") pyplot.plot(Ytest, label="real") pyplot.legend() # import datetime pyplot.show() # pyplot.savefig("Images\\%s" % str(datetime.datetime.now())) return rmse def calc_mape(Ytest, Yhat, graph=True): return np.mean(np.abs((Ytest - Yhat) / Ytest)) * 100 def calc_mae(Ytest, Yhat, graph=True): return median_absolute_error(Ytest, Yhat) def calc_rsquared(Ytest, Yhat, graph=True): # R-squared return r2_score(Ytest, Yhat) def calc_tp_fp_rate(Ytest, Yhat, selected_value, binary=False, graph=True): global y_not_bad_real, y_not_bad_hat if binary: y_not_bad_hat = Yhat.astype(int) y_not_bad_real = Ytest.astype(int) else: mdict = clabel.limits[selected_value] good_limit = mdict[clabel.GOOD] not_bad_limit = mdict[clabel.NOT_BAD] y_good_hat = Yhat > good_limit y_good_real = Ytest > good_limit y_not_bad_hat = Yhat > not_bad_limit y_not_bad_real = Ytest > not_bad_limit if graph: print(confusion_matrix(y_not_bad_real, y_not_bad_hat)) res = confusion_matrix(y_not_bad_real, y_not_bad_hat).ravel() if len(res) > 1: return res return res[0], 0, 0, 0 def calc_best_accuracy(Ytest, Yhat, selected_value=clabel.AMMONIA): max_val = 0 best_i = 0 for i in range(1, 100): tn, fp, fn, tp = calc_tp_fp_rate( Ytest, (Yhat > 0.01 * i).astype(int), selected_value=selected_value, binary=True, graph=False, ) accuracy = (tn + tp) / (tn + fp + fn + tp) if accuracy > max_val: max_val = accuracy best_i = i calc_tp_fp_rate( Ytest, (Yhat > 0.01 * best_i).astype(int), selected_value=selected_value, binary=True, graph=True, ) return max_val def roc(Ytest, Yhat, graph=False): fpr, tpr, threshold = roc_curve(Ytest, Yhat) roc_auc = auc(fpr, tpr) # method I: plt if graph: pyplot.title("Receiver Operating Characteristic") pyplot.plot(fpr, tpr, "b", label="AUC = %0.2f" % roc_auc) pyplot.legend(loc="lower right") pyplot.plot([0, 1], [0, 1], "r--") pyplot.xlim([0, 1]) pyplot.ylim([0, 1]) pyplot.ylabel("True Positive Rate") pyplot.xlabel("False Positive Rate") pyplot.show() return fpr, tpr, threshold, roc_auc def calc_histogram(Ytest, Yhat): plt.figure(figsize=(15, 4)) plt.hist(Ytest.flatten(), bins=100, color="orange", alpha=0.5, label="pred") plt.hist(Yhat.flatten(), bins=100, color="green", alpha=0.5, label="true") plt.legend() plt.title("value distribution") plt.show() def calc_precision_recall(Ytest, Yhat, threshold=0.002, graph=True): lr_precision, lr_recall, _ = precision_recall_curve(Ytest, Yhat) try: lr_f1 = f1_score(Ytest, (Yhat > threshold).astype(int)) except: traceback.print_exc() lr_f1 = 1 lr_f1, lr_auc = lr_f1, auc(lr_recall, lr_precision) if graph: pyplot.title("Receiver Operating Characteristic") pyplot.plot( lr_recall, lr_precision, "b", label="F1 = %0.2f , AUC = %0.2f" % (lr_f1, lr_auc), ) pyplot.legend(loc="lower right") pyplot.xlim([0, 1]) pyplot.ylim([0, 1]) pyplot.ylabel("Precision") pyplot.xlabel("Recall") pyplot.show() return lr_f1, lr_auc
28.203822
80
0.613144
0
0
0
0
0
0
0
0
382
0.086269
b1f0550c1843ad31adf65e89fa5211ad4acfccfc
1,328
py
Python
tests/iterators/pull_test.py
SSouik/pyutil
d2250fb585679e49eb9056a3051bf239a58c2e8b
[ "MIT" ]
null
null
null
tests/iterators/pull_test.py
SSouik/pyutil
d2250fb585679e49eb9056a3051bf239a58c2e8b
[ "MIT" ]
21
2022-01-05T04:51:33.000Z
2022-01-28T05:45:57.000Z
tests/iterators/pull_test.py
SSouik/pyutil
d2250fb585679e49eb9056a3051bf239a58c2e8b
[ "MIT" ]
null
null
null
import pytest from pyutil import pull def test_pull_with_empty_list(): lst = [] pull(lst, 1) expected = [] assert lst == expected def test_pull_when_list_has_values(): lst = [1, 2, 3, 4, 5] pull(lst, 2) expected = [1, 3, 4, 5] assert lst == expected def test_pull_when_list_has_values_2(): lst = [1, 2, 3, 4, 5] pull(lst, 2, 3, 4) expected = [1, 5] assert lst == expected def test_pull_when_list_has_values_3(): lst = [1, 2, 3, 4, 5] pull(lst, 1, 4) expected = [2, 3, 5] assert lst == expected def test_pull_when_list_has_values_4(): lst = [{"foo": 1, "bar": 2}, {"abc": 1, "def": 2}] pull(lst, {"foo": 1, "bar": 2}) expected = [{"abc": 1, "def": 2}] assert lst == expected def test_pull_when_list_has_duplicate_values(): lst = [1, 2, 2, 3, 4, 4, 5] pull(lst, 2) expected = [1, 3, 4, 4, 5] assert lst == expected def test_pull_when_list_has_duplicate_values_2(): lst = [1, 2, 2, 3, 4, 4, 5] pull(lst, 2, 3, 4) expected = [1, 5] assert lst == expected def test_pull_when_list_has_duplicate_values_3(): lst = [1, 2, 2, 3, 4, 4, 5] pull(lst, 2, 4) expected = [1, 3, 5] assert lst == expected def test_pull_seq_is_not_a_list(): with pytest.raises(TypeError): pull("foo", 1)
20.75
54
0.582831
0
0
0
0
0
0
0
0
45
0.033886
b1f203c60f7518be9918994e126f2868a0f76ed4
30,681
py
Python
main.py
RohiBaner/Beijing-Air-Quality-Prediction
4ec823ceacef1b61e1c1e5689a97a1335e4b5867
[ "MIT" ]
3
2019-09-23T10:04:05.000Z
2021-03-10T12:12:28.000Z
main.py
RohiBaner/Beijing-Air-Quality-Prediction
4ec823ceacef1b61e1c1e5689a97a1335e4b5867
[ "MIT" ]
null
null
null
main.py
RohiBaner/Beijing-Air-Quality-Prediction
4ec823ceacef1b61e1c1e5689a97a1335e4b5867
[ "MIT" ]
null
null
null
''' --------------------------------------------IMPORTING NECESSARY LIBRARIES------------------------------------------- ''' import numpy as np import pandas as pd from math import radians, cos, sin, asin, sqrt from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import LabelEncoder, OneHotEncoder from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import KFold from itertools import cycle import warnings warnings.simplefilter(action='ignore', category=FutureWarning) import time start_time = time.time() pd.options.mode.chained_assignment = None # default='warn' ''' ---------------------------FUNCTIONS TO FIND NEAREST DISTANCE BETWEEN ALL NECESSARY STATIONS------------------------ ''' # Function to find nearest station between two points using Haversine Distance def haversine_dist(lon1, lat1, lon2, lat2): # Calculate the great circle distance between two points on the earth lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2]) # Convert to radians # Haversine distance formula dlon = lon2 - lon1 dlat = lat2 - lat1 a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2 c = 2 * asin(sqrt(a)) r = 6371 #Radius of earth in kilometers return c * r # Find nearest AQ to AQ station def near_aq_to_aq(lat, long): distances = station_aq.apply(lambda row: haversine_dist(lat, long, row['latitude'], row['longitude']), axis=1) distance = distances[distances!=0] return station_aq.loc[distance.idxmin(), 'station'] # Find nearest GW to GW station def near_gw_to_gw(lat, long): distances = gw_station.apply(lambda row: haversine_dist(lat, long, row['latitude'], row['longitude']), axis=1) distance = distances[distances!=0] return gw_station.loc[distance.idxmin(), 'station_id'] # Find nearest OBW to OBW station def near_obw_to_obw(lat, long): distances = obw_station.apply(lambda row: haversine_dist(lat, long, row['latitude'], row['longitude']), axis=1) distance = distances[distances!=0] return obw_station.loc[distance.idxmin(), 'station_id'] # Find nearest AQ to OBW station def near_aq_to_obw(lat, long): distances = obw_station.apply(lambda row: haversine_dist(lat, long, row['latitude'], row['longitude']), axis=1) return obw_station.loc[distances.idxmin(), 'station_id'] # Find nearest AQ to GW station def near_aq_to_gw(lat, long): distances = gw_station.apply(lambda row: haversine_dist(lat, long, row['latitude'], row['longitude']), axis=1) return gw_station.loc[distances.idxmin(), 'station_id'] # Function to calculate the model error via SMAPE def smape(actual, predicted): dividend= np.abs(np.array(actual) - np.array(predicted)) denominator = np.array(actual) + np.array(predicted) return 2 * np.mean(np.divide(dividend, denominator, out=np.zeros_like(dividend), where=denominator!=0, casting='unsafe')) ''' ------------------------------------------TRAIN: AIR QUALITY PREPROCESSING------------------------------------------ ''' print('Preprocessing and cleaning the train Air Quality Dataset!') # Read all the air quality datasets aq_2017 = pd.read_csv("airQuality_201701-201801.csv") aq_2018 = pd.read_csv("airQuality_201802-201803.csv") aq_2018a = pd.read_csv("aiqQuality_201804.csv") # Renaming the header of April AQ dataset to match the other AQ datasets aq_2018a.rename(columns={'station_id': 'stationId', 'time': 'utc_time', 'PM25_Concentration':'PM2.5'\ ,'PM10_Concentration':'PM10','NO2_Concentration':'NO2'\ ,'CO_Concentration':'CO', 'O3_Concentration':'O3'\ ,'SO2_Concentration':'SO2'}, inplace=True) aq_2018a= aq_2018a.drop(columns=['id'], axis=1) # Merge all AQ datasets together into a single dataframe aq_train = aq_2017.append(aq_2018, ignore_index=True) aq_train = aq_train.append(aq_2018a, ignore_index=True) # Convert the entire 'utc_time' column into the same format aq_train["utc_time"] = pd.to_datetime(aq_train["utc_time"]) # Delete unnecessary dataframes to save space del(aq_2017) del(aq_2018) del(aq_2018a) # Set the time column as the index of the dataframe aq_train.set_index("utc_time", inplace = True) # Get the entire span of the time in the AQ dataframe min_date=aq_train.index.min() max_date=aq_train.index.max() # Drop any duplicates present in the AQ dataframe aq_train.drop_duplicates(subset= None, keep= "first", inplace= True) # Read the AQ station location file and find nearest station for each AQ station # This dataset was created by us station_aq = pd.read_csv("Beijing_AirQuality_Stations.csv") station_aq["nearest_station"] = station_aq.apply(lambda row: near_aq_to_aq(row['latitude'], row['longitude']), axis=1) # Create an empty dataframe with all hourly time stamps in the above found range time_hours = pd.DataFrame({"date": pd.date_range(min_date, max_date, freq='H')}) # Perform a cartesian product of all AQ stations and the above dataframe aq_all_time = pd.merge(time_hours.assign(key=0), station_aq.assign(key=0), on='key').drop('key', axis=1) # Join the AQ dataset with the dataframe containing all the timestamps for each AQ station aq_train1 = pd.merge(aq_train, aq_all_time, how='right', left_on=['stationId','utc_time'], right_on = ['station','date']) aq_train1 = aq_train1.drop('stationId', axis=1) aq_train1.drop_duplicates(subset= None, keep= "first", inplace= True) # Create a copy of the above dataframe keeping all required columns # This dataframe will be used to refer all data for the nearest AQ station (same time interval) aq_train_copy = aq_train1.copy() aq_train_copy = aq_train_copy.drop(['nearest_station','longitude', 'latitude', 'type'], axis=1) aq_train_copy.rename(columns={'PM2.5': 'n_PM2.5','PM10': 'n_PM10', "NO2":"n_NO2","CO":"n_CO","O3":"n_O3", "SO2":"n_SO2", "date":"n_date", "station":"n_station" }, inplace=True) # Merge original AQ data and the copy AQ data to get all attributes of a particular AQ station and its nearest AQ station aq_train2 = pd.merge(aq_train1, aq_train_copy, how='left', left_on=['nearest_station','date'], right_on = ['n_station','n_date']) # Sort the final dataframe based on AQ station and then time aq_train2 = aq_train2.sort_values(by=['n_station', 'date'], ascending=[True,True]) aq_train2 = aq_train2.reset_index(drop=True) # Drop all unncessary attributes aq_train2.drop(['n_station', 'longitude', 'latitude', 'n_date'], axis=1, inplace=True) # Create two attributes - month and hour aq_train2['month'] = pd.DatetimeIndex(aq_train2['date']).month aq_train2['hour'] = pd.DatetimeIndex(aq_train2['date']).hour # Fill in missing values of attributes with their corresponding values in the nearest AQ station (within same time) aq_train2['PM10'].fillna(aq_train2['n_PM10'], inplace=True) aq_train2['PM2.5'].fillna(aq_train2['n_PM2.5'], inplace=True) aq_train2['NO2'].fillna(aq_train2['n_NO2'], inplace=True) aq_train2['CO'].fillna(aq_train2['n_CO'], inplace=True) aq_train2['O3'].fillna(aq_train2['n_O3'], inplace=True) aq_train2['SO2'].fillna(aq_train2['n_SO2'], inplace=True) # Fill in any remaining missing value by the mean of the attribute within the same station, month and hour aq_train2[['PM2.5', 'PM10', 'NO2', 'CO', 'O3', 'SO2']] = aq_train2.groupby(["station","month","hour"])[['PM2.5', 'PM10', 'NO2', 'CO', 'O3', 'SO2']].transform(lambda x: x.fillna(x.mean())) # Create final AQ dataset after dropping all unnecessary attributes aq_train_final = aq_train2.drop(['type','nearest_station','n_PM2.5','n_PM10','n_NO2','n_CO','n_O3','n_SO2'],axis=1) # Delete unnecessary dataframes to save space del(aq_train1) del(aq_train2) del(aq_train_copy) del(aq_all_time) print('Done!') print('-'*50) ''' ------------------------------------------TRAIN: GRID DATASET PREPROCESSING------------------------------------------ ''' print('Preprocessing and cleaning the train Grid Weather Dataset!') # Read all the grid weather train datasets gw_2017 = pd.read_csv("gridWeather_201701-201803.csv") gw_2018 = pd.read_csv("gridWeather_201804.csv") # Renaming the headers of the GW data to match each other gw_2017.rename(columns={'stationName': 'station_id', 'wind_speed/kph': 'wind_speed'}, inplace=True) gw_2018.rename(columns={'station_id':'station_id', 'time':'utc_time'}, inplace=True) # Merge all GW train datasets into a single dataframe gw_train = gw_2017.append(gw_2018, ignore_index=True) gw_train = gw_train.drop(columns=['id','weather'], axis=1) # Delete unnecessary dataframes to save space del(gw_2017) del(gw_2018) # Set the time column as the index of the dataframe gw_train.set_index("utc_time", inplace = True) # Get the entire span of the time in the GW dataframe min_date = gw_train.index.min() max_date = gw_train.index.max() # Drop any duplicates present in the GW dataframe gw_train.drop_duplicates(subset= None, keep= "first", inplace= True) # Read the GW station location file and find nearest station for each GW station gw_station = pd.read_csv("Beijing_grid_weather_station.csv", header=None, names=['station_id','latitude','longitude']) gw_station["nearest_station"] = gw_station.apply(lambda row: near_gw_to_gw(row['latitude'], row['longitude']), axis=1) # Create an empty dataframe with all hourly time stamps in the above found range gw_time_hours = pd.DataFrame({"time": pd.date_range(min_date, max_date, freq='H')}) # Perform a cartesian product of all GW stations and the above dataframe gw_all_time = pd.merge(gw_time_hours.assign(key=0), gw_station.assign(key=0), on='key').drop('key', axis=1) gw_all_time['time'] = gw_all_time['time'].astype(str) # Make all time stamps in the same format # Join the GW dataset with the dataframe containing all the timestamps for each GW station gw_train1 = pd.merge(gw_train, gw_all_time, how='right', left_on=['station_id','utc_time'], right_on = ['station_id','time']) gw_train1.drop_duplicates(subset= None, keep= "first", inplace= True) # Create a copy of the above dataframe keeping all required columns # This dataframe will be used to refer all data for the nearest GW station (same time interval) gw_train_copy = gw_train1.copy() gw_train_copy.drop(['nearest_station','longitude_x', 'latitude_y','latitude_x','longitude_y'], axis=1, inplace=True) gw_train_copy.rename(columns={'humidity': 'n_humidity','pressure': 'n_pressure', "temperature":"n_temperature",\ "wind_direction":"n_wind_dir","wind_speed":"n_wind_speed",\ "time":"n_time", "station_id":"n_station_id" }, inplace=True) # Merge original GW data and the copy GW data to get all attributes of a particular GW station and its nearest GW station gw_train2 = pd.merge(gw_train1, gw_train_copy, how='left', left_on=['nearest_station','time'], right_on = ['n_station_id','n_time']) # Sort the final dataframe based on GW station and then time gw_train2 = gw_train2.sort_values(by=['station_id', 'time'], ascending=[True,True]) gw_train2 = gw_train2.reset_index(drop=True) # Drop all unncessary attributes gw_train2.drop(['n_station_id', 'n_time','longitude_x', 'latitude_y','latitude_x','longitude_y'], axis=1, inplace=True) # Create two attributes - month and hour gw_train2['month'] = pd.DatetimeIndex(gw_train2['time']).month gw_train2['hour'] = pd.DatetimeIndex(gw_train2['time']).hour # Fill in missing values of attributes with their corresponding values in the nearest GW station (within same time) gw_train2['humidity'].fillna(gw_train2['n_humidity'], inplace=True) gw_train2['pressure'].fillna(gw_train2['n_pressure'], inplace=True) gw_train2['temperature'].fillna(gw_train2['n_temperature'], inplace=True) gw_train2['wind_speed'].fillna(gw_train2['n_wind_speed'], inplace=True) gw_train2['wind_direction'].fillna(gw_train2['n_wind_dir'], inplace=True) # Fill in any remaining missing value by the mean of the attribute within the same station, month and hour gw_train2[['humidity', 'pressure', 'temperature', 'wind_direction', 'wind_speed']] = gw_train2.groupby(["station_id","month","hour"])[['humidity', 'pressure', 'temperature', 'wind_direction', 'wind_speed']].transform(lambda x: x.fillna(x.mean())) # Create final GW dataset after dropping all unnecessary attributes gw_train_final = gw_train2.drop(['nearest_station','n_humidity','n_pressure','n_temperature','n_wind_dir','n_wind_speed'],axis=1) # Delete unnecessary dataframes to save space del(gw_train1) del(gw_train2) del(gw_train_copy) del(gw_all_time) print('Done!') print('-'*50) ''' -----------------------------------TRAIN: OBSERVED WEATHER DATASET PREPROCESSING------------------------------------ ''' print('Preprocessing and cleaning the train Observed Weather Dataset!') # Read all the observed weather train datasets obw_2017 = pd.read_csv("observedWeather_201701-201801.csv") obw_2018 = pd.read_csv("observedWeather_201802-201803.csv") obw_2018a = pd.read_csv("observedWeather_201804.csv") obw_2018a.rename(columns={'time': 'utc_time'}, inplace=True) # Read the time stamp in the April observed weather data in the same format as the other datasets #obw_2018a['utc_time'] = pd.to_datetime(obw_2018a['utc_time'], format='%d-%m-%Y %H:%M:%S') obw_2018a['utc_time'] = obw_2018a['utc_time'].astype(str) # Merge all OBW train datasets into a single dataframe obw_train = obw_2017.append(obw_2018, ignore_index=True) obw_train = obw_train.append(obw_2018a, ignore_index=True) obw_train.drop(['id','weather'],axis=1, inplace=True) # Drop unnecessary columns # Delete unnecessary dataframes to save space del(obw_2017) del(obw_2018) del(obw_2018a) # Set the time column as the index of the dataframe obw_train.set_index("utc_time", inplace = True) # Get the entire span of the time in the OBW dataframe min_date = obw_train.index.min() max_date = obw_train.index.max() # Drop any duplicates present in the OBW dataframe obw_train.drop_duplicates(subset= None, keep= "first", inplace= True) # Read the OBW station location file obw_station = obw_train[["station_id","latitude","longitude"]] obw_station = obw_station.drop_duplicates().dropna() obw_station = obw_station.reset_index(drop=True) # Find nearest station for each OBW station obw_station["nearest_station"] = obw_station.apply(lambda row: near_obw_to_obw(row['latitude'], row['longitude']), axis=1) # Create an empty dataframe with all hourly time stamps in the above found range obw_time_hours = pd.DataFrame({"time": pd.date_range(min_date, max_date, freq='H')}) # Perform a cartesian product of all OBW stations and the above dataframe obw_all_time = pd.merge(obw_time_hours.assign(key=0), obw_station.assign(key=0), on='key').drop('key', axis=1) obw_all_time['time'] = obw_all_time['time'].astype(str) # Make all time stamps in the same format # Join the OBW dataset with the dataframe containing all the timestamps for each OBW station obw_train1 = pd.merge(obw_train, obw_all_time, how='right', left_on=['station_id','utc_time'], right_on = ['station_id','time']) obw_train1.drop_duplicates(subset= None, keep= "first", inplace= True) # Create a copy of the above dataframe keeping all required columns # This dataframe will be used to refer all data for the nearest OBW station (same time interval) obw_train_copy = obw_train1.copy() obw_train_copy.drop(['nearest_station','longitude_x', 'latitude_x','longitude_y', 'latitude_y'], axis=1, inplace=True) obw_train_copy.rename(columns={'humidity': 'n_humidity','pressure': 'n_pressure', "temperature":"n_temperature",\ "wind_direction":"n_wind_dir","wind_speed":"n_wind_speed",\ "time":"n_time", "station_id":"n_station_id" }, inplace=True) # Merge original OBW data and the copy OBW data to get all attributes of a particular OBW station and its nearest OBW station obw_train2 = pd.merge(obw_train1, obw_train_copy, how='left', left_on=['nearest_station','time'], right_on = ['n_station_id','n_time']) # Sort the final dataframe based on OBW station and then time obw_train2 = obw_train2.sort_values(by=['station_id', 'time'], ascending=[True,True] ) obw_train2.drop(['n_station_id', 'n_time'], axis=1, inplace=True) obw_train2 = obw_train2.reset_index(drop=True) # Create two attributes - month and hour obw_train2['month'] = pd.DatetimeIndex(obw_train2['time']).month obw_train2['hour'] = pd.DatetimeIndex(obw_train2['time']).hour # Fill in missing values of attributes with their corresponding values in the nearest OBW station (within same time) obw_train2['humidity'].fillna(obw_train2['n_humidity'], inplace=True) obw_train2['pressure'].fillna(obw_train2['n_pressure'], inplace=True) obw_train2['temperature'].fillna(obw_train2['n_temperature'], inplace=True) obw_train2['wind_speed'].fillna(obw_train2['n_wind_speed'], inplace=True) obw_train2['wind_direction'].fillna(obw_train2['n_wind_dir'], inplace=True) # Fill in any remaining missing value by the mean of the attribute within the same station, month and hour obw_train2[['humidity', 'pressure', 'temperature', 'wind_direction', 'wind_speed']] = obw_train2.groupby(["station_id","month","hour"])[['humidity', 'pressure', 'temperature', 'wind_direction', 'wind_speed']].transform(lambda x: x.fillna(x.mean())) # Create final OBW dataset after dropping all unnecessary attributes obw_train_final = obw_train2.drop(['longitude_x', 'latitude_x','longitude_y', 'latitude_y','nearest_station',\ 'n_humidity','n_pressure','n_temperature','n_wind_dir','n_wind_speed'],axis=1) # Delete unnecessary dataframes to save space del(obw_train1) del(obw_train2) del(obw_train_copy) del(obw_all_time) print('Done!') print('-'*50) ''' --------------------------MERGING ALL TRAINING DATASETS AND GETTING READY FOR MODEL TRAINING------------------------- ''' aq_train_final['date'] = aq_train_final['date'].astype(str) print('Getting the training model ready!') # Convert wind speed in grid weather data from kmph to m/s (observed weather data is already in m/s) gw_train_final['wind_speed'] = (gw_train_final['wind_speed']*5)/18 # Make all start and end times equal for the training datasets gw_train_final = gw_train_final[gw_train_final['time']>='2017-01-30 16:00:00'] aq_train_final = aq_train_final[aq_train_final['date']>='2017-01-30 16:00:00'] # Replace noise values with previous hours value in both Observed and Grid datasets obw_train_final.replace(999999,np.NaN,inplace=True) obw_train_final[['humidity', 'pressure','temperature','wind_direction','wind_speed']] = obw_train_final[['humidity', 'pressure','temperature','wind_direction','wind_speed']].fillna(method='ffill') gw_train_final.replace(999999,np.NaN,inplace=True) gw_train_final[['humidity', 'pressure','temperature','wind_direction','wind_speed']] = gw_train_final[['humidity', 'pressure','temperature','wind_direction','wind_speed']].fillna(method='ffill') # Replace wind direction with the noise value '999017' when wind speed is less than 0.5m/s # This value will then be replaced with data from the nearest observed or grid station for the same timestamp obw_train_final.loc[obw_train_final.wind_speed < 0.5, 'wind_direction'] = 999017 gw_train_final.loc[gw_train_final.wind_speed < 0.5, 'wind_direction'] = 999017 # Find nearest OBW and GW station for every AQ station for proper joining of attributes obw_station.drop(['nearest_station'],axis=1, inplace=True) station_aq["near_obw"] = station_aq.apply(lambda row: near_aq_to_obw(row['latitude'], row['longitude']), axis=1) gw_station.drop(['nearest_station'],axis=1, inplace=True) station_aq["near_gw"] = station_aq.apply(lambda row: near_aq_to_gw(row['latitude'], row['longitude']), axis=1) # Merge the AQ training dataset with the nearest OBW and GW stations for every time stamp aq_train1 = pd.merge(aq_train_final, station_aq, how='left', on='station') aq_train1.drop(['type','nearest_station'], axis=1, inplace=True) # Append all GW data attributes with the AQ training set based on nearest GW station and time stamp aq_train2 = pd.merge(aq_train1, gw_train_final, how='left', left_on=['near_gw','date'], right_on=['station_id','time']) # Remove unnecessary columns and rename columns to prepare for merging of OBW data aq_train2.drop(['station_id','time','month_y','hour_y'],axis=1, inplace=True) aq_train2 = aq_train2.rename(columns={'month_x': 'month_aq', 'hour_x': 'hour_aq', 'longitude':'longitude_aq',\ 'latitude':'latitude_aq', 'humidity': 'humidity_gw','pressure': 'pressure_gw',\ 'wind_direction': 'wind_dir_gw', 'wind_speed':'wind_speed_gw',\ 'temperature': 'temperature_gw'}) # Append all OBW data attributes with the AQ training set based on nearest OBW station and time stamp TRAIN = pd.merge(aq_train2, obw_train_final, how='left', left_on=['near_obw','date'], right_on=['station_id','time']) TRAIN.drop(['station_id','time','month','hour'],axis=1, inplace=True) TRAIN = TRAIN.rename(columns={'humidity': 'humidity_obw','pressure': 'pressure_obw',\ 'wind_direction': 'wind_dir_obw', 'wind_speed':'wind_speed_obw',\ 'temperature': 'temperature_obw'}) # Final clean of all 999017 noise from the OBW and GW for wind direction TRAIN.loc[TRAIN.wind_dir_gw == 999017, 'wind_dir_gw'] = TRAIN['wind_dir_obw'] TRAIN.loc[TRAIN.wind_dir_obw == 999017, 'wind_dir_obw'] = TRAIN['wind_dir_gw'] # Some observed data points are very outliers (probably wrongly noted by humans) TRAIN.loc[TRAIN.humidity_obw > 100, 'humidity_obw'] = TRAIN['humidity_gw'] TRAIN.loc[TRAIN.pressure_obw > 1040, 'pressure_obw'] = TRAIN['pressure_gw'] TRAIN.loc[TRAIN.temperature_obw > 50, 'temperature_obw'] = TRAIN['temperature_gw'] TRAIN.loc[TRAIN.wind_dir_obw > 360, 'wind_dir_obw'] = TRAIN['wind_dir_gw'] TRAIN.loc[TRAIN.wind_speed_obw > 20, 'wind_speed_obw'] = TRAIN['wind_speed_gw'] # Sort the final train set based on station and then timestamp TRAIN = TRAIN.sort_values(by=['station', 'date'], ascending=[True,True]) print('Ready to be trained by the model!') print('-'*50) ''' ----------------------TEST DATA: CLEANING, PREPROCESSING AND GETTING READY FOR MODEL-------------------------------- ''' print('Getting the testing data ready for the model!') # Read the AQ test dataset for test data - This dataset was found from the Beijing meteorological datasets # This dataset helps in getting the values for the NO2, SO2 and CO attributes for the test data timestamps test_aq = pd.read_csv('MAY_AQ.csv') test_aq['Time'] = pd.to_datetime(test_aq['Time'], format='%d-%m-%Y %H:%M') test_aq['Time'] = test_aq['Time'].astype(str) # Merge the dataset with nearest GW and OBW stations with the AQ test dataset test1 = pd.merge(test_aq, station_aq, how='left', left_on='station_id', right_on='station').drop(['station','longitude','latitude','type','nearest_station','AQI'],axis=1) # Find time stamp range for test data: from 1st May 00:00 to 2nd May 23:00 test1.set_index("Time", inplace = True) min_date_test = test1.index.min() max_date_test = test1.index.max() test1.reset_index(inplace=True) # Grid Test Data Preprocessing test_gw = pd.read_csv('gridWeather_20180501-20180502.csv') # Read GW test data test_gw.drop(['id','weather'],axis=1, inplace=True) # Create new dataframe with all timestamps for all GW stations test_gw1 = pd.DataFrame({"time": pd.date_range(min_date_test, max_date_test, freq='H')}) test_gw2 = pd.merge(test_gw1.assign(key=0), gw_station.assign(key=0), on='key').drop('key', axis=1) test_gw2['time'] = test_gw2['time'].astype(str) # Convert time in correct format gw_test_final = pd.merge(test_gw2, test_gw, how='left', left_on=['station_id','time'], right_on = ['station_id','time']) # Observed Test Data Preprocessing test_obw = pd.read_csv('observedWeather_20180501-20180502.csv') # Read OBW test data test_obw.drop(['id','weather'],axis=1, inplace=True) # Create new dataframe with all timestamps for all OBW stations test_obw1 = pd.DataFrame({"time": pd.date_range(min_date, max_date, freq='H')}) test_obw2 = pd.merge(test_obw1.assign(key=0), obw_station.assign(key=0), on='key').drop('key', axis=1) test_obw2['time'] = test_obw2['time'].astype(str) # Convert time in correct format obw_test_final = pd.merge(test_obw2, test_obw, how='left', left_on=['station_id','time'], right_on = ['station_id','time']) # Join AQ Test dataframe with test GW dataframe test_aq1 = pd.merge(test1, gw_test_final, how='left', left_on=['near_gw','Time'], right_on=['station_id','time']) test_aq1.drop(['station_id_y','latitude','longitude'],axis=1, inplace=True) # Rename certain columns to prepare for joining the OBW test dataframe test_aq1 = test_aq1.rename(columns={'station_id_x':'station_id_aq',\ 'humidity': 'humidity_gw',\ 'pressure': 'pressure_gw',\ 'wind_direction': 'wind_dir_gw',\ 'wind_speed':'wind_speed_gw',\ 'temperature': 'temperature_gw'}) # Join the updated AQ Test dataframe with test OBW dataframe TEST = pd.merge(test_aq1, obw_test_final, how='left', left_on=['near_obw','time'], right_on=['station_id','time']) TEST.drop(['station_id','latitude','longitude','time'],axis=1, inplace=True) # Rename certain columns TEST = TEST.rename(columns={'humidity': 'humidity_obw',\ 'pressure': 'pressure_obw',\ 'wind_direction': 'wind_dir_obw',\ 'wind_speed':'wind_speed_obw',\ 'temperature': 'temperature_obw'}) # Create attributes for month and hour - to be taken as input parameters TEST['month'] = pd.DatetimeIndex(TEST['Time']).month TEST['hour'] = pd.DatetimeIndex(TEST['Time']).hour # Remove missing values based on nearest GW data (as very few values are missing in OBW data) TEST = TEST.sort_values(by=['station_id_aq', 'Time'], ascending=[True,True]) TEST['humidity_obw'] = TEST['humidity_obw'].fillna(TEST['humidity_gw']) TEST['temperature_obw'] = TEST['temperature_obw'].fillna(TEST['temperature_gw']) TEST['pressure_obw'] = TEST['pressure_obw'].fillna(TEST['pressure_gw']) TEST['wind_speed_obw'] = TEST['wind_speed_obw'].fillna(TEST['wind_speed_gw']) TEST['wind_dir_obw'] = TEST['wind_dir_obw'].fillna(TEST['wind_dir_gw']) # Take care of noise 999017 when wind speed is less than 0.5m/s TEST.loc[TEST.wind_dir_gw == 999017, 'wind_dir_gw'] = TEST['wind_dir_obw'] TEST.loc[TEST.wind_dir_obw == 999017, 'wind_dir_obw'] = TEST['wind_dir_gw'] print('Ready to be tested by the model!') ''' ---------------------------------TRAINING THE MODEL AND PREDICTING REQUIRED OUTPUT----------------------------------- ''' # Train the model with only April, May and June's data TRAIN = TRAIN.loc[TRAIN['month_aq'].isin([4,5,6])] # Extract output columns for training the model Y = TRAIN[['PM2.5','PM10','O3']].values # Input parameters for the model X = TRAIN.drop(['PM2.5','PM10','O3','latitude_aq','longitude_aq'], axis=1) # Create new features for the model X['AQ'] = (X['SO2']*X['NO2']*X['CO']) X['wind'] = X['wind_dir_gw']/X['wind_speed_gw'] # Final input parameters after feature engineering X_train = X[['station','month_aq','hour_aq','temperature_gw','AQ','humidity_gw','wind','pressure_gw']].values # One Hot encode the station column and normalize the entire input data le = LabelEncoder() ohe = OneHotEncoder(categorical_features=[0]) scaler = MinMaxScaler() X_train[:,0] = le.fit_transform(X_train[:,0]) X_train = ohe.fit_transform(X_train).toarray() X_train_sc = scaler.fit_transform(X_train) # Use Random Forest Regressor to predict the values model_rf = RandomForestRegressor(random_state=42) # Use K Fold Cross Validation to check the efficiency of the model print('-------Printing the Cross Validation SMAPE errors-------') kf = KFold(n_splits=10, shuffle=True, random_state=42) for train_index, test_index in kf.split(X_train_sc): x_train, x_val = X_train_sc[train_index], X_train_sc[test_index] y_train, y_val = Y[train_index], Y[test_index] model_rf.fit(x_train, y_train) pred_val = model_rf.predict(x_val) print(smape(y_val,pred_val)) # Get the Test data ready for the model by following the above steps TEST['AQ'] = (TEST['CO']*TEST['SO2']*TEST['NO2']) TEST['wind'] = TEST['wind_dir_gw']/TEST['wind_speed_gw'] # Final test data input features X_test = TEST[['station_id_aq','month','hour','temperature_gw','AQ','humidity_gw','wind','pressure_gw']].values # One hot encode and normalize similair to train data X_test[:,0] = le.transform(X_test[:,0]) X_test = ohe.transform(X_test).toarray() X_test_sc = scaler.transform(X_test) # Predict the results after training the model on the whole final train dataset model_rf.fit(X_train_sc,Y) pred = model_rf.predict(X_test_sc) ''' --------------------------EXPORTING THE PREDICTED RESULTS INTO THE SPECIFIED FORMAT---------------------------------- ''' index_test = TEST[['station_id_aq']] index = list(range(0,48)) # Create a list with all the values in the range (each for one hour over a period of two days) # Turn the above numbers into a continuous cycle index1 = cycle(index) index_test['index'] = [next(index1) for i in range(len(index_test))] # Create a column with all 35 AQ station names and all time indexes index_test['test_id'] = index_test['station_id_aq']+'#'+index_test['index'].astype(str) # Extract the required column and join it with the predicted output # Both test and train data are sorted by station name and time - hence predicted output will be in arranged order index_test.drop(['index','station_id_aq'],axis=1, inplace=True) index_test1 = index_test.values output = np.concatenate((index_test1, pred), axis=1) np.savetxt('submission.csv', output, delimiter=',', header='test_id,PM2.5,PM10,O3', fmt='%s,%f,%f,%f', comments='') print('The code is complete - please find your results in the "submission.csv" file!') print("--- %s seconds ---" % (time.time() - start_time)) '''-------------------------------------------------------END-------------------------------------------------------------'''
57.671053
249
0.702031
0
0
0
0
0
0
0
0
16,350
0.532903
b1f22c9adbe507763be9a3e8cffbcec89c6b45a4
234
py
Python
examples/SortTimeDemo.py
Ellis0817/Introduction-to-Programming-Using-Python
1882a2a846162d5ff56d4d56c3940b638ef408bd
[ "MIT" ]
null
null
null
examples/SortTimeDemo.py
Ellis0817/Introduction-to-Programming-Using-Python
1882a2a846162d5ff56d4d56c3940b638ef408bd
[ "MIT" ]
4
2019-11-07T12:32:19.000Z
2020-07-19T14:04:44.000Z
examples/SortTimeDemo.py
Ellis0817/Introduction-to-Programming-Using-Python
1882a2a846162d5ff56d4d56c3940b638ef408bd
[ "MIT" ]
5
2019-12-04T15:56:55.000Z
2022-01-14T06:19:18.000Z
import random import time n = eval(input("Enter the number of elements to sort: ")) lst = list(range(n)) random.shuffle(lst) startTime = time.time() lst.sort() print("Sort time in Python is", int(time.time() - startTime), "seconds")
23.4
72
0.705128
0
0
0
0
0
0
0
0
73
0.311966
b1f274b6140c852afcbc6bb5b744a886df0fb5fe
102
py
Python
cloudflare/__init__.py
darylyu/cloudflare
be12ac9fa614a7078a89d7036f3a99e3165bd99d
[ "BSD-3-Clause" ]
1
2015-05-03T12:51:44.000Z
2015-05-03T12:51:44.000Z
cloudflare/__init__.py
darylyu/cloudflare
be12ac9fa614a7078a89d7036f3a99e3165bd99d
[ "BSD-3-Clause" ]
2
2015-12-17T00:47:01.000Z
2016-04-04T14:24:14.000Z
cloudflare/__init__.py
darylyu/cloudflare
be12ac9fa614a7078a89d7036f3a99e3165bd99d
[ "BSD-3-Clause" ]
3
2015-09-13T22:43:54.000Z
2016-04-02T19:44:21.000Z
# -*- coding: utf-8 -*- __author__ = 'Daryl Yu' __email__ = 'dyu@fastmail.com' __version__ = '0.0.2'
17
30
0.627451
0
0
0
0
0
0
0
0
58
0.568627
b1f5f177dec08c59abe32983e95271dfac01dbdf
1,239
py
Python
tests/conftest.py
andrewsayre/pysmartapp
5c3be867584d7e82d00b5998295b20bd12eccf94
[ "MIT" ]
10
2019-02-07T20:07:10.000Z
2020-12-30T20:29:32.000Z
tests/conftest.py
andrewsayre/pysmartapp
5c3be867584d7e82d00b5998295b20bd12eccf94
[ "MIT" ]
1
2021-12-05T15:00:13.000Z
2021-12-05T15:00:13.000Z
tests/conftest.py
andrewsayre/pysmartapp
5c3be867584d7e82d00b5998295b20bd12eccf94
[ "MIT" ]
2
2020-10-17T20:20:45.000Z
2021-09-28T12:58:50.000Z
"""Define common test configuraiton.""" import pytest from pysmartapp.dispatch import Dispatcher from pysmartapp.smartapp import SmartApp, SmartAppManager @pytest.fixture def smartapp(event_loop) -> SmartApp: """Fixture for testing against the SmartApp class.""" app = SmartApp(dispatcher=Dispatcher(loop=event_loop)) app.name = 'SmartApp' app.description = 'SmartApp Description' app.permissions.append('l:devices') app.config_app_id = 'myapp' return app @pytest.fixture def manager(event_loop) -> SmartAppManager: """Fixture for testing against the SmartAppManager class.""" return SmartAppManager('/path/to/app', dispatcher=Dispatcher(loop=event_loop)) @pytest.fixture def handler(): """Fixture handler to mock in the dispatcher.""" def target(*args, **kwargs): target.fired = True target.args = args target.kwargs = kwargs target.fired = False return target @pytest.fixture def async_handler(): """Fixture async handler to mock in the dispatcher.""" async def target(*args, **kwargs): target.fired = True target.args = args target.kwargs = kwargs target.fired = False return target
26.361702
66
0.67958
0
0
0
0
1,070
0.8636
120
0.096852
318
0.256659
b1f8c5ac672b61358853182ee48a06e86cda8b9c
294
py
Python
to_do_list.py
GYosifov88/Python-Fundamentals
b46ba2822bd2dac6ff46830c6a520e559b448442
[ "MIT" ]
null
null
null
to_do_list.py
GYosifov88/Python-Fundamentals
b46ba2822bd2dac6ff46830c6a520e559b448442
[ "MIT" ]
null
null
null
to_do_list.py
GYosifov88/Python-Fundamentals
b46ba2822bd2dac6ff46830c6a520e559b448442
[ "MIT" ]
null
null
null
todo_list = ["" for i in range(11)] command = input() while command != 'End': task = command.split('-') importance = int(task[0]) thing_to_do = task[1] todo_list[importance] = thing_to_do command = input() final_list = [x for x in todo_list if x != ""] print(final_list)
21
46
0.629252
0
0
0
0
0
0
0
0
12
0.040816
b1fa447d2310139f7a8d64aba2e5e1395276502b
6,035
py
Python
run.py
Tracymbone/password_locker
346a3c770174d20fe24720fd4875f5f4e222d582
[ "MIT" ]
null
null
null
run.py
Tracymbone/password_locker
346a3c770174d20fe24720fd4875f5f4e222d582
[ "MIT" ]
null
null
null
run.py
Tracymbone/password_locker
346a3c770174d20fe24720fd4875f5f4e222d582
[ "MIT" ]
null
null
null
#!/usr/bin/env python3.8 from socket import create_server from users import Users from credentials import Credentials def create_credentials(first_name, last_name, user_name, credential): users = Users(first_name, last_name, user_name, credential) return users def save_user(users): users.save_user() def delete_users(users): users.delete_users() def find_users(user_name): return Users.find_by_user_name(user_name) def isexist_users(user_name): return Users.users_exists(user_name) def display_users(): return Users.display_users() def create_page(page, credentials): credentials = credentials(page, credentials) return credentials def save_page(credentials): credentials.save_page() def find_page(pager): return Credentials.find_by_page(pager) def isexist_page(pager): return Credentials.page_exists(pager) def delete_page(credential): Credentials.delete_page() def display_pages(): return Credentials.display_page() def main(): print('WELCOME TO PASSWORD_LOCKER') print('Use the following information to pick their corresponding values') while True: print(" 1) SIGN IN \n 2) REGESTER \n 3) ABOUT PASSWORD_LOCKER \n 4) DISPLAY USERS \n 5) SIGN OUT") choice = int(input()) if choice == 1: print('Enter username') username = input() print('Enter credential') Credentials = input() user = find_users(username) if user.user_name == user_name and user.credentials == Credentials: print('logged in ') while True: print( f'Welcome {user_name}, Use the following numbers to select their corresponding values') print( ' 1) Save new credential \n 2) Delete credential \n 3) Display saved credentials \n 4) Log out ') log_choice = int(input()) if log_choice == 1: print('New page') print('*'*100) print('Page name') page = input() print('credentials') Credentials = input() # created and saved page save_page(create_page(page, Credentials)) elif log_choice == 2: print("Enter the name of the page you want to delete") page = input() if isexist_page(page): remove_page = (page) delete_page(remove_page) else: print(f'I cant find {page}') elif log_choice == 3: if display_pages(): for pag in display_pages(): print( f'{pag.page}:{pag.credential}' ) else: print('NO CREDENTIAL SAVED YET') print('\n') elif log_choice == 4: print('adios') break else: print('wrong credentials') if choice == 2: print('NEW USERS') print('*'*100) print('FIRSTNAME') first_name = input() print('LASTNAME') last_name = input() print('USERNAME') user_name = input() print('CREDENTIALS') Credentials = input() save_user(( first_name, last_name, user_name, Credentials)) # save and create a new user print('USER FORMED') while True: print( f'Welcome {user_name}, Use the following numbers to select their corresponding values') print( ' 1) Save new credential \n 2) Delete credential \n 3) Display saved credential \n 4) Log out ') log_choice = int(input()) if log_choice == 1: print('New page') print('*'*100) print('Page name') page = input() print('credential') Credentials = input() # created and saved page save_page(create_page(page, Credentials)) elif log_choice == 2: print("Enter the name of the page you want to delete") page = input() if isexist_page(page): remove_page = (page) delete_page(remove_page) else: print(f'I cant find {page}') elif log_choice == 3: if display_pages(): for pag in display_pages(): print( f'{pag.page}:{pag.credential}' ) else: print('NO CREDENTIAL SAVED YET') elif log_choice == 4: break elif choice == 3: print('ABOUT PASSWORD_LOCKER') print( ''' This is a terminal based project where users can input their credentials according to the different accounts that they have. ''') elif choice == 4: if display_users(): for account in display_users(): print( f'{Users.user_name}' ) else: print('NO USERS') elif choice == 5: print('Bye!welcome back again') break if __name__ == '__main__': main()
28.875598
136
0.471914
0
0
0
0
0
0
0
0
1,390
0.230323
b1faa38cc22b54eb622228d21323a509bcdbceb8
2,346
py
Python
menu_info/menu_details.py
averytorres/WazHack-Clone
e53e9b1b64f3828b20e45d4eeaafcdedf9bc6fda
[ "Unlicense" ]
1
2019-06-21T17:13:35.000Z
2019-06-21T17:13:35.000Z
menu_info/menu_details.py
averytorres/WazHack-Clone
e53e9b1b64f3828b20e45d4eeaafcdedf9bc6fda
[ "Unlicense" ]
18
2019-06-25T00:48:11.000Z
2019-07-11T17:52:24.000Z
menu_info/menu_details.py
averytorres/WazHack-Clone
e53e9b1b64f3828b20e45d4eeaafcdedf9bc6fda
[ "Unlicense" ]
1
2019-06-21T17:08:23.000Z
2019-06-21T17:08:23.000Z
from game_states import GameStates from action_consumer.available_actions_enum import Action def get_menu_title(menu_name): menu_titles = {} menu_titles.update({GameStates.SHOW_INVENTORY:'Press the key next to an item to use it, or Esc to cancel.\n'}) menu_titles.update({GameStates.DROP_INVENTORY: 'Press the key next to an item to drop it, or Esc to cancel.\n'}) menu_titles.update({GameStates.SHOW_WEAPON_INVENTORY: 'Press the key next to an item to equip/unequip it, or Esc to cancel.\n'}) menu_titles.update({GameStates.SHOW_ARMOR_INVENTORY: 'Press the key next to an item to equip/unequip it, or Esc to cancel.\n'}) menu_titles.update({GameStates.SHOW_SCROLL_INVENTORY: 'Press the key next to an item to read it, or Esc to cancel.\n'}) menu_titles.update({GameStates.SHOW_QUAFF_INVENTORY: 'Press the key next to an item to quaff it, or Esc to cancel.\n'}) menu_titles.update({GameStates.LEVEL_UP: 'Level up! Choose a stat to raise:'}) menu_titles.update({GameStates.CHARACTER_SCREEN: 'Character Information'}) menu_titles.update({GameStates.PLAYERS_TURN: ''}) menu_titles.update({GameStates.PLAYER_DEAD: ''}) menu_titles.update({None: ''}) return menu_titles[menu_name] def get_menu_width(menu_name): menu_width = {} menu_width.update({GameStates.SHOW_INVENTORY: 50}) menu_width.update({GameStates.DROP_INVENTORY: 50}) menu_width.update({GameStates.SHOW_WEAPON_INVENTORY: 50}) menu_width.update({GameStates.SHOW_ARMOR_INVENTORY: 50}) menu_width.update({GameStates.SHOW_SCROLL_INVENTORY: 50}) menu_width.update({GameStates.SHOW_QUAFF_INVENTORY: 50}) menu_width.update({GameStates.LEVEL_UP: 40}) menu_width.update({GameStates.CHARACTER_SCREEN: 10}) menu_width.update({GameStates.PLAYERS_TURN: 24}) menu_width.update({GameStates.PLAYER_DEAD: 50}) menu_width.update({None: 24}) return menu_width[menu_name] def get_menu_height(screen_height): return int(screen_height * 1.8) def get_main_menu_options(): return ['Play a new game', 'Continue last game', 'Quit'] def get_main_menu_key(index): index = int(index) if index == 0: return {Action.NEW_GAME: True} elif index == 1: return {Action.LOAD_GAME: True} elif index == 2: return {Action.EXIT: True} else: return {}
39.1
132
0.728048
0
0
0
0
0
0
0
0
503
0.214408
b1fbf96a2060ff4635f4538c1011d07667a95b78
270
py
Python
sciris/sc_version.py
optimamodel/sciris
fc0148fd9352e443a1c9b1a790275bc2904b30b1
[ "MIT" ]
null
null
null
sciris/sc_version.py
optimamodel/sciris
fc0148fd9352e443a1c9b1a790275bc2904b30b1
[ "MIT" ]
4
2018-03-27T21:47:13.000Z
2018-08-28T00:50:00.000Z
sciris/sc_version.py
optimamodel/sciris
fc0148fd9352e443a1c9b1a790275bc2904b30b1
[ "MIT" ]
1
2018-09-05T07:57:39.000Z
2018-09-05T07:57:39.000Z
''' Version and license information. ''' __all__ = ['__version__', '__versiondate__', '__license__'] __version__ = '1.3.3' __versiondate__ = '2022-01-16' __license__ = f'Sciris {__version__} ({__versiondate__}) – © 2014-2022 by the Sciris Development Team'
27
107
0.692593
0
0
0
0
0
0
0
0
193
0.70696
b1fc50952b7cf799deab08fe85f0849c2cbaf2f0
1,154
py
Python
tests/unit/fileserver/test_hgfs.py
yuriks/salt
d2a5bd8adddb98ec1718d79384aa13b4f37e8028
[ "Apache-2.0", "MIT" ]
1
2020-03-31T22:51:16.000Z
2020-03-31T22:51:16.000Z
tests/unit/fileserver/test_hgfs.py
yuriks/salt
d2a5bd8adddb98ec1718d79384aa13b4f37e8028
[ "Apache-2.0", "MIT" ]
null
null
null
tests/unit/fileserver/test_hgfs.py
yuriks/salt
d2a5bd8adddb98ec1718d79384aa13b4f37e8028
[ "Apache-2.0", "MIT" ]
1
2021-09-30T07:00:01.000Z
2021-09-30T07:00:01.000Z
# -*- coding: utf-8 -*- # Import Python libs from __future__ import absolute_import, print_function, unicode_literals # Import Salt Testing libs from tests.support.mixins import LoaderModuleMockMixin from tests.support.unit import TestCase from tests.support.mock import patch # Import Salt libs import salt.fileserver.hgfs as hgfs class HgfsFileTest(TestCase, LoaderModuleMockMixin): def setup_loader_modules(self): return { hgfs: {} } def test_env_is_exposed(self): ''' test _env_is_exposed method when base is in whitelist ''' with patch.dict(hgfs.__opts__, {'hgfs_saltenv_whitelist': 'base', 'hgfs_saltenv_blacklist': ''}): assert hgfs._env_is_exposed('base') def test_env_is_exposed_blacklist(self): ''' test _env_is_exposed method when base is in blacklist ''' with patch.dict(hgfs.__opts__, {'hgfs_saltenv_whitelist': '', 'hgfs_saltenv_blacklist': 'base'}): assert not hgfs._env_is_exposed('base')
28.85
72
0.618718
816
0.707106
0
0
0
0
0
0
381
0.330156
b1fca680c3a855f104f3ad48d1f63a988374a6e5
26
py
Python
constants.py
harryrobertwright/plutus
7a0d9f1474982d1bb66d7b018f2ce7e28aab7bc3
[ "MIT" ]
null
null
null
constants.py
harryrobertwright/plutus
7a0d9f1474982d1bb66d7b018f2ce7e28aab7bc3
[ "MIT" ]
null
null
null
constants.py
harryrobertwright/plutus
7a0d9f1474982d1bb66d7b018f2ce7e28aab7bc3
[ "MIT" ]
null
null
null
INTERVALS = [ "1h", ]
6.5
13
0.423077
0
0
0
0
0
0
0
0
4
0.153846
b1fd1af131dc102c96ef990fe42c7c22c4e492de
1,273
py
Python
networks/model_factory.py
DQle38/Fair-Feature-Distillation-for-Visual-Recognition
f0f98728f36528218bf19dce9a26d6ee1ba96e58
[ "MIT" ]
5
2021-09-07T13:33:45.000Z
2022-02-12T18:56:45.000Z
networks/model_factory.py
DQle38/Fair-Feature-Distillation-for-Visual-Recognition
f0f98728f36528218bf19dce9a26d6ee1ba96e58
[ "MIT" ]
null
null
null
networks/model_factory.py
DQle38/Fair-Feature-Distillation-for-Visual-Recognition
f0f98728f36528218bf19dce9a26d6ee1ba96e58
[ "MIT" ]
4
2021-09-25T06:56:38.000Z
2022-03-24T18:06:08.000Z
import torch.nn as nn from networks.resnet import resnet18 from networks.shufflenet import shufflenet_v2_x1_0 from networks.cifar_net import Net from networks.mlp import MLP class ModelFactory(): def __init__(self): pass @staticmethod def get_model(target_model, num_classes, img_size, pretrained=False): if target_model == 'mlp': return MLP(feature_size=img_size, hidden_dim=40, num_class=num_classes) elif target_model == 'resnet': if pretrained: model = resnet18(pretrained=True) model.fc = nn.Linear(in_features=512, out_features=num_classes, bias=True) else: model = resnet18(pretrained=False, num_classes=num_classes) return model elif target_model == 'cifar_net': return Net(num_classes=num_classes) elif target_model == 'shufflenet': if pretrained: model = shufflenet_v2_x1_0(pretrained=True) model.fc = nn.Linear(in_features=1024, out_features=num_classes, bias=True) else: model = shufflenet_v2_x1_0(pretrained=False, num_classes=num_classes) return model else: raise NotImplementedError
31.04878
91
0.639434
1,094
0.859387
0
0
1,030
0.809112
0
0
36
0.02828
b1ff61ec8eb947ca5da56f846d344d35e22df2db
5,536
py
Python
main.py
MarySueTeam/Video_Maker
a3bbdeb49b5f887d5f8dbc3b4e57b955d4ee3671
[ "MIT" ]
1
2022-03-04T09:25:11.000Z
2022-03-04T09:25:11.000Z
main.py
MarySueTeam/Video_Maker
a3bbdeb49b5f887d5f8dbc3b4e57b955d4ee3671
[ "MIT" ]
null
null
null
main.py
MarySueTeam/Video_Maker
a3bbdeb49b5f887d5f8dbc3b4e57b955d4ee3671
[ "MIT" ]
1
2022-01-25T16:19:25.000Z
2022-01-25T16:19:25.000Z
from manim import * from TTS.TTS import get_mp3_file from utils import cut, get_duration, deal_text import time class Video(Scene): def construct(self): # INFO 视频开头 LOGO = ImageMobject("./media/images/logo.png").scale(0.3).to_edge(UP, buff=2) Slogan_text = "为你收集日落时的云朵,为你收藏下雨后的天空" get_mp3_file(text=f"{Slogan_text}", output_path="./media/sounds/video_start", rate="-10%") Slogan = Text(Slogan_text, font="Muyao-Softbrush", weight=MEDIUM, color="#FCA113").scale(0.7).next_to(LOGO, DOWN, buff=1) self.play(FadeIn(LOGO, run_time=0.1)) self.wait(0.5) self.play(FadeIn(Slogan), run_time=1) self.add_sound("./media/sounds/video_start.mp3") self.wait(5) self.play(FadeOut(Slogan, LOGO)) # INFO 主视频内容 LOGO = ImageMobject("./media/images/logo.png").scale(0.1).to_edge(UL) username = Text("@仙女玛丽苏吖",font="Muyao-Softbrush").scale(0.5).next_to(LOGO, RIGHT) self.add(LOGO, username) title = "在本子上写上他的名字" title = "《" + title + "》" title = Text(title, font="Muyao-Softbrush", color=ORANGE).scale(0.5).to_edge(UP, buff=0.75) self.add(title) with open("./media/words/words.txt", "rt", encoding="utf-8") as f: content = f.readline() while content: audio_path = "./media/sounds/video_content_"+str(round(time.time()*1000)) # content = deal_text(content) get_mp3_file(text=content,output_path=audio_path,rate="-10%") audio_path = audio_path + ".mp3" audio_time = get_duration(audio_path) content = MarkupText(content, font="Muyao-Softbrush", font_size=60, justify=True).scale(0.5) run_time = len(content)//50 self.play(Write(content), run_time=run_time) self.add_sound(audio_path, time_offset = 1) self.wait(audio_time) self.play(FadeOut(content)) content = f.readline() self.play(FadeOut(title,username,LOGO)) # INFO 视频结尾 LOGO = ImageMobject("./media/images/logo.png").scale(0.2).to_edge(UP, buff=2) messages_text = "你可以在下面的平台找到我,这一期就先到这里,我们下期再见。" messages = Text("-你可以在下面的平台找到我-", font="Muyao-Softbrush").scale(0.4).next_to(LOGO, DOWN) # INFO 获取音频文件 get_mp3_file(text=f"{messages_text}",output_path="./media/sounds/video_end",rate="-10%") gonzhonghao = ImageMobject("./media/images/icon/weixin.png").scale(0.2) username1 = Text("@仙女玛丽苏", font="Smartisan Compact CNS", weight=MEDIUM).scale(0.25).next_to(gonzhonghao) zhihu = ImageMobject("./media/images/icon/zhihu.png").next_to(gonzhonghao, RIGHT, buff=1).scale(0.2) username2 = Text("@仙女玛丽苏", font="Smartisan Compact CNS", weight=MEDIUM).scale(0.25).next_to(zhihu) xiaohongshu = ImageMobject("./media/images/icon/xiaohongshu.png").next_to(zhihu, RIGHT, buff=1).scale(0.2) username3 = Text("@仙女玛丽苏", font="Smartisan Compact CNS", weight=MEDIUM).scale(0.25).next_to(xiaohongshu) bilibili = ImageMobject("./media/images/icon/bilibili.png").next_to(gonzhonghao).scale(0.2) username4 = Text("@仙女玛丽苏吖", font="Smartisan Compact CNS", weight=MEDIUM).scale(0.25).next_to(bilibili) douyin = ImageMobject("./media/images/icon/douyin.png").next_to(bilibili, RIGHT, buff=1).scale(0.2) username5 = Text("@仙女玛丽苏", font="Smartisan Compact CNS", weight=MEDIUM).scale(0.25).next_to(douyin) toutiao = ImageMobject("./media/images/icon/toutiao1.png").next_to(douyin, RIGHT, buff=1).scale(0.2) username6 =Text("@仙女玛丽苏", font="Smartisan Compact CNS", weight=MEDIUM).scale(0.25).next_to(toutiao) jianshu = ImageMobject("./media/images/icon/jianshu.png").next_to(bilibili).scale(0.2) username7 = Text("@仙女玛丽苏", font="Smartisan Compact CNS", weight=MEDIUM).scale(0.25).next_to(jianshu) kuaishou = ImageMobject("./media/images/icon/kuaishou.png").next_to(jianshu, RIGHT, buff=1).scale(0.2) username8 = Text("@仙女玛丽苏吖", font="Smartisan Compact CNS", weight=MEDIUM).scale(0.25).next_to(kuaishou) xiguashipin = ImageMobject("./media/images/icon/xiguashipin.png").next_to(kuaishou, RIGHT, buff=1).scale(0.2) username9 = Text("@仙女玛丽苏", font="Smartisan Compact CNS", weight=MEDIUM).scale(0.25).next_to(xiguashipin) Recommend_group1 = Group( gonzhonghao, username1, zhihu, username2, xiaohongshu, username3, ).next_to(LOGO, DOWN, buff=1) Recommend_group2 = Group( bilibili, username4, douyin, username5, toutiao, username6, ).next_to(Recommend_group1, DOWN, buff=0.2) Recommend_group3 = Group( jianshu, username7, kuaishou, username8, xiguashipin, username9, ).next_to(Recommend_group2, DOWN, buff=0.2) Recommend_group = Group( Recommend_group1, Recommend_group2, Recommend_group3 ) self.play(FadeIn(LOGO)) duration = get_duration("./media/sounds/video_end.mp3") self.add_sound("./media/sounds/video_end.mp3", time_offset=0.5) self.play(Write(messages), run_rime=0.5) self.play(FadeIn(Recommend_group)) self.wait(duration) self.play(FadeOut(Recommend_group,messages,LOGO))
48.99115
129
0.62211
5,714
0.980439
0
0
0
0
0
0
1,492
0.256005
b1ff7639399b3c6d47d30f81feb9b3ec46b39e02
106
py
Python
Discord Bots/Discord Bot/test_Bot.py
SeymoTheDev/skittles-stuff
f9eba3efd0577045085418391b7154f3fd121f70
[ "MIT" ]
null
null
null
Discord Bots/Discord Bot/test_Bot.py
SeymoTheDev/skittles-stuff
f9eba3efd0577045085418391b7154f3fd121f70
[ "MIT" ]
null
null
null
Discord Bots/Discord Bot/test_Bot.py
SeymoTheDev/skittles-stuff
f9eba3efd0577045085418391b7154f3fd121f70
[ "MIT" ]
null
null
null
from unittest import TestCase class Test(TestCase): def test_punch(self): self.fail()
15.142857
30
0.641509
69
0.650943
0
0
0
0
0
0
0
0
5901159e3f1532199cb8c881801333e8fca64f93
1,518
py
Python
sevenbridges/models/compound/tasks/batch_by.py
sbg/sevenbridges-python
b3e14016066563470d978c9b13e1a236a41abea8
[ "Apache-2.0" ]
46
2016-04-27T12:51:17.000Z
2021-11-24T23:43:12.000Z
sevenbridges/models/compound/tasks/batch_by.py
sbg/sevenbridges-python
b3e14016066563470d978c9b13e1a236a41abea8
[ "Apache-2.0" ]
111
2016-05-25T15:44:31.000Z
2022-02-05T20:45:37.000Z
sevenbridges/models/compound/tasks/batch_by.py
sbg/sevenbridges-python
b3e14016066563470d978c9b13e1a236a41abea8
[ "Apache-2.0" ]
37
2016-04-27T12:10:43.000Z
2021-03-18T11:22:28.000Z
from sevenbridges.meta.resource import Resource # noinspection PyUnresolvedReferences,PyProtectedMember class BatchBy(Resource, dict): """ Task batch by resource. """ _name = 'batch_by' # noinspection PyMissingConstructor def __init__(self, **kwargs): self.parent = kwargs.pop('_parent') self.api = kwargs.pop('api') for k, v in kwargs.items(): super().__setitem__(k, v) def __setitem__(self, key, value): super().__setitem__(key, value) self.parent._data[self._name][key] = value if self._name not in self.parent._dirty: self.parent._dirty.update({self._name: {}}) self.parent._dirty[self._name][key] = value def __getitem__(self, item): try: return self.parent._data[self._name][item] except KeyError: return None def __repr__(self): values = {} for k, _ in self.items(): values[k] = self[k] return str(values) __str__ = __repr__ def update(self, e=None, **f): other = {} if e: other.update(e, **f) else: other.update(**f) for k, v in other.items(): if other[k] != self[k]: self[k] = other[k] def equals(self, other): if not type(other) == type(self): return False return ( self is other or self._parent._data[self._name] == other._parent._data[self._name] )
27.107143
77
0.554018
1,411
0.929513
0
0
0
0
0
0
153
0.100791
5904c0dfbd55d07ecdda6b598e8aefd81056a978
2,764
py
Python
server/core/tests/test_models.py
jleg13/Django-REST-API
7e2c397ca3d49a320a79356c96b35beb86cc97ff
[ "MIT" ]
null
null
null
server/core/tests/test_models.py
jleg13/Django-REST-API
7e2c397ca3d49a320a79356c96b35beb86cc97ff
[ "MIT" ]
null
null
null
server/core/tests/test_models.py
jleg13/Django-REST-API
7e2c397ca3d49a320a79356c96b35beb86cc97ff
[ "MIT" ]
null
null
null
from unittest.mock import patch from django.test import TestCase from django.contrib.auth import get_user_model from core import models def sample_user(email='test@email.com', password='testpass'): """Create a sample user""" return get_user_model().objects.create_user(email, password) class ModelTests(TestCase): def test_create_user_with_email_succesful(self): """"Test creating a new user with an email is successful""" email = 'test@test.com' password = 'password123' user = get_user_model().objects.create_user( email=email, password=password ) self.assertEqual(user.email, email) self.assertTrue(user.check_password(password)) def test_new_user_email_normalized(self): """Test the email for a new user is normalized""" email = 'test@TEST.COM' user = get_user_model().objects.create_user(email, 'password123') self.assertEqual(user.email, email.lower()) def test_new_user_invalid_email(self): """Test creating user with no email raises error""" with self.assertRaises(ValueError): get_user_model().objects.create_user(None, 'password123') def test_create_new_superuser(self): """Test creating a new superuser""" user = get_user_model().objects.create_superuser( 'test@test.com', 'password123' ) self.assertTrue(user.is_superuser) self.assertTrue(user.is_staff) def test_tag_str(self): """Test the tag string representation""" tag = models.Tag.objects.create( user=sample_user(), name='Vegan' ) self.assertEqual(str(tag), tag.name) def test_gallery_item_str(self): """Test the gallery item string representation""" gallery_item = models.GalleryItem.objects.create( user=sample_user(), name='Test gallery item', blurb='This is a blurb' ) self.assertEqual(str(gallery_item), gallery_item.name) def test_gallery_str(self): """Test the gallery string representation""" gallery = models.Gallery.objects.create( user=sample_user(), title='Test gallery', description='This is a description' ) self.assertEqual(str(gallery), gallery.title) @patch('uuid.uuid4') def test_gallery_item_file_name_uuid(self, mock_uuid): """Test that image is saved in the correct location""" uuid = 'test-uuid' mock_uuid.return_value = uuid file_path = models.gallery_item_image_file_path(None, 'myimage.jpg') exp_path = f'uploads/gallery-items/{uuid}.jpg' self.assertEqual(file_path, exp_path)
32.904762
76
0.646527
2,463
0.8911
0
0
386
0.139653
0
0
681
0.246382
5906bff03b00e79f2660983fe9997b9cd354f2bc
30
py
Python
tests/database/__init__.py
dinosv/cobib
15342de37336a51d87c8f04f8430d0621da69a5c
[ "MIT" ]
9
2020-09-27T19:22:35.000Z
2022-02-27T20:00:58.000Z
tests/database/__init__.py
dinosv/cobib
15342de37336a51d87c8f04f8430d0621da69a5c
[ "MIT" ]
null
null
null
tests/database/__init__.py
dinosv/cobib
15342de37336a51d87c8f04f8430d0621da69a5c
[ "MIT" ]
2
2020-12-07T15:26:03.000Z
2021-10-03T18:04:57.000Z
"""coBib's database tests."""
