hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
9ffe17de7805da9bfb7ad7d54bb9a08115c66b6e
149
py
Python
commonutils/__init__.py
lrbsunday/commonutils
6a4f2106e877417eebc8b8c6a9c1610505bd21e3
[ "BSD-3-Clause" ]
1
2017-09-10T13:13:04.000Z
2017-09-10T13:13:04.000Z
commonutils/__init__.py
lrbsunday/commonutils
6a4f2106e877417eebc8b8c6a9c1610505bd21e3
[ "BSD-3-Clause" ]
2
2021-03-25T21:45:54.000Z
2021-11-15T17:47:06.000Z
commonutils/__init__.py
lrbsunday/commonutils
6a4f2106e877417eebc8b8c6a9c1610505bd21e3
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """Top-level package for commonutils.""" __author__ = """lrbsunday""" __email__ = '272316131@qq.com' __version__ = '0.1.0'
18.625
40
0.637584
0
0
0
0
0
0
0
0
103
0.691275
9ffe6ea421da07a4d91197e1ea46c83dd156f66f
826
py
Python
app/components/admin.py
Uniquode/uniquode2
385f3e0b26383c042d8da64b52350e82414580ea
[ "MIT" ]
null
null
null
app/components/admin.py
Uniquode/uniquode2
385f3e0b26383c042d8da64b52350e82414580ea
[ "MIT" ]
null
null
null
app/components/admin.py
Uniquode/uniquode2
385f3e0b26383c042d8da64b52350e82414580ea
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from django.utils.timesince import timesince class CreatedByAdminMixin: def save_model(self, request, obj, form, change): if getattr(obj, 'created_by', None) is None: obj.created_by = request.user # noinspection PyUnresolvedReferences super().save_model(request, obj, form, change) # noinspection PyMethodMayBeStatic class TimestampAdminMixin: def since_created(self, obj): return timesince(obj.dt_created) def since_modified(self, obj): return timesince(obj.dt_created) class TaggedAdminMixin: # noinspection PyUnresolvedReferences def get_queryset(self, request): return super().get_queryset(request).prefetch_related('tags') def _tags(self, obj): return ", ".join(o.name for o in obj.tags.all())
25.8125
69
0.690073
713
0.863196
0
0
0
0
0
0
153
0.18523
9fff12642cb00ff3e2ce7ae890c3d2b10cbbe1d1
8,936
py
Python
src/WignerFunctionMeasurement.py
ngchihuan/WignerFunc_Measurement
9c258180da4c1a1ff87b384f0aaf85dc0f92d667
[ "MIT" ]
null
null
null
src/WignerFunctionMeasurement.py
ngchihuan/WignerFunc_Measurement
9c258180da4c1a1ff87b384f0aaf85dc0f92d667
[ "MIT" ]
null
null
null
src/WignerFunctionMeasurement.py
ngchihuan/WignerFunc_Measurement
9c258180da4c1a1ff87b384f0aaf85dc0f92d667
[ "MIT" ]
null
null
null
import os from os.path import join, isfile from shutil import Error from sys import exec_prefix import numpy as np import fit import simple_read_data from tabulate import tabulate import logging np.seterr(all='raise') class DataFormatError(Exception): pass class WrongPathFormat(Exception): pass def check_data_format(data): ''' check if the input data satisfies the following requiresments: 1. it is a dictionary {x: [], y: [], yerr: []}. 2. The array must have same size if the data format is wrong, raise a Type Error ''' conf = {'x': [], 'y' : [], 'yerr' : [] } if (check_structure(data,conf)==False): raise DataFormatError("Wrong format for the input data") else: if (np.min(data['y']) < 0 or np.max(data['y'])>1.0): raise DataFormatError("y is out of range (0,1)") def print_debug(): debug_msg = 'debug' return debug_msg def check_structure(struct, conf): if isinstance(struct, dict) and isinstance(conf, dict): # struct is a dict of types or other dicts return all(k in conf and check_structure(struct[k], conf[k]) for k in struct) if isinstance(struct, list) and isinstance(conf, list): # struct is list in the form [type or dict] return all(check_structure(struct[0], c) for c in conf) elif isinstance(struct, type): # struct is the type of conf return isinstance(conf, struct) else: # struct is neither a dict, nor list, not type return False class WignerFunc_Measurement(): def __init__(self,fpath,debug=False) -> None: self.sb_list={} #dictionary that stores sb measurement self.set_path(fpath) self.list_all_files() self.logger = logging.getLogger('WFM') self.debug = debug if debug == True: self.logger.setLevel(logging.DEBUG) else: self.logger.setLevel(logging.ERROR) #add stream handler and formatter c_handler = logging.StreamHandler() c_format = logging.Formatter('WFM: %(message)s') c_handler.setFormatter(c_format) self.logger.addHandler(c_handler) def set_path(self,fpath) -> None: try: os.listdir(fpath) self.fpath = fpath except (NotADirectoryError, FileNotFoundError): self.logger.error('The given path is not a directory') raise WrongPathFormat def list_all_files(self): print('Scanning the directory') self.files = [f for f in os.listdir(self.fpath) if isfile(join(self.fpath, f)) and os.path.splitext(join(self.fpath,f))[1] in ['','.dat'] ] self.fullpath_files = sorted( [join(self.fpath,f) for f in os.listdir(self.fpath) if isfile(join(self.fpath, f)) and os.path.splitext(join(self.fpath,f))[1]=='' ] ) if self.files == []: self.logger.warning('The directory is empty') else: print(f'Discovered {len(self.files)} files in the directory') return self.files def setup_sbs(self): print(f'Validating files') cnt=0 for fname in self.fullpath_files: try: sbs = SideBandMeasurement(fname,raw = False,debug= self.debug) self.sb_list[str(cnt)] = sbs cnt += 1 except Exception as err: pass else: sbs.eval_parity() print(f'Discovered {cnt} valid files with right data format\n') def get_files(self): return self.files def print_report(self): print('Report summary \n') t=[[key,sb.folder, sb.short_fname, sb.parity, sb.err_log] for key,sb in self.sb_list.items()] print(tabulate(t, headers=['id', 'folder','filename', 'parity','Errors'])) def refit(self,id,weights=[],omega=None,gamma=None): ''' Refit a sideband measurement using new weights, omega and gamma. ''' if (id >= len(self.sb_list.keys()) ): self.logger.warning('id is out of range') return else: sb_target = self.sb_list[str(id)] sb_target.reset_log_err() print(f'Refitting Sideband measurement {sb_target.fname}') if omega!= None: sb_target.set_Omega(omega) if len(weights) != 0: sb_target.set_weight(weights) if gamma!= None: sb_target.set_gamma(gamma) sb_target.eval_parity() def show_errors(self): pass class SideBandMeasurement(): def __init__(self,fname,raw = False, debug = False ) -> None: self.fname = fname self.xy = dict((el,[]) for el in ['x','y','yerr']) self.plot = None self.parity = None self.raw = raw self.weight = [1, 0, 0] self.Omega_0 = 0.05 self.gamma = 7e-4 self.offset = 0.0 #internal logging self.err_log=[] #logging self.logger= logging.getLogger(self.fname) #add stream handler and formatter c_handler = logging.StreamHandler() c_format = logging.Formatter('SBM: %(message)s') c_handler.setFormatter(c_format) self.logger.addHandler(c_handler) if debug == True: self.logger.setLevel(logging.DEBUG) else: self.logger.setLevel(logging.ERROR) #extract folder name and fname only (self.folder, self.short_fname) = self.fname.split("/")[-2:] #verify if the data file is valid try: np.genfromtxt(self.fname) except IOError as err: #self.logger.exception('file \'%s\' is not found' %(self.fname) ) raise try: self.extract_xy() except ValueError as err: #self.logger.exception(err) raise def log_err(self,errors): self.err_log.append(errors) def reset_log_err(self): self.err_log=[] def set_Omega(self,omega): try: self.Omega_0 = float(omega) except ValueError as error: self.logger.error(f'Rabi freq must a nummber {error}') raise def set_gamma(self,gamma): try: self.gamma = float(gamma) except ValueError as error: self.logger.error(f'gamma must a nummber {error}') raise def set_weight(self,weight) -> None: self.logger.debug(f'Set weight when fitting sb {self.fname}') try: self.weight = [float(i) for i in weight] except (TypeError,ValueError) as err: self.logger.error(f'Set weight error') raise def extract_xy(self): ''' Extract xy data from the data files ''' if self.raw== True: try: (self.xy['x'], self.xy['y'], self.xy['yerr'],_,_) = simple_read_data.get_x_y(self.fname) except Exception as err: raise else: try: self.xy['x'], self.xy['y'], self.xy['yerr'] = tuple(np.genfromtxt(self.fname)) except ValueError as err: raise ValueError(f'{self.short_fname} has wrong data format') def extract_pop(self): try: self.fit_res = fit.fit_sum_multi_sine_offset(self.xy['x'], self.xy['y'], self.xy['yerr'], self.weight, self.Omega_0, self.gamma, offset = self.offset, rsb=False\ ,gamma_fixed=False,customized_bound_population=None,debug=False) except FloatingPointError as err: #self.logger.warning('There is a measurement with zero uncertainty') self.log_err('zero sigma') except Exception as err: self.log_err('unexpected error in fitting') #raise RuntimeError('Could not fit') else: redchi = self.fit_res['reduced_chi square'] if (redchi>10 or redchi<0): #self.logger.warning(f'Could not fit well') self.log_err(f'Could not fit well, redchi = {round(redchi,2)}') return self.fit_res def eval_parity(self): self.logger.debug(f'Evaluate parity of {self.fname}') res = self.extract_pop() if res!= None: self.weight_fit = res['weight fit'] self.parity = 0 for i,j in enumerate(self.weight_fit): if i%2 == 0: self.parity += j*1 else: self.parity += j*(-1) return self.parity #use map and filter to do it in a better way??? def plotxy(self): self.plot = None if __name__ == '__main__': fpath ='../tests/test_data' wfm1 = WignerFunc_Measurement(fpath) wfm1.setup_sbs() wfm1.report()
31.575972
173
0.57218
7,339
0.821285
0
0
0
0
0
0
1,906
0.213295
b000e8e09627008c8e1b4d9bdfd0f7e449d23a7e
1,729
py
Python
falmer/content/models/scheme.py
sussexstudent/services-api
ae735bd9d6177002c3d986e5c19a78102233308f
[ "MIT" ]
2
2017-04-27T19:35:59.000Z
2017-06-13T16:19:33.000Z
falmer/content/models/scheme.py
sussexstudent/falmer
ae735bd9d6177002c3d986e5c19a78102233308f
[ "MIT" ]
975
2017-04-13T11:31:07.000Z
2022-02-10T07:46:18.000Z
falmer/content/models/scheme.py
sussexstudent/services-api
ae735bd9d6177002c3d986e5c19a78102233308f
[ "MIT" ]
3
2018-05-09T06:42:25.000Z
2020-12-10T18:29:30.000Z
from django.db import models from wagtail.admin.edit_handlers import FieldPanel, StreamFieldPanel, MultiFieldPanel from wagtail.core.blocks import StreamBlock from wagtail.core.fields import StreamField from wagtail.images.edit_handlers import ImageChooserPanel from falmer.content import components from falmer.content.components.structures import sidebar_card from falmer.content.models.mixins import SocialMediaMixin from falmer.matte.models import MatteImage from .core import Page class SchemePage(Page, SocialMediaMixin): subpage_types = [] parent_page_types = ('content.SchemeIndexPage', ) main = StreamField( StreamBlock([ components.text.to_pair(), ]), verbose_name='Main Content', null=True, blank=True ) hero_image = models.ForeignKey(MatteImage, null=False, blank=False, on_delete=models.PROTECT) sidebar_cards = StreamField([ sidebar_card.to_pair() ], blank=True) content_panels = Page.content_panels + [ StreamFieldPanel('main'), ImageChooserPanel('hero_image'), StreamFieldPanel('sidebar_cards'), MultiFieldPanel(( FieldPanel('social_facebook_url'), FieldPanel('social_twitter_handle'), FieldPanel('social_snapchat_handle'), FieldPanel('social_instagram_handle'), FieldPanel('social_email_address'), )), ] api_fields = [ 'hero_image', ] class SchemeIndexPage(Page): subpage_types = (SchemePage, ) preamble = StreamField([ components.text.to_pair(), ]) content_panels = Page.content_panels + [ StreamFieldPanel('preamble'), ] api_fields = [ 'preamble', ]
27.887097
97
0.685367
1,237
0.715442
0
0
0
0
0
0
219
0.126663
b0017ce65ff4bed42aaeae9f18c1a86d9bbd1f1d
1,089
py
Python
scripts/main_validation.py
platycristate/ptah
15369382fc48860cc5bcd6a201a8b250ae8cb516
[ "MIT" ]
null
null
null
scripts/main_validation.py
platycristate/ptah
15369382fc48860cc5bcd6a201a8b250ae8cb516
[ "MIT" ]
1
2021-06-11T12:01:33.000Z
2021-06-11T12:01:33.000Z
scripts/main_validation.py
platycristate/ptah
15369382fc48860cc5bcd6a201a8b250ae8cb516
[ "MIT" ]
1
2021-06-11T11:57:06.000Z
2021-06-11T11:57:06.000Z
import pandas as pd import matplotlib.pyplot as plt import numpy as np import re import spacy from time import time import pickle from collections import defaultdict import pmi_tfidf_classifier as ptic path = "../data/" pd.set_option("display.max_rows", None, "display.max_columns", None) np.random.seed(250) spacy.prefer_gpu() nlp = spacy.load("en_core_sci_sm", disable=['ner', 'parser']) train_data = pd.read_csv(path + 'DILI_data_mixed.csv') test_data = pd.read_csv(path + "Validation.tsv", sep="\t") targets_train = train_data['Label'].values tokenized_texts = ptic.tokenization(train_data) tokenized_test_texts = ptic.tokenization(test_data) N = len(tokenized_texts) word2text_count = ptic.get_word_stat( tokenized_texts ) words_pmis = ptic.create_pmi_dict(tokenized_texts, targets_train, min_count=1) t1 = time() results = ptic.classify_pmi_based(words_pmis, word2text_count, tokenized_test_texts, N) t2 = time() test_data["Label"] = results print("Classfication time: %s min" % (round(t2 - t1, 3)/60)) test_data.to_csv(path + "arsentii.ivasiuk@gmail.com_results.csv")
25.325581
87
0.769513
0
0
0
0
0
0
0
0
201
0.184573
b00272462aa831ed8359bfb1b05ac3991b3aef99
956
py
Python
src/marion/marion/tests/test_fields.py
openfun/marion
bf06b64bf78bca16685e62ff14b66897c1dbe80c
[ "MIT" ]
7
2021-04-06T20:33:31.000Z
2021-09-30T23:29:24.000Z
src/marion/marion/tests/test_fields.py
openfun/marion
bf06b64bf78bca16685e62ff14b66897c1dbe80c
[ "MIT" ]
23
2020-09-09T15:01:50.000Z
2022-01-03T08:58:36.000Z
src/marion/marion/tests/test_fields.py
openfun/marion
bf06b64bf78bca16685e62ff14b66897c1dbe80c
[ "MIT" ]
2
2020-12-14T10:07:07.000Z
2021-06-29T00:20:43.000Z
"""Tests for the marion application fields""" from marion.defaults import DocumentIssuerChoices from ..fields import IssuerLazyChoiceField, LazyChoiceField def test_fields_lazy_choice_field(): """ LazyChoiceField class. Choices instance attribute should not be customizable. """ field = LazyChoiceField( name="lazy_choice_field", choices=[("option1", "Option 1"), ("option2", "Option 2")], max_length=200, ) errors = field.check() assert len(errors) == 0 assert field.choices == [] def test_fields_issuer_lazy_choice_field(settings): """ IssuerLazyChoiceField class. Choices attribute relies on DOCUMENT_ISSUER_CHOICES_CLASS setting. """ settings.MARION_DOCUMENT_ISSUER_CHOICES_CLASS = ( "marion.defaults.DocumentIssuerChoices" ) field = IssuerLazyChoiceField(name="issuer_lazy_choice_field") assert field.choices == DocumentIssuerChoices.choices
26.555556
70
0.712343
0
0
0
0
0
0
0
0
379
0.396444
b00495771d6a310aa5e5d77c1c05c91690f9a756
2,331
py
Python
ObjectTrackingDrone/colorpickerusingTello.py
udayagopi587/ArealRobotics_AutonomousDrone
6bc10ee167076086abb3b2eef311ae43f457f21d
[ "MIT" ]
1
2022-03-12T00:47:24.000Z
2022-03-12T00:47:24.000Z
ObjectTrackingDrone/colorpickerusingTello.py
udayagopi587/ArealRobotics_AutonomousDrone
6bc10ee167076086abb3b2eef311ae43f457f21d
[ "MIT" ]
null
null
null
ObjectTrackingDrone/colorpickerusingTello.py
udayagopi587/ArealRobotics_AutonomousDrone
6bc10ee167076086abb3b2eef311ae43f457f21d
[ "MIT" ]
1
2022-03-14T23:42:57.000Z
2022-03-14T23:42:57.000Z
# -*- coding: utf-8 -*- """ Created on Thu Mar 3 12:15:40 2022 @author: udaya """ # -*- coding: utf-8 -*- """ Created on Sun Feb 27 18:06:29 2022 @author: udaya """ import cv2 import numpy as np from djitellopy import Tello frameWidth = 640 frameHeight = 480 ############################### # CONNECT TO TELLO def initializeTello(): myDrone = Tello() myDrone.connect() myDrone.for_back_velocity = 0 myDrone.left_right_velocity = 0 myDrone.up_down_velocity = 0 myDrone.yaw_velocity = 0 myDrone.speed = 0 print(myDrone.get_battery()) myDrone.streamoff() #Turning off the streams, if any preious streams were on myDrone.streamon() return myDrone # cap = cv2.VideoCapture(0) # cap.set(3, frameWidth) # cap.set(4, frameHeight) def telloGetFrame(myDrone, w= 360,h=240): myFrame = myDrone.get_frame_read() myFrame = myFrame.frame img = cv2.resize(myFrame,(w,h)) return img def empty(a): pass myDrone = initializeTello() cv2.namedWindow("HSV") cv2.resizeWindow("HSV", 640, 240) cv2.createTrackbar("HUE Min", "HSV", 0, 179, empty) cv2.createTrackbar("HUE Max", "HSV", 179, 179, empty) cv2.createTrackbar("SAT Min", "HSV", 0, 255, empty) cv2.createTrackbar("SAT Max", "HSV", 255, 255, empty) cv2.createTrackbar("VALUE Min", "HSV", 0, 255, empty) cv2.createTrackbar("VALUE Max", "HSV", 255, 255, empty) while True: success, img = telloGetFrame(myDrone,frameWidth,frameHeight) imgHsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) h_min = cv2.getTrackbarPos("HUE Min", "HSV") h_max = cv2.getTrackbarPos("HUE Max", "HSV") s_min = cv2.getTrackbarPos("SAT Min", "HSV") s_max = cv2.getTrackbarPos("SAT Max", "HSV") v_min = cv2.getTrackbarPos("VALUE Min", "HSV") v_max = cv2.getTrackbarPos("VALUE Max", "HSV") print(h_min) lower = np.array([h_min, s_min, v_min]) upper = np.array([h_max, s_max, v_max]) mask = cv2.inRange(imgHsv, lower, upper) result = cv2.bitwise_and(img, img, mask=mask) mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) hStack = np.hstack([img, mask, result]) cv2.imshow('Horizontal Stacking', hStack) if cv2.waitKey(1) & 0xFF == ord('q'): break #cap.release() cv2.destroyAllWindows()
26.793103
81
0.632347
0
0
0
0
0
0
0
0
586
0.251394
b0050cae1ff0c2350a07478cbaf2f32a1d466c54
16,101
py
Python
climetlab_plugin_tools/create_plugin_cmd.py
ecmwf-lab/climetlab-plugin-tools
52fc1c6c07958ecfb8a5c946f4851725832b3cd0
[ "Apache-2.0" ]
null
null
null
climetlab_plugin_tools/create_plugin_cmd.py
ecmwf-lab/climetlab-plugin-tools
52fc1c6c07958ecfb8a5c946f4851725832b3cd0
[ "Apache-2.0" ]
null
null
null
climetlab_plugin_tools/create_plugin_cmd.py
ecmwf-lab/climetlab-plugin-tools
52fc1c6c07958ecfb8a5c946f4851725832b3cd0
[ "Apache-2.0" ]
null
null
null
# (C) Copyright 2020 ECMWF. # # This software is licensed under the terms of the Apache Licence Version 2.0 # which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. # In applying this licence, ECMWF does not waive the privileges and immunities # granted to it by virtue of its status as an intergovernmental organisation # nor does it submit to any jurisdiction. # import configparser import datetime import logging import os import pathlib from climetlab.scripts.tools import parse_args from .str_utils import CamelCase, alphanum, camelCase, dashes, underscores LOG = logging.getLogger(__name__) # import climetlab.debug APACHE_LICENCE = """This software is licensed under the terms of the Apache Licence Version 2.0 which can be obtained at http://www.apache.org/licenses/LICENSE-2.0.""" PREFIX_ECMWF_LICENCE = ( """(C) Copyright {year} European Centre for Medium-Range Weather Forecasts.""" ) POSTFIX_ECMWF_LICENCE = """In applying this licence, ECMWF does not waive the privileges and immunities granted to it by virtue of its status as an intergovernmental organisation nor does it submit to any jurisdiction.""" class PluginContext: def __init__(self, kind, **kwargs): self.kind = kind self._transformers = {} self.kwargs = kwargs def fill_form(self): for t in TRANSFORMERS_CLASSES[self.kind]: t(self) @property def template_dir(self): here = os.path.dirname(__file__) return os.path.realpath(os.path.join(here, "templates", self.kind)) @property def output_dir(self): return self("climetlab-plugin-name-climetlab-template") def check_output_dir(self): if os.path.exists(self.output_dir): raise Exception( f"Folder {self.output_dir} already exists. Not overwriting it." ) def create_plugin(self): self.check_output_dir() for path in self.template_files_list(): template = os.path.join(self.template_dir, path) output = os.path.join(self.output_dir, path) output = self(output) LOG.info(f"Creating {output}") with open(template, "r") as f: txt = f.read() txt = self(txt) os.makedirs(os.path.dirname(output), exist_ok=True) with open(output, "w") as f: f.write(txt) print(f"Plugin built in {self.output_dir}") print(self.final_help()) def template_files_list(self): cwd = os.getcwd() os.chdir(self.template_dir) lst = [str(f) for f in pathlib.Path(".").glob("**/*") if os.path.isfile(str(f))] # TODO: find a nicer way to avoid __path__ folders. lst = [f for f in lst if "__pycache__" not in f] os.chdir(cwd) return lst def __call__(self, txt): if txt is None: return None assert isinstance(txt, str), txt original = txt for k, transformer in self._transformers.items(): txt = transformer(txt) if txt != original: txt = self(txt) return txt def get_default_email(self): try: return self._gitconfig("email") except: # noqa:E722 return f'{self._transformers["full_name"].value.replace(" ", ".").lower()}@example.com' def get_default_full_name(self): try: return self._gitconfig("name") except: # noqa:E722 return "Joe Developer" def _gitconfig(self, key): if os.environ.get("CLIMETLAB_PLUGIN_TOOLS_NO_GUESS"): raise Exception("CLIMETLAB_PLUGIN_TOOLS_NO_GUESS is set.") config = configparser.ConfigParser() gitconfig = os.path.expanduser("~/.gitconfig") config.read(gitconfig) value = config["user"][key] LOG.info(f"Found {key} in gitconfig {value}") return value def final_help(self): txt = """ -------------------------------------------------------------------- Climetlab plugin generated successfully. Next steps: 1. Create a repository on github at http://github.com/repo_url_climetlab_template. 2. Push to the repository as instructed by github: cd climetlab-plugin-name-climetlab-template git init git add . git commit -m'first commit' git branch -M main git remote add origin http://github.com/repo_url_climetlab_template git push --set-upstream origin main [Optional: See tests running http://github.com/repo_url_climetlab_template/actions] 3 - Publish to pipy (pip) manually: python -m pip install --upgrade pip pip install setuptools wheel twine twine upload dist/* # Need pipy login/password (create an account at https://pypi.org) Others can now do `pip install climetlab-plugin-name-climetlab-template`. 4. Publish automatically from Github to pypi. [Optional] Edit climetlab-plugin-name-climetlab-template/.github/workflows/check-and-publish to point to pypi instead of test.pypi. Create a token from pypi at https://pypi.org/manage/account/token/ Add the token as a Github secret on the name PYPI_API_TOKEN at https://github.com/repo_url_climetlab_template/settings/secrets/actions/new You are all set! Push the github repository and release from http://github.com/repo_url_climetlab_template/releases/new. """ # noqa: E501 return self(txt) class Transformer: _help = "" glob = None def __init__( self, context, key, default=None, pattern=None, value=None, force_prefix="", ): LOG.debug(f"New Transformer({key})") self._context = context self.key = key self.default = self._context(default) self.force_prefix = self._context(force_prefix) self.pattern = pattern self.value = value self.help = self._context(self._help) self.fill() LOG.debug(f"Transformer({key}) created") def __repr__(self) -> str: return f"Transformer({self.key}, pattern={self.pattern}, value={self.value})" def fill(self): if self.pattern is None: self.pattern = self.key if not self.glob: self.adapts = [lambda x: x] elif self.glob is True: self.adapts = [underscores, dashes, CamelCase, camelCase] else: self.adapts = self.glob self.read_value() self.pattern = self.pattern + "_climetlab_template" self._context._transformers[self.key] = self def prompt(self): return f"Please enter {self.desc} ('?' for help)" def default_prompt(self): if self.default: return f"Hit 'return' to use the default value '{self.force_prefix}{self.default}'" return "" def try_reading_from_context(self): if self._context.kwargs.get(self.key, None): self.value = self._context.kwargs[self.key] assert isinstance(self.value, str) assert isinstance(self.force_prefix, str) print(f"\n--> Using {self.force_prefix + self.value} (from command line)") return True def try_reading_from_user(self): print() value = input(">>>> " + self.force_prefix) if value == "h" or value == "?": print(f"?\n {self.help}") if self.default is not None: print(f" Default value: {self.force_prefix}{self.default}") return self.try_reading_from_user() if value: self.value = value print(f"\n--> Using {self.force_prefix + self.value}") return True def try_reading_from_default(self): if self.default is not None: print(f"\n--> Using {self.force_prefix + self.default} (default)") self.value = self.default return True def read_value(self): print() print(self.prompt()) print(self.default_prompt()) if self.try_reading_from_context(): return if self.try_reading_from_user(): return if self.try_reading_from_default(): return return self.read_value() def __call__(self, txt): for adapt in self.adapts: p = adapt(self.pattern) v = adapt(self.value) if p in txt: LOG.debug(f'Replacing "{p}" by "{v}"') LOG.debug(f" k={self.key}") LOG.debug(f" p: {self.pattern} -> {p}") LOG.debug(f" v: {self.value} -> {v}") txt = txt.replace(p, v) return txt class NoPromptTransformer(Transformer): def read_value(self): LOG.debug(f"{self.key}: not prompt using {self.value}.") class GlobNoPromptTransformer(NoPromptTransformer): glob = True class SourceNameTransformer(GlobNoPromptTransformer): def __init__(self, context): name = context._transformers["plugin_name"].value if name.endswith("-source"): name = name[:-7] super().__init__(context, "source_name", value=name) class DatasetNameTransformer(Transformer): desc = "the dataset name" _help = """The dataset name is used as follow: A climetlab dataset plugin package can provides one or more datasets. This scripts creates a plugin with one dataset. The dataset name will be used by the end users to access the data through CliMetLab with: cml.load_dataset("dataset-name", ...) The convention is to make the dataset name start with "plugin-name-climetlab-template". The dataset name can easily be modified afterwards, without regenerating a new plugin, simply by editing the setup.py.""" glob = True def __init__(self, context): super().__init__( context, "dataset_name", default="", force_prefix="plugin-name-climetlab-template", ) def fill(self): super().fill() self.value = dashes(self.value).lower() self.value = alphanum(self.value) if self.value: while self.value.startswith("-"): self.value = self.value[1:] name = "plugin-name-climetlab-template" + "-" + self.value else: self.value = "main" name = "plugin-name-climetlab-template" name = self._context(name) GlobNoPromptTransformer(self._context, "dataset_full_name", value=name) class PluginNameTransformer(Transformer): desc = "the plugin name" _help = """The plugin name is used to define: - The python package name `import climetlab_{plugin_name} ` - The pip package name `pip install climetlab-{plugin-name}`. It will also be used to suggest and appropriate URL on github. The plugin_name can be the name of the project you are working on, but notice that it should be specific enough as only one plugin with a given name can be installed. Highly generic names (such as "meteo", "domain", "copernicus", "country-name" are not recommended. The plugin name cannot be easily modified afterwards. You would need to regenerate a new one and copy existing code.""" glob = True def __init__(self, context): super().__init__( context, "plugin_name", default="my_plugin", ) context.check_output_dir() class EmailTransformer(Transformer): desc = "your email" _help = """The email is used in setup.py to define the email maintainer of the pip package.""" def __init__(self, context): super().__init__( context, "email", default=context.get_default_email(), ) class GithubUsernameTransformer(Transformer): desc = "your Github user name" _help = """The github username (or github space name) is used to suggest a github repository url. The username (ecmwf-lab) should be used if you wish to host your repository on the github space "https://github.com/ecmwf-lab/"). Else, please provide your own github user name.""" def __init__(self, context): super().__init__( context, "github_username", default="ecmwf-lab", ) class FullNameTransformer(Transformer): desc = "your full name" _help = """The full name is used in setup.py to define the maintainer of the pip package.""" def __init__(self, context): super().__init__( context, "full_name", default=context.get_default_full_name(), ) class RepoUrlTransformer(Transformer): desc = "the repository url" _help = """The repository url name is used to define: - The package url in the setup.py, i.e. the url published in Pypi for pip. - The links in the README file. If your do not want to host you repository on github, please edit manually the generated setup.py afterwards.""" def __init__(self, context): super().__init__( context, "repo_url", default="github_username_climetlab_template/climetlab-plugin-name-climetlab-template", force_prefix="https://github.com/", ) class LicenceTransformer(Transformer): _help = """The APACHE 2.0 licence is used for the plugin code. Most users should answer "n" to use the standard APACHE 2.0 licence. ECMWF users should answer "y" to add the appropriate addition to the licence. The licence is added in the plugin code: - In the header of each python file. - In the LICENSE file. - In the README. If you choose another licence, please modify these files manually afterwards.""" desc = "Use the modified APACHE licence with ECMWF additions?" def __init__(self, context): super().__init__(context, "licence") def prompt(self): return f"{self.desc} ('y' or 'n', '?' for help)" def fill(self): self.read_value() self.value = dict(y=True, n=False)[self.value.lower()] self.year = str(datetime.datetime.now().year) licence = APACHE_LICENCE if self.value: licence = "\n".join([PREFIX_ECMWF_LICENCE, licence, POSTFIX_ECMWF_LICENCE]) licence = licence.format(year=self.year) print(f" Using this licence:\n{licence}\n") NoPromptTransformer(self._context, "year_licence", value=str(self.year)) NoPromptTransformer(self._context, "licence_txt", value=licence) NoPromptTransformer(self._context, "license_txt", value=licence) licence_with_sharp = "\n".join(["# " + line for line in licence.split("\n")]) NoPromptTransformer( self._context, "licence_header", pattern="# licence_header", value=licence_with_sharp, ) NoPromptTransformer( self._context, "license_header", pattern="# license_header", value=licence_with_sharp, ) TRANSFORMERS_CLASSES = { "dataset": [ PluginNameTransformer, DatasetNameTransformer, FullNameTransformer, EmailTransformer, GithubUsernameTransformer, RepoUrlTransformer, LicenceTransformer, ], "source": [ PluginNameTransformer, SourceNameTransformer, FullNameTransformer, EmailTransformer, GithubUsernameTransformer, RepoUrlTransformer, LicenceTransformer, ], } class CreateDatasetPluginCmd: @parse_args( name=dict(help="Plugin name"), dataset=dict(help="Dataset name"), ) def do_plugin_create_dataset(self, args): context = PluginContext( "dataset", plugin_name=args.name, dataset_name=args.dataset ) context.fill_form() context.create_plugin() class CreateSourcePluginCmd: @parse_args(name=dict(help="Plugin name")) def do_plugin_create_source(self, args): context = PluginContext("source", plugin_name=args.name) context.fill_form() context.create_plugin()
33.266529
