hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
a57fff444e34ab3085f258b8aa57323a8f86efde
1,683
py
Python
Exercicios/Exercicio070.py
RicardoMart922/estudo_Python
cb595c2a5e5aee568b6afa71b3ed9dd9cb7eef72
[ "MIT" ]
null
null
null
Exercicios/Exercicio070.py
RicardoMart922/estudo_Python
cb595c2a5e5aee568b6afa71b3ed9dd9cb7eef72
[ "MIT" ]
null
null
null
Exercicios/Exercicio070.py
RicardoMart922/estudo_Python
cb595c2a5e5aee568b6afa71b3ed9dd9cb7eef72
[ "MIT" ]
null
null
null
# Crie um programa que leia a idade e o sexo de várias pessoas. A cada pessoa cadastrada, o programa deverá perguntar se o usuário quer ou não continuar. No final, mostre: # A) Quantas pessoas tem mais de 18 anos. # B) Quantos homens foram cadastrados. # C) Quantas mulheres tem menos de 20 anos. maisdezoito = 0 qtdmulheres = 0 qtdhomens = 0 idade = 0 opcao = '' sexo = '' print('-= Informe a idade e o sexo para o cadastro =-') while True: idade = int(input('Idade: ')) if idade > 18: maisdezoito += 1 while True: sexo = str(input('Sexo [M/F]: ')).upper() if sexo == 'M' or sexo == 'F': if sexo == 'M': qtdhomens += 1 if sexo == 'F' and idade < 20: qtdmulheres += 1 break while True: opcao = str(input('Quer continuar [S/N]: ')).upper() if opcao == 'S' or opcao == 'N': break if opcao == 'N': break if maisdezoito == 0: print('Nenhuma pessoa com mais de 18 anos foi cadastrada.') elif maisdezoito == 1: print('Foi cadastrado uma pessoa com mais de 18 anos.') else: print(f'Foi cadastrado {maisdezoito} pessoas com mais de 18 anos.') if qtdhomens == 0: print('Nenhum homem foi cadastrado.') elif qtdhomens == 1: print('Apenas um homem foi cadastrado.') else: print(f'A quantidade de homens cadastrados foi {qtdhomens}.') if qtdmulheres == 0: print('Nenhuma mulher com menos de 20 anos foi cadastrada.') elif qtdmulheres == 1: print('Apenas uma mulher com menos de 20 anos foi cadastrada.') else: print(f'A quantidade de mulheres com menos de 20 anos que foram cadastradas foi {qtdmulheres}.')
35.0625
172
0.62448
0
0
0
0
0
0
0
0
893
0.529342
a583106bd0bb53ab734f77ad352678e3fedf5e53
3,050
py
Python
tests/test_entry.py
anaulin/tasks.py
aa05b4194ff6b01061e6842520752da515e625d6
[ "MIT" ]
null
null
null
tests/test_entry.py
anaulin/tasks.py
aa05b4194ff6b01061e6842520752da515e625d6
[ "MIT" ]
2
2020-06-30T20:05:59.000Z
2020-08-01T03:42:20.000Z
tests/test_entry.py
anaulin/tasks.py
aa05b4194ff6b01061e6842520752da515e625d6
[ "MIT" ]
null
null
null
import filecmp import shutil import tempfile import os from .context import entry TEST_ENTRY = os.path.join(os.path.dirname(__file__), "test_entry.md") TEST_ENTRY_CONTENT = """ Some content. ## A section in the content Content that looks like frontmatter: ``` +++ but this is not really frontmatter +++ ``` More content. """ def test_get_toml_and_content(): (toml, content) = entry.get_toml_and_content(TEST_ENTRY) assert toml == { 'title': "Book Notes: The Sorcerer of the Wildeeps", 'tags': ["books", "stuff"], 'book': {'title': 'The Sorcerer of the Wildeeps', 'rating': 4} } assert content == TEST_ENTRY_CONTENT def test_get_toml(): toml = entry.get_toml(TEST_ENTRY) assert toml == { 'title': "Book Notes: The Sorcerer of the Wildeeps", 'tags': ["books", "stuff"], 'book': {'title': 'The Sorcerer of the Wildeeps', 'rating': 4} } def test_get_url(): url = entry.get_url("../foo/bar/this-is-the-slug.md") assert url == "https://anaulin.org/blog/this-is-the-slug/" url = entry.get_url("this-is-another-slug.md") assert url == "https://anaulin.org/blog/this-is-another-slug/" def test_add_to_toml(): with tempfile.NamedTemporaryFile() as temp: shutil.copy2(TEST_ENTRY, temp.name) entry.add_to_toml(temp.name, {'new_key': 'new_value'}) new_toml = entry.get_toml(temp.name) assert new_toml == { 'title': "Book Notes: The Sorcerer of the Wildeeps", 'tags': ["books", "stuff"], 'book': {'title': 'The Sorcerer of the Wildeeps', 'rating': 4}, 'new_key': 'new_value' } def test_add_to_toml_list(): with tempfile.NamedTemporaryFile() as temp: shutil.copy2(TEST_ENTRY, temp.name) entry.add_to_toml(temp.name, {'tags': ['new_tag']}) new_toml = entry.get_toml(temp.name) assert new_toml == { 'title': "Book Notes: The Sorcerer of the Wildeeps", 'tags': ["new_tag"], 'book': {'title': 'The Sorcerer of the Wildeeps', 'rating': 4} } def test_write_toml(): with tempfile.NamedTemporaryFile() as temp: shutil.copy2(TEST_ENTRY, temp.name) entry.write_toml(temp.name, {'new_key': 'new_value'}) (new_toml, new_content) = entry.get_toml_and_content(temp.name) (_, old_content) = entry.get_toml_and_content(TEST_ENTRY) assert new_toml == {'new_key': 'new_value'} assert new_content == old_content def test_add_syndication_url(): with tempfile.NamedTemporaryFile() as temp: shutil.copy2(TEST_ENTRY, temp.name) entry.add_syndication_url(temp.name, "new_url") assert entry.get_toml(temp.name)["syndication_urls"] == ["new_url"] entry.add_syndication_url(temp.name, "another_url") assert entry.get_toml(temp.name)["syndication_urls"] == [ "new_url", "another_url"] def test_to_slug(): assert entry.to_slug("Some Title: With #1 and Stuff!!") == "some-title-with-1-and-stuff"
30.19802
92
0.635082
0
0
0
0
0
0
0
0
1,040
0.340984
a583ce21b151702ce7c45ced989d01eb53545764
1,833
py
Python
plotapp/controllers/window_controller.py
maldata/matplotlib_qtquick_playground
f7da94093315d8f540124d5037406d004574dede
[ "MIT" ]
null
null
null
plotapp/controllers/window_controller.py
maldata/matplotlib_qtquick_playground
f7da94093315d8f540124d5037406d004574dede
[ "MIT" ]
null
null
null
plotapp/controllers/window_controller.py
maldata/matplotlib_qtquick_playground
f7da94093315d8f540124d5037406d004574dede
[ "MIT" ]
null
null
null
import random from PyQt5.QtCore import pyqtSignal, pyqtProperty, pyqtSlot, QObject class WindowController(QObject): label_changed = pyqtSignal() def __init__(self, app): super().__init__() self._app = app self._qml_engine = None self._label = 'whatever' self._figure = None self._ax = None self._data = ([], []) def startup(self, qml_engine): print('Main controller startup') self._qml_engine = qml_engine main_window = self._qml_engine.rootObjects()[0] main_window.show() # TODO: If we have other screens, we'd probably do this there. findChild() can be called on # any QML object that was loaded with the QMLEngine.load() method. self._figure = main_window.findChild(QObject, "figure").getFigure() self._ax = self._figure.add_subplot(111) @pyqtSlot() def shutdown(self): print("Shutting down.") self._app.quit() @pyqtProperty(str, notify=label_changed) def label(self): return self._label @pyqtSlot() def generate_data(self): x = [random.random() for i in range(10)] x.sort() y = [random.random() for i in range(10)] self._data = (x, y) self._ax.clear() self._ax.plot(x, y) self._figure.canvas.draw_idle() @pyqtSlot() def append_data(self): x = self._data[0] y = self._data[1] x_offset = max(x) + 0.1 new_x = [random.random() + x_offset for i in range(10)] new_x.sort() new_y = [random.random() for i in range(10)] x = x + new_x y = y + new_y self._data = (x, y) self._ax.clear() self._ax.plot(x, y) self._figure.canvas.draw_idle()
25.816901
99
0.569013
1,747
0.953082
0
0
928
0.506274
0
0
216
0.11784
a5852febf93eb6f982e8fd189b72f16bda399d56
337
py
Python
training/train.py
gert-janwille/Eleonora
a979dcd9b41231ea3abc9a57d842c680314ac9ca
[ "MIT" ]
1
2017-11-19T10:57:38.000Z
2017-11-19T10:57:38.000Z
training/train.py
gert-janwille/Eleonora
a979dcd9b41231ea3abc9a57d842c680314ac9ca
[ "MIT" ]
6
2017-11-15T16:04:09.000Z
2018-01-18T17:12:18.000Z
training/train.py
gert-janwille/Eleonora
a979dcd9b41231ea3abc9a57d842c680314ac9ca
[ "MIT" ]
null
null
null
from training.emotional_training import emotional_training from training.facial_training import facial_training def train(): print('\n0: Emotional Training') print('1: Facial Training\n') choose = int(input("Type Number > ")) if choose == 0: emotional_training() if choose == 1: facial_training()
22.466667
58
0.682493
0
0
0
0
0
0
0
0
63
0.186944
a585ab12f199b6ce2a2bd25bb26ea5865e4f682d
9,190
py
Python
nnaps/mesa/compress_mesa.py
vosjo/nnaps
bc4aac715b511c5df897ef24fb953ad7265927ea
[ "MIT" ]
4
2020-09-24T12:55:58.000Z
2021-05-19T14:46:10.000Z
nnaps/mesa/compress_mesa.py
vosjo/nnaps
bc4aac715b511c5df897ef24fb953ad7265927ea
[ "MIT" ]
4
2021-06-02T09:28:35.000Z
2021-06-04T08:32:24.000Z
nnaps/mesa/compress_mesa.py
vosjo/nnaps
bc4aac715b511c5df897ef24fb953ad7265927ea
[ "MIT" ]
3
2020-10-05T13:18:27.000Z
2021-06-02T09:29:11.000Z
import os from pathlib import Path import numpy as np # repack_fields is necessary since np 1.16 as selecting columns from a recarray returns an array with padding # that is difficult to work with afterwards. from numpy.lib import recfunctions as rf from nnaps.mesa import fileio from nnaps import __version__ def read_mesa_header(model): """ process the MESA history files header. This will require more work in the future to also deal with correct type conversions. Now everything is considered a string. This is fine as the header is ignored by the rest of nnaps. todo: implement converting of header values to the correct data types. :param model: list of lists :return: numpy array containing strings with the header info. """ res = [] for line in model: new_line = [l.replace('\"', '') for l in line] res.append(new_line) return np.array(res, str).T def read_mesa_output(filename=None, only_first=False): """ Read star.log and .data files from MESA. This returns a record array with the global and local parameters (the latter can also be a summary of the evolutionary track instead of a profile if you've given a 'star.log' file. The stellar profiles are given from surface to center. Function writen by Pieter DeGroote :param filename: name of the log file :type filename: str :param only_first: read only the first model (or global parameters) :type only_first: bool :return: list of models in the data file (typically global parameters, local parameters) :rtype: list of rec arrays """ models = [] new_model = False header = None # -- open the file and read the data with open(filename, 'r') as ff: # -- skip first 5 lines when difference file if os.path.splitext(filename)[1] == '.diff': for i in range(5): line = ff.readline() models.append([]) new_model = True while 1: line = ff.readline() if not line: break # break at end-of-file line = line.strip().split() if not line: continue # -- begin a new model if all([iline == str(irange) for iline, irange in zip(line, range(1, len(line) + 1))]): # -- wrap up previous model if len(models): try: model = np.array(models[-1], float).T except: model = read_mesa_header(models[-1]) models[-1] = np.rec.fromarrays(model, names=header) if only_first: break models.append([]) new_model = True continue # -- next line is the header of the data, remember it if new_model: header = line new_model = False continue models[-1].append(line) if len(models) > 1: try: model = np.array(models[-1], float).T except: indices = [] for i, l in enumerate(models[-1]): if len(l) != len(models[-1][0]): indices.append(i) for i in reversed(indices): del models[-1][i] print("Found and fixed errors on following lines: ", indices) model = np.array(models[-1], float).T models[-1] = np.rec.fromarrays(model, names=header) return models def get_end_log_file(logfile): if os.path.isfile(logfile): # case for models ran locally ifile = open(logfile) lines = ifile.readlines() ifile.close() return lines[-30:-1] else: return [] def convert2hdf5(modellist, star_columns=None, binary_columns=None, profile_columns=None, add_stopping_condition=True, skip_existing=True, star1_history_file='LOGS/history1.data', star2_history_file='LOGS/history2.data', binary_history_file='LOGS/binary_history.data', log_file='log.txt', profile_files=None, profiles_path='', profile_pattern='*.profile', input_path_kw='path', input_path_prefix='', output_path=None, verbose=False): if not os.path.isdir(output_path): os.mkdir(output_path) for i, model in modellist.iterrows(): print(input_path_prefix, model[input_path_kw]) if not os.path.isdir(Path(input_path_prefix, model[input_path_kw])): continue if skip_existing and os.path.isfile(Path(output_path, model[input_path_kw]).with_suffix('.h5')): if verbose: print(i, model[input_path_kw], ': exists, skipping') continue if verbose: print(i, model[input_path_kw], ': processing') # store all columns of the input file in the hdf5 file data = {} extra_info = {} for col in model.index: extra_info[col] = model[col] # obtain the termination code and store if requested termination_code = 'uk' if add_stopping_condition: lines = get_end_log_file(Path(input_path_prefix, model[input_path_kw], log_file)) for line in lines: if 'termination code' in line: termination_code = line.split()[-1] extra_info['termination_code'] = termination_code # store the nnaps-version in the output data. extra_info['nnaps-version'] = __version__ data['extra_info'] = extra_info # check if all history files that are requested are available and can be read. If there is an error, # skip to the next model history = {} if star1_history_file is not None: try: d1 = read_mesa_output(Path(input_path_prefix, model[input_path_kw], star1_history_file))[1] if star_columns is not None: d1 = rf.repack_fields(d1[star_columns]) history['star1'] = d1 except Exception as e: if verbose: print("Error in reading star1: ", e) continue if star2_history_file is not None: try: d2 = read_mesa_output(Path(input_path_prefix, model[input_path_kw], star2_history_file))[1] if star_columns is not None: d2 = rf.repack_fields(d2[star_columns]) history['star2'] = d2 except Exception as e: if verbose: print("Error in reading star2: ", e) continue if binary_history_file is not None: try: d3 = read_mesa_output(Path(input_path_prefix, model[input_path_kw], binary_history_file))[1] if star_columns is not None: d3 = rf.repack_fields(d3[binary_columns]) history['binary'] = d3 except Exception as e: if verbose: print("Error in reading binary: ", e) continue data['history'] = history # check if profiles exists and store them is requested. Also make a profile lookup table (legend) profiles = {} profile_legend = [] profile_name_length = 0 # store longest profile name to create recarray of profile_legend if profile_files is not None: if profile_files == 'all': profile_paths = Path(input_path_prefix, model[input_path_kw], profiles_path).glob(profile_pattern) else: profile_paths = [Path(input_path_prefix, model[input_path_kw], profiles_path, p) for p in profile_files] for filepath in profile_paths: if not filepath.is_file(): continue profile_name = filepath.stem header, profile_data = read_mesa_output(filename=filepath, only_first=False) if profile_columns is not None: profile_data = rf.repack_fields(profile_data[profile_columns]) profiles[profile_name] = profile_data if len(profile_name) > profile_name_length: profile_name_length = len(profile_name) profile_legend.append((header['model_number'], profile_name)) if len(profiles.keys()) >= 1: data['profiles'] = profiles profile_legend = np.array(profile_legend, dtype=[('model_number', 'f8'), ('profile_name', 'a'+str(profile_name_length))]) data['profile_legend'] = profile_legend # rather annoying way to assure that Path doesn't cut of part of the folder name when adding the .h5 suffix # if not this will happen: M1.080_M0.502_P192.67_Z0.01129 -> M1.080_M0.502_P192.67_Z0.h5 output_file = Path(output_path, model[input_path_kw]) output_file = output_file.with_suffix(output_file.suffix + '.h5') fileio.write2hdf5(data, output_file, update=False)
38.291667
120
0.586507
0
0
0
0
0
0
0
0
2,538
0.27617
a5880384a51a2b5216de1db68e0632fb623a8bfc
1,022
py
Python
src/_deblaze.py
MenkeTechnologies/zsh-more-completions
c0d4716b695ea9bf3d0e870bc2ced5354db3c031
[ "MIT" ]
25
2018-07-29T01:49:23.000Z
2022-01-19T19:21:23.000Z
src/_deblaze.py
MenkeTechnologies/zsh-more-completions
c0d4716b695ea9bf3d0e870bc2ced5354db3c031
[ "MIT" ]
null
null
null
src/_deblaze.py
MenkeTechnologies/zsh-more-completions
c0d4716b695ea9bf3d0e870bc2ced5354db3c031
[ "MIT" ]
null
null
null
#compdef deblaze.py local arguments arguments=( '--version[show programs version number and exit]' '(- * :)'{-h,--help}'[show this help message and exit]' {-u,--url}'[URL for AMF Gateway]' {-s,--service}'[remote service to call]' {-m,--method}'[method to call]' {-p,--params}'[parameters to send pipe seperated]' {-f,--fullauto}'[URL to SWF - Download SWF, find remoting services]' '--fuzz[fuzz parameter values]' {-c,--creds}'[username and password for service in u:p format]' {-b,--cookie}'[send cookies with request]' {-A,--user-agent}'[user-Agent string to send to the server]' {-1,--bruteService}'[file to load services for brute forcing (mutually]' {-2,--bruteMethod}'[file to load methods for brute forcing (mutually]' {-d,--debug}'[enable pyamf/AMF debugging]' {-v,--verbose}'[print http request/response]' {-r,--report}'[generate HTML report]' {-n,--nobanner}'[do not display banner]' {-q,--quiet}'[do not display messages]' '*:filename:_files' ) _arguments -s $arguments
36.5
74
0.662427
0
0
0
0
0
0
0
0
685
0.670254
a58a9d34b89b4bc4bc0e0b2929228a0dbbb74a83
1,379
py
Python
jakso_ml/training_data/white_balancer.py
JaksoSoftware/jakso-ml
5720ea557ca2fcf9ae16e329c198acd8e31258c4
[ "MIT" ]
null
null
null
jakso_ml/training_data/white_balancer.py
JaksoSoftware/jakso-ml
5720ea557ca2fcf9ae16e329c198acd8e31258c4
[ "MIT" ]
3
2020-09-25T18:40:52.000Z
2021-08-25T14:44:30.000Z
jakso_ml/training_data/white_balancer.py
JaksoSoftware/jakso-ml
5720ea557ca2fcf9ae16e329c198acd8e31258c4
[ "MIT" ]
null
null
null
import random, copy import cv2 as cv import numpy as np from scipy import interpolate from .augmenter import Augmenter class WhiteBalancer(Augmenter): ''' Augmenter that randomly changes the white balance of the SampleImages. ''' def __init__( self, min_red_rand, max_red_rand, min_blue_rand, max_blue_rand, **kwargs ): super().__init__(**kwargs) self.min_red_rand = min_red_rand self.max_red_rand = max_red_rand self.min_blue_rand = min_blue_rand self.max_blue_rand = max_blue_rand def augment(self, sample): sample_copy = copy.deepcopy(sample) b, g, r = cv.split(sample_copy.image) rand_b = 128 * random.uniform(1 + self.min_blue_rand, 1 + self.max_blue_rand) rand_r = 0 if rand_b < 1: rand_r = 128 * random.uniform(1, 1 + self.max_red_rand) else: rand_r = 128 * random.uniform(1 + self.min_red_rand, 1) lut_b = self._create_lut(rand_b) lut_r = self._create_lut(rand_r) b = cv.LUT(b, lut_b) r = cv.LUT(r, lut_r) sample_copy.image = cv.merge((b, g, r)) return sample_copy def _create_lut(self, center): tck = interpolate.splrep([0, 128, 256], [0, center, 256], k = 2) lut = np.rint(interpolate.splev(range(256), tck, der = 0)) lut = np.where(lut > 255, 255, lut) lut = np.where(lut < 0, 0, lut) lut = np.uint8(lut) return lut
25.072727
81
0.658448
1,258
0.912255
0
0
0
0
0
0
82
0.059463
a58ab462ad7e52132f563d3dc36462f69902b7de
824
py
Python
app/set_game/deck.py
mmurch/set-game
8fd1303ab2a4d628547fd7ebca572cf04087cbdb
[ "MIT" ]
null
null
null
app/set_game/deck.py
mmurch/set-game
8fd1303ab2a4d628547fd7ebca572cf04087cbdb
[ "MIT" ]
5
2021-03-10T04:32:22.000Z
2022-02-26T22:25:52.000Z
app/set_game/deck.py
mmurch/set-game
8fd1303ab2a4d628547fd7ebca572cf04087cbdb
[ "MIT" ]
null
null
null
from .card import Card from .features import Number, Color, Shape, Style from math import floor class Deck(): def __init__(self): return @staticmethod def get_card_by_id(self, id): if id < 1 or id > 81: raise ValueError return Card( self.get_number(id), self.get_color(id), self.get_style(id) ) @staticmethod def get_color(id): return Color(floor((id - 1) % 9 / 3)) @staticmethod def get_number(id): return Number((id - 1) % 3) @staticmethod def get_shape(id): return Shape(floor((id - 1) % 27 / 9)) @staticmethod def get_style(id): if id <= 27: return Style.FILLED elif id <= 54: return Style.SHADED return Style.EMPTY
20.6
49
0.54733
725
0.879854
0
0
642
0.779126
0
0
0
0
a58be826db80a8cc6c893e8f64d3265192b6d0a2
27,777
py
Python
tests/test_utils.py
grantsrb/langpractice
59cf8f53b85fa8b4d639ffc6e175ec22c0d2362c
[ "MIT" ]
null
null
null
tests/test_utils.py
grantsrb/langpractice
59cf8f53b85fa8b4d639ffc6e175ec22c0d2362c
[ "MIT" ]
null
null
null
tests/test_utils.py
grantsrb/langpractice
59cf8f53b85fa8b4d639ffc6e175ec22c0d2362c
[ "MIT" ]
null
null
null
from langpractice.utils.utils import * import unittest import torch.nn.functional as F class TestUtils(unittest.TestCase): def test_zipfian1(self): n_loops = 5000 low = 1 high = 10 order = 1 counts = {i:0 for i in range(low, high+1)} tot = 0 for i in range(n_loops): samp = zipfian(low, high, order) counts[samp] += 1 tot += 1 targ_probs = {k:1/(k**order) for k in counts.keys()} s = np.sum(list(targ_probs.values())) targ_probs = {k:v/s for k,v in targ_probs.items()} for k,v in counts.items(): prob = v/tot diff = prob-targ_probs[k] self.assertTrue(np.abs(diff) < 0.03) def test_zipfian2(self): n_loops = 5000 low = 1 high = 10 order = 2 counts = {i:0 for i in range(low, high+1)} tot = 0 for i in range(n_loops): samp = zipfian(low, high, order) counts[samp] += 1 tot += 1 targ_probs = {k:1/(k**order) for k in counts.keys()} s = np.sum(list(targ_probs.values())) targ_probs = {k:v/s for k,v in targ_probs.items()} for k,v in counts.items(): prob = v/tot diff = prob-targ_probs[k] self.assertTrue(np.abs(diff) < 0.03) def test_piraha_labels(self): weights = { 3: torch.FloatTensor([.55, .45]), 4: torch.FloatTensor([.4, .6]), 5: torch.FloatTensor([.4, .6]), 6: torch.FloatTensor([.4, .6]), 7: torch.FloatTensor([.45, .55]), 8: torch.FloatTensor([.3, .7]), 9: torch.FloatTensor([.3, .7]), 10: torch.FloatTensor([.3, .7]), } n_items = torch.randint(0,11, (100,)) avgs = torch.zeros_like(n_items) n_loops = 5000 for i in range(n_loops): labels = torch.zeros_like(n_items) labels = get_piraha_labels(labels,n_items) avgs = avgs + labels avgs = avgs/n_loops for k in weights.keys(): targ = weights[k][0]*2 + weights[k][1]*3 avg = avgs[n_items==k] if len(avg) > 0: avg = avg.mean() diff = float(avg-targ) self.assertTrue(np.abs(diff)<0.01) def test_duplicate_labels(self): n_items = torch.randint(0,11, (100,)) avgs = torch.zeros_like(n_items) n_loops = 5000 for i in range(n_loops): labels = torch.zeros_like(n_items) labels = get_duplicate_labels(labels,n_items, 22) if i < 20: for n,l in zip(n_items,labels): self.assertTrue((n*2)==l or (n*2+1)==l) avgs = avgs + labels avgs = avgs/n_loops for i in range(torch.max(n_items)): avg = avgs[n_items==i] if len(avg) > 0: avg = avg.mean() targ = ((i*2)+.5) diff = targ-avg self.assertTrue(np.abs(diff)<0.01) def test_get_lang_labels_english(self): max_label = 10 use_count_words = 1 n_samps = 100 n_items = torch.randint(0,max_label+10, (n_samps,)) n_targs = n_items.clone() labels = get_lang_labels( n_items, n_targs, max_label, use_count_words ) labels = labels.cpu().detach().numpy() n_items = n_items.cpu().detach().numpy() idx = n_items<max_label self.assertTrue(np.array_equal(labels[idx],n_items[idx])) self.assertTrue( np.array_equal( labels[~idx], np.ones_like(labels[~idx])*max_label ) ) def test_get_lang_labels_comparison(self): max_label = 10 use_count_words = 0 n_samps = 100 n_items = torch.randint(0,max_label+10, (n_samps,)) n_targs = torch.randint(0,max_label+10, (n_samps,)) labels = get_lang_labels( n_items, n_targs, max_label, use_count_words ) labels = labels.cpu().detach().numpy() n_items = n_items.cpu().detach().numpy() n_targs = n_targs.cpu().detach().numpy() idx = n_items<n_targs goal = np.zeros_like(labels[idx]) self.assertTrue(np.array_equal(labels[idx],goal)) idx = n_items==n_targs goal = np.ones_like(labels[idx]) self.assertTrue(np.array_equal(labels[idx],goal)) idx = n_items>n_targs goal = np.ones_like(labels[idx])*2 self.assertTrue(np.array_equal(labels[idx],goal)) def test_calc_accs(self): logits = torch.FloatTensor([[ [1,2,3,4], [4,1,2,3], [-1,2,-3,-4], [-100,-5,100,0], ]]) # 0 correct targs = torch.LongTensor([[ 0, 1, 0, 0, ]]) accs = calc_accs(logits, targs,prepender="test") self.assertEqual(0, accs["test_acc"]) # 1 correct targs = torch.LongTensor([[ 0, 0, 0, 0, ]]) accs = calc_accs(logits, targs,prepender="test") self.assertEqual(1/4, accs["test_acc"]) # all correct targs = torch.LongTensor([[ 3,0,1,2 ]]) accs = calc_accs(logits, targs,prepender="test") self.assertEqual(1, accs["test_acc"]) def test_calc_losses(self): logits = torch.FloatTensor([[ [1,2,3,4], [4,1,2,3], [-1,2,-3,-4], [-100,-5,100,0], ]]) loss_fxn = F.cross_entropy # 0 correct targs = torch.LongTensor([[ 0, 1, 0, 0, ]]) targ_loss = loss_fxn( logits.reshape(-1,logits.shape[-1]), targs.reshape(-1), reduction="none" ).mean().item() losses = calc_losses( logits, targs, loss_fxn=loss_fxn, prepender="test" ) self.assertEqual(targ_loss, losses["test_loss"]) # 1 correct targs = torch.LongTensor([[ 0, 0, 0, 0, ]]) targ_loss = loss_fxn( logits.reshape(-1,logits.shape[-1]), targs.reshape(-1), reduction="none" ).mean().item() losses = calc_losses( logits, targs, loss_fxn=loss_fxn, prepender="test" ) self.assertEqual(targ_loss, losses["test_loss"]) # all correct targs = torch.LongTensor([[ 3,0,1,2 ]]) targ_loss = loss_fxn( logits.reshape(-1,logits.shape[-1]), targs.reshape(-1), reduction="none" ).mean().item() losses = calc_losses( logits, targs, loss_fxn=loss_fxn, prepender="test" ) self.assertEqual(targ_loss, losses["test_loss"]) def test_calc_accs_categories(self): logits = torch.FloatTensor([ [ [1,2,3,4], [4,1,2,3], [-1,2,-3,-4], [-100,-5,100,0], ], [ [1,2,3,4], [4,1,2,3], [-1,2,-3,-4], [-100,-5,100,0], ], ]) categories = torch.LongTensor([ [ 1, 1, 3, 0, ], [ 0, 3, 0, 3, ], ]) # 0 correct targs = torch.LongTensor([ [ 0, 1, 0, 0, ], [ 0, 1, 0, 0, ] ]) accs = calc_accs(logits, targs, categories, prepender="test") self.assertEqual(0, accs["test_accctg_0"]) self.assertEqual(0, accs["test_accctg_1"]) self.assertEqual(0, accs["test_accctg_3"]) # 1 correct 1 targs = torch.LongTensor([ [ 0, 0, 0, 0, ], [ 0, 1, 0, 0, ] ]) accs = calc_accs(logits, targs, categories,prepender="test") self.assertEqual(0, accs["test_accctg_0"]) self.assertEqual(1/2, accs["test_accctg_1"]) self.assertEqual(0, accs["test_accctg_3"]) # all correct 0 targs = torch.LongTensor([ [ 0, 0, 0, 2, ], [ 3, 1, 1, 0, ] ]) accs = calc_accs(logits, targs, categories,prepender="test") self.assertEqual(1, accs["test_accctg_0"]) self.assertEqual(1/2, accs["test_accctg_1"]) self.assertEqual(0, accs["test_accctg_3"]) def test_calc_losses_categories(self): logits = torch.FloatTensor([ [ [1,2,3,4], [4,1,2,3], [-1,2,-3,-4], [-100,-5,100,0], ], [ [1,2,3,4], [4,1,2,3], [-1,2,-3,-4], [-100,-5,100,0], ], ]) categories = torch.LongTensor([ [ 1, 1, 3, 0, ], [ 0, 3, 0, 3, ], ]) loss_fxn = F.cross_entropy # 0 correct targs = torch.LongTensor([ [ 0, 1, 0, 0, ], [ 0, 1, 0, 0, ] ]) losses = calc_losses(logits, targs, categories, prepender="test") idxs = categories.reshape(-1)==0 targ_loss = loss_fxn( logits.reshape(-1,logits.shape[-1])[idxs], targs.reshape(-1)[idxs], ).item() self.assertEqual(targ_loss, losses["test_lossctg_0"]) idxs = categories.reshape(-1)==1 targ_loss = loss_fxn( logits.reshape(-1,logits.shape[-1])[idxs], targs.reshape(-1)[idxs], ).item() self.assertEqual(targ_loss, losses["test_lossctg_1"]) idxs = categories.reshape(-1)==3 targ_loss = loss_fxn( logits.reshape(-1,logits.shape[-1])[idxs], targs.reshape(-1)[idxs], ).item() self.assertEqual(targ_loss, losses["test_lossctg_3"]) # 1 correct 1 targs = torch.LongTensor([ [ 0, 0, 0, 0, ], [ 0, 1, 0, 0, ] ]) losses = calc_losses(logits, targs, categories,prepender="test") idxs = categories.reshape(-1)==0 targ_loss = loss_fxn( logits.reshape(-1,logits.shape[-1])[idxs], targs.reshape(-1)[idxs], ).item() self.assertEqual(targ_loss, losses["test_lossctg_0"]) idxs = categories.reshape(-1)==1 targ_loss = loss_fxn( logits.reshape(-1,logits.shape[-1])[idxs], targs.reshape(-1)[idxs], ).item() self.assertEqual(targ_loss, losses["test_lossctg_1"]) idxs = categories.reshape(-1)==3 targ_loss = loss_fxn( logits.reshape(-1,logits.shape[-1])[idxs], targs.reshape(-1)[idxs], ).item() self.assertEqual(targ_loss, losses["test_lossctg_3"]) # all correct 0 targs = torch.LongTensor([ [ 0, 0, 0, 2, ], [ 3, 1, 1, 0, ] ]) losses = calc_losses(logits, targs, categories,prepender="test") idxs = categories.reshape(-1)==0 targ_loss = loss_fxn( logits.reshape(-1,logits.shape[-1])[idxs], targs.reshape(-1)[idxs], ).item() self.assertEqual(targ_loss, losses["test_lossctg_0"]) idxs = categories.reshape(-1)==1 targ_loss = loss_fxn( logits.reshape(-1,logits.shape[-1])[idxs], targs.reshape(-1)[idxs], ).item() self.assertEqual(targ_loss, losses["test_lossctg_1"]) idxs = categories.reshape(-1)==3 targ_loss = loss_fxn( logits.reshape(-1,logits.shape[-1])[idxs], targs.reshape(-1)[idxs], ).item() self.assertEqual(targ_loss, losses["test_lossctg_3"]) def test_avg_over_dicts(self): vals = np.arange(10) dicts = [ {"foo": i, "poo": i*i} for i in vals ] avgs = avg_over_dicts(dicts) self.assertEqual(np.mean(vals), avgs["foo"]) self.assertEqual(np.mean(vals**2), avgs["poo"]) def test_calc_lang_loss_and_accs(self): loss_fxn = torch.nn.CrossEntropyLoss() langs = (torch.FloatTensor([ [ [1,2,3,4], [4,1,2,3], [-1,2,-3,-4], [-100,-5,100,0], ], [ [1,2,3,4], [4,1,2,3], [-1,2,-3,-4], [-100,-5,100,0], ] ]).cuda(),) drops = torch.LongTensor([ [ 1,1,1,1 ], [ 1,1,1,1 ], ]) # 0 correct targs = torch.LongTensor([ [ 0, 1, 0, 0, ], [ 0, 1, 0, 0, ], ]) targ_loss = loss_fxn(langs[0].reshape(-1,4), targs.cuda().reshape(-1)) targ_accs = calc_accs(langs[0].cpu(), targs, targs, prepender="test_lang") loss, losses, accs = calc_lang_loss_and_accs( langs, targs.reshape(-1), drops.reshape(-1), loss_fxn=loss_fxn, categories=targs.reshape(-1), prepender="test" ) self.assertEqual(float(loss), float(targ_loss)) for k in targ_accs.keys(): self.assertEqual(targ_accs[k], accs[k]) targ_losses = calc_losses(langs[0].cpu(), targs, targs, prepender="test_lang") for k in targ_losses.keys(): self.assertEqual(targ_losses[k], losses[k]) # 3 correct targs = torch.LongTensor([ [ 3, 1, 1, 0, ], [ 0, 0, 0, 0, ], ]) targ_loss = loss_fxn(langs[0].reshape(-1,4), targs.cuda().reshape(-1)) targ_accs = calc_accs(langs[0].cpu(), targs, targs, prepender="test_lang") loss, losses, accs = calc_lang_loss_and_accs( langs, targs.reshape(-1), drops.reshape(-1), loss_fxn=loss_fxn, categories=targs.reshape(-1), prepender="test" ) self.assertEqual(float(loss), float(targ_loss)) for k in targ_accs.keys(): self.assertEqual(targ_accs[k], accs[k]) targ_losses = calc_losses(langs[0].cpu(), targs, targs, prepender="test_lang") for k in targ_losses.keys(): self.assertAlmostEqual(targ_losses[k], losses[k], places=4) def test_calc_lang_loss_and_accs_drops(self): loss_fxn = torch.nn.CrossEntropyLoss() langs = (torch.FloatTensor([ [ [1,2,3,4], [4,1,2,3], [-1,2,-3,-4], [-100,-5,100,0], ], [ [1,2,3,4], [4,1,2,3], [-1,2,-3,-4], [-100,-5,100,0], ] ]).cuda(),) drops = torch.LongTensor([ [ 0,1,0,1 ], [ 1,0,1,0 ], ]) dropped_lang = torch.FloatTensor([ [ [4,1,2,3], [-100,-5,100,0], ], [ [1,2,3,4], [-1,2,-3,-4], ] ]).cuda() # 0 correct targs = torch.LongTensor([ [ 0, 1, 0, 0, ], [ 0, 1, 0, 0, ], ]) dropped_targs = torch.LongTensor([ [ 1, 0, ], [ 0, 0, ], ]) targ_loss = loss_fxn( dropped_lang.reshape(-1,4), dropped_targs.cuda().reshape(-1) ) targ_accs = calc_accs( dropped_lang.cpu(), dropped_targs, dropped_targs, prepender="test_lang" ) targ_losses = calc_losses( dropped_lang.cpu(), dropped_targs, dropped_targs, prepender="test_lang" ) loss, losses, accs = calc_lang_loss_and_accs( langs, targs.reshape(-1), drops.reshape(-1), loss_fxn, categories=targs.reshape(-1), prepender="test" ) self.assertEqual(float(loss), float(targ_loss)) for k in targ_accs.keys(): self.assertEqual(targ_accs[k], accs[k]) for k in targ_losses.keys(): self.assertEqual(targ_losses[k], losses[k]) # 3 correct targs = torch.LongTensor([ [ 3, 0, 1, 2, ], [ 0, 0, 0, 0, ], ]) dropped_targs = torch.LongTensor([ [ 0, 2, ], [ 0, 0, ], ]) targ_loss = loss_fxn( dropped_lang.reshape(-1,4), dropped_targs.cuda().reshape(-1) ) targ_accs = calc_accs( dropped_lang.cpu(), dropped_targs, dropped_targs, prepender="test_lang" ) targ_losses = calc_losses( dropped_lang.cpu(), dropped_targs, dropped_targs, prepender="test_lang" ) loss, losses, accs = calc_lang_loss_and_accs( langs, targs.reshape(-1), drops.reshape(-1), loss_fxn, categories=targs.reshape(-1), prepender="test" ) self.assertEqual(float(loss), float(targ_loss)) for k in targ_accs.keys(): self.assertEqual(targ_accs[k], accs[k]) for k in targ_losses.keys(): self.assertAlmostEqual(targ_losses[k], losses[k], places=4) def test_calc_actn_loss_and_accs(self): loss_fxn = torch.nn.CrossEntropyLoss() actns = torch.FloatTensor([ [ [1,2,3,4], [4,1,2,3], [-1,2,-3,-4], [-100,-5,100,0], ], [ [1,2,3,4], [4,1,2,3], [-1,2,-3,-4], [-100,-5,100,0], ] ]).cuda() n_targs = torch.LongTensor([ [ 0, 1, 2, 3 ], [ 4, 3, 2, 1 ], ]) # 0 correct targs = torch.LongTensor([ [ 0, 1, 0, 0, ], [ 0, 1, 0, 0, ], ]) targ_loss = loss_fxn(actns.reshape(-1,4), targs.cuda().reshape(-1)) targ_accs = calc_accs( actns.cpu(), targs, n_targs, prepender="test_actn" ) loss, accs = calc_actn_loss_and_accs( actns, targs.reshape(-1), n_targs.reshape(-1), loss_fxn, prepender="test" ) self.assertEqual(float(loss), float(targ_loss)) for k in targ_accs.keys(): self.assertEqual(targ_accs[k], accs[k]) # 3 correct targs = torch.LongTensor([ [ 3, 1, 1, 0, ], [ 0, 0, 0, 0, ], ]) targ_loss = loss_fxn(actns.reshape(-1,4), targs.cuda().reshape(-1)) targ_accs = calc_accs( actns.cpu().reshape(-1,4), targs.reshape(-1), n_targs.reshape(-1), prepender="test_actn" ) loss, accs = calc_actn_loss_and_accs( actns, targs.reshape(-1), n_targs.reshape(-1), loss_fxn, prepender="test" ) self.assertEqual(float(loss), float(targ_loss)) for k in targ_accs.keys(): self.assertEqual(targ_accs[k], accs[k]) def test_get_loss_and_accs_phase0(self): phase = 0 loss_fxn = torch.nn.CrossEntropyLoss() preds = (torch.FloatTensor([ [ [1,2,3,4], [4,1,2,3], [-1,2,-3,-4], [-100,-5,100,0], ], [ [1,2,3,4], [4,1,2,3], [-1,2,-3,-4], [-100,-5,100,0], ] ]).cuda(),) drops = torch.LongTensor([ [ 0,1,0,1 ], [ 1,0,1,0 ], ]) n_targs = torch.LongTensor([ [ 0, 1, 2, 3 ], [ 4, 3, 2, 1 ], ]) # 0 correct targs = torch.LongTensor([ [ 0, 1, 0, 0, ], [ 0, 1, 0, 0, ], ]) targ_loss, _, targ_accs = calc_lang_loss_and_accs( preds, targs.reshape(-1), drops.reshape(-1), loss_fxn, categories=targs.reshape(-1), prepender="test" ) loss, losses, accs = get_loss_and_accs( phase=phase, actn_preds=preds, lang_preds=preds, actn_targs=targs.reshape(-1), lang_targs=targs.reshape(-1), drops=drops.reshape(-1), n_targs=n_targs.reshape(-1), n_items=targs.reshape(-1), prepender="test", loss_fxn=loss_fxn, lang_p=0.5 ) self.assertEqual(float(loss), float(targ_loss)) for k in targ_accs.keys(): self.assertEqual(targ_accs[k], accs[k]) # 3 correct targs = torch.LongTensor([ [ 3, 1, 1, 0, ], [ 0, 0, 0, 0, ], ]) targ_loss, _, targ_accs = calc_lang_loss_and_accs( preds, targs.reshape(-1), drops.reshape(-1), loss_fxn, categories=targs.reshape(-1), prepender="test" ) loss, losses, accs = get_loss_and_accs( phase=phase, actn_preds=preds, lang_preds=preds, actn_targs=targs.reshape(-1), lang_targs=targs.reshape(-1), drops=drops.reshape(-1), n_targs=n_targs.reshape(-1), n_items=targs.reshape(-1), prepender="test", loss_fxn=loss_fxn, lang_p=0.5 ) self.assertEqual(float(loss), float(targ_loss)) for k in targ_accs.keys(): self.assertEqual(targ_accs[k], accs[k]) def test_get_loss_and_accs_phase1(self): phase = 1 loss_fxn = torch.nn.CrossEntropyLoss() preds = torch.FloatTensor([ [ [1,2,3,4], [4,1,2,3], [-1,2,-3,-4], [-100,-5,100,0], ], [ [1,2,3,4], [4,1,2,3], [-1,2,-3,-4], [-100,-5,100,0], ] ]).cuda() drops = torch.LongTensor([ [ 0,1,0,1 ], [ 1,0,1,0 ], ]) n_targs = torch.LongTensor([ [ 0, 1, 2, 3 ], [ 4, 3, 2, 1 ], ]) # 0 correct targs = torch.LongTensor([ [ 0, 1, 0, 0, ], [ 0, 1, 0, 0, ], ]) targ_loss, targ_accs = calc_actn_loss_and_accs( preds, targs.reshape(-1), n_targs.reshape(-1), loss_fxn, prepender="test" ) loss, losses, accs = get_loss_and_accs( phase=phase, actn_preds=preds, lang_preds=preds, actn_targs=targs.reshape(-1), lang_targs=targs.reshape(-1), drops=drops.reshape(-1), n_targs=n_targs.reshape(-1), n_items=targs.reshape(-1), prepender="test", loss_fxn=loss_fxn, lang_p=0.5 ) self.assertEqual(float(loss), float(targ_loss)) for k in targ_accs.keys(): self.assertEqual(targ_accs[k], accs[k]) # 3 correct targs = torch.LongTensor([ [ 3, 1, 1, 0, ], [ 0, 0, 0, 0, ], ]) targ_loss, targ_accs = calc_actn_loss_and_accs( preds, targs.reshape(-1), n_targs.reshape(-1), loss_fxn, prepender="test" ) loss, losses, accs = get_loss_and_accs( phase=phase, actn_preds=preds, lang_preds=preds, actn_targs=targs.reshape(-1), lang_targs=targs.reshape(-1), drops=drops.reshape(-1), n_targs=n_targs.reshape(-1), n_items=targs.reshape(-1), prepender="test", loss_fxn=loss_fxn, lang_p=0.5 ) self.assertEqual(float(loss), float(targ_loss)) for k in targ_accs.keys(): self.assertEqual(targ_accs[k], accs[k]) def test_get_loss_and_accs_phase2(self): phase = 2 loss_fxn = torch.nn.CrossEntropyLoss() actns = torch.FloatTensor([ [ [1,2,3,4], [4,1,2,3], [-1,2,-3,-4], [-100,-5,100,0], ], [ [1,2,3,4], [4,1,2,3], [-1,2,-3,-4], [-100,-5,100,0], ] ]).cuda() langs = (actns.clone(),) drops = torch.LongTensor([ [ 0,1,0,1 ], [ 1,0,1,0 ], ]) n_targs = torch.LongTensor([ [ 0, 1, 2, 3 ], [ 4, 3, 2, 1 ], ]) # 0 correct targs = torch.LongTensor([ [ 0, 1, 0, 0, ], [ 0, 1, 0, 0, ], ]) lang_targ_loss, _, lang_targ_accs = calc_lang_loss_and_accs( langs, targs.reshape(-1), drops.reshape(-1), loss_fxn, categories=targs.reshape(-1), prepender="test" ) actn_targ_loss, actn_targ_accs = calc_actn_loss_and_accs( actns, targs.reshape(-1), n_targs.reshape(-1), loss_fxn, prepender="test" ) targ_loss = 0.5*lang_targ_loss + 0.5*actn_targ_loss targ_accs = {**lang_targ_accs, **actn_targ_accs} loss, losses, accs = get_loss_and_accs( phase=phase, actn_preds=actns, lang_preds=langs, actn_targs=targs.reshape(-1), lang_targs=targs.reshape(-1), drops=drops.reshape(-1), n_targs=n_targs.reshape(-1), n_items=targs.reshape(-1), prepender="test", loss_fxn=loss_fxn, lang_p=0.5 ) self.assertEqual(float(loss), float(targ_loss)) for k in targ_accs.keys(): self.assertEqual(targ_accs[k], accs[k]) # 3 correct targs = torch.LongTensor([ [ 3, 1, 1, 0, ], [ 0, 0, 0, 0, ], ]) lang_targ_loss, _, lang_targ_accs = calc_lang_loss_and_accs( langs, targs.reshape(-1), drops.reshape(-1), loss_fxn, categories=targs.reshape(-1), prepender="test" ) actn_targ_loss, actn_targ_accs = calc_actn_loss_and_accs( actns, targs.reshape(-1), n_targs.reshape(-1), loss_fxn, prepender="test" ) targ_loss = 0.5*lang_targ_loss + 0.5*actn_targ_loss targ_accs = {**lang_targ_accs, **actn_targ_accs} loss, losses, accs = get_loss_and_accs( phase=phase, actn_preds=actns, lang_preds=langs, actn_targs=targs.reshape(-1), lang_targs=targs.reshape(-1), drops=drops.reshape(-1), n_targs=n_targs.reshape(-1), n_items=targs.reshape(-1), prepender="test", loss_fxn=loss_fxn, lang_p=0.5 ) self.assertEqual(float(loss), float(targ_loss)) for k in targ_accs.keys(): self.assertEqual(targ_accs[k], accs[k]) if __name__=="__main__": unittest.main()
