hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
594cc653ec79a656a999da000662af797c265edc
669
py
Python
source/try_init_models.py
tuanle618/deepArt-generation
bfa11d9f2a825ed53420f85adf3ffe23966b42be
[ "MIT" ]
8
2019-03-25T14:53:55.000Z
2022-01-09T11:08:30.000Z
source/try_init_models.py
ptl93/deepArt-generation
bfa11d9f2a825ed53420f85adf3ffe23966b42be
[ "MIT" ]
10
2020-01-28T21:56:49.000Z
2022-02-10T00:10:30.000Z
source/try_init_models.py
ptl93/deepArt-generation
bfa11d9f2a825ed53420f85adf3ffe23966b42be
[ "MIT" ]
5
2019-03-18T13:46:26.000Z
2022-02-20T15:05:56.000Z
# -*- coding: utf-8 -*- """ @title: try_init_models.py @author: Tuan Le @email: tuanle@hotmail.de """ from dcgan import DCGAN from vae import VAE if __name__ == "__main__": print("Init DCGAN_1 model...") dcgan_1 = DCGAN(name='DCGAN_1') print("Init DCGAN_2 model...") dcgan_2 = DCGAN(name='DCGAN_2') print("Init DCGAN_3 model...") dcgan_3 = DCGAN(name='DCGAN_3') print('Init VAE_1 model...') vae_1 = VAE(name='VAE_1') print('Init VAE_2 model...') vae_2 = VAE(name='VAE_2') print('Init VAE_3 model...') vae_3 = VAE(name='VAE_3') print('Init VAE_4 model...') vae_4 = VAE(name='VAE_4')
20.90625
35
0.588939
0
0
0
0
0
0
0
0
318
0.475336
3ca0c10499ba17cd0bb023edc1433da2fe3b0c6e
1,144
py
Python
03. Programacion orientada a objetos/12. sobrecarga relacional/e1.py
Cidryl/python-desde-cero
fade09d13ab0ed0cbb4f45a49a4ad9e3980f3276
[ "MIT" ]
null
null
null
03. Programacion orientada a objetos/12. sobrecarga relacional/e1.py
Cidryl/python-desde-cero
fade09d13ab0ed0cbb4f45a49a4ad9e3980f3276
[ "MIT" ]
null
null
null
03. Programacion orientada a objetos/12. sobrecarga relacional/e1.py
Cidryl/python-desde-cero
fade09d13ab0ed0cbb4f45a49a4ad9e3980f3276
[ "MIT" ]
null
null
null
class Persona: def __init__(self,nombre, edad): self.nombre=nombre self.edad=edad def __eq__(self,objeto2): if self.edad==objeto2.edad: return True else: return False def __ne__(self,objeto2): if self.edad!=objeto2.edad: return True else: return False def __gt__(self,objeto2): if self.edad>objeto2.edad: return True else: return False def __ge__(self,objeto2): if self.edad>=objeto2.edad: return True else: return False def __lt__(self,objeto2): if self.edad<objeto2.edad: return True else: return False def __le__(self,objeto2): if self.edad<=objeto2.edad: return True else: return False # bloque principal persona1=Persona('juan',22) persona2=Persona('ana',20) if persona1==persona2: print("Las dos personas tienen la misma edad.") else: print("No tienen la misma edad.")
22.88
52
0.523601
940
0.821678
0
0
0
0
0
0
96
0.083916
3ca23892448af2cabbc53d9df0bfd9fc4244b346
1,416
py
Python
crack-data-structures-and-algorithms/leetcode/sort_list_q148.py
Watch-Later/Eureka
3065e76d5bf8b37d5de4f9ee75b2714a42dd4c35
[ "MIT" ]
20
2016-05-16T11:09:04.000Z
2021-12-08T09:30:33.000Z
crack-data-structures-and-algorithms/leetcode/sort_list_q148.py
Watch-Later/Eureka
3065e76d5bf8b37d5de4f9ee75b2714a42dd4c35
[ "MIT" ]
1
2018-12-30T09:55:31.000Z
2018-12-30T14:08:30.000Z
crack-data-structures-and-algorithms/leetcode/sort_list_q148.py
Watch-Later/Eureka
3065e76d5bf8b37d5de4f9ee75b2714a42dd4c35
[ "MIT" ]
11
2016-05-02T09:17:12.000Z
2021-12-08T09:30:35.000Z
# Definition for singly-linked list. class ListNode(object): def __init__(self, x): self.val = x self.next = None class Solution(object): def sortList(self, head): """ :type head: ListNode :rtype: ListNode """ return merge_sort_list(head) def merge_sort_list(head): if not head or not head.next: return head slow = fast = head while fast.next and fast.next.next: fast = fast.next.next slow = slow.next # Split into two lists. # Why head2 starts from the next node of mid(slow)? # Assume we have only two nodes, A -> B -> ^ # The strategy we use here eseentially is like floor((l + r) / 2), which # always stucks on A if we make mid the head. # Logically, mid with floor strategy makes it the **last element** of the first part. head2 = slow.next slow.next = None l1 = merge_sort_list(head) l2 = merge_sort_list(head2) return merge_lists(l1, l2) def merge_lists(l1, l2): # Introduce dummy node to simplify merge. # No need to check l1 & l2 up front dummy = ListNode(0) p = dummy while l1 and l2: if l1.val < l2.val: p.next = l1 l1 = l1.next else: p.next = l2 l2 = l2.next p = p.next if l1: p.next = l1 if l2: p.next = l2 return dummy.next
22.47619
89
0.57274
264
0.186441
0
0
0
0
0
0
501
0.353814
3ca2ace31bf9ede1d629dd5fbae03c55bc75f2bf
71
py
Python
labs/py3code.py
turing4ever/illustrated-python-3-course
d1faff57590713fcd1c6a9215529d6f9c629b046
[ "MIT" ]
57
2018-04-25T21:57:07.000Z
2021-12-21T19:09:00.000Z
labs/py3code.py
radovankavicky/illustrated-python-3-course
d1faff57590713fcd1c6a9215529d6f9c629b046
[ "MIT" ]
4
2018-04-30T05:32:46.000Z
2021-12-06T17:55:36.000Z
labs/py3code.py
radovankavicky/illustrated-python-3-course
d1faff57590713fcd1c6a9215529d6f9c629b046
[ "MIT" ]
26
2018-04-27T06:11:35.000Z
2021-04-11T12:07:37.000Z
# place super_test.py code here # place keyword_test.py code here
8.875
33
0.732394
0
0
0
0
0
0
0
0
64
0.901408
3ca2e7b053503c5f1274ef05c3605bdeeddc592f
71,712
py
Python
Source Codes/CDBC_Source_Code.py
CDBCTool/CDBC
70e64241e4fb7687832e3771f316cb036f6fc3c7
[ "MIT" ]
13
2019-05-13T22:45:32.000Z
2022-02-27T07:19:16.000Z
Source Codes/CDBC_Source_Code.py
CDBCTool/CDBC
70e64241e4fb7687832e3771f316cb036f6fc3c7
[ "MIT" ]
2
2019-09-03T03:57:06.000Z
2021-11-21T14:01:31.000Z
Source Codes/CDBC_Source_Code.py
CDBCTool/CDBC
70e64241e4fb7687832e3771f316cb036f6fc3c7
[ "MIT" ]
3
2019-11-04T17:05:02.000Z
2021-12-29T18:14:51.000Z
from PyQt4.QtCore import * from PyQt4.QtGui import * import sys,os,time from scipy.stats import gamma, norm, beta import matplotlib.pyplot as plt from datetime import date, timedelta import numpy as np import tkinter from os import listdir from os.path import isfile, join def sorted_values(Obs,Sim): count = 0 for i in range(len(Obs)): if Obs[i] == 0: count += 1 Rank = [i+1 for i in range(len(Obs))] Dict = dict(zip(Rank,Sim)) SortedSim = sorted(Dict.values()) SortedRank = sorted(Dict, key=Dict.get) for i in range(count): SortedSim[i] = 0 ArrangedDict = dict(zip(SortedRank,SortedSim)) SortedDict_by_Rank = sorted(ArrangedDict.items()) ArrangedSim = [v for k,v in SortedDict_by_Rank] return ArrangedSim def sorted_values_thresh(Sim, Fut): try: Min_Positive_Value_Sim = min(i for i in sim if i > 0) except: Min_Positive_Value_Sim = 0 for i in range(len(Fut)): if Fut[i] < Min_Positive_Value_Sim: Fut[i] = 0 return Fut class TitleBar(QDialog): def __init__(self, parent=None): QWidget.__init__(self, parent) self.setWindowFlags(Qt.FramelessWindowHint) StyleTitleBar='''QDialog{ background-color: rgb(2,36,88); } QLabel{ color: rgb(0, 255, 255); font: 11pt "MS Shell Dlg 2"; }''' self.setStyleSheet(StyleTitleBar) self.setAutoFillBackground(True) self.setFixedSize(750,30) Style_minimize='''QToolButton{ background-color: transparent; color: rgb(255, 255, 255); border: none; } QToolButton:hover{ background-color: rgb(66, 131, 221,230); border: none; }''' Style_close='''QToolButton{ background-color: rgb(217, 0, 0); color: rgb(255, 255, 255); border: none; } QToolButton:hover{ background-color: rgb(255, 0, 0); border: none; }''' Font=QFont('MS Shell Dlg 2',11) Font.setBold(True) self.minimize = QToolButton(self) self.minimize.setText('–') self.minimize.setFixedHeight(20) self.minimize.setFixedWidth(25) self.minimize.setStyleSheet(Style_minimize) self.minimize.setFont(Font) self.close = QToolButton(self) self.close.setText(u"\u00D7") self.close.setFixedHeight(20) self.close.setFixedWidth(45) self.close.setStyleSheet(Style_close) self.close.setFont(Font) image = QPixmap(r"Interpolation-2.png") labelImg =QLabel(self) labelImg.setFixedSize(QSize(20,20)) labelImg.setScaledContents(True) labelImg.setPixmap(image) labelImg.setStyleSheet('border: none;') label = QLabel(self) label.setText(" Climate Data Bias Corrector (RAIN, TEMP, SRAD)") label.setFont(Font) label.setStyleSheet('border: none;') hbox=QHBoxLayout(self) hbox.addWidget(labelImg) hbox.addWidget(label) hbox.addWidget(self.minimize) hbox.addWidget(self.close) hbox.insertStretch(2,600) hbox.setSpacing(1) hbox.setContentsMargins(5,0,5,0) self.setSizePolicy(QSizePolicy.Expanding,QSizePolicy.Fixed) self.maxNormal=False self.close.clicked.connect(self.closeApp) self.minimize.clicked.connect(self.showSmall) def showSmall(self): widget.showMinimized(); def closeApp(self): widget.close() def mousePressEvent(self,event): if event.button() == Qt.LeftButton: widget.moving = True widget.offset = event.pos() def mouseMoveEvent(self,event): if widget.moving: widget.move(event.globalPos()-widget.offset) class HFTab(QTabWidget): def __init__(self, parent = None): super(HFTab, self).__init__(parent) self.HTab = QWidget() self.FTab = QWidget() self.setStyleSheet('QTabBar { font: bold }') self.addTab(self.HTab,"For Historical Data") self.addTab(self.FTab,"For Future Data") self.HTabUI() self.FTabUI() self.started = False def HTabUI(self): grid = QGridLayout() grid.addWidget(self.input(), 0, 0) grid.addWidget(self.output(), 1, 0) grid.addWidget(self.method(), 2, 0) grid.addWidget(self.progress(), 3, 0) grid.setContentsMargins(0,0,0,0) ## self.setTabText(0,"Historical") self.HTab.setLayout(grid) def input(self): ##########Layout for taking input climate data to be bias corrected ########## gBox = QGroupBox("Inputs:") layout1 = QGridLayout() self.Obsfile = QLineEdit() self.browse2 = QPushButton("...") self.browse2.setMaximumWidth(25) self.browse2.clicked.connect(self.browse2_file) self.q1 = QPushButton("?") self.q1.setMaximumWidth(15) self.q1.clicked.connect(self.Info1) self.Obsfile.setPlaceholderText("File with observed climate data (*.csv or *.txt)") layout1.addWidget(self.Obsfile,1,0,1,3) layout1.addWidget(self.q1,1,3,1,1) layout1.addWidget(self.browse2,1,4,1,1) self.ModHfile = QLineEdit() self.ModHfile.setPlaceholderText("File with GCM outputs (*.csv or *.txt)") self.q2 = QPushButton("?") self.q2.setMaximumWidth(15) self.q2.clicked.connect(self.Info2) self.browse3 = QPushButton("...") self.browse3.setMaximumWidth(25) self.browse3.clicked.connect(self.browse3_file) layout1.addWidget(self.ModHfile,2,0,1,3) layout1.addWidget(self.q2,2,3,1,1) layout1.addWidget(self.browse3,2,4,1,1) ## ##########Layout for taking comma delimited vs tab delimited################################ ## sublayout1 = QGridLayout() ## ## self.label1 = QLabel("Input Format:\t") ## self.b1 = QRadioButton("Comma Delimated (*.csv)") ## #self.b1.setChecked(True) ## self.b2 = QRadioButton("Tab Delimited (*.txt)") ## ## self.b1.toggled.connect(lambda:self.btnstate(self.b1)) ## self.b2.toggled.connect(lambda:self.btnstate(self.b2)) ## ## sublayout1.addWidget(self.label1,1,0) ## sublayout1.addWidget(self.b1,1,1) ## sublayout1.addWidget(self.b2,1,2) ## layout1.addLayout(sublayout1,3,0) gBox.setLayout(layout1) return gBox def output(self): ##########Layout for output file location and interpolation########## gBox = QGroupBox("Outputs:") layout4 = QGridLayout() self.outputfile_location = QLineEdit() self.outputfile_location.setPlaceholderText("Folder to save bias corrected GCM outputs") self.browse4 = QPushButton("...") self.browse4.setMaximumWidth(25) self.browse4.clicked.connect(self.browse4_file) layout4.addWidget(self.outputfile_location,1,0,1,3) layout4.addWidget(self.browse4,1,3,1,1) ########################Layout for taking comma delimited vs tab delimited################################ sublayout2 = QGridLayout() output_label = QLabel("Output Format:\t") self.b3 = QRadioButton("Comma Delimated (*.csv)") #self.b3.setChecked(True) self.b4 = QRadioButton("Tab Delimited (*.txt)") self.b3.toggled.connect(lambda:self.btn2state(self.b3)) self.b4.toggled.connect(lambda:self.btn2state(self.b4)) sublayout2.addWidget(output_label,1,0) sublayout2.addWidget(self.b3,1,1) sublayout2.addWidget(self.b4,1,2) layout4.addLayout(sublayout2,2,0) gBox.setLayout(layout4) return gBox def method(self): ########################Layout for taking methods of Bias Correction ################################ gBox = QGroupBox("Variable/Distribution") layout5 = QGridLayout() self.b5 = QRadioButton("Rainfall/Gamma") #self.b3.setChecked(True) self.b6 = QRadioButton("Temperature/Normal") self.b7 = QRadioButton("Solar Radiation/Beta") self.b5.toggled.connect(lambda:self.btn3state(self.b5)) self.b6.toggled.connect(lambda:self.btn3state(self.b6)) self.b7.toggled.connect(lambda:self.btn3state(self.b7)) self.show_hide = QPushButton("Show Details") Font=QFont() Font.setBold(True) #self.show_hide.setFont(Font) self.show_hide.setCheckable(True) #self.show_hide.toggle() self.show_hide.clicked.connect(self.ShowHide) self.show_hide.setFixedWidth(90) self.show_hide.setFixedHeight(25) Style_show_hide_Button = """ QPushButton{ color: rgb(255, 255, 255); background-color: rgb(66, 131, 221); border: none; } QPushButton:Checked{ background-color: rgb(66, 131, 221); border: none; } QPushButton:hover{ background-color: rgb(66, 131, 221,230); border: none; } """ self.show_hide.setStyleSheet(Style_show_hide_Button) self.show_plots = QPushButton("Show Plots") self.show_plots.clicked.connect(self.ShowPlots) self.show_plots.setFixedWidth(75) self.show_plots.setFixedHeight(25) self.show_plots.setStyleSheet(Style_show_hide_Button) self.start = QPushButton("Run") self.start.setFixedWidth(50) self.start.setFixedHeight(25) Style_Run_Button = """ QPushButton{ color: rgb(255, 255, 255); background-color: rgb(0,121,0); border-color: none; border: none; } QPushButton:hover{ background-color: rgb(0,121,0,230); } """ self.start.clicked.connect(self.start_correctionH) #self.start.setFont(Font) self.start.setStyleSheet(Style_Run_Button) self.stop = QPushButton("Cancel") self.stop.setMaximumWidth(60) self.stop.setFixedHeight(25) Style_Cancel_Button = """ QPushButton{ color: rgb(255, 255, 255); background-color: rgb(180,0,0,240); border-color: none; border: none; } QPushButton:hover{ background-color: rgb(180,0,0,220); } """ self.stop.clicked.connect(self.stop_correctionH) #self.stop.setFont(Font) self.stop.setStyleSheet(Style_Cancel_Button) layout5.addWidget(self.b5,1,1) layout5.addWidget(self.b6,1,2) layout5.addWidget(self.b7,1,3) layout5.addWidget(self.show_hide,1,7) layout5.addWidget(self.start,1,4) layout5.addWidget(self.stop,1,6) layout5.addWidget(self.show_plots,1,5) ## layout5.addWidget(self.b5,1,1) ## layout5.addWidget(self.b6,1,2) ## layout5.addWidget(self.b7,1,3) ## layout5.addWidget(self.show_hide,2,5) ## layout5.addWidget(self.start,1,4) ## layout5.addWidget(self.stop,2,4) ## layout5.addWidget(self.show_plots,1,5) gBox.setLayout(layout5) return gBox ########## Layout for progress of Bias Correction ########## def progress(self): gBox = QGroupBox() layout6 = QVBoxLayout() STYLE2 = """ QProgressBar{ text-align: center; } QProgressBar::chunk { background-color: rgb(0,121,0); } """ self.status = QLabel('') self.progressbar = QProgressBar() ## self.progressbarfinal = QProgressBar() ## self.progressbar.setMinimum(1) self.progressbar.setFixedHeight(13) ## self.progressbarfinal.setFixedHeight(13) self.progressbar.setStyleSheet(STYLE2) ## self.progressbarfinal.setStyleSheet(STYLE2) self.textbox = QTextEdit() self.textbox.setReadOnly(True) self.textbox.moveCursor(QTextCursor.End) self.textbox.hide() self.scrollbar = self.textbox.verticalScrollBar() layout6.addWidget(self.status) layout6.addWidget(self.progressbar) ## layout6.addWidget(self.progressbarfinal) layout6.addWidget(self.textbox) gBox.setLayout(layout6) return gBox ########################### Control Buttons #################################################### def browse2_file(self): Obs_file = QFileDialog.getOpenFileName(self,caption = "Open File",directory=r"C:\Users\gupta\OneDrive\0. M.Tech. Research Work\Codes\GUIs\Bias Correction\\", filter="Comma Delimated (*.csv);;Tab Delimated (*.txt)") self.Obsfile.setText(QDir.toNativeSeparators(Obs_file)) def browse3_file(self): ModH_file = QFileDialog.getOpenFileName(self,caption = "Open File", directory=r"C:\Users\gupta\OneDrive\0. M.Tech. Research Work\Codes\GUIs\Bias Correction\\", filter="Comma Delimated (*.csv);;Tab Delimated (*.txt)") self.ModHfile.setText(QDir.toNativeSeparators(ModH_file)) def browse4_file(self): output_file = QFileDialog.getExistingDirectory(self, "Save File in Folder", r"C:\Users\gupta\OneDrive\0. M.Tech. Research Work\Codes\GUIs\Bias Correction\\", QFileDialog.ShowDirsOnly) self.outputfile_location.setText(QDir.toNativeSeparators(output_file)) def Info1(self): QMessageBox.information(self, "Information About Input Files (Observed)", '''Sample input (.csv or .txt) should be same as it is shown in Sample Example:\nC:\Program Files (x86)\Climate Data Bias Corrector\Sample Input (Obs).csv ''') def Info2(self): QMessageBox.information(self, "Information About Input File (Model)", '''Sample input (.csv or .txt) should be same as it is shown in Sample Example:\nC:\Program Files (x86)\Climate Data Bias Corrector\Sample Input (Mod).csv ''') ## def btnstate(self,b): ## if b.text() == "Comma Delimated (*.csv)" and b.isChecked() == True: ## self.seperator = ',' ## self.seperatorname = '.csv' ## if b.text() == "Tab Delimited (*.txt)" and b.isChecked() == True: ## self.seperator = '\t' ## self.seperatorname = '.txt' def btn2state(self,b): if b.text() == "Comma Delimated (*.csv)" and b.isChecked() == True: self.seperator2 = ',' self.seperatorname2 = '.csv' if b.text() == "Tab Delimited (*.txt)" and b.isChecked() == True: self.seperator2 = '\t' self.seperatorname2 = '.txt' def btn3state(self,b): if b.text() == "Rainfall/Gamma" and b.isChecked() == True: self.methodname = b.text() if b.text() == "Temperature/Normal" and b.isChecked() == True: self.methodname = b.text() if b.text() == "Solar Radiation/Beta" and b.isChecked() == True: self.methodname = b.text() def start_correctionH(self): self.started = True self.BiasCorrectH() def stop_correctionH(self): if self.started: self.started = False QMessageBox.information(self, "Information", "Bias correction is aborted.") def ShowHide(self): if self.show_hide.text() == "Hide Details" and self.show_hide.isChecked() == False: self.textboxF.hide() self.textbox.hide() ## self.setFixedSize(700,372) ShowHide(self.show_hideF.text()) ShowHide(self.show_hide.text()) self.show_hideF.setText('Show Details') self.show_hide.setText('Show Details') if self.show_hide.text() == "Show Details" and self.show_hide.isChecked() == True: self.textboxF.show() self.textbox.show() ## self.setFixedSize(700,620) ShowHide(self.show_hideF.text()) ShowHide(self.show_hide.text()) self.show_hideF.setText('Hide Details') self.show_hide.setText('Hide Details') def BiasCorrectH(self): if self.Obsfile.text() == "": QMessageBox.critical(self, "Message", "File containing observed climate data (*.csv or *.txt) is not given.") self.started = False if self.ModHfile.text() == "": QMessageBox.critical(self, "Message", "File containing GCM outputs (*.csv or *.txt) is not given.") self.started = False if self.outputfile_location.text() == "": QMessageBox.critical(self, "Message", "Folder to save bias corrected GCM outputs is not given") self.started = False try: ## sep = self.seperator ## sepname = self.seperatorname sep2 = self.seperator2 sepname2 = self.seperatorname2 except: QMessageBox.critical(self, "Message", "Format is not defined.") self.started = False try: method = self.methodname except: QMessageBox.critical(self, "Message", "Variable/Distribution is not defined.") self.started = False self.textbox.setText("") start = time.time() self.status.setText('Status: Correcting') ## self.progressbarfinal.setMinimum(0) ## self.progressbarfinal.setValue(0) self.progressbar.setMinimum(0) self.progressbar.setValue(0) Fobs = self.Obsfile.text() Fmod = self.ModHfile.text() ObsData, ModData, CorrectedData = [], [], [] with open(Fobs) as f: line = [line for line in f] for i in range(len(line)): if Fobs.endswith('.csv'): ObsData.append([word for word in line[i].split(",") if word]) if Fobs.endswith('.txt'): ObsData.append([word for word in line[i].split("\t") if word]) lat = [float(ObsData[0][c]) for c in range(1,len(ObsData[0]))] lon = [float(ObsData[1][c]) for c in range(1,len(ObsData[0]))] Latitude = [] Longitude = [] with open(Fmod) as f: line = [line for line in f] for i in range(len(line)): if Fmod.endswith('.csv'): ModData.append([word for word in line[i].split(",") if word]) if Fmod.endswith('.txt'): ModData.append([word for word in line[i].split("\t") if word]) DateObs = [ObsData[r][0] for r in range(len(ObsData))] DateMod = [ModData[r][0] for r in range(len(ModData))] OutPath = self.outputfile_location.text() CorrectedData.append(DateMod) YMod = int(DateMod[2][-4:]) YObs = int(DateObs[2][-4:]) app.processEvents() if len(lat)>1: random_count = np.random.randint(len(lat),size=(1)) else: random_count = 0 fig = plt.figure(figsize=(15,7)) plt.style.use('ggplot') ## plt.style.use('fivethirtyeight') for j in range(len(lat)): obs = [float(ObsData[r][j+1]) for r in range(2,len(ObsData))] MOD = [float(ModData[r][j+1]) for r in range(2,len(ModData))] Date = [date(YMod,1,1)+timedelta(i) for i in range(len(MOD))] DateObs = [date(YObs,1,1)+timedelta(i) for i in range(len(obs))] if method == 'Rainfall/Gamma' and self.started == True: MOD_Month=[] Obs_Monthwise = [[] for m in range(12)] Obs_MonthFreq = [[] for m in range(12)] MOD_Monthwise = [[] for m in range(12)] MOD_MonthFreq = [[] for m in range(12)] Cor_Monthwise = [] Date_Monthwise= [[] for m in range(12)] for m in range(12): for i in range(len(obs)): if Date[i].month == m+1: Date_Monthwise[m].append(Date[i]) Obs_Monthwise[m].append(obs[i]) MOD_Monthwise[m].append(MOD[i]) for m in range(12): MOD_Month.append(sorted_values(Obs_Monthwise[m],MOD_Monthwise[m])) MOD_Monthwise = MOD_Month for m in range(12): for i in range(len(MOD_Monthwise[m])): if MOD_Monthwise[m][i]>0: MOD_MonthFreq[m].append(MOD_Monthwise[m][i]) if Obs_Monthwise[m][i]>0: Obs_MonthFreq[m].append(Obs_Monthwise[m][i]) nplot=1 for m in range(12): Cor = [] if len(MOD_MonthFreq[m])>0 and len(Obs_MonthFreq[m])>0: Mo, Mg, Vo, Vg = np.mean(Obs_MonthFreq[m]), np.mean(MOD_MonthFreq[m]), np.std(Obs_MonthFreq[m])**2, np.std(MOD_MonthFreq[m])**2 if not any(param<0.000001 for param in [Mo, Mg, Vo, Vg]): O_alpha, O_beta, G_alpha, G_beta = Mo**2/Vo, Vo/Mo, Mg**2/Vg, Vg/Mg O_loc, G_loc = 0, 0 ## print('G',O_alpha, O_beta, G_alpha, G_beta) else: O_alpha, O_loc, O_beta = gamma.fit(Obs_MonthFreq[m], loc=0) G_alpha, G_loc, G_beta = gamma.fit(MOD_MonthFreq[m], loc=0) ## print('fit',O_alpha, O_beta, G_alpha, G_beta) ## print(O_alpha, O_beta, G_alpha, G_beta) prob = gamma.cdf(MOD_Monthwise[m],G_alpha, scale=G_beta) Corr = gamma.ppf(prob, O_alpha, scale=O_beta) for i in range(len(Obs_Monthwise[m])): if len(MOD_MonthFreq[m])>0: if MOD_Monthwise[m][i] >= min(MOD_MonthFreq[m]): Cor.append(Corr[i]) else: Cor.append(0) else: Cor.append(0) for c in Cor: Cor_Monthwise.append('%.1f'%c) if j == random_count: ax = fig.add_subplot(3,4,nplot) obs_cdf = gamma.cdf(Obs_Monthwise[m], O_alpha, O_loc, O_beta) mod_cdf = gamma.cdf(MOD_Monthwise[m], G_alpha, G_loc, G_beta) Mc, Vc = np.mean(Cor), np.std(Cor)**2 if not any(param<0.000001 for param in [Mc, Vc]): CF_alpha, CF_beta = Mc**2/Vc, Vc/Mc CF_loc, G_loc = 0, 0 else: CF_alpha, CF_loc, CF_beta=gamma.fit(Cor) cor_cdf = gamma.cdf(Cor, CF_alpha, CF_loc, CF_beta) ax.set_title('Month: '+str(m+1), fontsize=12) o, = ax.plot(Obs_Monthwise[m], obs_cdf, '.b') m, = ax.plot(MOD_Monthwise[m], mod_cdf, '.r') c, = ax.plot(Cor, cor_cdf, '.g') nplot=nplot+1 fig.legend([o,m,c,(o,m,c,)],['Observed','Before Correction','After Correction'],ncol=3,loc=8,frameon=False, fontsize=14) plt.subplots_adjust(hspace=0.3, wspace=0.3) plt.suptitle('CDF Plots of ' + method.split('/')[0] + ' for Randomly Selected Lat: '+str(lat[j])+' Lon: '+str(lon[j]),fontsize=16) if method =='Temperature/Normal' and self.started == True: MOD_Month=[] Obs_Monthwise = [[] for m in range(12)] MOD_Monthwise = [[] for m in range(12)] Cor_Monthwise = [] Date_Monthwise= [[] for m in range(12)] for m in range(12): for i in range(len(MOD)): if Date[i].month == m+1: Date_Monthwise[m].append(Date[i]) MOD_Monthwise[m].append(MOD[i]) for m in range(12): for i in range(len(obs)): if DateObs[i].month == m+1: Obs_Monthwise[m].append(obs[i]) nplot=1 for m in range(12): Cor = [] Mo, So = norm.fit(Obs_Monthwise[m]) Mg, Sg = norm.fit(MOD_Monthwise[m]) prob = norm.cdf(MOD_Monthwise[m],Mg, Sg) Cor = norm.ppf(prob, Mo, So) for c in Cor: Cor_Monthwise.append('%.1f'%c) if j == random_count: ax = fig.add_subplot(3,4,nplot) obs_cdf = norm.cdf(Obs_Monthwise[m], Mo, So) mod_cdf = norm.cdf(MOD_Monthwise[m], Mg, Sg) Mc, Sc = norm.fit(Cor) cor_cdf = norm.cdf(Cor, Mc, Sc) ax.set_title('Month: '+str(m+1), fontsize=12) o, = ax.plot(Obs_Monthwise[m], obs_cdf, '.b') m, = ax.plot(MOD_Monthwise[m], mod_cdf, '.r') c, = ax.plot(Cor, cor_cdf, '.g') nplot=nplot+1 fig.legend([o,m,c,(o,m,c,)],['Observed','Before Correction','After Correction'],ncol=3,loc=8,frameon=False, fontsize=14) plt.subplots_adjust(hspace=0.3, wspace=0.3) plt.suptitle('CDF Plots of ' + method.split('/')[0] + ' for Randomly Selected Lat: '+str(lat[j])+' Lon: '+str(lon[j]),fontsize=16) if method =='Solar Radiation/Beta' and self.started == True: MOD_Month=[] Obs_Monthwise = [[] for m in range(12)] MOD_Monthwise = [[] for m in range(12)] Cor_Monthwise = [] Date_Monthwise= [[] for m in range(12)] for m in range(12): for i in range(len(MOD)): if Date[i].month == m+1: Date_Monthwise[m].append(Date[i]) MOD_Monthwise[m].append(MOD[i]) for m in range(12): for i in range(len(obs)): if DateObs[i].month == m+1: Obs_Monthwise[m].append(obs[i]) nplot=1 for m in range(12): Cor = [] oMin, oMax = min(Obs_Monthwise[m]), max(Obs_Monthwise[m]) gMin, gMax = min(MOD_Monthwise[m]), max(MOD_Monthwise[m]) Mo = (np.mean(Obs_Monthwise[m])-oMin)/(oMax - oMin) Mg = (np.mean(MOD_Monthwise[m])-gMin)/(gMax - gMin) Vo = np.std(Obs_Monthwise[m])**2/(oMax - oMin)**2 Vg = np.std(MOD_Monthwise[m])**2/(gMax - gMin)**2 ao, ag = -Mo*(Vo + Mo**2 - Mo)/Vo, -Mg*(Vg + Mg**2 - Mg)/Vg bo, bg = ao*(1 - Mo)/Mo, ag*(1 - Mg)/Mg TransO = [(Obs_Monthwise[m][i]-oMin)/(oMax-oMin) for i in range(len(Obs_Monthwise[m]))] TransG = [(MOD_Monthwise[m][i]-gMin)/(gMax-gMin) for i in range(len(MOD_Monthwise[m]))] prob = beta.cdf(TransG, ag, bg) TransC = beta.ppf(prob, ao, bo) Cor = [TransC[i]*(oMax-oMin)+oMin for i in range(len(TransC))] for c in Cor: Cor_Monthwise.append('%.1f'%c) if j == random_count: ax = fig.add_subplot(3,4,nplot) obs_cdf = beta.cdf(TransO, ao, bo) mod_cdf = beta.cdf(TransG, ag, bg) Mc = (np.mean(Cor)-min(Cor))/(max(Cor)-min(Cor)) Vc = np.std(Cor)**2/(max(Cor)-min(Cor))**2 ac = -Mc*(Vc + Mc**2 - Mc)/Vc bc = ac*(1 - Mc)/Mc cor_cdf = beta.cdf(TransC, ac, bc) ax.set_title('Month: '+str(m+1), fontsize=12) o, = ax.plot(Obs_Monthwise[m], obs_cdf, '.b') m, = ax.plot(MOD_Monthwise[m], mod_cdf, '.r') c, = ax.plot(Cor, cor_cdf, '.g') nplot=nplot+1 fig.legend([o,m,c,(o,m,c,)],['Observed','Before Correction','After Correction'],ncol=3,loc=8,frameon=False, fontsize=14) plt.subplots_adjust(hspace=0.3, wspace=0.3) plt.suptitle('CDF Plots of ' + method.split('/')[0] + ' for Randomly Selected Lat: '+str(lat[j])+' Lon: '+str(lon[j]),fontsize=16) Date_Month=[] for m in range(12): for i in range(len(Date_Monthwise[m])): Date_Month.append(Date_Monthwise[m][i]) DateCorr_Dict = dict(zip(Date_Month,Cor_Monthwise)) SortedCorr = sorted(DateCorr_Dict.items()) CorrectedData.append([lat[j],lon[j]]+[v for k,v in SortedCorr]) app.processEvents() self.scrollbar.setValue(self.scrollbar.maximum()) self.progressbar.setValue(j) ## self.progressbarfinal.setValue(j) self.progressbar.setMaximum(len(lat)+len(CorrectedData[0])-2) ## self.progressbarfinal.setMaximum(len(lat)+len(CorrectedData[0])-2) self.textbox.append('Corrected '+ str(j+1)+' out of '+str(len(lat))+':\tLat: %.1f'%lat[j]+'\tLon: %.1f'%lon[j]) self.status.setText('Status: Writing Bias Corrected Data to File.') self.textbox.append('\nWriting Bias Corrected Data to File.') app.processEvents() if sep2 == ',': f = open(OutPath+'\Bias Corrected '+method.split('/')[0]+' '+str(YMod)+'.csv','w') for c in range(len(CorrectedData[0])): app.processEvents() if self.started==True: f.write(','.join(str(CorrectedData[r][c]) for r in range(len(CorrectedData)))) f.write('\n') if (c+1)%10 == 1 and (c+1) != 11: self.textbox.append("Writing %dst day data" % (c+1)) elif (c+1)%10 == 2: self.textbox.append("Writing %dnd day data" % (c+1)) elif (c+1)%10 == 3: self.textbox.append("Writing %drd day data" % (c+1)) else: self.textbox.append("Writing %dth day data" % (c+1)) app.processEvents() self.scrollbar.setValue(self.scrollbar.maximum()) self.progressbar.setValue(len(lat)+c+1) ## self.progressbarfinal.setValue(len(lat)+c+1) self.progressbar.setMaximum(len(lat)+len(CorrectedData[0])-2) ## self.progressbarfinal.setMaximum(len(lat)+len(CorrectedData[0])-2) if c == len(CorrectedData[0])-1: end = time.time() t = end-start self.status.setText('Status: Completed.') self.textbox.append("\nTotal Time Taken: %.2d:%.2d:%.2d" % (t/3600,(t%3600)/60,t%60)) QMessageBox.information(self, "Information", "Bias Correction is completed.") f.close() if sep2 == '\t': f = open(OutPath+'\Bias Corrected '+method.split('/')[0]+' '+str(YMod)+'.txt','w') for c in range(len(CorrectedData[0])): app.processEvents() if self.started==True: f.write('\t'.join(str(CorrectedData[r][c]) for r in range(len(CorrectedData)))) f.write('\n') if (c+1)%10 == 1 and (c+1) != 11: self.textbox.append("Writing %dst day data" % (c+1)) elif (c+1)%10 == 2: self.textbox.append("Writing %dnd day data" % (c+1)) elif (c+1)%10 == 3: self.textbox.append("Writing %drd day data" % (c+1)) else: self.textbox.append("Writing %dth day data" % (c+1)) app.processEvents() self.scrollbar.setValue(self.scrollbar.maximum()) self.progressbar.setValue(len(lat)+c+1) self.progressbar.setMaximum(len(lat)+len(CorrectedData[0])-2) ## self.progressbarfinal.setValue(len(lat)+c+1) ## self.progressbarfinal.setMaximum(len(lat)+len(CorrectedData[0])-2) if c == len(CorrectedData[0])-1: end = time.time() t = end-start self.status.setText('Status: Completed.') self.textbox.append("\nTotal Time Taken: %.2d:%.2d:%.2d" % (t/3600,(t%3600)/60,t%60)) QMessageBox.information(self, "Information", "Bias Correction is completed.") f.close() def ShowPlots(self): plt.show() def FTabUI(self): gridF = QGridLayout() gridF.addWidget(self.inputF(), 0, 0) gridF.addWidget(self.outputF(), 1, 0) gridF.addWidget(self.methodF(), 2, 0) gridF.addWidget(self.progressF(), 3, 0) gridF.setContentsMargins(0,0,0,0) ## self.setTabText(0,"Historical") self.FTab.setLayout(gridF) def inputF(self): ##########Layout for taking input climate data to be bias corrected ########## gBoxF = QGroupBox("Inputs:") layout1F = QGridLayout() self.ObsfileF = QLineEdit() self.browse2F = QPushButton("...") self.browse2F.setMaximumWidth(25) self.browse2F.clicked.connect(self.browse2_fileF) self.q1F = QPushButton("?") self.q1F.setMaximumWidth(15) self.q1F.clicked.connect(self.Info1F) self.ObsfileF.setPlaceholderText("File with observed historical climate data (*.csv or *.txt)") self.ModHfileF = QLineEdit() self.browse1F = QPushButton("...") self.browse1F.setMaximumWidth(25) self.browse1F.clicked.connect(self.browse1_fileF) self.q0F = QPushButton("?") self.q0F.setMaximumWidth(15) self.q0F.clicked.connect(self.Info0F) self.ModHfileF.setPlaceholderText("File with GCM historical climate projections (*.csv or *.txt)") layout1F.addWidget(self.ObsfileF,1,0,1,3) layout1F.addWidget(self.q1F,1,3,1,1) layout1F.addWidget(self.browse2F,1,4,1,1) layout1F.addWidget(self.ModHfileF,1,5,1,3) layout1F.addWidget(self.q0F,1,8,1,1) layout1F.addWidget(self.browse1F,1,9,1,1) self.ModFfileF = QLineEdit() self.ModFfileF.setPlaceholderText("File with GCM future climate projections (*.csv or *.txt)") self.q2F = QPushButton("?") self.q2F.setMaximumWidth(15) self.q2F.clicked.connect(self.Info2F) self.browse3F = QPushButton("...") self.browse3F.setMaximumWidth(25) self.browse3F.clicked.connect(self.browse3_fileF) layout1F.addWidget(self.ModFfileF,3,0,1,8) layout1F.addWidget(self.q2F,3,8,1,1) layout1F.addWidget(self.browse3F,3,9,1,1) ## ##########Layout for taking comma delimited vs tab delimited################################ ## sublayout1 = QGridLayout() ## ## self.label1 = QLabel("Input Format:\t") ## self.b1 = QRadioButton("Comma Delimated (*.csv)") ## #self.b1.setChecked(True) ## self.b2 = QRadioButton("Tab Delimited (*.txt)") ## ## self.b1.toggled.connect(lambda:self.btnstate(self.b1)) ## self.b2.toggled.connect(lambda:self.btnstate(self.b2)) ## ## sublayout1.addWidget(self.label1,1,0) ## sublayout1.addWidget(self.b1,1,1) ## sublayout1.addWidget(self.b2,1,2) ## layout1.addLayout(sublayout1,3,0) gBoxF.setLayout(layout1F) return gBoxF def outputF(self): ##########Layout for output file location and interpolation########## gBoxF = QGroupBox("Outputs:") layout4F = QGridLayout() self.outputfile_locationF = QLineEdit() self.outputfile_locationF.setPlaceholderText("Folder to save bias corrected GCM outputs") self.browse4F = QPushButton("...") self.browse4F.setMaximumWidth(25) self.browse4F.clicked.connect(self.browse4_fileF) layout4F.addWidget(self.outputfile_locationF,1,0,1,3) layout4F.addWidget(self.browse4F,1,3,1,1) ########################Layout for taking comma delimited vs tab delimited################################ sublayout2F = QGridLayout() output_labelF = QLabel("Output Format:\t") self.b3F = QRadioButton("Comma Delimated (*.csv)") #self.b3.setChecked(True) self.b4F = QRadioButton("Tab Delimited (*.txt)") self.b3F.toggled.connect(lambda:self.btn2stateF(self.b3F)) self.b4F.toggled.connect(lambda:self.btn2stateF(self.b4F)) sublayout2F.addWidget(output_labelF,1,0) sublayout2F.addWidget(self.b3F,1,1) sublayout2F.addWidget(self.b4F,1,2) layout4F.addLayout(sublayout2F,2,0) gBoxF.setLayout(layout4F) return gBoxF def methodF(self): ########################Layout for taking methods of Bias Correction ################################ gBoxF = QGroupBox("Variable/Distribution") layout5F = QGridLayout() self.b5F = QRadioButton("Rainfall/Gamma") #self.b3F.setChecked(True) self.b6F = QRadioButton("Temperature/Normal") self.b7F = QRadioButton("Solar Radiation/Beta") self.b5F.toggled.connect(lambda:self.btn3stateF(self.b5F)) self.b6F.toggled.connect(lambda:self.btn3stateF(self.b6F)) self.b7F.toggled.connect(lambda:self.btn3stateF(self.b7F)) self.show_hideF = QPushButton("Show Details") Font=QFont() Font.setBold(True) #self.show_hideF.setFont(Font) self.show_hideF.setCheckable(True) #self.show_hideF.toggle() self.show_hideF.clicked.connect(self.ShowHideF) self.show_hideF.setFixedWidth(90) self.show_hideF.setFixedHeight(25) Style_show_hideF_Button = """ QPushButton{ color: rgb(255, 255, 255); background-color: rgb(66, 131, 221); border: none; } QPushButton:Checked{ background-color: rgb(66, 131, 221); border: none; } QPushButton:hover{ background-color: rgb(66, 131, 221,230); border: none; } """ self.show_hideF.setStyleSheet(Style_show_hideF_Button) self.show_plotsF = QPushButton("Show Plots") self.show_plotsF.clicked.connect(self.ShowPlotsF) self.show_plotsF.setFixedWidth(75) self.show_plotsF.setFixedHeight(25) self.show_plotsF.setStyleSheet(Style_show_hideF_Button) self.startF = QPushButton("Run") self.startF.setFixedWidth(50) self.startF.setFixedHeight(25) Style_RunF_Button = """ QPushButton{ color: rgb(255, 255, 255); background-color: rgb(0,121,0); border-color: none; border: none; } QPushButton:hover{ background-color: rgb(0,121,0,230); } """ self.startF.clicked.connect(self.start_correctionF) #self.startF.setFont(Font) self.startF.setStyleSheet(Style_RunF_Button) self.stopF = QPushButton("Cancel") self.stopF.setMaximumWidth(60) self.stopF.setFixedHeight(25) Style_CancelF_Button = """ QPushButton{ color: rgb(255, 255, 255); background-color: rgb(180,0,0,240); border-color: none; border: none; } QPushButton:hover{ background-color: rgb(180,0,0,220); } """ self.stopF.clicked.connect(self.stop_correctionF) #self.stopF.setFont(Font) self.stopF.setStyleSheet(Style_CancelF_Button) layout5F.addWidget(self.b5F,1,1) layout5F.addWidget(self.b6F,1,2) layout5F.addWidget(self.b7F,1,3) layout5F.addWidget(self.show_hideF,1,7) layout5F.addWidget(self.startF,1,4) layout5F.addWidget(self.stopF,1,6) layout5F.addWidget(self.show_plotsF,1,5) ## layout5F.addWidget(self.b5F,1,1) ## layout5F.addWidget(self.b6F,1,2) ## layout5F.addWidget(self.b7F,1,3) ## layout5F.addWidget(self.show_hideF,2,5) ## layout5F.addWidget(self.startF,1,4) ## layout5F.addWidget(self.stopF,2,4) ## layout5F.addWidget(self.show_plotsF,1,5) gBoxF.setLayout(layout5F) return gBoxF ########## Layout for progress of Bias Correction ########## def progressF(self): gBoxF = QGroupBox() layout6F = QVBoxLayout() STYLE2 = """ QProgressBar{ text-align: center; } QProgressBar::chunk { background-color: rgb(0,121,0); } """ self.statusF = QLabel('') self.progressbarF = QProgressBar() ## self.progressbarfinalF = QProgressBar() #self.progressbarF.setMinimum(1) self.progressbarF.setFixedHeight(13) ## self.progressbarfinalF.setFixedHeight(13) self.progressbarF.setStyleSheet(STYLE2) ## self.progressbarfinalF.setStyleSheet(STYLE2) self.textboxF = QTextEdit() self.textboxF.setReadOnly(True) self.textboxF.moveCursor(QTextCursor.End) self.textboxF.hide() self.scrollbarF = self.textboxF.verticalScrollBar() layout6F.addWidget(self.statusF) layout6F.addWidget(self.progressbarF) ## layout6F.addWidget(self.progressbarfinalF) layout6F.addWidget(self.textboxF) gBoxF.setLayout(layout6F) return gBoxF ########################### Control Buttons #################################################### def browse1_fileF(self): ModH_fileF = QFileDialog.getOpenFileName(self,caption = "Open File",directory=r"C:\Users\gupta\OneDrive\0. M.Tech. Research Work\Codes\GUIs\Bias Correction\\", filter="Comma Delimated (*.csv);;Tab Delimated (*.txt)") self.ModHfileF.setText(QDir.toNativeSeparators(ModH_fileF)) def browse2_fileF(self): Obs_fileF = QFileDialog.getOpenFileName(self,caption = "Open File",directory=r"C:\Users\gupta\OneDrive\0. M.Tech. Research Work\Codes\GUIs\Bias Correction\\", filter="Comma Delimated (*.csv);;Tab Delimated (*.txt)") self.ObsfileF.setText(QDir.toNativeSeparators(Obs_fileF)) def browse3_fileF(self): ModF_fileF = QFileDialog.getOpenFileName(self,caption = "Open File", directory=r"C:\Users\gupta\OneDrive\0. M.Tech. Research Work\Codes\GUIs\Bias Correction\\", filter="Comma Delimated (*.csv);;Tab Delimated (*.txt)") self.ModFfileF.setText(QDir.toNativeSeparators(ModF_fileF)) def browse4_fileF(self): output_fileF = QFileDialog.getExistingDirectory(self, "Save File in Folder", r"C:\Users\gupta\OneDrive\0. M.Tech. Research Work\Codes\GUIs\Bias Correction\\", QFileDialog.ShowDirsOnly) self.outputfile_locationF.setText(QDir.toNativeSeparators(output_fileF)) def Info0F(self): QMessageBox.information(self, "Information About Input Files (Model Historical)", '''Sample input (.csv or .txt) should be same as it is shown in Sample Example:\nC:\Program Files (x86)\Climate Data Bias Corrector\Sample Input (ModH).csv ''') def Info1F(self): QMessageBox.information(self, "Information About Input Files (Observed Historical)", '''Sample input (.csv or .txt) should be same as it is shown in Sample Example:\nC:\Program Files (x86)\Climate Data Bias Corrector\Sample Input (ObsH).csv ''') def Info2F(self): QMessageBox.information(self, "Information About Input File (Model Future)", '''Sample input (.csv or .txt) should be same as it is shown in Sample Example:\nC:\Program Files (x86)\Climate Data Bias Corrector\Sample Input (ModF).csv ''') ## def btnstateF(self,b): ## if b.text() == "Comma Delimated (*.csv)" and b.isChecked() == True: ## self.seperatorF = ',' ## self.seperatornameF = '.csv' ## if b.text() == "Tab Delimited (*.txt)" and b.isChecked() == True: ## self.seperatorF = '\t' ## self.seperatornameF = '.txt' def btn2stateF(self,b): if b.text() == "Comma Delimated (*.csv)" and b.isChecked() == True: self.seperator2F = ',' self.seperatorname2F = '.csv' if b.text() == "Tab Delimited (*.txt)" and b.isChecked() == True: self.seperator2F = '\t' self.seperatorname2F = '.txt' def btn3stateF(self,b): if b.text() == "Rainfall/Gamma" and b.isChecked() == True: self.methodnameF = b.text() if b.text() == "Temperature/Normal" and b.isChecked() == True: self.methodnameF = b.text() if b.text() == "Solar Radiation/Beta" and b.isChecked() == True: self.methodnameF = b.text() def start_correctionF(self): self.started = True self.BiasCorrectF() def stop_correctionF(self): if self.started: self.started = False QMessageBox.information(self, "Information", "Bias correction is aborted.") def ShowHideF(self): if self.show_hideF.text() == "Hide Details" and self.show_hideF.isChecked() == False: self.textboxF.hide() self.textbox.hide() ## self.setFixedSize(700,372) ShowHide(self.show_hideF.text()) ShowHide(self.show_hide.text()) self.show_hideF.setText('Show Details') self.show_hide.setText('Show Details') if self.show_hideF.text() == "Show Details" and self.show_hideF.isChecked() == True: self.textboxF.show() self.textbox.show() ## self.setFixedSize(700,620) ShowHide(self.show_hideF.text()) ShowHide(self.show_hide.text()) self.show_hideF.setText('Hide