143
0.629464
14,422
0.895721
0
0
786
0.048817
0
0
6,537
0.406
b0074893c2e7005340588db291b50134738031f4
3,044
py
Python
openclean/util/core.py
remram44/openclean-core
8c09c8302cadbb3bb02c959907f91a3ae343f939
[ "BSD-3-Clause" ]
4
2021-04-20T09:06:26.000Z
2021-11-20T20:31:28.000Z
openclean/util/core.py
remram44/openclean-core
8c09c8302cadbb3bb02c959907f91a3ae343f939
[ "BSD-3-Clause" ]
14
2021-01-19T19:23:16.000Z
2021-04-28T14:31:03.000Z
openclean/util/core.py
remram44/openclean-core
8c09c8302cadbb3bb02c959907f91a3ae343f939
[ "BSD-3-Clause" ]
5
2021-08-24T11:57:21.000Z
2022-03-17T04:39:04.000Z
# This file is part of the Data Cleaning Library (openclean). # # Copyright (C) 2018-2021 New York University. # # openclean is released under the Revised BSD License. See file LICENSE for # full license details. """Collection of helper functions for various purpoeses.""" from typing import Optional import uuid def always_false(*args): """Predicate that always evaluates to False. Parameters ---------- args: any Variable list of arguments. Returns ------- bool """ return False class eval_all(object): """Logic operator that evaluates a list of predicates and returns True only if all predicates return a defined result value. """ def __init__(self, predicates, truth_value=True): """Initialize the list of predicates and the expected result value. Parameters ---------- predicates: list(callable) List of callables that are evaluated on a given value. truth_value: scalar, default=True Expected result value for predicate evaluation to be considered satisfied. """ self.predicates = predicates self.truth_value = truth_value def __call__(self, value): """Evaluate all predicates on the given value. Returns True only if all predicates evaluate to the defined result value. Parameters ---------- value: scalar Scalar value that is compared against the constant compare value. Returns ------- bool """ for f in self.predicates: if f.eval(value) != self.truth_value: return False return True def is_list_or_tuple(value): """Test if a given value is a list or tuple that can be converted into multiple arguments. Parameters ---------- value: any Any object that is tested for being a list or tuple. Returns ------- bool """ return isinstance(value, list) or isinstance(value, tuple) def scalar_pass_through(value): """Pass-through method for single scalar values. Parameters ---------- value: scalar Scalar cell value from a data frame row. Returns ------- scalar """ return value def tenary_pass_through(*args): """Pass-through method for a list of argument values. Parameters ---------- args: list of scalar List of argument values. Returns ------- scalar """ return args def unique_identifier(length: Optional[int] = None) -> str: """Get an identifier string of given length. Uses UUID to generate a unique string and return the requested number of characters from that string. Parameters ---------- length: int, default=None Number of characters in the returned string. Returns ------- string """ identifier = str(uuid.uuid4()).replace('-', '') if length is not None: identifier = identifier[:length] return identifier
23.415385
79
0.617608
1,163
0.382063
0
0
0
0
0
0
2,187
0.718463
b0091d1b6caace04c666bba350b86f62370a21bc
78
py
Python
desafio1.py
sergioboff/Desafios-Curso-em-Video
f876396635b12c00bdd9523758364bbebfd70ae0
[ "MIT" ]
null
null
null
desafio1.py
sergioboff/Desafios-Curso-em-Video
f876396635b12c00bdd9523758364bbebfd70ae0
[ "MIT" ]
null
null
null
desafio1.py
sergioboff/Desafios-Curso-em-Video
f876396635b12c00bdd9523758364bbebfd70ae0
[ "MIT" ]
null
null
null
nome= input('Qual seu nome ?: ') print ('Olá {} Seja bem vindo'.format(nome))
26
44
0.641026
0
0
0
0
0
0
0
0
43
0.544304
b00943e9be2f2f8a05e1b1e0bcce1f1c5bb49902
68
py
Python
exquiro/parsers/openponk/__init__.py
xhusar2/conceptual_model_parser
63eea4ab8b967a6d2ee612ffb4a06b93e97d0043
[ "MIT" ]
null
null
null
exquiro/parsers/openponk/__init__.py
xhusar2/conceptual_model_parser
63eea4ab8b967a6d2ee612ffb4a06b93e97d0043
[ "MIT" ]
null
null
null
exquiro/parsers/openponk/__init__.py
xhusar2/conceptual_model_parser
63eea4ab8b967a6d2ee612ffb4a06b93e97d0043
[ "MIT" ]
null
null
null
from .openpondk_class_diagram_parser import OpenponkClsDiagramParser
68
68
0.941176
0
0
0
0
0
0
0
0
0
0
b00a0ae9f8f71c5f857d2683a8d63e315db4a5e2
254
py
Python
fastNLP/modules/encoder/__init__.py
awesome-archive/fastNLP
767e7971e542783c0129ed88b7d871db775e653e
[ "Apache-2.0" ]
4
2019-01-19T13:58:10.000Z
2019-01-19T15:07:48.000Z
fastNLP/modules/encoder/__init__.py
TTTREE/fastNLP
ef82c1f10000752db32a5fa323668b94bcb940a1
[ "Apache-2.0" ]
1
2018-09-30T13:30:51.000Z
2018-09-30T13:30:51.000Z
fastNLP/modules/encoder/__init__.py
TTTREE/fastNLP
ef82c1f10000752db32a5fa323668b94bcb940a1
[ "Apache-2.0" ]
null
null
null
from .conv import Conv from .conv_maxpool import ConvMaxpool from .embedding import Embedding from .linear import Linear from .lstm import LSTM __all__ = ["LSTM", "Embedding", "Linear", "Conv", "ConvMaxpool"]
21.166667
37
0.629921
0
0
0
0
0
0
0
0
44
0.173228
b00bb16d432ae4e7eebbd1a8f438f11ad4838ec1
1,141
py
Python
openCVTutorials/openCVimgChangeColorspaceTutorial.py
nahutch/BasketballAI_P1
9a44f80787231df386910c28f17bab465fee013d
[ "Apache-2.0" ]
1
2019-01-24T19:07:08.000Z
2019-01-24T19:07:08.000Z
openCVTutorials/openCVimgChangeColorspaceTutorial.py
nahutch/BasketballAI_P1
9a44f80787231df386910c28f17bab465fee013d
[ "Apache-2.0" ]
null
null
null
openCVTutorials/openCVimgChangeColorspaceTutorial.py
nahutch/BasketballAI_P1
9a44f80787231df386910c28f17bab465fee013d
[ "Apache-2.0" ]
null
null
null
#following tutorial: https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_colorspaces/py_colorspaces.html#converting-colorspaces import numpy as np import cv2 #there are more than 150 color-space conversions methods available in OpenCV #why so many? #gets all possible color space conversion flags flags = [i for i in dir(cv2) if i.startswith("COLOR_")] #print (flags) #converts a bgr color to hsv green = np.uint8([[[0,255,0]]]) hsv_green = cv2.cvtColor(green,cv2.COLOR_BGR2HSV) print (hsv_green) #extracts any blue colored object using the built in video camera #can detect my blue eyes if I get close and widen them cap = cv2.VideoCapture(0) while(1): #take each frame _, frame = cap.read() hsv = cv2.cvtColor(frame,cv2.COLOR_BGR2HSV) lower_blue = np.array([110,50,50]) upper_blue = np.array([130,255,255]) mask = cv2.inRange(hsv,lower_blue,upper_blue) res = cv2.bitwise_and(frame,frame,mask=mask) cv2.imshow("frame",frame) cv2.imshow("mask",mask) cv2.imshow("result",res) k = cv2.waitKey(5)& 0xFF if k == 27: break cv2.destroyAllWindows()
26.534884
158
0.718668
0
0
0
0
0
0
0
0
500
0.438212
b00c4cc641fafb1dc25683af3562c4fd4137c48c
1,724
py
Python
sdcflows/utils/misc.py
madisoth/sdcflows
c2f01e4f9b19dbd89ac1b54e3cfb0643fc3fd4f2
[ "Apache-2.0" ]
16
2020-02-25T17:47:10.000Z
2022-03-07T02:54:51.000Z
sdcflows/utils/misc.py
madisoth/sdcflows
c2f01e4f9b19dbd89ac1b54e3cfb0643fc3fd4f2
[ "Apache-2.0" ]
175
2020-02-15T00:52:28.000Z
2022-03-29T21:42:31.000Z
sdcflows/utils/misc.py
madisoth/sdcflows
c2f01e4f9b19dbd89ac1b54e3cfb0643fc3fd4f2
[ "Apache-2.0" ]
12
2019-05-28T23:34:37.000Z
2020-01-22T21:32:22.000Z
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: # # Copyright 2021 The NiPreps Developers <nipreps@gmail.com> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # We support and encourage derived works from this project, please read # about our expectations at # # https://www.nipreps.org/community/licensing/ # """Basic miscellaneous utilities.""" def front(inlist): """ Pop from a list or tuple, otherwise return untouched. Examples -------- >>> front([1, 0]) 1 >>> front("/path/somewhere") '/path/somewhere' """ if isinstance(inlist, (list, tuple)): return inlist[0] return inlist def last(inlist): """ Return the last element from a list or tuple, otherwise return untouched. Examples -------- >>> last([1, 0]) 0 >>> last("/path/somewhere") '/path/somewhere' """ if isinstance(inlist, (list, tuple)): return inlist[-1] return inlist def get_free_mem(): """Probe the free memory right now.""" try: from psutil import virtual_memory return round(virtual_memory().free, 1) except Exception: return None
24.628571
77
0.657773
0
0
0
0
0
0
0
0
1,311
0.760441
b00d6bcbdc91daedbc8ff5cedd805b13268a4bca
7,026
py
Python
src/model1_predict.py
shubhampachori12110095/FashionAI-Clothing-Attribute-Labels-Classification
04fb40948fcae55c379d8e878c41f281948155e8
[ "Apache-2.0" ]
2
2018-12-29T09:10:18.000Z
2020-08-07T03:42:38.000Z
src/model1_predict.py
shubhampachori12110095/FashionAI-Clothing-Attribute-Labels-Classification
04fb40948fcae55c379d8e878c41f281948155e8
[ "Apache-2.0" ]
null
null
null
src/model1_predict.py
shubhampachori12110095/FashionAI-Clothing-Attribute-Labels-Classification
04fb40948fcae55c379d8e878c41f281948155e8
[ "Apache-2.0" ]
3
2018-12-29T09:10:21.000Z
2021-05-23T06:30:35.000Z
# -*- coding: UTF-8 -*- import os import numpy as np import pandas as pd from tqdm import tqdm import json import cv2 from sklearn.model_selection import train_test_split import matplotlib from keras.utils import np_utils from keras.optimizers import * from keras.preprocessing.image import ImageDataGenerator from fashionAI.config import config from fashionAI.Utils.preprocessing.imagetoarraypreprocessor import ImageToArrayPreprocessor from fashionAI.Utils.preprocessing.simplepreprocessor import SimplePreprocessor from fashionAI.Utils.preprocessing.meanpreprocessor import MeanPreprocessor from fashionAI.Utils.preprocessing.patchpreprocessor import PatchPreprocessor from fashionAI.Utils.preprocessing.croppreprocessor import CropPreprocessor from fashionAI.callbacks.trainingmonitor import TrainingMonitor from fashionAI.Utils.io.datagenerator import DataGenerator from fashionAI.nn.inceptionresnet_v2 import InceptionResnetV2 def predict1(testb_data_root_path = '/data/Attributes/Round2b/', output_csv_root_path = '../'): df_test = pd.read_csv(testb_data_root_path+'Tests/question.csv', header=None) df_test.columns = ['image_id', 'class', 'x'] del df_test['x'] ##########attributes setting## classes = ['collar_design_labels', 'lapel_design_labels', 'neck_design_labels', 'neckline_design_labels', 'coat_length_labels', 'pant_length_labels', 'skirt_length_labels','sleeve_length_labels'] design_classes = ['collar_design_labels', 'lapel_design_labels', 'neck_design_labels', 'neckline_design_labels'] design_label_count = {'collar': 5,'lapel': 5,'neck': 5,'neckline': 10} length_classes = ['coat_length_labels', 'pant_length_labels', 'skirt_length_labels','sleeve_length_labels'] length_label_count = {'coat': 8,'pant': 6,'skirt': 6,'sleeve': 9} ##########model############ incepres1 = InceptionResnetV2(500, 500, design_label_count, weight_decay=0.001) design_model = incepres1.build_net() incepres2 = InceptionResnetV2(500, 500, length_label_count, weight_decay=0.001) length_model = incepres2.build_net() design_model.load_weights('../models/model1/multitask_design_final.h5') length_model.load_weights('../models/model1/multitask_length_final.h5') ##########functions######### pre_resize = SimplePreprocessor(530, 530) #use opecv to resize in the width of 530*530 cp = CropPreprocessor(500, 500) #when 10crops, 530*530 -> 500*500 iap = ImageToArrayPreprocessor() # transform data format design_means = json.loads(open('./model1_mean/multitask_mean_design.json').read()) length_means = json.loads(open('./model1_mean/multitask_mean_length.json').read()) design_mp = MeanPreprocessor(design_means['R'], design_means['G'], design_means['B']) length_mp = MeanPreprocessor(length_means['R'], length_means['G'], length_means['B']) val_aug = ImageDataGenerator(rescale=1./255) ##########predict############ tmp_df = {} print('model1\'s design_model:predict design') cnt = 0 for idx in range(4): print() cur_class = design_classes[idx] df_load = df_test[(df_test['class'] == cur_class)].copy() df_load.reset_index(inplace=True) del df_load['index'] X_test = [testb_data_root_path + test_img for test_img in df_load['image_id']] print('design samples num-{0}:'.format(cur_class),len(X_test)) print('[INFO] predicting on test data (with crops)...') print() testGen = DataGenerator((X_test, None), 32, aug=val_aug, preprocessors=[pre_resize, design_mp]) predictions = [] for (i, images) in enumerate(testGen.generator(training=False, passes=1)): if i % 10 == 0: print('{}_test_batch_num/epochs:{}/{}'.format(cur_class, i, int(len(X_test) / 32))) for image in images: crops = cp.preprocess(image) crops = np.array([iap.preprocess(c) for c in crops], dtype='float32') pred = design_model.predict(crops) predictions.append(pred[idx].mean(axis=0)) result = [] for i in range(len(X_test)): tmp_list = predictions[i] tmp_result = '' for tmp_ret in tmp_list: tmp_result += '{:.4f};'.format(tmp_ret) print(X_test[i].split('/')[-1],' predicted: ', tmp_result[:-1]) result.append(tmp_result[:-1]) cnt = cnt +1 df_load['result'] = result print(len(df_load)) tmp_df[cur_class] = df_load.copy() print('Model1-design_model completes the prediction of design:on the {0}of samples'.format(cnt)) print('############################################') print() print('next is to predict length using Model1-lenght_model') print('model1\'s length_model:predict length') cnt = 0 for idx in range(4): print() cur_class = length_classes[idx] df_load = df_test[(df_test['class'] == cur_class)].copy() df_load.reset_index(inplace=True) del df_load['index'] X_test = [testb_data_root_path + test_img for test_img in df_load['image_id']] print('length samples num-{0}:'.format(cur_class), len(X_test)) print('[INFO] predicting on test data (with crops)...') print() testGen = DataGenerator((X_test, None), 32, aug=val_aug, preprocessors=[pre_resize, length_mp]) predictions = [] for (i, images) in enumerate(testGen.generator(training=False, passes=1)): if i%10 ==0: print('{}_test_batch_num/epochs:{}/{}'.format(cur_class, i, int(len(X_test) / 32))) for image in images: crops = cp.preprocess(image) crops = np.array([iap.preprocess(c) for c in crops], dtype='float32') pred = length_model.predict(crops) predictions.append(pred[idx].mean(axis=0)) result = [] for i in range(len(X_test)): tmp_list = predictions[i] tmp_result = '' for tmp_ret in tmp_list: tmp_result += '{:.4f};'.format(tmp_ret) print(X_test[i].split('/')[-1], ' predicted: ', tmp_result[:-1]) result.append(tmp_result[:-1]) cnt = cnt + 1 df_load['result'] = result print(len(df_load)) tmp_df[cur_class] = df_load.copy() print('Model1-length_model completes the prediction of length:on the {0}of samples'.format(cnt)) print() print('Complete!') ###########output csv###### df_result = [] for cur in classes: tmp = tmp_df[cur] tmp.reset_index(inplace=True) del tmp['index'] df_result.append(tmp) for i in df_result: i.columns = ['image_id', 'class', 'label'] result = pd.concat(df_result) result.to_csv('../output/model1_result.csv', index=None, header=None) print('model1 predicts the {} samples'.format(len(result))) ###result1### return result
39.033333
117
0.646883
0
0
0
0
0
0
0
0
1,722
0.24509
b00f67fa0503dd85f3c8d37c378d2f72c7f066bd
700
py
Python
venv/lib/python3.6/site-packages/phonenumbers/shortdata/region_QA.py
exdeam/opencrm
dfdcfdf99f0b42eb3959171927cb6574583f5ee0
[ "MIT" ]
null
null
null
venv/lib/python3.6/site-packages/phonenumbers/shortdata/region_QA.py
exdeam/opencrm
dfdcfdf99f0b42eb3959171927cb6574583f5ee0
[ "MIT" ]
null
null
null
venv/lib/python3.6/site-packages/phonenumbers/shortdata/region_QA.py
exdeam/opencrm
dfdcfdf99f0b42eb3959171927cb6574583f5ee0
[ "MIT" ]
1
2020-09-08T14:45:34.000Z
2020-09-08T14:45:34.000Z
"""Auto-generated file, do not edit by hand. QA metadata""" from ..phonemetadata import NumberFormat, PhoneNumberDesc, PhoneMetadata PHONE_METADATA_QA = PhoneMetadata(id='QA', country_code=None, international_prefix=None, general_desc=PhoneNumberDesc(national_number_pattern='[129]\\d{2,4}', possible_length=(3, 4, 5)), toll_free=PhoneNumberDesc(national_number_pattern='999', example_number='999', possible_length=(3,)), emergency=PhoneNumberDesc(national_number_pattern='999', example_number='999', possible_length=(3,)), short_code=PhoneNumberDesc(national_number_pattern='(?:1|20)\\d\\d|9(?:[27]\\d{3}|99)', example_number='100', possible_length=(3, 4, 5)), short_data=True)
70
141
0.754286
0
0
0
0
0
0
0
0
138
0.197143
b00f7bd4e39ef2e25f158e39f9604eb34518aa71
815
py
Python
test_parametrized_tests.py
karianjahi/python_pytest_tutorial
d8cf7bc9d85e75cc3248a35d8abdfd24d76276cd
[ "MIT" ]
null
null
null
test_parametrized_tests.py
karianjahi/python_pytest_tutorial
d8cf7bc9d85e75cc3248a35d8abdfd24d76276cd
[ "MIT" ]
null
null
null
test_parametrized_tests.py
karianjahi/python_pytest_tutorial
d8cf7bc9d85e75cc3248a35d8abdfd24d76276cd
[ "MIT" ]
null
null
null
""" Organizing test and parametrizing """ # Parametrized tests: Run many tests in one # pylint: disable=W0622 # pylint: disable=R0201 # pylint: disable=R0903 import pytest from word_counter import count_words class TestWordCounterParametrization: """ In this case we want to test many tests in one function """ Tests = [ ("Today is Monday", 3), ("head", 1), ("He jumps", 2), ("He\nis\nnot\nfeeling\nwell", 5), ("Mein Hände", 2), ('<h1>This is a heading</h1>', 4), ('<h1 class="foo">this is a heading</h1>', 5), ("Joseph-Njeri", 2) ] @pytest.mark.parametrize('input, output', Tests) def test_all_in_one(self, input, output): """ Testing all in one """ assert count_words(input) == output
27.166667
59
0.586503
606
0.742647
0
0
189
0.231618
0
0
437
0.535539
b0110b071338ec4840e5427dcade83815657e854
1,685
py
Python
src/dep_appearances/cli.py
jdlubrano/dep-appearances
bf752b469463ee8cb7351df37231d250be3bcf47
[ "MIT" ]
null
null
null
src/dep_appearances/cli.py
jdlubrano/dep-appearances
bf752b469463ee8cb7351df37231d250be3bcf47
[ "MIT" ]
null
null
null
src/dep_appearances/cli.py
jdlubrano/dep-appearances
bf752b469463ee8cb7351df37231d250be3bcf47
[ "MIT" ]
null
null
null
from argparse import ArgumentParser import os import pdb import sys from dep_appearances.appearances_report import AppearancesReport def main(): parser = ArgumentParser(description='Find dependencies that are unused and underused in your codebase.') parser.add_argument( 'project_root', metavar='PATH', type=str, nargs='?', default=os.getcwd(), help="The path to your project's root (defaults to your current working directory)" ) parser.add_argument( '--underused_threshold', type=int, default=2, help='The threshold to set for marking dependencies as underused (default: 2)' ) args = parser.parse_args() report = AppearancesReport(project_root=args.project_root).compile() unused_dependencies = report.unused_dependencies() underused_dependencies = report.underused_dependencies(usage_threshold=args.underused_threshold) if len(unused_dependencies) == 0: print("No unused dependencies found") else: print("Unused dependencies:") for dep in unused_dependencies: print(f"\t{dep.name}") print("") if len(underused_dependencies) == 0: print("No underused dependencies found") else: print(f"Underused dependencies (usage threshold = {args.underused_threshold}):") for dep in underused_dependencies: print(f"\t{dep.name}\n\t\timported in:") for import_statement in dep.import_statements: print(f"\t\t{os.path.relpath(import_statement.source_file)}:{import_statement.line_number}") print("") if __name__ == "__main__": main()
30.089286
108
0.668249
0
0
0
0
0
0
0
0
569
0.337685
b01166da273e45dbd1d37d892c58fe4b13c2a3e7
250
py
Python
kernel/filters.py
pycodi/django-kernel
87829a0d47d04a3bb3d5c7cb79a03f0772dfdf46
[ "MIT" ]
1
2016-09-16T11:40:45.000Z
2016-09-16T11:40:45.000Z
kernel/filters.py
pycodi/django-kernel
87829a0d47d04a3bb3d5c7cb79a03f0772dfdf46
[ "MIT" ]
null
null
null
kernel/filters.py
pycodi/django-kernel
87829a0d47d04a3bb3d5c7cb79a03f0772dfdf46
[ "MIT" ]
null
null
null
from django_filters import Filter from django_filters.fields import Lookup class ListFilter(Filter): def filter(self, qs, value): value_list = value.split(u',') return super(ListFilter, self).filter(qs, Lookup(value_list, 'in'))
31.25
75
0.716
173
0.692
0
0
0
0
0
0
8
0.032
b0120808c75c26295ac6097ea109b68947111348
323
py
Python
tests/expr/expr08.py
ktok07b6/polyphony
657c5c7440520db6b4985970bd50547407693ac4
[ "MIT" ]
83
2015-11-30T09:59:13.000Z
2021-08-03T09:12:28.000Z
tests/expr/expr08.py
jesseclin/polyphony
657c5c7440520db6b4985970bd50547407693ac4
[ "MIT" ]
4
2017-02-10T01:43:11.000Z
2020-07-14T03:52:25.000Z
tests/expr/expr08.py
jesseclin/polyphony
657c5c7440520db6b4985970bd50547407693ac4
[ "MIT" ]
11
2016-11-18T14:39:15.000Z
2021-02-23T10:05:20.000Z
from polyphony import testbench def expr08(a, b, c): return a < b < c @testbench def test(): assert False == expr08(0, 0, 0) assert True == expr08(0, 1, 2) assert False == expr08(1, 0, 2) assert False == expr08(2, 1, 0) assert True == expr08(-1, 0, 1) assert True == expr08(-2, -1, 0) test()
21.533333
36
0.575851
0
0
0
0
239
0.739938
0
0
0
0
b0134690af47b5e16baf709ce4dca459913ce34e
1,175
py
Python
pyfirmata_tmp36_MQ7_Mysql.py
amy861113/Arduino
7592c2029242fca24245ee1c34b2b9f6043070d1
[ "MIT" ]
null
null
null
pyfirmata_tmp36_MQ7_Mysql.py
amy861113/Arduino
7592c2029242fca24245ee1c34b2b9f6043070d1
[ "MIT" ]
null
null
null
pyfirmata_tmp36_MQ7_Mysql.py
amy861113/Arduino
7592c2029242fca24245ee1c34b2b9f6043070d1
[ "MIT" ]
null
null
null
from pyfirmata import Arduino, util from time import sleep import pymysql def arduino_map(x, in_min, in_max, out_min, out_max): return(x-in_min) * (out_max-out_min) / (in_max-in_min) + out_min PORT = "COM4" uno = Arduino(PORT) sleep(5) it = util.Iterator(uno) it.start() a4 = uno.get_pin('a:4:i') a5 = uno.get_pin('a:5:i') db = pymysql.connect("120.110.114.14", "hanshin", "Hanshin519", "Student", port = 3306) cursor = db.cursor() print("Arduino start~") try: while True: gas = a4.read() tmp = a5.read() try: gasValue = round(gas * 1024) Vout = arduino_map(tmp, 0, 1, 0, 5) tmpValue = round((((Vout * 1000) - 500) / 10) , 2) #tmpValue = ((round(tmp * 1024)) * (5.0/1024) -0.5) / 0.01 sleep(5) except TypeError: pass print('{0} {1}'.format(gasValue, tmpValue)) sql = "update Student.articles_envdata set tmpValue = {1}, gasValue = {0} where data_id = 1".format(gasValue, tmpValue) cursor.execute(sql) db.commit() print("Update Success~") sleep(5) except Exception as e: db.rollback() print("Error!:{0}".format(e)) except KeyboardInterrupt: uno.exit()
23.5
124
0.612766
0
0
0
0
0
0
0
0
264
0.224681
b01440159aa9a67d2eac6230f37afcedb41016ba
303
py
Python
app/views.py
kobrient/tinypilot
aa40f11a370e04b11e0f72d34647c0e01669bbe9
[ "MIT" ]
null
null
null
app/views.py
kobrient/tinypilot
aa40f11a370e04b11e0f72d34647c0e01669bbe9
[ "MIT" ]
null
null
null
app/views.py
kobrient/tinypilot
aa40f11a370e04b11e0f72d34647c0e01669bbe9
[ "MIT" ]
null
null
null
import flask from find_files import find as find_files views_blueprint = flask.Blueprint('views', __name__, url_prefix='') @views_blueprint.route('/', methods=['GET']) def index_get(): return flask.render_template( 'index.html', custom_elements_files=find_files.custom_elements_files())
25.25
79
0.752475
0
0
0
0
175
0.577558
0
0
29
0.09571
b0144723fdb455462aff667b476dc0e86c2e8039
577
py
Python
example.py
LAIRLAB/libpyarr
9e973a4045519fa6aedae3aaabd8267f6f796a8c
[ "BSD-3-Clause" ]
1
2016-04-09T02:37:03.000Z
2016-04-09T02:37:03.000Z
example.py
LAIRLAB/libpyarr
9e973a4045519fa6aedae3aaabd8267f6f796a8c
[ "BSD-3-Clause" ]
null
null
null
example.py
LAIRLAB/libpyarr
9e973a4045519fa6aedae3aaabd8267f6f796a8c
[ "BSD-3-Clause" ]
null
null
null
#! /usr/bin/env python import warnings, numpy with warnings.catch_warnings(): warnings.simplefilter("ignore") from libpyarr_example import * def main(): my_uninited_arr = bar() my_uninited_arr[:, 0,0] = -50 print "some -50s, some uninitialized:",my_uninited_arr[:,:2,0] foo(my_uninited_arr) print "Definitely zeroed:",my_uninited_arr[:,:2,0] print "by the way, int corresponds to numpy.int32:", my_uninited_arr.dtype print "in general, numpy and C data types correspond the way you would expect." if __name__=='__main__': main()
28.85
83
0.694974
0
0
0
0
0
0
0
0
210
0.363951
b0146dc56f96a9ee8522dfa5aeb06d9a9ea59827
1,167
py
Python
kitty_tiny/tools/annoGen/AnnoEventHandler.py
sixxchung/mymm
4e8cd43c2615c08a60bf21fe0c4604344b470602
[ "MIT" ]
null
null
null
kitty_tiny/tools/annoGen/AnnoEventHandler.py
sixxchung/mymm
4e8cd43c2615c08a60bf21fe0c4604344b470602
[ "MIT" ]
null
null
null
kitty_tiny/tools/annoGen/AnnoEventHandler.py
sixxchung/mymm
4e8cd43c2615c08a60bf21fe0c4604344b470602
[ "MIT" ]
null
null
null
import logging from watchdog.events import LoggingEventHandler, FileSystemEventHandler class AnnoEventHandler(FileSystemEventHandler): """Logs all the events captured.""" def __init__(self, logger=None): super().__init__() self.logger = logger or logging.root def on_moved(self, event): super().on_moved(event) what = 'directory' if event.is_directory else 'file' self.logger.info("Moved %s: from %s to %s", what, event.src_path, event.dest_path) def on_created(self, event): super().on_created(event) what = 'directory' if event.is_directory else 'file' self.logger.info("Created %s: %s", what, event.src_path) def on_deleted(self, event): super().on_deleted(event) what = 'directory' if event.is_directory else 'file' self.logger.info("Deleted %s: %s", what, event.src_path) def on_modified(self, event): super().on_modified(event) what = 'directory' if event.is_directory else 'file' if what is 'file': self.logger.info("Annotator detected modified %s: %s", what, event.src_path)
31.540541
88
0.640103
1,077
0.922879
0
0
0
0
0
0
202
0.173093
b01504199a00f0b0ea4a2e7806f9a6775f0b35bb
11,037
py
Python
BCPNN/backend/_cpu_base_backend.py
KTH-HPC/StreamBrain
37b16e7c8e02e6d2800bcf89630a0f4419e90cd4
[ "BSD-2-Clause" ]
4
2020-10-20T22:15:25.000Z
2022-02-10T10:25:24.000Z
BCPNN/backend/_cpu_base_backend.py
KTH-HPC/StreamBrain
37b16e7c8e02e6d2800bcf89630a0f4419e90cd4
[ "BSD-2-Clause" ]
1
2020-12-16T10:46:50.000Z
2020-12-16T10:46:50.000Z
BCPNN/backend/_cpu_base_backend.py
KTH-HPC/StreamBrain
37b16e7c8e02e6d2800bcf89630a0f4419e90cd4
[ "BSD-2-Clause" ]
1
2020-10-20T22:15:29.000Z
2020-10-20T22:15:29.000Z