31.89093
86
0.464161
27,637
0.99496
0
0
0
0
0
0
972
0.034993
a58e0065829efa585d05c036b442a368f95ae6a9
1,626
py
Python
src/entities/git_repo.py
wnjustdoit/devops-py
54dd722a577c4b3ecda45aa85c067130fd292ab9
[ "Apache-2.0" ]
null
null
null
src/entities/git_repo.py
wnjustdoit/devops-py
54dd722a577c4b3ecda45aa85c067130fd292ab9
[ "Apache-2.0" ]
6
2021-04-08T20:46:56.000Z
2022-01-13T01:52:06.000Z
src/entities/git_repo.py
wnjustdoit/devops-py
54dd722a577c4b3ecda45aa85c067130fd292ab9
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 from .entity import Entity, EntitySchema, Base from sqlalchemy import Column, Integer, String, Sequence from marshmallow import Schema, fields, post_load class GitRepo(Entity, Base): __tablename__ = 'git_repo' id = Column(Integer, Sequence('git_repo_id_seq'), primary_key=True) description = Column(String(128), nullable=True) ssh_url_to_repo = Column(String(128), nullable=False) http_url_to_repo = Column(String(128), nullable=False) web_url = Column(String(128), nullable=False) name = Column(String(64), nullable=False) name_with_namespace = Column(String(64), nullable=False) path = Column(String(64), nullable=False) path_with_namespace = Column(String(64), nullable=False) def __init__(self, description, ssh_url_to_repo, http_url_to_repo, web_url, name, name_with_namespace, path, path_with_namespace, id=None, created_by=None): Entity.__init__(self, created_by) self.id = id self.description = description self.ssh_url_to_repo = ssh_url_to_repo self.http_url_to_repo = http_url_to_repo self.web_url = web_url self.name = name self.name_with_namespace = name_with_namespace self.path = path self.path_with_namespace = path_with_namespace class GitRepoSchema(EntitySchema): id = fields.Number() description = ssh_url_to_repo = http_url_to_repo = web_url = name = name_with_namespace = path = path_with_namespace = fields.Str( missing=None) @post_load def make_git_repo(self, data, **kwargs): return GitRepo(**data)
37.813953
134
0.710947
1,442
0.886839
0
0
86
0.052891
0
0
49
0.030135
a590274916afd797594033b1e72a778f82d65211
4,415
py
Python
src/algorithms/tcn_utils/tcn_model.py
pengkangzaia/mvts-ano-eval
976ffa2f151c8f91ce007e9a455bb4f97f89f2c9
[ "MIT" ]
24
2021-09-04T08:51:55.000Z
2022-03-30T16:45:54.000Z
src/algorithms/tcn_utils/tcn_model.py
pengkangzaia/mvts-ano-eval
976ffa2f151c8f91ce007e9a455bb4f97f89f2c9
[ "MIT" ]
3
2021-10-12T02:34:34.000Z
2022-03-18T10:37:35.000Z
src/algorithms/tcn_utils/tcn_model.py
pengkangzaia/mvts-ano-eval
976ffa2f151c8f91ce007e9a455bb4f97f89f2c9
[ "MIT" ]
15
2021-09-18T03:41:02.000Z
2022-03-21T09:03:01.000Z
import torch import torch.nn as nn from torch.nn.utils import weight_norm """TCN adapted from https://github.com/locuslab/TCN""" class Chomp1d(nn.Module): def __init__(self, chomp_size): super(Chomp1d, self).__init__() self.chomp_size = chomp_size def forward(self, x): return x[:, :, :-self.chomp_size].contiguous() class pad1d(nn.Module): def __init__(self, pad_size): super(pad1d, self).__init__() self.pad_size = pad_size def forward(self, x): return torch.cat([x, x[:, :, -self.pad_size:]], dim = 2).contiguous() class TemporalBlock(nn.Module): def __init__(self, n_inputs, n_outputs, kernel_size, stride, dilation, padding, dropout=0.2): super(TemporalBlock, self).__init__() self.conv1 = weight_norm(nn.Conv1d(n_inputs, n_outputs, kernel_size, stride=stride, padding=padding, dilation=dilation)) self.chomp1 = Chomp1d(padding) self.relu1 = nn.ReLU() self.dropout1 = nn.Dropout(dropout) self.conv2 = weight_norm(nn.Conv1d(n_outputs, n_outputs, kernel_size, stride=stride, padding=padding, dilation=dilation)) self.chomp2 = Chomp1d(padding) self.relu2 = nn.ReLU() self.dropout2 = nn.Dropout(dropout) self.net = nn.Sequential(self.conv1, self.chomp1, self.relu1, self.dropout1, self.conv2, self.chomp2, self.relu2, self.dropout2) self.downsample = nn.Conv1d(n_inputs, n_outputs, 1) if n_inputs != n_outputs else None self.relu = nn.ReLU() self.init_weights() def init_weights(self): self.conv1.weight.data.normal_(0, 0.01) self.conv2.weight.data.normal_(0, 0.01) if self.downsample is not None: self.downsample.weight.data.normal_(0, 0.01) def forward(self, x): out = self.net(x) res = x if self.downsample is None else self.downsample(x) return self.relu(out + res) class TemporalBlockTranspose(nn.Module): def __init__(self, n_inputs, n_outputs, kernel_size, stride, dilation, padding, dropout=0.2): super(TemporalBlockTranspose, self).__init__() self.conv1 = weight_norm(nn.ConvTranspose1d(n_inputs, n_outputs, kernel_size, stride=stride, padding=padding, dilation=dilation)) self.pad1 = pad1d(padding) self.relu1 = nn.ReLU() self.dropout1 = nn.Dropout(dropout) self.conv2 = weight_norm(nn.ConvTranspose1d(n_outputs, n_outputs, kernel_size, stride=stride, padding=padding, dilation=dilation)) self.pad2 = pad1d(padding) self.relu2 = nn.ReLU() self.dropout2 = nn.Dropout(dropout) self.net = nn.Sequential(self.dropout1, self.relu1, self.pad1, self.conv1, self.dropout2, self.relu2, self.pad2, self.conv2) self.downsample = nn.ConvTranspose1d(n_inputs, n_outputs, 1) if n_inputs != n_outputs else None self.relu = nn.ReLU() self.init_weights() def init_weights(self): self.conv1.weight.data.normal_(0, 0.01) self.conv2.weight.data.normal_(0, 0.01) if self.downsample is not None: self.downsample.weight.data.normal_(0, 0.01) def forward(self, x): out = self.net(x) res = x if self.downsample is None else self.downsample(x) return self.relu(out + res) class TemporalConvNet(nn.Module): def __init__(self, num_inputs, num_channels, kernel_size=2, dropout=0.2): super(TemporalConvNet, self).__init__() layers = [] num_levels = len(num_channels) for i in range(num_levels): dilation_size = 2 ** i in_channels = num_inputs if i == 0 else num_channels[i-1] out_channels = num_channels[i] layers += [TemporalBlock(in_channels, out_channels, kernel_size, stride=1, dilation=dilation_size, padding=(kernel_size-1) * dilation_size, dropout=dropout)] self.network = nn.Sequential(*layers) def forward(self, x): return self.network(x)
39.070796
110
0.59479
4,271
0.967384
0
0
0
0
0
0
54
0.012231
a591a1103146cfd95f29ba55d7e7f556a915a79a
1,868
py
Python
static/file/2021-04-10/index.py
yuguo97/nest-node
a3d6cb99005403691779c44a488e3b22f5479538
[ "MIT" ]
null
null
null
static/file/2021-04-10/index.py
yuguo97/nest-node
a3d6cb99005403691779c44a488e3b22f5479538
[ "MIT" ]
null
null
null
static/file/2021-04-10/index.py
yuguo97/nest-node
a3d6cb99005403691779c44a488e3b22f5479538
[ "MIT" ]
null
null
null
''' Author: your name Date: 2021-04-08 17:14:41 LastEditTime: 2021-04-09 09:13:28 LastEditors: Please set LastEditors Description: In User Settings Edit FilePath: \github\test\index.py ''' #!user/bin/env python3 # -*- coding: utf-8 -*- import psutil cpu_info = {'user': 0, 'system': 0, 'idle': 0, 'percent': 0} memory_info = {'total': 0, 'available': 0, 'percent': 0, 'used': 0, 'free': 0} disk_id = [] disk_total = [] disk_used = [] disk_free = [] disk_percent = [] # get cpu information def get_cpu_info(): cpu_times = psutil.cpu_times() cpu_info['user'] = cpu_times.user cpu_info['system'] = cpu_times.system cpu_info['idle'] = cpu_times.idle cpu_info['percent'] = psutil.cpu_percent(interval=2) # get memory information def get_memory_info(): mem_info = psutil.virtual_memory() memory_info['total'] = mem_info.total memory_info['available'] = mem_info.available memory_info['percent'] = mem_info.percent memory_info['used'] = mem_info.used memory_info['free'] = mem_info.free def get_disk_info(): for id in psutil.disk_partitions(): if 'cdrom' in id.opts or id.fstype == '': continue disk_name = id.device.split(':') s = disk_name[0] disk_id.append(s) disk_info = psutil.disk_usage(id.device) disk_total.append(disk_info.total) disk_used.append(disk_info.used) disk_free.append(disk_info.free) disk_percent.append(disk_info.percent) if __name__ == '__main__': get_cpu_info() cpu_status = cpu_info['percent'] print('cpu usage is:%s%%' % cpu_status) get_memory_info() mem_status = memory_info['percent'] print('memory usage is:%s%%' % mem_status) get_disk_info() for i in range(len(disk_id)): print('%sdisk usage is:%s%%' % (disk_id[i], 100 - disk_percent[i]))
26.685714
75
0.646681
0
0
0
0
0
0
0
0
517
0.276767
a5924218bd91ec5cd3a910146334e0e5acd39d37
1,592
py
Python
SS/p202.py
MTandHJ/leetcode
f3832ed255d259cb881666ec8bd3de090d34e883
[ "MIT" ]
null
null
null
SS/p202.py
MTandHJ/leetcode
f3832ed255d259cb881666ec8bd3de090d34e883
[ "MIT" ]
null
null
null
SS/p202.py
MTandHJ/leetcode
f3832ed255d259cb881666ec8bd3de090d34e883
[ "MIT" ]
null
null
null
""" 编写一个算法来判断一个数 n 是不是快乐数。 「快乐数」定义为: 对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和。 然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。 如果 可以变为  1,那么这个数就是快乐数。 如果 n 是快乐数就返回 true ;不是,则返回 false 。 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/happy-number 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 """ from typing import List class Solution: def isHappy(self, n: int) -> bool: # 先求出一个数的个十百千 LIMIT = 1000 nums = list(map(int, list(str(n)))) cnt = 0 # res = n res = self.square_sum(nums) while cnt < LIMIT: if res == 1: return True else: nums = list(map(int, list(str(res)))) res = self.square_sum(nums) cnt += 1 return False def square_sum(self, nums:List[int]) -> int: def my_pow(x): return x ** 2 return sum(list(map(my_pow, nums))) # hash表方法 class Solution: def isHappy(self, n: int) -> bool: # 创建一个初始hash映射来存储k-v映射 res_sum = set() # 定义一个函数来获取一轮平方和之后的数据 def getNext(n: int) -> int: res_sum = 0 # 当至少二位数时 while n > 0: n, digit = divmod(n, 10) res_sum += digit ** 2 return res_sum # 更新数据,进行判断 # 当这个书在res_sum中出现过,且不是1,则说明已经进入循环 # 且循环是跳不出来的 while n != 1: n = getNext(n) if n in res_sum: return False res_sum.add(n) return True # for test if __name__ == "__main__": ins = Solution() n = 19 print(ins.isHappy(n))
21.808219
53
0.523241
1,364
0.6437
0
0
0
0
0
0
955
0.450684
a5964514746ca9cd43f5272151dd592b02ad5040
2,309
py
Python
UI/UIObject.py
R2D2Hud/CharlieOSX
37c4edb0b31eda8082acd8e31afc3dc85fd75abe
[ "MIT" ]
12
2020-04-11T13:10:14.000Z
2022-03-24T09:12:54.000Z
UI/UIObject.py
R2D2Hud/CharlieOSX
37c4edb0b31eda8082acd8e31afc3dc85fd75abe
[ "MIT" ]
14
2020-01-24T14:07:45.000Z
2020-12-20T19:14:04.000Z
UI/UIObject.py
R2D2Hud/CharlieOSX
37c4edb0b31eda8082acd8e31afc3dc85fd75abe
[ "MIT" ]
11
2020-06-19T20:12:43.000Z
2021-04-25T05:02:20.000Z
from profileHelper import ProfileHelper from pybricks.parameters import Button, Color from pybricks.media.ev3dev import Image, ImageFile, Font, SoundFile # from UI.tools import Box class UIObject: def __init__(self, name: str, brick: EV3Brick, bounds: Box, contentType, content, padding=(0, 0, False), font=Font(family='arial', size=11), visible=True): # self.logger = logger self.name = name self.brick = brick self.bounds = bounds self.padding = padding self.contentType = contentType self.content = content self.font = font self.visibility = visible self.radius = 0 self.selected = False def getName(self): return self.name def setVisibility(self, visibility: bool): self.visibility = visibility def getVisibility(self): return self.visibility def update(self): pass def draw(self, selected=False): if self.padding[2]: x = self.padding[0] y = self.padding[1] else: x = self.bounds.x + self.padding[0] y = self.bounds.y + self.padding[1] if self.visibility: if self.contentType == 'img': if self.selected: self.radius = 5 else: self.radius = 0 self.brick.screen.draw_image(x, y, self.content, transparent=Color.RED) elif self.contentType == 'textBox': self.brick.screen.set_font(self.font) self.brick.screen.draw_box(x, y, x + self.bounds.width, y + self.bounds.height, r=2, fill=True, color=Color.WHITE) self.brick.screen.draw_box(x, y, x + self.bounds.width, y + self.bounds.height, r=2, fill=False if not selected else True, color=Color.BLACK) self.brick.screen.draw_text(self.bounds.x + 1, self.bounds.y + 1, self.content, text_color=Color.BLACK if not selected else Color.WHITE) else: if self.contentType == 'textBox': self.brick.screen.draw_box(x, y, x + self.bounds.width, y + self.bounds.height, r=2, fill=True, color=Color.WHITE) def setClickAction(self, action: Function): self.clickAction = action def click(self): self.clickAction()
37.241935
159
0.603725
2,124
0.919879
0
0
0
0
0
0
78
0.033781
a59648f6d46920ef327bbe7ce9659f9fe533785d
9,558
py
Python
factory.py
rosinality/vision-transformers-pytorch
b884b5da79900c96e4ce17fbb575cf1c5cb3cd5f
[ "MIT" ]
77
2021-04-03T06:44:19.000Z
2021-07-07T07:05:01.000Z
factory.py
rosinality/vision-transformers-pytorch
b884b5da79900c96e4ce17fbb575cf1c5cb3cd5f
[ "MIT" ]
1
2021-04-08T06:59:41.000Z
2021-04-08T11:20:32.000Z
factory.py
rosinality/vision-transformers-pytorch
b884b5da79900c96e4ce17fbb575cf1c5cb3cd5f
[ "MIT" ]
6
2021-04-15T13:36:37.000Z
2022-02-03T12:32:20.000Z
import os from types import SimpleNamespace import torch from torch.utils.data import DataLoader from torchvision import transforms from PIL import Image import numpy as np from tensorfn import distributed as dist, nsml, get_logger try: from nvidia.dali.pipeline import Pipeline from nvidia.dali import fn, types, pipeline_def from nvidia.dali.plugin.pytorch import DALIClassificationIterator except ImportError: pass from autoaugment import RandAugment from dataset import LMDBDataset from mix_dataset import MixDataset from transforms import RandomErasing def wd_skip_fn(skip_type): def check_wd_skip_fn(name, param): if skip_type == "nfnet": return "bias" in name or "gain" in name elif skip_type == "resnet": return "bias" in name or "bn" in name or param.ndim == 1 elif skip_type == "vit": return "bias" in name or "cls" in name or "norm" in name or param.ndim == 1 elif skip_type == "dino": return "bias" in name or param.ndim == 1 return check_wd_skip_fn def make_optimizer(train_conf, parameters): lr = train_conf.base_lr * train_conf.dataloader.batch_size / 256 return train_conf.optimizer.make(parameters, lr=lr) def make_scheduler(train_conf, optimizer, epoch_len): warmup = train_conf.scheduler.warmup * epoch_len n_iter = epoch_len * train_conf.epoch lr = train_conf.base_lr * train_conf.dataloader.batch_size / 256 if train_conf.scheduler.type == "exp_epoch": return train_conf.scheduler.make( optimizer, epoch_len, lr=lr, max_iter=train_conf.epoch, warmup=warmup ) else: return train_conf.scheduler.make(optimizer, lr=lr, n_iter=n_iter, warmup=warmup) def repeated_sampler(sampler): epoch = 0 while True: for i in sampler: yield i epoch += 1 sampler.set_epoch(epoch) class ExternalSource: def __init__(self, dataset, batch_size, shuffle, distributed): self.dataset = dataset self.batch_size = batch_size self.sampler = dist.data_sampler(dataset, shuffle=True, distributed=distributed) def __iter__(self): self.generator = repeated_sampler(self.sampler) return self def __next__(self): images, labels = [], [] for _ in range(self.batch_size): img, label = self.dataset[next(self.generator)] images.append(np.frombuffer(img, dtype=np.uint8)) labels.append(label) return images, torch.tensor(labels, dtype=torch.int64) # @pipeline_def def dali_pipeline(source, image_size, training, cpu=False): images, labels = fn.external_source(source=source, num_outputs=2) if cpu: device = "cpu" images = fn.decoders.image(images, device=device) else: device = "gpu" images = fn.decoders.image( images, device="mixed", device_memory_padding=211025920, host_memory_padding=140544512, ) if training: images = fn.random_resized_crop( images, device=device, size=image_size, interp_type=types.DALIInterpType.INTERP_CUBIC, ) coin = fn.random.coin_flip(0.5) images = fn.flip(images, horizontal=coin) else: pass return images, labels class DALIWrapper: def __init__(self, pipeline): self.dataloader = DALIClassificationIterator(pipeline) def __iter__(self): self.iterator = iter(self.dataloader) return self def __next__(self): data = next(self.iterator) image = data[0]["data"] label = data[0]["label"] def make_dali_dataloader( path, train_size, valid_size, train_set, valid_set, batch, distributed, n_worker ): pass def make_augment_dataset(path, train_transform, valid_transform): train_dir = os.path.join(nsml.DATASET_PATH, path, "train.lmdb") valid_dir = os.path.join(nsml.DATASET_PATH, path, "valid.lmdb") train_set = LMDBDataset(train_dir, train_transform) valid_set = LMDBDataset(valid_dir, valid_transform) return train_set, valid_set def make_dataset( path, train_size, valid_size, randaug_params, mix_params, erasing, verbose=True ): train_dir = os.path.join(nsml.DATASET_PATH, path, "train.lmdb") valid_dir = os.path.join(nsml.DATASET_PATH, path, "valid.lmdb") normalize = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) transform_list = [ transforms.RandomResizedCrop(train_size, interpolation=Image.BICUBIC), transforms.RandomHorizontalFlip(), RandAugment(**randaug_params), transforms.ToTensor(), normalize, ] if erasing > 0: transform_list += [ RandomErasing( erasing, mode="pixel", max_count=1, num_splits=0, device="cpu" ) ] if mix_params["mix_before_aug"]: preprocess = transform_list[:2] postprocess = transform_list[2:] else: preprocess = transform_list postprocess = [] if verbose: logger = get_logger() log = f"""Transforms Transform before Mixes: {preprocess} Mixes: mixup={mix_params["mixup"]}, cutmix={mix_params["cutmix"]}""" if mix_params["mix_before_aug"]: log += f""" Transform after Mixes: {postprocess}""" logger.info(log) train_preprocess = transforms.Compose(preprocess) train_postprocess = transforms.Compose(postprocess) train_set = LMDBDataset(train_dir, train_preprocess) train_set = MixDataset( train_set, train_postprocess, mix_params["mixup"], mix_params["cutmix"] ) valid_preprocess = transforms.Compose( [ transforms.Resize(valid_size + 32, interpolation=Image.BICUBIC), transforms.CenterCrop(valid_size), transforms.ToTensor(), normalize, ] ) valid_set = LMDBDataset(valid_dir, valid_preprocess) return train_set, valid_set def make_dataset_cuda(path, train_size, valid_size, randaug_params, mixup, cutmix): train_dir = os.path.join(nsml.DATASET_PATH, path, "train.lmdb") valid_dir = os.path.join(nsml.DATASET_PATH, path, "valid.lmdb") normalize = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) train_preprocess = transforms.Compose( [ transforms.RandomResizedCrop(train_size, interpolation=Image.BICUBIC), transforms.RandomHorizontalFlip(), ] ) train_postprocess = transforms.Compose( [RandAugment(**randaug_params), transforms.ToTensor(), normalize] ) train_set = LMDBDataset(train_dir, train_preprocess) train_set = MixDataset(train_set, train_postprocess, mixup, cutmix) valid_preprocess = transforms.Compose( [ transforms.Resize(valid_size + 32, interpolation=Image.BICUBIC), transforms.CenterCrop(valid_size), transforms.ToTensor(), normalize, ] ) valid_set = LMDBDataset(valid_dir, valid_preprocess) return train_set, valid_set def make_dataloader(train_set, valid_set, batch, distributed, n_worker): batch_size = batch // dist.get_world_size() train_sampler = dist.data_sampler(train_set, shuffle=True, distributed=distributed) train_loader = DataLoader( train_set, batch_size=batch_size, sampler=train_sampler, num_workers=n_worker ) valid_loader = DataLoader( valid_set, batch_size=batch_size, sampler=dist.data_sampler(valid_set, shuffle=False, distributed=distributed), num_workers=n_worker, ) return train_loader, valid_loader, train_sampler def lerp(start, end, stage, max_stage): return start + (end - start) * (stage / (max_stage - 1)) def progressive_adaptive_regularization( stage, max_stage, train_sizes, valid_sizes, randaug_layers, randaug_magnitudes, mixups, cutmixes, dropouts, drop_paths, verbose=True, ): train_size = int(lerp(*train_sizes, stage, max_stage)) valid_size = int(lerp(*valid_sizes, stage, max_stage)) randaug_layer = int(lerp(*randaug_layers, stage, max_stage)) randaug_magnitude = lerp(*randaug_magnitudes, stage, max_stage) mixup = lerp(*mixups, stage, max_stage) cutmix = lerp(*cutmixes, stage, max_stage) dropout = lerp(*dropouts, stage, max_stage) drop_path = lerp(*drop_paths, stage, max_stage) if verbose: logger = get_logger() log = f"""Progressive Training with Adaptive Regularization Stage: {stage + 1} / {max_stage} Image Size: train={train_size}, valid={valid_size} RandAugment: n_augment={randaug_layer}, magnitude={randaug_magnitude} Mixup: {mixup}, Cutmix: {cutmix}, Dropout={dropout}, DropPath={drop_path}""" logger.info(log) return SimpleNamespace( train_size=train_size, valid_size=valid_size, randaug_layer=randaug_layer, randaug_magnitude=randaug_magnitude, mixup=mixup, cutmix=cutmix, dropout=dropout, drop_path=drop_path, )
29.319018
89
0.643022
1,028
0.107554
168
0.017577
0
0
0
0
716
0.074911
a5965f266f95ad0e2605b8928b40d8635af8fdc1
2,990
py
Python
scripts/binarize-phrase-table.py
grgau/GroundHog
35fac1b80bdcc6b7516cb82fe2ecd19dbcfa248a
[ "BSD-3-Clause" ]
null
null
null
scripts/binarize-phrase-table.py
grgau/GroundHog
35fac1b80bdcc6b7516cb82fe2ecd19dbcfa248a
[ "BSD-3-Clause" ]
null
null
null
scripts/binarize-phrase-table.py
grgau/GroundHog
35fac1b80bdcc6b7516cb82fe2ecd19dbcfa248a
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # Converts moses phrase table file to HDF5 files # Written by Bart van Merrienboer (University of Montreal) import argparse import cPickle import gzip import sys import tables import numpy parser = argparse.ArgumentParser() parser.add_argument("input", type=argparse.FileType('r'), help="The phrase table to be processed") parser.add_argument("source_output", type=argparse.FileType('w'), help="The source output file") parser.add_argument("target_output", type=argparse.FileType('w'), help="The target output file") parser.add_argument("source_dictionary", type=argparse.FileType('r'), help="A pickled dictionary with words and IDs as keys and " "values respectively") parser.add_argument("target_dictionary", type=argparse.FileType('r'), help="A pickled dictionary with words and IDs as keys and " "values respectively") parser.add_argument("--labels", type=int, default=15000, help="Set the maximum word index") args = parser.parse_args() class Index(tables.IsDescription): pos = tables.UInt32Col() length = tables.UInt32Col() files = [args.source_output, args.target_output] vlarrays = [] indices = [] for i, f in enumerate(files): files[i] = tables.open_file(f.name, f.mode) vlarrays.append(files[i].createEArray(files[i].root, 'phrases', tables.Int32Atom(),shape=(0,))) indices.append(files[i].createTable("/", 'indices', Index, "a table of indices and lengths")) sfile = gzip.open(args.input.name, args.input.mode) source_table = cPickle.load(args.source_dictionary) target_table = cPickle.load(args.target_dictionary) tables = [source_table, target_table] count = 0 counts = numpy.zeros(2).astype('int32') freqs_sum = 0 for line in sfile: fields = line.strip().split('|||') for field_index in [0, 1]: words = fields[field_index].strip().split(' ') word_indices = [tables[field_index].get(word, 1) for word in words] if args.labels > 0: word_indices = [word_index if word_index < args.labels else 1 for word_index in word_indices] vlarrays[field_index].append(numpy.array(word_indices)) pos = counts[field_index] length = len(word_indices) ind = indices[field_index].row ind['pos'] = pos ind['length'] = length ind.append() counts[field_index] += len(word_indices) count += 1 if count % 100000 == 0: print count, [i.flush() for i in indices] sys.stdout.flush() elif count % 10000 == 0: print '.', sys.stdout.flush() for f in indices: f.flush() for f in files: f.close() sfile.close() print 'processed', count, 'phrase pairs'
30.510204
97
0.614716
95
0.031773
0
0
0
0
0
0
596
0.199331
a596a50f47d0ab9d4cfb1eb2e63d7c4e56340474
1,137
py
Python
Easy/1207.UniqueNumberofOccurrences.py
YuriSpiridonov/LeetCode
2dfcc9c71466ffa2ebc1c89e461ddfca92e2e781
[ "MIT" ]
39
2020-07-04T11:15:13.000Z
2022-02-04T22:33:42.000Z
Easy/1207.UniqueNumberofOccurrences.py
YuriSpiridonov/LeetCode
2dfcc9c71466ffa2ebc1c89e461ddfca92e2e781
[ "MIT" ]
1
2020-07-15T11:53:37.000Z
2020-07-15T11:53:37.000Z
Easy/1207.UniqueNumberofOccurrences.py
YuriSpiridonov/LeetCode
2dfcc9c71466ffa2ebc1c89e461ddfca92e2e781
[ "MIT" ]
20
2020-07-14T19:12:53.000Z
2022-03-02T06:28:17.000Z
""" Given an array of integers arr, write a function that returns true if and only if the number of occurrences of each value in the array is unique. Example: Input: arr = [1,2,2,1,1,3] Output: true Explanation: The value 1 has 3 occurrences, 2 has 2 and 3 has 1. No two values have the same number of occurrences. Example: Input: arr = [1,2] Output: false Example: Input: arr = [-3,0,1,-3,1,1,1,-3,10,0] Output: true Constraints: - 1 <= arr.length <= 1000 - -1000 <= arr[i] <= 1000 """ #Difficulty: Easy #63 / 63 test cases passed. #Runtime: 48 ms #Memory Usage: 13.8 MB #Runtime: 48 ms, faster than 39.33% of Python3 online submissions for Unique Number of Occurrences. #Memory Usage: 13.8 MB, less than 92.46% of Python3 online submissions for Unique Number of Occurrences. class Solution: def uniqueOccurrences(self, arr: List[int]) -> bool: digits = {} for d in arr: if d not in digits: digits[d] = 0 digits[d] += 1 return len(digits.keys()) == len(set(digits.values()))
29.153846
104
0.60774
266
0.233949
0
0
0
0
0
0
861
0.757256
a598b26fe309d9bc4db6c62f8d0ba413c791f7b0
9,360
py
Python
Playground3/src/playground/network/devices/pnms/PNMSDevice.py
kandarpck/networksecurity2018
dafe2ee8d39bd9596b1ce3fbc8b50ca645bcd626
[ "MIT" ]
3
2018-10-25T16:03:53.000Z
2019-06-13T15:24:41.000Z
Playground3/src/playground/network/devices/pnms/PNMSDevice.py
kandarpck/networksecurity2018
dafe2ee8d39bd9596b1ce3fbc8b50ca645bcd626
[ "MIT" ]
null
null
null
Playground3/src/playground/network/devices/pnms/PNMSDevice.py
kandarpck/networksecurity2018
dafe2ee8d39bd9596b1ce3fbc8b50ca645bcd626
[ "MIT" ]
null
null
null
from playground.common.os import isPidAlive from playground.common import CustomConstant as Constant from .NetworkManager import NetworkManager, ConnectionDeviceAPI, RoutesDeviceAPI import os, signal, time class PNMSDeviceLoader(type): """ This metaclass for PNMS device types auto loads concrete device types into the system. """ @classmethod def loadPnmsDefinitions(cls, newClass): if newClass.REGISTER_DEVICE_TYPE_NAME: if newClass.REGISTER_DEVICE_TYPE_NAME in NetworkManager.REGISTERED_DEVICE_TYPES: raise Exception("Duplicate Device Type Registration") NetworkManager.REGISTERED_DEVICE_TYPES[newClass.REGISTER_DEVICE_TYPE_NAME] = newClass for deviceType in newClass.CanConnectTo: if not issubclass(deviceType, PNMSDevice): raise Exception("Connect rules requires a subclass of device type. Got {}".format(deviceType)) rule = (newClass, deviceType) if not ConnectionDeviceAPI.ConnectionPermitted(newClass, deviceType): ConnectionDeviceAPI.PERMITTED_CONNECTION_TYPES.append(rule) if newClass.CanRoute: if not RoutesDeviceAPI.PermitsRouting(newClass): RoutesDeviceAPI.PERMITTED_ROUTING_TYPES.append(newClass) def __new__(cls, name, parents, dict): definitionCls = super().__new__(cls, name, parents, dict) cls.loadPnmsDefinitions(definitionCls) return definitionCls class PNMSDevice(metaclass=PNMSDeviceLoader): CONFIG_TRUE = "true" CONFIG_FALSE = "false" CONFIG_OPTION_AUTO = "auto_enable" """ Sub classes that need access to the Connection section or Routing section need to override these values """ CanConnectTo = [] CanRoute = False STATUS_DISABLED = Constant(strValue="Disabled", boolValue=False) STATUS_WAITING_FOR_DEPENDENCIES = Constant(strValue="Waiting", boolValue=False) STATUS_ABNORMAL_SHUTDOWN = Constant(strValue="Abnormal Shutdown", boolValue=False) STATUS_ENABLED = Constant(strValue="Enabled", boolValue=True) REGISTER_DEVICE_TYPE_NAME = None # All abstract classes should leave this none. All concrete classes must specify. def __init__(self, deviceName): self._pnms = None self._config = None self._name = deviceName self._deviceDependencies = set([]) # the status is the current status self._enableStatus = self.STATUS_DISABLED # the toggle is if there has been a request to go from one state to the other self._enableToggle = False def _cleanupFiles(self): if not self._enableStatus: runFiles = self._getDeviceRunFiles() for file in runFiles: if os.path.exists(file): os.unlink(file) def _reloadRuntimeData(self): pass def installToNetwork(self, pnms, mySection): self._pnms = pnms self._config = mySection self._reloadRuntimeData() # call self.enabled to correctly set enableStatus # cannot call in constructor, requires self._pnms self._runEnableStatusStateMachine() def networkManager(self): return self._pnms def _sanitizeVerb(self, verb): return verb.strip().lower() def name(self): return self._name def dependenciesEnabled(self): for device in self._deviceDependencies: if not device.enabled(): return False return True def isAutoEnabled(self): return self._config.get(self.CONFIG_OPTION_AUTO, self.CONFIG_FALSE) == self.CONFIG_TRUE def pnmsAlert(self, device, alert, alertArgs): if device in self._deviceDependencies: if alert == device.enabled: self._runEnableStatusStateMachine() def initialize(self, args): pass def destroy(self): pass def enable(self): if not self.enabled(): self._enableToggle = True self._runEnableStatusStateMachine() def disable(self): if self.enabled(): self._enableToggle = True self._runEnableStatusStateMachine() def enabled(self): self._cleanupFiles() return self._enableStatus def getPid(self): statusFile, pidFile, lockFile = self._getDeviceRunFiles() if os.path.exists(pidFile): with open(pidFile) as f: return int(f.read().strip()) return None def config(self, verb, args): pass def query(self, verb, args): return None def _getDeviceRunFiles(self): statusFile = os.path.join(self._pnms.location(), "device_{}.status".format(self.name())) pidFile = os.path.join(self._pnms.location(), "device_{}.pid".format(self.name())) lockFile = os.path.join(self._pnms.location(), "device_{}.pid.lock".format(self.name())) return statusFile, pidFile, lockFile def _running(self): for requiredFile in self._getDeviceRunFiles(): if not os.path.exists(requiredFile): return False pid = self.getPid() return pid and isPidAlive(pid) def _runEnableStatusStateMachine(self): newStatus = self._enableStatus # TODO: I wrote this function in a 'haze' thinkin the manager keeps running. # but, of course, it shuts down after run. There's going to be # no callback. Well, I'm leaving this code in. Because, it may # be that in the future I have a call-back system that works. # but for now, let's try to activate everything. if not self._enableStatus and self._enableToggle: for device in self._deviceDependencies: if not device.enabled(): device.enable() if self._enableStatus in [self.STATUS_DISABLED, self.STATUS_ABNORMAL_SHUTDOWN]: if self._running(): # We might have gotten here because of a restart # or a toggle. if self.dependenciesEnabled(): newStatus = self.STATUS_ENABLED else: # oops. A dependency has shut down. # Assume this device was supposed to be enabled. self._shutdown() newStatus = self.STATUS_WAITING_FOR_DEPENDENCIES elif self._enableToggle: if self.dependenciesEnabled(): self._launch() if self._running(): newStatus = self.STATUS_ENABLED else: newStatus = self.STATUS_ABNORMAL_SHUTDOWN else: newStatus = self.STATUS_DISABLED elif self._enableStatus == self.STATUS_WAITING_FOR_DEPENDENCIES: if self._enableToggle: # we were trying to turn on, were waiting for deps, but now stop newStatus = self.STATUS_DISABLED elif self.dependenciesEnabled(): self._launch() if self._running(): newStatus = self.STATUS_ENABLED else: newStatus = self.STATUS_ABNORMAL_SHUTDOWN else: newStatus = self.STATUS_WAITING_FOR_DEPENDENCIES elif self._enableStatus == self.STATUS_ENABLED: if self._enableToggle: self._shutdown() newStatus = self.STATUS_DISABLED elif not self._running(): newStatus = self.STATUS_DISABLED elif not self.dependenciesEnabled(): self._shutdown() newStatus = self.STATUS_WAITING_FOR_DEPENDENCIES else: newStatus = self.STATUS_ENABLED alert = (self._enableStatus != newStatus) self._enableStatus = newStatus self._enableToggle = False self._pnms.postAlert(self.enable, self._enableStatus) def _shutdown(self, timeout=5): pid = self.getPid() if pid: os.kill(pid, signal.SIGTERM) sleepCount = timeout while isPidAlive(pid) and sleepCount > 0: time.sleep(1) sleepCount = sleepCount-1 if isPidAlive(pid): raise Exception("Could not shut down device {}. (pid={})".format(self.name(), pid)) for file in self._getDeviceRunFiles(): if os.path.exists(file): os.unlink(file) def _launch(self, timeout=30): pass def _waitUntilRunning(self, timeout=30): sleepCount = timeout while not self._running() and sleepCount > 0: time.sleep(1) sleepCount = sleepCount - 1 return self._running()
39.327731
119
0.583761
9,130
0.975427
0
0
957
0.102244
0
0
1,319
0.140919
a5991177aa084d283fe154f4a7a56db6da664557
162
py
Python
testing/tests/constants_enums/constants_enums.py
gigabackup/gigantum-client
70fe6b39b87b1c56351f2b4c551b6f1693813e4f
[ "MIT" ]
60
2018-09-26T15:46:00.000Z
2021-10-10T02:37:14.000Z
testing/tests/constants_enums/constants_enums.py
gigabackup/gigantum-client
70fe6b39b87b1c56351f2b4c551b6f1693813e4f
[ "MIT" ]
1,706
2018-09-26T16:11:22.000Z
2021-08-20T13:37:59.000Z
testing/tests/constants_enums/constants_enums.py
griffinmilsap/gigantum-client
70fe6b39b87b1c56351f2b4c551b6f1693813e4f
[ "MIT" ]
11
2019-03-14T13:23:51.000Z
2022-01-25T01:29:16.000Z
import enum """Declare all enumerations used in test.""" class ProjectConstants(enum.Enum): """All constants for project test.""" SUCCESS = 'success'
16.2
44
0.685185
100
0.617284
0
0
0
0
0
0
90
0.555556
a59a37e3de5885e67c006743f177528505c3b6da
3,315
py
Python
core/eval.py
lmkoch/subgroup-shift-detection
31971704dc4a768db5e082e6e37a504f4e245224
[ "MIT" ]
null
null
null
core/eval.py
lmkoch/subgroup-shift-detection
31971704dc4a768db5e082e6e37a504f4e245224
[ "MIT" ]
null
null
null
core/eval.py
lmkoch/subgroup-shift-detection
31971704dc4a768db5e082e6e37a504f4e245224
[ "MIT" ]
1
2022-01-26T09:54:41.000Z
2022-01-26T09:54:41.000Z
import os import pandas as pd import numpy as np from core.dataset import dataset_fn from core.model import model_fn, get_classification_model from core.mmdd import trainer_object_fn from core.muks import muks def stderr_proportion(p, n): return np.sqrt(p * (1-p) / n) def eval(exp_dir, exp_name, params, seed, split, sample_sizes=[10, 30, 50, 100, 500], num_reps=100, num_permutations=1000): """Analysis of test power vs sample size for both MMD-D and MUKS Args: exp_dir ([type]): exp base directory exp_name ([type]): experiment name (hashed config) params (Dict): [description] seed (int): random seed split (str): fold to evaluate, e.g. 'validation' or 'test sample_sizes (list, optional): Defaults to [10, 30, 50, 100, 500]. num_reps (int, optional): for calculation rejection rates. Defaults to 100. num_permutations (int, optional): for MMD-D permutation test. Defaults to 1000. """ log_dir = os.path.join(exp_dir, exp_name) out_csv = os.path.join(log_dir, f'{split}_consistency_analysis.csv') df = pd.DataFrame(columns=['sample_size','power', 'power_stderr', 'type_1err', 'type_1err_stderr', 'method']) for batch_size in sample_sizes: params['dataset']['dl']['batch_size'] = batch_size dataloader = dataset_fn(seed=seed, params_dict=params['dataset']) # MMD-D model = model_fn(seed=seed, params=params['model']) trainer = trainer_object_fn(model=model, dataloaders=dataloader, seed=seed, log_dir=log_dir, **params['trainer']) res = trainer.performance_measures(dataloader[split]['p'], dataloader[split]['q'], num_batches=num_reps, num_permutations=num_permutations) res_mmd = {'exp_hash': exp_name, 'sample_size': batch_size, 'power': res['reject_rate'], 'power_stderr': stderr_proportion(res['reject_rate'], batch_size), 'type_1err': res['type_1_err'] , 'type_1err_stderr': stderr_proportion(res['type_1_err'] , batch_size), 'method': 'mmd'} # MUKS model = get_classification_model(params['model']) reject_rate, type_1_err = muks(dataloader[split]['p'], dataloader[split]['q'], num_reps, model) res_rabanser = {'exp_hash': exp_name, 'sample_size': batch_size, 'power': reject_rate, 'power_stderr': stderr_proportion(reject_rate, batch_size), 'type_1err': type_1_err, 'type_1err_stderr': stderr_proportion(type_1_err, batch_size), 'method': 'rabanser'} print('---------------------------------') print(f'sample size: {batch_size}') print(f'mmd: {res_mmd}') print(f'rabanser: {res_rabanser}') df = df.append(pd.DataFrame(res_mmd, index=['']), ignore_index=True) df = df.append(pd.DataFrame(res_rabanser, index=['']), ignore_index=True) df.to_csv(out_csv)
41.4375
112
0.574962
0
0
0
0
0
0
0
0
1,095
0.330317
a59a527b87a6e3d50b3ac6e6acea7185a59af36b
1,423
py
Python
handlers/product_handlers.py
group-project-carbon-accounting/server
93155868a0988c04fe79d30ef565c652d2c8f5de
[ "MIT" ]
null
null
null
handlers/product_handlers.py
group-project-carbon-accounting/server
93155868a0988c04fe79d30ef565c652d2c8f5de
[ "MIT" ]
null
null
null
handlers/product_handlers.py
group-project-carbon-accounting/server
93155868a0988c04fe79d30ef565c652d2c8f5de
[ "MIT" ]
null
null
null
import tornado.web import json from handlers.async_fetch import async_fetch, GET, POST class ProductAddHandler(tornado.web.RequestHandler): async def post(self): request_data = json.loads(self.request.body) data = { 'prod_id': request_data['product_id'], 'comp_id': request_data['company_id'], 'carbon_cost': request_data['carbon_cost_offset'] } response = await async_fetch('/product/add', method=POST, data=data) self.write(json.dumps({'success': (response['status'] == 'success')})) class ProductUpdateHandler(tornado.web.RequestHandler): async def post(self): request_data = json.loads(self.request.body) data = { 'prod_id': request_data['product_id'], 'comp_id': request_data['company_id'], 'carbon_cost': request_data['carbon_cost_offset'] } response = await async_fetch('/product/update', method=POST, data=data) self.write(json.dumps({'success': (response['status'] == 'success')})) class ProductGetHandler(tornado.web.RequestHandler): async def get(self, company_id, product_id): response_data = await async_fetch('/product/get/' + company_id + '/' + product_id, method=GET) self.write(json.dumps({'generic': (response_data['comp_id'] is None), 'carbon_cost_offset': response_data['carbon_cost']}))
43.121212
102
0.645819
1,329
0.933942
0
0
0
0
1,155
0.811665
302
0.212228
a59ac366b9f4a35b896bc07199abf2aebd42714c
3,144
py
Python
Python/lab8 [2, 5, 7, 12, 17]/tz17.py
da-foxbite/KSU121
133637abb4f465aeecb845e6735ba383a2fdd689
[ "MIT" ]
3
2019-09-23T06:06:30.000Z
2020-02-24T10:22:26.000Z
Python/lab8 [2, 5, 7, 12, 17]/tz17.py
da-foxbite/KSU141
133637abb4f465aeecb845e6735ba383a2fdd689
[ "MIT" ]
null
null
null
Python/lab8 [2, 5, 7, 12, 17]/tz17.py
da-foxbite/KSU141
133637abb4f465aeecb845e6735ba383a2fdd689
[ "MIT" ]
1
2020-10-26T11:00:22.000Z
2020-10-26T11:00:22.000Z