15
29
0.633333
0
0
0
0
0
0
0
0
29
0.966667
590721cca2145e8661012d52208da3bcc5dbe108
230
py
Python
Semester-1/Lab8/src/lab_A.py
Vipul-Cariappa/Collage-CS-Lab
0a0193df9575a4e69b60759d974423202ddf544b
[ "MIT" ]
null
null
null
Semester-1/Lab8/src/lab_A.py
Vipul-Cariappa/Collage-CS-Lab
0a0193df9575a4e69b60759d974423202ddf544b
[ "MIT" ]
null
null
null
Semester-1/Lab8/src/lab_A.py
Vipul-Cariappa/Collage-CS-Lab
0a0193df9575a4e69b60759d974423202ddf544b
[ "MIT" ]
2
2022-03-04T14:06:15.000Z
2022-03-16T17:32:10.000Z
# program to display first n lines in a text file n = int(input("Enter number of lines: ")) with open("note.txt") as file: while n > 0: print( file.readline(), end="" ) n -= 1
19.166667
49
0.5
0
0
0
0
0
0
0
0
86
0.373913
59079f538bc9e256df53c65451be92c382f11c5c
23,420
py
Python
eplusplus/view/mainWindow.py
labeee/EPlusPlus
da6cbd60575146a8f165fb72e165919cd83ddc24
[ "MIT" ]
1
2018-02-06T17:41:12.000Z
2018-02-06T17:41:12.000Z
eplusplus/view/mainWindow.py
labeee/EPlusPlus
da6cbd60575146a8f165fb72e165919cd83ddc24
[ "MIT" ]
null
null
null
eplusplus/view/mainWindow.py
labeee/EPlusPlus
da6cbd60575146a8f165fb72e165919cd83ddc24
[ "MIT" ]
1
2021-06-29T02:49:59.000Z
2021-06-29T02:49:59.000Z
import os import sys import ctypes import webbrowser from .lineEdit import LineEdit from .dialogWithCheckBox import DialogWithCheckBox from eplusplus.controller import ActorUser from eplusplus.exception import ColumnException, NoIdfException, InstallException, NoCsvException from PyQt5.QtCore import QSize, Qt, QRect from PyQt5.QtGui import QPixmap, QIcon, QIntValidator from PyQt5.QtWidgets import QApplication, QWidget, QPushButton, QVBoxLayout from PyQt5.QtWidgets import QHBoxLayout, QLabel, QLineEdit, QRadioButton from PyQt5.QtWidgets import QGridLayout, QFileDialog, QMessageBox, QApplication from PyQt5.QtWidgets import QButtonGroup, QLineEdit, QAction, QMenuBar ## ## @brief This class implements the main window of the eplusplus ## application. The UI use the PyQt to create and configure ## all the components. Also, besides the components like ## labels, radio buttons, buttons and line text, the main ## window has a actorUser, that represents the controller, to call ## all the methods implemented in the logic of the program. ## class MainWindow(QWidget): def __init__(self, args): super(MainWindow, self).__init__() msgBox = DialogWithCheckBox(self) self.firstTime = True self.pathToIcon = "./media/icon.png" self.actorUser = ActorUser() if not self.actorUser.existsFileConfirmCheckBox(): checkedBox = msgBox.exec_()[1] if checkedBox: self.actorUser.createFileConfirmCheckBox() self.logo = QLabel() self.casesButton = QPushButton("Gerar casos") self.simulationButton = QPushButton("Executar simulação") self.confirmButtonCases = QPushButton("Confirmar") self.cancelButton = QPushButton("Cancelar") self.chooseIdfButton = QPushButton("Escolher IDF...") self.chooseCSVButton = QPushButton("Escolher CSV...") self.chooseFolderButton = QPushButton("Escolher pasta...") self.chooseEpwButton = QPushButton("Escolher EPW...") self.confirmButtonSimulation = QPushButton("Confirmar") self.setWindowIcon(QIcon(self.pathToIcon)) self.lineIdf = LineEdit(self) self.lineCsv = LineEdit(self) self.lineFolder = LineEdit(self) self.lineEpw = LineEdit(self) self.lineCases = QLineEdit() self.validatorCases = QIntValidator(1, 9999999, self) self.lineCases.setValidator(self.validatorCases) self.group = QButtonGroup() self.lhsRB = QRadioButton("Latin Hypercube Sampling") self.randomRB = QRadioButton("Random") self.group.addButton(self.randomRB) self.group.addButton(self.lhsRB) self.gridLayout = QGridLayout() self.menuBar = QMenuBar() self.help = self.menuBar.addMenu("Ajuda") self.helpAction = QAction("Documentação", self) self.help.addAction(self.helpAction) self.helpAction.triggered.connect(self.documentationClicked) self.processingMessage = QLabel() self.gridLayout.setMenuBar(self.menuBar) self.initComponents() ## ## @brief This method is called at the constructor method or ## a cancel button is clicked to go back to the first screen. ## This method configures the layout. Also if is the first ## time that this method is called, then all buttons will ## be connected to the corresponding method. ## ## @param self Non static method. ## ## @return This is a void method. ## def initComponents(self): pixmap = QPixmap("./media/title.png") self.logo.setPixmap(pixmap) self.gridLayout.addWidget(self.logo, 0, 0) self.gridLayout.addWidget(self.casesButton, 1, 0) self.gridLayout.addWidget(self.simulationButton, 2, 0) if self.firstTime: self.firstTime = False self.casesButton.clicked.connect(self.casesButtonClicked) self.simulationButton.clicked.connect(self.simulationButtonClicked) self.cancelButton.clicked.connect(self.cancelButtonClicked) self.confirmButtonCases.clicked.connect(self.confirmButtonCasesClicked) self.chooseIdfButton.clicked.connect(self.chooseIdfClicked) self.chooseCSVButton.clicked.connect(self.chooseCsvClicked) self.chooseFolderButton.clicked.connect(self.chooseFolderClicked) self.chooseEpwButton.clicked.connect(self.chooseEpwButtonClicked) self.confirmButtonSimulation.clicked.connect(self.confirmButtonSimulationClicked) self.checkAndInstall() self.setLayout(self.gridLayout) self.setFixedSize(650, 250) self.setWindowTitle("EPlusPlus") self.show() ## ## @brief This method is actived whenever the "casesButton" is ## pressed. First of all, it remove all components from ## the window. After that it justs configures labels, ## lineTexts and buttons into the grid layout. ## ## @param self Non static method. ## ## @return This is a void method. ## def casesButtonClicked(self): self.clearAll() idfLabel = QLabel() csvLabel = QLabel() folderStoreLabel = QLabel() methodSamplingLabel = QLabel() sampleSize = QLabel() idfLabel.setText("Arquivo base IDF:") csvLabel.setText("Arquivo de configuração CSV:") folderStoreLabel.setText("Pasta para salvar os arquivos IDF's:") methodSamplingLabel.setText("Método de amostragem") sampleSize.setText("Número da amostragem") self.gridLayout.addWidget(idfLabel, 1, 0, Qt.AlignRight) self.gridLayout.addWidget(self.chooseIdfButton, 1, 1) self.gridLayout.addWidget(self.lineIdf, 1, 2) self.gridLayout.addWidget(csvLabel, 2, 0, Qt.AlignRight) self.gridLayout.addWidget(self.chooseCSVButton, 2, 1) self.gridLayout.addWidget(self.lineCsv, 2, 2) self.gridLayout.addWidget(folderStoreLabel, 3, 0, Qt.AlignRight) self.gridLayout.addWidget(self.chooseFolderButton, 3, 1) self.gridLayout.addWidget(self.lineFolder, 3, 2) self.gridLayout.addWidget(methodSamplingLabel, 4, 1, Qt.AlignBottom) self.gridLayout.addWidget(self.randomRB, 5, 0, Qt.AlignTop) self.gridLayout.addWidget(self.lhsRB, 5, 2, Qt.AlignRight) self.gridLayout.addWidget(sampleSize, 6, 0, 1, 2) self.gridLayout.addWidget(self.lineCases, 6, 2) self.gridLayout.addWidget(self.confirmButtonCases, 7, 0, 1, 3, Qt.AlignTop) self.gridLayout.addWidget(self.cancelButton, 8, 0, 1, 3, Qt.AlignTop) ## ## @brief This method is actived whenever the "simulationButton" is ## pressed. First of all, it remove all components from ## the window. After that it justs configures labels, ## lineTexts and buttons into the grid layout. ## ## @param self Non static method ## ## @return This is a void method ## def simulationButtonClicked(self): self.clearAll() folderStoreLabel = QLabel() epwLabel = QLabel() folderStoreLabel.setText("Pasta com os arquivos idf's") epwLabel.setText("Arquivo EPW") self.gridLayout.addWidget(folderStoreLabel, 1, 0, Qt.AlignRight) self.gridLayout.addWidget(self.chooseFolderButton, 1, 1) self.gridLayout.addWidget(self.lineFolder, 1, 2) self.gridLayout.addWidget(epwLabel, 2, 0, Qt.AlignRight) self.gridLayout.addWidget(self.chooseEpwButton, 2, 1) self.gridLayout.addWidget(self.lineEpw, 2, 2) # Doing this just to the UI get a little bit more beautiful self.gridLayout.addWidget(QLabel(), 3, 0) self.gridLayout.addWidget(self.processingMessage, 4, 0, 1, 3, Qt.AlignCenter) self.gridLayout.addWidget(self.confirmButtonSimulation, 7, 0, 1, 3, Qt.AlignBottom) self.gridLayout.addWidget(self.cancelButton, 8, 0, 1, 3, Qt.AlignBottom) ## ## @brief This method is actived whenever the "chooseIdf" button is ## pressed. When this method is activated, a QFileDialog will ## be show to the user and it will be possible to choose a ## idf file. The QFileDialog will show only idf files and ## folders. After choosed the idf file, the "lineIdf" attribute ## will have its text setted to the absolute path to the csv ## choosed. ## ## @param self Non static method. ## ## @return This is a void method. ## def chooseIdfClicked(self): msg = "Escolha o arquivo idf" filename = QFileDialog.getOpenFileName(self, msg, os.getenv("HOME"), filter="*.idf") self.setLineIdfText(filename[0]) ## ## @brief This method is actived whenever the "chooseCsv" buttons is ## pressed. When this method is activated, a QFileDialog will ## be show to the user and it will be possible to choose a ## csv file. After choosed the csv file, the "lineCsv" ## attribute will have its text setted to the absolute path ## to the csv choosed. ## ## @param self Non static method. ## ## @return This is a void method. ## def chooseCsvClicked(self): msg = "Escolha o arquivo base csv" filename = QFileDialog.getOpenFileName(self, msg, os.getenv("HOME"), filter="*.csv") self.setLineCsvText(filename[0]) ## ## @brief This method is actived whenever the "chooseFolder" button is ## clicked. When this method is activated, a QFileDialog will ## be show to the user and it will be possible to choose a ## folder to save the new idf's files that gonna be generated. ## After choosed the folder, the "lineFolder" attribute ## will have its text changed to the absolute folder choosed. ## ## @param self Non static method. ## ## @return This is a void method. ## def chooseFolderClicked(self): msg = "Escolha a pasta para salvar os arquivos IDF's" folder = QFileDialog.getExistingDirectory(self, msg, os.getenv("HOME")) self.setLineFolderText(folder) ## ## @brief This method is activated when the cancel button is ## pressed. This method remove all components from the ## screen and go back to the initial screen. ## ## @param self Non static method. ## ## @return This is a void method. ## def cancelButtonClicked(self): self.clearAll() self.initComponents() ## ## @brief This method is actived whenever the confirm button ## is pressed. This method checks if all the lineText ## fields where filled and one radio button. If not, the ## user will be informed through a QMessageBox. Otherwise, ## if all fields where covered then the cases will be generate. ## See the "generateCases" method for more info. ## ## @param self Non static method. ## ## @return This is a void method. ## def confirmButtonCasesClicked(self): msgBox = QMessageBox() msgBox.setIcon(QMessageBox.Warning) msgBox.setWindowIcon(QIcon(self.pathToIcon)) msgBox.setWindowTitle("EPlusPlus-WAR") msgBox.setText("Todos os campos devem estar preenchidos para prosseguir!") if self.lineIdf.text() == "": msgBox.exec_() elif self.lineCsv.text() == "": msgBox.exec_() elif self.lineFolder.text() == "": msgBox.exec_() elif self.lineCases.text() == "": msgBox.exec_() elif not self.lhsRB.isChecked() and not self.randomRB.isChecked(): msgBox.exec_() else: self.generateCases() ## ## @brief This method is actived whenever the "chooseEpwButton" is ## clicked. When this method is activated, a QFileDialog will ## be show to the user and it will be possible to choose a ## EPW file. After choosed the EPW, the "lineEpw" attribute ## will have its text changed to the absolute path to EPW ## choosed. ## ## @param self Non static method ## ## @return This is a void method ## def chooseEpwButtonClicked(self): msg = "Escolha o arquivo EPW" epwFile = QFileDialog.getOpenFileName(self, msg, os.getenv("HOME"), filter="*.epw") self.setLineEpwText(epwFile[0]) ## ## @brief This method is called whenever the confirm button of the ## screen of simulation is clicked. This method check if all ## fields are filled. If not, a warning message will appear ## to the user through a MessageBox informing that all fields ## need to be completed. Otherwise, if all fields were filled, ## the simulation will be executed. ## ## @param self Non static method ## ## @return This is a void method ## def confirmButtonSimulationClicked(self): msgBox = QMessageBox() msgBox.setIcon(QMessageBox.Warning) msgBox.setWindowIcon(QIcon(self.pathToIcon)) msgBox.setWindowTitle("EPlusPlus-WAR") msgBox.setText("Todos os campos devem estar preenchidos para prosseguir!") if self.lineFolder.text() == "": msgBox.exec_() elif self.lineEpw.text() == "": msgBox.exec_() else: self.runSimulation() ## ## @brief This method is used every time the "Documentation" button ## is clicked at the menu bar. This method open the manual ## of the program in pdf format at the default browser of the ## current user. ## ## @param self Non static method ## ## @return This is a void method. ## def documentationClicked(self): doc = "./docs/documentacaoEPlusPlus.pdf" webbrowser.open("file://"+os.path.abspath(doc)) ## ## @brief This method takes all values informed by the user through ## the lineEdit fields. After analyze the sampling method ## choosed, the UI will call the actorUser to generate ## the cases. If all happens as it should, then a QmessageBox ## will inform the user. Otherwise, if a "ColumnException" ## raise from the the "actorUser", the user will be informed ## that the Csv or the Idf are not matching. ## ## @param self Non static method. ## ## @return This is a void method. ## def generateCases(self): pathToIdf = self.lineIdf.text() pathToCsv = self.lineCsv.text() pathToFolder = self.lineFolder.text() sampleSize = int(self.lineCases.text()) msgBox = QMessageBox() msgBox.setWindowIcon(QIcon(self.pathToIcon)) msg = "" if self.lhsRB.isChecked(): method = "LHS" else: method = "RANDOM" try: self.actorUser.generateCases(pathToIdf, pathToCsv, pathToFolder, sampleSize, method) msgBox.setIcon(QMessageBox.Information) msgBox.setWindowTitle("EPlusPlus-INF") msg = "Processo finalizado! Verifique a pasta informada para acessar os arquivos." msgBox.setText(msg) msgBox.exec_() self.cancelButtonClicked() except ColumnException as e: msgBox.setIcon(QMessageBox.Critical) msgBox.setWindowTitle("EPlusPlus-ERR") msg = str(e) msgBox.setText(msg) msgBox.exec_() ## ## @brief At first lines, we transform the content informed by the ## user at the current screen into strings. After that, we ## create a QMessageBox to show important information. Then ## it will try to run the simulation through the "actorUser" ( ## see its documentation for more info). If no IDF file be ## founded at the folder informed, a exception will be raised. ## Otherwise, if at least, one IDF be founded, the simulation ## will occur normally. After that, the 'actorUser' will try ## insert the data from the csv of result into the database. ## If no csv be found, a exception will be raise. ## ## @param self Non static method ## ## @return This is a void method. ## def runSimulation(self): pathToFolder = self.lineFolder.text() pathToEpw = self.lineEpw.text() msgBox = QMessageBox() msgBox.setWindowIcon(QIcon(self.pathToIcon)) msg = "" try: self.actorUser.findIdfFiles(pathToFolder) msg = "Processando arquivos..." self.processingMessage.setText(msg) QApplication.processEvents() self.actorUser.runSimulation(pathToFolder, pathToEpw) except NoIdfException as e: msgBox.setIcon(QMessageBox.Critical) msgBox.setWindowTitle("EPlusPlus-ERR") msg = str(e) msgBox.setText(msg) msgBox.exec_() try: self.actorUser.insertIntoDatabase(pathToFolder) msgBox.setIcon(QMessageBox.Information) msgBox.setWindowTitle("EPlusPlus-INF") msg = "Processo finalizado com sucesso!" msgBox.setText(msg) msgBox.exec_() ask = 'Você gostaria de apagar os arquivos e manter somente a base de dados?' reply = QMessageBox.question(self, "EPlusPlus-INF", ask, QMessageBox.Yes, QMessageBox.No) if reply == QMessageBox.Yes: self.actorUser.removeDirectories(pathToFolder) msg = "Arquivos removidos com sucesso!" msgBox.setText(msg) msgBox.exec_() self.cancelButtonClicked() except NoCsvException as e: msgBox.setIcon(QMessageBox.Critical) msgBox.setWindowTitle("EPlusPlus-ERR") msg = str(e) msgBox.setText(msg) msgBox.exec_() ## ## @brief This method is responsible for check if all tools are ## installed on the curren machine. If not, a message will ## be shown to the user and the installation will start. If ## by any means, a problem occurs, a error message will appear ## at the screen. If all goes well, a mensagem of sucess will ## be show. ## ## @param self Non static method ## ## @return This is a void method ## def checkAndInstall(self): msgBox = QMessageBox() msgBox.setWindowTitle("EPlusPlus-INF") msgBox.setWindowIcon(QIcon(self.pathToIcon)) msg = "O EPlusPlus irá agora instalar as ferramentas necessárias para" msg += " o seu correto funcionamento!" if not self.actorUser.checkTools(): try: msgBox.setText(msg) msgBox.setIcon(QMessageBox.Information) msgBox.exec_() self.actorUser.checkAndInstall() msg = "Instalações feitas com sucesso!" msgBox.setText(msg) msgBox.exec_() except InstallException as e: msgBox = QMessageBox() msgBox.setIcon(QMessageBox.Critical) msgBox.setWindowTitle("EPlusPlus-ERR") msg = str(e) msgBox.setText(msg) msgBox.exec_() sys.exit() ## ## @brief This method sets the first lineText of the 2nd screen ## with the string equals to the path where the idf file ## is saved, informed by the user through the QFileDialog. ## ## @param self The object ## @param string String that will be show at the lineText. ## ## @return This is a void method. ## def setLineIdfText(self, string): self.lineIdf.setText(string) ## ## @brief This method sets the second lineText of the 2nd ## screen with the string equals to the path where ## the csv file is saved, choosed by the user. ## ## @param self Non static method. ## @param string String that will be show at the lineText. ## ## @return This is a void method. ## def setLineCsvText(self, string): self.lineCsv.setText(string) ## ## @brief This method sets the third lineText of the 2nd ## screen with the string equals to the path where the new ## idf's file will be saved, choosed by the user. ## ## @param self Non static method. ## @param string String that will be show at the lineText. ## ## @return This is a void method. ## def setLineFolderText(self, string): self.lineFolder.setText(string) ## ## @brief This method sets the fourth lineText of the 2nd screen ## with the value equals to the string passed as arg. ## ## @param self Non static method ## @param string String that will be show at the lineCases ## ## @return This is a void method ## def setLineCasesText(self, string): self.lineCases.setText(string) ## ## @brief This method sets the second lineText of the 3rd screen ## with the value equals to the string passed as arg. ## ## @param self Non static method ## @param string String that will be show at the lineEpw ## ## @return This is a void method. ## def setLineEpwText(self, string): self.lineEpw.setText(string) ## ## @brief This method removes every component at the current window, ## except for the layout. Also, this method clear all lineText ## attributes and clear the values of the radio buttons. The ## "setExclusive" False and "setExclusive" True is needed to ## clear the values of the radio button components. ## ## @param self Non static method. ## ## @return This is a void method. ## def clearAll(self): for component in reversed(range(self.gridLayout.count())): self.gridLayout.itemAt(component).widget().setParent(None) self.setLineIdfText("") self.setLineCsvText("") self.setLineFolderText("") self.setLineCasesText("") self.setLineEpwText("") self.processingMessage.setText("") self.group.setExclusive(False) self.randomRB.setChecked(False) self.lhsRB.setChecked(False) self.group.setExclusive(True)
40.589255
101
0.608839
22,322
0.952588
0
0
0
0
0
0
10,293
0.439252
5907d7fbfcc198ea821785faf5ae482c8f858484
4,555
py
Python
CHAPTER 11 (search trees)/red_black_trees_class.py
ahammadshawki8/Data-Structures-Algorithms-in-Python-
fc18b54128cd5bc7639a14999d8f990190b524eb
[ "MIT" ]
null
null
null
CHAPTER 11 (search trees)/red_black_trees_class.py
ahammadshawki8/Data-Structures-Algorithms-in-Python-
fc18b54128cd5bc7639a14999d8f990190b524eb
[ "MIT" ]
null
null
null
CHAPTER 11 (search trees)/red_black_trees_class.py
ahammadshawki8/Data-Structures-Algorithms-in-Python-
fc18b54128cd5bc7639a14999d8f990190b524eb
[ "MIT" ]
null
null
null
from tree_map_class import * class RedBlackTreeMap(TreeMap): """Sorted map implementation using red-black tree.""" class _Node(TreeMap._Node): """Node class for red-black tree maintains bit that denotes color.""" __slots__ = "_red" # add additional data member to the Node class def __init__(self,element,parent=None,left=None,right=None): super().__init__(element,parent,left,right) self.red = True # new node is red by default #-----------------positional based utility methods----------------------------- # we consider a nonexisting child to be trivially black def _set_red(self,p): p._node._red = True def _set_black(self,p): p._node._red = False def _set_color(self,p,make_red): p._node._red = make_red def _is_red(self,p): return (p is not None) and p._node._red def _is_red_leaf(self,p): return self._is_red(p) and self._is_leaf(p) def _get_red_child(self,p): """Return a red child of p (or None if no such child).""" for child in (self.left(p),self.right(p)): if self._is_red(child): return child return None #-----------------------support for insertations------------------------------ def _rebalance_insert(self,p): self._resolve_red(p) # new node is always red def _resolve_red(p): if self.is_root(p): self._set_black(p) # make root black else: parent = self.parent(p) if self.is_red(parent): # double red problem uncle = self.sibling(parent) if not self.is_red(uncle): # Case 1: misshapen 4-node middle = self._restructure(p) # do trinode restructing self._set_black(middle) # and fix the colors self._set_red(self.left(middle)) self._set_red(self.right(middle)) else: # Case 2: overfull 5-node grand = self.parent(parent) self._set_red(grand) # grandparent becomes red self._set_black(self.left(grand)) # its children becomes black self._resolve_red(grand) # continue recur at grandparent # the double restrucuture were handled previously in the restructure method #-------------------------support for deletions-------------------------------- def _rebalance_delete(self,p): if len(self) == 1: self._set_black(self.root()) # special case ensure that the root is black elif p is not None: n = self.num_children(p) if n == 1: # deficit exits unless child is red leaf c = next(self.children(p)) if not self._is_red_leaf(c): self._fix_deficit(p,c) elif n == 2: # removed black node with red child if self._is_red_leaf(self,left(p)): self._set_black(self.left(p)) else: self._set_black(self.right(p)) def _fix_deficit(self,z,y): """Resolve black deficit at z, where y is the root of z's heavier subtree.""" if not self._is_red(y): # y is black; will apply case 1 or 2 x = self._get_red_child(y) if x is not None: # Case 1: y is black and has red child x; do transfer old_color = self._is_red(z) middle = self._restucture(x) self._set_color(middle,old_color) # middle gets old color of z self._set_black(self.left(middle)) # children becomes black self._set_black(self.right(middle)) else: # case 2: y is black, but no red children; recolor as fusion self._set_red(y) if self.is_red(z): self._set_black(z) # this resolves the problem elif not self.is_root(x): self._fix_deficit(self.parent(z), self.sibling(z)) # recur upward else: # Case 3: y is red; rotate misalligned 3-node and repeat self.rotate(y) self.set_black(y) self.set_red(z) if z == self.right(y): self._fix_deficit(z,self.left(z)) else: self._fix_deficit(z,self.right(z))
46.958763
88
0.528211
4,524
0.993194
0
0
0
0
0
0
1,360
0.298573
59083cdbd1613168bb0ded29e8cc254a35bff318
5,170
py
Python
my_diary_data_structures.py
koechkevin/myDiary
c5f48fa04a5f8c2bce9f1580c0f92f3f0d5f9bcb
[ "Apache-2.0" ]
null
null
null
my_diary_data_structures.py
koechkevin/myDiary
c5f48fa04a5f8c2bce9f1580c0f92f3f0d5f9bcb
[ "Apache-2.0" ]
null
null
null
my_diary_data_structures.py
koechkevin/myDiary
c5f48fa04a5f8c2bce9f1580c0f92f3f0d5f9bcb
[ "Apache-2.0" ]
1
2018-11-04T09:48:46.000Z
2018-11-04T09:48:46.000Z
from functools import wraps import datetime from flask import jsonify, Flask, request, session from my_class import ExternalFunctions app = Flask(__name__) app.config["SECRET_KEY"] = 'kkkoech' user_details = dict() diary_entries = dict() @app.route("/api/v1", methods=['GET']) def home(): return jsonify({"message":"welcome to my diary"}) @app.route("/api/v1/register", methods=['POST']) def register(): try: data = request.get_json() fname = data["fname"] lname = data["lname"] email = data["email"] username = data["username"] password = data["password"] cpassword = data["cpassword"] if ExternalFunctions.valid_email(email): if ExternalFunctions.password_verify(password, cpassword): if fname.strip() == '' or lname.strip() == '' or \ username.strip() == '' or password.strip() == '': return jsonify("fields cannot be empty"), 422 else: if username not in user_details: user_details.update({username:{"name":fname+" "+lname, \ "email":email, "password":password}}) else: return jsonify({"message":"such user already exists"}), 409 else: return jsonify({"message":"password and confirm password do not match"}), 403 else: return jsonify("email is invalid"), 403 return jsonify({"message":"success ! you can now login to continue"}), 200 except KeyError: return jsonify('fname, lname, email, username, password, cpassword should be provided'), 422 @app.route("/api/v1/login", methods=['POST']) def login(): try: username = request.get_json()["username"] password = request.get_json()["password"] if username in user_details: if password == user_details[username]["password"]: session['username'] = username session['logged_in'] = True return jsonify({"message":"you are successfully logged in "}), 200 return jsonify({"message":"wrong password, try again"}), 401 return jsonify({"message":"you are not a registered user"}), 403 except KeyError: return jsonify('username and passwordshould be provided'), 422 def on_session(t): @wraps(t) def decorator(*a, **kw): if "logged_in" in session: return t(*a, **kw) return jsonify({"message":"please login first"}), 401 return decorator @app.route("/api/v1/create_entry", methods=['POST']) @on_session def create_entry(): try: comment = request.get_json()["comment"] username = session.get('username') if username not in diary_entries: diary_entries.update({username:{1:str(datetime.datetime.utcnow())+" "+comment}}) else: diary_entries[username].update\ ({len(diary_entries[username])+1:str(datetime.datetime.utcnow())+" "+comment}) return jsonify(diary_entries[username]), 200 except KeyError: return jsonify('comment should be provided'), 422 @app.route("/api/v1/entries", methods=['GET']) @on_session def entries(): try: username = session.get('username') return jsonify(diary_entries[username]), 200 except KeyError: return jsonify('ensure that you have made entries before'), 422 @app.route("/api/v1/view_entry/<int:entry_id>", methods=["GET"]) @on_session def view_entry(entry_id): username = session.get('username') return jsonify({"entry "+str(entry_id):diary_entries[username][entry_id]}), 200 @app.route("/api/v1/delete_entry/<int:entry_id>", methods=["DELETE"]) @on_session def delete_entry(entry_id): try: username = session.get('username') del diary_entries[username][entry_id] return jsonify({"message":"deleted successfully"}), 202 except KeyError: return jsonify('you can only delete an \ entry you made. please confirm you have an entry of id \ '+str(entry_id)+' in http://127.0.0.1:5555/api/v1/entries'), 422 @app.route("/api/v1/modify_entry/<int:entry_id>", methods=["PUT"]) def modify_entry(entry_id): try: comment = request.get_json()["comment"] username = session.get('username') del diary_entries[username][entry_id] diary_entries[username].update({entry_id:str(datetime.datetime.utcnow())+" "+comment}) return jsonify({"message":"successfully edited an entry"}), 200 except KeyError: return jsonify('comment should be provided \ and you should have made more than'+str(entry_id)+' comments to modify an entry'), 422 @app.route("/api/v1/account", methods=['GET']) def account(): username = session.get('username') my_details = {"name":user_details[username]['name'], "email":user_details[username]['email']} return jsonify(my_details), 200 @app.route("/api/v1/logout", methods=['GET']) def logout(): session.clear() return jsonify({"message":"successful"}), 200 if __name__ == '__main__': app.run(port=5555, debug=True)
38.014706
100
0.624178
0
0
0
0
4,800
0.928433
0
0
1,454
0.281238
5909eb773cf91122abfbd155ab1ef7779d77f23a
26
py
Python
micro-benchmark-key-errs/snippets/parameters/imported_assigned_call/to_import.py
WenJinfeng/PyCG
b45e8e04fe697d8301cf27222a8f37646d69f168
[ "Apache-2.0" ]
121
2020-12-16T20:31:37.000Z
2022-03-21T20:32:43.000Z
micro-benchmark-key-errs/snippets/parameters/imported_assigned_call/to_import.py
WenJinfeng/PyCG
b45e8e04fe697d8301cf27222a8f37646d69f168
[ "Apache-2.0" ]
24
2021-03-13T00:04:00.000Z
2022-03-21T17:28:11.000Z
micro-benchmark-key-errs/snippets/parameters/imported_assigned_call/to_import.py
WenJinfeng/PyCG
b45e8e04fe697d8301cf27222a8f37646d69f168
[ "Apache-2.0" ]
19
2021-03-23T10:58:47.000Z
2022-03-24T19:46:50.000Z
const1 = "a" const2 = "b"
8.666667
12
0.538462
0
0
0
0
0
0
0
0
6
0.230769
5909f08bda2ad877f9982af2cd854a38d7dd516a
13,029
py
Python
intake_sdmx.py
dr-leo/intake_sdmx
dccd51e6ce4aa352fba0a0c25dfac82148acd1e3
[ "Apache-2.0" ]
null
null
null
intake_sdmx.py
dr-leo/intake_sdmx
dccd51e6ce4aa352fba0a0c25dfac82148acd1e3
[ "Apache-2.0" ]
3
2021-05-29T19:46:36.000Z
2022-01-15T14:15:22.000Z
intake_sdmx.py
dr-leo/intake_sdmx
dccd51e6ce4aa352fba0a0c25dfac82148acd1e3
[ "Apache-2.0" ]
1
2021-05-28T13:14:53.000Z
2021-05-28T13:14:53.000Z
"""intake plugin for SDMX data sources""" import intake from intake.catalog import Catalog from intake.catalog.utils import reload_on_change from intake.catalog.local import LocalCatalogEntry, UserParameter import pandasdmx as sdmx from collections.abc import MutableMapping from datetime import date from itertools import chain __version__ = "0.1.0" NOT_SPECIFIED = "n/a" class LazyDict(MutableMapping): def __init__(self, func, *args, **kwargs): super().__init__() self._dict = dict(*args, **kwargs) self._func = func def update(self, *args, **kwargs): return self._dict.update(*args, **kwargs) def __getitem__(self, key): if self._dict[key] is None: self._dict[key] = self._func(key) return self._dict[key] def __setitem__(self, key, value): return self._dict.__setitem__(key, value) def __contains__(self, key): return self._dict.__contains__(key) def __len__(self): return self._dict.__len__() def __delitem__(self, key): return self._dict.__delitem__(key) def __iter__(self): return self._dict.__iter__() def __str__(self): return "".join((self.__class__.__name__, "(", str(self._dict), ")")) class SDMXSources(Catalog): """ catalog of SDMX data sources, a.k.a. agencies supported by pandaSDMX """ name = "sdmx" description = "SDMX sources supported by pandaSDMX" version = __version__ container = "catalog" def _load(self): # exclude sources which do not support dataflows # and datasets (eg json-based ABS and OECD) excluded = ["ABS", "OECD", "IMF", "SGR", "STAT_EE"] for source_id, source in sdmx.source.sources.items(): if source_id not in excluded: descr = source.name metadata = {"source_id": source_id} e = LocalCatalogEntry( source_id + "_SDMX_dataflows", descr, SDMXDataflows, direct_access=True, # set storage_options to {} if not set. This avoids TypeError # when passing it to sdmx.Request() later args={"storage_options": self.storage_options or {}}, cache=[], parameters=[], metadata=metadata, catalog_dir="", getenv=False, getshell=False, catalog=self, ) self._entries[source_id] = e class SDMXCodeParam(UserParameter): def __init__(self, allowed=None, **kwargs): super(SDMXCodeParam, self).__init__(**kwargs) self.allowed = allowed def validate(self, value): # Convert short-form multiple selections to list, e.g. 'DE+FR' if isinstance(value, str) and "+" in value: value = value.split("+") # Single code as str if isinstance(value, str): if not value in self.allowed: raise ValueError( "%s=%s is not one of the allowed values: %s" % (self.name, value, ",".join(map(str, self.allowed))) ) # So value must be an iterable of str, e.g. multiple selection elif not all(c in self.allowed for c in value): not_allowed = [c for c in value if not c in self.allowed] raise ValueError( "%s=%s is not one of the allowed values: %s" % (self.name, not_allowed, ",".join(map(str, self.allowed))) ) return value class SDMXDataflows(Catalog): """ catalog of dataflows for a given SDMX source """ version = __version__ container = "catalog" partition_access = False def _make_entries_container(self): return LazyDict(self._make_dataflow_entry) def _load(self): # read metadata on dataflows self.name = self.metadata["source_id"] + "_SDMX_dataflows" # Request dataflows from remote SDMX service self.req = sdmx.Request(self.metadata["source_id"], **self.storage_options) # get full list of dataflows self._flows_msg = self.req.dataflow() # to mapping from names to IDs for later back-translation # We use this catalog to store 2 entries per dataflow: ID and# human-readable name self.name2id = {} for dataflow in self._flows_msg.dataflow.values(): flow_id, flow_name = dataflow.id, str(dataflow.name) # make 2 entries per dataflow using its ID and name self._entries[flow_id] = None self._entries[flow_name] = None self.name2id[flow_name] = flow_id def _make_dataflow_entry(self, flow_id): # if flow_id is actually its name, get the real id if flow_id in self.name2id: flow_id = self.name2id[flow_id] # Download metadata on specified dataflow flow_msg = self.req.dataflow(flow_id) flow = flow_msg.dataflow[flow_id] dsd = flow.structure descr = str(flow.name) metadata = self.metadata.copy() metadata["dataflow_id"] = flow_id metadata["structure_id"] = dsd.id # Make user params for coded dimensions # Check for any content constraints to codelists if hasattr(flow_msg, "constraint") and flow_msg.constraint: constraint = ( next(iter(flow_msg.constraint.values())).data_content_region[0].member ) else: constraint = None params = [] # params for coded dimensions for dim in dsd.dimensions: lr = dim.local_representation # only dimensions with enumeration, i.e. where values are codes if lr.enumerated: ci = dim.concept_identity # Get code ID and name as its description if constraint and dim.id in constraint: codes_iter = ( c for c in lr.enumerated.items.values() if c in constraint[dim.id] ) else: codes_iter = lr.enumerated.items.values() codes = {*chain(*((c.id, str(c.name)) for c in codes_iter))} # allow "" to indicate wild-carded dimension codes.add(NOT_SPECIFIED) p = UserParameter( name=dim.id, description=str(ci.name), type="str", allowed=codes, default=NOT_SPECIFIED, ) params.append(p) # Try to retrieve ID of time and freq dimensions for DataFrame index dim_candidates = [d.id for d in dsd.dimensions if "TIME" in d.id] try: time_dim_id = dim_candidates[0] except IndexError: time_dim_id = NOT_SPECIFIED # Ffrequency for period index generation dim_candidates = [p.name for p in params if "FREQ" in p.name] try: freq_dim_id = dim_candidates[0] except IndexError: freq_dim_id = NOT_SPECIFIED # params for startPeriod and endPeriod year = date.today().year params.extend( [ UserParameter( name="startPeriod", description="startPeriod", type="datetime", default=str(year - 1), ), UserParameter( name="endPeriod", description="endPeriod", type="datetime" ), UserParameter( name="dtype", description="""data type for pandas.DataFrame. See pandas docs for allowed values. Default is '' which translates to 'float64'.""", type="str", ), UserParameter( name="attributes", description="""Include any attributes alongside observations in the DataFrame. See pandasdmx docx for details. Examples: 'osgd' for all attributes, or 'os': only attributes at observation and series level.""", type="str", ), UserParameter( name="index_type", description="""Type of pandas Series/DataFrame index""", type="str", allowed=["object", "datetime", "period"], default="object", ), UserParameter( name="freq_dim", description="""To generate PeriodIndex (index_type='period') Default is set based on heuristics.""", type="str", default=freq_dim_id, ), UserParameter( name="time_dim", description="""To generate datetime or period index. Ignored if index_type='object'.""", type="str", default=time_dim_id, ), ] ) args = {p.name: f"{{{{{p.name}}}}}" for p in params} args["storage_options"] = self.storage_options return LocalCatalogEntry( name=flow_id, description=descr, driver=SDMXData, direct_access=True, cache=[], parameters=params, args=args, metadata=metadata, catalog_dir="", getenv=False, getshell=False, catalog=self, ) @reload_on_change def search(self, text): words = text.lower().split() cat = SDMXDataflows( name=self.name + "_search", description=self.description, ttl=self.ttl, getenv=self.getenv, getshell=self.getshell, metadata=(self.metadata or {}).copy(), storage_options=self.storage_options, ) cat.metadata["search"] = {"text": text, "upstream": self.name} cat.cat = self cat._entries._dict.clear() keys = [ *chain.from_iterable( (self.name2id[k], k) for k in self if any(word in k.lower() for word in words) ) ] cat._entries.update({k: None for k in keys}) return cat def filter(self, func): raise NotImplemented class SDMXData(intake.source.base.DataSource): """ Driver for SDMX data sets of a given SDMX dataflow """ version = __version__ name = "sdmx_dataset" container = "dataframe" partition_access = True def __init__(self, metadata=None, **kwargs): super(SDMXData, self).__init__(metadata=metadata) self.name = self.metadata["dataflow_id"] self.req = sdmx.Request(self.metadata["source_id"], **self.storage_options) self.kwargs = kwargs def read(self): # construct key key_ids = ( p.name for p in self.entry._user_parameters if isinstance(p, SDMXCodeParam) ) key = {i: self.kwargs[i] for i in key_ids if self.kwargs[i]} # params for request. Currently, only start- and endPeriod are supported params = {k: str(self.kwargs[k].year) for k in ["startPeriod", "endPeriod"]} # remove endPeriod if it is prior to startPeriod (which is the default) if params["endPeriod"] < params["startPeriod"]: del params["endPeriod"] # Now request the data via HTTP # TODO: handle Request.get kwargs eg. fromfile, timeout. data_msg = self.req.data(self.metadata["dataflow_id"], key=key, params=params) # get writer config. # Capture only non-empty values as these will be filled by the writer writer_config = { k: self.kwargs[k] for k in ["dtype", "attributes"] if self.kwargs[k] } # construct args to conform to writer API index_type = self.kwargs["index_type"] freq_dim = self.kwargs["freq_dim"] time_dim = self.kwargs["time_dim"] if index_type == "datetime": writer_config["datetime"] = True if freq_dim == NOT_SPECIFIED else freq_dim elif index_type == "period": datetime = {} datetime["freq"] = True if freq_dim == NOT_SPECIFIED else freq_dim datetime["dim"] = True if time_dim == NOT_SPECIFIED else time_dim writer_config["datetime"] = datetime # generate the Series or dataframe self._dataframe = data_msg.to_pandas(**writer_config) return self._dataframe def _close(self): self._dataframe = None
36.805085
90
0.54939
12,636
0.969837
0
0
801
0.061478
0
0
3,309
0.253972
5910779f16295dd8d8929f180e23470f2321f629
1,388
py
Python
apps/exp/afe/afe_bfcc.py
yt7589/mgs
2faae1b69e6d4cde63afb9b2432b1bf49ebdd770
[ "Apache-2.0" ]
null
null
null
apps/exp/afe/afe_bfcc.py
yt7589/mgs
2faae1b69e6d4cde63afb9b2432b1bf49ebdd770
[ "Apache-2.0" ]
null
null
null
apps/exp/afe/afe_bfcc.py
yt7589/mgs
2faae1b69e6d4cde63afb9b2432b1bf49ebdd770
[ "Apache-2.0" ]
null
null
null
# #import scipy #from scipy import io as sio import scipy.io.wavfile from ext.spafe.utils import vis from ext.spafe.features.bfcc import bfcc class AfeBfcc: @staticmethod def extract_bfcc(wav_file): print('获取BFCC特征') num_ceps = 13 low_freq = 0 high_freq = 2000 nfilts = 24 nfft = 512 dct_type = 2, use_energy = False, lifter = 5 normalize = False # read wav fs, sig_raw = scipy.io.wavfile.read(wav_file) sig = sig_raw #[:, :1] #.reshape((sig_raw.shape[0],)) print('fs: {0}\r\n{1}\r\n***********'.format(type(fs), fs)) print('sig: {0}\r\n{1}\r\n******************'.format(sig.shape, sig)) # compute features bfccs = bfcc(sig=sig, fs=fs, num_ceps=num_ceps, nfilts=nfilts, nfft=nfft, low_freq=low_freq, high_freq=high_freq, dct_type=dct_type, use_energy=use_energy, lifter=lifter, normalize=normalize) print('step 1') # visualize spectogram vis.spectogram(sig, fs) print('step 2') # visualize features vis.visualize_features(bfccs, 'BFCC Index', 'Frame Index') print('step 3')
30.844444
77
0.50072
1,253
0.897564
0
0
1,234
0.883954
0
0
289
0.20702
591250889987fba85313b14511149afd485e1e41
268
py
Python
rustplus/exceptions/exceptions.py
fieu/rustplus
d1e82a7a32988d48ce2c3fd386f464bd48f50385
[ "MIT" ]
1
2021-08-10T12:59:42.000Z
2021-08-10T12:59:42.000Z
rustplus/exceptions/exceptions.py
fieu/rustplus
d1e82a7a32988d48ce2c3fd386f464bd48f50385
[ "MIT" ]
null
null
null
rustplus/exceptions/exceptions.py
fieu/rustplus
d1e82a7a32988d48ce2c3fd386f464bd48f50385
[ "MIT" ]
null
null
null
class Error(Exception): """Base class for other exceptions""" pass class ClientError(Error): """Raised when the client details are not valid""" pass class ImageError(Error): """Raised when the Image Returned is not valid""" pass
20.615385
55
0.641791
256
0.955224
0
0
0
0
0
0
136
0.507463
591491ff550ba32d4e2ae2cbc52705d6ad0c7c72
4,673
py
Python
notifier_bot.py
maticardenas/football_api_notif
81f9e265d4effb7545e3d9ad80ee1109cd9b8edf
[ "MIT" ]
null
null
null
notifier_bot.py
maticardenas/football_api_notif
81f9e265d4effb7545e3d9ad80ee1109cd9b8edf
[ "MIT" ]
null
null
null
notifier_bot.py
maticardenas/football_api_notif
81f9e265d4effb7545e3d9ad80ee1109cd9b8edf
[ "MIT" ]
null
null
null
import logging from datetime import date from telegram import Update from telegram.ext import ApplicationBuilder, CommandHandler from config.notif_config import NotifConfig from src.emojis import Emojis from src.team_fixtures_manager import TeamFixturesManager from src.telegram_bot.bot_commands_handler import NextAndLastMatchCommandHandler, NotifierBotCommandsHandler logging.basicConfig( format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", level=logging.INFO ) async def start(update: Update, context): await context.bot.send_photo( chat_id=update.effective_chat.id, photo="https://media.api-sports.io/football/players/154.png", caption=f"{Emojis.WAVING_HAND.value} Hola {update.effective_user.first_name}, soy FootballNotifier bot!\n\n" f"{Emojis.JOYSTICK.value} /help - Chequeá mis comandos disponibles ;) \n\n" f"{Emojis.GOAT.value} {Emojis.ARGENTINA.value} Vamos Messi!", parse_mode="HTML", ) async def help(update: Update, context): text = ( f"{Emojis.WAVING_HAND.value}Hola {update.effective_user.first_name}!\n\n" f" {Emojis.JOYSTICK.value} Estos son mis comandos disponibles (por ahora):\n\n" f"• /next_match <team>: próximo partido del equipo.\n" f"• /last_match <team>: último partido jugado del equipo.\n" f"• /available_teams: equipos disponibles." ) await context.bot.send_message(chat_id=update.effective_chat.id, text=text) async def available_teams(update: Update, context): notifier_commands_handler = NotifierBotCommandsHandler() text = ( f"{Emojis.WAVING_HAND.value}Hola {update.effective_user.first_name}!\n\n" f" {Emojis.TELEVISION.value} Estos son los equipos disponibles:\n\n" f"{notifier_commands_handler.available_teams_text()}" ) await context.bot.send_message(chat_id=update.effective_chat.id, text=text) async def next_match(update: Update, context): command_handler = NextAndLastMatchCommandHandler(context.args) validated_input = command_handler.validate_command_input() if validated_input: await context.bot.send_message( chat_id=update.effective_chat.id, text=validated_input ) else: team = command_handler.get_managed_team(context.args[0]) current_season = date.today().year team_fixtures_manager = TeamFixturesManager(current_season, team.id) text, photo = team_fixtures_manager.get_next_team_fixture_text( update.effective_user.first_name ) if photo: await context.bot.send_photo( chat_id=update.effective_chat.id, photo=photo, caption=text, parse_mode="HTML", ) else: context.bot.send_message( chat_id=update.effective_chat.id, text=text, parse_mode="HTML", ) async def last_match(update: Update, context): command_handler = NextAndLastMatchCommandHandler(context.args) validated_input = command_handler.validate_command_input() if validated_input: await context.bot.send_message( chat_id=update.effective_chat.id, text=validated_input ) else: team = command_handler.get_managed_team(context.args[0]) current_season = date.today().year team_fixtures_manager = TeamFixturesManager(current_season, team.id) text, photo = team_fixtures_manager.get_last_team_fixture_text( update.effective_user.first_name ) if photo: await context.bot.send_photo( chat_id=update.effective_chat.id, photo=photo, caption=text, parse_mode="HTML", ) else: context.bot.send_message( chat_id=update.effective_chat.id, text=text, parse_mode="HTML", ) if __name__ == "__main__": application = ApplicationBuilder().token(NotifConfig.TELEGRAM_TOKEN).build() start_handler = CommandHandler("start", start) next_match_handler = CommandHandler("next_match", next_match) last_match_handler = CommandHandler("last_match", last_match) available_teams_handler = CommandHandler("available_teams", available_teams) help_handler = CommandHandler("help", help) application.add_handler(start_handler) application.add_handler(next_match_handler) application.add_handler(last_match_handler) application.add_handler(help_handler) application.add_handler(available_teams_handler) application.run_polling()