Details') self.show_hide.setText('Hide Details') def BiasCorrectF(self): if self.ObsfileF.text() == "": QMessageBox.critical(self, "Message", "File with observed historical climate data (*.csv or *.txt) is not given.") self.started = False if self.ModHfileF.text() == "": QMessageBox.critical(self, "Message", "File with GCM historical climate projections (*.csv or *.txt) is not given.") self.started = False if self.ModFfileF.text() == "": QMessageBox.critical(self, "Message", "File with GCM future climate projections (*.csv or *.txt) is not given.") self.started = False if self.outputfile_locationF.text() == "": QMessageBox.critical(self, "Message", "Folder to save bias corrected GCM outputs is not given") self.started = False try: ## sepF = self.seperator ## sepnameF = self.seperatorname sep2F = self.seperator2F sepname2F = self.seperatorname2F except: QMessageBox.critical(self, "Message", "Format is not defined.") self.started = False try: method = self.methodnameF except: QMessageBox.critical(self, "Message", "Variable/Distribution is not defined.") self.started = False self.textboxF.setText("") start = time.time() self.statusF.setText('Status: Correcting.') ## self.progressbarfinalF.setMinimum(0) ## self.progressbarfinalF.setValue(0) self.progressbarF.setMinimum(0) self.progressbarF.setValue(0) FobsH = self.ObsfileF.text() FmodH = self.ModHfileF.text() FmodF = self.ModFfileF.text() ObsHData, ModHData, ModFData, CorrectedData = [], [], [], [] with open(FobsH) as f: line = [line for line in f] for i in range(len(line)): if FobsH.endswith('.csv'): ObsHData.append([word for word in line[i].split(",") if word]) if FobsH.endswith('.txt'): ObsHData.append([word for word in line[i].split("\t") if word]) lat = [float(ObsHData[0][c]) for c in range(1,len(ObsHData[0]))] lon = [float(ObsHData[1][c]) for c in range(1,len(ObsHData[0]))] Latitude = [] Longitude = [] with open(FmodH) as f: line = [line for line in f] for i in range(len(line)): if FmodH.endswith('.csv'): ModHData.append([word for word in line[i].split(",") if word]) if FmodH.endswith('.txt'): ModData.append([word for word in line[i].split("\t") if word]) with open(FmodF) as f: line = [line for line in f] for i in range(len(line)): if FmodF.endswith('.csv'): ModFData.append([word for word in line[i].split(",") if word]) if FmodF.endswith('.txt'): ModFData.append([word for word in line[i].split("\t") if word]) DateObsH = [ObsHData[r][0] for r in range(len(ObsHData))] DateModH = [ModHData[r][0] for r in range(len(ModHData))] DateModF = [ModFData[r][0] for r in range(len(ModFData))] OutPath = self.outputfile_locationF.text() CorrectedData.append(DateModF) YObsH = int(DateObsH[2][-4:]) YModH = int(DateModH[2][-4:]) YModF = int(DateModF[2][-4:]) app.processEvents() if len(lat)>1: random_count = np.random.randint(len(lat),size=(1)) else: random_count = 0 fig = plt.figure(figsize=(15,7)) plt.style.use('ggplot') ## plt.style.use('fivethirtyeight') for j in range(len(lat)): ObsH = [float(ObsHData[r][j+1]) for r in range(2,len(ObsHData))] ModH = [float(ModHData[r][j+1]) for r in range(2,len(ModHData))] ModF = [float(ModFData[r][j+1]) for r in range(2,len(ModFData))] DateObsH = [date(YObsH,1,1)+timedelta(i) for i in range(len(ObsH))] DateModH = [date(YModH,1,1)+timedelta(i) for i in range(len(ModH))] DateModF = [date(YModF,1,1)+timedelta(i) for i in range(len(ModF))] if method == 'Rainfall/Gamma' and self.started == True: DateH=DateModH DateF=DateModF ModH_Month=[] ModF_Month=[] Cor_Monthwise = [] ObsH_Monthwise = [[] for m in range(12)] ObsH_MonthFreq = [[] for m in range(12)] ModH_Monthwise = [[] for m in range(12)] ModH_MonthFreq = [[] for m in range(12)] ModF_Monthwise = [[] for m in range(12)] ModF_MonthFreq = [[] for m in range(12)] DateH_Monthwise= [[] for m in range(12)] DateF_Monthwise= [[] for m in range(12)] for m in range(12): for i in range(len(ObsH)): if DateH[i].month == m+1: DateH_Monthwise[m].append(DateH[i]) ObsH_Monthwise[m].append(ObsH[i]) ModH_Monthwise[m].append(ModH[i]) for m in range(12): for i in range(len(ModF)): if DateF[i].month == m+1: DateF_Monthwise[m].append(DateF[i]) ModF_Monthwise[m].append(ModF[i]) for m in range(12): ModH_Month.append(sorted_values(ObsH_Monthwise[m],ModH_Monthwise[m])) ModF_Month.append(sorted_values_thresh(ModH_Month[m], ModF_Monthwise[m])) ModH_Monthwise = ModH_Month ModF_Monthwise = ModF_Month for m in range(12): for i in range(len(ModH_Monthwise[m])): if ModH_Monthwise[m][i]>0: ModH_MonthFreq[m].append(ModH_Monthwise[m][i]) if ObsH_Monthwise[m][i]>0: ObsH_MonthFreq[m].append(ObsH_Monthwise[m][i]) for i in range(len(ModF_Monthwise[m])): if ModF_Monthwise[m][i]>0: ModF_MonthFreq[m].append(ModF_Monthwise[m][i]) nplot=1 for m in range(12): Cor = [] if len(ModH_MonthFreq[m])>0 and len(ObsH_MonthFreq[m])>0 and len(ModF_MonthFreq[m])>0: Moh, Mgh, Mgf, Voh, Vgh, Vgf = np.mean(ObsH_MonthFreq[m]), np.mean(ModH_MonthFreq[m]), np.mean(ModF_MonthFreq[m]), np.std(ObsH_MonthFreq[m])**2, np.std(ModH_MonthFreq[m])**2, np.std(ModF_MonthFreq[m])**2 if not any(param<0.000001 for param in [Moh, Mgh, Mgf, Voh, Vgh, Vgf]): aoh, boh, agh, bgh, agf, bgf = Moh**2/Voh, Voh/Moh, Mgh**2/Vgh, Vgh/Mgh, Mgf**2/Vgf, Vgf/Mgf loh, lgh, lgf = 0, 0, 0 else: aoh, loh, boh = gamma.fit(ObsH_MonthFreq[m], loc=0) agh, lgh, bgh = gamma.fit(ModH_MonthFreq[m], loc=0) agf, lgf, bgf = gamma.fit(ModF_MonthFreq[m], loc=0) 'CDF of ModF with ModH Parameters' Prob_ModF_ParaModH = gamma.cdf(ModF_Monthwise[m],agh, scale=bgh) 'Inverse of Prob_ModF_ParaModH with ParaObsH to get corrected transformed values of Future Model Time Series' Cor = gamma.ppf(Prob_ModF_ParaModH, aoh, scale=boh) else: for i in range(len(ModF_Monthwise[m])): Cor.append(0) for c in Cor: Cor_Monthwise.append('%.1f'%c) if j == random_count: ax = fig.add_subplot(3,4,nplot) obsH_cdf = gamma.cdf(ObsH_Monthwise[m], aoh, loh, boh) modF_cdf = gamma.cdf(ModF_Monthwise[m], agf, lgf, bgf) Mc, Vc = np.mean(Cor), np.std(Cor)**2 if not any(param<0.000001 for param in [Mc, Vc]): acf, bcf = Mc**2/Vc, Vc/Mc lcf = 0 else: acf, lcf, bcf = gamma.fit(Cor) cor_cdf = gamma.cdf(Cor, acf, lcf, bcf) ax.set_title('Month: '+str(m+1), fontsize=12) o, = ax.plot(ObsH_Monthwise[m], obsH_cdf, '.b') m, = ax.plot(ModF_Monthwise[m], modF_cdf, '.r') c, = ax.plot(Cor, cor_cdf, '.g') nplot=nplot+1 fig.legend([o,m,c,(o,m,c,)],['Observed','Before Correction','After Correction'],ncol=3,loc=8,frameon=False, fontsize=14) plt.subplots_adjust(hspace=0.3, wspace=0.3) plt.suptitle('CDF Plots of ' + method.split('/')[0] + ' for Randomly Selected Lat: '+str(lat[j])+' Lon: '+str(lon[j]),fontsize=16) if method =='Temperature/Normal' and self.started == True: DateH=DateModH DateF=DateModF Cor_Monthwise = [] ObsH_Monthwise = [[] for m in range(12)] ModH_Monthwise = [[] for m in range(12)] ModF_Monthwise = [[] for m in range(12)] DateH_Monthwise= [[] for m in range(12)] DateF_Monthwise= [[] for m in range(12)] for m in range(12): for i in range(len(ObsH)): if DateH[i].month == m+1: DateH_Monthwise[m].append(DateH[i]) ObsH_Monthwise[m].append(ObsH[i]) ModH_Monthwise[m].append(ModH[i]) for m in range(12): for i in range(len(ModF)): if DateF[i].month == m+1: DateF_Monthwise[m].append(DateF[i]) ModF_Monthwise[m].append(ModF[i]) nplot=1 for m in range(12): Cor = [] Moh, Mgh, Mgf, Soh, Sgh, Sgf = np.mean(ObsH_Monthwise[m]), np.mean(ModH_Monthwise[m]), np.mean(ModF_Monthwise[m]), np.std(ObsH_Monthwise[m]), np.std(ModH_Monthwise[m]), np.std(ModF_Monthwise[m]) Prob_ModF = norm.cdf(ModF_Monthwise[m], Mgf, Sgf) Inv_of_Prob_ModF_ParaObsH = norm.ppf(Prob_ModF, Moh, Soh) Inv_of_Prob_ModF_ParaModH = norm.ppf(Prob_ModF, Mgh, Sgh) for i in range(len(ModF_Monthwise[m])): Cor.append(ModF_Monthwise[m][i]+Inv_of_Prob_ModF_ParaObsH[i]-Inv_of_Prob_ModF_ParaModH[i]) for c in Cor: Cor_Monthwise.append('%.1f'%c) if j == random_count: ax = fig.add_subplot(3,4,nplot) obsH_cdf = norm.cdf(ObsH_Monthwise[m], Moh, Soh) modF_cdf = norm.cdf(ModF_Monthwise[m], Mgf, Sgf) Mcf, Scf = norm.fit(Cor) cor_cdf = norm.cdf(Cor, Mcf, Scf) ax.set_title('Month: '+str(m+1), fontsize=12) o, = ax.plot(ObsH_Monthwise[m], obsH_cdf, '.b') m, = ax.plot(ModF_Monthwise[m], modF_cdf, '.r') c, = ax.plot(Cor, cor_cdf, '.g') nplot=nplot+1 fig.legend([o,m,c,(o,m,c,)],['Observed','Before Correction','After Correction'],ncol=3,loc=8,frameon=False, fontsize=14) plt.subplots_adjust(hspace=0.3, wspace=0.3) plt.suptitle('CDF Plots of ' + method.split('/')[0] + ' for Randomly Selected Lat: '+str(lat[j])+' Lon: '+str(lon[j]),fontsize=16) if method =='Solar Radiation/Beta' and self.started == True: ModH_Month=[] Cor_Monthwise = [] ObsH_Monthwise = [[] for m in range(12)] ModH_Monthwise = [[] for m in range(12)] ModF_Monthwise = [[] for m in range(12)] DateObsH_Monthwise= [[] for m in range(12)] DateModH_Monthwise= [[] for m in range(12)] DateModF_Monthwise= [[] for m in range(12)] for m in range(12): for i in range(len(ObsH)): if DateObsH[i].month == m+1: DateObsH_Monthwise[m].append(DateObsH[i]) ObsH_Monthwise[m].append(ObsH[i]) for m in range(12): for i in range(len(ModH)): if DateModH[i].month == m+1: DateModH_Monthwise[m].append(DateModH[i]) ModH_Monthwise[m].append(ModH[i]) for m in range(12): for i in range(len(ModF)): if DateModF[i].month == m+1: DateModF_Monthwise[m].append(DateModF[i]) ModF_Monthwise[m].append(ModF[i]) nplot=1 for m in range(12): Cor = [] 'Maximum and minimum value monthwise of whole time series are calculated below for ObsH, ModH and ModF' ohMin, ohMax = min(ObsH_Monthwise[m]), max(ObsH_Monthwise[m]) ghMin, ghMax = min(ModH_Monthwise[m]), max(ModH_Monthwise[m]) gfMin, gfMax = min(ModF_Monthwise[m]), max(ModF_Monthwise[m]) 'Mean and variance value monthwise of whole time series are calculated below for ObsH, ModH and ModF' Moh = (np.mean(ObsH_Monthwise[m])-ohMin)/(ohMax - ohMin) Mgh = (np.mean(ModH_Monthwise[m])-ghMin)/(ghMax - ghMin) Mgf = (np.mean(ModF_Monthwise[m])-gfMin)/(gfMax - gfMin) Voh = np.std(ObsH_Monthwise[m])**2/(ohMax - ohMin)**2 Vgh = np.std(ModH_Monthwise[m])**2/(ghMax - ghMin)**2 Vgf = np.std(ModF_Monthwise[m])**2/(gfMax - gfMin)**2 'a,b parameters in beta distribution, monthwise of whole time series, are calculated below for ObsH, ModH and ModF' aoh, agh, agf = -Moh*(Voh + Moh**2 - Moh)/Voh, -Mgh*(Vgh + Mgh**2 - Mgh)/Vgh, -Mgf*(Vgf + Mgf**2 - Mgf)/Vgf boh, bgh, bgf = aoh*(1 - Moh)/Moh, agh*(1 - Mgh)/Mgh, agf*(1 - Mgf)/Mgf 'All the time series are transformed to range (0,1)' TransOH = [(ObsH_Monthwise[m][i]-ohMin)/(ohMax-ohMin) for i in range(len(ObsH_Monthwise[m]))] TransGH = [(ModH_Monthwise[m][i]-ghMin)/(ghMax-ghMin) for i in range(len(ModH_Monthwise[m]))] TransGF = [(ModF_Monthwise[m][i]-gfMin)/(gfMax-gfMin) for i in range(len(ModF_Monthwise[m]))] 'CDF of ModF with ModH Parameters' Prob_ModF_ParaModH = beta.cdf(TransGF, agh, bgh) 'Inverse of Prob_ModF_ParaModH with ParaObsH to get corrected transformed values of Future Model Time Series' TransC = beta.ppf(Prob_ModF_ParaModH, aoh, boh) Cor = [TransC[i]*(ohMax-ohMin)+ohMin for i in range(len(TransC))] for c in Cor: Cor_Monthwise.append('%.1f'%c) DateF_Monthwise = DateModF_Monthwise if j == random_count: ax = fig.add_subplot(3,4,nplot) obsH_cdf = beta.cdf(TransOH, aoh, boh) modF_cdf = beta.cdf(TransGF, agf, bgf) Mcf = (np.mean(Cor)-min(Cor))/(max(Cor)-min(Cor)) Vcf = np.std(Cor)**2/(max(Cor)-min(Cor))**2 acf = -Mcf*(Vcf + Mcf**2 - Mcf)/Vcf bcf = acf*(1 - Mcf)/Mcf cor_cdf = beta.cdf(TransC, acf, bcf) ax.set_title('Month: '+str(m+1), fontsize=12) o, = ax.plot(ObsH_Monthwise[m], obsH_cdf, '.b') m, = ax.plot(ModF_Monthwise[m], modF_cdf, '.r') c, = ax.plot(Cor, cor_cdf, '.g') nplot=nplot+1 fig.legend([o,m,c,(o,m,c,)],['Observed','Before Correction','After Correction'],ncol=3,loc=8,frameon=False, fontsize=14) plt.subplots_adjust(hspace=0.3, wspace=0.3) plt.suptitle('CDF Plots of ' + method.split('/')[0] + ' for Randomly Selected Lat: '+str(lat[j])+' Lon: '+str(lon[j]),fontsize=16) Date_Month=[] for m in range(12): for i in range(len(DateF_Monthwise[m])): Date_Month.append(DateF_Monthwise[m][i]) DateCorr_Dict = dict(zip(Date_Month,Cor_Monthwise)) SortedCorr = sorted(DateCorr_Dict.items()) CorrectedData.append([lat[j],lon[j]]+[v for k,v in SortedCorr]) app.processEvents() self.scrollbarF.setValue(self.scrollbarF.maximum()) self.progressbarF.setValue(j) ## self.progressbarfinalF.setValue(j) self.progressbarF.setMaximum(len(lat)+len(CorrectedData[0])-2) ## self.progressbarfinalF.setMaximum(len(lat)+len(CorrectedData[0])-2) self.textboxF.append('Corrected '+ str(j+1)+' out of '+str(len(lat))+':\tLat: %.1f'%lat[j]+'\tLon: %.1f'%lon[j]) self.statusF.setText('Status: Writing Bias Corrected Data to File.') self.textboxF.append('\nWriting Bias Corrected Data to File.') app.processEvents() if sep2F == ',': f = open(OutPath+'\Bias Corrected '+method.split('/')[0]+' '+str(YModF)+'.csv','w') for c in range(len(CorrectedData[0])): app.processEvents() if self.started==True: f.write(','.join(str(CorrectedData[r][c]) for r in range(len(CorrectedData)))) f.write('\n') if (c+1)%10 == 1 and (c+1) != 11: self.textboxF.append("Writing %dst day data" % (c+1)) elif (c+1)%10 == 2: self.textboxF.append("Writing %dnd day data" % (c+1)) elif (c+1)%10 == 3: self.textboxF.append("Writing %drd day data" % (c+1)) else: self.textboxF.append("Writing %dth day data" % (c+1)) app.processEvents() self.scrollbarF.setValue(self.scrollbarF.maximum()) self.progressbarF.setValue(len(lat)+c+1) ## self.progressbarfinalF.setValue(len(lat)+c+1) self.progressbarF.setMaximum(len(lat)+len(CorrectedData[0])-2) ## self.progressbarfinalF.setMaximum(len(lat)+len(CorrectedData[0])-2) if c == len(CorrectedData[0])-1: end = time.time() t = end-start self.statusF.setText('Status: Completed.') self.textboxF.append("\nTotal Time Taken: %.2d:%.2d:%.2d" % (t/3600,(t%3600)/60,t%60)) QMessageBox.information(self, "Information", "Bias Correction is completed.") f.close() if sep2F == '\t': f = open(OutPath+'\Bias Corrected '+method.split('/')[0]+' '+str(YModF)+'.txt','w') for c in range(len(CorrectedData[0])): app.processEvents() if self.started==True: f.write('\t'.join(str(CorrectedData[r][c]) for r in range(len(CorrectedData)))) f.write('\n') if (c+1)%10 == 1 and (c+1) != 11: self.textboxF.append("Writing %dst day data" % (c+1)) elif (c+1)%10 == 2: self.textboxF.append("Writing %dnd day data" % (c+1)) elif (c+1)%10 == 3: self.textboxF.append("Writing %drd day data" % (c+1)) else: self.textboxF.append("Writing %dth day data" % (c+1)) app.processEvents() self.scrollbarF.setValue(self.scrollbarF.maximum()) self.progressbarF.setValue(len(lat)+c+1) self.progressbarF.setMaximum(len(lat)+len(CorrectedData[0])-2) ## self.progressbarfinalF.setValue(len(lat)+c+1) ## self.progressbarfinalF.setMaximum(len(lat)+len(CorrectedData[0])-2) if c == len(CorrectedData[0])-1: end = time.time() t = end-start self.statusF.setText('Status: Completed.') self.textboxF.append("\nTotal Time Taken: %.2d:%.2d:%.2d" % (t/3600,(t%3600)/60,t%60)) QMessageBox.information(self, "Information", "Bias Correction is completed.") f.close() def ShowPlotsF(self): plt.show() class BiasCorrection(QWidget): def __init__(self, parent=None): super(BiasCorrection,self).__init__(parent) grid = QGridLayout() self.m_titlebar=TitleBar(self) grid.addWidget(self.m_titlebar, 0, 0) self.tabs = HFTab(self) grid.addWidget(self.tabs, 1, 0) self.setLayout(grid) grid.setContentsMargins(0,0,0,0) ## self.setWindowTitle("Weather Data Interpolator") self.setFocus() self.adjustSize() self.Widget_Width = self.frameGeometry().width() self.Widget_Height = self.frameGeometry().height() ## self.setFixedSize(750,354) self.setFixedSize(750,self.Widget_Height) ## self.move(350,100) self.setWindowFlags(Qt.FramelessWindowHint) ## self.setWindowFlags(Qt.WindowMaximizeButtonHint) started = False app = QApplication(sys.argv) widget = BiasCorrection() app_icon = QIcon() app_icon.addFile('Interpolation-2.ico', QSize(40,40)) app.setWindowIcon(app_icon) pixmap = QPixmap("Splash_CDBC.png") splash = QSplashScreen(pixmap) splash.show() screen_resolution = app.desktop().screenGeometry() width, height = screen_resolution.width(), screen_resolution.height() widget.move(width/2-widget.width()/2,height/2-widget.height()/2) time.sleep(2) def ShowHide(text): if text == 'Show Details': widget.setFixedSize(750,BiasCorrection().Widget_Height+BiasCorrection().Widget_Height*2/3) print(widget.height()) ## widget.setFixedSize(750,620) if text == 'Hide Details': widget.setFixedSize(750,BiasCorrection().Widget_Height+1) print(widget.height()) ## widget.setFixedSize(750,354) ##widget.setFixedWidth(500) ##widget.setFixedHeight(400) widget.show() splash.finish(widget) app.exec_()
45.76388
228
0.526146
69,649
0.971205
0
0
0
0
0
0
15,767
0.219859
3ca4fb77d1058786e6c3813cfbd46b9161c2b28a
3,473
py
Python
lagom/core/es/base_es_master.py
lkylych/lagom
64777be7f09136072a671c444b5b3fbbcb1b2f18
[ "MIT" ]
null
null
null
lagom/core/es/base_es_master.py
lkylych/lagom
64777be7f09136072a671c444b5b3fbbcb1b2f18
[ "MIT" ]
null
null
null
lagom/core/es/base_es_master.py
lkylych/lagom
64777be7f09136072a671c444b5b3fbbcb1b2f18
[ "MIT" ]
null
null
null
from lagom.core.multiprocessing import BaseIterativeMaster class BaseESMaster(BaseIterativeMaster): """ Base class for master of parallelized evolution strategies (ES). It internally defines an ES algorithm. In each generation, it distributes all sampled solution candidates, each for one worker, to compute a list of object function values and then update the ES. For more details about how master class works, please refer to the documentation of the class, BaseIterativeMaster. All inherited subclasses should implement the following function: 1. make_es(self) 2. _process_es_result(self, result) """ def __init__(self, num_iteration, worker_class, num_worker, init_seed=0, daemonic_worker=None): super().__init__(num_iteration=num_iteration, worker_class=worker_class, num_worker=num_worker, init_seed=init_seed, daemonic_worker=daemonic_worker) # Create ES solver self.es = self.make_es() # It is better to force popsize to be number of workers assert self.es.popsize == self.num_worker def make_es(self): """ User-defined function to create an ES algorithm. Returns: es (BaseES): An instantiated object of an ES class. Examples: cmaes = CMAES(mu0=[3]*100, std0=0.5, popsize=12) return cmaes """ raise NotImplementedError def make_tasks(self, iteration): # ES samples new candidate solutions solutions = self.es.ask() # Record iteration number, for logging in _process_workers_result() # And it also keeps API untouched for assign_tasks() in non-iterative Master class self.generation = iteration return solutions def _process_workers_result(self, tasks, workers_result): # Rename, in ES context, the task is to evalute the solution candidate solutions = tasks # Unpack function values from workers results, [solution_id, function_value] # Note that the workers result already sorted ascendingly with respect to task ID function_values = [result[1] for result in workers_result] # Update ES self.es.tell(solutions, function_values) # Obtain results from ES result = self.es.result # Process the ES result self._process_es_result(result) def _process_es_result(self, result): """ User-defined function to process the result from ES. Note that the user can use the class memeber `self.generation` which indicate the index of the current generation, it is automatically incremented each time when sample a set of solution candidates. Args: result (dict): A dictionary of result returned from es.result. Examples: best_f_val = result['best_f_val'] if self.generation == 0 or (self.generation+1) % 100 == 0: print(f'Best function value at generation {self.generation+1}: {best_f_val}') """ raise NotImplementedError
37.344086
98
0.600921
3,412
0.982436
0
0
0
0
0
0
2,091
0.602073
3ca513ca1cc8091c31b7381ae44ccedd1283fc01
1,096
py
Python
Roman_Morozov_dz_3/task_5.py
Wern-rm/2074_GB_Python
f0b7a7f4ed993a007c1aef6ec9ce266adb5a3646
[ "MIT" ]
null
null
null
Roman_Morozov_dz_3/task_5.py
Wern-rm/2074_GB_Python
f0b7a7f4ed993a007c1aef6ec9ce266adb5a3646
[ "MIT" ]
null
null
null
Roman_Morozov_dz_3/task_5.py
Wern-rm/2074_GB_Python
f0b7a7f4ed993a007c1aef6ec9ce266adb5a3646
[ "MIT" ]
null
null
null
""" Реализовать функцию get_jokes(), возвращающую n шуток, сформированных из трех случайных слов, взятых из трёх списков (по одному из каждого): """ import random nouns = ["автомобиль", "лес", "огонь", "город", "дом"] adverbs = ["сегодня", "вчера", "завтра", "позавчера", "ночью"] adjectives = ["веселый", "яркий", "зеленый", "утопичный", "мягкий"] def get_jokes(count, repeat=True, **kwargs) -> list[str]: result: list[str] = [] if repeat: for i in range(count): result.append(' '.join(random.choice(kwargs[j]) for j in kwargs.keys())) else: for i in range(count): noun, adverb, adjective = [random.choice(kwargs[j]) for j in kwargs.keys()] result.append(' '.join([noun, adverb, adjective])) return result if __name__ == '__main__': print(get_jokes(count=1, repeat=True, nouns=nouns, adverbs=adverbs, adjectives=adjectives)) print(get_jokes(count=3, repeat=False, nouns=nouns, adverbs=adverbs, adjectives=adjectives)) print(get_jokes(count=5, repeat=True, nouns=nouns, adverbs=adverbs, adjectives=adjectives))
40.592593
140
0.666058
0
0
0
0
0
0
0
0
482
0.373065
3ca67e9442436a3a4c05f92ccc99c1b4150df427
11,217
py
Python
tools.py
akerestely/nonlinearBestFit
e45b5e33dd8fdfc2f9bd19b48523b1759e694fc4
[ "MIT" ]
1
2019-10-09T07:39:55.000Z
2019-10-09T07:39:55.000Z
tools.py
akerestely/nonlinearBestFit
e45b5e33dd8fdfc2f9bd19b48523b1759e694fc4
[ "MIT" ]
null
null
null
tools.py
akerestely/nonlinearBestFit
e45b5e33dd8fdfc2f9bd19b48523b1759e694fc4
[ "MIT" ]
null
null
null
import numpy as np import pandas as pd np.random.seed(421) def hCG(x: np.ndarray, A: float, B: float, alpha: float): return A * np.exp(-alpha * x) + B def gen_rand_points(n: int, A: float = 1000, B: float = 3, alpha: float = 0.01, noise: float = 2, consecutive: bool = False): """ :param n: number of points to generate :param A, B, alpha: parameters to hCG function :param noise: randomly add this much to the result of the hCG function """ from numpy.random import random sparsity = 1 if consecutive is False: x = random(n) * n * sparsity x.sort() # just for plot visual effect; does not change results else : x = np.linspace(0, n-1, n) * sparsity y = hCG(x, A, B, alpha) ynoise = random(n) * noise - noise / 2 y += ynoise return x, y def gen_rand_points_and_plot(n: int, A: float, B: float, alpha: float, noise: float, consecutive: bool): x, y = gen_rand_points(20, A = 1000, B = 3, alpha = 1, noise=0, consecutive=False) import matplotlib.pyplot as plt plt.scatter(x, y) plt.xlabel("$time$") plt.ylabel("$hCG(time)$") plt.show() return x, y def load_data(required_data_points: int = 3) -> pd.DataFrame: url = "data/measurements.csv" data = pd.read_csv(url) # remove unused columns data = data.loc[:, data.columns.str.startswith('MTH')] def name_to_weekcount(s:str) -> int: tokens = s.split('-') import re mth = int(re.search(r'\d+', tokens[0]).group(0)) - 1 wk = 0 if len(tokens) is not 1: wk = int(re.search(r'\d+', tokens[1]).group(0)) - 1 return mth * 4 + wk # rename columns data.columns = pd.Series(data.columns).apply(name_to_weekcount) # discard entries which have less than required_data_points measurements data = data[data.count(axis=1) > required_data_points] return data def get_x_y(data: pd.DataFrame, row: int) -> (np.ndarray, np.ndarray) : my_data = data.loc[row:row, :].dropna(axis=1) x = np.array(my_data.columns[:]) # time y = my_data.iloc[0,:].values # measurement return x, y def plot_real_data(data, from_row = None, to_row = None): figsize = None if from_row is not None and to_row is not None: count = to_row - from_row if count > 1: figsize = (10, 5 * count) data.T.iloc[:, from_row:to_row].dropna(axis=0).plot(kind="line", marker='o', subplots=True, figsize=figsize) def plot_function(func, x: np.ndarray, y: np.ndarray): import matplotlib.pyplot as plt range_param = np.linspace(0, 1) pt = [func(t, x, y) for t in range_param] plt.plot(range_param, pt) plt.show() def print_rmse_methods(x: np.ndarray, y: np.ndarray, paramsList: list): """ param paramsList: array of tuples, where tuple contains A, B and alpha """ from sklearn.metrics import mean_squared_error from math import sqrt for i, params in enumerate(paramsList): rmse = sqrt(mean_squared_error(y, hCG(x, *params))) print(f"Method {i} RMSE: {rmse}") def plot_methods(x: np.ndarray, y: np.ndarray, paramsList:list , paramsNames: list = [], data_id: str="", showPlot: bool = True): """ param paramsList: array of tuples, where tuple contains A, B and alpha param paramsNames: array of strings, where each sting represents the name of the corresponding param tuple. The names will appear on the plot. Optional, in which case the name will be the index in the array. """ from sklearn.metrics import mean_squared_error from math import sqrt import matplotlib.pyplot as plt plt.xlabel(r"$time$") plt.ylabel(r"$hCG(time)$") plt.plot(x, y, 'bo', label=f"data {data_id}") #print(paramsNames) for i, params in enumerate(paramsList): rmse = sqrt(mean_squared_error(y, hCG(x, *params))) name = paramsNames[i] if i < len(paramsNames) else ("Method " + str(i)) plt.plot(x, hCG(x, *params), label=f'{name}: A=%5.2f, B=%5.2f, alpha=%5.2f, rmse=%5.2f' % (*params, rmse)) plt.legend() if showPlot: plt.show() # print_rmse_methods(x, y, params, paramsCalc) def plot_results(x: np.ndarray, y: np.ndarray, ptsStart: int = 0, ptsEnd: int = None, ptsTrain: int = None, data_id: str="", showPlot:bool = True, allAlgorithms:bool = True): """ :param ptsStart: use x, y values starting from this point :param ptsEnd: use x, y values ending at this point :param ptsTrain: use this much x, y values for training starting from ptsStart """ ptsEnd = ptsEnd or len(x) ptsTrain = ptsTrain or (ptsEnd - ptsStart) if ptsStart + ptsTrain > ptsEnd: raise ValueError("Invalid interval for points") x_train = x[ptsStart : ptsStart + ptsTrain] y_train = y[ptsStart : ptsStart + ptsTrain] paramsList = [] paramsNames = [] if allAlgorithms: try: from scipy.optimize import curve_fit popt, _ = curve_fit(hCG, x_train, y_train) # uses Levenberg-Marquardt iterative method paramsList.append(tuple(popt)) paramsNames.append("Iterative") except: pass try: from bestfitte import best_fit paramsList.append(best_fit(x_train, y_train)) paramsNames.append("BestFit") except: pass if allAlgorithms: try: from pseloglin import fit paramsList.append(fit(x_train, y_train)) paramsNames.append("PseLogLin") except: pass plot_methods(x[ptsStart:ptsEnd], y[ptsStart:ptsEnd], paramsList, paramsNames, data_id, showPlot) def plot_and_get_real_data(row: int) -> (np.ndarray, np.ndarray): data = load_data() plot_real_data(data, row, row+1) return get_x_y(data, row) def get_real_data(row: int) -> (np.ndarray, np.ndarray): data = load_data() return get_x_y(data, row) def plot_with_inner_plot(x: np.ndarray, y: np.ndarray, limX1: float, limX2: float, limY1: float, limY2: float, zoom: float = 2.5, loc='upper right'): import matplotlib.pyplot as plt fig, ax = plt.subplots() ax.scatter(x, y) plt.xlabel("$time$") plt.ylabel("$hCG(time)$") from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes axins = zoomed_inset_axes(ax, zoom, loc=loc) axins.scatter(x, y) axins.set_xlim(limX1, limX2) axins.set_ylim(limY1, limY2) #plt.yticks(visible=False) #plt.xticks(visible=False) from mpl_toolkits.axes_grid1.inset_locator import mark_inset mark_inset(ax, axins, loc1=2, loc2=4, fc="none", ec="0.5") def find_and_plot_best_fit(x: np.ndarray, y: np.ndarray): import bestfitte A, B, alpha = bestfitte.best_fit(x, y) from sklearn.metrics import mean_squared_error rmse = np.sqrt(mean_squared_error(y, hCG(x, A, B, alpha))) import matplotlib.pyplot as plt plt.scatter(x, y, label='data') plt.plot(x, hCG(x, A, B, alpha), label=f'A=%5.2f, B=%5.2f, alpha=%5.2f, rmse=%5.2f' % (A, B, alpha, rmse)) plt.legend() plt.show() def find_and_plot_best_fit_param_noise_grid(paramsList, noises): import matplotlib.pyplot as plt plt.figure(figsize = (20, 10)) for i, params in enumerate(paramsList): for j, noise in enumerate(noises): n:int = 20 x, y = gen_rand_points(n, *params, noise) plt.subplot(len(paramsList), len(noises), i * len(noises) + j + 1) plt.scatter(x, y) import bestfitte A, B, alpha = bestfitte.best_fit(x, y) from sklearn.metrics import mean_squared_error rmse = np.sqrt(mean_squared_error(y, hCG(x, A, B, alpha))) import matplotlib.pyplot as plt plt.scatter(x, y) plt.plot(np.arange(n), hCG(np.arange(n), A, B, alpha), label=f'A=%5.2f, B=%5.2f, alpha=%5.2f, noise=%5.2f, \nA=%5.2f, B=%5.2f, alpha=%5.2f, rmse=%5.2f' % (*params, noise, A, B, alpha, rmse)) plt.legend() def compare_results_on_datasets(datasets: list): ''' datasets parameter is a list of datasets which contain (x_data, y_data, dataset_name) tuples ''' import matplotlib.pyplot as plt plt.figure(figsize = (9*len(datasets), 5)) for i, dataset in enumerate(datasets): x, y, name = dataset plt.subplot(1, len(datasets), i + 1) plot_results(x, y, data_id = name, showPlot=False) def compare_time_on_datasets(datasets: list = None): ''' datasets parameter is a list of datasets which contain (x_data, y_data, dataset_name) tuples if omitted, 10 random dataset will be generated ''' if datasets is None: # generate 10 random datasets paramsList = [] for _ in range(10): paramsList.append(( np.random.random_integers(3, 20), #n np.random.random() * 1e3, # A np.random.random() * 1e1, # B np.random.random() * 1e1, # alpha np.random.random() * 1 # noise )) datasets = [] for params in paramsList: datasets.append(gen_rand_points(*params) + (f'n=%d, A=%5.2f, B=%5.2f, alpha=%5.2f, noise=%5.2f' % params,)) from scipy.optimize import curve_fit from bestfitte import best_fit from pseloglin import fit from time import perf_counter rows = [] for dataset in datasets: x, y, name = dataset measurements = {'Dataset' : name} start = perf_counter() try: curve_fit(hCG, x, y) end = perf_counter() measurements["Iterative"] = end - start except: measurements["Iterative"] = np.nan start = perf_counter() try: best_fit(x, y) end = perf_counter() measurements["BestFit"] = end - start except: measurements["BestFit"] = np.nan start = perf_counter() try: fit(x, y) end = perf_counter() measurements["PseLogLin"] = end - start except: measurements["PseLogLin"] = np.nan rows.append(measurements) import pandas as pd df = pd.DataFrame(rows, columns=["Dataset", "Iterative", "BestFit", "PseLogLin"]) df.loc['mean'] = df.mean() df["Dataset"].values[-1] = "Mean" #print(df.to_latex(index=False)) return df def compare_with_less_trained(x: np.ndarray, y: np.ndarray, trainPoints): ''' trainPoints, array with the number of points to use for train on each subplot ''' import matplotlib.pyplot as plt plt.figure(figsize = (9 * len(trainPoints), 10)) plt.subplot(2, len(trainPoints), len(trainPoints) / 2 + 1) plot_results(x, y, showPlot=False, allAlgorithms=False, data_id="All") for i, ptsTrain in enumerate(trainPoints): plt.subplot(2, len(trainPoints), len(trainPoints) + i + 1) plot_results(x, y, ptsTrain = ptsTrain, showPlot=False, allAlgorithms=False, data_id=str(ptsTrain) + " points") plt.plot(x[ptsTrain:], y[ptsTrain:], "o", color="orange")
36.537459
174
0.61594
0
0
0
0
0
0
0
0
2,250
0.200588
3ca799dcd7f204dd2b5700a464c22a2701817676
925
py
Python
Section 2 - Data (variables, assignments and expressions)/Breakouts/Breakout 2.2 - ATM/convert pseudo-code solution.py
gitjot/python-for-lccs
a8a4ae8847abbc33361f80183c06d57b20523382
[ "CC0-1.0" ]
10
2020-02-14T14:28:15.000Z
2022-02-02T18:44:11.000Z
Section 2 - Data (variables, assignments and expressions)/Breakouts/Breakout 2.2 - ATM/convert pseudo-code solution.py
gitjot/python-for-lccs
a8a4ae8847abbc33361f80183c06d57b20523382
[ "CC0-1.0" ]
null
null
null
Section 2 - Data (variables, assignments and expressions)/Breakouts/Breakout 2.2 - ATM/convert pseudo-code solution.py
gitjot/python-for-lccs
a8a4ae8847abbc33361f80183c06d57b20523382
[ "CC0-1.0" ]
8
2020-03-25T09:27:42.000Z
2021-11-03T15:24:38.000Z
# Event: LCCS Python Fundamental Skills Workshop # Date: May 2018 # Author: Joe English, PDST # eMail: computerscience@pdst.ie # Purpose: Solution to Breakout 2.2 (ATM) # Display a welcome message print("Welcome to LCCS Bank Ltd.") print("=========================") # Initialise a variable called balance to 123.45 balance = 123.45 # Display the value of balance print("Your balance is:", balance) # Prompt the user to enter the amount to lodge amount = float(input("Enter amount to lodge: ")) # Increase the balance by the amount entered balance = balance + amount # Display the value of balance print("Your balance is:", balance) # Prompt the user to enter the amount to withdraw amount = float(input("Enter amount to withdraw: ")) # Decrease the balance by the amount entered balance = balance - amount # Display the value of balance print("Your balance is:", round(balance,2) )
27.205882
52
0.692973
0
0
0
0
0
0
0
0
687
0.742703
3ca93bc9e19f578ac6c9e0e416c1d3d6ec54c6d4
460
py
Python
src/unit6/user/user_datastore.py
cdoremus/udacity-python_web_development-cs253
87cf5dd5d0e06ee745d3aba058d96fa46f2aeb6b
[ "Apache-2.0" ]
null
null
null
src/unit6/user/user_datastore.py
cdoremus/udacity-python_web_development-cs253
87cf5dd5d0e06ee745d3aba058d96fa46f2aeb6b
[ "Apache-2.0" ]
null
null
null
src/unit6/user/user_datastore.py
cdoremus/udacity-python_web_development-cs253
87cf5dd5d0e06ee745d3aba058d96fa46f2aeb6b
[ "Apache-2.0" ]
null
null
null
''' Created on Apr 30, 2012 @author: h87966 ''' class UserDataStore(): ''' classdocs ''' def __init__(self): ''' Constructor ''' def save(self, user): pass def delete(self, user_id): pass def fetch(self, user_id): pass def fetchAll(self): pass def fetchByUsername(self, username): pass
12.777778
40
0.43913
410
0.891304
0
0
0
0
0
0
108
0.234783
3ca9eb97e4365037a9faa4fd695283f51ac6d5a4
3,870
py
Python
sciflo/utils/mail.py
hysds/sciflo
f706288405c8eee59a2f883bab3dcb5229615367
[ "Apache-2.0" ]
null
null
null
sciflo/utils/mail.py
hysds/sciflo
f706288405c8eee59a2f883bab3dcb5229615367
[ "Apache-2.0" ]
null
null
null
sciflo/utils/mail.py
hysds/sciflo
f706288405c8eee59a2f883bab3dcb5229615367
[ "Apache-2.0" ]
1
2019-02-07T01:08:34.000Z
2019-02-07T01:08:34.000Z
from smtplib import SMTP from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from email.mime.base import MIMEBase from email.header import Header from email.utils import parseaddr, formataddr, COMMASPACE, formatdate from email.encoders import encode_base64 def send_email(sender, cc_recipients, bcc_recipients, subject, body, attachments=[]): """Send an email. All arguments should be Unicode strings (plain ASCII works as well). Only the real name part of sender and recipient addresses may contain non-ASCII characters. The email will be properly MIME encoded and delivered though SMTP to localhost port 25. This is easy to change if you want something different. The charset of the email will be the first one out of US-ASCII, ISO-8859-1 and UTF-8 that can represent all the characters occurring in the email. """ # combined recipients recipients = cc_recipients + bcc_recipients # Header class is smart enough to try US-ASCII, then the charset we # provide, then fall back to UTF-8. header_charset = 'ISO-8859-1' # We must choose the body charset manually for body_charset in 'US-ASCII', 'ISO-8859-1', 'UTF-8': try: body.encode(body_charset) except UnicodeError: pass else: break # Split real name (which is optional) and email address parts sender_name, sender_addr = parseaddr(sender) parsed_cc_recipients = [parseaddr(rec) for rec in cc_recipients] parsed_bcc_recipients = [parseaddr(rec) for rec in bcc_recipients] #recipient_name, recipient_addr = parseaddr(recipient) # We must always pass Unicode strings to Header, otherwise it will # use RFC 2047 encoding even on plain ASCII strings. sender_name = str(Header(str(sender_name), header_charset)) unicode_parsed_cc_recipients = [] for recipient_name, recipient_addr in parsed_cc_recipients: recipient_name = str(Header(str(recipient_name), header_charset)) # Make sure email addresses do not contain non-ASCII characters recipient_addr = recipient_addr.encode('ascii') unicode_parsed_cc_recipients.append((recipient_name, recipient_addr)) unicode_parsed_bcc_recipients = [] for recipient_name, recipient_addr in parsed_bcc_recipients: recipient_name = str(Header(str(recipient_name), header_charset)) # Make sure email addresses do not contain non-ASCII characters recipient_addr = recipient_addr.encode('ascii') unicode_parsed_bcc_recipients.append((recipient_name, recipient_addr)) # Make sure email addresses do not contain non-ASCII characters sender_addr = sender_addr.encode('ascii') # Create the message ('plain' stands for Content-Type: text/plain) msg = MIMEMultipart() msg['CC'] = COMMASPACE.join([formataddr((recipient_name, recipient_addr)) for recipient_name, recipient_addr in unicode_parsed_cc_recipients]) msg['BCC'] = COMMASPACE.join([formataddr((recipient_name, recipient_addr)) for recipient_name, recipient_addr in unicode_parsed_bcc_recipients]) msg['Subject'] = Header(str(subject), header_charset) msg.attach(MIMEText(body.encode(body_charset), 'plain', body_charset)) # Add attachments for attachment in attachments: part = MIMEBase('application', "octet-stream") part.set_payload(attachment.file.read()) encode_base64(part) part.add_header('Content-Disposition', 'attachment; filename="%s"' % attachment.filename) msg.attach(part) # print "#" * 80 # print msg.as_string() # Send the message via SMTP to localhost:25 smtp = SMTP("localhost") smtp.sendmail(sender, recipients, msg.as_string()) smtp.quit()
42.527473
103
0.708527
0
0
0
0
0
0
0
0
1,435
0.370801
3caa5d8aa46dcaada0dadcfe04d781f5ae6b979d
496
py
Python
my-ml-api/api/schemas.py
ballcarsen/MyMlTool
eb476e21799ec773fa816f63693e6de4c52d0094
[ "MIT" ]
null
null
null
my-ml-api/api/schemas.py
ballcarsen/MyMlTool
eb476e21799ec773fa816f63693e6de4c52d0094
[ "MIT" ]
null
null
null
my-ml-api/api/schemas.py
ballcarsen/MyMlTool
eb476e21799ec773fa816f63693e6de4c52d0094
[ "MIT" ]
null
null
null
from typing import List, Optional from pydantic import BaseModel class UploadBase(BaseModel): file_name: str user_id: int class UploadCreate(UploadBase): pass class Upload(UploadBase): upload_id: int class Config: orm_mode = True class UserBase(BaseModel): first_name: str last_name: str class UserCreate(UserBase): password: str class User(UserBase): user_id: int uploads: List[Upload] = [] class Config: orm_mode = True
13.777778
33
0.677419
413
0.832661
0
0
0
0
0
0
0
0
3caab00869605f81530d9a70561508995ff52b3b
2,467
py
Python
apps/extention/views/tool.py
rainydaygit/testtcloudserver
8037603efe4502726a4d794fb1fc0a3f3cc80137
[ "MIT" ]
349
2020-08-04T10:21:01.000Z
2022-03-23T08:31:29.000Z
apps/extention/views/tool.py
rainydaygit/testtcloudserver
8037603efe4502726a4d794fb1fc0a3f3cc80137
[ "MIT" ]
2
2021-01-07T06:17:05.000Z
2021-04-01T06:01:30.000Z
apps/extention/views/tool.py
rainydaygit/testtcloudserver
8037603efe4502726a4d794fb1fc0a3f3cc80137
[ "MIT" ]
70
2020-08-24T06:46:14.000Z
2022-03-25T13:23:27.000Z
from flask import Blueprint from apps.extention.business.tool import ToolBusiness from apps.extention.extentions import validation, parse_json_form from library.api.render import json_detail_render tool = Blueprint('tool', __name__) @tool.route('/ip', methods=['GET']) def tool_ip(): """ @api {get} /v1/tool/ip 查询 ip 地址信息 @apiName GetIpAddress @apiGroup 拓展 @apiDescription 查询 ip 地址信息 @apiParam {string} ip 合法的 ip 地址 @apiParamExample {json} Request-Example: { "ip": "110.110.110.12" } @apiSuccessExample {json} Success-Response: HTTP/1.1 200 OK { "code": 0, "data": { "address": "\u4e0a\u6d77\u5e02", "address_detail": { "city": "\u4e0a\u6d77\u5e02", "city_code": 289, "district": "", "province": "\u4e0a\u6d77\u5e02", "street": "", "street_number": "" }, "point": { "x": "13524118.26", "y":"3642780.37" } }, "message":"ok" } """ code, data, address, message = ToolBusiness.get_tool_ip() return json_detail_render(code, data, message) @tool.route('/apk/analysis', methods=['POST']) @validation('POST:tool_apk_analysis_upload') def apk_analysis_handler(): """ @api {post} /v1/tool/apk/analysis 分析 apk 包信息 @apiName AnalysisApkInformation @apiGroup 拓展 @apiDescription 分析 apk 包信息 @apiParam {apk_download_url} apk 包的下载地址 @apiParamExample {json} Request-Example: { "apk_download_url": "http://tcloud-static.ywopt.com/static/3787c7f2-5caa-434a-9a47-3e6122807ada.apk" } @apiSuccessExample {json} Success-Response: HTTP/1.1 200 OK { "code": 0, "data": { "default_activity": "com.earn.freemoney.cashapp.activity.SplashActivity", "icon": "iVBORw0KGgoAAAANSUhEUgAAAGAAAABgCAYAAADimHc4AAAVr0lEQVR42u2debAdVZ3HP6f79N3ekuQlJOQlARICBCGs", "label": "Dosh Winner", "package_name": "com.earn.freemoney.cashapp", "size": "13.97", "version_code": "86", "version_name": "2.0.36" }, "message": "ok" } """ apk_download_url, type = parse_json_form('tool_apk_analysis_upload') if apk_download_url: data = ToolBusiness.apk_analysis(apk_download_url, type) return json_detail_render(0, data) else: return json_detail_render(101, 'apk_download_url is required!')