# 141, Суптеля Владислав # 【Дата】:「09.04.20」 # 17. Клас Покупець: Прізвище, Ім'я, По батькові, Адреса, Номер кредитної картки, Номер банківського рахунку; конструктор; # Методи: установка значень атрибутів, отримання значень атрибутів, висновок інформації. Створити масив об'єктів даного класу. # Вивести список покупців в алфавітному порядку і список покупців, у яких номер кредитної картки знаходиться в заданому діапазоні. import names from faker import Faker fake = Faker() import string import random def getRanNum(size, chars=string.digits): return ''.join(random.choice(chars) for _ in range(size)) class Customer: def __init__(self, firstName: str, secondName: str, middleName: str, address: str, creditCard: str, accNum: str): self.firstName = firstName self.secondName = secondName self.middleName = middleName self.address = address self.creditCard = creditCard self.accNum = accNum def __str__(self, ): return f""" ФИО: {self.firstName} {self.secondName} {self.middleName} Адрес: {self.address} Номер кредитной карты: {self.creditCard} Номер банковскового счета: {self.accNum} """ def __getattr__(self, name: str): if name == 'fullName': return self.firstName + ' ' + self.secondName + ' ' + self.middleName #set def setFirstName(self, firstName: str): self.firstName = firstName def setSecondName(self, secondName: str): self.firstName = secondName def setMiddleName(self, middleName: str): self.firstName = middleName def setAddress(self, address: str): self.firstName = address def setCreditCard(self, creditCard: str): self.firstName = creditCard def setAccNum(self, accNum: str): self.firstName = accNum #get def getName(self): return self.firstName def getSecondName(self): return self.secondName def getMiddleName(self): return self.middleName def getAddress(self): return self.address def getCreditCard(self): return self.creditCard def getBackNum(self): return self.accNum def fixPrintout(l): print('\033[0;37;40m Отсортированный список покупателей: ') print('\n'.join(map(str, l)), end='\n') customers = [] for i in range(0, 5): customers.append(Customer( names.get_first_name(), names.get_first_name(), names.get_first_name(), fake.address(), getRanNum(16), getRanNum(8))) # print("Информация о покупателе: ", customers[i]) customers.sort(key=lambda customer: customer.fullName) fixPrintout(customers) def CardNumCheck(customer: Customer, maxNum: str): for i in range(0, len(customer.creditCard)): if int(customer.creditCard[i]) > int(maxNum[i]): return customer if int(customer.creditCard[i]) < int(maxNum[i]): return False return False maxNum = getRanNum(16) #print(maxNum) print('\033[0;37;49m Список покупателей чей номер карты находится в заданном диапазоне: ') for i in range(0, 5): if CardNumCheck(customers[i], maxNum) == False: print('-') pass else: print(customers[i])
33.094737
130
0.682252
1,608
0.441758
0
0
0
0
0
0
1,360
0.373626
a59c22cef1a85002b71aba681bd1b6e2ffee762e
7,344
py
Python
absolv/tests/test_models.py
SimonBoothroyd/absolv
dedb2b6eb567ec1b627dbe50f36f68e0c32931c4
[ "MIT" ]
null
null
null
absolv/tests/test_models.py
SimonBoothroyd/absolv
dedb2b6eb567ec1b627dbe50f36f68e0c32931c4
[ "MIT" ]
30
2021-11-02T12:47:24.000Z
2022-03-01T22:00:39.000Z
absolv/tests/test_models.py
SimonBoothroyd/absolv
dedb2b6eb567ec1b627dbe50f36f68e0c32931c4
[ "MIT" ]
null
null
null
import numpy import pytest from openmm import unit from pydantic import ValidationError from absolv.models import ( DeltaG, EquilibriumProtocol, MinimizationProtocol, SimulationProtocol, State, SwitchingProtocol, System, TransferFreeEnergyResult, ) from absolv.tests import is_close class TestSystem: def test_n_solute_molecules(self): system = System(solutes={"CO": 2, "CCO": 3}, solvent_a={"O": 1}, solvent_b=None) assert system.n_solute_molecules == 5 @pytest.mark.parametrize("solvent_a, n_expected", [({"O": 3}, 3), (None, 0)]) def test_n_solvent_molecules_a(self, solvent_a, n_expected): system = System( solutes={ "CO": 1, }, solvent_a=solvent_a, solvent_b={"O": 5}, ) assert system.n_solvent_molecules_a == n_expected @pytest.mark.parametrize("solvent_b, n_expected", [({"O": 5}, 5), (None, 0)]) def test_n_solvent_molecules_b(self, solvent_b, n_expected): system = System( solutes={ "CO": 1, }, solvent_a={"O": 3}, solvent_b=solvent_b, ) assert system.n_solvent_molecules_b == n_expected def test_validate_solutes(self): with pytest.raises( ValidationError, match="at least one solute must be specified" ): System(solutes={}, solvent_a=None, solvent_b=None) system = System(solutes={"C": 1}, solvent_a=None, solvent_b=None) assert system.solutes == {"C": 1} def test_validate_solvent_a(self): with pytest.raises( ValidationError, match="specified when `solvent_a` is not none" ): System(solutes={"C": 1}, solvent_a={}, solvent_b=None) system = System(solutes={"C": 1}, solvent_a={"O": 2}, solvent_b=None) assert system.solvent_a == {"O": 2} def test_validate_solvent_b(self): with pytest.raises( ValidationError, match="specified when `solvent_b` is not none" ): System(solutes={"C": 1}, solvent_a=None, solvent_b={}) system = System(solutes={"C": 1}, solvent_a=None, solvent_b={"O": 2}) assert system.solvent_b == {"O": 2} def test_to_components(self): system = System( solutes={"CO": 1, "CCO": 2}, solvent_a={"O": 3}, solvent_b={"OCO": 4} ) components_a, components_b = system.to_components() assert components_a == [("CO", 1), ("CCO", 2), ("O", 3)] assert components_b == [("CO", 1), ("CCO", 2), ("OCO", 4)] class TestState: def test_unit_validation(self): state = State( temperature=298.0 * unit.kelvin, pressure=101.325 * unit.kilopascals ) assert is_close(state.temperature, 298.0) assert is_close(state.pressure, 1.0) class TestMinimizationProtocol: def test_unit_validation(self): protocol = MinimizationProtocol( tolerance=1.0 * unit.kilojoule_per_mole / unit.angstrom ) assert is_close(protocol.tolerance, 10.0) class TestSimulationProtocol: def test_unit_validation(self): protocol = SimulationProtocol( n_steps_per_iteration=1, n_iterations=1, timestep=0.002 * unit.picoseconds, thermostat_friction=0.003 / unit.femtoseconds, ) assert is_close(protocol.timestep, 2.0) assert is_close(protocol.thermostat_friction, 3.0) class TestEquilibriumProtocol: def test_n_states(self): protocol = EquilibriumProtocol( lambda_sterics=[1.0, 0.5, 0.0], lambda_electrostatics=[1.0, 1.0, 1.0] ) assert protocol.n_states == 3 @pytest.mark.parametrize( "lambda_sterics, lambda_electrostatics", [([1.0, 0.5, 0.0], [1.0, 1.0]), ([1.0, 0.5], [1.0, 1.0, 1.0])], ) def test_validate_lambda_lengths(self, lambda_sterics, lambda_electrostatics): with pytest.raises(ValidationError, match="lambda lists must be the same"): EquilibriumProtocol( lambda_sterics=lambda_sterics, lambda_electrostatics=lambda_electrostatics, ) class TestSwitchingProtocol: def test_unit_validation(self): protocol = SwitchingProtocol( n_electrostatic_steps=6250, n_steps_per_electrostatic_step=1, n_steric_steps=18750, n_steps_per_steric_step=1, timestep=0.002 * unit.picoseconds, thermostat_friction=0.003 / unit.femtoseconds, ) assert is_close(protocol.timestep, 2.0) assert is_close(protocol.thermostat_friction, 3.0) class TestDeltaG: def test_add(self): value_a = DeltaG(value=1.0, std_error=2.0) value_b = DeltaG(value=3.0, std_error=4.0) result = value_a + value_b assert is_close(result.value, 4.0) assert is_close(result.std_error, numpy.sqrt(20)) def test_sub(self): value_a = DeltaG(value=1.0, std_error=2.0) value_b = DeltaG(value=3.0, std_error=4.0) result = value_b - value_a assert is_close(result.value, 2.0) assert is_close(result.std_error, numpy.sqrt(20)) class TestTransferFreeEnergyResult: @pytest.fixture() def free_energy_result(self, argon_eq_schema): return TransferFreeEnergyResult( input_schema=argon_eq_schema, delta_g_solvent_a=DeltaG(value=1.0, std_error=2.0), delta_g_solvent_b=DeltaG(value=3.0, std_error=4.0), ) def test_delta_g_from_a_to_b(self, free_energy_result): delta_g = free_energy_result.delta_g_from_a_to_b assert is_close(delta_g.value, -2.0) assert is_close(delta_g.std_error, numpy.sqrt(20)) def test_delta_g_from_b_to_a(self, free_energy_result): delta_g = free_energy_result.delta_g_from_b_to_a assert is_close(delta_g.value, 2.0) assert is_close(delta_g.std_error, numpy.sqrt(20)) def test_boltzmann_temperature(self, free_energy_result): value = free_energy_result._boltzmann_temperature assert is_close(value, 85.5 * unit.kelvin * unit.MOLAR_GAS_CONSTANT_R) def test_delta_g_from_a_to_b_with_units(self, free_energy_result): value, std_error = free_energy_result.delta_g_from_a_to_b_with_units assert is_close(value, -2.0 * 85.5 * unit.kelvin * unit.MOLAR_GAS_CONSTANT_R) assert is_close( std_error, numpy.sqrt(20) * 85.5 * unit.kelvin * unit.MOLAR_GAS_CONSTANT_R ) def test_delta_g_from_b_to_a_with_units(self, free_energy_result): value, std_error = free_energy_result.delta_g_from_b_to_a_with_units assert is_close(value, 2.0 * 85.5 * unit.kelvin * unit.MOLAR_GAS_CONSTANT_R) assert is_close( std_error, numpy.sqrt(20) * 85.5 * unit.kelvin * unit.MOLAR_GAS_CONSTANT_R ) def test_str(self, free_energy_result): assert ( str(free_energy_result) == "ΔG a->b=-0.340 kcal/mol ΔG a->b std=0.760 kcal/mol" ) def test_repr(self, free_energy_result): assert repr(free_energy_result) == ( "TransferFreeEnergyResult(ΔG a->b=-0.340 kcal/mol ΔG a->b std=0.760 kcal/mol)" )
30.473029
90
0.631672
7,008
0.953729
0
0
1,490
0.202776
0
0
474
0.064507
a59f046e4edcd4dce70590e6b4351f5262990e72
868
py
Python
archiv/tables.py
acdh-oeaw/gtrans
6f56b1d09de0cad503273bf8a01cd81e25220524
[ "MIT" ]
1
2020-03-15T16:14:02.000Z
2020-03-15T16:14:02.000Z
archiv/tables.py
acdh-oeaw/gtrans
6f56b1d09de0cad503273bf8a01cd81e25220524
[ "MIT" ]
14
2018-11-09T08:34:23.000Z
2022-02-10T08:15:53.000Z
archiv/tables.py
acdh-oeaw/gtrans
6f56b1d09de0cad503273bf8a01cd81e25220524
[ "MIT" ]
null
null
null
import django_tables2 as tables from django_tables2.utils import A from entities.models import * from archiv.models import * class ArchResourceTable(tables.Table): id = tables.LinkColumn( 'archiv:archresource_detail', args=[A('pk')], verbose_name='ID' ) title = tables.LinkColumn( 'archiv:archresource_detail', args=[A('pk')], verbose_name='Titel' ) mentioned_person = tables.ManyToManyColumn() mentioned_inst = tables.ManyToManyColumn() mentioned_place = tables.ManyToManyColumn() creator_person = tables.ManyToManyColumn() creator_inst = tables.ManyToManyColumn() subject_norm = tables.ManyToManyColumn() creators = tables.ManyToManyColumn() class Meta: model = ArchResource sequence = ('id', 'title',) attrs = {"class": "table table-responsive table-hover"}
31
63
0.687788
740
0.852535
0
0
0
0
0
0
129
0.148618
a5a01c24d79e75ecbeea7e8b127b09c3ad1d05e0
376
py
Python
accounts/migrations/0005_auto_20200227_0418.py
inclusive-design/coop-map-directory-index
b215ea95677dc90fafe60eaa494a4fd6af0431fb
[ "BSD-3-Clause" ]
1
2020-01-28T16:16:49.000Z
2020-01-28T16:16:49.000Z
accounts/migrations/0005_auto_20200227_0418.py
inclusive-design/coop-map-directory-index
b215ea95677dc90fafe60eaa494a4fd6af0431fb
[ "BSD-3-Clause" ]
114
2020-02-12T20:22:07.000Z
2021-09-22T18:29:50.000Z
accounts/migrations/0005_auto_20200227_0418.py
inclusive-design/coop-map-directory-index
b215ea95677dc90fafe60eaa494a4fd6af0431fb
[ "BSD-3-Clause" ]
4
2020-04-21T21:09:25.000Z
2021-01-08T14:18:58.000Z
# Generated by Django 3.0.3 on 2020-02-27 04:18 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('accounts', '0004_auto_20200226_2329'), ] operations = [ migrations.AlterModelOptions( name='usersocialnetwork', options={'verbose_name': "User's Social Network"}, ), ]
20.888889
62
0.619681
291
0.773936
0
0
0
0
0
0
138
0.367021
a5a08838db67fdc32c63308d4dd034cb11ff2a45
3,745
py
Python
src/FSG/WordEmbedding.py
handsomebrothers/Callback2Vec
370adbcfcc229d385ba9c8c581489b703a39ca85
[ "MIT" ]
null
null
null
src/FSG/WordEmbedding.py
handsomebrothers/Callback2Vec
370adbcfcc229d385ba9c8c581489b703a39ca85
[ "MIT" ]
null
null
null
src/FSG/WordEmbedding.py
handsomebrothers/Callback2Vec
370adbcfcc229d385ba9c8c581489b703a39ca85
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import multiprocessing from gensim.models import Word2Vec import csv def embedding_sentences(sentences, embedding_size = 64, window = 3, min_count = 0, file_to_load = None, file_to_save = None): ''' embeding_size Word Embedding Dimension window : Context window min_count : Word frequency less than min_count will be deleted ''' if file_to_load is not None: w2vModel = Word2Vec.load(file_to_load) # load model else: w2vModel = Word2Vec(sentences, size = embedding_size, window = window, min_count = min_count, workers = multiprocessing.cpu_count(),seed=200) if file_to_save is not None: w2vModel.save(file_to_save) # Save Model return w2vModel # This function is used to represent a sentence as a vector (corresponding to representing a method as a vector) def get_method_vector(sentence,w2vModel): sentence_vector=[] for word in sentence: sentence_vector.append(w2vModel[word])#Word vectors for adding each word return sentence_vector # This function is used to represent a word as a vector (corresponding to a word in method) def get_word_vector(word,w2vModel): return w2vModel[word] # This function is used to get the vector of a text (corresponding to the word vector of class or apk) def get_apk_class_vector(document,w2vModel): all_vectors = [] embeddingDim = w2vModel.vector_size # 嵌入维数 embeddingUnknown = [0 for i in range(embeddingDim)] for sentence in document: this_vector = [] for word in sentence: if word in w2vModel.wv.vocab: this_vector.append(w2vModel[word]) else: this_vector.append(embeddingUnknown) all_vectors.append(this_vector) return all_vectors # This function is used to obtain the similarity between two sentences, # with the help of python's own function to calculate the similarity. def get_two_sentence_simility(sentence1,sentence2,w2vModel): sim = w2vModel.n_similarity(sentence1, sentence2) return sim # Used to build corpus def bulid_word2vec_model():#Used to build word 2vec model model = embedding_sentences(get_corpus_(), embedding_size=32, min_count=0, file_to_save='D:\\APK_科研\\word2vec\\apk_trained_word2vec.model') return model # Used to get the model that has been created def get_already_word2vec_model(file_to_load): model = Word2Vec.load(file_to_load) return model # Used for acquiring corpus def get_corpus(): all_data=[] data_readers=csv.reader(open('D:/new_amd_callback_data1.csv')) for reader in data_readers: if len(reader)>1: # print(reader) all_data.append(reader) amd_data_readers=csv.reader(open('D:/new_callback_data1.csv')) for amd_reader in amd_data_readers: if len(amd_reader)>1: # print(amd_reader) all_data.append(amd_reader) print('over') return all_data def get_corpus_(): all_data = [] data_readers = csv.reader(open('D:/new_amd_callback_data.csv')) for reader in data_readers: if len(reader) > 1: # print(reader) all_data.append(reader) amd_data_readers = csv.reader(open('D:/new_amd_callback_data1.csv')) for amd_reader in amd_data_readers: if len(amd_reader) > 1: # print(amd_reader) all_data.append(amd_reader) amd_data_readers_=csv.reader(open('D:/new_callback_data.csv')) for amd_reader_ in amd_data_readers_: if len(amd_reader_)>1: all_data.append(amd_reader_) print('over') return all_data if __name__ == "__main__": bulid_word2vec_model()
40.706522
149
0.687316
0
0
0
0
0
0
0
0
1,108
0.294916
a5a1b481c21e6820b7064b6612f4c7a3b1370fc4
10,914
py
Python
hearthstone/player.py
dianarvp/stone_ground_hearth_battles
450e70eaef21b543be579a6d696676fb148a99b0
[ "Apache-2.0" ]
null
null
null
hearthstone/player.py
dianarvp/stone_ground_hearth_battles
450e70eaef21b543be579a6d696676fb148a99b0
[ "Apache-2.0" ]
null
null
null
hearthstone/player.py
dianarvp/stone_ground_hearth_battles
450e70eaef21b543be579a6d696676fb148a99b0
[ "Apache-2.0" ]
null
null
null
import itertools import typing from collections import defaultdict from typing import Optional, List, Callable, Type from hearthstone.cards import MonsterCard, CardEvent, Card from hearthstone.events import BuyPhaseContext, EVENTS from hearthstone.hero import EmptyHero from hearthstone.monster_types import MONSTER_TYPES from hearthstone.triple_reward_card import TripleRewardCard if typing.TYPE_CHECKING: from hearthstone.tavern import Tavern from hearthstone.hero import Hero from hearthstone.randomizer import Randomizer class BuyPhaseEvent: pass StoreIndex = typing.NewType("StoreIndex", int) HandIndex = typing.NewType("HandIndex", int) BoardIndex = typing.NewType("BoardIndex", int) class Player: def __init__(self, tavern: 'Tavern', name: str, hero_options: List['Hero']): self.name = name self.tavern = tavern self.hero = None self.hero_options = hero_options self.health = None self.tavern_tier = 1 self.coins = 0 self.triple_rewards = [] self.discovered_cards: List[MonsterCard] = [] self.maximum_board_size = 7 self.maximum_hand_size = 10 self.refresh_store_cost = 1 self._tavern_upgrade_costs = (0, 5, 7, 8, 9, 10) self.tavern_upgrade_cost = 5 self.hand: List[MonsterCard] = [] self.in_play: List[MonsterCard] = [] self.store: List[MonsterCard] = [] self.frozen = False self.counted_cards = defaultdict(lambda: 0) @staticmethod def new_player_with_hero(tavern: 'Tavern', name: str, hero: Optional['Hero'] = None) -> 'Player': if hero is None: hero = EmptyHero() player = Player(tavern, name, [hero]) player.choose_hero(hero) return player @property def coin_income_rate(self): return min(self.tavern.turn_count + 3, 10) def player_main_step(self): self.draw() # player can: # rearrange monsters # summon monsters # buy from the store # freeze the store # refresh the store # sell monsters # set fight ready def apply_turn_start_income(self): self.coins = self.coin_income_rate def decrease_tavern_upgrade_cost(self): self.tavern_upgrade_cost = max(0, self.tavern_upgrade_cost - 1) def upgrade_tavern(self): assert self.validate_upgrade_tavern() self.coins -= self.tavern_upgrade_cost self.tavern_tier += 1 if self.tavern_tier < self.max_tier(): self.tavern_upgrade_cost = self._tavern_upgrade_costs[self.tavern_tier] def validate_upgrade_tavern(self) -> bool: if self.tavern_tier >= self.max_tier(): return False if self.coins < self.tavern_upgrade_cost: return False return True def summon_from_hand(self, index: HandIndex, targets: Optional[List[BoardIndex]] = None): # TODO: add (optional?) destination index parameter for Defender of Argus # TODO: make sure that the ordering of monster in hand and monster.battlecry are correct # TODO: Jarett can monster be event target if targets is None: targets = [] assert self.validate_summon_from_hand(index, targets) card = self.hand.pop(index) self.in_play.append(card) if card.golden: self.triple_rewards.append(TripleRewardCard(min(self.tavern_tier + 1, 6))) if card.magnetic: self.check_magnetic(card) target_cards = [self.in_play[target] for target in targets] self.broadcast_buy_phase_event(CardEvent(card, EVENTS.SUMMON_BUY, target_cards)) def validate_summon_from_hand(self, index: HandIndex, targets: Optional[List[BoardIndex]] = None) -> bool: if targets is None: targets = [] # TODO: Jack num_battlecry_targets should only accept 0,1,2 if index not in range(len(self.hand)): return False card = self.hand[index] if not self.room_on_board(): return False valid_targets = [target_index for target_index, target_card in enumerate(self.in_play) if card.validate_battlecry_target(target_card)] num_possible_targets = min(len(valid_targets), card.num_battlecry_targets) if len(targets) != num_possible_targets: return False if len(set(targets)) != len(targets): return False for target in targets: if target not in valid_targets: return False return True def play_triple_rewards(self): if not self.triple_rewards: return discover_tier = self.triple_rewards.pop(-1).level self.draw_discover(lambda card: card.tier == discover_tier) def validate_triple_rewards(self) -> bool: return bool(self.triple_rewards) def draw_discover(self, predicate: Callable[[Card], bool]): discoverables = [card for card in self.tavern.deck.all_cards() if predicate(card)] for _ in range(3): self.discovered_cards.append(self.tavern.randomizer.select_discover_card(discoverables)) discoverables.remove(self.discovered_cards[-1]) self.tavern.deck.remove_card(self.discovered_cards[-1]) def select_discover(self, card: Card): assert (card in self.discovered_cards) assert (isinstance(card, MonsterCard)) # TODO: discover other card types self.discovered_cards.remove(card) self.hand.append(card) self.tavern.deck.return_cards(itertools.chain.from_iterable([card.dissolve() for card in self.discovered_cards])) self.discovered_cards = [] self.check_golden(type(card)) def summon_from_void(self, monster: MonsterCard): if self.room_on_board(): self.in_play.append(monster) self.check_golden(type(monster)) self.broadcast_buy_phase_event(CardEvent(monster, EVENTS.SUMMON_BUY)) def room_on_board(self): return len(self.in_play) < self.maximum_board_size def draw(self): if self.frozen: self.frozen = False else: self.return_cards() number_of_cards = 3 + self.tavern_tier // 2 - len(self.store) self.store.extend([self.tavern.deck.draw(self) for _ in range(number_of_cards)]) def purchase(self, index: StoreIndex): # check if the index is valid assert self.validate_purchase(index) card = self.store.pop(index) self.coins -= card.coin_cost self.hand.append(card) event = CardEvent(card, EVENTS.BUY) self.broadcast_buy_phase_event(event) self.check_golden(type(card)) def validate_purchase(self, index: StoreIndex) -> bool: if index not in range(len(self.store)): return False if self.coins < self.store[index].coin_cost: return False if not self.room_in_hand(): return False return True def check_golden(self, check_card: Type[MonsterCard]): cards = [card for card in self.in_play + self.hand if isinstance(card, check_card) and not card.golden] assert len(cards) <= 3, f"fnord{cards}" if len(cards) == 3: for card in cards: if card in self.in_play: self.in_play.remove(card) if card in self.hand: self.hand.remove(card) golden_card = check_card() golden_card.golden_transformation(cards) self.hand.append(golden_card) def check_magnetic(self, card): # TODO: decide if magnetic should be implemented using targets index = self.in_play.index(card) assert card.magnetic if index + 1 in range(len(self.in_play)) and self.in_play[index + 1].monster_type in (MONSTER_TYPES.MECH, MONSTER_TYPES.ALL): mech = self.in_play[index + 1] self.in_play.remove(card) mech.magnetic_transformation(card) def reroll_store(self): assert self.validate_reroll() self.coins -= self.refresh_store_cost self.return_cards() self.draw() def validate_reroll(self) -> bool: return self.coins >= self.refresh_store_cost def return_cards(self): self.tavern.deck.return_cards(itertools.chain.from_iterable([card.dissolve() for card in self.store])) self.store = [] def freeze(self): self.frozen = True def _sell_minion(self, location: List[MonsterCard], index: int): assert self._validate_sell_minion(location, index) self.broadcast_buy_phase_event(CardEvent(location[index], EVENTS.SELL)) card = location.pop(index) self.coins += card.redeem_rate self.tavern.deck.return_cards(card.dissolve()) def sell_hand_minion(self, index: HandIndex): return self._sell_minion(self.hand, index) def sell_board_minion(self, index: BoardIndex): return self._sell_minion(self.in_play, index) @staticmethod def _validate_sell_minion(location: List[MonsterCard], index: int) -> bool: return index in range(len(location)) def validate_sell_hand_minion(self, index: HandIndex) -> bool: return self._validate_sell_minion(self.hand, index) def validate_sell_board_minion(self, index: BoardIndex) -> bool: return self._validate_sell_minion(self.in_play, index) def hero_power(self): self.hero.hero_power(BuyPhaseContext(self, self.tavern.randomizer)) def validate_hero_power(self) -> bool: return self.hero.hero_power_valid(BuyPhaseContext(self, self.tavern.randomizer)) def broadcast_buy_phase_event(self, event: CardEvent, randomizer: Optional['Randomizer'] = None): self.hero.handle_event(event, BuyPhaseContext(self, randomizer or self.tavern.randomizer)) for card in self.in_play.copy(): card.handle_event(event, BuyPhaseContext(self, randomizer or self.tavern.randomizer)) for card in self.hand.copy(): card.handle_event_in_hand(event, BuyPhaseContext(self, randomizer or self.tavern.randomizer)) def hand_size(self): return len(self.hand) + len(self.triple_rewards) def room_in_hand(self): return self.hand_size() < self.maximum_hand_size def max_tier(self): return len(self._tavern_upgrade_costs) def choose_hero(self, hero: 'Hero'): assert(self.validate_choose_hero(hero)) self.hero = hero self.hero_options = [] self.health = self.hero.starting_health() self._tavern_upgrade_costs = self.hero.tavern_upgrade_costs() self.tavern_upgrade_cost = self.hero.tavern_upgrade_costs()[1] def validate_choose_hero(self, hero: 'Hero'): return self.hero is None and hero in self.hero_options
38.702128
133
0.660711
10,229
0.937237
0
0
502
0.045996
0
0
647
0.059282
a5a2a13b3d7e2462a415df9e5bf700f91ae466fd
12,743
py
Python
PyStationB/libraries/ABEX/abex/optimizers/zoom_optimizer.py
BrunoKM/station-b-libraries
ea3591837e4a33f0bef789d905467754c27913b3
[ "MIT" ]
6
2021-09-29T15:46:55.000Z
2021-12-14T18:39:51.000Z
PyStationB/libraries/ABEX/abex/optimizers/zoom_optimizer.py
BrunoKM/station-b-libraries
ea3591837e4a33f0bef789d905467754c27913b3
[ "MIT" ]
null
null
null
PyStationB/libraries/ABEX/abex/optimizers/zoom_optimizer.py
BrunoKM/station-b-libraries
ea3591837e4a33f0bef789d905467754c27913b3
[ "MIT" ]
3
2021-09-27T10:35:20.000Z
2021-10-02T17:53:07.000Z
# ------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License (MIT). See LICENSE in the repo root for license information. # ------------------------------------------------------------------------------------------- """A submodule implementing "zooming in" (Biological) optimization strategy. This optimization strategy has a single hyperparameter :math:`s`, called the *shrinking factor*. It consists of of the following steps: 1. The optimization space is a hypercuboid .. math:: C = [a_1, b_1] \\times [a_2, b_2] \\times \\cdots \\times [a_n, b_n]. 2. Find the optimum :math:`x=(x_1, x_2, \\dots, x_n)` among the already collected samples. 3. Construct a new hypercuboid :math:`D` centered at :math:`x`. If this is the :math:`N`th optimization step, the volume of :math:`D` is given by .. math:: \\mathrm{vol}\\, D = s^N \\cdot \\mathrm{vol}\\, C Step :math:`N` is either provided in the configuration file or is estimated as ``n_samples/batch_size``. 4. If :math:`D` is not a subset of :math:`C`, we translate it by a vector. 5. To suggest a new batch we sample the hypercuboid :math:`D`. Many different sampling methods are available, see :ref:`abex.sample_designs` for this. For example, we can construct a grid, sample in a random way or use Latin or Sobol sampling. """ from pathlib import Path from typing import List, Tuple import abex.optimizers.optimizer_base as base import numpy as np import pandas as pd from abex import space_designs as designs from abex.dataset import Dataset from abex.settings import OptimizationStrategy, ZoomOptSettings from emukit.core import ContinuousParameter, ParameterSpace Interval = Tuple[float, float] # Endpoints of an interval Hypercuboid = List[Interval] # Optimization space is represented by a rectangular box class ZoomOptimizer(base.OptimizerBase): strategy_name = OptimizationStrategy.ZOOM.value def run(self) -> Tuple[Path, pd.DataFrame]: """ Optimizes function using "zooming in" strategy -- around observed maximum a new "shrunk" space is selected. We sample this space (e.g. using grid sampling or random sampling) to suggest new observations. Note: This method should not work well with very noisy functions or functions having a non-unique maximum. A more robust alternative (as Bayes optimization) should be preferred. On the other hand, this method is much faster to compute. Returns: path to the CSV with locations of new samples to be collected data frame with locations of new samples to be collected Raises: ValueError, if batch size is less than 1 """ # Construct the data set dataset: Dataset = self.construct_dataset() assert ( self.config.zoomopt is not None ), "You need to set the 'zoomopt' field in the config to use Zoom optimizer." batch_transformed_space: np.ndarray = _suggest_samples(dataset=dataset, settings=self.config.zoomopt) # Transform the batch back to original space batch_original_space: pd.DataFrame = self.suggestions_to_original_space( dataset=dataset, new_samples=batch_transformed_space ) # Save the batch to the disk and return it batch_original_space.to_csv(self.config.experiment_batch_path, index=False) # Save the inferred optimum optimum = evaluate_optimum(dataset) optimum.to_csv(self.config.results_dir / "optima.csv", index=False) return self.config.experiment_batch_path, batch_original_space def evaluate_optimum(dataset: Dataset) -> pd.DataFrame: """ Return the optimum as inferred by the Zoom Opt. algorithm. The inferred optimum is taken as the location of the observed sample with highest observed objective. Args: dataset (dataset.Dataset): Dataset with the data observed so-far. Returns: pd.DataFrame: A DataFrame with a single row: the inputs at the inferred optimum """ # Get the index of data point with highest observed objective optimum_idx = dataset.pretransform_df[dataset.pretransform_output_name].argmax() # Get the inputs of the data point with highest observed objective optimum_loc = dataset.pretransform_df[dataset.pretransform_input_names].iloc[[optimum_idx]] return optimum_loc def _suggest_samples(dataset: Dataset, settings: ZoomOptSettings) -> np.ndarray: """Suggests a new batch of samples. Currently this method doesn't allow categorical inputs. Returns: a batch of suggestions. Shape (batch_size, n_inputs). Raises: ValueError, if batch size is less than 1 NotImplementedError, if any categorical inputs are present """ if settings.batch < 1: raise ValueError(f"Use batch size at least 1. (Was {settings.batch}).") # pragma: no cover continuous_dict, categorical_dict = dataset.parameter_space # If any categorical variable is present, we raise an exception. In theory they should be represented by one-hot # encodings, but I'm not sure how to retrieve the bounds of this space and do optimization within it (the # best way is probably to optimize it in an unconstrained space and map it to one-hot vectors using softmax). # Moreover, in BayesOpt there is iteration over contexts. if categorical_dict: raise NotImplementedError("This method doesn't work with categorical inputs right now.") # pragma: no cover # It seems that continuous_dict.values() contains pandas series instead of tuples, so we need to map over it # to retrieve the parameter space original_space: Hypercuboid = [(a, b) for a, b in continuous_dict.values()] # Find the location of the optimum. We will shrink the space around it optimum: np.ndarray = _get_optimum_location(dataset) # Estimate how many optimization iterations were performed. step_number: int = settings.n_step or _estimate_step_number( n_points=len(dataset.output_array), batch_size=settings.batch ) # Convert to per-batch shrinking factor if a per-iteration shrinking factor supplied per_batch_shrinking_factor = ( settings.shrinking_factor ** settings.batch if settings.shrink_per_iter else settings.shrinking_factor ) # Calculate by what factor each dimension of the hypercube should be shrunk shrinking_factor_per_dim: float = _calculate_shrinking_factor( initial_shrinking_factor=per_batch_shrinking_factor, step_number=step_number, n_dim=len(original_space) ) # Shrink the space new_space: Hypercuboid = [ shrink_interval( shrinking_factor=shrinking_factor_per_dim, interval=interval, shrinking_anchor=optimum_coordinate ) for interval, optimum_coordinate in zip(original_space, optimum) ] # The shrunk space may be out of the original bounds (e.g. if the maximum was close to the boundary). # Translate it. new_space = _move_to_original_bounds(new_space=new_space, original_space=original_space) # Sample the new space to get a batch of new suggestions. parameter_space = ParameterSpace([ContinuousParameter(f"x{i}", low, upp) for i, (low, upp) in enumerate(new_space)]) return designs.suggest_samples( parameter_space=parameter_space, design_type=settings.design, point_count=settings.batch ) def _estimate_step_number(n_points: int, batch_size: int) -> int: """Estimates which step this is (or rather how many steps were collected previously, basing on the ratio of number of points collected and the batch size). Note that this method is provisional and may be replaced with a parameter in the config. Raises: ValueError if ``n_points`` or ``batch_size`` is less than 1 """ if min(n_points, batch_size) < 1: raise ValueError( f"Both n_points={n_points} and batch_size={batch_size} must be at least 1." ) # pragma: no cover return n_points // batch_size def _calculate_shrinking_factor(initial_shrinking_factor: float, step_number: int, n_dim: int) -> float: """The length of each in interval bounding the parameter space needs to be multiplied by this number. Args: initial_shrinking_factor: in each step the total volume is shrunk by this amount step_number: optimization step -- if we collected only an initial batch, this step is 1 n_dim: number of dimensions Example: Assume that ``initial_shrinking_factor=0.5`` and ``step_number=1``. This means that the total volume should be multiplied by :math:`1/2`. Hence, if there are :math:`N` dimensions (``n_dim``), the length of each bounding interval should be multiplied by :math:`1/2^{1/N}`. However, if ``step_number=3``, each dimension should be shrunk three times, i.e. we need to multiply it by :math:`1/2^{3/N}`. Returns: the shrinking factor for each dimension """ assert 0 < initial_shrinking_factor < 1, ( f"Shrinking factor must be between 0 and 1. " f"(Was {initial_shrinking_factor})." ) assert step_number >= 1 and n_dim >= 1, ( f"Step number and number of dimensions must be greater than 0. " f"(Where step_number={step_number}, n_dim={n_dim})." ) return initial_shrinking_factor ** (step_number / n_dim) def _get_optimum_location(dataset: Dataset) -> np.ndarray: """Returns the position (in the transformed space) of the maximum. Shape (n_inputs,).""" # Retrieve the observations X, Y = dataset.inputs_array, dataset.output_array # Return the location of the maximum best_index = int(np.argmax(Y)) return X[best_index, :] def shrink_interval(shrinking_factor: float, interval: Interval, shrinking_anchor: float) -> Interval: """Shrinks a one-dimensional interval around the ``shrinking_anchor``. The new interval is centered around the optimum. Note: the shrunk interval may not be contained in the initial one. (E.g. if the shrinking anchor is near the boundary). Args: shrinking_factor: by this amount the length interval is multiplied. Expected to be between 0 and 1 interval: endpoints of the interval shrinking_anchor: point around which the interval will be shrunk Returns: endpoints of the shrunk interval """ neighborhood = shrinking_factor * (interval[1] - interval[0]) return shrinking_anchor - neighborhood / 2, shrinking_anchor + neighborhood / 2 def _validate_interval(interval: Interval) -> None: """Validates whether an interval is non-empty. Note: one-point interval :math:`[a, a]` is allowed Raises: ValueError: if the end of the interval is less than its origin """ origin, end = interval if end < origin: raise ValueError(f"Interval [{origin}, {end}] is not a proper one.") # pragma: no cover def interval_length(interval: Interval) -> float: """Returns interval length.""" _validate_interval(interval) return interval[1] - interval[0] def shift_to_within_parameter_bounds(new_interval: Interval, old_interval: Interval) -> Interval: """Translates ``new_interval`` to ``old_interval``, without changing its volume. Raises: ValueError: if translation is not possible. """ if interval_length(new_interval) > interval_length(old_interval): raise ValueError( # pragma: no cover f"Translation is not possible. New interval {new_interval} is longer " f"than the original one {old_interval}." ) new_min, new_max = new_interval old_min, old_max = old_interval if old_min <= new_min and new_max <= old_max: # In this case we don't need to translate the interval return new_interval else: if new_min < old_min: # Figure out the direction of the translation translation = old_min - new_min else: translation = old_max - new_max return new_min + translation, new_max + translation def _move_to_original_bounds(new_space: Hypercuboid, original_space: Hypercuboid) -> Hypercuboid: """Translates ``new_space`` to be a subset of the ``original_space``, without affecting its volume.""" moved_bounds: Hypercuboid = [] for new_interval, old_interval in zip(new_space, original_space): moved_bounds.append(shift_to_within_parameter_bounds(new_interval=new_interval, old_interval=old_interval)) return moved_bounds
41.106452
120
0.697167
1,815
0.142431
0
0
0
0
0
0
7,464
0.585733
a5a44f9a6a387924ac0536e279f50da03dd8ba3f
1,146
py
Python
Labs/lab4/l4e3.py
felixchiasson/ITI1520
4208904bf7576433313524ebd1c1bdb9f49277f2
[ "MIT" ]
null
null
null
Labs/lab4/l4e3.py
felixchiasson/ITI1520
4208904bf7576433313524ebd1c1bdb9f49277f2
[ "MIT" ]
null
null
null
Labs/lab4/l4e3.py
felixchiasson/ITI1520
4208904bf7576433313524ebd1c1bdb9f49277f2
[ "MIT" ]
null
null
null
#! /usr/bin/env python3 ############################################################################### # File Name : l4e3.py # Created By : Félix Chiasson (7138723) # Creation Date : [2015-10-06 11:43] # Last Modified : [2015-10-06 11:56] # Description : Asks user to guess randomly generated number ############################################################################### from random import randint def devine(reponse): correct = False essai = 0 print("Let's play a game! Devinez un nombre entre 1 et 10.") while not correct: reponse = int(input("Quel est le nombre? ")) if reponse == r: print("Bravo! Vous avez réussi après", essai,"essai(s)") correct = True elif reponse != r and (reponse >= 1 and reponse <= 10): if reponse > r: print("Plus bas!") if reponse < r: print("Plus haut!") essai = essai + 1 else: print("Veuillez entrer un chiffre entre 1 et 10!") r = randint(1, 10) devine(r)
35.8125
79
0.447644
0
0
0
0
0
0
0
0
638
0.555265
a5a4a070bcfd5efb385e2904922ea624312e4682
2,984
py
Python
python/datamongo/text/dmo/text_query_windower.py
jiportilla/ontology
8a66bb7f76f805c64fc76cfc40ab7dfbc1146f40
[ "MIT" ]
null
null
null
python/datamongo/text/dmo/text_query_windower.py
jiportilla/ontology
8a66bb7f76f805c64fc76cfc40ab7dfbc1146f40
[ "MIT" ]
null
null
null
python/datamongo/text/dmo/text_query_windower.py
jiportilla/ontology
8a66bb7f76f805c64fc76cfc40ab7dfbc1146f40