import sys import numpy as np from tqdm import tqdm from contextlib import nullcontext class DenseLayer: _update_state = None _softmax_minicolumns = None _update_counters = None _update_weights = None _update_bias = None def __init__( self, in_features, hypercolumns, minicolumns, taupdt, initial_counters, dtype=np.float64): self.in_features = in_features self.hypercolumns = hypercolumns self.minicolumns = minicolumns self.out_features = hypercolumns * minicolumns self.taupdt = taupdt self.dtype = dtype self.weights = ( 0.1 * np.random.randn( self.in_features, self.out_features)).astype(dtype) self.bias = (0.1 * np.random.rand(self.out_features)).astype(dtype) self.Ci = initial_counters[0] * np.ones([in_features]).astype(dtype) self.Cj = initial_counters[1] * \ np.ones([self.out_features]).astype(dtype) self.Cij = initial_counters[2] * \ np.ones([self.in_features, self.out_features]).astype(dtype) def compute_activation(self, inputs): activations = np.zeros( [inputs.shape[0], self.out_features], dtype=self.dtype) activations = self._update_state( activations, self.weights, self.bias, inputs) activations = self._softmax_minicolumns( activations, self.hypercolumns, self.minicolumns) return activations def convert(self, dtype): self.dtype = dtype self.weights = self.weights.astype(dtype) self.bias = self.bias.astype(dtype) self.Ci = self.Ci.astype(dtype) self.Cj = self.Cj.astype(dtype) self.Cij = self.Cij.astype(dtype) def train_step(self, inputs, outputs): self.Ci, self.Cj, self.Cij = self._update_counters( self.Ci, self.Cj, self.Cij, inputs, outputs, self.taupdt) def train_finalize(self): self.weights = self._update_weights( self.weights, self.Ci, self.Cj, self.Cij, self.taupdt / 2) self.bias = self._update_bias(self.bias, self.Cj, self.taupdt / 2) class StructuralPlasticityLayer: _update_state = None _softmax_minicolumns = None _update_counters = None _update_weights = None _update_bias = None _update_mask = None _apply_mask = None def __init__( self, in_features, hypercolumns, minicolumns, taupdt, khalf, pmin, taubdt, density, mask_iterations, initial_counters, dtype=np.float64): self.in_features = in_features self.hypercolumns = hypercolumns self.minicolumns = minicolumns self.out_features = hypercolumns * minicolumns self.taupdt = taupdt self.khalf = khalf self.pmin = pmin self.taubdt = taubdt self.density = density self.mask_iterations = mask_iterations self.dtype = dtype self.weights = ( 0.1 * np.random.randn( self.in_features, self.out_features)).astype(dtype) self.bias = (0.1 * np.random.rand(self.out_features)).astype(dtype) self.Ci = initial_counters[0] * np.ones([in_features]).astype(dtype) self.Cj = initial_counters[1] * \ np.ones([self.out_features]).astype(dtype) self.Cij = initial_counters[2] * \ np.ones([self.in_features, self.out_features]).astype(dtype) self.kbi = np.ones([self.out_features]).astype(dtype) self.wmask = ( np.random.rand( self.in_features, self.hypercolumns) < self.density).astype( np.uint8) def compute_activation(self, inputs): activations = np.zeros( [inputs.shape[0], self.out_features], dtype=self.dtype) activations = self._update_state( activations, self.weights, self.bias, inputs) activations = self._softmax_minicolumns( activations, self.hypercolumns, self.minicolumns) return activations def convert(self, dtype): self.dtype = dtype self.weights = self.weights.astype(dtype) self.bias = self.bias.astype(dtype) self.Ci = self.Ci.astype(dtype) self.Cj = self.Cj.astype(dtype) self.Cij = self.Cij.astype(dtype) self.kbi = self.kbi.astype(dtype) def train_step(self, inputs, outputs, hypercolumn=None): self.Ci, self.Cj, self.Cij = self._update_counters( self.Ci, self.Cj, self.Cij, inputs, outputs, self.taupdt) self.weights = self._update_weights( self.weights, self.Ci, self.Cj, self.Cij, self.taupdt / 2) self.bias, self.kbi = self._update_bias( self.bias, self.kbi, self.Cj, self.taupdt / 2, self.khalf, self.pmin, self.taubdt) if hypercolumn is not None: #print("Updating hypercolumn:", hypercolumn) self.wmask = self._update_mask( self.wmask, self.weights, self.Ci, self.Cj, self.Cij, self.taupdt / 2, self.hypercolumns, self.minicolumns, hypercolumn, self.mask_iterations) self.weights = self._apply_mask( self.weights, self.wmask, self.hypercolumns, self.minicolumns) def train_finalize(self): pass class Network: def __init__(self, dtype): self.dtype = dtype self._layers = [] self.world_rank = 0 self.world_size = 1 def add_layer(self, layer): if layer.dtype != self.dtype: layer.convert(self.dtype) self._layers.append(layer) def fit( self, training_data, training_labels, maximal_batch_size, schedule): training_data = training_data.astype(self.dtype) training_labels = training_labels.astype(self.dtype) for layer, epochs in schedule: self._train_layer( layer, maximal_batch_size, training_data, training_labels, epochs) def evaluate(self, images, labels, maximal_batch_size): images = images.astype(self.dtype) labels = labels.astype(self.dtype) correct = np.array([0]) total = np.array([0]) number_of_batches = ( images.shape[0] + maximal_batch_size - 1) // maximal_batch_size if self.world_rank == 0: cm = tqdm(total=number_of_batches) else: cm = nullcontext() with cm as pbar: if self.world_rank == 0: pbar.set_description('Evaluation') for i in range(number_of_batches): global_start = i * maximal_batch_size global_end = global_start + maximal_batch_size if global_start + \ maximal_batch_size <= images.shape[0] else images.shape[0] local_batch_size = ( global_end - global_start) // self.world_size start_sample = global_start + self.world_rank * local_batch_size end_sample = start_sample + local_batch_size batch_images = images[start_sample:end_sample, :] batch_labels = labels[start_sample:end_sample, :] activations = batch_images for layer in self._layers: activations = layer.compute_activation(activations) correct += (np.argmax(activations, axis=1) == np.argmax(batch_labels, axis=1)).sum() total += batch_images.shape[0] if self.world_rank == 0: pbar.update(1) return correct, total def _train_layer( self, layer, maximal_batch_size, images, labels, epochs): for epoch in range(epochs): if self.world_rank == 0: print('Layer - %d/%d' % (layer + 1, len(self._layers)), flush=True) idx = np.random.permutation(range(images.shape[0])) shuffled_images = images[idx, :] shuffled_labels = labels[idx, :] n_hypercolumns = self._layers[layer].hypercolumns hypercolumns_shuffled = np.random.permutation( range(n_hypercolumns)) number_of_batches = ( images.shape[0] + maximal_batch_size - 1) // maximal_batch_size local_batch_size = maximal_batch_size // self.world_size if self.world_rank == 0: cm = tqdm(total=number_of_batches) else: cm = nullcontext() with cm as pbar: if self.world_rank == 0: pbar.set_description('Epoch %d/%d' % (epoch + 1, epochs)) for i in range(number_of_batches): global_start = i * maximal_batch_size global_end = global_start + maximal_batch_size if global_start + \ maximal_batch_size <= images.shape[0] else images.shape[0] local_batch_size = ( global_end - global_start) // self.world_size start_sample = global_start + self.world_rank * local_batch_size end_sample = start_sample + local_batch_size batch_images = shuffled_images[start_sample:end_sample, :] batch_labels = shuffled_labels[start_sample:end_sample, :] prev_activation = None activation = batch_images for l in range(layer + 1): prev_activation = activation activation = self._layers[l].compute_activation( prev_activation) if epoch > 0 and i % ( number_of_batches // (n_hypercolumns + 1)) == 0: h = i // (number_of_batches // (n_hypercolumns + 1)) h = hypercolumns_shuffled[h] if h < n_hypercolumns else None else: h = None if layer + 1 == len(self._layers): self._layers[layer].train_step( prev_activation, batch_labels) else: self._layers[layer].train_step( prev_activation, activation, h) if self.world_rank == 0: pbar.update(1) self._layers[layer].train_finalize()
35.038095
94
0.552596
10,941
0.991302
0
0
0
0
0
0
84
0.007611
b01639c2289f47ba698eea2092678bb22c032e75
6,879
py
Python
flux_sensors/flux_sensor.py
Flux-Coordinator/flux-sensors
44968c95e277023c3a6777d653e7b3cb4e333923
[ "MIT" ]
null
null
null
flux_sensors/flux_sensor.py
Flux-Coordinator/flux-sensors
44968c95e277023c3a6777d653e7b3cb4e333923
[ "MIT" ]
1
2018-06-14T18:21:33.000Z
2018-06-14T18:21:33.000Z
flux_sensors/flux_sensor.py
Flux-Coordinator/flux-sensors
44968c95e277023c3a6777d653e7b3cb4e333923
[ "MIT" ]
null
null
null
from flux_sensors.localizer.localizer import Localizer, Coordinates, LocalizerError, PozyxDeviceError from flux_sensors.light_sensor.light_sensor import LightSensor from flux_sensors.config_loader import ConfigLoader from flux_sensors.flux_server import FluxServer, FluxServerError from flux_sensors.models import models import time import requests import json import logging logger = logging.getLogger(__name__) class FluxSensorError(Exception): """Base class for exceptions in this module.""" class InitializationError(FluxSensorError): """Exception raised when the initialization of the sensors failed.""" class FluxSensor: """Controlling class for the flux-sensors components""" def __init__(self, localizer_instance: Localizer, light_sensor_instance: LightSensor, config_loader: ConfigLoader, flux_server: FluxServer) -> None: self._localizer = localizer_instance self._light_sensor = light_sensor_instance self._config_loader = config_loader self._flux_server = flux_server self._timeout = time.time() def start_when_ready(self) -> None: logger.info("Flux-sensors in standby. Start polling Flux-server") while True: if not self._flux_server.poll_server_urls(self._config_loader.get_server_urls(), self._config_loader.get_timeout()): logger.warning("All server URLs failed to respond. Retry started...") continue logger.info("Server responding. Start measurement when ready...") if not self._flux_server.poll_active_measurement(): FluxSensor.handle_retry(3) continue logger.info("Success! A flux-server is available and a measurement is active.") try: self._flux_server.login_at_server() response = self._flux_server.get_active_measurement() self._flux_server.log_server_response(response) except requests.exceptions.RequestException as err: logger.error("Request error while loading active measurement from Flux-server") logger.error(err) FluxSensor.handle_retry(3) continue except FluxServerError as err: logger.error("Server error while loading active measurement from Flux-server") logger.error(err) FluxSensor.handle_retry(3) continue try: self.clear_sensors() self.initialize_sensors(response.text) except InitializationError as err: logger.error(err) logger.error("Error while initializing the sensors") FluxSensor.handle_retry(3) continue logger.info("Flux-sensors initialized. Start measurement...") self.start_measurement() @staticmethod def handle_retry(seconds: int) -> None: logger.info("Retry starts in {} seconds...".format(seconds)) time.sleep(seconds) def initialize_sensors(self, measurement: str) -> None: self.initialize_localizer(measurement) self.initialize_light_sensor() def initialize_localizer(self, measurement: str) -> None: try: measurement_json = json.loads(measurement) for anchorPosition in measurement_json["anchorPositions"]: self._localizer.add_anchor_to_cache(int(anchorPosition["anchor"]["networkId"], 16), Coordinates(int(anchorPosition["xposition"]), int(anchorPosition["yposition"]), int(anchorPosition["zposition"]))) except(ValueError, KeyError, TypeError): raise InitializationError("Error while parsing the Pozyx Anchors.") try: self._localizer.initialize() except LocalizerError as err: logger.error(err) raise InitializationError("Error while initializing Pozyx.") def initialize_light_sensor(self) -> None: self._light_sensor.initialize() def clear_sensors(self) -> None: self._localizer.clear() def _reset_timeout(self) -> None: self._timeout = time.time() + self._config_loader.get_timeout() def _is_timeout_exceeded(self) -> bool: return time.time() > self._timeout def start_measurement(self) -> None: readings = [] self._flux_server.initialize_last_response() self._reset_timeout() while not self._is_timeout_exceeded(): try: position = self._localizer.do_positioning() illuminance = self._light_sensor.do_measurement() readings.append(models.Reading(illuminance, position)) try: if self._flux_server.get_last_response() == 200: if len(readings) >= self._flux_server.MIN_BATCH_SIZE: self._flux_server.reset_last_response() json_data = json.dumps(readings, default=lambda o: o.__dict__) self._flux_server.send_data_to_server(json_data) del readings[:] self._reset_timeout() elif self._flux_server.get_last_response() == 401: logger.info("Auth token expired. Try new login...") self._flux_server.login_at_server() self._flux_server.initialize_last_response() elif self._flux_server.get_last_response() == 404: logger.info("The measurement has been stopped by the server.") return elif self._flux_server.get_last_response() != self._flux_server.RESPONSE_PENDING: logger.info("The measurement has been stopped.") return except requests.exceptions.RequestException as err: logger.error("Request error while sending new readings to Flux-server") logger.error(err) return except FluxServerError as err: logger.error("Server error while sending new readings to Flux-server") logger.error(err) return except PozyxDeviceError as err: logger.error("Pozyx error while creating new readings") logger.error(err) continue logger.error("Timeout of {}s is exceeded while waiting for Flux-server response".format( self._config_loader.get_timeout()))
44.668831
118
0.602704
6,456
0.938509
0
0
154
0.022387
0
0
1,125
0.163541
b019647d7984c42bcd98ff6521f630e19b83c858
11,288
py
Python
Network.py
Coldog2333/pytoflow
3cec913fa5a2ddb8133a075d4ff177cceb74f06a
[ "MIT" ]
102
2018-12-29T16:19:18.000Z
2022-01-13T03:54:04.000Z
Network.py
mengxiangyudlut/pytoflow
3cec913fa5a2ddb8133a075d4ff177cceb74f06a
[ "MIT" ]
19
2019-04-26T10:19:14.000Z
2021-11-14T07:36:23.000Z
Network.py
mengxiangyudlut/pytoflow
3cec913fa5a2ddb8133a075d4ff177cceb74f06a
[ "MIT" ]
32
2019-03-04T00:10:06.000Z
2022-01-11T08:19:19.000Z
import math import torch # import torch.utils.serialization # it was removed in torch v1.0.0 or higher version. arguments_strModel = 'sintel-final' SpyNet_model_dir = './models' # The directory of SpyNet's weights def normalize(tensorInput): tensorRed = (tensorInput[:, 0:1, :, :] - 0.485) / 0.229 tensorGreen = (tensorInput[:, 1:2, :, :] - 0.456) / 0.224 tensorBlue = (tensorInput[:, 2:3, :, :] - 0.406) / 0.225 return torch.cat([tensorRed, tensorGreen, tensorBlue], 1) def denormalize(tensorInput): tensorRed = (tensorInput[:, 0:1, :, :] * 0.229) + 0.485 tensorGreen = (tensorInput[:, 1:2, :, :] * 0.224) + 0.456 tensorBlue = (tensorInput[:, 2:3, :, :] * 0.225) + 0.406 return torch.cat([tensorRed, tensorGreen, tensorBlue], 1) Backward_tensorGrid = {} def Backward(tensorInput, tensorFlow, cuda_flag): if str(tensorFlow.size()) not in Backward_tensorGrid: tensorHorizontal = torch.linspace(-1.0, 1.0, tensorFlow.size(3)).view(1, 1, 1, tensorFlow.size(3)).expand(tensorFlow.size(0), -1, tensorFlow.size(2), -1) tensorVertical = torch.linspace(-1.0, 1.0, tensorFlow.size(2)).view(1, 1, tensorFlow.size(2), 1).expand(tensorFlow.size(0), -1, -1, tensorFlow.size(3)) if cuda_flag: Backward_tensorGrid[str(tensorFlow.size())] = torch.cat([ tensorHorizontal, tensorVertical ], 1).cuda() else: Backward_tensorGrid[str(tensorFlow.size())] = torch.cat([tensorHorizontal, tensorVertical], 1) # end tensorFlow = torch.cat([ tensorFlow[:, 0:1, :, :] / ((tensorInput.size(3) - 1.0) / 2.0), tensorFlow[:, 1:2, :, :] / ((tensorInput.size(2) - 1.0) / 2.0) ], 1) return torch.nn.functional.grid_sample(input=tensorInput, grid=(Backward_tensorGrid[str(tensorFlow.size())] + tensorFlow).permute(0, 2, 3, 1), mode='bilinear', padding_mode='border') # end class SpyNet(torch.nn.Module): def __init__(self, cuda_flag): super(SpyNet, self).__init__() self.cuda_flag = cuda_flag class Basic(torch.nn.Module): def __init__(self, intLevel): super(Basic, self).__init__() self.moduleBasic = torch.nn.Sequential( torch.nn.Conv2d(in_channels=8, out_channels=32, kernel_size=7, stride=1, padding=3), torch.nn.ReLU(inplace=False), torch.nn.Conv2d(in_channels=32, out_channels=64, kernel_size=7, stride=1, padding=3), torch.nn.ReLU(inplace=False), torch.nn.Conv2d(in_channels=64, out_channels=32, kernel_size=7, stride=1, padding=3), torch.nn.ReLU(inplace=False), torch.nn.Conv2d(in_channels=32, out_channels=16, kernel_size=7, stride=1, padding=3), torch.nn.ReLU(inplace=False), torch.nn.Conv2d(in_channels=16, out_channels=2, kernel_size=7, stride=1, padding=3) ) # end def forward(self, tensorInput): return self.moduleBasic(tensorInput) self.moduleBasic = torch.nn.ModuleList([Basic(intLevel) for intLevel in range(4)]) self.load_state_dict(torch.load(SpyNet_model_dir + '/network-' + arguments_strModel + '.pytorch'), strict=False) def forward(self, tensorFirst, tensorSecond): tensorFirst = [tensorFirst] tensorSecond = [tensorSecond] for intLevel in range(3): if tensorFirst[0].size(2) > 32 or tensorFirst[0].size(3) > 32: tensorFirst.insert(0, torch.nn.functional.avg_pool2d(input=tensorFirst[0], kernel_size=2, stride=2)) tensorSecond.insert(0, torch.nn.functional.avg_pool2d(input=tensorSecond[0], kernel_size=2, stride=2)) tensorFlow = tensorFirst[0].new_zeros(tensorFirst[0].size(0), 2, int(math.floor(tensorFirst[0].size(2) / 2.0)), int(math.floor(tensorFirst[0].size(3) / 2.0))) for intLevel in range(len(tensorFirst)): tensorUpsampled = torch.nn.functional.interpolate(input=tensorFlow, scale_factor=2, mode='bilinear', align_corners=True) * 2.0 # if the sizes of upsampling and downsampling are not the same, apply zero-padding. if tensorUpsampled.size(2) != tensorFirst[intLevel].size(2): tensorUpsampled = torch.nn.functional.pad(input=tensorUpsampled, pad=[0, 0, 0, 1], mode='replicate') if tensorUpsampled.size(3) != tensorFirst[intLevel].size(3): tensorUpsampled = torch.nn.functional.pad(input=tensorUpsampled, pad=[0, 1, 0, 0], mode='replicate') # input :[first picture of corresponding level, # the output of w with input second picture of corresponding level and upsampling flow, # upsampling flow] # then we obtain the final flow. 最终再加起来得到intLevel的flow tensorFlow = self.moduleBasic[intLevel](torch.cat([tensorFirst[intLevel], Backward(tensorInput=tensorSecond[intLevel], tensorFlow=tensorUpsampled, cuda_flag=self.cuda_flag), tensorUpsampled], 1)) + tensorUpsampled return tensorFlow class warp(torch.nn.Module): def __init__(self, h, w, cuda_flag): super(warp, self).__init__() self.height = h self.width = w if cuda_flag: self.addterm = self.init_addterm().cuda() else: self.addterm = self.init_addterm() def init_addterm(self): n = torch.FloatTensor(list(range(self.width))) horizontal_term = n.expand((1, 1, self.height, self.width)) # 第一个1是batch size n = torch.FloatTensor(list(range(self.height))) vertical_term = n.expand((1, 1, self.width, self.height)).permute(0, 1, 3, 2) addterm = torch.cat((horizontal_term, vertical_term), dim=1) return addterm def forward(self, frame, flow): """ :param frame: frame.shape (batch_size=1, n_channels=3, width=256, height=448) :param flow: flow.shape (batch_size=1, n_channels=2, width=256, height=448) :return: reference_frame: warped frame """ if True: flow = flow + self.addterm else: self.addterm = self.init_addterm() flow = flow + self.addterm horizontal_flow = flow[0, 0, :, :].expand(1, 1, self.height, self.width) # 第一个0是batch size vertical_flow = flow[0, 1, :, :].expand(1, 1, self.height, self.width) horizontal_flow = horizontal_flow * 2 / (self.width - 1) - 1 vertical_flow = vertical_flow * 2 / (self.height - 1) - 1 flow = torch.cat((horizontal_flow, vertical_flow), dim=1) flow = flow.permute(0, 2, 3, 1) reference_frame = torch.nn.functional.grid_sample(frame, flow) return reference_frame class ResNet(torch.nn.Module): """ Three-layers ResNet/ResBlock reference: https://blog.csdn.net/chenyuping333/article/details/82344334 """ def __init__(self, task): super(ResNet, self).__init__() self.task = task self.conv_3x2_64_9x9 = torch.nn.Conv2d(in_channels=3 * 2, out_channels=64, kernel_size=9, padding=8 // 2) self.conv_3x7_64_9x9 = torch.nn.Conv2d(in_channels=3 * 7, out_channels=64, kernel_size=9, padding=8 // 2) self.conv_64_64_9x9 = torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=9, padding=8 // 2) self.conv_64_64_1x1 = torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=1) self.conv_64_3_1x1 = torch.nn.Conv2d(in_channels=64, out_channels=3, kernel_size=1) def ResBlock(self, x, aver): if self.task == 'interp': x = torch.nn.functional.relu(self.conv_3x2_64_9x9(x)) x = torch.nn.functional.relu(self.conv_64_64_1x1(x)) elif self.task in ['denoise', 'denoising']: x = torch.nn.functional.relu(self.conv_3x7_64_9x9(x)) x = torch.nn.functional.relu(self.conv_64_64_1x1(x)) elif self.task in ['sr', 'super-resolution']: x = torch.nn.functional.relu(self.conv_3x7_64_9x9(x)) x = torch.nn.functional.relu(self.conv_64_64_9x9(x)) x = torch.nn.functional.relu(self.conv_64_64_1x1(x)) else: raise NameError('Only support: [interp, denoise/denoising, sr/super-resolution]') x = self.conv_64_3_1x1(x) + aver return x def forward(self, frames): aver = frames.mean(dim=1) x = frames[:, 0, :, :, :] for i in range(1, frames.size(1)): x = torch.cat((x, frames[:, i, :, :, :]), dim=1) result = self.ResBlock(x, aver) return result class TOFlow(torch.nn.Module): def __init__(self, h, w, task, cuda_flag): super(TOFlow, self).__init__() self.height = h self.width = w self.task = task self.cuda_flag = cuda_flag self.SpyNet = SpyNet(cuda_flag=self.cuda_flag) # SpyNet层 # for param in self.SpyNet.parameters(): # fix # param.requires_grad = False self.warp = warp(self.height, self.width, cuda_flag=self.cuda_flag) self.ResNet = ResNet(task=self.task) # frames should be TensorFloat def forward(self, frames): """ :param frames: [batch_size=1, img_num, n_channels=3, h, w] :return: """ for i in range(frames.size(1)): frames[:, i, :, :, :] = normalize(frames[:, i, :, :, :]) if self.cuda_flag: opticalflows = torch.zeros(frames.size(0), frames.size(1), 2, frames.size(3), frames.size(4)).cuda() warpframes = torch.empty(frames.size(0), frames.size(1), 3, frames.size(3), frames.size(4)).cuda() else: opticalflows = torch.zeros(frames.size(0), frames.size(1), 2, frames.size(3), frames.size(4)) warpframes = torch.empty(frames.size(0), frames.size(1), 3, frames.size(3), frames.size(4)) if self.task == 'interp': process_index = [0, 1] opticalflows[:, 1, :, :, :] = self.SpyNet(frames[:, 0, :, :, :], frames[:, 1, :, :, :]) / 2 opticalflows[:, 0, :, :, :] = self.SpyNet(frames[:, 1, :, :, :], frames[:, 0, :, :, :]) / 2 elif self.task in ['denoise', 'denoising', 'sr', 'super-resolution']: process_index = [0, 1, 2, 4, 5, 6] for i in process_index: opticalflows[:, i, :, :, :] = self.SpyNet(frames[:, 3, :, :, :], frames[:, i, :, :, :]) warpframes[:, 3, :, :, :] = frames[:, 3, :, :, :] else: raise NameError('Only support: [interp, denoise/denoising, sr/super-resolution]') for i in process_index: warpframes[:, i, :, :, :] = self.warp(frames[:, i, :, :, :], opticalflows[:, i, :, :, :]) # warpframes: [batch_size=1, img_num=7, n_channels=3, height=256, width=448] Img = self.ResNet(warpframes) # Img: [batch_size=1, n_channels=3, h, w] Img = denormalize(Img) return Img
47.230126
186
0.589033
9,462
0.835423
0
0
0
0
0
0
1,519
0.134116
b01bbd168b9b732e58f788ff84aca342f6b50515
2,668
py
Python
storagetest/pkgs/ltp/acl/acl_test.py
liufeng-elva/storage-test2
5364cc00dbe71b106f1bb740bf391e6124788bf4
[ "MIT" ]
null
null
null
storagetest/pkgs/ltp/acl/acl_test.py
liufeng-elva/storage-test2
5364cc00dbe71b106f1bb740bf391e6124788bf4
[ "MIT" ]
null
null
null
storagetest/pkgs/ltp/acl/acl_test.py
liufeng-elva/storage-test2
5364cc00dbe71b106f1bb740bf391e6124788bf4
[ "MIT" ]
null
null
null
#!/usr/bin/python # -*- coding: UTF-8 -*- """ @file : acl_test.py @Time : 2020/11/9 9:25 @Author: Tao.Xu @Email : tao.xu2008@outlook.com """ import os import unittest from storagetest.libs import utils from storagetest.libs.log import log from storagetest.libs.exceptions import PlatformError, NoSuchDir, NoSuchBinary logger = log.get_logger() cur_dir = os.path.dirname(os.path.realpath(__file__)) bin_path = os.path.join(cur_dir, 'bin') class AclXattr(object): """Test ACL and Extend Attribute on Linux system""" def __init__(self, top_path): self.top_path = top_path def verify(self): if os.name != "posix": raise PlatformError("Just support for linux machine!") if not os.path.isdir(self.top_path): raise NoSuchDir(self.top_path) try: utils.run_cmd("which attr", expected_rc=0) except Exception as e: logger.error(e) raise NoSuchBinary("attr, try install it.(apt-get install -y attr)") def run(self, test_path): """cd <test_path>; ./tacl_xattr.sh """ logger.info(self.run.__doc__) utils.mkdir_path(test_path) acl_bin = os.path.join(bin_path, 'tacl_xattr.sh') test_log = os.path.join(self.top_path, 'tacl_xattr.log') acl_cmd = "rm -rf {0}/*; cd {0}; {1} | tee {2}".format(test_path, acl_bin, test_log) try: os.system('chmod +x {0}/*'.format(bin_path)) rc, output = utils.run_cmd(acl_cmd, expected_rc="ignore") logger.info(output) if rc != 0: raise Exception("tacl_xattr.sh exit with !0") if "FAILED:" in output: raise Exception("FAIL: test acl_xattr on {}".format(test_path)) logger.info("PASS: test acl_xattr on {}".format(test_path)) except Exception as e: logger.info("FAIL: test acl_xattr on {}".format(test_path)) raise e finally: pass return True def sanity(self): self.verify() test_path = os.path.join(self.top_path, "acl_attribute") assert self.run(test_path) return True def stress(self): self.verify() test_path = os.path.join(self.top_path, "acl_attribute") assert self.run(test_path) return True class UnitTestCase(unittest.TestCase): def setUp(self) -> None: self.acl = AclXattr("/mnt/test") def test_01(self): self.acl.sanity() if __name__ == '__main__': # unittest.main() suite = unittest.TestLoader().loadTestsFromTestCase(UnitTestCase) unittest.TextTestRunner(verbosity=2).run(suite)
29.644444
92
0.613943
2,045
0.766492
0
0
0
0
0
0
615
0.23051
b01ead4c68269eedb233e679f59c48eb110ed041
1,518
py
Python
recipes-bsp/b205/files/spihost_write_ftdi.py
tszucs/meta-ublox-tk1
8cb7c83d9a8b387fae4a4108a48e697d3e94df8e
[ "MIT" ]
null
null
null
recipes-bsp/b205/files/spihost_write_ftdi.py
tszucs/meta-ublox-tk1
8cb7c83d9a8b387fae4a4108a48e697d3e94df8e
[ "MIT" ]
null
null
null
recipes-bsp/b205/files/spihost_write_ftdi.py
tszucs/meta-ublox-tk1
8cb7c83d9a8b387fae4a4108a48e697d3e94df8e
[ "MIT" ]
null
null
null
#!/usr/bin/python import sys, getopt, os, time, array from pyftdi.spi import SpiController def download ( filename, speed=5000000, chunksize=32 ): try: with open(filename, 'rb') as filein: data = filein.read () data = array.array('B', data).tolist() except IOError: print "ERROR: Could not open file {0}".format(os.path.basename(filename)) exit (1) try: spi = SpiController(silent_clock=True) spi.configure(vendor=0x0403, product=0x6010, interface=2) spi2mars = spi.get_port(cs=0) spi2mars.set_frequency(speed) time.sleep(1) startTime = time.time() i = 0 length = len(data) while length > chunksize: spi2mars.exchange(data[i:i+chunksize]) i += chunksize length -= chunksize spi2mars.exchange(data[i:]) stopTime = time.time() print "File {0} dumped on SPI @{1}MHz ({2}bytes in {3} seconds)".format(os.path.basename(filename), speed/1.0e6, len(data), stopTime - startTime) return (len(data), stopTime-startTime) except Exception, e : print "ERROR: SPI Write -", e exit (1) def main (argv): print "SAF5100 SPI downloader" try: opts, args = getopt.getopt(argv, "hf:",["--firmware="]) except: print "spi_host_write.py -f <firmware>" sys.exit(2) fname="/lib/firmware/cohda/SDRMK5Dual.bin".format(os.path.dirname(sys.argv[0])) for opt, arg in opts: if opt=="-h": print "spi_host_write.py -f <firmware>" elif opt=="-f": fname = arg print "Downloading {0}".format(fname) download (fname) if __name__ == "__main__": main (sys.argv[1:])
24.483871
147
0.675889
0
0
0
0
0
0
0
0
313
0.206192
b01eb11332b52c82d114e9890278450ea72e51d6
3,845
py
Python
PedestrianSlayer/MechanicalControl/NeuralNetwork.py
Viriliter/PedestrianSlayer
4adbdc3d0ed60408e6422cdba01f017701d05069
[ "MIT" ]
2
2018-05-23T14:14:23.000Z
2018-12-03T21:08:37.000Z
PedestrianSlayer/MechanicalControl/NeuralNetwork.py
Viriliter/PedestrianSlayer
4adbdc3d0ed60408e6422cdba01f017701d05069
[ "MIT" ]
null
null
null
PedestrianSlayer/MechanicalControl/NeuralNetwork.py
Viriliter/PedestrianSlayer
4adbdc3d0ed60408e6422cdba01f017701d05069
[ "MIT" ]
null
null
null
import numpy as np class NeuralNetwork(): ''' This neural network is designed for Pedestrian Car Project. It constructs an input layer that gets 4 road and car parameters. Using neural network algorithm, it gives optimum steering angle of the car. To use this class: -Firstly, using trainingIn() and trainingOut() functions, set the input and output training values. -Then, run train() function to estimate each synaptic weight. -Finally, using getSteeringAngle() function get optimum steering angle for car based on training input and outputs. It is possible to adjust the normalized input values using threshold functions. ''' def __init__(self): self.training_inputs = np.array([0,0,0,0]) self.training_inputs = np.array([0]).T setRadiusThreshold(self,0.100) setDeviationThreshold(self,0.100) setSpeedThreshold(self,0.100) setOrientThreshold(self,0.100) self.synaptic_weights = None def setRadiusThreshold(self,radiusB,radiusU): self.radiusThreshB = radiusB self.radiusThreshU = radiusU def setDeviationThreshold(self,deviationB,deviationU): self.deviatThreshB = deviationB self.deviatThreshU = deviationU def setSpeedThreshold(self,speedB,speedU): self.speedThreshB = speedB self.speedThreshU = speedU def setOrientThreshold(self,orientB,orientU): self.orientThreshB = orientB self.orientThreshU = orientU def normalizeParameter(self,radius,deviation,speed,orient): ''' Normalize input parameters ''' if(radiusThreshB<radius<self.radiusThreshU): nor_rad = radius*0.01 else: nor_rad = 1 if(self.deviatThreshB<deviation<self.deviatThreshU): nor_dev = deviation*0.01 else: nor_dev = 1 if(self.speedThreshB<speed<self.speedThreshU): nor_speed = speed*0.01 else: nor_speed = 1 if(self.orientThreshB<orient<self.orientThreshU): nor_orient = orient*0.01 else: nor_orient = 1 return np.array([nor_rad,nor_dev,nor_speed,nor_orient]) def normalizeOutput(self,output): ''' Normalize output parameter ''' nor_output = output/90 return nor_output def revertOutput(self,normal_out): ''' Convert the normalized output to angle ''' return normal_out*90 def trainingIn(self,radius,deviation,speed,orient): ''' Joints new training input to existing one ''' self.training_inputs = np.array([self.training_inputs,normalizeParameter(radius,deviation,speed,orient)]) def trainingOut(self,angle): ''' Joints new training output to existing one ''' self.training_outputs = np.array(self.training_outputs,[normalizeOutput(self,angle)]).T def train(self): ''' Calculates synaptic weights of each neuron ''' np.random.seed(1) self.synaptic_weights = 2*random.random((3,1))-1 for iteration in range(10000): output = 1/(1+exp(-np.dot(self.training_inputs,self.synaptic_weights))) self.synaptic_weights += np.dot(self.training_inputs.T,(self.training_outputs-output)*output*(1-output)) def getSteeringAngle(self,radius,deviation,speed,orient): ''' Uses sigmoid function to compute desired steering angle Returns the angle ''' nor_param = normalizeParameter(self,radius,deviation,speed,orient) normal_out=(1/(1+np.exp(-np.dot(nor_param,self.synaptic_weights)))) return revertOutput(normal_out)