29.369048
115
0.614512
0
0
0
0
2,300
0.905155
0
0
1,844
0.725699
3cab08629b30111114e01484ab49b594bbdb9dd0
3,948
py
Python
apt_repoman/connection.py
memory/repoman
4c5cdfba85afcab5a1219fa5629abc457de27ed5
[ "Apache-2.0" ]
1
2017-07-01T21:46:40.000Z
2017-07-01T21:46:40.000Z
apt_repoman/connection.py
memory/repoman
4c5cdfba85afcab5a1219fa5629abc457de27ed5
[ "Apache-2.0" ]
null
null
null
apt_repoman/connection.py
memory/repoman
4c5cdfba85afcab5a1219fa5629abc457de27ed5
[ "Apache-2.0" ]
6
2017-07-13T21:41:14.000Z
2020-08-07T19:40:25.000Z
# stdlib imports import logging import time # pypi imports from boto3 import Session LOG = logging.getLogger(__name__) class Connection(object): def __init__(self, role_arn='', profile_name='', region=None): self._log = LOG or logging.getLogger(__name__) self.role_arn = role_arn self.profile_name = profile_name self.region = region self._s3 = None self._sdb = None self._sts = None self._iam = None self._sns = None self._session = None self._caller_id = None @property def session(self): '''Set our object's self._session attribute to a boto3 session object. If profile_name is set, use it to pull a specific credentials profile from ~/.aws/credentials, otherwise use the default credentials path. If role_arn is set, use the first session object to assume the role, and then overwrite self._session with a new session object created using the role credentials.''' if self._session is None: self._session = self.get_session() return self._session @property def s3(self): if self._s3 is None: self._s3 = self.get_resource('s3') return self._s3 @property def sdb(self): if self._sdb is None: self._sdb = self.get_client('sdb') return self._sdb @property def sts(self): if self._sts is None: self._sts = self.get_client('sts') return self._sts @property def iam(self): if self._iam is None: self._iam = self.get_client('iam') return self._iam @property def sns(self): if self._sns is None: self._sns = self.get_client('sns') return self._sns @property def caller_id(self): if self._caller_id is None: self._caller_id = self.sts.get_caller_identity()['Arn'] return self._caller_id def get_session(self): if self.profile_name: self._log.info( 'using AWS credential profile %s', self.profile_name) try: kwargs = {'profile_name': self.profile_name} if self.region: kwargs['region_name'] = self.region session = Session(**kwargs) except Exception as ex: self._log.fatal( 'Could not connect to AWS using profile %s: %s', self.profile_name, ex) raise else: self._log.debug( 'getting an AWS session with the default provider') kwargs = {} if self.region: kwargs['region_name'] = self.region session = Session(**kwargs) if self.role_arn: self._log.info( 'attempting to assume STS self.role %s', self.role_arn) try: self.role_creds = session.client('sts').assume_role( RoleArn=self.role_arn, RoleSessionName='repoman-%s' % time.time(), DurationSeconds=3600)['Credentials'] except Exception as ex: self._log.fatal( 'Could not assume self.role %s: %s', self.role_arn, ex) raise kwargs = { 'aws_access_key_id': self.role_creds['AccessKeyId'], 'aws_secret_access_key': self.role_creds['SecretAccessKey'], 'aws_session_token': self.role_creds['SessionToken']} if self.region: kwargs['region_name'] = self.region session = Session(**kwargs) return session def get_client(self, service_name): return self.session.client(service_name) def get_resource(self, service_name): return self.session.resource(service_name)
31.584
76
0.563323
3,822
0.968085
0
0
1,392
0.352584
0
0
880
0.222898
3cabc6bebd08e9407e6c12b5afc414ea98b75d01
1,412
py
Python
setup.py
squidfarts/py-program
98c3694ffa90b5969eafe1093def9097dfd0d62c
[ "Apache-2.0" ]
null
null
null
setup.py
squidfarts/py-program
98c3694ffa90b5969eafe1093def9097dfd0d62c
[ "Apache-2.0" ]
null
null
null
setup.py
squidfarts/py-program
98c3694ffa90b5969eafe1093def9097dfd0d62c
[ "Apache-2.0" ]
1
2021-02-19T20:32:33.000Z
2021-02-19T20:32:33.000Z
#!/user/bin/env python3 ################################################################################### # # # NAME: setup.py # # # # AUTHOR: Michael Brockus. # # # # CONTACT: <mailto:michaelbrockus@squidfarts.com> # # # # NOTICES: # # # # License: Apache 2.0 :http://www.apache.org/licenses/LICENSE-2.0 # # # ################################################################################### import setuptools, setup setup( name='py-program', version='0.1.0', description='Python program', author='Michael Brockus', author_email='michaelbrockus@squidfarts.com', license='Apache-2.0', include_package_data=True, packages=['src.main', 'src.main.module'] )
50.428571
83
0.24221
0
0
0
0
0
0
0
0
1,224
0.866856
3cac0aa35252a097de5d59a421a354021c1ccdfa
21,267
py
Python
paul_analysis/Python/labird/fieldize.py
lzkelley/arepo-mbh-sims_analysis
f14519552cedd39a040b53e6d7cc538b5b8f38a3
[ "MIT" ]
null
null
null
paul_analysis/Python/labird/fieldize.py
lzkelley/arepo-mbh-sims_analysis
f14519552cedd39a040b53e6d7cc538b5b8f38a3
[ "MIT" ]
null
null
null
paul_analysis/Python/labird/fieldize.py
lzkelley/arepo-mbh-sims_analysis
f14519552cedd39a040b53e6d7cc538b5b8f38a3
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """Methods for interpolating particle lists onto a grid. There are three classic methods: ngp - Nearest grid point (point interpolation) cic - Cloud in Cell (linear interpolation) tsc - Triangular Shaped Cloud (quadratic interpolation) Each function takes inputs: Values - list of field values to interpolate, centered on the grid center. Points - coordinates of the field values Field - grid to add interpolated points onto There are also helper functions (convert and convert_centered) to rescale arrays to grid units. """ import math import numpy as np #Try to import scipy.weave. If we can't, don't worry, we just use the unaccelerated versions try : import scipy.weave except ImportError : scipy=None def convert(pos, ngrid,box): """Rescales coordinates to grid units. (0,0) is the lower corner of the grid. Inputs: pos - coord array to rescale ngrid - dimension of grid box - Size of the grid in units of pos """ return pos*(ngrid-1)/float(box) def convert_centered(pos, ngrid,box): """Rescales coordinates to grid units. (0,0) is the center of the grid Inputs: pos - coord array to rescale ngrid - dimension of grid box - Size of the grid in units of pos """ return pos*(ngrid-1.)/float(box)+(ngrid-1.)/2. def check_input(pos, field): """Checks the position and field values for consistency. Avoids segfaults in the C code.""" if np.size(pos) == 0: return 0 dims=np.size(np.shape(field)) if np.max(pos) > np.shape(field)[0] or np.min(pos) < 0: raise ValueError("Positions outside grid") if np.shape(pos)[1] < dims: raise ValueError("Position array not wide enough for field") return 1 def ngp(pos,values,field): """Does nearest grid point for a 2D array. Inputs: Values - list of field values to interpolate Points - coordinates of the field values Field - grid to add interpolated points onto Points need to be in grid units Note: This is implemented in scipy.weave and pure python (in case the weave breaks). For O(1e5) points both versions are basically instantaneous. For O(1e7) points the sipy.weave version is about 100 times faster. """ if not check_input(pos,field): return field nx=np.shape(values)[0] dims=np.size(np.shape(field)) # Coordinates of nearest grid point (ngp). ind=np.array(np.rint(pos),dtype=np.int) #Sum over the 3rd axis here. expr="""for(int j=0;j<nx;j++){ int ind1=ind(j,0); int ind2=ind(j,1); field(ind1,ind2)+=values(j); } """ expr3d="""for(int j=0;j<nx;j++){ int ind1=ind(j,0); int ind2=ind(j,1); int ind3=ind(j,2); field(ind1,ind2,ind3)+=values(j); } """ try: if dims==2: scipy.weave.inline(expr,['nx','ind','values','field'],type_converters=scipy.weave.converters.blitz) elif dims==3: scipy.weave.inline(expr3d,['nx','ind','values','field'],type_converters=scipy.weave.converters.blitz) else: raise ValueError except Exception: #Fall back on slow python version. for j in xrange(0,nx): field[tuple(ind[j,0:dims])]+=values[j] return field def cic(pos, value, field,totweight=None,periodic=False): """Does Cloud-in-Cell for a 2D array. Inputs: Values - list of field values to interpolate Points - coordinates of the field values Field - grid to add interpolated points onto Points need to be in coordinates where np.max(points) = np.shape(field) """ # Some error handling. if not check_input(pos,field): return field nval=np.size(value) dim=np.shape(field) nx = dim[0] dim=np.size(dim) #----------------------- # Calculate CIC weights. #----------------------- # Coordinates of nearest grid point (ngp). ng=np.array(np.rint(pos[:,0:dim]),dtype=np.int) # Distance from sample to ngp. dng=ng-pos[:,0:dim] #Setup two arrays for later: # kk is for the indices, and ww is for the weights. kk=np.empty([2,nval,dim]) ww=np.empty([2,nval,dim]) # Index of ngp. kk[1]=ng # Weight of ngp. ww[1]=0.5+np.abs(dng) # Point before ngp. kk[0]=kk[1]-1 # Index. ww[0]=0.5-np.abs(dng) #Take care of the points at the boundaries tscedge(kk,ww,nx,periodic) #----------------------------- # Interpolate samples to grid. #----------------------------- # tscweight adds up all tsc weights allocated to a grid point, we need # to keep track of this in order to compute the temperature. # Note that total(tscweight) is equal to nrsamples and that # total(ifield)=n0**3 if sph.plot NE 'sph,temp' (not 1 because we use # xpos=posx*n0 --> cube length different from EDFW paper). #index[j] -> kk[0][j,0],kk[0][j,2],kk[0][j,3] -> kk[0][j,:] extraind=np.zeros(dim-1,dtype=int) #Perform y=0, z=0 addition tsc_xind(field,value,totweight,kk,ww,extraind) if dim > 1: #Perform z=0 addition extraind[0]=1 tsc_xind(field,value,totweight,kk,ww,extraind) if dim > 2: extraind[1]=1 #Perform the rest of the addition for yy in xrange(0,2): extraind[0]=yy tsc_xind(field,value,totweight,kk,ww,extraind) if totweight == None: return field else: return (field,totweight) def tsc(pos,value,field,totweight=None,periodic=False): """ NAME: TSC PURPOSE: Interpolate an irregularly sampled field using a Triangular Shaped Cloud EXPLANATION: This function interpolates an irregularly sampled field to a regular grid using Triangular Shaped Cloud (nearest grid point gets weight 0.75-dx**2, points before and after nearest grid points get weight 0.5*(1.5-dx)**2, where dx is the distance from the sample to the grid point in units of the cell size). INPUTS: pos: Array of coordinates of field samples, in grid units from 0 to nx value: Array of sample weights (field values). For e.g. a temperature field this would be the temperature and the keyword AVERAGE should be set. For e.g. a density field this could be either the particle mass (AVERAGE should not be set) or the density (AVERAGE should be set). field: Array to interpolate onto of size nx,nx,nx totweight: If this is not None, the routine will to it the weights at each grid point. You can then calculate the average later. periodic: Set this keyword if you want a periodic grid. ie, the first grid point contains samples of both sides of the volume If this is not true, weight is not conserved (some falls off the edges) Note: Points need to be in grid units: pos = [0,ngrid-1] Note 2: If field has fewer dimensions than pos, we sum over the extra dimensions, and the final indices are ignored. Example of default allocation of nearest grid points: n0=4, *=gridpoint. 0 1 2 3 Index of gridpoints * * * * Grid points |---|---|---|---| Range allocated to gridpoints ([0.0,1.0> --> 0, etc.) 0 1 2 3 4 posx OUTPUTS: Returns particles interpolated to field, and modifies input variable of the same name. PROCEDURE: Nearest grid point is determined for each sample. TSC weights are computed for each sample. Samples are interpolated to the grid. Grid point values are computed (sum or average of samples). EXAMPLE: nx=20 ny=10 posx=randomu(s,1000) posy=randomu(s,1000) value=posx**2+posy**2 field=tsc(value,pos,field,/average) surface,field,/lego NOTES: A standard reference for these interpolation methods is: R.W. Hockney and J.W. Eastwood, Computer Simulations Using Particles (New York: McGraw-Hill, 1981). MODIFICATION HISTORY: Written by Joop Schaye, Feb 1999. Check for overflow for large dimensions P. Riley/W. Landsman Dec. 1999 Ported to python, cleaned up and drastically shortened using these new-fangled "function" thingies by Simeon Bird, Feb. 2012 """ # Some error handling. if not check_input(pos,field): return field nval=np.size(value) dim=np.shape(field) nx = dim[0] dim=np.size(dim) #----------------------- # Calculate TSC weights. #----------------------- # Coordinates of nearest grid point (ngp). ng=np.array(np.rint(pos[:,0:dim]),dtype=np.int) # Distance from sample to ngp. dng=ng-pos[:,0:dim] #Setup two arrays for later: # kk is for the indices, and ww is for the weights. kk=np.empty([3,nval,dim]) ww=np.empty([3,nval,dim]) # Index of ngp. kk[1,:,:]=ng # Weight of ngp. ww[1,:,:]=0.75-dng**2 # Point before ngp. kk[0,:,:]=kk[1,:,:]-1 # Index. dd=1.0-dng # Distance to sample. ww[0]=0.5*(1.5-dd)**2 # TSC-weight. # Point after ngp. kk[2,:,:]=kk[1,:,:]+1 # Index. dd=1.0+dng # Distance to sample. ww[2]=0.5*(1.5-dd)**2 # TSC-weight. #Take care of the points at the boundaries tscedge(kk,ww,nx,periodic) #----------------------------- # Interpolate samples to grid. #----------------------------- # tscweight adds up all tsc weights allocated to a grid point, we need # to keep track of this in order to compute the temperature. # Note that total(tscweight) is equal to nrsamples and that # total(ifield)=n0**3 if sph.plot NE 'sph,temp' (not 1 because we use # xpos=posx*n0 --> cube length different from EDFW paper). #index[j] -> kk[0][j,0],kk[0][j,2],kk[0][j,3] -> kk[0][j,:] extraind=np.zeros(dim-1,dtype=int) #Perform y=0, z=0 addition tsc_xind(field,value,totweight,kk,ww,extraind) if dim > 1: #Perform z=0 addition for yy in xrange(1,3): extraind[0]=yy tsc_xind(field,value,totweight,kk,ww,extraind) if dim > 2: #Perform the rest of the addition for zz in xrange(1,3): for yy in xrange(0,3): extraind[0]=yy extraind[1]=zz tsc_xind(field,value,totweight,kk,ww,extraind) if totweight == None: return field else: return (field,totweight) def cic_str(pos,value,field,in_radii,periodic=False): """This is exactly the same as the cic() routine, above, except that instead of each particle being stretched over one grid point, it is stretched over a cubic region with some radius. Field must be 2d Extra arguments: radii - Array of particle radii in grid units. """ # Some error handling. if not check_input(pos,field): return field nval=np.size(value) dim=np.shape(field) nx = dim[0] dim=np.size(dim) if dim != 2: raise ValueError("Non 2D grid not supported!") #Use a grid cell radius of 2/3 (4 \pi /3 )**(1/3) s #This means that l^3 = cell volume for AREPO (so it should be more or less exact) #and is close to the l = 0.5 (4\pi/3)**(1/3) s #cic interpolation that Nagamine, Springel & Hernquist used #to approximate their SPH smoothing corr=2./3.*(4*math.pi/3.)**0.3333333333 radii=np.array(corr*in_radii) #If the smoothing length is below a single grid cell, #stretch it. ind = np.where(radii < 0.5) radii[ind]=0.5 #Weight of each cell weight = value/(2*radii)**dim #Upper and lower bounds up = pos[:,1:dim+1]+np.repeat(np.transpose([radii,]),dim,axis=1) low = pos[:,1:dim+1]-np.repeat(np.transpose([radii,]),dim,axis=1) #Upper and lower grid cells to add to upg = np.array(np.floor(up),dtype=int) lowg = np.array(np.floor(low),dtype=int) #Deal with the edges if periodic: raise ValueError("Periodic grid not supported") else: ind=np.where(up > nx-1) up[ind] = nx upg[ind]=nx-1 ind=np.where(low < 0) low[ind]=0 lowg[ind]=0 expr="""for(int p=0;p<nval;p++){ //Temp variables double wght = weight(p); int ilx=lowg(p,0); int ily=lowg(p,1); int iux=upg(p,0); int iuy=upg(p,1); double lx=low(p,0); double ly=low(p,1); double ux=up(p,0); double uy=up(p,1); //Deal with corner values field(ilx,ily)+=(ilx+1-lx)*(ily+1-ly)*wght; field(iux,ily)+=(ux-iux)*(ily+1-ly)*wght; field(ilx,iuy)+=(ilx+1-lx)*(uy-iuy)*wght; field(iux,iuy)+=(ux-iux)*(uy-iuy)*wght; //Edges in y for(int gx=ilx+1;gx<iux;gx++){ field(gx,ily)+=(ily+1-ly)*wght; field(gx,iuy)+=(uy-iuy)*wght; } //Central region for(int gy=ily+1;gy< iuy;gy++){ //Edges. field(ilx,gy)+=(ilx+1-lx)*wght; field(iux,gy)+=(ux-iux)*wght; //x-values for(int gx=ilx+1;gx<iux;gx++){ field(gx,gy)+=wght; } } } """ try: scipy.weave.inline(expr,['nval','upg','lowg','field','up','low','weight'],type_converters=scipy.weave.converters.blitz) except Exception: for p in xrange(0,nval): #Deal with corner values field[lowg[p,0],lowg[p,1]]+=(lowg[p,0]+1-low[p,0])*(lowg[p,1]+1-low[p,1])*weight[p] field[upg[p,0],lowg[p,1]]+=(up[p,0]-upg[p,0])*(lowg[p,1]+1-low[p,1])*weight[p] field[lowg[p,0],upg[p,1]]+=(lowg[p,0]+1-low[p,0])*(up[p,1]-upg[p,1])*weight[p] field[upg[p,0], upg[p,1]]+=(up[p,0]-upg[p,0])*(up[p,1]-upg[p,1])*weight[p] #Edges in y for gx in xrange(lowg[p,0]+1,upg[p,0]): field[gx,lowg[p,1]]+=(lowg[p,1]+1-low[p,1])*weight[p] field[gx,upg[p,1]]+=(up[p,1]-upg[p,1])*weight[p] #Central region for gy in xrange(lowg[p,1]+1,upg[p,1]): #Edges in x field[lowg[p,0],gy]+=(lowg[p,0]+1-low[p,0])*weight[p] field[upg[p,0],gy]+=(up[p,0]-upg[p,0])*weight[p] #x-values for gx in xrange(lowg[p,0]+1,upg[p,0]): field[gx,gy]+=weight[p] return field from _fieldize_priv import _SPH_Fieldize # this takes forever!!!!a # Typical call: fieldize.sph_str(coords,mHI,sub_nHI_grid[ii],ismooth,weights=weights, periodic=True) def sph_str(pos,value,field,radii,weights=None,periodic=False): """Interpolate a particle onto a grid using an SPH kernel. This is similar to the cic_str() routine, but spherical. Field must be 2d Extra arguments: radii - Array of particle radii in grid units. weights - Weights to divide each contribution by. """ # Some error handling. if np.size(pos)==0: return field dim=np.shape(field) if np.size(dim) != 2: raise ValueError("Non 2D grid not supported!") if weights == None: weights = np.array([0.]) #Cast some array types if pos.dtype != np.float32: pos = np.array(pos, dtype=np.float32) if radii.dtype != np.float32: radii = np.array(radii, dtype=np.float32) if value.dtype != np.float32: value = np.array(value, dtype=np.float32) field += _SPH_Fieldize(pos, radii, value, weights,periodic,dim[0]) return import scipy.integrate as integ def integrate_sph_kernel(h,gx,gy): """Compute the integrated sph kernel for a particle with smoothing length h, at position pos, for a grid-cell at gg""" #Fast method; use the value at the grid cell. #Bad if h < grid cell radius r0 = np.sqrt((gx+0.5)**2+(gy+0.5)**2) if r0 > h: return 0 h2 = h*h #Do the z integration with the trapezium rule. #Evaluate this at some fixed (well-chosen) abcissae zc=0 if h/2 > r0: zc=np.sqrt(h2/4-r0**2) zm = np.sqrt(h2-r0**2) zz=np.array([zc,(3*zc+zm)/4.,(zc+zm)/2.,(zc+3*zm)/2,zm]) kern = sph_kern2(np.sqrt(zz**2+r0**2),h) total= 2*integ.simps(kern,zz) if h/2 > r0: zz=np.array([0,zc/8.,zc/4.,3*zc/8,zc/2.,5/8.*zc,3*zc/4.,zc]) kern = sph_kern1(np.sqrt(zz**2+r0**2),h) total+= 2*integ.simps(kern,zz) return total def do_slow_sph_integral(h,gx,gy): """Evaluate the very slow triple integral to find kernel contribution. Only do it when we must.""" #z limits are -h - > h, for simplicity. #x and y limits are grid cells (weight,err)=integ.tplquad(sph_cart_wrap,-h,h,lambda x: gx,lambda x: gx+1,lambda x,y: gy,lambda x,y:gy+1,args=(h,),epsabs=5e-3) return weight def sph_cart_wrap(z,y,x,h): """Cartesian wrapper around sph_kernel""" r = np.sqrt(x**2+y**2+z**2) return sph_kernel(r,h) def sph_kern1(r,h): """SPH kernel for 0 < r < h/2""" return 8/math.pi/h**3*(1-6*(r/h)**2+6*(r/h)**3) def sph_kern2(r,h): """SPH kernel for h/2 < r < h""" return 2*(1-r/h)**3*8/math.pi/h**3 def sph_kernel(r,h): """Evaluates the sph kernel used in gadget.""" if r > h: return 0 elif r > h/2: return 2*(1-r/h)**3*8/math.pi/h**3 else: return 8/math.pi/h**3*(1-6*(r/h)**2+6*(r/h)**3) def tscedge(kk,ww,ngrid,periodic): """This function takes care of the points at the grid boundaries, either by wrapping them around the grid (the Julie Andrews sense) or by throwing them over the side (the Al Pacino sense). Arguments are: kk - the grid indices ww - the grid weights nx - the number of grid points periodic - Julie or Al? """ if periodic: #If periodic, the nearest grid indices need to wrap around #Note python has a sensible remainder operator #which always returns > 0 , unlike C kk=kk%ngrid else: #Find points outside the grid ind=np.where(np.logical_or((kk < 0),(kk > ngrid-1))) #Set the weights of these points to zero ww[ind]=0 #Indices of these points now do not matter, so set to zero also kk[ind]=0 def tscadd(field,index,weight,value,totweight): """This function is a helper for the tsc and cic routines. It adds the weighted value to the field and optionally calculates the total weight. Returns nothing, but alters field """ nx=np.size(value) dims=np.size(np.shape(field)) total=totweight !=None #Faster C version of this function: this is getting a little out of hand. expr="""for(int j=0;j<nx;j++){ int ind1=index(j,0); int ind2=index(j,1); """ if dims == 3: expr+="""int ind3=index(j,2); field(ind1,ind2,ind3)+=weight(j)*value(j); """ if total: expr+=" totweight(ind1,ind2,ind3) +=weight(j);" if dims == 2: expr+="""field(ind1,ind2)+=weight(j)*value(j); """ if total: expr+=" totweight(ind1,ind2) +=weight(j);" expr+="}" try: if dims==2 or dims == 3: if total: scipy.weave.inline(expr,['nx','index','value','field','weight','totweight'],type_converters=scipy.weave.converters.blitz) else: scipy.weave.inline(expr,['nx','index','value','field','weight'],type_converters=scipy.weave.converters.blitz) else: raise ValueError except Exception: wwval=weight*value for j in xrange(0,nx): ind=tuple(index[j,:]) field[ind]+=wwval[j] if totweight != None: totweight[ind]+=weight[j] return def get_tscweight(ww,ii): """Calculates the TSC weight for a particular set of axes. ii should be a vector of length dims having values 0,1,2. (for CIC a similar thing but ii has values 0,1) eg, call as: get_tscweight(ww,[0,0,0]) """ tscweight=1. #tscweight = \Pi ww[1]*ww[2]*ww[3] for j in xrange(0,np.size(ii)): tscweight*=ww[ii[j],:,j] return tscweight def tsc_xind(field,value,totweight,kk,ww,extraind): """Perform the interpolation along the x-axis. extraind argument contains the y and z indices, if needed. So for a 1d interpolation, extraind=[], for 2d, extraind=[y,], for 3d, extraind=[y,z] Returns nothing, but alters field """ dims=np.size(extraind)+1 dim_list=np.zeros(dims,dtype=int) dim_list[1:dims]=extraind index=kk[0] #Set up the index to have the right kk values depending on the y,z axes for i in xrange(1,dims): index[:,i]=kk[extraind[i-1],:,i] #Do the addition for each value of x for i in xrange(0,np.shape(kk)[0]): dim_list[0]=i tscweight=get_tscweight(ww,dim_list) index[:,0]=kk[i,:,0] tscadd(field,index,tscweight,value,totweight) return
34.246377
137
0.590022
0
0
0
0
0
0
0
0
12,322
0.579395
3cad04b55e10337da5937edce699d46c3369e96d
1,607
py
Python
epytope/test/DummyAdapter.py
christopher-mohr/epytope
8ac9fe52c0b263bdb03235a5a6dffcb72012a4fd
[ "BSD-3-Clause" ]
7
2021-02-01T18:11:28.000Z
2022-01-31T19:14:07.000Z
epytope/test/DummyAdapter.py
christopher-mohr/epytope
8ac9fe52c0b263bdb03235a5a6dffcb72012a4fd
[ "BSD-3-Clause" ]
22
2021-01-02T15:25:23.000Z
2022-03-14T11:32:53.000Z
epytope/test/DummyAdapter.py
christopher-mohr/epytope
8ac9fe52c0b263bdb03235a5a6dffcb72012a4fd
[ "BSD-3-Clause" ]
4
2021-05-28T08:50:38.000Z
2022-03-14T11:45:32.000Z
# This code is part of the epytope distribution and governed by its # license. Please see the LICENSE file that should have been included # as part of this package. """ .. module:: DummyAdaper :synopsis: Contains a pseudo data base adapter for testing purposes. .. moduleauthor:: schubert, brachvogel """ import copy from epytope.IO.ADBAdapter import ADBAdapter, EAdapterFields class DummyAdapter(ADBAdapter): def __init__(self): pass def get_product_sequence(self, product_refseq, **kwargs): # TODO: also implement this one? pass def get_transcript_sequence(self, transcript_refseq, **kwargs): # TODO: also implement this one? pass def get_transcript_information(self, transcript_refseq, **kwargs): """ At the moment we only use this method. :param transcript_refseq: Refseq id of transcript :type transcript_refseq: str. :return: Dictionary with (EAdapterFields: <field content> relevant: GENE = gene id, STRAND = +/-, SEQ = transcript sequence """ tsc_1 = { EAdapterFields.SEQ: "AAAAACCCCCGGGGG", # 15 * C EAdapterFields.GENE: "gene_1", # gene id EAdapterFields.STRAND: "+", # normal 5' to 3' } tsc_2 = { EAdapterFields.SEQ: "GGGGGCCCCCAAAAA", # 15 * C EAdapterFields.GENE: "gene_1", # gene id EAdapterFields.STRAND: "+", # normal 5' to 3' } res = { "tsc_1": tsc_1, "tsc_2": tsc_2 } return copy.deepcopy(res[transcript_refseq])
31.509804
73
0.6229
1,221
0.759801
0
0
0
0
0
0
805
0.500933
3cad775a80e54adc9a4854ed12070f7e895a7dd6
2,819
py
Python
backend/plugins/nav_bar/migrations/0008_migrate_to_link_all_base.py
marksweb/django-cms-60min-demo-2021
d9ca83538d6c5c7a0b0e1a18ae1a15bda4c296e4
[ "MIT" ]
null
null
null
backend/plugins/nav_bar/migrations/0008_migrate_to_link_all_base.py
marksweb/django-cms-60min-demo-2021
d9ca83538d6c5c7a0b0e1a18ae1a15bda4c296e4
[ "MIT" ]
1
2022-01-15T11:29:16.000Z
2022-01-15T22:11:45.000Z
backend/plugins/nav_bar/migrations/0008_migrate_to_link_all_base.py
marksweb/django-cms-60min-demo-2021
d9ca83538d6c5c7a0b0e1a18ae1a15bda4c296e4
[ "MIT" ]
3
2022-01-14T15:55:00.000Z
2022-01-23T23:46:56.000Z
# Generated by Django 2.2.16 on 2020-09-17 16:00 from django.db import migrations, models import django.db.models.deletion import enumfields.fields import link_all.models class Migration(migrations.Migration): dependencies = [ ('contenttypes', '0002_remove_content_type_name'), ('nav_bar', '0007_add_field_is_use_multi_level_menu_on_mobile'), ] operations = [ migrations.AddField( model_name='menuitemmodel', name='link_button_color', field=enumfields.fields.EnumField(blank=True, default='primary', enum=link_all.models.ButtonColor, max_length=64, verbose_name='Color'), ), migrations.AddField( model_name='menuitemmodel', name='link_content_type', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.PROTECT, to='contenttypes.ContentType'), ), migrations.AddField( model_name='menuitemmodel', name='link_instance_pk', field=models.PositiveIntegerField(blank=True, null=True), ), migrations.AddField( model_name='menuitemmodel', name='link_is_button', field=models.BooleanField(default=False, verbose_name='Render as button'), ), migrations.AddField( model_name='menuitemmodel', name='link_is_button_full_width', field=models.BooleanField(default=False, verbose_name='Full width'), ), migrations.AddField( model_name='menuitemmodel', name='link_is_button_outlined', field=models.BooleanField(default=False, verbose_name='Transparent body'), ), migrations.AddField( model_name='menuitemmodel', name='link_is_open_in_new_tab', field=models.BooleanField(default=False, verbose_name='Open in a new tab'), ), migrations.AddField( model_name='menuitemmodel', name='link_label', field=models.CharField(blank=True, max_length=1024), ), migrations.AddField( model_name='menuitemmodel', name='link_type', field=enumfields.fields.EnumField(default='url', enum=link_all.models.LinkType, max_length=64), ), migrations.AddField( model_name='menuitemmodel', name='link_url', field=models.CharField(blank=True, max_length=1024), ), migrations.AlterField( model_name='navbarpluginmodel', name='is_use_multi_level_menu_on_mobile', field=models.BooleanField(default=False, help_text='The multi-level menu shows around 3-4 levels of children.', verbose_name='Use multi-level menu on mobile'), ), ]
38.616438
171
0.630011
2,644
0.937921
0
0
0
0
0
0
743
0.263569
3cadd23dc28e0931be3476bf361e1ba65acc6956
4,187
py
Python
test/unit/utils/test_expiration_queue.py
dolphinridercrypto/bxcommon
8f70557c1dbff785a5dd3fcdf91176066e085c3a
[ "MIT" ]
12
2019-11-06T17:39:10.000Z
2022-03-01T11:26:19.000Z
test/unit/utils/test_expiration_queue.py
dolphinridercrypto/bxcommon
8f70557c1dbff785a5dd3fcdf91176066e085c3a
[ "MIT" ]
8
2019-11-06T21:31:11.000Z
2021-06-02T00:46:50.000Z
test/unit/utils/test_expiration_queue.py
dolphinridercrypto/bxcommon
8f70557c1dbff785a5dd3fcdf91176066e085c3a
[ "MIT" ]
5
2019-11-14T18:08:11.000Z
2022-02-08T09:36:22.000Z
import time import unittest from mock import MagicMock from bxcommon.utils.expiration_queue import ExpirationQueue class ExpirationQueueTests(unittest.TestCase): def setUp(self): self.time_to_live = 60 self.queue = ExpirationQueue(self.time_to_live) self.removed_items = [] def test_expiration_queue(self): # adding 2 items to the queue with 1 second difference item1 = 1 item2 = 2 self.queue.add(item1) time_1_added = time.time() time.time = MagicMock(return_value=time.time() + 1) self.queue.add(item2) time_2_added = time.time() self.assertEqual(len(self.queue), 2) self.assertEqual(int(time_1_added), int(self.queue.get_oldest_item_timestamp())) self.assertEqual(item1, self.queue.get_oldest()) # check that nothing is removed from queue before the first item expires self.queue.remove_expired(time_1_added + self.time_to_live / 2, remove_callback=self._remove_item) self.assertEqual(len(self.queue), 2) self.assertEqual(len(self.removed_items), 0) # check that first item removed after first item expired self.queue.remove_expired(time_1_added + self.time_to_live + 1, remove_callback=self._remove_item) self.assertEqual(len(self.queue), 1) self.assertEqual(len(self.removed_items), 1) self.assertEqual(self.removed_items[0], item1) self.assertEqual(int(time_2_added), int(self.queue.get_oldest_item_timestamp())) self.assertEqual(item2, self.queue.get_oldest()) # check that second item is removed after second item expires self.queue.remove_expired(time_2_added + self.time_to_live + 1, remove_callback=self._remove_item) self.assertEqual(len(self.queue), 0) self.assertEqual(len(self.removed_items), 2) self.assertEqual(self.removed_items[0], item1) self.assertEqual(self.removed_items[1], item2) def test_remove_oldest_item(self): items_count = 10 for i in range(items_count): self.queue.add(i) self.assertEqual(items_count, len(self.queue)) removed_items_1 = [] for i in range(items_count): self.assertEqual(i, self.queue.get_oldest()) self.queue.remove_oldest(removed_items_1.append) self.queue.add(1000 + i) for i in range(items_count): self.assertEqual(i, removed_items_1[i]) self.assertEqual(items_count, len(self.queue)) removed_items_2 = [] for i in range(items_count): self.assertEqual(i + 1000, self.queue.get_oldest()) self.queue.remove_oldest(removed_items_2.append) for i in range(items_count): self.assertEqual(i + 1000, removed_items_2[i]) self.assertEqual(0, len(self.queue)) def test_remove_not_oldest_item(self): # adding 2 items to the queue with 1 second difference item1 = 9 item2 = 5 self.queue.add(item1) time_1_added = time.time() time.time = MagicMock(return_value=time.time() + 1) self.queue.add(item2) self.assertEqual(len(self.queue), 2) self.assertEqual(int(time_1_added), int(self.queue.get_oldest_item_timestamp())) self.assertEqual(item1, self.queue.get_oldest()) self.queue.remove(item2) self.assertEqual(len(self.queue), 1) self.assertEqual(int(time_1_added), int(self.queue.get_oldest_item_timestamp())) self.assertEqual(item1, self.queue.get_oldest()) def test_remove_oldest_items_with_limits(self): time.time = MagicMock(return_value=time.time()) for i in range(20): self.queue.add(i) time.time = MagicMock(return_value=time.time() + 5) self.assertEqual(20, len(self.queue)) time.time = MagicMock(return_value=time.time() + self.time_to_live) self.queue.remove_expired(limit=5) self.assertEqual(15, len(self.queue)) self.queue.remove_expired() self.assertEqual(0, len(self.queue)) def _remove_item(self, item): self.removed_items.append(item)
34.319672
106
0.662288
4,067
0.97134
0
0
0
0
0
0
297
0.070934
3caefd3f5a8bfe14855d5ea0372e3bc9a9317bc4
480
py
Python
legacy-code/pailindrome.py
developbiao/pythonbasics
a7549786629e820646dcde5bb9f1aad4331de9be
[ "MIT" ]
1
2019-06-13T15:33:57.000Z
2019-06-13T15:33:57.000Z
legacy-code/pailindrome.py
developbiao/pythonbasics
a7549786629e820646dcde5bb9f1aad4331de9be
[ "MIT" ]
null
null
null
legacy-code/pailindrome.py
developbiao/pythonbasics
a7549786629e820646dcde5bb9f1aad4331de9be
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 #-*- coding: utf-8 -*- def is_palindrome(n): x = n op_num = 0 while n: op_num = op_num * 10 + n % 10 n = n//10 return x == op_num # Test output = filter(is_palindrome, range(1, 1000)) print('1~1000:', list(output)) if list(filter(is_palindrome, range(1, 200))) == [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191]: print('测试成功!') else: print('测试失败!')
25.263158
163
0.55
0
0
0
0
0
0
0
0
89
0.179435
3cafbcdeecba4bc828647c5d5e2a12435c74df80
776
py
Python
spotify_search/search.py
MiltonLn/spotify-tracks-pyconco2020
4a75b15852344f7dac066bea3c3e3abb1157d198
[ "MIT" ]
1
2021-07-29T16:09:30.000Z
2021-07-29T16:09:30.000Z
spotify_search/search.py
MiltonLn/spotify-tracks-pyconco2020
4a75b15852344f7dac066bea3c3e3abb1157d198
[ "MIT" ]
null
null
null
spotify_search/search.py
MiltonLn/spotify-tracks-pyconco2020
4a75b15852344f7dac066bea3c3e3abb1157d198
[ "MIT" ]
null
null
null
from importlib import import_module from flask import Flask, request, jsonify from .spotify_api import get_spotify_response app = Flask(__name__) app.config.from_object("spotify_search.settings") @app.route("/search", methods=["GET"]) def search(): search_term = request.args.get("search_term", "") limit = request.args.get("limit") search_type = request.args.get("type") assert search_type in ["artist", "track", "album"] json_response = get_spotify_response( search_term, limit=limit, search_type=search_type ) utils_module = import_module("spotify_search.utils") parse_method = getattr(utils_module, f"parse_{search_type}s") search_results = parse_method(json_response) return jsonify(search_results)
26.758621
65
0.719072
0
0
0
0
573
0.738402
0
0
134
0.17268
3cb1615543f6a7b7ba1580acd4a1477cfa004ce2
3,940
py
Python
Python/src/controllers/MainController.py
Jictyvoo/EXA868--PathFinder
1fe839e0d3c14f36a4a2187cc8bc00c19f3bda4a
[ "MIT" ]
null
null
null
Python/src/controllers/MainController.py
Jictyvoo/EXA868--PathFinder
1fe839e0d3c14f36a4a2187cc8bc00c19f3bda4a
[ "MIT" ]
null
null
null
Python/src/controllers/MainController.py
Jictyvoo/EXA868--PathFinder
1fe839e0d3c14f36a4a2187cc8bc00c19f3bda4a
[ "MIT" ]
null
null
null
import math from models.business.OrganismController import OrganismController from models.value.Finder import Finder from models.value.Labyrinth import Labyrinth class MainController: def __init__(self): self.__labyrinth = Labyrinth("../config.json") self.__labyrinth.loadLabyrinth("../labyrinth.la") self.__controllerOrganism = OrganismController(Finder, self.__labyrinth.getBeginPosition()) self.__genomeDecoder = ("UP", "RIGHT", "DOWN", "LEFT") self.__stateDecoder = {'alive': 0, 'dead': -1, 'finished': 1} self.__ending = self.__labyrinth.getEndingPosition() self.__have_finished = False self.__generations_finished = 0 self.__generations_fitness_average = [] self.__best_fitness = [] self.__best_organisms = [] def finished_generations(self): return self.__generations_finished def get_generations_fitness_average(self): return self.__generations_fitness_average def get_best_fitness(self): return self.__best_fitness def get_genome_decoder(self): return self.__genomeDecoder def get_labyrinth(self): return self.__labyrinth def get_best_one(self): return self.__controllerOrganism.getSmallerPath(list_to_order=self.__best_organisms)[0] def __calculate_fitness(self, organism): x_diference = organism.getPosition()['x'] x_diference = x_diference - self.__ending['x'] y_diference = organism.getPosition()['y'] y_diference = y_diference - self.__ending['y'] # return math.sqrt(math.pow(x_diference, 2) + math.pow(y_diference, 2)) return math.fabs(x_diference) + math.fabs(y_diference) def move(self, organisms): for organism in organisms: count = 0 for genome in organism.getGenome(): if organism.getState() == self.__stateDecoder['alive']: position = organism.getPosition() has_moved = self.__labyrinth.move(self.__genomeDecoder[genome], position) if has_moved: organism.updateFitness(1) organism.setPosition(has_moved) if self.__labyrinth.isAtFinal(has_moved): organism.updateFitness(100) organism.setState(self.__stateDecoder['finished']) organism.setLast(count) print("Generation: " + str(organism.getGeneration()), organism.getGenome()) self.__have_finished = True else: organism.updateFitness(-5) # organism.setState(self.stateDecoder['dead']) count = count + 1 if organism.getState() == self.__stateDecoder['dead']: organism.updateFitness(-10) organism.updateFitness(-10 * self.__calculate_fitness(organism)) # print(organism.getPosition()) begin_position = self.__labyrinth.getBeginPosition() organism.setPosition({'x': begin_position['x'], 'y': begin_position['y']}) def execute(self): organisms = self.__controllerOrganism.getOrganisms() if not organisms: return None self.move(organisms) if self.__have_finished: self.__generations_finished = self.__generations_finished + 1 self.__have_finished = False self.__generations_fitness_average.append(self.__controllerOrganism.average_fitness()) mom, dad = self.__controllerOrganism.selectBestOnes() self.__best_fitness.append(mom.getFitness()) self.__best_organisms.append(mom) self.__controllerOrganism.crossover(mom, dad, 0.05) if mom.getGeneration() % 11 == 0: self.__controllerOrganism.saveGenomes("../LastsGenomes.json")
39.4
103
0.628173
3,774
0.957868
0
0
0
0
0
0
310
0.07868
3cb181b4a78692a5068ea6ba57d0e24bbe0db8c2
3,386
py
Python
accounts/views.py
callmewind/billdev
fcd53cb98284677fb619abeafb17a88035aabfd6
[ "MIT" ]
null
null
null
accounts/views.py
callmewind/billdev
fcd53cb98284677fb619abeafb17a88035aabfd6
[ "MIT" ]
null
null
null
accounts/views.py
callmewind/billdev
fcd53cb98284677fb619abeafb17a88035aabfd6
[ "MIT" ]
null
null
null
from django.views.generic.edit import CreateView from django.contrib.auth.tokens import PasswordResetTokenGenerator from django.utils.translation import ugettext_lazy as _ from django.views.generic.base import RedirectView from django.conf import settings from .forms import * class ActivateAccountTokenGenerator(PasswordResetTokenGenerator): def _make_hash_value(self, user, timestamp): return ( str(user.pk) + str(timestamp) + str(user.is_active) ) class SignUpView(CreateView): template_name = 'accounts/sign-up.html' form_class = SignUpForm def form_valid(self, form): from django.template.response import TemplateResponse from django.utils.http import urlsafe_base64_encode from django.utils.encoding import force_bytes from django.core.mail import send_mail from django.urls import reverse import urllib user = form.save() token_generator = ActivateAccountTokenGenerator() activation_link = self.request.build_absolute_uri( reverse('accounts:activate', kwargs={ 'uidb64' : urlsafe_base64_encode(force_bytes(user.pk)).decode(), 'token': token_generator.make_token(user) }) ) context = { 'user' : user, 'activation_link' : activation_link } send_mail( _('Activate your account'), activation_link, 'test@example.com', [ user.email ], html_message=activation_link) #send_mail(user.site, 'guides/email/promo-confirm-email.html', user.email, _('Just one click to access to your Guide %(mobile_emoji)s' % {'mobile_emoji': u"\U0001F4F2" }), context, user.web_language) return TemplateResponse(self.request, 'accounts/sign-up-confirm.html', { 'email': user.email }) def dispatch(self, request, *args, **kwargs): if self.request.user.is_authenticated: from django.shortcuts import redirect return redirect(settings.LOGIN_REDIRECT_URL) return super().dispatch(request, *args, **kwargs) class ActivateView(RedirectView): url = settings.LOGIN_REDIRECT_URL def dispatch(self, request, *args, **kwargs): from django.utils.encoding import force_text from django.utils.http import urlsafe_base64_decode from django.http import Http404 from .models import User try: user = User.objects.get(pk=force_text(urlsafe_base64_decode(self.kwargs['uidb64']))) except(TypeError, ValueError, OverflowError, User.DoesNotExist): raise Http404 token_generator = ActivateAccountTokenGenerator() if request.user.is_authenticated: if user.pk != request.user.pk: raise Http404 elif token_generator.check_token(user, self.kwargs['token']): from django.contrib.auth import login from django.contrib import messages user.is_active = True user.save() login(request, user, 'django.contrib.auth.backends.ModelBackend') messages.success(request, _('Your account has been activated. Welcome!')) return super().dispatch(request, *args, **kwargs) else: raise Http404
36.804348
208
0.646486
3,098
0.914944
0
0
0
0
0
0
460
0.135854
3cb5796f6762e147de6c1a95dfd1c12f82cf44f8
241
py
Python
hw-2/useful_modules.py
Atlasshrugs00/astr-119
be30734d2580acd947e5b2e22e3039d0d42419f3
[ "MIT" ]
null
null
null
hw-2/useful_modules.py
Atlasshrugs00/astr-119
be30734d2580acd947e5b2e22e3039d0d42419f3
[ "MIT" ]
8
2021-09-24T04:02:52.000Z
2021-12-09T05:45:22.000Z
hw-2/useful_modules.py
Atlasshrugs00/astr-119
be30734d2580acd947e5b2e22e3039d0d42419f3
[ "MIT" ]
null
null
null
import numpy as np #numpy library import matplotlib.pyplot as plt #matplotlib pyplot import sys #acces to c-like sys library import os #gives access to operating system print(sys.argv) #prints any command line arguments print(os.getcwd())
26.777778
50
0.792531
0
0
0
0
0
0
0
0
127
0.526971
3cb70deff93c19ea3ca28c0dcdec1ef4bed01acf
3,532
py
Python
Custom/text.py
SemLaan/Hotel-review-sentiment-analysis
b7fd22dcea63bab1c7fe666a7f4912931de1f4dc
[ "Apache-2.0" ]
null
null
null
Custom/text.py
SemLaan/Hotel-review-sentiment-analysis
b7fd22dcea63bab1c7fe666a7f4912931de1f4dc
[ "Apache-2.0" ]
null
null
null
Custom/text.py
SemLaan/Hotel-review-sentiment-analysis
b7fd22dcea63bab1c7fe666a7f4912931de1f4dc
[ "Apache-2.0" ]
null
null
null
import pandas as pd from nltk import tokenize as tokenizers from nltk.stem import PorterStemmer, WordNetLemmatizer class TextCleaning: def __init__(self): return def remove_hyperlinks(self, corpus): corpus = corpus.str.replace(r"https?://t.co/[A-Za-z0-9]+", "https") return corpus def remove_numbers(self, corpus): corpus = corpus.str.replace(r"\w*\d\w*", "") return corpus def tokenize(self, corpus): tokenizer = tokenizers.RegexpTokenizer(r'\w+') corpus = corpus.apply(lambda x: tokenizer.tokenize(x)) return corpus def untokenize(self, corpus): corpus = corpus.apply( lambda tokenized_review: ' '.join(tokenized_review) ) return corpus def lemmatize(self, corpus): corpus = self.tokenize(corpus) lemmatizer = WordNetLemmatizer() corpus = corpus.apply( lambda tokens: [lemmatizer.lemmatize(token) for token in tokens] ) return self.untokenize(corpus) def stem(self, corpus): corpus = self.tokenize(corpus) stemmer = PorterStemmer() corpus = corpus.apply( lambda tokens: [stemmer.stem(token) for token in tokens] ) return self.untokenize(corpus) def to_lower(self, corpus): return corpus.apply(str.lower) def negate_corpus(self, corpus): corpus = corpus.apply(self.negate_sentence) return corpus def negate_sentence(self, sentence): sentence = sentence.lower() for word in appos: if word in sentence: sentence = sentence.replace(word, appos[word]) return sentence.lower() def count_negations(self, corpus): negations = 0 for sentence in corpus: sentence = sentence.lower() for word in appos: if word in sentence: negations += 1 print(negations) return appos = { "aren t" : "are not", "can t" : "cannot", "couldn t" : "could not", "didn t" : "did not", "doesn t" : "does not", "don t" : "do not", "hadn t" : "had not", "hasn t" : "has not", "haven t" : "have not", "he d" : "he would", "he ll" : "he will", "he s" : "he is", "i d" : "I would", "i ll" : "I will", "i m" : "I am", "isn t" : "is not", "it s" : "it is", "it ll":"it will", "i ve" : "I have", "let s" : "let us", "mightn t" : "might not", "mustn t" : "must not", "shan t" : "shall not", "she d" : "she would", "she ll" : "she will", "she s" : "she is", "shouldn t" : "should not", "that s" : "that is", "there s" : "there is", "they d" : "they would", "they ll" : "they will", "they re" : "they are", "they ve" : "they have", "we d" : "we would", "we re" : "we are", "weren t" : "were not", "we ve" : "we have", "what ll" : "what will", "what re" : "what are", "what s" : "what is", "what ve" : "what have", "where s" : "where is", "who d" : "who would", "who ll" : "who will", "who re" : "who are", "who s" : "who is", "who ve" : "who have", "won t" : "will not", "wouldn t" : "would not", "you d" : "you would", "you ll" : "you will", "you re" : "you are", "you ve" : "you have", " re": " are", "wasn t": "was not", "we ll":" will", }
22.213836
76
0.51812
1,936
0.548131
0
0
0
0
0
0
1,018
0.288222
3cb8b156ffda90f3a147616840973c64a0b81e50
546
py
Python
kolibri/plugins/user_auth/root_urls.py
MBKayro/kolibri
0a38a5fb665503cf8f848b2f65938e73bfaa5989
[ "MIT" ]
545
2016-01-19T19:26:55.000Z
2022-03-20T00:13:04.000Z
kolibri/plugins/user_auth/root_urls.py
MBKayro/kolibri
0a38a5fb665503cf8f848b2f65938e73bfaa5989
[ "MIT" ]
8,329
2016-01-19T19:32:02.000Z
2022-03-31T21:23:12.000Z
kolibri/plugins/user_auth/root_urls.py
MBKayro/kolibri
0a38a5fb665503cf8f848b2f65938e73bfaa5989
[ "MIT" ]
493
2016-01-19T19:26:48.000Z
2022-03-28T14:35:05.000Z
""" This is here to enable redirects from the old /user endpoint to /auth """ from django.conf.urls import include from django.conf.urls import url from django.views.generic.base import RedirectView from kolibri.core.device.translation import i18n_patterns redirect_patterns = [ url( r"^user/$", RedirectView.as_view( pattern_name="kolibri:kolibri.plugins.user_auth:user_auth", permanent=True ), name="redirect_user", ), ] urlpatterns = [url(r"", include(i18n_patterns(redirect_patterns)))]
26
86
0.705128
0
0
0
0
0
0
0
0
150
0.274725
3cb8db111fef337bf519873d89b2fd5a45a81770
250
py
Python
Learning/CodeWars/Python/7 kyu_Sum_of_numbers_from_0_to_N.py
aliasfoxkde/snippets
bb6dcc6597316ef9c88611f526935059451c3b5a
[ "MIT" ]
null
null
null
Learning/CodeWars/Python/7 kyu_Sum_of_numbers_from_0_to_N.py
aliasfoxkde/snippets
bb6dcc6597316ef9c88611f526935059451c3b5a
[ "MIT" ]
null
null