37.685484
116
0.684571
0
0
0
0
0
0
3,497
0.746903
949
0.202691
59166d910964300c77243a402c6b75bc3f352d74
1,517
py
Python
homeassistant_cli/plugins/event.py
dotlambda/home-assistant-cli
e8c5a493ca902a739a357d3053a2f09d589e9be1
[ "Apache-2.0" ]
null
null
null
homeassistant_cli/plugins/event.py
dotlambda/home-assistant-cli
e8c5a493ca902a739a357d3053a2f09d589e9be1
[ "Apache-2.0" ]
null
null
null
homeassistant_cli/plugins/event.py
dotlambda/home-assistant-cli
e8c5a493ca902a739a357d3053a2f09d589e9be1
[ "Apache-2.0" ]
null
null
null
"""Edit plugin for Home Assistant CLI (hass-cli).""" import json as json_ import logging import click import homeassistant_cli.autocompletion as autocompletion from homeassistant_cli.cli import pass_context from homeassistant_cli.config import Configuration from homeassistant_cli.helper import raw_format_output, req_raw import yaml _LOGGING = logging.getLogger(__name__) @click.group('event') @pass_context def cli(ctx): """Interact with events.""" @cli.command() @click.argument( # type: ignore 'event', required=True, autocompletion=autocompletion.events ) @click.option( '--json', help="Raw JSON state to use for event. Overrides any other state" "values provided.", ) @pass_context def fire(ctx: Configuration, event, json): """Fire event in Home Assistant.""" if json: click.echo("Fire {}".format(event)) response = req_raw(ctx, 'post', 'events/{}'.format(event), json) response.raise_for_status() else: existing = raw_format_output(ctx.output, {}) new = click.edit(existing, extension='.{}'.format(ctx.output)) if new is not None: click.echo("Fire {}".format(event)) if ctx.output == 'yaml': new = json_.dumps(yaml.load(new)) response = req_raw(ctx, 'post', 'events/{}'.format(event), new) response.raise_for_status() else: click.echo("No edits/changes.") return ctx.echo(raw_format_output(ctx.output, response.json()))
29.173077
75
0.661173
0
0
0
0
1,136
0.748846
0
0
310
0.204351
59177fedfb201ef7cf401094e43b1d49ac1b2c09
8,576
py
Python
events/models.py
Strategy-Tap/Novizi-BackEnd
536edde68dc79ad5467f2dbb0931a56930a4edea
[ "MIT" ]
null
null
null
events/models.py
Strategy-Tap/Novizi-BackEnd
536edde68dc79ad5467f2dbb0931a56930a4edea
[ "MIT" ]
4
2021-04-08T21:23:49.000Z
2022-03-12T00:44:54.000Z
events/models.py
Strategy-Tap/Novizi-BackEnd
536edde68dc79ad5467f2dbb0931a56930a4edea
[ "MIT" ]
1
2020-06-12T16:08:46.000Z
2020-06-12T16:08:46.000Z
"""Collection of model.""" from typing import Any from django.conf import settings from django.db import models from django.db.models.signals import pre_save from django.dispatch import receiver from django.utils.translation import gettext_lazy as _ from djgeojson.fields import PointField from .utils import get_read_time, unique_slug def event_upload_to(instance: "Event", filename: str) -> str: """A help Function to change the image upload path. Args: instance: django model filename: the uploaded file name Returns: path in string format """ return f"images/events/cover/{instance.title}/{filename}" class Tag(models.Model): """Reference tag model.""" name = models.CharField(verbose_name=_("name"), max_length=200, unique=True) class Meta: """Meta data.""" verbose_name = _("tag") verbose_name_plural = _("tags") def __str__(self: "Tag") -> str: """It return readable name for the model.""" return f"{self.name}" def total_events(self: "Tag") -> int: """Getting total of events for the tag.""" return self.events.count() total_events.short_description = _("Events") total_events.int = 0 class Event(models.Model): """Reference event model.""" title = models.CharField(verbose_name=_("title"), max_length=400) description = models.TextField(verbose_name=_("description")) read_time = models.IntegerField(default=0, verbose_name=_("read time")) slug = models.SlugField(verbose_name=_("slug"), unique=True, blank=True) event_date = models.DateTimeField(verbose_name=_("event date")) total_guest = models.PositiveIntegerField( verbose_name=_("total of guest"), default=1 ) hosted_by = models.ForeignKey( settings.AUTH_USER_MODEL, verbose_name=_("hosted by"), on_delete=models.CASCADE, related_name="events", db_index=True, ) cover = models.ImageField( verbose_name=_("cover"), blank=True, null=True, upload_to=event_upload_to ) tags = models.ManyToManyField( to=Tag, verbose_name=_("tags"), related_name="events", blank=True ) organizers = models.ManyToManyField( to=settings.AUTH_USER_MODEL, verbose_name=_("organizers"), related_name="events_organizers", blank=True, ) created_at = models.DateTimeField(verbose_name=_("created at"), auto_now_add=True) updated_at = models.DateTimeField(verbose_name=_("updated at"), auto_now=True) geom = PointField(verbose_name=_("geo location")) class Meta: """Meta data.""" verbose_name = _("event") verbose_name_plural = _("events") def __str__(self: "Event") -> str: """It return readable name for the model.""" return f"{self.title}" def total_attendees(self: "Event") -> int: """Getting total of attendees for the event.""" return self.attendees.count() def available_place(self: "Event") -> int: """Getting total of available place for the event.""" return self.total_guest - self.attendees.count() def total_attended(self: "Event") -> int: """Getting total of people who actual attended for the event.""" return self.attendees.filter(has_attended=True).count() def total_not_attended(self: "Event") -> int: """Getting total of people who didn't attended for the event.""" return self.attendees.filter(has_attended=False).count() def total_sessions(self: "Event") -> int: """Getting total of sessions in event.""" return self.sessions.count() def total_draft_sessions(self: "Event") -> int: """Getting total of draft sessions in event.""" return self.sessions.filter(status="Draft").count() def total_accepted_sessions(self: "Event") -> int: """Getting total of accepted sessions in event.""" return self.sessions.filter(status="Accepted").count() def total_denied_sessions(self: "Event") -> int: """Getting total of denied sessions in event.""" return self.sessions.filter(status="Denied").count() def total_talk(self: "Event") -> int: """Getting total of talk in event.""" return self.sessions.filter(session_type="Talk", status="Accepted").count() def total_lighting_talk(self: "Event") -> int: """Getting total of lighting talk in event.""" return self.sessions.filter( session_type="Lighting Talk", status="Accepted" ).count() def total_workshop(self: "Event") -> int: """Getting total of workshop in event.""" return self.sessions.filter(session_type="WorkShop", status="Accepted").count() total_sessions.short_description = _("Sessions") total_draft_sessions.short_description = _("Draft Sessions") total_accepted_sessions.short_description = _("Accepted Sessions") total_denied_sessions.short_description = _("Denied Sessions") total_talk.short_description = _("Talk") total_lighting_talk.short_description = _("Lighting Talk") total_workshop.short_description = _("Workshop") total_attendees.short_description = _("Attendees") total_attended.short_description = _("Has Attended") total_not_attended.short_description = _("Has Not Attended") available_place.short_description = _("Available Place") class Attendee(models.Model): """Reference attendee model.""" user = models.ForeignKey( settings.AUTH_USER_MODEL, verbose_name=_("user"), on_delete=models.CASCADE, related_name="attendees", db_index=True, ) events = models.ForeignKey( Event, verbose_name=_("events"), on_delete=models.CASCADE, related_name="attendees", db_index=True, ) has_attended = models.BooleanField( verbose_name=_("has attended"), blank=True, null=True ) created_at = models.DateTimeField(verbose_name=_("created at"), auto_now_add=True) updated_at = models.DateTimeField(verbose_name=_("updated at"), auto_now=True) class Meta: """Meta data.""" verbose_name = _("attendee") verbose_name_plural = _("attendees") def __str__(self: "Attendee") -> str: """It return readable name for the model.""" return f"{self.user}" class Session(models.Model): """Reference session model.""" choose_category = ( ("Talk", _("Talk")), ("Lighting Talk", _("Lighting Talk")), ("WorkShop", _("WorkShop")), ) choose_status = ( ("Draft", _("Draft")), ("Accepted", _("Accepted")), ("Denied", _("Denied")), ) title = models.CharField(verbose_name=_("title"), max_length=400) description = models.TextField(verbose_name=_("description")) session_type = models.CharField( max_length=100, choices=choose_category, verbose_name=_("session type") ) slug = models.SlugField(verbose_name=_("slug"), unique=True, blank=True) events = models.ForeignKey( Event, verbose_name=_("events"), on_delete=models.CASCADE, related_name="sessions", db_index=True, ) status = models.CharField( verbose_name=_("status"), max_length=10, choices=choose_status, default="Draft" ) proposed_by = models.ForeignKey( settings.AUTH_USER_MODEL, verbose_name=_("proposed by"), on_delete=models.CASCADE, related_name="sessions", db_index=True, ) created_at = models.DateTimeField(verbose_name=_("created at"), auto_now_add=True) updated_at = models.DateTimeField(verbose_name=_("updated at"), auto_now=True) class Meta: """Meta data.""" verbose_name = _("session") verbose_name_plural = _("sessions") def __str__(self: "Session") -> str: """It return readable name for the model.""" return f"{self.title}" @receiver(pre_save, sender=Session) def session_slug_creator(sender: Session, instance: Session, **kwargs: Any) -> None: """Single for Session.""" if not instance.slug: instance.slug = unique_slug(title=instance.title) @receiver(pre_save, sender=Event) def event_creator(sender: Event, instance: Event, **kwargs: Any) -> None: """Single for Event.""" if not instance.slug: instance.slug = unique_slug(title=instance.title) if instance.description: instance.read_time = get_read_time(words=instance.description)
30.519573
87
0.653451
7,349
0.856926
0
0
554
0.064599
0
0
2,222
0.259095
5917ad709fbc60f4121dfd8d315e221b94423156
1,938
py
Python
src/nlp/classification/tf1/traditional_cls/bert_embedding.py
wu-uw/OpenCompetition
9aa9d7a50ada1deb653d295dd8a7fe46321b9094
[ "Apache-2.0" ]
15
2019-12-22T14:26:47.000Z
2020-11-02T10:57:37.000Z
src/nlp/classification/tf1/traditional_cls/bert_embedding.py
GT-JLU/OpenCompetition
5262fc5fa7efd7b483c1dc09cb7747dd75e37175
[ "Apache-2.0" ]
2
2020-02-03T07:10:11.000Z
2020-02-11T16:38:56.000Z
src/nlp/classification/tf1/traditional_cls/bert_embedding.py
GT-JLU/OpenCompetition
5262fc5fa7efd7b483c1dc09cb7747dd75e37175
[ "Apache-2.0" ]
12
2020-01-06T14:16:52.000Z
2020-05-23T14:12:30.000Z
# coding = utf-8 import copy import json import logging import math import os import shutil import tarfile import tempfile import sys from io import open import torch from torch import nn from torch.nn import CrossEntropyLoss from activation_function import gelu, swish, ACT2FN import logging logger = logging.getLogger(__name__) from bert_layernorm import BertLayerNorm class BertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings. """ def __init__(self, config): super(BertEmbeddings, self).__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size, padding_idx=0) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size, padding_idx=0) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_ids, token_type_ids=None): seq_length = input_ids.size(1) position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) position_ids = position_ids.unsqueeze(0).expand_as(input_ids) if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) words_embeddings = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = words_embeddings + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings
35.888889
114
0.750774
1,564
0.807018
0
0
0
0
0
0
230
0.118679
5918b94351e68baf0dc788cb62fb44c5a012741d
2,276
py
Python
raster_compare/base/raster_data_difference.py
jomey/raster_compare
5199005d01f569e187e944d62af0ea70c383d16a
[ "MIT" ]
1
2021-11-13T12:59:53.000Z
2021-11-13T12:59:53.000Z
raster_compare/base/raster_data_difference.py
jomey/raster_compare
5199005d01f569e187e944d62af0ea70c383d16a
[ "MIT" ]
null
null
null
raster_compare/base/raster_data_difference.py
jomey/raster_compare
5199005d01f569e187e944d62af0ea70c383d16a
[ "MIT" ]
null
null
null
import numpy as np from osgeo import gdal from .median_absolute_deviation import MedianAbsoluteDeviation from .raster_file import RasterFile class RasterDataDifference(object): GDAL_DRIVER = gdal.GetDriverByName('GTiff') def __init__(self, lidar, sfm, band_number): self.lidar = RasterFile(lidar, band_number) self.sfm = RasterFile(sfm, band_number) self._aspect = None self.band_values = self.sfm.band_values() - self.lidar.band_values() self.band_mask = self.band_values.mask self.mad = MedianAbsoluteDeviation(self.band_values.compressed()) self._slope = None @property def band_values(self): return self._band_values @band_values.setter def band_values(self, value): self._band_values = value @property def band_mask(self): return self._band_mask @band_mask.setter def band_mask(self, value): self._band_mask = np.copy(value) def band_outlier_max(self): return self.mad.data_median + self.mad.standard_deviation(2) def band_outlier_min(self): return self.mad.data_median - self.mad.standard_deviation(2) @property def band_filtered(self): self.band_values.mask = np.ma.mask_or( self.band_mask, np.ma.masked_outside( self.band_unfiltered, self.band_outlier_min(), self.band_outlier_max() ).mask ) return self.band_values @property def band_unfiltered(self): self.band_values.mask = self.band_mask return self.band_values @property def band_outliers(self): self.band_values.mask = np.ma.mask_or( self.band_mask, np.ma.masked_inside( self.band_unfiltered, self.band_outlier_min(), self.band_outlier_max() ).mask ) return self.band_values @property def aspect(self): if self._aspect is None: self._aspect = self.sfm.aspect - self.lidar.aspect return self._aspect @property def slope(self): if self._slope is None: self._slope = self.sfm.slope - self.lidar.slope return self._slope
27.756098
76
0.629174
2,131
0.936292
0
0
1,387
0.609402
0
0
7
0.003076
591c39e1d0a64ea2423fa974b75251f4ec29ed0a
3,386
py
Python
dbcontext/Module/construct.py
jimmg35/Sensor_Crawling_v2
5154885cad5173127539487a2fcf2140a4409b8b
[ "MIT" ]
null
null
null
dbcontext/Module/construct.py
jimmg35/Sensor_Crawling_v2
5154885cad5173127539487a2fcf2140a4409b8b
[ "MIT" ]
null
null
null
dbcontext/Module/construct.py
jimmg35/Sensor_Crawling_v2
5154885cad5173127539487a2fcf2140a4409b8b
[ "MIT" ]
null
null
null
import time import hmac import base64 import datetime import schedule import psycopg2 from time import mktime from hashlib import sha1 from pprint import pprint from requests import request from datetime import datetime from wsgiref.handlers import format_date_time from psycopg2.extensions import ISOLATION_LEVEL_AUTOCOMMIT class Constructor(): def __init__(self, DB_list, DB_detail, PGSQLDetail): # Databases need to be constructed self.DB_list = DB_list # Information of Databases and Tables self.DB_detail = DB_detail # PostgreSQL server variable self.user = PGSQLDetail['user'] self.password = PGSQLDetail['password'] self.host = PGSQLDetail['host'] self.port = PGSQLDetail['port'] # Connect to PostgreSQL self.cursor = self.ConnectToPGSQL(self.user, self.password, self.host, self.port) # Kill query self.Kill = '''SELECT pg_terminate_backend(pid) FROM pg_stat_activity WHERE pid <> pg_backend_pid() AND datname = 'template1';''' def ConnectToPGSQL(self, user, password, host, port): '''Connect to PostgreSQL''' conn = psycopg2.connect(user=user,password=password,host=host,port=port) conn.autocommit = True conn.set_isolation_level(ISOLATION_LEVEL_AUTOCOMMIT) print(f'Successfully connected | User:{user}') cursor = conn.cursor() return cursor def ConnectToDatabase(self, database, user, password, host, port): '''Connect to Database''' conn = psycopg2.connect(database = database, user=user,password=password,host=host,port=port) conn.autocommit = True conn.set_isolation_level(ISOLATION_LEVEL_AUTOCOMMIT) print(f'Successfully connected | User:{user}') cursor = conn.cursor() return cursor def constructDatabases(self): '''Create Databases''' print("Initializing Databases...") self.cursor.execute(self.Kill) for DB in self.DB_list: self.cursor.execute("SELECT 1 FROM pg_catalog.pg_database WHERE datname = \'{}\'".format(DB)) exists = self.cursor.fetchone() if exists == None: # Create Database self.cursor.execute("CREATE DATABASE {}".format(DB)) print("Database {} has been created!".format(DB)) else: print("Database {} is already existed!".format(DB)) def constructTables(self): '''Iterate through each database and create tables''' for DB in self.DB_detail.keys(): temp_cursor = self.ConnectToDatabase(DB,self.user,self.password,self.host,self.port) for table in self.DB_detail[DB].keys(): query = self.TableBuilder(DB, table) temp_cursor.execute(query) print("Table {} has been created in {}".format(table, DB)) def TableBuilder(self, DB, table): '''Helper function of constructTable function''' query_head = '''CREATE TABLE {} '''.format(table) query_head += self.DB_detail[DB][table] #print(query_head) return query_head
33.86
137
0.60632
3,005
0.887478
0
0
0
0
0
0
794
0.234495
591d8ee660b8804dd218cc4cd1c5374e204e9abe
1,540
py
Python
ppqq/src/qq/main.py
xiaomin0322/mypqq
8bdd5d1dafb5fa53d65cb732b7372fbcfe9c7c2c
[ "Apache-2.0" ]
1
2018-11-11T14:34:53.000Z
2018-11-11T14:34:53.000Z
ppqq/src/qq/main.py
xiaomin0322/mypqq
8bdd5d1dafb5fa53d65cb732b7372fbcfe9c7c2c
[ "Apache-2.0" ]
null
null
null
ppqq/src/qq/main.py
xiaomin0322/mypqq
8bdd5d1dafb5fa53d65cb732b7372fbcfe9c7c2c
[ "Apache-2.0" ]
1
2021-02-04T08:46:09.000Z
2021-02-04T08:46:09.000Z
# -*- coding: utf8 -*- # 作者:Light.紫.星 # QQ:1311817771 import AndroidQQ,threading,time from AndroidQQ import Android class Main: def __init__(self): pass def login(self,qqnum,qqpass): print 15*"-",("开始登陆QQ:"),qqnum,15*"-" self.sdk = Android() self.state = 0 self.code = "" self.sdk.init(qqnum,qqpass) #self.sdk.QQ_loadTokenData() #self.state = self.sdk.Fun_again_Login () #print "self.state",self.state self.state = self.sdk.Fun_Login() self.do_login() def do_login(self): if(self.state == self.sdk.login_state_success): self.sdk.QQ_online( ); #上线 print "登陆成功" self.sdk.QQ_sendfriendmsg(635674608,"1234test测试") #发好友消息 self.sdk.QQ_sendgroupmsg(189884897," 测试 test 43 2 1 ") #发群消息 #self.sdk.QQ_offline( ); #下线 # sdk.qq_savetokendata()# 保存二次登陆数据 # 启动线程 (&循环处理消息, , thread_hwnd) return elif(self.state == self.sdk.login_state_veriy): print "需要验证码" open("vpic.jpg","wb").write(self.sdk.getViery()) code = raw_input("请输入验证码(vpic.jpg):") self.state = self.sdk.Fun_SendCode(code) # self.state = self.sdk.Fun_SendCode("abcd") print "验证码返回",self.state self.do_login() else: print "登陆失败:",self.sdk.getLastError() if __name__ == "__main__": qq = Main() qq.login("634545399","")
35
75
0.546104
1,468
0.872771
0
0
0
0
0
0
588
0.349584
591f579f62bec7c986797fa9d6cc59de7656817e
527
py
Python
util/logger.py
code4hk/NewsdiffHK-Backend
76ffd933fe9900a0bd2191597a210ddf86d2a8cd
[ "MIT" ]
5
2015-03-29T19:19:16.000Z
2015-06-20T09:37:39.000Z
util/logger.py
code4hk/NewsdiffHK-Backend
76ffd933fe9900a0bd2191597a210ddf86d2a8cd
[ "MIT" ]
28
2015-04-07T13:34:57.000Z
2015-05-25T13:30:36.000Z
util/logger.py
code4hk/NewsdiffHK-Backend
76ffd933fe9900a0bd2191597a210ddf86d2a8cd
[ "MIT" ]
null
null
null
from util.env import log_dir import logging class MyFormatter(logging.Formatter): def formatTime(self, record, datefmt=None): return logging.Formatter.formatTime(self, record, datefmt).replace(',', '.') def get(name): log = logging.getLogger(name) log.setLevel(logging.DEBUG) formatter = MyFormatter('%(asctime)s:%(levelname)s:%(message)s') ch = logging.FileHandler(log_dir() + '/news_diff.log') ch.setLevel(logging.DEBUG) ch.setFormatter(formatter) log.addHandler(ch) return log
29.277778
84
0.70019
170
0.322581
0
0
0
0
0
0
61
0.11575
59203bba648641256e52153b47303c1f888cf09a
1,347
py
Python
src/core/migrations/0096_auto_20191023_1441.py
metabolism-of-cities/ARCHIVED-metabolism-of-cities-platform-v3
c754d3b1b401906a21640b8eacb6b724a448b31c
[ "MIT" ]
null
null
null
src/core/migrations/0096_auto_20191023_1441.py
metabolism-of-cities/ARCHIVED-metabolism-of-cities-platform-v3
c754d3b1b401906a21640b8eacb6b724a448b31c
[ "MIT" ]
null
null
null
src/core/migrations/0096_auto_20191023_1441.py
metabolism-of-cities/ARCHIVED-metabolism-of-cities-platform-v3
c754d3b1b401906a21640b8eacb6b724a448b31c
[ "MIT" ]
null
null
null
# Generated by Django 2.2.2 on 2019-10-23 14:41 from django.db import migrations, models import tinymce.models class Migration(migrations.Migration): dependencies = [ ('core', '0095_auto_20191022_1602'), ] operations = [ migrations.AlterModelOptions( name='casestudy', options={'verbose_name_plural': 'case studies'}, ), migrations.RemoveField( model_name='tag', name='gps', ), migrations.AlterField( model_name='tag', name='description', field=tinymce.models.HTMLField(blank=True, null=True, verbose_name='description'), ), migrations.AlterField( model_name='tag', name='hidden', field=models.BooleanField(db_index=True, default=False, help_text='Mark if tag is superseded/not yet approved/deactivated'), ), migrations.AlterField( model_name='tag', name='parent', field=models.CharField(blank=True, choices=[(1, 'Publication Types'), (2, 'Metabolism Studies'), (3, 'Countries'), (4, 'Cities'), (5, 'Scales'), (6, 'Flows'), (7, 'Time Horizon'), (9, 'Methodologies'), (10, 'Other')], help_text='This was a previous classification - can be left empty', max_length=2, null=True), ), ]
35.447368
323
0.590943
1,232
0.914625
0
0
0
0
0
0
412
0.305865
592176ee7d34af8c375b741cef8c2df674d9c4b5
2,243
py
Python
piservicebusclient.py
nikkh/pi
237c0c0effcf69c15c6fb2791c7fd49eb1e254aa
[ "Unlicense" ]
null
null
null
piservicebusclient.py
nikkh/pi
237c0c0effcf69c15c6fb2791c7fd49eb1e254aa
[ "Unlicense" ]
null
null
null
piservicebusclient.py
nikkh/pi
237c0c0effcf69c15c6fb2791c7fd49eb1e254aa
[ "Unlicense" ]
null
null
null
#!/usr/bin/python import colorsys from azure.servicebus import ServiceBusService from azure.servicebus import Message from blinkt import set_pixel, set_brightness, show, clear import time import json class Payload(object): def __init__(self, j): self.__dict__ = json.loads(j) def snake( r, g, b ): "This creates a snake effect on the blinkt using the specified colour" clear() for count in range(1,20): print(count) for i in range(8): clear() set_pixel(i, r, g, b) show() time.sleep(0.05) clear() return; def rainbow(): clear() spacing = 360.0 / 16.0 hue = 0 set_brightness(0.1) for count in range(1,160): print(count) hue = int(time.time() * 100) % 360 for x in range(8): offset = x * spacing h = ((hue + offset) % 360) / 360.0 r, g, b = [int(c * 255) for c in colorsys.hsv_to_rgb(h, 1.0, 1.0)] set_pixel(x, r, g, b) show() time.sleep(0.001) return; set_brightness(0.1) print('Nicks Raspberry Pi Python Service Bus Client version 0.1') service_namespace='nixpitest' key_name = 'RootManageSharedAccessKey' # SharedAccessKeyName from Azure portal with open('private/keys.txt', 'r') as myfile: keyval=myfile.read().replace('\n', '') key_value = keyval # SharedAccessKey from Azure portal sbs = ServiceBusService(service_namespace, shared_access_key_name=key_name, shared_access_key_value=key_value) sbs.create_queue('testpythonqueue1') while True: newmsg = None newmsg = sbs.receive_queue_message('testpythonqueue1', peek_lock=False) if newmsg.body is not None: print ("message: ", newmsg.body, "\n") p = Payload(newmsg.body) if p.device: print(p.device) if p.effect: print(p.effect) if p.led: print(p.led) if p.colour: print(p.colour) if p.state: print(p.state) if p.effect == 'snake': if p.colour == 'red': snake(255,0,0) elif p.colour == 'green': snake(0,255,0) elif p.colour == 'blue': snake(0,0,255) if p.effect == 'rainbow': rainbow() clear() time.sleep(1)
28.392405
78
0.602764
89
0.039679
0
0
0
0
0
0
369
0.164512
59245ad69bc6ea799437abf97159920fe65df34f
149
py
Python
exercicio-mundo-1/ex010.py
amosxrl/python
8399a9c42fdb49184fcfe906f8bce82d1a671667
[ "MIT" ]
2
2020-05-06T23:49:20.000Z
2020-05-06T23:49:25.000Z
exercicio-mundo-1/ex010.py
amosxrl/python
8399a9c42fdb49184fcfe906f8bce82d1a671667
[ "MIT" ]
null
null
null
exercicio-mundo-1/ex010.py
amosxrl/python
8399a9c42fdb49184fcfe906f8bce82d1a671667
[ "MIT" ]
null
null
null
print('Quanto dinheiro voce tem na carteiro') print('-'*20) re = float(input('R$ ')) dol = re * 0.1874 print('-'*20) print('US$ {:.2f}'.format(dol))
21.285714
45
0.610738
0
0
0
0
0
0
0
0
61
0.409396
59253833cbcb18241d731edddc82a7004e814b3e
3,163
py
Python
catkin_ws/build/baxter_core_msgs/cmake/baxter_core_msgs-genmsg-context.py
roop-pal/robotic-folding
a0e062ac6d23cd07fe10e3f45abc4ba50e533141
[ "RSA-MD" ]
null
null
null
catkin_ws/build/baxter_core_msgs/cmake/baxter_core_msgs-genmsg-context.py
roop-pal/robotic-folding
a0e062ac6d23cd07fe10e3f45abc4ba50e533141
[ "RSA-MD" ]
null
null
null
catkin_ws/build/baxter_core_msgs/cmake/baxter_core_msgs-genmsg-context.py
roop-pal/robotic-folding
a0e062ac6d23cd07fe10e3f45abc4ba50e533141
[ "RSA-MD" ]
null
null
null
# generated from genmsg/cmake/pkg-genmsg.context.in messages_str = "/home/parallels/catkin_ws/src/baxter_common/baxter_core_msgs/msg/AnalogIOState.msg;/home/parallels/catkin_ws/src/baxter_common/baxter_core_msgs/msg/AnalogIOStates.msg;/home/parallels/catkin_ws/src/baxter_common/baxter_core_msgs/msg/AnalogOutputCommand.msg;/home/parallels/catkin_ws/src/baxter_common/baxter_core_msgs/msg/AssemblyState.msg;/home/parallels/catkin_ws/src/baxter_common/baxter_core_msgs/msg/AssemblyStates.msg;/home/parallels/catkin_ws/src/baxter_common/baxter_core_msgs/msg/CameraControl.msg;/home/parallels/catkin_ws/src/baxter_common/baxter_core_msgs/msg/CameraSettings.msg;/home/parallels/catkin_ws/src/baxter_common/baxter_core_msgs/msg/CollisionAvoidanceState.msg;/home/parallels/catkin_ws/src/baxter_common/baxter_core_msgs/msg/CollisionDetectionState.msg;/home/parallels/catkin_ws/src/baxter_common/baxter_core_msgs/msg/DigitalIOState.msg;/home/parallels/catkin_ws/src/baxter_common/baxter_core_msgs/msg/DigitalIOStates.msg;/home/parallels/catkin_ws/src/baxter_common/baxter_core_msgs/msg/DigitalOutputCommand.msg;/home/parallels/catkin_ws/src/baxter_common/baxter_core_msgs/msg/EndEffectorCommand.msg;/home/parallels/catkin_ws/src/baxter_common/baxter_core_msgs/msg/EndEffectorProperties.msg;/home/parallels/catkin_ws/src/baxter_common/baxter_core_msgs/msg/EndEffectorState.msg;/home/parallels/catkin_ws/src/baxter_common/baxter_core_msgs/msg/EndpointState.msg;/home/parallels/catkin_ws/src/baxter_common/baxter_core_msgs/msg/EndpointStates.msg;/home/parallels/catkin_ws/src/baxter_common/baxter_core_msgs/msg/HeadPanCommand.msg;/home/parallels/catkin_ws/src/baxter_common/baxter_core_msgs/msg/HeadState.msg;/home/parallels/catkin_ws/src/baxter_common/baxter_core_msgs/msg/JointCommand.msg;/home/parallels/catkin_ws/src/baxter_common/baxter_core_msgs/msg/NavigatorState.msg;/home/parallels/catkin_ws/src/baxter_common/baxter_core_msgs/msg/NavigatorStates.msg;/home/parallels/catkin_ws/src/baxter_common/baxter_core_msgs/msg/RobustControllerStatus.msg;/home/parallels/catkin_ws/src/baxter_common/baxter_core_msgs/msg/SEAJointState.msg;/home/parallels/catkin_ws/src/baxter_common/baxter_core_msgs/msg/URDFConfiguration.msg" services_str = "/home/parallels/catkin_ws/src/baxter_common/baxter_core_msgs/srv/CloseCamera.srv;/home/parallels/catkin_ws/src/baxter_common/baxter_core_msgs/srv/ListCameras.srv;/home/parallels/catkin_ws/src/baxter_common/baxter_core_msgs/srv/OpenCamera.srv;/home/parallels/catkin_ws/src/baxter_common/baxter_core_msgs/srv/SolvePositionIK.srv" pkg_name = "baxter_core_msgs" dependencies_str = "geometry_msgs;sensor_msgs;std_msgs" langs = "gencpp;geneus;genlisp;gennodejs;genpy" dep_include_paths_str = "baxter_core_msgs;/home/parallels/catkin_ws/src/baxter_common/baxter_core_msgs/msg;geometry_msgs;/opt/ros/kinetic/share/geometry_msgs/cmake/../msg;sensor_msgs;/opt/ros/kinetic/share/sensor_msgs/cmake/../msg;std_msgs;/opt/ros/kinetic/share/std_msgs/cmake/../msg" PYTHON_EXECUTABLE = "/usr/bin/python" package_has_static_sources = '' == 'TRUE' genmsg_check_deps_script = "/opt/ros/kinetic/share/genmsg/cmake/../../../lib/genmsg/genmsg_check_deps.py"
263.583333
2,159
0.863737
0
0
0
0
0
0
0
0
2,980
0.942144
59269ff1d7149784a5bf3e067f0e6975db562830
14,031
py
Python
apps/part_interpolation&replacement/part_replacement.py
GuillaumeDufau/3D-point-capsule-networks
369206df643edb263d43cf2d05923cf0a26841e5
[ "MIT" ]
283
2019-04-14T12:58:54.000Z
2022-03-30T11:49:38.000Z
apps/part_interpolation&replacement/part_replacement.py
LONG-9621/3D-Point-Capsule-Networks
161ac9042ca9c048f4b531ae26fe94a29b13e777
[ "MIT" ]
20
2019-05-01T05:40:02.000Z
2021-11-20T11:15:17.000Z
apps/part_interpolation&replacement/part_replacement.py
LONG-9621/3D-Point-Capsule-Networks
161ac9042ca9c048f4b531ae26fe94a29b13e777
[ "MIT" ]
55
2019-04-22T12:14:42.000Z
2022-03-25T06:26:36.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Nov 12 17:45:51 2018 @author: zhao """ import argparse import torch import torch.nn.parallel from torch.autograd import Variable import torch.optim as optim import torch.nn.functional as F import sys import os import numpy as np BASE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.abspath(os.path.join(BASE_DIR, '../../models'))) sys.path.append(os.path.abspath(os.path.join(BASE_DIR, '../../dataloaders'))) import shapenet_part_loader import matplotlib.pyplot as plt from pointcapsnet_ae import PointCapsNet,PointCapsNetDecoder from capsule_seg_net import CapsSegNet import json from open3d import * def main(): blue = lambda x:'\033[94m' + x + '\033[0m' cat_no={'Airplane': 0, 'Bag': 1, 'Cap': 2, 'Car': 3, 'Chair': 4, 'Earphone': 5, 'Guitar': 6, 'Knife': 7, 'Lamp': 8, 'Laptop': 9, 'Motorbike': 10, 'Mug': 11, 'Pistol': 12, 'Rocket': 13, 'Skateboard': 14, 'Table': 15} #generate part label one-hot correspondence from the catagory: dataset_main_path=os.path.abspath(os.path.join(BASE_DIR, '../../dataset')) oid2cpid_file_name=os.path.join(dataset_main_path, opt.dataset,'shapenetcore_partanno_segmentation_benchmark_v0/shapenet_part_overallid_to_catid_partid.json') oid2cpid = json.load(open(oid2cpid_file_name, 'r')) object2setofoid = {} for idx in range(len(oid2cpid)): objid, pid = oid2cpid[idx] if not objid in object2setofoid.keys(): object2setofoid[objid] = [] object2setofoid[objid].append(idx) all_obj_cat_file = os.path.join(dataset_main_path, opt.dataset, 'shapenetcore_partanno_segmentation_benchmark_v0/synsetoffset2category.txt') fin = open(all_obj_cat_file, 'r') lines = [line.rstrip() for line in fin.readlines()] objcats = [line.split()[1] for line in lines] # objnames = [line.split()[0] for line in lines] # on2oid = {objcats[i]:i for i in range(len(objcats))} fin.close() colors = plt.cm.tab10((np.arange(10)).astype(int)) blue = lambda x:'\033[94m' + x + '\033[0m' # load the model for point cpas auto encoder capsule_net = PointCapsNet(opt.prim_caps_size, opt.prim_vec_size, opt.latent_caps_size, opt.latent_vec_size, opt.num_points) if opt.model != '': capsule_net.load_state_dict(torch.load(opt.model)) if USE_CUDA: capsule_net = torch.nn.DataParallel(capsule_net).cuda() capsule_net=capsule_net.eval() # load the model for only decoding capsule_net_decoder = PointCapsNetDecoder(opt.prim_caps_size, opt.prim_vec_size, opt.latent_caps_size, opt.latent_vec_size, opt.num_points) if opt.model != '': capsule_net_decoder.load_state_dict(torch.load(opt.model),strict=False) if USE_CUDA: capsule_net_decoder = capsule_net_decoder.cuda() capsule_net_decoder=capsule_net_decoder.eval() # load the model for capsule wised part segmentation caps_seg_net = CapsSegNet(latent_caps_size=opt.latent_caps_size, latent_vec_size=opt.latent_vec_size , num_classes=opt.n_classes) if opt.part_model != '': caps_seg_net.load_state_dict(torch.load(opt.part_model)) if USE_CUDA: caps_seg_net = caps_seg_net.cuda() caps_seg_net = caps_seg_net.eval() train_dataset = shapenet_part_loader.PartDataset(classification=False, class_choice=opt.class_choice, npoints=opt.num_points, split='test') train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=opt.batch_size, shuffle=True, num_workers=4) # container for ground truth pcd_gt_source=[] for i in range(2): pcd = PointCloud() pcd_gt_source.append(pcd) pcd_gt_target=[] for i in range(2): pcd = PointCloud() pcd_gt_target.append(pcd) # container for ground truth cut and paste pcd_gt_replace_source=[] for i in range(2): pcd = PointCloud() pcd_gt_replace_source.append(pcd) pcd_gt_replace_target=[] for i in range(2): pcd = PointCloud() pcd_gt_replace_target.append(pcd) # container for capsule based part replacement pcd_caps_replace_source=[] for i in range(opt.latent_caps_size): pcd = PointCloud() pcd_caps_replace_source.append(pcd) pcd_caps_replace_target=[] for i in range(opt.latent_caps_size): pcd = PointCloud() pcd_caps_replace_target.append(pcd) # apply a transformation in order to get a better view point ##airplane rotation_angle=np.pi/2 cosval = np.cos(rotation_angle) sinval = np.sin(rotation_angle) flip_transforms = [[1, 0, 0,-2],[0,cosval, -sinval,1.5],[0,sinval, cosval, 0],[0, 0, 0, 1]] flip_transforms_r = [[1, 0, 0,2],[0, 1, 0,-1.5],[0, 0, 1,0],[0, 0, 0, 1]] flip_transform_gt_s = [[1, 0, 0,-3],[0,cosval, -sinval,-1],[0,sinval, cosval, 0],[0, 0, 0, 1]] flip_transform_gt_t = [[1, 0, 0,-3],[0,cosval, -sinval,1],[0,sinval, cosval, 0],[0, 0, 0, 1]] flip_transform_gt_re_s = [[1, 0, 0,0],[0,cosval, -sinval,-1],[0,sinval, cosval, 0],[0, 0, 0, 1]] flip_transform_gt_re_t = [[1, 0, 0,0],[0,cosval, -sinval,1],[0,sinval, cosval, 0],[0, 0, 0, 1]] flip_transform_caps_re_s = [[1, 0, 0,3],[0,cosval, -sinval,-1],[0,sinval, cosval, 0],[0, 0, 0, 1]] flip_transform_caps_re_t = [[1, 0, 0,3],[0,cosval, -sinval,1],[0,sinval, cosval, 0],[0, 0, 0, 1]] colors = plt.cm.tab20((np.arange(20)).astype(int)) part_replace_no=1 # the part that is replaced for batch_id, data in enumerate(train_dataloader): points, part_label, cls_label= data if not (opt.class_choice==None ): cls_label[:]= cat_no[opt.class_choice] if(points.size(0)<opt.batch_size): break all_model_pcd=PointCloud() gt_source_list0=[] gt_source_list1=[] gt_target_list0=[] gt_target_list1=[] for point_id in range(opt.num_points): if(part_label[0,point_id]==part_replace_no ): gt_source_list0.append(points[0,point_id,:]) else: gt_source_list1.append(points[0,point_id,:]) if( part_label[1,point_id]==part_replace_no): gt_target_list0.append(points[1,point_id,:]) else: gt_target_list1.append(points[1,point_id,:]) # viz GT with colored part pcd_gt_source[0].points=Vector3dVector(gt_source_list0) pcd_gt_source[0].paint_uniform_color([colors[5,0], colors[5,1], colors[5,2]]) pcd_gt_source[0].transform(flip_transform_gt_s) all_model_pcd+=pcd_gt_source[0] pcd_gt_source[1].points=Vector3dVector(gt_source_list1) pcd_gt_source[1].paint_uniform_color([0.8,0.8,0.8]) pcd_gt_source[1].transform(flip_transform_gt_s) all_model_pcd+=pcd_gt_source[1] pcd_gt_target[0].points=Vector3dVector(gt_target_list0) pcd_gt_target[0].paint_uniform_color([colors[6,0], colors[6,1], colors[6,2]]) pcd_gt_target[0].transform(flip_transform_gt_t) all_model_pcd+=pcd_gt_target[0] pcd_gt_target[1].points=Vector3dVector(gt_target_list1) pcd_gt_target[1].paint_uniform_color([0.8,0.8,0.8]) pcd_gt_target[1].transform(flip_transform_gt_t) all_model_pcd+=pcd_gt_target[1] # viz replaced GT colored parts pcd_gt_replace_source[0].points=Vector3dVector(gt_target_list0) pcd_gt_replace_source[0].paint_uniform_color([colors[6,0], colors[6,1], colors[6,2]]) pcd_gt_replace_source[0].transform(flip_transform_gt_re_s) all_model_pcd+=pcd_gt_replace_source[0] pcd_gt_replace_source[1].points=Vector3dVector(gt_source_list1) pcd_gt_replace_source[1].paint_uniform_color([0.8,0.8,0.8]) pcd_gt_replace_source[1].transform(flip_transform_gt_re_s) all_model_pcd+=pcd_gt_replace_source[1] pcd_gt_replace_target[0].points=Vector3dVector(gt_source_list0) pcd_gt_replace_target[0].paint_uniform_color([colors[5,0], colors[5,1], colors[5,2]]) pcd_gt_replace_target[0].transform(flip_transform_gt_re_t) all_model_pcd+=pcd_gt_replace_target[0] pcd_gt_replace_target[1].points=Vector3dVector(gt_target_list1) pcd_gt_replace_target[1].paint_uniform_color([0.8,0.8,0.8]) pcd_gt_replace_target[1].transform(flip_transform_gt_re_t) all_model_pcd+=pcd_gt_replace_target[1] #capsule based replacement points_ = Variable(points) points_ = points_.transpose(2, 1) if USE_CUDA: points_ = points_.cuda() latent_caps, reconstructions= capsule_net(points_) reconstructions=reconstructions.transpose(1,2).data.cpu() cur_label_one_hot = np.zeros((2, 16), dtype=np.float32) for i in range(2): cur_label_one_hot[i, cls_label[i]] = 1 cur_label_one_hot=torch.from_numpy(cur_label_one_hot).float() expand =cur_label_one_hot.unsqueeze(2).expand(2,16,opt.latent_caps_size).transpose(1,2) latent_caps, expand = Variable(latent_caps), Variable(expand) latent_caps,expand = latent_caps.cuda(), expand.cuda() # predidt the part label of each capsule latent_caps_with_one_hot=torch.cat((latent_caps,expand),2) latent_caps_with_one_hot,expand=Variable(latent_caps_with_one_hot),Variable(expand) latent_caps_with_one_hot,expand=latent_caps_with_one_hot.cuda(),expand.cuda() latent_caps_with_one_hot=latent_caps_with_one_hot.transpose(2, 1) output_digit=caps_seg_net(latent_caps_with_one_hot) for i in range (2): iou_oids = object2setofoid[objcats[cls_label[i]]] non_cat_labels = list(set(np.arange(50)).difference(set(iou_oids))) mini = torch.min(output_digit[i,:,:]) output_digit[i,:, non_cat_labels] = mini - 1000 pred_choice = output_digit.data.cpu().max(2)[1] # # saved the index of capsules which are assigned to current part part_no=iou_oids[part_replace_no] part_viz=[] for caps_no in range (opt.latent_caps_size): if(pred_choice[0,caps_no]==part_no and pred_choice[1,caps_no]==part_no): part_viz.append(caps_no) #replace the capsules latent_caps_replace=latent_caps.clone() latent_caps_replace= Variable(latent_caps_replace) latent_caps_replace = latent_caps_replace.cuda() for j in range (len(part_viz)): latent_caps_replace[0,part_viz[j],]=latent_caps[1,part_viz[j],] latent_caps_replace[1,part_viz[j],]=latent_caps[0,part_viz[j],] reconstructions_replace = capsule_net_decoder(latent_caps_replace) reconstructions_replace=reconstructions_replace.transpose(1,2).data.cpu() for j in range(opt.latent_caps_size): current_patch_s=torch.zeros(int(opt.num_points/opt.latent_caps_size),3) current_patch_t=torch.zeros(int(opt.num_points/opt.latent_caps_size),3) for m in range(int(opt.num_points/opt.latent_caps_size)): current_patch_s[m,]=reconstructions_replace[0][opt.latent_caps_size*m+j,] current_patch_t[m,]=reconstructions_replace[1][opt.latent_caps_size*m+j,] pcd_caps_replace_source[j].points = Vector3dVector(current_patch_s) pcd_caps_replace_target[j].points = Vector3dVector(current_patch_t) part_no=iou_oids[part_replace_no] if(j in part_viz): pcd_caps_replace_source[j].paint_uniform_color([colors[6,0], colors[6,1], colors[6,2]]) pcd_caps_replace_target[j].paint_uniform_color([colors[5,0], colors[5,1], colors[5,2]]) else: pcd_caps_replace_source[j].paint_uniform_color([0.8,0.8,0.8]) pcd_caps_replace_target[j].paint_uniform_color([0.8,0.8,0.8]) pcd_caps_replace_source[j].transform(flip_transform_caps_re_s) pcd_caps_replace_target[j].transform(flip_transform_caps_re_t) all_model_pcd+=pcd_caps_replace_source[j] all_model_pcd+=pcd_caps_replace_target[j] draw_geometries([all_model_pcd]) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--batch_size', type=int, default=2, help='input batch size') parser.add_argument('--prim_caps_size', type=int, default=1024, help='number of primary point caps') parser.add_argument('--prim_vec_size', type=int, default=16, help='scale of primary point caps') parser.add_argument('--latent_caps_size', type=int, default=64, help='number of latent caps') parser.add_argument('--latent_vec_size', type=int, default=64, help='scale of latent caps') parser.add_argument('--num_points', type=int, default=2048, help='input point set size') parser.add_argument('--part_model', type=str, default='../../checkpoints/part_seg_100percent.pth', help='model path for the pre-trained part segmentation network') parser.add_argument('--model', type=str, default='../../checkpoints/shapenet_part_dataset_ae_200.pth', help='model path') parser.add_argument('--dataset', type=str, default='shapenet_part', help='dataset: shapenet_part, shapenet_core13, shapenet_core55, modelent40') parser.add_argument('--n_classes', type=int, default=50, help='part classes in all the catagories') parser.add_argument('--class_choice', type=str, default='Airplane', help='choose the class to eva') opt = parser.parse_args() print(opt) USE_CUDA = True main()
44.26183
170
0.662818
0
0
0
0
0
0
0
0
1,889
0.13463
592749e0c27abaef8d986702717878c311749a54
6,839
py
Python
src/Grid.py
RavinSG/aaivu-ride-hailing-simulation
eb7bc7cc6a5830d40509ce22fe4fa2eb013e6767
[ "Apache-2.0" ]
8
2021-02-18T19:02:59.000Z
2022-02-19T13:38:48.000Z
src/Grid.py
Programmer-RD-AI/aaivu-ride-hailing-simulation
f315661c94c9e3f26bab1d8bb9c35d21b1a60479
[ "Apache-2.0" ]
null
null
null
src/Grid.py
Programmer-RD-AI/aaivu-ride-hailing-simulation
f315661c94c9e3f26bab1d8bb9c35d21b1a60479
[ "Apache-2.0" ]
2
2021-02-14T03:28:51.000Z
2022-02-19T13:38:51.000Z
import simpy import itertools import numpy as np from RideSimulator.Driver import Driver from RideSimulator.HexGrid import HexGrid def get_spot_locations(width: int, height: int, interval: int) -> np.ndarray: """ :param width: width of the grid :param height: height of the grid :param interval: distance between two spots :return: an array of all the spot locations """ x_points = np.arange(0, width, interval) y_points = np.arange(0, height, interval) # If the distance to the nearest taxi spot from the corner is greater than the minimum search radius additional # spots are added along the edges of thr map. if (width - x_points[-1]) > (interval / np.sqrt(2)): x_points = np.append(x_points, width) if (height - y_points[-1]) > (interval / np.sqrt(2)): y_points = np.append(y_points, height) spots = np.array([list(i) for i in itertools.product(x_points, y_points)]) return np.array([spots, len(y_points), len(x_points)], dtype=object) class Grid(object): """ Handles all the information and processes related to the grid. The distances between grid units can be translated to real world distances using the units_per_km attribute. Taxi spots are used to anchor drivers into locations in the map to make it easier to find the closest driver for a given trip. A hexagon overlay is used to cluster grid locations into regions where hotspots, traffic and other features are calculated based on the hotspots. """ def __init__(self, env: simpy.Environment, width: int, height: int, interval: int, num_drivers: int, hex_area: float, units_per_km: int = 1, seed: int = None): """ :param env: simpy environment :param width: width of the grid :param height: height of the grid :param interval: distance between two spots :param num_drivers: number of drivers in the grid :param hex_area: area size of a single hex tile :param units_per_km: number of grid units per km """ if seed is not None: np.random.seed(seed) self.width = width self.height = height self.interval = interval self.hex_overlay = HexGrid(hex_area=hex_area, width=width, height=height, units_per_km=units_per_km) self.taxi_spots, self.spot_height, self.spot_width = get_spot_locations(width=width, height=height, interval=interval) self.driver_pools = simpy.FilterStore(env, capacity=num_drivers) def get_random_location(self) -> np.ndarray: x = np.random.randint(0, self.width) y = np.random.randint(0, self.height) return np.array([x, y]) # Temp function to get location id until hexagons are implemented def get_location_id(self, location): grid_width = 10 # no. of cells in one axis (create 10x10 grid) x = np.floor((location[0] - 0) * grid_width / self.width) y = np.floor((location[1] - 0) * grid_width / self.height) return x * grid_width + y @staticmethod def get_distance(loc1: np.ndarray, loc2: np.ndarray) -> float: distance = np.linalg.norm(loc1 - loc2) return np.round(distance, 1) def get_spot_id(self, location): return int(np.round(location[0]) * self.spot_height + np.round(location[1])) def get_nearest_spot(self, location: np.ndarray, search_radius=1) -> list: """ Find the nearest driver spot for a given location. Initially it'll only return the nearest spot to the driver. When search_radius = 2, the 4 taxi spots surrounding the rider are returned. Afterwards, with each increment to the search_radius, all taxi spots inside a square centered on the driver location with a side length of search_radius are returned. :param location: x,y coords of the location :param search_radius: number of breaths the search will carry out on :return: a list of the closest taxi spots """ x_spot = location[0] / self.interval y_spot = location[1] / self.interval closet_spot = [np.round(x_spot), np.round(y_spot)] if search_radius == 1: spot_no = [self.get_spot_id(closet_spot)] elif search_radius == 2: spot_no = [] x_points = {np.floor(x_spot), np.ceil(x_spot)} y_points = {np.floor(y_spot), np.ceil(y_spot)} spots = np.array([list(i) for i in itertools.product(x_points, y_points)]) for spot in spots: spot_no.append(self.get_spot_id(spot)) else: spot_no = [] x_points = [closet_spot[0]] y_points = [closet_spot[1]] for i in range(1, search_radius - 1): x_points.append(max(0, closet_spot[0] - i)) x_points.append(min(self.spot_width - 1, closet_spot[0] + i)) y_points.append(max(0, closet_spot[1] - i)) y_points.append(min(self.spot_height - 1, closet_spot[1] + i)) x_points = set(x_points) y_points = set(y_points) spots = np.array([list(i) for i in itertools.product(x_points, y_points)]) for spot in spots: spot_no.append(self.get_spot_id(spot)) return spot_no def get_closest_drivers(self, location: np.ndarray, search_radius: int) -> list: """ A more accurate closest driver search using driver distances of all the drivers in the closest taxi spots. Since this is more computationally expensive and the increment in accuracy does not outweigh the cost, this is not used at the moment. :param location: location the distances should be calculated from :param search_radius: number of breaths the search will carry out on :return: a list of driver ids sorted in the ascending order according to their distances to the location """ spots = self.get_nearest_spot(location, search_radius=search_radius) driver_ids = [] distances = [] for driver in self.driver_pools.items: if driver.spot_id in spots: driver_ids.append(driver.id) distances.append(self.get_distance(location, driver.location)) if len(driver_ids) > 0: _, driver_ids = zip(*sorted(zip(distances, driver_ids))) return driver_ids def assign_spot(self, driver: Driver): """ Assign the driver to his nearest driver pool. :param driver: driver object """ driver_loc = driver.location spot_id = self.get_nearest_spot(driver_loc)[0] driver.spot_id = spot_id self.driver_pools.put(driver)