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: UTF-8 -*- import string import pandas as pd from pandas import DataFrame from base import BaseObject class TextQueryWindower(BaseObject): """ Window Text Query Results """ __exclude = set(string.punctuation) def __init__(self, query_results: dict, is_debug: bool = False): """ Created: craig.trim@ibm.com 16-Oct-2019 * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1122#issuecomment-15340437 :param text_parser_results the text parser results :param is_debug: """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._query_results = query_results def _to_text(self): """ Purpose: Transform Query results into pure text :return: return a list of text results only """ values = set() for cnum in self._query_results: [values.add(d['value']) for d in self._query_results[cnum]] return sorted(values) def _tokens(self, term: str, input_text: str) -> list: input_text = input_text.lower().replace('\t', ' ') input_text = ''.join(ch for ch in input_text if ch not in self.__exclude) tokens = input_text.split(' ') tokens = [x.strip() for x in tokens if x and len(x.strip())] tokens = [x.lower() for x in tokens] if ' ' not in term: # return unigrams return tokens if term.count(' ') == 1: # return bigrams s = set() for i in range(0, len(tokens)): if i + 1 < len(tokens): s.add(f"{tokens[i]} {tokens[i + 1]}") return sorted(s) raise NotImplementedError def process(self, term: str, window_size: int = 5) -> DataFrame: """ :param term: :param window_size: :return: """ master = [] term = term.lower().strip() for input_text in self._to_text(): tokens = self._tokens(term, input_text) n = tokens.index(term) def pos_x(): if n - window_size >= 0: return n - window_size return 0 def pos_y(): if n + window_size < len(tokens): return n + window_size return len(tokens) x = pos_x() y = pos_y() def l_context(): return ' '.join(tokens[x:n]).strip() def r_context(): return ' '.join(tokens[n + 1:y]).strip() master.append({ "A": l_context(), "B": tokens[n], "C": r_context()}) return pd.DataFrame(master).sort_values( by=['A'], ascending=False)
25.947826
103
0.499665
2,840
0.951743
0
0
0
0
0
0
703
0.23559
a5a5088a8ab15596ca84187c9c0e0627828850f9
683
py
Python
CondTools/L1Trigger/python/L1ConfigTSCKeys_cff.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
852
2015-01-11T21:03:51.000Z
2022-03-25T21:14:00.000Z
CondTools/L1Trigger/python/L1ConfigTSCKeys_cff.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
30,371
2015-01-02T00:14:40.000Z
2022-03-31T23:26:05.000Z
CondTools/L1Trigger/python/L1ConfigTSCKeys_cff.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
3,240
2015-01-02T05:53:18.000Z
2022-03-31T17:24:21.000Z
from L1TriggerConfig.CSCTFConfigProducers.CSCTFObjectKeysOnline_cfi import * from L1TriggerConfig.DTTrackFinder.L1DTTFTSCObjectKeysOnline_cfi import * from L1TriggerConfig.RPCTriggerConfig.L1RPCObjectKeysOnline_cfi import * from L1TriggerConfig.GMTConfigProducers.L1MuGMTParametersKeysOnlineProd_cfi import * from L1TriggerConfig.L1ScalesProducers.L1MuTriggerScaleKeysOnlineProd_cfi import * L1MuTriggerScaleKeysOnlineProd.subsystemLabel = 'GMTScales' from L1TriggerConfig.RCTConfigProducers.L1RCTObjectKeysOnline_cfi import * from L1TriggerConfig.GctConfigProducers.L1GctTSCObjectKeysOnline_cfi import * from L1TriggerConfig.L1GtConfigProducers.l1GtTscObjectKeysOnline_cfi import *
68.3
84
0.90776
0
0
0
0
0
0
0
0
11
0.016105
a5a553d43dc2a036ccb015ad21d1dcf2af2ae50c
640
py
Python
hackerrank/interview_prep/making_anagrams.py
luojxxx/CodingPractice
bac357aaddbda8e6e73a49c36f2eefd4304b336d
[ "MIT" ]
null
null
null
hackerrank/interview_prep/making_anagrams.py
luojxxx/CodingPractice
bac357aaddbda8e6e73a49c36f2eefd4304b336d
[ "MIT" ]
null
null
null
hackerrank/interview_prep/making_anagrams.py
luojxxx/CodingPractice
bac357aaddbda8e6e73a49c36f2eefd4304b336d
[ "MIT" ]
null
null
null
# https://www.hackerrank.com/challenges/ctci-making-anagrams from collections import Counter def number_needed(a, b): aCounts = Counter(a) bCounts = Counter(b) aSet = set(aCounts) bSet = set(bCounts) similar = aSet.intersection(bSet) differences = aSet.symmetric_difference(bSet) matchingKeysDiff = sum([ abs(aCounts[key] - bCounts[key]) for key in similar ]) differentKeysDiff = 0 for key in differences: if key in aCounts: differentKeysDiff += aCounts[key] if key in bCounts: differentKeysDiff += bCounts[key] return matchingKeysDiff + differentKeysDiff
29.090909
83
0.678125
0
0
0
0
0
0
0
0
60
0.09375
a5a5adab4d37dc9f239bb54f261403d5485bdb40
803
py
Python
DongbinNa/19/pt4.py
wonnerky/coteMaster
360e491e6342c1ee42ff49750b838a2ead865613
[ "Apache-2.0" ]
null
null
null
DongbinNa/19/pt4.py
wonnerky/coteMaster
360e491e6342c1ee42ff49750b838a2ead865613
[ "Apache-2.0" ]
null
null
null
DongbinNa/19/pt4.py
wonnerky/coteMaster
360e491e6342c1ee42ff49750b838a2ead865613
[ "Apache-2.0" ]
null
null
null
n = int(input()) numbers = list(map(int, input().split())) add, sub, mul, div = map(int, input().split()) def dfs(now, i): global max_num, min_num, add, sub, mul, div if i == n: max_num = max(max_num, now) min_num = min(min_num, now) else: if add > 0: add -= 1 dfs(now + numbers[i], i + 1) add += 1 if sub > 0: sub -= 1 dfs(now - numbers[i], i + 1) sub += 1 if mul > 0: mul -= 1 dfs(now * numbers[i], i + 1) mul += 1 if div > 0: div -= 1 dfs(int(now / numbers[i]), i + 1) div += 1 min_num = 1e9 max_num = -1e9 dfs(numbers[0], 1) print(max_num) print(min_num)
22.305556
48
0.414695
0
0
0
0
0
0
0
0
0
0
a5a7f71a8d3d53892df66d8802c0d53865e70be7
497
py
Python
app/store/migrations/0003_auto_20201127_1957.py
Yuehan-Wang/Marvas
d868a152865b9e8308db8d98642016a67b78f31d
[ "MIT" ]
null
null
null
app/store/migrations/0003_auto_20201127_1957.py
Yuehan-Wang/Marvas
d868a152865b9e8308db8d98642016a67b78f31d
[ "MIT" ]
null
null
null
app/store/migrations/0003_auto_20201127_1957.py
Yuehan-Wang/Marvas
d868a152865b9e8308db8d98642016a67b78f31d
[ "MIT" ]
3
2022-01-22T16:14:13.000Z
2022-01-23T18:25:06.000Z
# Generated by Django 2.2 on 2020-11-27 13:57 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('store', '0002_auto_20201127_1945'), ] operations = [ migrations.AlterModelOptions( name='category', options={'verbose_name_plural': 'Categories'}, ), migrations.RenameField( model_name='category', old_name='images', new_name='image', ), ]
21.608696
58
0.573441
414
0.832998
0
0
0
0
0
0
145
0.291751
a5a81b703f6ebb1da895acb3224ef4edc9e40b99
19,141
py
Python
Graded/G3/slam/EKFSLAM.py
chrstrom/TTK4250
f453c3a59597d3fe6cff7d35b790689919798b94
[ "Unlicense" ]
null
null
null
Graded/G3/slam/EKFSLAM.py
chrstrom/TTK4250
f453c3a59597d3fe6cff7d35b790689919798b94
[ "Unlicense" ]
null
null
null
Graded/G3/slam/EKFSLAM.py
chrstrom/TTK4250
f453c3a59597d3fe6cff7d35b790689919798b94
[ "Unlicense" ]
null
null
null
from typing import Tuple import numpy as np from numpy import ndarray from dataclasses import dataclass, field from scipy.linalg import block_diag import scipy.linalg as la from utils import rotmat2d from JCBB import JCBB import utils import solution @dataclass class EKFSLAM: Q: ndarray R: ndarray do_asso: bool alphas: 'ndarray[2]' = field(default=np.array([0.001, 0.0001])) sensor_offset: 'ndarray[2]' = field(default=np.zeros(2)) def f(self, x: np.ndarray, u: np.ndarray) -> np.ndarray: """Add the odometry u to the robot state x. Parameters ---------- x : np.ndarray, shape=(3,) the robot state u : np.ndarray, shape=(3,) the odometry Returns ------- np.ndarray, shape = (3,) the predicted state """ psikm1 = x[2] xk = x[0] + u[0]*np.cos(psikm1) - u[1]*np.sin(psikm1) yk = x[1] + u[0]*np.sin(psikm1) + u[1]*np.cos(psikm1) psik = psikm1 + u[2] xpred = np.array([xk, yk, psik]) return xpred def Fx(self, x: np.ndarray, u: np.ndarray) -> np.ndarray: """Calculate the Jacobian of f with respect to x. Parameters ---------- x : np.ndarray, shape=(3,) the robot state u : np.ndarray, shape=(3,) the odometry Returns ------- np.ndarray The Jacobian of f wrt. x. """ #Fx = solution.EKFSLAM.EKFSLAM.Fx(self, x, u) #return Fx psi = x[2] Fx = np.array([[1, 0, -u[0]*np.sin(psi) - u[1]*np.cos(psi)], [0, 1, u[0]*np.cos(psi) - u[1]*np.sin(psi)], [0, 0, 1]]) return Fx def Fu(self, x: np.ndarray, u: np.ndarray) -> np.ndarray: """Calculate the Jacobian of f with respect to u. Parameters ---------- x : np.ndarray, shape=(3,) the robot state u : np.ndarray, shape=(3,) the odometry Returns ------- np.ndarray The Jacobian of f wrt. u. """ #Fu = solution.EKFSLAM.EKFSLAM.Fu(self, x, u) #return Fu psi = x[2] Fu = np.array([[np.cos(psi), -np.sin(psi), 0], [np.sin(psi), np.cos(psi), 0], [0, 0, 1]]) return Fu def predict( self, eta: np.ndarray, P: np.ndarray, z_odo: np.ndarray ) -> Tuple[np.ndarray, np.ndarray]: """Predict the robot state using the zOdo as odometry the corresponding state&map covariance. Parameters ---------- eta : np.ndarray, shape=(3 + 2*#landmarks,) the robot state and map concatenated P : np.ndarray, shape=(3 + 2*#landmarks,)*2 the covariance of eta z_odo : np.ndarray, shape=(3,) the measured odometry Returns ------- Tuple[np.ndarray, np.ndarray], shapes= (3 + 2*#landmarks,), (3 + 2*#landmarks,)*2 predicted mean and covariance of eta. """ #etapred, P = solution.EKFSLAM.EKFSLAM.predict(self, eta, P, z_odo) #return etapred, P # check inout matrix assert np.allclose(P, P.T), "EKFSLAM.predict: not symmetric P input" assert np.all( np.linalg.eigvals(P) >= 0 ), "EKFSLAM.predict: non-positive eigen values in P input" assert ( eta.shape * 2 == P.shape ), "EKFSLAM.predict: input eta and P shape do not match" etapred = np.empty_like(eta) x = eta[:3] etapred[:3] = self.f(x, z_odo) etapred[3:] = eta[3:] Fx = self.Fx(x, z_odo) Fu = self.Fu(x, z_odo) # evaluate covariance prediction in place to save computation # only robot state changes, so only rows and colums of robot state needs changing # cov matrix layout: # [[P_xx, P_xm], # [P_mx, P_mm]] P[:3, :3] = Fx@P[:3, :3]@Fx.T + Fu@self.Q@Fu.T P[:3, 3:] = Fx@P[:3, 3:] P[3:, :3] = P[:3, 3:].T assert np.allclose(P, P.T), "EKFSLAM.predict: not symmetric P" assert np.all( np.linalg.eigvals(P) > 0 ), "EKFSLAM.predict: non-positive eigen values" assert ( etapred.shape * 2 == P.shape ), "EKFSLAM.predict: calculated shapes does not match" return etapred, P def h(self, eta: np.ndarray) -> np.ndarray: """Predict all the landmark positions in sensor frame. Parameters ---------- eta : np.ndarray, shape=(3 + 2 * #landmarks,) The robot state and landmarks stacked. Returns ------- np.ndarray, shape=(2 * #landmarks,) The landmarks in the sensor frame. """ #zpred = solution.EKFSLAM.EKFSLAM.h(self, eta) #return zpred # extract states and map x = eta[0:3] # reshape map (2, #landmarks), m[:, j] is the jth landmark m = eta[3:].reshape((-1, 2)).T Rot = rotmat2d(-x[2]) # relative position of landmark to sensor on robot in world frame delta_m = (m.T - eta[0:2]).T # predicted measurements in cartesian coordinates, beware sensor offset for VP zpredcart = Rot @ delta_m - self.sensor_offset[:, None] # None as index ads an axis with size 1 at that position. zpred_r = la.norm(zpredcart, 2, axis=0) # ranges zpred_theta = np.arctan2(zpredcart[1,:], zpredcart[0,:]) # bearings zpred = np.vstack((zpred_r, zpred_theta)) # the two arrays above stacked on top of each other vertically like # stack measurements along one dimension, [range1 bearing1 range2 bearing2 ...] zpred = zpred.T.ravel() assert ( zpred.ndim == 1 and zpred.shape[0] == eta.shape[0] - 3 ), "SLAM.h: Wrong shape on zpred" return zpred def h_jac(self, eta: np.ndarray) -> np.ndarray: """Calculate the jacobian of h. Parameters ---------- eta : np.ndarray, shape=(3 + 2 * #landmarks,) The robot state and landmarks stacked. Returns ------- np.ndarray, shape=(2 * #landmarks, 3 + 2 * #landmarks) the jacobian of h wrt. eta. """ # H = solution.EKFSLAM.EKFSLAM.h_jac(self, eta) # return H # extract states and map x = eta[0:3] # reshape map (2, #landmarks), m[j] is the jth landmark m = eta[3:].reshape((-1, 2)).T numM = m.shape[1] Rot = rotmat2d(x[2]) # relative position of landmark to robot in world frame. m - rho that appears in (11.15) and (11.16) delta_m = (m.T - eta[0:2]).T # (2, #measurements), each measured position in cartesian coordinates like zc = delta_m - Rot @ self.sensor_offset[:, None] zr = la.norm(zc, 2, axis=0) # ranges Rpihalf = rotmat2d(np.pi / 2) # In what follows you can be clever and avoid making this for all the landmarks you _know_ # you will not detect (the maximum range should be available from the data). # But keep it simple to begin with. # Allocate H and set submatrices as memory views into H # You may or may not want to do this like this # see eq (11.15), (11.16), (11.17) H = np.zeros((2 * numM, 3 + 2 * numM)) Hx = H[:, :3] # slice view, setting elements of Hx will set H as well Hm = H[:, 3:] # slice view, setting elements of Hm will set H as well # proposed way is to go through landmarks one by one # preallocate and update this for some speed gain if looping jac_z_cb = -np.eye(2, 3) for i in range(numM): # But this whole loop can be vectorized ind = 2 * i # starting postion of the ith landmark into H # the inds slice for the ith landmark into H inds = slice(ind, ind + 2) jac_z_cb[:,2] = -Rpihalf@delta_m[:,i] jac_x_range = zc[:,i].T / zr[i] jac_x_bearing = zc[:,i].T @ Rpihalf.T / zr[i]**2 Hx[ind,:] = jac_x_range @ jac_z_cb Hx[ind+1,:] = jac_x_bearing @ jac_z_cb Hm[ind,inds] = jac_x_range Hm[ind+1,inds] = jac_x_bearing # You can set some assertions here to make sure that some of the structure in H is correct # Don't mind if I don't :) return H def add_landmarks( self, eta: np.ndarray, P: np.ndarray, z: np.ndarray ) -> Tuple[np.ndarray, np.ndarray]: """Calculate new landmarks, their covariances and add them to the state. Parameters ---------- eta : np.ndarray, shape=(3 + 2*#landmarks,) the robot state and map concatenated P : np.ndarray, shape=(3 + 2*#landmarks,)*2 the covariance of eta z : np.ndarray, shape(2 * #newlandmarks,) A set of measurements to create landmarks for Returns ------- Tuple[np.ndarray, np.ndarray], shapes=(3 + 2*(#landmarks + #newlandmarks,), (3 + 2*(#landmarks + #newlandmarks,)*2 eta with new landmarks appended, and its covariance """ # etaadded, Padded = solution.EKFSLAM.EKFSLAM.add_landmarks( # self, eta, P, z) # return etaadded, Padded n = P.shape[0] assert z.ndim == 1, "SLAM.add_landmarks: z must be a 1d array" numLmk = z.shape[0] // 2 lmnew = np.empty_like(z) Gx = np.empty((numLmk * 2, 3)) Rall = np.zeros((numLmk * 2, numLmk * 2)) I2 = np.eye(2) # Preallocate, used for Gx Rnb = rotmat2d(eta[2]) sensor_offset_world = Rnb @ self.sensor_offset + eta[:2] sensor_offset_world_der = rotmat2d( eta[2] + np.pi / 2) @ self.sensor_offset # Used in Gx for j in range(numLmk): ind = 2 * j inds = slice(ind, ind + 2) zj = z[inds] ang = zj[1] + eta[2] rot = rotmat2d(ang) # rotmat in Gz # calculate position of new landmark in world frame lmnew[inds] = Rnb @ (zj[0] * np.array([np.cos(zj[1]), np.sin(zj[1])])) + sensor_offset_world Gx[inds, :2] = I2 Gx[inds, 2] = zj[0] * np.array([-np.sin(ang), np.cos(ang)]) + sensor_offset_world_der Gz = rot @ np.diag([1, zj[0]]) # Gz * R * Gz^T, transform measurement covariance from polar to cartesian coordinates Rall[inds, inds] = Gz @ self.R @ Gz.T assert len(lmnew) % 2 == 0, "SLAM.add_landmark: lmnew not even length" etaadded = np.append(eta, lmnew) # append new landmarks to state vector # block diagonal of P_new, see problem text in 1g) in graded assignment 3 Padded = block_diag(P, Gx@P[:3,:3]@Gx.T + Rall) Padded[:n, n:] = P[:, :3]@Gx.T # top right corner of Padded Padded[n:, :n] = Padded[:n, n:].T # botton left corner of Padded assert ( etaadded.shape * 2 == Padded.shape ), "EKFSLAM.add_landmarks: calculated eta and P has wrong shape" assert np.allclose( Padded, Padded.T ), "EKFSLAM.add_landmarks: Padded not symmetric" assert np.all( np.linalg.eigvals(Padded) >= 0 ), "EKFSLAM.add_landmarks: Padded not PSD" return etaadded, Padded def associate( self, z: np.ndarray, zpred: np.ndarray, H: np.ndarray, S: np.ndarray, ): # -> Tuple[*((np.ndarray,) * 5)]: """Associate landmarks and measurements, and extract correct matrices for these. Parameters ---------- z : np.ndarray, The measurements all in one vector zpred : np.ndarray Predicted measurements in one vector H : np.ndarray The measurement Jacobian matrix related to zpred S : np.ndarray The innovation covariance related to zpred Returns ------- Tuple[*((np.ndarray,) * 5)] The extracted measurements, the corresponding zpred, H, S and the associations. Note ---- See the associations are calculated using JCBB. See this function for documentation of the returned association and the association procedure. """ if self.do_asso: # Associate a = JCBB(z, zpred, S, self.alphas[0], self.alphas[1]) # Extract associated measurements zinds = np.empty_like(z, dtype=bool) zinds[::2] = a > -1 # -1 means no association zinds[1::2] = zinds[::2] zass = z[zinds] # extract and rearange predicted measurements and cov zbarinds = np.empty_like(zass, dtype=int) zbarinds[::2] = 2 * a[a > -1] zbarinds[1::2] = 2 * a[a > -1] + 1 zpredass = zpred[zbarinds] Sass = S[zbarinds][:, zbarinds] Hass = H[zbarinds] assert zpredass.shape == zass.shape assert Sass.shape == zpredass.shape * 2 assert Hass.shape[0] == zpredass.shape[0] return zass, zpredass, Hass, Sass, a else: # should one do something her pass def update( self, eta: np.ndarray, P: np.ndarray, z: np.ndarray ) -> Tuple[np.ndarray, np.ndarray, float, np.ndarray]: """Update eta and P with z, associating landmarks and adding new ones. Parameters ---------- eta : np.ndarray [description] P : np.ndarray [description] z : np.ndarray, shape=(#detections, 2) [description] Returns ------- Tuple[np.ndarray, np.ndarray, float, np.ndarray] [description] """ # etaupd, Pupd, NIS, a = solution.EKFSLAM.EKFSLAM.update(self, eta, P, z) #return etaupd, Pupd, NIS, a numLmk = (eta.size - 3) // 2 assert (len(eta) - 3) % 2 == 0, "EKFSLAM.update: landmark lenght not even" if numLmk > 0: # Prediction and innovation covariance zpred = self.h(eta) H = self.h_jac(eta) # Here you can use simply np.kron (a bit slow) to form the big (very big in VP after a while) R, # or be smart with indexing and broadcasting (3d indexing into 2d mat) realizing you are adding the same R on all diagonals S = H@P@H.T + np.kron(np.eye(numLmk), self.R) assert ( S.shape == zpred.shape * 2 ), "EKFSLAM.update: wrong shape on either S or zpred" z = z.ravel() # 2D -> flat # Perform data association za, zpred, Ha, Sa, a = self.associate(z, zpred, H, S) # No association could be made, so skip update if za.shape[0] == 0: etaupd = eta Pupd = P NIS = 1 # TODO: beware this one when analysing consistency. else: # Create the associated innovation v = za.ravel() - zpred # za: 2D -> flat v[1::2] = utils.wrapToPi(v[1::2]) # Kalman mean update S_cho_factors = la.cho_factor(Sa) # Optional, used in places for S^-1, see scipy.linalg.cho_factor and scipy.linalg.cho_solve Sa_inv = la.cho_solve(S_cho_factors, np.eye(Sa.shape[0])) W = P@Ha.T@Sa_inv etaupd = eta + W@v # Kalman cov update: use Joseph form for stability jo = -W @ Ha # same as adding Identity mat jo[np.diag_indices(jo.shape[0])] += 1 Pupd = jo@P@jo.T + W@np.kron(np.eye(int(len(zpred)/2)), self.R)@W.T # calculate NIS, can use S_cho_factors NIS = v.T@Sa_inv@v # When tested, remove for speed assert np.allclose( Pupd, Pupd.T), "EKFSLAM.update: Pupd not symmetric" assert np.all( np.linalg.eigvals(Pupd) > 0 ), "EKFSLAM.update: Pupd not positive definite" else: # All measurements are new landmarks, a = np.full(z.shape[0], -1) z = z.flatten() NIS = 1 # TODO: beware this one when analysing consistency. etaupd = eta Pupd = P # Create new landmarks if any is available if self.do_asso: is_new_lmk = a == -1 if np.any(is_new_lmk): z_new_inds = np.empty_like(z, dtype=bool) z_new_inds[::2] = is_new_lmk z_new_inds[1::2] = is_new_lmk z_new = z[z_new_inds] etaupd, Pupd = self.add_landmarks(etaupd, Pupd, z_new) assert np.allclose( Pupd, Pupd.T), "EKFSLAM.update: Pupd must be symmetric" assert np.all(np.linalg.eigvals(Pupd) >= 0), "EKFSLAM.update: Pupd must be PSD" return etaupd, Pupd, NIS, a @classmethod def NEESes(cls, x: np.ndarray, P: np.ndarray, x_gt: np.ndarray,) -> np.ndarray: """Calculates the total NEES and the NEES for the substates Args: x (np.ndarray): The estimate P (np.ndarray): The state covariance x_gt (np.ndarray): The ground truth Raises: AssertionError: If any input is of the wrong shape, and if debug mode is on, certain numeric properties Returns: np.ndarray: NEES for [all, position, heading], shape (3,) """ assert x.shape == (3,), f"EKFSLAM.NEES: x shape incorrect {x.shape}" assert P.shape == (3, 3), f"EKFSLAM.NEES: P shape incorrect {P.shape}" assert x_gt.shape == ( 3,), f"EKFSLAM.NEES: x_gt shape incorrect {x_gt.shape}" d_x = x - x_gt d_x[2] = utils.wrapToPi(d_x[2]) assert ( -np.pi <= d_x[2] <= np.pi ), "EKFSLAM.NEES: error heading must be between (-pi, pi)" d_p = d_x[0:2] P_p = P[0:2, 0:2] assert d_p.shape == (2,), "EKFSLAM.NEES: d_p must be 2 long" d_heading = d_x[2] # Note: scalar assert np.ndim( d_heading) == 0, "EKFSLAM.NEES: d_heading must be scalar" P_heading = P[2, 2] # Note: scalar assert np.ndim( P_heading) == 0, "EKFSLAM.NEES: P_heading must be scalar" # NB: Needs to handle both vectors and scalars! Additionally, must handle division by zero NEES_all = d_x @ (np.linalg.solve(P, d_x)) NEES_pos = d_p @ (np.linalg.solve(P_p, d_p)) try: NEES_heading = d_heading ** 2 / P_heading except ZeroDivisionError: NEES_heading = 1.0 # TODO: beware NEESes = np.array([NEES_all, NEES_pos, NEES_heading]) NEESes[np.isnan(NEESes)] = 1.0 # We may divide by zero, # TODO: beware assert np.all(NEESes >= 0), "ESKF.NEES: one or more negative NEESes" return NEESes
35.77757
141
0.539575
18,876
0.986155
0
0
18,887
0.98673
0
0
9,389
0.490518
a5a924ddb3332cd660e8de578d9b220740f27184
3,185
py
Python
pykob/audio.py
Greg-R/PyKOB
fd3c7ca352f900bd14bb10dc71d567221a8af8cf
[ "MIT" ]
3
2020-06-29T19:59:39.000Z
2021-02-08T19:56:32.000Z
pykob/audio.py
Greg-R/PyKOB
fd3c7ca352f900bd14bb10dc71d567221a8af8cf
[ "MIT" ]
197
2020-04-30T08:08:52.000Z
2021-03-22T19:10:20.000Z
pykob/audio.py
MorseKOB/pykob-4
bf86917e4e06ce9590f414ace0eacbde08416137
[ "MIT" ]
2
2021-04-17T01:05:24.000Z
2021-11-03T16:43:53.000Z
""" MIT License Copyright (c) 2020 PyKOB - MorseKOB in Python Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ """ audio module Provides audio for simulated sounder. """ import wave from pathlib import Path from pykob import log try: import pyaudio ok = True except: log.log('PyAudio not installed.') ok = False BUFFERSIZE = 16 nFrames = [0, 0] frames = [None, None] nullFrames = None iFrame = [0, 0] sound = 0 if ok: pa = pyaudio.PyAudio() # Resource folder root_folder = Path(__file__).parent resource_folder = root_folder / "resources" # Audio files audio_files = ['clack48.wav', 'click48.wav'] for i in range(len(audio_files)): fn = resource_folder / audio_files[i] # print("Load audio file:", fn) f = wave.open(str(fn), mode='rb') nChannels = f.getnchannels() sampleWidth = f.getsampwidth() sampleFormat = pa.get_format_from_width(sampleWidth) frameWidth = nChannels * sampleWidth frameRate = f.getframerate() nFrames[i] = f.getnframes() frames[i] = f.readframes(nFrames[i]) iFrame[i] = nFrames[i] f.close() nullFrames = bytes(frameWidth*BUFFERSIZE) def play(snd): global sound sound = snd iFrame[sound] = 0 def callback(in_data, frame_count, time_info, status_flags): if frame_count != BUFFERSIZE: log.err('Unexpected frame count request from PyAudio:', frame_count) if iFrame[sound] + frame_count < nFrames[sound]: startByte = iFrame[sound] * frameWidth endByte = (iFrame[sound] + frame_count) * frameWidth outData = frames[sound][startByte:endByte] iFrame[sound] += frame_count return (outData, pyaudio.paContinue) else: return(nullFrames, pyaudio.paContinue) if ok: apiInfo = pa.get_default_host_api_info() apiName = apiInfo['name'] devIdx = apiInfo['defaultOutputDevice'] devInfo = pa.get_device_info_by_index(devIdx) devName = devInfo['name'] strm = pa.open(rate=frameRate, channels=nChannels, format=sampleFormat, output=True, output_device_index=devIdx, frames_per_buffer=BUFFERSIZE, stream_callback=callback)
32.5
82
0.706122
0
0
0
0
0
0
0
0
1,354
0.425118
a5a96f07f26b02ec492974bd34c7406e72ba2e22
3,333
py
Python
main.py
DaKidReturns/WikipediaScrapper
288b0bc3e882ff4ccb45dbdc021eabbc25cc19d0
[ "MIT" ]
null
null
null
main.py
DaKidReturns/WikipediaScrapper
288b0bc3e882ff4ccb45dbdc021eabbc25cc19d0
[ "MIT" ]
null
null
null
main.py
DaKidReturns/WikipediaScrapper
288b0bc3e882ff4ccb45dbdc021eabbc25cc19d0
[ "MIT" ]
null
null
null
import requests from bs4 import BeautifulSoup as bs4 from docx import Document as doc from docx.shared import Cm import sys if len(sys.argv) != 3: print("The format should be \n./main.py <url> <output_file_name>") else: url = sys.argv[1] doc_name = sys.argv[2] document = doc() page = requests.get(url) if(page.status_code == requests.codes.ok): soup = bs4(page.content,'html.parser') headings = soup.find_all("h1",class_="firstHeading") document.add_heading(headings[0].text) details = soup.find("div",id="bodyContent") main_soup = bs4(details.prettify(),'html.parser') #Extract the table elements to be implemented in the future table = main_soup.find('table').extract() #isEmpty is the lambda function that checks if a list is empty isEmpty = lambda x: True if(x == []) else False #tableElem = ('table','td','tr') for x in details.children: if x != '\n' and x !='' and x != ' ': if(not isEmpty(list(x.children))): for i in list(x.children): # print(i.string) if i.string == None: #print(len(list(i.children))) for j in i.children: #print(j.name) if j.string == None: #print(j.attrs) if(j.name == 'table' or j.name == 'ol' or j.name == 'ul'): #print(j.attrs) continue #j = j.next_sibling.next_sibling #search and purge references if list(j.descendants) != []: #print(list(j.descendants)) for a in j.descendants: if a.string == None: attr = a.attrs.keys() #print(a.attrs) if 'class' in attr: if 'mw-references-wrap' in a.attrs['class']: #print(a.text) a.decompose() break #if 'href' in attr: #if '#References' in a.attrs['href']: #a.decompose() #print the elements document.add_paragraph(j.text) #print(j.prettify()) #print('\n') if doc_name.endswith('.doc') or doc_name.endswith('.docx'): document.save(doc_name) else: document.save(doc_name+'.doc')
42.189873
96
0.370237
0
0
0
0
0
0
0
0
685
0.205521
a5a9f77ca2671875a0d1fe9de7b77aefb68618a3
583
py
Python
math/count_digits.py
ethyl2/code_challenges
3c9ccca1782f92728e60a515a7ca797f6d470e81
[ "MIT" ]
null
null
null
math/count_digits.py
ethyl2/code_challenges
3c9ccca1782f92728e60a515a7ca797f6d470e81
[ "MIT" ]
null
null
null
math/count_digits.py
ethyl2/code_challenges
3c9ccca1782f92728e60a515a7ca797f6d470e81
[ "MIT" ]
null
null
null
""" https://www.codewars.com/kata/566fc12495810954b1000030/train/python Given an pos int n, and a digit that is < 10, d. Square all ints from 0 - n, and return the number times d is used in the squared results. """ def nb_dig(n, d): ''' results = '' for i in range(n+1): results += str(i * i) return results.count(str(d)) ''' return ''.join([str(i * i) for i in range(n + 1)]).count(str(d)) print(nb_dig(10, 1)) # 4 print(nb_dig(5750, 0)) # 4700 print(nb_dig(11011, 2)) # 9481 print(nb_dig(12224, 8)) # 7733 print(nb_dig(11549, 1)) # 11905
23.32
89
0.61578
0
0
0
0
0
0
0
0
362
0.620926
a5ac9cd651f965f113812d5a35b9a777736d390b
3,492
py
Python
{{ cookiecutter.project_slug }}/{{ cookiecutter.package_name }}/strategies/resource.py
EMMC-ASBL/oteapi-plugin-template
31a772a4fb9be6eafabfa206fe6e7a23516bf188
[ "MIT" ]
null
null
null
{{ cookiecutter.project_slug }}/{{ cookiecutter.package_name }}/strategies/resource.py
EMMC-ASBL/oteapi-plugin-template
31a772a4fb9be6eafabfa206fe6e7a23516bf188
[ "MIT" ]
35
2022-01-17T10:23:01.000Z
2022-03-11T19:41:36.000Z
{{ cookiecutter.project_slug }}/{{ cookiecutter.package_name }}/strategies/resource.py
EMMC-ASBL/oteapi-plugin-template
31a772a4fb9be6eafabfa206fe6e7a23516bf188
[ "MIT" ]
2
2022-01-20T06:45:27.000Z
2022-02-09T15:59:21.000Z
"""Demo resource strategy class.""" # pylint: disable=no-self-use,unused-argument from typing import TYPE_CHECKING, Optional from oteapi.models import AttrDict, DataCacheConfig, ResourceConfig, SessionUpdate from oteapi.plugins import create_strategy from pydantic import Field from pydantic.dataclasses import dataclass if TYPE_CHECKING: # pragma: no cover from typing import Any, Dict class DemoConfig(AttrDict): """Strategy-specific Configuration Data Model.""" datacache_config: Optional[DataCacheConfig] = Field( None, description="Configuration for the data cache.", ) class DemoResourceConfig(ResourceConfig): """Demo resource strategy config.""" # Require the resource to be a REST API with JSON responses that uses the # DemoJSONDataParseStrategy strategy. mediaType: str = Field( "application/jsonDEMO", const=True, description=ResourceConfig.__fields__["mediaType"].field_info.description, ) accessService: str = Field( "DEMO-access-service", const=True, description=ResourceConfig.__fields__["accessService"].field_info.description, ) configuration: DemoConfig = Field( DemoConfig(), description="Demo resource strategy-specific configuration.", ) class SessionUpdateDemoResource(SessionUpdate): """Class for returning values from Demo Resource strategy.""" output: dict = Field( ..., description=( "The output from downloading the response from the given `accessUrl`." ), ) @dataclass class DemoResourceStrategy: """Resource Strategy. **Registers strategies**: - `("accessService", "DEMO-access-service")` """ resource_config: DemoResourceConfig def initialize(self, session: "Optional[Dict[str, Any]]" = None) -> SessionUpdate: """Initialize strategy. This method will be called through the `/initialize` endpoint of the OTEAPI Services. Parameters: session: A session-specific dictionary context. Returns: An update model of key/value-pairs to be stored in the session-specific context from services. """ return SessionUpdate() def get( self, session: "Optional[Dict[str, Any]]" = None ) -> SessionUpdateDemoResource: """Execute the strategy. This method will be called through the strategy-specific endpoint of the OTEAPI Services. Parameters: session: A session-specific dictionary context. Returns: An update model of key/value-pairs to be stored in the session-specific context from services. """ # Example of the plugin using a parse strategy to (fetch) and parse the data session = session if session else {} parse_config = self.resource_config.copy() if not parse_config.downloadUrl: parse_config.downloadUrl = self.resource_config.accessUrl session.update(create_strategy("parse", parse_config).initialize(session)) session.update(create_strategy("parse", parse_config).get(session)) if "content" not in session: raise ValueError( f"Expected the parse strategy for {self.resource_config.mediaType!r} " "to return a session with a 'content' key." ) return SessionUpdateDemoResource(output=session["content"])
29.846154
86
0.665521
3,075
0.880584
0
0
1,909
0.546678
0
0
1,679
0.480813
a5ad0bf99db5282a28fe82ac56a8026546459cf4
1,480
py
Python
unittests/TestSets.py
vtbassmatt/Scrython
49fd9bd112e0f552a4310ac81fdb3f2b9e2a3976
[ "MIT" ]
null
null
null
unittests/TestSets.py
vtbassmatt/Scrython
49fd9bd112e0f552a4310ac81fdb3f2b9e2a3976
[ "MIT" ]
null
null
null
unittests/TestSets.py
vtbassmatt/Scrython
49fd9bd112e0f552a4310ac81fdb3f2b9e2a3976
[ "MIT" ]
null
null
null
# This workaround makes sure that we can import from the parent dir import sys sys.path.append('..') from scrython.sets import Code import unittest import time promo_khans = Code('PKTK') khans = Code('KTK') class TestSets(unittest.TestCase): def test_object(self): self.assertIsInstance(khans.object(), str) def test_code(self): self.assertIsInstance(khans.code(), str) def test_mtgo_code(self): self.assertIsInstance(khans.mtgo_code(), str) def test_name(self): self.assertIsInstance(khans.name(), str) def test_set_type(self): self.assertIsInstance(khans.set_type(), str) def test_released_at(self): self.assertIsInstance(khans.released_at(), str) def test_block_code(self): self.assertIsInstance(khans.block_code(), str) def test_block(self): self.assertIsInstance(khans.block(), str) def test_parent_set_code(self): self.assertIsInstance(promo_khans.parent_set_code(), str) def test_card_count(self): self.assertIsInstance(khans.card_count(), int) def test_digital(self): self.assertIsInstance(khans.digital(), bool) def test_foil_only(self): self.assertIsInstance(khans.foil_only(), bool) def test_icon_svg_uri(self): self.assertIsInstance(khans.icon_svg_uri(), str) def test_search_uri(self): self.assertIsInstance(khans.search_uri(), str) if __name__ == '__main__': unittest.main()
25.084746
67
0.691892
1,220
0.824324
0
0
0
0
0
0
92
0.062162
a5ad538fb112ec421c158be3cf3243f38640e710
194
py
Python
GUI/check_email.py
BrendanCheong/BT2102-OSHES-Group16
2b62772e6c654b8d4e76f09df6473ac88912df28
[ "MIT" ]
5
2021-09-11T15:07:34.000Z
2021-09-11T15:16:04.000Z
GUI/check_email.py
BrendanCheong/Online-Smart-Home-Ecommerce-System
2b62772e6c654b8d4e76f09df6473ac88912df28
[ "MIT" ]
1
2021-09-18T10:33:00.000Z
2021-09-18T10:34:01.000Z
GUI/check_email.py
BrendanCheong/BT2102-OSHES-Group16
2b62772e6c654b8d4e76f09df6473ac88912df28
[ "MIT" ]
null
null
null
import re def check(email): regex = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b' if (re.fullmatch(regex, email)): return True else: return False
19.4
67
0.489691
0
0
0
0
0
0
0
0
54
0.278351
a5aea13c60563cdbc4bc77d66b48baaf6efb6ec5
1,587
py
Python
SimpleEmailer.py
dschoonwinkel/InverterMQTT
75f13900f584d9905a02488eff7bd1dd3e53e73a
[ "Apache-2.0" ]
null
null
null
SimpleEmailer.py
dschoonwinkel/InverterMQTT
75f13900f584d9905a02488eff7bd1dd3e53e73a
[ "Apache-2.0" ]
null
null
null
SimpleEmailer.py
dschoonwinkel/InverterMQTT
75f13900f584d9905a02488eff7bd1dd3e53e73a
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 import smtplib import time import configparser config = configparser.ConfigParser() config.read('/home/pi/Development/Python/InverterMQTT/emailcredentials.conf') email = config['credentials']['email'] password = config['credentials']['password'] to_email = config['credentials']['to_email'] # # Based on tutorial: https://www.bc-robotics.com/tutorials/sending-email-using-python-raspberry-pi/ #Email Variables SMTP_SERVER = 'smtp.gmail.com' #Email Server (don't change!) SMTP_PORT = 587 #Server Port (don't change!) GMAIL_USERNAME = email #change this to match your gmail account GMAIL_PASSWORD = password #change this to match your gmail password class Emailer: def sendmail(self, subject, content, recipient=to_email): #Create Headers headers = ["From: " + GMAIL_USERNAME, "Subject: " + subject, "To: " + recipient, "MIME-Version: 1.0", "Content-Type: text/html"] headers = "\r\n".join(headers) #Connect to Gmail Server session = smtplib.SMTP(SMTP_SERVER, SMTP_PORT) session.ehlo() session.starttls() session.ehlo() #Login to Gmail session.login(GMAIL_USERNAME, GMAIL_PASSWORD) #Send Email & Exit session.sendmail(GMAIL_USERNAME, recipient, headers + "\r\n\r\n" + content) session.quit def main(): sender = Emailer() emailSubject = "Hello World!" emailContent = "This is a test of my emailer class on Linux" sender.sendmail(emailSubject, emailContent) if __name__ == '__main__': main()
29.943396
99
0.674228
682
0.429742
0
0
0
0
0
0
649
0.408948
a5b066bc7defe004716762bdcddd92dae0d3fd15
876
py
Python
BaseKnowledge/file/file.py
Kose-i/python_test
d7b031aa33d699aeb9fe196fe0a6d216aa006f0d
[ "Unlicense" ]
null
null
null
BaseKnowledge/file/file.py
Kose-i/python_test
d7b031aa33d699aeb9fe196fe0a6d216aa006f0d
[ "Unlicense" ]
null
null
null
BaseKnowledge/file/file.py
Kose-i/python_test
d7b031aa33d699aeb9fe196fe0a6d216aa006f0d
[ "Unlicense" ]
null
null
null
#! /usr/bin/env python3 def func1(): f = open("test.txt", 'w') f.write("This is test") f.close() def func2(): with open("test.txt", 'r') as f: print(f.read()) import codecs def func3(): f = codecs.open("test.txt", 'w', 'utf-8', 'ignore') f.write("test func3") f.close() import os.path def func4(): path = "tmp/tmp-1/tmp.txt" print(os.path.split(path)) import shutil def func5(): shutil.copyfile("test.txt", "test2.txt") import glob def func6(): print(glob.glob('*')) import tempfile def func7(): tmpfd, tmpname = tempfile.mkstemp(dir='.') print(tmpname) f = os.fdopen(tmpfd, 'w+b') f.close() if __name__=='__main__': print("\nfunc1()") func1() print("\nfunc2()") func2() print("\nfunc3()") func3() print("\nfunc4()") func4() print("\nfunc5()") func5() print("\nfunc6()") func6() print("\nfunc7()") func7()
16.528302
53
0.592466
0
0
0
0
0
0
0
0
241
0.275114
a5b2bd395585d35f2949dc453f6442697664d6bf
202
py
Python
types/msg.py
UltiRequiem/professional-phython-platzi
0bf8f97b172d0799d6906193090ef69beb1c8b4b
[ "MIT" ]
4
2021-08-02T21:34:46.000Z
2021-09-24T03:26:35.000Z
types/msg.py
UltiRequiem/professional-phython-platzi
0bf8f97b172d0799d6906193090ef69beb1c8b4b
[ "MIT" ]
null
null
null
types/msg.py
UltiRequiem/professional-phython-platzi
0bf8f97b172d0799d6906193090ef69beb1c8b4b
[ "MIT" ]
4
2021-08-02T21:34:47.000Z
2021-08-11T03:21:37.000Z
def run(msg: str) -> None: """ Print the message received parameters. """ print(msg) if __name__ == "__main__": message: str = "Zero commands Python to be typed!" run(message)
18.363636
54
0.60396
0
0
0
0
0
0
0
0
99
0.490099
a5b4efb9c597491e24e7c42cb5dac380b74e6e91
702
py
Python
apps/billing/tasks.py
banyanbbt/banyan_data
4ce87dc1c49920d587a472b70842fcf5b3d9a3d2
[ "MIT" ]
2
2018-09-08T05:16:39.000Z
2018-09-10T02:50:31.000Z
apps/billing/tasks.py
banyanbbt/banyan_data
4ce87dc1c49920d587a472b70842fcf5b3d9a3d2
[ "MIT" ]
null
null
null
apps/billing/tasks.py
banyanbbt/banyan_data
4ce87dc1c49920d587a472b70842fcf5b3d9a3d2
[ "MIT" ]
null
null
null
import logging from config.celery_configs import app from lib.sms import client as sms_client from lib.blockchain.pandora import Pandora from apps.user.models import UserProfile logger = logging.getLogger(__name__) @app.task def sync_monthly_billing(): logger.info("start sync_monthly_billing") accounts = UserProfile.company_accounts() for account in accounts: Pandora.monthly_bill(account) logger.info("end sync_monthly_billing") @app.task def sync_weekly_billing(): logger.info("start sync_weekly_billing") accounts = UserProfile.company_accounts() for account in accounts: Pandora.weekly_bill(account) logger.info("end sync_weekly_billing")
23.4
45
0.763533
0
0
0
0
476
0.678063
0
0
106
0.150997
a5b6d5ce0ce97c7ff9249912738d183eb9ca560c
449
py
Python
LBP51.py
Anandgowda18/LogicBasedPrograms
25baa9fbf19cd45229c87e099877e97281b0e76b
[ "MIT" ]
null
null
null
LBP51.py
Anandgowda18/LogicBasedPrograms
25baa9fbf19cd45229c87e099877e97281b0e76b
[ "MIT" ]
null
null
null
LBP51.py
Anandgowda18/LogicBasedPrograms
25baa9fbf19cd45229c87e099877e97281b0e76b
[ "MIT" ]
null
null
null
'''Given a valid IP address, return a defanged version of that IP address. A defanged IP address replaces every period '.' with "[.]". Input Format A string Constraints non-empty String Output Format replacement String Sample Input 0 1.1.1.1 Sample Output 0 1[.]1[.]1[.]1 Sample Input 1 255.100.50.0 Sample Output 1 255[.]100[.]50[.]0 Sample Input 2 1.2.3.4 Sample Output 2 1[.]2[.]3[.]4''' #solution print(input().replace('.','[.]'))