null
Learning/CodeWars/Python/7 kyu_Sum_of_numbers_from_0_to_N.py
aliasfoxkde/snippets
bb6dcc6597316ef9c88611f526935059451c3b5a
[ "MIT" ]
null
null
null
# See: https://www.codewars.com/kata/56e9e4f516bcaa8d4f001763 def show_sequence(n): if n == 0: return '0=0' elif n < 0: return str(n) + '<0' return str(range(n+1))[1:-1].replace(', ','+') + ' = ' + str(sum(range(1,n+1)))
27.777778
83
0.54
0
0
0
0
0
0
0
0
82
0.328
3cb8ec1381ca6215654d8b8a9da92a3ab2726159
4,685
py
Python
Script.py
harisqazi1/Automated_Script
6680e0604db55297fad2ab2f99ea61324ca88048
[ "MIT" ]
null
null
null
Script.py
harisqazi1/Automated_Script
6680e0604db55297fad2ab2f99ea61324ca88048
[ "MIT" ]
null
null
null
Script.py
harisqazi1/Automated_Script
6680e0604db55297fad2ab2f99ea61324ca88048
[ "MIT" ]
null
null
null
""" Title: Automated Script for Data Scraping Creator: Haris "5w464l1c10u5" Purpose: This was made in order to make it easier to get data from online, all through one python script Usage: python3 Automated_Script.py Resources: https://www.digitalocean.com/community/tutorials/how-to-scrape-web-pages-with-beautiful-soup-and-python-3 https://www.guru99.com/reading-and-writing-files-in-python.html https://www.dataquest.io/blog/web-scraping-tutorial-python/ https://forecast.weather.gov/MapClick.php?lat=42.00900000000007&lon=-87.69495999999998 https://pythonspot.com/http-download-file-with-python/ """ #!/usr/bin/python # -*- coding: utf-8 -*- import requests from bs4 import BeautifulSoup import urllib.request, urllib.error, urllib.parse from datetime import date, datetime import io import codecs Code_Version = 3 #Time in H:M:S format now = datetime.now() Time = now.strftime("%I:%M:%S:%p") #Date Today_Date = date.today() Date = Today_Date.strftime("(%A) %B %d, %Y") try: #Weather page = requests.get('https://forecast.weather.gov/MapClick.php?lat=42.00900000000007&lon=-87.69495999999998') soup = BeautifulSoup(page.text, 'html.parser') except: print("Weather.gov is not available") try: #Weather Type weathertype = soup.find(class_='myforecast-current') type = weathertype.contents[0] type = type.encode('utf-8') except: type = "N/A" try: #Fahrenheit weather = soup.find(class_='myforecast-current-lrg') w = weather.contents[0] w = w.encode('utf-8') except: w = "N/A" try: #Humidity Humidity = soup.find_all('td')[0].get_text() Hum_percent = soup.find_all('td')[1].get_text() except: Humidity = "N/A" Hum_percent = "N/A" try: #Wind_Speed W_Speed = soup.find_all('td')[2].get_text() W_S = soup.find_all('td')[3].get_text() except: W_Speed = "N/A" W_S = "N/A" try: #Wind_Chill Wind_Chill = soup.find_all('td')[10].get_text() Wind_Chill_num = soup.find_all('td')[11].get_text() Wind_Chill = Wind_Chill.encode('utf-8') Wind_Chill_num = Wind_Chill_num.encode('utf-8') except: Wind_Chill = "N/A" Wind_Chill_num = "N/A" try: #Last_Update Last_Update = soup.find_all('td')[12].get_text() Last_Update_num = soup.find_all('td')[13].get_text() except: Last_Update = "N/A" Last_Update_num = "N/A" html_file = """ <h1 style="text-align: center;"><span style="text-decoration: underline;">Good Morning, Haris!</span></h1> <h4 style="text-align: left;">Time:</h4> <h4 style="text-align: left;">Date:</h4> <h4>Code Version:</h4> <hr /> <h3 style="font-size: 1.5em; text-align: center;"><span style="text-decoration: underline;"><span style="background-color: #00ccff;">Weather</span></span></h3> <table style="margin-left: auto; margin-right: auto; height: 195px;" width="238"> <tbody> <tr style="height: 7px;"> <td style="width: 228px; height: 7px;">Current Weather:</td> </tr> <tr style="height: 1px;"> <td style="width: 228px; height: 1px;">Weather Type:</td> </tr> <tr style="height: 2px;"> <td style="width: 228px; height: 2px;">Humidity:</td> </tr> <tr style="height: 2px;"> <td style="width: 228px; height: 2px;">Wind Speed:</td> </tr> <tr style="height: 2px;"> <td style="width: 228px; height: 2px;">Wind Chill:</td> </tr> <tr style="height: 2px;"> <td style="width: 228px; height: 2px;">Last Update:</td> </tr> </tbody> </table> <p style="font-size: 1.5em;">&nbsp;</p> <hr /> <h3 style="font-size: 1.5em; text-align: center;"><span style="text-decoration: underline; background-color: #cc99ff;">News</span></h3> """ html_file = html_file.replace('Time:','Current Time: ' + Time) html_file = html_file.replace('Date:','Today\'s Date: ' + Date) html_file = html_file.replace('Code Version:', 'Code Version: #' + str(Code_Version)) html_file = html_file.replace('Current Weather:','Current Weather: ' + w.decode('utf8')) html_file = html_file.replace('Weather Type:','Weather Type: ' + type.decode('utf8')) html_file = html_file.replace('Humidity:','Humidity: ' + Hum_percent) html_file = html_file.replace('Wind Speed:','Wind Speed: ' + W_S) html_file = html_file.replace('Wind Chill:','Wind Chill: ' + Wind_Chill_num.decode('utf-8')) html_file = html_file.replace('Last Update:','Last Update: ' + Last_Update_num) try: response = urllib.request.urlopen('https://allinfosecnews.com/') html = response.read() except: print("https://allinfosecnews.com/ is not available") with io.open("website.html", 'w', encoding='utf8') as f: f.write(html_file) f.write(html.decode('utf-8')) f.close() print(w) print(type) print(Hum_percent) print(W_Speed) print(W_S) print(Wind_Chill_num) print(Last_Update_num)
28.919753
159
0.683458
0
0
0
0
0
0
0
0
2,650
0.565635
3cb91fcc9d369715e263d80560e5e0440993f481
144
py
Python
pnbp/helpers/__init__.py
prettynb/pnbp
1be54a2217a85675ec4a14a1c8a1d2501be88404
[ "MIT" ]
1
2021-07-30T02:00:29.000Z
2021-07-30T02:00:29.000Z
pnbp/helpers/__init__.py
prettynb/pnbp
1be54a2217a85675ec4a14a1c8a1d2501be88404
[ "MIT" ]
null
null
null
pnbp/helpers/__init__.py
prettynb/pnbp
1be54a2217a85675ec4a14a1c8a1d2501be88404
[ "MIT" ]
null
null
null
from .base import _convert_datetime from .codeblock import CodeBlock from .link import Link from .tag import Tag from .url import Url
9
35
0.756944
0
0
0
0
0
0
0
0
0
0
3cb929d8fa24f1122564db813af9ab0475a425f5
838
py
Python
tests/elections/test_police_and_crime_commissioner.py
DemocracyClub/uk-election-timetables
2541f9e5050a393906bafa2b70709fe650de3f32
[ "MIT" ]
2
2020-11-14T15:56:56.000Z
2021-01-11T11:11:09.000Z
tests/elections/test_police_and_crime_commissioner.py
DemocracyClub/uk-election-timetables
2541f9e5050a393906bafa2b70709fe650de3f32
[ "MIT" ]
12
2020-11-18T20:27:43.000Z
2021-12-15T10:47:01.000Z
tests/elections/test_police_and_crime_commissioner.py
DemocracyClub/uk-election-timetables
2541f9e5050a393906bafa2b70709fe650de3f32
[ "MIT" ]
null
null
null
from datetime import date from uk_election_timetables.elections import PoliceAndCrimeCommissionerElection # Reference election: pcc.avon-and-somerset.2016-05-05 def test_publish_date_police_and_crime_commissioner(): election = PoliceAndCrimeCommissionerElection(date(2016, 5, 5)) assert election.sopn_publish_date == date(2016, 4, 8) # Reference election: pcc.2021-05-06 def test_registration_deadline_police_and_crime_commissioner(): election = PoliceAndCrimeCommissionerElection(date(2021, 5, 6)) assert election.registration_deadline == date(2021, 4, 19) # Reference election: pcc.2021-05-06 def test_postal_vote_application_deadline_police_and_crime_commissioner(): election = PoliceAndCrimeCommissionerElection(date(2021, 5, 6)) assert election.postal_vote_application_deadline == date(2021, 4, 20)
33.52
79
0.805489
0
0
0
0
0
0
0
0
126
0.150358
3cb98b826371f4dfda09a39ed9c09c8f6ab7451b
847
py
Python
LaureatsBackEnd-master/laureats/migrations/0011_auto_20200111_1525.py
SanaaCHAOU/laureat_management_ENSAT
d769714f9f8cb9ebf90e02577547ec348c011461
[ "MIT" ]
null
null
null
LaureatsBackEnd-master/laureats/migrations/0011_auto_20200111_1525.py
SanaaCHAOU/laureat_management_ENSAT
d769714f9f8cb9ebf90e02577547ec348c011461
[ "MIT" ]
null
null
null
LaureatsBackEnd-master/laureats/migrations/0011_auto_20200111_1525.py
SanaaCHAOU/laureat_management_ENSAT
d769714f9f8cb9ebf90e02577547ec348c011461
[ "MIT" ]
null
null
null
# Generated by Django 3.0.2 on 2020-01-11 14:25 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('laureats', '0010_auto_20200111_1458'), ] operations = [ migrations.CreateModel( name='Profession', fields=[ ('id', models.AutoField(primary_key=True, serialize=False)), ('libelle', models.CharField(default='', max_length=255)), ], options={ 'ordering': ['libelle'], }, ), migrations.AlterField( model_name='employe', name='profession', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='employes', to='laureats.Profession'), ), ]
28.233333
132
0.570248
721
0.85124
0
0
0
0
0
0
180
0.212515
3cbc5cfef3c4ee6f751fd3f8b8b9e741e7ebbbd4
1,952
py
Python
python/250.count-univalue-subtrees.py
Zhenye-Na/leetcode
95196a45f5709ccf7b970ee5ac84a4bf8fe2301e
[ "MIT" ]
10
2019-09-15T00:23:57.000Z
2022-01-05T12:53:42.000Z
python/250.count-univalue-subtrees.py
Zhenye-Na/leetcode
95196a45f5709ccf7b970ee5ac84a4bf8fe2301e
[ "MIT" ]
3
2021-06-30T00:39:26.000Z
2021-08-01T07:13:59.000Z
python/250.count-univalue-subtrees.py
Zhenye-Na/leetcode
95196a45f5709ccf7b970ee5ac84a4bf8fe2301e
[ "MIT" ]
6
2020-02-08T02:55:22.000Z
2022-01-02T22:48:18.000Z
# [250] Count Univalue Subtrees # Description # Given a binary tree, count the number of uni-value subtrees. # A Uni-value subtree means all nodes of the subtree have the same value. # Example # Example 1 # Input: root = {5,1,5,5,5,#,5} # Output: 4 # Explanation: # 5 # / \ # 1 5 # / \ \ # 5 5 5 # Example 2 # Input: root = {1,3,2,4,5,#,6} # Output: 3 # Explanation: # 1 # / \ # 3 2 # / \ \ # 4 5 6 """ Definition of TreeNode: class TreeNode: def __init__(self, val): self.val = val self.left, self.right = None, None """ """ Definition of TreeNode: class TreeNode: def __init__(self, val): self.val = val self.left, self.right = None, None """ class Solution: """ @param root: the given tree @return: the number of uni-value subtrees. """ def countUnivalSubtrees(self, root): # write your code here self.count = 0 self.dfs(root) return self.count def dfs(self, root): """ return how many subtrees with uni-values """ if not root: return None, True left_node, left_uni = self.dfs(root.left) right_node, right_uni = self.dfs(root.right) if left_uni and right_uni: if left_node is None and right_node is None: self.count += 1 return root, True elif left_node and left_node.val == root.val: self.count += 1 return root, True elif right_node and right_node.val == root.val: self.count += 1 return root, True elif right_node and left_node and left_node.val == root.val and right_node.val == root.val: self.count += 1 return root, True return root, False
22.436782
103
0.518955
1,116
0.571721
0
0
0
0
0
0
974
0.498975
3cbd5fce78146aae7cbddda0c039ec527c342db9
5,752
py
Python
apis.py
teemuja/ndp_app3
8a9517b2e2385640dc1a2c1baf0ae07cf630c89c
[ "MIT" ]
null
null
null
apis.py
teemuja/ndp_app3
8a9517b2e2385640dc1a2c1baf0ae07cf630c89c
[ "MIT" ]
null
null
null
apis.py
teemuja/ndp_app3
8a9517b2e2385640dc1a2c1baf0ae07cf630c89c
[ "MIT" ]
null
null
null
# apis for ndp_d3 from owslib.wfs import WebFeatureService import pandas as pd import geopandas as gpd import momepy import streamlit as st @st.cache(allow_output_mutation=True) def pno_data(kunta,vuosi=2021): url = 'http://geo.stat.fi/geoserver/postialue/wfs' # vaestoruutu tai postialue wfs = WebFeatureService(url=url, version="2.0.0") layer = f'postialue:pno_tilasto_{vuosi}' data_ = wfs.getfeature(typename=layer, outputFormat='json') # propertyname=['kunta'], gdf_all = gpd.read_file(data_) noneed = ['id', 'euref_x', 'euref_y', 'pinta_ala'] paavodata = gdf_all.drop(columns=noneed) kuntakoodit = pd.read_csv('config/kunta_dict.csv', index_col=False, header=0).astype(str) kuntakoodit['koodi'] = kuntakoodit['koodi'].str.zfill(3) kunta_dict = pd.Series(kuntakoodit.kunta.values, index=kuntakoodit.koodi).to_dict() paavodata = paavodata.replace({'kunta':kunta_dict}) dict_feat = pd.read_csv('config/paavo2021_dict.csv', skipinitialspace=True, header=None, index_col=0,squeeze=True).to_dict() selkopaavo = paavodata.rename(columns=dict_feat).sort_values('Kunta') pno_valinta = selkopaavo[selkopaavo['Kunta'] == kunta].sort_values('Asukkaat yhteensä', ascending=False) return pno_valinta @st.cache(allow_output_mutation=True) def hri_data(pno): def make_bbox(pno, point_crs='4326', projected_crs='3857'): # 3879 poly = gpd.GeoSeries(pno.geometry) b = poly.to_crs(epsg=projected_crs) b = b.buffer(100) bbox = b.to_crs(epsg=point_crs).bounds bbox = bbox.reset_index(drop=True) bbox_tuple = bbox['minx'][0], bbox['miny'][0], bbox['maxx'][0], bbox['maxy'][0] return bbox_tuple bbox = make_bbox(pno) + tuple(['urn:ogc:def:crs:EPSG::4326']) url = 'https://kartta.hsy.fi/geoserver/wfs' wfs = WebFeatureService(url=url, version="2.0.0") layer = 'ilmasto_ja_energia:rakennukset' data = wfs.getfeature(typename=layer, bbox=bbox, outputFormat='json') gdf = gpd.read_file(data) # columns to keep columns = ['kuntanimi', 'valm_v', 'kerrosala', 'kerrosluku', 'kayt_luok', 'kayttark', 'geometry'] # overlay with pno area & use only columns gdf_pno = pno.to_crs(3067).overlay(gdf.to_crs(3067), how='intersection')[columns]#.to_crs(4326) gdf_pno.rename(columns={'valm_v': 'rakennusvuosi', 'kayt_luok': 'rakennustyyppi', 'kayttark': 'tarkenne', }, inplace=True) gdf_out = gdf_pno.to_crs(epsg=4326) return gdf_out @st.cache(allow_output_mutation=True) def densities(buildings): # projected crs for momepy calculations & prepare for housing gdf_ = buildings.to_crs(3857) # check kerrosala data and use footprint if nan/zero gdf_['kerrosala'] = pd.to_numeric(gdf_['kerrosala'], errors='coerce', downcast='float') gdf_['kerrosala'].fillna(gdf_.area, inplace=True) gdf_.loc[gdf_['kerrosala'] == 0, 'kerrosala'] = gdf_.area # add footprint area gdf_['rakennusala'] = gdf_.area #gdf_.loc[:,gdf_['rakennusala']] = gdf_.area # exlude some utility building types no_list = ['Muut rakennukset','Palo- ja pelastustoimen rakennukset','Varastorakennukset'] yes_serie = ~gdf_.rakennustyyppi.isin(no_list) gdf = gdf_[yes_serie] # prepare momoepy.. gdf['uID'] = momepy.unique_id(gdf) limit = momepy.buffered_limit(gdf) tessellation = momepy.Tessellation(gdf, unique_id='uID', limit=limit).tessellation # calculate GSI = ground space index = coverage = CAR = coverage area ratio tess_GSI = momepy.AreaRatio(tessellation, gdf, momepy.Area(tessellation).series, momepy.Area(gdf).series, 'uID') gdf['GSI'] = round(tess_GSI.series,3) # calculate FSI = floor space index = FAR = floor area ratio gdf['FSI'] = round(gdf['kerrosala'] / momepy.Area(tessellation).series,3) # calculate OSR = open space ratio = spaciousness gdf['OSR'] = round((1 - gdf['GSI']) / gdf['FSI'],3) # ND calculations # queen contiguity for 2 degree neighbours = "perceived neighborhood" tessellation = tessellation.merge(gdf[['uID','rakennusala','kerrosala','OSR']]) # add selected values from buildings to tess-areas sw = momepy.sw_high(k=2, gdf=tessellation, ids='uID') # degree of nd gdf['GSI_ND'] = round(momepy.Density(tessellation, values='rakennusala', spatial_weights=sw, unique_id='uID').series, 2) gdf['FSI_ND'] = round(momepy.Density(tessellation, values='kerrosala', spatial_weights=sw, unique_id='uID').series, 2) gdf['OSR_ND'] = round((1 - gdf['GSI_ND']) / gdf['FSI_ND'], 2) gdf['OSR_ND_mean'] = round(momepy.AverageCharacter(tessellation, values='OSR', spatial_weights=sw, unique_id='uID').mean,2) # remove infinite values of osr if needed.. gdf['OSR_ND'].clip(upper=gdf['OSR'].quantile(0.99), inplace=True) gdf['OSR_ND_mean'].clip(upper=gdf['OSR'].quantile(0.99), inplace=True) gdf_out = gdf.to_crs(4326) return gdf_out @st.cache(allow_output_mutation=True) def tess_boundaries(buildings): # projected crs for momepy calculations & prepare for housing gdf_ = buildings.to_crs(3857) gdf_['kerrosala'] = pd.to_numeric(gdf_['kerrosala'], errors='coerce', downcast='float') gdf_['kerrosala'].fillna(gdf_.area, inplace=True) no_list = ['Muut rakennukset','Palo- ja pelastustoimen rakennukset','Varastorakennukset'] yes_serie = ~gdf_.rakennustyyppi.isin(no_list) # exclude some types gdf = gdf_[yes_serie] gdf['uID'] = momepy.unique_id(gdf) limit = momepy.buffered_limit(gdf) tessellation = momepy.Tessellation(gdf, unique_id='uID', limit=limit).tessellation return tessellation.to_crs(4326)
52.770642
134
0.685327
0
0
0
0
5,605
0.974274
0
0
1,878
0.326438
3cbec5b44846435b33e0ef20ab76a5f6a4ef6c68
6,471
py
Python
test-suite/unit-testing/PortageLive.soap/tests/testIncrAddSentence.py
nrc-cnrc/Portage-SMT-TAS
73f5a65de4adfa13008ea9a01758385c97526059
[ "MIT" ]
null
null
null
test-suite/unit-testing/PortageLive.soap/tests/testIncrAddSentence.py
nrc-cnrc/Portage-SMT-TAS
73f5a65de4adfa13008ea9a01758385c97526059
[ "MIT" ]
null
null
null
test-suite/unit-testing/PortageLive.soap/tests/testIncrAddSentence.py
nrc-cnrc/Portage-SMT-TAS
73f5a65de4adfa13008ea9a01758385c97526059
[ "MIT" ]
null
null
null
#!/usr/bin/env python # vim:expandtab:ts=3:sw=3 # @file testIncrStatus.py # @brief Test SOAP calls to incrAddSentence using a deployed PortageLive web server. # # @author Samuel Larkin # # Traitement multilingue de textes / Multilingual Text Processing # Tech. de l'information et des communications / Information and Communications Tech. # Conseil national de recherches Canada / National Research Council Canada # Copyright 2016, Sa Majeste la Reine du Chef du Canada / # Copyright 2016, Her Majesty in Right of Canada from __future__ import print_function from __future__ import unicode_literals from __future__ import division from __future__ import absolute_import #import zeep #client = zeep.Client(wsdl=url) from suds.cache import DocumentCache from suds.client import Client from suds import WebFault import unittest import logging import requests import time import random import os import sys import shutil logging.basicConfig(level=logging.CRITICAL) # If you need to debug what is happening, uncomment the following line #logging.basicConfig(level=logging.DEBUG) url = 'http://127.0.0.1' class TestIncrAddSentence(unittest.TestCase): """ Using PortageLiveAPI's WSDL deployed on a web server, we test SOAP calls to incrAddSentence(). """ def __init__(self, *args, **kwargs): super(TestIncrAddSentence, self).__init__(*args, **kwargs) DocumentCache().clear() self.url = url + ':' + os.getenv('PHP_PORT', 8756) self.WSDL = self.url + '/PortageLiveAPI.wsdl' self.client = Client(self.WSDL) self.context = 'unittest.rev.en-fr' self.document_model_id = 'PORTAGE_UNITTEST_4da35' self.source_sentence = "'home'" self.target_sentence = '"maison"' self.document_model_dir = os.path.join("doc_root", "plive", "DOCUMENT_MODEL_" + self.context + '_' + self.document_model_id) if (os.path.isdir(self.document_model_dir)): shutil.rmtree(self.document_model_dir) def test_01_no_argument(self): """ incrAddSentence() should warn the user that it needs some parameters. """ with self.assertRaises(WebFault) as cm: self.client.service.incrAddSentence() self.assertEqual(cm.exception.message, "Server raised fault: 'Missing parameter'") def test_02_all_arguments_null(self): """ incrAddSentence() expects 3 arguments that cannot be None/NULL. """ with self.assertRaises(WebFault) as cm: self.client.service.incrAddSentence(None, None, None, None, None) self.assertEqual(cm.exception.message, "Server raised fault: 'Missing parameter'") def test_03_no_document_model_id(self): """ It is invalid to use the empty string as document level model ID. """ with self.assertRaises(WebFault) as cm: self.client.service.incrAddSentence(self.context, '', '', '') self.assertEqual(cm.exception.message, "Server raised fault: 'You must provide a valid document_model_id.'") def test_04_no_source_sentence(self): """ The source sentence cannot be empty. """ with self.assertRaises(WebFault) as cm: self.client.service.incrAddSentence(self.context, self.document_model_id, '', '') self.assertEqual(cm.exception.message, "Server raised fault: 'You must provide a source sentence.'") def test_05_no_target_sentence(self): """ The target sentence cannot be empty. """ with self.assertRaises(WebFault) as cm: self.client.service.incrAddSentence(self.context, self.document_model_id, self.source_sentence, '') self.assertEqual(cm.exception.message, "Server raised fault: 'You must provide a target sentence.'") @unittest.skip("Should we check for too many parameters?") def test_06_too_many_parameters(self): """ TODO: Should we get some sort of message if we provide an invalid number of arguments """ with self.assertRaises(WebFault) as cm: self.client.service.incrAddSentence(self.context, self.document_model_id, self.source_sentence, self.target_sentence, 'extra_dummy_argument') self.assertEqual(cm.exception.message, "Server raised fault: 'You must provide a target sentence.'") def test_07_basic_valid_usage(self): """ This tests a valid call to incrAddSentence() where document_model_id is valid, source sentence is valid and target sentence is also valid. - The SOAP call should return true since it's supposed to be able to add this sentence pair to the queue. - The training phase should have inserted the sentence pair in the corpora. """ UID = str(random.randint(0, 100000)) source = self.source_sentence + str(time.time()) + UID target = self.target_sentence + str(time.time()) + UID result = self.client.service.incrAddSentence(self.context, self.document_model_id, source, target) self.assertEqual(result, True, 'SOAP call failed to add a sentence pair') r = requests.get(self.url + '/plive/DOCUMENT_MODEL_' + self.context + '_' + self.document_model_id + '/corpora') self.assertEqual(r.status_code, 200, "Failed to fetch the corpora file for: " + self.document_model_id) ref_sentence_pair = '\t'.join((source, target)) sentence_pairs = tuple(l.split('\t', 1)[-1] for l in r.text.split('\n')) self.assertEqual(sentence_pairs.count(ref_sentence_pair), 1, "Expected exactly one occurrence of our sentence pair in corpora.") # Let incremental training finish. time.sleep(3); with open(os.path.join(self.document_model_dir, "incr-update.status"), "r") as sf: status = sf.read().strip() self.assertEqual(status, '0', "0 exit status for incr-update.sh not found in incr-update.status.") if __name__ == '__main__': unittest.main()
36.767045
118
0.637923
5,310
0.820584
0
0
726
0.112193
0
0
2,527
0.390512
3cbf25669395a89790375a19545ba5be63026880
1,919
py
Python
Cryptography/Caesar_Cipher.py
hari40009/learnpython
b75e700f62f49ab9d8fef607ebd87a34c5cb6530
[ "MIT" ]
1
2018-11-07T04:13:52.000Z
2018-11-07T04:13:52.000Z
Cryptography/Caesar_Cipher.py
engineerprogrammer/learnpython
140acfd8fc6345745a9b274baaa1e58ea3217f9f
[ "MIT" ]
null
null
null
Cryptography/Caesar_Cipher.py
engineerprogrammer/learnpython
140acfd8fc6345745a9b274baaa1e58ea3217f9f
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """ A program to use a Caesar cipher based on user input for the shift value """ MAX_SHIFT = 26 def whatMode(): """ Finds out what the user wants to do """ while True: print("Do you wish to encrypt, decrypt or brute force a message: ") mode = input().lower() if mode in "encrypt e decrypt d brute b".split(): return mode[0] else: print("Enter '[E]ncrypt', '[D]ecrypt' or [B]rute") def plainMessage(): """ Gets a string from the user """ print ("Message: ") return input() def getKey(): """ Gets a shift value from the user """ shiftKey = 0 while True: print("Enter shift key (1-%s) " % (MAX_SHIFT)) shiftKey = int(input()) if (shiftKey >= 1 and shiftKey <= MAX_SHIFT): return shiftKey def cryptMessage(mode, message, shiftKey): """ The encryption / decryption action is here """ if mode[0] == 'd': shiftKey = -shiftKey translated = '' for symbol in message: # The encryption stuff if symbol.isalpha(): num = ord(symbol) num += shiftKey if symbol.isupper(): if num > ord('Z'): num -= 26 elif num < ord('A'): num += 26 elif symbol.islower(): if num > ord('z'): num -= 26 elif num < ord('a'): num += 26 translated += chr(num) else: translated += symbol return translated mode = whatMode() message = plainMessage() if mode[0] != 'b': shiftKey = getKey() print('Your translated text is:') if mode[0] != 'b': #Brute force settings print(cryptMessage(mode, message, shiftKey)) else: for shiftKey in range(1, MAX_SHIFT + 1): print(shiftKey, cryptMessage('decrypt', message, shiftKey))
27.028169
80
0.532569
0
0
0
0
0
0
0
0
541
0.281918
3cc3cc243655d3b808c34d010f7d4b9e190e610a
494
py
Python
leetcode/python/medium/p046_permute.py
kefirzhang/algorithms
549e68731d4c05002e35f0499d4f7744f5c63979
[ "Apache-2.0" ]
null
null
null
leetcode/python/medium/p046_permute.py
kefirzhang/algorithms
549e68731d4c05002e35f0499d4f7744f5c63979
[ "Apache-2.0" ]
null
null
null
leetcode/python/medium/p046_permute.py
kefirzhang/algorithms
549e68731d4c05002e35f0499d4f7744f5c63979
[ "Apache-2.0" ]
null
null
null
class Solution: def __init__(self): self.res = [] def permute(self, nums): self.backTrack(nums, []) return self.res def backTrack(self, nums, track): if len(nums) == len(track): self.res.append(track[:]) return for i in nums: if i in track: continue track.append(i) self.backTrack(nums, track) track.remove(i) slu = Solution() print(slu.permute([1]))
22.454545
39
0.506073
450
0.910931
0
0
0
0
0
0
0
0
3cc66fc74313d0ecd7ced030e26d629577fa26a1
74
py
Python
Level1/count_p_and_y.py
chae-heechan/Programmers_Python_Algorithm_Study
c61af0b1b97d790e2332581eb0b7da42c3e510fa
[ "MIT" ]
null
null
null
Level1/count_p_and_y.py
chae-heechan/Programmers_Python_Algorithm_Study
c61af0b1b97d790e2332581eb0b7da42c3e510fa
[ "MIT" ]
null
null
null
Level1/count_p_and_y.py
chae-heechan/Programmers_Python_Algorithm_Study
c61af0b1b97d790e2332581eb0b7da42c3e510fa
[ "MIT" ]
null
null
null
def solution(s): return (s.lower().count('p') == s.lower().count('y'))
37
57
0.567568
0
0
0
0
0
0
0
0
6
0.081081
3cc75769cc0430a3c58ed37733ff77e1117674ee
83
py
Python
bemy/apps.py
foropolo/profiles-rest-api
f35cbb5727204bf4419c6b0a9797d7c624773219
[ "MIT" ]
null
null
null
bemy/apps.py
foropolo/profiles-rest-api
f35cbb5727204bf4419c6b0a9797d7c624773219
[ "MIT" ]
6
2019-12-05T00:35:40.000Z
2022-02-10T08:29:56.000Z
bemy/apps.py
foropolo/profiles-rest-api
f35cbb5727204bf4419c6b0a9797d7c624773219
[ "MIT" ]
null
null
null
from django.apps import AppConfig class BemyConfig(AppConfig): name = 'bemy'
13.833333
33
0.73494
46
0.554217
0
0
0
0
0
0
6
0.072289
3cc9578bf937313ea3ce810099e43cb50d90651a
634
py
Python
ribosome/compute/ribosome.py
tek/ribosome-py
8bd22e549ddff1ee893d6e3a0bfba123a09e96c6
[ "MIT" ]
null
null
null
ribosome/compute/ribosome.py
tek/ribosome-py
8bd22e549ddff1ee893d6e3a0bfba123a09e96c6
[ "MIT" ]
null
null
null
ribosome/compute/ribosome.py
tek/ribosome-py
8bd22e549ddff1ee893d6e3a0bfba123a09e96c6
[ "MIT" ]
null
null
null
from __future__ import annotations from typing import Generic, TypeVar, Type from lenses import UnboundLens from amino import Dat from ribosome.data.plugin_state import PluginState D = TypeVar('D') CC = TypeVar('CC') C = TypeVar('C') class Ribosome(Generic[D, CC, C], Dat['Ribosome[D, CC, C]']): def __init__( self, state: PluginState[D, CC], comp_type: Type[C], comp_lens: UnboundLens['Ribosome[D, CC, C]', 'Ribosome[D, CC, C]', C, C], ) -> None: self.state = state self.comp_type = comp_type self.comp_lens = comp_lens __all__ = ('Ribosome',)
21.862069
85
0.621451
367
0.578864
0
0
0
0
0
0
80
0.126183
3cc96d6bfddb10586b88d9ad0d7b86bd5ca4e9aa
1,431
py
Python
pythonstartup.py
avisilver/util_scripts
ffe4ee4b7a7b907b7d93bef5ec96151d2cbf8508
[ "MIT" ]
null
null
null
pythonstartup.py
avisilver/util_scripts
ffe4ee4b7a7b907b7d93bef5ec96151d2cbf8508
[ "MIT" ]
null
null
null
pythonstartup.py
avisilver/util_scripts
ffe4ee4b7a7b907b7d93bef5ec96151d2cbf8508
[ "MIT" ]
null
null
null
# Add auto-completion and a stored history file of commands to your Python # interactive interpreter. Requires Python 2.0+, readline. Autocomplete is # bound to the Esc key by default (you can change it - see readline docs). # # Store the file in ~/.pystartup, and set an environment variable to point # to it: "export PYTHONSTARTUP=/home/user/.pystartup" in bash. # # Note that PYTHONSTARTUP does *not* expand "~", so you have to put in the # full path to your home directory. import atexit import os import readline import rlcompleter historyPath = os.path.expanduser("~/.pyhistory") def save_history(historyPath=historyPath): import readline readline.write_history_file(historyPath) if os.path.exists(historyPath): readline.read_history_file(historyPath) atexit.register(save_history) readline.parse_and_bind('tab: complete') del os, atexit, readline, rlcompleter, save_history, historyPath def dirp(object_or_module): """dirp(object_or_module) -> string Print the object's or currently imported module's attributes as shown in dir() on separate lines with docstrings""" for attr in dir(object_or_module): doc = object_or_module.__getattribute__(attr).__doc__ doc = doc if doc else "" indented_doc = "\n".join(doc.split("\n")) print ("\n{line}\n{attr}\n{doc}".format( line="-"*80, attr=attr, doc=indented_doc ))
31.108696
74
0.709294
0
0
0
0
0
0
0
0
698
0.487771
3cc9c9c6db3e02d74038abeb59341c1138d3a879
70
py
Python
saleor/plugins/category/notify_event.py
hoangtuananh97/saleor
94ad493ef61302fb458822868fc2b4a884ec2065
[ "CC-BY-4.0" ]
null
null
null
saleor/plugins/category/notify_event.py
hoangtuananh97/saleor
94ad493ef61302fb458822868fc2b4a884ec2065
[ "CC-BY-4.0" ]
4
2021-09-06T03:55:32.000Z
2021-10-15T08:47:58.000Z
saleor/plugins/category/notify_event.py
hoangtuananh97/saleor
94ad493ef61302fb458822868fc2b4a884ec2065
[ "CC-BY-4.0" ]
null
null
null
def send_category_notify(): print("Plugin Category when created")
23.333333
41
0.757143
0
0
0
0
0
0
0
0
30
0.428571
3ccccac3d5c3d7c8d168081f420c8dfcbee68843
761
py
Python
NhMedicalSite/panel/models.py
Dogruyer/ecommerce
aa505b401e42882a96e6ef6375bd1a1ed95c5b85
[ "Apache-2.0" ]
null
null
null
NhMedicalSite/panel/models.py
Dogruyer/ecommerce
aa505b401e42882a96e6ef6375bd1a1ed95c5b85
[ "Apache-2.0" ]
null
null
null
NhMedicalSite/panel/models.py
Dogruyer/ecommerce
aa505b401e42882a96e6ef6375bd1a1ed95c5b85
[ "Apache-2.0" ]
1
2018-11-01T11:10:58.000Z
2018-11-01T11:10:58.000Z
from __future__ import unicode_literals from django.db import models # Create your models here. class Category(models.Model): category_name=models.CharField(max_length=100) class Products(models.Model): title=models.CharField(max_length=100) content = models.TextField(max_length=300) product_image=models.ImageField(upload_to='images/products/', default='images/products/default.jpg') product_price=models.DecimalField(max_digits=6,decimal_places=4) category_id=models.ForeignKey(Category) class User: name=models.CharField(max_length=50) lastname=models.CharField(max_length=50) email=models.EmailField(max_length=100) password=models.CharField(max_length=20)
21.138889
75
0.730618
644
0.846255
0
0
0
0
0
0
73
0.095926
3cccd58c207124db8b9a503a7ea72e1986e27cb3
459
py
Python
voxelcut/initial.py
JohnyEngine/CNC
e4c77250ab2b749d3014022cbb5eb9924e939993
[ "Apache-2.0" ]
null
null
null
voxelcut/initial.py
JohnyEngine/CNC
e4c77250ab2b749d3014022cbb5eb9924e939993
[ "Apache-2.0" ]
null
null
null
voxelcut/initial.py
JohnyEngine/CNC
e4c77250ab2b749d3014022cbb5eb9924e939993
[ "Apache-2.0" ]
null
null
null
toolpath.coords = Coords(-100, -100, -5, 100, 100, 5) voxelcut.set_current_color(12566512) toolpath.coords.add_block(0.150768, 0, -5, 9.69846, 9.84808, 10) GRAY = 0x505050 RED = 0x600000 BLUE = 0x000050 toolpath.tools[2] = Tool([[Span(Point(3, 0), Vertex(0, Point(3, 20), Point(0, 0)), False), GRAY], [Span(Point(3, 20), Vertex(0, Point(3, 40), Point(0, 0)), False), RED]]) #toolpath.load('C:/Users/Dan/AppData/Local/Temp/test.tap') toolpath.load('test.tap')
45.9
170
0.681917
0
0
0
0
0
0
0
0
68
0.148148
3ccda61294b042b9301d3115e54f9eaad129e0a8
2,200
py
Python
core/cliqueIntersectionGraph.py
ongmingyang/some-max-cut
7ebabd06d3e46789a3672bd516adc48953ba135e
[ "MIT" ]
3
2018-03-16T17:25:23.000Z
2021-04-27T21:42:31.000Z
core/cliqueIntersectionGraph.py
ongmingyang/some-max-cut
7ebabd06d3e46789a3672bd516adc48953ba135e
[ "MIT" ]
null
null
null
core/cliqueIntersectionGraph.py
ongmingyang/some-max-cut
7ebabd06d3e46789a3672bd516adc48953ba135e
[ "MIT" ]
null
null
null
import sys from clique import Clique from cvxopt import spmatrix, amd from collections import defaultdict as dd import chompack as cp from util.graph import Graph LARGEST_CLIQUE_SIZE = 24 # # A CliqueIntersectionGraph is a graph (V,E), where V is a set of cliques, each # bag containing a clique, and (i,j) in E if clique i and clique j have a non # empty sepset # # @param I,J,W (I[i],J[i]) is an edge in the original graph with weight # W[i]. We require I > J # class CliqueIntersectionGraph(Graph): def __init__(self, I, J, W): Graph.__init__(self) self.cliques = self.nodes # We use a different alias to prevent confusion n = max(max(I),max(J))+1 eye = spmatrix(1, range(n), range(n)) A = spmatrix(W, I, J, (n,n)) + eye self.n = n # Compute symbolic factorization using AMD ordering # This automatically does a chordal completion on the graph symb = cp.symbolic(A, p=amd.order) # The factorization permutes the node indices, we need to unpermute these cliques = symb.cliques() perm = symb.p cliques = [[perm[i] for i in clique] for clique in cliques] # If the largest clique is above threshold, we terminate the algorithm self.max_clique_size = max(len(x) for x in cliques) if self.max_clique_size > LARGEST_CLIQUE_SIZE: sys.exit(''' Chordal completion has clique of size %d, Max allowed size is %d, Program terminating... ''' % (self.max_clique_size, LARGEST_CLIQUE_SIZE)) node_to_clique = dd(list) # Instantiate cliques and fill node_to_clique entries for index, nodes in enumerate(cliques): clique = Clique(index, nodes, A) for node in nodes: node_to_clique[node].append(clique) self.cliques.append(clique) # Update list of neighbours after node_to_clique entries are filled for clique in self.cliques: for node in clique.nodes: neighbours = list(node_to_clique[node]) neighbours.remove(clique) # Add edge to edgeset for neighbour in neighbours: edge = tuple(sorted([neighbour.index, clique.index])) self.edges[edge] = clique.determine_sepset_size(neighbour)
33.333333
79
0.678636
1,709
0.776818
0
0
0
0
0
0
852
0.387273
3ccdd8c975b584a486aac3e7fbb9b1d2ae39487f
4,586
py
Python
backend/src/baserow/contrib/database/airtable/tasks.py
ashishdhngr/baserow
b098678d2165eb7c42930ee24dc6753a3cb520c3
[ "MIT" ]
null
null
null
backend/src/baserow/contrib/database/airtable/tasks.py
ashishdhngr/baserow
b098678d2165eb7c42930ee24dc6753a3cb520c3
[ "MIT" ]
null
null
null
backend/src/baserow/contrib/database/airtable/tasks.py
ashishdhngr/baserow
b098678d2165eb7c42930ee24dc6753a3cb520c3
[ "MIT" ]
null
null
null
import logging from django.conf import settings from baserow.config.celery import app logger = logging.getLogger(__name__) @app.task( bind=True, queue="export", soft_time_limit=settings.BASEROW_AIRTABLE_IMPORT_SOFT_TIME_LIMIT, ) def run_import_from_airtable(self, job_id: int): """ Starts the Airtable import job. This task must run after the job has been created. :param job_id: The id related to the job that must be started. """ from celery.exceptions import SoftTimeLimitExceeded from pytz import timezone as pytz_timezone from requests.exceptions import RequestException from django.db import transaction from django.core.cache import cache from baserow.core.signals import application_created from baserow.core.utils import Progress from baserow.contrib.database.airtable.models import AirtableImportJob from baserow.contrib.database.airtable.handler import AirtableHandler from baserow.contrib.database.airtable.exceptions import AirtableBaseNotPublic from baserow.contrib.database.airtable.constants import ( AIRTABLE_EXPORT_JOB_DOWNLOADING_FAILED, AIRTABLE_EXPORT_JOB_DOWNLOADING_FINISHED, ) from .cache import airtable_import_job_progress_key job = AirtableImportJob.objects.select_related("group").get(id=job_id) def progress_updated(percentage, state): """ Every time the progress of the import changes, this callback function is called. If the percentage or the state has changed, the job will be updated. """ nonlocal job if job.progress_percentage != percentage: job.progress_percentage = percentage changed = True if state is not None and job.state != state: job.state = state changed = True if changed: # The progress must also be stored in the Redis cache. Because we're # currently in a transaction, other database connections don't know about # the progress and this way, we can still communite it to the user. cache.set( airtable_import_job_progress_key(job.id), {"progress_percentage": job.progress_percentage, "state": job.state}, timeout=None, ) job.save() progress = Progress(100) progress.register_updated_event(progress_updated) kwargs = {} if job.timezone is not None: kwargs["timezone"] = pytz_timezone(job.timezone) try: with transaction.atomic(): databases, id_mapping = AirtableHandler.import_from_airtable_to_group( job.group, job.airtable_share_id, progress_builder=progress.create_child_builder( represents_progress=progress.total ), **kwargs ) # The web-frontend needs to know about the newly created database, so we # call the application_created signal. for database in databases: application_created.send(self, application=database, user=None) job.state = AIRTABLE_EXPORT_JOB_DOWNLOADING_FINISHED job.database = databases[0] # Don't override the other properties that have been set during the # progress update. job.save(update_fields=("state", "database")) except Exception as e: exception_mapping = { SoftTimeLimitExceeded: "The import job took too long and was timed out.", RequestException: "The Airtable server could not be reached.", AirtableBaseNotPublic: "The Airtable base is not publicly shared.", } error = "Something went wrong while importing the Airtable base." for exception, error_message in exception_mapping.items(): if isinstance(e, exception): error = error_message break logger.error(e) job.state = AIRTABLE_EXPORT_JOB_DOWNLOADING_FAILED job.error = str(e) job.human_readable_error = error # Don't override the other properties that have been set during the # progress update. job.save( update_fields=( "state", "error", "human_readable_error", ) ) # Delete the import job cached entry because the transaction has been committed # and the AirtableImportJob entry now contains the latest data. cache.delete(airtable_import_job_progress_key(job.id))
35.276923
86
0.657872
0
0
0
0
4,456
0.971653
0
0
1,275
0.27802
3cd0a4bbec748d6e33fb26e96ae01249982c0522
7,439
py
Python
d2lbook/notebook.py
naoufelito/d2l-book
bb281e1640aaf039b4d2d69bb9c8d6334a7cb98a
[ "Apache-2.0" ]
null
null
null
d2lbook/notebook.py
naoufelito/d2l-book
bb281e1640aaf039b4d2d69bb9c8d6334a7cb98a
[ "Apache-2.0" ]
1
2020-06-06T06:34:03.000Z
2020-06-06T07:01:56.000Z
d2lbook/notebook.py
naoufelito/d2l-book
bb281e1640aaf039b4d2d69bb9c8d6334a7cb98a
[ "Apache-2.0" ]
null
null
null
"""utilities to handle notebooks""" from typing import Union, List, Optional import copy import notedown import nbformat import nbconvert from nbformat import notebooknode from d2lbook import markdown from d2lbook import common def create_new_notebook(nb: notebooknode.NotebookNode, cells: List[notebooknode.NotebookNode] ) -> notebooknode.NotebookNode: """create an empty notebook by copying metadata from nb""" new_nb = copy.deepcopy(nb) new_nb.cells = cells return new_nb def read_markdown(source: Union[str, List[str]]) -> notebooknode.NotebookNode: """Returns a notebook from markdown source""" if not isinstance(source, str): source = '\n'.join(source) reader = notedown.MarkdownReader(match='strict') return reader.reads(source) def split_markdown_cell(nb: notebooknode.NotebookNode) -> notebooknode.NotebookNode: """split a markdown cell if it contains tab block. a new property `class` is added to the metadata for a tab cell. """ # merge continous markdown cells grouped_cells = common.group_list(nb.cells, lambda cell, _: cell.cell_type=='markdown') new_cells = [] for is_md, group in grouped_cells: if not is_md: new_cells.extend(group) else: src = '\n\n'.join(cell.source for cell in group) md_cells = markdown.split_markdown(src) is_tab_cell = lambda cell, _: cell['type']=='markdown' and 'class' in cell grouped_md_cells = common.group_list(md_cells, is_tab_cell) for is_tab, md_group in grouped_md_cells: new_cell = nbformat.v4.new_markdown_cell( markdown.join_markdown_cells(md_group)) if is_tab: tab = md_group[0]['class'] assert tab.startswith('`') and tab.endswith('`'), tab new_cell.metadata['tab'] = tab[1:-1] new_cells.append(new_cell) new_cells = [cell for cell in new_cells if cell.source] return create_new_notebook(nb, new_cells) def _get_cell_tab(cell: notebooknode.NotebookNode, default_tab: str='') -> Optional[str]: """Get the cell tab""" if 'tab' in cell.metadata: return cell.metadata['tab'] if cell.cell_type != 'code': return None match = common.source_tab_pattern.search(cell.source) if match: return match[1] return default_tab def get_tab_notebook(nb: notebooknode.NotebookNode, tab: str, default_tab: str ) -> notebooknode.NotebookNode: """Returns a notebook with code/markdown cells that doesn't match tab removed. Return None if no cell matched the tab and nb contains code blocks. A `origin_pos` property is added to the metadata for each cell, which records its position in the original notebook `nb`. """ matched_tab = False new_cells = [] for i, cell in enumerate(nb.cells): new_cell = copy.deepcopy(cell) new_cell.metadata['origin_pos'] = i cell_tab = _get_cell_tab(new_cell, default_tab) if not cell_tab: new_cells.append(new_cell) else: if cell_tab == tab: new_cell.metadata['tab'] = cell_tab matched_tab = True # remove the tab from source lines = new_cell.source.split('\n') for j, line in enumerate(lines): src_tab = common.source_tab_pattern.search(line) text_tab = common.md_mark_pattern.search(line) if src_tab or (text_tab and ( text_tab[1]=='begin_tab' or text_tab[1]=='end_tab')): del lines[j] new_cell.source = '\n'.join(lines) new_cells.append(new_cell) if not matched_tab and any([cell.cell_type=='code' for cell in nb.cells]): return None return create_new_notebook(nb, new_cells) def merge_tab_notebooks(src_notebooks: List[notebooknode.NotebookNode] ) -> notebooknode.NotebookNode: """Merge the tab notebooks into a single one. The reserved function of get_tab_notebook. """ n = max([max([cell.metadata['origin_pos'] for cell in nb.cells]) for nb in src_notebooks]) new_cells = [None] * (n+1) for nb in src_notebooks: for cell in nb.cells: new_cells[cell.metadata['origin_pos']] = copy.deepcopy(cell) return create_new_notebook(src_notebooks[0], new_cells) def _get_tab_bar(tabs, tab_id, default_tab, div_class=''): code = f"```eval_rst\n\n.. raw:: html\n\n <div class=\"mdl-tabs mdl-js-tabs mdl-js-ripple-effect\"><div class=\"mdl-tabs__tab-bar {div_class}\">" for i, tab in enumerate(tabs): active = 'is-active' if tab == default_tab else '' code +=f'<a href="#{tab}-{tab_id}-{i}" class="mdl-tabs__tab {active}">{tab}</a>' code += "</div>\n```" return nbformat.v4.new_markdown_cell(code) def _get_tab_panel(cells, tab, tab_id, default_tab): active = 'is-active' if tab == default_tab else '' tab_panel_begin = nbformat.v4.new_markdown_cell( f"```eval_rst\n.. raw:: html\n\n <div class=\"mdl-tabs__panel {active}\" id=\"{tab}-{tab_id}\">\n```") tab_panel_end = nbformat.v4.new_markdown_cell( "```eval_rst\n.. raw:: html\n\n </div>\n```") return [tab_panel_begin, *cells, tab_panel_end] def _merge_tabs(nb: notebooknode.NotebookNode): """merge side-by-side tabs into a single one""" def _tab_status(cell, status): if _get_cell_tab(cell): return 1 if cell.cell_type == 'markdown' else 2 return 0 cell_groups = common.group_list(nb.cells, _tab_status) meta = [(in_tab, [cell.metadata['tab'] for cell in group] if in_tab else None ) for in_tab, group in cell_groups] new_cells = [] i = 0 while i < len(meta): in_tab, tabs = meta[i] if not in_tab: new_cells.append((False, cell_groups[i][1])) i += 1 else: j = i + 1 while j < len(meta): if meta[j][1] != tabs: break j += 1 groups = [group for _, group in cell_groups[i:j]] new_cells.append((True, [x for x in zip(*groups)])) i = j return new_cells def add_html_tab(nb: notebooknode.NotebookNode, default_tab: str) -> notebooknode.NotebookNode: """Add html codes for the tabs""" cell_groups = _merge_tabs(nb) tabs = [len(group) for in_tab, group in cell_groups if in_tab] if not tabs or max(tabs) <= 1: return nb new_cells = [] for i, (in_tab, group) in enumerate(cell_groups): if not in_tab: new_cells.extend(group) else: tabs = [cells[0].metadata['tab'] for cells in group] div_class = "code" if group[0][0].cell_type == 'code' == 2 else "text" new_cells.append(_get_tab_bar(tabs, i, default_tab, div_class)) for j, (tab, cells) in enumerate(zip(tabs, group)): new_cells.extend(_get_tab_panel(cells, tab, f'{i}-{j}', default_tab)) new_cells.append(nbformat.v4.new_markdown_cell( "```eval_rst\n.. raw:: html\n\n </div>\n```")) return create_new_notebook(nb, new_cells)
41.099448
152
0.609894
0
0
0
0
0
0
0
0
1,485
0.199624
3cd1756adb8c57eb1928457d00bc92c25a43ba4c
1,204
py
Python
myamiweb/imcache/imcacheconfig.py
leschzinerlab/myami-3.2-freeHand
974b8a48245222de0d9cfb0f433533487ecce60d
[ "MIT" ]
null
null
null
myamiweb/imcache/imcacheconfig.py
leschzinerlab/myami-3.2-freeHand
974b8a48245222de0d9cfb0f433533487ecce60d
[ "MIT" ]
null
null
null
myamiweb/imcache/imcacheconfig.py
leschzinerlab/myami-3.2-freeHand
974b8a48245222de0d9cfb0f433533487ecce60d
[ "MIT" ]
1
2019-09-05T20:58:37.000Z
2019-09-05T20:58:37.000Z
# config file for imcached # camera name pattern to cache. For example 'GatanK2' will restrict it # only to camera name containing the string camera_name_pattern = '' # time in seconds to wait between consecutive queries query_interval = 5 # limit query to later than this timestamp (mysql style: yyyymmddhhmmss) min_timestamp = '20130126000000' # limit query to start at this image id start_id = 0 # root dir of cache. session subdirs will be added automatically cache_path = '/srv/cache/dbem' # maximum image dimension after conversion redux_maxsize1 = 4096 redux_maxsize2 = 1024 # initial redux read and resize before calculating power and final redux_args1 = { 'pipes': 'read:Read,shape:Shape', 'cache': False, } # redux to create final image for cache redux_args_jpg = { 'cache': False, 'pipes': 'shape:Shape,scale:Scale,format:Format', 'scaletype': 'stdev', 'scalemin': -5, 'scalemax': 5, 'oformat': 'JPEG', } # redux to create final power image for cache redux_args_pow = { 'cache': False, 'pipes': 'power:Power,shape:Shape,mask:Mask,scale:Scale,format:Format', 'power': True, 'maskradius': 10, 'scaletype': 'stdev', 'scalemin': -5, 'scalemax': 5, 'oformat': 'JPEG', }
23.607843