34.954545
116
0.635111
3,824
0.994538
0
0
0
0
0
0
1,116
0.290247
b01f92f5f3f6a4f80aa7644a0330cdac5e27b92c
1,405
py
Python
tests/test_paramviewer.py
lnielsen/pyhf
3d98dc445c384d2919a77b9af0a202e12343a707
[ "Apache-2.0" ]
null
null
null
tests/test_paramviewer.py
lnielsen/pyhf
3d98dc445c384d2919a77b9af0a202e12343a707
[ "Apache-2.0" ]
null
null
null
tests/test_paramviewer.py
lnielsen/pyhf
3d98dc445c384d2919a77b9af0a202e12343a707
[ "Apache-2.0" ]
null
null
null
import pyhf from pyhf.parameters import ParamViewer def test_paramviewer_simple_nonbatched(backend): pars = pyhf.tensorlib.astensor([1, 2, 3, 4, 5, 6, 7]) parshape = pyhf.tensorlib.shape(pars) view = ParamViewer( parshape, {'hello': {'slice': slice(0, 2)}, 'world': {'slice': slice(5, 7)}}, ['hello', 'world'], ) par_slice = view.get(pars) assert pyhf.tensorlib.tolist(par_slice[view.slices[0]]) == [1, 2] assert pyhf.tensorlib.tolist(par_slice[view.slices[1]]) == [6, 7] assert pyhf.tensorlib.tolist(par_slice) == [1, 2, 6, 7] def test_paramviewer_simple_batched(backend): pars = pyhf.tensorlib.astensor([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) parshape = pyhf.tensorlib.shape(pars) view = ParamViewer( parshape, {'hello': {'slice': slice(0, 2)}, 'world': {'slice': slice(3, 4)}}, ['hello', 'world'], ) par_slice = view.get(pars) assert isinstance(view.index_selection, list) assert all( [len(x) == 3 for x in view.index_selection] ) # first dimension is batch dim assert pyhf.tensorlib.shape(par_slice) == (3, 3) assert pyhf.tensorlib.tolist(par_slice[view.slices[0]]) == [[1, 5, 9], [2, 6, 10]] assert pyhf.tensorlib.tolist(par_slice[view.slices[1]]) == [[4, 8, 12]] assert pyhf.tensorlib.tolist(par_slice) == [[1, 5, 9], [2, 6, 10], [4, 8, 12]]
31.222222
86
0.605694
0
0
0
0
0
0
0
0
114
0.081139
b0204523055a99ef60f353c69bef13df582957e8
15,276
py
Python
library/modules/encoder_decoders/sequence_to_sequence.py
dangitstam/le-traducteur
499005ac198029fd2a7e7469fb250b8b3af6a619
[ "Apache-2.0" ]
6
2018-10-23T10:05:55.000Z
2020-08-30T13:04:51.000Z
library/modules/encoder_decoders/sequence_to_sequence.py
dangitstam/le-traducteur
499005ac198029fd2a7e7469fb250b8b3af6a619
[ "Apache-2.0" ]
1
2018-08-20T21:58:33.000Z
2020-12-29T17:44:04.000Z
library/modules/encoder_decoders/sequence_to_sequence.py
dangitstam/le-traducteur
499005ac198029fd2a7e7469fb250b8b3af6a619
[ "Apache-2.0" ]
1
2022-03-26T05:13:38.000Z
2022-03-26T05:13:38.000Z
from typing import Dict, Optional, Tuple import numpy as np import torch import torch.nn.functional as F from allennlp.common.checks import ConfigurationError from allennlp.common.util import START_SYMBOL, END_SYMBOL from allennlp.data.vocabulary import Vocabulary from allennlp.models.model import Model from allennlp.modules import FeedForward, Seq2SeqEncoder, TextFieldEmbedder from allennlp.modules.attention import BilinearAttention from allennlp.modules.token_embedders import Embedding from allennlp.nn import InitializerApplicator, RegularizerApplicator, util from overrides import overrides # This is largely based on AllenNLP's general Seq2Seq encoder-decoder: # https://github.com/allenai/allennlp/blob/master/allennlp/models/encoder_decoders/simple_seq2seq.py # # but offers more flexibility. Maybe I'll subclass this module when they've addressed their TODOs. # TODO: Add more asserts so people don't do dumb shit # TODO: Better docstrings. @Model.register("sequence_to_sequence") class SequenceToSequence(Model): """ Base class for sequence-to-sequence models. """ DECODERS = {"rnn": torch.nn.RNN, "lstm": torch.nn.LSTM, "gru": torch.nn.GRU} def __init__(self, # Vocabluary. vocab: Vocabulary, # Embeddings. source_field_embedder: TextFieldEmbedder, target_embedding_size: int, # Encoders and Decoders. encoder: Seq2SeqEncoder, decoder_type: str, output_projection_layer: FeedForward, source_namespace: str = "source", target_namespace: str = "target", # Hyperparamters and flags. decoder_attention_function: BilinearAttention = None, decoder_is_bidirectional: bool = False, decoder_num_layers: int = 1, apply_attention: Optional[bool] = False, max_decoding_steps: int = 100, scheduled_sampling_ratio: float = 0.4, # Logistical. initializer: InitializerApplicator = InitializerApplicator(), regularizer: Optional[RegularizerApplicator] = None) -> None: super().__init__(vocab, regularizer) if encoder.get_input_dim() != source_field_embedder.get_output_dim(): raise ConfigurationError("The input dimension of the encoder must match the embedding" "size of the source_field_embedder. Found {} and {}, respectively." .format(encoder.get_input_dim(), source_field_embedder.get_output_dim())) if output_projection_layer.get_output_dim() != vocab.get_vocab_size(target_namespace): raise ConfigurationError("The output dimension of the output_projection_layer must match the " "size of the French vocabulary. Found {} and {}, " "respectively.".format(output_projection_layer.get_output_dim(), vocab.get_vocab_size(target_namespace))) if decoder_type not in SequenceToSequence.DECODERS: raise ConfigurationError("Unrecognized decoder option '{}'".format(decoder_type)) # For dealing with input. self.source_vocab_size = vocab.get_vocab_size(source_namespace) self.target_vocab_size = vocab.get_vocab_size(target_namespace) self.source_field_embedder = source_field_embedder or TextFieldEmbedder() self.encoder = encoder # For dealing with / producing output. self.target_vocab_size = vocab.get_vocab_size(target_namespace) self.target_embedder = Embedding(self.target_vocab_size, target_embedding_size) # Input size will either be the target embedding size or the target embedding size plus the # encoder hidden size to attend on the input. # # When making a custom attention function that uses neither of those input sizes, you will # have to define the decoder yourself. decoder_input_size = target_embedding_size if apply_attention: decoder_input_size += encoder.get_output_dim() # Hidden size of the encoder and decoder should match. decoder_hidden_size = encoder.get_output_dim() self.decoder = SequenceToSequence.DECODERS[decoder_type]( decoder_input_size, decoder_hidden_size, num_layers=decoder_num_layers, batch_first=True, bias=True, bidirectional=decoder_is_bidirectional ) self.output_projection_layer = output_projection_layer self.apply_attention = apply_attention self.decoder_attention_function = decoder_attention_function or BilinearAttention( matrix_dim=encoder.get_output_dim(), vector_dim=encoder.get_output_dim() ) # Hyperparameters. self._max_decoding_steps = max_decoding_steps self._scheduled_sampling_ratio = scheduled_sampling_ratio # Used for prepping the translation primer (initialization of the target word-level # encoder's hidden state). # # If the decoder is an LSTM, both hidden states and cell states must be initialized. # Also, hidden states that prime translation via this encoder must be duplicated # across by number of layers they has. self._decoder_is_lstm = isinstance(self.decoder, torch.nn.LSTM) self._decoder_num_layers = decoder_num_layers self._start_index = vocab.get_token_index(START_SYMBOL, target_namespace) self._end_index = vocab.get_token_index(END_SYMBOL, target_namespace) self._source_namespace = source_namespace self._target_namespace = target_namespace self._batch_size = None initializer(self) @overrides def forward(self, source: Dict[str, torch.LongTensor], target: Dict[str, torch.LongTensor]) -> Dict[str, torch.Tensor]: # pylint: disable=arguments-differ output_dict: dict = {} source = self.preprocess_input(source) # Embed and encode the source sequence. source_sequence_encoded = self.encode_input(source) source_mask = util.get_text_field_mask(source) source_lengths = source_mask.sum(dim=-1) source_encoded = torch.zeros_like(source_sequence_encoded[:, 0]) for i, length in enumerate(source_lengths): source_encoded[i] = source_sequence_encoded[i, length - 1] batch_size = source_encoded.size(0) # Determine number of decoding steps. If training or computing validation, we decode # target_seq_len times and compute loss. if target: target_tokens = target['tokens'] target_seq_len = target['tokens'].size(1) num_decoding_steps = target_seq_len - 1 else: num_decoding_steps = self.max_decoding_steps # Begin decoding the encoded source, swapping in predictions for ground truth at the # scheduled sampling rate. last_predictions = None step_logits, step_probabilities, step_predictions = [], [], [] decoder_hidden = self.init_decoder_hidden_state(source_encoded) for timestep in range(num_decoding_steps): if self.training and torch.rand(1).item() >= self._scheduled_sampling_ratio: input_choices = target_tokens[:, timestep] else: if timestep == 0: # Initialize decoding with the start token. input_choices = source_mask.new_full((batch_size,), fill_value=self._start_index) else: input_choices = last_predictions decoder_input = self.prepare_decode_step_input(input_choices, decoder_hidden, source_sequence_encoded, source_mask) if len(decoder_input.shape) < 3: decoder_input = decoder_input.unsqueeze(1) _, decoder_hidden = self.decoder(decoder_input, decoder_hidden) # Probability distribution for what the next decoded class should be. output_projection = self.output_projection_layer(decoder_hidden[0][-1] if self._decoder_is_lstm else decoder_hidden[-1]) step_logits.append(output_projection.unsqueeze(1)) # Collect predicted classes and their probabilities. class_probabilities = F.softmax(output_projection, dim=-1) _, predicted_classes = torch.max(class_probabilities, 1) step_probabilities.append(class_probabilities.unsqueeze(1)) step_predictions.append(predicted_classes.unsqueeze(1)) last_predictions = predicted_classes try: logits = torch.cat(step_logits, 1) except: import pdb; pdb.set_trace() class_probabilities = torch.cat(step_probabilities, 1) all_predictions = torch.cat(step_predictions, 1) output_dict = {"logits": logits, "class_probabilities": class_probabilities, "predictions": all_predictions} if target: target_mask = util.get_text_field_mask(target) relevant_targets = target['tokens'][:, 1:].contiguous() relevant_mask = target_mask[:, 1:].contiguous() loss = util.sequence_cross_entropy_with_logits(logits, relevant_targets, relevant_mask) output_dict["loss"] = loss return output_dict def preprocess_input(self, source: Dict[str, torch.LongTensor]) -> Dict[str, torch.Tensor]: """ Perform any preprocessing on the input text field you like; returns the source unchanged by default. """ # pylint: disable=R0201 return source def encode_input(self, source: Dict[str, torch.LongTensor]) -> Tuple[torch.FloatTensor, torch.FloatTensor]: """ Encode the source utterance how you see fit, as long as you return a tuple of tensors. By default, embeds the source utterance and feeds it to the source encoder. Note that when subclassing this module, the decoder_hidden_size should be the same as the encoder's hidden size. Required shapes: (batch_size, sequence_length, decoder_hidden_size) """ source_sequence_embedded = self.source_field_embedder(source) source_sequence_mask = util.get_text_field_mask(source) encoded_source_sequence = self.encoder(source_sequence_embedded, source_sequence_mask) return encoded_source_sequence def init_decoder_hidden_state(self, source_sequence_encoded: torch.FloatTensor) -> torch.FloatTensor: """ Prep the hidden state initialization of the word-level Target decoder any way you like. By default, uses only the final hidden state of the encoded source. Required shape: (batch_size, num_decoder_layers, encoder_hidden_size) """ decoder_primer = source_sequence_encoded.unsqueeze(0) decoder_primer = decoder_primer.expand( self._decoder_num_layers, -1, self.encoder.get_output_dim() ).contiguous() # If the decoder is an LSTM, we need to initialize a cell state. if self._decoder_is_lstm: decoder_primer = (decoder_primer, torch.zeros_like(decoder_primer)) return decoder_primer def prepare_decode_step_input(self, input_indices: torch.LongTensor, decoder_hidden: torch.LongTensor, encoder_outputs: torch.LongTensor, encoder_outputs_mask: torch.LongTensor) -> torch.LongTensor: """ Prepares the current timestep input for the decoder. By default, simply embeds and returns the input. If using attention, the default attention (BiLinearAttention) is applied to attend on the step input given the encoded source sequence and the previous hidden state. Parameters: ----------- input_indices : torch.LongTensor Indices of either the gold inputs to the decoder or the predicted labels from the previous timestep. decoder_hidden : torch.LongTensor, optional (not needed if no attention) Output from the decoder at the last time step. Needed only if using attention. encoder_outputs : torch.LongTensor, optional (not needed if no attention) Encoder outputs from all time steps. Needed only if using attention. encoder_outputs_mask : torch.LongTensor, optional (not needed if no attention) Masks on encoder outputs. Needed only if using attention. """ # input_indices : (batch_size,) since we are processing these one timestep at a time. # (batch_size, target_embedding_dim) embedded_input = self.target_embedder(input_indices) if self.apply_attention: if isinstance(decoder_hidden, tuple): decoder_hidden = decoder_hidden[0] # encoder_outputs : (batch_size, input_sequence_length, encoder_output_dim) # Ensuring mask is also a FloatTensor. Or else the multiplication within attention will # complain. encoder_outputs_mask = encoder_outputs_mask.float() # (batch_size, input_sequence_length) input_weights = self.decoder_attention_function(decoder_hidden[-1], encoder_outputs, encoder_outputs_mask) # (batch_size, encoder_output_dim) attended_input = util.weighted_sum(encoder_outputs, input_weights) # (batch_size, encoder_output_dim + target_embedding_dim) return torch.cat((attended_input, embedded_input), -1) else: return embedded_input @overrides def decode(self, output_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: predicted_indices = output_dict["predictions"] if not isinstance(predicted_indices, np.ndarray): predicted_indices = predicted_indices.detach().cpu().numpy() all_predicted_tokens = [] for indices in predicted_indices: indices = list(indices) # Collect indices till the first END_SYMBOL. if self._end_index in indices: indices = indices[:indices.index(self._end_index)] predicted_tokens = [self.vocab.get_token_from_index(x, namespace=self._target_namespace) for x in indices] all_predicted_tokens.append(predicted_tokens) output_dict["predicted_tokens"] = all_predicted_tokens return output_dict
48.805112
106
0.645719
14,276
0.934538
0
0
14,316
0.937156
0
0
4,518
0.295758
b021c9112da0b09c0383564d4213787ef0cf3187
1,372
py
Python
hrv/filters.py
LegrandNico/hrv
35cdd1b7ddf8afdebf2db91f982b256c3b9dbf67
[ "BSD-3-Clause" ]
1
2020-01-06T20:08:04.000Z
2020-01-06T20:08:04.000Z
hrv/filters.py
LegrandNico/hrv
35cdd1b7ddf8afdebf2db91f982b256c3b9dbf67
[ "BSD-3-Clause" ]
null
null
null
hrv/filters.py
LegrandNico/hrv
35cdd1b7ddf8afdebf2db91f982b256c3b9dbf67
[ "BSD-3-Clause" ]
null
null
null
import numpy as np from hrv.rri import RRi from hrv.utils import _create_time_info def quotient(rri): # TODO: Receive option to replaced outliers with stats # functions (i.e mean, median etc) # TODO: Receive option to re-create time array with cumsum of filtered rri if isinstance(rri, RRi): rri_time = rri.time rri = rri.values else: rri = np.array(rri) rri_time = _create_time_info(rri) L = len(rri) - 1 indices = np.where( (rri[:L-1]/rri[1:L] < 0.8) | (rri[:L-1]/rri[1:L] > 1.2) | (rri[1:L]/rri[:L-1] < 0.8) | (rri[1:L]/rri[:L-1] > 1.2) ) rri_filt, time_filt = np.delete(rri, indices), np.delete(rri_time, indices) return RRi(rri_filt, time_filt) def moving_average(rri, order=3): return _moving_function(rri, order, np.mean) def moving_median(rri, order=3): return _moving_function(rri, order, np.median) def _moving_function(rri, order, func): if isinstance(rri, RRi): rri_time = rri.time rri = rri.values else: rri_time = _create_time_info(rri) offset = int(order / 2) # TODO: Implemente copy method for RRi class filt_rri = np.array(rri.copy(), dtype=np.float64) for i in range(offset, len(rri) - offset, 1): filt_rri[i] = func(rri[i-offset:i+offset+1]) return RRi(filt_rri, rri_time)
25.886792
79
0.626093
0
0
0
0
0
0
0
0
206
0.150146
b02365bd68f389ec1ac4453e0ddfb053b1f457d4
20,428
py
Python
PVPlugins/PVGeo_UBC_Tools.py
jkulesza/PVGeo
c7bdbad5e5e5579033e1b00605d680b67252b3f4
[ "BSD-3-Clause" ]
1
2020-06-09T16:49:28.000Z
2020-06-09T16:49:28.000Z
PVPlugins/PVGeo_UBC_Tools.py
jkulesza/PVGeo
c7bdbad5e5e5579033e1b00605d680b67252b3f4
[ "BSD-3-Clause" ]
null
null
null
PVPlugins/PVGeo_UBC_Tools.py
jkulesza/PVGeo
c7bdbad5e5e5579033e1b00605d680b67252b3f4
[ "BSD-3-Clause" ]
null
null
null
paraview_plugin_version = '1.1.39' # This is module to import. It provides VTKPythonAlgorithmBase, the base class # for all python-based vtkAlgorithm subclasses in VTK and decorators used to # 'register' the algorithm with ParaView along with information about UI. from paraview.util.vtkAlgorithm import * # Helpers: from PVGeo import _helpers # Classes to Decorate from PVGeo.ubc import * #### GLOBAL VARIABLES #### MENU_CAT = 'PVGeo: UBC Mesh Tools' @smproxy.reader(name="PVGeoTensorMeshReader", label='PVGeo: %s'%TensorMeshReader.__displayname__, extensions=TensorMeshReader.extensions, file_description=TensorMeshReader.description) @smhint.xml('''<RepresentationType view="RenderView" type="Surface With Edges" />''') class PVGeoTensorMeshReader(TensorMeshReader): def __init__(self): TensorMeshReader.__init__(self) #### Seters and Geters #### @smproperty.xml(''' <StringVectorProperty panel_visibility="advanced" name="MeshFile" label="File Name Mesh" command="SetMeshFileName" animateable="1" clean_command="ClearMesh" number_of_elements="1"> <FileListDomain name="meshfile"/> <Documentation>This is the mesh file for a 2D or 3D UBC Mesh grid. This plugin only allows ONE mesh to be defined.</Documentation> </StringVectorProperty>''') def SetMeshFileName(self, fname): TensorMeshReader.SetMeshFileName(self, fname) @smproperty.xml(''' <StringVectorProperty panel_visibility="default" name="ModelFiles" label="File Name(s) Model" command="AddModelFileName" animateable="1" repeat_command="1" clean_command="ClearModels" number_of_elements="1"> <FileListDomain name="modelfiles"/> <Documentation>This is for a single sets of model files to append to the mesh as data time varying attributes. You can chose as many files as you would like for this for the given attribute.</Documentation> </StringVectorProperty>''') def AddModelFileName(self, fname): """Use to set the file names for the reader. Handles singlt string or list of strings.""" TensorMeshReader.AddModelFileName(self, fname) @smproperty.doublevector(name="TimeDelta", default_values=1.0, panel_visibility="advanced") def SetTimeDelta(self, dt): TensorMeshReader.SetTimeDelta(self, dt) @smproperty.doublevector(name="TimestepValues", information_only="1", si_class="vtkSITimeStepsProperty") def GetTimestepValues(self): """This is critical for registering the timesteps""" return TensorMeshReader.GetTimestepValues(self) @smproperty.xml(_helpers.getPropertyXml(name='Use extension name', command='SetUseExtensionAsName', default_values=True, help='A boolean to override the DataName and use whitespace model file extension as data name.', panel_visibility="advanced")) def SetUseExtensionAsName(self, flag): TensorMeshReader.SetUseExtensionAsName(self, flag) @smproperty.stringvector(name='DataName', default_values='Data', panel_visibility="advanced") def SetDataName(self, name): TensorMeshReader.SetDataName(self, name) @smproxy.filter(name="PVGeoTensorMeshAppender", label=TensorMeshAppender.__displayname__) @smhint.xml('''<ShowInMenu category="%s"/> <RepresentationType view="RenderView" type="Surface" />''' % MENU_CAT) @smproperty.input(name="Input", port_index=0) @smdomain.datatype(dataTypes=["vtkRectilinearGrid"], composite_data_supported=False) class PVGeoTensorMeshAppender(TensorMeshAppender): """This assumes the input vtkRectilinearGrid has already handled the timesteps""" def __init__(self): TensorMeshAppender.__init__(self) @smproperty.xml(''' <StringVectorProperty panel_visibility="default" name="ModelFiles" label="File Name(s) Model" command="AddModelFileName" animateable="1" repeat_command="1" clean_command="ClearModels" number_of_elements="1"> <FileListDomain name="modelfiles"/> <Documentation>This is for a single sets of model files to append to the mesh as data time varying attributes. You can chose as many files as you would like for this for the given attribute.</Documentation> </StringVectorProperty>''') def AddModelFileName(self, fname): """Use to set the file names for the reader. Handles single string or list of strings.""" TensorMeshAppender.AddModelFileName(self, fname) @smproperty.xml(_helpers.getPropertyXml(name='Use extension name', command='SetUseExtensionAsName', default_values=True, help='A boolean to override the DataName and use whitespace model file extension as data name.', panel_visibility="advanced")) def SetUseExtensionAsName(self, flag): TensorMeshAppender.SetUseExtensionAsName(self, flag) @smproperty.stringvector(name='DataName', default_values='Appended Data', panel_visibility="advanced") def SetDataName(self, name): TensorMeshAppender.SetDataName(self, name) @smproperty.doublevector(name="TimestepValues", information_only="1", si_class="vtkSITimeStepsProperty") def GetTimestepValues(self): """This is critical for registering the timesteps""" return TensorMeshAppender.GetTimestepValues(self) @smproxy.filter(name="PVGeoTopoMeshAppender", label=TopoMeshAppender.__displayname__) @smhint.xml('''<ShowInMenu category="%s"/> <RepresentationType view="RenderView" type="Surface" />''' % MENU_CAT) @smproperty.input(name="Input", port_index=0) @smdomain.datatype(dataTypes=["vtkRectilinearGrid"], composite_data_supported=False) class PVGeoTopoMeshAppender(TopoMeshAppender): """This assumes the input vtkRectilinearGrid has already handled the timesteps""" def __init__(self): TopoMeshAppender.__init__(self) @smproperty.xml(''' <StringVectorProperty panel_visibility="advanced" name="TopoFile" label="File Name Topo" command="SetTopoFileName" animateable="1" clean_command="ClearTopoFile" number_of_elements="1"> <FileListDomain name="topofile"/> <Documentation>This plugin only allows ONE topo file to be defined.</Documentation> </StringVectorProperty>''') def SetTopoFileName(self, fname): TopoMeshAppender.SetTopoFileName(self, fname) #------------------------------------------------------------------------------ # Read OcTree Mesh #------------------------------------------------------------------------------ @smproxy.reader(name="PVGeoUBCOcTreeMeshReader", label='PVGeo: %s'%OcTreeReader.__displayname__, extensions=OcTreeReader.extensions, file_description=OcTreeReader.description) @smhint.xml('''<RepresentationType view="RenderView" type="Surface With Edges" />''') class PVGeoUBCOcTreeMeshReader(OcTreeReader): def __init__(self): OcTreeReader.__init__(self) #### Seters and Geters #### @smproperty.xml(''' <StringVectorProperty panel_visibility="advanced" name="MeshFile" label="File Name Mesh" command="SetMeshFileName" animateable="1" clean_command="ClearMesh" number_of_elements="1"> <FileListDomain name="meshfile"/> <Documentation>This is the mesh file for a OcTree Mesh grid. This plugin only allows ONE mesh to be defined.</Documentation> </StringVectorProperty>''') def SetMeshFileName(self, fname): OcTreeReader.SetMeshFileName(self, fname) @smproperty.xml(''' <StringVectorProperty panel_visibility="default" name="ModelFiles" label="File Name(s) Model" command="AddModelFileName" animateable="1" repeat_command="1" clean_command="ClearModels" number_of_elements="1"> <FileListDomain name="modelfiles"/> <Documentation>This is for a single sets of model files to append to the mesh as data time varying attributes. You can chose as many files as you would like for this for the given attribute.</Documentation> </StringVectorProperty>''') def AddModelFileName(self, fname): """Use to set the file names for the reader. Handles singlt string or list of strings.""" OcTreeReader.AddModelFileName(self, fname) @smproperty.doublevector(name="TimeDelta", default_values=1.0, panel_visibility="advanced") def SetTimeDelta(self, dt): OcTreeReader.SetTimeDelta(self, dt) @smproperty.doublevector(name="TimestepValues", information_only="1", si_class="vtkSITimeStepsProperty") def GetTimestepValues(self): """This is critical for registering the timesteps""" return OcTreeReader.GetTimestepValues(self) @smproperty.xml(_helpers.getPropertyXml(name='Use extension name', command='SetUseExtensionAsName', default_values=True, help='A boolean to override the DataName and use whitespace model file extension as data name.', panel_visibility="advanced")) def SetUseExtensionAsName(self, flag): OcTreeReader.SetUseExtensionAsName(self, flag) @smproperty.stringvector(name='DataName', default_values='Data', panel_visibility="advanced") def SetDataName(self, name): OcTreeReader.SetDataName(self, name) @smproxy.filter(name="PVGeoOcTreeAppender", label=OcTreeAppender.__displayname__) @smhint.xml('''<ShowInMenu category="%s"/> <RepresentationType view="RenderView" type="Surface With Edges" />''' % MENU_CAT) @smproperty.input(name="Input", port_index=0) @smdomain.datatype(dataTypes=["vtkUnstructuredGrid"], composite_data_supported=False) class PVGeoOcTreeAppender(OcTreeAppender): """This assumes the input vtkUnstructuredGrid has already handled the timesteps""" def __init__(self): OcTreeAppender.__init__(self) @smproperty.xml(''' <StringVectorProperty panel_visibility="default" name="ModelFiles" label="File Name(s) Model" command="AddModelFileName" animateable="1" repeat_command="1" clean_command="ClearModels" number_of_elements="1"> <FileListDomain name="modelfiles"/> <Documentation>This is for a single sets of model files to append to the mesh as data time varying attributes. You can chose as many files as you would like for this for the given attribute.</Documentation> </StringVectorProperty>''') def AddModelFileName(self, fname): """Use to set the file names for the reader. Handles single string or list of strings.""" OcTreeAppender.AddModelFileName(self, fname) @smproperty.xml(_helpers.getPropertyXml(name='Use extension name', command='SetUseExtensionAsName', default_values=True, help='A boolean to override the DataName and use whitespace model file extension as data name.', panel_visibility="advanced")) def SetUseExtensionAsName(self, flag): OcTreeAppender.SetUseExtensionAsName(self, flag) @smproperty.stringvector(name='DataName', default_values='Appended Data', panel_visibility="advanced") def SetDataName(self, name): OcTreeAppender.SetDataName(self, name) #------------------------------------------------------------------------------ # Write Tensor Mesh #------------------------------------------------------------------------------ @smproxy.writer(extensions="msh", file_description="UBC Tensor Mesh", support_reload=False) @smproperty.input(name="Input", port_index=0) @smdomain.datatype(dataTypes=["vtkRectilinearGrid"], composite_data_supported=True) class PVGeoWriteRectilinearGridToUBC(WriteRectilinearGridToUBC): def __init__(self): WriteRectilinearGridToUBC.__init__(self) @smproperty.stringvector(name="FileName", panel_visibility="never") @smdomain.filelist() def SetFileName(self, fname): """Specify filename for the file to write.""" WriteRectilinearGridToUBC.SetFileName(self, fname) @smproperty.stringvector(name="Format", default_values='%.9e') def SetFormat(self, fmt): """Use to set the ASCII format for the writer default is ``'%.9e'``""" WriteRectilinearGridToUBC.SetFormat(self, fmt) @smproxy.writer(extensions="msh", file_description="UBC Tensor Mesh", support_reload=False) @smproperty.input(name="Input", port_index=0) @smdomain.datatype(dataTypes=["vtkImageData"], composite_data_supported=True) class PVGeoWriteImageDataToUBC(WriteImageDataToUBC): def __init__(self): WriteImageDataToUBC.__init__(self) @smproperty.stringvector(name="FileName", panel_visibility="never") @smdomain.filelist() def SetFileName(self, fname): """Specify filename for the file to write.""" WriteImageDataToUBC.SetFileName(self, fname) @smproperty.stringvector(name="Format", default_values='%.9e') def SetFormat(self, fmt): """Use to set the ASCII format for the writer default is ``'%.9e'``""" WriteImageDataToUBC.SetFormat(self, fmt) ############################################################################### @smproxy.reader(name="PVGeoTopoReader", label='PVGeo: %s'%TopoReader.