12.472222
134
0.67706
0
0
0
0
0
0
0
0
420
0.935412
a5b824b421e3455471988b500baaf9d0bcd0357a
4,981
py
Python
website/urls.py
pomo-mondreganto/CTForces-old
86758192f800108ff109f07fe155d5a98b4a3e14
[ "MIT" ]
null
null
null
website/urls.py
pomo-mondreganto/CTForces-old
86758192f800108ff109f07fe155d5a98b4a3e14
[ "MIT" ]
6
2021-10-01T14:18:34.000Z
2021-10-01T14:19:17.000Z
website/urls.py
pomo-mondreganto/CTForces-old
86758192f800108ff109f07fe155d5a98b4a3e14
[ "MIT" ]
null
null
null
from django.conf import settings from django.urls import path, re_path from django.views.static import serve from .views import * urlpatterns = [ re_path('^$', MainView.as_view(), name='main_view'), path('page/<int:page>/', MainView.as_view(), name='main_view_with_page'), re_path('^signup/$', UserRegistrationView.as_view(), name='signup'), re_path('^signin/$', UserLoginView.as_view(), name='signin'), re_path('^logout/$', logout_user, name='logout'), path('user/<str:username>/', UserInformationView.as_view(), name='user_info'), re_path('^settings/general/$', SettingsGeneralView.as_view(), name='settings_general_view'), re_path('^settings/social/$', SettingsSocialView.as_view(), name='settings_social_view'), re_path('^friends/$', FriendsView.as_view(), name='friends_view'), path('friends/page/<int:page>/', FriendsView.as_view(), name='friends_view_with_page'), re_path('^search_users/$', search_users, name='user_search'), path('user/<str:username>/blog/', UserBlogView.as_view(), name='user_blog_view'), path('user/<str:username>/blog/page/<int:page>/', UserBlogView.as_view(), name='user_blog_view_with_page'), path('user/<str:username>/tasks/', UserTasksView.as_view(), name='user_tasks_view'), path('user/<str:username>/tasks/page/<int:page>/', UserTasksView.as_view(), name='user_tasks_view_with_page'), path('user/<str:username>/contests/', UserContestListView.as_view(), name='user_contests_view'), path('user/<str:username>/contests/page/<int:page>/', UserContestListView.as_view(), name='user_contests_view_with_page'), path('user/<str:username>/solved_tasks/', UserSolvedTasksView.as_view(), name='user_solved_tasks_view'), path('user/<str:username>/solved_tasks/page/<int:page>/', UserSolvedTasksView.as_view(), name='user_solved_tasks_view_with_page'), path('top_users/', UserTopView.as_view(), name='users_top_view'), path('top_users/page/<int:page>/', UserTopView.as_view(), name='users_top_view_with_page'), path('top_rating_users/', UserRatingTopView.as_view(), name='users_rating_top_view'), path('top_rating_users/page/<int:page>/', UserRatingTopView.as_view(), name='users_rating_top_view_with_page'), path('top_rating_users_by_group/', UserByGroupRatingTopView.as_view(), name='users_by_group_rating_top_view'), path('top_rating_users_by_group/page/<int:page>/', UserByGroupRatingTopView.as_view(), name='users_by_group_rating_top_view_with_page'), re_path('^add_post/$', PostCreationView.as_view(), name='post_creation_view'), path('post/<int:post_id>/', PostView.as_view(), name='post_view'), re_path('^leave_comment/$', leave_comment, name='leave_comment'), re_path('^media/(?P<path>.*)$', serve, { 'document_root': settings.MEDIA_ROOT, }), path('task/<int:task_id>/', TaskView.as_view(), name='task_view'), path('task/<int:task_id>/edit/', TaskEditView.as_view(), name='task_edit_view'), path('task/<int:task_id>/submit/', submit_task, name='task_submit'), path('task/<int:task_id>/solved/', TaskSolvedView.as_view(), name='task_solved_view'), path('task/<int:task_id>/solved/page/<int:page>/', TaskSolvedView.as_view(), name='task_solved_view_with_page'), re_path('^create_task/$', TaskCreationView.as_view(), name='task_creation_view'), re_path('^tasks/$', TasksArchiveView.as_view(), name='task_archive_view'), path('tasks/page/<int:page>/', TasksArchiveView.as_view(), name='task_archive_view_with_page'), re_path('^confirm_email/$', account_confirmation, name='confirm_account'), re_path('^resend_email/$', EmailResendView.as_view(), name='resend_email_view'), re_path('^password_reset_email/$', PasswordResetEmailView.as_view(), name='password_reset_email'), re_path('^reset_password/$', PasswordResetPasswordView.as_view(), name='password_reset_password'), re_path('^search_tags/$', search_tags, name='search_tags'), re_path('^get_task/$', get_task, name='get_task_by_id'), re_path('^create_contest/$', ContestCreationView.as_view(), name='create_contest'), path('contests/', ContestsMainListView.as_view(), name='contests_main_list_view'), path('contests/page/<int:page>/', ContestsMainListView.as_view(), name='contests_main_list_view_with_page'), path('contest/<int:contest_id>/', ContestMainView.as_view(), name='contest_view'), path('contest/<int:contest_id>/register/', register_for_contest, name='register_for_contest'), path('contest/<int:contest_id>/scoreboard/', ContestScoreboardView.as_view(), name='contest_scoreboard_view'), path('contest/<int:contest_id>/task/<int:task_id>/', ContestTaskView.as_view(), name='contest_task_view'), path('contest/<int:contest_id>/task/<int:task_id>/submit/', submit_contest_flag, name='contest_task_submit'), re_path('^test', test_view, name='test_view'), re_path('^debug', debug_view, name='debug_view'), ]
54.736264
116
0.718932
0
0
0
0
0
0
0
0
2,352
0.472194
a5b8284d0679076f983319f40b4e3ceca65a28c5
1,372
py
Python
part2.py
Tiziana-I/project-covid-mask-classifier
e1619172656f8de92e8faae5dcb7437686f7ca5e
[ "MIT" ]
null
null
null
part2.py
Tiziana-I/project-covid-mask-classifier
e1619172656f8de92e8faae5dcb7437686f7ca5e
[ "MIT" ]
null
null
null
part2.py
Tiziana-I/project-covid-mask-classifier
e1619172656f8de92e8faae5dcb7437686f7ca5e
[ "MIT" ]
null
null
null
import numpy as np import cv2 import os cap = cv2.VideoCapture(0) #model=cv2.CascadeClassifier(os.path.join("haar-cascade-files","haarcascade_frontalface_default.xml")) smile=cv2.CascadeClassifier(os.path.join("haar-cascade-files","haarcascade_smile.xml")) #eye=cv2.CascadeClassifier(os.path.join("haar-cascade-files","haarcascade_eye.xml")) while(True): # Capture frame-by-frame ret, frame = cap.read() # Face detector #cv2.rectangle(frame,(x,y),(x+w,y+h),(255,0,0),2) #roi = frame[y:y+h,x:x+w] #faces = model.detectMultiScale(frame,scaleFactor=1.5,minNeighbors=3,flags=cv2.CASCADE_DO_ROUGH_SEARCH | cv2.CASCADE_SCALE_IMAGE) faces = smile.detectMultiScale(frame,scaleFactor=1.5,minNeighbors=3,flags=cv2.CASCADE_DO_ROUGH_SEARCH | cv2.CASCADE_SCALE_IMAGE) #faces = eye.detectMultiScale(frame,scaleFactor=1.5,minNeighbors=3,flags=cv2.CASCADE_DO_ROUGH_SEARCH | cv2.CASCADE_SCALE_IMAGE) print(faces) for x,y,w,h in faces: print(x,y,w,h) cv2.rectangle(frame,(x,y),(x+w,y+h),(255,0,0),2) # blue BGR frame = cv2.putText(frame,"Ciao", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0) , 2, cv2.LINE_AA) # Display the resulting frame cv2.imshow('frame', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break # When everything done, release the capture cap.release() cv2.destroyAllWindows()
38.111111
133
0.707726
0
0
0
0
0
0
0
0
696
0.507289
a5b83e7cc19ace3ba764ad74920296c856b01e5f
375
py
Python
spikes/function_signatures.py
insequor/webapp
73990bd74afd6d0f794c447e1bcc5d557ee2ed31
[ "MIT" ]
1
2020-08-07T12:16:49.000Z
2020-08-07T12:16:49.000Z
spikes/function_signatures.py
insequor/webapp
73990bd74afd6d0f794c447e1bcc5d557ee2ed31
[ "MIT" ]
1
2021-10-30T10:21:34.000Z
2021-10-30T10:21:34.000Z
spikes/function_signatures.py
insequor/webapp
73990bd74afd6d0f794c447e1bcc5d557ee2ed31
[ "MIT" ]
null
null
null
from inspect import signature def testFunction(a, b=None): pass class TestClass: def testMethod(me): pass if __name__ == '__main__': #sig = signature(testFunction) sig = signature(TestClass.testMethod) for key in sig.parameters: param = sig.parameters[key] print(key, param, dir(param)) print(' ', param.kind)
20.833333
41
0.624
53
0.141333
0
0
0
0
0
0
45
0.12
a5b8565cb66fcfd69f346054d3bf2453f6824c71
1,371
py
Python
docs/commands.py
immersionroom/vee
2c6f781dc96e9028f2446777b906ca37dc2f4299
[ "BSD-3-Clause" ]
6
2017-11-05T02:44:10.000Z
2021-07-14T19:10:56.000Z
docs/commands.py
immersionroom/vee
2c6f781dc96e9028f2446777b906ca37dc2f4299
[ "BSD-3-Clause" ]
null
null
null
docs/commands.py
immersionroom/vee
2c6f781dc96e9028f2446777b906ca37dc2f4299
[ "BSD-3-Clause" ]
1
2017-01-31T23:10:09.000Z
2017-01-31T23:10:09.000Z
import os import sys from argparse import _SubParsersAction sys.path.append(os.path.abspath(os.path.join(__file__, '..', '..'))) from vee.commands.main import get_parser def get_sub_action(parser): for action in parser._actions: if isinstance(action, _SubParsersAction): return action parser = get_parser() usage = parser.format_usage().replace('usage:', '') print(''' top-level --------- .. _cli_vee: ``vee`` ~~~~~~~ :: ''') for line in parser.format_help().splitlines(): print(' ' + line) subaction = get_sub_action(parser) for group_name, funcs in parser._func_groups: did_header = False visible = set(ca.dest for ca in subaction._choices_actions) for name, func in funcs: if not name in visible: continue if not did_header: print('.. _cli_%s:' % group_name.replace(' ', '_')) print() print(group_name) print('-' * len(group_name)) print() did_header = True subparser = subaction._name_parser_map[name] print('.. _cli_vee_%s:' % name) print() print('``vee %s``' % name) print('~' * (8 + len(name))) print() print('::') print() for line in subparser.format_help().splitlines(): print(' ' + line) print()
18.527027
68
0.56674
0
0
0
0
0
0
0
0
152
0.110868
a5b88dea17e5a8c345a0188b0209c92393ef06ec
551
py
Python
main.py
SciFiTy10/talkLikeSnoop
1a3408dfa244669a0d723737c62da93feb7d9ba8
[ "MIT" ]
1
2022-01-07T10:27:14.000Z
2022-01-07T10:27:14.000Z
main.py
SciFiTy10/talkLikeSnoop
1a3408dfa244669a0d723737c62da93feb7d9ba8
[ "MIT" ]
null
null
null
main.py
SciFiTy10/talkLikeSnoop
1a3408dfa244669a0d723737c62da93feb7d9ba8
[ "MIT" ]
null
null
null
#imports from routing_methods import on_launch, intent_router ############################## # Program Entry ############################## #lambda_handler (this is like main()) def lambda_handler(event, context): #event is a python dictionary #LaunchRequest is an object that means the user made a request to a skill, but didn't specify the intent if event['request']['type'] == "LaunchRequest": return on_launch(event, context) elif event['request']['type'] == "IntentRequest": return intent_router(event, context)
34.4375
108
0.638838
0
0
0
0
0
0
0
0
313
0.568058
a5bc2b0b89e7e05fdfc86ac8ee4661e2d1a71f8f
13,303
py
Python
thrift/clients.py
fabiobatalha/processing
f3ad99e161de2befc7908168bfd7843f988c379d
[ "BSD-2-Clause" ]
null
null
null
thrift/clients.py
fabiobatalha/processing
f3ad99e161de2befc7908168bfd7843f988c379d
[ "BSD-2-Clause" ]
null
null
null
thrift/clients.py
fabiobatalha/processing
f3ad99e161de2befc7908168bfd7843f988c379d
[ "BSD-2-Clause" ]
null
null
null
# coding: utf-8 import os import thriftpy import json import logging from thriftpy.rpc import make_client from xylose.scielodocument import Article, Journal LIMIT = 1000 logger = logging.getLogger(__name__) ratchet_thrift = thriftpy.load( os.path.join(os.path.dirname(__file__))+'/ratchet.thrift') articlemeta_thrift = thriftpy.load( os.path.join(os.path.dirname(__file__))+'/articlemeta.thrift') citedby_thrift = thriftpy.load( os.path.join(os.path.dirname(__file__))+'/citedby.thrift') accessstats_thrift = thriftpy.load( os.path.join(os.path.dirname(__file__))+'/access_stats.thrift') publication_stats_thrift = thriftpy.load( os.path.join(os.path.dirname(__file__))+'/publication_stats.thrift') class ServerError(Exception): def __init__(self, message=None): self.message = message or 'thirftclient: ServerError' def __str__(self): return repr(self.message) class AccessStats(object): def __init__(self, address, port): """ Cliente thrift para o Access Stats. """ self._address = address self._port = port @property def client(self): client = make_client( accessstats_thrift.AccessStats, self._address, self._port ) return client def _compute_access_lifetime(self, query_result): data = [] for publication_year in query_result['aggregations']['publication_year']['buckets']: for access_year in publication_year['access_year']['buckets']: data.append([ publication_year['key'], access_year['key'], int(access_year['access_html']['value']), int(access_year['access_abstract']['value']), int(access_year['access_pdf']['value']), int(access_year['access_epdf']['value']), int(access_year['access_total']['value']) ]) return sorted(data) def access_lifetime(self, issn, collection, raw=False): body = { "query": { "bool": { "must": [{ "match": { "collection": collection } }, { "match": { "issn": issn } } ] } }, "size": 0, "aggs": { "publication_year": { "terms": { "field": "publication_year", "size": 0, "order": { "access_total": "desc" } }, "aggs": { "access_total": { "sum": { "field": "access_total" } }, "access_year": { "terms": { "field": "access_year", "size": 0, "order": { "access_total": "desc" } }, "aggs": { "access_total": { "sum": { "field": "access_total" } }, "access_abstract": { "sum": { "field": "access_abstract" } }, "access_epdf": { "sum": { "field": "access_epdf" } }, "access_html": { "sum": { "field": "access_html" } }, "access_pdf": { "sum": { "field": "access_pdf" } } } } } } } } query_parameters = [ accessstats_thrift.kwargs('size', '0') ] query_result = json.loads(self.client.search(json.dumps(body), query_parameters)) computed = self._compute_access_lifetime(query_result) return query_result if raw else computed class PublicationStats(object): def __init__(self, address, port): """ Cliente thrift para o PublicationStats. """ self._address = address self._port = port @property def client(self): client = make_client( publication_stats_thrift.PublicationStats, self._address, self._port ) return client def _compute_first_included_document_by_journal(self, query_result): if len(query_result.get('hits', {'hits': []}).get('hits', [])) == 0: return None return query_result['hits']['hits'][0].get('_source', None) def first_included_document_by_journal(self, issn, collection): body = { "query": { "filtered": { "query": { "bool": { "must": [ { "match": { "collection": collection } }, { "match": { "issn": issn } } ] } } } }, "sort": [ { "publication_date": { "order": "asc" } } ] } query_parameters = [ publication_stats_thrift.kwargs('size', '1') ] query_result = json.loads(self.client.search('article', json.dumps(body), query_parameters)) return self._compute_first_included_document_by_journal(query_result) def _compute_last_included_document_by_journal(self, query_result): if len(query_result.get('hits', {'hits': []}).get('hits', [])) == 0: return None return query_result['hits']['hits'][0].get('_source', None) def last_included_document_by_journal(self, issn, collection, metaonly=False): body = { "query": { "filtered": { "query": { "bool": { "must": [ { "match": { "collection": collection } }, { "match": { "issn": issn } } ] } }, "filter": { "exists": { "field": "publication_date" } } } }, "sort": [ { "publication_date": { "order": "desc" } } ] } query_parameters = [ publication_stats_thrift.kwargs('size', '1') ] query_result = json.loads(self.client.search('article', json.dumps(body), query_parameters)) return self._compute_last_included_document_by_journal(query_result) class Citedby(object): def __init__(self, address, port): """ Cliente thrift para o Citedby. """ self._address = address self._port = port @property def client(self): client = make_client( citedby_thrift.Citedby, self._address, self._port ) return client def citedby_pid(self, code, metaonly=False): data = self.client.citedby_pid(code, metaonly) return data class Ratchet(object): def __init__(self, address, port): """ Cliente thrift para o Ratchet. """ self._address = address self._port = port @property def client(self): client = make_client( ratchet_thrift.RatchetStats, self._address, self._port ) return client def document(self, code): data = self.client.general(code=code) return data class ArticleMeta(object): def __init__(self, address, port): """ Cliente thrift para o Articlemeta. """ self._address = address self._port = port @property def client(self): client = make_client( articlemeta_thrift.ArticleMeta, self._address, self._port ) return client def journals(self, collection=None, issn=None): offset = 0 while True: identifiers = self.client.get_journal_identifiers(collection=collection, issn=issn, limit=LIMIT, offset=offset) if len(identifiers) == 0: raise StopIteration for identifier in identifiers: journal = self.client.get_journal( code=identifier.code[0], collection=identifier.collection) jjournal = json.loads(journal) xjournal = Journal(jjournal) logger.info('Journal loaded: %s_%s' % ( identifier.collection, identifier.code)) yield xjournal offset += 1000 def exists_article(self, code, collection): try: return self.client.exists_article( code, collection ) except: msg = 'Error checking if document exists: %s_%s' % (collection, code) raise ServerError(msg) def set_doaj_id(self, code, collection, doaj_id): try: article = self.client.set_doaj_id( code, collection, doaj_id ) except: msg = 'Error senting doaj id for document: %s_%s' % (collection, code) raise ServerError(msg) def document(self, code, collection, replace_journal_metadata=True, fmt='xylose'): try: article = self.client.get_article( code=code, collection=collection, replace_journal_metadata=True, fmt=fmt ) except: msg = 'Error retrieving document: %s_%s' % (collection, code) raise ServerError(msg) jarticle = None try: jarticle = json.loads(article) except: msg = 'Fail to load JSON when retrienving document: %s_%s' % (collection, code) raise ServerError(msg) if not jarticle: logger.warning('Document not found for : %s_%s' % ( collection, code)) return None if fmt == 'xylose': xarticle = Article(jarticle) logger.info('Document loaded: %s_%s' % ( collection, code)) return xarticle else: logger.info('Document loaded: %s_%s' % ( collection, code)) return article def documents(self, collection=None, issn=None, from_date=None, until_date=None, fmt='xylose'): offset = 0 while True: identifiers = self.client.get_article_identifiers( collection=collection, issn=issn, from_date=from_date, until_date=until_date, limit=LIMIT, offset=offset) if len(identifiers) == 0: raise StopIteration for identifier in identifiers: document = self.document( code=identifier.code, collection=identifier.collection, replace_journal_metadata=True, fmt=fmt ) yield document offset += 1000 def collections(self): return [i for i in self._client.get_collection_identifiers()]
29.496674
123
0.42622
12,563
0.944373
1,470
0.110501
940
0.070661
0
0
1,751
0.131624
a5be28a44a12bd589d156a3a7d0bbad6c6678d9a
6,705
py
Python
src/pypsr.py
wagglefoot/TVAE
74f8c5413d3c0d8607af50ddb0d96c4c2d477261
[ "MIT" ]
22
2015-03-14T04:23:00.000Z
2022-03-24T03:29:22.000Z
src/pypsr.py
wagglefoot/TVAE
74f8c5413d3c0d8607af50ddb0d96c4c2d477261
[ "MIT" ]
null
null
null
src/pypsr.py
wagglefoot/TVAE
74f8c5413d3c0d8607af50ddb0d96c4c2d477261
[ "MIT" ]
15
2015-02-04T13:09:27.000Z
2022-03-24T03:29:24.000Z
from operator import sub import numpy as np from sklearn import metrics from sklearn.neighbors import NearestNeighbors from toolz import curry def global_false_nearest_neighbors(x, lag, min_dims=1, max_dims=10, **cutoffs): """ Across a range of embedding dimensions $d$, embeds $x(t)$ with lag $\tau$, finds all nearest neighbors, and computes the percentage of neighbors that that remain neighbors when an additional dimension is unfolded. See [1] for more information. Parameters ---------- x : array-like Original signal $x(t). lag : int Time lag $\tau$ in units of the sampling time $h$ of $x(t)$. min_dims : int, optional The smallest embedding dimension $d$ to test. max_dims : int, optional The largest embedding dimension $d$ to test. relative_distance_cutoff : float, optional The cutoff for determining neighborliness, in distance increase relative to the original distance between neighboring points. The default, 15, is suggested in [1] (p. 41). relative_radius_cutoff : float, optional The cutoff for determining neighborliness, in distance increase relative to the radius of the attractor. The default, 2, is suggested in [1] (p. 42). Returns ------- dims : ndarray The tested dimensions $d$. gfnn : ndarray The percentage of nearest neighbors that are false neighbors at each dimension. See Also -------- reconstruct References ---------- [1] Arbanel, H. D. (1996). *Analysis of Observed Chaotic Data* (pp. 40-43). New York: Springer. """ x = _vector(x) dimensions = np.arange(min_dims, max_dims + 1) false_neighbor_pcts = np.array([_gfnn(x, lag, n_dims, **cutoffs) for n_dims in dimensions]) return dimensions, false_neighbor_pcts def _gfnn(x, lag, n_dims, **cutoffs): # Global false nearest neighbors at a particular dimension. # Returns percent of all nearest neighbors that are still neighbors when the next dimension is unfolded. # Neighbors that can't be embedded due to lack of data are not counted in the denominator. offset = lag*n_dims is_true_neighbor = _is_true_neighbor(x, _radius(x), offset) return np.mean([ not is_true_neighbor(indices, distance, **cutoffs) for indices, distance in _nearest_neighbors(reconstruct(x, lag, n_dims)) if (indices + offset < x.size).all() ]) def _radius(x): # Per Arbanel (p. 42): # "the nominal 'radius' of the attractor defined as the RMS value of the data about its mean." return np.sqrt(((x - x.mean())**2).mean()) @curry def _is_true_neighbor( x, attractor_radius, offset, indices, distance, relative_distance_cutoff=15, relative_radius_cutoff=2 ): distance_increase = np.abs(sub(*x[indices + offset])) return (distance_increase / distance < relative_distance_cutoff and distance_increase / attractor_radius < relative_radius_cutoff) def _nearest_neighbors(y): """ Wrapper for sklearn.neighbors.NearestNeighbors. Yields the indices of the neighboring points, and the distance between them. """ distances, indices = NearestNeighbors(n_neighbors=2, algorithm='kd_tree').fit(y).kneighbors(y) for distance, index in zip(distances, indices): yield index, distance[1] def reconstruct(x, lag, n_dims): """Phase-space reconstruction. Given a signal $x(t)$, dimensionality $d$, and lag $\tau$, return the reconstructed signal \[ \mathbf{y}(t) = [x(t), x(t + \tau), \ldots, x(t + (d - 1)\tau)]. \] Parameters ---------- x : array-like Original signal $x(t)$. lag : int Time lag $\tau$ in units of the sampling time $h$ of $x(t)$. n_dims : int Embedding dimension $d$. Returns ------- ndarray $\mathbf{y}(t)$ as an array with $d$ columns. """ x = _vector(x) if lag * (n_dims - 1) >= x.shape[0] // 2: raise ValueError('longest lag cannot be longer than half the length of x(t)') lags = lag * np.arange(n_dims) return np.vstack(x[lag:lag - lags[-1] or None] for lag in lags).transpose() def ami(x, y=None, n_bins=10): """Calculate the average mutual information between $x(t)$ and $y(t)$. Parameters ---------- x : array-like y : array-like, optional $x(t)$ and $y(t)$. If only `x` is passed, it must have two columns; the first column defines $x(t)$ and the second $y(t)$. n_bins : int The number of bins to use when computing the joint histogram. Returns ------- scalar Average mutual information between $x(t)$ and $y(t)$, in nats (natural log equivalent of bits). See Also -------- lagged_ami References ---------- Arbanel, H. D. (1996). *Analysis of Observed Chaotic Data* (p. 28). New York: Springer. """ x, y = _vector_pair(x, y) if x.shape[0] != y.shape[0]: raise ValueError('timeseries must have the same length') return metrics.mutual_info_score(None, None, contingency=np.histogram2d(x, y, bins=n_bins)[0]) def lagged_ami(x, min_lag=0, max_lag=None, lag_step=1, n_bins=10): """Calculate the average mutual information between $x(t)$ and $x(t + \tau)$, at multiple values of $\tau$. Parameters ---------- x : array-like $x(t)$. min_lag : int, optional The shortest lag to evaluate, in units of the sampling period $h$ of $x(t)$. max_lag : int, optional The longest lag to evaluate, in units of $h$. lag_step : int, optional The step between lags to evaluate, in units of $h$. n_bins : int The number of bins to use when computing the joint histogram in order to calculate mutual information. See |ami|. Returns ------- lags : ndarray The evaluated lags $\tau_i$, in units of $h$. amis : ndarray The average mutual information between $x(t)$ and $x(t + \tau_i)$. See Also -------- ami """ if max_lag is None: max_lag = x.shape[0]//2 lags = np.arange(min_lag, max_lag, lag_step) amis = [ami(reconstruct(x, lag, 2), n_bins=n_bins) for lag in lags] return lags, np.array(amis) def _vector_pair(a, b): a = np.squeeze(a) if b is None: if a.ndim != 2 or a.shape[1] != 2: raise ValueError('with one input, array must have be 2D with two columns') a, b = a[:, 0], a[:, 1] return a, np.squeeze(b) def _vector(x): x = np.squeeze(x) if x.ndim != 1: raise ValueError('x(t) must be a 1-dimensional signal') return x
31.186047
113
0.631022
0
0
360
0.053691
363
0.054139
0
0
4,197
0.625951
a5bef664ecd325ec7c754416c8cb289908db04d1
2,026
py
Python
tests/test_fetching_info_from_websites.py
antoniodimariano/websites_metrics_collector
5113a680612b126005ac7f9f52ed35d26b806ea0
[ "Apache-2.0" ]
null
null
null
tests/test_fetching_info_from_websites.py
antoniodimariano/websites_metrics_collector
5113a680612b126005ac7f9f52ed35d26b806ea0
[ "Apache-2.0" ]
null
null
null
tests/test_fetching_info_from_websites.py
antoniodimariano/websites_metrics_collector
5113a680612b126005ac7f9f52ed35d26b806ea0
[ "Apache-2.0" ]
null
null
null
import unittest from unittest import IsolatedAsyncioTestCase from websites_metrics_collector.communication import webpages_fetcher class Test(IsolatedAsyncioTestCase): """ This Class tests the fetch_list_of_urls() async method used to fetch URLs """ async def test_a_fetch_with_valid_list_of_url(self): urls_to_fetch = [('http://motoguzzi.com', ['twitter', 'Antonio']), ('http://ducati.com', ['twitter', 'url']), ('http://ferrari.com', ['twitter', 'url'])] ret = await webpages_fetcher.fetch_list_of_urls(list_of_urls=urls_to_fetch) self.assertIsInstance(ret,list) self.assertEqual(len(ret),3) self.assertEqual(ret[0].url,'http://motoguzzi.com') self.assertEqual(ret[0].http_status,200) self.assertIsInstance(ret[0].elapsed_time,float) self.assertIsInstance(ret[0].pattern_verified,bool) async def test_b_fetch_with_valid_list_of_url(self): urls_to_fetch = [('http://motoguzzi.com', ['twitter', 'Antonio'])] ret = await webpages_fetcher.fetch_list_of_urls(list_of_urls=urls_to_fetch) self.assertIsInstance(ret,list) self.assertEqual(len(ret),1) self.assertEqual(ret[0].url,'http://motoguzzi.com') self.assertEqual(ret[0].http_status,200) self.assertIsInstance(ret[0].elapsed_time,float) self.assertIsInstance(ret[0].pattern_verified,bool) @unittest.skip async def test_c_fetch_with_valid_list_of_url(self): urls_to_fetch = [('http://sjsjsjjsjsjsjsj.com', ['twitter', 'Antonio'])] ret = await webpages_fetcher.fetch_list_of_urls(list_of_urls=urls_to_fetch) self.assertIsInstance(ret,list) self.assertEqual(len(ret),1) self.assertEqual(ret[0].url,'http://sjsjsjjsjsjsjsj.com') self.assertEqual(ret[0].http_status,403) self.assertIsInstance(ret[0].elapsed_time,float) self.assertIsInstance(ret[0].pattern_verified,bool) self.assertEqual(ret[0].pattern_verified,False)
44.043478
117
0.695953
1,892
0.93386
0
0
602
0.297137
1,725
0.851431
354
0.174729
a5bef6fa512a2ff46684cc9ce0bb82ae7685d3ba
773
py
Python
planegeometry/structures/tests/random_segments.py
ufkapano/planegeometry
fa9309a4e867acedd635665f32d7f59a8eeaf2e3
[ "BSD-3-Clause" ]
null
null
null
planegeometry/structures/tests/random_segments.py
ufkapano/planegeometry
fa9309a4e867acedd635665f32d7f59a8eeaf2e3
[ "BSD-3-Clause" ]
null
null
null
planegeometry/structures/tests/random_segments.py
ufkapano/planegeometry
fa9309a4e867acedd635665f32d7f59a8eeaf2e3
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/python import random import Gnuplot # Python 2 only from planegeometry.structures.points import Point from planegeometry.structures.segments import Segment gnu = Gnuplot.Gnuplot (persist = 1) visible = True for i in range(10): segment = Segment(random.random(), random.random(), random.random(), random.random()) gnu(segment.gnu(visible)) # Wyswietlenie grafu. gnu('set terminal pdf enhanced') gnu('set output "random_segments.pdf"') gnu('set grid') gnu('unset key') gnu('set size square') #gnu('unset border') #gnu('unset tics') gnu('set xlabel "x"') gnu('set ylabel "y"') gnu('set title "Random segments"') gnu('set xrange [{}:{}]'.format(0, 1)) gnu('set yrange [{}:{}]'.format(0, 1)) gnu.plot('NaN title ""') gnu('unset output') # EOF
23.424242
55
0.684347
0
0
0
0
0
0
0
0
324
0.419146
3c0172a4b6c39d5c3838a7e6ee2dd86d14d618b0
77
py
Python
proxy/admin.py
jokajak/infinity_tracker
21f83925d9899dc25bc58b198426f329a549b0e0
[ "Apache-2.0" ]
1
2021-01-21T08:44:21.000Z
2021-01-21T08:44:21.000Z
proxy/admin.py
jokajak/infinity_tracker
21f83925d9899dc25bc58b198426f329a549b0e0
[ "Apache-2.0" ]
126
2020-08-03T22:07:38.000Z
2022-03-28T22:25:59.000Z
proxy/admin.py
jokajak/infinity_tracker
21f83925d9899dc25bc58b198426f329a549b0e0
[ "Apache-2.0" ]
null
null
null
from django.contrib import admin # NOQA: F401 # Register your models here.