72
0.724252
0
0
0
0
0
0
0
0
886
0.73588
3cd1a6c109376dfdc24ad44b61222972d5c24dd2
3,737
py
Python
graphs/graphgenerator.py
andrew-lockwood/lab-project
e39a0f21966cdee519942cf2f94b7bab6ed2196e
[ "MIT" ]
1
2017-08-30T15:21:31.000Z
2017-08-30T15:21:31.000Z
graphs/graphgenerator.py
andrew-lockwood/lab-project-summer2016
e39a0f21966cdee519942cf2f94b7bab6ed2196e
[ "MIT" ]
null
null
null
graphs/graphgenerator.py
andrew-lockwood/lab-project-summer2016
e39a0f21966cdee519942cf2f94b7bab6ed2196e
[ "MIT" ]
1
2017-06-15T20:44:59.000Z
2017-06-15T20:44:59.000Z
import sqlite3 import matplotlib.pyplot as plt import re from collections import Counter db = "C:\\Users\\Andrew\\lab-project\\data\\frontiers_corpus.db" def wordvsline(): q = "SELECT wordcount, linecount FROM ArticleTXT" curr.execute(q) x,y = zip(*curr.fetchall()) mpl_fig = plt.figure() ax = mpl_fig.add_subplot(111) plt.scatter(x,y) plt.xlim(0,25000) plt.ylim(0,450) ax.set_xlabel('Word Count') ax.set_ylabel('Line Count') ax.set_title('Words vs Lines') plt.show() def titles_between(start, end): q = """ SELECT DISTINCT articleID FROM ArticleInformation WHERE date BETWEEN '{s}' AND '{e}'""".format(s=start, e=end) return di.execute_query(q) def by_year(): q = """ SELECT strftime('%Y', date), count(articleID) FROM ArticleInformation GROUP BY strftime('%Y', date)""" return di.execute_query(q) def by_month(): q = """ SELECT strftime('%Y-%m', date), count(articleID) FROM ArticleInformation GROUP BY strftime('%Y-%m', date)""" return di.execute_query(q) def by_quarter(): q = """ SELECT strftime('%Y', date), CASE WHEN cast(strftime('%m', date) as integer) BETWEEN 1 AND 3 THEN 1 WHEN cast(strftime('%m', date) as integer) BETWEEN 4 AND 6 THEN 2 WHEN cast(strftime('%m', date) as integer) BETWEEN 7 AND 9 THEN 3 ELSE 4 END AS Quarter, count(articleID) FROM ArticleInformation GROUP BY strftime('%Y', date), CASE WHEN cast(strftime('%m', date) as integer) BETWEEN 1 AND 3 THEN 1 WHEN cast(strftime('%m', date) as integer) BETWEEN 4 AND 6 THEN 2 WHEN cast(strftime('%m', date) as integer) BETWEEN 7 AND 9 THEN 3 ELSE 4 END""" return di.execute_query(q) def graph(value): data = [] if value == 'year': for year, count in by_year(): data.append((year, count)) if value == 'month': for year, count in by_month(): data.append((year, count)) if value == 'quarter': for year, quarter, count in by_quarter(): d = "%s%s"%(year,'q'+str(quarter)) data.append((d, count)) x = [i for i in range(len(data))] labels,y = zip(*data) mpl_fig = plt.figure() ax = mpl_fig.add_subplot(111) plt.margins(0.025, 0) plt.bar(x, y, align='center') ax.set_ylabel('Articles Recieved') plt.xticks(x, labels, rotation=45) plt.show() def kwd_frequency(): c1 = Counter() c2 = Counter() q = """ SELECT keyword, count(articleID) FROM OriginalKeywords GROUP BY keyword""" data = curr.execute(q) n = 10 for kwd, count in data.fetchall(): if count < 20: c2[int(count)] += 1 else: c1[int(count/n)] += 1 x = [i for i in range(len(c1))] labels,y = zip(*c1.items()) labels = ["%s-%s"%(l*n, l*n+n) for l in labels] mpl_fig = plt.figure() ax = mpl_fig.add_subplot(111) plt.margins(0.025, 0) plt.bar(x, y, align='center') plt.xticks(x, labels, rotation=90) plt.show() x = [i for i in range(len(c2))] labels,y = zip(*c2.items()) mpl_fig = plt.figure() ax = mpl_fig.add_subplot(111) plt.margins(0.025, 0) plt.bar(x, y, align='center') plt.xticks(x, labels, rotation=90) plt.show() if __name__ == "__main__": conn = sqlite3.connect(db) curr = conn.cursor() kwd_frequency()
24.585526
85
0.54616
0
0
0
0
0
0
0
0
1,584
0.423869
3cd1de8fe3c2b6efa630c25b86bb05e41fab354a
5,612
py
Python
peering_manager/constants.py
maznu/peering-manager
d249fcf530f4cc48b39429badb79bc203e0148ba
[ "Apache-2.0" ]
127
2017-10-12T00:27:45.000Z
2020-08-07T11:13:55.000Z
peering_manager/constants.py
maznu/peering-manager
d249fcf530f4cc48b39429badb79bc203e0148ba
[ "Apache-2.0" ]
247
2017-12-26T12:55:34.000Z
2020-08-08T11:57:35.000Z
peering_manager/constants.py
maznu/peering-manager
d249fcf530f4cc48b39429badb79bc203e0148ba
[ "Apache-2.0" ]
63
2017-10-13T06:46:05.000Z
2020-08-08T00:41:57.000Z
from collections import OrderedDict from devices.filters import ConfigurationFilterSet from devices.models import Configuration from devices.tables import ConfigurationTable from messaging.filters import ContactFilterSet, EmailFilterSet from messaging.models import Contact, ContactAssignment, Email from messaging.tables import ContactTable, EmailTable from net.filters import ConnectionFilterSet from net.models import Connection from net.tables import ConnectionTable from peering.filters import ( AutonomousSystemFilterSet, BGPGroupFilterSet, CommunityFilterSet, DirectPeeringSessionFilterSet, InternetExchangeFilterSet, InternetExchangePeeringSessionFilterSet, RouterFilterSet, RoutingPolicyFilterSet, ) from peering.models import ( AutonomousSystem, BGPGroup, Community, DirectPeeringSession, InternetExchange, InternetExchangePeeringSession, Router, RoutingPolicy, ) from peering.tables import ( AutonomousSystemTable, BGPGroupTable, CommunityTable, DirectPeeringSessionTable, InternetExchangePeeringSessionTable, InternetExchangeTable, RouterTable, RoutingPolicyTable, ) from utils.functions import count_related __all__ = ("SEARCH_MAX_RESULTS", "SEARCH_TYPES") SEARCH_MAX_RESULTS = 15 SEARCH_TYPES = OrderedDict( ( # devices ( "configuration", { "queryset": Configuration.objects.all(), "filterset": ConfigurationFilterSet, "table": ConfigurationTable, "url": "devices:configuration_list", }, ), # messaging ( "contact", { "queryset": Contact.objects.prefetch_related("assignments").annotate( assignment_count=count_related(ContactAssignment, "contact") ), "filterset": ContactFilterSet, "table": ContactTable, "url": "messaging:contact_list", }, ), ( "email", { "queryset": Email.objects.all(), "filterset": EmailFilterSet, "table": EmailTable, "url": "messaging:email_list", }, ), # net ( "connection", { "queryset": Connection.objects.prefetch_related( "internet_exchange_point", "router" ), "filterset": ConnectionFilterSet, "table": ConnectionTable, "url": "net:connection_list", }, ), # peering ( "autonomousystem", { "queryset": AutonomousSystem.objects.defer("prefixes"), "filterset": AutonomousSystemFilterSet, "table": AutonomousSystemTable, "url": "peering:autonomoussystem_list", }, ), ( "bgpgroup", { "queryset": BGPGroup.objects.all(), "filterset": BGPGroupFilterSet, "table": BGPGroupTable, "url": "peering:bgpgroup_list", }, ), ( "community", { "queryset": Community.objects.all(), "filterset": CommunityFilterSet, "table": CommunityTable, "url": "peering:community_list", }, ), ( "directpeeringsession", { "queryset": DirectPeeringSession.objects.prefetch_related( "autonomous_system", "bgp_group", "router" ), "filterset": DirectPeeringSessionFilterSet, "table": DirectPeeringSessionTable, "url": "peering:directpeeringsession_list", }, ), ( "internetexchange", { "queryset": InternetExchange.objects.prefetch_related( "local_autonomous_system" ).annotate( connection_count=count_related( Connection, "internet_exchange_point" ) ), "filterset": InternetExchangeFilterSet, "table": InternetExchangeTable, "url": "peering:internetexchange_list", }, ), ( "internetexchangepeeringsession", { "queryset": InternetExchangePeeringSession.objects.prefetch_related( "autonomous_system", "ixp_connection" ), "filterset": InternetExchangePeeringSessionFilterSet, "table": InternetExchangePeeringSessionTable, "url": "peering:internetexchangepeeringsession_list", }, ), ( "router", { "queryset": Router.objects.prefetch_related("platform").annotate( connection_count=count_related(Connection, "router") ), "filterset": RouterFilterSet, "table": RouterTable, "url": "peering:router_list", }, ), ( "routingpolicy", { "queryset": RoutingPolicy.objects.all(), "filterset": RoutingPolicyFilterSet, "table": RoutingPolicyTable, "url": "peering:routingpolicy_list", }, ), ), )
31.351955
85
0.533678
0
0
0
0
0
0
0
0
1,179
0.210086
3cd24bc69492048a6c6dccda50896c121dfcd5b5
1,453
py
Python
alexhart/day1-2.py
chadnetzer/advent2020
b992eb202ff9dd5cc353914a136337412c8bd074
[ "MIT" ]
null
null
null
alexhart/day1-2.py
chadnetzer/advent2020
b992eb202ff9dd5cc353914a136337412c8bd074
[ "MIT" ]
1
2020-12-06T07:51:48.000Z
2020-12-08T05:03:11.000Z
alexhart/day1-2.py
chadnetzer/advent2020
b992eb202ff9dd5cc353914a136337412c8bd074
[ "MIT" ]
8
2020-12-01T21:29:21.000Z
2020-12-09T23:55:15.000Z
chalenge_input = '''1956 1994 457 1654 2003 1902 1741 1494 1597 1129 1146 1589 1989 1093 1881 1288 1848 1371 1508 1035 1813 1335 1634 1102 1262 1637 1048 1807 1270 1528 1670 1803 1202 1294 1570 1640 1484 1872 1140 1207 1485 1781 1778 1772 1334 1267 1045 1194 1873 1441 1557 1414 1123 1980 1527 1591 1665 1916 1662 1139 1973 1258 1041 1134 1609 1554 1455 1124 1478 1938 1759 1281 1410 1511 930 1319 1302 1827 1216 1404 1460 2002 1590 1817 1341 1631 1608 1382 1158 1594 1049 1804 1555 1753 447 1021 1079 609 1766 1327 1851 1052 1737 1175 1043 1945 1573 1113 1724 1203 1856 1682 1623 1135 1015 1423 1412 1315 1375 1895 1351 1530 1758 1445 1518 1819 1567 1305 1919 1952 1432 1099 1476 1883 1871 1900 1442 1393 1214 1283 1538 1391 1008 1109 1621 1876 1998 1032 1324 1927 481 1732 1370 1683 1199 1465 1882 1293 1671 1456 1197 1506 1381 1469 1830 1957 1850 1184 1564 1170 1943 1131 1867 1208 1788 1337 1722 1760 1651 1069 1574 1959 1770 66 1190 1606 1899 1054 980 1693 1173 1479 1333 1579 1720 1782 1971 1438 1178 1306''' test_input = '''1721 979 366 299 675 1456''' def sum_check(input_string_test): inputlines = input_string_test.splitlines() for linepri in inputlines: for linesec in inputlines: for linethr in inputlines: if int(linepri) + int(linesec) + int(linethr) == 2020: return int(linepri) * int(linesec) * int(linethr) print(sum_check(test_input)) print(sum_check(chalenge_input))
6.634703
70
0.751549
0
0
0
0
0
0
0
0
1,028
0.707502
3cd2638aee801c7efa156f6936b153c75c517e46
465
py
Python
e2e_graphsage/utils/logging.py
mingruimingrui/E2EGraphSage
90de7befd3a8ced514697c073b4c64e96b63bdb0
[ "MIT" ]
null
null
null
e2e_graphsage/utils/logging.py
mingruimingrui/E2EGraphSage
90de7befd3a8ced514697c073b4c64e96b63bdb0
[ "MIT" ]
null
null
null
e2e_graphsage/utils/logging.py
mingruimingrui/E2EGraphSage
90de7befd3a8ced514697c073b4c64e96b63bdb0
[ "MIT" ]
null
null
null
from __future__ import absolute_import import logging def setup_logging(log_path, mode='w'): fmt = '%(asctime)s %(levelname)-4.4s %(filename)s:%(lineno)d: %(message)s' logging.root.handlers = [] logging.basicConfig( filename=log_path, filemode=mode, format=fmt, datefmt='%m-%d %H:%M', level=logging.INFO ) logging.getLogger().addHandler(logging.StreamHandler()) return logging.getLogger(__name__)
24.473684
78
0.647312
0
0
0
0
0
0
0
0
84
0.180645
3cd2949cb17d74dce66873599c286cade86072c8
3,486
py
Python
dmipy/distributions/tests/test_bingham.py
AthenaEPI/mipy
dbbca4066a6c162dcb05865df5ff666af0e4020a
[ "MIT" ]
59
2018-02-22T19:14:19.000Z
2022-02-22T05:40:27.000Z
dmipy/distributions/tests/test_bingham.py
AthenaEPI/mipy
dbbca4066a6c162dcb05865df5ff666af0e4020a
[ "MIT" ]
95
2018-02-03T11:55:30.000Z
2022-03-31T15:10:39.000Z
dmipy/distributions/tests/test_bingham.py
AthenaEPI/mipy
dbbca4066a6c162dcb05865df5ff666af0e4020a
[ "MIT" ]
23
2018-02-13T07:21:01.000Z
2022-02-22T20:12:08.000Z
from numpy.testing import assert_almost_equal, assert_equal from dmipy.utils import utils import numpy as np from dmipy.utils.utils import ( rotation_matrix_100_to_theta_phi, rotation_matrix_around_100, rotation_matrix_100_to_theta_phi_psi ) from dmipy.distributions import distributions def test_rotation_100_to_theta_phi(): # test 1: does R100_to_theta_phi rotate a vector theta_phi? theta_ = np.random.rand() * np.pi phi_ = (np.random.rand() - .5) * np.pi R100_to_theta_pi = rotation_matrix_100_to_theta_phi(theta_, phi_) xyz = np.dot(R100_to_theta_pi, np.r_[1, 0, 0]) _, theta_rec, phi_rec = utils.cart2sphere(xyz) assert_almost_equal(theta_, theta_rec) assert_almost_equal(phi_, phi_rec) def test_axis_rotation_does_not_affect_axis(): # test 2: does R_around_100 not affect 100? psi_ = np.random.rand() * np.pi R_around_100 = rotation_matrix_around_100(psi_) v100 = np.r_[1, 0, 0] assert_equal(v100, np.dot(R_around_100, v100)) def test_psi_insensitivity_when_doing_psi_theta_phi_rotation(): # test 3: does psi still have no influence on main eigenvector when doing # both rotations? theta_ = np.random.rand() * np.pi phi_ = (np.random.rand() - .5) * np.pi psi_ = np.random.rand() * np.pi R_ = rotation_matrix_100_to_theta_phi_psi(theta_, phi_, psi_) xyz = np.dot(R_, np.r_[1, 0, 0]) _, theta_rec, phi_rec = utils.cart2sphere(xyz) assert_almost_equal(theta_, theta_rec) assert_almost_equal(phi_, phi_rec) def test_rotation_around_axis(): # test 4: does psi really rotate the second vector? psi_ = np.pi # half circle R_around_100 = rotation_matrix_around_100(psi_) v2 = np.r_[0, 1, 0] v2_expected = np.r_[0, -1, 0] v2_rot = np.dot(R_around_100, v2) assert_equal(np.round(v2_rot), v2_expected) def test_rotation_on_bingham_tensor(): # test 5: does combined rotation rotate Bingham well? kappa_ = np.random.rand() beta_ = kappa_ / 2. # beta<kappa Bdiag_ = np.diag(np.r_[kappa_, beta_, 0]) theta_ = np.random.rand() * np.pi phi_ = (np.random.rand() - .5) * np.pi psi_ = np.random.rand() * np.pi * 0 R_ = rotation_matrix_100_to_theta_phi_psi(theta_, phi_, psi_) B_ = R_.dot(Bdiag_).dot(R_.T) eigvals, eigvecs = np.linalg.eigh(B_) main_evec = eigvecs[:, np.argmax(eigvals)] _, theta_rec0, phi_rec0 = utils.cart2sphere(main_evec) # checking if the angles are antipodal to each other if abs(theta_ - theta_rec0) > 1e-5: theta_rec = np.pi - theta_rec0 if phi_rec0 > 0: phi_rec = phi_rec0 - np.pi elif phi_rec0 < 0: phi_rec = phi_rec0 + np.pi else: theta_rec = theta_rec0 phi_rec = phi_rec0 assert_almost_equal(theta_, theta_rec) assert_almost_equal(phi_, phi_rec) assert_almost_equal(np.diag(Bdiag_), np.sort(eigvals)[::-1]) def test_bingham_equal_to_watson(beta_fraction=0): # test if bingham with beta=0 equals watson distribution mu_ = np.random.rand(2) n_cart = utils.sphere2cart(np.r_[1., mu_]) psi_ = np.random.rand() * np.pi odi_ = np.max([0.1, np.random.rand()]) bingham = distributions.SD2Bingham(mu=mu_, psi=psi_, odi=odi_, beta_fraction=beta_fraction) watson = distributions.SD1Watson(mu=mu_, odi=odi_) Bn = bingham(n=n_cart) Wn = watson(n=n_cart) assert_almost_equal(Bn, Wn, 3)
35.938144
77
0.676133
0
0
0
0
0
0
0
0
429
0.123064
3cd3066a814fddcf19dac7173c44fed139f2e632
669
py
Python
head_first_design_patterns/hofs/duck_dispenser.py
incolumepy-cursos/poop
e4ac26b8d2a8c263a93fd9642fab52aafda53d80
[ "MIT" ]
null
null
null
head_first_design_patterns/hofs/duck_dispenser.py
incolumepy-cursos/poop
e4ac26b8d2a8c263a93fd9642fab52aafda53d80
[ "MIT" ]
null
null
null
head_first_design_patterns/hofs/duck_dispenser.py
incolumepy-cursos/poop
e4ac26b8d2a8c263a93fd9642fab52aafda53d80
[ "MIT" ]
null
null
null
__author__ = '@britodfbr' from head_first_design_patterns.hofs import duck from head_first_design_patterns.hofs import fly_behaviors from head_first_design_patterns.hofs import quack_behaviors def run(): # Instatiate ducks print("==== Model duck ====") model = duck.DuckHOF() model.perform_quack() model.perform_fly() model.display() print("==== True duck ====") model.perform_fly = fly_behaviors.fly_wings model.perform_quack = quack_behaviors.quack model.display() print("==== Toy duck ====") model.perform_fly = fly_behaviors.fly_rocket_powered model.perform_quack = quack_behaviors.squeak model.display()
27.875
59
0.715994
0
0
0
0
0
0
0
0
93
0.139013
3cd5abf591689acf3071f0da912c722b5ef681bb
1,279
py
Python
tests/test_zones_json.py
electricitymap/electricitymap-contrib
6572b12d1cef72c734b80273598e156ebe3c22ea
[ "MIT" ]
143
2022-01-01T10:56:58.000Z
2022-03-31T11:25:47.000Z
tests/test_zones_json.py
electricitymap/electricitymap-contrib
6572b12d1cef72c734b80273598e156ebe3c22ea
[ "MIT" ]
276
2021-12-30T15:57:15.000Z
2022-03-31T14:57:16.000Z
tests/test_zones_json.py
electricitymap/electricitymap-contrib
6572b12d1cef72c734b80273598e156ebe3c22ea
[ "MIT" ]
44
2021-12-30T19:48:42.000Z
2022-03-29T22:46:16.000Z
import json import unittest from electricitymap.contrib.config import ZONES_CONFIG ZONE_KEYS = ZONES_CONFIG.keys() class ZonesJsonTestcase(unittest.TestCase): def test_bounding_boxes(self): for zone, values in ZONES_CONFIG.items(): bbox = values.get("bounding_box") if bbox: self.assertLess(bbox[0][0], bbox[1][0]) self.assertLess(bbox[0][1], bbox[1][1]) def test_sub_zones(self): for zone, values in ZONES_CONFIG.items(): sub_zones = values.get("subZoneNames", []) for sub_zone in sub_zones: self.assertIn(sub_zone, ZONE_KEYS) def test_zones_from_geometries_exist(self): world_geometries = json.load(open("web/geo/world.geojson")) world_geometries_zone_keys = set() for ft in world_geometries["features"]: world_geometries_zone_keys.add(ft["properties"]["zoneName"]) all_zone_keys = set(ZONES_CONFIG.keys()) non_existing_zone_keys = sorted(world_geometries_zone_keys - all_zone_keys) assert ( len(non_existing_zone_keys) == 0 ), f"{non_existing_zone_keys} are defined in world.geojson but not in zones.json" if __name__ == "__main__": unittest.main(buffer=True)
34.567568
89
0.656763
1,099
0.859265
0
0
0
0
0
0
171
0.133698
3cd609e71dc0ee42d0acf42ff022c5f15ae9992d
3,483
py
Python
app/bda_core/entities/training/word2vec_trainer.py
bda-19fs/bda-chatbot
4fcbda813ff5d3854a4c2e12413775676bcba9e2
[ "MIT" ]
1
2019-05-25T12:12:39.000Z
2019-05-25T12:12:39.000Z
app/bda_core/entities/training/word2vec_trainer.py
bda-19fs/bda-chatbot
4fcbda813ff5d3854a4c2e12413775676bcba9e2
[ "MIT" ]
null
null
null
app/bda_core/entities/training/word2vec_trainer.py
bda-19fs/bda-chatbot
4fcbda813ff5d3854a4c2e12413775676bcba9e2
[ "MIT" ]
null
null
null
import gensim import numpy as np class Config: ''' This class represents the configuration for the Word2Vec model. ''' def __init__(self, dimension=150, hierarchical_softmax=0, negative_sampling=0, ns_exponent=0, sample=0, window_size=5, workers=3, use_skip_gram=1, min_count=2, epochs=10): self.dimension = dimension self.hierarchical_softmax = hierarchical_softmax self.negative_sampling = negative_sampling self.ns_exponent = ns_exponent self.sample = sample self.window_size = window_size self.workers = workers self.use_skip_gram = use_skip_gram self.min_count = min_count self.epochs = epochs def fit_model(sentences, config): ''' Fits the Word2Vec model with the given sentences. The vectors were normalized after the training. A further training of the model is not possible. :param sentences: A python list of sentences :param config: The config for the model :return: The trained Word2Vec model ''' model = gensim.models.Word2Vec(size=config.dimension, hs=config.hierarchical_softmax, window=config.window_size, workers=config.workers, sg=config.use_skip_gram, min_count=2) model.build_vocab(sentences) model.train(sentences, total_examples=len(sentences), epochs=config.epochs) model.init_sims(replace=True) return model def avg_word_vector(model, word_list): ''' Calculates the average vector of a list of words. The average vector is the mean of all word vectors. Only words of the Word2Vec vocabulary can be considered. :param model: The trained Word2Vec model :param word_list: A python list of words :return: The average vector ''' words = [word for word in word_list if word in model.wv.vocab] return np.mean(model.wv.__getitem__(words), axis=0) def transpose_vector(vec): ''' Returns a new vector that is the transposition of the given vector. :param vec: The vector to transpose :return: The transposition vector ''' return vec[np.newaxis] def create_sentence_vectors(model, questions): ''' Calculates the average vectors for all questions. The order of the sentences list will remain in the returned list of vectors. :param model: The trained Word2Vec model :param questions: A python list of word lists :return: A list of average vectors ''' vectors = [] for i in range(len(questions)): word_list = [word for word in questions[i] if word in model.wv.vocab] avg_vector = None if len(word_list) > 0: avg_vector = avg_word_vector(model, word_list) vectors.append(avg_vector) vectors = np.array(vectors) return vectors def create_matrix_from_vectors(vectors): ''' Creates a matrix that contains all vectors of the given vector list as row vectors. :param vectors: A list of vectors with the same dimension :return: The concatenation matrix of the given vectors ''' vectors_len = len(vectors) if vectors_len > 0: matrix = transpose_vector(vectors[0]) for i in range(1, vectors_len): vec = vectors[i] if vec is not None: transposed = transpose_vector(vectors[i]) matrix = np.concatenate((matrix, transposed), axis=0) return matrix else: raise Exception('the given list of vectors is empty')
35.907216
116
0.681022
678
0.19466
0
0
0
0
0
0
1,375
0.394775
3cd825fe40c8c6d189d67799fba8e31f6ba53c8a
642
py
Python
polls/migrations/0008_auto_20150918_1715.py
santeyio/phantastesproject
5ce1e2cb59e8283fe280e01d0e185be62cd4001a
[ "MIT" ]
null
null
null
polls/migrations/0008_auto_20150918_1715.py
santeyio/phantastesproject
5ce1e2cb59e8283fe280e01d0e185be62cd4001a
[ "MIT" ]
null
null
null
polls/migrations/0008_auto_20150918_1715.py
santeyio/phantastesproject
5ce1e2cb59e8283fe280e01d0e185be62cd4001a
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations from django.conf import settings class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('polls', '0007_vote'), ] operations = [ migrations.RemoveField( model_name='book', name='votes', ), migrations.AddField( model_name='book', name='user', field=models.ForeignKey(default=1, to=settings.AUTH_USER_MODEL), preserve_default=False, ), ]
23.777778
76
0.605919
500
0.778816
0
0
0
0
0
0
66
0.102804
3cd8375d5dea7465c5253237889db106c353b42a
4,342
py
Python
src/main/python/bktools/framework/money/currency.py
bspa10/bktools
8ddff2bb325df6c4c2bb5cadd3029c0e11ba0734
[ "MIT" ]
null
null
null
src/main/python/bktools/framework/money/currency.py
bspa10/bktools
8ddff2bb325df6c4c2bb5cadd3029c0e11ba0734
[ "MIT" ]
null
null
null
src/main/python/bktools/framework/money/currency.py
bspa10/bktools
8ddff2bb325df6c4c2bb5cadd3029c0e11ba0734
[ "MIT" ]
null
null
null
# encoding: utf-8 # Standard Library from os import path from threading import Lock from typing import Set from typing import Optional from xml.etree import ElementTree as ET from xml.etree.ElementTree import Element # 3rd Party Library # Current Folder # Current Application # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= class Currency(object): """ ISO 4217 currency. """ __slots__ = ('__code', '__name', '__number', '__precision') def __init__(self, code: str, name: str, number: int, precision: int): self.__code = code self.__name = name self.__number = number self.__precision = precision @property def code(self) -> str: """ The currency code which consist of 3 uppercase characters. e.g: USD, BRL """ return self.__code @property def name(self) -> str: """ Currency Name. i.e. US Dollar, Brazilian Real """ return self.__name @property def number(self) -> int: """ The currency number. e.g: 840 -> US Dollar 986 -> Brazilian Real """ return self.__number @property def precision(self) -> int: """ The treatment of minor currency unit, in exponent where base is 10. For example, a U.S. dollar is 100 cents, witch is 2. """ return self.__precision #: -=-=-=-=-=-=-=-=-=-=-= #: Comparation Functions #: -=-=-=-=-=-=-=-=-=-=-= def __eq__(self, other): if not isinstance(other, Currency): return False return self.number == other.number #: -=-=-=-=-=-=-=-=-=-=-= #: Utility Functions #: -=-=-=-=-=-=-=-=-=-=-= def __hash__(self): return hash(self.number) def __repr__(self): return f'{self.__class__.__name__} {self.code}' class Currencies(object): """ Factory of ISO 4217 - Currency Code. """ __slots__ = '_' __guard = Lock() __entries: Set[Currency] = set() __BASE_DIR = path.abspath(path.dirname(__file__)) def __init__(self): with self.__guard: if self.__entries: return #: http://www.currency-iso.org/dam/downloads/lists/list_one.xml file = path.abspath(f'{self.__BASE_DIR}/iso4217.xml') raw: Element = ET.parse(file) for node in raw.findall('CcyTbl/CcyNtry'): country = self.__get_value(node, 'CtryNm') if country and country.startswith('ZZ'): # Ignore none-real countries continue code = self.__get_value(node, 'Ccy') name = self.__get_value(node, 'CcyNm') number = self.__get_value(node, 'CcyNbr') unit = self.__get_value(node, 'CcyMnrUnts') if code and name and number: try: currency = Currency(code, name, int(number), int(unit)) except (TypeError, ValueError): currency = Currency(code, name, int(number), 0) self.__entries.add(currency) @staticmethod def __get_value(node: Element, key: str) -> Optional[str]: element = node.find(key) if element is not None: return element.text.strip() return None @classmethod def code(cls, code: str) -> Optional[Currency]: """ Retrieve the Currency object by its code. e.g. BRL, USD Parameters: code: The currency code. e.g. BRL Returns: the Currency object """ code = code.upper() for entry in cls().__entries: if entry.code == code: return entry return None @classmethod def number(cls, number: int) -> Optional[Currency]: """ Retrieve the Currency object by its number. e.g. 986 (BRL), 840 (USD) Parameters: number: The currency number. e.g. 840 (USD) Returns: the Currency object """ for entry in cls().__entries: if entry.number == number: return entry return None
25.692308
120
0.52211
3,936
0.906495
0
0
1,804
0.415477
0
0
1,577
0.363197
3cd8a7fa6829673461545374eeacd667661ea155
4,863
py
Python
DemoFinal.py
sohinim006/Heroku-App-demo
875b894b48e8544f6dbe629635f195ccd97ba201
[ "MIT" ]
null
null
null
DemoFinal.py
sohinim006/Heroku-App-demo
875b894b48e8544f6dbe629635f195ccd97ba201
[ "MIT" ]
1
2020-06-02T02:53:57.000Z
2020-06-02T02:53:57.000Z
DemoFinal.py
sohinim006/Heroku-App-demo
875b894b48e8544f6dbe629635f195ccd97ba201
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np import pandas as pd import pickle # In[2]: data=pd.read_csv("wd.csv",encoding="ISO-8859-1") # In[3]: data # In[4]: data.fillna(0,inplace=True) #it fills NaN with O's # In[5]: data # In[6]: data.dtypes # In[7]: #conversion data['Temp']=pd.to_numeric(data['Temp'],errors='coerce') data['D.O. (mg/l)']=pd.to_numeric(data['D.O. (mg/l)'],errors='coerce') data['PH']=pd.to_numeric(data['PH'],errors='coerce') data['B.O.D. (mg/l)']=pd.to_numeric(data['B.O.D. (mg/l)'],errors='coerce') data['CONDUCTIVITY (µmhos/cm)']=pd.to_numeric(data['CONDUCTIVITY (µmhos/cm)'],errors='coerce') data['NITRATENAN N+ NITRITENANN (mg/l)']=pd.to_numeric(data['NITRATENAN N+ NITRITENANN (mg/l)'],errors='coerce') data['TOTAL COLIFORM (MPN/100ml)Mean']=pd.to_numeric(data['TOTAL COLIFORM (MPN/100ml)Mean'],errors='coerce') data.dtypes # In[8]: #initialization start=2 end=1779 station=data.iloc [start:end ,0] location=data.iloc [start:end ,1] state=data.iloc [start:end ,2] do= data.iloc [start:end ,4].astype(np.float64) value=0 ph = data.iloc[ start:end,5] co = data.iloc [start:end ,6].astype(np.float64) year=data.iloc[start:end,11] tc=data.iloc [2:end ,10].astype(np.float64) bod = data.iloc [start:end ,7].astype(np.float64) na= data.iloc [start:end ,8].astype(np.float64) na.dtype # In[9]: data=pd.concat([station,location,state,do,ph,co,bod,na,tc,year],axis=1) data. columns = ['station','location','state','do','ph','co','bod','na','tc','year'] # In[10]: data # In[11]: #calulation of Ph data['npH']=data.ph.apply(lambda x: (100 if (8.5>=x>=7) else(80 if (8.6>=x>=8.5) or (6.9>=x>=6.8) else(60 if (8.8>=x>=8.6) or (6.8>=x>=6.7) else(40 if (9>=x>=8.8) or (6.7>=x>=6.5) else 0))))) # In[12]: #calculation of dissolved oxygen data['ndo']=data.do.apply(lambda x:(100 if (x>=6) else(80 if (6>=x>=5.1) else(60 if (5>=x>=4.1) else(40 if (4>=x>=3) else 0))))) # In[13]: #calculation of total coliform data['nco']=data.tc.apply(lambda x:(100 if (5>=x>=0) else(80 if (50>=x>=5) else(60 if (500>=x>=50) else(40 if (10000>=x>=500) else 0))))) #calculation of electrical conductivity data['nec']=data.co.apply(lambda x:(100 if (75>=x>=0) else(80 if (150>=x>=75) else(60 if (225>=x>=150) else(40 if (300>=x>=225) else 0))))) # In[14]: #calc of B.D.O data['nbdo']=data.bod.apply(lambda x:(100 if (3>=x>=0) else(80 if (6>=x>=3) else(60 if (80>=x>=6) else(40 if (125>=x>=80) else 0))))) # In[15]: data # In[16]: #Calulation of nitrate data['nna']=data.na.apply(lambda x:(100 if (20>=x>=0) else(80 if (50>=x>=20) else(60 if (100>=x>=50) else(40 if (200>=x>=100) else 0))))) data.head() data.dtypes # In[17]: data # In[18]: from sklearn.model_selection import train_test_split # In[19]: data=data.drop(['station','location'],axis=1) # In[20]: data # In[21]: data=data.drop(['do','ph','co','bod','na','tc'],axis=1) # In[22]: data # In[24]: yt=data['nco'] # In[25]: yt # In[26]: data=data.drop(['nco'],axis=1) # In[27]: data # In[28]: x_t,x_tt,y_t,y_tt=train_test_split(data,yt,test_size=0.2,random_state=4) # In[29]: #reg2.fit(x_t,y_t) # In[30]: #a2=reg2.predict(x_tt) #a2 #randomforest # In[39]: from sklearn.ensemble import RandomForestRegressor # In[40]: rfr=RandomForestRegressor(n_estimators=1000,random_state=42) # In[41]: rfr.fit(x_t,y_t) pickle.dump(rfr,open('model.pkl','wb')) # In[42]: model = pickle.load(open('model.pkl','rb')) yrfr=rfr.predict(x_tt) # In[43]: from sklearn.metrics import mean_squared_error print('mse:%.2f'%mean_squared_error(y_tt,yrfr)) # In[44]: y_tt # In[45]: yrfr # In[47]: dtrfr = pd.DataFrame({'Actual': y_tt, 'Predicted': yrfr}) dtrfr.head(20) # In[48]: from sklearn.metrics import r2_score # In[49]: print(r2_score(y_tt,yrfr)) # In[ ]:
15.438095
112
0.499897
0
0
0
0
0
0
0
0
1,181
0.242754
3cd8ed3786032ec99ff11bc34e84132d3b428b08
1,926
py
Python
Classes/gaussian.py
sankarebarri/Python
0c39da1df74d74b7b0a3724e57b5205a7d88537f
[ "MIT" ]
null
null
null
Classes/gaussian.py
sankarebarri/Python
0c39da1df74d74b7b0a3724e57b5205a7d88537f
[ "MIT" ]
null
null
null
Classes/gaussian.py
sankarebarri/Python
0c39da1df74d74b7b0a3724e57b5205a7d88537f
[ "MIT" ]
null
null
null
import numpy as np import math class Gaussian: def __init__(self, mu=0, sigma=1): self.mean = mu self.stdev = sigma self.data = [] def calculate_mean(self): self.mean = np.mean(self.data) return self.mean def calculate_stdev(self, sample=True): x_mean = self.calculate_mean() mean_item_squared = [] for i in range(len(self.data)): mean_item = (self.data[i] - x_mean)**2 mean_item_squared.append(mean_item) self.stdev = math.sqrt(np.sum(mean_item_squared) / len(self.data)) sample_length = len(self.data) if sample: self.stdev = math.sqrt(np.sum(mean_item_squared) / (sample_length-1)) return self.stdev return self.stdev def read_data_file(self, file_name, sample=True): with open(file_name) as file: data_list = [] line = file.readline() while line: data_list.append(line) line = file.readline() file.close() self.data = data_list self.mean = self.calculate_mean() self.stdev = self.calculate_stdev(sample=True) def __add__(self, other): results = Gaussian() results.mean = self.mean + other.mean results.stdev = math.sqrt(self.stdev**2 + other.stdev**2) return results def __repr__(self): return f'mean is {self.mean}, stdev is {self.stdev}' data = [9, 2, 5, 4, 12, 7] gaussian = Gaussian() gaussian.data = data print(gaussian.calculate_mean()) print(gaussian.calculate_stdev(sample=True)) gaussian_one = Gaussian(5, 2) gaussian_two = Gaussian(7, 3) gaussian_sum = gaussian_one + gaussian_two print(gaussian_sum) print(gaussian_sum.stdev) print(gaussian_sum.mean)
27.126761
81
0.574247
1,544
0.801661
0
0
0
0
0
0
45
0.023364
3cda167a85c43c6395a461abd5b9210a39f3e5bb
987
py
Python
setup.py
datagovau/ckanext-datagovau
902c80a9c3a07ad6bbd52a4b19dac8a3ec2686b9
[ "Apache-2.0" ]
1
2019-07-22T08:02:11.000Z
2019-07-22T08:02:11.000Z
setup.py
datagovau/ckanext-datagovau
902c80a9c3a07ad6bbd52a4b19dac8a3ec2686b9
[ "Apache-2.0" ]
null
null
null
setup.py
datagovau/ckanext-datagovau
902c80a9c3a07ad6bbd52a4b19dac8a3ec2686b9
[ "Apache-2.0" ]
6
2015-01-23T16:32:18.000Z
2021-06-27T03:42:18.000Z
from setuptools import find_packages, setup version = "1.0.0a1" # Keep in case we still need pylons...Just use the line below in place # of the install_requires argument in the call to setup(). # install_requires=['requests', 'feedparser', 'pylons', 'python-dateutil'], setup( name="ckanext-datagovau", version=version, description="Extension for customising CKAN for data.gov.au", long_description="", classifiers=[], # Get strings from http://pypi.python.org/pypi?%3Aaction=list_classifiers keywords="", author="Greg von Nessi", author_email="greg.vonnessi@linkdigital.com.au", url="", license="", packages=find_packages(exclude=["ez_setup", "examples", "tests"]), namespace_packages=["ckanext", "ckanext.datagovau"], include_package_data=True, zip_safe=False, install_requires=[ "typing_extensions", ], entry_points=""" [ckan.plugins] datagovau = ckanext.datagovau.plugin:DataGovAuPlugin """, )
32.9
94
0.690983
0
0
0
0
0
0
0
0
570
0.577508
3ce1874797f955e0861f0ec1dfc943c5714b8253
6,192
py
Python
utils.py
kalpetros/greek-dictionary
962f36c299cbb46ffce9c7f78db7c9e513269499
[ "MIT" ]
3
2021-04-27T16:39:12.000Z
2021-11-17T02:15:13.000Z
utils.py
kalpetros/greek-dictionary
962f36c299cbb46ffce9c7f78db7c9e513269499
[ "MIT" ]
null
null
null
utils.py
kalpetros/greek-dictionary
962f36c299cbb46ffce9c7f78db7c9e513269499
[ "MIT" ]
1
2021-06-15T23:57:44.000Z
2021-06-15T23:57:44.000Z
import click import os import requests import shutil import sys import time from bs4 import BeautifulSoup alphabet = [ { 'letter': 'Α', 'pages': 31660 }, { 'letter': 'Β', 'pages': 5050 }, { 'letter': 'Γ', 'pages': 5890 }, { 'letter': 'Δ', 'pages': 7130 }, { 'letter': 'Ε', 'pages': 12530 }, { 'letter': 'Ζ', 'pages': 1500 }, { 'letter': 'Η', 'pages': 1310 }, { 'letter': 'Θ', 'pages': 2300 }, { 'letter': 'Ι', 'pages': 1720 }, { 'letter': 'Κ', 'pages': 17700 }, { 'letter': 'Λ', 'pages': 4740 }, { 'letter': 'Μ', 'pages': 13020 }, { 'letter': 'Ν', 'pages': 3790 }, { 'letter': 'Ξ', 'pages': 5250 }, { 'letter': 'Ο', 'pages': 4970 }, { 'letter': 'Π', 'pages': 18560 }, { 'letter': 'Ρ', 'pages': 2720 }, { 'letter': 'Σ', 'pages': 14340 }, { 'letter': 'Τ', 'pages': 7680 }, { 'letter': 'Υ', 'pages': 3170 }, { 'letter': 'Φ', 'pages': 5640 }, { 'letter': 'Χ', 'pages': 5370 }, { 'letter': 'Ψ', 'pages': 2080 }, { 'letter': 'Ω', 'pages': 470 } ] def is_clean(word): """ Check for profanity """ clean = True profane_words = [] if word in profane_words: clean = False return clean def log(text, type): colors = { 'success': 'green', 'info': 'yellow', 'warning': 'red' } click.secho(f'[{type}] - {text}', fg=colors[type]) def get_source(url): """ Get page source for the given url """ rs = requests.get(url) source = BeautifulSoup(rs.content, 'html.parser') return source def parse(source): """ Return words array for the given page source """ children = source.find(id='lemmas').children words = [] for node in children: dt = node.find('dt') if dt != -1: word = dt.find('b').text.strip(',') words.append(word) return words def scrape(letter: str, pages: int): """ Scrapes www.greek-language.gr to build a full list of modern Greek words https://www.greek-language.gr/greekLang/index.html """ log(f'Getting letter {letter} words...', 'info') start = time.time() url = 'https://www.greek-language.gr/greekLang/modern_greek/tools/lexica/reverse/search.html' results = [] page = 0 while page <= int(pages): time.sleep(0.1) endpoint = f'{url}?start={page}&lq={letter}*' source = get_source(endpoint) words = parse(source) page = page + 10 for word in words: results.append(word) end = time.time() total = end - start log(f'Got {letter} in {total}', 'success') return results def get_data(file_name): """ Return words in a given file """ results = [] if not os.path.isfile(file_name): return results try: with open(file_name, 'r') as words: for word in words: results.append(word.strip()) except Exception as e: log(f'Could not get data {str(e)}', 'warning') return results def check(): """ Check if necessary files exist """ if not os.path.isfile('files/el.txt'): log('el.txt is missing from files. Please restore the repository.', 'warning') sys.exit(2) if not os.path.isdir('output'): log('Output folder is missing. Creating folder...', 'warning') os.mkdir('output') def clean_output(): """ Delete output files and folder """ if not os.path.isdir('output'): log('Working directory already clean...', 'info') return shutil.rmtree('output') log('Working directory clean', 'success') return def romanize_words(words): """ Romanize words """ mappings = { 'α': 'a', 'ά': 'a', 'β': 'v', 'γ': 'g', 'δ': 'd', 'ε': 'e', 'έ': 'e', 'ζ': 'z', 'η': 'i', 'ή': 'i', 'θ': 'th', 'ι': 'i', 'ί': 'i', 'ϊ': 'i', 'ΐ': 'i', 'κ': 'k', 'λ': 'l', 'μ': 'm', 'ν': 'n', 'ξ': 'ks', 'ο': 'o', 'ό': 'o', 'π': 'p', 'ρ': 'r', 'σ': 's', 'ς': 's', 'τ': 't', 'υ': 'y', 'ύ': 'y', 'ϋ': 'y', 'ΰ': 'y', 'φ': 'f', 'χ': 'h', 'x': 'h', 'ψ': 'ps', 'ω': 'o', 'ώ': 'o', '-': '-', '!': '!', '.': '.', ',': ',', "'": "'" } results = [] if not words: log('No data provided', 'info') return results for word in words: result = [] chars = list(word.strip()) for char in chars: try: char = char.lower() result.append(mappings[char]) except Exception as e: log(f'Could not map {str(e)}', 'warning') word = ''.join(result) results.append(word) log('Romanized all words', 'success') return results def export(file_name, words, file_type='txt'): """ Create a words file """ if not words: log('No data provided', 'warning') return check() log(f'Creating file {file_name}.{file_type}...', 'info') output = open(f'output/{file_name}.{file_type}', 'w') if file_type == 'json': output.write('[') for word in words: if file_type == 'txt': output.write(f'{word.strip()}\n') elif file_type == 'json': output.write(f'"{word.strip()}",\n') if file_type == 'json': output.write(']') output.close() log(f'Created {file_name}.{file_type}', 'success')
18.211765
97
0.439599
0
0
0
0
0
0
0
0
2,142
0.34261
3ce716ac3e56a4c2bf161beb78851142feb3c86b
1,585
py
Python
pysanejs/api.py
Lookyloo/PySaneJS
99615608222d7386e74472bcc052f40b05916b2a
[ "BSD-2-Clause" ]
1
2019-01-30T16:12:32.000Z
2019-01-30T16:12:32.000Z
pysanejs/api.py
CIRCL/PySaneJS
501f22d0d22d6361bb71a8bf0bbb2e14d3c0f9f1
[ "BSD-2-Clause" ]
36
2021-06-09T17:34:05.000Z
2022-03-28T09:04:37.000Z
pysanejs/api.py
Lookyloo/PySaneJS
99615608222d7386e74472bcc052f40b05916b2a
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import requests from urllib.parse import urljoin from typing import Union, Dict, List, Optional class SaneJS(): def __init__(self, root_url: str='https://sanejs.circl.lu/'): self.root_url = root_url self.session = requests.session() @property def is_up(self) -> bool: try: r = self.session.head(self.root_url) return r.status_code == 200 except Exception: return False def sha512(self, sha512: Union[str, list]) -> Dict[str, List[str]]: '''Search for a hash (sha512) Reponse: { "response": [ "libraryname|version|filename", ... ] } ''' r = self.session.post(urljoin(self.root_url, 'sha512'), json={'sha512': sha512}) return r.json() def library(self, library: Union[str, list], version: Optional[str]=None) -> Dict[str, Dict[str, Dict[str, Dict[str, str]]]]: ''' Search for a library by name. Response: { "response": { "libraryname": { "version": { "filename": "sha512", ... } ... }, ... } } ''' to_query = {'library': library} if version: to_query['version'] = version r = self.session.post(urljoin(self.root_url, 'library'), json=to_query) return r.json()
28.303571
129
0.477603
1,439
0.907886
0
0
191
0.120505
0
0
658
0.415142
3ce959e8fac079b9e0e0bacc34e00bde93edb83c
1,937
py
Python
Log1/HiPyQt3/HiPyQt38QTableWidget.py
codenara/PyQt1
1550920577188e4d318b47fc69ba5ee243092d88
[ "MIT" ]
null
null
null
Log1/HiPyQt3/HiPyQt38QTableWidget.py
codenara/PyQt1
1550920577188e4d318b47fc69ba5ee243092d88
[ "MIT" ]
null
null
null
Log1/HiPyQt3/HiPyQt38QTableWidget.py
codenara/PyQt1
1550920577188e4d318b47fc69ba5ee243092d88
[ "MIT" ]
null
null
null
# HiPyQt version 3.8 # use QTableWidget # use QCheckBox # use QPushButton import sys from PyQt5.QtWidgets import * class MyWindow(QMainWindow): def __init__(self): super().__init__() self.setWindowTitle("Hi PyQt") self.setGeometry(50, 50, 400, 300) # QTableWidget self.tableWidget = QTableWidget(self) self.tableWidget.resize(290, 290) self.tableWidget.setRowCount(2) self.tableWidget.setColumnCount(2) self.tableWidget.setItem(0, 0, QTableWidgetItem("John")) self.tableWidget.setItem(0, 1, QTableWidgetItem("21")) self.tableWidget.setItem(1, 0, QTableWidgetItem("Paul")) self.tableWidget.setItem(1, 1, QTableWidgetItem("22")) horizontalHeaderLabels = ["Name", "Age"] self.tableWidget.setHorizontalHeaderLabels(horizontalHeaderLabels) verticalHeaderLabels = ["One", "Two"] self.tableWidget.setVerticalHeaderLabels(verticalHeaderLabels) # QCheckBox self.checkBox = QCheckBox("Editable", self) self.checkBox.move(300, 10) self.checkBox.resize(90, 30) self.checkBox.stateChanged.connect(self.checkBox_stateChanged) # QPushButton self.button = QPushButton("Resize", self) self.button.move(300, 50) self.button.resize(80, 30) self.button.clicked.connect(self.button_clicked) def checkBox_stateChanged(self): if self.checkBox.isChecked() == True: self.tableWidget.setEditTriggers(QAbstractItemView.AllEditTriggers) # Enable editing else: self.tableWidget.setEditTriggers(QAbstractItemView.NoEditTriggers) # Disable editing def button_clicked(self): self.tableWidget.resizeColumnsToContents() self.tableWidget.resizeRowsToContents() if __name__ == "__main__": app = QApplication(sys.argv) myWindow = MyWindow() myWindow.show() app.exec()
32.283333
97
0.674239
1,695
0.875065
0
0
0
0
0
0
219
0.113061
3cea6fdbaa10d4f4a87f24213944a946b586b65c
1,346
py
Python
predictor.py
abhayraw1/crnn.pytorch
307f2dbf8163148d165ef15cdd522c7c137041e4
[ "MIT" ]
null
null
null
predictor.py
abhayraw1/crnn.pytorch
307f2dbf8163148d165ef15cdd522c7c137041e4
[ "MIT" ]
null
null
null
predictor.py
abhayraw1/crnn.pytorch
307f2dbf8163148d165ef15cdd522c7c137041e4
[ "MIT" ]
null
null
null
import torch from torch.autograd import Variable from . import utils from . import dataset from PIL import Image from pathlib import Path from . import crnn model_path = Path(__file__).parent/'data/crnn.pth' alphabet = '0123456789abcdefghijklmnopqrstuvwxyz' model = crnn.CRNN(32, 1, 37, 256) if torch.cuda.is_available(): model = model.cuda() print('loading pretrained model from %s' % model_path) model.load_state_dict(torch.load(model_path)) converter = utils.strLabelConverter(alphabet) transformer = dataset.resizeNormalize((100, 32)) def predict(img_path=None, arr=None): assert img_path is not None or arr is not None if arr is not None: image = Image.fromarray(arr) else: image = Image.open(img_path) image = image.convert('L') image = transformer(image) if torch.cuda.is_available(): image = image.cuda() image = image.view(1, *image.size()) image = Variable(image) model.eval() preds = model(image) _, preds = preds.max(2) preds = preds.transpose(1, 0).contiguous().view(-1) preds_size = Variable(torch.IntTensor([preds.size(0)])) raw_pred = converter.decode(preds.data, preds_size.data, raw=True) sim_pred = converter.decode(preds.data, preds_size.data, raw=False) # print('%-20s => %-20s' % (raw_pred, sim_pred)) return sim_pred
28.041667
71
0.696137
0
0
0
0
0
0
0
0
138
0.102526
3ced3da168b0c4d5fb8345ab35a6e8f79cade777
2,951
py
Python
src/graph_transpiler/webdnn/backend/webgl/kernels/split_axis.py
gunpowder78/webdnn
c659ea49007f91d178ce422a1eebe289516a71ee
[ "MIT" ]
1
2018-07-26T13:52:21.000Z
2018-07-26T13:52:21.000Z
src/graph_transpiler/webdnn/backend/webgl/kernels/split_axis.py
gunpowder78/webdnn
c659ea49007f91d178ce422a1eebe289516a71ee
[ "MIT" ]
null
null
null
src/graph_transpiler/webdnn/backend/webgl/kernels/split_axis.py
gunpowder78/webdnn
c659ea49007f91d178ce422a1eebe289516a71ee
[ "MIT" ]
null
null
null
from typing import List, Sequence from webdnn.backend.code_generator.injectors.kernel_name_injector import KernelNameInjector from webdnn.backend.webgl.attributes.channel_mode import ChannelMode, ChannelModeEnum from webdnn.backend.webgl.generator import WebGLDescriptorGenerator from webdnn.backend.webgl.kernel import Kernel from webdnn.backend.webgl.kernels.util import FragmentShaderPreamble, texture_stride, texture_shape from webdnn.backend.webgl.uniform_injector import UniformInjector from webdnn.graph.operators.split_axis import SplitAxis template = FragmentShaderPreamble + """ %%UNIFORM(sampler2D, sampler_x)%%; %%UNIFORM(vec2, texture_stride_y)%%; %%UNIFORM(vec4, variable_shape_y)%%; %%UNIFORM(vec4, variable_stride_y)%%; %%UNIFORM(vec4, variable_shape_x)%%; %%UNIFORM(vec4, variable_stride_x)%%; %%UNIFORM(vec2, texture_stride_x)%%; %%UNIFORM(vec2, texture_shape_x)%%; %%UNIFORM(vec4, offset)%%; void main() { vec4 variable_position_y = convert_position(gl_FragCoord.xy, texture_stride_y, variable_stride_y, variable_shape_y); vec4 variable_position_x = variable_position_y + offset; float x = texture2D(sampler_x, convert_coord(variable_position_x, variable_stride_x, texture_stride_x, texture_shape_x)).r; gl_FragColor = vec4(x, 0, 0, 0); } """ def _pad_to_4d(arr: Sequence[int], val: int = 1): assert len(arr) <= 4, ValueError arr = list(arr) while len(arr) < 4: arr.append(val) return arr @WebGLDescriptorGenerator.register_handler(SplitAxis) def split_axis(op: SplitAxis) -> List[Kernel]: x = op.inputs["x"] ys = [op.outputs[f"y{i}"] for i in range(len(op.outputs))] sections = [0] + op.sections axis = op.axis kernels = [] for i, y in enumerate(ys): assert x.order.check_same_axes(y.order) assert ChannelMode.get(x) == ChannelMode.get(y) == ChannelModeEnum.R name_injector = KernelNameInjector(op) uniform_injector = UniformInjector() offset = [sections[i] if a == axis else 0 for a in y.order.axes] uniform_injector.register({ "sampler_x": x, "texture_stride_y": texture_stride(y), "variable_shape_y": _pad_to_4d(y.shape), "variable_stride_y": _pad_to_4d(y.stride), "texture_shape_x": texture_shape(x), "texture_stride_x": texture_stride(x), "variable_shape_x": _pad_to_4d([x.shape_dict[a] for a in y.order.axes]), "variable_stride_x": _pad_to_4d([x.stride_dict[a] for a in y.order.axes]), "offset": _pad_to_4d(offset, 0) }) source = template source = uniform_injector.inject(source) source = name_injector.inject(source) kernel = Kernel( source, name_injector.name, uniform_injector.samplers, uniform_injector.uniforms, y ) kernels.append(kernel) return kernels