__displayname__, extensions=TopoReader.extensions, file_description=TopoReader.description) class PVGeoTopoReader(TopoReader): def __init__(self): TopoReader.__init__(self) #### Seters and Geters #### @smproperty.xml(_helpers.getFileReaderXml(TopoReader.extensions, readerDescription=TopoReader.description)) def AddFileName(self, fname): TopoReader.AddFileName(self, fname) @smproperty.doublevector(name="TimeDelta", default_values=1.0, panel_visibility="advanced") def SetTimeDelta(self, dt): TopoReader.SetTimeDelta(self, dt) @smproperty.doublevector(name="TimestepValues", information_only="1", si_class="vtkSITimeStepsProperty") def GetTimestepValues(self): """This is critical for registering the timesteps""" return TopoReader.GetTimestepValues(self) @smproperty.intvector(name="SkipRows", default_values=0, panel_visibility="advanced") def SetSkipRows(self, skip): TopoReader.SetSkipRows(self, skip) @smproperty.stringvector(name="Comments", default_values="!", panel_visibility="advanced") def SetComments(self, identifier): TopoReader.SetComments(self, identifier) ############################################################################### @smproxy.reader(name="PVGeoGravObsReader", label='PVGeo: %s'%GravObsReader.__displayname__, extensions=GravObsReader.extensions, file_description=GravObsReader.description) class PVGeoGravObsReader(GravObsReader): def __init__(self): GravObsReader.__init__(self) #### Seters and Geters #### @smproperty.xml(_helpers.getFileReaderXml(GravObsReader.extensions, readerDescription=GravObsReader.description)) def AddFileName(self, fname): GravObsReader.AddFileName(self, fname) @smproperty.doublevector(name="TimeDelta", default_values=1.0, panel_visibility="advanced") def SetTimeDelta(self, dt): GravObsReader.SetTimeDelta(self, dt) @smproperty.doublevector(name="TimestepValues", information_only="1", si_class="vtkSITimeStepsProperty") def GetTimestepValues(self): """This is critical for registering the timesteps""" return GravObsReader.GetTimestepValues(self) @smproperty.intvector(name="SkipRows", default_values=0, panel_visibility="advanced") def SetSkipRows(self, skip): GravObsReader.SetSkipRows(self, skip) @smproperty.stringvector(name="Comments", default_values="!", panel_visibility="advanced") def SetComments(self, identifier): GravObsReader.SetComments(self, identifier) ############################################################################### @smproxy.reader(name="PVGeoGravGradReader", label='PVGeo: %s'%GravGradReader.__displayname__, extensions=GravGradReader.extensions, file_description=GravGradReader.description) class PVGeoGravGradReader(GravGradReader): def __init__(self): GravGradReader.__init__(self) #### Seters and Geters #### @smproperty.xml(_helpers.getFileReaderXml(GravGradReader.extensions, readerDescription=GravGradReader.description)) def AddFileName(self, fname): GravGradReader.AddFileName(self, fname) @smproperty.doublevector(name="TimeDelta", default_values=1.0, panel_visibility="advanced") def SetTimeDelta(self, dt): GravGradReader.SetTimeDelta(self, dt) @smproperty.doublevector(name="TimestepValues", information_only="1", si_class="vtkSITimeStepsProperty") def GetTimestepValues(self): """This is critical for registering the timesteps""" return GravGradReader.GetTimestepValues(self) @smproperty.intvector(name="SkipRows", default_values=0, panel_visibility="advanced") def SetSkipRows(self, skip): GravGradReader.SetSkipRows(self, skip) @smproperty.stringvector(name="Comments", default_values="!", panel_visibility="advanced") def SetComments(self, identifier): GravGradReader.SetComments(self, identifier) ############################################################################### @smproxy.reader(name="PVGeoMagObsReader", label='PVGeo: %s'%MagObsReader.__displayname__, extensions=MagObsReader.extensions, file_description=MagObsReader.description) class PVGeoMagObsReader(MagObsReader): def __init__(self): MagObsReader.__init__(self) #### Seters and Geters #### @smproperty.xml(_helpers.getFileReaderXml(MagObsReader.extensions, readerDescription=MagObsReader.description)) def AddFileName(self, fname): MagObsReader.AddFileName(self, fname) @smproperty.doublevector(name="TimeDelta", default_values=1.0, panel_visibility="advanced") def SetTimeDelta(self, dt): MagObsReader.SetTimeDelta(self, dt) @smproperty.doublevector(name="TimestepValues", information_only="1", si_class="vtkSITimeStepsProperty") def GetTimestepValues(self): """This is critical for registering the timesteps""" return MagObsReader.GetTimestepValues(self) @smproperty.intvector(name="SkipRows", default_values=0, panel_visibility="advanced") def SetSkipRows(self, skip): MagObsReader.SetSkipRows(self, skip) @smproperty.stringvector(name="Comments", default_values="!", panel_visibility="advanced") def SetComments(self, identifier): MagObsReader.SetComments(self, identifier) ############################################################################### @smproxy.filter(name='PVGeoGeologyMapper', label=GeologyMapper.__displayname__) @smhint.xml('''<ShowInMenu category="%s"/> <RepresentationType view="RenderView" type="Surface" />''' % MENU_CAT) @smproperty.input(name="Input", port_index=0) @smdomain.datatype(dataTypes=["vtkDataObject"], composite_data_supported=False) class PVGeoGeologyMapper(GeologyMapper): def __init__(self): GeologyMapper.__init__(self) #### SETTERS AND GETTERS #### @smproperty.xml(_helpers.getInputArrayXml(nInputPorts=1, numArrays=1)) def SetInputArrayToProcess(self, idx, port, connection, field, name): return GeologyMapper.SetInputArrayToProcess(self, idx, port, connection, field, name) @smproperty.xml(''' <StringVectorProperty panel_visibility="default" name="FileName" label="File Name" command="SetFileName" animateable="1" number_of_elements="1"> <FileListDomain name="filename"/> <Documentation>This is the file contating the mapping definitions.</Documentation> </StringVectorProperty>''') def SetFileName(self, fname): GeologyMapper.SetFileName(self, fname) @smproperty.stringvector(name="Delimiter", default_values=",", panel_visibility="advanced") def SetDelimiter(self, identifier): GeologyMapper.SetDelimiter(self, identifier) ###############################################################################
42.558333
221
0.684012
15,938
0.780204
0
0
19,077
0.933865
0
0
9,153
0.448061
b023ba4b1780ce639f98fb2247c460ffe792c1f6
20,333
py
Python
tests/rewards_tree/test_rewards_flow.py
shuklaayush/badger-system
1274eadbd0b0f3a02efbf40702719ce1d0a96c44
[ "MIT" ]
99
2020-12-02T08:40:48.000Z
2022-03-15T05:21:06.000Z
tests/rewards_tree/test_rewards_flow.py
shuklaayush/badger-system
1274eadbd0b0f3a02efbf40702719ce1d0a96c44
[ "MIT" ]
115
2020-12-15T07:15:39.000Z
2022-03-28T22:21:03.000Z
tests/rewards_tree/test_rewards_flow.py
shuklaayush/badger-system
1274eadbd0b0f3a02efbf40702719ce1d0a96c44
[ "MIT" ]
56
2020-12-11T06:50:04.000Z
2022-02-21T09:17:38.000Z
import json import secrets import brownie from dotmap import DotMap import pytest import pprint from brownie import * from helpers.constants import * from helpers.registry import registry from rich.console import Console FARM_ADDRESS = "0xa0246c9032bC3A600820415aE600c6388619A14D" XSUSHI_ADDRESS = "0x8798249c2E607446EfB7Ad49eC89dD1865Ff4272" SECS_PER_HOUR = 3600 SECS_PER_DAY = 86400 console = Console() @pytest.fixture(scope="function", autouse="True") def setup(): from assistant.rewards import rewards_assistant return rewards_assistant # @pytest.fixture(scope="function") # def setup_badger(badger_tree_unit): # return badger_tree_unit def random_32_bytes(): return "0x" + secrets.token_hex(32) # generates merkle root purely off dummy data def internal_generate_rewards_in_range( rewards_assistant, currentMerkleData, newRewards, startBlock, endBlock, pastRewards ): cumulativeRewards = rewards_assistant.process_cumulative_rewards( pastRewards, newRewards ) # Take metadata from geyserRewards console.print("Processing to merkle tree") merkleTree = rewards_assistant.rewards_to_merkle_tree( cumulativeRewards, startBlock, endBlock, newRewards ) # Publish data rootHash = rewards_assistant.hash(merkleTree["merkleRoot"]) contentFileName = rewards_assistant.content_hash_to_filename(rootHash) console.log( { "merkleRoot": merkleTree["merkleRoot"], "rootHash": str(rootHash), "contentFile": contentFileName, "startBlock": startBlock, "endBlock": endBlock, "currentContentHash": currentMerkleData["contentHash"], } ) return { "contentFileName": contentFileName, "merkleTree": merkleTree, "rootHash": rootHash, } # @pytest.mark.skip() def test_rewards_flow(setup): rewards_assistant = setup badgerTree = rewards_assistant.BadgerTree guardian = rewards_assistant.guardian rootUpdater = rewards_assistant.rootUpdater admin, proposer, validator, user = accounts[:4] rewardsContract = admin.deploy(badgerTree) rewardsContract.initialize(admin, proposer, validator) # Propose root root = random_32_bytes() contentHash = random_32_bytes() startBlock = rewardsContract.lastPublishEndBlock() + 1 # Test variations of invalid data upload and verify revert string with brownie.reverts("Incorrect cycle"): rewardsContract.proposeRoot( root, contentHash, rewardsContract.currentCycle(), startBlock, startBlock + 1, {"from": proposer}, ) with brownie.reverts("Incorrect cycle"): rewardsContract.proposeRoot( root, contentHash, rewardsContract.currentCycle() + 2, startBlock, startBlock + 1, {"from": proposer}, ) with brownie.reverts("Incorrect start block"): rewardsContract.proposeRoot( root, contentHash, rewardsContract.currentCycle() + 1, rewardsContract.lastPublishEndBlock() + 2, startBlock + 1, {"from": proposer}, ) with brownie.reverts("Incorrect start block"): rewardsContract.proposeRoot( root, contentHash, rewardsContract.currentCycle() + 1, rewardsContract.lastPublishEndBlock(), startBlock + 1, {"from": proposer}, ) # Ensure event tx = rewardsContract.proposeRoot( root, contentHash, rewardsContract.currentCycle() + 1, startBlock, startBlock + 1, {"from": proposer}, ) assert "RootProposed" in tx.events.keys() # Approve root # Test variations of invalid data upload and verify revert string with brownie.reverts("Incorrect root"): rewardsContract.approveRoot( random_32_bytes(), contentHash, rewardsContract.currentCycle(), startBlock, startBlock + 1, {"from": validator}, ) with brownie.reverts("Incorrect content hash"): rewardsContract.approveRoot( root, random_32_bytes(), rewardsContract.currentCycle(), startBlock, startBlock + 1, {"from": validator}, ) with brownie.reverts("Incorrect cycle"): rewardsContract.approveRoot( root, contentHash, rewardsContract.currentCycle(), startBlock, startBlock + 1, {"from": validator}, ) with brownie.reverts("Incorrect cycle"): rewardsContract.approveRoot( root, contentHash, rewardsContract.currentCycle() + 2, startBlock, startBlock + 1, {"from": validator}, ) with brownie.reverts("Incorrect cycle start block"): rewardsContract.approveRoot( root, contentHash, rewardsContract.pendingCycle(), startBlock + 1, startBlock + 1, {"from": validator}, ) with brownie.reverts("Incorrect cycle start block"): rewardsContract.approveRoot( root, contentHash, rewardsContract.pendingCycle(), startBlock - 1, startBlock + 1, {"from": validator}, ) with brownie.reverts("Incorrect cycle end block"): rewardsContract.approveRoot( root, contentHash, rewardsContract.pendingCycle(), startBlock, startBlock + 9, {"from": validator}, ) with brownie.reverts("Incorrect cycle end block"): rewardsContract.approveRoot( root, contentHash, rewardsContract.pendingCycle(), startBlock, startBlock + 11, {"from": validator}, ) with brownie.reverts("Incorrect cycle end block"): rewardsContract.approveRoot( root, contentHash, rewardsContract.pendingCycle(), startBlock, startBlock, {"from": validator}, ) # Ensure event tx = rewardsContract.approveRoot( root, contentHash, rewardsContract.pendingCycle(), startBlock, startBlock + 1, {"from": validator}, ) assert "RootUpdated" in tx.events.keys() with brownie.reverts("Incorrect start block"): rewardsContract.proposeRoot( root, contentHash, rewardsContract.currentCycle() + 1, rewardsContract.lastPublishStartBlock() + 1, startBlock + 1, {"from": proposer}, ) # Claim as a user rewardsContract = admin.deploy(badgerTree) rewardsContract.initialize(admin, proposer, validator) startBlock = rewardsContract.lastPublishEndBlock() + 1 endBlock = startBlock + 5 currCycle = rewardsContract.currentCycle() nextCycle = currCycle + 1 currentRoot = rewardsContract.merkleRoot() # Update to new root with xSushi and FARM farmClaim = 100000000000 xSushiClaim = 5555555555 geyserRewards = DotMap( { "badger_tree": rewardsContract, "claims": { user.address: {FARM_ADDRESS: farmClaim, XSUSHI_ADDRESS: xSushiClaim}, accounts[5].address: {FARM_ADDRESS: 100, XSUSHI_ADDRESS: 100}, accounts[6].address: {FARM_ADDRESS: 100, XSUSHI_ADDRESS: 100}, }, "tokens": [FARM_ADDRESS, XSUSHI_ADDRESS], "cycle": nextCycle, } ) pastRewards = DotMap( { "badger_tree": rewardsContract, "claims": {}, "tokens": [FARM_ADDRESS, XSUSHI_ADDRESS], "cycle": currCycle, } ) rewards_data = internal_generate_rewards_in_range( rewards_assistant, {"contentHash": currentRoot}, geyserRewards, startBlock, endBlock, pastRewards, ) rewardsContract.proposeRoot( rewards_data["merkleTree"]["merkleRoot"], rewards_data["rootHash"], rewards_data["merkleTree"]["cycle"], rewards_data["merkleTree"]["startBlock"], rewards_data["merkleTree"]["endBlock"], {"from": proposer}, ) rewardsContract.approveRoot( rewards_data["merkleTree"]["merkleRoot"], rewards_data["rootHash"], rewards_data["merkleTree"]["cycle"], rewards_data["merkleTree"]["startBlock"], rewards_data["merkleTree"]["endBlock"], {"from": validator}, ) # Claim as user who has xSushi and FARM # This revert message means the claim was valid and it tried to transfer rewards # it can't actually transfer any with this setup with brownie.reverts("ERC20: transfer amount exceeds balance"): rewardsContract.claim( [FARM_ADDRESS, XSUSHI_ADDRESS], # FARM # XSUSHI [farmClaim, xSushiClaim], rewards_data["merkleTree"]["claims"][user]["index"], rewards_data["merkleTree"]["cycle"], rewards_data["merkleTree"]["claims"][user]["proof"], [farmClaim, xSushiClaim], {"from": user}, ) # Ensure tokens are as expected # farmBalance = Contract.at("0xa0246c9032bC3A600820415aE600c6388619A14D").balanceOf(user) # assert farmClaim == farmBalance # Claim partial as a user with brownie.reverts("ERC20: transfer amount exceeds balance"): rewardsContract.claim( [FARM_ADDRESS, XSUSHI_ADDRESS], [farmClaim, xSushiClaim], rewards_data["merkleTree"]["claims"][user]["index"], rewards_data["merkleTree"]["cycle"], rewards_data["merkleTree"]["claims"][user]["proof"], [farmClaim - 100, xSushiClaim - 100], {"from": user}, ) # Claim with MockToken and confirm new balance mockToken = rewards_assistant.MockToken mockContract = admin.deploy(mockToken) mockContract.initialize([rewardsContract], [100000000]) startBlock = rewardsContract.lastPublishEndBlock() + 1 endBlock = startBlock + 5 currCycle = rewardsContract.currentCycle() nextCycle = currCycle + 1 currentRoot = rewardsContract.merkleRoot() geyserRewards = DotMap( { "badger_tree": rewardsContract, "claims": { user.address: {}, accounts[5].address: {}, accounts[6].address: {}, }, "tokens": [mockContract], "cycle": nextCycle, } ) geyserRewards["claims"][user.address][str(mockContract)] = 100 geyserRewards["claims"][accounts[5].address][str(mockContract)] = 20 geyserRewards["claims"][accounts[6].address][str(mockContract)] = 0 pastRewards = DotMap( { "badger_tree": rewardsContract, "claims": {}, "tokens": [mockContract], "cycle": currCycle, } ) rewards_data = internal_generate_rewards_in_range( rewards_assistant, {"contentHash": currentRoot}, geyserRewards, startBlock, endBlock, pastRewards, ) rewardsContract.proposeRoot( rewards_data["merkleTree"]["merkleRoot"], rewards_data["rootHash"], rewards_data["merkleTree"]["cycle"], rewards_data["merkleTree"]["startBlock"], rewards_data["merkleTree"]["endBlock"], {"from": proposer}, ) rewardsContract.approveRoot( rewards_data["merkleTree"]["merkleRoot"], rewards_data["rootHash"], rewards_data["merkleTree"]["cycle"], rewards_data["merkleTree"]["startBlock"], rewards_data["merkleTree"]["endBlock"], {"from": validator}, ) rewardsContract.claim( [mockContract], [100], rewards_data["merkleTree"]["claims"][user]["index"], rewards_data["merkleTree"]["cycle"], rewards_data["merkleTree"]["claims"][user]["proof"], [100], {"from": user}, ) assert mockContract.balanceOf(user) == 100 assert mockContract.balanceOf(str(rewardsContract)) == 100000000 - 100 # Try to claim with zero tokens all around, expect failure rewardsContract = admin.deploy(badgerTree) rewardsContract.initialize(admin, proposer, validator) startBlock = rewardsContract.lastPublishEndBlock() + 1 endBlock = startBlock + 5 currCycle = rewardsContract.currentCycle() nextCycle = currCycle + 1 currentRoot = rewardsContract.merkleRoot() geyserRewards = DotMap( { "badger_tree": rewardsContract, "claims": { user.address: {FARM_ADDRESS: 0, XSUSHI_ADDRESS: 0}, accounts[5].address: {FARM_ADDRESS: 0, XSUSHI_ADDRESS: 0}, accounts[6].address: {FARM_ADDRESS: 0, XSUSHI_ADDRESS: 0}, }, "tokens": [FARM_ADDRESS, XSUSHI_ADDRESS], # FARM # XSUSHI "cycle": nextCycle, } ) pastRewards = DotMap( { "badger_tree": rewardsContract, "claims": {}, "tokens": [FARM_ADDRESS, XSUSHI_ADDRESS], # FARM # XSUSHI "cycle": currCycle, } ) rewards_data = internal_generate_rewards_in_range( rewards_assistant, {"contentHash": currentRoot}, geyserRewards, startBlock, endBlock, pastRewards, ) rewardsContract.proposeRoot( rewards_data["merkleTree"]["merkleRoot"], rewards_data["rootHash"], rewards_data["merkleTree"]["cycle"], rewards_data["merkleTree"]["startBlock"], rewards_data["merkleTree"]["endBlock"], {"from": proposer}, ) rewardsContract.approveRoot( rewards_data["merkleTree"]["merkleRoot"], rewards_data["rootHash"], rewards_data["merkleTree"]["cycle"], rewards_data["merkleTree"]["startBlock"], rewards_data["merkleTree"]["endBlock"], {"from": validator}, ) with brownie.reverts("No tokens to claim"): rewardsContract.claim( [FARM_ADDRESS, XSUSHI_ADDRESS], # FARM # XSUSHI [0, 0], rewards_data["merkleTree"]["claims"][user]["index"], rewards_data["merkleTree"]["cycle"], rewards_data["merkleTree"]["claims"][user]["proof"], [0, 0], {"from": user}, ) def test_salary(setup): rewards_assistant = setup admin, proposer, validator = accounts[:3] users = accounts[3:] rewards_contract = admin.deploy(rewards_assistant.BadgerTree) rewards_contract.initialize(admin, proposer, validator) def make_salary_entry(recipient, token, total_amount, duration, start_time): return DotMap( { "recipient": recipient, "token": token, "totalAmount": total_amount, "duration": duration, "startTime": start_time, "endTime": start_time + duration, } ) def update_root(rewards_data): rewards_contract.proposeRoot( rewards_data["merkleTree"]["merkleRoot"], rewards_data["rootHash"], rewards_data["merkleTree"]["cycle"], rewards_data["merkleTree"]["startBlock"], rewards_data["merkleTree"]["endBlock"], {"from": proposer}, ) rewards_contract.approveRoot( rewards_data["merkleTree"]["merkleRoot"], rewards_data["rootHash"], rewards_data["merkleTree"]["cycle"], rewards_data["merkleTree"]["startBlock"], rewards_data["merkleTree"]["endBlock"], {"from": validator}, ) def calculate_payment(salary_entry, start_block_time, end_block_time): print( f"salary_entry: {salary_entry}\nstart_block_time:\t{start_block_time}\nend_block_time: \t{end_block_time}" ) if ( salary_entry.startTime <= end_block_time and salary_entry.endTime > start_block_time ): start_time = max(salary_entry.startTime, start_block_time) end_time = min(salary_entry.endTime, end_block_time) return ( salary_entry.totalAmount * salary_entry.duration / (end_time - start_time) ) return 0 mock_token = rewards_assistant.MockToken mock_contract = admin.deploy(mock_token) mock_contract.initialize([rewards_contract], [10_000_000_000_000_000_000_000_000]) salaries = [ make_salary_entry( users[0].address, mock_contract, 1_000_000_000_000_000_000, SECS_PER_DAY * 360, chain.time() - SECS_PER_DAY * 30, ), make_salary_entry( users[1].address, mock_contract, 1_000_000_000_000_000_000, SECS_PER_DAY * 180, chain.time() - SECS_PER_DAY * 200, ), make_salary_entry( users[2].address, mock_contract, 1_000_000_000_000_000_000, SECS_PER_DAY * 180, chain.time() + SECS_PER_DAY * 30, ), make_salary_entry( users[3].address, mock_contract, 1_000_000_000_000_000_000, SECS_PER_DAY * 180, chain.time() + SECS_PER_HOUR * 2, ), ] void_state = DotMap( { "badger_tree": rewards_contract, "claims": {}, "tokens": [mock_contract.address], "cycle": rewards_contract.currentCycle(), } ) initial_state = DotMap( { "badger_tree": rewards_contract, "claims": {users[20].address: {mock_contract.address: 456}}, "tokens": [mock_contract.address], "cycle": rewards_contract.currentCycle() + 1, } ) update_root( internal_generate_rewards_in_range( rewards_assistant, {"contentHash": rewards_contract.merkleRoot()}, initial_state, rewards_contract.lastPublishEndBlock() + 1, web3.eth.blockNumber, void_state, ) ) sleep_time = SECS_PER_HOUR * 4 chain.sleep(sleep_time) chain.mine(50) last_publish_time = rewards_contract.lastPublishTimestamp() chain_time = chain.time() claims = { entry.recipient: { mock_contract.address: calculate_payment( entry, rewards_contract.lastPublishTimestamp(), chain.time() ) } for entry in salaries } assert claims[users[0]][mock_contract.address] > 0 assert claims[users[1]][mock_contract.address] == 0 assert claims[users[2]][mock_contract.address] == 0 assert claims[users[3]][mock_contract.address] > 0 update_state = DotMap( { "badger_tree": rewards_contract, "claims": claims, "tokens": [mock_contract], "cycle": rewards_contract.currentCycle() + 1, } ) rewards_data = internal_generate_rewards_in_range( rewards_assistant, {"contentHash": rewards_contract.merkleRoot()}, update_state, rewards_contract.lastPublishEndBlock() + 1, web3.eth.blockNumber, initial_state, ) console.log(rewards_data) update_root(rewards_data) # TODO: Do something more than just verify that the above change was made entry1 = salaries[0] rewards_contract.claim( [mock_contract], [claims[entry1.recipient][mock_contract.address]], rewards_data["merkleTree"]["claims"][entry1.recipient]["index"], rewards_data["merkleTree"]["cycle"], rewards_data["merkleTree"]["claims"][entry1.recipient]["proof"], [calculate_payment(entry1, last_publish_time, chain_time)], {"from": entry1.recipient}, )
31.137825
119
0.59278
0
0
0
0
144
0.007082
0
0
3,688
0.18138
b0249f5db53b2ce54527df608f97d99c1010a240
23,869
py
Python
HCm-uv/HCm-UV_v4.11/HCm-UV_v4.11.py
Borja-Perez-Diaz/HII-CHI-Mistry
d0dafc753c63246bf14b77807a885ddc7bd4bb99
[ "MIT" ]
null
null
null
HCm-uv/HCm-UV_v4.11/HCm-UV_v4.11.py
Borja-Perez-Diaz/HII-CHI-Mistry
d0dafc753c63246bf14b77807a885ddc7bd4bb99
[ "MIT" ]
null
null
null
HCm-uv/HCm-UV_v4.11/HCm-UV_v4.11.py
Borja-Perez-Diaz/HII-CHI-Mistry
d0dafc753c63246bf14b77807a885ddc7bd4bb99
[ "MIT" ]
null
null
null
# Filename: HCm_UV_v4.11.py import string import numpy as np import sys #sys.stderr = open('errorlog.txt', 'w') #Function for interpolation of grids def interpolate(grid,z,zmin,zmax,n): ncol = 9 vec = [] for col in range(ncol): inter = 0 no_inter = 0 for row in range(0,len(grid)): if grid[row,z] < zmin or grid[row,z] > zmax: continue if z == 2: x = 0; y = 1 if z == 1: x = 0; y = 2 if z == 0: x = 1; y = 2 if row == (len(grid)-1): vec.append(grid[row,col]) no_inter = no_inter + 1 elif grid[row,x] < grid[row+1,x] or grid[row,y] < grid[row+1,y] : vec.append(grid[row,col]) no_inter = no_inter + 1 else: inter = inter + 1 for index in range(0,n): i = grid[row,col]+(index)*(grid[row+1,col]-grid[row,col])/n vec.append(i) out = np.transpose(np.reshape(vec,(-1,n*inter+no_inter))) return out print (' ---------------------------------------------------------------------') print (' This is HII-CHI-mistry for UV version 4.11') print (' See Perez-Montero, & Amorin (2017) for details') print ( ' Insert the name of your input text file with some or all of the following columns:') print (' Lya 1216, CIV 1549, HeII 1640, OIII 1665, CIII 1909, Hb 4861, OIII 5007') print ('in arbitrary units and reddening corrected. Each column must be given') print ('with labels and followed by its corresponding flux error.') print ('---------------------------------------------------------------------') # Input file reading if len(sys.argv) == 1: if int(sys.version[0]) < 3: input00 = raw_input('Insert input file name:') else: input00 = input('Insert input file name:') else: input00 = str(sys.argv[1]) try: input0 = np.genfromtxt(input00,dtype=None,names=True, encoding = 'ascii') print ('The input file is:'+input00) except: print ('Input file error: It does not exist or has wrong format') sys.exit print ('') if input0.size == 1: input1 = np.stack((input0,input0)) else: input1 = input0 # Iterations for Montecarlo error derivation if len(sys.argv) < 3: n = 25 else: n = int(sys.argv[2]) print ('The number of iterations for MonteCarlo simulation is: ',n) print ('') # Reading of models grids. These can be changed print ('') question = True while question: print('-------------------------------------------------') print ('(1) POPSTAR with Chabrier IMF, age = 1 Myr') print ('(2) BPASS v.2.1 a_IMF = 1.35, Mup = 300, age = 1Myr') print('-------------------------------------------------') if int(sys.version[0]) < 3: sed = raw_input('Choose SED of the models:') else: sed = input('Choose SED of the models:') if sed == '1' or sed == '2' : question = False print ('') question = True while question: if int(sys.version[0]) < 3: inter = raw_input('Choose models [0] No interpolated [1] Interpolated: ') else: inter = input('Choose models [0] No interpolated [1] Interpolated: ') if inter == '0' or inter == '1': question = False print ('') sed = int(sed) inter = int(inter) if sed==1 : grid1 = np.loadtxt('C17_popstar_uv_v4.0.dat') grid2 = np.loadtxt('C17_popstar_logU_adapted_emp_uv_v4.0.dat') grid3 = np.loadtxt('C17_popstar_logU-CO_adapted_emp_uv_v4.0.dat') if inter == 0: sed_type = 'POPSTAR, age = 1 Myr, Chabrier IMF. No interpolation' print ('No interpolation for the POPSTAR models is going to be used.') print ('The grid has a resolution of 0.1dex for O/H and 0.125dex for C/O') res_CO = 0.125 elif inter == 1: sed_type = 'POPSTAR, age = 1 Myr, Chabrier IMF interpolated' print ('Interpolation for the POPSTAR models is going to be used.') print ('The grid has a resolution of 0.01 dex for O/H and 0.0125 dex for C/O') res_CO = 0.125 elif sed==2: grid1 = np.loadtxt('C17_bpass_uv_v4.1.dat') grid2 = np.loadtxt('C17_bpass_logU_adapted_emp_uv_v4.1.dat') grid3 = np.loadtxt('C17_bpass_logU-CO_adapted_emp_uv_v4.1.dat') if inter == 0: sed_type = 'BPASS a_IMF = 1.35, M_up = 300, age = 1Myr. No interpolation' print ('No interpolation for theBPASS models is going to be used.') print ('The grid has a resolution of 0.1 dex for O/H and 0.125 dex for N/O') res_CO = 0.125 elif inter == 1: sed_type = 'BPASS a_IMF = 1.35, M_up = 300, age = 1Myr interpolated' print ('Interpolation for theBPASS models is going to be used.') print ('The grid has a resolution of 0.01 dex for O/H and 0.0125 dex for N/O') res_CO = 0.125 grids = [] OHffs = [] eOHffs = [] COffs = [] eCOffs = [] logUffs = [] elogUffs = [] Label_ID = False Label_Lya = False Label_eLya = False Label_CIV = False Label_eCIV = False Label_HeII = False Label_eHeII = False Label_OIII_1665 = False Label_eOIII_1665 = False Label_CIII = False Label_eCIII = False Label_OIII_5007 = False Label_eOIII_5007 = False Label_Hbeta = False Label_eHbeta = False for col in range(0,len(input1.dtype.names),1): if input1.dtype.names[col] == 'ID': Label_ID = True if input1.dtype.names[col] == 'Lya_1216': Label_Lya = True if input1.dtype.names[col] == 'eLya_1216': Label_eLya = True if input1.dtype.names[col] == 'CIV_1549': Label_CIV = True if input1.dtype.names[col] == 'eCIV_1549': Label_eCIV = True if input1.dtype.names[col] == 'HeII_1640': Label_HeII = True if input1.dtype.names[col] == 'eHeII_1640': Label_eHeII = True if input1.dtype.names[col] == 'OIII_1665': Label_OIII_1665 = True if input1.dtype.names[col] == 'eOIII_1665': Label_eOIII_1665 = True if input1.dtype.names[col] == 'CIII_1909': Label_CIII = True if input1.dtype.names[col] == 'eCIII_1909': Label_eCIII = True if input1.dtype.names[col] == 'Hb_4861': Label_Hbeta = True if input1.dtype.names[col] == 'eHb_4861': Label_eHbeta = True if input1.dtype.names[col] == 'OIII_5007': Label_OIII_5007 = True if input1.dtype.names[col] == 'eOIII_5007': Label_eOIII_5007 = True if Label_ID == False: Names = np.arange(1,input1.size+1,1) else: Names = input1['ID'] if Label_Lya == False: Lya_1216 = np.zeros(input1.size) else: Lya_1216 = input1['Lya_1216'] if Label_eLya == False: eLya_1216 = np.zeros(input1.size) else: eLya_1216 = input1['eLya_1216'] if Label_CIV == False: CIV_1549 = np.zeros(input1.size) else: CIV_1549 = input1['CIV_1549'] if Label_eCIV == False: eCIV_1549 = np.zeros(input1.size) else: eCIV_1549 = input1['eCIV_1549'] if Label_HeII == False: HeII_1640 = np.zeros(input1.size) else: HeII_1640 = input1['HeII_1640'] if Label_eHeII == False: eHeII_1640 = np.zeros(input1.size) else: eHeII_1640 = input1['eHeII_1640'] if Label_OIII_1665 == False: OIII_1665 = np.zeros(input1.size) else: OIII_1665 = input1['OIII_1665'] if Label_eOIII_1665 == False: eOIII_1665 = np.zeros(input1.size) else: eOIII_1665 = input1['eOIII_1665'] if Label_CIII == False: CIII_1909 = np.zeros(input1.size) else: CIII_1909 = input1['CIII_1909'] if Label_eCIII == False: eCIII_1909 = np.zeros(input1.size) else: eCIII_1909 = input1['eCIII_1909'] if Label_Hbeta == False: Hb_4861 = np.zeros(len(input1)) else: Hb_4861 = input1['Hb_4861'] if Label_eHbeta == False: eHb_4861 = np.zeros(input1.size) else: eHb_4861 = input1['eHb_4861'] if Label_OIII_5007 == False: OIII_5007 = np.zeros(input1.size) else: OIII_5007 = input1['OIII_5007'] if Label_eOIII_5007 == False: eOIII_5007 = np.zeros(input1.size) else: eOIII_5007 = input1['eOIII_5007'] output = np.zeros(input1.size, dtype=[('ID', 'U12'), ('Lya_1216', float),('eLya_1216', float),('CIV_1549', float),('eCIV_1549', float),('HeII_1640', float),('eHeII_1640', float),('OIII_1665', float),('eOIII_1665', float),('CIII_1909', float),('eCIII_1909', float),('Hb_4861', float),('eHb_4861', float),('OIII_5007', float),('eOIII_5007', float),('grid', int),('OH', float),('eOH', float),('CO', float),('eCO', float),('logU', float),('elogU', float)] ) output['ID'] = Names output['Lya_1216'] = Lya_1216 output['eLya_1216'] = eLya_1216 output['CIV_1549'] = CIV_1549 output['eCIV_1549'] = eCIV_1549 output['HeII_1640'] = HeII_1640 output['eHeII_1640'] = eHeII_1640 output['OIII_1665'] = OIII_1665 output['eOIII_1665'] = eOIII_1665 output['CIII_1909'] = CIII_1909 output['eCIII_1909'] = eCIII_1909 output['Hb_4861'] = Hb_4861 output['eHb_4861'] = eHb_4861 output['OIII_5007'] = OIII_5007 output['eOIII_5007'] = eOIII_5007 print ('Reading grids ....') print ('') print ('') print ('----------------------------------------------------------------') print ('(%) ID Grid 12+log(O/H) log(C/O) log(U)') print ('-----------------------------------------------------------------') # Beginning of loop of calculation count = 0 for tab in range(0,len(input1),1): count = count + 1 OH_mc = [] CO_mc = [] logU_mc = [] OHe_mc = [] COe_mc = [] logUe_mc = [] for monte in range(0,n,1): OH_p = 0 logU_p = 0 CO_p = 0 den_OH = 0 den_CO = 0 OH_e = 0 CO_e = 0 logU_e = 0 den_OH_e = 0 den_CO_e = 0 tol_max = 1e2 Lya_1216_obs = 0 if Lya_1216[tab] == 0: Lya_1216_obs = 0 else: while Lya_1216_obs <= 0: Lya_1216_obs = np.random.normal(Lya_1216[tab],eLya_1216[tab]+1e-5) CIV_1549_obs = 0 if CIV_1549[tab] == 0: CIV_1549_obs = 0 else: while CIV_1549_obs <= 0: CIV_1549_obs = np.random.normal(CIV_1549[tab],eCIV_1549[tab]+1e-5) HeII_1640_obs = 0 if HeII_1640[tab] == 0: HeII_1640_obs = 0 else: if HeII_1640_obs <= 0: HeII_1640_obs = np.random.normal(HeII_1640[tab],eHeII_1640[tab]+1e-5) OIII_1665_obs = 0 if OIII_1665[tab] == 0: OIII_1665_obs = 0 else: while OIII_1665_obs <= 0: OIII_1665_obs = np.random.normal(OIII_1665[tab],eOIII_1665[tab]+1e-5) CIII_1909_obs = 0 if CIII_1909[tab] == 0: CIII_1909_obs = 0 else: while CIII_1909_obs <= 0: CIII_1909_obs = np.random.normal(CIII_1909[tab],eCIII_1909[tab]+1e-5) Hb_4861_obs = 0 if Hb_4861[tab] == 0: Hb_4861_obs = 0 else: while Hb_4861_obs <= 0: Hb_4861_obs = np.random.normal(Hb_4861[tab],eHb_4861[tab]+1e-5) OIII_5007_obs = 0 if OIII_5007[tab] == 0: OIII_5007_obs = 0 else: while OIII_5007_obs <= 0: OIII_5007_obs = np.random.normal(OIII_5007[tab],eOIII_5007[tab]+1e-5) if OIII_1665_obs == 0 or OIII_5007_obs == 0: ROIII_obs = 0 else: ROIII_obs = OIII_5007_obs/OIII_1665_obs if Lya_1216_obs == 0 or CIII_1909_obs == 0: C34_obs = 0 else: C34_obs = (CIII_1909_obs + CIV_1549_obs) / (Lya_1216_obs) if HeII_1640_obs == 0 or CIII_1909_obs == 0: C34He2_obs = 0 else: C34He2_obs = (CIII_1909_obs + CIV_1549_obs) / (HeII_1640_obs) if CIII_1909_obs == 0 or OIII_1665_obs == 0: C3O3_obs = -10 else: C3O3_obs = np.log10((CIII_1909_obs) / (OIII_1665_obs)) if CIII_1909_obs == 0 or CIV_1549_obs == 0: C3C4_obs = 0 else: C3C4_obs = (CIII_1909_obs/CIV_1549_obs) if CIII_1909_obs == 0 or Hb_4861_obs == 0: C34Hb_obs = 0 else: C34Hb_obs = (CIII_1909_obs + CIV_1549_obs) / Hb_4861_obs # Selection of grid if OIII_1665[tab] > 0 and OIII_5007[tab] > 0: grid = grid1 if monte == n-1: grids.append(1) grid_type = 1 elif OIII_1665[tab] > 0 and CIII_1909[tab] > 0: grid = grid2 if monte == n-1: grids.append(2) grid_type = 2 else: grid = grid3 if monte == n-1: grids.append(3) grid_type = 3 # Calculation of C/O if C3O3_obs == -10: CO = -10 else: CHI_ROIII = 0 CHI_C3O3 = 0 CHI_CO = 0 for index in grid: if ROIII_obs == 0: CHI_ROIII = 0 elif index[6] == 0 or index[8] == 0: CHI_ROIII = tol_max else: CHI_ROIII = (index[8]/index[6] - ROIII_obs)**2/(index[8]/index[6]) if C3O3_obs == -10: CHI_C3O3 = 0 elif index[7] == 0 or index[6] == 0: CHI_C3O3 = tol_max else: CHI_C3O3 =(np.log10((index[7])/index[6]) - C3O3_obs)**2/np.log10((index[7])/(index[6]+1e-5)) CHI_CO = (CHI_ROIII**2 + CHI_C3O3**2 )**0.5 if CHI_CO == 0: CO_p = CO_p den_CO = den_CO else: CO_p = index[1] /np.exp(CHI_CO) + CO_p den_CO = 1 / np.exp(CHI_CO) + den_CO CO = CO_p / den_CO # Calculation of C/O error if C3O3_obs == -10: eCO = 0 else: CHI_ROIII = 0 CHI_C3O3 = 0 CHI_CO = 0 for index in grid: if ROIII_obs == 0: CHI_ROIII = 0 elif index[6] == 0 or index[8] == 0: CHI_ROIII = tol_max else: CHI_ROIII = (index[8]/index[6] - ROIII_obs)**2/(index[8]/index[6]) if C3O3_obs == -10: CHI_C3O3 = 0 elif index[7] == 0 or index[6] == 0: CHI_C3O3 = tol_max else: CHI_C3O3 =(np.log10((index[7])/index[6]) - C3O3_obs)**2/np.log10((index[7])/(index[6]+1e-5)) CHI_CO = (CHI_ROIII**2 + CHI_C3O3**2 )**0.5 if CHI_CO == 0: CO_e = CO_e den_CO_e = den_CO_e else: CO_e = (index[1] - CO)**2 / np.exp(CHI_CO) + CO_e den_CO_e = 1 /np.exp(CHI_CO) + den_CO_e eCO = CO_e / den_CO_e # Calculation of O/H and log U if C34_obs == 0 and ROIII_obs == 0 and C34Hb_obs == 0 and C34He2_obs == 0 : OH = 0 logU = 0 else: CHI_ROIII = 0 CHI_C3C4 = 0 CHI_C34He2 = 0 CHI_C34 = 0 CHI_C34Hb = 0 CHI_OH = 0 for index in grid: if CO > -10 and np.abs(index[1] - CO) > np.abs(eCO+0.125): continue if CIV_1549_obs > 0 and index[4] == 0: continue if HeII_1640_obs > 0 and index[5] == 0: continue else: if ROIII_obs == 0: CHI_ROIII = 0 elif index[6] == 0 or index[8] == 0: CHI_ROIII = tol_max else: CHI_ROIII = (index[8]/index[6] - ROIII_obs)**2/(index[8]/index[6]) if C34_obs == 0: CHI_C34 = 0 elif index[3] == 0 or index[7] == 0: CHI_C34 = tol_max else: CHI_C34 = ((index[7]+index[4])/index[3] - C34_obs)**2/((index[7]+index[4])/index[3]) if C34He2_obs == 0: CHI_C34He2 = 0 elif index[5] == 0 or index[7] == 0: CHI_C34He2 = tol_max else: CHI_C34He2 = ((index[7]+index[4])/index[5] - C34He2_obs)**2/((index[7]+index[4])/index[5]) if C34Hb_obs == 0: CHI_C34Hb = 0 elif index[7] == 0: CHI_C34Hb = tol_max else: CHI_C34Hb = (index[7]+index[4] - C34Hb_obs)**2/(index[7]+index[4]) if C3C4_obs == 0: CHI_C3C4 = 0 elif index[4] == 0 or index[7] == 0: CHI_C3C4 = tol_max else: CHI_C3C4 = (index[7]/index[4] - C3C4_obs)**2/(index[7]/index[4]) if C34Hb_obs > 0: CHI_OH = (CHI_ROIII**2 + CHI_C34Hb**2 + CHI_C3C4**2)**0.5 else: CHI_OH = (CHI_ROIII**2 + CHI_C34**2 + CHI_C34He2**2 + CHI_C3C4**2 )**0.5 if CHI_OH == 0: OH_p = OH_p logU_p = logU_p den_OH = den_OH else: OH_p = index[0] / np.exp(CHI_OH) + OH_p logU_p = index[2] / np.exp(CHI_OH) + logU_p den_OH = 1 /np.exp(CHI_OH) + den_OH OH = OH_p / den_OH logU = logU_p / den_OH # Calculation of error of O/H and logU if C34_obs == 0 and ROIII_obs == 0 and C34Hb_obs == 0 and C34He2_obs == 0: eOH = 0 elogU = 0 else: CHI_ROIII = 0 CHI_C3C4 = 0 CHI_C34 = 0 CHI_C34He2 = 0 CHI_C34Hb = 0 CHI_OH = 0 for index in grid: if CO > -10 and np.abs(index[1] - CO) > np.abs(eCO+res_CO): continue if CIV_1549_obs > 0 and index[4] == 0: continue if HeII_1640_obs > 0 and index[5] == 0: continue else: if ROIII_obs == 0: CHI_ROIII = 0 elif index[6] == 0 or index[8] == 0: CHI_ROIII = tol_max else: CHI_ROIII = (index[8]/index[6] - ROIII_obs)**2/(index[8]/index[6]) if C34_obs == 0: CHI_C34 = 0 elif index[3] == 0 or index[7] == 0: CHI_C34 = tol_max else: CHI_C34 = ((index[7]+index[4])/index[3] - C34_obs)**2/((index[7]+index[4])/index[3]) if C34He2_obs == 0: CHI_C34He2 = 0 elif index[5] == 0 or index[7] == 0: CHI_C34He2 = tol_max else: CHI_C34He2 = ((index[7]+index[4])/index[5] - C34He2_obs)**2/((index[7]+index[4])/index[5]) if C34Hb_obs == 0: CHI_C34Hb = 0 elif index[7] == 0: CHI_C34Hb = tol_max else: CHI_C34Hb = (index[7]+index[4] - C34Hb_obs)**2/(index[7]+index[4]) if C3C4_obs == 0: CHI_C3C4 = 0 elif index[4] == 0 or index[7] == 0: CHI_C3C4 = tol_max else: CHI_C3C4 = (index[7]/index[4] - C3C4_obs)**2/(index[7]/index[4]) if C34Hb_obs > 0: CHI_OH = (CHI_ROIII**2 + CHI_C34Hb**2 + CHI_C3C4**2)**0.5 else: CHI_OH = (CHI_ROIII**2 + CHI_C34**2 + CHI_C34He2**2 + CHI_C3C4**2 )**0.5 if CHI_OH == 0: OH_e = OH_e logU_e = logU_e den_OH_e = den_OH_e else: OH_e = (index[0] - OH)**2 /np.exp(CHI_OH) + OH_e logU_e = (index[2] - logU)**2 /np.exp(CHI_OH) + logU_e den_OH_e = 1 /np.exp(CHI_OH) + den_OH_e eOH = OH_e / den_OH_e elogU = logU_e / den_OH_e # Iterations for interpolated models if inter == 0 or (OH == 0 and CO == -10): COf = CO OHf = OH logUf = logU elif inter == 1: if OH == 0: igrid = grid else: igrid = interpolate(grid,2,logU-elogU-0.25,logU+elogU+0.25,10) igrid = igrid[np.lexsort((igrid[:,1],igrid[:,2]))] igrid = interpolate(igrid,0,OH-eOH-0.1,OH+eOH+0.1,10) if CO == -10: igrid = igrid else: igrid = igrid[np.lexsort((igrid[:,0],igrid[:,2]))] igrid = interpolate(igrid,1,CO-eCO-0.125,CO+eCO+0.125,10) CHI_ROIII = 0 CHI_C3O3 = 0 CHI_C3C4 = 0 CHI_C34He2 = 0 CHI_C34 = 0 CHI_C34Hb = 0 CHI_OH = 0 CHI_CO = 0 for index in igrid: if ROIII_obs == 0: CHI_ROIII = 0 elif index[6] == 0 or index[8] == 0: CHI_ROIII = tol_max else: CHI_ROIII = (index[8]/index[6] - ROIII_obs)**2/(index[8]/index[6]) if C3O3_obs == -10: CHI_C3O3 = 0 elif index[7] == 0 or index[6] == 0: CHI_C3O3 = tol_max else: CHI_C3O3 =(np.log10((index[7])/index[6]) - C3O3_obs)**2/np.log10((index[7])/(index[6]+1e-5)) if C34_obs == 0: CHI_C34 = 0 elif index[4] == 0: CHI_C34 = tol_max else: CHI_C34 = ((index[6]+index[7])/index[3] - C34_obs)**2/((index[6]+index[7])/index[3]) if C34Hb_obs == 0: CHI_C34Hb = 0 elif index[4] == 0: CHI_C34Hb = tol_max else: CHI_C34Hb = (index[6]+index[7] - C34_obs)**2/(index[6]+index[7]) if C3C4_obs == 0: CHI_C3C4 = 0 elif index[7] == 0 or index[6] == 0: CHI_C3C4 = tol_max else: CHI_C3C4 = (index[6]/index[7] - C3C4_obs)**2/(index[6]/index[7]) if C34Hb_obs > 0: CHI_OH = (CHI_ROIII**2 + CHI_C34Hb**2 + CHI_C3C4**2)**0.5 else: CHI_OH = (CHI_ROIII**2 + CHI_C34**2 + CHI_C34He2**2 + CHI_C3C4**2 )**0.5 if CHI_OH == 0: OH_p = OH_p logU_p = logU_p den_OH = den_OH else: OH_p = index[0] /np.exp(CHI_OH) + OH_p logU_p = index[2] /np.exp(CHI_OH) + logU_p den_OH = 1 /np.exp(CHI_OH) + den_OH CHI_CO = (CHI_ROIII**2 + CHI_C3O3**2 )**0.5 if CHI_CO == 0: CO_p = CO_p den_CO = den_CO else: CO_p = index[1] /np.exp(CHI_CO)**2 + CO_p den_CO = 1 /np.exp(CHI_CO)**2 + den_CO if CO == -10: COf = -10 else: COf = CO_p / den_CO if OH == 0: OHf = 0 logUf = 0 else: OHf = OH_p / den_OH logUf = logU_p / den_OH OH_mc.append(OHf) CO_mc.append(COf) logU_mc.append(logUf) OHe_mc.append(eOH) COe_mc.append(eCO) logUe_mc.append(elogU) OHff = np.mean(OH_mc) eOHff = (np.std(OH_mc)**2+np.mean(OHe_mc)**2)**0.5 COff = np.mean(CO_mc) eCOff = (np.std(CO_mc)**2+np.mean(COe_mc)**2)**0.5 logUff = np.mean(logU_mc) elogUff = (np.std(logU_mc)**2+np.mean(logUe_mc)**2)**0.5 OHffs.append(OHff) eOHffs.append(eOHff) COffs.append(COff) eCOffs.append(eCOff) logUffs.append(logUff) elogUffs.append(elogUff) if input0.size == 1 and tab==0: continue print (round(100*(count)/float(input1.size),1),'%',Names[tab],grid_type,'', round(OHff,2), round(eOHff,2),'',round(COff,2), round(eCOff,2), '',round(logUff,2), round(elogUff,2)) output['grid'] = grids output['OH'] = OHffs output['eOH'] = eOHffs output['CO'] = COffs output['eCO'] = eCOffs output['logU'] = logUffs output['elogU'] = elogUffs if input0.size == 1: output = np.delete(output,obj=1,axis=0) lineas_header = [' HII-CHI-mistry_UV v.4.11 output file', 'Input file:'+input00,'Iterations for MonteCarlo: '+str(n),'Used models: '+sed_type,'','ID. Lya eLya 1549 e1549 1640 e1640 1665 e1665 1909 e1909 Hbeta eHbeta 5007 e5007 i O/H eO/H C/O eC/O logU elogU'] header = '\n'.join(lineas_header) np.savetxt(input00+'_hcm-uv-output.dat',output,fmt=' '.join(['%s']*1+['%.3f']*14+['%i']+['%.2f']*6),header=header) print ('________________________________') print ('Results are stored in '+input00+'_hcm-uv-output.dat')
30.759021
453
0.526541
0
0
0
0
0
0
0
0
3,758
0.157443
b026bd7b3b263fb2129be4259af4f24d57934ce8
20,746
py
Python
Name Generator/names.py
Rakkerrak/Projects
0a9bc54b7d41e69b444165f60254262a163509a9
[ "MIT" ]
null
null
null
Name Generator/names.py
Rakkerrak/Projects
0a9bc54b7d41e69b444165f60254262a163509a9
[ "MIT" ]
null
null
null
Name Generator/names.py
Rakkerrak/Projects
0a9bc54b7d41e69b444165f60254262a163509a9
[ "MIT" ]
null
null
null
feFirst = ['Emma', 'Olivia', 'Ava', 'Isabella', 'Sophia', 'Charlotte', 'Mia', 'Amelia', 'Harper', 'Evelyn', 'Abigail', 'Emily', 'Elizabeth', 'Mila', 'Ella', 'Avery', 'Sofia', 'Camila', 'Aria', 'Scarlett', 'Victoria', 'Madison', 'Luna', 'Grace', 'Chloe', 'Penelope', 'Layla', 'Riley', 'Zoey', 'Nora', 'Lily', 'Eleanor', 'Hannah', 'Lillian', 'Addison', 'Aubrey', 'Ellie', 'Stella', 'Natalie', 'Zoe', 'Leah', 'Hazel', 'Violet', 'Aurora', 'Savannah', 'Audrey', 'Brooklyn', 'Bella', 'Claire', 'Skylar', 'Lucy', 'Paisley', 'Everly', 'Anna', 'Caroline', 'Nova', 'Genesis', 'Emilia', 'Kennedy', 'Samantha', 'Maya', 'Willow', 'Kinsley', 'Naomi', 'Aaliyah', 'Elena', 'Sarah', 'Ariana', 'Allison', 'Gabriella', 'Alice', 'Madelyn', 'Cora', 'Ruby', 'Eva', 'Serenity', 'Autumn', 'Adeline', 'Hailey', 'Gianna', 'Valentina', 'Isla', 'Eliana', 'Quinn', 'Nevaeh', 'Ivy', 'Sadie', 'Piper', 'Lydia', 'Alexa', 'Josephine', 'Emery', 'Julia', 'Delilah', 'Arianna', 'Vivian', 'Kaylee', 'Sophie', 'Brielle', 'Madeline', 'Peyton', 'Rylee', 'Clara', 'Hadley', 'Melanie', 'Mackenzie', 'Reagan', 'Adalynn', 'Liliana', 'Aubree', 'Jade', 'Katherine', 'Isabelle', 'Natalia', 'Raelynn', 'Maria', 'Athena', 'Ximena', 'Arya', 'Leilani', 'Taylor', 'Faith', 'Rose', 'Kylie', 'Alexandra', 'Mary', 'Margaret', 'Lyla', 'Ashley', 'Amaya', 'Eliza', 'Brianna', 'Bailey', 'Andrea', 'Khloe', 'Jasmine', 'Melody', 'Iris', 'Isabel', 'Norah', 'Annabelle', 'Valeria', 'Emerson', 'Adalyn', 'Ryleigh', 'Eden', 'Emersyn', 'Anastasia', 'Kayla', 'Alyssa', 'Juliana', 'Charlie', 'Esther', 'Ariel', 'Cecilia', 'Valerie', 'Alina', 'Molly', 'Reese', 'Aliyah', 'Lilly', 'Parker', 'Finley', 'Morgan', 'Sydney', 'Jordyn', 'Eloise', 'Trinity', 'Daisy', 'Kimberly', 'Lauren', 'Genevieve', 'Sara', 'Arabella', 'Harmony', 'Elise', 'Remi', 'Teagan', 'Alexis', 'London', 'Sloane', 'Laila', 'Lucia', 'Diana', 'Juliette', 'Sienna', 'Elliana', 'Londyn', 'Ayla', 'Callie', 'Gracie', 'Josie', 'Amara', 'Jocelyn', 'Daniela', 'Everleigh', 'Mya', 'Rachel', 'Summer', 'Alana', 'Brooke', 'Alaina', 'Mckenzie', 'Catherine', 'Amy', 'Presley', 'Journee', 'Rosalie', 'Ember', 'Brynlee', 'Rowan', 'Joanna', 'Paige', 'Rebecca', 'Ana', 'Sawyer', 'Mariah', 'Nicole', 'Brooklynn', 'Payton', 'Marley', 'Fiona', 'Georgia', 'Lila', 'Harley', 'Adelyn', 'Alivia', 'Noelle', 'Gemma', 'Vanessa', 'Journey', 'Makayla', 'Angelina', 'Adaline', 'Catalina', 'Alayna', 'Julianna', 'Leila', 'Lola', 'Adriana', 'June', 'Juliet', 'Jayla', 'River', 'Tessa', 'Lia', 'Dakota', 'Delaney', 'Selena', 'Blakely', 'Ada', 'Camille', 'Zara', 'Malia', 'Hope', 'Samara', 'Vera', 'Mckenna', 'Briella', 'Izabella', 'Hayden', 'Raegan', 'Michelle', 'Angela', 'Ruth', 'Freya', 'Kamila', 'Vivienne', 'Aspen', 'Olive', 'Kendall', 'Elaina', 'Thea', 'Kali', 'Destiny', 'Amiyah', 'Evangeline', 'Cali', 'Blake', 'Elsie', 'Juniper', 'Alexandria', 'Myla', 'Ariella', 'Kate', 'Mariana', 'Lilah', 'Charlee', 'Daleyza', 'Nyla', 'Jane', 'Maggie', 'Zuri', 'Aniyah', 'Lucille', 'Leia', 'Melissa', 'Adelaide', 'Amina', 'Giselle', 'Lena', 'Camilla', 'Miriam', 'Millie', 'Brynn', 'Gabrielle', 'Sage', 'Annie', 'Logan', 'Lilliana', 'Haven', 'Jessica', 'Kaia', 'Magnolia', 'Amira', 'Adelynn', 'Makenzie', 'Stephanie', 'Nina', 'Phoebe', 'Arielle', 'Evie', 'Lyric', 'Alessandra', 'Gabriela', 'Paislee', 'Raelyn', 'Madilyn', 'Paris', 'Makenna', 'Kinley', 'Gracelyn', 'Talia', 'Maeve', 'Rylie', 'Kiara', 'Evelynn', 'Brinley', 'Jacqueline', 'Laura', 'Gracelynn', 'Lexi', 'Ariah', 'Fatima', 'Jennifer', 'Kehlani', 'Alani', 'Ariyah', 'Luciana', 'Allie', 'Heidi', 'Maci', 'Phoenix', 'Felicity', 'Joy', 'Kenzie', 'Veronica', 'Margot', 'Addilyn', 'Lana', 'Cassidy', 'Remington', 'Saylor', 'Ryan', 'Keira', 'Harlow', 'Miranda', 'Angel', 'Amanda', 'Daniella', 'Royalty', 'Gwendolyn', 'Ophelia', 'Heaven', 'Jordan', 'Madeleine', 'Esmeralda', 'Kira', 'Miracle', 'Elle', 'Amari', 'Danielle', 'Daphne', 'Willa', 'Haley', 'Gia', 'Kaitlyn', 'Oakley', 'Kailani', 'Winter', 'Alicia', 'Serena', 'Nadia', 'Aviana', 'Demi', 'Jada', 'Braelynn', 'Dylan', 'Ainsley', 'Alison', 'Camryn', 'Avianna', 'Bianca', 'Skyler', 'Scarlet', 'Maddison', 'Nylah', 'Sarai', 'Regina', 'Dahlia', 'Nayeli', 'Raven', 'Helen', 'Adrianna', 'Averie', 'Skye', 'Kelsey', 'Tatum', 'Kensley', 'Maliyah', 'Erin', 'Viviana', 'Jenna', 'Anaya', 'Carolina', 'Shelby', 'Sabrina', 'Mikayla', 'Annalise', 'Octavia', 'Lennon', 'Blair', 'Carmen', 'Yaretzi', 'Kennedi', 'Mabel', 'Zariah', 'Kyla', 'Christina', 'Selah', 'Celeste', 'Eve', 'Mckinley', 'Milani', 'Frances', 'Jimena', 'Kylee', 'Leighton', 'Katie', 'Aitana', 'Kayleigh', 'Sierra', 'Kathryn', 'Rosemary', 'Jolene', 'Alondra', 'Elisa', 'Helena', 'Charleigh', 'Hallie', 'Lainey', 'Avah', 'Jazlyn', 'Kamryn', 'Mira', 'Cheyenne', 'Francesca', 'Antonella', 'Wren', 'Chelsea', 'Amber', 'Emory', 'Lorelei', 'Nia', 'Abby', 'April', 'Emelia', 'Carter', 'Aylin', 'Cataleya', 'Bethany', 'Marlee', 'Carly', 'Kaylani', 'Emely', 'Liana', 'Madelynn', 'Cadence', 'Matilda', 'Sylvia', 'Myra', 'Fernanda', 'Oaklyn', 'Elianna', 'Hattie', 'Dayana', 'Kendra', 'Maisie', 'Malaysia', 'Kara', 'Katelyn', 'Maia', 'Celine', 'Cameron', 'Renata', 'Jayleen', 'Charli', 'Emmalyn', 'Holly', 'Azalea', 'Leona', 'Alejandra', 'Bristol', 'Collins', 'Imani', 'Meadow', 'Alexia', 'Edith', 'Kaydence', 'Leslie', 'Lilith', 'Kora', 'Aisha', 'Meredith', 'Danna', 'Wynter', 'Emberly', 'Julieta', 'Michaela', 'Alayah', 'Jemma', 'Reign', 'Colette', 'Kaliyah', 'Elliott', 'Johanna', 'Remy', 'Sutton', 'Emmy', 'Virginia', 'Briana', 'Oaklynn', 'Adelina', 'Everlee', 'Megan', 'Angelica', 'Justice', 'Mariam', 'Khaleesi', 'Macie', 'Karsyn', 'Alanna', 'Aleah', 'Mae', 'Mallory', 'Esme', 'Skyla', 'Madilynn', 'Charley', 'Allyson', 'Hanna', 'Shiloh', 'Henley', 'Macy', 'Maryam', 'Ivanna', 'Ashlynn', 'Lorelai', 'Amora', 'Ashlyn', 'Sasha', 'Baylee', 'Beatrice', 'Itzel', 'Priscilla', 'Marie', 'Jayda', 'Liberty', 'Rory', 'Alessia', 'Alaia', 'Janelle', 'Kalani', 'Gloria', 'Sloan', 'Dorothy', 'Greta', 'Julie', 'Zahra', 'Savanna', 'Annabella', 'Poppy', 'Amalia', 'Zaylee', 'Cecelia', 'Coraline', 'Kimber', 'Emmie', 'Anne', 'Karina', 'Kassidy', 'Kynlee', 'Monroe', 'Anahi', 'Jaliyah', 'Jazmin', 'Maren', 'Monica', 'Siena', 'Marilyn', 'Reyna', 'Kyra', 'Lilian', 'Jamie', 'Melany', 'Alaya', 'Ariya', 'Kelly', 'Rosie', 'Adley', 'Dream', 'Jaylah', 'Laurel', 'Jazmine', 'Mina', 'Karla', 'Bailee', 'Aubrie', 'Katalina', 'Melina', 'Harlee', 'Elliot', 'Hayley', 'Elaine', 'Karen', 'Dallas', 'Irene', 'Lylah', 'Ivory', 'Chaya', 'Rosa', 'Aleena', 'Braelyn', 'Nola', 'Alma', 'Leyla', 'Pearl', 'Addyson', 'Roselyn', 'Lacey', 'Lennox', 'Reina', 'Aurelia', 'Noa', 'Janiyah', 'Jessie', 'Madisyn', 'Saige', 'Alia', 'Tiana', 'Astrid', 'Cassandra', 'Kyleigh', 'Romina', 'Stevie', 'Haylee', 'Zelda', 'Lillie', 'Aileen', 'Brylee', 'Eileen', 'Yara', 'Ensley', 'Lauryn', 'Giuliana', 'Livia', 'Anya', 'Mikaela', 'Palmer', 'Lyra', 'Mara', 'Marina', 'Kailey', 'Liv', 'Clementine', 'Kenna', 'Briar', 'Emerie', 'Galilea', 'Tiffany', 'Bonnie', 'Elyse', 'Cynthia', 'Frida', 'Kinslee', 'Tatiana', 'Joelle', 'Armani', 'Jolie', 'Nalani', 'Rayna', 'Yareli', 'Meghan', 'Rebekah', 'Addilynn', 'Faye', 'Zariyah', 'Lea', 'Aliza', 'Julissa', 'Lilyana', 'Anika', 'Kairi', 'Aniya', 'Noemi', 'Angie', 'Crystal', 'Bridget', 'Ari', 'Davina', 'Amelie', 'Amirah', 'Annika', 'Elora', 'Xiomara', 'Linda', 'Hana', 'Laney', 'Mercy', 'Hadassah', 'Madalyn', 'Louisa', 'Simone', 'Kori', 'Jillian', 'Alena', 'Malaya', 'Miley', 'Milan', 'Sariyah', 'Malani', 'Clarissa', 'Nala', 'Princess', 'Amani', 'Analia', 'Estella', 'Milana', 'Aya', 'Chana', 'Jayde', 'Tenley', 'Zaria', 'Itzayana', 'Penny', 'Ailani', 'Lara', 'Aubriella', 'Clare', 'Lina', 'Rhea', 'Bria', 'Thalia', 'Keyla', 'Haisley', 'Ryann', 'Addisyn', 'Amaia', 'Chanel', 'Ellen', 'Harmoni', 'Aliana', 'Tinsley', 'Landry', 'Paisleigh', 'Lexie', 'Myah', 'Rylan', 'Deborah', 'Emilee', 'Laylah', 'Novalee', 'Ellis', 'Emmeline', 'Avalynn', 'Hadlee', 'Legacy', 'Braylee', 'Elisabeth', 'Kaylie', 'Ansley', 'Dior', 'Paula', 'Belen', 'Corinne', 'Maleah', 'Martha', 'Teresa', 'Salma', 'Louise', 'Averi', 'Lilianna', 'Amiya', 'Milena', 'Royal', 'Aubrielle', 'Calliope', 'Frankie', 'Natasha', 'Kamilah', 'Meilani', 'Raina', 'Amayah', 'Lailah', 'Rayne', 'Zaniyah', 'Isabela', 'Nathalie', 'Miah', 'Opal', 'Kenia', 'Azariah', 'Hunter', 'Tori', 'Andi', 'Keily', 'Leanna', 'Scarlette', 'Jaelyn', 'Saoirse', 'Selene', 'Dalary', 'Lindsey', 'Marianna', 'Ramona', 'Estelle', 'Giovanna', 'Holland', 'Nancy', 'Emmalynn', 'Mylah', 'Rosalee', 'Sariah', 'Zoie', 'Blaire', 'Lyanna', 'Maxine', 'Anais', 'Dana', 'Judith', 'Kiera', 'Jaelynn', 'Noor', 'Kai', 'Adalee', 'Oaklee', 'Amaris', 'Jaycee', 'Belle', 'Carolyn', 'Della', 'Karter', 'Sky', 'Treasure', 'Vienna', 'Jewel', 'Rivka', 'Rosalyn', 'Alannah', 'Ellianna', 'Sunny', 'Claudia', 'Cara', 'Hailee', 'Estrella', 'Harleigh', 'Zhavia', 'Alianna', 'Brittany', 'Jaylene', 'Journi', 'Marissa', 'Mavis', 'Iliana', 'Jurnee', 'Aislinn', 'Alyson', 'Elsa', 'Kamiyah', 'Kiana', 'Lisa', 'Arlette', 'Kadence', 'Kathleen', 'Halle', 'Erika', 'Sylvie', 'Adele', 'Erica', 'Veda', 'Whitney', 'Bexley', 'Emmaline', 'Guadalupe', 'August', 'Brynleigh', 'Gwen', 'Promise', 'Alisson', 'India', 'Madalynn', 'Paloma', 'Patricia', 'Samira', 'Aliya', 'Casey', 'Jazlynn', 'Paulina', 'Dulce', 'Kallie', 'Perla', 'Adrienne', 'Alora', 'Nataly', 'Ayleen', 'Christine', 'Kaiya', 'Ariadne', 'Karlee', 'Barbara', 'Lillianna', 'Raquel', 'Saniyah', 'Yamileth', 'Arely', 'Celia', 'Heavenly', 'Kaylin', 'Marisol', 'Marleigh', 'Avalyn', 'Berkley', 'Kataleya', 'Zainab', 'Dani', 'Egypt', 'Joyce', 'Kenley', 'Annabel', 'Kaelyn', 'Etta', 'Hadleigh', 'Joselyn', 'Luella', 'Jaylee', 'Zola', 'Alisha', 'Ezra', 'Queen', 'Amia', 'Annalee', 'Bellamy', 'Paola', 'Tinley', 'Violeta', 'Jenesis', 'Arden', 'Giana', 'Wendy', 'Ellison', 'Florence', 'Margo', 'Naya', 'Robin', 'Sandra', 'Scout', 'Waverly', 'Janessa', 'Jayden', 'Micah', 'Novah', 'Zora', 'Ann', 'Jana', 'Taliyah', 'Vada', 'Giavanna', 'Ingrid', 'Valery', 'Azaria', 'Emmarie', 'Esperanza', 'Kailyn', 'Aiyana', 'Keilani', 'Austyn', 'Whitley', 'Elina', 'Kimora', 'Maliah'] maFirst = ['Liam', 'Noah', 'William', 'James', 'Oliver', 'Benjamin', 'Elijah', 'Lucas', 'Mason', 'Logan', 'Alexander', 'Ethan', 'Jacob', 'Michael', 'Daniel', 'Henry', 'Jackson', 'Sebastian', 'Aiden', 'Matthew', 'Samuel', 'David', 'Joseph', 'Carter', 'Owen', 'Wyatt', 'John', 'Jack', 'Luke', 'Jayden', 'Dylan', 'Grayson', 'Levi', 'Isaac', 'Gabriel', 'Julian', 'Mateo', 'Anthony', 'Jaxon', 'Lincoln', 'Joshua', 'Christopher', 'Andrew', 'Theodore', 'Caleb', 'Ryan', 'Asher', 'Nathan', 'Thomas', 'Leo', 'Isaiah', 'Charles', 'Josiah', 'Hudson', 'Christian', 'Hunter', 'Connor', 'Eli', 'Ezra', 'Aaron', 'Landon', 'Adrian', 'Jonathan', 'Nolan', 'Jeremiah', 'Easton', 'Elias', 'Colton', 'Cameron', 'Carson', 'Robert', 'Angel', 'Maverick', 'Nicholas', 'Dominic', 'Jaxson', 'Greyson', 'Adam', 'Ian', 'Austin', 'Santiago', 'Jordan', 'Cooper', 'Brayden', 'Roman', 'Evan', 'Ezekiel', 'Xavier', 'Jose', 'Jace', 'Jameson', 'Leonardo', 'Bryson', 'Axel', 'Everett', 'Parker', 'Kayden', 'Miles', 'Sawyer', 'Jason', 'Declan', 'Weston', 'Micah', 'Ayden', 'Wesley', 'Luca', 'Vincent', 'Damian', 'Zachary', 'Silas', 'Gavin', 'Chase', 'Kai', 'Emmett', 'Harrison', 'Nathaniel', 'Kingston', 'Cole', 'Tyler', 'Bennett', 'Bentley', 'Ryker', 'Tristan', 'Brandon', 'Kevin', 'Luis', 'George', 'Ashton', 'Rowan', 'Braxton', 'Ryder', 'Gael', 'Ivan', 'Diego', 'Maxwell', 'Max', 'Carlos', 'Kaiden', 'Juan', 'Maddox', 'Justin', 'Waylon', 'Calvin', 'Giovanni', 'Jonah', 'Abel', 'Jayce', 'Jesus', 'Amir', 'King', 'Beau', 'Camden', 'Alex', 'Jasper', 'Malachi', 'Brody', 'Jude', 'Blake', 'Emmanuel', 'Eric', 'Brooks', 'Elliot', 'Antonio', 'Abraham', 'Timothy', 'Finn', 'Rhett', 'Elliott', 'Edward', 'August', 'Xander', 'Alan', 'Dean', 'Lorenzo', 'Bryce', 'Karter', 'Victor', 'Milo', 'Miguel', 'Hayden', 'Graham', 'Grant', 'Zion', 'Tucker', 'Jesse', 'Zayden', 'Joel', 'Richard', 'Patrick', 'Emiliano', 'Avery', 'Nicolas', 'Brantley', 'Dawson', 'Myles', 'Matteo', 'River', 'Steven', 'Thiago', 'Zane', 'Matias', 'Judah', 'Messiah', 'Jeremy', 'Preston', 'Oscar', 'Kaleb', 'Alejandro', 'Marcus', 'Mark', 'Peter', 'Maximus', 'Barrett', 'Jax', 'Andres', 'Holden', 'Legend', 'Charlie', 'Knox', 'Kaden', 'Paxton', 'Kyrie', 'Kyle', 'Griffin', 'Josue', 'Kenneth', 'Beckett', 'Enzo', 'Adriel', 'Arthur', 'Felix', 'Bryan', 'Lukas', 'Paul', 'Brian', 'Colt', 'Caden', 'Leon', 'Archer', 'Omar', 'Israel', 'Aidan', 'Theo', 'Javier', 'Remington', 'Jaden', 'Bradley', 'Emilio', 'Colin', 'Riley', 'Cayden', 'Phoenix', 'Clayton', 'Simon', 'Ace', 'Nash', 'Derek', 'Rafael', 'Zander', 'Brady', 'Jorge', 'Jake', 'Louis', 'Damien', 'Karson', 'Walker', 'Maximiliano', 'Amari', 'Sean', 'Chance', 'Walter', 'Martin', 'Finley', 'Andre', 'Tobias', 'Cash', 'Corbin', 'Arlo', 'Iker', 'Erick', 'Emerson', 'Gunner', 'Cody', 'Stephen', 'Francisco', 'Killian', 'Dallas', 'Reid', 'Manuel', 'Lane', 'Atlas', 'Rylan', 'Jensen', 'Ronan', 'Beckham', 'Daxton', 'Anderson', 'Kameron', 'Raymond', 'Orion', 'Cristian', 'Tanner', 'Kyler', 'Jett', 'Cohen', 'Ricardo', 'Spencer', 'Gideon', 'Ali', 'Fernando', 'Jaiden', 'Titus', 'Travis', 'Bodhi', 'Eduardo', 'Dante', 'Ellis', 'Prince', 'Kane', 'Luka', 'Kash', 'Hendrix', 'Desmond', 'Donovan', 'Mario', 'Atticus', 'Cruz', 'Garrett', 'Hector', 'Angelo', 'Jeffrey', 'Edwin', 'Cesar', 'Zayn', 'Devin', 'Conor', 'Warren', 'Odin', 'Jayceon', 'Romeo', 'Julius', 'Jaylen', 'Hayes', 'Kayson', 'Muhammad', 'Jaxton', 'Joaquin', 'Caiden', 'Dakota', 'Major', 'Keegan', 'Sergio', 'Marshall', 'Johnny', 'Kade', 'Edgar', 'Leonel', 'Ismael', 'Marco', 'Tyson', 'Wade', 'Collin', 'Troy', 'Nasir', 'Conner', 'Adonis', 'Jared', 'Rory', 'Andy', 'Jase', 'Lennox', 'Shane', 'Malik', 'Ari', 'Reed', 'Seth', 'Clark', 'Erik', 'Lawson', 'Trevor', 'Gage', 'Nico', 'Malakai', 'Quinn', 'Cade', 'Johnathan', 'Sullivan', 'Solomon', 'Cyrus', 'Fabian', 'Pedro', 'Frank', 'Shawn', 'Malcolm', 'Khalil', 'Nehemiah', 'Dalton', 'Mathias', 'Jay', 'Ibrahim', 'Peyton', 'Winston', 'Kason', 'Zayne', 'Noel', 'Princeton', 'Matthias', 'Gregory', 'Sterling', 'Dominick', 'Elian', 'Grady', 'Russell', 'Finnegan', 'Ruben', 'Gianni', 'Porter', 'Kendrick', 'Leland', 'Pablo', 'Allen', 'Hugo', 'Raiden', 'Kolton', 'Remy', 'Ezequiel', 'Damon', 'Emanuel', 'Zaiden', 'Otto', 'Bowen', 'Marcos', 'Abram', 'Kasen', 'Franklin', 'Royce', 'Jonas', 'Sage', 'Philip', 'Esteban', 'Drake', 'Kashton', 'Roberto', 'Harvey', 'Alexis', 'Kian', 'Jamison', 'Maximilian', 'Adan', 'Milan', 'Phillip', 'Albert', 'Dax', 'Mohamed', 'Ronin', 'Kamden', 'Hank', 'Memphis', 'Oakley', 'Augustus', 'Drew', 'Moises', 'Armani', 'Rhys', 'Benson', 'Jayson', 'Kyson', 'Braylen', 'Corey', 'Gunnar', 'Omari', 'Alonzo', 'Landen', 'Armando', 'Derrick', 'Dexter', 'Enrique', 'Bruce', 'Nikolai', 'Francis', 'Rocco', 'Kairo', 'Royal', 'Zachariah', 'Arjun', 'Deacon', 'Skyler', 'Eden', 'Alijah', 'Rowen', 'Pierce', 'Uriel', 'Ronald', 'Luciano', 'Tate', 'Frederick', 'Kieran', 'Lawrence', 'Moses', 'Rodrigo', 'Brycen', 'Leonidas', 'Nixon', 'Keith', 'Chandler', 'Case', 'Davis', 'Asa', 'Darius', 'Isaias', 'Aden', 'Jaime', 'Landyn', 'Raul', 'Niko', 'Trenton', 'Apollo', 'Cairo', 'Izaiah', 'Scott', 'Dorian', 'Julio', 'Wilder', 'Santino', 'Dustin', 'Donald', 'Raphael', 'Saul', 'Taylor', 'Ayaan', 'Duke', 'Ryland', 'Tatum', 'Ahmed', 'Moshe', 'Edison', 'Emmitt', 'Cannon', 'Alec', 'Danny', 'Keaton', 'Roy', 'Conrad', 'Roland', 'Quentin', 'Lewis', 'Samson', 'Brock', 'Kylan', 'Cason', 'Ahmad', 'Jalen', 'Nikolas', 'Braylon', 'Kamari', 'Dennis', 'Callum', 'Justice', 'Soren', 'Rayan', 'Aarav', 'Gerardo', 'Ares', 'Brendan', 'Jamari', 'Kaison', 'Yusuf', 'Issac', 'Jasiah', 'Callen', 'Forrest', 'Makai', 'Crew', 'Kobe', 'Bo', 'Julien', 'Mathew', 'Braden', 'Johan', 'Marvin', 'Zaid', 'Stetson', 'Casey', 'Ty', 'Ariel', 'Tony', 'Zain', 'Callan', 'Cullen', 'Sincere', 'Uriah', 'Dillon', 'Kannon', 'Colby', 'Axton', 'Cassius', 'Quinton', 'Mekhi', 'Reece', 'Alessandro', 'Jerry', 'Mauricio', 'Sam', 'Trey', 'Mohammad', 'Alberto', 'Gustavo', 'Arturo', 'Fletcher', 'Marcelo', 'Abdiel', 'Hamza', 'Alfredo', 'Chris', 'Finnley', 'Curtis', 'Kellan', 'Quincy', 'Kase', 'Harry', 'Kyree', 'Wilson', 'Cayson', 'Hezekiah', 'Kohen', 'Neil', 'Mohammed', 'Raylan', 'Kaysen', 'Lucca', 'Sylas', 'Mack', 'Leonard', 'Lionel', 'Ford', 'Roger', 'Rex', 'Alden', 'Boston', 