19.25
46
0.753247
0
0
0
0
0
0
0
0
40
0.519481
3c01c3ac689a157ca3b1ed4911d58fd47e935434
1,050
py
Python
local/make_fbank.py
coolEphemeroptera/AESRC2020
b64cdeeaaf74e8c1a741930b3a47dc8dcadca8de
[ "Apache-2.0" ]
35
2020-09-26T13:40:16.000Z
2022-03-22T19:42:20.000Z
local/make_fbank.py
coolEphemeroptera/ARNet
b64cdeeaaf74e8c1a741930b3a47dc8dcadca8de
[ "Apache-2.0" ]
4
2021-04-10T13:05:52.000Z
2022-03-14T03:22:32.000Z
local/make_fbank.py
coolEphemeroptera/ARNet
b64cdeeaaf74e8c1a741930b3a47dc8dcadca8de
[ "Apache-2.0" ]
7
2020-09-26T15:52:45.000Z
2021-06-11T05:05:23.000Z
import python_speech_features as psf import soundfile as sf # import scipy.io.wavfile as wav import pickle as pkl import sys import os import re # linux to windows 路径转换 def path_lin2win(path): pattern = "/[a-z]/" position = re.findall(pattern,path)[0][1].upper() return re.sub(pattern,"%s:/"%position,path) # 存储文件 def save(data,path): f = open(path,"wb") pkl.dump(data,f) f.close() def path2utt(path): return path.split('/')[-1].split('.')[0] def fbank(path): # path = path_lin2win(path) # windows path y,sr = sf.read(path) mel = psf.fbank(y,samplerate=sr,nfilt=80)[0] return mel if __name__ == "__main__": audio_file = sys.argv[1] # audio_file = r"E:/LIBRISPEECH/LibriSpeech/dev/dev-clean/1272/128104/1272-128104-0000.flac" out_file = sys.argv[2] dir = os.path.dirname(out_file) if not os.path.isdir(dir):os.mkdir(out_file) mel = fbank(audio_file) save(mel,out_file) print(path2utt(out_file),mel.shape[0]) exit()
23.863636
97
0.631429
0
0
0
0
0
0
0
0
251
0.23546
3c0299abc0c111e544b5842dcd9b42f82f6088c5
1,344
py
Python
tests/__init__.py
jun-kai-xin/douban
989a797de467f5a9a8b77a05fa8242bebf657a51
[ "MIT" ]
null
null
null
tests/__init__.py
jun-kai-xin/douban
989a797de467f5a9a8b77a05fa8242bebf657a51
[ "MIT" ]
null
null
null
tests/__init__.py
jun-kai-xin/douban
989a797de467f5a9a8b77a05fa8242bebf657a51
[ "MIT" ]
null
null
null
def fake_response_from_file(file_name, url=None, meta=None): import os import codecs from scrapy.http import HtmlResponse, Request if not url: url = 'http://www.example.com' _meta = {'mid': 1291844, 'login': False} # 必要的信息,随便弄一个就行了 if meta: meta.update(_meta) else: meta = _meta request = Request(url=url, meta=meta) if not file_name[0] == '/': responses_dir = os.path.dirname(os.path.realpath(__file__)) file_path = os.path.join(responses_dir, file_name) else: file_path = file_name with codecs.open(file_path, 'r', 'utf-8') as f: file_content = f.read() response = HtmlResponse(url=url, encoding='utf-8', request=request, body=file_content) return response def fake_response_from_url(url, headers=None, meta=None): import requests from scrapy.http import HtmlResponse, Request resp = requests.get(url, headers=headers) _meta = {'mid': 1291844, 'login': False} # 必要的信息,随便弄一个就行了 if meta: meta.update(_meta) else: meta = _meta return HtmlResponse(url=url, status=resp.status_code, body=resp.text, encoding='utf-8', request=Request(url=url, meta=meta))
28.595745
78
0.590774
0
0
0
0
0
0
0
0
163
0.116429
3c02f34d8d7c7f266cdc6308a85575de226c48f6
2,703
py
Python
src/tests/test_pyning/test_combinationdict.py
essennell/pyning
c28d8fae99ab6cb4394960b72565a4915aee7adc
[ "MIT" ]
null
null
null
src/tests/test_pyning/test_combinationdict.py
essennell/pyning
c28d8fae99ab6cb4394960b72565a4915aee7adc
[ "MIT" ]
3
2020-03-24T16:25:58.000Z
2021-06-01T22:57:53.000Z
src/tests/test_pyning/test_combinationdict.py
essennell/pyning
c28d8fae99ab6cb4394960b72565a4915aee7adc
[ "MIT" ]
null
null
null
from pyning.combinationdict import CombinationDict import pytest def test_key_at_root_is_located(): items = CombinationDict( '/', { 'a': 10 } ) assert items[ 'a' ] == 10 def test_key_nested_1_level_is_located(): items = CombinationDict( '/', { 'a': { 'b': 10 } } ) assert items[ 'a/b' ] == 10 def test_escaped_separator_is_used_as_direct_key(): items = CombinationDict( '.', { 'a': { 'b\\.c': { 'd': 10 } } } ) assert items[ 'a.b\\.c.d' ] == 10 def test_nested_value_can_be_updated(): items = CombinationDict( '.', { 'a': { 'b': { 'c': 10 } } } ) items[ 'a.b.c' ] = 100 assert items[ 'a' ][ 'b' ][ 'c' ] == 100 def test_item_value_can_be_a_list(): items = CombinationDict( '.', { 'a': [ 1, 2 ] } ) assert items[ 'a' ][ 0 ] == 1 def test_nested_item_can_be_a_list(): items = CombinationDict( '.', { 'a': { 'b': [ 1, 2 ] } } ) assert items[ 'a.b' ][ 0 ] == 1 def test_nested_dict_can_be_updated(): items = CombinationDict( '.', { 'a': { 'b': 10, 'c': 20 } } ) items.update( { 'a': { 'b': 100 } } ) assert items[ 'a.b' ] == 100 assert items[ 'a.c' ] == 20 def test_nested_dict_can_be_updated_from_tuple(): items = CombinationDict( '.', { 'a': { 'b': 10 } } ) items[ 'a' ].update( [ ( 'c', 100 ), ( 'e', 1 ) ] ) assert items[ 'a.c' ] == 100 assert items[ 'a.e' ] == 1 def test_update_respects_nesting_notation(): items = CombinationDict( '.', { 'a': { 'b': 10 } } ) items.update( { 'a.b': 100 } ) assert items[ 'a' ][ 'b' ] == items[ 'a.b' ] assert 'a.b' not in set( items.keys() ) def test_separator_for_nesting_can_be_escaped(): items = CombinationDict( '.', { 'a': { 'b': 10 } } ) items[ r'a\.b' ] = 100 assert items[ 'a.b' ] == 10 def test_attribute_is_found_if_set(): items = CombinationDict( '.', { 'a': 10 } ) assert items.a == 10 def test_nested_attribute_is_found_with_same_syntax(): items = CombinationDict( '/', { 'a': { 'x': { 'y': 'hello' } } } ) assert items.a.x.y == 'hello' def test_attribute_name_can_contain_spaces(): items = CombinationDict( '.', { 'a b': 'hello' } ) assert items[ 'a b' ] == 'hello' def test_attribute_name_can_contain_other_chars(): items = CombinationDict( '.', { 'a_b': 'hello' } ) assert items.a_b == 'hello' def test_calling_get_method_raises_no_exceptions(): items = CombinationDict( '.', { } ) assert items.get( 'a' ) == None def test_can_convert_to_a_real_dict_of_nested_dicts(): items = CombinationDict( '.', { 'a': '10', 'b': { 'c': 100 } } ) assert isinstance( items, dict ) assert isinstance( items[ 'b' ], dict ) if __name__ == '__main__': pytest.main()
27.865979
70
0.574547
0
0
0
0
0
0
0
0
324
0.119867
3c045b5de4e55fe90b3f8563b224a0193ac2dff7
6,917
py
Python
stockBOT/Discord/fc_info.py
Chenct-jonathan/LokiHub
7193589151e88f4e66aee6457926e565d0023fa1
[ "MIT" ]
17
2020-11-25T07:40:18.000Z
2022-03-07T03:29:18.000Z
stockBOT/Discord/fc_info.py
Chenct-jonathan/LokiHub
7193589151e88f4e66aee6457926e565d0023fa1
[ "MIT" ]
8
2020-12-18T13:23:59.000Z
2021-10-03T21:41:50.000Z
stockBOT/Discord/fc_info.py
Chenct-jonathan/LokiHub
7193589151e88f4e66aee6457926e565d0023fa1
[ "MIT" ]
43
2020-12-02T09:03:57.000Z
2021-12-23T03:30:25.000Z
#!/usr/bin/env python3 # -*- coding:utf-8 -*- from bs4 import BeautifulSoup import requests from requests import post from requests import codes def information(symbol): URL = "https://goodinfo.tw/StockInfo/StockDetail.asp?STOCK_ID="+ symbol headers = {'user-agent': 'Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/52.0.2743.116 Safari/537.36'} r = requests.post(url=URL,headers=headers) html =BeautifulSoup(r.content, "html.parser") result_infoDICT = {} table = html.findAll("table")[40] table_row_name=table.findAll("tr")[1] td_name = table_row_name.findAll("td")[1] name = td_name.text result_infoDICT["name"] = name table_row_industry=table.findAll("tr")[2] td_industry=table_row_industry.findAll("td")[1] industry=td_industry.text result_infoDICT["industry"] = industry table_row_value=table.findAll("tr")[4] td_value = table_row_value.findAll("td")[3] value = td_value.text result_infoDICT["value"] = value table_row_business=table.findAll("tr")[14] td_business = table_row_business.findAll("td")[0] business = td_business.text result_infoDICT["business"] = business return result_infoDICT def growth(symbol): URL = "https://goodinfo.tw/StockInfo/StockFinDetail.asp?RPT_CAT=XX_M_QUAR_ACC&STOCK_ID="+ symbol headers = {'user-agent': 'Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/52.0.2743.116 Safari/537.36'} r = requests.post(url=URL,headers=headers) html =BeautifulSoup(r.content, "html.parser") result_growthDICT = {} table = html.findAll("table")[16] table_row_quarter=table.findAll("tr")[0] th_quarter = table_row_quarter.findAll("th")[1] quarter = th_quarter.text result_growthDICT["quarter"] = quarter table_row_revenue=table.findAll("tr")[14] td_revenue = table_row_revenue.findAll("td")[1] revenue_YOY = td_revenue.text result_growthDICT["revenue_YOY"] = revenue_YOY table_row_gross_profit = table.findAll("tr")[15] td_gross_profit = table_row_gross_profit.findAll("td")[1] gross_profit_YOY = td_gross_profit.text result_growthDICT["gross_profit_YOY"] = gross_profit_YOY table_row_operating_income=table.findAll("tr")[16] td_operating_income = table_row_operating_income.findAll("td")[1] operating_income_YOY = td_operating_income.text result_growthDICT["operating_income_YOY"] = operating_income_YOY table_row_NIBT=table.findAll("tr")[17] td_NIBT = table_row_NIBT.findAll("td")[1] NIBT_YOY = td_NIBT.text result_growthDICT["NIBT_YOY"] = NIBT_YOY table_row_NI=table.findAll("tr")[18] td_NI = table_row_NI.findAll("td")[1] NI_YOY = td_NI.text result_growthDICT["NI_YOY"] = NI_YOY table_row_EPS=table.findAll("tr")[20] td_EPS = table_row_EPS.findAll("td")[1] EPS_YOY = td_EPS.text result_growthDICT["EPS_YOY"] = EPS_YOY table_row_total_assets_growth=table.findAll("tr")[50] td_total_assets_growth = table_row_total_assets_growth.findAll("td")[1] total_assets_growth = td_total_assets_growth.text result_growthDICT["total_assets_growth"] = total_assets_growth return result_growthDICT def profitability(symbol): URL = "https://goodinfo.tw/StockInfo/StockFinDetail.asp?RPT_CAT=XX_M_QUAR_ACC&STOCK_ID="+ symbol headers = {'user-agent': 'Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/52.0.2743.116 Safari/537.36'} r = requests.post(url=URL,headers=headers) html =BeautifulSoup(r.content, "html.parser") result_profitabilityDICT = {} table = html.findAll("table")[16] table_row_quarter=table.findAll("tr")[0] th_quarter = table_row_quarter.findAll("th")[1] quarter = th_quarter.text result_profitabilityDICT["quarter"] = quarter table_row_GPM=table.findAll("tr")[1] td_GPM = table_row_GPM.findAll("td")[1] GPM = td_GPM.text result_profitabilityDICT["GPM"] = GPM table_row_OPM=table.findAll("tr")[2] td_OPM = table_row_OPM.findAll("td")[1] OPM = td_OPM.text result_profitabilityDICT["OPM"] = OPM table_row_PTPM=table.findAll("tr")[3] td_PTPM = table_row_PTPM.findAll("td")[1] PTPM = td_PTPM.text result_profitabilityDICT["PTPM"] = PTPM table_row_NPM=table.findAll("tr")[4] td_NPM = table_row_NPM.findAll("td")[1] NPM = td_NPM.text result_profitabilityDICT["NPM"] = NPM table_row_EPS=table.findAll("tr")[7] td_EPS = table_row_EPS.findAll("td")[1] EPS = td_EPS.text result_profitabilityDICT["EPS"] = EPS table_row_NASPS=table.findAll("tr")[8] td_NASPS = table_row_NASPS.findAll("td")[1] NASPS = td_NASPS.text result_profitabilityDICT["NASPS"] = NASPS table_row_ROW=table.findAll("tr")[9] td_ROE = table_row_ROW.findAll("td")[1] ROE = td_ROE.text result_profitabilityDICT["ROE"] = ROE table_row_ROA=table.findAll("tr")[11] td_ROA = table_row_ROA.findAll("td")[1] ROA = td_ROA.text result_profitabilityDICT["ROA"] = ROA return result_profitabilityDICT def safety(symbol): URL = "https://goodinfo.tw/StockInfo/StockFinDetail.asp?RPT_CAT=XX_M_QUAR_ACC&STOCK_ID="+ symbol headers = {'user-agent': 'Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/52.0.2743.116 Safari/537.36'} r = requests.post(url=URL,headers=headers) html =BeautifulSoup(r.content, "html.parser") result_safetyDICT = {} table = html.findAll("table")[16] table_row_quarter=table.findAll("tr")[75] th_quarter = table_row_quarter.findAll("td")[1] quarter = th_quarter.text result_safetyDICT["quarter"] = quarter table_row_CR=table.findAll("tr")[76] td_CR = table_row_CR.findAll("td")[1] CR = td_CR.text result_safetyDICT["CR"] = CR table_row_QR=table.findAll("tr")[77] td_QR = table_row_QR.findAll("td")[1] QR = td_QR.text result_safetyDICT["QR"] = QR table_row_current_ratio=table.findAll("tr")[78] td_current_ratio = table_row_current_ratio.findAll("td")[1] current_ratio = td_current_ratio.text result_safetyDICT["current_ratio"] = current_ratio table_row_ICR=table.findAll("tr")[79] td_ICR = table_row_ICR.findAll("td")[1] ICR = td_ICR.text result_safetyDICT["ICR"] = ICR table_row_OCFR=table.findAll("tr")[80] td_OCFR = table_row_OCFR.findAll("td")[1] OCFR = td_OCFR.text result_safetyDICT["OCFR"] = OCFR table_row_DR=table.findAll("tr")[56] td_DR = table_row_DR.findAll("td")[1] DR = td_DR.text result_safetyDICT["DR"] = DR return result_safetyDICT
32.474178
134
0.675293
0
0
0
0
0
0
0
0
1,357
0.196183
3c062192bd225720274ca7e3b61333f806b3a7b1
6,781
py
Python
tests/constants.py
phihos/Python-OpenVPN-LDAP-Auth
87dd986f49555d0fb50ad8d991cf02092a9d55dc
[ "MIT" ]
1
2021-12-17T14:54:36.000Z
2021-12-17T14:54:36.000Z
tests/constants.py
phihos/python-openvpn-ldap-auth
87dd986f49555d0fb50ad8d991cf02092a9d55dc
[ "MIT" ]
null
null
null
tests/constants.py
phihos/python-openvpn-ldap-auth
87dd986f49555d0fb50ad8d991cf02092a9d55dc
[ "MIT" ]
null
null
null
import os import shutil from datetime import datetime # INPUT PARAMS LDAP_URL = os.environ['TEST_LDAP_URL'] LDAP_BASE_DN = os.environ['TEST_LDAP_BASE_DN'] LDAP_ADMIN_DN = os.environ['TEST_LDAP_ADMIN_DN'] LDAP_ADMIN_PASSWORD = os.environ['TEST_LDAP_ADMIN_PASSWORD'] LDAP_BIND_TIMEOUT = os.environ.get('TEST_LDAP_BIND_TIMEOUT', 5) OPENVPN_SERVER_START_TIMEOUT = os.environ.get('TEST_OPENVPN_SERVER_START_TIMEOUT', 5) OPENVPN_CLIENT_CONNECT_TIMEOUT = os.environ.get('TEST_OPENVPN_CLIENT_CONNECT_TIMEOUT', 2) TEST_TIMEOUT = os.environ.get('TEST_TIMEOUT', 10) TEST_PROMPT_DEFAULT_TIMEOUT = os.environ.get('TEST_PROMPT_DEFAULT_TIMEOUT', 3) OPENVPN_BINARY = os.environ.get('TEST_OPENVPN_BINARY', shutil.which('openvpn')) PYTHON_VERSION = os.environ.get('python_version', 'please set "python_version" in the env vars') OPENVPN_VERSION = os.environ.get('openvpn_version', 'please set "openvpn_version" in the env vars') # PATHS SCRIPT_DIR = os.path.dirname(os.path.realpath(__file__)) AUTH_SCRIPT_PATH = shutil.which('openvpn-ldap-auth') AUTH_SCRIPT_PATH_PYINSTALLER = shutil.which('openvpn-ldap-auth-pyinstaller') BENCHMARK_DIR = os.path.join( SCRIPT_DIR, os.pardir, 'benchmark', f"python{PYTHON_VERSION}-openvpn{OPENVPN_VERSION}-{datetime.now().strftime('%Y-%m-%d-%H-%M-%S')}" ) # CONSTANTS: SERVER SETUP OPENVPN_SERVER_PORT = 1194 OPENVPN_SERVER_DH_FILE = os.path.realpath(os.path.join(SCRIPT_DIR, 'resources', 'server', 'dh2048.pem')) OPENVPN_SERVER_CA_FILE = os.path.realpath(os.path.join(SCRIPT_DIR, 'resources', 'server', 'ca.crt')) OPENVPN_SERVER_CERT_FILE = os.path.realpath(os.path.join(SCRIPT_DIR, 'resources', 'server', 'server.crt')) OPENVPN_SERVER_KEY_FILE = os.path.realpath(os.path.join(SCRIPT_DIR, 'resources', 'server', 'server.key')) OPENVPN_SERVER_CHALLENGE_RESPONSE_PROMPT = 'Enter challenge response' OPENVPN_SERVER_LDAP_CONFIG_PATH = '/etc/openvpn/ldap.yaml' OPENVPN_SERVER_LDAP_C_CONFIG_PATH = '/etc/openvpn/ldap.conf' # CONSTANTS: CMD ARGS OPENVPN_SERVER_ARGS = ['--mode', 'server', '--server', '10.5.99.0', '255.255.255.0', '--dev', 'tun', '--port', str(OPENVPN_SERVER_PORT), '--verb', '4', '--keepalive', '10', '120', '--verify-client-cert', 'none', '--tls-server', '--dh', OPENVPN_SERVER_DH_FILE, '--ca', OPENVPN_SERVER_CA_FILE, '--cert', OPENVPN_SERVER_CERT_FILE, '--key', OPENVPN_SERVER_KEY_FILE, '--script-security', '3', '--user', 'root', '--group', 'root', '--duplicate-cn', '--max-clients', '1000', '--status', 'openvpn-status.log', '--topology', 'subnet'] OPENVPN_SERVER_ARGS_VIA_FILE = OPENVPN_SERVER_ARGS + ['--auth-user-pass-verify', AUTH_SCRIPT_PATH, 'via-file'] OPENVPN_SERVER_ARGS_VIA_ENV = OPENVPN_SERVER_ARGS + ['--auth-user-pass-verify', AUTH_SCRIPT_PATH, 'via-env'] OPENVPN_SERVER_ARGS_VIA_FILE_PYINSTALLER = OPENVPN_SERVER_ARGS + ['--auth-user-pass-verify', AUTH_SCRIPT_PATH_PYINSTALLER, 'via-file'] OPENVPN_SERVER_ARGS_VIA_ENV_PYINSTALLER = OPENVPN_SERVER_ARGS + ['--auth-user-pass-verify', AUTH_SCRIPT_PATH_PYINSTALLER, 'via-env'] OPENVPN_SERVER_ARGS_C_PLUGIN = OPENVPN_SERVER_ARGS + ['--plugin', '/usr/lib/openvpn/openvpn-auth-ldap.so', OPENVPN_SERVER_LDAP_C_CONFIG_PATH, 'login', '--username-as-common-name'] OPENVPN_CLIENT_ARGS = ( '--client', '--dev', 'tun', '--verb', '5', '--proto', 'udp', '--remote', '127.0.0.1', str(OPENVPN_SERVER_PORT), '--nobind', '--ifconfig-noexec', '--route-noexec', '--route-nopull', '--ca', OPENVPN_SERVER_CA_FILE, '--auth-user-pass', '--explicit-exit-notify', '1', '--keepalive', '10', '120', ) OPENVPN_CLIENT_ARGS_WITH_CHALLENGE = OPENVPN_CLIENT_ARGS + ('--static-challenge', OPENVPN_SERVER_CHALLENGE_RESPONSE_PROMPT, '1') OPENVPN_CLIENT_ARGS_WITHOUT_CHALLENGE = OPENVPN_CLIENT_ARGS # CONSTANTS: ldap.yaml CONFIGS CONFIG_BASE = { 'ldap': { 'url': LDAP_URL, 'bind_dn': LDAP_ADMIN_DN, 'password': LDAP_ADMIN_PASSWORD, }, 'authorization': { 'base_dn': LDAP_BASE_DN, 'search_filter': '(uid={})' } } CONFIG_CHALLENGE_RESPONSE_APPEND = {**CONFIG_BASE, **{ 'authorization': { 'base_dn': LDAP_BASE_DN, 'static_challenge': 'append', } }} CONFIG_CHALLENGE_RESPONSE_PREPEND = {**CONFIG_BASE, **{ 'authorization': { 'base_dn': LDAP_BASE_DN, 'static_challenge': 'prepend', } }} CONFIG_CHALLENGE_RESPONSE_IGNORE = {**CONFIG_BASE, **{ 'authorization': { 'base_dn': LDAP_BASE_DN, 'static_challenge': 'ignore', } }} CONFIG_C = f"""<LDAP> URL "{LDAP_URL}" BindDN {LDAP_ADMIN_DN} Password {LDAP_ADMIN_PASSWORD} Timeout 15 TLSEnable no FollowReferrals yes </LDAP> <Authorization> BaseDN "{LDAP_BASE_DN}" SearchFilter "(uid=%u)" RequireGroup false <Group> BaseDN "{LDAP_BASE_DN}" SearchFilter "(|(cn=developers)(cn=artists))" MemberAttribute member </Group> </Authorization> """ # CONSTANTS: TEST CREDENTIALS TEST_USERNAME = 'testuser' TEST_USER_DN_TEMPLATE = "uid={},{}" TEST_USER_DN = TEST_USER_DN_TEMPLATE.format(TEST_USERNAME, LDAP_BASE_DN) TEST_USER_PASSWORD = 'testpass' TEST_USER_WRONG_PASSWORD = 'wrong_password' # CONSTANTS: EXPECTED OPENVPN LOG FRAGMENTS OPENVPN_LOG_SERVER_INIT_COMPLETE = 'Initialization Sequence Completed' OPENVPN_LOG_CLIENT_INIT_COMPLETE = 'Initialization Sequence Completed' OPENVPN_LOG_AUTH_SUCCEEDED_SERVER = 'authentication succeeded for username' OPENVPN_LOG_AUTH_SUCCEEDED_CLIENT = 'Initialization Sequence Completed' OPENVPN_LOG_AUTH_FAILED_SERVER = 'verification failed for peer' OPENVPN_LOG_AUTH_FAILED_CLIENT = 'AUTH_FAILED' # CONSTANTS: BENCHMARK CSV BENCHMARK_CSV_HEADER_LABEL = 'label' BENCHMARK_CSV_HEADER_PYTHON = 'python_version' BENCHMARK_CSV_HEADER_OPENVPN = 'openvpn_version' BENCHMARK_CSV_HEADER_LOGINS = 'concurrent_logins' BENCHMARK_CSV_HEADER_MIN = 'min' BENCHMARK_CSV_HEADER_MAX = 'max' BENCHMARK_CSV_HEADER_AVG = 'avg' BENCHMARK_CSV_HEADERS = (BENCHMARK_CSV_HEADER_LABEL, BENCHMARK_CSV_HEADER_PYTHON, BENCHMARK_CSV_HEADER_OPENVPN, BENCHMARK_CSV_HEADER_LOGINS, BENCHMARK_CSV_HEADER_MIN, BENCHMARK_CSV_HEADER_MAX, BENCHMARK_CSV_HEADER_AVG)
46.765517
118
0.668191
0
0
0
0
0
0
0
0
2,612
0.385194
3c06dc2f7a1273c76e68bacba57d4a3e26a88d66
1,377
py
Python
http_utils/recs/top_popular_recommendation_handler.py
drayvs/grouple-recsys-production
5141bacd5dc64e023059292faff5bfdefefd9f23
[ "MIT" ]
null
null
null
http_utils/recs/top_popular_recommendation_handler.py
drayvs/grouple-recsys-production
5141bacd5dc64e023059292faff5bfdefefd9f23
[ "MIT" ]
null
null
null
http_utils/recs/top_popular_recommendation_handler.py
drayvs/grouple-recsys-production
5141bacd5dc64e023059292faff5bfdefefd9f23
[ "MIT" ]
null
null
null
from concurrent.futures import ThreadPoolExecutor from tornado.concurrent import run_on_executor from webargs import fields from webargs.tornadoparser import use_args from loguru import logger from http_utils.base import BaseHandler, MAX_THREADS class TopPopularRecommendationHandler(BaseHandler): executor = ThreadPoolExecutor(MAX_THREADS) def initialize(self, **kwargs): self.loader = kwargs['loader'] super().initialize(**kwargs) def get_top_popular(self, n): return self.loader.top_popular[:n] @run_on_executor() @use_args({'n_recs': fields.Int(required=False, missing=20)}, location='querystring') @logger.catch def get(self, reqargs): # Returns n top popular items. default n=20 n_recs = reqargs['n_recs'] logger.info(f'topPopular n_recs={n_recs}') model, mapper = self.get_model_and_mapper() if mapper is None: return self.write({'error': 'Model is not ready yet'}) make_item = lambda idx, score: {'itemId': idx, 'siteId': self.config.site_id, 'score': score, 'item_id': idx, 'site_id': self.config.site_id} items = [make_item(item, None) for item in self.get_top_popular(n_recs)] return self.write({'isTopPop': 1, 'items': items, 'args': reqargs, 'is_top_pop': 1})
37.216216
102
0.658678
1,128
0.819172
0
0
833
0.604938
0
0
216
0.156863
3c07a5241ac429798f7ed558bc1d6c02e0ff5253
662
py
Python
NucleicAcids/dssrBlock3.py
MooersLab/jupyterlabpymolpysnipsplus
b886750d63372434df53d4d6d7cdad6cb02ae4e7
[ "MIT" ]
null
null
null
NucleicAcids/dssrBlock3.py
MooersLab/jupyterlabpymolpysnipsplus
b886750d63372434df53d4d6d7cdad6cb02ae4e7
[ "MIT" ]
null
null
null
NucleicAcids/dssrBlock3.py
MooersLab/jupyterlabpymolpysnipsplus
b886750d63372434df53d4d6d7cdad6cb02ae4e7
[ "MIT" ]
null
null
null
# Description: DSSR block representation for a multi-state example after loading the dssr_block.py script by Thomas Holder. The x3dna-dssr executable needs to be in the PATH. Edit the path to Thomas Holder's block script. # Source: Generated while helping Miranda Adams at U of Saint Louis. """ cmd.do('reinitialize;') cmd.do('run ${1:"/Users/blaine/.pymol/startup/dssr_block.py"};') cmd.do('fetch ${2:2n2d}, async=0;') cmd.do('dssr_block ${2:2n2d}, 0;') cmd.do('set all_states;') """ cmd.do('reinitialize;') cmd.do('run "/Users/blaine/.pymol/startup/dssr_block.py";') cmd.do('fetch 2n2d, async=0;') cmd.do('dssr_block 2n2d, 0;') cmd.do('set all_states;')
38.941176
222
0.712991
0
0
0
0
0
0
0
0
612
0.924471
3c091171ce7d459ab7bdf55ac4292ac21cd0a68c
12,007
py
Python
custom_components/climate/gree.py
ardeus-ua/gree-python-api
ecfbdef34ff99fc0822f70be17cdeb6c625fd276
[ "MIT" ]
1
2018-12-10T17:32:48.000Z
2018-12-10T17:32:48.000Z
custom_components/climate/gree.py
ardeus-ua/gree-python-api
ecfbdef34ff99fc0822f70be17cdeb6c625fd276
[ "MIT" ]
null
null
null
custom_components/climate/gree.py
ardeus-ua/gree-python-api
ecfbdef34ff99fc0822f70be17cdeb6c625fd276
[ "MIT" ]
1
2020-08-11T14:51:04.000Z
2020-08-11T14:51:04.000Z
import asyncio import logging import binascii import socket import os.path import voluptuous as vol import homeassistant.helpers.config_validation as cv from homeassistant.components.climate import (DOMAIN, ClimateDevice, PLATFORM_SCHEMA, STATE_IDLE, STATE_HEAT, STATE_COOL, STATE_AUTO, STATE_DRY, SUPPORT_OPERATION_MODE, SUPPORT_TARGET_TEMPERATURE, SUPPORT_FAN_MODE, SUPPORT_SWING_MODE) from homeassistant.const import (ATTR_UNIT_OF_MEASUREMENT, ATTR_TEMPERATURE, CONF_NAME, CONF_HOST, CONF_MAC, CONF_TIMEOUT, CONF_CUSTOMIZE) from homeassistant.helpers.event import (async_track_state_change) from homeassistant.core import callback from homeassistant.helpers.restore_state import RestoreEntity from configparser import ConfigParser from base64 import b64encode, b64decode REQUIREMENTS = ['gree==0.3.2'] _LOGGER = logging.getLogger(__name__) SUPPORT_FLAGS = SUPPORT_TARGET_TEMPERATURE | SUPPORT_OPERATION_MODE | SUPPORT_FAN_MODE | SUPPORT_SWING_MODE CONF_UNIQUE_KEY = 'unique_key' CONF_MIN_TEMP = 'min_temp' CONF_MAX_TEMP = 'max_temp' CONF_TARGET_TEMP = 'target_temp' CONF_TEMP_SENSOR = 'temp_sensor' CONF_OPERATIONS = 'operations' CONF_FAN_MODES = 'fan_modes' CONF_SWING_LIST = 'swing_list' CONF_DEFAULT_OPERATION = 'default_operation' CONF_DEFAULT_FAN_MODE = 'default_fan_mode' CONF_DEFAULT_SWING_MODE = 'default_swing_mode' CONF_DEFAULT_OPERATION_FROM_IDLE = 'default_operation_from_idle' STATE_FAN = 'fan' STATE_OFF = 'off' DEFAULT_NAME = 'GREE AC Climate' DEFAULT_TIMEOUT = 10 DEFAULT_RETRY = 3 DEFAULT_MIN_TEMP = 16 DEFAULT_MAX_TEMP = 30 DEFAULT_TARGET_TEMP = 20 DEFAULT_OPERATION_LIST = [STATE_OFF, STATE_AUTO, STATE_COOL, STATE_DRY, STATE_FAN, STATE_HEAT] OPERATION_LIST_MAP = { STATE_AUTO: 0, STATE_COOL: 1, STATE_DRY: 2, STATE_FAN: 3, STATE_HEAT: 4, } DEFAULT_FAN_MODE_LIST = ['auto', 'low', 'medium-low', 'medium', 'medium-high', 'high'] FAN_MODE_MAP = { 'auto': 0, 'low': 1, 'medium-low': 2, 'medium': 3, 'medium-high': 4, 'high': 5 } DEFAULT_SWING_LIST = ['default', 'swing-full-range', 'fixed-up', 'fixed-middle', 'fixed-down', 'swing-up', 'swing-middle', 'swing-down'] SWING_MAP = { 'default': 0, 'swing-full-range': 1, 'fixed-up': 2, 'fixed-middle': 4, 'fixed-down': 6, 'swing-up': 11, 'swing-middle': 9, 'swing-down': 7 } DEFAULT_OPERATION = 'idle' DEFAULT_FAN_MODE = 'auto' DEFAULT_SWING_MODE = 'default' PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, vol.Required(CONF_HOST): cv.string, vol.Required(CONF_MAC): cv.string, vol.Required(CONF_UNIQUE_KEY): cv.string, vol.Optional(CONF_TIMEOUT, default=DEFAULT_TIMEOUT): cv.positive_int, vol.Optional(CONF_MIN_TEMP, default=DEFAULT_MIN_TEMP): cv.positive_int, vol.Optional(CONF_MAX_TEMP, default=DEFAULT_MAX_TEMP): cv.positive_int, vol.Optional(CONF_TARGET_TEMP, default=DEFAULT_TARGET_TEMP): cv.positive_int, vol.Optional(CONF_TEMP_SENSOR): cv.entity_id, vol.Optional(CONF_DEFAULT_OPERATION, default=DEFAULT_OPERATION): cv.string, vol.Optional(CONF_DEFAULT_FAN_MODE, default=DEFAULT_FAN_MODE): cv.string, vol.Optional(CONF_DEFAULT_SWING_MODE, default=DEFAULT_SWING_MODE): cv.string, vol.Optional(CONF_DEFAULT_OPERATION_FROM_IDLE): cv.string }) @asyncio.coroutine def async_setup_platform(hass, config, async_add_devices, discovery_info=None): """Set up the GREE platform.""" name = config.get(CONF_NAME) ip_addr = config.get(CONF_HOST) mac_addr = config.get(CONF_MAC) unique_key = config.get(CONF_UNIQUE_KEY).encode() min_temp = config.get(CONF_MIN_TEMP) max_temp = config.get(CONF_MAX_TEMP) target_temp = config.get(CONF_TARGET_TEMP) temp_sensor_entity_id = config.get(CONF_TEMP_SENSOR) operation_list = DEFAULT_OPERATION_LIST swing_list = DEFAULT_SWING_LIST fan_list = DEFAULT_FAN_MODE_LIST default_operation = config.get(CONF_DEFAULT_OPERATION) default_fan_mode = config.get(CONF_DEFAULT_FAN_MODE) default_swing_mode = config.get(CONF_DEFAULT_SWING_MODE) default_operation_from_idle = config.get(CONF_DEFAULT_OPERATION_FROM_IDLE) import gree gree_device = gree.GreeDevice(mac_addr, unique_key, ip_addr) try: gree_device.update_status() except socket.timeout: _LOGGER.error("Failed to connect to Gree Device") async_add_devices([ GreeClimate(hass, name, gree_device, min_temp, max_temp, target_temp, temp_sensor_entity_id, operation_list, fan_list, swing_list, default_operation, default_fan_mode, default_swing_mode, default_operation_from_idle) ]) ATTR_VALUE = 'value' DEFAULT_VALUE = True def gree_set_health(call): value = call.data.get(ATTR_VALUE, DEFAULT_VALUE) gree_device.send_command(health_mode=bool(value)) hass.services.async_register(DOMAIN, 'gree_set_health', gree_set_health) class GreeClimate(ClimateDevice): def __init__(self, hass, name, gree_device, min_temp, max_temp, target_temp, temp_sensor_entity_id, operation_list, fan_list, swing_list, default_operation, default_fan_mode, default_swing_mode, default_operation_from_idle): """Initialize the Gree Climate device.""" self.hass = hass self._name = name self._min_temp = min_temp self._max_temp = max_temp self._target_temperature = target_temp self._target_temperature_step = 1 self._unit_of_measurement = hass.config.units.temperature_unit self._current_temperature = 0 self._temp_sensor_entity_id = temp_sensor_entity_id self._current_operation = default_operation self._current_fan_mode = default_fan_mode self._current_swing_mode = default_swing_mode self._operation_list = operation_list self._fan_list = fan_list self._swing_list = swing_list self._default_operation_from_idle = default_operation_from_idle self._gree_device = gree_device if temp_sensor_entity_id: async_track_state_change( hass, temp_sensor_entity_id, self._async_temp_sensor_changed) sensor_state = hass.states.get(temp_sensor_entity_id) if sensor_state: self._async_update_current_temp(sensor_state) def send_command(self): power = True mode = None operation = self._current_operation.lower() if operation == 'off': power = False else: mode = OPERATION_LIST_MAP[operation] fan_speed = FAN_MODE_MAP[self._current_fan_mode.lower()] temperature = self._target_temperature swing = SWING_MAP[self._current_swing_mode.lower()] for retry in range(DEFAULT_RETRY): try: self._gree_device.send_command(power_on=power, temperature=temperature, fan_speed=fan_speed, mode=mode, swing=swing) except (socket.timeout, ValueError): try: self._gree_device.update_status() except socket.timeout: if retry == DEFAULT_RETRY-1: _LOGGER.error("Failed to send command to Gree Device") @asyncio.coroutine def _async_temp_sensor_changed(self, entity_id, old_state, new_state): """Handle temperature changes.""" if new_state is None: return self._async_update_current_temp(new_state) yield from self.async_update_ha_state() @callback def _async_update_current_temp(self, state): """Update thermostat with latest state from sensor.""" unit = state.attributes.get(ATTR_UNIT_OF_MEASUREMENT) try: _state = state.state if self.represents_float(_state): self._current_temperature = self.hass.config.units.temperature( float(_state), unit) except ValueError as ex: _LOGGER.error('Unable to update from sensor: %s', ex) def represents_float(self, s): try: float(s) return True except ValueError: return False @property def should_poll(self): """Return the polling state.""" return False @property def name(self): """Return the name of the climate device.""" return self._name @property def temperature_unit(self): """Return the unit of measurement.""" return self._unit_of_measurement @property def current_temperature(self): """Return the current temperature.""" return self._current_temperature @property def min_temp(self): """Return the polling state.""" return self._min_temp @property def max_temp(self): """Return the polling state.""" return self._max_temp @property def target_temperature(self): """Return the temperature we try to reach.""" return self._target_temperature @property def target_temperature_step(self): """Return the supported step of target temperature.""" return self._target_temperature_step @property def current_operation(self): """Return current operation ie. heat, cool, idle.""" return self._current_operation @property def operation_list(self): """Return the list of available operation modes.""" return self._operation_list @property def swing_list(self): """Return the list of available swing modes.""" return self._swing_list @property def current_fan_mode(self): """Return the fan setting.""" return self._current_fan_mode @property def current_swing_mode(self): """Return current swing mode.""" return self._current_swing_mode @property def fan_list(self): """Return the list of available fan modes.""" return self._fan_list @property def supported_features(self): """Return the list of supported features.""" return SUPPORT_FLAGS def set_temperature(self, **kwargs): """Set new target temperatures.""" if kwargs.get(ATTR_TEMPERATURE) is not None: self._target_temperature = kwargs.get(ATTR_TEMPERATURE) if not (self._current_operation.lower() == 'off' or self._current_operation.lower() == 'idle'): self.send_command() elif self._default_operation_from_idle is not None: self.set_operation_mode(self._default_operation_from_idle) self.schedule_update_ha_state() def set_fan_mode(self, fan): """Set new target temperature.""" self._current_fan_mode = fan if not (self._current_operation.lower() == 'off' or self._current_operation.lower() == 'idle'): self.send_command() self.schedule_update_ha_state() def set_operation_mode(self, operation_mode): """Set new target temperature.""" self._current_operation = operation_mode self.send_command() self.schedule_update_ha_state() def set_swing_mode(self, swing_mode): """Set new target swing operation.""" self._current_swing_mode = swing_mode self.send_command() self.schedule_update_ha_state() @asyncio.coroutine def async_added_to_hass(self): state = yield from RestoreEntity(self.hass, self.entity_id) if state is not None: self._target_temperature = state.attributes['temperature'] self._current_operation = state.attributes['operation_mode'] self._current_fan_mode = state.attributes['fan_mode'] self._current_swing_mode = state.attributes['swing_mode']
34.404011
228
0.68077
7,080
0.589656
678
0.056467
4,686
0.390272
0
0
1,653
0.13767
3c09d1eafa4175a7dae038754ad5b4a09e871bc9
6,492
py
Python
overhang/dnastorage_utils/system/header.py
dna-storage/DINOS
65f4142e80d646d7eefa3fc16d747d21ec43fbbe
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
overhang/dnastorage_utils/system/header.py
dna-storage/DINOS
65f4142e80d646d7eefa3fc16d747d21ec43fbbe
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
overhang/dnastorage_utils/system/header.py
dna-storage/DINOS
65f4142e80d646d7eefa3fc16d747d21ec43fbbe
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
from dnastorage.codec.base_conversion import convertIntToBytes,convertBytesToInt from dnastorage.arch.builder import * import editdistance as ed #from dnastorage.primer.primer_util import edit_distance from io import BytesIO from dnastorage.util.packetizedfile import * import math import struct from dnastorage.system.formats import * ### Designed to fit on a single strand for most use cases ### ### Every header strand begins with special sequence that can't be used at the beginning of indices: ATCGATGC ### ### 1. 'ATCGATGC' [1] ### 2. short index - usually 0, 0-255, at most 16 strands [1] ### 3. major version (0-255) [1] ### 4. minor version (0-255) [1] ### 5. num bytes for size [1] ### 6. size [x] ### 7 num bytes for original filename [2] ### 8. null terminated string ### 9. encoding style [2] ### 10. length of remaining record (2 bytes) [2] ### 11. remaining record byte encoded [?] ### Pad to final width using arbitrary sequence system_version = { 'major': 0, 'minor':1 } magic_header = 'ATCGATGC' #'CCATCCAT' def encode_primer_diff(o,n): hdr = [] baseVal = { 'A': 0, 'C': 1, 'G':2, 'T':3 } assert len(o)==len(n) for i,(oo,nn) in enumerate(zip(o,n)): if oo != nn: hdr += [ (baseVal[nn] << 6) | (i&0x3F) ] if len(hdr) == 0: return [0] hdr = [len(hdr)] + hdr return hdr def decode_primer_diff(data,oprimer): sz = data[0] if sz==0: return oprimer,1 baseVal = [ 'A', 'C', 'G', 'T' ] nprimer = [ _ for _ in oprimer ] for i in range(sz): val = data[1+i] base = baseVal[(val&0xC0)>>6] pos = val&0x3F nprimer[pos] = base return "".join(nprimer),sz+1 def encode_size_and_value(val): data = [] if val==0: data += [1, 0] else: data += convertIntToBytes(int(math.ceil(math.log(val+1,2)/8.0)),1) data += convertIntToBytes(int(val),int(math.ceil(math.log(val+1,2)/8.0))) return data def decode_size_and_value(data,pos): #print "decode_size_and_value: ",pos, len(data) size_bytes = data[pos] val = convertBytesToInt(data[pos+1:pos+1+size_bytes]) return val,size_bytes+1 def encode_file_header_comments(filename,format_id,size,other_data,primer5,primer3): comment = "% dnastorage version {}.{}\n".format(system_version['major'],system_version['minor']) comment += "% {} \n".format(size) if len(filename) > 0: comment += "% {} \n".format(filename) else: comment += "% No filename recorded.\n" comment += "% 5-{} 3-{}\n".format(primer5,primer3) comment += "% Id-{} Description-{} \n".format(format_id,file_system_format_description(format_id)) comment += "% {} bytes of additional data \n".format(len(other_data)) return comment def encode_file_header(filename,format_id,size,other_data,primer5,primer3,fsmd_abbrev='FSMD'): data = [ system_version['major'], system_version['minor'] ] data += convertIntToBytes(int(math.ceil(math.log(size,2)/8.0)),1) data += convertIntToBytes(size,int(math.ceil(math.log(size,2)/8.0))) data += convertIntToBytes(len(filename)+1,2) data += [ ord(_) for _ in filename ] + [0] data += convertIntToBytes(format_id,2) data += convertIntToBytes(len(other_data),2) data += other_data #data += [0]*(80-len(data)) data = "".join([chr(x) for x in data]) #print "size of file header: ",len(data) pf = ReadPacketizedFilestream(BytesIO(data)) enc_func = file_system_encoder_by_abbrev(fsmd_abbrev) enc = enc_func(pf,primer5+magic_header,primer3) strands = [] for e in enc: if type(e) is list: for s in e: strands.append(s) else: strands.append(e) return strands def pick_nonheader_strands(strands,primer5): others = [] picks = [] for s in strands: if s.startswith(primer5): if s.startswith(primer5+magic_header): pass else: others.append(s) else: others.append(s) return others def pick_header_strands(strands,primer5): picks = [] others = [] for s in strands: if s.find(primer5+magic_header)!=-1: picks.append(s) elif s.find(primer5)!=-1: plen= s.find(primer5)+len(primer5) possible_hdr = s[plen:plen+len(magic_header)] if ed.eval(possible_hdr,magic_header) < 2: #ss = s[:] #ss[plen:plen+len(magic_header)] = magic_header picks.append(s) else: others.append(s) return picks,others def decode_file_header(strands,primer5,primer3,fsmd_abbrev='FSMD'): picks,_ = pick_header_strands(strands,primer5) #print picks b = BytesIO() fid = file_system_formatid_by_abbrev(fsmd_abbrev) packetsize = file_system_format_packetsize(fid) pf = WritePacketizedFilestream(b,packetsize,packetsize) dec_func = file_system_decoder_by_abbrev(fsmd_abbrev) dec = dec_func(pf,primer5+magic_header,primer3) for s in picks: #tmp = dec.decode_from_phys_to_strand(s) #print len(tmp),tmp dec.decode(s) dec.write() assert dec.complete data = [ ord(x) for x in b.getvalue() ] #print data assert data[0] == system_version['major'] assert data[1] == system_version['minor'] header = {} header['version'] = [ data[0], data[1] ] size_bytes = data[2] pos = 3 header['size'] = convertBytesToInt(data[pos:pos+size_bytes]) pos += size_bytes size_filename = convertBytesToInt(data[pos:pos+2]) pos+=2 header['filename'] = "".join([chr(x) for x in data[pos:pos+size_filename]]) pos += size_filename header['formatid'] = convertBytesToInt(data[pos:pos+2]) pos += 2 size_other_data = convertBytesToInt(data[pos:pos+2]) pos += 2 header['other_data'] = [ x for x in data[pos:pos+size_other_data] ] #print "size_other_data={}".format(size_other_data) #print "len(other_data)={}".format(len(header['other_data'])) return header if __name__ == "__main__": strands = encode_file_header("",0xA,2,[1,2,3,4],"A"*19+"G","T"*19+"G") for s in strands: print "{}: strand={}".format(len(s), s) print decode_file_header(strands,"A"*19+"G","T"*19+"G")
31.211538
109
0.608595
0
0
0
0
0
0
0
0
1,397
0.215188
3c0c8d1fb6b9a95e3b3506596eae5b34be7226ac
2,386
py
Python
numba/containers/typedtuple.py
liuzhenhai/numba
855a2b262ae3d82bd6ac1c3e1c0acb36ee2e2acf
[ "BSD-2-Clause" ]
1
2015-01-29T06:52:36.000Z
2015-01-29T06:52:36.000Z
numba/containers/typedtuple.py
shiquanwang/numba
a41c85fdd7d6abf8ea1ebe9116939ddc2217193b
[ "BSD-2-Clause" ]
null
null
null
numba/containers/typedtuple.py
shiquanwang/numba
a41c85fdd7d6abf8ea1ebe9116939ddc2217193b
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import print_function, division, absolute_import from functools import partial import numba as nb from numba.containers import orderedcontainer import numpy as np INITIAL_BUFSIZE = 5 def notimplemented(msg): raise NotImplementedError("'%s' method of type 'typedtuple'" % msg) _tuple_cache = {} #----------------------------------------------------------------------- # Runtime Constructor #----------------------------------------------------------------------- def typedtuple(item_type, iterable=None, _tuple_cache=_tuple_cache): """ >>> typedtuple(nb.int_) () >>> ttuple = typedtuple(nb.int_, range(10)) >>> ttuple (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) >>> ttuple[5] 5L >>> typedtuple(nb.float_, range(10)) (0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0) """ typedtuple_ctor = compile_typedtuple(item_type) return typedtuple_ctor(iterable) #----------------------------------------------------------------------- # Typedlist implementation #----------------------------------------------------------------------- def compile_typedtuple(item_type, _tuple_cache=_tuple_cache): if item_type in _tuple_cache: return _tuple_cache[item_type] dtype = item_type.get_dtype() methods = orderedcontainer.container_methods(item_type, notimplemented) @nb.jit(warn=False) class typedtuple(object): @nb.void(nb.object_) def __init__(self, iterable): self.size = 0 # TODO: Use length hint of iterable for initial buffer size self.buf = np.empty(INITIAL_BUFSIZE, dtype=dtype) if iterable != None: self.__extend(iterable) __getitem__ = methods['getitem'] __append = methods['append'] index = methods['index'] count = methods['count'] @nb.void(nb.object_) def __extend(self, iterable): for obj in iterable: self.__append(obj) @nb.Py_ssize_t() def __len__(self): return self.size @nb.c_string_type() def __repr__(self): buf = ", ".join([str(self.buf[i]) for i in range(self.size)]) return "(" + buf + ")" _tuple_cache[item_type] = typedtuple return typedtuple if __name__ == "__main__": import doctest doctest.testmod()
26.808989
75
0.544007
858
0.359598
0
0
882
0.369656
0
0
768
0.321878
3c0cdb9dded53f14973b9af474148c0b7d6c7d6f
1,353
py
Python
pythondata_cpu_minerva/__init__.py
litex-hub/litex-data-cpu-minerva
3896ce15f5d6420f7797b1f95249f948533bf542
[ "BSD-2-Clause" ]
null
null
null
pythondata_cpu_minerva/__init__.py
litex-hub/litex-data-cpu-minerva
3896ce15f5d6420f7797b1f95249f948533bf542
[ "BSD-2-Clause" ]
null
null
null
pythondata_cpu_minerva/__init__.py
litex-hub/litex-data-cpu-minerva
3896ce15f5d6420f7797b1f95249f948533bf542
[ "BSD-2-Clause" ]
null
null
null
import os.path __dir__ = os.path.split(os.path.abspath(os.path.realpath(__file__)))[0] data_location = os.path.join(__dir__, "sources") src = "https://github.com/lambdaconcept/minerva" # Module version version_str = "0.0.post260" version_tuple = (0, 0, 260) try: from packaging.version import Version as V pversion = V("0.0.post260") except ImportError: pass # Data version info data_version_str = "0.0.post120" data_version_tuple = (0, 0, 120) try: from packaging.version import Version as V pdata_version = V("0.0.post120") except ImportError: pass data_git_hash = "08251daae42ec8cfc54fb82865a5942727186192" data_git_describe = "v0.0-120-g08251da" data_git_msg = """\ commit 08251daae42ec8cfc54fb82865a5942727186192 Author: Jean-François Nguyen <jf@jfng.fr> Date: Tue Apr 5 15:33:21 2022 +0200 stage: fix commit 6c3294b9. """ # Tool version info tool_version_str = "0.0.post140" tool_version_tuple = (0, 0, 140) try: from packaging.version import Version as V ptool_version = V("0.0.post140") except ImportError: pass def data_file(f): """Get absolute path for file inside pythondata_cpu_minerva.""" fn = os.path.join(data_location, f) fn = os.path.abspath(fn) if not os.path.exists(fn): raise IOError("File {f} doesn't exist in pythondata_cpu_minerva".format(f)) return fn
26.529412
83
0.719882
0
0
0
0
0
0
0
0
528
0.389956
3c0d77712915106228bf8f6e63542f7a42d1d3f1
1,602
py
Python
config.py
jasonyanglu/fedavgpy
cefbe5854f02d3df1197d849872286439c86e949
[ "MIT" ]
1
2022-03-18T15:27:29.000Z
2022-03-18T15:27:29.000Z
config.py
jasonyanglu/fedavgpy
cefbe5854f02d3df1197d849872286439c86e949
[ "MIT" ]
null
null
null
config.py
jasonyanglu/fedavgpy
cefbe5854f02d3df1197d849872286439c86e949
[ "MIT" ]
null
null
null
# GLOBAL PARAMETERS DATASETS = ['sent140', 'nist', 'shakespeare', 'mnist', 'synthetic', 'cifar10'] TRAINERS = {'fedavg': 'FedAvgTrainer', 'fedavg4': 'FedAvg4Trainer', 'fedavg5': 'FedAvg5Trainer', 'fedavg9': 'FedAvg9Trainer', 'fedavg_imba': 'FedAvgTrainerImba',} OPTIMIZERS = TRAINERS.keys() class ModelConfig(object): def __init__(self): pass def __call__(self, dataset, model): dataset = dataset.split('_')[0] if dataset == 'mnist' or dataset == 'nist': if model == 'logistic' or model == '2nn': return {'input_shape': 784, 'num_class': 10} else: return {'input_shape': (1, 28, 28), 'num_class': 10} elif dataset == 'cifar10': return {'input_shape': (3, 32, 32), 'num_class': 10} elif dataset == 'sent140': sent140 = {'bag_dnn': {'num_class': 2}, 'stacked_lstm': {'seq_len': 25, 'num_class': 2, 'num_hidden': 100}, 'stacked_lstm_no_embeddings': {'seq_len': 25, 'num_class': 2, 'num_hidden': 100} } return sent140[model] elif dataset == 'shakespeare': shakespeare = {'stacked_lstm': {'seq_len': 80, 'emb_dim': 80, 'num_hidden': 256} } return shakespeare[model] elif dataset == 'synthetic': return {'input_shape': 60, 'num_class': 10} else: raise ValueError('Not support dataset {}!'.format(dataset)) MODEL_PARAMS = ModelConfig()
38.142857
103
0.529963
1,217
0.759675
0
0
0
0
0
0
568
0.354557
3c0dac01937088c28952c4c1e01fa4a3c19fcaa9
3,266
py
Python
Gan/gan.py
caiyueliang/CarClassification
a8d8051085c4e66ed3ed67e56360a515c9762cd5
[ "Apache-2.0" ]
null
null
null
Gan/gan.py
caiyueliang/CarClassification
a8d8051085c4e66ed3ed67e56360a515c9762cd5
[ "Apache-2.0" ]
null
null
null
Gan/gan.py
caiyueliang/CarClassification
a8d8051085c4e66ed3ed67e56360a515c9762cd5
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 from argparse import ArgumentParser import os import model_train from torchvision import models def parse_argvs(): parser = ArgumentParser(description='GAN') parser.add_argument('--data_path', type=str, help='data_path', default='./data') parser.add_argument('--num_workers', type=int, help='num_workers', default=1) parser.add_argument('--img_size', type=int, help='image_size', default=96) parser.add_argument('--batch_size', type=int, help='batch_size', default=32) parser.add_argument('--max_epoch', type=int, help='max_epoch', default=1000) parser.add_argument('--lr1', type=float, help='learning rate 1', default=2e-4) parser.add_argument('--lr2', type=float, help='learning rate 2', default=2e-4) parser.add_argument('--beta1', type=float, help='Adam beta1', default=0.5) parser.add_argument('--use_gpu', type=bool, help='use_gpu', default=True) parser.add_argument('--nz', type=int, help='noise_channel', default=100) parser.add_argument('--ngf', type=int, help='生成器feature map', default=64) parser.add_argument('--ndf', type=int, help='判别器feature map', default=64) parser.add_argument('--save_path', type=str, help='image save path', default='./images') parser.add_argument('--vis', type=bool, help='visdom可视化', default=True) parser.add_argument("--env", type=str, help="visdom的env", default='GAN') parser.add_argument('--plot_every', type=int, help='间隔20画一次', default=20) parser.add_argument('--debug_file', type=str, help='存在该文件夹、进入debug模式', default='./tmp/debug_gan') parser.add_argument('--d_every', type=int, help='每1个batch训练一次判别器', default=1) parser.add_argument('--g_every', type=int, help='每5个batch训练一次生成器', default=1) parser.add_argument('--decay_every', type=int, help='每10个epoch保存一次模型', default=10) parser.add_argument('--netd_path', type=str, help='model_path', default='./checkpoints/netd.pth') parser.add_argument('--best_netd_path', type=str, help='model_path', default='./checkpoints/netd_best.pth') parser.add_argument('--netg_path', type=str, help='model_path', default='./checkpoints/netg.pth') parser.add_argument('--best_netg_path', type=str, help='model_path', default='./checkpoints/netg_best.pth') parser.add_argument('--gen_img', type=str, help='gen_img', default='result.png') parser.add_argument('--gen_num', type=int, help='从512张生成的图片中保存最好的64张', default=64) parser.add_argument('--gen_search_num', type=int, help='gen_search_num', default=512) parser.add_argument('--gen_mean', type=int, help='噪声均值', default=0) parser.add_argument('--gen_std', type=int, help='噪声方差', default=1) input_args = parser.parse_args() print(input_args) return input_args if __name__ == '__main__': args = parse_argvs() # train_path = args.train_path # test_path = args.test_path # output_model_path = args.output_model_path # num_classes = args.classes_num # batch_size = args.batch_size # img_size = args.img_size # lr = args.lr # model = models.resnet18(num_classes=num_classes) # model = models.squeezenet1_1(num_classes=num_classes) model_train = model_train.ModuleTrain(opt=args) model_train.train() # model_train.test(show_img=True)
48.029412
111
0.709124
0
0
0
0
0
0
0
0
1,400
0.410076
3c1079153ceb5f7b4146c5df6cbab9e874e7d7f4
854
py
Python
Modulo 2/ex068.py
Werberty/Curso-em-Video-Python3
24c0299edd635fb9c2db2ecbaf8532d292f92d49
[ "MIT" ]
1
2022-03-06T11:37:47.000Z
2022-03-06T11:37:47.000Z
Modulo 2/ex068.py
Werberty/Curso-em-Video-Python3
24c0299edd635fb9c2db2ecbaf8532d292f92d49
[ "MIT" ]
null
null
null
Modulo 2/ex068.py
Werberty/Curso-em-Video-Python3
24c0299edd635fb9c2db2ecbaf8532d292f92d49
[ "MIT" ]
null
null
null
from random import randint print('-=-'*10) print('JOGO DO PAR OU IMPAR') cont = 0 while True: print('-=-' * 10) n = int(input('Digite um valor: ')) op = str(input('Par ou impar? [P/I] ')).upper().strip()[0] ia = randint(0, 10) res = n + ia print('-'*30) print(f'Você jogou {n} e o computador {ia}. Total de {res} ', end='') if res % 2 == 0: print('DEU PAR') print('-' * 30) if op == 'P': print('Você VENCEU!\nVamos jogar novamente...') cont += 1 else: break elif res % 2 != 0: print('DEU IMPAR') print('-' * 30) if op == 'I': print('Você VENCEU!\nVamos jogar novamente...') cont += 1 else: break print('Você PERDEU!') print('-=-' * 10) print(f'GAME OVER! Você venceu {cont} vez.')