32.788889
127
0.686208
0
0
0
0
1,485
0.503219
0
0
857
0.29041
3ced6fbe48c455d53e5baee0065fd6577be73a4b
35
py
Python
__init__.py
chunlaw/GeoNews
836547a51a0ed177f04135979e0a0f5212e88ed7
[ "MIT" ]
3
2016-09-05T13:43:59.000Z
2016-09-05T15:36:12.000Z
__init__.py
chunlaw/GeoNews
836547a51a0ed177f04135979e0a0f5212e88ed7
[ "MIT" ]
null
null
null
__init__.py
chunlaw/GeoNews
836547a51a0ed177f04135979e0a0f5212e88ed7
[ "MIT" ]
null
null
null
__all__ = ['models'] import models
11.666667
20
0.714286
0
0
0
0
0
0
0
0
8
0.228571
3cedde962258fae75ef3400a99dada61c8a82bd1
1,244
py
Python
systemstat.py
asl97/asl97-i3bar-status-spacer
83245582cf8973b0d128b5ed806e776e00960c5e
[ "MIT" ]
null
null
null
systemstat.py
asl97/asl97-i3bar-status-spacer
83245582cf8973b0d128b5ed806e776e00960c5e
[ "MIT" ]
null
null
null
systemstat.py
asl97/asl97-i3bar-status-spacer
83245582cf8973b0d128b5ed806e776e00960c5e
[ "MIT" ]
null
null
null
import time import psutil def _parsesendrecv(interface, new, old): up = max(new[interface].bytes_sent - old[interface].bytes_sent, -1) down = max(new[interface].bytes_recv - old[interface].bytes_recv, -1) return up, down class _netlink: def __init__(self): self.old = psutil.net_io_counters(pernic=True) def get_status(self, exclude=[]): new = psutil.net_io_counters(pernic=True) o = [] with open("/proc/net/route") as f: route = f.read() for interface in new: if interface in exclude or interface not in route: continue up, down = _parsesendrecv(interface, new, self.old) if up == -1: sup = "?K" else: sup = "%.1fK" % (up/1024) if down == -1: sdown = "?K" else: sdown = "%.1fK" % (down/1024) o.append((interface, sup, sdown)) self.old = new return o netlink = _netlink().get_status def cpu(): return psutil.cpu_percent() def ram(): mem = psutil.virtual_memory() return ((mem.used+mem.buffers)/mem.total)*100 def datetime(): return time.strftime("%a %d/%m/%Y %H:%M:%S")
28.272727
73
0.549035
769
0.618167
0
0
0
0
0
0
61
0.049035
3cefbde68b0741c1883ec538b390be6d177b8949
18,044
py
Python
tests/test_net.py
ciubecca/kalasanty
df99f6814f073f2fb0fbd271d2fbfccb209c4b45
[ "BSD-3-Clause" ]
1
2021-10-19T16:59:31.000Z
2021-10-19T16:59:31.000Z
tests/test_net.py
ciubecca/kalasanty
df99f6814f073f2fb0fbd271d2fbfccb209c4b45
[ "BSD-3-Clause" ]
null
null
null
tests/test_net.py
ciubecca/kalasanty
df99f6814f073f2fb0fbd271d2fbfccb209c4b45
[ "BSD-3-Clause" ]
1
2021-10-20T13:05:56.000Z
2021-10-20T13:05:56.000Z
import os import numpy as np import h5py import tempfile import pytest from keras import backend as K from keras.layers import Input, Convolution3D, concatenate from keras.models import Model from keras.optimizers import Adam import pybel from tfbio.data import Featurizer from kalasanty.net import dice_np, dice, dice_loss, ovl_np, ovl, ovl_loss, DataWrapper, UNet path = os.path.dirname(os.path.realpath(__file__)) test_dataset = os.path.join(path, 'test_data.hdf') protein_file = os.path.join(path, 'datasets', 'scpdb', '2qfo_1', 'protein.mol2') featurizer = Featurizer(save_molecule_codes=False) num_features = len(featurizer.FEATURE_NAMES) input_shape = (1, 4, 2, 3, 1) arr_zeros = np.zeros(input_shape) arr_ones = np.ones(input_shape) def teardown_function(function): K.clear_session() @pytest.fixture(scope='function') def data(): data = DataWrapper(test_dataset, test_set=0.2, max_dist=52, scale=0.33) yield data data.close() @pytest.mark.parametrize('smoothing', (0, 0.1, 0.001), ids=lambda x: 'smoothing %s' % x) def test_dice(smoothing): x = Input(input_shape[1:]) m = Model(inputs=x, outputs=x) arr_random = np.random.choice([0, 1], size=input_shape, p=[0.75, 0.25]) arrays = (arr_random, arr_zeros, arr_ones) arr_sum = arr_random.sum() ones_sum = arr_ones.sum() scores = (1.0, smoothing / (arr_sum + smoothing), (2 * arr_sum + smoothing) / (arr_sum + ones_sum + smoothing)) m.compile(Adam(), lambda x, y: dice(x, y, smoothing_factor=smoothing)) for array, score in zip(arrays, scores): score_keras = m.evaluate(arr_random, array, verbose=0) score_np = dice_np(arr_random, array, smoothing_factor=smoothing) assert np.allclose(score_keras, score_np, 6) assert np.allclose(score_keras, score, 6) @pytest.mark.parametrize('smoothing', (0, 0.1, 0.001), ids=lambda x: 'smoothing %s' % x) def test_ovl(smoothing): x = Input(input_shape[1:]) m = Model(inputs=x, outputs=x) arr_random = np.random.choice([0, 1], size=input_shape, p=[0.75, 0.25]) arr_sum = arr_random.sum() ones_sum = arr_ones.sum() arrays = (arr_random, arr_zeros, arr_ones) scores = (1.0, smoothing / (arr_sum + smoothing), (arr_sum + smoothing) / (ones_sum + smoothing)) m.compile(Adam(), lambda x, y: ovl(x, y, smoothing_factor=smoothing)) for array, score in zip(arrays, scores): score_keras = m.evaluate(arr_random, array, verbose=0) score_np = ovl_np(arr_random, array, smoothing_factor=smoothing) assert np.allclose(score_keras, score_np, 6) assert np.allclose(score_keras, score, 6) def test_unet_from_data_handle(data): with pytest.raises(ValueError, match='you must either provide'): UNet() with pytest.raises(TypeError, match='data_handle should be a DataWrapper'): UNet(data_handle='10gs') model = UNet(data_handle=data) assert model.data_handle == data assert model.scale == data.scale assert model.max_dist == data.max_dist assert len(model.inputs) == 1 assert model.inputs[0].shape[-1] == data.x_channels assert len(model.outputs) == 1 assert model.outputs[0].shape[-1] == data.y_channels @pytest.mark.parametrize('box_size', (4, 16), ids=lambda x: 'box=%s' % x) @pytest.mark.parametrize('i', (5, 1), ids=lambda x: 'i=%s' % x) @pytest.mark.parametrize('o', (2, 1), ids=lambda x: 'o=%s' % x) def test_unet_from_layers(box_size, i, o): inputs = Input([box_size] * 3 + [i]) conv1 = Convolution3D(filters=3, kernel_size=1, activation='elu', padding='same')(inputs) outputs = Convolution3D(filters=o, kernel_size=1, activation='sigmoid', padding='same')(conv1) model = UNet(inputs=inputs, outputs=outputs, box_size=box_size, input_channels=i, output_channels=o) assert hasattr(model, 'data_handle') assert model.data_handle is None with pytest.raises(ValueError, match='input should be 5D'): UNet(inputs=inputs[0], outputs=inputs) with pytest.raises(ValueError, match='output should be 5D'): UNet(inputs=inputs, outputs=outputs[1]) with pytest.raises(ValueError, match='input and output shapes do not match'): UNet(inputs=inputs, outputs=concatenate([outputs, outputs], 1)) @pytest.mark.parametrize('box_size', (36, 144), ids=lambda x: 'box=%s' % x) @pytest.mark.parametrize('o', (4, 2), ids=lambda x: 'o=%s' % x) def test_unet_with_featurizer(box_size, o): f = Featurizer() i = len(f.FEATURE_NAMES) with pytest.raises(TypeError, match='should be a tfbio.data.Featurize'): UNet(box_size=box_size, input_channels=i, output_channels=o, scale=0.5, featurizer=1) model = UNet(box_size=box_size, input_channels=i, output_channels=o, scale=0.5, featurizer=f) assert hasattr(model, 'data_handle') assert model.data_handle is None assert hasattr(model, 'featurizer') assert isinstance(model.featurizer, Featurizer) @pytest.mark.parametrize('box_size', (8, 16), ids=lambda x: 'box=%s' % x) @pytest.mark.parametrize('i_channels', ([5, 3], [2, 1, 1]), ids=lambda x: 'i=' + ','.join([str(i) for i in x])) @pytest.mark.parametrize('o_channels', ([3, 3], [2, 1, 4]), ids=lambda x: 'o=' + ','.join([str(i) for i in x])) def test_multiple_inputs_outputs(box_size, i_channels, o_channels): inputs = [Input([box_size] * 3 + [i]) for i in i_channels] conv1 = [Convolution3D(filters=3, kernel_size=1, activation='elu', padding='same')(inp) for inp in inputs] conv1 = concatenate(conv1, axis=-1) outputs = [Convolution3D(filters=o, kernel_size=1, activation='sigmoid', padding='same')(conv1) for o in o_channels] model = UNet(inputs=inputs, outputs=outputs, box_size=box_size, input_channels=sum(i_channels), output_channels=sum(o_channels)) assert len(model.inputs) == len(i_channels) assert len(model.outputs) == len(o_channels) @pytest.mark.parametrize('loss', (dice_loss, ovl_loss)) def test_training(data, loss): train_gen = data.batch_generator(batch_size=5) eval_gen = data.batch_generator(batch_size=5) test_gen = data.batch_generator(batch_size=2, subset='test') num_epochs = 2 box_size = data.box_size input_channels = data.x_channels output_channels = data.y_channels inputs = Input((box_size, box_size, box_size, input_channels)) outputs = Convolution3D(filters=output_channels, kernel_size=1, activation='sigmoid')(inputs) model = UNet(inputs=inputs, outputs=outputs) model.compile(optimizer=Adam(lr=1e-6), loss=loss, metrics=[dice, dice_loss, ovl, ovl_loss]) model.fit_generator(train_gen, steps_per_epoch=2, epochs=num_epochs, verbose=0) for scores in (model.evaluate_generator(eval_gen, steps=2), model.evaluate_generator(test_gen, steps=1)): assert np.allclose(scores[1], -scores[2]) assert np.allclose(scores[3], -scores[4]) loss_change = model.history.history['loss'] assert len(loss_change) == num_epochs assert (loss_change[0] != loss_change[1:]).all() @pytest.mark.parametrize('kwargs, err', ( ({'scale': 1.0}, ValueError), ({'max_dist': 35}, ValueError), ({'featurizer': 123}, TypeError), ({'featurizer': Featurizer()}, ValueError) ), ids=('wrong scale', 'wrong dist', 'wrong featurizer type', 'wrong featurizer shape')) @pytest.mark.parametrize('compiled', (True, False), ids=('compiled', 'not compiled')) @pytest.mark.filterwarnings('ignore:No training configuration found') def test_load_wrong_args(data, kwargs, err, compiled): box_size = data.box_size i = data.x_channels o = data.y_channels model1 = UNet(box_size=box_size, input_channels=i, output_channels=o, scale=data.scale, data_handle=data) if compiled: model1.compile(optimizer=Adam(lr=1e-6), loss='binary_crossentropy', metrics=[dice, dice_loss, ovl, ovl_loss]) with tempfile.NamedTemporaryFile(suffix='.hdf') as f: model1.save(f.name) with pytest.raises(err, match=list(kwargs)[0]): UNet.load_model(f.name, data_handle=data, **kwargs) @pytest.mark.parametrize('kwargs', ( {}, {'max_dist': 52, 'scale': 0.33, 'featurizer': featurizer}, ), ids=('no args', 'scale 1:3, dist=52, featurizer')) @pytest.mark.parametrize('compiled', (True, False), ids=('compiled', 'not compiled')) @pytest.mark.filterwarnings('ignore:No training configuration found') def test_save_load(data, kwargs, compiled): from keras.models import load_model as keras_load box_size = data.box_size i = data.x_channels o = data.y_channels model1 = UNet(box_size=box_size, input_channels=i, output_channels=o, scale=data.scale, data_handle=data) if compiled: model1.compile(optimizer=Adam(lr=1e-6), loss='binary_crossentropy', metrics=[dice, dice_loss, ovl, ovl_loss]) weights1 = model1.get_weights() with tempfile.NamedTemporaryFile(suffix='.hdf') as f: model1.save(f.name) model2 = UNet.load_model(f.name, data_handle=data, **kwargs) weights2 = model2.get_weights() assert model1.to_json() == model2.to_json() for w1, w2 in zip(weights1, weights2): assert np.allclose(w1, w2) with tempfile.NamedTemporaryFile(suffix='.hdf') as f: model1.save_keras(f.name) model2 = keras_load(f.name) weights2 = model2.get_weights() for w1, w2 in zip(weights1, weights2): assert np.allclose(w1, w2) @pytest.mark.parametrize('kwargs', ( {'box_size': 30}, {'input_channels': 1}, {'output_channels': 4}, {'scale': 2.0}, {'featurizer': Featurizer()}, {'inputs': Input([36] * 3 + [1])}, {'outputs': Convolution3D(filters=3, kernel_size=1, activation='elu', padding='same')(Input([36] * 3 + [1]))} ), ids=('box_size', 'input_channels', 'output_channels', 'scale', 'featurizer', 'inputs, no outputs', 'outputs, no inputs')) def test_incompatible_with_data_handle(data, kwargs): with pytest.raises(ValueError, match=list(kwargs)[0]): UNet(data_handle=data, **kwargs) @pytest.mark.parametrize('input_shape, strides, message', ( ([10] * 3 + [1], 1, 'input shape does not match box_size'), ([20] * 5 + [1], 1, 'input should be 5D'), ([20] * 3 + [1], 2, 'input and output shapes do not match'), ), ids=('box size', 'not 3D image', 'different shapes')) def test_incompatible_layers_shapes(input_shape, strides, message): inputs = Input(input_shape) if message == 'input should be 5D': outputs = inputs else: outputs = Convolution3D(filters=3, kernel_size=1, activation='sigmoid', padding='same', strides=strides)(inputs) with pytest.raises(ValueError, match=message): UNet(inputs=inputs, outputs=outputs, box_size=20) @pytest.mark.parametrize('kwargs', ( {'box_size': 30}, {'input_channels': 1}, {'output_channels': 4}, {'featurizer': Featurizer()}, ), ids=lambda x: ', '.join(str(k) for k in x)) def test_incompatible_with_layers(kwargs): inputs = Input([10] * 3 + [3]) conv1 = Convolution3D(filters=3, kernel_size=1, activation='elu', padding='same')(inputs) outputs = Convolution3D(filters=5, kernel_size=1, activation='sigmoid', padding='same')(conv1) with pytest.raises(ValueError, match=list(kwargs)[0]): UNet(inputs=inputs, outputs=outputs, **kwargs) def test_get_pockets_segmentation(data): with pytest.raises(ValueError, match='data_handle must be set'): model = UNet(box_size=data.box_size, input_channels=data.x_channels, output_channels=data.y_channels, l2_lambda=1e-7) model.pocket_density_from_grid('10gs') with pytest.raises(ValueError, match='scale must be set'): model = UNet(box_size=data.box_size, input_channels=data.x_channels, output_channels=data.y_channels, l2_lambda=1e-7, data_handle=data) model.scale = None model.pocket_density_from_grid('10gs') np.random.seed(42) model = UNet(box_size=data.box_size, input_channels=data.x_channels, output_channels=data.y_channels, l2_lambda=1e-7, data_handle=data) model.compile(optimizer=Adam(lr=1e-6), loss='binary_crossentropy') density, *_ = model.pocket_density_from_grid('10gs') with pytest.raises(ValueError, match='not supported'): model.get_pockets_segmentation(np.array([density] * 2), 0.6) pocket = model.get_pockets_segmentation(density, 0.6) assert pocket.shape == (data.box_size,) * 3 assert pocket.max() > 0 assert len(np.unique(pocket)) - 1 <= pocket.max() def test_save_pockets_cmap(data): model = UNet(data_handle=data, l2_lambda=1e-7) model.compile(optimizer=Adam(lr=1e-6), loss='binary_crossentropy') density, origin, step = model.pocket_density_from_grid('10gs') with pytest.raises(ValueError, match='saving more than one prediction'): model.save_density_as_cmap(np.concatenate((density, density)), origin, step) with tempfile.NamedTemporaryFile(suffix='.cmap') as cmap_file: fname = cmap_file.name model.save_density_as_cmap(density, origin, step, fname=fname) with h5py.File(fname, 'r') as f: assert 'Chimera' in f group = f['Chimera'] assert len(group.keys()) == data.y_channels for i in range(data.y_channels): key = 'image%s' % (i + 1) assert key in group assert 'data_zyx' in group[key] dataset = group[key]['data_zyx'][:] assert np.allclose(density[0, ..., i].transpose([2, 1, 0]), dataset[:]) def test_save_pockets_cube(data): model = UNet(data_handle=data, l2_lambda=1e-7) model.compile(optimizer=Adam(lr=1e-6), loss='binary_crossentropy') density, origin, step = model.pocket_density_from_grid('10gs') with pytest.raises(ValueError, match='saving more than one prediction'): model.save_density_as_cube(np.concatenate((density, density)), origin, step) with pytest.raises(NotImplementedError, match='saving multichannel'): model.save_density_as_cube(density, origin, step) density = density[..., [0]] with tempfile.NamedTemporaryFile(suffix='.cube') as cmap_file: fname = cmap_file.name model.save_density_as_cube(density, origin, step, fname=fname) with open(fname, 'r') as f: # skip header for _ in range(7): f.readline() values = np.array(f.read().split()).reshape(density.shape) assert np.allclose(density, values.astype(float)) @pytest.mark.parametrize('box_size', (36, 72), ids=lambda x: 'box=%s' % x) @pytest.mark.parametrize('o', (1, 3), ids=lambda x: 'o=%s' % x) def test_predict_mol(box_size, o): mol = next(pybel.readfile('mol2', protein_file)) with pytest.raises(ValueError, match='featurizer must be set'): model = UNet(box_size=box_size, scale=0.5, input_channels=num_features, output_channels=o) model.pocket_density_from_mol(mol) with pytest.raises(ValueError, match='scale must be set'): model = UNet(featurizer=featurizer, box_size=box_size, input_channels=num_features, output_channels=o) model.pocket_density_from_mol(mol) model = UNet(featurizer=featurizer, box_size=box_size, scale=0.5, output_channels=o) model.compile(optimizer=Adam(lr=1e-6), loss='binary_crossentropy') with pytest.raises(TypeError, match='pybel.Molecule'): model.pocket_density_from_mol(protein_file) density, origin, step = model.pocket_density_from_mol(mol) assert (density > 0).any() @pytest.mark.parametrize('box_size', (36, 72), ids=lambda x: 'box=%s' % x) @pytest.mark.parametrize('o', (1, 2), ids=lambda x: 'o=%s' % x) def test_predict_pocket_atoms(box_size, o): np.random.seed(42) mol = next(pybel.readfile('mol2', protein_file)) model = UNet(featurizer=featurizer, box_size=box_size, scale=0.5, output_channels=o) model.compile(optimizer=Adam(lr=1e-6), loss='binary_crossentropy') segmentation_kwargs = {'threshold': 0.55, 'min_size': 5} pocket_mols_atoms = model.predict_pocket_atoms(mol, dist_cutoff=3, expand_residue=False, **segmentation_kwargs) pocket_mols_residues = model.predict_pocket_atoms(mol, dist_cutoff=3, expand_residue=True, **segmentation_kwargs) assert len(pocket_mols_atoms) == len(pocket_mols_residues) assert len(pocket_mols_atoms) > 0 for p1, p2 in zip(pocket_mols_atoms, pocket_mols_residues): assert isinstance(p1, pybel.Molecule) assert isinstance(p2, pybel.Molecule) assert len(p1.atoms) <= len(p2.atoms) res1 = set([res.idx for res in p1.residues]) res2 = set([res.idx for res in p2.residues]) assert res1 == res2
39.483589
92
0.63323
0
0
119
0.006595
13,151
0.72883
0
0
1,946
0.107847
3cf130cd62278bdee384dab7ff29ec047f8b848a
2,256
py
Python
tests/test_bash_runner.py
rtmigo/svet
06f9c5be7706351c2ef93fae0f9fa97ee69593f7
[ "BSD-3-Clause" ]
5
2021-05-18T19:55:22.000Z
2022-03-07T20:52:19.000Z
tests/test_bash_runner.py
rtmigo/vien
06f9c5be7706351c2ef93fae0f9fa97ee69593f7
[ "BSD-3-Clause" ]
null
null
null
tests/test_bash_runner.py
rtmigo/vien
06f9c5be7706351c2ef93fae0f9fa97ee69593f7
[ "BSD-3-Clause" ]
1
2021-05-23T04:04:29.000Z
2021-05-23T04:04:29.000Z
# SPDX-FileCopyrightText: (c) 2021 Artëm IG <github.com/rtmigo> # SPDX-License-Identifier: BSD-3-Clause import unittest from pathlib import Path from tempfile import TemporaryDirectory from timeit import default_timer as timer from tests.common import is_posix from vien._bash_runner import * from tests.time_limited import TimeLimited @unittest.skipUnless(is_posix, "not POSIX") class TestRunAsBash(unittest.TestCase): # python3 -m unittest svet.bash_runner_test def test_good_command_code_zero(self): bash_lines = [ f'set -e', f"ls"] code = run_as_bash_script("\n".join(bash_lines), capture_output=True) self.assertEqual(code.returncode, 0) # ok def test_bad_command_error_code(self): bash_lines = [ f'set -e', f"ok_computer_make_me_happy"] code = run_as_bash_script("\n".join(bash_lines), capture_output=True) self.assertEqual(code.returncode, 127) # error def test_alias_expansion(self): with TemporaryDirectory() as td: file_to_create = Path(td) / "to_be_or_not_to_be.txt" file_to_create_quoted = repr(str(file_to_create)) bash_lines = [ f'set -e', f"shopt -s expand_aliases", f'alias ohoho="echo"', # this will work in bash, but not in sh f'ohoho "that is the answer" > {file_to_create_quoted}'] self.assertFalse(file_to_create.exists()) code = run_as_bash_script("\n".join(bash_lines), capture_output=True) self.assertEqual(code.returncode, 0) self.assertTrue(file_to_create.exists()) self.assertEqual(file_to_create.read_text().strip(), "that is the answer") def test_input_delay(self): start = timer() # run interactive shell end type "exit" after small delay with TimeLimited(seconds=10): # safety net run_as_bash_script("exec bash", input="exit\n".encode(), input_delay=1, timeout=10, capture_output=True) end = timer() self.assertGreater(end - start, 0.9) self.assertLess(end - start, 5)
37.6
79
0.624113
1,870
0.828533
0
0
1,914
0.848028
0
0
513
0.227293
3cf1aac57cec16e9686acb6784d6d3e00f8dc890
8,825
py
Python
adversarial/train_adversarial.py
liguge/Conditional-Adversarial-Domain-Generalization-with-Single-Discriminator
e0f2cd042e2c124e73d2982af28fa270263180d8
[ "MIT" ]
1
2022-01-16T03:21:18.000Z
2022-01-16T03:21:18.000Z
adversarial/train_adversarial.py
liguge/Conditional-Adversarial-Domain-Generalization-with-Single-Discriminator
e0f2cd042e2c124e73d2982af28fa270263180d8
[ "MIT" ]
1
2022-03-29T10:50:48.000Z
2022-03-30T07:14:56.000Z
adversarial/train_adversarial.py
hectorLop/Conditional-Adversarial-Domain-Generalization-with-Single-Discriminator
e0f2cd042e2c124e73d2982af28fa270263180d8
[ "MIT" ]
2
2022-01-16T03:21:54.000Z
2022-03-10T01:17:12.000Z
from typing import Dict, List, Tuple import torch import numpy as np import argparse from torch import nn import yaml import pandas as pd from sklearn.metrics import roc_auc_score from adversarial.adversarial import AdversarialNetwork, Classifier, Discriminator from adversarial.dataset import ( AdversarialDataset, get_transforms ) from adversarial.config import Config from adversarial.utils import ( fix_all_seeds, freeze_unfreeze, get_ground_truth_vector ) from torch.utils.data import DataLoader def train_step( model : nn.Module, train_loader : DataLoader, config : Config, class_criterion : object, disc_criterion : object, extractor_criterion : object, optimizer : torch.optim.Optimizer ) -> Tuple[float, float, float, float]: model.train() class_loss_accum, disc_loss_accum, extr_loss_accum = 0., 0., 0. y_train = [] preds = [] for images, domains, labels in train_loader: images = images.to(config.DEVICE) domains = domains.to(config.DEVICE) labels = labels.to(config.DEVICE) # Set the gradients to zero before backprop step optimizer.zero_grad() # # # # # # # # # # # # # # # Step 1: Classification # # # # # # # # # # # # # # # freeze_unfreeze(model.feature_extractor, True) freeze_unfreeze(model.discriminator, True) freeze_unfreeze(model.classifier, True) # Get predictions and calculate the loss y_preds_class = model(images) y_preds_class = y_preds_class.to(config.DEVICE) class_loss = class_criterion(y_preds_class.squeeze(), labels) class_loss_accum += class_loss.item() # Backward step class_loss.backward() optimizer.step() optimizer.zero_grad() y_train.append(labels.detach().cpu().numpy()) preds.append(y_preds_class.softmax(1).detach().cpu().numpy()) # # # # # # # # # # # # # # Step 2: Discriminator # # # # # # # # # # # # # # freeze_unfreeze(model.feature_extractor, False) freeze_unfreeze(model.discriminator, True) freeze_unfreeze(model.classifier, True) # Get predictions and calculate the loss y_preds_disc = model.forward_disc(images) y_preds_disc = y_preds_disc.to(config.DEVICE) disc_loss = disc_criterion(y_preds_disc.squeeze(), domains) disc_loss_accum += disc_loss.item() # Backward step disc_loss.backward() optimizer.step() optimizer.zero_grad() # # # # # # # # # # # # Step 3: Extractor # # # # # # # # # # # # freeze_unfreeze(model.feature_extractor, True) freeze_unfreeze(model.discriminator, False) freeze_unfreeze(model.classifier, True) # Get predictions and calculate the loss y_preds_extr = model.forward_disc(images) y_preds_extr = y_preds_extr.to(config.DEVICE) gt_vector = get_ground_truth_vector(labels, config.N_DOMAINS, config.N_CLASSES) gt_vector = gt_vector.to(config.DEVICE) extr_loss = extractor_criterion(y_preds_extr.squeeze(), gt_vector) extr_loss_accum += extr_loss.item() # Backward step extr_loss.backward() optimizer.step() optimizer.zero_grad() y_train = np.concatenate(y_train) preds = np.concatenate(preds) preds = preds[np.arange(len(preds)), preds.argmax(1)] auc = roc_auc_score(y_train, preds) return class_loss_accum, disc_loss_accum, extr_loss_accum, auc def val_step(model : nn.Module, val_loader : DataLoader, config : Config, criterion : object) -> Tuple[float, float]: model.eval() preds = [] epoch_loss = 0 y_test = [] with torch.no_grad(): for images, domains, labels in val_loader: images = images.to(config.DEVICE) domains = domains.to(config.DEVICE) labels = labels.to(config.DEVICE) y_preds = model(images) y_preds = y_preds.to(config.DEVICE) loss = criterion(y_preds.squeeze(), labels) y_test.append(labels.cpu().numpy()) preds.append(y_preds.softmax(1).cpu().numpy()) epoch_loss += loss.item() y_test = np.concatenate(y_test) preds = np.concatenate(preds) preds = preds[np.arange(len(preds)), preds.argmax(1)] auc = roc_auc_score(y_test, preds) return epoch_loss, auc def fit( model : nn.Module, train_loader : DataLoader, val_loader : DataLoader, config : Config, filepath : str ) -> Tuple[nn.Module, List[float], List[float]]: model = model.to(config.DEVICE) optimizer = torch.optim.SGD(model.parameters(), lr=config.LEARNING_RATE, momentum=config.MOMENTUM, weight_decay=config.WEIGHT_DECAY) # Criterions for each step class_criterion = torch.nn.CrossEntropyLoss() disc_criterion = torch.nn.CrossEntropyLoss() extr_criterion = torch.nn.MSELoss() n_batches, n_batches_val = len(train_loader), len(val_loader) best_loss = np.inf val_loss_accum, train_loss_accum = [], [] with torch.cuda.device(config.DEVICE): for epoch in range(1, config.EPOCHS + 1): class_loss, disc_loss, extr_loss, train_auc = train_step(model, train_loader, config, class_criterion, disc_criterion, extr_criterion, optimizer) class_loss = class_loss / n_batches disc_loss = disc_loss / n_batches extr_loss = extr_loss / n_batches val_loss, val_auc = val_step(model, val_loader, config, class_criterion) val_loss = val_loss / n_batches_val prefix = f"[Epoch {epoch:2d} / {config.EPOCHS:2d}]" print(prefix) print(f"{prefix} Train Class loss: {class_loss:7.5f}. Train Disc Loss: {disc_loss:7.5f}. Train Extr Loss: {extr_loss:7.5f}") print(f"{prefix} Val Class loss: {val_loss:7.5f}") print(f"{prefix} Train AUC-ROC: {train_auc:7.5f}. Val AUC-ROC: {val_auc:7.5f}") if val_loss < best_loss: best_loss = val_loss print(f'{prefix} Save Val loss: {val_loss:7.5f}') torch.save(model.state_dict(), filepath) print(prefix) return model, train_loss_accum, val_loss_accum def get_loaders(df_train, df_val, config=Config): ds_train = AdversarialDataset(df_train, get_transforms(config, augment=True), config) dl_train = DataLoader(ds_train, batch_size=config.BATCH_SIZE, shuffle=True, num_workers=0) ds_val = AdversarialDataset(df_val, get_transforms(config, augment=False), config) dl_val = DataLoader(ds_val, batch_size=config.BATCH_SIZE, shuffle=True, num_workers=0) return dl_train, dl_val def train(parameters : Dict): fix_all_seeds(3088) train = pd.read_csv(parameters['train_set']) val = pd.read_csv(parameters['val_set']) train_loader, val_loader = get_loaders(train, val) print('Getting the model') classifier = Classifier(256, 2) discriminator = Discriminator(256, 0.5, Config.N_DOMAINS, Config.N_CLASSES) model = AdversarialNetwork(discriminator, classifier, parameters['model_name'], 2048) print('TRAINING') model, train_loss, val_loss = fit(model, train_loader, val_loader, Config, parameters['checkpoint']) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-c', '--config', required=True, help='Config YAML file') args = parser.parse_args() with open(args.config) as file: params = yaml.load(file, Loader=yaml.FullLoader) train(params)
33.942308
136
0.566799
0
0
0
0
0
0
0
0
891
0.100963
3cf1f4f9c94b916e1af4be610a5cfc8f880bc37a
18,425
py
Python
generate_md.py
wzyjerry/EPO-patent-process
686c0ea6d9122436071c809a238b8348cdf65120
[ "MIT" ]
null
null
null
generate_md.py
wzyjerry/EPO-patent-process
686c0ea6d9122436071c809a238b8348cdf65120
[ "MIT" ]
null
null
null
generate_md.py
wzyjerry/EPO-patent-process
686c0ea6d9122436071c809a238b8348cdf65120
[ "MIT" ]
null
null
null
def trans_date(field: dict) -> str: text = str(field['date']) return '%s.%s.%s' % (text[6:], text[4:6], text[:4]) def trans_4xx(field: dict, lang: str) -> str: text = str(field['bnum']) return '%s %s %s/%s' % (trans_date(field), labels['bulletin'][lang], text[:4], text[4:]) def trans_ipc(field: str) -> str: field = field.split() return '%s %s %s %s' % (field[0][1:], field[1][:2], field[1][2:], field[2]) def trans_ipcr(field: dict) -> str: text = field['text'].split() return '%s %s <sup>(%s.%s)</sup>' % (text[0], text[1], text[2][:4], text[2][4:6]) def trans_name(field: dict, out_str: bool) -> str: if 'B725EP' in field: return '<br>'.join(field['B725EP']['text']) if 'sfx' in field: sfx = field['sfx'] else: sfx = '' snm = field['snm'] + sfx if 'adr' not in field or len(field['adr']) == 0: return snm adr = field['adr'] if out_str and 'str' in adr: return '%s<br>%s<br>%s (%s)' % (snm, adr['str'], adr['city'], adr['ctry']) else: return '%s<br>%s (%s)' % (snm, adr['city'], adr['ctry']) def trans_international_an(field: dict) -> str: anum = field['B861']['dnum']['anum'] return 'PCT/%s/%s' % (anum[:6], anum[6:]) def trans_international_pn(field: dict) -> str: B871 = field['B871'] pnum = B871['dnum']['pnum'] bnum = str(B871['bnum']) return '%s %s/%s (%s Gazette %s/%s)' % (pnum[:2], pnum[2:6], pnum[6:], trans_date(B871), bnum[:4], bnum[4:]) def trans_doc(field: dict) -> str: dnum = field['dnum'] anum = dnum['anum'] if 'pnum' in dnum: pnum = dnum['pnum'] return '%s / %s' % (anum, format(int(pnum), ',').replace(',', ' ')) else: return anum labels = { 15: { 'de': [ 'Korrekturinformation', 'Korrigierte Fassung Nr.', 'Korrekturen, siehe' ], 'en': [ 'Correction information', 'Corrected version no', 'Corrections, see' ], 'fr': [ 'Information de correction', 'Version corrigée no', 'Corrections, voir' ] }, 21: { 'de': 'Anmeldenummer', 'en': 'Application number', 'fr': 'Numéro de dépôt' }, 22: { 'de': 'Anmeldetag', 'en': 'Date of filing', 'fr': 'Date de dépôt' }, 30: { 'de': 'Priorität', 'en': 'Priority', 'fr': 'Priorité' }, 43: { 'de': { 'A1': 'Veröffentlichungstag', 'A3': 'Veröffentlichungstag A2', 'A8': 'Veröffentlichungstag', 'A9': 'Veröffentlichungstag', 'B1': 'Veröffentlichungstag der Anmeldung', 'B2': 'Veröffentlichungstag der Anmeldung', 'B3': 'Veröffentlichungstag der Anmeldung', 'B9': 'Veröffentlichungstag der Anmeldung' }, 'en': { 'A1': 'Date of publication', 'A3': 'Date of publication A2', 'A8': 'Date of publication', 'A9': 'Date of publication', 'B1': 'Date of publication of application', 'B2': 'Date of publication of application', 'B3': 'Date of publication of application', 'B9': 'Date of publication of application' }, 'fr': { 'A1': 'Date de publication', 'A3': 'Date de publication A2', 'A8': 'Date de publication', 'A9': 'Date de publication', 'B1': 'Date de publication de la demande', 'B2': 'Date de publication de la demande', 'B3': 'Date de publication de la demande', 'B9': 'Date de publication de la demande' } }, 45: { 'de': { 'B1': 'Veröffentlichungstag und Bekanntmachung des Hinweises auf die Patenterteilung', 'B2': { 45: 'Hinweis auf die Patenterteilung', 47: 'Veröffentlichungstag und Bekanntmachung des Hinweises auf die Entscheidung über den Einspruch' }, 'B9': { 45: 'Hinweis auf die Patenterteilung', 47: 'Veröffentlichungstag und Bekanntmachung des Hinweises auf die Entscheidung über den Einspruch' } }, 'en': { 'B1': 'Date of publication and mention of the grant of the patent', 'B2': { 45: 'Mention of the grant of the patent', 47: 'Date of publication and mention of the opposition decision:' }, 'B9': { 45: 'Mention of the grant of the patent', 47: 'Date of publication and mention of the opposition decision:' } }, 'fr': { 'B1': 'Date de publication et mention de la délivrance du brevet', 'B2': { 45: 'Mention de la délivrance du brevet', 47: 'Date de publication et mention de la décision concernant l’opposition' }, 'B9': { 45: 'Mention de la délivrance du brevet', 47: 'Date de publication et mention de la décision concernant l’opposition' } } }, 48: { 'de': 'Corrigendum ausgegeben am', 'en': 'Corrigendum issued on', 'fr': 'Corrigendum publié le' }, 51: { 'de': 'Int Cl.', 'en': 'Int Cl.', 'fr': 'Int Cl.', }, 56: { 'de': 'Entgegenhaltungen', 'en': 'References cited', 'fr': 'Documents cités' }, 60: { 'de': 'Teilanmeldung', 'en': 'Divisional application', 'fr': 'Demande divisionnaire' }, 71: { 'de': 'Anmelder', 'en': 'Applicant', 'fr': 'Demandeur' }, 72: { 'de': 'Erfinder', 'en': 'Inventor', 'fr': 'Inventeur' }, 73: { 'de': 'Patentinhaber', 'en': 'Proprietor', 'fr': 'Titulaire' }, 74: { 'de': 'Vertreter', 'en': 'Representative', 'fr': 'Mandataire' }, 84: { 'de': [ 'Benannte Vertragsstaaten', 'Benannte Erstreckungsstaaten', 'Benannte Validierungsstaaten' ], 'en': [ 'Designated Contracting States', 'Designated Extension States', 'Designated Validation States' ], 'fr': [ 'Etats contractants désignés', 'Etats d’extension désignés', 'Etats de validation désignés' ] }, 86: { 'de': 'Internationale Anmeldenummer', 'en': 'International application number', 'fr': 'Numéro de dépôt international' }, 87: { 'de': 'Internationale Veröffentlichungsnummer', 'en': 'International publication number', 'fr': 'Numéro de publication internationale' }, 88: { 'de': 'Veröffentlichungstag A3', 'en': 'Date of publication A3', 'fr': 'Date de publication A3' }, 'bulletin': { 'de': 'Patentblatt', 'en': 'Bulletin', 'fr': 'Bulletin' }, 'description': { 'de': 'Beschreibung', 'en': 'Description', 'fr': 'Description' }, 'remarks': { 'de': 'Bemerkungen', 'en': 'Remarks' } } def generate_md(patent: str) -> str: md = [] kind = patent['attr']['kind'] lang = patent['attr']['lang'] SDOBI = patent['SDOBI'] B000 = SDOBI['B000'] eptags = B000['eptags'] B100 = SDOBI['B100'] B200 = SDOBI['B200'] B400 = SDOBI['B400'] B500 = SDOBI['B500'] B700 = SDOBI['B700'] B800 = SDOBI['B800'] md.append('# (11)(19) **%s %s %s**' % (B100['B190'], format(int(B100['B110']), '0>7,').replace(',', ' '), B100['B130'])) if 'B120' in B100: if 'B121EP' in B100['B120']: md.append('## (12) **%s**<br>%s' % (B100['B120']['B121'], B100['B120']['B121EP'])) else: md.append('## (12) **%s**' % B100['B120']['B121']) if kind in ['A3']: md.append('## (88) %s:<br>**%s**' % (labels[88][lang], trans_4xx(B800['B880'], lang))) if kind in ['B1']: md.append('## (45) %s:<br>**%s**' % (labels[45][lang][kind], trans_4xx(B400['B450'], lang))) if kind in ['A8', 'A9', 'B9']: B150 = B100['B150'] md.append('## (15) %s:<br>' % labels[15][lang][0]) B151 = B150['B151'] if B151[0] == 'W': md.append('**%s %s (%s %s)**<br>' % (labels[15][lang][1], B151[1:], B151, B100['B132EP'])) else: raise Exception('not W') # TODO: Mismatch here. eg. EP10153923W1B9 # TODO: EP12812953W1B9 md.append('**%s**<br>' % labels[15][lang][2]) for B155 in B150['B155']: if B155['B1551'] == lang: if 'B153' in B150: md.append('**%s&emsp;&emsp;INID code(s)&emsp;&emsp;%s**' % (B155['B1552'], B150['B153'])) elif 'B154' in B150: for B154 in B150['B154']: if B154['B1541'] == lang: md.append('**%s**<br>**%s**' % (B155['B1552'], B154['B1542'])) else: md.append('<br>**%s**<br>' % (B155['B1552'])) md.append('## (48) %s:<br>**%s**' % (labels[48][lang], trans_4xx(B400['B480'], lang))) if kind in ['B2', 'B9']: if 'B477' in B400: md.append('## (45) %s<br>**%s**' % (labels[45][lang][kind][47], trans_4xx(B400['B477'], lang))) md.append('## (45) %s<br>**%s**' % (labels[45][lang][kind][45], trans_4xx(B400['B450'], lang))) if kind in ['B3']: md.append('## (45) Date of publication and mention of the limitation decision:<br>') for B4530EP in B400['B453EP']['B4530EP']: md.append('1. **%s-%s %s**' % (B4530EP['kind'], B4530EP['attr']['limitation-sequence'], trans_4xx(B4530EP, lang))) md.append('## (45) Mention of the grant of the patent:<br>**%s**' % trans_4xx(B400['B450'], lang)) if kind in ['A1', 'A3', 'A8', 'A9']: md.append('## (43) %s:<br>**%s**' % (labels[43][lang][kind], trans_4xx(B400['B430'], lang))) md.append('## (21) %s: **%s**' % (labels[21][lang], B200['B210'])) md.append('## (22) %s: **%s**' % (labels[22][lang], trans_date(B200['B220']))) if 'B510' in B500: B510 = B500['B510'] md.append('## (51) %s<sup>%s</sup>:' % (labels[51][lang], B510['B516'])) md.append('+ **%s**' % trans_ipc(B510['B511'])) if 'B512' in B510: for B512 in B510['B512']: md.append('+ %s' % trans_ipc(B512)) if 'B513' in B510: for B513 in B510['B513']: md.append('+ %s' % trans_ipc(B513)) if 'B514' in B510: md.append('+ %s' % B510['B517EP']) if 'B510EP' in B500: md.append('## (51) %s:' % labels[51][lang]) for ipcr in B500['B510EP']: md.append('+ ***%s***' % trans_ipcr(ipcr)) if 'B860' in B800: md.append('## (86) %s:<br>**%s**' % (labels[86][lang], trans_international_an(B800['B860']))) if 'B870' in B800: md.append('## (87) %s:<br>**%s**' % (labels[87][lang], trans_international_pn(B800['B870']))) md.append('***') md.append('## (54)') for B540 in B500['B540']: if B540['B541'] == patent['attr']['lang']: md.append('+ **%s**' % B540['B542']) else: md.append('+ %s' % B540['B542']) md.append('***') md.append('## (84) %s:' % labels[84][lang][0]) md.append('**%s**' % ' '.join(B800['B840'])) if 'B844EP' in B800: md.append('<br>%s:<br>**%s**' % (labels[84][lang][1], ' '.join([x['ctry'] for x in B800['B844EP']['B845EP']]))) if 'B848EP' in B800: md.append('<br>%s:<br>**%s**' % (labels[84][lang][2], ' '.join([x['ctry'] for x in B800['B848EP']['B849EP']]))) if 'B300' in SDOBI: B300 = SDOBI['B300'] md.append('## (30) %s:' % labels[30][lang]) for priority in B300: md.append('+ **%s %s %s**' % (trans_date(priority['B320']), priority['B330']['ctry'], priority['B310'])) if 'B600' in SDOBI: B600 = SDOBI['B600'] if 'B620' in B600: B620 = B600['B620']['parent'] md.append('## (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC:') for pdoc_list in B620['pdoc']: for pdoc in pdoc_list: md.append('+ **%s**' % trans_doc(pdoc)) if 'B270' in B200: B270 = B200['B270'] md.append('## (27) Previously filed application:') md.append('+ **%s %s %s**' % (trans_date(B270), B270['ctry'], B270['dnum']['anum'])) if kind in ['B1', 'B2', 'B3', 'B9']: md.append('## (43) %s: **%s**' % (labels[43][lang][kind], trans_4xx(B400['B430'], lang))) if 'B600' in SDOBI: B600 = SDOBI['B600'] if 'B620EP' in B600: B620EP = B600['B620EP']['parent'] md.append('## (60) %s:' % labels[60][lang]) for cdoc_list in B620EP['cdoc']: for cdoc in cdoc_list: md.append('+ **%s**' % trans_doc(cdoc)) if 'B710' in B700: md.append('## (71) %s:' % labels[71][lang]) for applicant in B700['B710']: if 'B716EP' in applicant: md.append('+ **%s**<br>Designated Contracting States:<br>**%s**' % (trans_name(applicant, False), ' '.join(applicant['B716EP']['ctry']))) else: md.append('+ **%s**' % trans_name(applicant, False)) if 'B730' in B700: md.append('## (73) %s:' % labels[73][lang]) for grantee in B700['B730']: if 'B736EP' in grantee: md.append('+ **%s**<br>Designated Contracting States:<br>**%s**' % (trans_name(grantee, False), ' '.join(grantee['B736EP']['ctry']))) else: md.append('+ **%s**' % trans_name(grantee, False)) md.append('## (72) %s:' % labels[72][lang]) for inventor in B700['B720']: md.append('+ **%s**' % trans_name(inventor, False).strip()) if 'B740' in B700: md.append('## (74) %s:' % labels[74][lang]) for agent in B700['B740']: md.append('+ **%s**' % trans_name(agent, True)) if 'B560' in B500: B560 = B500['B560'] md.append('## (56) %s:' % labels[56][lang]) if 'B561' in B560: B561 = B560['B561'] for patent_citation in B561: md.append('1. **%s**' % patent_citation['text']) if 'B562' in B560: B562 = B560['B562'] md.append('') for patent_citation in B562: md.append('+ **%s**' % patent_citation['text']) if 'B050EP' in eptags or 'B053EP' in eptags or 'B070EP' in eptags: md.append('<br><br><u>%s:</u>' % labels['remarks'][lang]) if 'B050EP' in eptags: for B050EP in eptags['B050EP']: md.append('+ %s' % B050EP['B052EP']) if 'B053EP' in eptags: for B053EP in eptags['B053EP']: md.append('+ %s' % B053EP) if 'B070EP' in eptags: md.append('+ %s' % eptags['B070EP']) md.append('***') if 'abstract' in patent: md.append('(57) ') abstract = patent['abstract'] for abst in abstract: for content in abst['content']: md.append('%s<br>' % content['content']) md.append('***') if 'description' in patent: md.append('**%s**<br>' % labels['description'][lang]) description = patent['description'] for content in description['content']: if content['type'] == 'heading': md.append('<br>%s<br>' % content['content']) elif content['type'] == 'p': md.append('**[%s]**&nbsp;&nbsp;%s<br>\n' % (content['attr']['num'], content['content'])) md.append('***') if 'claims' in patent: for claims in patent['claims']: claims_title = 'Claims' if claims['attr']['lang'] == 'de': claims_title = 'Patentansprüche' elif claims['attr']['lang'] == 'fr': claims_title = 'Revendications' md.append('### **%s**<br><br>' % claims_title) for claim in claims['claim']: md.append('1. %s<br><br>' % '<br>'.join(claim['claim_text']).replace('\n', '<br>')) md.append('***') if 'amended-claims' in patent: amended_claims = patent['amended-claims'] for claims in amended_claims: md.append('**%s**<br><br>' % claims['heading']['content']) for claim in claims['claim']: md.append('1. %s<br><br>' % '<br>'.join(claim['claim_text']).replace('\n', '<br>')) if 'amended-claims-statement' in claims: amended_claims_statement = claims['amended-claims-statement'] for item in amended_claims_statement: for claims_statement in item['claims-statement']: for content in claims_statement['content']: if content['type'] == 'heading': md.append('<br><br>**%s**<br><br>' % content['content']) elif content['type'] == 'p': md.append('%s<br>\n' % content['content']) md.append('***') if 'amended-claims-statement' in patent: amended_claims_statement = patent['amended-claims-statement'] for item in amended_claims_statement: for claims_statement in item['claims-statement']: for content in claims_statement['content']: if content['type'] == 'heading': md.append('<br><br>**%s**<br><br>' % content['content']) elif content['type'] == 'p': md.append('%s<br>\n' % content['content']) md.append('***') if 'ep-reference-list' in patent: ep_reference_list = patent['ep-reference-list'] for content in ep_reference_list['content']: if content['type'] == 'heading': md.append('<br><br>%s<br><br>' % content['content']) elif content['type'] == 'p': md.append('%s<br>' % content['content']) return '\n'.join(md)
39.623656
153
0.48711
0
0
0
0
0
0
0
0
6,958
0.376678
3cf38cae0f2a545ab33232a28befeb4c8470d502
1,103
py
Python
tests/test_http_basic_auth.py
zhanghe06/flask_restful
6ef54f3f7efbbaff6169e963dcf45ab25e11e593
[ "MIT" ]
1
2020-12-04T03:15:47.000Z
2020-12-04T03:15:47.000Z
tests/test_http_basic_auth.py
zhanghe06/flask_restful
6ef54f3f7efbbaff6169e963dcf45ab25e11e593
[ "MIT" ]
1
2021-06-01T22:24:27.000Z
2021-06-01T22:24:27.000Z
tests/test_http_basic_auth.py
zhanghe06/flask_restful
6ef54f3f7efbbaff6169e963dcf45ab25e11e593
[ "MIT" ]
2
2020-12-04T03:16:18.000Z
2021-09-04T14:10:12.000Z
#!/usr/bin/env python # encoding: utf-8 """ @author: zhanghe @software: PyCharm @file: test_http_basic_auth.py @time: 2018-06-21 11:17 """ from __future__ import print_function from __future__ import unicode_literals import unittest import requests from requests.auth import HTTPBasicAuth class HttpBasicAuthTest(unittest.TestCase): """ 认证测试 """ def setUp(self): self.auth_username = 'username' self.auth_password = 'password' self.auth_url = 'http://0.0.0.0:5000/token' self.session = requests.session() def test_auth_success(self): """ 测试认证成功 :return: """ base_auth = HTTPBasicAuth(self.auth_username, self.auth_password) res = self.session.get(self.auth_url, auth=base_auth) self.assertEqual(res.status_code, 200) def test_auth_failure(self): """ 测试认证失败 :return: """ res = self.session.get(self.auth_url) self.assertEqual(res.status_code, 401) def tearDown(self): pass if __name__ == '__main__': unittest.main()
20.425926
73
0.635539
790
0.696035
0
0
0
0
0
0
339
0.298678
3cf5781010a796345729a2c7347029eba43ec197
1,696
py
Python
snomed_parent_cat_mapper.py
vickysam/pyHealth
5660afd385a0342aa2039b42af5f208c672bfdeb
[ "Apache-2.0" ]
7
2017-04-30T15:12:33.000Z
2021-11-21T01:39:04.000Z
snomed_parent_cat_mapper.py
vickysam/pyHealth
5660afd385a0342aa2039b42af5f208c672bfdeb
[ "Apache-2.0" ]
null
null
null
snomed_parent_cat_mapper.py
vickysam/pyHealth
5660afd385a0342aa2039b42af5f208c672bfdeb
[ "Apache-2.0" ]
2
2018-08-07T14:38:14.000Z
2021-04-09T05:41:08.000Z
import csv import pymedtermino from pymedtermino.snomedct import * pymedtermino.LANGUAGE = "en" pymedtermino.REMOVE_SUPPRESSED_CONCEPTS = False input_delta_file = 'sct2_Concept_Delta_INT_20160131.csv' output_delta_file = 'sct2_Concept_Delta_INT_20160131_Top_Category_Mapped.csv' data = [] snomed_data = [] with open('top_parent_cat.csv', 'rb') as csvfile: reader = csv.DictReader(csvfile, delimiter=',', quotechar='"') for row in reader: data.append([row['top_concept_id'],row['top_category_code']]) print "Supplied : ", data with open(input_delta_file, 'rb') as csvfile: reader = csv.DictReader(csvfile, delimiter=' ', quotechar='"') for row in reader: snomed_data.append([row['id'],row['effectiveTime'],row['active'],row['moduleId'],row['definitionStatusId'],0,0]) csvfile = open(output_delta_file, 'w') writer = csv.DictWriter(csvfile, fieldnames=['id','effectiveTime','active','moduleId','definitionStatusId','topCategoryCode','topCategoryId']) writer.writeheader() i = 0 for concept in snomed_data: ancestors = list(SNOMEDCT[concept[0]].ancestors()) category = SNOMEDCT[138875005] if len(ancestors) >= 2: category = ancestors[-2] if len(ancestors) >= 3: if ancestors[-3].code == '406455002' or ancestors[-3].code == '116273005': category = ancestors[-3] else: category = SNOMEDCT[138875005] term = category.term for item in data: if item[0] == str(category.code): term=item[1] writer.writerow({'id': str(concept[0]), 'effectiveTime': concept[1],'active': concept[2],'moduleId': str(concept[3]),'definitionStatusId': str(concept[4]) , 'topCategoryCode': term,'topCategoryId': str(category.code)}) i = i + 1 csvfile.close() print "Completed...."