41.70122
120
0.640445
5,819
0.850855
0
0
164
0.02398
0
0
2,525
0.369206
592751375bcd4d68f888638835a70c28a75cc554
427
py
Python
template.py
imsofi/advent-of-code
8ac1406cfee689d9da0302363eaee7c8fea5c722
[ "0BSD" ]
null
null
null
template.py
imsofi/advent-of-code
8ac1406cfee689d9da0302363eaee7c8fea5c722
[ "0BSD" ]
null
null
null
template.py
imsofi/advent-of-code
8ac1406cfee689d9da0302363eaee7c8fea5c722
[ "0BSD" ]
null
null
null
""" Day $: https://adventofcode.com/2021/day/$ """ Data = list def parse_file(path: str) -> Data: with open(path) as f: raw = f.read().splitlines() data = raw return data def part_1(data: Data): ... def part_2(data: Data): ... def main(): data = parse_file("example.txt") print("Part 1", part_1(data)) print("Part 2", part_2(data)) if __name__ == "__main__": main()
12.558824
36
0.559719
0
0
0
0
0
0
0
0
90
0.210773
59276445280313e61b8b7bc4ae85576dc76c9f96
3,174
py
Python
src/ReichardtDS8.py
smittal6/i3d
e347b5415f5665a6f25b644a3dda5dd32f01dbbb
[ "MIT" ]
null
null
null
src/ReichardtDS8.py
smittal6/i3d
e347b5415f5665a6f25b644a3dda5dd32f01dbbb
[ "MIT" ]
null
null
null
src/ReichardtDS8.py
smittal6/i3d
e347b5415f5665a6f25b644a3dda5dd32f01dbbb
[ "MIT" ]
null
null
null
import numpy as np def Reichardt8(video, dirs=[0,1,2,3,4,5,6,7]): ''' Returns a tuple of Reichardt-Hassenstein correlators in 8 directions args: video: Shape ~ [TimeSteps, H, W, 1] ''' vp1, vm1 = Reichardt_vertical_2channels_Vectorized(video) #Directions 1, -1 vp3, vm3 = Reichardt_horizontal_2channels_Vectorized(video) #Directions 3, -3 vp2, vm2 = Reichardt_diagonal1_2channels_Vectorized(video) #Directions 2, -2 vp4, vm4 = Reichardt_diagonal2_2channels_Vectorized(video) #Directions 4, -4 all_dirs = [vp1, vm1, vp2, vm2, vp3, vm3, vp4, vm4] return [all_dirs[i] for i in dirs] #timeDelay is unused in the Vectorized method, but may be useful later def Reichardt_vertical_2channels_Vectorized(video,timeDelay=1): ''' Reichardt-Hassenstein inspired video processing Put negative values into another tensor and then concat for the two (e.g. red and green) channels ''' vc_shift_vert_by1back=np.roll(video,1,axis=1) vc_shift_time_by1forw=np.roll(video,-1,axis=0) vc_shift_vert_by1back_time_by1forw=np.roll(vc_shift_vert_by1back,-1,axis=0) vc = vc_shift_vert_by1back*vc_shift_time_by1forw - vc_shift_vert_by1back_time_by1forw*video vc_neg = vc.clip(max=0) vc_neg = -1*vc_neg vc = vc.clip(0) return vc, vc_neg def Reichardt_diagonal1_2channels_Vectorized(video,timeDelay=1): ''' Reichardt-Hassenstein inspired video processing Put negative values into another tensor and then concat for the two (e.g. red and green) channels ''' vc_shift_diag_by1back=np.roll(video,(1,1),axis=(1,2)) vc_shift_time_by1forw=np.roll(video,-1,axis=0) vc_shift_diag_by1back_time_by1forw=np.roll(vc_shift_diag_by1back,-1,axis=0) vc= vc_shift_diag_by1back*vc_shift_time_by1forw - vc_shift_diag_by1back_time_by1forw*video vc_neg=vc.clip(max=0) vc_neg=-1*vc_neg vc=vc.clip(0) return vc, vc_neg def Reichardt_horizontal_2channels_Vectorized(video,timeDelay=1): ''' Reichardt-Hassenstein inspired video processing Put negative values into another tensor and then concat for the two (e.g. red and green) channels ''' vc_shift_horz_by1back=np.roll(video,1,axis=2) vc_shift_time_by1forw=np.roll(video,-1,axis=0) vc_shift_horz_by1back_time_by1forw=np.roll(vc_shift_horz_by1back,-1,axis=0) vc= vc_shift_horz_by1back*vc_shift_time_by1forw - vc_shift_horz_by1back_time_by1forw*video vc_neg=vc.clip(max=0) vc_neg=-1*vc_neg vc=vc.clip(0) return vc, vc_neg def Reichardt_diagonal2_2channels_Vectorized(video,timeDelay=1): ''' Reichardt-Hassenstein inspired video processing Put negative values into another tensor and then concat for the two (e.g. red and green) channels ''' vc_shift_diag_by1back=np.roll(video,(-1,1),axis=(1,2)) vc_shift_time_by1forw=np.roll(video,-1,axis=0) vc_shift_diag_by1back_time_by1forw=np.roll(vc_shift_diag_by1back,-1,axis=0) vc= vc_shift_diag_by1back*vc_shift_time_by1forw - vc_shift_diag_by1back_time_by1forw*video vc_neg=vc.clip(max=0) vc_neg=-1*vc_neg vc=vc.clip(0) return vc, vc_neg
34.5
104
0.732199
0
0
0
0
0
0
0
0
970
0.305608
592904d4f5f76e99f9c27babc8743707b85f9a4e
1,662
py
Python
shopdrawing.py
Maxim-Kovalenko/turtle-graphics-programms
768866f9b6658dc0933b0391387a6bdec64ad6ec
[ "Apache-2.0" ]
1
2020-04-14T08:31:24.000Z
2020-04-14T08:31:24.000Z
shopdrawing.py
Maxim-Kovalenko/turtle-graphics-programms
768866f9b6658dc0933b0391387a6bdec64ad6ec
[ "Apache-2.0" ]
null
null
null
shopdrawing.py
Maxim-Kovalenko/turtle-graphics-programms
768866f9b6658dc0933b0391387a6bdec64ad6ec
[ "Apache-2.0" ]
1
2021-01-05T15:47:59.000Z
2021-01-05T15:47:59.000Z
from turtle import * coeficient = 0.5 speed(5) def base(): fillcolor("#fae0bd") begin_fill() pencolor("#c8835c") pensize(10 * coeficient) penup() backward(100 * coeficient) pendown() for i in range(0,2): forward(300 * coeficient) right(90) forward(200 * coeficient) right(90) end_fill() def roof(): begin_fill() fillcolor("#fe8e97") pencolor("#fe8e97") backward(40 * coeficient) left(90) forward(50 * coeficient) right(90) forward(380 * coeficient) right(90) forward(50 * coeficient) right(90) forward(40 * coeficient) end_fill() def window(): penup() forward(250 * coeficient) left(90) forward(50 * coeficient) pendown() fillcolor("#87d5e0") pencolor("#87d5e0") begin_fill() for f in range(0,4): forward(90 * coeficient) left(90) end_fill() def door(): penup() left(90) forward(150 * coeficient) pendown() pencolor("#de692e") fillcolor("#de692e") begin_fill() for v in range(0,2): forward(50 * coeficient) right(90) forward(130 * coeficient) right(90) end_fill() def move(): penup() goto(800 * coeficient,0) pendown() def tree(): fillcolor("#b56f2f") pencolor("#b56f2f") begin_fill() for m in range(0,2): forward(30 * coeficient) right(90) forward(200 * coeficient) right(90) end_fill() base() roof() window() door() move() tree()
17.494737
34
0.527677
0
0
0
0
0
0
0
0
90
0.054152
592b099ed5239bc2e197e2c20d2d55bdd277f278
881
py
Python
src/block_constants.py
cemulate/minecraft-hdl
a46da8d2a29aad9c2fc84037d677190c6db80dcd
[ "MIT" ]
5
2015-09-11T04:13:01.000Z
2021-11-17T14:35:28.000Z
src/block_constants.py
cemulate/minecraft-hdl
a46da8d2a29aad9c2fc84037d677190c6db80dcd
[ "MIT" ]
null
null
null
src/block_constants.py
cemulate/minecraft-hdl
a46da8d2a29aad9c2fc84037d677190c6db80dcd
[ "MIT" ]
1
2021-03-15T17:31:27.000Z
2021-03-15T17:31:27.000Z
REDSTONE = 55 REPEATER = 93 TORCH = 75 AIR = 0 GLASS = 20 SLAB = 44 DOUBLE_SLAB = 43 WOOL = 35 DIR_WEST_POS_Z = 0 DIR_NORTH_NEG_X = 1 DIR_EAST_NEG_Z = 2 DIR_SOUTH_POS_X = 3 TORCH_ON_GROUND = 5 TORCH_POINTING_POS_X = 1 TORCH_POINTING_NEG_X = 2 TORCH_POINTING_POS_Z = 3 TORCH_POINTING_NEG_Z = 4 STONE_SLAB_TOP = 8 DOUBLE_SLAB_STONE = 0 WOOL_BLACK = 15 REPEATER_TOWARD_POS_X = 1 REPEATER_TOWARD_POS_Z = 2 REPEATER_TOWARD_NEG_X = 3 CLOSE_SIDE = 0 FAR_SIDE = 1 WOOL_NAMES = {0: "White", 1: "Orange", 2: "Magenta", 3: "Light blue", 4: "Yellow", 5: "Lime", 6: "Pink", 7: "Grey", 8: "Light grey", 9: "Cyan", 10: "Purple", 11: "Blue", 12: "Brown", 13: "Green", 14: "Red", 15: "Black"}
17.62
29
0.538025
0
0
0
0
0
0
0
0
120
0.136209
592b8f8cacb2754ab7e4528631c3f40cfdc1b7e7
4,973
py
Python
qfc/dirhandler.py
akhilkedia/qfc
101861bd2fb818564245249fc93f278752684b51
[ "MIT" ]
null
null
null
qfc/dirhandler.py
akhilkedia/qfc
101861bd2fb818564245249fc93f278752684b51
[ "MIT" ]
null
null
null
qfc/dirhandler.py
akhilkedia/qfc
101861bd2fb818564245249fc93f278752684b51
[ "MIT" ]
null
null
null
import os import subprocess import sys class CVSHandler(): """ Handler of CVS (fir, mercurial...) directories, The main purpose of this class is to cache external cvs command output, and determine the appropriate files to yield when navigating to a subdirectory of a project. This basically means that the external command is run once (ie git ls-files), cached, and when calling get_source_files on a subdirectory of the project root (ie project-root/subdir), filtering from all project files of is done here. """ def __init__(self, cvs): self._roots_cache = {} self._not_tracked_cache = set() self.cvs = cvs def _get_root_from_cache(self, directory): """ a directory is considered cached if it's the project root or a subdirectory of that project root. returns the project root dir, or None if the directory is not cached. """ if directory in self._roots_cache: return directory if os.path.dirname(directory) == directory: return None return self._get_root_from_cache(os.path.dirname(directory)) def get_source_files(self, directory): if directory in self._not_tracked_cache: return None root_dir = self._get_root_from_cache(directory) if not root_dir: try: # check if it's a tracked cvs dir, if yes, get the project root and the source files root_dir = self.cvs._get_root(directory) self._roots_cache[root_dir] = self.cvs._get_tracked_files(root_dir) except Exception as e: # not a cvs tracked dir, save it to not issue that command again self._not_tracked_cache.add(directory) return None files = self._roots_cache[root_dir] # the passed directory argument is a subdirectory of the project root if directory != root_dir: rel_dir = os.path.relpath(directory, root_dir) files = [f[len(rel_dir)+1:] for f in files if f.startswith(rel_dir)] return files class Git(): @staticmethod def _get_root(directory): return run_command("cd %s && git rev-parse --show-toplevel" % directory).strip() @staticmethod def _get_tracked_files(directory): return run_command("cd %s && git ls-files && git ls-files --others --exclude-standard" % directory).strip().split('\n') class Mercurial(): @staticmethod def _get_root(directory): return run_command("cd %s && hg root" % directory).strip() @staticmethod def _get_tracked_files(directory): return run_command("cd %s && (hg status -marcu | cut -d' ' -f2)" % directory).strip().split('\n') class DefaultDirHandler(): """ The default directory handler uses the 'find' external program to return all the files inside a given directory up to MAX_depth depth (ie, if maxdepth=2, returns all files inside that dir, and all files in a subdir of that directory)""" def __init__(self): self._cache = {} self.MAX_DEPTH = 2 def _walk_down(self, start_dir): try: out = run_command( "{ find %s -maxdepth %s -not -path '*/\\.*' -type d -print | sed 's!$!/!'; find %s -maxdepth %s -not -path '*/\\.*' -type f -or -type l ; } | sed -n 's|^%s/||p'" % (start_dir, self.MAX_DEPTH, start_dir, self.MAX_DEPTH, start_dir)) except subprocess.CalledProcessError as e: # Find returns a non 0 exit status if listing a directory fails (for example, permission denied), but still output all files in other dirs # ignore those failed directories. out = e.output if sys.version_info >= (3, 0): out = out.decode('utf-8') if not out: return [] files = out.split('\n') return [f for f in files if f] def get_source_files(self, start_dir): if not start_dir in self._cache: self._cache[start_dir] = self._walk_down(start_dir) return self._cache[start_dir] def run_command(string): ''' fork a process to execute the command string given as argument, returning the string written to STDOUT ''' DEVNULL = open(os.devnull, 'wb') out = subprocess.check_output(string, stderr=DEVNULL, shell=True) if sys.version_info >= (3, 0): return out.decode('utf-8') return out git = CVSHandler(Git) hg = CVSHandler(Mercurial) default = DefaultDirHandler() def get_source_files(directory): """ check first if the given directory is inside a git tracked project, if no, check with mercurial, if no, fallback to the default handler """ files = git.get_source_files(directory) # if the returned files list is empty, it's considered not a tracked directory if files: return files files = hg.get_source_files(directory) if files: return files return default.get_source_files(directory)
42.87069
246
0.648904
4,041
0.812588
0
0
580
0.11663
0
0
1,998
0.40177
592c8f23fd0453baefac3223ac8d226123072b8f
436
py
Python
demo1/jsons.py
dollarkillerx/Python-Data-Analysis
f208d5ce9951e9fca2d084a89290100b7e543154
[ "MIT" ]
null
null
null
demo1/jsons.py
dollarkillerx/Python-Data-Analysis
f208d5ce9951e9fca2d084a89290100b7e543154
[ "MIT" ]
null
null
null
demo1/jsons.py
dollarkillerx/Python-Data-Analysis
f208d5ce9951e9fca2d084a89290100b7e543154
[ "MIT" ]
null
null
null
import json filename = "data.json" mydata = { "title":"我的测试数据", "lesson":{ "python":"学习中", 'vue':"学习完毕", "golang":"基本精通" }, "games":{ "GAT":"一年没有玩了" }, } # 文件写入 with open(filename,'w',encoding="utf-8") as data: # 数据,文件句柄,json缩进空格数 json.dump(mydata,data,indent=4) # 读文件 with open(filename,'r',encoding='utf-8') as data: # 句柄 rdata = json.load(data) print(rdata)
16.769231
49
0.538991
0
0
0
0
0
0
0
0
232
0.444444
592ca011fcc9c84fa4da0a8bde9dd4daf4629fd5
280
py
Python
Scripts/malware_scan/classess/progress.py
Team-Zed-cf/Team-Zed
662eee2948502fca0bdc477955db17e2d32f92aa
[ "MIT" ]
null
null
null
Scripts/malware_scan/classess/progress.py
Team-Zed-cf/Team-Zed
662eee2948502fca0bdc477955db17e2d32f92aa
[ "MIT" ]
null
null
null
Scripts/malware_scan/classess/progress.py
Team-Zed-cf/Team-Zed
662eee2948502fca0bdc477955db17e2d32f92aa
[ "MIT" ]
null
null
null
import progressbar, time from .colors import * # progress bar def animated_marker(): widgets = ['In Process: ', progressbar.AnimatedMarker()] bar = progressbar.ProgressBar(widgets=widgets).start() for i in range(18): time.sleep(0.1) bar.update(i)
28
61
0.660714
0
0
0
0
0
0
0
0
28
0.1
593150e1f3c9a373acbf0b4f5ce7f05a49bde1de
4,406
py
Python
single_subject_workflow.py
tknapen/reward_np_analysis
29bcc02d5acd23689dee7059ecb1607d2814cdf0
[ "MIT" ]
null
null
null
single_subject_workflow.py
tknapen/reward_np_analysis
29bcc02d5acd23689dee7059ecb1607d2814cdf0
[ "MIT" ]
null
null
null
single_subject_workflow.py
tknapen/reward_np_analysis
29bcc02d5acd23689dee7059ecb1607d2814cdf0
[ "MIT" ]
null
null
null
# from nipype import config # config.enable_debug_mode() # Importing necessary packages import os import os.path as op import glob import json import nipype from nipype import config, logging import matplotlib.pyplot as plt import nipype.interfaces.fsl as fsl import nipype.pipeline.engine as pe import nipype.interfaces.utility as util import nipype.interfaces.io as nio from nipype.utils.filemanip import copyfile import nibabel as nib from IPython.display import Image from nipype.interfaces.utility import Function, Merge, IdentityInterface from nipype.interfaces.io import SelectFiles, DataSink from IPython.display import Image from IPython import embed as shell from workflows.pupil_workflow import create_pupil_workflow from workflows.bold_wholebrain_fir_workflow import create_bold_wholebrain_fir_workflow # we will create a workflow from a BIDS formatted input, at first for the specific use case # of a 7T PRF experiment's preprocessing. # a project directory that we assume has already been created. raw_data_dir = '/home/raw_data/-2014/reward/human_reward/data/' preprocessed_data_dir = '/home/shared/-2014/reward/new/' FS_subject_dir = os.path.join(raw_data_dir, 'FS_SJID') # booleans that determine whether given stages of the # analysis are run pupil = True wb_fir = True for si in range(1,7): # sub_id, FS_ID = 'sub-00%i'%si, 'sub-00%i'%si sess_id = 'ses-*' # now we set up the folders and logging there. opd = op.join(preprocessed_data_dir, sub_id) try: os.makedirs(op.join(opd, 'log')) except OSError: pass config.update_config({ 'logging': { 'log_directory': op.join(opd, 'log'), 'log_to_file': True, 'workflow_level': 'INFO', 'interface_level': 'INFO' }, 'execution': { 'stop_on_first_crash': False } }) logging.update_logging(config) # load the sequence parameters from json file with open(os.path.join(raw_data_dir, 'acquisition_parameters.json')) as f: json_s = f.read() acquisition_parameters = json.loads(json_s) # load the analysis parameters from json file with open(os.path.join(raw_data_dir, 'analysis_parameters.json')) as f: json_s = f.read() analysis_info = json.loads(json_s) # load the analysis/experimental parameters for this subject from json file with open(os.path.join(raw_data_dir, sub_id ,'experimental_parameters.json')) as f: json_s = f.read() experimental_parameters = json.loads(json_s) analysis_info.update(experimental_parameters) if not op.isdir(os.path.join(preprocessed_data_dir, sub_id)): try: os.makedirs(os.path.join(preprocessed_data_dir, sub_id)) except OSError: pass # copy json files to preprocessed data folder # this allows these parameters to be updated and synced across subjects by changing only the raw data files. copyfile(os.path.join(raw_data_dir, 'acquisition_parameters.json'), os.path.join(preprocessed_data_dir, 'acquisition_parameters.json'), copy = True) copyfile(os.path.join(raw_data_dir, 'analysis_parameters.json'), os.path.join(preprocessed_data_dir, 'analysis_parameters.json'), copy = True) copyfile(os.path.join(raw_data_dir, sub_id ,'experimental_parameters.json'), os.path.join(preprocessed_data_dir, sub_id ,'experimental_parameters.json'), copy = True) if pupil: pwf = create_pupil_workflow(analysis_info,'pupil') pwf.inputs.inputspec.sub_id = sub_id pwf.inputs.inputspec.preprocessed_directory = preprocessed_data_dir pwf.write_graph(opd + '_pupil.svg', format='svg', graph2use='colored', simple_form=False) pwf.run('MultiProc', plugin_args={'n_procs': 6}) if wb_fir: wbfwf = create_bold_wholebrain_fir_workflow(analysis_info,'wb_fir') wbfwf.inputs.inputspec.sub_id = sub_id wbfwf.inputs.inputspec.preprocessed_directory = preprocessed_data_dir wbfwf.write_graph(opd + '_wb_fir.svg', format='svg', graph2use='colored', simple_form=False) wbfwf.run('MultiProc', plugin_args={'n_procs': 6})
40.422018
170
0.682705
0
0
0
0
0
0
0
0
1,322
0.300045
593382e994272402d7ed09a0a47388a40b5bfde8
3,692
py
Python
thm.py
brenolf/k-flow
f2ab6e2e6aa09aad437acb2ef071257adc0464c1
[ "Apache-2.0" ]
null
null
null
thm.py
brenolf/k-flow
f2ab6e2e6aa09aad437acb2ef071257adc0464c1
[ "Apache-2.0" ]
null
null
null
thm.py
brenolf/k-flow
f2ab6e2e6aa09aad437acb2ef071257adc0464c1
[ "Apache-2.0" ]
null
null
null
import sys N = -1 G = None H = None vis = None vis_aux = None valence = None flows = {} answer = [] allowed_flows = { 3 : [-1, 1], 4 : [-1, 1, 2], 5 : [-1, 1, 2, -2] } def has_k_flow (graph): global N, G, H, vis, valence, flows G = graph N = len(G) H = [[0] * N for i in xrange(0, N)] vis = [False] * N valence = [0] * N for v in xrange(0, N): valence[v] = len(G[v]) if valence[v] not in flows and valence[v] != 0: flows[valence[v]] = getWeights(valence[v]) for v in xrange(0, N): G[v] = sorted(G[v], key=lambda u : valence[u], reverse=True) del answer[:] v = find_next() return dfs(v) def getWeights (VALENCE, e = 0): global answer, E, edges if e == 0: del answer[:] edges = [0] * VALENCE elif e >= VALENCE: return None isLast = (e == (VALENCE - 1)) weight2 = [0, 2] for w in xrange(0, 2): edges[e] = weight2[w] getWeights(VALENCE, e + 1) if isLast: edges2 = sum(edges) / 2 if (VALENCE - edges2) % 2 == 0 and not (edges2 == VALENCE and edges2 % 2 != 0): answer.append(edges[:]) if e == 0: return answer[:] def find_next (): vertices = xrange(0, N) vertices = filter(lambda v : not vis[v], vertices) # pick most constrained variable vertices = sorted(vertices, key=lambda v : valence[v], reverse=True) return vertices.pop(0) def dfs (v = 0): vis[v] = True if valence[v] == 0: sys.stderr.write ('error: vertex "%d" is 0-valent. Have you forgotten it?\n' % v) exit(1) constraints, neighbours = getConstraints(v) weights = flows[valence[v]] W = select(constraints, weights, v) isLast = (sum(vis) == N) if len(W) == 0: vis[v] = False return False for w in W: clear(v, neighbours) assign(v, w) counter = 0 for u in G[v]: if not vis[u]: counter += 1 if dfs(u): return True else: break deadlock = (not isLast and counter == 0) if deadlock and dfs(find_next()): return True elif isLast and checkEulerian(): answer.append(H[:][:]) return True vis[v] = False clear(v, neighbours) return False def dfs_check(v, one_vertex, component, path): global vis_aux vis_aux[v] = component path.append(v) recursive_ones = 0 for u in G[v]: if vis_aux[u] == 0 and H[v][u] == 0: recursive_ones += dfs_check(u, one_vertex, component, path) return int(one_vertex[v]) + recursive_ones def checkEulerian(): global vis_aux # for v in xrange(0, N): # weight2 = sum(H[v]) / 2 # if (valence[v] - weight2) % 2 != 0: # return False vis_aux = [False] * N one_vertex = [(sum(H[v]) / 2) % 2 != 0 for v in xrange(0, N)] components = 0 result = True paths = {} for v in xrange(0, N): if vis_aux[v] == 0: components += 1 path = [] C_ones = dfs_check(v, one_vertex, components, path) paths[components] = path if C_ones % 2 != 0: result = False if result and False: for i in xrange(0, components): print i + 1, paths[i + 1] return result def getConstraints (v): constraints = {} neighbours = [] i = 0 for u in G[v]: if H[v][u] != 0 or H[u][v] != 0: constraints[i] = 2 neighbours.append(u) i += 1 return constraints, neighbours def select (constraints, possibilities, v): r = [] for p in possibilities: for field in constraints: if p[field] != constraints[field]: break else: r.append(p[:]) def valid (vector): for i in xrange(0, len(vector)): if vis[G[v][i]] and vector[i] == 2 and i not in constraints: return False return True return [i for i in r if valid(i)] def assign (v, weights): for u in G[v]: w = weights.pop(0) H[u][v] = H[v][u] = w def clear (v, neighbours): for u in G[v]: if u not in neighbours: H[u][v] = H[v][u] = 0
16.93578
83
0.597237
0
0
0
0
0
0
0
0
194
0.052546
5933bc9be206bb31b3b20546a2f728540ffb2f7a
45,642
py
Python
ms/MS/index.py
jcnelson/syndicate
4837265be3e0aa18cdf4ee50316dbfc2d1f06e5b
[ "Apache-2.0" ]
16
2015-01-02T15:39:04.000Z
2016-03-17T06:38:46.000Z
ms/MS/index.py
jcnelson/syndicate
4837265be3e0aa18cdf4ee50316dbfc2d1f06e5b
[ "Apache-2.0" ]
37
2015-01-28T20:58:05.000Z
2016-03-22T04:01:32.000Z
ms/MS/index.py
jcnelson/syndicate
4837265be3e0aa18cdf4ee50316dbfc2d1f06e5b
[ "Apache-2.0" ]
8
2015-04-08T02:26:03.000Z
2016-03-04T05:56:24.000Z
#!/usr/bin/pyhon """ Copyright 2014 The Trustees of Princeton University Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import storage.storagetypes as storagetypes import storage.shardcounter as shardcounter import protobufs.ms_pb2 as ms_pb2 import logging import random import os import types import errno import time import datetime import collections import pickle import base64 from common.msconfig import * class MSEntryIndexNode( storagetypes.Object ): """ Directory entry index node. """ parent_id = storagetypes.String( default="None" ) file_id = storagetypes.String( default="None", indexed=False ) volume_id = storagetypes.Integer( default=-1 ) dir_index = storagetypes.Integer( default=-1 ) generation = storagetypes.Integer( default=-1 ) alloced = storagetypes.Boolean( default=False ) nonce = storagetypes.Integer( default=0, indexed=False ) # for uniqueness class MSEntryEntDirIndex( MSEntryIndexNode ): """ (file_id --> dir_index) relation NOTE: define this separately so it can be indexed independently of other node types. """ @classmethod def make_key_name( cls, volume_id, file_id ): # name for index nodes that resolve file_id to dir_index (entry index node) return "MSEntryEntDirIndex: volume_id=%s,file_id=%s" % (volume_id, file_id) class MSEntryDirEntIndex( MSEntryIndexNode ): """ (dir_index --> file_id) relation NOTE: define this separately so it can be indexed independently of other node types """ @classmethod def make_key_name( cls, volume_id, parent_id, dir_index ): # name for index nodes that resolve dir_index to file_id (directory index node) return "MSEntryDirEntIndex: volume_id=%s,parent_id=%s,dir_index=%s" % (volume_id, parent_id, dir_index) class MSEntryIndex( storagetypes.Object ): """ """ NUM_COUNTER_SHARDS = 20 @classmethod def __parent_child_counter_name( cls, volume_id, parent_id ): return "MSEntryIndex: volume_id=%s,parent_id=%s" % (volume_id, parent_id) @classmethod @storagetypes.concurrent def __update_index_node_async( cls, volume_id, parent_id, file_id, dir_index, alloced, **attrs ): """ Set the allocation status of a directory index node (but not its matching entry index node). Return 0 on success Return -EINVAL if the given file_id doesn't match the directory index node's file_id Return -EEXIST if the given directory index node's allocation status is the same as alloced """ index_key_name = MSEntryDirEntIndex.make_key_name( volume_id, parent_id, dir_index ) index_key = storagetypes.make_key( MSEntryDirEntIndex, index_key_name ) old_alloced = None idx = yield index_key.get_async() if idx is None: old_alloced = alloced idx = MSEntryDirEntIndex( key=index_key, volume_id=volume_id, parent_id=parent_id, file_id=file_id, dir_index=dir_index, alloced=alloced, **attrs ) else: if idx.file_id != file_id: # wrong node storagetypes.concurrent_return( -errno.EINVAL ) old_alloced = idx.alloced if old_alloced != alloced: # changing allocation status idx.populate( -1, volume_id=volume_id, parent_id=parent_id, file_id=file_id, dir_index=dir_index, alloced=alloced, **attrs ) yield idx.put_async() storagetypes.concurrent_return( 0 ) else: storagetypes.concurrent_return( -errno.EEXIST ) @classmethod @storagetypes.concurrent def __update_or_alloc_async( cls, volume_id, parent_id, file_id, dir_index, generation, alloced ): """ Update or allocate the index node pair and/or set the directory index node's allocation status, asynchronously. If the directory index node does not exist, it and its entry index node will be created and the allocation status set accordingly. If the directory index node exists, but has a different allocation status, then the allocation status will be set accordingly. If we succeed in allocating a new index node, incremenet the number of children in the parent directory. Return True on success. Return False if the index node existed, but the file_id did not match its record or the allocation status did not change. """ index_key_name = MSEntryDirEntIndex.make_key_name( volume_id, parent_id, dir_index ) idx = None nonce = random.randint( -2**63, 2**63 - 1 ) result = True if idx is None: idx = yield MSEntryDirEntIndex.get_or_insert_async( index_key_name, volume_id=volume_id, parent_id=parent_id, file_id=file_id, dir_index=dir_index, generation=generation, alloced=alloced, nonce=nonce ) if idx.nonce == nonce: # created. """ if alloced: logging.info("Directory /%s/%s: allocated index slot for /%s/%s at %s" % (volume_id, parent_id, volume_id, file_id, dir_index)) else: logging.info("Directory /%s/%s: freed index slot at %s" % (volume_id, parent_id, dir_index)) """ # need to create an entry index node as well. entry_key_name = MSEntryEntDirIndex.make_key_name( volume_id, file_id ) entry_key = storagetypes.make_key( MSEntryEntDirIndex, entry_key_name ) entry_idx = MSEntryEntDirIndex( key=entry_key, volume_id=volume_id, parent_id=parent_id, file_id=file_id, dir_index=dir_index, generation=generation, alloced=alloced, nonce=nonce ) yield entry_idx.put_async() # storagetypes.memcache.set( entry_key_name, entry_idx ) else: # already exists. changing allocation status? if idx.alloced != alloced: # allocation status needs to be changed # want to change allocation status rc = yield storagetypes.transaction_async( lambda: cls.__update_index_node_async( volume_id, parent_id, file_id, dir_index, alloced, generation=generation ), xg=True ) if rc == 0: result = True else: logging.error("__update_index_node_async(/%s/%s file_id=%s dir_index=%s alloced=%s) rc = %s" % (volume_id, parent_id, file_id, dir_index, alloced, rc )) result = False else: if alloced and idx.file_id != file_id: # collision logging.error("Directory /%s/%s: collision inserting /%s/%s at %s (occupied by /%s/%s)" % (volume_id, parent_id, volume_id, file_id, dir_index, volume_id, idx.file_id)) result = False else: # created/set correctly result = True """ if result: storagetypes.memcache.set( index_key_name, idx ) """ storagetypes.concurrent_return( result ) @classmethod def __alloc( cls, volume_id, parent_id, file_id, dir_index, generation, async=False ): """ Get or create an allocated index node, for the given directory index. Return True if we succeeded. Return False if the node already exists for this dir_index value, or the file ID is wrong. """ result_fut = cls.__update_or_alloc_async( volume_id, parent_id, file_id, dir_index, generation, True ) if not async: storagetypes.wait_futures( [result_fut] ) return result_fut.get_result() else: return result_fut @classmethod def __free( cls, volume_id, parent_id, file_id, dir_index, async=False ): """ Get or create a free index node, for a given directory index. Return True if we succeeded. Return False if the node already exists for this dir_index value, or if it's already freed (or the file ID is wrong) """ result_fut = cls.__update_or_alloc_async( volume_id, parent_id, file_id, dir_index, -1, False ) if not async: storagetypes.wait_futures( [result_fut] ) return result_fut.get_result() else: return result_fut @classmethod def __num_children_inc( cls, volume_id, parent_id, num_shards, do_transaction=True, async=False ): """ Increment the number of children in a directory. """ counter_name = cls.__parent_child_counter_name( volume_id, parent_id ) if async: fut = shardcounter.increment_async( counter_name, num_shards, do_transaction=do_transaction, use_memcache=False ) return fut else: shardcounter.increment( counter_name, num_shards, do_transaction=do_transaction, use_memcache=False ) return 0 @classmethod def __num_children_dec( cls, volume_id, parent_id, num_shards, do_transaction=True, async=False ): """ Decrement the number of children in a directory """ counter_name = cls.__parent_child_counter_name( volume_id, parent_id ) if async: fut = shardcounter.decrement_async( counter_name, num_shards, do_transaction=do_transaction, use_memcache=False ) return fut else: shardcounter.decrement( counter_name, num_shards, do_transaction=do_transaction, use_memcache=False ) return 0 @classmethod def __num_children_delete( cls, volume_id, parent_id, num_shards, async=False ): """ Delete a shard counter for the number of children. """ counter_name = cls.__parent_child_counter_name( volume_id, parent_id ) if async: fut = shardcounter.delete_async( counter_name, num_shards ) return fut else: shardcounter.delete( counter_name, num_shards ) return 0 @classmethod @storagetypes.concurrent def __read_node( cls, file_id, index, idx_key, check_file_id=True ): """ Read a dir-index node, given its key. Return (rc, idx): * return -ENOENT if the index node doesn't exist * return -EINVAL if the file IDs don't match, and check_file_id is true * return -EPERM if the directory indexes don't match """ idx = yield idx_key.get_async( use_cache=False, use_memcache=False ) if idx is None: storagetypes.concurrent_return( (-errno.ENOENT, None) ) if check_file_id and idx.file_id != file_id: storagetypes.concurrent_return( (-errno.EINVAL, None) ) if idx.dir_index != index: storagetypes.concurrent_return( (-errno.EPERM, None) ) storagetypes.concurrent_return( (0, idx) ) @classmethod def __read_dirent_node( cls, volume_id, parent_id, file_id, index, async=False, check_file_id=True ): """ Read a node key, and verify that it is consistent. Return (rc, idx) """ idx_key_name = MSEntryDirEntIndex.make_key_name( volume_id, parent_id, index ) idx_key = storagetypes.make_key( MSEntryDirEntIndex, idx_key_name ) ret_fut = cls.__read_node( file_id, index, idx_key, check_file_id=check_file_id ) if async: return ret_fut else: storagetypes.wait_futures( [ret_fut] ) return ret_fut.get_result() @classmethod def __compactify_get_candidates_delete( cls, volume_id, parent_id, dir_index_cutoff, async=False ): """ Find the set of allocated index nodes beyond a given offset, suitable for swapping into a newly-freed slot. """ to_compactify = MSEntryDirEntIndex.ListAll( {"MSEntryDirEntIndex.parent_id ==": parent_id, "MSEntryDirEntIndex.volume_id ==": volume_id, "MSEntryDirEntIndex.alloced ==" : True, "MSEntryDirEntIndex.dir_index >=": dir_index_cutoff}, async=async, limit=1024 ) return to_compactify @classmethod def FindFreeGaps( cls, volume_id, parent_id, dir_index_cutoff, async=False, limit=1024 ): """ Find the set of unallocated index slots less than a given offset, suitable for holding a newly-allocated directory index. """ to_compactify = MSEntryDirEntIndex.ListAll( {"MSEntryDirEntIndex.parent_id ==": parent_id, "MSEntryDirEntIndex.volume_id ==": volume_id, "MSEntryDirEntIndex.alloced ==" : True, "MSEntryDirEntIndex.dir_index <": dir_index_cutoff}, async=async, limit=limit ) gaps = list( set(range(0, dir_index_cutoff)) - set([idx.dir_index for idx in to_compactify]) ) return gaps @classmethod def __compactify_swap( cls, volume_id, parent_id, alloced_file_id, alloced_dir_index, free_file_id, free_dir_index, async=False ): """ Atomically swap an allocated directory index node with an unallocated (or non-existant) directory index node, thereby placing the allocated directory index node into the "gap" left by the unallocated directory index node. This will delete the unallocated directory index node and its companion entry index node, and move the allocated directory index node's companion entry index node into place. alloced_file_id corresponds to the existing MSEntry (i.e. the one associated with the allocated index node) free_file_id corresponds to the deleted MSEntry, if applicable (i.e. the one associated with the free index node). It can be None if there is no index node to delete for the file id. Return the dir index of the overwritten gap node on success, or None if free_file_id was None Return -ENOENT if the allocated dir index node no longer exists. Return -EAGAIN if we raced another process to allocate this slot and lost Return -ESTALE if the index allocation data is invalid (i.e. the free index got allocated, or the allocated index got freed) """ alloced_idx_key_name = MSEntryDirEntIndex.make_key_name( volume_id, parent_id, alloced_dir_index ) alloced_entry_idx_key_name = MSEntryEntDirIndex.make_key_name( volume_id, alloced_file_id ) free_idx_key_name = MSEntryDirEntIndex.make_key_name( volume_id, parent_id, free_dir_index ) alloced_entry_idx_key = storagetypes.make_key( MSEntryEntDirIndex, alloced_entry_idx_key_name ) free_idx_key = storagetypes.make_key( MSEntryDirEntIndex, free_idx_key_name ) # if the free file ID is not known, get it if free_file_id is None: free_idx_data = cls.__read_dirent_node( volume_id, parent_id, None, free_dir_index, check_file_id=False ) if free_idx_data is not None: free_idx_rc, free_idx = free_idx_data # it's okay if this index node does not exist if free_idx_rc != 0 and free_idx_rc != -errno.ENOENT: # some other error logging.error("/%s/%s: __read_dirent_node( /%s/%s, %s ) rc = %s" % (volume_id, parent_id, volume_id, free_file_id, free_dir_index, free_idx_rc )) if async: return storagetypes.FutureWrapper( free_idx_rc ) else: return free_idx_rc elif free_idx_rc == 0 and free_idx is not None: if free_idx.alloced: logging.error("/%s/%s: free index (/%s/%s, %s) is allocated" % (volume_id, parent_id, volume_id, free_idx.file_id, free_dir_index) ) storagetypes.memcache.delete_multi( [alloced_idx_key_name, alloced_entry_idx_key_name, free_idx_key_name] ) if async: return storagetypes.FutureWrapper( -errno.ESTALE ) else: return -errno.ESTALE else: logging.info("/%s/%s: file id of /%s/%s at %s is %s\n" % (volume_id, parent_id, volume_id, parent_id, free_dir_index, free_idx.file_id) ) @storagetypes.concurrent def do_swap( free_file_id ): # confirm that the allocated directory index node and free directory index node still exist free_idx_data = None free_idx_rc = None free_idx = None free_idx_file_id = None check_free_file_id = True if free_file_id is None: check_free_file_id = False alloced_idx_data, free_idx_data = yield cls.__read_dirent_node( volume_id, parent_id, alloced_file_id, alloced_dir_index, async=True ), cls.__read_dirent_node( volume_id, parent_id, free_file_id, free_dir_index, async=True, check_file_id=check_free_file_id ) alloced_idx_rc, alloced_idx = alloced_idx_data if free_idx_data is not None: free_idx_rc, free_idx = free_idx_data # possible that we raced another compactify operation and lost (in which case the allocated node might be different than what we expect) if alloced_idx_rc != 0: logging.error("/%s/%s: alloced index (/%s/%s, %s) rc = %s" % (volume_id, parent_id, volume_id, alloced_file_id, alloced_dir_index, alloced_idx_rc) ) storagetypes.concurrent_return( (-errno.EAGAIN, None, None) ) elif not alloced_idx.alloced: logging.error("/%s/%s: alloced index (/%s/%s, %s) is free" % (volume_id, parent_id, volume_id, alloced_file_id, alloced_dir_index) ) storagetypes.concurrent_return( (-errno.ESTALE, None, None) ) if free_idx_data is not None: if free_idx_rc != 0: if free_idx_rc == -errno.ENOENT: # the entry doesn't exist, which is fine by us since we're about to overwrite it anyway free_idx_rc = None free_idx = None free_idx_data = None else: logging.error("/%s/%s: __read_dirent_node(/%s/%s, %s) rc = %s" % (volume_id, parent_id, volume_id, free_file_id, free_dir_index, free_idx_rc) ) storagetypes.concurrent_return( (free_idx_rc, None, None) ) elif free_idx.alloced: logging.error("/%s/%s: free index (/%s/%s, %s) is allocated" % (volume_id, parent_id, volume_id, free_idx.file_id, free_dir_index) ) storagetypes.concurrent_return( (-errno.ESTALE, None, None) ) elif free_idx.dir_index != free_dir_index: raise Exception("/%s/%s: free index slot mismatch: %s != %s" % (volume_id, free_file_id, free_idx.dir_index, free_dir_index)) else: # save this for later... free_idx_file_id = free_idx.file_id # sanity check if alloced_idx.dir_index != alloced_dir_index: raise Exception("/%s/%s: allocated index slot mismatch: %s != %s" % (volume_id, alloced_file_id, alloced_idx.dir_index, alloced_dir_index)) # do the swap: # * overwrite the free dir index node with the allocated dir index node's data (moving it into place over the freed one) # * update the alloced ent node with the free dir index node's dir index (compactifying the index) new_dir_idx = MSEntryDirEntIndex( key=free_idx_key, **alloced_idx.to_dict() ) new_entry_dir_idx = MSEntryEntDirIndex( key=alloced_entry_idx_key, **alloced_idx.to_dict() ) # overwrites existing entry index node new_dir_idx.dir_index = free_dir_index new_entry_dir_idx.dir_index = free_dir_index logging.debug( "swap index slot of /%s/%s: slot %s --> slot %s (overwrites %s)" % (volume_id, alloced_file_id, alloced_dir_index, free_dir_index, free_file_id) ) yield new_dir_idx.put_async(), new_entry_dir_idx.put_async(), alloced_idx.key.delete_async() storagetypes.memcache.delete_multi( [alloced_idx_key_name, alloced_entry_idx_key_name, free_idx_key_name] ) storagetypes.concurrent_return( (0, alloced_idx, free_idx_file_id) ) @storagetypes.concurrent def swap( free_file_id ): rc, alloced_idx, free_idx_file_id = yield storagetypes.transaction_async( lambda: do_swap( free_file_id ), xg=True ) if rc < 0: storagetypes.concurrent_return( rc ) old_dir_index = None if free_file_id is None: free_file_id = free_idx_file_id if free_file_id is not None: # blow away the newly-freed index node old_entry_idx_key_name = MSEntryEntDirIndex.make_key_name( volume_id, free_file_id ) old_entry_idx_key = storagetypes.make_key( MSEntryEntDirIndex, old_entry_idx_key_name ) yield old_entry_idx_key.delete_async() storagetypes.memcache.delete( old_entry_idx_key_name ) old_dir_index = alloced_idx.dir_index storagetypes.concurrent_return( old_dir_index ) rc_fut = swap( free_file_id ) if async: return rc_fut else: storagetypes.wait_futures( [rc_fut] ) return rc_fut.get_result() @classmethod @storagetypes.concurrent def __compactify_remove_index_async( cls, volume_id, parent_id, dead_file_id, dead_dir_index ): """ Remove a freed index slot's node data. """ idx_key_name = MSEntryDirEntIndex.make_key_name( volume_id, parent_id, dead_dir_index ) ent_key_name = MSEntryEntDirIndex.make_key_name( volume_id, dead_file_id ) idx_key = storagetypes.make_key( MSEntryDirEntIndex, idx_key_name ) ent_key = storagetypes.make_key( MSEntryEntDirIndex, ent_key_name ) @storagetypes.concurrent def delete_index_if_unallocated(): idx_node = yield idx_key.get_async( use_cache=False, use_memcache=False ) if idx_node is None: # already gone storagetypes.concurrent_return( 0 ) if not idx_node.alloced: yield idx_key.delete_async() storagetypes.concurrent_return( 0 ) yield ent_key.delete_async(), storagetypes.transaction_async( delete_index_if_unallocated ) storagetypes.memcache.delete_multi( [idx_key_name, ent_key_name] ) @classmethod def __compactify_child_delete( cls, volume_id, parent_id, free_file_id, free_dir_index, dir_index_cutoff ): """ Repeatedly find a child's index node that (1) is allocated, and (2) is beyond a given cutoff (i.e. the number of index nodes at the time of the call), and then atomically swap the identified freed node with child's node in the index order. The effect is that allocated index nodes at the end of the index get moved to replace the gaps in the index, thereby compactifying it. Return (old_dir_index, free dir index node) on success Return -EPERM if no compactification can happen (i.e. all children have directory index values smaller than the maximum) Return -EAGAIN if the caller should refresh the parent directory index maximum value """ # find all entries in parent with a dir index greater than the current one to_compactify = None while True: to_compactify = cls.__compactify_get_candidates_delete( volume_id, parent_id, dir_index_cutoff ) if len(to_compactify) > 0: # it's possible there are more than one. Pick one that's allocated (but go in random order) order = range( 0, len(to_compactify) ) random.shuffle( order ) idx = None for i in order: if to_compactify[i].alloced: idx = to_compactify[i] break if idx is None: # try again--there are no candidates to swap at this time logging.info("Directory /%s/%s: no compactifiable candidates >= %s" % (volume_id, parent_id, dir_index_cutoff)) return (-errno.EAGAIN, None) old_dir_index = cls.__compactify_swap( volume_id, parent_id, idx.file_id, idx.dir_index, free_file_id, free_dir_index ) if old_dir_index >= 0: # swapped! return (old_dir_index, idx) else: logging.info("Directory /%s/%s: __compactify_swap(%s (%s <--> %s)) rc = %s" % (volume_id, parent_id, idx.file_id, free_dir_index, idx.dir_index, old_dir_index)) if old_dir_index == -errno.ENOENT: # entry queried doesn't exist, for some reason. Need dir_index_cutoff to be refreshed return (-errno.EAGAIN, None) if old_dir_index in [-errno.EAGAIN, -errno.EPERM, -errno.ESTALE]: # had multiple concurrent deletes, and they tried to operate on the same entry. Try again continue else: # No compactification needs to happen # (assuming the ListAll returned consistent data) logging.info("Directory /%s/%s: no compactifiable candidates at this time" % (volume_id, parent_id)) return (-errno.EPERM, None) @classmethod def __compactify_parent_delete( cls, volume_id, parent_id, free_file_id, free_dir_index, num_shards, compactify_continuation=None ): """ Given a free directory index, repeatedly find a child with a directory index value that can be swapped into a gap in the parent's index. That is, find children with index values that are beyond the number of children, and swap their index nodes with index nodes that represent gaps. """ old_max_cutoff = None while True: # refresh the index max cutoff--it may have changed # the cutoff is the new number of children, after this entry has been deleted parent_max_cutoff = cls.GetNumChildren( volume_id, parent_id, num_shards ) - 1 if parent_max_cutoff is None: # directory doesn't exist anymore...nothing to compactify logging.info("Index node /%s/%s does not exist" % (volume_id, parent_id) ) return 0 if parent_max_cutoff == 0: # nothing left to compactify! logging.info("Directory /%s/%s appears to be empty" % (volume_id, parent_id)) return 0 if old_max_cutoff is not None: # choose the smallest parent size seen so far as the cutoff, since it maimizes the number of entries # that can be selected to fill the gap. If we don't do this, we could accidentally # loop forever by never finding an entry to replace the gap. parent_max_cutoff = min( old_max_cutoff, parent_max_cutoff ) if parent_max_cutoff < free_dir_index: # gap no longer exists--the directory shrank out from under it logging.info("Directory /%s/%s compactification threshold %s exceeded (by %s)" % (volume_id, parent_id, parent_max_cutoff, free_dir_index) ) return 0 if parent_max_cutoff == free_dir_index: # gap is at the end. logging.info("Directory /%s/%s entry is at the end (%s)" % (volume_id, parent_id, free_dir_index)) rc_fut = cls.