25.878788
73
0.480094
0
0
0
0
0
0
0
0
305
0.355064
3c10cbd008220b779ffa61252edc4ab7bdc901a1
5,506
py
Python
server/inbox/views.py
amy-xiang/CMPUT404_PROJECT
cbcea0cd164d6377ede397e934f960505e8f347a
[ "W3C-20150513" ]
1
2021-04-06T22:35:53.000Z
2021-04-06T22:35:53.000Z
server/inbox/views.py
amy-xiang/CMPUT404_PROJECT
cbcea0cd164d6377ede397e934f960505e8f347a
[ "W3C-20150513" ]
null
null
null
server/inbox/views.py
amy-xiang/CMPUT404_PROJECT
cbcea0cd164d6377ede397e934f960505e8f347a
[ "W3C-20150513" ]
null
null
null
from django.core.exceptions import ValidationError from django.shortcuts import render, get_object_or_404 from django.db import IntegrityError from rest_framework import authentication, generics, permissions, status from rest_framework.exceptions import PermissionDenied from rest_framework.response import Response from posts.serializers import PostSerializer from author.serializers import AuthorProfileSerializer from main.models import Author from nodes.models import Node from main import utils from posts.models import Post from likes.models import Like from .models import Inbox from .serializers import InboxSerializer from urllib.parse import urlparse import requests import json # api/author/{AUTHOR_ID}/inbox/ class InboxView(generics.RetrieveUpdateDestroyAPIView): serializer_class = InboxSerializer authenticate_classes = (authentication.TokenAuthentication,) permission_classes = (permissions.IsAuthenticated,) def get_inbox(self): request_author_id = self.kwargs['author_id'] if self.request.user.id != request_author_id: raise PermissionDenied( detail={'error': ['You do not have permission to this inbox.']}) if not self.request.user.adminApproval: raise PermissionDenied( detail={'error': ['User has not been approved by admin.']}) return get_object_or_404(Inbox, author=Author.objects .get(id=self.request.user.id)) # GET: get Inbox of an user def get(self, request, *args, **kwargs): inbox = self.get_inbox() serializer = InboxSerializer(inbox, context={'request': request}) return Response(serializer.data) # POST: send a Post, Like or Follow to Inbox def post(self, request, *args, **kwargs): request_author_id = self.kwargs['author_id'] inbox_type = request.data.get('type') if inbox_type is not None: inbox_type = inbox_type.lower() host_name = request.get_host() if inbox_type == 'post': post_id = request.data.get('id') try: Inbox.objects.get(author=request_author_id).send_to_inbox(request.data) except Inbox.DoesNotExist as e: return Response({'error':'Author not found! Please check author_id in URL.'}, status=status.HTTP_404_NOT_FOUND) return Response({'data':f'Shared Post {post_id} with Author ' f'{request_author_id} on {host_name}.'}, status=status.HTTP_200_OK) elif inbox_type == 'like': id_url = request.data.get('object') parsed_uri = urlparse(id_url) object_host = '{uri.scheme}://{uri.netloc}/'.format(uri=parsed_uri) # Sending a LIKE from (us or remote server) to us if (object_host == utils.HOST): try: Inbox.objects.get(author=request_author_id).send_to_inbox(request.data) except Inbox.DoesNotExist as e: return Response({'error':'Author not found! Please check author_id in URL.'}, status=status.HTTP_404_NOT_FOUND) # Sending a LIKE from us to remote server else: try: remote_server = Node.objects.get(remote_server_url=object_host) except Node.DoesNotExist: return Response({'error':'Could not find remote server user'}, status=status.HTTP_404_NOT_FOUND) r = requests.post( f"{object_host}api/author/{request_author_id}/inbox/", json=request.data, auth=(remote_server.konnection_username, remote_server.konnection_password)) if r.status_code < 200 or r.status_code >= 300: return Response({'error':'Could not complete the request to the remote server'}, status=r.status_code) # Gather information for the Like object creation try: object_type = Like.LIKE_COMMENT if ('comments' in id_url) else Like.LIKE_POST if (id_url.endswith('/')): object_id = id_url.split('/')[-2] else: object_id = id_url.split('/')[-1] like_author_id = request.data.get('author')['id'].split('/')[-1] Like.objects.create( author=request.data.get('author'), author_id=like_author_id, object=id_url, object_type=object_type, object_id=object_id ) except IntegrityError: return Response({'data':f'You have already sent a like to {object_type} {id_url} on {host_name}.'}, status=status.HTTP_200_OK) return Response({'data':f'Sent like to {object_type} {id_url} on {host_name}.'}, status=status.HTTP_200_OK) else: return Response({'error':'Invalid type, only \'post\', \'like\''}, status=status.HTTP_400_BAD_REQUEST) # DELETE: Clear the inbox def delete(self, request, *args, **kwargs): inbox = self.get_inbox() length = len(inbox.items) inbox.items.clear() inbox.save() return Response({'data':f'Deleted {length} messages.'}, status=status.HTTP_200_OK)
44.403226
116
0.606793
4,780
0.868144
0
0
0
0
0
0
1,064
0.193244
3c119513513dbce82555731b084d2de00dc48dc8
1,873
py
Python
black_list_all.py
philipempl/mail_watch
802df3146c462aeb670a4a973e428976d90abf06
[ "Apache-2.0" ]
null
null
null
black_list_all.py
philipempl/mail_watch
802df3146c462aeb670a4a973e428976d90abf06
[ "Apache-2.0" ]
1
2019-12-11T08:49:51.000Z
2019-12-11T08:49:51.000Z
black_list_all.py
philipempl/mail_watch
802df3146c462aeb670a4a973e428976d90abf06
[ "Apache-2.0" ]
null
null
null
import imaplib, base64, os, email, re, configparser import tkinter as tk from tkinter import messagebox from datetime import datetime from email import generator from dateutil.parser import parse def init(): mail = imaplib.IMAP4_SSL(config['SERVER']['Host'],config['SERVER']['Port']) pwd = str(input("PWD: ")) print(pwd) mail.login(str(config['ADDRESS']['Email']),pwd ) for dir in config['MAIL_DIRS']: dir = config['MAIL_DIRS'][dir] print('\n ########################## ' + dir + ' ##################################\n') mail.select(dir) type, data = mail.search(None, 'ALL') mail_ids = data[0] id_list = mail_ids.split() readAllMails(id_list, mail) def readAllMails(id_list, mail): counter = 0 l = len(id_list) for num in id_list: typ, data = mail.fetch(num, '(RFC822)' ) raw_email = data[0][1] # converts byte literal to string removing b'' try: raw_email_string = raw_email.decode('utf-8') email_message = email.message_from_string(raw_email_string) # get sender from mail except: continue sender_name = '' sender_email = '' sender_array = email_message['from'].split('<') if(len(sender_array) > 1): sender_email = (sender_array[1][:-1]).lower() sender_name = re.sub(r"[^a-zA-Z0-9]+", ' ',sender_array[0]).strip() else: sender_email = (sender_array[0]).lower() counter = counter + 1 printProgressBar(counter, l, prefix = 'Progress:', suffix = 'Complete', length = 50) if(isInBlackList(sender_email) == False): addToBlackList(sender_email) def isInBlackList(sender): with open(black_list) as blackList: if sender in blackList.read(): return True else: return False def addToBlackList(sender): hs = open("blackList.txt","a") hs.write(sender + "\n") hs.close() init()
28.378788
99
0.620929
0
0
0
0
0
0
0
0
317
0.169247
3c11fb38e2dcb32d635011cf74ded4f173fac7e7
539
py
Python
chpt6/Pentagonal_numbers.py
GDG-Buea/learn-python
9dfe8caa4b57489cf4249bf7e64856062a0b93c2
[ "Apache-2.0" ]
null
null
null
chpt6/Pentagonal_numbers.py
GDG-Buea/learn-python
9dfe8caa4b57489cf4249bf7e64856062a0b93c2
[ "Apache-2.0" ]
2
2018-05-21T09:39:00.000Z
2018-05-27T15:59:15.000Z
chpt6/Pentagonal_numbers.py
GDG-Buea/learn-python
9dfe8caa4b57489cf4249bf7e64856062a0b93c2
[ "Apache-2.0" ]
2
2018-05-19T14:59:56.000Z
2018-05-19T15:25:48.000Z
# # This program is a function that displays the first 100 pentagonal numbers with 10 numbers on each line. # A pentagonal number is defined as n(3n - 1)/2 for n = 1, 2, c , and so on. # So, the first few numbers are 1, 5, 12, 22, .... def get_pentagonal_number(n): pentagonal_number = round(n * (3 * n - 1) / 2) print(format(pentagonal_number, '5d'), end=' ') def main(): count = 0 for i in range(1, 101): if count % 10 == 0: print() get_pentagonal_number(i) count += 1 main()
23.434783
105
0.595547
0
0
0
0
0
0
0
0
241
0.447124
3c129d467e7a619b95bbc8aa752a9a6e384e5ae6
4,075
py
Python
iraclis/_1databases.py
nespinoza/Iraclis
3b5dd8d6bc073f6d2c24ad14341020694255bf65
[ "CC-BY-4.0" ]
null
null
null
iraclis/_1databases.py
nespinoza/Iraclis
3b5dd8d6bc073f6d2c24ad14341020694255bf65
[ "CC-BY-4.0" ]
null
null
null
iraclis/_1databases.py
nespinoza/Iraclis
3b5dd8d6bc073f6d2c24ad14341020694255bf65
[ "CC-BY-4.0" ]
null
null
null
from __future__ import absolute_import from __future__ import division from __future__ import print_function from ._0errors import * from ._0imports import * class Database: def __init__(self, database_name, vital=False, date_to_update='daily', force_update=False, ask_size=None): package_name = 'iraclis' info_file_name = '_0database.pickle' directory_name = 'database' last_update_file_name = 'database_last_update.txt' info_file_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), info_file_name) package_path = os.path.join(os.path.expanduser('~'), '.{0}'.format(package_name)) if not os.path.isdir(package_path): os.mkdir(package_path) directory_path = os.path.join(package_path, '{0}_{1}'.format(database_name, directory_name)) last_update_file_path = os.path.join(package_path, '{0}_{1}'.format(database_name, last_update_file_name)) if date_to_update == 'daily': date_to_update = int(time.strftime('%y%m%d')) else: date_to_update = int(date_to_update) if os.path.isdir(directory_path): if force_update or len(glob.glob(os.path.join(directory_path, '*'))) == 0: shutil.rmtree(directory_path) os.mkdir(directory_path) update = True else: if not os.path.isfile(last_update_file_path): update = True elif int(open(last_update_file_path).readlines()[0]) < date_to_update: update = True else: update = False else: os.mkdir(directory_path) update = True if update and ask_size: if input('Downloading {0} database (up to {1})... proceed with download now? (y/n): '.format( database_name, ask_size)) == 'y': update = True else: update = False if update: # noinspection PyBroadException try: print('\nDownloading {0} database...'.format(database_name)) dbx_files = pickle.load(open(info_file_path, 'rb')) dbx_files = dbx_files['{0}_{1}'.format(database_name, directory_name)] for i in glob.glob(os.path.join(directory_path, '*')): if os.path.split(i)[1] not in dbx_files: os.remove(i) for i in dbx_files: if not os.path.isfile(os.path.join(package_path, dbx_files[i]['local_path'])): print(i) urlretrieve(dbx_files[i]['link'], os.path.join(package_path, dbx_files[i]['local_path'])) if database_name == 'clablimb': xx = pickle.load(open(glob.glob(os.path.join(directory_path, '*'))[0], 'rb')) for i in xx: w = open(os.path.join(directory_path, i), 'w') w.write(xx[i]) w.close() w = open(last_update_file_path, 'w') w.write(time.strftime('%y%m%d')) w.close() except Exception as inst: print('\nDownloading {0} database failed. A download will be attempted next time.'.format( database_name)) print('Error:', sys.exc_info()[0]) print(inst.args) pass if (not os.path.isdir(directory_path) or len(glob.glob(os.path.join(directory_path, '*'))) == 0): if vital: raise IraclisLibraryError('{0} database not available.'.format(database_name)) else: print('\n{0} features cannot be used.'.format(database_name)) self.path = False else: self.path = directory_path class Databases: def __init__(self): self.wfc3 = Database('wfc3', vital=True, date_to_update='181212').path databases = Databases()
38.084112
114
0.553374
3,884
0.953129
0
0
0
0
0
0
496
0.121718
3c134e04d61928fa6fcc6871ade77a7efb97baf0
1,029
py
Python
Level2/Ex_5.py
zac11/Python_Excerices
775739e2639be1f82cc3690c854b9ea0ece05042
[ "Apache-2.0" ]
2
2019-03-09T20:31:06.000Z
2020-06-19T12:15:13.000Z
Level2/Ex_5.py
zac11/Python_Excerices
775739e2639be1f82cc3690c854b9ea0ece05042
[ "Apache-2.0" ]
null
null
null
Level2/Ex_5.py
zac11/Python_Excerices
775739e2639be1f82cc3690c854b9ea0ece05042
[ "Apache-2.0" ]
1
2018-08-11T18:36:49.000Z
2018-08-11T18:36:49.000Z
""" Write a program that accepts a sequence of whitespace separated words as input and prints the words after removing all duplicate words and sorting them alphanumerically. Suppose the following input is supplied to the program: hello world and practice makes perfect and hello world again Then, the output should be: again and hello makes perfect practice world """ string_input = input() words =[word for word in string_input.split(" ")] print(" ".join(sorted(list(set(words))))) """ Let's break it down now print(set(words)) This will print a set of the words, with all the unique values print(list(set(words))) Create a list out of the values of words print(sorted(list(set(words)))) This will sort the list print(" ".join(sorted(list(set(words))))) This is join the sorted list items with a whitespace For this input : I like to yawn and I also like to make a music and a car Now output will be : I a also and car like make music to yawn Notice that the uppercase I is sorted at first position """
19.415094
118
0.74344
0
0
0
0
0
0
0
0
914
0.888241
3c1675a2a9274be019b322c8830f740dbd48fb14
6,063
py
Python
alfworld/agents/utils/traj_process.py
roy860328/VSGM
3ec19f9cf1401cecf45527687936b8fe4167f672
[ "MIT" ]
6
2021-05-22T15:33:42.000Z
2022-01-12T03:34:39.000Z
alfworld/agents/utils/traj_process.py
roy860328/VSGM
3ec19f9cf1401cecf45527687936b8fe4167f672
[ "MIT" ]
1
2021-06-19T10:04:13.000Z
2021-06-20T03:37:23.000Z
alfworld/agents/utils/traj_process.py
roy860328/VSGM
3ec19f9cf1401cecf45527687936b8fe4167f672
[ "MIT" ]
null
null
null
import os import cv2 import json import numpy as np import h5py from PIL import Image TASK_TYPES = {1: "pick_and_place_simple", 2: "look_at_obj_in_light", 3: "pick_clean_then_place_in_recep", 4: "pick_heat_then_place_in_recep", 5: "pick_cool_then_place_in_recep", 6: "pick_two_obj_and_place"} def save_trajectory(envs, store_states, task_desc_strings, expert_actions, still_running_masks): print("=== SAVE BATCH ===") TRAIN_DATA = "TRAIN_DATA.json" for i, thor in enumerate(envs): save_data_path = thor.env.save_frames_path print("=== save one episode len ===", len(expert_actions)) print("=== save path ===", save_data_path) data = { "task_desc_string": [], "expert_action": [], "sgg_meta_data": [], "rgb_image": [], } img_name = 0 for store_state, task_desc_string, expert_action, still_running_mask in \ zip(store_states, task_desc_strings, expert_actions, still_running_masks): if int(still_running_mask[i]) == 0: break _task_desc_string = task_desc_string[i] _expert_action = expert_action[i] rgb_image = store_state[i]["rgb_image"] img_path = os.path.join(save_data_path, '%09d.png' % img_name) cv2.imwrite(img_path, rgb_image) data["task_desc_string"].append(_task_desc_string) data["expert_action"].append(_expert_action) data["rgb_image"].append(img_path) data["sgg_meta_data"].append(store_state[i]["sgg_meta_data"]) img_name += 1 with open(os.path.join(save_data_path, TRAIN_DATA), 'w') as f: json.dump(data, f) def save_exploration_trajectory(envs, exploration_frames, sgg_meta_datas): print("=== SAVE EXPLORATION BATCH ===") TRAIN_DATA = "TRAIN_DATA.json" for i, thor in enumerate(envs): save_data_path = thor.env.save_frames_path print("=== save exploration one episode len ===", len(sgg_meta_datas[i])) print("=== save exploration path ===", save_data_path) data = { "exploration_img": [], "exploration_sgg_meta_data": [], } img_name = 0 for exploration_frame, sgg_meta_data, in zip(exploration_frames[i], sgg_meta_datas[i]): img_path = os.path.join(save_data_path, 'exploration_img%09d.png' % img_name) cv2.imwrite(img_path, exploration_frame) data["exploration_img"].append(img_path) data["exploration_sgg_meta_data"].append(sgg_meta_data) img_name += 1 with open(os.path.join(save_data_path, TRAIN_DATA), 'r') as f: ori_data = json.load(f) with open(os.path.join(save_data_path, TRAIN_DATA), 'w') as f: data = {**ori_data, **data} json.dump(data, f) def get_traj_train_data(tasks_paths, save_frames_path): # [store_states, task_desc_strings, expert_actions] transition_caches = [] for task_path in tasks_paths: transition_cache = [None, None, None] traj_root = os.path.dirname(task_path) task_path = os.path.join(save_frames_path, traj_root.replace('../', '')) with open(task_path + '/TRAIN_DATA.json', 'r') as f: data = json.load(f) # store store_states store_states = [] rgb_array = load_img_with_h5(data["rgb_image"], task_path) for img, sgg_meta_data in zip(rgb_array, data["sgg_meta_data"]): store_state = { "rgb_image": img, "sgg_meta_data": sgg_meta_data, } store_states.append(store_state) # len(store_state) == 39 transition_cache[0] = store_states # len(seq_task_desc_strings) == 39 transition_cache[1] = [[task_desc_string] for task_desc_string in data["task_desc_string"]] # len(seq_target_strings) == 39 transition_cache[2] = [[expert_action] for expert_action in data["expert_action"]] transition_caches.append(transition_cache) # import pdb; pdb.set_trace() return transition_caches def get_exploration_traj_train_data(tasks_paths, save_frames_path): # [store_states, task_desc_strings, expert_actions] exploration_transition_caches = [] for task_path in tasks_paths: transition_cache = [None, None, None] traj_root = os.path.dirname(task_path) task_path = os.path.join(save_frames_path, traj_root.replace('../', '')) with open(task_path + '/TRAIN_DATA.json', 'r') as f: data = json.load(f) # store store_states store_states = [] rgb_array = load_img_with_h5(data["exploration_img"], task_path, pt_name="exploration_img.pt") for img, sgg_meta_data in zip(rgb_array, data["exploration_sgg_meta_data"]): store_state = { "exploration_img": img, "exploration_sgg_meta_data": sgg_meta_data, } store_states.append(store_state) # len(store_state) == 39 transition_cache[0] = store_states exploration_transition_caches.append(transition_cache) # import pdb; pdb.set_trace() return exploration_transition_caches def load_img_with_h5(rgb_img_names, img_dir_path, pt_name="img.pt"): img_h5 = os.path.join(img_dir_path, pt_name) if not os.path.isfile(img_h5): rgb_array = [] for rgb_img_name in rgb_img_names: rgb_img_name = rgb_img_name.rsplit("/", 1)[-1] rgb_img_path = os.path.join(img_dir_path, rgb_img_name) rgb_img = Image.open(rgb_img_path).convert("RGB") rgb_img = np.array(rgb_img) rgb_array.append(rgb_img) hf = h5py.File(img_h5, 'w') hf.create_dataset('rgb_array', data=rgb_array) hf.close() print("Save img data to {}".format(img_h5)) hf = h5py.File(img_h5, 'r') rgb_array = hf['rgb_array'][:] return rgb_array
41.527397
102
0.628072
0
0
0
0
0
0
0
0
1,274
0.210127
3c17265b394405d74fda0b7ba580609c53a824f6
846
py
Python
log.py
bsha3l173/NetDiagBot
c76d00a34ae4587942010b2370dd0ac35a83bcdd
[ "Unlicense" ]
null
null
null
log.py
bsha3l173/NetDiagBot
c76d00a34ae4587942010b2370dd0ac35a83bcdd
[ "Unlicense" ]
null
null
null
log.py
bsha3l173/NetDiagBot
c76d00a34ae4587942010b2370dd0ac35a83bcdd
[ "Unlicense" ]
null
null
null
__author__ = 'bsha3l173' import logging import datetime from conf import LOG_FILENAME class Log(): logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG) def log_d(self, message, text): last_name = '' first_name = '' user_name = '' if not message.from_user.first_name is None: first_name = message.from_user.first_name.encode('utf-8') + ' ' if not message.from_user.last_name is None: last_name = message.from_user.last_name.encode('utf-8') + ' ' if not message.from_user.username is None: user_name = '(' + message.from_user.username.encode('utf-8') + ')' name = last_name + first_name + user_name logging.debug(str(datetime.datetime.now()) + ' ' + str(message.chat.id) + ' ' + name + ': ' + text)
33.84
108
0.611111
748
0.884161
0
0
0
0
0
0
60
0.070922
3c1927e4c80951e764d207f99cb77de8d5e6eb00
1,850
py
Python
selenium-browser.py
steflayanto/international-google-search
05cc773b158fe11202fdf39fb515b398a08b7e3c
[ "MIT" ]
null
null
null
selenium-browser.py
steflayanto/international-google-search
05cc773b158fe11202fdf39fb515b398a08b7e3c
[ "MIT" ]
null
null
null
selenium-browser.py
steflayanto/international-google-search
05cc773b158fe11202fdf39fb515b398a08b7e3c
[ "MIT" ]
null
null
null
import os, time, pyautogui import selenium from selenium import webdriver from location_reference import country_map # STATIC SETTINGS DPI = 125 # Scaling factor of texts and apps in display settings screen_dims = [x / (DPI/100) for x in pyautogui.size()] code_map = country_map() print("International Google Search") print("Supported Countries: USA, UK, Japan, Canada, Germany, Italy, France, Australia, Brasil, India, Korea, Pakistan") query = input("Please input Search Query: ") text = " " codes = [] while text is not "" and len(codes) != 3: text = input("Input Country. Input nothing to start search: ").lower() if text not in code_map.keys(): print("\tERROR: Country not recognized") continue codes.append(code_map[text]) print("Starting Search") # Using Chrome Incognito to access web chrome_options = webdriver.ChromeOptions() chrome_options.add_argument("--incognito") drivers = [] for i in range(3): drivers.append(webdriver.Chrome(chrome_options=chrome_options)) drivers[i].set_window_position(i * screen_dims[0] / 3, 0) assert len(codes) == len(drivers) for i, driver in enumerate(drivers): # Open the website code = codes[i] driver.get('https://www.google.com/ncr') time.sleep(0.5) driver.get('https://www.google.com/?gl=' + code) # print(screen_dims) # print(driver.get_window_size()) driver.set_window_size(screen_dims[0] / 3, screen_dims[1]) # print(driver.get_window_size()) element = driver.find_element_by_name("q") element.send_keys(query) element.submit() # for i in range(3): # drivers[i].set_window_position(i * screen_dims[0] / 3, 0) # driver.manage().window().setPosition(0,0) # Get Search Box # element = driver.find_element_by_name("q") # element.send_keys("Hotels") # element.submit() input("Press enter to exit")
28.90625
120
0.702162
0
0
0
0
0
0
0
0
814
0.44
3c1ce045f39d2d470a259001626bc914b8162303
29
py
Python
homeassistant/components/thomson/__init__.py
domwillcode/home-assistant
f170c80bea70c939c098b5c88320a1c789858958
[ "Apache-2.0" ]
30,023
2016-04-13T10:17:53.000Z
2020-03-02T12:56:31.000Z
homeassistant/components/thomson/__init__.py
jagadeeshvenkatesh/core
1bd982668449815fee2105478569f8e4b5670add
[ "Apache-2.0" ]
31,101
2020-03-02T13:00:16.000Z
2022-03-31T23:57:36.000Z
homeassistant/components/thomson/__init__.py
jagadeeshvenkatesh/core
1bd982668449815fee2105478569f8e4b5670add
[ "Apache-2.0" ]
11,956
2016-04-13T18:42:31.000Z
2020-03-02T09:32:12.000Z
"""The thomson component."""
14.5
28
0.655172
0
0
0
0
0
0
0
0
28
0.965517
3c1d0a50a97a1bf750da3e79140c45303971c672
2,027
py
Python
registration/admin.py
allenallen/interedregistration
d6b93bfc33d7bb9bfbabdcdb27b685f3a6be3ea9
[ "MIT" ]
null
null
null
registration/admin.py
allenallen/interedregistration
d6b93bfc33d7bb9bfbabdcdb27b685f3a6be3ea9
[ "MIT" ]
6
2020-02-11T23:05:13.000Z
2021-06-10T20:43:51.000Z
registration/admin.py
allenallen/interedregistration
d6b93bfc33d7bb9bfbabdcdb27b685f3a6be3ea9
[ "MIT" ]
null
null
null
import csv from django.contrib import admin from django.http import HttpResponse from .models import Student, SchoolList, Event, ShsTrack, SchoolOfficial class ExportCsvMixin: def export_as_csv(self, request, queryset): meta = self.model._meta field_names = [field.name for field in meta.fields] response = HttpResponse(content_type='text/csv') response['Content-Disposition'] = 'attachment; filename={}.csv'.format(meta) writer = csv.writer(response) writer.writerow(field_names) for obj in queryset: row = writer.writerow([getattr(obj, field) for field in field_names]) return response export_as_csv.short_description = "Export Selected" @admin.register(SchoolOfficial) class SchoolOfficialAdmin(admin.ModelAdmin, ExportCsvMixin): list_display = ( 'id', 'last_name', 'first_name', 'school', 'designation', 'course_taken', 'email', 'date_of_birth', 'mobile', 'gender', 'date_registered', 'registered_event') list_filter = ('registered_event', 'school',) actions = ['export_as_csv'] @admin.register(Student) class StudentAdmin(admin.ModelAdmin, ExportCsvMixin): list_display = ( 'id', 'last_name', 'first_name', 'school', 'grade_level', 'shs_track', 'projected_course', 'email', 'date_of_birth', 'mobile', 'gender', 'date_registered', 'registered_event') actions = ['export_as_csv'] list_filter = ('registered_event', 'school',) change_list_template = 'change_list.html' search_fields = ('first_name', 'last_name', 'email') @admin.register(Event) class EventAdmin(admin.ModelAdmin): list_display = ('name', 'start_date', 'end_date') fieldsets = ( (None, { 'fields': ('name', 'logo', 'event_registration_url') }), ('Event Date', { 'fields': ('start_date', 'end_date') }), ) readonly_fields = ('event_registration_url',) admin.site.register(SchoolList) admin.site.register(ShsTrack)
30.712121
117
0.665022
1,715
0.846078
0
0
1,222
0.602861
0
0
630
0.310804
3c1e8f234365a8d2c0de799db1420fb70afb127b
1,251
py
Python
python/src/aoc/year2016/day5.py
ocirne/adventofcode
ea9b5f1b48a04284521e85c96b420ed54adf55f0
[ "Unlicense" ]
1
2021-02-16T21:30:04.000Z
2021-02-16T21:30:04.000Z
python/src/aoc/year2016/day5.py
ocirne/adventofcode
ea9b5f1b48a04284521e85c96b420ed54adf55f0
[ "Unlicense" ]
null
null
null
python/src/aoc/year2016/day5.py
ocirne/adventofcode
ea9b5f1b48a04284521e85c96b420ed54adf55f0
[ "Unlicense" ]
null
null
null
import hashlib from itertools import islice from aoc.util import load_input def search(door_id, is_part1=False, is_part2=False): i = 0 while True: md5_hash = hashlib.md5((door_id + str(i)).encode()).hexdigest() if md5_hash.startswith("00000"): if is_part1: yield md5_hash[5] if is_part2: pos, char = md5_hash[5:7] if pos.isnumeric() and 0 <= int(pos) <= 7: yield int(pos), md5_hash[6] i += 1 def part1(lines): """ >>> part1(['abc']) '18f47a30' """ door_id = lines[0].strip() return "".join(islice(search(door_id, is_part1=True), 8)) def part2(lines, be_extra_proud=True): """ >>> part2(['abc'], False) '05ace8e3' """ result = 8 * [" "] count = 0 for position, character in search(lines[0].strip(), is_part2=True): if result[position] == " ": result[position] = character count += 1 if count == 8: return "".join(result) if be_extra_proud: print("".join(result)) if __name__ == "__main__": data = load_input(__file__, 2016, "5") print(part1(data)) print(part2(data))
24.529412
71
0.529976
0
0
439
0.350919
0
0
0
0
137
0.109512
3c1f8c82eeba6453a646f8492c4afe649539ab25
2,324
py
Python
arraycircles.py
BastiHz/arraycircles
cf2e8ac48b099570d6b351ae84dc060263ee4e3d
[ "MIT" ]
null
null
null
arraycircles.py
BastiHz/arraycircles
cf2e8ac48b099570d6b351ae84dc060263ee4e3d
[ "MIT" ]
null
null
null
arraycircles.py
BastiHz/arraycircles
cf2e8ac48b099570d6b351ae84dc060263ee4e3d
[ "MIT" ]
null
null
null
import math import random import os os.environ["PYGAME_HIDE_SUPPORT_PROMPT"] = "1" import numpy as np import pygame as pg WINDOW_SIZE = (800, 600) FPS = 60 pg.init() window = pg.display.set_mode(WINDOW_SIZE) clock = pg.time.Clock() font = pg.font.SysFont("monospace", 20) def make_circle_array(diameter, hue): circle = np.zeros((diameter, diameter, 3), int) center = (diameter - 1) / 2 radius = diameter / 2 color = pg.Color("white") color.set_length(3) color.hsva = hue, 100, 100, 100 # Can't use 2d arrays because there seems to be a bug with # pygame.surfarray.make_surface() not handling 2d arrays properly. # color = (color.r << 16) + (color.g << 8) + color.b # TODO: This could be vectorized using numpy.hypot() # TODO: I only need to do this for a quadrant and then mirror the result around. for x in range(diameter): for y in range(diameter): dx = x - center dy = y - center dist = math.hypot(dx, dy) if dist <= radius: circle[x, y] = color return circle hues = (0, 120, 240) angles = [math.radians(i) for i in (0, 120, 240)] window_center_x = WINDOW_SIZE[0] // 2 window_center_y = WINDOW_SIZE[1] // 2 distance_from_center = 75 circle_surfs = [None, None, None] circle_rects = [None, None, None] for i in range(3): circle = make_circle_array(200, hues[i]) circle_surf = pg.surfarray.make_surface(circle) circle_surfs[i] = circle_surf circle_rect = circle_surf.get_rect() circle_rect.center = [ window_center_x + math.sin(angles[i]) * distance_from_center, window_center_y - math.cos(angles[i]) * distance_from_center ] circle_rects[i] = circle_rect running = True while running: clock.tick(FPS) for event in pg.event.get(): if event.type == pg.QUIT: running = False elif event.type == pg.KEYDOWN: if event.key == pg.K_ESCAPE: running = False window.fill(pg.Color("black")) fps_text = font.render(f"{clock.get_fps():.0f}", False, pg.Color("white")) window.blit(fps_text, (0, 0)) for i in range(3): window.blit( circle_surfs[i], circle_rects[i], special_flags=pg.BLEND_RGB_ADD ) pg.display.flip()
27.023256
84
0.623924
0
0
0
0
0
0
0
0
395
0.169966
3c1fbd1f77839d16929ae16aa95f7765710bb079
1,268
py
Python
choosy/star.py
creiht/choosy
08c18f1480e542ee122b86a0b47a30c8e5b4017e
[ "BSD-3-Clause" ]
null
null
null
choosy/star.py
creiht/choosy
08c18f1480e542ee122b86a0b47a30c8e5b4017e
[ "BSD-3-Clause" ]
null
null
null
choosy/star.py
creiht/choosy
08c18f1480e542ee122b86a0b47a30c8e5b4017e
[ "BSD-3-Clause" ]
null
null
null
from flask import ( abort, Blueprint, current_app, flash, g, redirect, render_template, request, url_for ) import giphy_client from werkzeug.exceptions import abort from choosy.auth import login_required from choosy import db bp = Blueprint("star", __name__) @bp.route("/stars") @login_required def index(): gifs = [] error = None more = True try: offset = int(request.args.get("offset", "0")) except ValueError: error = "Invalid offset" if offset < 0: offset = 0 gif_ids = db.get_starred_gifs(g.user["id"], 7, offset) if len(gif_ids) < 7: # There are no more items to load more = False else: # We only want the first 6 gif_ids = gif_ids[:-1] for gif_id in gif_ids: try: giphy = giphy_client.DefaultApi() giphy_key = current_app.config["GIPHY_KEY"] # TODO: do this async resp = giphy.gifs_gif_id_get(giphy_key, gif_id) gifs.append(resp.data) except Exception as e: current_app.logger.error("Error loading gif from giphy: %s" % e) return abort(500) return render_template("star/index.html", gifs=gifs, offset=offset, more=more)
26.978723
80
0.605678
0
0
0
0
997
0.786278
0
0
187
0.147476
3c1ff1fa706a7ee54f33c5565b4c5b7b1c4bf065
7,700
py
Python
src/1-3_autocorrect.py
BernhardSchiffer/1-dynamic-programming
81d89e6d579a329058a40b0e6c85b45c97db083a
[ "MIT" ]
null
null
null
src/1-3_autocorrect.py
BernhardSchiffer/1-dynamic-programming
81d89e6d579a329058a40b0e6c85b45c97db083a
[ "MIT" ]
null
null
null
src/1-3_autocorrect.py
BernhardSchiffer/1-dynamic-programming
81d89e6d579a329058a40b0e6c85b45c97db083a
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # %% # Assignment Pt. 1: Edit Distances import numpy as np from bs4 import BeautifulSoup import math vocabulary_file = open('../res/count_1w.txt', 'r') lines = vocabulary_file.readlines() vocabulary = dict() word_count = 0 # Strips the newline character for line in lines: line = line.strip() w = line.split('\t') word = {'word': w[0], 'count': w[1]} word_count = word_count + int(w[1]) vocabulary[word['word']] = word print(len(vocabulary)) print(list(vocabulary.values())[0:5]) gem_doppel = [ ("GCGTATGAGGCTAACGC", "GCTATGCGGCTATACGC"), ("kühler schrank", "schüler krank"), ("the longest", "longest day"), ("nicht ausgeloggt", "licht ausgenockt"), ("gurken schaben", "schurkengaben") ] # %% def hamming(s1: str, s2: str) -> int: distance = 0 # pad strings to equal length if(len(s2) > len(s1)): s1 = s1.ljust(len(s2), ' ') else: s2 = s2.ljust(len(s1), ' ') # calculate differences in characters for c1, c2 in zip(s1,s2): if(c1 != c2): distance = distance + 1 return distance assert hamming('GCGTATGAGGCTAACGC', 'GCTATGCGGCTATACGC') == 10 assert hamming('kühler schrank', 'schüler krank') == 13 assert hamming('the longest', 'longest day') == 11 assert hamming('nicht ausgeloggt', 'licht ausgenockt') == 4 assert hamming('gurken schaben', 'schurkengaben') == 14 # %% def levenshtein(s1: str, s2: str) -> (int, str): get_values = lambda v: [vv[0] for vv in v] operations = list() distances = np.zeros((len(s1)+1, len(s2)+1)) distances[0,:] = [*range(0,len(s2)+1)] distances[:,0] = [*range(0,len(s1)+1)] operations.append(['i'*int(i) for i in distances[0,:]]) for row in distances[1:,:]: operations.append(['d'*int(i) for i in row]) for cidx in range(1,np.shape(distances)[0]): for ridx in range(1,np.shape(distances)[1]): c1 = s1[cidx-1] c2 = s2[ridx-1] deletion = (distances[cidx-1,ridx] + 1, operations[cidx-1][ridx] + 'd') insertion = (distances[cidx,ridx-1] + 1, operations[cidx][ridx-1] + 'i') if(c1 != c2): substitution = (distances[cidx-1,ridx-1] + 1, operations[cidx-1][ridx-1] + 's') else: substitution = (distances[cidx-1,ridx-1] + 0, operations[cidx-1][ridx-1] + 'm') x = [deletion, insertion, substitution] minimum = min(get_values(x)) minidx = get_values(x).index(minimum) distances[cidx,ridx] = minimum operations[cidx][ridx] = x[minidx][1] distance = int(distances[-1,-1]) operations = operations[-1][-1] return (distance, operations) assert levenshtein('GCGTATGAGGCTAACGC', 'GCTATGCGGCTATACGC') == (3, 'mmdmmmmsmmmmmimmmm') assert levenshtein('kühler schrank', 'schüler krank') == (6, 'ssmimmmmsddmmmm') assert levenshtein('the longest', 'longest day') == (8, 'ddddmmmmmmmiiii') assert levenshtein('nicht ausgeloggt', 'licht ausgenockt') == (4, 'smmmmmmmmmmsmssm') assert levenshtein('gurken schaben', 'schurkengaben') == (7, 'siimmmmmsdddmmmm') # %% # Assignment Pt. 2: Auto-Correct def suggest(w: str, dist, max_cand=5) -> list: """ w: word in question dist: edit distance to use max_cand: maximum of number of suggestions returns a list of tuples (word, dist, score) sorted by score and distance""" if w in vocabulary: Pw = math.log(int(vocabulary[w]['count'])/word_count) return [(w, 0, Pw)] suggestions = list() for word in list(vocabulary.values())[:]: distance, _ = dist(w, word['word']) Pw = math.log(int(word['count'])/word_count) suggestions.append((word['word'], distance, 0.5* math.log(1/distance) + Pw)) suggestions.sort(key=lambda s: s[1]) return suggestions[:max_cand] examples = [ "pirates", # in-voc "pirutes", # pirates? "continoisly", # continuosly? ] for w in examples[:]: print(w, suggest(w, levenshtein, max_cand=3)) # sample result; your scores may vary! # pirates [('pirates', 0, -11.408058827802126)] # pirutes [('pirates', 1, -11.408058827802126), ('minutes', 2, -8.717825438953103), ('viruses', 2, -11.111468702571859)] # continoisly [('continously', 1, -15.735337826575178), ('continuously', 2, -11.560071979871001), ('continuosly', 2, -17.009283000138204)] # %% # Assignment Pt. 3: Needleman-Wunsch # reading content file = open("../res/de.xml", "r") contents = file.read() # parsing soup = BeautifulSoup(contents, 'xml') # get characters keys = soup.find_all('char') keyboard = {} # display content for key in keys: k = {'value': key.string} # get key of character parent = key.parent k['left'] = parent['left'] k['top'] = parent['top'] k['width'] = parent['width'] k['height'] = parent['height'] k['fingerIndex'] = parent['fingerIndex'] keyboard[k['value']] = k # get special keys specialKeys = soup.find_all('specialKey') for key in specialKeys: if key['type'] == 'space': keyboard[' '] = { 'value': ' ', 'left': key['left'], 'top': key['top'], 'width': key['width'], 'height': key['height'] } def keyboardsim(s1: str, s2: str) -> float: key1 = keyboard[s1] key2 = keyboard[s2] key1_pos = (int(key1['left']), int(key1['top'])) key2_pos = (int(key2['left']), int(key2['top'])) return math.dist(key1_pos, key2_pos) def nw(s1: str, s2: str, d: float = 0, sim = keyboardsim) -> float: get_values = lambda v: [vv[0] for vv in v] operations = list() scores = np.zeros((len(s1)+1, len(s2)+1)) scores[0,:] = [i*-1 for i in [*range(0,len(s2)+1)]] scores[:,0] = [i*-1 for i in [*range(0,len(s1)+1)]] operations.append(['-'*int(-i) for i in scores[0,:]]) for row in scores[1:,:]: operations.append(['-'*int(-i) for i in row]) for cidx in range(1,np.shape(scores)[0]): for ridx in range(1,np.shape(scores)[1]): c1 = s1[cidx-1] c2 = s2[ridx-1] deletion = (scores[cidx-1,ridx] - 1, operations[cidx-1][ridx] + '-') insertion = (scores[cidx,ridx-1] - 1, operations[cidx][ridx-1] + '-') if(c1 != c2): cost = sim(c1, c2) substitution = (scores[cidx-1,ridx-1] - cost, operations[cidx-1][ridx-1] + '-') else: substitution = (scores[cidx-1,ridx-1] + 1, operations[cidx-1][ridx-1] + '+') x = [deletion, insertion, substitution] maximum = max(get_values(x)) minidx = get_values(x).index(maximum) scores[cidx,ridx] = maximum operations[cidx][ridx] = x[minidx][1] score = int(scores[-1,-1]) operations = operations[-1][-1] return (score, operations) #return score assert nw('GCGTATGAGGCTAACGC', 'GCTATGCGGCTATACGC', sim=lambda x,y: 1) == (12, '++-++++-+++++-++++') assert nw('kühler schrank', 'schüler krank', sim=lambda x,y: 1) == (3, '--+-++++---++++') assert nw('the longest', 'longest day', sim=lambda x,y: 1) == (-1, '----+++++++----') assert nw('nicht ausgeloggt', 'licht ausgenockt', sim=lambda x,y: 1) == (8, '-++++++++++-+--+') assert nw('gurken schaben', 'schurkengaben', sim=lambda x,y: 1) == (2, '---+++++----++++') # How does your suggest function behave with nw and a keyboard-aware similarity? print(nw('GCGTATGAGGCTAACGC', 'GCTATGCGGCTATACGC')) print(nw('kühler schrank', 'schüler krank')) print(nw('the longest', 'longest day')) print(nw('nicht ausgeloggt', 'licht ausgenockt')) print(nw('gurken schaben', 'schurkengaben')) # %%