32.615385
219
0.722877
0
0
0
0
0
0
0
0
461
0.271816
3cf5831f266719f857798ff19bb7f65e432caf03
710
py
Python
Python/287. FindTheDuplicateNumber.py
RaymondWaterlooLi/LeetCode-Solutions
7973d2838b114f1dffc29f436fb660a96b51f660
[ "MIT" ]
263
2020-10-05T18:47:29.000Z
2022-03-31T19:44:46.000Z
Python/287. FindTheDuplicateNumber.py
RaymondWaterlooLi/LeetCode-Solutions
7973d2838b114f1dffc29f436fb660a96b51f660
[ "MIT" ]
1,264
2020-10-05T18:13:05.000Z
2022-03-31T23:16:35.000Z
Python/287. FindTheDuplicateNumber.py
RaymondWaterlooLi/LeetCode-Solutions
7973d2838b114f1dffc29f436fb660a96b51f660
[ "MIT" ]
760
2020-10-05T18:22:51.000Z
2022-03-29T06:06:20.000Z
#Given an array of integers nums containing n + 1 integers where each integer is in the range [1, n] inclusive. #There is only one duplicate number in nums, return this duplicate number. class Solution(object): def findDuplicate(self, nums): #Traversing the list using for loop s = sorted(nums) #sorting given array a,b = 0,len(nums) temp=(a+b)//2 t = 1 while t: #using binary search to find duplicate if s[temp] == temp and s[temp-1] == temp: return s[temp] if s[temp] == temp+1 and s[temp-1] == temp: a = temp else: b = temp temp = (a+b)//2
37.368421
111
0.539437
522
0.735211
0
0
0
0
0
0
278
0.391549
3cf74e26261f13d85a64a42ef32a7fccd8ef0a55
2,484
py
Python
utils/evaluate_annotation.py
cltl-students/hamersma-agression-causes
11cbfd94031a0a3c84a27afa20d8a539acdab609
[ "MIT" ]
null
null
null
utils/evaluate_annotation.py
cltl-students/hamersma-agression-causes
11cbfd94031a0a3c84a27afa20d8a539acdab609
[ "MIT" ]
null
null
null
utils/evaluate_annotation.py
cltl-students/hamersma-agression-causes
11cbfd94031a0a3c84a27afa20d8a539acdab609
[ "MIT" ]
null
null
null
import pandas as pd from sklearn.metrics import cohen_kappa_score, confusion_matrix import os import seaborn as sns import matplotlib.pyplot as plt import numpy as np dirname = os.path.dirname(__file__) def extract_annotations(files): '''Function that takes a file with the annotations as input and extracts lists of annotations for vims that are annotated by both annotators. :param files: list of files :returns annotations_ann1: list of strings :returns annotations_ann2: list of strings''' file_ann1 = dirname +'/annotations/' + files[0] file_ann2 = dirname + '/annotations/' + files[1] ann1 = pd.read_excel(file_ann1, index_col=1).T.to_dict() ann2 = pd.read_excel(file_ann2, index_col=1).T.to_dict() annotations_ann1 = [] annotations_ann2 = [] for key, value in ann2.items(): label2 = value['Aggression'] label1 = ann1.get(key).get('Aggression') annotations_ann1.append(label1) annotations_ann2.append(label2) return annotations_ann1, annotations_ann2 def calculate_score(ann1, ann2): """Function that calculates the inter agreement score using Cohen's Kappa, prints the scores and confusion matrix. :param ann1: list of annotation labels :param ann2: list of annotation labels """ agreement = [anno1 == anno2 for anno1, anno2 in zip(ann1, ann2)] percentage = sum(agreement) / len(agreement) print("Percentage Agreement: %.2f" % percentage) termlabels = ['pos', 'neg'] kappa = cohen_kappa_score(ann1, ann2, labels=termlabels) print("Cohen's Kappa: %.2f" % kappa) confusions = confusion_matrix(ann1, ann2, labels=termlabels) pandas_table = pd.DataFrame(confusions, index=termlabels, columns = ['pos', 'neg']) group_names = ["True Pos", "False Neg", "False Pos", "True Neg"] group_counts = ["{0: 0.0f}".format(value) for value in confusions.flatten()] labels = [f"{v1} {v2}" for v1, v2 in zip(group_names, group_counts)] labels = np.asarray(labels).reshape(2, 2) sns.heatmap(pandas_table, annot=labels, fmt='', cmap = 'Blues') plt.title("Confusion matrix annotations", size=12) plt.show() print(pandas_table) def main(): files = ['202103022_chunks_annotated_Sanne.xlsx', '20210322_chunks_annotated_Zana.xlsx'] terms_an1, terms_an2 = extract_annotations(files) calculate_score(terms_an1, terms_an2) if __name__ == '__main__': main()
39.428571
119
0.686393
0
0
0
0
0
0
0
0
797
0.320853
3cf83d68c033ebd1a763e8c4a9ee5516e254ffd0
1,068
py
Python
cogs/Events.py
popop098/Teasia-Bot.py
764c3b1cab8e07a9e98690263ad94011ee26ab72
[ "MIT" ]
1
2020-12-21T12:05:25.000Z
2020-12-21T12:05:25.000Z
cogs/Events.py
popop098/Taesia-Bot.py
764c3b1cab8e07a9e98690263ad94011ee26ab72
[ "MIT" ]
null
null
null
cogs/Events.py
popop098/Taesia-Bot.py
764c3b1cab8e07a9e98690263ad94011ee26ab72
[ "MIT" ]
1
2021-10-30T03:45:42.000Z
2021-10-30T03:45:42.000Z
import discord from discord.ext import commands from discord.ext.commands import has_permissions, MissingPermissions, CommandNotFound, BucketType, cooldown, CommandOnCooldown from discord import Webhook, RequestsWebhookAdapter from time import gmtime, strftime from discord.utils import get import youtube_dl import logging import random import praw import time import json import sys import os from random import randint def RandomColor(): return randint(0, 0xFFFFFF) class Events(commands.Cog): def __init__(self, bot): self.bot = bot @commands.Cog.listener() async def on_command_error(self, ctx, error): print("[-]", error) if isinstance(error, CommandOnCooldown): await ctx.send(f"워워~진정하세요 잠시 쿨타임에 걸렸어요. {error.retry_after:,.2f} 초후에 다시 사용해주세요") elif isinstance(error, MissingPermissions): Denied = discord.Embed(title="⚠권한부족!", description="이 명령을 실행하실 권한이 없어요.자세한 사항은 관리자님께 문의하세요.", color=EmbedColor) await ctx.send(embed=Denied) def setup(bot): bot.add_cog(Events(bot))
30.514286
126
0.729401
673
0.563652
0
0
587
0.491625
558
0.467337
244
0.204355
3cf96ed28f3d03023b6eb089f792b8961163dffe
1,927
py
Python
panopto_client/access.py
uw-it-cte/django-panopto-client
cdfc22e1a7c1e06de62477c30681da0755238152
[ "Apache-2.0" ]
4
2017-12-29T19:15:37.000Z
2019-11-18T18:32:39.000Z
panopto_client/access.py
uw-it-cte/django-panopto-client
cdfc22e1a7c1e06de62477c30681da0755238152
[ "Apache-2.0" ]
2
2017-09-07T23:27:52.000Z
2019-04-10T20:27:22.000Z
panopto_client/access.py
uw-it-cte/django-panopto-client
cdfc22e1a7c1e06de62477c30681da0755238152
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 UW-IT, University of Washington # SPDX-License-Identifier: Apache-2.0 """ This module exposes Panopto "AccessManagement" Service methods """ from panopto_client import PanoptoAPI, PanoptoAPIException class AccessManagement(PanoptoAPI): def __init__(self): super(AccessManagement, self).__init__( wsdl='AccessManagement.svc?wsdl', port='BasicHttpBinding_IAccessManagement') def access_role(self, role): try: return self._instance('ns0:AccessRole')[role] except TypeError: return role def getFolderAccessDetails(self, folder_id): return self._request('GetFolderAccessDetails', { 'auth': self.authentication_info(), 'folderId': folder_id, }) def grantUsersAccessToFolder(self, folder_id, user_ids, role): return self._request('GrantUsersAccessToFolder', { 'auth': self.authentication_info(), 'folderId': folder_id, 'userIds': self.guid_list(ns='ns2:ArrayOfguid', guids=user_ids), 'role': self.access_role(role), }) def revokeUsersAccessFromFolder(self, folder_id, user_ids, role): return self._request('RevokeUsersAccessFromFolder', { 'auth': self.authentication_info(), 'folderId': folder_id, 'userIds': self.guid_list(ns='ns2:ArrayOfguid', guids=user_ids), 'role': self.access_role(role), }) def getSessionAccessDetails(self, session_id): return self._request('GetSessionAccessDetails', { 'auth': self.authentication_info(), 'sessionId': session_id }) def updateSessionIsPublic(self, session_id, is_public): return self._request('UpdateSessionIsPublic', { 'auth': self.authentication_info(), 'sessionId': session_id, 'isPublic': is_public })
34.410714
76
0.637779
1,706
0.885314
0
0
0
0
0
0
517
0.268293
3cf9d103d47dd847c7bbdc09c8f10bae634a2961
20,459
py
Python
src/astrild/particles/halo.py
Christovis/wys-ars
bb15f2d392842f9b32de12b5db5c86079bc97105
[ "MIT" ]
3
2021-07-27T14:45:58.000Z
2022-01-31T21:09:46.000Z
src/astrild/particles/halo.py
Christovis/wys-ars
bb15f2d392842f9b32de12b5db5c86079bc97105
[ "MIT" ]
1
2021-11-03T10:47:45.000Z
2021-11-03T10:47:45.000Z
src/astrild/particles/halo.py
Christovis/wys-ars
bb15f2d392842f9b32de12b5db5c86079bc97105
[ "MIT" ]
1
2021-11-03T10:17:34.000Z
2021-11-03T10:17:34.000Z
import os from gc import collect from pathlib import Path from typing import List, Optional, Tuple, Type, Union from importlib import import_module import yaml import numpy as np import pandas as pd from sklearn.neighbors import BallTree #from halotools.mock_observables import tpcf_multipole from astrild.particles.ecosmog import Ecosmog from astrild.particles.hutils import SubFind from astrild.particles.hutils import Rockstar #from astrild.particles.utils import TPCF from astrild.utils import read_hdf5 from astrild.io import IO dir_src = Path(__file__).parent.absolute() default_halo_stats_config = dir_src / "configs/halo_stats.yaml" dm_particle_mass = 7.98408e10 #[Msun/h] class HalosWarning(BaseException): pass class Halos: """ Class to manage Rockstar & SubFind halos and get their statistics such as: - halo mass fct. - two point correlation fct. - concentration mass relation - pairwise velocity distribution Attributes: sim_type: simulation: Methods: from_subfind: from_rockstar: from_dataframe: from_file: get_subfind_stats: get_subfind_tpcf: get_rockstar_stats: get_rockstar_tpcf: filter_resolved_subfind_halos: filter_resolved_rockstar_halos: _save_results: _sort_statistics: _create_filename: """ def __init__( self, halos: Union[read_hdf5.snapshot, pd.DataFrame], simulation: Optional[Type[Ecosmog]] = None, ): self.data = halos self.sim = simulation if hasattr(self.sim, "files") == False: self.halotype = None elif "fof" in list(self.sim.files.keys()): self.halotype = "Arepo" elif "halos" in list(self.sim.files.keys()): self.halotype = "Rockstar" @classmethod def from_subfind( cls, snap_nr: int, simulation: Optional[Type[Ecosmog]] = None, ) -> "Halos": """ """ snapshot = read_hdf5.snapshot( snap_nr, simulation.dirs["sim"], part_type_list=["dm"], snapbases=["/snap-groupordered_"], # check_total_particle_number=True, # verbose=True, ) snapshot.group_catalog( [ "Group_M_Crit200", "Group_R_Crit200", "GroupPos", "GroupVel", "GroupFirstSub", "GroupLenType", "SubhaloVmax", "SubhaloPos", "SubhaloVel", "SubhaloMass", "SubhaloHalfmassRad", ] ) if snapshot.cat["n_groups"] == 0: snapshot = None else: snapshot.cat.update( { "SubhaloVmax": snapshot.cat["SubhaloVmax"][ (snapshot.cat["GroupFirstSub"][:]).astype(np.int64) ] } ) return cls(snapshot, simulation) @classmethod def from_rockstar( cls, snap_nr: int, simulation: Optional[Type[Ecosmog]] = None, ) -> "Halos": """ Load halo data from Rockstar halo finder into pandas.DataFrame Args: snap_nr: simulation: """ # TODO: currently only one directory supported, e.g. 012 files_path = simulation.files["halos"][str(snap_nr)] first = True for file_path in files_path: snapshot_part = pd.read_csv( file_path, header=0, skiprows=np.arange(1, 20), delim_whitespace=True, ) if first is True: snapshot = snapshot_part first = False else: snapshot = snapshot.append(snapshot_part, ignore_index=True) return cls.from_dataframe(snapshot, simulation) @classmethod def from_file( cls, filename: str, simulation: Optional[Type[Ecosmog]] = None, ) -> "Halos": """ """ df = pd.read_hdf(filename, key="df") return cls.from_dataframe(df, simulation) @classmethod def from_dataframe( cls, df: pd.DataFrame, simulation: Optional[Type[Ecosmog]] = None, ) -> "Halos": """ """ return cls(df, simulation) def get_subfind_stats( self, config_file: str = default_halo_stats_config, save: bool = True, ) -> None: """ Compute statistics of halos identified with SubFind from one or a collection of simulations. Args: config_file: file pointer in which containes info on what statistics to compute and their settings. save: wether to save results to file. """ # load settings (stg) with open(config_file) as f: statistics = yaml.load(f, Loader=yaml.FullLoader) for name in statistics.keys(): statistics[name]["results"] = {"bins": {}, "values": {}} # load particles/utils/stats.py package for dynamic function call module = import_module("astrild.particles.hutils") # sort statistics according to required halos resolutions stat_names_ord = self._sort_statistics(statistics) for snap_nr in self.sim.dir_nrs: snapshot = self.get_subfind_halo_data(snap_nr) if snapshot is None: print(f"No sub- & halos found for snapshot {snap_nr}") continue resolution = 0 for stat_name in stat_names_ord: if statistics[stat_name]["resolution"] != resolution: resolution = int(statistics[stat_name]["resolution"]) snapshot = self.filter_resolved_subfind_halos(snapshot, resolution) print(f" Compute {stat_name}") clas = getattr(module, "SubFind") fct = getattr(clas, stat_name) bins, values = fct(snapshot, **statistics[stat_name]["args"]) if (bins is not None) and (values is not None): statistics[stat_name]["results"]["bins"]["snap_%d" % snap_nr] = bins statistics[stat_name]["results"]["values"][ "snap_%d" % snap_nr ] = values collect() if save: self._save_results("subfind", statistics) else: self.statistics = statistics def filter_resolved_subfind_halos( self, snapshot: read_hdf5.snapshot, nr_particles: int, ) -> read_hdf5.snapshot: """ Filter halos with '> nr_particles' particles Args: Return: """ min_mass = dm_particle_mass * nr_particles mass = snapshot.cat["Group_M_Crit200"][:] * snapshot.header.hubble # [Msun/h] idx_groups = mass > min_mass mass = snapshot.cat["SubhaloMass"][:] * snapshot.header.hubble # [Msun/h] idx_subhalos = mass > min_mass # idx = snapshot.cat["GroupLenType"][:, 1] > nr_particles # idx = snapshot.cat["Group_M_Crit200"][:] > \ # 100*(snapshot.header.massarr[1] * 1e10 / snapshot.header.hubble) return self.filter_subfind_and_fof_halos(snapshot, idx_groups, idx_subhalos) def filter_nonzero_subfind_halos_size( self, snapshot: read_hdf5.snapshot, ) -> read_hdf5.snapshot: """ Filter halos with non-zero size Args: Return: """ rad = snapshot.cat["Group_R_Crit200"][:] # [ckpc/h] idx_groups = rad > 0 rad = snapshot.cat["SubhaloHalfmassRad"][:] # [ckpc/h] idx_subhalos = rad > 0 return self.filter_subfind_and_fof_halos(snapshot, idx_groups, idx_subhalos) def filter_subfind_and_fof_halos( self, snapshot: read_hdf5.snapshot, idx_groups: np.ndarray, idx_subhalos: np.ndarray, ) -> read_hdf5.snapshot: """ Filter sub- and fof-halos by indices """ for key, value in snapshot.cat.items(): if "Group" in key: idx = idx_groups elif ("Subhalo" in key) and (len(snapshot.cat[key]) > len(idx_groups)): idx = idx_subhalos else: HalosWarning(f"The key is {key} is a problem") continue if len(value.shape) == 0: continue elif len(value.shape) == 1: snapshot.cat.update({key: value[idx]}) elif len(value.shape) == 2: snapshot.cat.update({key: value[idx, :]}) else: raise HalosWarning( f"The group data {key} has weird dimensions: {value.shape}." ) return snapshot #def get_subfind_tpcf( # self, # subfind_type: str, # config: dict, # save: bool = True, #) -> None: # """ # Compute real- and redshift-space TPCF for halos. This computation is # done using halotools. # https://halotools.readthedocs.io/en/latest/index.html # Args: # subfind_type: ["Group", "Subhalo"] # config: # save: # wether to save results to file. # """ # tpcf = {} # for l in config["multipoles"]: # tpcf[str(l)] = {} # multipoles = config["multipoles"] # del config["multipoles"] # for snap_nr in self.sim.dir_nrs: # snapshot = self.get_subfind_halo_data(snap_nr) # # if snapshot is None: # print(f"No sub- & halos found for snapshot {snap_nr}") # continue # snapshot = self.filter_resolved_subfind_halos(snapshot, 100) # # if subfind_type == "group": # halo_pos = snapshot.cat["GroupPos"][:] * \ # snapshot.header.hubble / 1e3 #[Mpc/h] # scale_factor = 1 / (1 + snapshot.header.redshift) # print("test a -------", scale_factor) # halo_vel = snapshot.cat["GroupVel"][:] / scale_factor #[km/s] # if subfind_type == "subhalo": # halo_pos = snapshot.cat["SubhaloPos"][:] * \ # snapshot.header.hubble / 1e3 #[Mpc/h] # halo_vel = snapshot.cat["SubhaloVel"][:] #[km/s] # s_bins, mu_range, tpcf_s= TPCF.compute( # pos=halo_pos, # vel=halo_vel, # **config, # multipole=l, # ) # for l in multipoles: # _tpcf = tpcf_multipole(tpcf_s, mu_range, order=l) # tpcf[str(l)]["snap_%d" % snap_nr] = _tpcf # print(l, "!!!!!!!!!!!! snap_%d" % snap_nr, _tpcf) # # tpcf["s_bins"] = s_bins # if save: # IO.save_tpcf( # self.sim.dirs['out'], # config, # multipoles, # "subfind", # "_"+subfind_type, # tpcf, # ) # else: # self.tpcf = tpcf def get_rockstar_stats( self, config_file: str = default_halo_stats_config, snap_nrs: Optional[List[int]] = None, save: bool = True, ): """ Compute statistics of halos identified with Rockstar from one or a collection of simulations. rockstar: https://bitbucket.org/gfcstanford/rockstar/src/main/ https://github.com/yt-project/rockstar https://www.cosmosim.org/cms/documentation/database-structure/tables/rockstar/ Args: config_file: file pointer in which containes info on what statistics to compute and their settings. save: wether to save results to file. """ # load settings (stg) with open(config_file) as f: statistics = yaml.load(f, Loader=yaml.FullLoader) for name in statistics.keys(): statistics[name]["results"] = {"bins": {}, "values": {}} # load particles/utils/stats.py package for dynamic function call module = import_module("astrild.particles.hutils") # sort statistics according to required halo resolutions stat_names_ord = self._sort_statistics(statistics) if snap_nrs is None: snap_nrs = self.sim.dir_nrs for snap_nr in snap_nrs: snapshot = self.get_rockstar_halo_data( self.sim.files["halos"][str(snap_nr)] ) if len(snapshot.index.values) == 0: print(f"No sub- & halos found for snapshot {snap_nr}") continue resolution = 0 for stat_name in stat_names_ord: if statistics[stat_name]["resolution"] != resolution: resolution = int(statistics[stat_name]["resolution"]) snapshot = self.filter_resolved_rockstar_halos( snapshot, resolution ) print(f" Compute {stat_name}") clas = getattr(module, "Rockstar") fct = getattr(clas, stat_name) if stat_name != "histograms": bins, values = fct(snapshot, **statistics[stat_name]["args"]) if (bins is not None) and (values is not None): statistics[stat_name]["results"]["bins"]["snap_%d" % snap_nr] = bins statistics[stat_name]["results"]["values"][ "snap_%d" % snap_nr ] = values else: hist = fct(snapshot, **statistics[stat_name]["args"]) statistics[stat_name]["results"]["values"]["snap_%d" % snap_nr] = hist if save: self._save_results("rockstar", statistics) else: self.statistics = statistics #def get_rockstar_tpcf( # self, # config: dict, # snap_nrs: Optional[List[int]] = None, # save: bool = True, #) -> None: # """ # Compute real- and redshift-space TPCF for halos. This computation is # done using halotools. # https://halotools.readthedocs.io/en/latest/index.html # Args: # config: # save: # wether to save results to file. # """ # tpcf = {} # for l in config["multipoles"]: # tpcf[str(l)] = {} # multipoles = config["multipoles"] # del config["multipoles"] # # if snap_nrs is None: # snap_nrs = self.sim.dir_nrs # for snap_nr in snap_nrs: # snapshot = self.get_rockstar_halo_data( # self.sim.files["halos"][str(snap_nr)] # ) # # if snapshot is None: # print(f"No sub- & halos found for snapshot {snap_nr}") # continue # snapshot = self.filter_resolved_rockstar_halos(snapshot, 100) # # halo_pos = snapshot[["x", "y", "z"]].values #[Mpc/h] # halo_vel = snapshot[["vx", "vy", "vz"]].values #[km/s] # s_bins, mu_range, tpcf_s= TPCF.compute( # pos=halo_pos, # vel=halo_vel, # **config, # ) # for l in multipoles: # _tpcf = tpcf_multipole(tpcf_s, mu_range, order=l) # tpcf[str(l)]["snap_%d" % snap_nr] = _tpcf # # tpcf["s_bins"] = s_bins # if save: # IO.save_tpcf( # self.sim.dirs['out'], # config, # multipoles, # "rockstar", # "", # tpcf, # ) # else: # self.tpcf = tpcf def filter_resolved_rockstar_halos( self, snapshot: pd.DataFrame, nr_particles: int, ) -> pd.DataFrame: """ Filter halos with '> nr_particles' particles """ min_mass = dm_particle_mass * nr_particles return snapshot[snapshot["m200c"] > min_mass] def _sort_statistics(self, statistics: dict) -> List[str]: """ Sort statistics by their required particle resolution (low -to-> high). """ resolutions = np.zeros(len(list(statistics.keys()))) for idx, (_, stg) in enumerate(statistics.items()): resolutions[idx] = int(stg["resolution"]) idxs = np.argsort(resolutions) return [list(statistics.keys())[idx] for idx in idxs] def _save_results(self, halofinder: str, methods: dict): """ Save results of each statistic of each simulations snapshot for Rockstar and SubFind. """ for method, stg in methods.items(): if method != "histograms": columns = list(stg["results"]["bins"].keys()) if len(self.sim.dir_nrs) > 1: assert np.sum(stg["results"]["bins"][columns[0]]) == np.sum( stg["results"]["bins"][columns[1]] ) df = pd.DataFrame( data=stg["results"]["values"], index=stg["results"]["bins"][columns[0]], ) if "seperate" in list(stg["args"].keys()): compare = np.sum(stg["args"]["seperate"]["compare"]) if compare == 2: compare = "11" if compare == 3: compare = "12" if compare == 4: compare = "22" else: compare = "00" file_out = f"{self.sim.dirs['out']}{halofinder}_{method}_{compare}.h5" if os.path.exists(file_out): os.remove(file_out) print(f"Saving results to -> {file_out}") df.to_hdf(file_out, key="df", mode="w") else: for snap_nr, stg_in_snap in stg["results"]["values"].items(): data = np.asarray(list(stg_in_snap.values())).T columns = list(stg_in_snap.keys()) df = pd.DataFrame(data=data, columns=columns) file_out = f"{self.sim.dirs['out']}{halofinder}_{method}" + \ "_{snap_nr}.h5" if os.path.exists(file_out): os.remove(file_out) print(f"Saving results to -> {file_out}") df.to_hdf(file_out, key="df", mode="w") def _create_filename(self, file_in: str, quantity: str): """ Create file-name for merged snapshots""" quantity = quantity.replace("_", "") file_out = file_in.split("/")[-1].replace("Ray", quantity) file_out = file_out.replace(".h5", "_lt.fits") if ("_lc" not in file_in) or ("zrange" not in file_in): file_out = file_out.split("_") box_string = [string for string in file_in.split("/") if "box" in string][0] idx, string = [ (idx, "%s_" % box_string + string) for idx, string in enumerate(file_out) if "output" in string ][0] file_out[idx] = string file_out = "_".join(file_out) return self.sim.dirs["out"] + file_out @staticmethod def get_nearest_neighbours( df: pd.DataFrame, target_id: int, dmax: Optional[int] = None, extent: Optional[int] = None, ) -> tuple: """ Args: df: halo DataFrame target_id: object id for which to find NNs dmax: maximal distance between objects Return: indices and distances """ pos = df[["theta1_deg", "theta2_deg"]].values pos_i = df[df["id"] == target_id][["theta1_deg", "theta2_deg"]].values if dmax is None: dmax = df[df["id"] == target_id]["r200_deg"].values if extent is not None: dmax *= extent if len(pos_i.shape) == 1: pos_i = pos_i[np.newaxis, :] btree = BallTree(pos) pairs = btree.query_radius(pos_i, dmax, return_distance=True,) return pairs[0][0], pairs[1][0]
34.853492
92
0.525783
19,768
0.966225
0
0
3,371
0.164769
0
0
8,362
0.40872
3cfb5d1a0f1982dc0361736334993c9728647d4a
367
py
Python
webapi.py
Netherdrake/steemdata-webapi
02b443b6e7292577dfcca1a7fcc55329b1b70fb9
[ "MIT" ]
1
2017-04-20T04:22:07.000Z
2017-04-20T04:22:07.000Z
webapi.py
Netherdrake/steemdata-webapi
02b443b6e7292577dfcca1a7fcc55329b1b70fb9
[ "MIT" ]
1
2017-06-07T13:08:32.000Z
2017-06-07T13:08:32.000Z
webapi.py
Netherdrake/steemdata-webapi
02b443b6e7292577dfcca1a7fcc55329b1b70fb9
[ "MIT" ]
null
null
null
import os from eve import Eve from eve_docs import eve_docs from flask_bootstrap import Bootstrap # init Eve app = Eve(settings='settings.py') # init Eve-Docs Bootstrap(app) app.register_blueprint(eve_docs, url_prefix='/docs') if __name__ == '__main__': app.run(host=os.getenv('FLASK_HOST', '127.0.0.1'), debug=not os.getenv('PRODUCTION', False))
21.588235
54
0.719346
0
0
0
0
0
0
0
0
90
0.245232
3cfcd1fb4a8c9717754df6618804de4a66eaa349
5,475
py
Python
notebooks/working/_02_tb-Demo-visual-marginal-independence-tests.py
hassanobeid1994/tr_b_causal_2020
1ffaeb7dcefccf5e1f24c459e9a2f140b2a052a5
[ "MIT" ]
null
null
null
notebooks/working/_02_tb-Demo-visual-marginal-independence-tests.py
hassanobeid1994/tr_b_causal_2020
1ffaeb7dcefccf5e1f24c459e9a2f140b2a052a5
[ "MIT" ]
89
2020-02-10T02:52:11.000Z
2020-06-23T03:50:27.000Z
notebooks/working/_02_tb-Demo-visual-marginal-independence-tests.py
hassan-obeid/tr_b_causal_2020
1ffaeb7dcefccf5e1f24c459e9a2f140b2a052a5
[ "MIT" ]
null
null
null
# --- # jupyter: # jupytext: # formats: ipynb,py,md # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.4.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Purpose # The point of this notebook is to demonstrate how to perform at least one type of visual, marginal independence test. # # In particular, the notebook will show how to visually test the following implication<br> # $ # \begin{aligned} # P \left( X_1 \mid X_2 \right) &= P \left( X_1 \right) \\ # \int x_1 P \left( X_1 \mid X_2 \right) \partial{x_1} &= \int x_1 P \left( X_1 \right) \partial{x_1} \\ # E \left[ X_1 \mid X_2 \right] &= E \left[ X_1 \right] # \end{aligned} # $ # # In other words, if $X_1$ is marginally independent of $X_2$, then the expectation of $X_1$ conditional on $X_2$ is equal to the marginal expectation of $X_1$. This implies that shuffling / permuting the $X_2$ columns should make no difference to predicting $X_1$, beyond predicting the mean of $X_1$. # + # Declare hyperparameters for testing NUM_PERMUTATIONS = 100 # Declare the columns to be used for testing x1_col = "num_licensed_drivers" x2_col = "num_cars" mode_id_col = "mode_id" # Set the colors for plotting permuted_color = "#a6bddb" # Declare paths to data DATA_PATH = "../../data/raw/spring_2016_all_bay_area_long_format_plus_cross_bay_col.csv" # + import sys # noqa: E402 import matplotlib.pyplot as plt # noqa: E402 import numpy as np # noqa: E402 import pandas as pd # noqa: E402 import seaborn as sbn # noqa: E402 from scipy.stats import multinomial # noqa: E402 from tqdm.notebook import tqdm # noqa: E402 # %matplotlib inline sys.path.insert(0, "../../src/") import testing.observable_independence as oi # noqa: E402 # - # Load the raw data df = pd.read_csv(DATA_PATH) # + title_str = "{} vs {}" print(title_str.format(x1_col, x2_col)) drive_alone_filter = df[mode_id_col] == 1 license_array = df.loc[drive_alone_filter, x1_col].values num_cars_array = df.loc[drive_alone_filter, x2_col].values oi.visual_permutation_test( license_array, num_cars_array, z_array=None, seed=1038, num_permutations=NUM_PERMUTATIONS, permutation_color=permuted_color, ) # - # ## Test `visual_permutation_test` # + # Figure out how many observations to simulate, based on real data num_drive_alone_obs = (df.mode_id == 1).sum() # Determine how many simulations to carry out NUM_TEST_SIM = 200 # Initialize an array to store the simulated p-values test_p_vals = np.empty((NUM_TEST_SIM,), dtype=float) # Set a random seed for reproducibility np.random.seed(340) # Compute the p-values of the visual permutation test when the # null-hypothesis is true. for i in tqdm(range(NUM_TEST_SIM)): # Simulate data that, by construction, satisfies x2 indep x1 sim_x1 = 0.2 + 0.5 * np.random.normal(size=num_drive_alone_obs) sim_x2 = -0.1 - 0.01 * np.random.uniform(size=num_drive_alone_obs) # Determine which simulations to plot. # Just plot 1 simulation for visual comparison with real data current_close = True if i != 0 else False # Carry out the permutation test current_p = oi.visual_permutation_test( sim_x1, sim_x2, z_array=None, seed=None, progress=False, verbose=False, show=False, close=current_close, ) # Store the resulting p-values test_p_vals[i] = current_p # + # Create a distribution of p-values that is for sure are uniformly distributed null_histogram_dist = multinomial(NUM_TEST_SIM, [0.1 for x in range(10)]) null_hist_samples = null_histogram_dist.rvs(100) null_hist_mean = null_histogram_dist.mean() null_hist_upper_bound = np.percentile(null_hist_samples, 95, axis=0) null_hist_lower_bound = np.percentile(null_hist_samples, 5, axis=0) # Plot the distribution of our test p-values versus the p-values from # a uniform distriburtion fig, ax = plt.subplots(figsize=(10, 6)) plot_categories = [0.05 + 0.1 * x for x in range(10)] ax.fill_between( plot_categories, null_hist_upper_bound, null_hist_lower_bound, color=permuted_color, label="Null 95% Distribution", alpha=0.5, zorder=2, ) ax.hlines(null_hist_mean, 0, 1, label="Null Mean") ax.hist(test_p_vals, bins=10, label="Observed", zorder=0) ax.scatter( plot_categories, null_hist_upper_bound, label="Null 95% Upper Bound", color=permuted_color, marker="+", zorder=1, ) ax.scatter( plot_categories, null_hist_lower_bound, label="Null 5% Lower Bound", color=permuted_color, marker="*", zorder=1, ) ax.legend(loc=(1.05, 0.75)) ax.set_xlabel("p-values", fontsize=13) ax.set_ylabel("Num Observations", rotation=0, labelpad=70, fontsize=13) sbn.despine() fig.show() # - # ## Conclusions # - From the last plot, we can see that under the null hypothesis of $X_1$ independent of $X_2$, we get p-values that close to uniformly distributed.<br> # This means the permutation p-values in `visual_permutation_test` are unlikely to be overly-optimistic.<br> # In other words, we can feel safe(r) about relying on this test to distinguish conditional dependence from independence. # - From the first two plots of this notebook, we can see from applying the `visual_permutation_test` that the number of licensed drivers per household and number of automobiles per household are not marginally independent.
30.586592
302
0.715982
0
0
0
0
0
0
0
0
2,957
0.540091
3cfd1eff7aa3274bf5ba215dcc74c84bcd761113
1,799
py
Python
Labs/Lab-4.0 WiFi/5_wifi_logging.py
Josverl/MicroPython-Bootcamp
29f5ccc9768fbea621029dcf6eea9c91ff84c1d5
[ "MIT" ]
4
2018-04-28T13:43:20.000Z
2021-03-11T16:10:35.000Z
Labs/Lab-4.0 WiFi/5_wifi_logging.py
Josverl/MicroPython-Bootcamp
29f5ccc9768fbea621029dcf6eea9c91ff84c1d5
[ "MIT" ]
null
null
null
Labs/Lab-4.0 WiFi/5_wifi_logging.py
Josverl/MicroPython-Bootcamp
29f5ccc9768fbea621029dcf6eea9c91ff84c1d5
[ "MIT" ]
null
null
null
# import the network module # This module provides access to various network related functions and classes. # https://github.com/loboris/MicroPython_ESP32_psRAM_LoBo/wiki/network import network,utime #pylint: disable=import-error # ---------------------------------------------------------- # Define callback function used for monitoring wifi activity # ---------------------------------------------------------- ''' HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' ''' def wifi_cb(info): _red = "\033[31m" _cyan= "\033[36m" _norm = "\033[00m" if (info[2]): msg = ", info: {}".format(info[2]) else: msg = "" print(_cyan+"I [WiFi] event: {} ({}){}".format( info[0], info[1], msg)+_norm) # Enable callbacks network.WLANcallback(wifi_cb) # ---------------------------------------------------------- # create station interface - Standard WiFi client wlan = network.WLAN(network.STA_IF) wlan.active(False) # activate the interface wlan.active(True) # connect to a known WiFi wlan.connect('IOTBOOTCAMP', 'MicroPython') # Note that this may take some time, so we need to wait # Wait 5 sec or until connected tmo = 50 while not wlan.isconnected(): utime.sleep_ms(100) tmo -= 1 if tmo == 0: break # check if the station is connected to an AP if wlan.isconnected(): print("=== Station Connected to WiFi \n") else: print("!!! Not able to connect to WiFi") # gets or sets the interface's IP/netmask/gw/DNS addresses # 'Raw' print( wlan.ifconfig() ) #pretty c = wlan.ifconfig() print("IP:{0}, Network mask:{1}, Router:{2}, DNS: {3}".format( *c ))
24.986111
81
0.568093
0
0
0
0
0
0
0
0
1,187
0.659811
3cfd92551f129b14e3271b5e4699d932dae50065
681
py
Python
medium/1282.py
nkwib/leetcode
73f7492ba208417d8bf8340b6bf9dc68a6ded7f7
[ "MIT" ]
null
null
null
medium/1282.py
nkwib/leetcode
73f7492ba208417d8bf8340b6bf9dc68a6ded7f7
[ "MIT" ]
null
null
null
medium/1282.py
nkwib/leetcode
73f7492ba208417d8bf8340b6bf9dc68a6ded7f7
[ "MIT" ]
null
null
null
from typing import List class Solution: def groupThePeople(self, groupSizes: List[int]) -> List[List[int]]: def slice_per(source, step): for i in range(0, len(source), step): yield source[i:i + step] groups = {} res = [] for index, person in enumerate(groupSizes, start=0): if person in groups.keys(): groups[person].append(index) else: groups[person] = [index] for k in groups.keys(): group = list(slice_per(groups[k], k)) res.extend(group) return res groupSizes = [3,3,3,3,4,4,2,2,4,3,4,3,1] print(Solution().groupThePeople(groupSizes))
32.428571
71
0.565345
567
0.832599
547
0.803231
0
0
0
0
0
0
3cff24ff2a3befb7112dd8c73ae11e32acd5099b
1,576
py
Python
Code/Data_Collection/Web_Scraping/job_scraping/job_scraping/scrapy_crawler.py
gilnribeiro/Work-Project
15ad906ef5e757daed1df9c7547e5703ad496930
[ "MIT" ]
1
2022-01-31T11:31:04.000Z
2022-01-31T11:31:04.000Z
Code/Data_Collection/Web_Scraping/job_scraping/job_scraping/scrapy_crawler.py
gilnribeiro/Work-Project
15ad906ef5e757daed1df9c7547e5703ad496930
[ "MIT" ]
null
null
null
Code/Data_Collection/Web_Scraping/job_scraping/job_scraping/scrapy_crawler.py
gilnribeiro/Work-Project
15ad906ef5e757daed1df9c7547e5703ad496930
[ "MIT" ]
null
null
null
# Import spiders from .spiders.bons_empregos import BonsEmpregosSpider from .spiders.cargadetrabalhos import CargaDeTrabalhosSpider from .spiders.emprego_org import EmpregoOrgSpider from .spiders.emprego_xl import EmpregoXlSpider from .spiders.net_empregos import NetEmpregosSpider from twisted.internet import reactor, defer from scrapy.crawler import CrawlerRunner from scrapy.utils.log import configure_logging from scrapy.utils.project import get_project_settings # Make sure to be in the Data Collection directory FOLDER_PATH = "/Users/gilnr/OneDrive - NOVASBE/Work Project/Code/Data/" def main(): configure_logging() settings = get_project_settings() settings.set('FEED_FORMAT', 'jsonlines') # settings.set('FEED_URI', 'result.json') runner = CrawlerRunner(settings) @defer.inlineCallbacks def crawl(): settings.set('FEED_URI', FOLDER_PATH + "BonsEmpregos.json") yield runner.crawl(BonsEmpregosSpider) settings.set('FEED_URI', FOLDER_PATH + "CargaDeTrabalhos.json") yield runner.crawl(CargaDeTrabalhosSpider) settings.set('FEED_URI', FOLDER_PATH + "EmpregoOrg.json") yield runner.crawl(EmpregoOrgSpider) settings.set('FEED_URI', FOLDER_PATH + "EmpregoXl.json") yield runner.crawl(EmpregoXlSpider) settings.set('FEED_URI', FOLDER_PATH + "NetEmpregos.json") yield runner.crawl(NetEmpregosSpider) reactor.stop() crawl() reactor.run() # the script will block here until the last crawl call is finished if __name__ == '__main__': main()
34.26087
84
0.741751
0
0
943
0.59835
638
0.404822
0
0
407
0.258249
a70095a05438f3493dabb7b856707d3589d2cc37
2,302
py
Python
sentiment/train/management/commands/train.py
mnvx/sentiment
b24fad4cfc67b0b443e8ab93b08ac1dbcb095a7c
[ "MIT" ]
null
null
null
sentiment/train/management/commands/train.py
mnvx/sentiment
b24fad4cfc67b0b443e8ab93b08ac1dbcb095a7c
[ "MIT" ]
null
null
null
sentiment/train/management/commands/train.py
mnvx/sentiment
b24fad4cfc67b0b443e8ab93b08ac1dbcb095a7c
[ "MIT" ]
null
null
null
import configparser import csv from django.core.management.base import BaseCommand import logging import os from ....common.catalog.sentiment_type import SentimentType from ....common.catalog.source import Source class Command(BaseCommand): help = 'Train the sentiment classifier' def add_arguments(self, parser): parser.add_argument( 'type', type=str, help='Training data type', choices=SentimentType.get_list() ) parser.add_argument( '--path', type=str, required=False, help="Path to csv file with training data" ) parser.add_argument( '--source', type=str, required=False, help="Source with training data", choices=Source.get_list() ) def handle(self, *args, **options): if options['source'] is None and options['path'] is None: message = 'Cant run training. Set --path or --source option.' logging.warning(message) self.stdout.write(self.style.WARNING(message)) return if options['source'] is not None and options['path'] is not None: message = 'Cant run training. Set only one of --path or --source option.' logging.warning(message) self.stdout.write(self.style.WARNING(message)) return path = options['path'] if options['source'] is not None: path = os.path.join(Source.get_path(options['source']), options['type'] + '.csv') config_file = os.path.join(os.path.dirname(path), 'settings.ini') config = configparser.ConfigParser() config.read(config_file) column_index = int(config['csv']['IndexOfColumnWithData']) delimiter = config['csv']['Delimiter'] encoding = config['csv']['Encoding'] quote_char = config['csv']['QuoteChar'] with open(path, newline='', encoding=encoding) as csvfile: reader = csv.reader(csvfile, delimiter=delimiter, quotechar=quote_char) for row in reader: print(row[column_index]) return self.stdout.write('path: %s' % path) self.stdout.write(self.style.SUCCESS('Success'))
34.878788
93
0.591659
2,087
0.906603
0
0
0
0
0
0
426
0.185056
a7024ecc7fc28ff6673f46a13ae3e63f8ae5b339
114
py
Python
tests/demo/demoproject/urls.py
saxix/django-mb
3700c05b45854a28bd23368c4e4971ae54c18cad
[ "BSD-3-Clause" ]
2
2017-03-20T12:26:02.000Z
2017-04-22T11:46:17.000Z
tests/demo/demoproject/urls.py
saxix/django-mb
3700c05b45854a28bd23368c4e4971ae54c18cad
[ "BSD-3-Clause" ]
null
null
null
tests/demo/demoproject/urls.py
saxix/django-mb
3700c05b45854a28bd23368c4e4971ae54c18cad
[ "BSD-3-Clause" ]
null
null
null
from __future__ import absolute_import from django.contrib import admin admin.autodiscover() urlpatterns = ( )
12.666667
38
0.798246
0
0
0
0
0
0
0
0
0
0
a70361c3e3b8431100d15650b5da10d40acb287d
504
py
Python
appzoo/utils/log/__init__.py
streamlit-badge-bot/AppZoo
86547fdc5209fa137b0a6384d63e92f263c1e160
[ "MIT" ]
5
2020-11-05T12:13:45.000Z
2021-11-19T12:26:49.000Z
appzoo/utils/log/__init__.py
streamlit-badge-bot/AppZoo
86547fdc5209fa137b0a6384d63e92f263c1e160
[ "MIT" ]
null
null
null
appzoo/utils/log/__init__.py
streamlit-badge-bot/AppZoo
86547fdc5209fa137b0a6384d63e92f263c1e160
[ "MIT" ]
3
2020-11-23T23:06:34.000Z
2021-04-18T02:12:40.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Project : tql-App. # @File : __init__.py # @Time : 2019-12-10 17:24 # @Author : yuanjie # @Email : yuanjie@xiaomi.com # @Software : PyCharm # @Description : from loguru import logger trace = logger.add('runtime_{time}.log', rotation="100 MB", retention='10 days') logger.debug('this is a debug message') if __name__ == '__main__': @logger.catch() def f(): 1/0 return 1111 print(f())
21.913043
80
0.571429
0
0
0
0
60
0.119048
0
0
309
0.613095
a704ebb77dcf3890670eefaa40d9424024056adf
1,850
py
Python
beast/tools/run/helper_functions.py
galaxyumi/beast
f5ce89d73c88ce481b04fc31a8c099c9c19041fb
[ "BSD-3-Clause" ]
21
2017-03-18T13:46:06.000Z
2022-02-21T16:02:10.000Z
beast/tools/run/helper_functions.py
galaxyumi/beast
f5ce89d73c88ce481b04fc31a8c099c9c19041fb
[ "BSD-3-Clause" ]
673
2017-03-12T23:39:28.000Z
2022-03-17T14:07:38.000Z
beast/tools/run/helper_functions.py
galaxyumi/beast
f5ce89d73c88ce481b04fc31a8c099c9c19041fb
[ "BSD-3-Clause" ]
36
2017-03-18T18:00:35.000Z
2021-09-22T06:35:55.000Z
# other imports from multiprocessing import Pool def subcatalog_fname(full_cat_fname, source_density, sub_source_density): """ Return the name of a sub-catalog Parameters ---------- full_cat_fname : string name of the photometry catalog source_density : string the current source density bin sub_source_density : string the current sub-file for the source density bin Returns ------- string the file name of the sub-catalog """ return full_cat_fname.replace( ".fits", "_SD{}_sub{}.fits".format(source_density.replace("_", "-"), sub_source_density), ) def parallel_wrapper(function, arg_tuples, nprocs=1): """ A wrapper to automatically either run the function as-is or run it with parallel processes Parameters ---------- function : function the function to be evaluated argument : list of tuples the input to the function (details of course depend on the function) nprocs : int (default=1) number of parallel processes (no parallelization if nprocs=1) Returns ------- nothing """ if nprocs > 1: p = Pool(nprocs) for r in p.starmap(function, arg_tuples): print(r) else: for a in arg_tuples: r = function(*a) print(r) def get_modelsubgridfiles(subgrid_names_file): """ Read in the file that has the list of subgridded physicsmodel files Parameters ---------- subgrid_names_file : string name of the file with the list of names Returns ------- list of strings the names of the subgridded physicsmodel files """ with open(subgrid_names_file, "r") as f: modelsedgridfiles = f.read().split("\n")[:-1] return modelsedgridfiles
21.511628
94
0.621081
0
0
0
0
0
0
0
0
1,175
0.635135
a7054f9458e6b8299d380a912e48321581ca4d88
67
py
Python
patan/exceptions.py
tttlh/patan
d3e5cfec085e21f963204b5c07a85cf1f029560c
[ "MIT" ]
null
null
null
patan/exceptions.py
tttlh/patan
d3e5cfec085e21f963204b5c07a85cf1f029560c
[ "MIT" ]
null
null
null
patan/exceptions.py
tttlh/patan
d3e5cfec085e21f963204b5c07a85cf1f029560c
[ "MIT" ]
1
2021-03-01T08:35:34.000Z
2021-03-01T08:35:34.000Z
# _*_ coding: utf-8 _*_ class IgnoreRequest(Exception): pass
11.166667
31
0.671642
40
0.597015
0
0
0
0
0
0
23
0.343284
a70572ac4f62a9762d70dcd70a9fd3e4dc437ab3
2,621
py
Python
experiments/sparse_sparsity_fixed_results.py
Remi-Boutin/sparsebm
5979eafff99d59a3b6edac586ee5658529763402
[ "MIT" ]
1
2021-09-22T23:25:25.000Z
2021-09-22T23:25:25.000Z
experiments/sparse_sparsity_fixed_results.py
Remi-Boutin/sparsebm
5979eafff99d59a3b6edac586ee5658529763402
[ "MIT" ]
null
null
null
experiments/sparse_sparsity_fixed_results.py
Remi-Boutin/sparsebm
5979eafff99d59a3b6edac586ee5658529763402
[ "MIT" ]
1
2021-09-08T13:25:15.000Z
2021-09-08T13:25:15.000Z
from matplotlib import rc # rc("text", usetex=True) import matplotlib # font = {"size": 14} # matplotlib.rc("font", **font) import numpy as np import matplotlib.pyplot as plt import glob import pickle import time import matplotlib.colors as mcolors dataset_files = glob.glob("./experiments/results/sparsity_fixed/*.pkl") from collections import defaultdict time_results_sparse = defaultdict(list) time_results_not_sparse = defaultdict(list) cari_results_sparse = defaultdict(list) cari_results_not_sparse = defaultdict(list) e = 0.25 exponent = 5 connection_probabilities = ( np.array([[4 * e, e, e, e * 2], [e, e, e, e], [2 * e, e, 2 * e, 2 * e]]) / 2 ** exponent ) for file in dataset_files: results = pickle.load(open(file, "rb")) n1 = results["model"]["tau_1"].shape[0] n2 = results["model"]["tau_2"].shape[0] time_results_sparse[(n1, n2)].append(results["end_time"]) cari_results_sparse[(n1, n2)].append(results["co_ari"]) if results["end_time_not_sparse"]: cari_results_not_sparse[(n1, n2)].append(results["co_ari_not_sparse"]) time_results_not_sparse[(n1, n2)].append( results["end_time_not_sparse"] ) xs = sorted(list(time_results_sparse.keys()), key=lambda x: x[0]) fig, ax = plt.subplots(1, 1, figsize=(7, 4)) ax.spines["right"].set_visible(False) ax.spines["top"].set_visible(False) xs_values = [a * a / 2 for a in np.array([a[0] for a in xs])] ax.plot( xs_values, [np.median(time_results_sparse[x]) for x in xs], marker="^", markersize=7, linewidth=0.5, color=mcolors.TABLEAU_COLORS["tab:green"], ) xs_value_not_sparse = [ a * a / 2 for a in np.array( [a[0] for a in sorted(list(time_results_not_sparse.keys()))] ) ] ax.plot( xs_value_not_sparse, [ np.median(time_results_not_sparse[x]) for x in sorted(list(time_results_not_sparse.keys())) ], marker="*", markersize=7, linewidth=0.5, color=mcolors.TABLEAU_COLORS["tab:blue"], ) # ax.annotate( # "OOM", # ( # xs_value_not_sparse[-1], # 20 # + np.median( # time_results_not_sparse[ # sorted(list(time_results_not_sparse.keys()))[-1] # ] # ), # ), # color=mcolors.TABLEAU_COLORS["tab:blue"], # ) ax.set_yscale("log") ax.set_xscale("log") ax.set_ylabel("Execution time (sec.)") ax.set_xlabel("Network size $(n_1 \cdot n_2)$") # ax.ticklabel_format(style="sci", axis="x") plt.show() fig.savefig("experiments/results/sparsity_fixed.png") print("Figure saved in " + "experiments/results/sparsity_fixed.png")
26.474747
78
0.649752
0
0
0
0
0
0
0
0
768
0.293018
a70af31dd713880205073e138c1e10e6d9d8591d
4,236
py
Python
SerialController/Camera.py
Moi-poke/Poke-Controller-temp
b632f55eb6e5adc0f85f2ba6ef59c1230a5d5606
[ "MIT" ]
3
2021-04-23T06:30:36.000Z
2022-01-04T09:10:25.000Z
SerialController/Camera.py
Moi-poke/Poke-Controller-temp
b632f55eb6e5adc0f85f2ba6ef59c1230a5d5606
[ "MIT" ]
1
2022-01-04T06:33:11.000Z
2022-01-04T06:33:11.000Z
SerialController/Camera.py
Moi-poke/Poke-Controller-temp
b632f55eb6e5adc0f85f2ba6ef59c1230a5d5606
[ "MIT" ]
6
2021-10-03T05:42:50.000Z
2022-03-15T00:29:09.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import cv2 import datetime import os import numpy as np from logging import getLogger, DEBUG, NullHandler def imwrite(filename, img, params=None): _logger = getLogger(__name__) _logger.addHandler(NullHandler()) _logger.setLevel(DEBUG) _logger.propagate = True try: ext = os.path.splitext(filename)[1] result, n = cv2.imencode(ext, img, params) if result: with open(filename, mode='w+b') as f: n.tofile(f) return True else: return False except Exception as e: print(e) _logger.error(f"Image Write Error: {e}") return False class Camera: def __init__(self, fps=45): self.camera = None self.capture_size = (1280, 720) # self.capture_size = (1920, 1080) self.capture_dir = "Captures" self.fps = int(fps) self._logger = getLogger(__name__) self._logger.addHandler(NullHandler()) self._logger.setLevel(DEBUG) self._logger.propagate = True def openCamera(self, cameraId): if self.camera is not None and self.camera.isOpened(): self._logger.debug("Camera is already opened") self.destroy() if os.name == 'nt': self._logger.debug("NT OS") self.camera = cv2.VideoCapture(cameraId, cv2.CAP_DSHOW) # self.camera = cv2.VideoCapture(cameraId) else: self._logger.debug("Not NT OS") self.camera = cv2.VideoCapture(cameraId) if not self.camera.isOpened(): print("Camera ID " + str(cameraId) + " can't open.") self._logger.error(f"Camera ID {cameraId} cannot open.") return print("Camera ID " + str(cameraId) + " opened successfully") self._logger.debug(f"Camera ID {cameraId} opened successfully.") # print(self.camera.get(cv2.CAP_PROP_FRAME_WIDTH)) # self.camera.set(cv2.CAP_PROP_FPS, 60) self.camera.set(cv2.CAP_PROP_FRAME_WIDTH, self.capture_size[0]) self.camera.set(cv2.CAP_PROP_FRAME_HEIGHT, self.capture_size[1]) # self.camera.set(cv2.CAP_PROP_SETTINGS, 0) def isOpened(self): self._logger.debug("Camera is opened") return self.camera.isOpened() def readFrame(self): _, self.image_bgr = self.camera.read() return self.image_bgr def saveCapture(self, filename=None, crop=None, crop_ax=None, img=None): if crop_ax is None: crop_ax = [0, 0, 1280, 720] else: pass # print(crop_ax) dt_now = datetime.datetime.now() if filename is None or filename == "": filename = dt_now.strftime('%Y-%m-%d_%H-%M-%S') + ".png" else: filename = filename + ".png" if crop is None: image = self.image_bgr elif crop is 1 or crop is "1": image = self.image_bgr[ crop_ax[1]:crop_ax[3], crop_ax[0]:crop_ax[2] ] elif crop is 2 or crop is "2": image = self.image_bgr[ crop_ax[1]:crop_ax[1] + crop_ax[3], crop_ax[0]:crop_ax[0] + crop_ax[2] ] elif img is not None: image = img else: image = self.image_bgr if not os.path.exists(self.capture_dir): os.makedirs(self.capture_dir) self._logger.debug("Created Capture folder") save_path = os.path.join(self.capture_dir, filename) try: imwrite(save_path, image) self._logger.debug(f"Capture succeeded: {save_path}") print('capture succeeded: ' + save_path) except cv2.error as e: print("Capture Failed") self._logger.error(f"Capture Failed :{e}") def destroy(self): if self.camera is not None and self.camera.isOpened(): self.camera.release() self.camera = None self._logger.debug("Camera destroyed")
33.09375
77
0.553824
3,496
0.825307
0
0
0
0
0
0
696
0.164306
a70b86cdb095113c2f13cde684b541b11f3759d8
4,975
py
Python
my_tagger.py
jndevanshu/tagger
51181d3ac9b0959ba507ee0c06c28bed55b51c76
[ "Apache-2.0" ]
null
null
null
my_tagger.py
jndevanshu/tagger
51181d3ac9b0959ba507ee0c06c28bed55b51c76
[ "Apache-2.0" ]
null
null
null
my_tagger.py
jndevanshu/tagger
51181d3ac9b0959ba507ee0c06c28bed55b51c76