__compactify_remove_index_async( volume_id, parent_id, free_file_id, free_dir_index ) storagetypes.wait_futures( [rc_fut] ) return 0 old_max_cutoff = parent_max_cutoff replaced_dir_index, child_idx = cls.__compactify_child_delete( volume_id, parent_id, free_file_id, free_dir_index, parent_max_cutoff ) if replaced_dir_index >= 0: # success! if compactify_continuation is not None: compactify_continuation( compacted_index_node=child_idx, replaced_index=replaced_dir_index ) # verify that we didn't leave a gap by compactifying # (can happen if another process creates an entry while we're compactifying) new_parent_max_cutoff = cls.GetNumChildren( volume_id, parent_id, num_shards ) if new_parent_max_cutoff is None: # directory doesn't exist anymore...nothing to compactify logging.info("Index node /%s/%s does not exist" % (volume_id, parent_id) ) return 0 if parent_max_cutoff < new_parent_max_cutoff: # left a gap--need to compactify again free_dir_index = parent_max_cutoff old_max_cutoff = None continue else: # done! logging.info("Directory /%s/%s compactified" % (volume_id, parent_id)) return 0 elif replaced_dir_index == -errno.EAGAIN or replaced_dir_index == -errno.EPERM: # need to re-check the maximum cutoff # (NOTE: EPERM can mean that the children beyond the cutoff aren't showing up in queries yet) # TODO: can loop forever? logging.info("__compactify_child_delete( /%s/%s index=%s threshold=%s ) rc = %s" % (volume_id, parent_id, free_dir_index, parent_max_cutoff, replaced_dir_index)) continue else: logging.error("BUG: failed to compactify /%s/%s, rc = %s\n", volume_id, parnet_id, replaced_dir_index ) return replaced_dir_index @classmethod def __compactify_on_delete( cls, volume_id, parent_id, free_file_id, free_dir_index, num_shards, retry=True, compactify_continuation=None ): """ Compactify the parent's index on delete, trying again in a deferred task if need be. This is the top-level entry point. """ try: # compact the index--move entries from the end of the index into the gaps cls.__compactify_parent_delete( volume_id, parent_id, free_file_id, free_dir_index, num_shards, compactify_continuation=compactify_continuation ) # account that there is now one less index node cls.__num_children_dec( volume_id, parent_id, num_shards ) except storagetypes.RequestDeadlineExceededError: if retry: # keep trying storagetypes.deferred.defer( cls.__compactify_on_delete, volume_id, parent_id, free_dir_index ) return else: raise except Exception, e: logging.exception( e ) raise e @classmethod def __compactify_parent_insert_once( cls, volume_id, parent_id, new_file_id, new_dir_index, num_shards ): """ Given a newly-allocated directory index, try to find a free slot lower in the index to swap it with. Return the (0, final directory index) on success. Return negative on error. """ # find gaps to swap into that are in range [0, new_dir_index]. # see if we can get new_dir_index to be beneath the number of children. free_gaps = cls.FindFreeGaps( volume_id, parent_id, new_dir_index ) if len(free_gaps) == 0: logging.info("Directory /%s/%s: no free gaps, so keep /%s/%s at %s" % (volume_id, parent_id, volume_id, new_file_id, new_dir_index)) return (0, new_dir_index) # move us there free_gap = free_gaps[ random.randint( 0, len(free_gaps) - 1 ) ] # are we in a "gap" already? if free_gap == new_dir_index: logging.info("Directory /%s/%s: already inserted /%s/%s at %s" % (volume_id, parent_id, volume_id, new_file_id, free_gap)) return (0, free_gap) # attempt the swap rc = cls.__compactify_swap( volume_id, parent_id, new_file_id, new_dir_index, None, free_gap ) # get the number of children again--maybe the set expanded up to include us, even if we failed parent_num_children = cls.GetNumChildren( volume_id, parent_id, num_shards ) if rc is None: # success if free_gap < parent_num_children: # swapped into a lower slot! logging.info("Directory /%s/%s: inserted /%s/%s at %s" % (volume_id, parent_id, volume_id, new_file_id, free_gap)) return (0, free_gap) else: # succeeded, but after the number of children got decreased # try again logging.error("Directory /%s/%s: inserted /%s/%s at %s (from %s), but directory size is %s" % (volume_id, parent_id, volume_id, new_file_id, free_gap, new_dir_index, parent_num_children)) new_dir_index = free_gap return (-errno.EAGAIN, new_dir_index) else: logging.debug("Directory /%s/%s: failed to swap /%s/%s from %s to %s, num_children = %s" % (volume_id, parent_id, volume_id, new_file_id, new_dir_index, free_gap, parent_num_children)) # maybe we failed to swap, but are we now in range? if new_dir_index < parent_num_children: # success logging.debug("Directory /%s/%s: inserted /%s/%s at %s, since directory size is %s" % (volume_id, parent_id, volume_id, new_file_id, new_dir_index, parent_num_children)) return (0, new_dir_index) elif rc == -errno.ENOENT: # someone else swapped us logging.debug("Directory /%s/%s: swapped /%s/%s out of %s by another process" % (volume_id, parent_id, volume_id, new_file_id, new_dir_index)) return (0, -1) else: # otherwise, try again logging.error("Directory /%s/%s: __compactify_swap(%s (%s <--> %s)) rc = %s; try again" % (volume_id, parent_id, new_file_id, new_dir_index, free_gap, rc)) return (-errno.EAGAIN, new_dir_index) @classmethod def __compactify_on_insert( cls, volume_id, parent_id, new_file_id, new_dir_index, num_shards ): """ Compactify the parent's index on insert, trying again in a deferred task if need be. Return an error code and the directory entry's new directory index, if successful. (0, nonnegative) means successfully inserted at nonzero place (0, negative) means successfully inserted, but we no longer know where (-EAGAIN, nonegative) means try again at the new directory index. """ try: # compact the index--move entries from the end of the index into the gaps rc, final_dir_index = cls.__compactify_parent_insert_once( volume_id, parent_id, new_file_id, new_dir_index, num_shards ) return (rc, final_dir_index) except Exception, e: logging.exception( e ) raise e @classmethod def NextGeneration( cls ): """ Get a generation number. """ now_sec, now_nsec = storagetypes.clock_gettime() # 10ths of milliseconds generation = now_sec * 10000 + now_nsec / 100000 return generation @classmethod def TryInsert( cls, volume_id, parent_id, file_id, new_dir_index, parent_capacity, num_shards, async=False ): """ Try to insert a given file ID into its parent's index, atomically. Otherwise, it selects a slot at random that is likely to be free Return a (return code, value) If return code is 0, then the value is the generation number If return code is negative, then the value is either the new directory index to try, or None to choose a new one outright. """ generation = cls.NextGeneration() @storagetypes.concurrent def try_insert( new_dir_index ): rc = yield cls.__alloc( volume_id, parent_id, file_id, new_dir_index, generation, async=True ) if rc: # compactify--see if we can shift it closer rc, final_dir_index = cls.__compactify_on_insert( volume_id, parent_id, file_id, new_dir_index, num_shards ) if rc == 0: storagetypes.concurrent_return( (0, generation) ) elif rc == -errno.EAGAIN: # try again storagetypes.concurrent_return( (-errno.EAGAIN, final_dir_index) ) else: storagetypes.concurrent_return( (rc, None) ) else: logging.info("Directory /%s/%s: Failed to insert /%s/%s (capacity %s) at %s; will need to retry" % (volume_id, parent_id, volume_id, file_id, parent_capacity, new_dir_index) ) # probably collided. Try again, and have the caller pick a different index storagetypes.concurrent_return( (-errno.EAGAIN, None) ) fut = try_insert( new_dir_index ) if async: return fut else: storagetypes.wait_futures( [fut] ) return fut.get_result() @classmethod def Delete( cls, volume_id, parent_id, file_id, dir_index, num_shards, async=False, retry=True, compactify_continuation=None ): """ Free and then compactify the index. This will result in the directory index and entry nodes getting deleted. """ @storagetypes.concurrent def do_delete(): rc = yield cls.__free( volume_id, parent_id, file_id, dir_index, async=True ) if not rc: logging.error("Failed to free index node /%s/%s (%s,%s)" % (volume_id, parent_id, file_id, dir_index)) storagetypes.concurrent_return( -errno.EAGAIN ) cls.__compactify_on_delete( volume_id, parent_id, file_id, dir_index, num_shards, retry=retry, compactify_continuation=compactify_continuation ) storagetypes.concurrent_return( 0 ) result_fut = do_delete() if async: return result_fut storagetypes.wait_futures( [result_fut] ) return result_fut.get_result() @classmethod def Purge( cls, volume_id, parent_id, file_id, num_shards, async=False ): """ Remove both DirEnt and EntDir index nodes, and don't bother to compactify. This is suitable for deleting the index wholesale, such as when deleting a Volume or an AG. Return 0 on success, if async == False Return a list of futures to wait on, if async == True """ futs = [] fut = cls.__num_children_delete( volume_id, parent_id, num_shards, async=True ) futs.append( futs ) entdir = MSEntryIndex.ReadIndex( volume_id, file_id ) if entdir is not None: dirent_key_name = MSEntryDirEntIndex.make_key_name( volume_id, parent_id, entdir.dir_index ) entdir_key_name = MSEntryEntDirIndex.make_key_name( volume_id, file_id ) dirent_key = storagetypes.make_key( MSEntryDirEntIndex, dirent_key_name ) entdir_key = storagetypes.make_key( MSEntryEntDirIndex, entdir_key_name ) dirent_del_fut = dirent_key.delete_async() entdir_del_fut = entdir_key.delete_async() futs.append( dirent_del_fut ) futs.append( entdir_del_fut ) if not async: storagetypes.wait_futures( futs ) return 0 else: return futs @classmethod def GetNumChildren( cls, volume_id, parent_id, num_shards, async=False ): """ Get the number of children in a directory """ num_children_counter = cls.__parent_child_counter_name( volume_id, parent_id ) if async: return shardcounter.get_count_async( num_children_counter, num_shards, use_memcache=False ) else: num_children = shardcounter.get_count( num_children_counter, num_shards, use_memcache=False ) return num_children @classmethod def NumChildrenInc( cls, volume_id, parent_id, num_shards, async=False ): """ Increase the number of children in a directory """ return cls.__num_children_inc( volume_id, parent_id, num_shards, async=async ) @classmethod def NumChildrenDec( cls, volume_id, parent_id, num_shards, async=False ): """ Get the number of children in a directory """ return cls.__num_children_inc( volume_id, parent_id, num_shards, async=async ) @classmethod def Read( cls, volume_id, parent_id, dir_index, async=False ): """ Read a directory index node. Return the whole node, not the value """ idx_key_name = MSEntryDirEntIndex.make_key_name( volume_id, parent_id, dir_index ) idx_key = storagetypes.make_key( MSEntryDirEntIndex, idx_key_name ) idx = storagetypes.memcache.get( idx_key_name ) if idx is not None: if async: return storagetypes.FutureWrapper( idx ) else: return idx else: if async: @storagetypes.concurrent def read_and_cache(): idx = yield idx_key.get_async() if idx is not None and idx.alloced: MSEntryIndex.SetCache( idx ) storagetypes.concurrent_return( idx ) return read_and_cache() else: return idx_key.get() @classmethod def ReadIndex( cls, volume_id, file_id, async=False ): """ Read an entry index node. Return an MSEntryEntDirIndex """ idx_key_name = MSEntryEntDirIndex.make_key_name( volume_id, file_id ) idx_key = storagetypes.make_key( MSEntryEntDirIndex, idx_key_name ) idx = storagetypes.memcache.get( idx_key_name ) if idx is not None: if async: return storagetypes.FutureWrapper( idx ) else: return idx else: if async: @storagetypes.concurrent def read_and_cache(): idx = yield idx_key.get_async() if idx is not None and idx.alloced: MSEntryIndex.SetCache( idx ) if not idx.alloced: storagetypes.concurrent_return( None ) storagetypes.concurrent_return( idx ) return read_and_cache() else: return idx_key.get() @classmethod def SetCache( cls, dir_index_node ): """ Cache a node """ idx_key_name = MSEntryDirEntIndex.make_key_name( dir_index_node.volume_id, dir_index_node.parent_id, dir_index_node.dir_index ) ent_key_name = MSEntryEntDirIndex.make_key_name( dir_index_node.volume_id, dir_index_node.file_id ) storagetypes.memcache.set_multi( {idx_key_name: dir_index_node, ent_key_name: dir_index_node} ) @classmethod def GenerationQuery( cls, volume_id, parent_id, generation_begin, generation_end ): """ Get a range of directory index nodes for a given parent/volume, by generation """ qry = MSEntryDirEntIndex.query() qry = qry.filter( storagetypes.opAND( MSEntryDirEntIndex.volume_id == volume_id, MSEntryDirEntIndex.parent_id == parent_id ) ) if generation_begin >= 0: qry = qry.filter( MSEntryDirEntIndex.generation >= generation_begin ) if generation_end >= 0: qry = qry.filter( MSEntryDirEntIndex.generation < generation_end ) return qry
40.534636
267
0.619101
44,677
0.978857
20,772
0.455107
43,273
0.948096
0
0
13,769
0.301674
59346b4914120bc35ba05709bdea9720cdc9dfbc
3,009
py
Python
tests/test_utils.py
caseygrun/plates
156069487560d0c72f080f7e45a4dc2ae7a466ac
[ "MIT" ]
null
null
null
tests/test_utils.py
caseygrun/plates
156069487560d0c72f080f7e45a4dc2ae7a466ac
[ "MIT" ]
null
null
null
tests/test_utils.py
caseygrun/plates
156069487560d0c72f080f7e45a4dc2ae7a466ac
[ "MIT" ]
null
null
null
from microplates.utils import * def test_itertuples(): assert list(itertuples((0,0),(0,2))) == [(0,0),(0,1),(0,2)] assert list(itertuples((1,0),(2,0))) == [(1,0),(2,0)] assert list(itertuples((1,0),(2,1))) == [(1,0),(1,1),(2,0),(2,1)] assert list(itertuples((1,0),(2,1), by='column')) == [(1,0),(2,0),(1,1),(2,1)] def test_letters2row(): assert letters2row('A') == 0 assert letters2row('H') == 7 assert letters2row('G') == 6 assert letters2row('AA') == 26 assert letters2row('AB') == 27 assert letters2row('BA') == 52 def test_cell2tuple(): assert cell2tuple('A1') == (0,0) assert cell2tuple('H10') == (7,9) assert cell2tuple('G11') == (6,10) assert cell2tuple('AA1') == (26,0) assert cell2tuple('AB10') == (27,9) assert cell2tuple('BA12') == (52,11) def test_is_cell(): assert is_cell('A1') assert is_cell('F12') assert is_cell('BC256') assert not is_cell('H 12') assert not is_cell('5S') def test_row2letters(): assert row2letters(7) == 'H' assert row2letters(27) == 'AB' assert row2letters(55) == 'BD' def test_tuple2cell(): assert tuple2cell(7,9) == 'H10' assert tuple2cell(27,9) == 'AB10' assert tuple2cell(55,11) == 'BD12' def test_range2cells(): assert range2cells('A1:B1') == range2cells('B1:A1') == ('A1', 'B1') assert range2cells('A:B') == ('A1', 'B12') assert range2cells('A:A') == ('A1','A12') assert range2cells('B:D') == ('B1','D12') assert range2cells('C:B') == ('B1','C12') assert range2cells('1:1') == ('A1','H1') assert range2cells('1:3') == ('A1','H3') assert range2cells('A11:A12') == ('A11','A12') assert range2cells('2:10') == range2cells('10:2') == ('A2','H10') assert range2cells("A:A",wells=384) == ("A1","A24") assert range2cells("I:I",wells=384) == ("I1","I24") assert range2cells("23:23",wells=384) == ("A23","P23") def test_range2tuple(): assert range2tuple('A1:C10') == range2tuple('C10:A1') == ((0,0),(2,9)) assert range2tuple('G7:G10') == range2tuple('G10:G7') == ((6,6),(6,9)) assert range2tuple("A:A",wells=384) == ((0,0),(0,23)) def test_range2cell_list(): assert range2cell_list('A1:A2') == ['A1','A2'] assert range2cell_list('A1:B2') == ['A1','A2','B1','B2'] assert range2cell_list('A1:B2', by='column') == ['A1','B1','A2','B2'] def test_iterwells(): assert list(iterwells(2,start='H12')) == ['H12', 'A1'] assert list(iterwells(13)) == ['A1','A2','A3','A4','A5','A6','A7','A8','A9','A10','A11','A12','B1'] assert list(iterwells(9)) == ['A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8', 'A9'] def test_infer_plate_size(): assert infer_plate_size(['H12']) == infer_plate_size(['A1','H12']) == infer_plate_size(range2cell_list('A1:H12')) == 96 assert infer_plate_size(['H13']) == 384 assert infer_plate_size(['A6'], all=True) == [24, 48, 96, 384, 1536] assert infer_plate_size(['A6'], prefer=96) == 96 assert infer_plate_size(['A6'], prefer=384) == 384
38.576923
123
0.580592
0
0
0
0
0
0
0
0
553
0.183782
593527dd9bb90c5f584c18500adffe54b948dd13
1,066
py
Python
example.py
train255/deep-speaker
d63b111b904faab34fe58637b3d0e7fd188e1b36
[ "MIT" ]
3
2021-08-20T16:40:09.000Z
2022-02-08T23:17:52.000Z
example.py
train255/deep-speaker
d63b111b904faab34fe58637b3d0e7fd188e1b36
[ "MIT" ]
1
2022-03-22T04:16:15.000Z
2022-03-22T04:26:03.000Z
example.py
train255/deep-speaker
d63b111b904faab34fe58637b3d0e7fd188e1b36
[ "MIT" ]
1
2020-11-06T08:07:27.000Z
2020-11-06T08:07:27.000Z
import numpy as np import random from audio import read_mfcc from batcher import sample_from_mfcc from constants import SAMPLE_RATE, NUM_FRAMES from conv_models import DeepSpeakerModel from test import batch_cosine_similarity np.random.seed(123) random.seed(123) model = DeepSpeakerModel() model.m.load_weights('/Users/premy/deep-speaker/checkpoints/ResCNN_triplet_training_checkpoint_175.h5', by_name=True) mfcc_001 = sample_from_mfcc(read_mfcc('samples/PhilippeRemy/PhilippeRemy_001.wav', SAMPLE_RATE), NUM_FRAMES) mfcc_002 = sample_from_mfcc(read_mfcc('samples/PhilippeRemy/PhilippeRemy_002.wav', SAMPLE_RATE), NUM_FRAMES) predict_001 = model.m.predict(np.expand_dims(mfcc_001, axis=0)) predict_002 = model.m.predict(np.expand_dims(mfcc_002, axis=0)) mfcc_003 = sample_from_mfcc(read_mfcc('samples/1255-90413-0001.flac', SAMPLE_RATE), NUM_FRAMES) predict_003 = model.m.predict(np.expand_dims(mfcc_003, axis=0)) print('SAME SPEAKER', batch_cosine_similarity(predict_001, predict_002)) print('DIFF SPEAKER', batch_cosine_similarity(predict_001, predict_003))
41
117
0.827392
0
0
0
0
0
0
0
0
225
0.211069
59373033d6759f87ac888baaf5e7fad69fe7d8fc
135,252
py
Python
pychunkedgraph/tests/test.py
perlman/PyChunkedGraph
2c582f46a8292010e8f9f54c94c63af0b172bdad
[ "MIT" ]
null
null
null
pychunkedgraph/tests/test.py
perlman/PyChunkedGraph
2c582f46a8292010e8f9f54c94c63af0b172bdad
[ "MIT" ]
null
null
null
pychunkedgraph/tests/test.py
perlman/PyChunkedGraph
2c582f46a8292010e8f9f54c94c63af0b172bdad
[ "MIT" ]
null
null
null
import sys import os import subprocess import pytest import numpy as np from functools import partial import collections from grpc._channel import _Rendezvous from google.cloud import bigtable from google.auth import credentials from math import inf from datetime import datetime, timedelta from time import sleep from signal import SIGTERM from warnings import warn sys.path.insert(0, os.path.join(sys.path[0], '..')) from pychunkedgraph.backend import chunkedgraph # noqa from pychunkedgraph.backend.utils import serializers, column_keys # noqa from pychunkedgraph.backend import chunkedgraph_exceptions as cg_exceptions # noqa from pychunkedgraph.creator import graph_tests # noqa def setup_emulator_env(): bt_env_init = subprocess.run( ["gcloud", "beta", "emulators", "bigtable", "env-init"], stdout=subprocess.PIPE) os.environ["BIGTABLE_EMULATOR_HOST"] = \ bt_env_init.stdout.decode("utf-8").strip().split('=')[-1] c = bigtable.Client( project='IGNORE_ENVIRONMENT_PROJECT', credentials=credentials.AnonymousCredentials(), admin=True) t = c.instance("emulated_instance").table("emulated_table") try: t.create() return True except Exception as err: print('Bigtable Emulator not yet ready: %s' % err) return False @pytest.fixture(scope='session', autouse=True) def bigtable_emulator(request): # Start Emulator bigtable_emulator = subprocess.Popen( ["gcloud", "beta", "emulators", "bigtable", "start"], preexec_fn=os.setsid, stdout=subprocess.PIPE) # Wait for Emulator to start up print("Waiting for BigTables Emulator to start up...", end='') retries = 5 while retries > 0: if setup_emulator_env() is True: break else: retries -= 1 sleep(5) if retries == 0: print("\nCouldn't start Bigtable Emulator. Make sure it is installed correctly.") exit(1) # Setup Emulator-Finalizer def fin(): os.killpg(os.getpgid(bigtable_emulator.pid), SIGTERM) bigtable_emulator.wait() request.addfinalizer(fin) @pytest.fixture(scope='function') def lock_expired_timedelta_override(request): # HACK: For the duration of the test, set global LOCK_EXPIRED_TIME_DELTA # to 1 second (otherwise test would have to run for several minutes) original_timedelta = chunkedgraph.LOCK_EXPIRED_TIME_DELTA chunkedgraph.LOCK_EXPIRED_TIME_DELTA = timedelta(seconds=1) # Ensure that we restore the original value, even if the test fails. def fin(): chunkedgraph.LOCK_EXPIRED_TIME_DELTA = original_timedelta request.addfinalizer(fin) return chunkedgraph.LOCK_EXPIRED_TIME_DELTA @pytest.fixture(scope='function') def gen_graph(request): def _cgraph(request, fan_out=2, n_layers=10): # setup Chunked Graph dataset_info = { "data_dir": "" } graph = chunkedgraph.ChunkedGraph( request.function.__name__, project_id='IGNORE_ENVIRONMENT_PROJECT', credentials=credentials.AnonymousCredentials(), instance_id="emulated_instance", dataset_info=dataset_info, chunk_size=np.array([512, 512, 64], dtype=np.uint64), is_new=True, fan_out=np.uint64(fan_out), n_layers=np.uint64(n_layers)) # setup Chunked Graph - Finalizer def fin(): graph.table.delete() request.addfinalizer(fin) return graph return partial(_cgraph, request) @pytest.fixture(scope='function') def gen_graph_simplequerytest(request, gen_graph): """ ┌─────┬─────┬─────┐ │ A¹ │ B¹ │ C¹ │ │ 1 │ 3━2━┿━━4 │ │ │ │ │ └─────┴─────┴─────┘ """ graph = gen_graph(n_layers=4) # Chunk A create_chunk(graph, vertices=[to_label(graph, 1, 0, 0, 0, 0)], edges=[]) # Chunk B create_chunk(graph, vertices=[to_label(graph, 1, 1, 0, 0, 0), to_label(graph, 1, 1, 0, 0, 1)], edges=[(to_label(graph, 1, 1, 0, 0, 0), to_label(graph, 1, 1, 0, 0, 1), 0.5), (to_label(graph, 1, 1, 0, 0, 0), to_label(graph, 1, 2, 0, 0, 0), inf)]) # Chunk C create_chunk(graph, vertices=[to_label(graph, 1, 2, 0, 0, 0)], edges=[(to_label(graph, 1, 2, 0, 0, 0), to_label(graph, 1, 1, 0, 0, 0), inf)]) graph.add_layer(3, np.array([[0, 0, 0], [1, 0, 0]])) graph.add_layer(3, np.array([[2, 0, 0]])) graph.add_layer(4, np.array([[0, 0, 0], [1, 0, 0]])) return graph def create_chunk(cgraph, vertices=None, edges=None, timestamp=None): """ Helper function to add vertices and edges to the chunkedgraph - no safety checks! """ if not vertices: vertices = [] if not edges: edges = [] vertices = np.unique(np.array(vertices, dtype=np.uint64)) edges = [(np.uint64(v1), np.uint64(v2), np.float32(aff)) for v1, v2, aff in edges] isolated_node_ids = [x for x in vertices if (x not in [edges[i][0] for i in range(len(edges))]) and (x not in [edges[i][1] for i in range(len(edges))])] edge_ids = {"in_connected": np.array([], dtype=np.uint64).reshape(0, 2), "in_disconnected": np.array([], dtype=np.uint64).reshape(0, 2), "cross": np.array([], dtype=np.uint64).reshape(0, 2), "between_connected": np.array([], dtype=np.uint64).reshape(0, 2), "between_disconnected": np.array([], dtype=np.uint64).reshape(0, 2)} edge_affs = {"in_connected": np.array([], dtype=np.float32), "in_disconnected": np.array([], dtype=np.float32), "between_connected": np.array([], dtype=np.float32), "between_disconnected": np.array([], dtype=np.float32)} for e in edges: if cgraph.test_if_nodes_are_in_same_chunk(e[0:2]): this_edge = np.array([e[0], e[1]], dtype=np.uint64).reshape(-1, 2) edge_ids["in_connected"] = \ np.concatenate([edge_ids["in_connected"], this_edge]) edge_affs["in_connected"] = \ np.concatenate([edge_affs["in_connected"], [e[2]]]) if len(edge_ids["in_connected"]) > 0: chunk_id = cgraph.get_chunk_id(edge_ids["in_connected"][0][0]) elif len(vertices) > 0: chunk_id = cgraph.get_chunk_id(vertices[0]) else: chunk_id = None for e in edges: if not cgraph.test_if_nodes_are_in_same_chunk(e[0:2]): # Ensure proper order if chunk_id is not None: if cgraph.get_chunk_id(e[0]) != chunk_id: e = [e[1], e[0], e[2]] this_edge = np.array([e[0], e[1]], dtype=np.uint64).reshape(-1, 2) if np.isinf(e[2]): edge_ids["cross"] = \ np.concatenate([edge_ids["cross"], this_edge]) else: edge_ids["between_connected"] = \ np.concatenate([edge_ids["between_connected"], this_edge]) edge_affs["between_connected"] = \ np.concatenate([edge_affs["between_connected"], [e[2]]]) isolated_node_ids = np.array(isolated_node_ids, dtype=np.uint64) cgraph.logger.debug(edge_ids) cgraph.logger.debug(edge_affs) # Use affinities as areas cgraph.add_atomic_edges_in_chunks(edge_ids, edge_affs, edge_affs, isolated_node_ids, time_stamp=timestamp) def to_label(cgraph, l, x, y, z, segment_id): return cgraph.get_node_id(np.uint64(segment_id), layer=l, x=x, y=y, z=z) class TestGraphNodeConversion: @pytest.mark.timeout(30) def test_compute_bitmasks(self): pass @pytest.mark.timeout(30) def test_node_conversion(self, gen_graph): cgraph = gen_graph(n_layers=10) node_id = cgraph.get_node_id(np.uint64(4), layer=2, x=3, y=1, z=0) assert cgraph.get_chunk_layer(node_id) == 2 assert np.all(cgraph.get_chunk_coordinates(node_id) == np.array([3, 1, 0])) chunk_id = cgraph.get_chunk_id(layer=2, x=3, y=1, z=0) assert cgraph.get_chunk_layer(chunk_id) == 2 assert np.all(cgraph.get_chunk_coordinates(chunk_id) == np.array([3, 1, 0])) assert cgraph.get_chunk_id(node_id=node_id) == chunk_id assert cgraph.get_node_id(np.uint64(4), chunk_id=chunk_id) == node_id @pytest.mark.timeout(30) def test_node_id_adjacency(self, gen_graph): cgraph = gen_graph(n_layers=10) assert cgraph.get_node_id(np.uint64(0), layer=2, x=3, y=1, z=0) + np.uint64(1) == \ cgraph.get_node_id(np.uint64(1), layer=2, x=3, y=1, z=0) assert cgraph.get_node_id(np.uint64(2**53 - 2), layer=10, x=0, y=0, z=0) + np.uint64(1) == \ cgraph.get_node_id(np.uint64(2**53 - 1), layer=10, x=0, y=0, z=0) @pytest.mark.timeout(30) def test_serialize_node_id(self, gen_graph): cgraph = gen_graph(n_layers=10) assert serializers.serialize_uint64(cgraph.get_node_id(np.uint64(0), layer=2, x=3, y=1, z=0)) < \ serializers.serialize_uint64(cgraph.get_node_id(np.uint64(1), layer=2, x=3, y=1, z=0)) assert serializers.serialize_uint64(cgraph.get_node_id(np.uint64(2 ** 53 - 2), layer=10, x=0, y=0, z=0)) < \ serializers.serialize_uint64(cgraph.get_node_id(np.uint64(2 ** 53 - 1), layer=10, x=0, y=0, z=0)) @pytest.mark.timeout(30) def test_deserialize_node_id(self): pass @pytest.mark.timeout(30) def test_serialization_roundtrip(self): pass @pytest.mark.timeout(30) def test_serialize_valid_label_id(self): label = np.uint64(0x01FF031234556789) assert serializers.deserialize_uint64( serializers.serialize_uint64(label)) == label class TestGraphBuild: @pytest.mark.timeout(30) def test_build_single_node(self, gen_graph): """ Create graph with single RG node 1 in chunk A ┌─────┐ │ A¹ │ │ 1 │ │ │ └─────┘ """ cgraph = gen_graph(n_layers=2) # Add Chunk A create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 0)]) res = cgraph.table.read_rows() res.consume_all() # Check for the RG-to-CG mapping: # assert chunkedgraph.serialize_uint64(1) in res.rows # row = res.rows[chunkedgraph.serialize_uint64(1)].cells[cgraph.family_id] # assert np.frombuffer(row[b'cg_id'][0].value, np.uint64)[0] == to_label(cgraph, 1, 0, 0, 0, 0) # Check for the Level 1 CG supervoxel: # to_label(cgraph, 1, 0, 0, 0, 0) assert serializers.serialize_uint64(to_label(cgraph, 1, 0, 0, 0, 0)) in res.rows atomic_node_info = cgraph.get_atomic_node_info(to_label(cgraph, 1, 0, 0, 0, 0)) atomic_affinities = atomic_node_info[column_keys.Connectivity.Affinity] atomic_partners = atomic_node_info[column_keys.Connectivity.Partner] parents = atomic_node_info[column_keys.Hierarchy.Parent] assert len(atomic_partners) == 0 assert len(atomic_affinities) == 0 assert len(parents) == 1 and parents[0] == to_label(cgraph, 2, 0, 0, 0, 1) # Check for the one Level 2 node that should have been created. # to_label(cgraph, 2, 0, 0, 0, 1) assert serializers.serialize_uint64(to_label(cgraph, 2, 0, 0, 0, 1)) in res.rows row = res.rows[serializers.serialize_uint64(to_label(cgraph, 2, 0, 0, 0, 1))].cells[cgraph.family_id] atomic_cross_edge_dict = cgraph.get_atomic_cross_edge_dict(to_label(cgraph, 2, 0, 0, 0, 1)) column = column_keys.Hierarchy.Child children = column.deserialize(row[column.key][0].value) for aces in atomic_cross_edge_dict.values(): assert len(aces) == 0 assert len(children) == 1 and children[0] == to_label(cgraph, 1, 0, 0, 0, 0) # Make sure there are not any more entries in the table assert len(res.rows) == 1 + 1 + 1 + 1 @pytest.mark.timeout(30) def test_build_single_edge(self, gen_graph): """ Create graph with edge between RG supervoxels 1 and 2 (same chunk) ┌─────┐ │ A¹ │ │ 1━2 │ │ │ └─────┘ """ cgraph = gen_graph(n_layers=2) # Add Chunk A create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 1)], edges=[(to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 1), 0.5)]) res = cgraph.table.read_rows() res.consume_all() # Check for the two RG-to-CG mappings: # assert chunkedgraph.serialize_uint64(1) in res.rows # row = res.rows[chunkedgraph.serialize_uint64(1)].cells[cgraph.family_id] # assert np.frombuffer(row[b'cg_id'][0].value, np.uint64)[0] == to_label(cgraph, 1, 0, 0, 0, 0) # assert chunkedgraph.serialize_uint64(2) in res.rows # row = res.rows[chunkedgraph.serialize_uint64(2)].cells[cgraph.family_id] # assert np.frombuffer(row[b'cg_id'][0].value, np.uint64)[0] == to_label(cgraph, 1, 0, 0, 0, 1) # Check for the two original Level 1 CG supervoxels # to_label(cgraph, 1, 0, 0, 0, 0) assert serializers.serialize_uint64(to_label(cgraph, 1, 0, 0, 0, 0)) in res.rows atomic_node_info = cgraph.get_atomic_node_info(to_label(cgraph, 1, 0, 0, 0, 0)) atomic_affinities = atomic_node_info[column_keys.Connectivity.Affinity] atomic_partners = atomic_node_info[column_keys.Connectivity.Partner] parents = atomic_node_info[column_keys.Hierarchy.Parent] assert len(atomic_partners) == 1 and atomic_partners[0] == to_label(cgraph, 1, 0, 0, 0, 1) assert len(atomic_affinities) == 1 and atomic_affinities[0] == 0.5 assert len(parents) == 1 and parents[0] == to_label(cgraph, 2, 0, 0, 0, 1) # to_label(cgraph, 1, 0, 0, 0, 1) assert serializers.serialize_uint64(to_label(cgraph, 1, 0, 0, 0, 1)) in res.rows atomic_node_info = cgraph.get_atomic_node_info(to_label(cgraph, 1, 0, 0, 0, 1)) atomic_affinities = atomic_node_info[column_keys.Connectivity.Affinity] atomic_partners = atomic_node_info[column_keys.Connectivity.Partner] parents = atomic_node_info[column_keys.Hierarchy.Parent] assert len(atomic_partners) == 1 and atomic_partners[0] == to_label(cgraph, 1, 0, 0, 0, 0) assert len(atomic_affinities) == 1 and atomic_affinities[0] == 0.5 assert len(parents) == 1 and parents[0] == to_label(cgraph, 2, 0, 0, 0, 1) # Check for the one Level 2 node that should have been created. assert serializers.serialize_uint64(to_label(cgraph, 2, 0, 0, 0, 1)) in res.rows row = res.rows[serializers.serialize_uint64(to_label(cgraph, 2, 0, 0, 0, 1))].cells[cgraph.family_id] atomic_cross_edge_dict = cgraph.get_atomic_cross_edge_dict(to_label(cgraph, 2, 0, 0, 0, 1)) column = column_keys.Hierarchy.Child children = column.deserialize(row[column.key][0].value) for aces in atomic_cross_edge_dict.values(): assert len(aces) == 0 assert len(children) == 2 and to_label(cgraph, 1, 0, 0, 0, 0) in children and to_label(cgraph, 1, 0, 0, 0, 1) in children # Make sure there are not any more entries in the table assert len(res.rows) == 2 + 1 + 1 + 1 @pytest.mark.timeout(30) def test_build_single_across_edge(self, gen_graph): """ Create graph with edge between RG supervoxels 1 and 2 (neighboring chunks) ┌─────┌─────┐ │ A¹ │ B¹ │ │ 1━━┿━━2 │ │ │ │ └─────┴─────┘ """ cgraph = gen_graph(n_layers=3) # Chunk A create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 0)], edges=[(to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 0), inf)]) # Chunk B create_chunk(cgraph, vertices=[to_label(cgraph, 1, 1, 0, 0, 0)], edges=[(to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 0), inf)]) cgraph.add_layer(3, np.array([[0, 0, 0], [1, 0, 0]])) res = cgraph.table.read_rows() res.consume_all() # Check for the two RG-to-CG mappings: # assert chunkedgraph.serialize_uint64(1) in res.rows # row = res.rows[chunkedgraph.serialize_uint64(1)].cells[cgraph.family_id] # assert np.frombuffer(row[b'cg_id'][0].value, np.uint64)[0] == to_label(cgraph, 1, 0, 0, 0, 0) # assert chunkedgraph.serialize_uint64(2) in res.rows # row = res.rows[chunkedgraph.serialize_uint64(2)].cells[cgraph.family_id] # assert np.frombuffer(row[b'cg_id'][0].value, np.uint64)[0] == to_label(cgraph, 1, 1, 0, 0, 0) # Check for the two original Level 1 CG supervoxels # to_label(cgraph, 1, 0, 0, 0, 0) assert serializers.serialize_uint64(to_label(cgraph, 1, 0, 0, 0, 0)) in res.rows atomic_node_info = cgraph.get_atomic_node_info(to_label(cgraph, 1, 0, 0, 0, 0)) atomic_affinities = atomic_node_info[column_keys.Connectivity.Affinity] atomic_partners = atomic_node_info[column_keys.Connectivity.Partner] cgraph.logger.debug(atomic_node_info.keys()) parents = atomic_node_info[column_keys.Hierarchy.Parent] assert len(atomic_partners) == 1 and atomic_partners[0] == to_label(cgraph, 1, 1, 0, 0, 0) assert len(atomic_affinities) == 1 and atomic_affinities[0] == inf assert len(parents) == 1 and parents[0] == to_label(cgraph, 2, 0, 0, 0, 1) # to_label(cgraph, 1, 1, 0, 0, 0) assert serializers.serialize_uint64(to_label(cgraph, 1, 1, 0, 0, 0)) in res.rows atomic_node_info = cgraph.get_atomic_node_info(to_label(cgraph, 1, 1, 0, 0, 0)) atomic_affinities = atomic_node_info[column_keys.Connectivity.Affinity] atomic_partners = atomic_node_info[column_keys.Connectivity.Partner] parents = atomic_node_info[column_keys.Hierarchy.Parent] assert len(atomic_partners) == 1 and atomic_partners[0] == to_label(cgraph, 1, 0, 0, 0, 0) assert len(atomic_affinities) == 1 and atomic_affinities[0] == inf assert len(parents) == 1 and parents[0] == to_label(cgraph, 2, 1, 0, 0, 1) # Check for the two Level 2 nodes that should have been created. Since Level 2 has the same # dimensions as Level 1, we also expect them to be in different chunks # to_label(cgraph, 2, 0, 0, 0, 1) assert serializers.serialize_uint64(to_label(cgraph, 2, 0, 0, 0, 1)) in res.rows row = res.rows[serializers.serialize_uint64(to_label(cgraph, 2, 0, 0, 0, 1))].cells[cgraph.family_id] atomic_cross_edge_dict = cgraph.get_atomic_cross_edge_dict(to_label(cgraph, 2, 0, 0, 0, 1)) column = column_keys.Hierarchy.Child children = column.deserialize(row[column.key][0].value) test_ace = np.array([to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 0)], dtype=np.uint64) assert len(atomic_cross_edge_dict[2]) == 1 assert test_ace in atomic_cross_edge_dict[2] assert len(children) == 1 and to_label(cgraph, 1, 0, 0, 0, 0) in children # to_label(cgraph, 2, 1, 0, 0, 1) assert serializers.serialize_uint64(to_label(cgraph, 2, 1, 0, 0, 1)) in res.rows row = res.rows[serializers.serialize_uint64(to_label(cgraph, 2, 1, 0, 0, 1))].cells[cgraph.family_id] atomic_cross_edge_dict = cgraph.get_atomic_cross_edge_dict(to_label(cgraph, 2, 1, 0, 0, 1)) column = column_keys.Hierarchy.Child children = column.deserialize(row[column.key][0].value) test_ace = np.array([to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 0)], dtype=np.uint64) assert len(atomic_cross_edge_dict[2]) == 1 assert test_ace in atomic_cross_edge_dict[2] assert len(children) == 1 and to_label(cgraph, 1, 1, 0, 0, 0) in children # Check for the one Level 3 node that should have been created. This one combines the two # connected components of Level 2 # to_label(cgraph, 3, 0, 0, 0, 1) assert serializers.serialize_uint64(to_label(cgraph, 3, 0, 0, 0, 1)) in res.rows row = res.rows[serializers.serialize_uint64(to_label(cgraph, 3, 0, 0, 0, 1))].cells[cgraph.family_id] atomic_cross_edge_dict = cgraph.get_atomic_cross_edge_dict(to_label(cgraph, 3, 0, 0, 0, 1)) column = column_keys.Hierarchy.Child children = column.deserialize(row[column.key][0].value) for aces in atomic_cross_edge_dict.values(): assert len(aces) == 0 assert len(children) == 2 and to_label(cgraph, 2, 0, 0, 0, 1) in children and to_label(cgraph, 2, 1, 0, 0, 1) in children # Make sure there are not any more entries in the table assert len(res.rows) == 2 + 2 + 1 + 3 + 1 @pytest.mark.timeout(30) def test_build_single_edge_and_single_across_edge(self, gen_graph): """ Create graph with edge between RG supervoxels 1 and 2 (same chunk) and edge between RG supervoxels 1 and 3 (neighboring chunks) ┌─────┬─────┐ │ A¹ │ B¹ │ │ 2━1━┿━━3 │ │ │ │ └─────┴─────┘ """ cgraph = gen_graph(n_layers=3) # Chunk A create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 1)], edges=[(to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 1), 0.5), (to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 0), inf)]) # Chunk B create_chunk(cgraph, vertices=[to_label(cgraph, 1, 1, 0, 0, 0)], edges=[(to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 0), inf)]) cgraph.add_layer(3, np.array([[0, 0, 0], [1, 0, 0]])) res = cgraph.table.read_rows() res.consume_all() # Check for the three RG-to-CG mappings: # assert chunkedgraph.serialize_uint64(1) in res.rows # row = res.rows[chunkedgraph.serialize_uint64(1)].cells[cgraph.family_id] # assert np.frombuffer(row[b'cg_id'][0].value, np.uint64)[0] == to_label(cgraph, 1, 0, 0, 0, 0) # assert chunkedgraph.serialize_uint64(2) in res.rows # row = res.rows[chunkedgraph.serialize_uint64(2)].cells[cgraph.family_id] # assert np.frombuffer(row[b'cg_id'][0].value, np.uint64)[0] == to_label(cgraph, 1, 0, 0, 0, 1) # assert chunkedgraph.serialize_uint64(3) in res.rows # row = res.rows[chunkedgraph.serialize_uint64(3)].cells[cgraph.family_id] # assert np.frombuffer(row[b'cg_id'][0].value, np.uint64)[0] == to_label(cgraph, 1, 1, 0, 0, 0) # Check for the three original Level 1 CG supervoxels # to_label(cgraph, 1, 0, 0, 0, 0) assert serializers.serialize_uint64(to_label(cgraph, 1, 0, 0, 0, 0)) in res.rows atomic_node_info = cgraph.get_atomic_node_info(to_label(cgraph, 1, 0, 0, 0, 0)) atomic_affinities = atomic_node_info[column_keys.Connectivity.Affinity] atomic_partners = atomic_node_info[column_keys.Connectivity.Partner] parents = atomic_node_info[column_keys.Hierarchy.Parent] assert len(atomic_partners) == 2 and to_label(cgraph, 1, 0, 0, 0, 1) in atomic_partners and to_label(cgraph, 1, 1, 0, 0, 0) in atomic_partners assert len(atomic_affinities) == 2 if atomic_partners[0] == to_label(cgraph, 1, 0, 0, 0, 1): assert atomic_affinities[0] == 0.5 and atomic_affinities[1] == inf else: assert atomic_affinities[0] == inf and atomic_affinities[1] == 0.5 assert len(parents) == 1 and parents[0] == to_label(cgraph, 2, 0, 0, 0, 1) # to_label(cgraph, 1, 0, 0, 0, 1) assert serializers.serialize_uint64(to_label(cgraph, 1, 0, 0, 0, 1)) in res.rows atomic_node_info = cgraph.get_atomic_node_info(to_label(cgraph, 1, 0, 0, 0, 1)) atomic_affinities = atomic_node_info[column_keys.Connectivity.Affinity] atomic_partners = atomic_node_info[column_keys.Connectivity.Partner] parents = atomic_node_info[column_keys.Hierarchy.Parent] assert len(atomic_partners) == 1 and atomic_partners[0] == to_label(cgraph, 1, 0, 0, 0, 0) assert len(atomic_affinities) == 1 and atomic_affinities[0] == 0.5 assert len(parents) == 1 and parents[0] == to_label(cgraph, 2, 0, 0, 0, 1) # to_label(cgraph, 1, 1, 0, 0, 0) assert serializers.serialize_uint64(to_label(cgraph, 1, 1, 0, 0, 0)) in res.rows atomic_node_info = cgraph.get_atomic_node_info(to_label(cgraph, 1, 1, 0, 0, 0)) atomic_affinities = atomic_node_info[column_keys.Connectivity.Affinity] atomic_partners = atomic_node_info[column_keys.Connectivity.Partner] parents = atomic_node_info[column_keys.Hierarchy.Parent] assert len(atomic_partners) == 1 and atomic_partners[0] == to_label(cgraph, 1, 0, 0, 0, 0) assert len(atomic_affinities) == 1 and atomic_affinities[0] == inf assert len(parents) == 1 and parents[0] == to_label(cgraph, 2, 1, 0, 0, 1) # Check for the two Level 2 nodes that should have been created. Since Level 2 has the same # dimensions as Level 1, we also expect them to be in different chunks # to_label(cgraph, 2, 0, 0, 0, 1) assert serializers.serialize_uint64(to_label(cgraph, 2, 0, 0, 0, 1)) in res.rows row = res.rows[serializers.serialize_uint64(to_label(cgraph, 2, 0, 0, 0, 1))].cells[cgraph.family_id] atomic_cross_edge_dict = cgraph.get_atomic_cross_edge_dict(to_label(cgraph, 2, 0, 0, 0, 1)) column = column_keys.Hierarchy.Child children = column.deserialize(row[column.key][0].value) test_ace = np.array([to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 0)], dtype=np.uint64) assert len(atomic_cross_edge_dict[2]) == 1 assert test_ace in atomic_cross_edge_dict[2] assert len(children) == 2 and to_label(cgraph, 1, 0, 0, 0, 0) in children and to_label(cgraph, 1, 0, 0, 0, 1) in children # to_label(cgraph, 2, 1, 0, 0, 1) assert serializers.serialize_uint64(to_label(cgraph, 2, 1, 0, 0, 1)) in res.rows row = res.rows[serializers.serialize_uint64(to_label(cgraph, 2, 1, 0, 0, 1))].cells[cgraph.family_id] atomic_cross_edge_dict = cgraph.get_atomic_cross_edge_dict(to_label(cgraph, 2, 1, 0, 0, 1)) column = column_keys.Hierarchy.Child children = column.deserialize(row[column.key][0].value) test_ace = np.array([to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 0)], dtype=np.uint64) assert len(atomic_cross_edge_dict[2]) == 1 assert test_ace in atomic_cross_edge_dict[2] assert len(children) == 1 and to_label(cgraph, 1, 1, 0, 0, 0) in children # Check for the one Level 3 node that should have been created. This one combines the two # connected components of Level 2 # to_label(cgraph, 3, 0, 0, 0, 1) assert serializers.serialize_uint64(to_label(cgraph, 3, 0, 0, 0, 1)) in res.rows row = res.rows[serializers.serialize_uint64(to_label(cgraph, 3, 0, 0, 0, 1))].cells[cgraph.family_id] atomic_cross_edge_dict = cgraph.get_atomic_cross_edge_dict(to_label(cgraph, 3, 0, 0, 0, 1)) column = column_keys.Hierarchy.Child children = column.deserialize(row[column.key][0].value) for ace in atomic_cross_edge_dict.values(): assert len(ace) == 0 assert len(children) == 2 and to_label(cgraph, 2, 0, 0, 0, 1) in children and to_label(cgraph, 2, 1, 0, 0, 1) in children # Make sure there are not any more entries in the table assert len(res.rows) == 3 + 2 + 1 + 3 + 1 @pytest.mark.timeout(30) def test_build_big_graph(self, gen_graph): """ Create graph with RG nodes 1 and 2 in opposite corners of the largest possible dataset ┌─────┐ ┌─────┐ │ A¹ │ ... │ Z¹ │ │ 1 │ │ 2 │ │ │ │ │ └─────┘ └─────┘ """ cgraph = gen_graph(n_layers=10) # Preparation: Build Chunk A create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 0)], edges=[]) # Preparation: Build Chunk Z create_chunk(cgraph, vertices=[to_label(cgraph, 1, 255, 255, 255, 0)], edges=[]) cgraph.add_layer(3, np.array([[0x00, 0x00, 0x00]])) cgraph.add_layer(3, np.array([[0xFF, 0xFF, 0xFF]])) cgraph.add_layer(4, np.array([[0x00, 0x00, 0x00]])) cgraph.add_layer(4, np.array([[0x7F, 0x7F, 0x7F]])) cgraph.add_layer(5, np.array([[0x00, 0x00, 0x00]])) cgraph.add_layer(5, np.array([[0x3F, 0x3F, 0x3F]])) cgraph.add_layer(6, np.array([[0x00, 0x00, 0x00]])) cgraph.add_layer(6, np.array([[0x1F, 0x1F, 0x1F]])) cgraph.add_layer(7, np.array([[0x00, 0x00, 0x00]])) cgraph.add_layer(7, np.array([[0x0F, 0x0F, 0x0F]])) cgraph.add_layer(8, np.array([[0x00, 0x00, 0x00]])) cgraph.add_layer(8, np.array([[0x07, 0x07, 0x07]])) cgraph.add_layer(9, np.array([[0x00, 0x00, 0x00]])) cgraph.add_layer(9, np.array([[0x03, 0x03, 0x03]])) cgraph.add_layer(10, np.array([[0x00, 0x00, 0x00], [0x01, 0x01, 0x01]])) res = cgraph.table.read_rows() res.consume_all() # cgraph.logger.debug(len(res.rows)) # for row_key in res.rows.keys(): # cgraph.logger.debug(row_key) # cgraph.logger.debug(cgraph.get_chunk_layer(chunkedgraph.deserialize_uint64(row_key))) # cgraph.logger.debug(cgraph.get_chunk_coordinates(chunkedgraph.deserialize_uint64(row_key))) assert serializers.serialize_uint64(to_label(cgraph, 1, 0, 0, 0, 0)) in res.rows assert serializers.serialize_uint64(to_label(cgraph, 1, 255, 255, 255, 0)) in res.rows assert serializers.serialize_uint64(to_label(cgraph, 10, 0, 0, 0, 1)) in res.rows assert serializers.serialize_uint64(to_label(cgraph, 10, 0, 0, 0, 2)) in res.rows @pytest.mark.timeout(30) def test_double_chunk_creation(self, gen_graph): """ No connection between 1, 2 and 3 ┌─────┬─────┐ │ A¹ │ B¹ │ │ 1 │ 3 │ │ 2 │ │ └─────┴─────┘ """ cgraph = gen_graph(n_layers=4) # Preparation: Build Chunk A fake_timestamp = datetime.utcnow() - timedelta(days=10) create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 1), to_label(cgraph, 1, 0, 0, 0, 2)], edges=[], timestamp=fake_timestamp) # Preparation: Build Chunk B create_chunk(cgraph, vertices=[to_label(cgraph, 1, 1, 0, 0, 1)], edges=[], timestamp=fake_timestamp) cgraph.add_layer(3, np.array([[0, 0, 0], [1, 0, 0]]), time_stamp=fake_timestamp) cgraph.add_layer(3, np.array([[0, 0, 0], [1, 0, 0]]), time_stamp=fake_timestamp) cgraph.add_layer(4, np.array([[0, 0, 0]]), time_stamp=fake_timestamp) assert len(cgraph.range_read_chunk(layer=3, x=0, y=0, z=0)) == 6 assert len(cgraph.range_read_chunk(layer=4, x=0, y=0, z=0)) == 