32.352941
138
0.587662
0
0
0
0
0
0
0
0
2,377
0.308301
3c212a108eea23aed5b72646850bf521126d934b
251
py
Python
krb5ticket/errors.py
degagne/python-krb5ticket
1113e0b51e8eac36f6c85cce10e86e2c82ca4828
[ "MIT" ]
2
2021-12-09T05:41:34.000Z
2022-03-18T18:23:24.000Z
krb5ticket/errors.py
degagne/python-krb5ticket
1113e0b51e8eac36f6c85cce10e86e2c82ca4828
[ "MIT" ]
null
null
null
krb5ticket/errors.py
degagne/python-krb5ticket
1113e0b51e8eac36f6c85cce10e86e2c82ca4828
[ "MIT" ]
null
null
null
class KeytabFileNotExists(RuntimeError): """ Raised when a Kerberos keytab file doesn't exist. """ pass class KtutilCommandNotFound(RuntimeError): """ Raised when ``ktutil`` command-line interface not found. """ pass
19.307692
60
0.661355
247
0.984064
0
0
0
0
0
0
137
0.545817
3c21c614e14a12fda17173ca64af48d998a556ab
2,451
py
Python
recipes/Python/577691_Validate_ACNs_AustraliCompany/recipe-577691.py
tdiprima/code
61a74f5f93da087d27c70b2efe779ac6bd2a3b4f
[ "MIT" ]
2,023
2017-07-29T09:34:46.000Z
2022-03-24T08:00:45.000Z
recipes/Python/577691_Validate_ACNs_AustraliCompany/recipe-577691.py
unhacker/code
73b09edc1b9850c557a79296655f140ce5e853db
[ "MIT" ]
32
2017-09-02T17:20:08.000Z
2022-02-11T17:49:37.000Z
recipes/Python/577691_Validate_ACNs_AustraliCompany/recipe-577691.py
unhacker/code
73b09edc1b9850c557a79296655f140ce5e853db
[ "MIT" ]
780
2017-07-28T19:23:28.000Z
2022-03-25T20:39:41.000Z
def isacn(obj): """isacn(string or int) -> True|False Validate an ACN (Australian Company Number). http://www.asic.gov.au/asic/asic.nsf/byheadline/Australian+Company+Number+(ACN)+Check+Digit Accepts an int, or a string of digits including any leading zeroes. Digits may be optionally separated with spaces. Any other input raises TypeError or ValueError. Return True if the argument is a valid ACN, otherwise False. >>> isacn('004 085 616') True >>> isacn('005 085 616') False """ if isinstance(obj, int): if not 0 <= obj < 10**9: raise ValueError('int out of range for an ACN') obj = '%09d' % obj assert len(obj) == 9 if not isinstance(obj, str): raise TypeError('expected a str or int but got %s' % type(obj)) obj = obj.replace(' ', '') if len(obj) != 9: raise ValueError('ACN must have exactly 9 digits') if not obj.isdigit(): raise ValueError('non-digit found in ACN') digits = [int(c) for c in obj] weights = [8, 7, 6, 5, 4, 3, 2, 1] assert len(digits) == 9 and len(weights) == 8 chksum = 10 - sum(d*w for d,w in zip(digits, weights)) % 10 if chksum == 10: chksum = 0 return chksum == digits[-1] if __name__ == '__main__': # Check the list of valid ACNs from the ASIC website. ACNs = ''' 000 000 019 * 000 250 000 * 000 500 005 * 000 750 005 001 000 004 * 001 250 004 * 001 500 009 * 001 749 999 001 999 999 * 002 249 998 * 002 499 998 * 002 749 993 002 999 993 * 003 249 992 * 003 499 992 * 003 749 988 003 999 988 * 004 249 987 * 004 499 987 * 004 749 982 004 999 982 * 005 249 981 * 005 499 981 * 005 749 986 005 999 977 * 006 249 976 * 006 499 976 * 006 749 980 006 999 980 * 007 249 989 * 007 499 989 * 007 749 975 007 999 975 * 008 249 974 * 008 499 974 * 008 749 979 008 999 979 * 009 249 969 * 009 499 969 * 009 749 964 009 999 964 * 010 249 966 * 010 499 966 * 010 749 961 '''.replace('*', '\n').split('\n') ACNs = [s for s in ACNs if s and not s.isspace()] for s in ACNs: n = int(s.replace(' ', '')) if not (isacn(s) and isacn(n) and not isacn(n+1)): print('test failed for ACN: %s' % s.strip()) break else: print('all ACNs tested okay')
38.904762
95
0.565075
0
0
0
0
0
0
0
0
1,533
0.625459
3c2312e967df908333d00837244d79e34fe4f564
2,845
py
Python
scripts/code_standards/code_standards.py
dolphingarlic/sketch-frontend
e646b7d51405e8a693f45472aa3cc6991a6f38af
[ "X11" ]
1
2020-12-06T03:40:53.000Z
2020-12-06T03:40:53.000Z
scripts/code_standards/code_standards.py
dolphingarlic/sketch-frontend
e646b7d51405e8a693f45472aa3cc6991a6f38af
[ "X11" ]
null
null
null
scripts/code_standards/code_standards.py
dolphingarlic/sketch-frontend
e646b7d51405e8a693f45472aa3cc6991a6f38af
[ "X11" ]
null
null
null
#!/usr/bin/env python2.6 # -*- coding: utf-8 -*- from __future__ import print_function import optparse import path_resolv from path_resolv import Path def check_file(f, show_info, override_ignores): text = f.read() if ("@code standards ignore file" in text) and (not override_ignores): return if "\r" in text: raise Exception("FATAL - dos endlines in %s" %(f)) for i, line in enumerate(text.split("\n")): def warn(text): print("%30s %30s :%03d" %("WARNING - " + text, f, i)) def info(text): if show_info: print("%30s %30s :%03d" %("INFO - " + text, f, i)) if "\t" in line: warn("tabs present") # for now, ignore Eclipse blank comment lines if line.endswith(" ") and line.strip() != "*": warn("trailing whitespace") # the following can be ignored if "@code standards ignore" in line and not override_ignores: continue # spaces don't show up as much for variable indent relevant_line = line.lstrip('/').strip() if float(len(line)) * 0.7 + float(len(relevant_line)) * 0.3 > 90: warn("long line") # the following only apply to uncommented code if line.lstrip().startswith("//"): continue # the following do not apply to this file if f.endswith("build_util/code_standards.py"): continue if "System.exit" in line: warn("raw system exit") if "DebugOut.assertSlow" in line: info("debug assert slow call") def warn(text): print("%30s %30s" %("WARNING - " + text, f)) if f.endswith(".java") and not "http://creativecommons.org/licenses/BSD/" in text: warn("no license") def main(srcdir, file_extensions, **kwargs): assert type(file_extensions) == list for root, dirs, files in Path(srcdir).walk(): for f in files: f = Path(root, f) if f.splitext()[-1][1:] in file_extensions: check_file(f, **kwargs) if __name__ == "__main__": cmdopts = optparse.OptionParser(usage="%prog [options]") cmdopts.add_option("--srcdir", default=Path("."), help="source directory to look through") cmdopts.add_option("--file_extensions", default="java,scala,py,sh", help="comma-sepated list of file extensions") cmdopts.add_option("--show_info", action="store_true", help="show info for command") cmdopts.add_option("--override_ignores", action="store_true", help="ignore \"@code standards ignore [file]\"") options, args = cmdopts.parse_args() options.file_extensions = options.file_extensions.split(",") if not options.show_info: print("use --show_info to show more notices") main(**options.__dict__)
34.695122
86
0.59754
0
0
0
0
0
0
0
0
968
0.340246
3c25269f1d545577e247a812c7d95d25ce72bbfe
2,368
py
Python
grease/scanner.py
JorgeRubio96/grease-lang
94a7cf9f01339ae2aac2c1fa1fefb623c32fffc9
[ "MIT" ]
null
null
null
grease/scanner.py
JorgeRubio96/grease-lang
94a7cf9f01339ae2aac2c1fa1fefb623c32fffc9
[ "MIT" ]
null
null
null
grease/scanner.py
JorgeRubio96/grease-lang
94a7cf9f01339ae2aac2c1fa1fefb623c32fffc9
[ "MIT" ]
1
2018-10-09T22:57:34.000Z
2018-10-09T22:57:34.000Z
import ply.lex as lex from grease.core.indents import Indents reserved = { 'var': 'VAR', 'if': 'IF', 'else': 'ELSE', 'scan': 'SCAN', 'print': 'PRINT', 'and': 'AND', 'or': 'OR', 'Bool': 'BOOL', 'Int': 'INT', 'Float': 'FLOAT', 'Char': 'CHAR', 'fn': 'FN', 'interface': 'INTERFACE', 'import': 'IMPORT', 'struct':'STRUCT', 'while':'WHILE', 'alias':'ALIAS', 'as':'AS', 'gt': 'GT', 'ge': 'GE', 'lt': 'LT', 'le': 'LE', 'eq': 'EQ', 'not':'NOT', 'from': 'FROM', 'return': 'RETURN', 'true': 'TRUE', 'false': 'FALSE' } tokens = [ 'ID', 'CONST_INT', 'CONST_REAL', 'CONST_STR', 'CONST_CHAR', 'ARROW', 'SEMICOLON', 'COLON', 'COMMA', 'DOT', 'EQUALS', 'NEW_LINE', 'OPEN_BRACK','CLOSE_BRACK', 'OPEN_PAREN', 'CLOSE_PAREN', 'PLUS', 'MINUS', 'TIMES', 'DIVIDE', 'AMP', 'INDENT', 'DEDENT' ] + list(reserved.values()) t_DOT = r'\.' t_SEMICOLON = r'\;' t_COLON = r'\:' t_COMMA = r'\,' t_OPEN_BRACK = r'\[' t_CLOSE_BRACK = r'\]' t_EQUALS = r'\=' t_OPEN_PAREN = r'\(' t_CLOSE_PAREN = r'\)' t_PLUS = r'\+' t_MINUS = r'\-' t_TIMES = r'\*' t_DIVIDE = r'\/' t_AMP = r'\&' t_ARROW = r'\-\>' t_ignore = ' ' def t_ignore_SINGLE_COMMENT(t): r'\#.*\n' t.lexer.lineno += 1 def t_ignore_MULTI_COMMENT(t): r'\/\*[\s\S]*\*\/\s*' t.lexer.lineno += t.value.count('\n') def t_ID(t): r'[a-zA-Z_][a-zA-Z0-9_]*' t.type = reserved.get(t.value, 'ID') if t.type == 'CONST_BOOL': if t.value == 'true': t.value = True else: t.value = False return t def t_CONST_REAL(t): r'[0-9]+\.[0-9]+' t.value = float(t.value) return t def t_CONST_INT(t): r'[0-9]+' t.value = int(t.value) return t def t_CONST_STR(t): r'\".+\"' t.value = t.value[1:-1] return t def t_CONST_CHAR(t): r'\'.+\'' t.value = t.value[1:-1] return t def t_NEW_LINE(t): r'\n\s*[\t ]*' t.lexer.lineno += t.value.count('\n') t.value = len(t.value) - 1 - t.value.rfind('\n') return t def first_word(s): whites = [' ', '\t', '\n'] low = 0 for l in s: if l in whites: break low += 1 return s[0:low] def t_error(t): print("Unexpected \"{}\" at line {}".format(first_word(t.value), t.lexer.lineno)) grease_lexer = Indents(lex.lex())
19.89916
85
0.505912
0
0
0
0
0
0
0
0
796
0.336149
3c2804fa00492d199e8c3aefe6c666e804514568
768
py
Python
patan/utils.py
tttlh/patan
d3e5cfec085e21f963204b5c07a85cf1f029560c
[ "MIT" ]
null
null
null
patan/utils.py
tttlh/patan
d3e5cfec085e21f963204b5c07a85cf1f029560c
[ "MIT" ]
null
null
null
patan/utils.py
tttlh/patan
d3e5cfec085e21f963204b5c07a85cf1f029560c
[ "MIT" ]
1
2021-03-01T08:35:34.000Z
2021-03-01T08:35:34.000Z
# _*_ coding: utf-8 _*_ from importlib import import_module def is_iterable(var): return hasattr(var, '__iter__') def to_iterable(var): if var is None: return [] elif is_iterable(var): return var else: return [var] def load_class_by_name(qualified_name): last_dot = qualified_name.rindex('.') module, name = qualified_name[:last_dot], qualified_name[last_dot + 1:] mod = import_module(module) obj = getattr(mod, name) return obj def get_obj_by_class(cls, settings, *args, **kwargs): if settings is None: raise ValueError('settings not found') if hasattr(cls, 'from_settings'): return cls.from_settings(settings, *args, **kwargs) else: return cls(*args, **kwargs)
22.588235
75
0.653646
0
0
0
0
0
0
0
0
71
0.092448
3c2968143388eec54e35192431494447d2c82d24
3,673
py
Python
tests/test_assert_immediate.py
makaimann/fault
8c805415f398e64971d18fbd3014bc0b59fb38b8
[ "BSD-3-Clause" ]
null
null
null
tests/test_assert_immediate.py
makaimann/fault
8c805415f398e64971d18fbd3014bc0b59fb38b8
[ "BSD-3-Clause" ]
null
null
null
tests/test_assert_immediate.py
makaimann/fault
8c805415f398e64971d18fbd3014bc0b59fb38b8
[ "BSD-3-Clause" ]
null
null
null
import tempfile import pytest import fault as f import magma as m from fault.verilator_utils import verilator_version @pytest.mark.parametrize('success_msg', [None, "OK"]) @pytest.mark.parametrize('failure_msg', [None, "FAILED"]) @pytest.mark.parametrize('severity', ["error", "fatal", "warning"]) @pytest.mark.parametrize('on', [None, f.posedge]) @pytest.mark.parametrize('name', [None, "my_assert"]) def test_immediate_assert(capsys, failure_msg, success_msg, severity, on, name): if verilator_version() < 4.0: pytest.skip("Untested with earlier verilator versions") if failure_msg is not None and severity == "fatal": # Use integer exit code failure_msg = 1 class Foo(m.Circuit): io = m.IO( I0=m.In(m.Bit), I1=m.In(m.Bit) ) + m.ClockIO() io.CLK.unused() f.assert_immediate(~(io.I0 & io.I1), success_msg=success_msg, failure_msg=failure_msg, severity=severity, on=on if on is None else on(io.CLK), name=name) tester = f.Tester(Foo, Foo.CLK) tester.circuit.I0 = 1 tester.circuit.I1 = 1 tester.step(2) try: with tempfile.TemporaryDirectory() as dir_: tester.compile_and_run("verilator", magma_opts={"inline": True}, flags=['--assert'], directory=dir_, disp_type="realtime") except AssertionError: assert failure_msg is None or severity in ["error", "fatal"] else: # warning doesn't trigger exit code/failure (but only if there's a # failure_msg, otherwise severity is ignored) assert severity == "warning" out, _ = capsys.readouterr() if failure_msg is not None: if severity == "warning": msg = "%Warning:" else: msg = "%Error:" msg += " Foo.v:29: Assertion failed in TOP.Foo" if name is not None: msg += f".{name}" if severity == "error": msg += f": {failure_msg}" assert msg in out tester.clear() tester.circuit.I0 = 0 tester.circuit.I1 = 1 tester.step(2) with tempfile.TemporaryDirectory() as dir_: tester.compile_and_run("verilator", magma_opts={"inline": True, "verilator_compat": True}, flags=['--assert'], directory=dir_, disp_type="realtime") out, _ = capsys.readouterr() if success_msg is not None: assert success_msg in out def test_immediate_assert_tuple_msg(capsys): if verilator_version() < 4.0: pytest.skip("Untested with earlier verilator versions") class Foo(m.Circuit): io = m.IO( I0=m.In(m.Bit), I1=m.In(m.Bit) ) f.assert_immediate( io.I0 == io.I1, failure_msg=("io.I0 -> %x != %x <- io.I1", io.I0, io.I1) ) tester = f.Tester(Foo) tester.circuit.I0 = 1 tester.circuit.I1 = 0 tester.eval() with pytest.raises(AssertionError): with tempfile.TemporaryDirectory() as dir_: tester.compile_and_run("verilator", magma_opts={"inline": True}, flags=['--assert'], directory=dir_, disp_type="realtime") out, _ = capsys.readouterr() msg = ("%Error: Foo.v:13: Assertion failed in TOP.Foo: io.I0 -> 1 != 0 <-" " io.I1") assert msg in out, out
34.980952
78
0.54288
680
0.185135
0
0
2,605
0.70923
0
0
682
0.185679
3c2af43cd6a571a35fff3b7b22af4c58d6015098
3,098
py
Python
cs673backend/api/authentication.py
MicobyteMichael/CS673ProjectBackend
87b28c62f29630059e1906c8bf7383d814880bd0
[ "Apache-2.0" ]
null
null
null
cs673backend/api/authentication.py
MicobyteMichael/CS673ProjectBackend
87b28c62f29630059e1906c8bf7383d814880bd0
[ "Apache-2.0" ]
null
null
null
cs673backend/api/authentication.py
MicobyteMichael/CS673ProjectBackend
87b28c62f29630059e1906c8bf7383d814880bd0
[ "Apache-2.0" ]
null
null
null
from flask import session from flask_restful import Resource from flask_restful.reqparse import RequestParser from bcrypt import gensalt, hashpw from hashlib import sha256 from hmac import new as hash_mac from os import environ PEPPER = environ["PEPPER"].encode("utf-8") def hash(password, salt): return hashpw(hash_mac(PEPPER, password.encode("utf-8"), sha256).hexdigest().encode("utf-8"), salt).decode("utf-8") def start(flaskapp, db, api, UserAccount): class Login(Resource): def __init__(self): self.parser = RequestParser() self.parser.add_argument("username", type = str, required = True) self.parser.add_argument("password", type = str, required = True) def post(self): args = self.parser.parse_args(strict = True) user = UserAccount.query.filter_by(username = args["username"]).first() success = False if user is not None: pass_hash = hash(args["password"], user.salt.encode("utf-8")) if pass_hash == user.passhash: session["user"] = user.username session["userid"] = user.id success = True return { "authenticated": success } class Register(Resource): def __init__(self): self.parser = RequestParser() self.parser.add_argument("username", type = str, required = True) self.parser.add_argument("password", type = str, required = True) self.parser.add_argument("email", type = str, required = True) self.parser.add_argument("phone", type = str, required = True) def post(self): args = self.parser.parse_args(strict = True) new_args = { k:v for k, v in args.items() if k != "password" } for k, v in new_args.items(): user = UserAccount.query.filter_by(**{k : v}).first() if user is not None: return { "created": False, "reason": "duplicate " + k } salt = gensalt() new_args["salt"] = salt.decode("utf-8") new_args["passhash"] = hash(args["password"], salt) user = UserAccount(**new_args) db.session.add(user) db.session.commit() session["user"] = user.username session["userid"] = user.id return { "created": True } class ResetPassword(Resource): def __init__(self): self.parser = RequestParser() self.parser.add_argument("username", type = str, required = True) self.parser.add_argument("newPass", type = str, required = True) self.parser.add_argument("email", type = str, required = True) self.parser.add_argument("phone", type = str, required = True) def post(self): args = self.parser.parse_args(strict = True) new_args = { k:v for k, v in args.items() if k != "newPass" } user = UserAccount.query.filter_by(**new_args).first() if user is not None: user.passhash = hash(args["newPass"], user.salt.encode("utf-8")) db.session.commit() session["user"] = user.username session["userid"] = user.id return { "reset": user is not None } api.add_resource(Login, "/login") api.add_resource(Register, "/register") api.add_resource(ResetPassword, "/resetpass")
34.422222
117
0.65042
2,467
0.79632
0
0
0
0
0
0
351
0.113299
3c2d0e8fef55c7fd0b954db4e7dcf85c4711c86c
4,606
py
Python
sunpy/sun/tests/test_sun.py
PritishC/sunpy
76a7b5994566674d85eada7dcec54bf0f120269a
[ "BSD-2-Clause" ]
null
null
null
sunpy/sun/tests/test_sun.py
PritishC/sunpy
76a7b5994566674d85eada7dcec54bf0f120269a
[ "BSD-2-Clause" ]
null
null
null
sunpy/sun/tests/test_sun.py
PritishC/sunpy
76a7b5994566674d85eada7dcec54bf0f120269a
[ "BSD-2-Clause" ]
null
null
null
from astropy.coordinates import Angle from astropy.time import Time import astropy.units as u from astropy.tests.helper import assert_quantity_allclose from sunpy.sun import sun def test_true_longitude(): # Validate against a published value from the Astronomical Almanac (1992) t = Time('1992-10-13', scale='tdb') assert_quantity_allclose(sun.true_longitude(t), Angle('199d54m26.17s'), atol=0.1*u.arcsec) def test_apparent_longitude(): # Validate against a published value from the Astronomical Almanac (1992) t = Time('1992-10-13', scale='tdb') assert_quantity_allclose(sun.apparent_longitude(t), Angle('199d54m21.56s'), atol=0.1*u.arcsec) def test_true_latitude(): # Validate against a published value from the Astronomical Almanac (1992) t = Time('1992-10-13', scale='tdb') assert_quantity_allclose(sun.true_latitude(t), Angle('0.72s'), atol=0.05*u.arcsec) def test_apparent_latitude(): # Validate against a published value from the Astronomical Almanac (1992) t = Time('1992-10-13', scale='tdb') assert_quantity_allclose(sun.apparent_latitude(t), Angle('0.72s'), atol=0.05*u.arcsec) def test_solar_cycle_number(): assert_quantity_allclose(sun.solar_cycle_number("2012/11/11"), 5, atol=1e-1) assert_quantity_allclose(sun.solar_cycle_number("2011/2/22"), 4, atol=1e-1) assert_quantity_allclose(sun.solar_cycle_number("2034/1/15"), 27, atol=1e-1) def test_solar_semidiameter_angular_size(): assert_quantity_allclose(sun.solar_semidiameter_angular_size("2012/11/11"), 968.871294 * u.arcsec, atol=1e-3 * u.arcsec) assert_quantity_allclose(sun.solar_semidiameter_angular_size("2043/03/01"), 968.326347 * u.arcsec, atol=1e-3 * u.arcsec) assert_quantity_allclose(sun.solar_semidiameter_angular_size("2001/07/21"), 944.039007 * u.arcsec, atol=1e-3 * u.arcsec) def test_mean_obliquity_of_ecliptic(): t = Time('1992-10-13', scale='tdb') assert_quantity_allclose(sun.mean_obliquity_of_ecliptic(t), 84384.8*u.arcsec, atol=0.1*u.arcsec) def test_true_rightascension(): assert_quantity_allclose(sun.true_rightascension("2012/11/11"), 226.548*u.deg, atol=1e-3*u.deg) assert_quantity_allclose(sun.true_rightascension("2142/02/03"), 316.466*u.deg, atol=1e-3*u.deg) assert_quantity_allclose(sun.true_rightascension("2013/12/11"), 258.150*u.deg, atol=1e-3*u.deg) def test_true_rightascension_J2000(): # Validate against JPL HORIZONS output t = Time('1992-10-13', scale='tdb') assert_quantity_allclose(sun.true_rightascension(t, equinox_of_date=False), Angle('13h13m53.65s'), atol=0.01*u.arcsec) def test_true_declination(): assert_quantity_allclose(sun.true_declination("2012/11/11"), -17.470*u.deg, atol=1e-3*u.deg) assert_quantity_allclose(sun.true_declination("2245/12/01"), -21.717*u.deg, atol=1e-3*u.deg) assert_quantity_allclose(sun.true_declination("2014/05/27"), 21.245*u.deg, atol=1e-3*u.deg) def test_true_declination_J2000(): # Validate against JPL HORIZONS output t = Time('1992-10-13', scale='tdb') assert_quantity_allclose(sun.true_declination(t, equinox_of_date=False), Angle('-7d49m20.8s'), atol=0.05*u.arcsec) def test_true_obliquity_of_ecliptic(): t = Time('1992-10-13', scale='tdb') assert_quantity_allclose(sun.true_obliquity_of_ecliptic(t), 84384.5*u.arcsec, atol=0.1*u.arcsec) def test_apparent_rightascension(): # Validate against a published value from the Astronomical Almanac (1992) t = Time('1992-10-13', scale='tdb') assert_quantity_allclose(sun.apparent_rightascension(t), Angle('13h13m30.749s'), atol=0.01*u.arcsec) def test_apparent_rightascension_J2000(): # Regression-only test t = Time('1992-10-13', scale='tdb') assert_quantity_allclose(sun.apparent_rightascension(t, equinox_of_date=False), Angle('13h13m52.37s'), atol=0.01*u.arcsec) def test_apparent_declination(): # Validate against a published value from the Astronomical Almanac (1992) t = Time('1992-10-13', scale='tdb') assert_quantity_allclose(sun.apparent_declination(t), Angle('-7d47m01.74s'), atol=0.05*u.arcsec) def test_apparent_declination_J2000(): # Regression-only test t = Time('1992-10-13', scale='tdb') assert_quantity_allclose(sun.apparent_declination(t, equinox_of_date=False), Angle('-7d49m13.09s'), atol=0.05*u.arcsec) def test_print_params(): # Test only for any issues with printing; accuracy is covered by other tests sun.print_params()
41.495495
124
0.721884
0
0
0
0
0
0
0
0
1,108
0.240556
3c2db6513413d924898e189ce93d55aaff3a377a
1,031
py
Python
components/collector/src/source_collectors/file_source_collectors/pyupio_safety.py
Gamer1120/quality-time
f3a0d6f75cd6055d78995d37feae72bc3e837e4b
[ "Apache-2.0" ]
1
2021-02-22T07:53:36.000Z
2021-02-22T07:53:36.000Z
components/collector/src/source_collectors/file_source_collectors/pyupio_safety.py
Gamer1120/quality-time
f3a0d6f75cd6055d78995d37feae72bc3e837e4b
[ "Apache-2.0" ]
338
2020-10-29T04:28:09.000Z
2022-02-22T04:09:33.000Z
components/collector/src/source_collectors/file_source_collectors/pyupio_safety.py
dicksnel/quality-time
4c04f8852aa97175f2bca2b5c5391b3e09b657af
[ "Apache-2.0" ]
1
2022-01-06T04:07:03.000Z
2022-01-06T04:07:03.000Z
"""Pyup.io Safety metrics collector.""" from typing import Final from base_collectors import JSONFileSourceCollector from source_model import Entity, SourceMeasurement, SourceResponses class PyupioSafetySecurityWarnings(JSONFileSourceCollector): """Pyup.io Safety collector for security warnings.""" PACKAGE: Final[int] = 0 AFFECTED: Final[int] = 1 INSTALLED: Final[int] = 2 VULNERABILITY: Final[int] = 3 KEY: Final[int] = 4 async def _parse_source_responses(self, responses: SourceResponses) -> SourceMeasurement: """Return a list of warnings.""" entities = [] for response in responses: entities.extend( [Entity( key=warning[self.KEY], package=warning[self.PACKAGE], installed=warning[self.INSTALLED], affected=warning[self.AFFECTED], vulnerability=warning[self.VULNERABILITY]) for warning in await response.json(content_type=None)]) return SourceMeasurement(entities=entities)
36.821429
108
0.682832
841
0.815713
0
0
0
0
571
0.553831
124
0.120272
3c312cb7c5567e3a8e860f6d1634192c56119a38
2,580
py
Python
jaf/main.py
milano-slesarik/jaf
97c0a579f4ece70dbfb583d72aa35380f7a82f8d
[ "MIT" ]
null
null
null
jaf/main.py
milano-slesarik/jaf
97c0a579f4ece70dbfb583d72aa35380f7a82f8d
[ "MIT" ]
null
null
null
jaf/main.py
milano-slesarik/jaf
97c0a579f4ece70dbfb583d72aa35380f7a82f8d
[ "MIT" ]
null
null
null
import json import os import typing from io import IOBase from jaf.encoders import JAFJSONEncoder class JsonArrayFileWriterNotOpenError(Exception): pass class JsonArrayFileWriter: MODE__APPEND_OR_CREATE = 'ac' MODE__REWRITE_OR_CREATE = 'rc' def __init__(self, filepath: str, mode=MODE__REWRITE_OR_CREATE, indent: typing.Optional[int] = None, json_encoder=JAFJSONEncoder): self.filepath: str = filepath self.mode = mode self.indent: int = indent self.lines: int = 0 self.json_encoder = json_encoder self.file: typing.Optional[IOBase] = None def __enter__(self) -> 'JsonArrayFileWriter': self.open() return self def __exit__(self, exc_type, exc_val, exc_tb) -> None: self.close() def open(self) -> None: if self.mode == self.MODE__REWRITE_OR_CREATE: self.file = open(self.filepath, 'w') self.file.write('[') elif self.mode == self.MODE__APPEND_OR_CREATE: if os.path.exists(self.filepath): with open(self.filepath) as f: jsn = json.load(f) # loads whole JSON into the memory os.rename(self.filepath, self.filepath + '.bak') else: jsn = [] self.file = open(self.filepath, 'w') self.file.write('[') for entry in jsn: self.write(entry) elif self.mode == self.MODE__APPEND: raise NotImplementedError else: raise NotImplementedError(f"Unknown write mode \"{self.mode}\"") def write(self, dct: dict) -> None: if getattr(self, 'file', None) is None: raise JsonArrayFileWriterNotOpenError( "JsonArrayFileWriter needs to be opened by calling `.open()` or used within a context manager `with JsonArrayFileWriter(<FILEPATH>,**kwargs) as writer:`") jsn = json.dumps(dct, indent=self.indent, cls=self.json_encoder) if self.lines: self.file.write(f',') self.write_newline() self.file.write(jsn) self.lines += 1 def write_dict(self, dct: dict) -> None: self.write(dct) def write_newline(self): self.file.write(os.linesep) def close(self) -> None: self.file.write('\n') self.file.write(']') self.file.close() with JsonArrayFileWriter('output.json', mode=JsonArrayFileWriter.MODE__APPEND_OR_CREATE, indent=4) as j: d = {1: 2, 2: 3, 3: 4, 4: 6} for i in range(1000000): j.write(d)
31.084337
170
0.601163
2,287
0.886434
0
0
0
0
0
0
301
0.116667
3c325c2ee5bdb7ac85221911bcf0265edefa9de5
91
py
Python
8_kyu/Removing_Elements.py
UlrichBerntien/Codewars-Katas
bbd025e67aa352d313564d3862db19fffa39f552
[ "MIT" ]
null
null
null
8_kyu/Removing_Elements.py
UlrichBerntien/Codewars-Katas
bbd025e67aa352d313564d3862db19fffa39f552
[ "MIT" ]
null
null
null
8_kyu/Removing_Elements.py
UlrichBerntien/Codewars-Katas
bbd025e67aa352d313564d3862db19fffa39f552
[ "MIT" ]
null
null
null
def remove_every_other(my_list): return [my_list[it] for it in range(0,len(my_list),2)]
45.5
58
0.736264
0
0
0
0
0
0
0
0
0
0
3c3406ddfc224f8162dd8e58c6d1818f19d5fb3c
812
py
Python
BluePlug/fork.py
liufeng3486/BluePlug
c7c5c769ed35c71ebc542d34848d6bf309abd051
[ "MIT" ]
1
2019-01-27T04:08:05.000Z
2019-01-27T04:08:05.000Z
BluePlug/fork.py
liufeng3486/BluePlug
c7c5c769ed35c71ebc542d34848d6bf309abd051
[ "MIT" ]
5
2021-03-18T21:35:20.000Z
2022-01-13T00:58:18.000Z
BluePlug/fork.py
liufeng3486/BluePlug
c7c5c769ed35c71ebc542d34848d6bf309abd051
[ "MIT" ]
null
null
null
from aip import AipOcr BAIDU_APP_ID='14490756' BAIDU_API_KEY = 'Z7ZhXtleolXMRYYGZ59CGvRl' BAIDU_SECRET_KEY = 'zbHgDUGmRnBfn6XOBmpS5fnr9yKer8C6' client= AipOcr(BAIDU_APP_ID, BAIDU_API_KEY, BAIDU_SECRET_KEY) options = {} options["recognize_granularity"] = "big" options["language_type"] = "CHN_ENG" options["detect_direction"] = "true" options["detect_language"] = "true" options["vertexes_location"] = "true" options["probability"] = "true" def getimagestream(path): with open(path, 'rb') as f: return f.read() def getcharactor(path): obj = client.general(getimagestream(path)) if obj.get('error_code'): return obj res = [] for r in obj['words_result']: res.append(r['words']) return res if __name__ == '__main__': r = getcharactor('5.png') print(r)
24.606061
62
0.69335
0
0
0
0
0
0
0
0
267
0.328818
3c34f86c770e6ffff7025e5fd4715854fbee0f6d
1,233
py
Python
test/test_model.py
karlsimsBBC/feed-me
e2bc87aef4740c2899b332f1b4036c169b108b79
[ "MIT" ]
null
null
null
test/test_model.py
karlsimsBBC/feed-me
e2bc87aef4740c2899b332f1b4036c169b108b79
[ "MIT" ]
2
2020-02-28T16:52:05.000Z
2020-02-28T16:52:11.000Z
test/test_model.py
karlsimsBBC/feed-me
e2bc87aef4740c2899b332f1b4036c169b108b79
[ "MIT" ]
null
null
null
import unittest from unittest.mock import Mock from unittest.mock import mock_open from contextlib import contextmanager class TestDocumentDB(unittest.TestCase): def test_reads_articles(self): db = DocumentDB() expected = [ {'article_idx': 0}, {'article_idx': 1} ] self.assertEquals(db.read('articles'), expected) def test_writes_atricle(self): db = DocumentDB() self.assertEquals(db.read('articles'), []) db.write({'article_idx': 0}) expected = [ {'article_idx': 0} ] actual = db.read('articles') self.assertEquals(db.read('articles'), expected) def test_skips_write_when_article_exists(self): db = DocumentDB() self.assertEquals(db.read('articles'), []) db.write({'article_idx': 0}) db.write({'article_idx': 0}) expected = [ {'article_idx': 0} ] self.assertEquals(db.read('articles'), expected) @contextmanager def mock_files(data): f = mock_open(read_data=data) with mock.patch("__builtin__.open", f) as fs: yield fs MOCK_DATA_A = '' MOCK_DATA_B = '{"article_idx": 0}\n{"article_idx": 1}\n"
27.4
56
0.596918
895
0.725872
122
0.098946
138
0.111922
0
0
212
0.171938
3c36a55c48b2843a0df149d905928f2eb9279e29
4,596
py
Python
GuessGame.py
VedantKhairnar/Guess-Game
a959d03cbfea539a63e451e5c65f7cd9790d1b7f
[ "MIT" ]
null
null
null
GuessGame.py
VedantKhairnar/Guess-Game
a959d03cbfea539a63e451e5c65f7cd9790d1b7f
[ "MIT" ]
null
null
null
GuessGame.py
VedantKhairnar/Guess-Game
a959d03cbfea539a63e451e5c65f7cd9790d1b7f
[ "MIT" ]
1
2020-06-05T12:42:39.000Z
2020-06-05T12:42:39.000Z
from tkinter import * import random from tkinter import messagebox class GuessGame: def protocolhandler(self): if messagebox.askyesno("Exit", "Really Wanna stop Guessing?"): if messagebox.askyesno("Exit", "Are you sure?"): self.root.destroy() def result(self): print (" You have ran out of guesses :( i was thinking of the number: ",self.n) lose = Label(self.root, text=" You have run out of chances :(\nand I was thinking of the number: "+str(self.n),bg='black',fg='cyan',font=5) lose.place(x = 140,y = 500) def check(self): print("Checking the number provided...") self.flag = 0 self.turn += 1 if self.flag == 0 and self.turn == 10: self.result() return print("Entered number is "+ str(self.m.get())) if self.m.get()<1 or self.m.get()>100: print("Invalid number..") self.invalid = Label(self.root, text="Invalid number entered.. ",bg='black',fg='cyan',font=5) self.invalid.place(x = 140,y = 503) elif self.m.get()==self.n: print("Bravos,You guessed it right!!! in " +str(self.turn)+" turns") self.flag=1 self.win = Label(self.root, text="Bravos,You guessed it right!!! in " +str(self.turn)+" turns",bg='black',fg='cyan',font=5) self.win.place(x=130,y=503) elif self.m.get()<self.n: print ("Too low! You have ",10-self.turn, "guesses left!") self.less = Label(self.root, text="Too low! You have "+str(10-self.turn)+ " guesses left!",bg='black',fg='cyan',font=5) self.less.place(x=135,y=503) elif self.m.get()>self.n: print ("Too high! You have ",10-self.turn, "guesses left!") self.more = Label(self.root, text="Too high! You have "+str(10-self.turn)+ " guesses left!",bg='black',fg='cyan',font=5) self.more.place(x=135,y=503) else: print("There's some problem!!!") self.root.destroy() def __init__(self): self.root = Tk() self.root.geometry('800x600') self.root.config(bg='black') self.root.title('Guess Game') self.m = IntVar() self.status = "" self.flag = 0 self.turn=0 self.n = random.randint(1,101) # self.root.protocol("WM_DELETE_WINDOW", self.protocolhandler) photo = PhotoImage(file="pythonlogoneonf.png") label = Label(self.root, image=photo,border=0) label.place(x=300, y=300) self.win = Label(self.root, text="Bravos,You guessed it right!!! in " +str(self.turn)+" turns",bg='black',fg='cyan') self.more = Label(self.root, text="Too high! You have "+str(10-self.turn)+ "guesses left!",bg='black',fg='cyan') self.less = Label(self.root, text="Too low! You have "+str(10-self.turn)+ "guesses left!",bg='black',fg='cyan') self.invalid = Label(self.root, text="Invalid number entered.. ",bg='black',fg='cyan') status = Label(self.root,text = "Status: ",bg='black',fg='cyan') status.config(font=("magneto", 20)) status.place(x=17,y=495) title_g = Label(self.root, text="G",bg='black',fg='cyan') # title_g.config(font=("mexicanero", 50)) title_g.config(font=("prometheus", 80)) title_g.place(x=250,y=70) title_1 = Label(self.root, text="uess",fg='cyan',bg='black') title_1.config(font=("prometheus", 38)) title_1.place(x=350,y=70) title_2 = Label(self.root, text="ame",fg='cyan',bg='black') title_2.config(font=("prometheus", 38)) title_2.place(x=370,y=125) instructions = Label(self.root, text="Instruction: I am thinking of a number from 1-100..\nGuess it with the directions I'll provide.\nYou have 10 chances in total\nGood Luck\n:)",bg='black',fg='cyan') instructions.config(font=("calibri", 13)) instructions.place(x=220,y=350) guess = Label(self.root, text="Enter Your Guess here:",bg='black',fg='cyan') guess.config(font=("fragmentcore", 13)) guess.place(x=23,y=290) self.entry = Entry(self.root,textvariable=self.m,bg='black',fg='cyan') self.entry.place(x=205,y=293) button_push = Button(self.root, text="Check",bd=4,bg='black',fg='cyan', command=self.check) button_push.place(x=350,y=285) self.root.mainloop() s = GuessGame()
42.555556
210
0.570061
4,501
0.97933
0
0
0
0
0
0
1,370
0.298085
3c39dc3a117517ba44438eb56f648a0feefd8459
2,051
py
Python
kanban.py
vtashlikovich/jira-task-analysis
34690406243fe0b4c5f1400c5bca872923856571
[ "MIT" ]
null
null
null
kanban.py
vtashlikovich/jira-task-analysis
34690406243fe0b4c5f1400c5bca872923856571
[ "MIT" ]
null
null
null
kanban.py
vtashlikovich/jira-task-analysis
34690406243fe0b4c5f1400c5bca872923856571
[ "MIT" ]
null
null
null
import configparser import sys from jiraparser import JiraJSONParser, TokenAuth import requests from requests.auth import AuthBase """ Getting a list of issues connected to a board id (defined by configuration) and printing analysis information """ # read config config = configparser.ConfigParser() config.read("config.ini") # prepare parameters jSQLString = JiraJSONParser.formJQLQuery( projectId=config["default"]["issueKey"], filter=int(config["default"]["filterId"]), taskTypes=["Story"], ) authToken = config["default"]["authentication-token"] jiraBaseAPIURL = config["default"]["jiraURL"] + "/rest/api/2/issue/" boardAPIURL = config["default"]["jiraURL"] + "/rest/api/2/search?jql=" + jSQLString # fetch board issues resp = requests.get( boardAPIURL, auth=TokenAuth(authToken), params={"Content-Type": "application/json"} ) if resp.status_code != 200: raise Exception("Board information has not been fetched") result = resp.json() print("max {:d} out of {:d}".format(result["maxResults"], result["total"])) # TODO: replace with full list when needed narrowedList = result["issues"][:5] for task in narrowedList: # fetch issue info issueParser = JiraJSONParser(authToken, jiraBaseAPIURL) issueParser.parseIssueJson(task) print( "Issue: " + task["key"] + ", type: " + issueParser.issueTypeName + ", status: " + issueParser.issueStatus ) # if there are subtasks - fetch them one by one if issueParser.issueHasSubtasks: issueParser.getAndParseSubtasks(False) if len(issueParser.subtasksWOEstimation) > 0: print("Sub-tasks not estimated: " + ",".join(issueParser.subtasksWOEstimation)) # print progress in 1 line progressInfoLine = issueParser.getCompactProgressInfo() if len(progressInfoLine) > 0: print(issueParser.getCompactProgressInfo()) # warn if there is no estimation for task/bug elif issueParser.issueTypeName.lower() != "story": print("No estimation") print("")
31.075758
117
0.694783
0
0
0
0
0
0
0
0
728
0.354949
3c3a5c531bfcc3cf9b1021a5ea94cb71ba7d11b0
1,268
py
Python
duckling/test/test_api.py
handsomezebra/zoo
db9ef7f9daffd34ca859d5a4d76d947e00a768b8
[ "MIT" ]
1
2020-03-08T07:46:14.000Z
2020-03-08T07:46:14.000Z
duckling/test/test_api.py
handsomezebra/zoo
db9ef7f9daffd34ca859d5a4d76d947e00a768b8
[ "MIT" ]
null
null
null
duckling/test/test_api.py
handsomezebra/zoo
db9ef7f9daffd34ca859d5a4d76d947e00a768b8
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import json import requests import logging import csv url = "http://localhost:10000/parse" def get_result(text, lang, dims, latent=None, reftime=None, tz=None): data = { "text": text, "lang": lang, "dims": json.dumps(dims) } if reftime is not None: data["reftime"] = reftime if tz is not None: data["tz"] = tz if latent is not None: data["latent"] = latent response = None try: response = requests.post(url, data=data) response.raise_for_status() except requests.exceptions.RequestException as e: logging.warning("Service %s requests exception: %s", url, e) if response is None: logging.warning("Failed to call service") return None elif response.status_code != 200: logging.warning("Invalid response code %d from service", response.status_code) return None else: return response.json() def test_time_en(): reftime = "1559920354000" # 6/7/2019 8:12:34 AM time_zone = "America/Los_Angeles" result = get_result("tomorrow at eight", "en", ["time"], reftime=reftime) assert result is not None and result[0]["value"]["value"] == "2019-06-08T08:00:00.000-07:00"
23.924528
96
0.621451
0
0
0
0
0
0
0
0
321
0.253155