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python import os import time import codecs import optparse import sys import json import numpy as np from my_loader import prepare_sentence from utils import create_input, iobes_iob, iob_ranges, zero_digits from model import Model from ccg_nlpy.core.text_annotation import TextAnnotation from ccg_nlpy.core.view import View optparser = optparse.OptionParser() optparser.add_option( "-m", "--model", default="", help="Model location" ) optparser.add_option( "-i", "--input", default="", help="Input file location" ) optparser.add_option( "-o", "--output", default="", help="Output file location" ) optparser.add_option( "-d", "--delimiter", default="__", help="Delimiter to separate words from their tags" ) optparser.add_option( "--outputFormat", default="", help="Output file format" ) opts = optparser.parse_args()[0] # Check parameters validity assert opts.delimiter assert os.path.isdir(opts.model) # assert os.path.isfile(opts.input) # Load existing model print "Loading model..." model = Model(model_path=opts.model) parameters = model.parameters l1_model = None l1_f_eval = None if 'l1_model' in parameters: print("Building L1 model:") parameters['l1_model'] = parameters['l1_model'] assert os.path.isdir(parameters['l1_model']) l1_model = Model(model_path=parameters['l1_model']) l1_parameters = l1_model.parameters _, l1_f_eval = l1_model.build(training=False, **l1_parameters) l1_model.reload() print("Done building l1 model") # Load reverse mappings word_to_id, char_to_id, tag_to_id = [ {v: k for k, v in x.items()} for x in [model.id_to_word, model.id_to_char, model.id_to_tag] ] # Load the model _, f_eval = model.build(training=False, **parameters) model.reload() # f_output = codecs.open(opts.output, 'w', 'utf-8') start = time.time() print 'Tagging...' file_list = os.listdir(opts.input) count = 0 for doc in file_list: document = TextAnnotation(json_str=open(os.path.join(opts.input, doc)).read()) token_list = document.tokens start = 0 view_as_json = {} cons_list = [] if 'NER_CONLL' in document.view_dictionary: del document.view_dictionary['NER_CONLL'] for sent_end_offset in document.sentences['sentenceEndPositions']: words_ini = token_list[start:sent_end_offset] line = " ".join(words_ini) if line: # Lowercase sentence if parameters['lower']: line = line.lower() # Replace all digits with zeros if parameters['zeros']: line = zero_digits(line) words = line.rstrip().split() # Prepare input sentence = prepare_sentence(words, word_to_id, char_to_id, l1_model=l1_model, l1_f_eval=l1_f_eval, lower=parameters['lower']) print(sentence) input = create_input(sentence, parameters, False) # Decoding try: if parameters['crf']: y_preds = np.array(f_eval(*input))[1:-1] else: y_preds = f_eval(*input).argmax(axis=1) y_preds = [model.id_to_tag[y_pred] for y_pred in y_preds] except Exception as e: y_preds = ["O"] * len(words) # Output tags in the IOB2 format if parameters['tag_scheme'] == 'iobes': y_preds = iobes_iob(y_preds) # Write tags assert len(y_preds) == len(words) assert len(y_preds) == len(words_ini) print(y_preds) idx = 0 while idx < len(y_preds): if y_preds[idx] == "O": idx += 1 elif y_preds[idx].startswith("B-"): curr_label = y_preds[idx][2:] st = idx idx += 1 while idx < len(y_preds) and y_preds[idx].startswith("I-"): idx += 1 cons_list.append({'start': start + st, 'end': start + idx, 'score': 1.0, 'label': curr_label}) else: y_preds[idx] = "B-" + y_preds[idx][2:] print("something wrong....") # sys.exit(1) count += 1 start = sent_end_offset + 1 if count % 100 == 0: print count view_as_json['viewName'] = 'NER_CONLL' view_as_json['viewData'] = [{'viewType': 'edu.illinois.cs.cogcomp.core.datastructures.textannotation.View', 'viewName': 'NER_CONLL', 'generator': 'my-lstm-crf-tagger', 'score': 1.0, 'constituents': cons_list}] view_obj = View(view_as_json, document.get_tokens) document.view_dictionary['NER_CONLL'] = view_obj document_json = document.as_json json.dump(document_json, open(os.path.join(opts.output, doc), "w"), indent=True) print '---- %i lines tagged in %.4fs ----' % (count, time.time() - start) # f_output.close()
30.521472
213
0.605427
0
0
0
0
0
0
0
0
1,064
0.213869
a70d45fc226ab2dd59c5db64dd9ed218486ffae6
4,691
py
Python
Inkscape-OUTPUT-PRO-master/outputpro/cutmarks.py
ilnanny/Inkscape-addons
a30cdde2093fa2da68b90213e057519d0304433f
[ "X11" ]
3
2019-03-08T23:32:29.000Z
2019-05-11T23:53:46.000Z
Inkscape-OUTPUT-PRO-master/outputpro/cutmarks.py
ilnanny/Inkscape-addons
a30cdde2093fa2da68b90213e057519d0304433f
[ "X11" ]
null
null
null
Inkscape-OUTPUT-PRO-master/outputpro/cutmarks.py
ilnanny/Inkscape-addons
a30cdde2093fa2da68b90213e057519d0304433f
[ "X11" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import subprocess #re, subprocess, simplestyle, os#inkex, os, random, sys, subprocess, shutil def generate_final_file(isvector, hide_inside_marks, colormode, width, height, space, strokewidth, bleedsize, marksize, temp_dir): if not isvector: command = [] final_command = ['convert'] for color in colormode: command.append('convert') command.append('-size') command.append(str(sum(width) + (marksize*2) + (space * (len(width) -1))) + 'x' + str(sum(height) + (marksize*2) + (space * (len(height) -1)))) command.append('xc:white') command.append('-stroke') command.append('black') command.append('-strokewidth') command.append(str(strokewidth)) width_value = 0 number_of_column = 1 for column in width: height_value = 0 number_of_line = 1 for line in height: open('/tmp/str.txt', 'a').write(str(width.index(column))) if not hide_inside_marks or (hide_inside_marks and number_of_column == 1): command.append('-draw') command.append('line ' + str(width_value + marksize) + ',' + str(height_value + marksize + bleedsize) + ', ' + str(width_value) + ',' + str(height_value + marksize + bleedsize)) command.append('-draw') command.append('line ' + str(width_value + marksize) + ',' + str(height_value + line + marksize - bleedsize) + ', ' + str(width_value) + ',' + str(height_value + line + marksize - bleedsize)) if not hide_inside_marks or (hide_inside_marks and number_of_line == 1): command.append('-draw') command.append('line ' + str(width_value + marksize + bleedsize) + ',' + str(height_value + marksize) + ', ' + str(width_value + marksize + bleedsize) + ',' + str(height_value)) command.append('-draw') command.append('line ' + str(width_value + column + marksize - bleedsize) + ',' + str(height_value + marksize) + ', ' + str(width_value + column + marksize - bleedsize) + ',' + str(height_value)) if not hide_inside_marks or (hide_inside_marks and number_of_column == len(width)): command.append('-draw') command.append('line ' + str(width_value + marksize + column) + ',' + str(height_value + marksize + bleedsize) + ', ' + str(width_value + (marksize*2) + column) + ',' + str(height_value + marksize + bleedsize)) command.append('-draw') command.append('line ' + str(width_value + marksize + column) + ',' + str(height_value + line + marksize - bleedsize) + ', ' + str(width_value + (marksize*2) + column) + ',' + str(height_value + marksize + line - bleedsize)) if not hide_inside_marks or (hide_inside_marks and number_of_line == len(height)): command.append('-draw') command.append('line ' + str(width_value + marksize + bleedsize) + ',' + str(height_value + line + marksize) + ', ' + str(width_value + marksize + bleedsize) + ',' + str(height_value + line + (marksize*2))) command.append('-draw') command.append('line ' + str(width_value + column + marksize - bleedsize) + ',' + str(height_value + line + marksize) + ', ' + str(width_value + marksize + column - bleedsize) + ',' + str(height_value + line + (marksize*2))) height_value += line + space number_of_line += 1 width_value += column + space number_of_column += 1 command.append(temp_dir + '/cut_mark_' + color + '.png') subprocess.Popen(command).wait() del command[:] command.append('convert') command.append(temp_dir + '/cut_mark_' + color + '.png') command.append('-colorspace') command.append(str(colormode).lower()) command.append('-channel') command.append('K') command.append('-separate') command.append(temp_dir + '/cut_mark_' + color + '.png') subprocess.Popen(command).wait() del command[:] final_command.append(temp_dir + '/cut_mark_' + color + '.png') final_command.extend(['-set', 'colorspace', colormode, '-combine', temp_dir + '/cut_mark.tiff']) subprocess.Popen(final_command).wait()
56.518072
248
0.5534
0
0
0
0
0
0
0
0
558
0.118951
a70ebc7cdf0e76c3a3a02437342d60d6be4b5d1f
4,513
py
Python
test/test_cli.py
Datateer/upload-agent
4684bcf902d6c54baefb08446252a69612bf15a0
[ "MIT" ]
null
null
null
test/test_cli.py
Datateer/upload-agent
4684bcf902d6c54baefb08446252a69612bf15a0
[ "MIT" ]
2
2021-02-05T18:58:23.000Z
2021-02-14T15:23:46.000Z
test/test_cli.py
Datateer/upload-agent
4684bcf902d6c54baefb08446252a69612bf15a0
[ "MIT" ]
null
null
null
import os from pathlib import Path from unittest.mock import patch from click.testing import CliRunner import pytest from datateer.upload_agent.main import cli from datateer.upload_agent.config import load_config, save_config, save_feed import datateer.upload_agent.constants as constants @pytest.fixture def runner(): return CliRunner() def test_command_config_upload_agent_handles_show_option(runner): result = runner.invoke(cli, ['config', 'upload-agent', '--show']) assert result.exit_code == 0 @patch('datateer.upload_agent.main.load_config') def test_command_config_feed_handles_show_option(mock_load_config, config, runner): mock_load_config.return_value = config result = runner.invoke(cli, ['config', 'feed', '--show', 'SAMPLE-FEED-1']) print(result.output) assert result.exit_code == 0 @patch('datateer.upload_agent.main.load_config') def test_command_config_feed_show_option_errors_if_not_exist(mock_load_config, config, runner): mock_load_config.return_value = config result = runner.invoke(cli, ['config', 'feed', '--show', 'NONEXISTENT-KEY']) print(result.output) assert result.exit_code == 1 assert 'Feed with key NONEXISTENT-KEY does not exist' in result.output def test_command_upload_handles_feed_key_and_path_arguments(runner): result = runner.invoke(cli, ['upload', 'FEED-KEY', 'PATH']) print(result.output) assert result.exit_code == 1 assert 'Feed with key FEED-KEY does not exist' @patch.dict('datateer.upload_agent.main.config', constants.SAMPLE_CONFIG, clear=True) def test_config_upload_agent_prompts_show_defaults_if_config_exists(runner, config): defaults = config result = runner.invoke(cli, ['config', 'upload-agent'], input='CLIENT-CODE\nRAW-BUCKET\nACCESS-KEY\nACCESS-SECRET') print(result.output) assert result.exit_code == 0 assert f'Client code [{defaults["client-code"]}]: CLIENT-CODE' in result.output assert f'Raw bucket name [{defaults["upload-agent"]["raw-bucket"]}]: RAW-BUCKET' in result.output assert f'Access key [{defaults["upload-agent"]["access-key"]}]: ACCESS-KEY' in result.output assert f'Access secret [{defaults["upload-agent"]["access-secret"]}]: ACCESS-SECRET' in result.output @patch.dict('datateer.upload_agent.main.config', {'client-code': 'TEST-CLIENT-CODE'}, clear=True) @patch('datateer.upload_agent.main.load_config') def test_config_feed_prompts(mock_load_config, runner, config): mock_load_config.return_value = config result = runner.invoke(cli, ['config', 'feed'], input='PROVIDER\nSOURCE\nFEED\nFEED-KEY') print(config) print(result.output) assert result.exit_code == 0 assert 'Provider [SAMPLE-CLIENT-CODE]: PROVIDER' in result.output assert 'Source: SOURCE' in result.output assert 'Feed: FEED' in result.output assert 'Feed key [FEED]: FEED-KEY' in result.output @patch.dict('datateer.upload_agent.main.config', {'client-code': 'MY-TEST-CLIENT-CODE'}) @patch('datateer.upload_agent.main.load_config') def test_config_feed_provider_code_defaults_to_client_code(mock_load_config, config, runner): mock_load_config.return_value = config result = runner.invoke(cli, ['config', 'feed', '--source', 'SOURCE', '--feed', 'FEED'], input='\n\n') assert f'Provider [{config["client-code"]}]:' in result.output assert f'Provider [{config["client-code"]}]: {config["client-code"]}' not in result.output # assert user did not type in a value def test_config_feed_key_defaults_to_feed_code(runner): result = runner.invoke(cli, ['config', 'feed', '--provider', 'PROVIDER', '--source', 'SOURCE', '--feed', 'FEED']) assert 'Feed key [FEED]:' in result.output assert 'Feed key [FEED]: FEED' not in result.output # user did not type in a value @patch.dict('datateer.upload_agent.main.config', constants.SAMPLE_CONFIG, clear=True) @patch('datateer.upload_agent.main.load_config') def test_config_feed_handles_existing_feed_key(mock_load_config, runner, config): mock_load_config.return_value = config print(config) result = runner.invoke(cli, ['config', 'feed', '--update', 'SAMPLE-FEED-1'], input='test\ntest\ntest\ntest\n') print(result.output) assert result.exit_code == 0 assert f'Provider [{constants.SAMPLE_FEED["provider"]}]:' in result.output assert f'Source [{constants.SAMPLE_FEED["source"]}]:' in result.output assert f'Feed [{constants.SAMPLE_FEED["feed"]}]:' in result.output def test_show_version(runner): pytest.skip()
41.40367
132
0.734766
0
0
0
0
3,424
0.758697
0
0
1,642
0.363838
a70f8fbd9aef0f039b565e8b5e5bf81d26036760
14,899
py
Python
modron/characters.py
WardLT/play-by-post-helper
26df681f2a28510f88e552be628910e4e5fe57bb
[ "MIT" ]
null
null
null
modron/characters.py
WardLT/play-by-post-helper
26df681f2a28510f88e552be628910e4e5fe57bb
[ "MIT" ]
13
2020-04-08T02:56:58.000Z
2020-10-04T21:52:43.000Z
modron/characters.py
WardLT/play-by-post-helper
26df681f2a28510f88e552be628910e4e5fe57bb
[ "MIT" ]
null
null
null
"""Saving and using information about characters""" import json import os from enum import Enum from typing import Dict, List, Optional, Tuple import yaml from pydantic import BaseModel, Field, validator from modron.config import get_config _config = get_config() def _compute_mod(score: int) -> int: """Compute a mod given an ability score Args: score (int): Ability score Returns: (int) Modifier for that score """ return score // 2 - 5 class Ability(str, Enum): """Character abilities""" STR = 'strength' DEX = 'dexterity' CON = 'constitution' INT = 'intelligence' WIS = 'wisdom' CHA = 'charisma' @classmethod def match(cls, name: str) -> 'Ability': """Match a name to known ability Args: name (str): Name to be matched Returns: (Ability) Standardized version of that name """ name = name.lower() matched_abilities = [x for x in cls.__members__.values() if x.startswith(name)] assert len(matched_abilities) == 1, f"Unrecognized ability: {name}" return matched_abilities[0] _5e_skills = { 'acrobatics': Ability.DEX, 'animal handling': Ability.WIS, 'arcana': Ability.INT, 'athletics': Ability.STR, 'deception': Ability.CHA, 'history': Ability.INT, 'insight': Ability.WIS, 'intimidation': Ability.CHA, 'investigation': Ability.INT, 'medicine': Ability.WIS, 'nature': Ability.INT, 'perception': Ability.WIS, 'performance': Ability.CHA, 'persuasion': Ability.CHA, 'religion': Ability.INT, 'sleight of hand': Ability.DEX, 'stealth': Ability.DEX, 'survival': Ability.WIS } class Alignment(str, Enum): """Possible alignments""" LAWFUL_GOOD = 'lawful good' GOOD = 'good' CHAOTIC_GOOD = 'chaotic good' LAWFUL_NEUTRAL = 'lawful' NEUTRAL = 'neutral' CHAOTIC_NEUTRAL = 'chaotic neutral' LAWFUL_EVIL = 'lawful evil' EVIL = 'evil' CHAOTIC_EVIL = 'chaotic evil' _class_hit_die = { 'artificer': 8, 'barbarian': 12, 'bard': 8, 'cleric': 8, 'druid': 8, 'fighter': 10, 'monk': 8, 'paladin': 10, 'ranger': 10, 'rogue': 8, 'sorcerer': 6, 'warlock': 8, 'wizard': 6 } """Hit die for each 5E class""" class Character(BaseModel): """A D&D 5th edition character sheet, in Python form. This object stores only the mechanics-related aspects of a character sheet that remained fixed between level ups. For example, we store the hit point maximum but not the current hit points and the skill ist but not the languages.""" # Basic information about the character name: str = Field(..., description='Name of the character') player: str = Field(None, description='Slack user ID of the player') classes: Dict[str, int] = Field(..., description='Levels in different classes') background: str = Field(None, description='Character background') race: str = Field(None, description='Race of the character') alignment: Alignment = Field(..., description='Alignment for the character') # Attributes strength: int = Field(..., description='Physical strength of the character', ge=0) dexterity: int = Field(..., description='Gracefulness of the character', ge=0) constitution: int = Field(..., description='Resistance to physical adversity', ge=0) intelligence: int = Field(..., description='Ability to apply knowledge and skills', ge=0) wisdom: int = Field(..., description='Aptitude towards using knowledge to make good decisions', ge=0) charisma: int = Field(..., description='Proficiency with bringing people to agreement with you', ge=0) # Combat attributes speed: int = Field(30, description='Speed in feet per round') armor_class: int = Field(..., description='Resistance to physical attacks.') # Eventually make derived current_hit_points: Optional[int] = Field(..., description='Current hit points. Does not include temporary', ge=0) hit_points: int = Field(..., description='Maximum number of hit points', gt=0) temporary_hit_points: int = Field(0, description='Amount of temporary hit points.', ge=0) hit_points_adjustment: int = Field(0, description='Adjustments to the hit point maximum. ' 'Can be positive or negative') # Abilities saving_throws: List[Ability] = Field(..., description='Saving throws for which the character is proficient') custom_skills: Dict[str, Ability] = Field(dict(), description='Skills not included in 5e. ' 'Dictionary of skill names and associated ability') proficiencies: List[str] = Field(..., description='Names of skills in which the characters is proficient.') expertise: List[str] = Field([], description='Skills in which the character is an expert') @classmethod def from_yaml(cls, path: str) -> 'Character': """Parse the character sheet from YAML Args: path: Path to the YAML file """ with open(path) as fp: data = yaml.load(fp, yaml.SafeLoader) return cls.parse_obj(data) def to_yaml(self, path: str): """Save character sheet to a YAML file""" with open(path, 'w') as fp: data = json.loads(self.json()) yaml.dump(data, fp, indent=2) # Validators for different fields @validator('proficiencies', 'expertise', each_item=True) def _val_lowercase(cls, v: str) -> str: return v.lower() @validator('custom_skills', 'classes') def _val_dicts(cls, v: dict): """Makes keys for dictionaries """ return dict((k.lower(), v) for k, v in v.items()) # Derived quantities, such as modifiers @property def strength_mod(self) -> int: return _compute_mod(self.strength) @property def dexterity_mod(self) -> int: return _compute_mod(self.dexterity) @property def constitution_mod(self) -> int: return _compute_mod(self.constitution) @property def intelligence_mod(self) -> int: return _compute_mod(self.intelligence) @property def wisdom_mod(self) -> int: return _compute_mod(self.wisdom) @property def charisma_mod(self) -> int: return _compute_mod(self.charisma) @property def level(self) -> int: return sum(self.classes.values()) @property def proficiency_bonus(self) -> int: return (self.level - 1) // 4 + 2 @property def initiative(self) -> int: return self.dexterity_mod @property def total_hit_points(self) -> int: """Current hit point amount, including temporary hit points""" return self.current_hit_points + self.temporary_hit_points @property def current_hit_point_maximum(self) -> int: """Current hit point maximum""" return self.hit_points + self.hit_points_adjustment def heal(self, amount: int): """Heal the character by a certain amount Args: amount (int): Amount of healing """ assert amount >= 0, "Amount must be nonnegative" if self.current_hit_points is None: self.full_heal() self.current_hit_points += amount self.current_hit_points = min(self.current_hit_points, self.current_hit_point_maximum) def harm(self, amount: int): """Apply damage to this character Args: amount (int): Amount of damage """ assert amount >= 0, "Damage must be nonnegative" if self.current_hit_points is None: self.full_heal() # Damage hits the temporary first amount_to_temp = min(self.temporary_hit_points, amount) amount_to_base = amount - amount_to_temp self.temporary_hit_points -= amount_to_temp # Subtract off the remaining damage from the base hit points self.current_hit_points -= amount_to_base self.current_hit_points = max(0, self.current_hit_points) def full_heal(self): """Heal character up to hit point maximum""" self.current_hit_points = self.current_hit_point_maximum def grant_temporary_hit_points(self, amount: int): """Grant temporary hit points Args: amount: Amount of HP to give to the character """ assert amount > 0, "Amount must be positive" self.temporary_hit_points += amount def remove_temporary_hit_points(self): """Remove all temporary hit points""" self.temporary_hit_points = 0 def adjust_hit_point_maximum(self, amount: int): """Apply a change to the hit point maximum Args: amount: Amount to change the HP maximum """ self.hit_points_adjustment += amount # Make sure the hit point maximum is zero or more self.hit_points_adjustment = max(-self.hit_points, self.hit_points_adjustment) # Make sure the hit points stays below the maximum self.current_hit_points = min( self.current_hit_point_maximum, self.current_hit_points ) def reset_hit_point_maximum(self): """Remove any adjustments to the hit point maximum""" self.hit_points_adjustment = 0 def get_hit_die(self) -> Dict[str, int]: """Maximum hit die, computed based on class Returns: (dict) Where key is the hit die and value is the number """ output = {} for cls, num in self.classes.items(): hit_die = f'd{_class_hit_die[cls]}' if hit_die not in output: output[hit_die] = num else: output[hit_die] += num return output # Skills and checks def save_modifier(self, ability: str) -> int: """Get the modifier for a certain save type of save Args: ability (str): Ability to check. You can use the full name or the first three letters. Not case-sensitive Returns: (int) Modifier for the roll """ # Get the modifier mod = self.ability_modifier(ability) # Match the name of the ability matched_ability = Ability.match(ability) # Add any proficiency bonus if matched_ability.lower() in self.saving_throws: mod += self.proficiency_bonus return mod def ability_modifier(self, ability: str) -> int: """Get the modifier for a certain ability Args: ability (str): Ability to check. You can use the full name or the first three letters. Not case-sensitive Returns: (int) Modifier for the roll """ # Attempt to match the ability to the pre-defined list ability = ability.lower() matched_ability = Ability.match(ability) # Look up the ability modifier return getattr(self, f'{matched_ability}_mod') def skill_modifier(self, name: str) -> int: """Get the skill modifier for a certain skill First looks in custom skill list and then in the standard 5e skills. In this way, you can define a character to use a non-standard ability for a certain skill (as in how Monks can use Wisdom for many checks). Args: name (str): Name of the skill. Not case sensitive """ name_lower = name.lower() # Determine which ability modifier to use if name_lower in self.custom_skills: ability = self.custom_skills[name_lower] elif name_lower in _5e_skills: ability = _5e_skills[name_lower] else: raise ValueError(f'Unrecognized skill: {name}') mod = getattr(self, f'{ability}_mod') # Add proficiency or expertise if name_lower in self.expertise: return mod + self.proficiency_bonus * 2 elif name_lower in self.proficiencies: return mod + self.proficiency_bonus else: return mod def lookup_modifier(self, check: str) -> int: """Get the modifier for certain roll Args: check (str): Description of which check to make Returns: (int) Modifier for the d20 roll """ # Make it all lowercase check = check.lower() words = check.split(" ") # Save if 'save' in words: return self.save_modifier(words[0]) # Ability check try: return self.ability_modifier(check) except AssertionError: pass # and try something else # Skill return self.skill_modifier(check) def get_skills_by_ability(self, ability: str) -> Dict[str, str]: """List out the skills for this character that use a certain base ability Args: ability: Name of the ability Returns: Dictionary of the skill mapped to the level of skill (expert, proficient, untrained) """ # Match the ability matched_ability = Ability.match(ability) # Loop over the 5e skills matched_skills = [skill for skill, attr in _5e_skills.items() if attr == matched_ability] # Match the custom skills matched_skills.extend([ skill for skill, attr in self.custom_skills.items() if attr == matched_ability ]) # Return the outputs output = {} for skill in matched_skills: if skill in self.proficiencies: output[skill] = "proficient" elif skill in self.expertise: output[skill] = "expert" else: output[skill] = "untrained" return output def list_available_characters(team_id: str, user_id: str) -> List[str]: """List the names of character sheets that are available to a user Args: team_id (str): ID of the Slack workspace user_id (str): ID of the user in question Returns: ([str]): List of characters available to this player """ # Get all characters for this team sheets = _config.list_character_sheets(team_id) # Return only the sheets return [ os.path.basename(s)[:-4] # Remove the ".yml" for s in sheets if Character.from_yaml(s).player == user_id ] def load_character(team_id: str, name: str) -> Tuple[Character, str]: """Load a character sheet Arg: team_id (str): ID of the Slack workspace name (str): Name of the character Returns: - (Character) Desired character sheet - (str): Absolute path to the character sheet, in case you must save it later """ config = get_config() sheet_path = config.get_character_sheet_path(team_id, name) return Character.from_yaml(sheet_path), os.path.abspath(sheet_path)
34.093822
118
0.627626
12,527
0.840795
0
0
2,186
0.146721
0
0
6,162
0.413585
a7101a610a52017f13a5fe2d6d32d405867f9aef
1,558
py
Python
setup.py
Borsos/rubik
af220a142b81a8f5b5011e4e072be9e3d130e827
[ "Apache-2.0" ]
1
2019-11-13T00:44:09.000Z
2019-11-13T00:44:09.000Z
setup.py
Borsos/rubik
af220a142b81a8f5b5011e4e072be9e3d130e827
[ "Apache-2.0" ]
null
null
null
setup.py
Borsos/rubik
af220a142b81a8f5b5011e4e072be9e3d130e827
[ "Apache-2.0" ]
1
2019-11-13T00:47:16.000Z
2019-11-13T00:47:16.000Z
# # Copyright 2013 Simone Campagna # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # __author__ = "Simone Campagna" from distutils.core import setup import os import sys scripts = [ 'bin/rubik', ] try: dirname = os.path.dirname(os.path.abspath(sys.argv[0])) py_dirname = dirname sys.path.insert(0, py_dirname) from rubik import conf finally: del sys.path[0] setup( name = "python-rubik", version = conf.VERSION, requires = [], description = "Tool to read/write/visualize N-dimensional cubes", author = "Simone Campagna", author_email = "simone.campagna@tiscali.it", url="https://github.com/simone-campagna/rubik", download_url = 'https://github.com/simone-campagna/rubik/archive/{}.tar.gz'.format(conf.VERSION), packages = ["rubik", "rubik.application", "rubik.application.help_functions", "rubik.cubes", "rubik.visualizer", "rubik.visualizer.impl" ], scripts = scripts, package_data = {}, )
27.333333
101
0.668164
0
0
0
0
0
0
0
0
921
0.591142
a710a43bb737f726810f9f83e8727afbf0fbd72e
5,130
py
Python
geco/mips/tests/test_set_cover.py
FreestyleBuild/GeCO
6db1a549b3145b3bc5d3025a9bccc03be6575564
[ "MIT" ]
8
2020-12-16T09:59:05.000Z
2022-03-18T09:48:43.000Z
geco/mips/tests/test_set_cover.py
FreestyleBuild/GeCO
6db1a549b3145b3bc5d3025a9bccc03be6575564
[ "MIT" ]
101
2020-11-09T10:20:03.000Z
2022-03-24T13:50:06.000Z
geco/mips/tests/test_set_cover.py
FreestyleBuild/GeCO
6db1a549b3145b3bc5d3025a9bccc03be6575564
[ "MIT" ]
3
2021-04-06T13:26:03.000Z
2022-03-22T13:22:16.000Z
import collections import itertools import pytest from geco.mips.set_cover.yang import * from geco.mips.set_cover.sun import * from geco.mips.set_cover.orlib import * from geco.mips.set_cover.gasse import * """ Generic Tests """ def test_set_cover_solution_1(): model = set_cover([1], [{0}]) model.optimize() assert model.getStatus() == "optimal" assert model.getObjVal() == 1 def test_set_cover_solution_2(): model = set_cover([1, 1, 1], [{0}, {1}, {2}]) model.optimize() assert model.getStatus() == "optimal" assert model.getObjVal() == 3 """ Yang Tests """ @pytest.mark.parametrize( "m,seed", itertools.product([10, 100, 200], [0, 1, 1337, 53115]) ) def test_yang_set_cover_creation(m, seed): model = yang_instance(m, seed) assert model.getNVars() == 10 * m assert model.getNConss() == m assert model.getObjectiveSense() == "minimize" @pytest.mark.parametrize( "m,seed1,seed2", itertools.product([10, 100, 200], [0, 1, 1337, 53115], [0, 1, 1337, 53115]), ) def test_yang_parameter(m, seed1, seed2): params1 = yang_params(m, seed=seed1) params2 = yang_params(m, seed=seed2) same_seeds_produce_same_params = seed1 == seed2 and params1 == params2 different_seeds_produce_different_params = seed1 != seed2 and params1 != params2 assert same_seeds_produce_same_params or different_seeds_produce_different_params """ Sun Tests """ @pytest.mark.parametrize( "n,m,seed", itertools.product([10, 100, 200], [10, 100, 200], [0, 1, 1337, 53115]) ) def test_sun_set_cover_creation(n, m, seed): model = sun_instance(n, m, seed) assert model.getNVars() == n assert model.getNConss() == m assert model.getObjectiveSense() == "minimize" @pytest.mark.parametrize( "n,m,seed1,seed2", itertools.product( [10, 100, 200], [10, 100, 200], [0, 1, 1337, 53115], [0, 1, 1337, 53115] ), ) def test_sun_params(n, m, seed1, seed2): params1 = sun_params(n, m, seed=seed1) params2 = sun_params(n, m, seed=seed2) same_seeds_produce_same_params = seed1 == seed2 and params1 == params2 different_seeds_produce_different_params = seed1 != seed2 and params1 != params2 assert same_seeds_produce_same_params or different_seeds_produce_different_params @pytest.mark.parametrize( "n,m,seed", itertools.product([10, 100, 200], [10, 100, 200], [0, 1, 1337, 53115]) ) def test_sun_at_least_two_elements_in_set(n, m, seed): _, sets = sun_params(n, m, seed=seed) counter = collections.defaultdict(int) for s in sets: for e in s: counter[e] += 1 assert all([count >= 2 for count in counter.values()]) @pytest.mark.parametrize( "n,base_n,base_m,seed1,seed2", itertools.product( [10, 100, 200], [1, 5, 9], [10, 100, 200], [0, 1, 1337, 53115], [0, 1, 1337, 53115], ), ) def test_expand_sun_params(n, base_n, base_m, seed1, seed2): base_costs1, base_sets1 = sun_params(base_n, base_m, seed1) base_costs2, base_sets2 = sun_params(base_n, base_m, seed2) params1 = costs1, sets1 = expand_sun_params((n,), (base_costs1, base_sets1), seed1) params2 = costs2, sets2 = expand_sun_params((n,), (base_costs2, base_sets2), seed2) # test seeding same_seeds_produce_same_params = seed1 == seed2 and params1 == params2 different_seeds_produce_different_params = seed1 != seed2 and params1 != params2 assert same_seeds_produce_same_params or different_seeds_produce_different_params # test correct size assert len(costs1) == len(costs2) == n assert len(sets1) == len(sets2) == base_m """ OR-Library tests """ def test_scp_orlib(): instance_name = "scp41.txt" instance = orlib_instance(instance_name) assert instance.getNVars() == 1000 assert instance.getNConss() == 200 def test_rail_orlib(): instance_name = "rail507.txt" instance = orlib_instance(instance_name) assert instance.getNVars() == 63009 assert instance.getNConss() == 507 """ Gasse tests """ @pytest.mark.parametrize( "nrows,ncols,density,seed1,seed2", itertools.product( [100, 200], [10, 100, 200], [0.2, 0.3, 0.5], [0, 1, 1337, 53115], [0, 1, 1337, 53115], ), ) def test_gasse_params(nrows, ncols, density, seed1, seed2): params1 = gasse_params(nrows, ncols, density, seed=seed1) params2 = gasse_params(nrows, ncols, density, seed=seed2) same_seeds_produce_same_params = seed1 == seed2 and params1 == params2 different_seeds_produce_different_params = seed1 != seed2 and params1 != params2 assert same_seeds_produce_same_params or different_seeds_produce_different_params @pytest.mark.parametrize( "nrows,ncols,density,seed", itertools.product( [100, 200], [50, 70], [0.2, 0.3, 0.5], [0, 1, 1337, 53115], ), ) def test_gasse_instance(nrows, ncols, density, seed): model = gasse_instance(nrows, ncols, density, max_coef=10, seed=seed) assert model.getNVars() == ncols assert model.getNConss() == nrows assert model.getObjectiveSense() == "minimize"
28.5
87
0.670175
0
0
0
0
4,074
0.794152
0
0
352
0.068616
a71112e7354fe0bb8dca61271d9bc6a1f7ca9381
8,430
py
Python
lib/overnet/gen_bazel.py
PowerOlive/garnet
16b5b38b765195699f41ccb6684cc58dd3512793
[ "BSD-3-Clause" ]
null
null
null
lib/overnet/gen_bazel.py
PowerOlive/garnet
16b5b38b765195699f41ccb6684cc58dd3512793
[ "BSD-3-Clause" ]
null
null
null
lib/overnet/gen_bazel.py
PowerOlive/garnet
16b5b38b765195699f41ccb6684cc58dd3512793
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python2.7 # Copyright 2018 The Fuchsia Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import collections import os import sys # This program generates BUILD.bazel, WORKSPACE, .bazelrc from BUILD.gn #################################################################################################### # TOKENIZER Tok = collections.namedtuple('Tok', ['tok', 'value']) def is_ident_start(c): return (c >= 'a' and c <= 'z') or (c >= 'A' and c <= 'Z') or c == '_' def is_ident_char(c): return is_ident_start(c) or is_digit(c) def is_digit(c): return c >= '0' and c <= '9' def is_whitespace(c): return c in ' \t\r\n' sym_name = { ',': 'comma', '(': 'left_paren', ')': 'right_paren', '{': 'left_mustache', '}': 'right_mustache', '[': 'left_square', ']': 'right_square', '=': 'equals', } def is_symbol(c): return c in sym_name.keys() def tok(s): if s == '': return [], s c = s[0] if is_ident_start(c): return tok_ident(s) if c == '#': return tok_comment(s) if is_whitespace(c): return tok_whitespace(s) if is_symbol(c): return tok_cont(Tok(sym_name[c], c), s[1:]) if c == '"': return tok_string(s[1:]) print 'bad character: ' + s[0] sys.exit(1) def tok_cont(token, s): toks, rest = tok(s) return [token] + toks, rest def tok_comment(s): while s != '' and s[0] != '\n': s = s[1:] return tok(s[1:]) def tok_ident(s): ident = '' while s and is_ident_char(s[0]): ident += s[0] s = s[1:] return tok_cont(Tok('ident', ident), s) def tok_string(s): string = '' while s[0] != '"': string += s[0] s = s[1:] return tok_cont(Tok('string', string), s[1:]) def tok_whitespace(s): while s and is_whitespace(s[0]): s = s[1:] return tok(s) def tokenize(s): toks, rest = tok(s) if rest != '': print 'dangling: ' + rest sys.exit(1) return toks #################################################################################################### # PARSER Bundle = collections.namedtuple('Bundle', ['rule', 'name', 'values']) def take(toks, tok): if toks[0].tok != tok: print 'expected %s, got %s' % (tok, toks[0].tok) sys.exit(1) return toks.pop(0).value def maybe_take(toks, tok): if toks[0].tok != tok: return None return toks.pop(0).value def parse_dict(toks): d = {} while not maybe_take(toks, 'right_mustache'): key = take(toks, 'ident') take(toks, 'equals') value = parse_value(toks) d[key] = value return d def parse_list(toks): l = [] while not maybe_take(toks, 'right_square'): l.append(parse_value(toks)) if not maybe_take(toks, 'comma'): take(toks, 'right_square') break return l def parse_value(toks): if maybe_take(toks, 'left_mustache'): return parse_dict(toks) if maybe_take(toks, 'left_square'): return parse_list(toks) s = maybe_take(toks, 'string') if s is not None: return s s = maybe_take(toks, 'ident') if s is not None: if s == 'true': return True if s == 'false': return False print 'bad ident in value position: ' + s print 'bad value token: %r' % toks def parse(toks): bundles = [] while toks: rule = take(toks, 'ident') take(toks, 'left_paren') name = take(toks, 'string') take(toks, 'right_paren') body = None if maybe_take(toks, 'left_mustache'): body = parse_dict(toks) bundles.append(Bundle(rule, name, body)) return bundles #################################################################################################### # CODEGEN def mapdep(n): if n[0] == ':': return n m = { '//third_party/googletest:gtest': '@com_google_googletest//:gtest', '//third_party/googletest:gmock': None, } return m[n] FUZZERS = ['bbr', 'internal_list', 'linearizer', 'packet_protocol', 'receive_mode', 'routing_header'] assert FUZZERS == sorted(FUZZERS) with open('BUILD.bazel', 'w') as o: with open('BUILD.gn') as f: for bundle in parse(tokenize(f.read())): if bundle.rule == 'source_set': print >>o, 'cc_library(' print >>o, ' name="%s",' % bundle.name print >>o, ' srcs=[%s],' % ','.join( '"%s"' % s for s in bundle.values['sources']) if 'deps' in bundle.values: print >>o, ' deps=[%s],' % ','.join( '"%s"' % mapdep(s) for s in bundle.values['deps'] if mapdep(s) is not None) print >>o, ')' if bundle.rule == 'executable': if bundle.values.get('testonly', False): print >>o, 'cc_test(shard_count=50,' else: print >>o, 'cc_binary(' print >>o, ' name="%s",' % bundle.name print >>o, ' srcs=[%s],' % ','.join( '"%s"' % s for s in bundle.values['sources']) print >>o, ' deps=[%s],' % ','.join( '"%s"' % mapdep(s) for s in bundle.values['deps'] if mapdep(s) is not None) print >>o, ')' for fuzzer in FUZZERS: print >>o, 'cc_binary(' print >>o, ' name="%s_fuzzer",' % fuzzer srcs = ['%s_fuzzer.cc' % fuzzer] helpers_h = '%s_fuzzer_helpers.h' % fuzzer if os.path.exists(helpers_h): srcs.append(helpers_h) print >>o, ' srcs=[%s],' % ', '.join('"%s"' % s for s in srcs) print >>o, ' deps=[":overnet", ":test_util"],' print >>o, ')' WORKSPACE = """ # This file is not checked in, but generated by gen_bazel.py # Make changes there git_repository( name = 'com_google_googletest', remote = 'https://github.com/google/googletest.git', commit = 'd5266326752f0a1dadbd310932d8f4fd8c3c5e7d', ) """ BAZELRC = """ # This file is not checked in, but generated by gen_bazel.py # Make changes there build --client_env=CC=clang build --copt -std=c++14 build:asan --strip=never build:asan --copt -fsanitize=address build:asan --copt -O0 build:asan --copt -fno-omit-frame-pointer build:asan --linkopt -fsanitize=address build:asan --action_env=ASAN_OPTIONS=detect_leaks=1:color=always build:asan --action_env=LSAN_OPTIONS=report_objects=1 build:asan-fuzzer --strip=never build:asan-fuzzer --copt -fsanitize=fuzzer,address build:asan-fuzzer --copt -fsanitize-coverage=trace-cmp build:asan-fuzzer --copt -O0 build:asan-fuzzer --copt -fno-omit-frame-pointer build:asan-fuzzer --linkopt -fsanitize=fuzzer,address build:asan-fuzzer --action_env=ASAN_OPTIONS=detect_leaks=1:color=always build:asan-fuzzer --action_env=LSAN_OPTIONS=report_objects=1 build:msan --strip=never build:msan --copt -fsanitize=memory build:msan --copt -O0 build:msan --copt -fsanitize-memory-track-origins build:msan --copt -fsanitize-memory-use-after-dtor build:msan --copt -fno-omit-frame-pointer build:msan --copt -fPIC build:msan --linkopt -fsanitize=memory build:msan --linkopt -fPIC build:msan --action_env=MSAN_OPTIONS=poison_in_dtor=1 build:tsan --strip=never build:tsan --copt -fsanitize=thread build:tsan --copt -fno-omit-frame-pointer build:tsan --copt -DNDEBUG build:tsan --linkopt -fsanitize=thread build:tsan --action_env=TSAN_OPTIONS=halt_on_error=1 build:ubsan --strip=never build:ubsan --copt -fsanitize=undefined build:ubsan --copt -fno-omit-frame-pointer build:ubsan --copt -DNDEBUG build:ubsan --copt -fno-sanitize=function,vptr build:ubsan --linkopt -fsanitize=undefined build:ubsan --action_env=UBSAN_OPTIONS=halt_on_error=1:print_stacktrace=1 build:ubsan-fuzzer --strip=never build:ubsan-fuzzer --copt -fsanitize=fuzzer,undefined build:ubsan-fuzzer --copt -fno-omit-frame-pointer build:ubsan-fuzzer --copt -DNDEBUG build:ubsan-fuzzer --copt -fno-sanitize=function,vptr build:ubsan-fuzzer --linkopt -fsanitize=fuzzer,undefined build:ubsan-fuzzer --action_env=UBSAN_OPTIONS=halt_on_error=1:print_stacktrace=1 """ with open('WORKSPACE', 'w') as o: o.write(WORKSPACE) with open('.bazelrc', 'w') as o: o.write(BAZELRC)
27.281553
100
0.57758
0
0
0
0
0
0
0
0
4,054
0.480902
a711b022a699f3a1657ba1bf4a22b34ce38cfe57
2,878
py
Python
hcplot/scales/colors/hue.py
bernhard-42/hcplot
1c791e2b19b173b9b98a3d8914095e3c372c9de4
[ "Apache-2.0" ]
null
null
null
hcplot/scales/colors/hue.py
bernhard-42/hcplot
1c791e2b19b173b9b98a3d8914095e3c372c9de4
[ "Apache-2.0" ]
null
null
null
hcplot/scales/colors/hue.py
bernhard-42/hcplot
1c791e2b19b173b9b98a3d8914095e3c372c9de4
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 Bernhard Walter # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ...utils.color import hcl2rgb, rgb2str import numpy as np class HueColors(object): """ "Escaping RGBland: Selecting Colors for Statistical Graphics" Achim Zeileis, Wirtschaftsuniversität Wien Kurt Hornik, Wirtschaftsuniversität Wien Paul Murrell, The University of Auckland https://eeecon.uibk.ac.at/~zeileis/papers/Zeileis+Hornik+Murrell-2009.pdf """ # # Accessors # @classmethod def qual(cls, h=(0, 360), c=100, l=65, sizeOrSeries=5, asString=False): size = sizeOrSeries if isinstance(sizeOrSeries, int) else (len(sizeOrSeries)) d = (h[1] - h[0]) // (size - 1) result = [hcl2rgb(h[0] + d * i, c, l) for i in range(size)] return rgb2str(result) if asString else result @classmethod def seq(cls, h=260, c=(30, 90), l=(30, 90), fl=None, fc=None, sizeOrSeries=5, asString=False): size = sizeOrSeries if isinstance(sizeOrSeries, int) else (len(sizeOrSeries)) if isinstance(c, int): crange = [c] * size else: if fc is None: crange = np.linspace(c[0], c[1], size) else: d = c[0] - c[1] crange = [c[1] + d * fc(x) for x in np.linspace(1, 0, size)] if isinstance(l, int): lrange = [l] * size else: if fl is None: lrange = np.linspace(l[0], l[1], size) else: d = l[0] - l[1] lrange = [l[1] + d * fl(x) for x in np.linspace(1, 0, size)] return [hcl2rgb(h, ci, li) for ci, li in zip(crange, lrange)] @classmethod def div(cls, h=[260, 0], c=(100, 0, 100), l=(30, 90, 30), fc=None, fl=None, sizeOrSeries=7, asString=False): size = sizeOrSeries if isinstance(sizeOrSeries, int) else (len(sizeOrSeries)) s = size // 2 + 1 return cls.seq(h[0], c[:2], l[:2], fc=fc, fl=fl, sizeOrSeries=s)[:-1] + \ list(reversed(cls.seq(h[1], (c[2], c[1]), (l[2], l[1]), sizeOrSeries=s, fc=fc, fl=fl))) # # Info # @classmethod def info(cls): pass @classmethod def toDF(cls, typ): pass # # Quick Accessor # def getBrewer(typ, palette, size): return getattr(HueColors, typ)(palette, size)
30.294737
99
0.592078
2,125
0.737847
0
0
1,706
0.592361
0
0
911
0.316319
a71203325ed630e617cb8551726c8b7f07f5f6f8
423
py
Python
accounts/migrations/0013_alter_caller_list_file.py
Srinjay-hack/Buddy
155b9ba58a20bf043493213dd8349f61012fc480
[ "Apache-2.0" ]
null
null
null
accounts/migrations/0013_alter_caller_list_file.py
Srinjay-hack/Buddy
155b9ba58a20bf043493213dd8349f61012fc480
[ "Apache-2.0" ]
null
null
null
accounts/migrations/0013_alter_caller_list_file.py
Srinjay-hack/Buddy
155b9ba58a20bf043493213dd8349f61012fc480
[ "Apache-2.0" ]
null
null
null
# Generated by Django 3.2.4 on 2021-07-12 14:38 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('accounts', '0012_alter_caller_estimated_amount'), ] operations = [ migrations.AlterField( model_name='caller', name='list_file', field=models.FileField(blank=True, null=True, upload_to=''), ), ]
22.263158
72
0.614657
330
0.780142
0
0
0
0
0
0
114
0.269504
a712ce0eafb15d53426b4b979da8580fdd2c7a4c
7,978
py
Python
vk_bots/api.py
termisaal/VkBotsApi
0957ea46952c260090741aeddf71d50dd950f74c
[ "MIT" ]
null
null
null
vk_bots/api.py
termisaal/VkBotsApi
0957ea46952c260090741aeddf71d50dd950f74c
[ "MIT" ]
null
null
null
vk_bots/api.py
termisaal/VkBotsApi
0957ea46952c260090741aeddf71d50dd950f74c
[ "MIT" ]
null
null
null
""" VK Bots API Wrapper Copyright (c) 2020-2021 Misaal """ import aiohttp import json import typing from .errors import VKAPIError from .keyboard import Keyboard from .utils import to_namedtuple, get_random_id class MethodGroup: """Base class for API methods groups""" def __init__(self, access_token, v): self._access_token = access_token self._v = v async def _api_request(self, method, **kwargs): for key in list(kwargs): if kwargs[key] is None: kwargs.pop(key) kwargs['access_token'] = self._access_token kwargs['v'] = self._v async with aiohttp.ClientSession() as session: async with session.get(url=f'https://api.vk.com/method/{method}', params=kwargs) as response: data = await response.read() data = json.loads(data) if 'error' in data: raise VKAPIError(data['error']['error_code'], data['error']['error_msg']) else: return data class AppWidgets(MethodGroup): pass class Board(MethodGroup): pass class Docs(MethodGroup): pass class Groups(MethodGroup): pass class Market(MethodGroup): pass class Messages(MethodGroup): async def createChat(self): pass async def delete(self): pass async def deleteChatPhoto(self): pass async def deleteConversation(self): pass async def edit(self): pass async def editChat(self): pass async def getByConversationMessageId(self): pass async def getById(self): pass async def getConversationMembers(self): pass async def getConversations(self): pass async def getConversationsById(self): pass async def getHistory(self): pass async def getHistoryAttachments(self): pass async def getImportantMessages(self): pass async def getIntentUsers(self): pass async def getInviteLink(self): pass async def isMessagesFromGroupAllowed(self): pass async def markAsAnsweredConversation(self): pass async def markAsImportantConversation(self): pass async def markAsRead(self): pass async def pin(self): pass async def removeChatUser(self): pass async def restore(self): pass async def search(self): pass async def searchConversations(self): pass async def send(self, user_id: int = None, random_id: int = None, peer_id: int = None, peer_ids: typing.Iterable[int] = None, domain: str = None, chat_id: int = None, message: str = None, lat: float = None, long: float = None, attachment: typing.Union[str, typing.Iterable[str]] = None, reply_to: int = None, forward_messages: typing.Union[int, typing.Iterable[int]] = None, forward: dict = None, sticker_id: int = None, keyboard: typing.Union[Keyboard, dict] = None, template: dict = None, payload: str = None, content_source: dict = None, dont_parse_links: typing.Union[bool, int] = None, disable_mentions: typing.Union[bool, int] = None, intent: str = None, subscribe_id: int = None): if random_id is None: random_id = get_random_id() if attachment is not None and type(attachment) != str: attachment = ','.join(attachment) if forward_messages is not None and type(forward_messages) != int: forward_messages = ','.join(map(str, forward_messages)) if keyboard is not None and type(keyboard) != dict: return dict(keyboard) if dont_parse_links is not None and type(dont_parse_links) == bool: dont_parse_links = int(dont_parse_links) if disable_mentions is not None and type(disable_mentions) == bool: disable_mentions = int(disable_mentions) return await self._api_request('messages.send', user_id=user_id, random_id=random_id, peer_id=peer_id, peer_ids=peer_ids, domain=domain, chat_id=chat_id, message=message, lat=lat, long=long, attachment=attachment, reply_to=reply_to, forward_messages=forward_messages, forward=forward, sticker_id=sticker_id, keyboard=keyboard, template=template, payload=payload, content_source=content_source, dont_parse_links=dont_parse_links, disable_mentions=disable_mentions, intent=intent, subscribe_id=subscribe_id) async def sendMessageEventAnswer(self): pass async def setActivity(self): pass async def setChatPhoto(self): pass async def unpin(self): pass class Photos(MethodGroup): pass class Podcasts(MethodGroup): pass class Storage(MethodGroup): pass class Stories(MethodGroup): pass class Users(MethodGroup): pass class Utils(MethodGroup): pass class Wall(MethodGroup): pass class Api: """Class used to perform requests to VK API""" def __init__(self, access_token, v): self._access_token = access_token self._v = v self.appWidgets = AppWidgets(access_token, v) self.board = Board(access_token, v) self.docs = Docs(access_token, v) self.groups = Groups(access_token, v) self.market = Market(access_token, v) self.messages = Messages(access_token, v) self.photos = Photos(access_token, v) self.podcasts = Podcasts(access_token, v) self.storage = Storage(access_token, v) self.stories = Stories(access_token, v) self.users = Users(access_token, v) self.utils = Utils(access_token, v) self.wall = Wall(access_token, v) class ApiOld: __slots__ = ('_method', '_access_token', '_v') def __init__(self, access_token: str, v: float = 5.131, _method=None): self._access_token = access_token self._v = v if _method is None: _method = [] self._method = _method def __getattr__(self, item): return ApiOld(self._access_token, self._v, self._method + [item]) async def __call__(self, **kwargs): kwargs['access_token'] = self._access_token kwargs['v'] = self._v async with aiohttp.ClientSession() as session: async with session.get(url=f'https://api.vk.com/method/{".".join(self._method)}', params=kwargs) as response: data = await response.read() data = json.loads(data.decode()) if 'error' in data: raise VKAPIError(data['error']['error_code'], data['error']['error_msg']) return to_namedtuple('response', data)
27.701389
93
0.534971
7,718
0.96741
0
0
0
0
5,747
0.720356
414
0.051893