3 assert cgraph.get_chunk_layer(cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 1))) == 4 assert cgraph.get_chunk_layer(cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 2))) == 4 assert cgraph.get_chunk_layer(cgraph.get_root(to_label(cgraph, 1, 1, 0, 0, 1))) == 4 lvl_3_child_ids = [cgraph.get_segment_id(cgraph.read_node_id_row(cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 1)), column_keys.Hierarchy.Child)[0].value), cgraph.get_segment_id(cgraph.read_node_id_row(cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 2)), column_keys.Hierarchy.Child)[0].value), cgraph.get_segment_id(cgraph.read_node_id_row(cgraph.get_root(to_label(cgraph, 1, 1, 0, 0, 1)), column_keys.Hierarchy.Child)[0].value)] assert 4 in lvl_3_child_ids assert 5 in lvl_3_child_ids assert 6 in lvl_3_child_ids class TestGraphSimpleQueries: """ ┌─────┬─────┬─────┐ L X Y Z S L X Y Z S L X Y Z S L X Y Z S │ A¹ │ B¹ │ C¹ │ 1: 1 0 0 0 0 ─── 2 0 0 0 1 ─── 3 0 0 0 1 ─── 4 0 0 0 1 │ 1 │ 3━2━┿━━4 │ 2: 1 1 0 0 0 ─┬─ 2 1 0 0 1 ─── 3 0 0 0 2 ─┬─ 4 0 0 0 2 │ │ │ │ 3: 1 1 0 0 1 ─┘ │ └─────┴─────┴─────┘ 4: 1 2 0 0 0 ─── 2 2 0 0 1 ─── 3 1 0 0 1 ─┘ """ @pytest.mark.timeout(30) def test_get_parent_and_children(self, gen_graph_simplequerytest): cgraph = gen_graph_simplequerytest children10000 = cgraph.get_children(to_label(cgraph, 1, 0, 0, 0, 0)) children11000 = cgraph.get_children(to_label(cgraph, 1, 1, 0, 0, 0)) children11001 = cgraph.get_children(to_label(cgraph, 1, 1, 0, 0, 1)) children12000 = cgraph.get_children(to_label(cgraph, 1, 2, 0, 0, 0)) parent10000 = cgraph.get_parent(to_label(cgraph, 1, 0, 0, 0, 0), get_only_relevant_parent=True, time_stamp=None) parent11000 = cgraph.get_parent(to_label(cgraph, 1, 1, 0, 0, 0), get_only_relevant_parent=True, time_stamp=None) parent11001 = cgraph.get_parent(to_label(cgraph, 1, 1, 0, 0, 1), get_only_relevant_parent=True, time_stamp=None) parent12000 = cgraph.get_parent(to_label(cgraph, 1, 2, 0, 0, 0), get_only_relevant_parent=True, time_stamp=None) children20001 = cgraph.get_children(to_label(cgraph, 2, 0, 0, 0, 1)) children21001 = cgraph.get_children(to_label(cgraph, 2, 1, 0, 0, 1)) children22001 = cgraph.get_children(to_label(cgraph, 2, 2, 0, 0, 1)) parent20001 = cgraph.get_parent(to_label(cgraph, 2, 0, 0, 0, 1), get_only_relevant_parent=True, time_stamp=None) parent21001 = cgraph.get_parent(to_label(cgraph, 2, 1, 0, 0, 1), get_only_relevant_parent=True, time_stamp=None) parent22001 = cgraph.get_parent(to_label(cgraph, 2, 2, 0, 0, 1), get_only_relevant_parent=True, time_stamp=None) children30001 = cgraph.get_children(to_label(cgraph, 3, 0, 0, 0, 1)) children30002 = cgraph.get_children(to_label(cgraph, 3, 0, 0, 0, 2)) children31001 = cgraph.get_children(to_label(cgraph, 3, 1, 0, 0, 1)) parent30001 = cgraph.get_parent(to_label(cgraph, 3, 0, 0, 0, 1), get_only_relevant_parent=True, time_stamp=None) parent30002 = cgraph.get_parent(to_label(cgraph, 3, 0, 0, 0, 2), get_only_relevant_parent=True, time_stamp=None) parent31001 = cgraph.get_parent(to_label(cgraph, 3, 1, 0, 0, 1), get_only_relevant_parent=True, time_stamp=None) children40001 = cgraph.get_children(to_label(cgraph, 4, 0, 0, 0, 1)) children40002 = cgraph.get_children(to_label(cgraph, 4, 0, 0, 0, 2)) parent40001 = cgraph.get_parent(to_label(cgraph, 4, 0, 0, 0, 1), get_only_relevant_parent=True, time_stamp=None) parent40002 = cgraph.get_parent(to_label(cgraph, 4, 0, 0, 0, 2), get_only_relevant_parent=True, time_stamp=None) # (non-existing) Children of L1 assert np.array_equal(children10000, []) is True assert np.array_equal(children11000, []) is True assert np.array_equal(children11001, []) is True assert np.array_equal(children12000, []) is True # Parent of L1 assert parent10000 == to_label(cgraph, 2, 0, 0, 0, 1) assert parent11000 == to_label(cgraph, 2, 1, 0, 0, 1) assert parent11001 == to_label(cgraph, 2, 1, 0, 0, 1) assert parent12000 == to_label(cgraph, 2, 2, 0, 0, 1) # Children of L2 assert len(children20001) == 1 and to_label(cgraph, 1, 0, 0, 0, 0) in children20001 assert len(children21001) == 2 and to_label(cgraph, 1, 1, 0, 0, 0) in children21001 and to_label(cgraph, 1, 1, 0, 0, 1) in children21001 assert len(children22001) == 1 and to_label(cgraph, 1, 2, 0, 0, 0) in children22001 # Parent of L2 assert parent20001 == to_label(cgraph, 3, 0, 0, 0, 1) and parent21001 == to_label(cgraph, 3, 0, 0, 0, 2) or \ parent20001 == to_label(cgraph, 3, 0, 0, 0, 2) and parent21001 == to_label(cgraph, 3, 0, 0, 0, 1) assert parent22001 == to_label(cgraph, 3, 1, 0, 0, 1) # Children of L3 assert len(children30001) == 1 and len(children30002) == 1 and len(children31001) == 1 assert to_label(cgraph, 2, 0, 0, 0, 1) in children30001 and to_label(cgraph, 2, 1, 0, 0, 1) in children30002 or \ to_label(cgraph, 2, 0, 0, 0, 1) in children30002 and to_label(cgraph, 2, 1, 0, 0, 1) in children30001 assert to_label(cgraph, 2, 2, 0, 0, 1) in children31001 # Parent of L3 assert parent30001 == parent31001 or parent30002 == parent31001 assert (parent30001 == to_label(cgraph, 4, 0, 0, 0, 1) and parent30002 == to_label(cgraph, 4, 0, 0, 0, 2)) or \ (parent30001 == to_label(cgraph, 4, 0, 0, 0, 2) and parent30002 == to_label(cgraph, 4, 0, 0, 0, 1)) # Children of L4 if len(children40001) == 1: assert parent20001 in children40001 assert len(children40002) == 2 and parent21001 in children40002 and parent22001 in children40002 elif len(children40001) == 2: assert parent21001 in children40001 and parent22001 in children40001 assert len(children40002) == 1 and parent20001 in children40002 # (non-existing) Parent of L4 assert parent40001 is None assert parent40002 is None # # Children of (non-existing) L5 # with pytest.raises(IndexError): # cgraph.get_children(to_label(cgraph, 5, 0, 0, 0, 1)) # # Parent of (non-existing) L5 # with pytest.raises(IndexError): # cgraph.get_parent(to_label(cgraph, 5, 0, 0, 0, 1), get_only_relevant_parent=True, time_stamp=None) children2_separate = cgraph.get_children([to_label(cgraph, 2, 0, 0, 0, 1), to_label(cgraph, 2, 1, 0, 0, 1), to_label(cgraph, 2, 2, 0, 0, 1)]) assert len(children2_separate) == 3 assert to_label(cgraph, 2, 0, 0, 0, 1) in children2_separate and \ np.all(np.isin(children2_separate[to_label(cgraph, 2, 0, 0, 0, 1)], children20001)) assert to_label(cgraph, 2, 1, 0, 0, 1) in children2_separate and \ np.all(np.isin(children2_separate[to_label(cgraph, 2, 1, 0, 0, 1)], children21001)) assert to_label(cgraph, 2, 2, 0, 0, 1) in children2_separate and \ np.all(np.isin(children2_separate[to_label(cgraph, 2, 2, 0, 0, 1)], children22001)) children2_combined = cgraph.get_children([to_label(cgraph, 2, 0, 0, 0, 1), to_label(cgraph, 2, 1, 0, 0, 1), to_label(cgraph, 2, 2, 0, 0, 1)], flatten=True) assert len(children2_combined) == 4 and \ np.all(np.isin(children20001, children2_combined)) and \ np.all(np.isin(children21001, children2_combined)) and \ np.all(np.isin(children22001, children2_combined)) @pytest.mark.timeout(30) def test_get_root(self, gen_graph_simplequerytest): cgraph = gen_graph_simplequerytest root10000 = cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 0), time_stamp=None) root11000 = cgraph.get_root(to_label(cgraph, 1, 1, 0, 0, 0), time_stamp=None) root11001 = cgraph.get_root(to_label(cgraph, 1, 1, 0, 0, 1), time_stamp=None) root12000 = cgraph.get_root(to_label(cgraph, 1, 2, 0, 0, 0), time_stamp=None) with pytest.raises(Exception) as e: cgraph.get_root(0) assert (root10000 == to_label(cgraph, 4, 0, 0, 0, 1) and root11000 == root11001 == root12000 == to_label( cgraph, 4, 0, 0, 0, 2)) or \ (root10000 == to_label(cgraph, 4, 0, 0, 0, 2) and root11000 == root11001 == root12000 == to_label( cgraph, 4, 0, 0, 0, 1)) @pytest.mark.timeout(30) def test_get_subgraph_nodes(self, gen_graph_simplequerytest): cgraph = gen_graph_simplequerytest root1 = cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 0)) root2 = cgraph.get_root(to_label(cgraph, 1, 1, 0, 0, 0)) lvl1_nodes_1 = cgraph.get_subgraph_nodes(root1) lvl1_nodes_2 = cgraph.get_subgraph_nodes(root2) assert len(lvl1_nodes_1) == 1 assert len(lvl1_nodes_2) == 3 assert to_label(cgraph, 1, 0, 0, 0, 0) in lvl1_nodes_1 assert to_label(cgraph, 1, 1, 0, 0, 0) in lvl1_nodes_2 assert to_label(cgraph, 1, 1, 0, 0, 1) in lvl1_nodes_2 assert to_label(cgraph, 1, 2, 0, 0, 0) in lvl1_nodes_2 lvl2_nodes_1 = cgraph.get_subgraph_nodes(root1, return_layers=[2]) lvl2_nodes_2 = cgraph.get_subgraph_nodes(root2, return_layers=[2]) assert len(lvl2_nodes_1) == 1 assert len(lvl2_nodes_2) == 2 assert to_label(cgraph, 2, 0, 0, 0, 1) in lvl2_nodes_1 assert to_label(cgraph, 2, 1, 0, 0, 1) in lvl2_nodes_2 assert to_label(cgraph, 2, 2, 0, 0, 1) in lvl2_nodes_2 lvl3_nodes_1 = cgraph.get_subgraph_nodes(root1, return_layers=[3]) lvl3_nodes_2 = cgraph.get_subgraph_nodes(root2, return_layers=[3]) assert len(lvl3_nodes_1) == 1 assert len(lvl3_nodes_2) == 2 assert to_label(cgraph, 3, 0, 0, 0, 1) in lvl3_nodes_1 assert to_label(cgraph, 3, 0, 0, 0, 2) in lvl3_nodes_2 assert to_label(cgraph, 3, 1, 0, 0, 1) in lvl3_nodes_2 lvl4_node = cgraph.get_subgraph_nodes(root1, return_layers=[4]) assert len(lvl4_node) == 1 assert root1 in lvl4_node layers = cgraph.get_subgraph_nodes(root2, return_layers=[1, 4]) assert len(layers) == 2 and 1 in layers and 4 in layers assert len(layers[4]) == 1 and root2 in layers[4] assert len(layers[1]) == 3 assert to_label(cgraph, 1, 1, 0, 0, 0) in layers[1] assert to_label(cgraph, 1, 1, 0, 0, 1) in layers[1] assert to_label(cgraph, 1, 2, 0, 0, 0) in layers[1] lvl2_nodes = cgraph.get_subgraph_nodes(root2, return_layers=[2], bounding_box=[[1, 0, 0], [2, 1, 1]], bb_is_coordinate=False) assert len(lvl2_nodes) == 1 assert to_label(cgraph, 2, 1, 0, 0, 1) in lvl2_nodes lvl2_parent = cgraph.get_parent(to_label(cgraph, 1, 1, 0, 0, 0)) lvl1_nodes = cgraph.get_subgraph_nodes(lvl2_parent) assert len(lvl1_nodes) == 2 assert to_label(cgraph, 1, 1, 0, 0, 0) in lvl1_nodes assert to_label(cgraph, 1, 1, 0, 0, 1) in lvl1_nodes @pytest.mark.timeout(30) def test_get_subgraph_edges(self, gen_graph_simplequerytest): cgraph = gen_graph_simplequerytest root1 = cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 0)) root2 = cgraph.get_root(to_label(cgraph, 1, 1, 0, 0, 0)) edges, affinities, areas = cgraph.get_subgraph_edges(root1) assert len(edges) == 0 and len(affinities) == 0 and len(areas) == 0 edges, affinities, areas = cgraph.get_subgraph_edges(root2) assert [to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 1)] in edges or \ [to_label(cgraph, 1, 1, 0, 0, 1), to_label(cgraph, 1, 1, 0, 0, 0)] in edges assert [to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 2, 0, 0, 0)] in edges or \ [to_label(cgraph, 1, 2, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 0)] in edges # assert len(edges) == 2 and len(affinities) == 2 and len(areas) == 2 lvl2_parent = cgraph.get_parent(to_label(cgraph, 1, 1, 0, 0, 0)) edges, affinities, areas = cgraph.get_subgraph_edges(lvl2_parent) assert [to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 1)] in edges or \ [to_label(cgraph, 1, 1, 0, 0, 1), to_label(cgraph, 1, 1, 0, 0, 0)] in edges assert [to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 2, 0, 0, 0)] in edges or \ [to_label(cgraph, 1, 2, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 0)] in edges assert len(edges) == 2 @pytest.mark.timeout(30) def test_get_subgraph_nodes_bb(self, gen_graph_simplequerytest): cgraph = gen_graph_simplequerytest bb = np.array([[1, 0, 0], [2, 1, 1]], dtype=np.int) bb_coord = bb * cgraph.chunk_size childs_1 = cgraph.get_subgraph_nodes(cgraph.get_root(to_label(cgraph, 1, 1, 0, 0, 1)), bounding_box=bb) childs_2 = cgraph.get_subgraph_nodes(cgraph.get_root(to_label(cgraph, 1, 1, 0, 0, 1)), bounding_box=bb_coord, bb_is_coordinate=True) assert np.all(~(np.sort(childs_1) - np.sort(childs_2))) @pytest.mark.timeout(30) def test_get_atomic_partners(self, gen_graph_simplequerytest): cgraph = gen_graph_simplequerytest class TestGraphMerge: @pytest.mark.timeout(30) def test_merge_pair_same_chunk(self, gen_graph): """ Add edge between existing RG supervoxels 1 and 2 (same chunk) Expected: Same (new) parent for RG 1 and 2 on Layer two ┌─────┐ ┌─────┐ │ A¹ │ │ A¹ │ │ 1 2 │ => │ 1━2 │ │ │ │ │ └─────┘ └─────┘ """ cgraph = gen_graph(n_layers=2) # Preparation: Build Chunk A fake_timestamp = datetime.utcnow() - timedelta(days=10) create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 1)], edges=[], timestamp=fake_timestamp) # Merge new_root_ids = cgraph.add_edges("Jane Doe", [to_label(cgraph, 1, 0, 0, 0, 1), to_label(cgraph, 1, 0, 0, 0, 0)], affinities=0.3) assert len(new_root_ids) == 1 new_root_id = new_root_ids[0] # Check assert cgraph.get_parent(to_label(cgraph, 1, 0, 0, 0, 0)) == new_root_id assert cgraph.get_parent(to_label(cgraph, 1, 0, 0, 0, 1)) == new_root_id partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 0, 0, 0, 0)) assert partners[0] == to_label(cgraph, 1, 0, 0, 0, 1) and affinities[0] == np.float32(0.3) partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 0, 0, 0, 1)) assert partners[0] == to_label(cgraph, 1, 0, 0, 0, 0) and affinities[0] == np.float32(0.3) leaves = np.unique(cgraph.get_subgraph_nodes(new_root_id)) assert len(leaves) == 2 assert to_label(cgraph, 1, 0, 0, 0, 0) in leaves assert to_label(cgraph, 1, 0, 0, 0, 1) in leaves @pytest.mark.timeout(30) def test_merge_pair_neighboring_chunks(self, gen_graph): """ Add edge between existing RG supervoxels 1 and 2 (neighboring chunks) ┌─────┬─────┐ ┌─────┬─────┐ │ A¹ │ B¹ │ │ A¹ │ B¹ │ │ 1 │ 2 │ => │ 1━━┿━━2 │ │ │ │ │ │ │ └─────┴─────┘ └─────┴─────┘ """ cgraph = gen_graph(n_layers=3) # Preparation: Build Chunk A fake_timestamp = datetime.utcnow() - timedelta(days=10) create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 0)], edges=[], timestamp=fake_timestamp) # Preparation: Build Chunk B create_chunk(cgraph, vertices=[to_label(cgraph, 1, 1, 0, 0, 0)], edges=[], timestamp=fake_timestamp) cgraph.add_layer(3, np.array([[0, 0, 0], [1, 0, 0]]), time_stamp=fake_timestamp) # Merge new_root_ids = cgraph.add_edges("Jane Doe", [to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 0)], affinities=0.3) assert len(new_root_ids) == 1 new_root_id = new_root_ids[0] # Check assert cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 0)) == new_root_id assert cgraph.get_root(to_label(cgraph, 1, 1, 0, 0, 0)) == new_root_id partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 0, 0, 0, 0)) assert partners[0] == to_label(cgraph, 1, 1, 0, 0, 0) and affinities[0] == np.float32(0.3) partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 1, 0, 0, 0)) assert partners[0] == to_label(cgraph, 1, 0, 0, 0, 0) and affinities[0] == np.float32(0.3) leaves = np.unique(cgraph.get_subgraph_nodes(new_root_id)) assert len(leaves) == 2 assert to_label(cgraph, 1, 0, 0, 0, 0) in leaves assert to_label(cgraph, 1, 1, 0, 0, 0) in leaves @pytest.mark.timeout(30) def test_merge_pair_disconnected_chunks(self, gen_graph): """ Add edge between existing RG supervoxels 1 and 2 (disconnected chunks) ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ │ A¹ │ ... │ Z¹ │ │ A¹ │ ... │ Z¹ │ │ 1 │ │ 2 │ => │ 1━━┿━━━━━┿━━2 │ │ │ │ │ │ │ │ │ └─────┘ └─────┘ └─────┘ └─────┘ """ cgraph = gen_graph(n_layers=9) # Preparation: Build Chunk A fake_timestamp = datetime.utcnow() - timedelta(days=10) create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 0)], edges=[], timestamp=fake_timestamp) # Preparation: Build Chunk Z create_chunk(cgraph, vertices=[to_label(cgraph, 1, 127, 127, 127, 0)], edges=[], timestamp=fake_timestamp) cgraph.add_layer(3, np.array([[0x00, 0x00, 0x00]]), time_stamp=fake_timestamp) cgraph.add_layer(3, np.array([[0x7F, 0x7F, 0x7F]]), time_stamp=fake_timestamp) cgraph.add_layer(4, np.array([[0x00, 0x00, 0x00]]), time_stamp=fake_timestamp) cgraph.add_layer(4, np.array([[0x3F, 0x3F, 0x3F]]), time_stamp=fake_timestamp) cgraph.add_layer(5, np.array([[0x00, 0x00, 0x00]]), time_stamp=fake_timestamp) cgraph.add_layer(5, np.array([[0x1F, 0x1F, 0x1F]]), time_stamp=fake_timestamp) cgraph.add_layer(6, np.array([[0x00, 0x00, 0x00]]), time_stamp=fake_timestamp) cgraph.add_layer(6, np.array([[0x0F, 0x0F, 0x0F]]), time_stamp=fake_timestamp) cgraph.add_layer(7, np.array([[0x00, 0x00, 0x00]]), time_stamp=fake_timestamp) cgraph.add_layer(7, np.array([[0x07, 0x07, 0x07]]), time_stamp=fake_timestamp) cgraph.add_layer(8, np.array([[0x00, 0x00, 0x00]]), time_stamp=fake_timestamp) cgraph.add_layer(8, np.array([[0x03, 0x03, 0x03]]), time_stamp=fake_timestamp) cgraph.add_layer(9, np.array([[0x00, 0x00, 0x00], [0x01, 0x01, 0x01]]), time_stamp=fake_timestamp) # Merge new_root_ids = cgraph.add_edges("Jane Doe", [to_label(cgraph, 1, 127, 127, 127, 0), to_label(cgraph, 1, 0, 0, 0, 0)], affinities=0.3) assert len(new_root_ids) == 1 new_root_id = new_root_ids[0] # Check assert cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 0)) == new_root_id assert cgraph.get_root(to_label(cgraph, 1, 127, 127, 127, 0)) == new_root_id partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 0, 0, 0, 0)) assert partners[0] == to_label(cgraph, 1, 127, 127, 127, 0) and affinities[0] == np.float32(0.3) partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 127, 127, 127, 0)) assert partners[0] == to_label(cgraph, 1, 0, 0, 0, 0) and affinities[0] == np.float32(0.3) leaves = np.unique(cgraph.get_subgraph_nodes(new_root_id)) assert len(leaves) == 2 assert to_label(cgraph, 1, 0, 0, 0, 0) in leaves assert to_label(cgraph, 1, 127, 127, 127, 0) in leaves @pytest.mark.timeout(30) def test_merge_pair_already_connected(self, gen_graph): """ Add edge between already connected RG supervoxels 1 and 2 (same chunk). Expected: No change, i.e. same parent (to_label(cgraph, 2, 0, 0, 0, 1)), affinity (0.5) and timestamp as before ┌─────┐ ┌─────┐ │ A¹ │ │ A¹ │ │ 1━2 │ => │ 1━2 │ │ │ │ │ └─────┘ └─────┘ """ cgraph = gen_graph(n_layers=2) # Preparation: Build Chunk A fake_timestamp = datetime.utcnow() - timedelta(days=10) create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 1)], edges=[(to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 1), 0.5)], timestamp=fake_timestamp) res_old = cgraph.table.read_rows() res_old.consume_all() # Merge cgraph.add_edges("Jane Doe", [to_label(cgraph, 1, 0, 0, 0, 1), to_label(cgraph, 1, 0, 0, 0, 0)]) res_new = cgraph.table.read_rows() res_new.consume_all() # Check if res_old.rows != res_new.rows: warn("Rows were modified when merging a pair of already connected supervoxels. " "While probably not an error, it is an unnecessary operation.") @pytest.mark.timeout(30) def test_merge_triple_chain_to_full_circle_same_chunk(self, gen_graph): """ Add edge between indirectly connected RG supervoxels 1 and 2 (same chunk) ┌─────┐ ┌─────┐ │ A¹ │ │ A¹ │ │ 1 2 │ => │ 1━2 │ │ ┗3┛ │ │ ┗3┛ │ └─────┘ └─────┘ """ cgraph = gen_graph(n_layers=2) # Preparation: Build Chunk A fake_timestamp = datetime.utcnow() - timedelta(days=10) create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 1), to_label(cgraph, 1, 0, 0, 0, 2)], edges=[(to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 2), 0.5), (to_label(cgraph, 1, 0, 0, 0, 1), to_label(cgraph, 1, 0, 0, 0, 2), 0.5)], timestamp=fake_timestamp) # Merge new_root_ids = cgraph.add_edges("Jane Doe", [to_label(cgraph, 1, 0, 0, 0, 1), to_label(cgraph, 1, 0, 0, 0, 0)], affinities=0.3) assert len(new_root_ids) == 1 new_root_id = new_root_ids[0] # Check assert cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 0)) == new_root_id assert cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 1)) == new_root_id assert cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 2)) == new_root_id partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 0, 0, 0, 0)) assert len(partners) == 2 assert to_label(cgraph, 1, 0, 0, 0, 1) in partners assert to_label(cgraph, 1, 0, 0, 0, 2) in partners partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 0, 0, 0, 1)) assert len(partners) == 2 assert to_label(cgraph, 1, 0, 0, 0, 0) in partners assert to_label(cgraph, 1, 0, 0, 0, 2) in partners partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 0, 0, 0, 2)) assert len(partners) == 2 assert to_label(cgraph, 1, 0, 0, 0, 0) in partners assert to_label(cgraph, 1, 0, 0, 0, 1) in partners leaves = np.unique(cgraph.get_subgraph_nodes(new_root_id)) assert len(leaves) == 3 assert to_label(cgraph, 1, 0, 0, 0, 0) in leaves assert to_label(cgraph, 1, 0, 0, 0, 1) in leaves assert to_label(cgraph, 1, 0, 0, 0, 2) in leaves @pytest.mark.timeout(30) def test_merge_triple_chain_to_full_circle_neighboring_chunks(self, gen_graph): """ Add edge between indirectly connected RG supervoxels 1 and 2 (neighboring chunks) ┌─────┬─────┐ ┌─────┬─────┐ │ A¹ │ B¹ │ │ A¹ │ B¹ │ │ 1 │ 2 │ => │ 1━━┿━━2 │ │ ┗3━┿━━┛ │ │ ┗3━┿━━┛ │ └─────┴─────┘ └─────┴─────┘ """ cgraph = gen_graph(n_layers=3) # Preparation: Build Chunk A fake_timestamp = datetime.utcnow() - timedelta(days=10) create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 1)], edges=[(to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 1), 0.5), (to_label(cgraph, 1, 0, 0, 0, 1), to_label(cgraph, 1, 1, 0, 0, 0), inf)], timestamp=fake_timestamp) # Preparation: Build Chunk B create_chunk(cgraph, vertices=[to_label(cgraph, 1, 1, 0, 0, 0)], edges=[(to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 1), inf)], timestamp=fake_timestamp) cgraph.add_layer(3, np.array([[0, 0, 0], [1, 0, 0]]), time_stamp=fake_timestamp) # Merge new_root_ids = cgraph.add_edges("Jane Doe", [to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 0)], affinities=1.0) assert len(new_root_ids) == 1 new_root_id = new_root_ids[0] # Check assert cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 0)) == new_root_id assert cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 1)) == new_root_id assert cgraph.get_root(to_label(cgraph, 1, 1, 0, 0, 0)) == new_root_id partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 0, 0, 0, 0)) assert len(partners) == 2 assert to_label(cgraph, 1, 0, 0, 0, 1) in partners assert to_label(cgraph, 1, 1, 0, 0, 0) in partners partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 0, 0, 0, 1)) assert len(partners) == 2 assert to_label(cgraph, 1, 0, 0, 0, 0) in partners assert to_label(cgraph, 1, 1, 0, 0, 0) in partners partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 1, 0, 0, 0)) assert len(partners) == 2 assert to_label(cgraph, 1, 0, 0, 0, 0) in partners assert to_label(cgraph, 1, 0, 0, 0, 1) in partners leaves = np.unique(cgraph.get_subgraph_nodes(new_root_id)) assert len(leaves) == 3 assert to_label(cgraph, 1, 0, 0, 0, 0) in leaves assert to_label(cgraph, 1, 0, 0, 0, 1) in leaves assert to_label(cgraph, 1, 1, 0, 0, 0) in leaves cross_edge_dict_layers = graph_tests.root_cross_edge_test(new_root_id, cg=cgraph) # dict: layer -> cross_edge_dict n_cross_edges_layer = collections.defaultdict(list) for child_layer in cross_edge_dict_layers.keys(): for layer in cross_edge_dict_layers[child_layer].keys(): n_cross_edges_layer[layer].append(len(cross_edge_dict_layers[child_layer][layer])) for layer in n_cross_edges_layer.keys(): assert len(np.unique(n_cross_edges_layer[layer])) == 1 @pytest.mark.timeout(30) def test_merge_triple_chain_to_full_circle_disconnected_chunks(self, gen_graph): """ Add edge between indirectly connected RG supervoxels 1 and 2 (disconnected chunks) ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ │ A¹ │ ... │ Z¹ │ │ A¹ │ ... │ Z¹ │ │ 1 │ │ 2 │ => │ 1━━┿━━━━━┿━━2 │ │ ┗3━┿━━━━━┿━━┛ │ │ ┗3━┿━━━━━┿━━┛ │ └─────┘ └─────┘ └─────┘ └─────┘ """ cgraph = gen_graph(n_layers=9) # Preparation: Build Chunk A fake_timestamp = datetime.utcnow() - timedelta(days=10) create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 1)], edges=[(to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 1), 0.5), (to_label(cgraph, 1, 0, 0, 0, 1), to_label(cgraph, 1, 127, 127, 127, 0), inf)], timestamp=fake_timestamp) # Preparation: Build Chunk B create_chunk(cgraph, vertices=[to_label(cgraph, 1, 127, 127, 127, 0)], edges=[(to_label(cgraph, 1, 127, 127, 127, 0), to_label(cgraph, 1, 0, 0, 0, 1), inf)], timestamp=fake_timestamp) cgraph.add_layer(3, np.array([[0x00, 0x00, 0x00]]), time_stamp=fake_timestamp) cgraph.add_layer(3, np.array([[0x7F, 0x7F, 0x7F]]), time_stamp=fake_timestamp) cgraph.add_layer(4, np.array([[0x00, 0x00, 0x00]]), time_stamp=fake_timestamp) cgraph.add_layer(4, np.array([[0x3F, 0x3F, 0x3F]]), time_stamp=fake_timestamp) cgraph.add_layer(5, np.array([[0x00, 0x00, 0x00]]), time_stamp=fake_timestamp) cgraph.add_layer(5, np.array([[0x1F, 0x1F, 0x1F]]), time_stamp=fake_timestamp) cgraph.add_layer(6, np.array([[0x00, 0x00, 0x00]]), time_stamp=fake_timestamp) cgraph.add_layer(6, np.array([[0x0F, 0x0F, 0x0F]]), time_stamp=fake_timestamp) cgraph.add_layer(7, np.array([[0x00, 0x00, 0x00]]), time_stamp=fake_timestamp) cgraph.add_layer(7, np.array([[0x07, 0x07, 0x07]]), time_stamp=fake_timestamp) cgraph.add_layer(8, np.array([[0x00, 0x00, 0x00]]), time_stamp=fake_timestamp) cgraph.add_layer(8, np.array([[0x03, 0x03, 0x03]]), time_stamp=fake_timestamp) cgraph.add_layer(9, np.array([[0x00, 0x00, 0x00], [0x01, 0x01, 0x01]]), time_stamp=fake_timestamp) # Merge new_root_ids = cgraph.add_edges("Jane Doe", [to_label(cgraph, 1, 127, 127, 127, 0), to_label(cgraph, 1, 0, 0, 0, 0)], affinities=1.0) assert len(new_root_ids) == 1 new_root_id = new_root_ids[0] # Check assert cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 0)) == new_root_id assert cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 1)) == new_root_id assert cgraph.get_root(to_label(cgraph, 1, 127, 127, 127, 0)) == new_root_id partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 0, 0, 0, 0)) assert len(partners) == 2 assert to_label(cgraph, 1, 0, 0, 0, 1) in partners assert to_label(cgraph, 1, 127, 127, 127, 0) in partners partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 0, 0, 0, 1)) assert len(partners) == 2 assert to_label(cgraph, 1, 0, 0, 0, 0) in partners assert to_label(cgraph, 1, 127, 127, 127, 0) in partners partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 127, 127, 127, 0)) assert len(partners) == 2 assert to_label(cgraph, 1, 0, 0, 0, 0) in partners assert to_label(cgraph, 1, 0, 0, 0, 1) in partners leaves = np.unique(cgraph.get_subgraph_nodes(new_root_id)) assert len(leaves) == 3 assert to_label(cgraph, 1, 0, 0, 0, 0) in leaves assert to_label(cgraph, 1, 0, 0, 0, 1) in leaves assert to_label(cgraph, 1, 127, 127, 127, 0) in leaves cross_edge_dict_layers = graph_tests.root_cross_edge_test(new_root_id, cg=cgraph) # dict: layer -> cross_edge_dict n_cross_edges_layer = collections.defaultdict(list) for child_layer in cross_edge_dict_layers.keys(): for layer in cross_edge_dict_layers[child_layer].keys(): n_cross_edges_layer[layer].append(len(cross_edge_dict_layers[child_layer][layer])) for layer in n_cross_edges_layer.keys(): assert len(np.unique(n_cross_edges_layer[layer])) == 1 @pytest.mark.timeout(30) def test_merge_same_node(self, gen_graph): """ Try to add loop edge between RG supervoxel 1 and itself ┌─────┐ │ A¹ │ │ 1 │ => Reject │ │ └─────┘ """ cgraph = gen_graph(n_layers=2) # Preparation: Build Chunk A fake_timestamp = datetime.utcnow() - timedelta(days=10) create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 0)], edges=[], timestamp=fake_timestamp) res_old = cgraph.table.read_rows() res_old.consume_all() # Merge assert cgraph.add_edges("Jane Doe", [to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 0)]) is None res_new = cgraph.table.read_rows() res_new.consume_all() assert res_new.rows == res_old.rows @pytest.mark.timeout(30) def test_merge_pair_abstract_nodes(self, gen_graph): """ Try to add edge between RG supervoxel 1 and abstract node "2" ┌─────┐ │ B² │ │ "2" │ │ │ └─────┘ ┌─────┐ => Reject │ A¹ │ │ 1 │ │ │ └─────┘ """ cgraph = gen_graph(n_layers=3) # Preparation: Build Chunk A fake_timestamp = datetime.utcnow() - timedelta(days=10) create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 0)], edges=[], timestamp=fake_timestamp) # Preparation: Build Chunk B create_chunk(cgraph, vertices=[to_label(cgraph, 1, 1, 0, 0, 0)], edges=[], timestamp=fake_timestamp) cgraph.add_layer(3, np.array([[0, 0, 0], [1, 0, 0]]), time_stamp=fake_timestamp) res_old = cgraph.table.read_rows() res_old.consume_all() # Merge assert cgraph.add_edges("Jane Doe", [to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 2, 1, 0, 0, 1)]) is None res_new = cgraph.table.read_rows() res_new.consume_all() assert res_new.rows == res_old.rows @pytest.mark.timeout(30) def test_diagonal_connections(self, gen_graph): """ Create graph with edge between RG supervoxels 1 and 2 (same chunk) and edge between RG supervoxels 1 and 3 (neighboring chunks) ┌─────┬─────┐ │ A¹ │ B¹ │ │ 2 1━┿━━3 │ │ / │ │ ┌─────┬─────┐ │ | │ │ │ 4━━┿━━5 │ │ C¹ │ D¹ │ └─────┴─────┘ """ cgraph = gen_graph(n_layers=3) # Chunk A create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 1)], edges=[(to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 0), inf), (to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 1, 0, 0), inf)]) # Chunk B create_chunk(cgraph, vertices=[to_label(cgraph, 1, 1, 0, 0, 0)], edges=[(to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 0), inf)]) # Chunk C create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 1, 0, 0)], edges=[(to_label(cgraph, 1, 0, 1, 0, 0), to_label(cgraph, 1, 1, 1, 0, 0), inf), (to_label(cgraph, 1, 0, 1, 0, 0), to_label(cgraph, 1, 0, 0, 0, 0), inf)]) # Chunk D create_chunk(cgraph, vertices=[to_label(cgraph, 1, 1, 1, 0, 0)], edges=[(to_label(cgraph, 1, 1, 1, 0, 0), to_label(cgraph, 1, 0, 1, 0, 0), inf)]) cgraph.add_layer(3, np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0]])) rr = cgraph.range_read_chunk( chunk_id=cgraph.get_chunk_id(layer=3, x=0, y=0, z=0)) root_ids_t0 = list(rr.keys()) assert len(root_ids_t0) == 2 child_ids = [] for root_id in root_ids_t0: cgraph.logger.debug(("root_id", root_id)) child_ids.extend(cgraph.get_subgraph_nodes(root_id)) new_roots = cgraph.add_edges("Jane Doe", [to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 1)], affinities=[.5]) root_ids = [] for child_id in child_ids: root_ids.append(cgraph.get_root(child_id)) assert len(np.unique(root_ids)) == 1 root_id = root_ids[0] assert root_id == new_roots[0] cross_edge_dict_layers = graph_tests.root_cross_edge_test(root_id, cg=cgraph) # dict: layer -> cross_edge_dict n_cross_edges_layer = collections.defaultdict(list) for child_layer in cross_edge_dict_layers.keys(): for layer in cross_edge_dict_layers[child_layer].keys(): n_cross_edges_layer[layer].append( len(cross_edge_dict_layers[child_layer][layer])) for layer in n_cross_edges_layer.keys(): assert len(np.unique(n_cross_edges_layer[layer])) == 1 @pytest.mark.timeout(30) def test_cross_edges(self, gen_graph): """ Remove edge between existing RG supervoxels 1 and 2 (neighboring chunks) ┌─...─┬────────┬─────┐ ┌─...─┬────────┬─────┐ | │ A¹ │ B¹ │ | │ A¹ │ B¹ │ | │ 4 1━━┿━━5 │ => | │ 4━━1━━┿━━5 │ | │ / │ | │ | │ / │ │ | │ 3 2━━┿━━6 │ | │ 3 2━━┿━━6 │ └─...─┴────────┴─────┘ └─...─┴────────┴─────┘ """ cgraph = gen_graph(n_layers=6) chunk_offset = 6 # Preparation: Build Chunk A fake_timestamp = datetime.utcnow() - timedelta(days=10) create_chunk(cgraph, vertices=[to_label(cgraph, 1, chunk_offset, 0, 0, 0), to_label(cgraph, 1, chunk_offset, 0, 0, 1), to_label(cgraph, 1, chunk_offset, 0, 0, 2), to_label(cgraph, 1, chunk_offset, 0, 0, 3)], edges=[(to_label(cgraph, 1, chunk_offset, 0, 0, 0), to_label(cgraph, 1, chunk_offset+1, 0, 0, 0), inf), (to_label(cgraph, 1, chunk_offset, 0, 0, 1), to_label(cgraph, 1, chunk_offset+1, 0, 0, 1), inf), (to_label(cgraph, 1, chunk_offset, 0, 0, 0), to_label(cgraph, 1, chunk_offset, 0, 0, 2), .5)], timestamp=fake_timestamp) # Preparation: Build Chunk B create_chunk(cgraph, vertices=[to_label(cgraph, 1, chunk_offset+1, 0, 0, 0), to_label(cgraph, 1, chunk_offset+1, 0, 0, 1)], edges=[(to_label(cgraph, 1, chunk_offset+1, 0, 0, 0), to_label(cgraph, 1, chunk_offset, 0, 0, 0), inf), (to_label(cgraph, 1, chunk_offset+1, 0, 0, 1), to_label(cgraph, 1, chunk_offset, 0, 0, 1), inf), (to_label(cgraph, 1, chunk_offset+1, 0, 0, 0), to_label(cgraph, 1, chunk_offset+2, 0, 0, 0), inf), (to_label(cgraph, 1, chunk_offset+1, 0, 0, 1), to_label(cgraph, 1, chunk_offset+2, 0, 0, 1), inf)], timestamp=fake_timestamp) # Preparation: Build Chunk C create_chunk(cgraph, vertices=[to_label(cgraph, 1, chunk_offset+2, 0, 0, 0), to_label(cgraph, 1, chunk_offset+2, 0, 0, 1)], edges=[(to_label(cgraph, 1, chunk_offset+2, 0, 0, 0), to_label(cgraph, 1, chunk_offset+1, 0, 0, 0), inf), (to_label(cgraph, 1, chunk_offset+2, 0, 0, 1), to_label(cgraph, 1, chunk_offset+1, 0, 0, 1), inf), (to_label(cgraph, 1, chunk_offset+2, 0, 0, 0), to_label(cgraph, 1, chunk_offset+3, 0, 0, 0), inf), (to_label(cgraph, 1, chunk_offset+2, 0, 0, 0), to_label(cgraph, 1, chunk_offset+2, 0, 0, 1), .5)], timestamp=fake_timestamp) # Preparation: Build Chunk D create_chunk(cgraph, vertices=[to_label(cgraph, 1, chunk_offset+3, 0, 0, 0)], edges=[(to_label(cgraph, 1, chunk_offset+3, 0, 0, 0), to_label(cgraph, 1, chunk_offset+2, 0, 0, 0), inf), (to_label(cgraph, 1, chunk_offset+3, 0, 0, 0), to_label(cgraph, 1, chunk_offset+4, 0, 0, 0), inf)], timestamp=fake_timestamp) # Preparation: Build Chunk E create_chunk(cgraph, vertices=[to_label(cgraph, 1, chunk_offset+4, 0, 0, 0)], edges=[(to_label(cgraph, 1, chunk_offset+4, 0, 0, 0), to_label(cgraph, 1, chunk_offset+3, 0, 0, 0), inf), (to_label(cgraph, 1, chunk_offset+4, 0, 0, 0), to_label(cgraph, 1, chunk_offset+5, 0, 0, 0), inf)], timestamp=fake_timestamp) # Preparation: Build Chunk F create_chunk(cgraph, vertices=[to_label(cgraph, 1, chunk_offset+5, 0, 0, 0)], edges=[(to_label(cgraph, 1, chunk_offset+5, 0, 0, 0), to_label(cgraph, 1, chunk_offset+4, 0, 0, 0), inf)], timestamp=fake_timestamp) for i_layer in range(3, 7): for i_chunk in range(0, 2 ** (7 - i_layer), 2): cgraph.add_layer(i_layer, np.array([[i_chunk, 0, 0], [i_chunk+1, 0, 0]]), time_stamp=fake_timestamp) new_roots = cgraph.add_edges("Jane Doe", [to_label(cgraph, 1, chunk_offset, 0, 0, 0), to_label(cgraph, 1, chunk_offset, 0, 0, 3)], affinities=.9) assert len(new_roots) == 1 root_id = new_roots[0] cross_edge_dict_layers = graph_tests.root_cross_edge_test(root_id, cg=cgraph) # dict: layer -> cross_edge_dict n_cross_edges_layer = collections.defaultdict(list) for child_layer in cross_edge_dict_layers.keys(): for layer in cross_edge_dict_layers[child_layer].keys(): n_cross_edges_layer[layer].append( len(cross_edge_dict_layers[child_layer][layer])) for layer in n_cross_edges_layer.keys(): cgraph.logger.debug("LAYER %d" % layer) assert len(np.unique(n_cross_edges_layer[layer])) == 1 class TestGraphSplit: @pytest.mark.timeout(30) def test_split_pair_same_chunk(self, gen_graph): """ Remove edge between existing RG supervoxels 1 and 2 (same chunk) Expected: Different (new) parents for RG 1 and 2 on Layer two ┌─────┐ ┌─────┐ │ A¹ │ │ A¹ │ │ 1━2 │ => │ 1 2 │ │ │ │ │ └─────┘ └─────┘ """ cgraph = gen_graph(n_layers=2) # Preparation: Build Chunk A fake_timestamp = datetime.utcnow() - timedelta(days=10) create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 1)], edges=[(to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 1), 0.5)], timestamp=fake_timestamp) # Split new_root_ids = cgraph.remove_edges("Jane Doe", to_label(cgraph, 1, 0, 0, 0, 1), to_label(cgraph, 1, 0, 0, 0, 0), mincut=False) # Check New State assert len(new_root_ids) == 2 assert cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 0)) != cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 1)) partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 0, 0, 0, 0)) assert len(partners) == 0 partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 0, 0, 0, 1)) assert len(partners) == 0 leaves = np.unique(cgraph.get_subgraph_nodes(cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 0)))) assert len(leaves) == 1 and to_label(cgraph, 1, 0, 0, 0, 0) in leaves leaves = np.unique(cgraph.get_subgraph_nodes(cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 1)))) assert len(leaves) == 1 and to_label(cgraph, 1, 0, 0, 0, 1) in leaves # Check Old State still accessible assert cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 0), time_stamp=fake_timestamp) == \ cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 1), time_stamp=fake_timestamp) partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 0, 0, 0, 0), time_stamp=fake_timestamp) assert len(partners) == 1 and partners[0] == to_label(cgraph, 1, 0, 0, 0, 1) partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 0, 0, 0, 1), time_stamp=fake_timestamp) assert len(partners) == 1 and partners[0] == to_label(cgraph, 1, 0, 0, 0, 0) leaves = np.unique(cgraph.get_subgraph_nodes(cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 0), time_stamp=fake_timestamp))) assert len(leaves) == 2 assert to_label(cgraph, 1, 0, 0, 0, 0) in leaves assert to_label(cgraph, 1, 0, 0, 0, 1) in leaves # assert len(cgraph.get_latest_roots()) == 2 # assert len(cgraph.get_latest_roots(fake_timestamp)) == 1 def test_split_nonexisting_edge(self, gen_graph): """ Remove edge between existing RG supervoxels 1 and 2 (same chunk) Expected: Different (new) parents for RG 1 and 2 on Layer two ┌─────┐ ┌─────┐ │ A¹ │ │ A¹ │ │ 1━2 │ => │ 1━2 │ │ | │ │ | │ │ 3 │ │ 3 │ └─────┘ └─────┘ """ cgraph = gen_graph(n_layers=2) # Preparation: Build Chunk A fake_timestamp = datetime.utcnow() - timedelta(days=10) create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 1)], edges=[(to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 1), 0.5), (to_label(cgraph, 1, 0, 0, 0, 2), to_label(cgraph, 1, 0, 0, 0, 1), 0.5)], timestamp=fake_timestamp) # Split new_root_ids = cgraph.remove_edges("Jane Doe", to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 2), mincut=False) assert len(new_root_ids) == 1 assert len(cgraph.get_atomic_node_partners(to_label(cgraph, 1, 0, 0, 0, 0))) == 1 @pytest.mark.timeout(30) def test_split_pair_neighboring_chunks(self, gen_graph): """ Remove edge between existing RG supervoxels 1 and 2 (neighboring chunks) ┌─────┬─────┐ ┌─────┬─────┐ │ A¹ │ B¹ │ │ A¹ │ B¹ │ │ 1━━┿━━2 │ => │ 1 │ 2 │ │ │ │ │ │ │ └─────┴─────┘ └─────┴─────┘ """ cgraph = gen_graph(n_layers=3) # Preparation: Build Chunk A fake_timestamp = datetime.utcnow() - timedelta(days=10) create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 0)], edges=[(to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 0), 1.0)], timestamp=fake_timestamp) # Preparation: Build Chunk B create_chunk(cgraph, vertices=[to_label(cgraph, 1, 1, 0, 0, 0)], edges=[(to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 0), 1.0)], timestamp=fake_timestamp) cgraph.add_layer(3, np.array([[0, 0, 0], [1, 0, 0]]), time_stamp=fake_timestamp) # Split new_root_ids = cgraph.remove_edges("Jane Doe", to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 0), mincut=False) # Check New State assert len(new_root_ids) == 2 assert cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 0)) != cgraph.get_root(to_label(cgraph, 1, 1, 0, 0, 0)) partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 0, 0, 0, 0)) assert len(partners) == 0 partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 1, 0, 0, 0)) assert len(partners) == 0 leaves = np.unique(cgraph.get_subgraph_nodes(cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 0)))) assert len(leaves) == 1 and to_label(cgraph, 1, 0, 0, 0, 0) in leaves leaves = np.unique(cgraph.get_subgraph_nodes(cgraph.get_root(to_label(cgraph, 1, 1, 0, 0, 0)))) assert len(leaves) == 1 and to_label(cgraph, 1, 1, 0, 0, 0) in leaves # Check Old State still accessible assert cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 0), time_stamp=fake_timestamp) == \ cgraph.get_root(to_label(cgraph, 1, 1, 0, 0, 0), time_stamp=fake_timestamp) partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 0, 0, 0, 0), time_stamp=fake_timestamp) assert len(partners) == 1 and partners[0] == to_label(cgraph, 1, 1, 0, 0, 0) partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 1, 0, 0, 0), time_stamp=fake_timestamp) assert len(partners) == 1 and partners[0] == to_label(cgraph, 1, 0, 0, 0, 0) leaves = np.unique(cgraph.get_subgraph_nodes(cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 0), time_stamp=fake_timestamp))) assert len(leaves) == 2 assert to_label(cgraph, 1, 0, 0, 0, 0) in leaves assert to_label(cgraph, 1, 1, 0, 0, 0) in leaves assert len(cgraph.get_latest_roots()) == 2 assert len(cgraph.get_latest_roots(fake_timestamp)) == 1 @pytest.mark.timeout(30) def test_split_verify_cross_chunk_edges(self, gen_graph): """ Remove edge between existing RG supervoxels 1 and 2 (neighboring chunks) ┌─────┬─────┬─────┐ ┌─────┬─────┬─────┐ | │ A¹ │ B¹ │ | │ A¹ │ B¹ │ | │ 1━━┿━━3 │ => | │ 1━━┿━━3 │ | │ | │ │ | │ │ │ | │ 2 │ │ | │ 2 │ │ └─────┴─────┴─────┘ └─────┴─────┴─────┘ """ cgraph = gen_graph(n_layers=4) # Preparation: Build Chunk A fake_timestamp = datetime.utcnow() - timedelta(days=10) create_chunk(cgraph, vertices=[to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 1)], edges=[(to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 2, 0, 0, 0), inf), (to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 1), .5)], timestamp=fake_timestamp) # Preparation: Build Chunk B create_chunk(cgraph, vertices=[to_label(cgraph, 1, 2, 0, 0, 0)], edges=[(to_label(cgraph, 1, 2, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 0), inf)], timestamp=fake_timestamp) cgraph.add_layer(3, np.array([[0, 0, 0], [1, 0, 0]]), time_stamp=fake_timestamp) cgraph.add_layer(3, np.array([[2, 0, 0], [3, 0, 0]]), time_stamp=fake_timestamp) cgraph.add_layer(4, np.array([[0, 0, 0], [1, 0, 0]]), time_stamp=fake_timestamp) assert cgraph.get_root(to_label(cgraph, 1, 1, 0, 0, 0)) == cgraph.get_root(to_label(cgraph, 1, 1, 0, 0, 1)) assert cgraph.get_root(to_label(cgraph, 1, 1, 0, 0, 0)) == cgraph.get_root(to_label(cgraph, 1, 2, 0, 0, 0)) # Split new_root_ids = cgraph.remove_edges("Jane Doe", to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 1), mincut=False) svs2 = cgraph.get_subgraph_nodes(new_root_ids[0]) svs1 = cgraph.get_subgraph_nodes(new_root_ids[1]) len_set = {1, 2} assert len(svs1) in len_set len_set.remove(len(svs1)) assert len(svs2) in len_set # Check New State assert len(new_root_ids) == 2 assert cgraph.get_root(to_label(cgraph, 1, 1, 0, 0, 0)) != cgraph.get_root(to_label(cgraph, 1, 1, 0, 0, 1)) assert cgraph.get_root(to_label(cgraph, 1, 1, 0, 0, 0)) == cgraph.get_root(to_label(cgraph, 1, 2, 0, 0, 0)) cc_dict = cgraph.get_atomic_cross_edge_dict(cgraph.get_parent(to_label(cgraph, 1, 1, 0, 0, 0))) assert len(cc_dict[3]) == 1 assert cc_dict[3][0][0] == to_label(cgraph, 1, 1, 0, 0, 0) assert cc_dict[3][0][1] == to_label(cgraph, 1, 2, 0, 0, 0) assert len(cgraph.get_latest_roots()) == 2 assert len(cgraph.get_latest_roots(fake_timestamp)) == 1 @pytest.mark.timeout(30) def test_split_verify_loop(self, gen_graph): """ Remove edge between existing RG supervoxels 1 and 2 (neighboring chunks) ┌─────┬────────┬─────┐ ┌─────┬────────┬─────┐ | │ A¹ │ B¹ │ | │ A¹ │ B¹ │ | │ 4━━1━━┿━━5 │ => | │ 4 1━━┿━━5 │ | │ / │ | │ | │ │ | │ | │ 3 2━━┿━━6 │ | │ 3 2━━┿━━6 │ └─────┴────────┴─────┘ └─────┴────────┴─────┘ """ cgraph = gen_graph(n_layers=4) # Preparation: Build Chunk A fake_timestamp = datetime.utcnow() - timedelta(days=10) create_chunk(cgraph, vertices=[to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 1), to_label(cgraph, 1, 1, 0, 0, 2), to_label(cgraph, 1, 1, 0, 0, 3)], edges=[(to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 2, 0, 0, 0), inf), (to_label(cgraph, 1, 1, 0, 0, 1), to_label(cgraph, 1, 2, 0, 0, 1), inf), (to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 2), .5), (to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 3), .5)], timestamp=fake_timestamp) # Preparation: Build Chunk B create_chunk(cgraph, vertices=[to_label(cgraph, 1, 2, 0, 0, 0), to_label(cgraph, 1, 2, 0, 0, 1)], edges=[(to_label(cgraph, 1, 2, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 0), inf), (to_label(cgraph, 1, 2, 0, 0, 1), to_label(cgraph, 1, 1, 0, 0, 1), inf), (to_label(cgraph, 1, 2, 0, 0, 1), to_label(cgraph, 1, 2, 0, 0, 0), .5)], timestamp=fake_timestamp) cgraph.add_layer(3, np.array([[0, 0, 0], [1, 0, 0]]), time_stamp=fake_timestamp) cgraph.add_layer(3, np.array([[2, 0, 0], [3, 0, 0]]), time_stamp=fake_timestamp) cgraph.add_layer(4, np.array([[0, 0, 0], [1, 0, 0]]), time_stamp=fake_timestamp) assert cgraph.get_root(to_label(cgraph, 1, 1, 0, 0, 0)) == cgraph.get_root(to_label(cgraph, 1, 1, 0, 0, 1)) assert cgraph.get_root(to_label(cgraph, 1, 1, 0, 0, 0)) == cgraph.get_root(to_label(cgraph, 1, 2, 0, 0, 0)) # Split new_root_ids = cgraph.remove_edges("Jane Doe", to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 2), mincut=False) assert len(new_root_ids) == 2 new_root_ids = cgraph.remove_edges("Jane Doe", to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 3), mincut=False) assert len(new_root_ids) == 2 cc_dict = cgraph.get_atomic_cross_edge_dict(cgraph.get_parent(to_label(cgraph, 1, 1, 0, 0, 0))) assert len(cc_dict[3]) == 1 cc_dict = cgraph.get_atomic_cross_edge_dict(cgraph.get_parent(to_label(cgraph, 1, 1, 0, 0, 0))) assert len(cc_dict[3]) == 1 assert len(cgraph.get_latest_roots()) == 3 assert len(cgraph.get_latest_roots(fake_timestamp)) == 1 @pytest.mark.timeout(30) def test_split_pair_disconnected_chunks(self, gen_graph): """ Remove edge between existing RG supervoxels 1 and 2 (disconnected chunks) ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ │ A¹ │ ... │ Z¹ │ │ A¹ │ ... │ Z¹ │ │ 1━━┿━━━━━┿━━2 │ => │ 1 │ │ 2 │ │ │ │ │ │ │ │ │ └─────┘ └─────┘ └─────┘ └─────┘ """ cgraph = gen_graph(n_layers=9) # Preparation: Build Chunk A fake_timestamp = datetime.utcnow() - timedelta(days=10) create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 0)], edges=[(to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 127, 127, 127, 0), 1.0)], timestamp=fake_timestamp) # Preparation: Build Chunk Z create_chunk(cgraph, vertices=[to_label(cgraph, 1, 127, 127, 127, 0)], edges=[(to_label(cgraph, 1, 127, 127, 127, 0), to_label(cgraph, 1, 0, 0, 0, 0), 1.0)], timestamp=fake_timestamp) cgraph.add_layer(3, np.array([[0x00, 0x00, 0x00]]), time_stamp=fake_timestamp) cgraph.add_layer(3, np.array([[0x7F, 0x7F, 0x7F]]), time_stamp=fake_timestamp) cgraph.add_layer(4, np.array([[0x00, 0x00, 0x00]]), time_stamp=fake_timestamp) cgraph.add_layer(4, np.array([[0x3F, 0x3F, 0x3F]]), time_stamp=fake_timestamp) cgraph.add_layer(5, np.array([[0x00, 0x00, 0x00]]), time_stamp=fake_timestamp) cgraph.add_layer(5, np.array([[0x1F, 0x1F, 0x1F]]), time_stamp=fake_timestamp) cgraph.add_layer(6, np.array([[0x00, 0x00, 0x00]]), time_stamp=fake_timestamp) cgraph.add_layer(6, np.array([[0x0F, 0x0F, 0x0F]]), time_stamp=fake_timestamp) cgraph.add_layer(7, np.array([[0x00, 0x00, 0x00]]), time_stamp=fake_timestamp) cgraph.add_layer(7, np.array([[0x07, 0x07, 0x07]]), time_stamp=fake_timestamp) cgraph.add_layer(8, np.array([[0x00, 0x00, 0x00]]), time_stamp=fake_timestamp) cgraph.add_layer(8, np.array([[0x03, 0x03, 0x03]]), time_stamp=fake_timestamp) cgraph.add_layer(9, np.array([[0x00, 0x00, 0x00], [0x01, 0x01, 0x01]]), time_stamp=fake_timestamp) # Split new_roots = cgraph.remove_edges("Jane Doe", to_label(cgraph, 1, 127, 127, 127, 0), to_label(cgraph, 1, 0, 0, 0, 0), mincut=False) # Check New State assert len(new_roots) == 2 assert cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 0)) != cgraph.get_root(to_label(cgraph, 1, 127, 127, 127, 0)) partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 0, 0, 0, 0)) assert len(partners) == 0 partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 127, 127, 127, 0)) assert len(partners) == 0 leaves = np.unique(cgraph.get_subgraph_nodes(cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 0)))) assert len(leaves) == 1 and to_label(cgraph, 1, 0, 0, 0, 0) in leaves leaves = np.unique(cgraph.get_subgraph_nodes(cgraph.get_root(to_label(cgraph, 1, 127, 127, 127, 0)))) assert len(leaves) == 1 and to_label(cgraph, 1, 127, 127, 127, 0) in leaves # Check Old State still accessible assert cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 0), time_stamp=fake_timestamp) == \ cgraph.get_root(to_label(cgraph, 1, 127, 127, 127, 0), time_stamp=fake_timestamp) partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 0, 0, 0, 0), time_stamp=fake_timestamp) assert len(partners) == 1 and partners[0] == to_label(cgraph, 1, 127, 127, 127, 0) partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 127, 127, 127, 0), time_stamp=fake_timestamp) assert len(partners) == 1 and partners[0] == to_label(cgraph, 1, 0, 0, 0, 0) leaves = np.unique(cgraph.get_subgraph_nodes(cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 0), time_stamp=fake_timestamp))) assert len(leaves) == 2 assert to_label(cgraph, 1, 0, 0, 0, 0) in leaves assert to_label(cgraph, 1, 127, 127, 127, 0) in leaves @pytest.mark.timeout(30) def test_split_pair_already_disconnected(self, gen_graph): """ Try to remove edge between already disconnected RG supervoxels 1 and 2 (same chunk). Expected: No change, no error ┌─────┐ ┌─────┐ │ A¹ │ │ A¹ │ │ 1 2 │ => │ 1 2 │ │ │ │ │ └─────┘ └─────┘ """ cgraph = gen_graph(n_layers=2) # Preparation: Build Chunk A fake_timestamp = datetime.utcnow() - timedelta(days=10) create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 1)], edges=[], timestamp=fake_timestamp) res_old = cgraph.table.read_rows() res_old.consume_all() # Split with pytest.raises(cg_exceptions.PreconditionError): cgraph.remove_edges("Jane Doe", to_label(cgraph, 1, 0, 0, 0, 1), to_label(cgraph, 1, 0, 0, 0, 0), mincut=False) res_new = cgraph.table.read_rows() res_new.consume_all() # Check if res_old.rows != res_new.rows: warn("Rows were modified when splitting a pair of already disconnected supervoxels. " "While probably not an error, it is an unnecessary operation.") @pytest.mark.timeout(30) def test_split_full_circle_to_triple_chain_same_chunk(self, gen_graph): """ Remove direct edge between RG supervoxels 1 and 2, but leave indirect connection (same chunk) ┌─────┐ ┌─────┐ │ A¹ │ │ A¹ │ │ 1━2 │ => │ 1 2 │ │ ┗3┛ │ │ ┗3┛ │ └─────┘ └─────┘ """ cgraph = gen_graph(n_layers=2) # Preparation: Build Chunk A fake_timestamp = datetime.utcnow() - timedelta(days=10) create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 1), to_label(cgraph, 1, 0, 0, 0, 2)], edges=[(to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 2), 0.5), (to_label(cgraph, 1, 0, 0, 0, 1), to_label(cgraph, 1, 0, 0, 0, 2), 0.5), (to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 1), 0.3)], timestamp=fake_timestamp) # Split new_root_ids = cgraph.remove_edges("Jane Doe", to_label(cgraph, 1, 0, 0, 0, 1), to_label(cgraph, 1, 0, 0, 0, 0), mincut=False) # Check New State assert len(new_root_ids) == 1 assert cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 0)) == new_root_ids[0] assert cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 1)) == new_root_ids[0] assert cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 2)) == new_root_ids[0] partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 0, 0, 0, 0)) assert len(partners) == 1 and partners[0] == to_label(cgraph, 1, 0, 0, 0, 2) partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 0, 0, 0, 1)) assert len(partners) == 1 and partners[0] == to_label(cgraph, 1, 0, 0, 0, 2) partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 0, 0, 0, 2)) assert len(partners) == 2 assert to_label(cgraph, 1, 0, 0, 0, 0) in partners assert to_label(cgraph, 1, 0, 0, 0, 1) in partners leaves = np.unique(cgraph.get_subgraph_nodes(new_root_ids[0])) assert len(leaves) == 3 assert to_label(cgraph, 1, 0, 0, 0, 0) in leaves assert to_label(cgraph, 1, 0, 0, 0, 1) in leaves assert to_label(cgraph, 1, 0, 0, 0, 2) in leaves # Check Old State still accessible old_root_id = cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 0), time_stamp=fake_timestamp) assert new_root_ids[0] != old_root_id # assert len(cgraph.get_latest_roots()) == 1 # assert len(cgraph.get_latest_roots(fake_timestamp)) == 1 @pytest.mark.timeout(30) def test_split_full_circle_to_triple_chain_neighboring_chunks(self, gen_graph): """ Remove direct edge between RG supervoxels 1 and 2, but leave indirect connection (neighboring chunks) ┌─────┬─────┐ ┌─────┬─────┐ │ A¹ │ B¹ │ │ A¹ │ B¹ │ │ 1━━┿━━2 │ => │ 1 │ 2 │ │ ┗3━┿━━┛ │ │ ┗3━┿━━┛ │ └─────┴─────┘ └─────┴─────┘ """ cgraph = gen_graph(n_layers=3) # Preparation: Build Chunk A fake_timestamp = datetime.utcnow() - timedelta(days=10) create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 1)], edges=[(to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 1), 0.5), (to_label(cgraph, 1, 0, 0, 0, 1), to_label(cgraph, 1, 1, 0, 0, 0), 0.5), (to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 0), 0.3)], timestamp=fake_timestamp) # Preparation: Build Chunk B create_chunk(cgraph, vertices=[to_label(cgraph, 1, 1, 0, 0, 0)], edges=[(to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 1), 0.5), (to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 0), 0.3)], timestamp=fake_timestamp) cgraph.add_layer(3, np.array([[0, 0, 0], [1, 0, 0]]), time_stamp=fake_timestamp) # Split new_root_ids = cgraph.remove_edges("Jane Doe", to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 0), mincut=False) # Check New State assert len(new_root_ids) == 1 assert cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 0)) == new_root_ids[0] assert cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 1)) == new_root_ids[0] assert cgraph.get_root(to_label(cgraph, 1, 1, 0, 0, 0)) == new_root_ids[0] partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 0, 0, 0, 0)) assert len(partners) == 1 and partners[0] == to_label(cgraph, 1, 0, 0, 0, 1) partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 1, 0, 0, 0)) assert len(partners) == 1 and partners[0] == to_label(cgraph, 1, 0, 0, 0, 1) partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 0, 0, 0, 1)) assert len(partners) == 2 assert to_label(cgraph, 1, 0, 0, 0, 0) in partners assert to_label(cgraph, 1, 1, 0, 0, 0) in partners leaves = np.unique(cgraph.get_subgraph_nodes(new_root_ids[0])) assert len(leaves) == 3 assert to_label(cgraph, 1, 0, 0, 0, 0) in leaves assert to_label(cgraph, 1, 0, 0, 0, 1) in leaves assert to_label(cgraph, 1, 1, 0, 0, 0) in leaves # Check Old State still accessible old_root_id = cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 0), time_stamp=fake_timestamp) assert new_root_ids[0] != old_root_id assert len(cgraph.get_latest_roots()) == 1 assert len(cgraph.get_latest_roots(fake_timestamp)) == 1 @pytest.mark.timeout(30) def test_split_full_circle_to_triple_chain_disconnected_chunks(self, gen_graph): """ Remove direct edge between RG supervoxels 1 and 2, but leave indirect connection (disconnected chunks) ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ │ A¹ │ ... │ Z¹ │ │ A¹ │ ... │ Z¹ │ │ 1━━┿━━━━━┿━━2 │ => │ 1 │ │ 2 │ │ ┗3━┿━━━━━┿━━┛ │ │ ┗3━┿━━━━━┿━━┛ │ └─────┘ └─────┘ └─────┘ └─────┘ """ cgraph = gen_graph(n_layers=9) loc = 2 # Preparation: Build Chunk A fake_timestamp = datetime.utcnow() - timedelta(days=10) create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 1)], edges=[(to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 1), 0.5), (to_label(cgraph, 1, 0, 0, 0, 1), to_label(cgraph, 1, loc, loc, loc, 0), 0.5), (to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, loc, loc, loc, 0), 0.3)], timestamp=fake_timestamp) # Preparation: Build Chunk Z create_chunk(cgraph, vertices=[to_label(cgraph, 1, loc, loc, loc, 0)], edges=[(to_label(cgraph, 1, loc, loc, loc, 0), to_label(cgraph, 1, 0, 0, 0, 1), 0.5), (to_label(cgraph, 1, loc, loc, loc, 0), to_label(cgraph, 1, 0, 0, 0, 0), 0.3)], timestamp=fake_timestamp) for i_layer in range(3, 10): if loc // 2**(i_layer - 3) == 1: cgraph.add_layer(i_layer, np.array([[0, 0, 0], [1, 1, 1]]), time_stamp=fake_timestamp) elif loc // 2**(i_layer - 3) == 0: cgraph.add_layer(i_layer, np.array([[0, 0, 0]]), time_stamp=fake_timestamp) else: cgraph.add_layer(i_layer, np.array([[0, 0, 0]]), time_stamp=fake_timestamp) cgraph.add_layer(i_layer, np.array([[loc // 2**(i_layer - 3), loc // 2**(i_layer - 3), loc // 2**(i_layer - 3)]]), time_stamp=fake_timestamp) assert cgraph.get_root(to_label(cgraph, 1, loc, loc, loc, 0)) == \ cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 0)) == \ cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 1)) # Split new_root_ids = cgraph.remove_edges("Jane Doe", to_label(cgraph, 1, loc, loc, loc, 0), to_label(cgraph, 1, 0, 0, 0, 0), mincut=False) # Check New State assert len(new_root_ids) == 1 assert cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 0)) == new_root_ids[0] assert cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 1)) == new_root_ids[0] assert cgraph.get_root(to_label(cgraph, 1, loc, loc, loc, 0)) == new_root_ids[0] partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 0, 0, 0, 0)) assert len(partners) == 1 and partners[0] == to_label(cgraph, 1, 0, 0, 0, 1) partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, loc, loc, loc, 0)) assert len(partners) == 1 and partners[0] == to_label(cgraph, 1, 0, 0, 0, 1) partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 0, 0, 0, 1)) assert len(partners) == 2 assert to_label(cgraph, 1, 0, 0, 0, 0) in partners assert to_label(cgraph, 1, loc, loc, loc, 0) in partners leaves = np.unique(cgraph.get_subgraph_nodes(new_root_ids[0])) assert len(leaves) == 3 assert to_label(cgraph, 1, 0, 0, 0, 0) in leaves assert to_label(cgraph, 1, 0, 0, 0, 1) in leaves assert to_label(cgraph, 1, loc, loc, loc, 0) in leaves # Check Old State still accessible old_root_id = cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 0), time_stamp=fake_timestamp) assert new_root_ids[0] != old_root_id assert len(cgraph.get_latest_roots()) == 1 assert len(cgraph.get_latest_roots(fake_timestamp)) == 1 @pytest.mark.timeout(30) def test_split_same_node(self, gen_graph): """ Try to remove (non-existing) edge between RG supervoxel 1 and itself ┌─────┐ │ A¹ │ │ 1 │ => Reject │ │ └─────┘ """ cgraph = gen_graph(n_layers=2) # Preparation: Build Chunk A fake_timestamp = datetime.utcnow() - timedelta(days=10) create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 0)], edges=[], timestamp=fake_timestamp) res_old = cgraph.table.read_rows() res_old.consume_all() # Split with pytest.raises(cg_exceptions.PreconditionError): cgraph.remove_edges("Jane Doe", to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 0), mincut=False) res_new = cgraph.table.read_rows() res_new.consume_all() assert res_new.rows == res_old.rows @pytest.mark.timeout(30) def test_split_pair_abstract_nodes(self, gen_graph): """ Try to remove (non-existing) edge between RG supervoxel 1 and abstract node "2" ┌─────┐ │ B² │ │ "2" │ │ │ └─────┘ ┌─────┐ => Reject │ A¹ │ │ 1 │ │ │ └─────┘ """ cgraph = gen_graph(n_layers=3) # Preparation: Build Chunk A fake_timestamp = datetime.utcnow() - timedelta(days=10) create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 0)], edges=[], timestamp=fake_timestamp) # Preparation: Build Chunk B create_chunk(cgraph, vertices=[to_label(cgraph, 1, 1, 0, 0, 0)], edges=[], timestamp=fake_timestamp) cgraph.add_layer(3, np.array([[0, 0, 0], [1, 0, 0]]), time_stamp=fake_timestamp) res_old = cgraph.table.read_rows() res_old.consume_all() # Split with pytest.raises(cg_exceptions.PreconditionError): cgraph.remove_edges("Jane Doe", to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 2, 1, 0, 0, 1), mincut=False) res_new = cgraph.table.read_rows() res_new.consume_all() assert res_new.rows == res_old.rows @pytest.mark.timeout(30) def test_diagonal_connections(self, gen_graph): """ Create graph with edge between RG supervoxels 1 and 2 (same chunk) and edge between RG supervoxels 1 and 3 (neighboring chunks) ┌─────┬─────┐ │ A¹ │ B¹ │ │ 2━1━┿━━3 │ │ / │ │ ┌─────┬─────┐ │ | │ │ │ 4━━┿━━5 │ │ C¹ │ D¹ │ └─────┴─────┘ """ cgraph = gen_graph(n_layers=3) # Chunk A create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 1)], edges=[(to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 1), 0.5), (to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 0), inf), (to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 1, 0, 0), inf)]) # Chunk B create_chunk(cgraph, vertices=[to_label(cgraph, 1, 1, 0, 0, 0)], edges=[(to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 0), inf)]) # Chunk C create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 1, 0, 0)], edges=[(to_label(cgraph, 1, 0, 1, 0, 0), to_label(cgraph, 1, 1, 1, 0, 0), inf), (to_label(cgraph, 1, 0, 1, 0, 0), to_label(cgraph, 1, 0, 0, 0, 0), inf)]) # Chunk D create_chunk(cgraph, vertices=[to_label(cgraph, 1, 1, 1, 0, 0)], edges=[(to_label(cgraph, 1, 1, 1, 0, 0), to_label(cgraph, 1, 0, 1, 0, 0), inf)]) cgraph.add_layer(3, np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0]])) rr = cgraph.range_read_chunk(chunk_id=cgraph.get_chunk_id(layer=3, x=0, y=0, z=0)) root_ids_t0 = list(rr.keys()) assert len(root_ids_t0) == 1 child_ids = [] for root_id in root_ids_t0: cgraph.logger.debug(("root_id", root_id)) child_ids.extend(cgraph.get_subgraph_nodes(root_id)) new_roots = cgraph.remove_edges("Jane Doe", to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 1), mincut=False) assert len(new_roots) == 2 assert cgraph.get_root(to_label(cgraph, 1, 1, 1, 0, 0)) == \ cgraph.get_root(to_label(cgraph, 1, 0, 1, 0, 0)) assert cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 0)) == \ cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 0)) @pytest.mark.timeout(30) def test_shatter(self, gen_graph): """ Create graph with edge between RG supervoxels 1 and 2 (same chunk) and edge between RG supervoxels 1 and 3 (neighboring chunks) ┌─────┬─────┐ │ A¹ │ B¹ │ │ 2━1━┿━━3 │ │ / │ │ ┌─────┬─────┐ │ | │ │ │ 4━━┿━━5 │ │ C¹ │ D¹ │ └─────┴─────┘ """ cgraph = gen_graph(n_layers=3) # Chunk A create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 1)], edges=[(to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 1), 0.5), (to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 0), inf), (to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 0, 1, 0, 0), inf)]) # Chunk B create_chunk(cgraph, vertices=[to_label(cgraph, 1, 1, 0, 0, 0)], edges=[(to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 0), inf)]) # Chunk C create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 1, 0, 0)], edges=[(to_label(cgraph, 1, 0, 1, 0, 0), to_label(cgraph, 1, 1, 1, 0, 0), .1), (to_label(cgraph, 1, 0, 1, 0, 0), to_label(cgraph, 1, 0, 0, 0, 0), inf)]) # Chunk D create_chunk(cgraph, vertices=[to_label(cgraph, 1, 1, 1, 0, 0)], edges=[(to_label(cgraph, 1, 1, 1, 0, 0), to_label(cgraph, 1, 0, 1, 0, 0), .1)]) cgraph.add_layer(3, np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0]])) new_root_ids = cgraph.shatter_nodes("Jane Doe", atomic_node_ids=[to_label(cgraph, 1, 0, 0, 0, 0)]) cgraph.logger.debug(new_root_ids) assert len(new_root_ids) == 3 class TestGraphMergeSplit: @pytest.mark.timeout(30) def test_multiple_cuts_and_splits(self, gen_graph_simplequerytest): """ ┌─────┬─────┬─────┐ L X Y Z S L X Y Z S L X Y Z S L X Y Z S │ A¹ │ B¹ │ C¹ │ 1: 1 0 0 0 0 ─── 2 0 0 0 1 ─── 3 0 0 0 1 ─── 4 0 0 0 1 │ 1 │ 3━2━┿━━4 │ 2: 1 1 0 0 0 ─┬─ 2 1 0 0 1 ─── 3 0 0 0 2 ─┬─ 4 0 0 0 2 │ │ │ │ 3: 1 1 0 0 1 ─┘ │ └─────┴─────┴─────┘ 4: 1 2 0 0 0 ─── 2 2 0 0 1 ─── 3 1 0 0 1 ─┘ """ cgraph = gen_graph_simplequerytest rr = cgraph.range_read_chunk(chunk_id=cgraph.get_chunk_id(layer=4, x=0, y=0, z=0)) root_ids_t0 = list(rr.keys()) child_ids = [] for root_id in root_ids_t0: cgraph.logger.debug(f"root_id {root_id}") child_ids.extend(cgraph.get_subgraph_nodes(root_id)) for i in range(10): cgraph.logger.debug(f"\n\nITERATION {i}/10") cgraph.logger.debug("\n\nMERGE 1 & 3\n\n") new_roots = cgraph.add_edges("Jane Doe", [to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 1)], affinities=.9) assert len(new_roots) == 1 assert len(cgraph.get_subgraph_nodes(new_roots[0])) == 4 root_ids = [] for child_id in child_ids: root_ids.append(cgraph.get_root(child_id)) cgraph.logger.debug((child_id, cgraph.get_chunk_coordinates(child_id), root_ids[-1])) parent_id = cgraph.get_parent(child_id) cgraph.logger.debug((parent_id, cgraph.read_cross_chunk_edges(parent_id))) u_root_ids = np.unique(root_ids) assert len(u_root_ids) == 1 # ------------------------------------------------------------------ cgraph.logger.debug("\n\nSPLIT 2 & 3\n\n") new_roots = cgraph.remove_edges("John Doe", to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 1), mincut=False) assert len(np.unique(new_roots)) == 2 for root in new_roots: cgraph.logger.debug(("SUBGRAPH", cgraph.get_subgraph_nodes(root))) cgraph.logger.debug("test children") root_ids = [] for child_id in child_ids: root_ids.append(cgraph.get_root(child_id)) cgraph.logger.debug((child_id, cgraph.get_chunk_coordinates(child_id), cgraph.get_segment_id(child_id), root_ids[-1])) cgraph.logger.debug((cgraph.get_atomic_node_info(child_id))) cgraph.logger.debug("test root") u_root_ids = np.unique(root_ids) these_child_ids = [] for root_id in u_root_ids: these_child_ids.extend(cgraph.get_subgraph_nodes(root_id, verbose=False)) cgraph.logger.debug((root_id, cgraph.get_subgraph_nodes(root_id, verbose=False))) assert len(these_child_ids) == 4 assert len(u_root_ids) == 2 # ------------------------------------------------------------------ cgraph.logger.debug("\n\nSPLIT 1 & 3\n\n") new_roots = cgraph.remove_edges("Jane Doe", to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 1), mincut=False) assert len(new_roots) == 2 root_ids = [] for child_id in child_ids: root_ids.append(cgraph.get_root(child_id)) cgraph.logger.debug((child_id, cgraph.get_chunk_coordinates(child_id), root_ids[-1])) parent_id = cgraph.get_parent(child_id) cgraph.logger.debug((parent_id, cgraph.read_cross_chunk_edges(parent_id))) u_root_ids = np.unique(root_ids) assert len(u_root_ids) == 3 # ------------------------------------------------------------------ cgraph.logger.debug("\n\nMERGE 2 & 3\n\n") new_roots = cgraph.add_edges("Jane Doe", [to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 1)], affinities=.9) assert len(new_roots) == 1 root_ids = [] for child_id in child_ids: root_ids.append(cgraph.get_root(child_id)) cgraph.logger.debug((child_id, cgraph.get_chunk_coordinates(child_id), root_ids[-1])) parent_id = cgraph.get_parent(child_id) cgraph.logger.debug((parent_id, cgraph.read_cross_chunk_edges(parent_id))) u_root_ids = np.unique(root_ids) assert len(u_root_ids) == 2 for root_id in root_ids: cross_edge_dict_layers = graph_tests.root_cross_edge_test(root_id, cg=cgraph) # dict: layer -> cross_edge_dict n_cross_edges_layer = collections.defaultdict(list) for child_layer in cross_edge_dict_layers.keys(): for layer in cross_edge_dict_layers[child_layer].keys(): n_cross_edges_layer[layer].append(len(cross_edge_dict_layers[child_layer][layer])) for layer in n_cross_edges_layer.keys(): assert len(np.unique(n_cross_edges_layer[layer])) == 1 class TestGraphMinCut: # TODO: Ideally, those tests should focus only on mincut retrieving the correct edges. # The edge removal part should be tested exhaustively in TestGraphSplit @pytest.mark.timeout(30) def test_cut_regular_link(self, gen_graph): """ Regular link between 1 and 2 ┌─────┬─────┐ │ A¹ │ B¹ │ │ 1━━┿━━2 │ │ │ │ └─────┴─────┘ """ cgraph = gen_graph(n_layers=3) # Preparation: Build Chunk A fake_timestamp = datetime.utcnow() - timedelta(days=10) create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 0)], edges=[(to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 0), 0.5)], timestamp=fake_timestamp) # Preparation: Build Chunk B create_chunk(cgraph, vertices=[to_label(cgraph, 1, 1, 0, 0, 0)], edges=[(to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 0), 0.5)], timestamp=fake_timestamp) cgraph.add_layer(3, np.array([[0, 0, 0], [1, 0, 0]]), time_stamp=fake_timestamp) # Mincut new_root_ids = cgraph.remove_edges( "Jane Doe", to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 0), [0, 0, 0], [2*cgraph.chunk_size[0], 2*cgraph.chunk_size[1], cgraph.chunk_size[2]], mincut=True) # Check New State assert len(new_root_ids) == 2 assert cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 0)) != cgraph.get_root(to_label(cgraph, 1, 1, 0, 0, 0)) partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 0, 0, 0, 0)) assert len(partners) == 0 partners, affinities, areas = cgraph.get_atomic_partners(to_label(cgraph, 1, 1, 0, 0, 0)) assert len(partners) == 0 leaves = np.unique(cgraph.get_subgraph_nodes(cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 0)))) assert len(leaves) == 1 and to_label(cgraph, 1, 0, 0, 0, 0) in leaves leaves = np.unique(cgraph.get_subgraph_nodes(cgraph.get_root(to_label(cgraph, 1, 1, 0, 0, 0)))) assert len(leaves) == 1 and to_label(cgraph, 1, 1, 0, 0, 0) in leaves @pytest.mark.timeout(30) def test_cut_no_link(self, gen_graph): """ No connection between 1 and 2 ┌─────┬─────┐ │ A¹ │ B¹ │ │ 1 │ 2 │ │ │ │ └─────┴─────┘ """ cgraph = gen_graph(n_layers=3) # Preparation: Build Chunk A fake_timestamp = datetime.utcnow() - timedelta(days=10) create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 0)], edges=[], timestamp=fake_timestamp) # Preparation: Build Chunk B create_chunk(cgraph, vertices=[to_label(cgraph, 1, 1, 0, 0, 0)], edges=[], timestamp=fake_timestamp) cgraph.add_layer(3, np.array([[0, 0, 0], [1, 0, 0]]), time_stamp=fake_timestamp) res_old = cgraph.table.read_rows() res_old.consume_all() # Mincut with pytest.raises(cg_exceptions.PreconditionError): cgraph.remove_edges( "Jane Doe", to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 0), [0, 0, 0], [2*cgraph.chunk_size[0], 2*cgraph.chunk_size[1], cgraph.chunk_size[2]], mincut=True) res_new = cgraph.table.read_rows() res_new.consume_all() assert res_new.rows == res_old.rows @pytest.mark.timeout(30) def test_cut_old_link(self, gen_graph): """ Link between 1 and 2 got removed previously (aff = 0.0) ┌─────┬─────┐ │ A¹ │ B¹ │ │ 1┅┅╎┅┅2 │ │ │ │ └─────┴─────┘ """ cgraph = gen_graph(n_layers=3) # Preparation: Build Chunk A fake_timestamp = datetime.utcnow() - timedelta(days=10) create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 0)], edges=[(to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 0), 0.5)], timestamp=fake_timestamp) # Preparation: Build Chunk B create_chunk(cgraph, vertices=[to_label(cgraph, 1, 1, 0, 0, 0)], edges=[(to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 0), 0.5)], timestamp=fake_timestamp) cgraph.add_layer(3, np.array([[0, 0, 0], [1, 0, 0]]), time_stamp=fake_timestamp) cgraph.remove_edges("John Doe", to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 0), mincut=False) res_old = cgraph.table.read_rows() res_old.consume_all() # Mincut with pytest.raises(cg_exceptions.PreconditionError): cgraph.remove_edges( "Jane Doe", to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 0), [0, 0, 0], [2*cgraph.chunk_size[0], 2*cgraph.chunk_size[1], cgraph.chunk_size[2]], mincut=True) res_new = cgraph.table.read_rows() res_new.consume_all() assert res_new.rows == res_old.rows @pytest.mark.timeout(30) def test_cut_indivisible_link(self, gen_graph): """ Sink: 1, Source: 2 Link between 1 and 2 is set to `inf` and must not be cut. ┌─────┬─────┐ │ A¹ │ B¹ │ │ 1══╪══2 │ │ │ │ └─────┴─────┘ """ cgraph = gen_graph(n_layers=3) # Preparation: Build Chunk A fake_timestamp = datetime.utcnow() - timedelta(days=10) create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 0)], edges=[(to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 0), inf)], timestamp=fake_timestamp) # Preparation: Build Chunk B create_chunk(cgraph, vertices=[to_label(cgraph, 1, 1, 0, 0, 0)], edges=[(to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 0), inf)], timestamp=fake_timestamp) cgraph.add_layer(3, np.array([[0, 0, 0], [1, 0, 0]]), time_stamp=fake_timestamp) original_parents_1 = cgraph.get_all_parents( to_label(cgraph, 1, 0, 0, 0, 0)) original_parents_2 = cgraph.get_all_parents( to_label(cgraph, 1, 1, 0, 0, 0)) # Mincut assert cgraph.remove_edges( "Jane Doe", to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 0), [0, 0, 0], [2 * cgraph.chunk_size[0], 2 * cgraph.chunk_size[1], cgraph.chunk_size[2]], mincut=True) is None new_parents_1 = cgraph.get_all_parents(to_label(cgraph, 1, 0, 0, 0, 0)) new_parents_2 = cgraph.get_all_parents(to_label(cgraph, 1, 1, 0, 0, 0)) assert np.all(np.array(original_parents_1) == np.array(new_parents_1)) assert np.all(np.array(original_parents_2) == np.array(new_parents_2)) class TestGraphMultiCut: @pytest.mark.timeout(30) def test_cut_multi_tree(self, gen_graph): pass class TestGraphHistory: """ These test inadvertantly also test merge and split operations """ @pytest.mark.timeout(30) def test_cut_merge_history(self, gen_graph): """ Regular link between 1 and 2 ┌─────┬─────┐ │ A¹ │ B¹ │ │ 1━━┿━━2 │ │ │ │ └─────┴─────┘ (1) Split 1 and 2 (2) Merge 1 and 2 """ cgraph = gen_graph(n_layers=3) # Preparation: Build Chunk A fake_timestamp = datetime.utcnow() - timedelta(days=10) create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 0)], edges=[(to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 0), 0.5)], timestamp=fake_timestamp) # Preparation: Build Chunk B create_chunk(cgraph, vertices=[to_label(cgraph, 1, 1, 0, 0, 0)], edges=[(to_label(cgraph, 1, 1, 0, 0, 0), to_label(cgraph, 1, 0, 0, 0, 0), 0.5)], timestamp=fake_timestamp) cgraph.add_layer(3, np.array([[0, 0, 0], [1, 0, 0]]), time_stamp=fake_timestamp) first_root = cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 0)) assert first_root == cgraph.get_root(to_label(cgraph, 1, 1, 0, 0, 0)) timestamp_before_split = datetime.utcnow() split_roots = cgraph.remove_edges("Jane Doe", to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 0), mincut=False) assert len(split_roots) == 2 timestamp_after_split = datetime.utcnow() merge_roots = cgraph.add_edges("Jane Doe", [to_label(cgraph, 1, 0, 0, 0, 0), to_label(cgraph, 1, 1, 0, 0, 0)], affinities=.4) assert len(merge_roots) == 1 merge_root = merge_roots[0] timestamp_after_merge = datetime.utcnow() assert len(cgraph.get_root_id_history(first_root, time_stamp_past=datetime.min, time_stamp_future=datetime.max)) == 4 assert len(cgraph.get_root_id_history(split_roots[0], time_stamp_past=datetime.min, time_stamp_future=datetime.max)) == 3 assert len(cgraph.get_root_id_history(split_roots[1], time_stamp_past=datetime.min, time_stamp_future=datetime.max)) == 3 assert len(cgraph.get_root_id_history(merge_root, time_stamp_past=datetime.min, time_stamp_future=datetime.max)) == 4 new_roots, old_roots = cgraph.get_delta_roots(timestamp_before_split, timestamp_after_split) assert(len(old_roots)==1) assert(old_roots[0]==first_root) assert(len(new_roots)==2) assert(np.all(np.isin(new_roots, split_roots))) new_roots2, old_roots2 = cgraph.get_delta_roots(timestamp_after_split, timestamp_after_merge) assert(len(new_roots2)==1) assert(new_roots2[0]==merge_root) assert(len(old_roots2)==2) assert(np.all(np.isin(old_roots2, split_roots))) new_roots3, old_roots3 = cgraph.get_delta_roots(timestamp_before_split, timestamp_after_merge) assert(len(new_roots3)==1) assert(new_roots3[0]==merge_root) assert(len(old_roots3)==1) assert(old_roots3[0]==first_root) class TestGraphLocks: @pytest.mark.timeout(30) def test_lock_unlock(self, gen_graph): """ No connection between 1, 2 and 3 ┌─────┬─────┐ │ A¹ │ B¹ │ │ 1 │ 3 │ │ 2 │ │ └─────┴─────┘ (1) Try lock (opid = 1) (2) Try lock (opid = 2) (3) Try unlock (opid = 1) (4) Try lock (opid = 2) """ cgraph = gen_graph(n_layers=3) # Preparation: Build Chunk A fake_timestamp = datetime.utcnow() - timedelta(days=10) create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 1), to_label(cgraph, 1, 0, 0, 0, 2)], edges=[], timestamp=fake_timestamp) # Preparation: Build Chunk B create_chunk(cgraph, vertices=[to_label(cgraph, 1, 1, 0, 0, 1)], edges=[], timestamp=fake_timestamp) cgraph.add_layer(3, np.array([[0, 0, 0], [1, 0, 0]]), time_stamp=fake_timestamp) operation_id_1 = cgraph.get_unique_operation_id() root_id = cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 1)) assert cgraph.lock_root_loop(root_ids=[root_id], operation_id=operation_id_1)[0] operation_id_2 = cgraph.get_unique_operation_id() assert not cgraph.lock_root_loop(root_ids=[root_id], operation_id=operation_id_2)[0] assert cgraph.unlock_root(root_id=root_id, operation_id=operation_id_1) assert cgraph.lock_root_loop(root_ids=[root_id], operation_id=operation_id_2)[0] @pytest.mark.timeout(30) def test_lock_expiration(self, gen_graph, lock_expired_timedelta_override): """ No connection between 1, 2 and 3 ┌─────┬─────┐ │ A¹ │ B¹ │ │ 1 │ 3 │ │ 2 │ │ └─────┴─────┘ (1) Try lock (opid = 1) (2) Try lock (opid = 2) (3) Try lock (opid = 2) with retries """ cgraph = gen_graph(n_layers=3) # Preparation: Build Chunk A fake_timestamp = datetime.utcnow() - timedelta(days=10) create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 1), to_label(cgraph, 1, 0, 0, 0, 2)], edges=[], timestamp=fake_timestamp) # Preparation: Build Chunk B create_chunk(cgraph, vertices=[to_label(cgraph, 1, 1, 0, 0, 1)], edges=[], timestamp=fake_timestamp) cgraph.add_layer(3, np.array([[0, 0, 0], [1, 0, 0]]), time_stamp=fake_timestamp) operation_id_1 = cgraph.get_unique_operation_id() root_id = cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 1)) assert cgraph.lock_root_loop(root_ids=[root_id], operation_id=operation_id_1)[0] operation_id_2 = cgraph.get_unique_operation_id() assert not cgraph.lock_root_loop(root_ids=[root_id], operation_id=operation_id_2)[0] assert cgraph.lock_root_loop(root_ids=[root_id], operation_id=operation_id_2, max_tries=10, waittime_s=.5)[0] @pytest.mark.timeout(30) def test_lock_renew(self, gen_graph): """ No connection between 1, 2 and 3 ┌─────┬─────┐ │ A¹ │ B¹ │ │ 1 │ 3 │ │ 2 │ │ └─────┴─────┘ (1) Try lock (opid = 1) (2) Try lock (opid = 2) (3) Try lock (opid = 2) with retries """ cgraph = gen_graph(n_layers=3) # Preparation: Build Chunk A fake_timestamp = datetime.utcnow() - timedelta(days=10) create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 1), to_label(cgraph, 1, 0, 0, 0, 2)], edges=[], timestamp=fake_timestamp) # Preparation: Build Chunk B create_chunk(cgraph, vertices=[to_label(cgraph, 1, 1, 0, 0, 1)], edges=[], timestamp=fake_timestamp) cgraph.add_layer(3, np.array([[0, 0, 0], [1, 0, 0]]), time_stamp=fake_timestamp) operation_id_1 = cgraph.get_unique_operation_id() root_id = cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 1)) assert cgraph.lock_root_loop(root_ids=[root_id], operation_id=operation_id_1)[0] assert cgraph.check_and_renew_root_locks(root_ids=[root_id], operation_id=operation_id_1) @pytest.mark.timeout(30) def test_lock_merge_lock_old_id(self, gen_graph): """ No connection between 1, 2 and 3 ┌─────┬─────┐ │ A¹ │ B¹ │ │ 1 │ 3 │ │ 2 │ │ └─────┴─────┘ (1) Merge (includes lock opid 1) (2) Try lock opid 2 --> should be successful and return new root id """ cgraph = gen_graph(n_layers=3) # Preparation: Build Chunk A fake_timestamp = datetime.utcnow() - timedelta(days=10) create_chunk(cgraph, vertices=[to_label(cgraph, 1, 0, 0, 0, 1), to_label(cgraph, 1, 0, 0, 0, 2)], edges=[], timestamp=fake_timestamp) # Preparation: Build Chunk B create_chunk(cgraph, vertices=[to_label(cgraph, 1, 1, 0, 0, 1)], edges=[], timestamp=fake_timestamp) cgraph.add_layer(3, np.array([[0, 0, 0], [1, 0, 0]]), time_stamp=fake_timestamp) root_id = cgraph.get_root(to_label(cgraph, 1, 0, 0, 0, 1)) new_root_ids = cgraph.add_edges("Chuck Norris", [to_label(cgraph, 1, 0, 0, 0, 1), to_label(cgraph, 1, 0, 0, 0, 2)], affinities=1.) assert new_root_ids is not None operation_id_2 = cgraph.get_unique_operation_id() success, new_root_id = cgraph.lock_root_loop(root_ids=[root_id], operation_id=operation_id_2, max_tries=10, waittime_s=.5) cgraph.logger.debug(new_root_id) assert success assert new_root_ids[0] == new_root_id
45.863683
162
0.555526
132,284
0.94341
0
0
133,032
0.948744
0
0
27,177
0.193818
593862c08f86b1ec3350fd994c6a0a23e0d407ad
202
py
Python
remote_works/graphql/delivery/resolvers.py
tetyanaloskutova/saleor
b3bb51e9c0c4c2febf4aa1e2a7d893e77c331e89
[ "BSD-3-Clause" ]
7
2019-05-17T14:27:13.000Z
2021-12-17T22:52:40.000Z
remote_works/graphql/delivery/resolvers.py
tetyanaloskutova/saleor
b3bb51e9c0c4c2febf4aa1e2a7d893e77c331e89
[ "BSD-3-Clause" ]
9
2019-04-13T09:24:28.000Z
2019-09-09T15:35:05.000Z
remote_works/graphql/delivery/resolvers.py
tetyanaloskutova/remote-works
b3bb51e9c0c4c2febf4aa1e2a7d893e77c331e89
[ "BSD-3-Clause" ]
null
null
null
import graphene_django_optimizer as gql_optimizer from ...delivery import models def resolve_delivery_zones(info): qs = models.DeliveryZone.objects.all() return gql_optimizer.query(qs, info)
22.444444
49
0.787129
0
0
0
0
0
0
0
0
0
0
593db3c128dcad16c4059d93406558fd51b30469
5,617
py
Python
wark.py
rcorre/wark
fe4fe4789cb63bb2738265c3a008dc3dadb8ddaa
[ "MIT" ]
1
2017-05-24T00:25:39.000Z
2017-05-24T00:25:39.000Z
wark.py
rcorre/wark
fe4fe4789cb63bb2738265c3a008dc3dadb8ddaa
[ "MIT" ]
null
null
null
wark.py
rcorre/wark
fe4fe4789cb63bb2738265c3a008dc3dadb8ddaa
[ "MIT" ]
null
null
null
import os import json import uuid import shlex import weechat import requests from ciscosparkapi import CiscoSparkAPI from ws4py.client.threadedclient import WebSocketClient SCRIPT_NAME = "spark" FULL_NAME = "plugins.var.python.{}".format(SCRIPT_NAME) SPARK_SOCKET_URL = 'https://wdm-a.wbx2.com/wdm/api/v1/devices' api = None listener = None rooms = None buffers = [] def unixtime(msg): """Get the unix timestamp from a spark message object""" t = time.strptime(msg.created, '%Y-%m-%dT%H:%M:%S.%fZ') return int(time.mktime(t)) class Buffer(): """Represents a weechat buffer connected to a spark room.""" def __init__(self, buf, room, api): self.buf = buf self.room = room self.api = api def show(self, msg): """Display a message in the buffer.""" weechat.prnt_date_tags(self.buf, unixtime(msg), "", msg.text) def send(self, txt): """Send a message to the room.""" self.api.messages.create(roomId=self.room.id, markdown=txt) # Cisco Spark has a websocket interface to listen for message events # It isn't documented, I found it here: # https://github.com/marchfederico/ciscospark-websocket-events class EventListener(WebSocketClient): """Listens to the cisco spark web socket.""" def __init__(self, buffers): self.buffers = buffers spec = { "deviceName": "weechat", "deviceType": "DESKTOP", "localizedModel": "python2", "model": "python2", "name": "weechat", "systemName": "weechat", "systemVersion": "0.1" } self.bearer = 'Bearer ' + os.getenv("SPARK_ACCESS_TOKEN") self.headers = {'Authorization': self.bearer} resp = requests.post(SPARK_SOCKET_URL, headers=self.headers, json=spec, timeout=10.0) if resp.status_code != 200: print("Failed to register device {}: {}".format(name, resp.json())) info = resp.json() self.dev_url = info['url'] super(EventListener, self).__init__( info['webSocketUrl'], protocols=['http-only', 'chat']) def opened(self): # authentication handshake self.send(json.dumps({ 'id': str(uuid.uuid4()), 'type': 'authorization', 'data': { 'token': self.bearer } })) def closed(self, code, reason=None): resp = requests.delete(self.dev_url, headers=self.headers, timeout=10.0) if resp.status_code != 200: print("Failed to unregister websocket device from Spark") def received_message(self, m): try: j = json.loads(str(m)) except: print("Failed to parse message {}".format(m)) return timestamp = j['timestamp'] data = j['data'] name = data.get('actor', {}).get('displayName') ev = data['eventType'] if ev == 'status.start_typing': weechat.prnt('', '{} started typing'.format(name)) elif ev == 'status.stop_typing': weechat.prnt('', '{} stopped typing'.format(name)) elif ev == 'conversation.activity': act = data['activity'] verb = act['verb'] if verb == 'post': msg = api.messages.get(act['id']) for buf in self.buffers: if buf.room.id == msg.roomId: buf.show(msg) else: print('Unknown event {}'.format(ev)) class CommandException(Exception): pass def buffer_input_cb(data, buf, input_data): weechat.prnt(buf, input_data) return weechat.WEECHAT_RC_OK def buffer_close_cb(data, buf): """Called on closing a buffer.""" return weechat.WEECHAT_RC_OK def room_list(buf): """Print a list of visible rooms.""" weechat.prnt(buf, '--Rooms--') weechat.prnt(buf, '\n'.join(rooms.keys())) weechat.prnt(buf, '---------') def room_open(buf, name): """Open a new buffer connected to a spark room.""" room = rooms[name] newbuf = weechat.buffer_new("spark." + room.title, "buffer_input_cb", "", "buffer_close_cb", "") buffers[room.id] = Buffer(buf, room, api) def rehistory(_buf): #messages = api.messages.list(roomId=room.id) #for msg in sorted(messages, key=unixtime): # text = msg.text.encode('ascii', 'replace') if msg.text else '' # weechat.prnt_date_tags(newbuf, unixtime(msg), "", text) pass COMMANDS = { 'rooms': room_list, 'open': room_open, } def spark_command_cb(data, buf, command): parts = shlex.split(command) cmd = parts[0] args = parts[1:] if not cmd in COMMANDS: weechat.prnt(buf, "Unknown command " + cmd) return weechat.WEECHAT_RC_ERROR try: COMMANDS[cmd](buf, *args) return weechat.WEECHAT_RC_OK except CommandException as ex: weechat.prnt(buf, 'Error: {}'.format(ex)) return weechat.WEECHAT_RC_ERROR weechat.register(SCRIPT_NAME, "rcorre", "0.1", "MIT", "Spark Client", "", "") api = CiscoSparkAPI() rooms = {room.title: room for room in api.rooms.list()} listener = EventListener() listener.connect() weechat.hook_command( # Command name and description 'spark', '', # Usage '[command] [command options]', # Description of arguments 'Commands:\n' + '\n'.join(['history']) + '\nUse /spark help [command] to find out more\n', # Completions '|'.join(COMMANDS.keys()), # Function name 'spark_command_cb', '')
28.226131
79
0.590707
2,874
0.511661
0
0
0
0
0
0
1,801
0.320634
593e946792eaa8675d0ba0dfd7b0ef6bf054d411
1,869
py
Python
src/app.py
jqueguiner/text-to-speech-as-a-service
b66b1593a6c669c77edadb38939de30e82e46425
[ "MIT" ]
3
2020-03-19T09:49:49.000Z
2020-03-30T14:18:00.000Z
src/app.py
jqueguiner/text-to-speech-as-a-service
b66b1593a6c669c77edadb38939de30e82e46425
[ "MIT" ]
2
2021-09-28T01:12:37.000Z
2022-02-26T06:54:04.000Z
src/app.py
jqueguiner/text-to-speech-as-a-service
b66b1593a6c669c77edadb38939de30e82e46425
[ "MIT" ]
null
null
null
import os import sys import subprocess import requests import ssl import random import string import json from flask import jsonify from flask import Flask from flask import request from flask import send_file import traceback from uuid import uuid4 from notebook_utils.synthesize import * try: # Python 3.5+ from http import HTTPStatus except ImportError: try: # Python 3 from http import client as HTTPStatus except ImportError: # Python 2 import httplib as HTTPStatus app = Flask(__name__) def generate_random_filename(upload_directory, extension): filename = str(uuid4()) filename = os.path.join(upload_directory, filename + "." + extension) return filename def clean_me(filename): if os.path.exists(filename): os.remove(filename) def create_directory(path): os.system("mkdir -p %s" % os.path.dirname(path)) @app.route("/process", methods=["POST", "GET"]) def process(): output_path = generate_random_filename(output_directory, "wav") try: text = request.json["text"] synthesize(text, tts_model, voc_model, alpha=1.0, output_file=output_path) callback = send_file(output_path, mimetype='audio/wav') return callback, 200 except: traceback.print_exc() return {'message': 'input error'}, 400 finally: clean_me( output_path ) if __name__ == '__main__': global output_directory global voc_model global tts_model output_directory = '/src/output/' create_directory(output_directory) init_hparams('notebook_utils/pretrained_hparams.py') tts_model = get_forward_model('pretrained/forward_100K.pyt') voc_model = get_wavernn_model('pretrained/wave_800K.pyt') port = 5000 host = '0.0.0.0' app.run(host=host, port=port, threaded=True)
21.238636
82
0.687533
0
0
0
0
531
0.284109
0
0
240
0.128411
593ea1a84d21ae7ff3a90ce0dfc4e0f0d6b66ac7
4,728
py
Python
Leander_Stephen_D'Souza/Joystick/Joystick_Motor_Code_using_PWM_library.py
leander-dsouza/MRM-Tenure
3f372ffeeb12b04f4c5c636235db61725d47c3c6
[ "MIT" ]
2
2020-08-26T04:01:03.000Z
2020-09-11T05:21:32.000Z
Leander_Stephen_D'Souza/Joystick/Joystick_Motor_Code_using_PWM_library.py
leander-dsouza/MRM-Tenure
3f372ffeeb12b04f4c5c636235db61725d47c3c6
[ "MIT" ]
null
null
null
Leander_Stephen_D'Souza/Joystick/Joystick_Motor_Code_using_PWM_library.py
leander-dsouza/MRM-Tenure
3f372ffeeb12b04f4c5c636235db61725d47c3c6
[ "MIT" ]
null
null
null
import RPi.GPIO as GPIO import time import pygame from pygame import locals import pygame.display GPIO.setmode(GPIO.BOARD) GPIO.setwarnings(False) speedA = 0.000 speedB = 0.000 x = 512.00 y = 512.00 # frequency=100Hz t_on = 0.00 t_off = 0.00 ledpin1 =35 # left_fwd ledpin2 =36 # right_fwd ledpin3 =37 # left_bck ledpin4 =38 # right_bck GPIO.setup(ledpin1, GPIO.OUT) GPIO.setup(ledpin2, GPIO.OUT) GPIO.setup(ledpin3, GPIO.OUT) GPIO.setup(ledpin4, GPIO.OUT) GPIO.output(ledpin1, False) GPIO.output(ledpin2, False) GPIO.output(ledpin3, False) GPIO.output(ledpin4, False) p=GPIO.PWM(ledpin1,100) q=GPIO.PWM(ledpin2,100) r=GPIO.PWM(ledpin3,100) s=GPIO.PWM(ledpin4,100) p.start(0.00) q.start(0.00) r.start(0.00) s.start(0.00) def arduino_map(x, in_min, in_max, out_min, out_max): return ((x - in_min) * (out_max - out_min) / (in_max - in_min)) + out_min def oct1(x, y): speedA = arduino_map(y, 1023, 512, 255, 0) speedB = arduino_map(x + y, 1535, 1023, 255, 0) p.ChangeDutyCycle(speedA*(100.000000/255.000000)) q.ChangeDutyCycle(speedB*(100.000000/255.000000)) r.ChangeDutyCycle(0) s.ChangeDutyCycle(0) def oct2(x, y): speedA = arduino_map(x, 512, 0, 0, 255) speedB = arduino_map(x + y, 1023, 512, 0, 255) p.ChangeDutyCycle(speedA*(100.000000/255.000000)) s.ChangeDutyCycle(speedB*(100.000000/255.000000)) q.ChangeDutyCycle(0) r.ChangeDutyCycle(0) def oct3(x, y): speedA = arduino_map(y - x, 512, 0, 255, 0) speedB = arduino_map(x, 512, 0, 0, 255) p.ChangeDutyCycle(speedA*(100.000000/255.000000)) s.ChangeDutyCycle(speedB*(100.000000/255.000000)) r.ChangeDutyCycle(0) q.ChangeDutyCycle(0) def oct4(x, y): speedA = arduino_map(x - y, 512, 0, 255, 0) speedB = arduino_map(y, 512, 0, 0, 255) r.ChangeDutyCycle(speedA*(100.000000/255.000000)) s.ChangeDutyCycle(speedB*(100.000000/255.000000)) p.ChangeDutyCycle(0) q.ChangeDutyCycle(0) def oct5(x, y): speedA = arduino_map(y, 512, 0, 0, 255) speedB = arduino_map(x + y, 1023, 512, 0, 255) r.ChangeDutyCycle(speedA*(100.000000/255.000000)) s.ChangeDutyCycle(speedB*(100.000000/255.000000)) p.ChangeDutyCycle(0) q.ChangeDutyCycle(0) def oct6(x, y): speedA = arduino_map(x, 1023, 512, 255, 0) speedB = arduino_map(x + y, 1535, 1023, 255, 0) r.ChangeDutyCycle(speedA*(100.000000/255.000000)) q.ChangeDutyCycle(speedB*(100.000000/255.000000)) p.ChangeDutyCycle(0) s.ChangeDutyCycle(0) def oct7(x, y): speedA = arduino_map(x - y, 0, 512, 0, 255) speedB = arduino_map(x, 1023, 512, 255, 0) r.ChangeDutyCycle(speedA*(100.000000/255.000000)) q.ChangeDutyCycle(speedB*(100.000000/255.000000)) p.ChangeDutyCycle(0) s.ChangeDutyCycle(0) def oct8(x, y): speedA = arduino_map(y - x, 0, 512, 0, 255) speedB = arduino_map(y, 1023, 512, 255, 0) p.ChangeDutyCycle(speedA*(100.000000/255.000000)) q.ChangeDutyCycle(speedB*(100.000000/255.000000)) r.ChangeDutyCycle(0) s.ChangeDutyCycle(0) pygame.init() pygame.display.init() pygame.joystick.init() # main joystick device system try: j = pygame.joystick.Joystick(0) # create a joystick instance j.init() # init instance print("Enabled joystick:") except pygame.error: print("no joystick found.") while 1: for e in pygame.event.get(): # iterate over event stack if e.type == pygame.locals.JOYAXISMOTION: x, y = j.get_axis(0), j.get_axis(1) x = round(arduino_map(x, -1, 1, 1023, 0)) y = round(arduino_map(y, 1, -1, 0, 1023)) print("X=", x) print("Y=", y) # QUAD 1 if (x <= 512) & ((y >= 512) & (y <= 1023)): if (x + y) >= 1023: # OCT1 oct1(x, y) if (x + y) < 1023: # OCT2 oct2(x, y) # QUAD 2 if (x <= 512) & (y <= 512): if (x - y) <= 0: # OCT3 oct3(x, y) if (x - y) > 0: # OCT4 oct4(x, y) # QUAD 3 if ((x >= 512) & (x <= 1023)) & (y <= 512): if (x + y) <= 1023: # OCT5 oct5(x, y) if (x + y) > 1023: # OCT6 oct6(x, y) # QUAD 4 if ((x >= 512) & (x <= 1023)) & ((y >= 512) & (y <= 1023)): if (y - x) <= 0: # OCT7 oct7(x, y) if (y - x) > 0: # OCT8 oct8(x, y)
27.172414
78
0.556684
0
0
0
0
0
0
0
0
305
0.064509
593f2fd2545bc28f967b04b9e6d7e99629ac3a94
8,548
py
Python
rest_helpers/type_serializers.py
WillFr/restlax
ec47617d915094137077f641427976f04acd8d47
[ "Apache-2.0" ]
1
2019-07-03T16:29:05.000Z
2019-07-03T16:29:05.000Z
rest_helpers/type_serializers.py
WillFr/restlax
ec47617d915094137077f641427976f04acd8d47
[ "Apache-2.0" ]
null
null
null
rest_helpers/type_serializers.py
WillFr/restlax
ec47617d915094137077f641427976f04acd8d47
[ "Apache-2.0" ]
null
null
null
""" This module contains functions that are geared toward serializing objects, in particular JSON API objects. """ import decimal from collections import Iterable from rest_helpers.jsonapi_objects import Resource, Response, Link, JsonApiObject, Relationship def to_jsonable(obj, no_empty_field=False, is_private=None): """ This is a low level function to transform any object into a json serializable (jsonable) object based on its __dict__. Arguments: obj {any type} -- the object to be transformed. Keyword Arguments: no_empty_field {bool} -- if set to true, the empty field (empty string or None) will be removed from the resulting jsonable object (default: {False}) is_private -- callback/function can be passed through to define what does or does not surface in json payload. Returns: dict -- A dictionary that can be used by json.dumps """ if is_private is None: is_private = lambda k: True if str(k)[0] != '_' else False if isinstance(obj, list): return [to_jsonable(r, no_empty_field, is_private) for r in obj] dic = obj if isinstance(obj, dict) else \ obj.__dict__ if hasattr(obj, "__dict__") else \ None if dic is None: if isinstance(obj, decimal.Decimal): str_rep = str(obj) return int(obj) if '.' not in str_rep else str_rep return obj return {str(k): to_jsonable(v, no_empty_field, is_private)for k, v in dic.items() if is_private(k) and (not no_empty_field or v is not None and v != "")} def response_to_jsonable(response, generate_self_links=True, id_only=False,is_private=None): """ Transform a response object into a json serializable (jsonable) object that matches the jsonapi requirements. Arguments: resource {Response} -- The response to be serialized Keyword Arguments: generate_self_links {bool} -- If set to true "self" links will be added appropriately where they do not exist. (default: {True}) Returns: dict -- a dictionary that can be used by json.dumps to serialize the Response object. """ assert isinstance(response, Response) # Data is a resource object (or a list of resource object, # hence it needs some special serialization logic) dic = response.__dict__.copy() dic.pop("data") return_value = to_jsonable(dic, no_empty_field=True,is_private=is_private) if response.data is not None: jsonable_data = resource_to_jsonable(response.data, generate_self_links,is_private=is_private) if id_only: jsonable_data = jsonable_data["id"] if not isinstance(jsonable_data, Iterable) else [x["id"] for x in jsonable_data] return_value["data"] = jsonable_data return return_value def resource_to_jsonable(resource, generate_self_links=True,is_private=None): """ Transform a resource object or a resource object list into a json serializable (jsonable) object that matches the jsonapi requirements. Arguments: resource {Resource|list<Resource>} -- The resource or list of resources to be serialized Keyword Arguments: generate_self_links {bool} -- If set to true "self" links will be added appropriately where they do not exist. (default: {True}) Returns: dict -- a dictionary that can be used by json.dumps to serialize the Resource object. """ if isinstance(resource, list): return [resource_to_jsonable(x,is_private) for x in resource] assert isinstance(resource, Resource) json_resource = resource.to_primitive() if (hasattr(resource, "to_primitive") and callable(resource,to_primitive)) else to_jsonable(resource, is_private=is_private) special = ["id", "type", "relationships", "links", "meta"] for key in special: json_resource.pop(key, None) relationships = relationships_to_jsonable( resource.relationships, "{0}?json_path=/{1}".format(resource.id, "relationships"), generate_self_links) resource_links = resource.links if generate_self_links and "self" not in resource_links: resource_links = resource.links.copy() resource_links["self"] = Link(resource.id) links = links_to_jsonable(resource_links) return_value = { "id" : resource.id, "type" : resource.type, "relationships" : relationships, "links" : links, "meta" : resource.meta, "attributes" :json_resource } _remove_empty_fields(return_value) return return_value def link_to_jsonable(link): """ Transforms a json api link object into a dictionary that can be used by json.dumps. Arguments: link {Link} -- the link to be serialized. Returns: dict -- a dictionary that can be used by json.dumps to serialize the Link object. """ assert isinstance(link, Link) if link.meta is None: return link.url else: return { "href": link.url, "meta": to_jsonable(link.meta) } def links_to_jsonable(links): """ Transform a json api Link object dictionary into a dictionaty that can be used by json dumps. Arguments: links {dict<Link>} -- the dictionary of Link objects to be serialized. Returns: dict -- a dictionary that can be used by json.dumps to serialize the dictionary of link objects. """ if links is None: return None assert isinstance(links, dict) return {k: link_to_jsonable(v) for k, v in links.items()} def jsonapiobject_to_jsonable(jsonapiobject): """ Transforms a jsonapi json api objects into a dictionary that can be used by json dumps Arguments: jsonapiobject {JsonApiObject} -- The jsonapiobject to be serialized. Returns: dict -- a dictionary that can be used by json.dumps to serialize the JsonApiObject object. """ assert isinstance(jsonapiobject, JsonApiObject) return to_jsonable(jsonapiobject, no_empty_field=True) def relationship_to_jsonable(relationship, self_link=None): """ Tranform a json api relationship object into a json serializable object that matches the json api specification. Arguments: relationship {Relationship} -- a relationship object to be serialized. Keyword Arguments: self_link {string} -- link to the relationship to be serialized. If not None, a link json api object will be created based on this value and added to the links of the relationship object to be serialized (default: {None}). Returns: dict -- a dictionary that can be used by json.dumps to serialize the relationship object. """ assert isinstance(relationship, Relationship) return_value = dict() links = relationship.links.copy() if relationship.links is not None else dict() if self_link is not None: links["self"] = Link(self_link) if any(links): return_value["links"] = links_to_jsonable(links) if relationship.data is not None: return_value["data"] = {"type": relationship.data.type, "id": relationship.data.id} return return_value def relationships_to_jsonable(relationships, self_link_prefix=None, generate_self_link=False): """ Tranform a dictionary of json api relationship object nto a json serializable object that matches the json api specification. Arguments: relationships {dict<Relationships>} -- a dict of relationship objects to be serialized. Keyword Arguments: self_link_prefix {string} -- prefix to be used as the link prefix when generate_self_link is set to true. (default: {None}) generate_self_link {bool} -- when set to true, a self link will be autogenerated when serializing the relationship object (default: {False}). Returns: dict -- a dictionary that can be used by json.dumps to serialize the relationship dictionary. """ if relationships is None: return None assert isinstance(relationships, dict) if generate_self_link: return {k: relationship_to_jsonable(v, "{0}/{1}".format(self_link_prefix, k)) for k, v in relationships.items()} else: return {k: relationship_to_jsonable(v) for k, v in relationships.items()} #region private def _remove_empty_fields(dic): for key in [k for k, v in dic.items() if v is None or v == ""]: dic.pop(key) #endregion
33.786561
168
0.681797
0
0
0
0
0
0
0
0
4,370
0.511231
59424eac730e7540dbabc57af91b0ddacf577089
458
py
Python
hackerearth/Algorithms/Fredo and Sums/solution.py
ATrain951/01.python-com_Qproject
c164dd093954d006538020bdf2e59e716b24d67c
[ "MIT" ]
4
2020-07-24T01:59:50.000Z
2021-07-24T15:14:08.000Z
hackerearth/Algorithms/Fredo and Sums/solution.py
ATrain951/01.python-com_Qproject
c164dd093954d006538020bdf2e59e716b24d67c
[ "MIT" ]
null
null
null
hackerearth/Algorithms/Fredo and Sums/solution.py
ATrain951/01.python-com_Qproject
c164dd093954d006538020bdf2e59e716b24d67c
[ "MIT" ]
null
null
null
""" # Sample code to perform I/O: name = input() # Reading input from STDIN print('Hi, %s.' % name) # Writing output to STDOUT # Warning: Printing unwanted or ill-formatted data to output will cause the test cases to fail """ # Write your code here t = int(input()) for _ in range(t): n = int(input()) a = sorted(map(int, input().strip().split())) print(sum(a[1::2]) - sum(a[0::2]), sum(a[n // 2:]) - sum(a[:n // 2]))
28.625
94
0.576419
0
0
0
0
0
0
0
0
274
0.598253
5942ff8661f94ed3c33e9cd05d6389cd70d923f4
1,753
py
Python
Wizard Battle App/wizardbattle.py
rayjustinhuang/PythonApps
ba5572fbff38de71f806558c5d0be5827962aebb
[ "MIT" ]
null
null
null
Wizard Battle App/wizardbattle.py
rayjustinhuang/PythonApps
ba5572fbff38de71f806558c5d0be5827962aebb
[ "MIT" ]
null
null
null
Wizard Battle App/wizardbattle.py
rayjustinhuang/PythonApps
ba5572fbff38de71f806558c5d0be5827962aebb
[ "MIT" ]
null
null
null
import random import time from characters import Wizard, Creature def main(): game_header() game_loop() def game_header(): print('------------------------------') print(' WIZARD TEXT GAME APP') print('------------------------------') def game_loop(): creatures = [ Creature('Toad', 1), Creature('Tiger', 12), Creature('Bat', 3), Creature('Dragon', 50), Creature('Evil Wizard', 1000), ] # print(creatures) hero = Wizard('Gandalf', 75) while True: active_creature = random.choice(creatures) print('A {} of level {} has appeared from a dark and foggy forest...' .format(active_creature.name, active_creature.level)) print() cmd = input('Do you [a]ttack, [r]un away, or [l]ook around? ') if cmd == 'a': # print('attack') if hero.attack(active_creature): creatures.remove(active_creature) else: print('The wizard retreats to recover...') time.sleep(5) print('The wizard returns revitalized') elif cmd == 'r': # print('run away') print('The wizard has become unsure of himself and flees...') elif cmd == 'l': # print('look around') print('The wizard {} takes a look around and sees...'.format(hero.name)) for c in creatures: print(' * A {} of level {}'.format(c.name, c.level)) else: print('exiting game...') break if not creatures: print("You've defeated all the creatures!!! You win!") break print() if __name__ == '__main__': main()
25.405797
84
0.50599
0
0
0
0
0
0
0
0
599
0.3417
5943869d3d4d2e30ae0802900ea733c4c32ec043
2,581
py
Python
xmastreegame/ThreadedTree.py
martinohanlon/GPIOXmasTreeGame
0d32ff7ca4fe3c2b536f5fa4490d09c1caf54b3a
[ "MIT" ]
2
2015-01-21T22:13:53.000Z
2017-12-13T17:57:37.000Z
xmastreegame/ThreadedTree.py
martinohanlon/GPIOXmasTreeGame
0d32ff7ca4fe3c2b536f5fa4490d09c1caf54b3a
[ "MIT" ]
null
null
null
xmastreegame/ThreadedTree.py
martinohanlon/GPIOXmasTreeGame
0d32ff7ca4fe3c2b536f5fa4490d09c1caf54b3a
[ "MIT" ]
null
null
null
import threading from time import sleep import RPi.GPIO as GPIO illumination_time_default = 0.001 class XmasTree(threading.Thread): #Pins #Model B+ or A+ #A, B, C, D = 21, 19, 26, 20 #Other model, probably Model A or Model B #A, B, C, D = 7, 9, 11, 8 def __init__(self, A = 21,B = 19, C = 26, D = 20): #setup threading threading.Thread.__init__(self) #setup properties self.running = False self.stopped = False self.leds = 0 self.A, self.B, self.C, self.D = A, B, C, D def run(self): self.running = True #loop until its stopped while not self.stopped: for i in range(8): self._single_led_on(self.leds & (1<<i)) sleep(illumination_time_default) #once stopped turn the leds off self.leds_on(0) self.running = False def stop(self): self.stopped = True #wait for it to stop running while self.running: sleep(0.01) def leds_on(self, leds): self.leds = leds def _single_led_on(self, n): A, B, C, D = self.A, self.B, self.C, self.D # First, set all the nodes to be input (effectively # 'disconnecting' them from the Raspberry Pi) GPIO.setup(A, GPIO.IN) GPIO.setup(B, GPIO.IN) GPIO.setup(C, GPIO.IN) GPIO.setup(D, GPIO.IN) # Now determine which nodes are connected to the anode # and cathode for this LED if (n==1): anode, cathode = C, A elif (n==2): anode, cathode = C, D elif (n==4): anode, cathode = D, C elif (n==8): anode, cathode = D, B elif (n==16): anode, cathode = B, D elif (n==32): anode, cathode = A, B elif (n==64): anode, cathode = B, A elif (n==128): anode, cathode = A, C else: return # invalid LED number # Configure the anode and cathode nodes to be outputs GPIO.setup(anode, GPIO.OUT) GPIO.setup(cathode, GPIO.OUT) # Make the anode high (+3.3v) and the cathode low (0v) GPIO.output(anode, GPIO.HIGH) GPIO.output(cathode, GPIO.LOW) #test if __name__ == "__main__": L0 = 1 L1 = 2 L2 = 4 L3 = 8 L4 = 16 L5 = 32 L6 = 64 ALL = 1+2+4+8+16+32+64 GPIO.setmode(GPIO.BCM) try: tree = XmasTree() tree.start() tree.leds_on(ALL) while(True): sleep(0.1) finally: tree.stop() GPIO.cleanup()
25.058252
62
0.533514
2,100
0.813638
0
0
0
0
0
0
553
0.214258
59445fc42f57f15739274fff9371a3ae622d87a7
1,962
py
Python
cap7/ex5.py
felipesch92/livroPython
061b1c095c3ec2d25fb1d5fdfbf9e9dbe10b3307
[ "MIT" ]
null
null
null
cap7/ex5.py
felipesch92/livroPython
061b1c095c3ec2d25fb1d5fdfbf9e9dbe10b3307
[ "MIT" ]
null
null
null
cap7/ex5.py
felipesch92/livroPython
061b1c095c3ec2d25fb1d5fdfbf9e9dbe10b3307
[ "MIT" ]
null
null
null
jogo = [[], [], []], [[], [], []], [[], [], []] cont = 0 contx = conto = contxc = contoc = 0 while True: l = int(input('Informe a linha: ')) c = int(input('Informe a coluna: ')) if l < 4 and c < 4: if cont % 2 == 0: jogo[l-1][c-1] = 'X' else: jogo[l-1][c-1] = 'O' cont += 1 for x in range(0, 3): for j in jogo[x]: if j == 'X': contx += 1 if j == 'O': conto +=1 for k in range(0, 3): if jogo[k][x] == 'X': contxc += 1 if jogo[k][x] == 'O': contoc += 1 print(jogo[x]) if jogo[0][0] == 'X' and jogo[1][1] == 'X' and jogo[2][2] == 'X': print(jogo[x + 1]) print(jogo[x + 2]) print(f'Parabéns, X venceu!') break if jogo[0][0] == 'O' and jogo[1][1] == 'O' and jogo[2][2] == 'O': print(jogo[x + 1]) print(jogo[x + 2]) print(f'Parabéns, X venceu!') break if jogo[0][2] == 'X' and jogo[1][1] == 'X' and jogo[2][0] == 'X': print(jogo[x + 1]) print(jogo[x + 2]) print(f'Parabéns, X venceu!') break if jogo[0][2] == 'O' and jogo[1][1] == 'O' and jogo[2][0] == 'O': print(jogo[x + 1]) print(jogo[x + 2]) print(f'Parabéns, X venceu!') break if contx == 3 or contxc == 3: print(jogo[x+1]) print(f'Parabéns, X venceu!') break if conto == 3 or contoc == 3: print(jogo[x+1]) print(f'Parabéns, O venceu!') break contx = conto = contxc = contoc = 0 else: print('Posição já preenchida')
35.035714
77
0.35474
0
0
0
0
0
0
0
0
257
0.130391
5944d36b482e6230d5854a8d2998c95179d5d03e
23,625
py
Python
lib/intercom_test/framework.py
rtweeks/intercom_test
a682088af93d280297764b639f4727ec4716673f
[ "Apache-2.0" ]
null
null
null
lib/intercom_test/framework.py
rtweeks/intercom_test
a682088af93d280297764b639f4727ec4716673f
[ "Apache-2.0" ]
null
null
null
lib/intercom_test/framework.py
rtweeks/intercom_test
a682088af93d280297764b639f4727ec4716673f
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 PayTrace, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from enum import Enum import functools from io import StringIO import json import logging import os.path import shutil import yaml from .cases import ( IdentificationListReader as CaseIdListReader, hash_from_fields as _hash_from_fields, ) from .exceptions import MultipleAugmentationEntriesError, NoAugmentationError from .augmentation.compact_file import ( augment_dict_from, case_keys as case_keys_in_compact_file, TestCaseAugmenter as CompactFileAugmenter, Updater as CompactAugmentationUpdater, ) from .augmentation import update_file from .utils import ( FilteredDictView as _FilteredDictView, open_temp_copy, ) from .yaml_tools import ( YAML_EXT, content_events as _yaml_content_events, get_load_all_fn as _get_yaml_load_all, ) logger = logging.getLogger(__name__) class InterfaceCaseProvider: """Test case data manager Use an instance of this class to: * Generate test case data :class:`dict`\ s * Decorate the case runner function (if auto-updating of compact augmentation data files is desired) * Merge extension test case files to the main test case file * Other case augmentation management tasks Setting :attr:`use_body_type_magic` to ``True`` automatically parses the ``"request body"`` value as JSON if ``"request type"`` in the same test case is ``"json"``, and similarly for ``"response body"`` and ``"response type"``. .. automethod:: __init__ """ use_body_type_magic = False safe_yaml_loading = True class _UpdateState(Enum): not_requested = '-' requested = '?' aborted = '!' def __repr__(self, ): return "<{}.{}>".format(type(self).__name__, self.name) _case_augmenter = None def __init__(self, spec_dir, group_name, *, case_augmenter=None): """Constructing an instance :param spec_dir: File system directory for test case specifications :param group_name: Name of the group of tests to load :keyword case_augmenter: *optional* An object providing the interface of a :class:`.CaseAugmenter` The main test case file of the group is located in *spec_dir* and is named for *group_name* with the '.yml' extension added. Extension test case files are found in the *group_name* subdirectory of *spec_dir* and all have '.yml' extensions. """ super().__init__() self._spec_dir = spec_dir self._group_name = group_name self._compact_files_update = self._UpdateState.not_requested if case_augmenter: self._case_augmenter = case_augmenter self._augmented_case = case_augmenter.augmented_test_case @property def spec_dir(self): """The directory containing the test specification files for this instance""" return self._spec_dir @property def group_name(self): """Name of group of test cases to load for this instance""" return self._group_name @property def case_augmenter(self): """The :class:`.CaseAugmenter` instance used by this object, if any""" return self._case_augmenter @property def main_group_test_file(self): """Path to the main test file of the group for this instance""" return os.path.join(self.spec_dir, self.group_name + YAML_EXT) def extension_files(self, ): """Get an iterable of the extension files of this instance""" return extension_files(self.spec_dir, self.group_name) def cases(self, ): """Generates :class:`dict`\ s of test case data This method reads test cases from the group's main test case file and auxiliary files, possibly extending them with augmented data (if *case_augmentations* was given in the constructor). """ yield from self._cases_from_file(self.main_group_test_file) for ext_file in sorted(self.extension_files()): yield from self._cases_from_file(ext_file) if self._compact_files_update is self._UpdateState.requested: self.update_compact_files() def update_compact_augmentation_on_success(self, fn): """Decorator for activating compact data file updates Using this decorator around the test functions tidies up the logic around whether to propagate test case augmentation data from update files to compact files. The compact files will be updated if all interface tests succeed and not if any of them fail. The test runner function can be automatically wrapped with this functionality through :meth:`case_runners`. """ CFUpdate = self._UpdateState @functools.wraps(fn) def wrapper(*args, **kwargs): if self._compact_files_update is not CFUpdate.aborted: self._compact_files_update = CFUpdate.requested try: return fn(*args, **kwargs) except: self._compact_files_update = CFUpdate.aborted raise return wrapper def case_runners(self, fn, *, do_compact_updates=True): """Generates runner callables from a callable The callables in the returned iterable each call *fn* with all the positional arguments they are given, the test case :class:`dict` as an additional positional argument, and all keyword arguments passed to the case runner. Using this method rather than :meth:`cases` directly for running tests has two advantages: * The default of *do_compact_updates* automatically applies :meth:`update_compact_augmentation_on_success` to *fn* * Each returned runner callable will log the test case as YAML prior to invoking *fn*, which is helpful when updating the augmenting data for the case becomes necessary Each callable generated will also have the case data available via an :attr:`case` on the callable. """ if do_compact_updates and self._case_augmenter is not None: fn = self.update_compact_augmentation_on_success(fn) for case in self.cases(): @functools.wraps(fn) def wrapper(*args, **kwargs): logger.info("{}\n{}".format( " CASE TESTED ".center(40, '*'), yaml.dump([case]), )) return fn(*args, case, **kwargs) wrapper.case = case yield wrapper def update_compact_files(self, ): """Calls the :class:`CaseAugmenter` to apply compact data file updates :raises NoAugmentationError: when no case augmentation data was specified during construction of this object """ if self._case_augmenter is None: raise NoAugmentationError("No augmentation data specified") return self._case_augmenter.update_compact_files() def merge_test_extensions(self, ): """Merge the extension files of the target group into the group's main file""" ext_files = sorted(self.extension_files()) with open(self.main_group_test_file, 'ab') as fixed_version_specs: for ext_file in ext_files: ext_file_ref = os.path.relpath(ext_file, os.path.join(self.spec_dir, self.group_name)) print("---\n# From {}\n".format(ext_file_ref).encode('utf8'), file=fixed_version_specs) with open(ext_file, 'rb') as ext_specs: shutil.copyfileobj(ext_specs, fixed_version_specs) for ext_file in ext_files: os.remove(ext_file) def _augmented_case(self, x): """This method is defined to be overwritten on the instance level when augmented data is used""" return x def _cases_from_file(self, filepath): with open(filepath, 'rb') as file: load_all_yaml = _get_yaml_load_all(safe=self.safe_yaml_loading) for test_case in ( tc for case_set in load_all_yaml(file) for tc in case_set ): if self.use_body_type_magic: _parse_json_bodies(test_case) yield self._augmented_case(test_case) def extension_files(spec_dir, group_name): """Iterator of file paths for extensions of a test case group :param spec_dir: Directory in which specifications live :param group_name: Name of the group to iterate """ yield from data_files(os.path.join(spec_dir, group_name)) def data_files(dir_path): """Generate data file paths from the given directory""" try: dir_listing = os.listdir(dir_path) except FileNotFoundError: return for entry in dir_listing: entry = os.path.join(dir_path, entry) if not os.path.isfile(entry): continue if not entry.endswith(YAML_EXT): continue yield entry def _parse_json_bodies(test_case): if test_case.get('request type') == 'json': test_case['request body'] = json.loads(test_case['request body']) if test_case.get('response type') == 'json': test_case['response body'] = json.loads(test_case['response body']) class CaseAugmenter: """Base class of case augmentation data managers This class uses and manages files in a case augmentation directory. The data files are intended to either end in '.yml' or '.update.yml'. The version control system should, typically, be set up to ignore files with the '.update.yml' extension. These two kinds of files have a different "data shape". Update files (ending in '.update.yml') are convenient for manual editing because they look like the test case file from which the case came, but with additional entries in the case data :class:`dict`. The problems with long term use of this file format are A) it is inefficient for correlation to test cases, and B) it duplicates data from the test case, possibly leading to confusion when modifying the .update.yml file does not change the test case. Compact data files (other files ending in '.yml') typically are generated through this package. The format is difficult to manually correlate with the test file, but does not duplicate all of the test case data as does the update file data format. Instead, the relevant keys of the test case are hashed and the hash value is used to index the additional augmentation value entries. It is an error for a test case to have multiple augmentations defined within .yml files (excluding .update.yml files), whether in the same or different files. It is also an error for multiple files with the .update.yml extension to specify augmentation for the same case, though within the same file the last specification is taken. When augmentations for a case exist within both one .update.yml and one .yml file, the .update.yml is used (with the goal of updating the .yml file with the new augmentation values). Methods of this class depend on the class-level presence of :const:`CASE_PRIMARY_KEYS`, which is not provided in this class. To use this class's functionality, derive from it and define this constant in the subclass. Two basic subclasses are defined in this module: :class:`HTTPCaseAugmenter` and :class:`RPCCaseAugmenter`. .. automethod:: __init__ """ UPDATE_FILE_EXT = ".update" + YAML_EXT # Set this to False to allow arbitrary object instantiation and code # execution from loaded YAML safe_loading = True def __init__(self, augmentation_data_dir): """Constructing an instance :param augmentation_data_dir: path to directory holding the augmentation data """ super().__init__() # Initialize info on extension data location self._case_augmenters = {} self._updates = {} # compact_file_path -> dict of update readers working_files = [] self._augmentation_data_dir = augmentation_data_dir for file_path in data_files(augmentation_data_dir): if file_path.endswith(self.UPDATE_FILE_EXT): working_files.append(file_path) else: self._load_compact_refs(file_path) self._index_working_files(working_files) @property def augmentation_data_dir(self): return self._augmentation_data_dir def _load_compact_refs(self, file_path): for case_key, start_byte in case_keys_in_compact_file(file_path): if case_key in self._case_augmenters: self._excessive_augmentation_data(case_key, self._case_augmenters[case_key].file_path, file_path) self._case_augmenters[case_key] = CompactFileAugmenter(file_path, start_byte, case_key, safe_loading=self.safe_loading) self._case_augmenters[case_key].safe_loading = self.safe_loading def _excessive_augmentation_data(self, case_key, file1, file2): if file1 == file2: error_msg = "Test case key \"{}\" has multiple augmentation entries in {}".format( case_key, file1, ) else: error_msg = "Test case key \"{}\" has augmentation entries in {} and {}".format( case_key, file1, file2, ) raise MultipleAugmentationEntriesError(error_msg) def _index_working_files(self, working_files): for case_key, augmenter in update_file.index(working_files, self.CASE_PRIMARY_KEYS, safe_loading=self.safe_loading).items(): existing_augmenter = self._case_augmenters.get(case_key) if isinstance(existing_augmenter, CompactFileAugmenter): if augmenter.deposit_file_path != existing_augmenter.file_path: raise MultipleAugmentationEntriesError( "case {} conflicts with case \"{}\" in {}; if present, this case must be in {}".format( augmenter.case_reference, case_key, existing_augmenter.file_path, os.path.basename(existing_augmenter.file_path).replace( YAML_EXT, self.UPDATE_FILE_EXT ), ) ) elif existing_augmenter is not None: raise MultipleAugmentationEntriesError( "case {} conflicts with case {}".format( augmenter.case_reference, existing_augmenter.case_reference, ) ) self._updates.setdefault(augmenter.deposit_file_path, {})[case_key] = augmenter self._case_augmenters[case_key] = augmenter @classmethod def key_of_case(cls, test_case): """Compute the key (hash) value of the given test case""" if hasattr(test_case, 'items'): test_case = test_case.items() return _hash_from_fields( (k, v) for k, v in test_case if k in cls.CASE_PRIMARY_KEYS ) def augmented_test_case(self, test_case): """Add key/value pairs to *test_case* per the stored augmentation data :param dict test_case: The test case to augment :returns: Test case with additional key/value pairs :rtype: dict """ case_key = self.key_of_case(test_case) augment_case = self._case_augmenters.get(case_key) if not augment_case: return test_case aug_test_case = dict(test_case) augment_case(aug_test_case) return aug_test_case def augmented_test_case_events(self, case_key, case_id_events): """Generate YAML events for a test case :param str case_key: The case key for augmentation :param case_id_events: An iterable of YAML events representing the key/value pairs of the test case identity This is used internally when extending an updates file with the existing data from a case, given the ID of the case as YAML. """ case_augmenter = self._case_augmenters.get(case_key) yield yaml.MappingStartEvent(None, None, True, flow_style=False) yield from case_id_events if case_augmenter is not None: yield from case_augmenter.case_data_events() yield yaml.MappingEndEvent() def update_compact_files(self, ): """Update compact data files from update data files""" for file_path, updates in self._updates.items(): if os.path.exists(file_path): with open_temp_copy(file_path, binary=True) as instream, open(file_path, 'wb') as outstream: updated_events = self._updated_compact_events( yaml.parse(instream), updates ) yaml.emit(updated_events, outstream) else: with open(file_path, 'wb') as outstream: yaml.emit(self._fresh_content_events(updates.items()), outstream) def extend_updates(self, file_name_base): """Create an object for extending a particular update file The idea is:: case_augmenter.extend_updates('foo').with_current_augmentation(sys.stdin) """ return UpdateExtender(file_name_base, self, safe_loading=self.safe_loading) def _updated_compact_events(self, events, updates): mutator = CompactAugmentationUpdater( _FilteredDictView( updates, value_transform=self._full_yaml_mapping_events_from_update_augmentation ), self.CASE_PRIMARY_KEYS ) yield from ( output_event for input_event in events for output_event in mutator.filter(input_event) ) @classmethod def _full_yaml_mapping_events_from_update_augmentation(cls, augmenter): yield yaml.MappingStartEvent(None, None, True, flow_style=False) yield from augmenter.case_data_events() yield yaml.MappingEndEvent() def _fresh_content_events(self, content_iterable): # Header events yield yaml.StreamStartEvent() yield yaml.DocumentStartEvent() yield yaml.MappingStartEvent(None, None, True, flow_style=False) # Content events for key, value in content_iterable: yield yaml.ScalarEvent(None, None, (True, False), key) if isinstance(value, dict): yield from _yaml_content_events(dict( (k, v) for k, v in value.items() if k not in self.CASE_PRIMARY_KEYS )) elif callable(getattr(value, 'case_data_events')): yield yaml.MappingStartEvent(None, None, True, flow_style=False) yield from value.case_data_events() yield yaml.MappingEndEvent() else: yield yaml.MappingStartEvent(None, None, True, flow_style=False) yield from value yield yaml.MappingEndEvent() # Tail events yield yaml.MappingEndEvent() yield yaml.DocumentEndEvent() yield yaml.StreamEndEvent() class HTTPCaseAugmenter(CaseAugmenter): """A :class:`.CaseAugmenter` subclass for augmenting HTTP test cases""" CASE_PRIMARY_KEYS = frozenset(( 'url', 'method', 'request body', )) class RPCCaseAugmenter(CaseAugmenter): """A :class:`.CaseAugmenter` subclass for augmenting RPC test cases""" CASE_PRIMARY_KEYS = frozenset(( 'endpoint', 'request parameters', )) class UpdateExtender: safe_loading = True def __init__(self, file_name_base, case_augmenter, *, safe_loading=None): super().__init__() if safe_loading is not None and safe_loading is not self.safe_loading: self.safe_loading = safe_loading self._file_name = os.path.join( case_augmenter.augmentation_data_dir, file_name_base + case_augmenter.UPDATE_FILE_EXT ) self._case_augmenter = case_augmenter @property def file_name(self): return self._file_name def with_current_augmentation(self, stream): """Append the full test case with its current augmentation data to the target file :param stream: A file-like object (which could be passed to :func:`yaml.parse`) The *stream* contains YAML identifying the test case in question. The identifying YAML from the test case _plus_ the augmentative key/value pairs as currently defined in the augmenting data files will be written to the file :attr:`file_name`. """ if stream.isatty(): print("Input test cases from interface, ending with a line containing only '...':") buffered_input = StringIO() for line in stream: if line.rstrip() == "...": break buffered_input.write(line) buffered_input.seek(0) stream = buffered_input id_list_reader = CaseIdListReader(self._case_augmenter.CASE_PRIMARY_KEYS, safe_loading=self.safe_loading) for event in yaml.parse(stream): test_case = id_list_reader.read(event) if test_case is None: continue # Look up augmentation for case_id case_as_currently_augmented_events = ( self._case_augmenter.augmented_test_case_events(*test_case) ) # Append augmentation case to self.file_name with open(self.file_name, 'ab') as outstream: yaml.emit( self._case_yaml_events(case_as_currently_augmented_events), outstream, ) def _case_yaml_events(self, content_events): yield yaml.StreamStartEvent() yield yaml.DocumentStartEvent(explicit=True) yield yaml.SequenceStartEvent(None, None, implicit=True, flow_style=False) yield from content_events yield yaml.SequenceEndEvent() yield yaml.DocumentEndEvent() yield yaml.StreamEndEvent()
40.247019
132
0.634201
21,216
0.898032
6,315
0.267302
1,970
0.083386
0
0
9,349
0.395725
5945f3b8e933ce01f957d7f582aa80cb9b902687
1,283
py
Python
2020/03/day3.py
AlbertVeli/AdventOfCode
3d3473695318a0686fac720a1a21dd3629f09e33
[ "Unlicense" ]
null
null
null
2020/03/day3.py
AlbertVeli/AdventOfCode
3d3473695318a0686fac720a1a21dd3629f09e33
[ "Unlicense" ]
null
null
null
2020/03/day3.py
AlbertVeli/AdventOfCode
3d3473695318a0686fac720a1a21dd3629f09e33
[ "Unlicense" ]
1
2021-12-04T10:37:09.000Z
2021-12-04T10:37:09.000Z
#!/usr/bin/env python3 # Day 3, with some speed optimizations # Not really necessary for day 3, but probably later import sys import typing import array if len(sys.argv) != 2: print('Usage:', sys.argv[0], '<input.txt>') sys.exit(1) width = 0 heigth = 0 # Use 1-d array of bytes to keep pixels def read_input(fname: str) -> array.array[int]: global width global heigth a = array.array('b') width = len(open(fname).readline().rstrip()) for line in open(fname).read().splitlines(): heigth += 1 for c in line: # Each pixel is True or False a.append(c == '#') return a a = read_input(sys.argv[1]) # for faster x,y lookup in a ytab = array.array('I') for y in range(heigth): ytab.append(y * width) def get_pixel(x: int, y: int) -> int: return a[(x % width) + ytab[y]] def slope(dx: int, dy: int) -> int: x = 0 y = 0 trees = 0 while True: x += dx y += dy if y >= heigth: break if get_pixel(x, y) == True: trees += 1 return trees # part 1 print(slope(3, 1)) # part 2 slopes = [ (1,1), (3,1), (5,1), (7,1), (1,2) ] f = 1 for s in slopes: f *= slope(s[0], s[1]) print(f)
18.070423
52
0.533125
0
0
0
0
0
0
0
0
254
0.197973
59470f4e50387be73fea566efd45c232849a6813
226
py
Python
Introduction to Computer Science and Programing Using Python/Exercises/Week 2 - Function, Strings and Alogorithms/Bisection Search.py
Dittz/Learning_Python
4c0c97075ef5e1717f82e2cf24b0587f0c8504f5
[ "MIT" ]
null
null
null
Introduction to Computer Science and Programing Using Python/Exercises/Week 2 - Function, Strings and Alogorithms/Bisection Search.py
Dittz/Learning_Python
4c0c97075ef5e1717f82e2cf24b0587f0c8504f5
[ "MIT" ]
null
null
null
Introduction to Computer Science and Programing Using Python/Exercises/Week 2 - Function, Strings and Alogorithms/Bisection Search.py
Dittz/Learning_Python
4c0c97075ef5e1717f82e2cf24b0587f0c8504f5
[ "MIT" ]
null
null
null
x = 23 epsilon = 0.001 guess = x/2 tries = 0 while abs(guess**2- x) >= epsilon: if guess**2 > x: guess /=2 else: guess *=1.5 tries +=1 print(f'Number of tries: {tries}') print(f'Guess = {guess}')
15.066667
34
0.535398
0
0
0
0
0
0
0
0
45
0.199115
5949927fb2326eb76fbf268aa983df1f7b22c9a8
6,223
py
Python
SB_Admin_2/templates/dashboard.py
Softyy/sb-admin-2-dash
c57d46fd7f1703696fdd96a7b834beb32ab8a4aa
[ "MIT" ]
null
null
null
SB_Admin_2/templates/dashboard.py
Softyy/sb-admin-2-dash
c57d46fd7f1703696fdd96a7b834beb32ab8a4aa
[ "MIT" ]
null
null
null
SB_Admin_2/templates/dashboard.py
Softyy/sb-admin-2-dash
c57d46fd7f1703696fdd96a7b834beb32ab8a4aa
[ "MIT" ]
null
null
null
import dash_core_components as dcc import dash_html_components as html from .layouts.info_card import render as info_card from .layouts.graph_wrapper import render as graph_wrapper from .layouts.project_bar import render as project_bar from .layouts.color_card import render as color_card from ..data_retrievers.dummy import create_bar_figure, create_line_figure from ..consts import COLOR, DUMMY_PROJECTS def render(): return html.Div(className="container-fluid", children=[ # Page Heading html.Div([ html.H1("Dashboard", className="h3 mb-0 text-gray-800"), html.A([html.I(className="fas fa-download fa-sm text-white-50"), "Generate Report"], className="d-none d-sm-inline-block btn btn-sm btn-primary shadow-sm", href="#") ], className="d-sm-flex align-items-center justify-content-between mb-4" ), # Content Row html.Div(className="row", children=[ info_card("Earnings (Monthly)", "$40,000", "fa-calendar", "primary"), info_card("Earnings (Annual)", "$215,000", "fa-dollar-sign", "success"), info_card("Tasks", display_value=50, icon="fa-clipboard-list", color="info", progress_bar=True), info_card("Pending Requests", display_value=18, icon="fa-comments", color="warning"), ]), html.Div(className="row", children=[ graph_wrapper("Earnings Overview", 8, 7, "lineGraphDropdownMenuLink", dcc.Graph(figure=create_line_figure(), config={'displayModeBar': False})), graph_wrapper("Revenue Sources", 4, 5, 'pieChartDropdownMenuLink', dcc.Graph(figure=create_bar_figure(), config={'displayModeBar': False})) ]), html.Div(className="row", children=[ # Content Column html.Div( className="col-lg-6 mb-4", children=[ # Project Card Example html.Div( className="card shadow mb-4", children=[ html.Div( className="card-header py-3", children=html.H6( "Projects", className="m-0 font-weight-bold text-primary") ), html.Div( className="card-body", children=[project_bar(p[0], p[1]) for p in DUMMY_PROJECTS] ) ] ), # Color System html.Div( className="row", children=[color_card(color, color, COLOR[color]) for color in COLOR] ) ] ), html.Div( className="col-lg-6 mb-4", children=[ # Illustrations html.Div( className="card shadow mb-4", children=[ html.Div( className="card-header py-3", children=html.H6( "Illustrations", className="m-0 font-weight-bold text-primary") ), html.Div( className="card-body", children=[ html.Div( className="text-center", children=html.Img( className="img-fluid px-3 px-sm-4 mt-3 mb-4", style={"width": "25rem"}, src="/assets/img/undraw_posting_photo.svg" ) ), html.P([ "Add some quality, svg illustrations to your project courtesy of ", html.A( "unDraw", target="_blank", rel="nofollow", href="https://undraw.co/"), " a constantly updated collection of beautiful svg images that you can use completely free and without attribution!"]), html.A("Browse Illustrations on unDraw", target="_blank", rel="nofollow", href="https://undraw.co/") ] ) ] ), # Approach html.Div( className="card shadow mb-4", children=[ html.Div( className="card-header py-3", children=html.H6( "Development Approach", className="m-0 font-weight-bold text-primary") ), html.Div( className="card-body", children=[ html.P("SB Admin 2 makes extensive use of Bootstrap 4 utility classes in order to reduce CSS bloat and poor page performance. Custom CSS classes are used to create custom components and custom utility classes."), html.P( "Before working with this theme, you should become familiar with the Bootstrap framework, especially the utility classes.", className="mb-0") ] ) ] ) ] ) ]) ])
44.134752
248
0.415877
0
0
0
0
0
0
0
0
1,699
0.273019
594b9e391b71aa4e58f65f8b436f15f1fdaebd0a
2,440
py
Python
tests/unit/test_refresh_utils.py
anukaal/cloud-sql-python-connector
e8799c7de46dbe11a91a9a29173a5cfd279a561d
[ "Apache-2.0" ]
null
null
null
tests/unit/test_refresh_utils.py
anukaal/cloud-sql-python-connector
e8799c7de46dbe11a91a9a29173a5cfd279a561d
[ "Apache-2.0" ]
null
null
null
tests/unit/test_refresh_utils.py
anukaal/cloud-sql-python-connector
e8799c7de46dbe11a91a9a29173a5cfd279a561d
[ "Apache-2.0" ]
null
null
null
"""" Copyright 2021 Google LLC Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from typing import Any import aiohttp import google.auth import pytest # noqa F401 Needed to run the tests from google.cloud.sql.connector.refresh_utils import _get_ephemeral, _get_metadata from google.cloud.sql.connector.utils import generate_keys @pytest.mark.asyncio async def test_get_ephemeral(connect_string: str) -> None: """ Test to check whether _get_ephemeral runs without problems given a valid connection string. """ project = connect_string.split(":")[0] instance = connect_string.split(":")[2] credentials, project = google.auth.default( scopes=[ "https://www.googleapis.com/auth/sqlservice.admin", "https://www.googleapis.com/auth/cloud-platform", ] ) _, pub_key = await generate_keys() async with aiohttp.ClientSession() as client_session: result: Any = await _get_ephemeral( client_session, credentials, project, instance, pub_key ) result = result.split("\n") assert ( result[0] == "-----BEGIN CERTIFICATE-----" and result[len(result) - 1] == "-----END CERTIFICATE-----" ) @pytest.mark.asyncio async def test_get_metadata(connect_string: str) -> None: """ Test to check whether _get_metadata runs without problems given a valid connection string. """ project = connect_string.split(":")[0] instance = connect_string.split(":")[2] credentials, project = google.auth.default( scopes=[ "https://www.googleapis.com/auth/sqlservice.admin", "https://www.googleapis.com/auth/cloud-platform", ] ) async with aiohttp.ClientSession() as client_session: result = await _get_metadata(client_session, credentials, project, instance) assert result["ip_addresses"] is not None and isinstance( result["server_ca_cert"], str )
30.123457
84
0.690164
0
0
0
0
1,623
0.665164
1,581
0.647951
1,112
0.455738
594bfb1a451c5278cb6eb0568922591b031e3438
105
py
Python
office365/sharepoint/search/query/popularTenantQuery.py
wreiner/Office365-REST-Python-Client
476bbce4f5928a140b4f5d33475d0ac9b0783530
[ "MIT" ]
544
2016-08-04T17:10:16.000Z
2022-03-31T07:17:20.000Z
office365/sharepoint/search/query/popularTenantQuery.py
wreiner/Office365-REST-Python-Client
476bbce4f5928a140b4f5d33475d0ac9b0783530
[ "MIT" ]
438
2016-10-11T12:24:22.000Z
2022-03-31T19:30:35.000Z
office365/sharepoint/search/query/popularTenantQuery.py
wreiner/Office365-REST-Python-Client
476bbce4f5928a140b4f5d33475d0ac9b0783530
[ "MIT" ]
202
2016-08-22T19:29:40.000Z
2022-03-30T20:26:15.000Z
from office365.runtime.client_value import ClientValue class PopularTenantQuery(ClientValue): pass
17.5
54
0.828571
47
0.447619
0
0
0
0
0
0
0
0
594c04608e796ac9b1ce2395563d5fd38205ff2d
1,320
py
Python
blog/urls.py
MaryamKia/blog
5274fda9fa67d20f48b0554bd9659f54221ae423
[ "MIT" ]
null
null
null
blog/urls.py
MaryamKia/blog
5274fda9fa67d20f48b0554bd9659f54221ae423
[ "MIT" ]
10
2020-02-12T00:42:03.000Z
2022-01-13T01:20:37.000Z
blog/urls.py
PilaPont/blog
61eb5cf30fe9937b4d0c85eb319854946df69a27
[ "MIT" ]
null
null
null
"""blog URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.urls import path from django.contrib import admin from django.conf.urls import include from rest_framework_jwt.views import obtain_jwt_token urlpatterns = [ path('admin/', admin.site.urls), path('posts/', include(('posts.urls', 'posts'), namespace='posts')), path('api/auth/login/', obtain_jwt_token, name='api-login'), path('api/posts/', include(('posts.api.urls', 'posts'), namespace='api-posts')), path('api/comments/', include(('comments.api.urls', 'comments'), namespace='comments-api')), path('api/accounts/', include(('accounts.api.urls', 'comments'), namespace='accounts-api')), path('api-auth/', include('rest_framework.urls')), ]
42.580645
96
0.696212
0
0
0
0
0
0
0
0
901
0.682576