'Colson', 'Briggs', 'Zeke', 'Dariel', 'Kingsley', 'Valentino', 'Jamir', 'Salvador', 'Vihaan', 'Mitchell', 'Lance', 'Lucian', 'Darren', 'Jimmy', 'Alvin', 'Amos', 'Tripp', 'Zaire', 'Layton', 'Reese', 'Casen', 'Colten', 'Brennan', 'Korbin', 'Sonny', 'Bruno', 'Orlando', 'Devon', 'Huxley', 'Boone', 'Maurice', 'Nelson', 'Douglas', 'Randy', 'Gary', 'Lennon', 'Titan', 'Denver', 'Jaziel', 'Noe', 'Jefferson', 'Ricky', 'Lochlan', 'Rayden', 'Bryant', 'Langston', 'Lachlan', 'Clay', 'Abdullah', 'Lee', 'Baylor', 'Leandro', 'Ben', 'Kareem', 'Layne', 'Joe', 'Crosby', 'Deandre', 'Demetrius', 'Kellen', 'Carl', 'Jakob', 'Ridge', 'Bronson', 'Jedidiah', 'Rohan', 'Larry', 'Stanley', 'Tomas', 'Shiloh', 'Thaddeus', 'Watson', 'Baker', 'Vicente', 'Koda', 'Jagger', 'Nathanael', 'Carmelo', 'Shepherd', 'Graysen', 'Melvin', 'Ernesto', 'Jamie', 'Yosef', 'Clyde', 'Eddie', 'Tristen', 'Grey', 'Ray', 'Tommy', 'Samir', 'Ramon', 'Santana', 'Kristian', 'Marcel', 'Wells', 'Zyaire', 'Brecken', 'Byron', 'Otis', 'Reyansh', 'Axl', 'Joey', 'Trace', 'Morgan', 'Musa', 'Harlan', 'Enoch', 'Henrik', 'Kristopher', 'Talon', 'Rey', 'Guillermo', 'Houston', 'Jon', 'Vincenzo', 'Dane', 'Terry', 'Azariah', 'Castiel', 'Kye', 'Augustine', 'Zechariah', 'Joziah', 'Kamryn', 'Hassan', 'Jamal', 'Chaim', 'Bodie', 'Emery', 'Branson', 'Jaxtyn', 'Kole', 'Wayne', 'Aryan', 'Alonso', 'Brixton', 'Madden', 'Allan', 'Flynn', 'Jaxen', 'Harley', 'Magnus', 'Sutton', 'Dash', 'Anders', 'Westley', 'Brett', 'Emory', 'Felipe', 'Yousef', 'Jadiel', 'Mordechai', 'Dominik', 'Junior', 'Eliseo', 'Fisher', 'Harold', 'Jaxxon', 'Kamdyn', 'Maximo', 'Caspian', 'Kelvin', 'Damari', 'Fox', 'Trent', 'Hugh', 'Briar', 'Franco', 'Keanu', 'Terrance', 'Yahir', 'Ameer', 'Kaiser', 'Thatcher', 'Ishaan', 'Koa', 'Merrick', 'Coen', 'Rodney', 'Brayan', 'London', 'Rudy', 'Gordon', 'Bobby', 'Aron', 'Marc', 'Van', 'Anakin', 'Canaan', 'Dario', 'Reginald', 'Westin', 'Darian', 'Ledger', 'Leighton', 'Maxton', 'Tadeo', 'Valentin', 'Aldo', 'Khalid', 'Nickolas', 'Toby', 'Dayton', 'Jacoby', 'Billy', 'Gatlin', 'Elisha', 'Jabari', 'Jermaine', 'Alvaro', 'Marlon', 'Mayson', 'Blaze', 'Jeffery', 'Kace', 'Braydon', 'Achilles', 'Brysen', 'Saint', 'Xzavier', 'Aydin', 'Eugene', 'Adrien', 'Cain', 'Kylo', 'Nova', 'Onyx', 'Arian', 'Bjorn', 'Jerome', 'Miller', 'Alfred', 'Kenzo', 'Kyng', 'Leroy', 'Maison', 'Jordy', 'Stefan', 'Wallace', 'Benicio', 'Kendall', 'Zayd', 'Blaine', 'Tristian', 'Anson', 'Gannon', 'Jeremias', 'Marley', 'Ronnie', 'Dangelo', 'Kody', 'Will', 'Bentlee', 'Gerald', 'Salvatore', 'Turner', 'Chad', 'Misael', 'Mustafa', 'Konnor', 'Maxim', 'Rogelio', 'Zakai', 'Cory', 'Judson', 'Brentley', 'Darwin', 'Louie', 'Ulises', 'Dakari', 'Rocky', 'Wesson', 'Alfonso', 'Payton', 'Dwayne', 'Juelz', 'Duncan', 'Keagan', 'Deshawn', 'Bode', 'Bridger', 'Skylar', 'Brodie', 'Landry', 'Avi', 'Keenan', 'Reuben', 'Jaxx', 'Rene', 'Yehuda', 'Imran', 'Yael', 'Alexzander', 'Willie', 'Cristiano', 'Heath', 'Lyric', 'Davion', 'Elon', 'Karsyn', 'Krew', 'Jairo', 'Maddux', 'Ephraim', 'Ignacio', 'Vivaan', 'Aries', 'Vance', 'Boden', 'Lyle', 'Ralph', 'Reign', 'Camilo', 'Draven', 'Terrence', 'Idris', 'Ira', 'Javion', 'Jericho', 'Khari', 'Marcellus', 'Creed', 'Shepard', 'Terrell', 'Ahmir', 'Camdyn', 'Cedric', 'Howard', 'Jad', 'Zahir', 'Harper', 'Justus', 'Forest', 'Gibson', 'Zev', 'Alaric', 'Decker', 'Ernest', 'Jesiah', 'Torin', 'Benedict', 'Bowie', 'Deangelo', 'Genesis', 'Harlem', 'Kalel', 'Kylen', 'Bishop', 'Immanuel', 'Lian', 'Zavier', 'Archie', 'Davian', 'Gus', 'Kabir', 'Korbyn', 'Randall', 'Benton', 'Coleman', 'Markus'] last = ['Smith', 'Johnson', 'Williams', 'Brown', 'Jones', 'Garcia', 'Miller', 'Davis', 'Rodriguez', 'Martinez', 'Hernandez', 'Lopez', 'Gonzales', 'Wilson', 'Anderson', 'Thomas', 'Taylor', 'Moore', 'Jackson', 'Martin', 'Lee', 'Perez', 'Thompson', 'White', 'Harris', 'Sanchez', 'Clark', 'Ramirez', 'Lewis', 'Robinson', 'Walker', 'Young', 'Allen', 'King', 'Wright', 'Scott', 'Torres', 'Nguyen', 'Hill', 'Flores', 'Green', 'Adams', 'Nelson', 'Baker', 'Hall', 'Rivera', 'Campbell', 'Mitchell', 'Carter', 'Roberts', 'Gomez', 'Phillips', 'Evans', 'Turner', 'Diaz', 'Parker', 'Cruz', 'Edwards', 'Collins', 'Reyes', 'Stewart', 'Morris', 'Morales', 'Murphy', 'Cook', 'Rogers', 'Gutierrez', 'Ortiz', 'Morgan', 'Cooper', 'Peterson', 'Bailey', 'Reed', 'Kelly', 'Howard', 'Ramos', 'Kim', 'Cox', 'Ward', 'Richardson', 'Watson', 'Brooks', 'Chavez', 'Wood', 'James', 'Bennet', 'Gray', 'Mendoza', 'Ruiz', 'Hughes', 'Price', 'Alvarez', 'Castillo', 'Sanders', 'Patel', 'Myers', 'Long', 'Ross', 'Foster', 'Jimenez']
3,457.666667
10,010
0.594428
0
0
0
0
0
0
0
0
16,514
0.796009
b028018661b0929da5b6a926d65bb750a50efe57
444
py
Python
oldtoronto/test/toronto_archives_test.py
patcon/oldto
44c099550a4e3cfafa85afbaebd3cd6c33325891
[ "Apache-2.0" ]
22
2018-04-25T22:03:53.000Z
2021-07-13T18:43:23.000Z
oldtoronto/test/toronto_archives_test.py
patcon/oldto
44c099550a4e3cfafa85afbaebd3cd6c33325891
[ "Apache-2.0" ]
17
2018-04-30T14:04:08.000Z
2022-02-13T19:52:44.000Z
oldtoronto/test/toronto_archives_test.py
patcon/oldto
44c099550a4e3cfafa85afbaebd3cd6c33325891
[ "Apache-2.0" ]
7
2018-05-08T23:32:44.000Z
2022-01-27T17:49:30.000Z
from nose.tools import eq_ from oldtoronto.toronto_archives import get_citation_hierarchy # noqa def test_get_citation_hierarchy(): eq_([ 'Fonds 200, Series 123', 'Fonds 200' ], get_citation_hierarchy('Fonds 200, Series 123, Item 456')) eq_([ 'Fonds 257, Series 12, File 1983', 'Fonds 257, Series 12', 'Fonds 257' ], get_citation_hierarchy('Fonds 257, Series 12, File 1983, 52","'))
26.117647
73
0.646396
0
0
0
0
0
0
0
0
180
0.405405
b02d1a840f2e9ca574098b991b8f37e1b954c866
979
py
Python
excel2.py
darkless456/Python
1ba37d028e4a818ccfffc18682c1bac15554e3ac
[ "MIT" ]
null
null
null
excel2.py
darkless456/Python
1ba37d028e4a818ccfffc18682c1bac15554e3ac
[ "MIT" ]
null
null
null
excel2.py
darkless456/Python
1ba37d028e4a818ccfffc18682c1bac15554e3ac
[ "MIT" ]
null
null
null
# excel2.py import xlrd def print_xls(path): xlsFile = xlrd.open_workbook(path) try: mySheet = xlsFile.sheets()[0] # 访问第1张表序号0 // xlsFile.sheet_by_name('sheetName') 通过工作表名访问 except: print('no such sheet in file') return print('%d rows, %d cols' % (mySheet.nrows, mySheet.ncols)) # 输出工作表共几行(rows)和几列(cols) for row in range(0, mySheet.nrows): temp = '' for col in range(0, mySheet.ncols): if mySheet.cell(row, col).value != None: temp += str(mySheet.cell(row, col).value) + '\t' print(temp) if __name__ == '__main__': print_xls('D:\\python_path\\sample_ex.xls') ''' 模块是对象,并且所有的模块都有一个内置属性 __name__。一个模块的 __name__ 的值取决于您如何应用模块。如果 import 一个模块, 那么模块__name__ 的值通常为模块文件名,不带路径或者文件扩展名。但是您也可以像一个标准的程序样直接运行模块,在这种情况下, __name__ 的值将是一个特别缺省"__main__"。 在cmd 中直接运行.py文件,则__name__的值是'__main__'; 而在import 一个.py文件后,__name__的值就不是'__main__'了; 从而用if __name__ == '__main__'来判断是否是在直接运行该.py文件 '''
27.194444
96
0.670072
0
0
0
0
0
0
0
0
865
0.641216
b02f9eadae5afd900218c21f9e3251e4c4f3cf07
1,162
py
Python
reth_buffer/reth_buffer/__init__.py
sosp2021/Reth
10c032f44a25049355ebdd97a2cb3299e8c3fb82
[ "MIT" ]
null
null
null
reth_buffer/reth_buffer/__init__.py
sosp2021/Reth
10c032f44a25049355ebdd97a2cb3299e8c3fb82
[ "MIT" ]
1
2021-08-10T02:58:58.000Z
2021-08-10T02:58:58.000Z
reth_buffer/reth_buffer/__init__.py
sosp2021/reth
10c032f44a25049355ebdd97a2cb3299e8c3fb82
[ "MIT" ]
null
null
null
import multiprocessing as mp import portpicker from .client import Client, NumpyLoader, TorchCudaLoader from .sampler import PERSampler from .server.main_loop import main_loop from .utils import get_local_ip def start_server( capacity, batch_size, host=None, port=None, samplers=None, cache_policy=None ): if host is None: host = get_local_ip() if port is None: port = portpicker.pick_unused_port() meta_addr = f"tcp://{host}:{port}" ctx = mp.get_context("spawn") proc = ctx.Process( target=main_loop, args=(capacity, batch_size, meta_addr, samplers, cache_policy), ) proc.start() return proc, meta_addr def start_per( capacity, batch_size, alpha=0.6, beta=0.4, sample_start=1000, num_sampler_procs=1, host=None, port=None, cache_policy=None, ): samplers = [ { "sampler_cls": PERSampler, "num_procs": num_sampler_procs, "sample_start": sample_start, "kwargs": {"alpha": alpha, "beta": beta}, } ] return start_server(capacity, batch_size, host, port, samplers, cache_policy)
23.24
81
0.645439
0
0
0
0
0
0
0
0
88
0.075731
b02fad481b4d3cb3263f98acf09c40e1f2669bfa
7,171
py
Python
agent.py
FlowerForAlgernon/rainbow
78492ba572e2f8b4b2228d2ca625af94a09ee696
[ "Apache-2.0" ]
1
2022-03-23T02:02:10.000Z
2022-03-23T02:02:10.000Z
agent.py
FlowerForAlgernon/rainbow
78492ba572e2f8b4b2228d2ca625af94a09ee696
[ "Apache-2.0" ]
null
null
null
agent.py
FlowerForAlgernon/rainbow
78492ba572e2f8b4b2228d2ca625af94a09ee696
[ "Apache-2.0" ]
null
null
null
import random import numpy as np import torch import torch.optim as optim import torch.nn.functional as F import torchvision.transforms as T from memory import Transition, ReplayMemory, PrioritizedReplayMemory, NStepMemory from DQN import DQN, DuelingDQN, NoisyDQN, DistributionalDQN class Agent: def __init__(self, config): # Distributional DQN self.support = torch.linspace(config.v_min, config.v_max, config.atom_size).to(config.device) self.policy_net = DistributionalDQN(config.c, config.h, config.w, config.n_actions, config.atom_size, self.support).to(config.device) self.target_net = DistributionalDQN(config.c, config.h, config.w, config.n_actions, config.atom_size, self.support).to(config.device) self.target_net.load_state_dict(self.policy_net.state_dict()) self.target_net.eval() #self.memory = ReplayMemory(config.memory_size) self.memory = PrioritizedReplayMemory(config.memory_size, config.alpha) self.memory_n = NStepMemory(config.memory_size, config.alpha, config.gamma, config.n_step) self.optimizer = optim.RMSprop(self.policy_net.parameters(), lr=config.learning_rate, eps=0.001, alpha=0.95) @staticmethod def get_state(obs, config): state = np.array(obs)[14:77,:,:] state = np.ascontiguousarray(state.transpose((2, 0, 1)), dtype=np.float) state = torch.from_numpy(state / 255) return state.unsqueeze(0).to(config.device) def select_action(self, state, epsilon, config): if random.random() > epsilon: with torch.no_grad(): return self.policy_net(state).max(1)[1].view(1,1).to(config.device) else: return torch.tensor([[random.randrange(4)]], device=config.device, dtype=torch.long) def transition_to_tensor(self, transitions): for i in range(len(transitions)): transitions[i][0] = torch.tensor(transitions[i][0]).to(config.device) transitions[i][1] = torch.tensor(transitions[i][1]).to(config.device) transitions[i][2] = torch.tensor(transitions[i][2]).to(config.device) transitions[i][3] = torch.tensor(transitions[i][3]).to(config.device) return transitions def optimize_model(self, config): #transitions = self.memory.sample(config.batch_size) # PrioritizedReplayMemory transitions, weights, indices = self.memory.sample(config.batch_size, config.beta) transitions = self.transition_to_tensor(transitions) batch = Transition(*zip(*transitions)) loss, weights_loss = self.get_loss(batch, config, weights, config.gamma) # N Step transitions_n, _, _ = self.memory_n.sample_from_indices(config.batch_size, config.beta, indices) transitions_n = self.transition_to_tensor(transitions_n) batch_n = Transition(*zip(*transitions_n)) gamma_n = config.gamma ** config.n_step loss_n, weights_loss_n = self.get_loss(batch_n, config, weights, gamma_n) weights_loss += weights_loss_n self.optimizer.zero_grad() #loss.backward() # PrioritizedReplayMemory weights_loss.backward() for param in self.policy_net.parameters(): param.grad.data.clamp_(-1, 1) self.optimizer.step() # PrioritizedReplayMemory loss_for_prior = loss.detach().cpu().numpy() new_priorities = loss_for_prior + config.prior_eps self.memory.update_priorities(indices, new_priorities) # N Step self.memory_n.update_priorities(indices, new_priorities) # Noisy Net self.policy_net.reset_noise() self.target_net.reset_noise() def get_loss(self, batch, config, weights, gamma): non_final_mask = torch.tensor(tuple(map(lambda s: s is not None, batch.next_state)), device=config.device, dtype=torch.bool) non_final_next_states = torch.cat([s for s in batch.next_state if s is not None]) state_batch = torch.cat(batch.state) action_batch = torch.cat(batch.action) reward_batch = torch.cat(batch.reward).unsqueeze(1) state_action_values = self.policy_net(state_batch).gather(1, action_batch) next_state_action_values = torch.zeros(config.batch_size, device=config.device).unsqueeze(1) next_state_action_values[non_final_mask] = self.target_net(non_final_next_states).gather( 1, self.policy_net(non_final_next_states).detach().argmax(dim=1, keepdim=True) ).detach() expected_state_action_values = reward_batch + gamma * next_state_action_values #loss = F.smooth_l1_loss(state_action_values, expected_state_action_values) # PrioritizedReplayMemory loss = F.smooth_l1_loss(state_action_values, expected_state_action_values, reduction="none") weights = torch.FloatTensor(np.array(weights).reshape(-1, 1)).to(config.device) weights_loss = torch.mean(weights * loss) return loss, weights_loss def get_DistributionalDQN_loss(self, batch, config, weights, gamma): state_batch = torch.cat(batch.state) next_state_batch = torch.cat(batch.next_state) action_batch = torch.cat(batch.action) reward_batch = torch.cat(batch.reward).unsqueeze(1) done_batch = torch.cat([1 if s is not None else 0 for s in batch.next_state]).unsqueeze(1) delta_z = float(config.v_max - config.v_min) / (config.atom_size - 1) with torch.no_grad(): next_action = self.policy_net(next_state_batch).argmax(1) next_dist = self.target_net.dist(next_state_batch) next_dist = next_dist[range(config.batch_size), next_action] t_z = reward_batch + (1 - done_batch) * gamma * self.support t_z = t_z.clamp(min=config.v_min, max=config.v_max) b = (t_z - config.v_min) / delta_z l = b.floor().long() u = b.ceil().long() offset = ( torch.linspace( 0, (config.batch_size - 1) * config.atom_size, config.batch_size ).long() .unsqueeze(1) .expand(config.batch_size, config.atom_size) .to(config.device) ) proj_dist = torch.zeros(next_dist.size(), device=config.device) proj_dist.view(-1).index_add_( 0, (l + offset).view(-1), (next_dist * (u.float() - b)).view(-1) ) proj_dist.view(-1).index_add_( 0, (u + offset).view(-1), (next_dist * (b - l.float())).view(-1) ) dist = self.policy_net.dist(state_batch) log_p = torch.log(dist[range(config.batch_size), action_batch]) elementwise_loss = -(proj_dist * log_p).sum(1) # PrioritizedReplayMemory weights = torch.FloatTensor(np.array(weights).reshape(-1, 1)).to(config.device) weights_loss = torch.mean(weights * elementwise_loss) return elementwise_loss, weights_loss
48.452703
142
0.647748
6,875
0.958723
0
0
270
0.037652
0
0
381
0.053131
b0347f10c5746915500b0d6e172c2c32ab5316d0
121
py
Python
Deutsch-Jozsa-Algorithm/main.py
Gregory-Eales/QA-Reimplementations
bef0b3e67397a73c468e539c426c6629d398433b
[ "MIT" ]
1
2019-05-03T21:48:29.000Z
2019-05-03T21:48:29.000Z
Deutsch-Jozsa-Algorithm/main.py
Gregory-Eales/QA-Reimplementations
bef0b3e67397a73c468e539c426c6629d398433b
[ "MIT" ]
null
null
null
Deutsch-Jozsa-Algorithm/main.py
Gregory-Eales/QA-Reimplementations
bef0b3e67397a73c468e539c426c6629d398433b
[ "MIT" ]
null
null
null
import qsharp from DeutschJozsa import SayHello, RunDeutschJozsa SayHello.simulate() RunDeutschJozsa.simulate(N=10)
13.444444
50
0.818182
0
0
0
0
0
0
0
0
0
0
b0370f00352f25c209bf62c39330309ded5b5b35
413
py
Python
xslt/apply.py
carlosduarteroa/smap
5760631dfaf3e85da26ce68bf542bf254bb92c80
[ "BSD-2-Clause" ]
21
2015-02-06T21:55:59.000Z
2021-04-29T11:23:18.000Z
xslt/apply.py
carlosduarteroa/smap
5760631dfaf3e85da26ce68bf542bf254bb92c80
[ "BSD-2-Clause" ]
9
2015-02-03T10:41:35.000Z
2020-02-18T12:46:10.000Z
xslt/apply.py
carlosduarteroa/smap
5760631dfaf3e85da26ce68bf542bf254bb92c80
[ "BSD-2-Clause" ]
20
2015-02-06T00:09:19.000Z
2020-01-10T13:27:06.000Z
"""Apply a stylesheet to an XML file""" import sys from lxml import etree if len(sys.argv) != 3: print >>sys.stderr, "Usage: %s <stylesheet> <xml doc> ..." % sys.argv[0] sys.exit(1) transform = etree.XSLT(etree.XML(open(sys.argv[1], "r").read())) for xmlfile in sys.argv[2:]: with open(xmlfile, "r") as fp: doc = etree.parse(fp) print(etree.tostring(transform(doc), pretty_print=True))
27.533333
76
0.639225
0
0
0
0
0
0
0
0
83
0.200969
b037c4f526f6d6afd8598b5e5a8cb64d9cc7462a
7,122
py
Python
docs/conf.py
vlukes/io3d
34d048b7f737a5e56610879f6ab103128e8f0750
[ "MIT" ]
8
2016-09-26T01:35:15.000Z
2022-02-23T04:05:23.000Z
docs/conf.py
vlukes/io3d
34d048b7f737a5e56610879f6ab103128e8f0750
[ "MIT" ]
4
2016-05-18T11:04:56.000Z
2018-10-24T11:03:03.000Z
docs/conf.py
vlukes/io3d
34d048b7f737a5e56610879f6ab103128e8f0750
[ "MIT" ]
6
2017-03-24T20:43:21.000Z
2021-08-23T06:05:34.000Z
# -*- coding: utf-8 -*- # # io3d documentation build configuration file, created by # sphinx-quickstart on Mon Nov 27 12:01:57 2017. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath("../")) # mock import mock MOCK_MODULES = [ "numpy", "scipy", "matplotlib", "matplotlib.pyplot", "matplotlib.widgets", "scipy.io", "yaml", "pydicom", # 'scipy.interpolate', 'scipy.ndimage', 'pycut', 'io3d', 'sed3', 'pysegbase', # 'pysegbase.pycut', 'sklearn', 'skimage', 'dicom', 'vtk', 'vtk.util', # 'larcc', 'larcc.VIEW', 'larcc.MKPOL', 'larcc.AA', 'larcc.INTERVALS', # 'larcc.MAP', "PyQt5", "PyQt5.QtCore", "PyQt5.QtGui", #'web', 'lar2psm', # 'scipy.ndimage.measurements', 'lar', 'extern.lar', 'splines', # 'scipy.sparse', 'skimage.filter', 'mapper', 'skelet3d', 'numpy.core', # 'skimage.filters', 'skimage.restoration','skimage.io', # 'gzip', 'cPickle', # 'lbpLibrary', 'skimage.exposure', 'PyQt4.QVTKRenderWindowInteractor', # 'matplotlib.backends', 'matplotlib.backends.backend_qt4agg', 'numpy.linalg', # 'PyQt4.Qt', 'matplotlib.figure', 'skimage.morphology', 'gtk', # 'pysegbase.seed_editor_qt', 'vtk.qt4', 'vtk.qt4.QVTKRenderWindowInteractor', # 'seg2fem', 'skimage.segmentation', 'skimage.transform', 'matplotlib.patches', 'skimage.feature', # 'scipy.ndimage.morphology', 'mpl_toolkits', 'mpl_toolkits.mplot3d', # 'scipy.ndimage.measurement', 'scipy.ndimage.interpolation', # 'matplotlib.backends.backend_gtkagg', 'cv2', 'skimage.measure', 'dicom2fem', # 'morphsnakes', 'scipy.ndimage.filters', 'scipy.signal', 'pandas', # 'scipy.stats', 'io3d.misc', 'lisa.extern.lar', 'scipy.cluster', # 'scipy.cluster.vq', 'scipy.cluster.vq', # 'ipdb', 'multipolyfit', 'PIL', 'yaml', "SimpleITK", # 'six', 'nearpy', 'SimpleITK', 'lar', 'pandas' "ruamel.yaml.YAML", ] # for mod_name in MOCK_MODULES: sys.modules[mod_name] = mock.Mock() # import sklearn # sklearn.__version__ = '0.0' # import scipy # scipy.__version__ = '0.0' # import pysegbase.pycut # pysegbase.pycut.methods = ['graphcut'] # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "sphinx.ext.autodoc", "sphinx.ext.todo", "sphinx.ext.viewcode", "sphinx.ext.coverage", "sphinx.ext.imgmath", ] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = [".rst", ".md"] # source_suffix = '.rst' # The master toctree document. master_doc = "index" # General information about the project. project = u"io3d" copyright = u"2017, Miroslav Jirik" author = u"Miroslav Jirik" # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = u"1.2.3" # The full version, including alpha/beta/rc tags. release = u"1.2.3" # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"] # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "alabaster" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # This is required for the alabaster theme # refs: http://alabaster.readthedocs.io/en/latest/installation.html#sidebars html_sidebars = { "**": [ "relations.html", # needs 'show_related': True theme option to display "searchbox.html", ] } # -- Options for HTMLHelp output ------------------------------------------ # Output file base name for HTML help builder. htmlhelp_basename = "io3ddoc" # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, "io3d.tex", u"io3d Documentation", u"Miroslav Jirik", "manual") ] # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [(master_doc, "io3d", u"io3d Documentation", [author], 1)] # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ( master_doc, "io3d", u"io3d Documentation", author, "io3d", "One line description of project.", "Miscellaneous", ) ]
32.226244
102
0.664139
0
0
0
0
0
0
0
0
6,004
0.843022
b038cebedd15245004a4a13444cb7f55e363f2e8
33,401
py
Python
EVB.py
yunzhe-zhou/CS285-Project
e6aca061e27d2794949d4419339120107a6cb8f7
[ "MIT" ]
null
null
null
EVB.py
yunzhe-zhou/CS285-Project
e6aca061e27d2794949d4419339120107a6cb8f7
[ "MIT" ]
null
null
null
EVB.py
yunzhe-zhou/CS285-Project
e6aca061e27d2794949d4419339120107a6cb8f7
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """RED_linear_run1.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1-WN1MY9YYluGcnigLgrndqsxcOYldbB6 """ #@title mount your Google Drive #@markdown Your work will be stored in a folder called `cs285_f2021` by default to prevent Colab instance timeouts from deleting your edits. import os from google.colab import drive drive.mount('/content/gdrive') # Commented out IPython magic to ensure Python compatibility. #@title set up mount symlink DRIVE_PATH = '/content/gdrive/My\ Drive/cs285_project' DRIVE_PYTHON_PATH = DRIVE_PATH.replace('\\', '') if not os.path.exists(DRIVE_PYTHON_PATH): # %mkdir $DRIVE_PATH ## the space in `My Drive` causes some issues, ## make a symlink to avoid this SYM_PATH = '/content/cs285_project' if not os.path.exists(SYM_PATH): !ln -s $DRIVE_PATH $SYM_PATH !apt update !apt install -y --no-install-recommends \ build-essential \ curl \ git \ gnupg2 \ make \ cmake \ ffmpeg \ swig \ libz-dev \ unzip \ zlib1g-dev \ libglfw3 \ libglfw3-dev \ libxrandr2 \ libxinerama-dev \ libxi6 \ libxcursor-dev \ libgl1-mesa-dev \ libgl1-mesa-glx \ libglew-dev \ libosmesa6-dev \ lsb-release \ ack-grep \ patchelf \ wget \ xpra \ xserver-xorg-dev \ xvfb \ python-opengl \ ffmpeg # Commented out IPython magic to ensure Python compatibility. #@title download mujoco MJC_PATH = '{}/mujoco'.format(SYM_PATH) # %mkdir $MJC_PATH # %cd $MJC_PATH !wget -q https://www.roboti.us/download/mujoco200_linux.zip !unzip -q mujoco200_linux.zip # %mv mujoco200_linux mujoco200 # %rm mujoco200_linux.zip #@title update mujoco paths import os os.environ['LD_LIBRARY_PATH'] += ':{}/mujoco200/bin'.format(MJC_PATH) os.environ['MUJOCO_PY_MUJOCO_PATH'] = '{}/mujoco200'.format(MJC_PATH) os.environ['MUJOCO_PY_MJKEY_PATH'] = '{}/mjkey.txt'.format(MJC_PATH) ## installation on colab does not find *.so files ## in LD_LIBRARY_PATH, copy over manually instead !cp $MJC_PATH/mujoco200/bin/*.so /usr/lib/x86_64-linux-gnu/ # Commented out IPython magic to ensure Python compatibility. # %cd $MJC_PATH !git clone https://github.com/openai/mujoco-py.git # %cd mujoco-py # %pip install -e . ## cythonize at the first import import mujoco_py # Commented out IPython magic to ensure Python compatibility. # %cd $SYM_PATH # %cd RED # %tensorflow_version 1.x ! pip install mpi4py ''' Disclaimer: this code is highly based on trpo_mpi at @openai/baselines and @openai/imitation ''' import argparse import os.path as osp import logging from mpi4py import MPI from tqdm import tqdm import numpy as np import gym from baselines.rnd_gail import mlp_policy from baselines.common import set_global_seeds, tf_util as U from baselines.common.misc_util import boolean_flag from baselines import bench from baselines import logger from baselines.rnd_gail.merged_critic import make_critic import pickle def get_exp_data(expert_path): with open(expert_path, 'rb') as f: data = pickle.loads(f.read()) data["actions"] = np.squeeze(data["actions"]) data["observations"] = data["observations"] # print(data["observations"].shape) # print(data["actions"].shape) return [data["observations"], data["actions"]] Log_dir = osp.expanduser("~/workspace/log/mujoco") Checkpoint_dir = osp.expanduser("~/workspace/checkpoint/mujoco") def get_task_name(args): task_name = args.env_id.split("-")[0] if args.pretrained: task_name += "pretrained." task_name +="gamma_%f." % args.gamma task_name += ".seed_" + str(args.seed) task_name += ".reward_" + str(args.reward) task_name += "kl_" + str(args.max_kl) task_name += "g_"+str(args.g_step) return task_name def modify_args(args): #task specific parameters if args.reward<2: rnd_iter = 200 dyn_norm = False if args.env_id == "Reacher-v2": rnd_iter = 300 args.gamma = 0.99 if args.env_id == "HalfCheetah-v2": args.pretrained = True if args.env_id == "Walker2d-v2": args.fixed_var = False if args.env_id == "Ant-v2": args.pretrained = True args.BC_max_iter = 10 args.fixed_var = False return args, rnd_iter, dyn_norm else: if args.env_id == "Hopper-v2": args.gamma = 0.99 dyn_norm = False if args.env_id == "Reacher-v2": dyn_norm = True if args.env_id == "HalfCheetah-v2": dyn_norm = True if args.env_id == "Walker2d-v2": args.gamma = 0.99 dyn_norm = True if args.env_id == "Ant-v2": args.gamma = 0.99 dyn_norm = False return args, 0, dyn_norm parser = argparse.ArgumentParser("Tensorflow Implementation of GAIL") parser.add_argument('--env_id', help='environment ID', default="Hopper-v2") parser.add_argument('--seed', help='RNG seed', type=int, default=0) parser.add_argument('--checkpoint_dir', help='the directory to save model', default=Checkpoint_dir) parser.add_argument('--log_dir', help='the directory to save log file', default=Log_dir) parser.add_argument('--load_model_path', help='if provided, load the model', type=str, default=None) # Task parser.add_argument('--task', type=str, choices=['train', 'evaluate', 'sample'], default='train') # for evaluatation boolean_flag(parser, 'stochastic_policy', default=False, help='use stochastic/deterministic policy to evaluate') # Optimization Configuration parser.add_argument('--g_step', help='number of steps to train policy in each epoch', type=int, default=3) parser.add_argument('--d_step', help='number of steps to train discriminator in each epoch', type=int, default=1) # Network Configuration (Using MLP Policy) parser.add_argument('--policy_hidden_size', type=int, default=100) parser.add_argument('--adversary_hidden_size', type=int, default=100) # Algorithms Configuration parser.add_argument('--max_kl', type=float, default=0.01) parser.add_argument('--policy_entcoeff', help='entropy coefficiency of policy', type=float, default=0) parser.add_argument('--adversary_entcoeff', help='entropy coefficiency of discriminator', type=float, default=1e-3) # Traing Configuration parser.add_argument('--num_timesteps', help='number of timesteps per episode', type=int, default=5e6) # Behavior Cloning boolean_flag(parser, 'pretrained', default=False, help='Use BC to pretrain') boolean_flag(parser, 'fixed_var', default=False, help='Fixed policy variance') parser.add_argument('--BC_max_iter', help='Max iteration for training BC', type=int, default=20) parser.add_argument('--gamma', help='Discount factor', type=float, default=0.97) boolean_flag(parser, 'popart', default=True, help='Use popart on V function') parser.add_argument('--reward', help='Reward Type', type=int, default=0) args = parser.parse_args(args=[]) set_global_seeds(args.seed) env = gym.make(args.env_id) env.seed(args.seed) # env = bench.Monitor(env, logger.get_dir() and # osp.join(logger.get_dir(), "monitor.json")) gym.logger.setLevel(logging.WARN) if args.log_dir != Log_dir: log_dir = osp.join(Log_dir, args.log_dir) save_dir = osp.join(Checkpoint_dir, args.log_dir) else: log_dir = Log_dir save_dir = Checkpoint_dir args, rnd_iter, dyn_norm = modify_args(args) def policy_fn(name, ob_space, ac_space,): return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space, hid_size=args.policy_hidden_size, num_hid_layers=2, popart=args.popart, gaussian_fixed_var=args.fixed_var) exp_data = get_exp_data("/content/gdrive/My Drive/cs285_project/RED/data/Hopper-v2.pkl") task_name = get_task_name(args) logger.configure(dir=log_dir, log_suffix=task_name, format_strs=["log", "stdout"]) class RND_Critic_Revise(object): def __init__(self, W, sigma_hat, ob_size, ac_size, rnd_hid_size=128, rnd_hid_layer=4, hid_size=128, hid_layer=1, out_size=128, scale=250000.0, offset=0., reward_scale=1.0, scope="rnd"): self.scope = scope self.scale = scale self.offset = offset self.out_size = out_size self.rnd_hid_size = rnd_hid_size self.rnd_hid_layer = rnd_hid_layer self.hid_size = hid_size self.hid_layer = hid_layer self.reward_scale = reward_scale self.W = W self.sigma_hat = sigma_hat print("RND Critic") ob = tf.placeholder(tf.float32, [None, ob_size]) ac = tf.placeholder(tf.float32, [None, ac_size]) lr = tf.placeholder(tf.float32, None) feat = self.build_graph(ob, ac, self.scope, hid_layer, hid_size, out_size) rnd_feat = self.build_graph(ob, ac, self.scope+"_rnd", rnd_hid_layer, rnd_hid_size, out_size) feat_loss = tf.reduce_mean(tf.square(feat-rnd_feat)) self.reward = reward_scale*tf.exp(offset- tf.reduce_mean(tf.square(feat - rnd_feat), axis=-1) * self.scale) rnd_loss = tf.reduce_mean(tf.square(feat - rnd_feat), axis=-1) * self.scale # self.reward = reward_scale * tf.exp(offset - rnd_loss) # self.reward = reward_scale * (tf.math.softplus(rnd_loss) - rnd_loss) self.reward_func = U.function([ob, ac], self.reward) self.raw_reward = U.function([ob, ac], rnd_loss) self.trainer = tf.train.AdamOptimizer(learning_rate=lr) gvs = self.trainer.compute_gradients(feat_loss, self.get_trainable_variables()) self._train = U.function([ob, ac, lr], [], updates=[self.trainer.apply_gradients(gvs)]) def build_graph(self, ob, ac, scope, hid_layer, hid_size, size): with tf.variable_scope(scope, reuse=tf.AUTO_REUSE): layer = tf.concat([ob, ac], axis=1) for _ in range(hid_layer): layer = tf.layers.dense(layer, hid_size, activation=tf.nn.leaky_relu) layer = tf.layers.dense(layer, size, activation=None) return layer def build_reward_op(self, ob, ac): feat = self.build_graph(ob, ac, self.scope, self.hid_layer, self.hid_size, self.out_size) rnd_feat = self.build_graph(ob, ac, self.scope + "_rnd", self.rnd_hid_layer, self.rnd_hid_size , self.out_size) reward = self.reward_scale* tf.exp(self.offset- tf.reduce_mean(tf.square(feat - rnd_feat), axis=-1) * self.scale) return reward def get_trainable_variables(self): return tf.trainable_variables(self.scope) def get_reward(self, ob, ac): # return self.reward_func(ob, ac) x = np.concatenate([ob.reshape([-1,1]),ac.reshape([-1,1])],axis = 0) # calculate prediction variance and multiply it by 5 for rescaling. We can also change the multiplier to the other constant for tuning. var = sigma_hat*np.sqrt(np.matmul(np.matmul(x.T,W),x))*5 return np.exp(-var**2) def get_raw_reward(self, ob, ac): return self.raw_reward(ob, ac) def train(self, ob, ac, batch_size=32, lr=0.001, iter=200): logger.info("Training RND Critic") # for _ in range(iter): # for data in iterbatches([ob, ac], batch_size=batch_size, include_final_partial_batch=True): # self._train(*data, lr) import numpy as np import tensorflow as tf from baselines.common import tf_util as U from baselines.common.dataset import iterbatches from baselines import logger hid_size=128 rnd_hid_size=128 reward_type=0 scale=250000 reward_type=args.reward ac_size = env.action_space.sample().shape[0] ob_size = env.observation_space.shape[0] # linear model to estimate variance X1 = exp_data[0] X2 = exp_data[1] X = np.concatenate([X1,X2],axis=1) np.random.seed(1) # randomly create a oracle linear model to estimate param = np.random.normal(0,1,14).reshape([-1,1]) # calculate response under this oracle model Y = np.matmul(X,param).flatten() + np.random.normal(0,1,X.shape[0]) # estimate the linear model beta_hat = np.matmul(np.linalg.inv(np.matmul(X.T,X)),np.matmul(X.T,Y)) # estimate varaince sigma_hat = np.sqrt(np.sum((Y-np.matmul(X,beta_hat))**2)/(X.shape[0]-14)) # calculate a matrix for later use W = np.linalg.inv(np.matmul(X.T,X)) critic = RND_Critic_Revise(W, sigma_hat, ob_size, ac_size, hid_size=hid_size, rnd_hid_size=rnd_hid_size, scale=scale) import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm from scipy.ndimage.filters import gaussian_filter def generate_density_plot(x,y): def myplot(x, y, s, bins=1000): heatmap, xedges, yedges = np.histogram2d(x, y, bins=bins) heatmap = gaussian_filter(heatmap, sigma=s) extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]] return heatmap.T, extent fig, axs = plt.subplots(nrows=2,ncols=2,figsize=(10,10)) sigmas = [0, 16, 32, 64] for ax, s in zip(axs.flatten(), sigmas): if s == 0: ax.plot(x, y, 'k.', markersize=3) ax.set_title("Scatter plot") else: img, extent = myplot(x, y, s) ax.imshow(img, extent=extent, origin='lower', cmap=cm.jet) ax.set_title("Smoothing with $\sigma$ = %d" % s) plt.show() X1 = exp_data[0] X2 = exp_data[1] generate_density_plot(X2[:,0],X2[:,1]) from matplotlib import pyplot as plt, cm, colors import numpy as np plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True X1 = exp_data[0] X2 = exp_data[1] X = np.concatenate([X1,X2],axis=1) ob = np.mean(X[:,0:11],axis=0) ac = np.mean(X[:,11:],axis=0) N=100 side = np.linspace(-4, 6, N) x, y = np.meshgrid(side, side) z= np.zeros([N,N]) for i in range(N): for j in range(N): ac[0] = x[0,i] ac[1] = y[j,0] z[i,j] = critic.get_reward(ob,ac).flatten()[0] plt.pcolormesh(x, y, z, shading='auto') plt.show() from matplotlib import pyplot as plt, cm, colors import numpy as np plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True X1 = exp_data[0] X2 = exp_data[1] X = np.concatenate([X1,X2],axis=1) ob = np.mean(X[:,0:11],axis=0) ac = np.mean(X[:,11:],axis=0) N=100 side = np.linspace(-1, 3, N) x, y = np.meshgrid(side, side) z= np.zeros([N,N]) for i in range(N): for j in range(N): ob[0] = x[0,i] ob[1] = y[j,0] z[i,j] = critic.get_reward(ob,ac).flatten()[0] plt.pcolormesh(x, y, z, shading='auto') plt.show() from matplotlib import pyplot as plt, cm, colors import numpy as np plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True X1 = exp_data[0] X2 = exp_data[1] X = np.concatenate([X1,X2],axis=1) ob = np.mean(X[:,0:11],axis=0) ac = np.mean(X[:,11:],axis=0) N=100 side = np.linspace(-1, 3, N) x, y = np.meshgrid(side, side) z= np.zeros([N,N]) for i in range(N): for j in range(N): ob[2] = x[0,i] ob[4] = y[j,0] z[i,j] = critic.get_reward(ob,ac).flatten()[0] plt.pcolormesh(x, y, z, shading='auto') plt.show() np.max(X,0) from matplotlib import pyplot as plt, cm, colors import numpy as np plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True X1 = exp_data[0] X2 = exp_data[1] X = np.concatenate([X1,X2],axis=1) ob = np.mean(X[:,0:11],axis=0) ac = np.mean(X[:,11:],axis=0) fig,ax=plt.subplots(nrows=5,ncols=3,figsize=(10,12)) axes = ax.flatten() N=100 count = 0 for p in range(6): for q in range(6): if p<q: max_value = np.max([np.max(X,0)[p],np.max(X,0)[q]])+1 min_value = np.max([np.min(X,0)[p],np.min(X,0)[q]])-1 side = np.linspace(min_value, max_value, N) x, y = np.meshgrid(side, side) z= np.zeros([N,N]) for i in range(N): for j in range(N): ob[p] = x[0,i] ob[q] = y[j,0] z[i,j] = critic.get_reward(ob,ac).flatten()[0] ## figure 1.1 axes[count].pcolormesh(x, y, z, shading='auto') axes[count].set_title("dim "+str(p+1) + " vs " + "dim " + str(q+1), fontsize=14) count = count +1 plt.show() import numpy as np import matplotlib.pyplot as plt fig,ax=plt.subplots(nrows=2,ncols=2,figsize=(10,8)) axes = ax.flatten() ## figure 1.1 axes[0].pcolormesh(x, y, z, shading='auto') plt.show() plt.rcParams["figure.figsize"] = [4.50, 3.50] ob = np.mean(X[:,0:11],axis=0) ac = np.mean(X[:,11:],axis=0) critic.get_reward(ob,ac) ob = np.mean(X[:,0:11],axis=0) ac = np.mean(X[:,11:],axis=0) reward_ls = [] node = 0 for i in range(100): ac[node] = i * 0.1 - 5 reward_ls.append(critic.get_reward(ob,ac).flatten()[0]) import numpy as np import matplotlib.pyplot as plt x = np.array(range(len(reward_ls)))/10 - 5 plt.plot(x, reward_ls,color="limegreen",linestyle='-', markersize=7) plt.xlabel('Value of the First Dimension of Action', fontsize=12) plt.ylabel('Reward', fontsize=12) plt.tight_layout(pad=4) # plt.title("Linear Model Variance Estimation Based Reward Function \n (Change the First Dimension of Action)") plt.show() ob = np.mean(X[:,0:11],axis=0) ac = np.mean(X[:,11:],axis=0) reward_ls = [] node = 1 for i in range(100): ac[node] = i * 0.1 - 5 reward_ls.append(critic.get_reward(ob,ac).flatten()[0]) import numpy as np import matplotlib.pyplot as plt x = np.array(range(len(reward_ls)))/10 - 5 plt.plot(x, reward_ls,color="limegreen",linestyle='-', markersize=7) plt.xlabel('Value of the Second Dimension of Action', fontsize=12) plt.ylabel('Reward', fontsize=12) plt.tight_layout(pad=4) # plt.title("Linear Model Variance Estimation Based Reward Function \n (Change the Second Dimension of Action)") plt.show() ob = np.mean(X[:,0:11],axis=0) ac = np.mean(X[:,11:],axis=0) reward_ls = [] node = 2 for i in range(100): ac[node] = i * 0.1 - 5 reward_ls.append(critic.get_reward(ob,ac).flatten()[0]) import numpy as np import matplotlib.pyplot as plt x = np.array(range(len(reward_ls)))/10 - 5 plt.plot(x, reward_ls,color="limegreen",linestyle='-', markersize=7) plt.xlabel('Value of the Third Dimension of Action', fontsize=12) plt.ylabel('Reward', fontsize=12) plt.tight_layout(pad=4) plt.title("Linear Model Variance Estimation Based Reward Function \n (Change the Third Dimension of Action)") plt.show() # X1 = exp_data[0] # X2 = exp_data[1] # X = np.concatenate([X1,X2],axis=1) # np.random.seed(1) # param = np.random.normal(0,1,14).reshape([-1,1]) # Y = np.matmul(X,param).flatten() + np.random.normal(0,1,X.shape[0]) # beta_hat = np.matmul(np.linalg.inv(np.matmul(X.T,X)),np.matmul(X.T,Y)) # sigma_hat = np.sqrt(np.sum((Y-np.matmul(X,beta_hat))**2)/(X.shape[0]-14)) # W = np.linalg.inv(np.matmul(X.T,X)) # scale = 5 # x = np.ones(14).reshape([-1,1]) # var = sigma_hat*np.sqrt(np.matmul(np.matmul(x.T,W),x))*scale # reward_return = np.exp(-var**2) # print("var: ", var) # print("reward: ", reward_return) # x = X[1,:].reshape([-1,1]) # var = sigma_hat*np.sqrt(np.matmul(np.matmul(x.T,W),x))*scale # reward_return = np.exp(-var**2) # print("var: ", var) # print("reward: ", reward_return) seed = args.seed reward_giver = critic dataset = exp_data g_step = args.g_step d_step = args.d_step policy_entcoeff = args.policy_entcoeff num_timesteps = args.num_timesteps checkpoint_dir = save_dir pretrained = args.pretrained BC_max_iter = args.BC_max_iter gamma = args.gamma pretrained_weight = None from baselines.rnd_gail import trpo_mpi # Set up for MPI seed rank = MPI.COMM_WORLD.Get_rank() if rank != 0: logger.set_level(logger.DISABLED) workerseed = seed + 10000 * MPI.COMM_WORLD.Get_rank() set_global_seeds(workerseed) env.seed(workerseed) import time import os from contextlib import contextmanager from mpi4py import MPI from collections import deque import tensorflow as tf import numpy as np import baselines.common.tf_util as U from baselines.common import explained_variance, zipsame, dataset, fmt_row from baselines import logger from baselines.common.mpi_adam import MpiAdam from baselines.common.cg import cg from baselines.gail.statistics import stats from baselines.common.dataset_plus import iterbatches env = env policy_func = policy_fn reward_giver = reward_giver expert_dataset = exp_data rank =rank pretrained = pretrained pretrained_weight = pretrained_weight g_step = g_step d_step = d_step entcoeff = policy_entcoeff max_timesteps=num_timesteps ckpt_dir=checkpoint_dir timesteps_per_batch=1024 max_kl=args.max_kl cg_iters=10 cg_damping=0.1 gamma=gamma lam=0.97 vf_iters=5 vf_stepsize=1e-3 d_stepsize=3e-4 task_name=task_name rnd_iter=rnd_iter dyn_norm=dyn_norm mmd=args.reward==2 max_iters=0 callback=None max_episodes=0 nworkers = MPI.COMM_WORLD.Get_size() rank = MPI.COMM_WORLD.Get_rank() np.set_printoptions(precision=3) # Setup losses and stuff # ---------------------------------------- ob_space = env.observation_space ac_space = env.action_space pi = policy_func("pi", ob_space, ac_space) oldpi = policy_func("oldpi", ob_space, ac_space) atarg = tf.placeholder(dtype=tf.float32, shape=[None]) # Target advantage function (if applicable) ob = U.get_placeholder_cached(name="ob") ac = pi.pdtype.sample_placeholder([None]) kloldnew = oldpi.pd.kl(pi.pd) ent = pi.pd.entropy() meankl = tf.reduce_mean(kloldnew) meanent = tf.reduce_mean(ent) entbonus = entcoeff * meanent ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac)) # advantage * pnew / pold surrgain = tf.reduce_mean(ratio * atarg) optimgain = surrgain + entbonus losses = [optimgain, meankl, entbonus, surrgain, meanent] loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"] dist = meankl all_var_list = pi.get_trainable_variables() var_list = [v for v in all_var_list if v.name.startswith("pi/pol") or v.name.startswith("pi/logstd")] vf_var_list = [v for v in all_var_list if v.name.startswith("pi/vff")] vfadam = MpiAdam(vf_var_list) get_flat = U.GetFlat(var_list) set_from_flat = U.SetFromFlat(var_list) klgrads = tf.gradients(dist, var_list) flat_tangent = tf.placeholder(dtype=tf.float32, shape=[None], name="flat_tan") shapes = [var.get_shape().as_list() for var in var_list] start = 0 tangents = [] for shape in shapes: sz = U.intprod(shape) tangents.append(tf.reshape(flat_tangent[start:start+sz], shape)) start += sz gvp = tf.add_n([tf.reduce_sum(g*tangent) for (g, tangent) in zipsame(klgrads, tangents)]) # pylint: disable=E1111 fvp = U.flatgrad(gvp, var_list) assign_old_eq_new = U.function([], [], updates=[tf.assign(oldv, newv) for (oldv, newv) in zipsame(oldpi.get_variables(), pi.get_variables())]) compute_losses = U.function([ob, ac, atarg], losses) compute_lossandgrad = U.function([ob, ac, atarg], losses + [U.flatgrad(optimgain, var_list)]) compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp) compute_vflossandgrad = pi.vlossandgrad def traj_segment_generator(pi, env, reward_giver, horizon, stochastic): # Initialize state variables t = 0 ac = env.action_space.sample() new = True rew = 0.0 true_rew = 0.0 ob = env.reset() cur_ep_ret = 0 cur_ep_len = 0 cur_ep_true_ret = 0 ep_true_rets = [] ep_rets = [] ep_lens = [] # Initialize history arrays obs = np.array([ob for _ in range(horizon)]) true_rews = np.zeros(horizon, 'float32') rews = np.zeros(horizon, 'float32') vpreds = np.zeros(horizon, 'float32') news = np.zeros(horizon, 'int32') acs = np.array([ac for _ in range(horizon)]) prevacs = acs.copy() while True: prevac = ac ac, vpred = pi.act(stochastic, ob) # Slight weirdness here because we need value function at time T # before returning segment [0, T-1] so we get the correct # terminal value if t > 0 and t % horizon == 0: yield {"ob": obs, "rew": rews, "vpred": vpreds, "new": news, "ac": acs, "prevac": prevacs, "nextvpred": vpred * (1 - new), "ep_rets": ep_rets, "ep_lens": ep_lens, "ep_true_rets": ep_true_rets} _, vpred = pi.act(stochastic, ob) # Be careful!!! if you change the downstream algorithm to aggregate # several of these batches, then be sure to do a deepcopy ep_rets = [] ep_true_rets = [] ep_lens = [] i = t % horizon obs[i] = ob vpreds[i] = vpred news[i] = new acs[i] = ac prevacs[i] = prevac rew = reward_giver.get_reward(ob, ac) ob, true_rew, new, _ = env.step(ac) rews[i] = rew true_rews[i] = true_rew cur_ep_ret += rew cur_ep_true_ret += true_rew cur_ep_len += 1 if new: ep_rets.append(cur_ep_ret) ep_true_rets.append(cur_ep_true_ret) ep_lens.append(cur_ep_len) cur_ep_ret = 0 cur_ep_true_ret = 0 cur_ep_len = 0 ob = env.reset() t += 1 def add_vtarg_and_adv(seg, gamma, lam): new = np.append(seg["new"], 0) # last element is only used for last vtarg, but we already zeroed it if last new = 1 vpred = np.append(seg["vpred"], seg["nextvpred"]) T = len(seg["rew"]) seg["adv"] = gaelam = np.empty(T, 'float32') rew = seg["rew"] lastgaelam = 0 for t in reversed(range(T)): nonterminal = 1-new[t+1] delta = rew[t] + gamma * vpred[t+1] * nonterminal - vpred[t] gaelam[t] = lastgaelam = delta + gamma * lam * nonterminal * lastgaelam seg["tdlamret"] = seg["adv"] + seg["vpred"] def flatten_lists(listoflists): return [el for list_ in listoflists for el in list_] def allmean(x): assert isinstance(x, np.ndarray) out = np.empty_like(x) MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM) out /= nworkers return out U.initialize() th_init = get_flat() MPI.COMM_WORLD.Bcast(th_init, root=0) set_from_flat(th_init) vfadam.sync() if rank == 0: print("Init param sum", th_init.sum(), flush=True) # Prepare for rollouts # ---------------------------------------- seg_gen = traj_segment_generator(pi, env, reward_giver, timesteps_per_batch, stochastic=True) episodes_so_far = 0 timesteps_so_far = 0 iters_so_far = 0 tstart = time.time() lenbuffer = deque(maxlen=40) # rolling buffer for episode lengths rewbuffer = deque(maxlen=40) # rolling buffer for episode rewards true_rewbuffer = deque(maxlen=40) assert sum([max_iters > 0, max_timesteps > 0, max_episodes > 0]) == 1 ep_stats = stats(["True_rewards", "Rewards", "Episode_length"]) # if provide pretrained weight if pretrained_weight is not None: U.load_variables(pretrained_weight, variables=pi.get_variables()) else: if not dyn_norm: pi.ob_rms.update(expert_dataset[0]) if not mmd: reward_giver.train(*expert_dataset, iter=rnd_iter) best = -2000 save_ind = 0 max_save = 3 while True: if callback: callback(locals(), globals()) if max_timesteps and timesteps_so_far >= max_timesteps: break elif max_episodes and episodes_so_far >= max_episodes: break elif max_iters and iters_so_far >= max_iters: break logger.log("********** Iteration %i ************" % iters_so_far) def fisher_vector_product(p): return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p # ------------------ Update G ------------------ # logger.log("Optimizing Policy...") for _ in range(g_step): seg = seg_gen.__next__() #mmd reward if mmd: reward_giver.set_b2(seg["ob"], seg["ac"]) seg["rew"] = reward_giver.get_reward(seg["ob"], seg["ac"]) #report stats and save policy if any good lrlocal = (seg["ep_lens"], seg["ep_rets"], seg["ep_true_rets"]) # local values listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal) # list of tuples lens, rews, true_rets = map(flatten_lists, zip(*listoflrpairs)) true_rewbuffer.extend(true_rets) lenbuffer.extend(lens) rewbuffer.extend(rews) true_rew_avg = np.mean(true_rewbuffer) logger.record_tabular("EpLenMean", np.mean(lenbuffer)) logger.record_tabular("EpRewMean", np.mean(rewbuffer)) logger.record_tabular("EpTrueRewMean", true_rew_avg) logger.record_tabular("EpThisIter", len(lens)) episodes_so_far += len(lens) timesteps_so_far += sum(lens) iters_so_far += 1 logger.record_tabular("EpisodesSoFar", episodes_so_far) logger.record_tabular("TimestepsSoFar", timesteps_so_far) logger.record_tabular("TimeElapsed", time.time() - tstart) logger.record_tabular("Best so far", best) # Save model if ckpt_dir is not None and true_rew_avg >= best: best = true_rew_avg fname = os.path.join(ckpt_dir, task_name) os.makedirs(os.path.dirname(fname), exist_ok=True) pi.save_policy(fname+"_"+str(save_ind)) save_ind = (save_ind+1) % max_save #compute gradient towards next policy add_vtarg_and_adv(seg, gamma, lam) ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg["tdlamret"] vpredbefore = seg["vpred"] # predicted value function before udpate atarg = (atarg - atarg.mean()) / atarg.std() # standardized advantage function estimate if hasattr(pi, "ob_rms") and dyn_norm: pi.ob_rms.update(ob) # update running mean/std for policy args = seg["ob"], seg["ac"], atarg fvpargs = [arr[::5] for arr in args] assign_old_eq_new() # set old parameter values to new parameter values *lossbefore, g = compute_lossandgrad(*args) lossbefore = allmean(np.array(lossbefore)) g = allmean(g) if np.allclose(g, 0): logger.log("Got zero gradient. not updating") else: stepdir = cg(fisher_vector_product, g, cg_iters=cg_iters, verbose=False) assert np.isfinite(stepdir).all() shs = .5*stepdir.dot(fisher_vector_product(stepdir)) lm = np.sqrt(shs / max_kl) fullstep = stepdir / lm expectedimprove = g.dot(fullstep) surrbefore = lossbefore[0] stepsize = 1.0 thbefore = get_flat() for _ in range(10): thnew = thbefore + fullstep * stepsize set_from_flat(thnew) meanlosses = surr, kl, *_ = allmean(np.array(compute_losses(*args))) improve = surr - surrbefore logger.log("Expected: %.3f Actual: %.3f" % (expectedimprove, improve)) if not np.isfinite(meanlosses).all(): logger.log("Got non-finite value of losses -- bad!") elif kl > max_kl * 1.5: logger.log("violated KL constraint. shrinking step.") elif improve < 0: logger.log("surrogate didn't improve. shrinking step.") else: logger.log("Stepsize OK!") break stepsize *= .5 else: logger.log("couldn't compute a good step") set_from_flat(thbefore) if nworkers > 1 and iters_so_far % 20 == 0: paramsums = MPI.COMM_WORLD.allgather((thnew.sum(), vfadam.getflat().sum())) # list of tuples assert all(np.allclose(ps, paramsums[0]) for ps in paramsums[1:]) if pi.use_popart: pi.update_popart(tdlamret) for _ in range(vf_iters): for (mbob, mbret) in dataset.iterbatches((seg["ob"], seg["tdlamret"]), include_final_partial_batch=False, batch_size=128): if hasattr(pi, "ob_rms") and dyn_norm: pi.ob_rms.update(mbob) # update running mean/std for policy vfadam.update(allmean(compute_vflossandgrad(mbob, mbret)), vf_stepsize) g_losses = meanlosses for (lossname, lossval) in zip(loss_names, meanlosses): logger.record_tabular(lossname, lossval) logger.record_tabular("ev_tdlam_before", explained_variance(vpredbefore, tdlamret)) if rank == 0: logger.dump_tabular()
32.586341
143
0.632945
3,437
0.102901
2,106
0.063052
0
0
0
0
7,311
0.218886
b03a815221b3f33cdcf33d82406be159b843f64d
2,096
py
Python
School-Management-System/teachers/views.py
GisaKaze/Python-Quarantine-Projects
29fabcb7e4046e6f3e9a19403e6d2490fe4b9fc4
[ "MIT" ]
null
null
null
School-Management-System/teachers/views.py
GisaKaze/Python-Quarantine-Projects
29fabcb7e4046e6f3e9a19403e6d2490fe4b9fc4
[ "MIT" ]
null
null
null
School-Management-System/teachers/views.py
GisaKaze/Python-Quarantine-Projects
29fabcb7e4046e6f3e9a19403e6d2490fe4b9fc4
[ "MIT" ]
null
null
null
from django.shortcuts import render, get_object_or_404, redirect from .models import TeacherInfo from .forms import CreateTeacher from django.contrib import messages from django.core.paginator import Paginator # Create your views here. def teacher_list(request): teachers = TeacherInfo.objects.all() paginator = Paginator(teachers, 1) page = request.GET.get('page') paged_teachers = paginator.get_page(page) context = { "teachers": paged_teachers } return render(request, "teachers/teacher_list.html", context) def single_teacher(request, teacher_id): single_teacher = get_object_or_404(TeacherInfo, pk=teacher_id) context = { "single_teacher": single_teacher } return render(request, "teachers/single_teacher.html", context) def create_teacher(request): if request.method == "POST": forms = CreateTeacher(request.POST, request.FILES or None) if forms.is_valid(): forms.save() messages.success(request, "Teacher Registration Successfully!") return redirect("teacher_list") else: forms = CreateTeacher() context = { "forms": forms } return render(request, "teachers/create_teacher.html", context) def edit_teacher(request, pk): teacher_edit = TeacherInfo.objects.get(id=pk) edit_teacher_forms = CreateTeacher(instance=teacher_edit) if request.method == "POST": edit_teacher_forms = CreateTeacher(request.POST, request.FILES or None, instance=teacher_edit) if edit_teacher_forms.is_valid(): edit_teacher_forms.save() messages.success(request, "Edit Teacher Info Successfully!") return redirect("teacher_list") context = { "edit_teacher_forms": edit_teacher_forms } return render(request, "teachers/edit_teacher.html", context) def delete_teacher(request, teacher_id): teacher_delete = TeacherInfo.objects.get(id=teacher_id) teacher_delete.delete() messages.success(request, "Delete Teacher Info Successfully") return redirect("teacher_list")
30.376812
102
0.705153
0
0
0
0
0
0
0
0
357
0.170324
b03af16df806f7a2f213bb90c1c62ae5588655f0
4,326
py
Python
runner_service/controllers/jobs.py
tonykhbo/ansible-runner-service
200bd9aa67fc0fd66a4425cfb38a2ac3aed4d4b2
[ "Apache-2.0" ]
174
2018-11-21T07:44:50.000Z
2022-03-04T15:11:56.000Z
runner_service/controllers/jobs.py
tonykhbo/ansible-runner-service
200bd9aa67fc0fd66a4425cfb38a2ac3aed4d4b2
[ "Apache-2.0" ]
76
2018-12-12T17:20:37.000Z
2021-12-06T11:15:47.000Z
runner_service/controllers/jobs.py
tonykhbo/ansible-runner-service
200bd9aa67fc0fd66a4425cfb38a2ac3aed4d4b2
[ "Apache-2.0" ]
61
2018-12-27T15:17:38.000Z
2022-03-04T12:29:33.000Z
# from flask import request from flask_restful import request # import logging from .utils import log_request from .base import BaseResource from ..services.jobs import get_events, get_event from ..services.utils import APIResponse import logging logger = logging.getLogger(__name__) class ListEvents(BaseResource): """Return a list of events within a given playbook run (job) """ @log_request(logger) def get(self, play_uuid=None): """ GET {play_uuid}/events Return a list of the event uuid's for the given job(play_uuid). Filtering is also supported, using the ?varname=value&varname=value syntax Example. ``` $ curl -k -i --key ./client.key --cert ./client.crt https://localhost:5001/api/v1/jobs/9c1714aa-b534-11e8-8c14-aced5c652dd1/events -X GET HTTP/1.0 200 OK Content-Type: application/json Content-Length: 1142 Server: Werkzeug/0.14.1 Python/3.6.5 Date: Mon, 10 Sep 2018 20:04:53 GMT { "status": "OK", "msg": "", "data": { "events": { "2-0eaf70cd-0d86-4209-a3ca-73c0633afa27": { "event": "playbook_on_start" }, "3-aced5c65-2dd1-7634-7812-00000000000b": { "event": "playbook_on_play_start" }, "4-aced5c65-2dd1-7634-7812-00000000000d": { "event": "playbook_on_task_start", "task": "Step 1" }, "5-3f6d4b83-df90-401c-9fd7-2b646f00ccfe": { "event": "runner_on_ok", "host": "localhost", "task": "Step 1" }, "6-aced5c65-2dd1-7634-7812-00000000000e": { "event": "playbook_on_task_start", "task": "Step 2" }, "7-ca1c5d3a-218f-487e-97ec-be5751ac5b40": { "event": "runner_on_ok", "host": "localhost", "task": "Step 2" }, "8-7c68cc25-9ccc-4b5c-b4b3-fddaf297e7de": { "event": "playbook_on_stats" } }, "total_events": 7 } } ``` """ # TODO could the to_dict throw an exception? filter = request.args.to_dict() _e = APIResponse() if not play_uuid: _e.status, _e.msg = "INVALID", "playbook uuid missing" return _e.__dict__, self.state_to_http[_e.status] response = get_events(play_uuid, filter) return response.__dict__, self.state_to_http[response.status] class GetEvent(BaseResource): """Return the output of a specific task within a playbook""" @log_request(logger) def get(self, play_uuid, event_uuid): """ GET {play_uuid, event_uuid} Return the json job event data for a given event uuid within a job Example. ``` $ curl -k -i --key ./client.key --cert ./client.crt https://localhost:5001/api/v1/jobs/9c1714aa-b534-11e8-8c14-aced5c652dd1/events/2-0eaf70cd-0d86-4209-a3ca-73c0633afa27 -X GET HTTP/1.0 200 OK Content-Type: application/json Content-Length: 480 Server: Werkzeug/0.14.1 Python/3.6.5 Date: Mon, 10 Sep 2018 20:12:03 GMT { "status": "OK", "msg": "", "data": { "uuid": "0eaf70cd-0d86-4209-a3ca-73c0633afa27", "counter": 2, "stdout": "", "start_line": 1, "end_line": 1, "created": "2018-09-10T20:03:40.145870", "pid": 27875, "event_data": { "pid": 27875, "playbook_uuid": "0eaf70cd-0d86-4209-a3ca-73c0633afa27", "playbook": "test.yml" }, "event": "playbook_on_start" } } ``` """ response = get_event(play_uuid, event_uuid) return response.__dict__, self.state_to_http[response.status]
32.772727
184
0.502312
4,034
0.932501
0
0
3,828
0.884882
0
0
3,414
0.789182
b0433121aa8bbd1327d3221055a476dfcaf07db3
136
py
Python
case3/test_calc.py
emre/unit-test-workshop
6a323dd7ffac08e7aa56e09d307798d4ae984fa9
[ "MIT" ]
1
2017-11-20T18:15:12.000Z
2017-11-20T18:15:12.000Z
case3/test_calc.py
emre/unit-test-workshop
6a323dd7ffac08e7aa56e09d307798d4ae984fa9
[ "MIT" ]
null
null
null
case3/test_calc.py
emre/unit-test-workshop
6a323dd7ffac08e7aa56e09d307798d4ae984fa9
[ "MIT" ]
null
null
null
import unittest # https://docs.python.org/3/library/unittest.html from calc import Calc class TestCalc(unittest.TestCase): pass
13.6
49
0.757353
43
0.316176
0
0
0
0
0
0
49
0.360294
b043e0116441bcee9ae6a5419079e591b49e7c1e
3,267
py
Python
tests/service/test_integer_converter_service.py
NeolithEra/WavesGatewayFramework
e7ba892427e1d0444f2bfdc2922c45ff5f4c4add
[ "MIT" ]
25
2018-03-04T07:49:21.000Z
2022-03-28T05:20:50.000Z
tests/service/test_integer_converter_service.py
NeolithEra/WavesGatewayFramework
e7ba892427e1d0444f2bfdc2922c45ff5f4c4add
[ "MIT" ]
22
2018-03-25T13:19:45.000Z
2020-11-28T17:21:08.000Z
tests/service/test_integer_converter_service.py
NeolithEra/WavesGatewayFramework
e7ba892427e1d0444f2bfdc2922c45ff5f4c4add
[ "MIT" ]
31
2018-03-25T09:45:13.000Z
2022-03-24T05:32:18.000Z
import unittest from unittest.mock import patch from waves_gateway.model import Transaction, TransactionReceiver from waves_gateway.service import IntegerConverterService class IntegerConverterServiceSpec(unittest.TestCase): @patch.multiple( # type: ignore IntegerConverterService, __abstractmethods__=set()) def setUp(self): self._integer_converter = IntegerConverterService() def test_revert_amount_conversion(self): res = self._integer_converter.revert_amount_conversion(40) self.assertEqual(res, 40) def test_convert_amount_to_int(self): res = self._integer_converter.convert_amount_to_int(40.33) self.assertEqual(res, 40.33) def test_safely_convert_to_int_success(self): with patch.object(self._integer_converter, 'convert_amount_to_int'): self._integer_converter.convert_amount_to_int.return_value = 40 res = self._integer_converter.safely_convert_to_int(0.40) self.assertEqual(res, 40) def test_safely_convert_to_int_throws(self): with patch.object(self._integer_converter, 'convert_amount_to_int'): self._integer_converter.convert_amount_to_int.return_value = 0.40 with self.assertRaises(TypeError): self._integer_converter.safely_convert_to_int(0.40) def test_convert_transaction_to_int(self): transaction = Transaction( tx="79283647", receivers=[ TransactionReceiver(address="9782364", amount=0.40), TransactionReceiver(address="9782364", amount=0.30) ]) expected_result = Transaction( tx="79283647", receivers=[ TransactionReceiver(address="9782364", amount=40), TransactionReceiver(address="9782364", amount=30) ]) with patch.object(self._integer_converter, 'safely_convert_to_int'): def stub(amount: float): return int(amount * 100) self._integer_converter.safely_convert_to_int.side_effect = stub actual_result = self._integer_converter.convert_transaction_to_int(transaction) self.assertEqual(actual_result, expected_result) self.assertEqual(self._integer_converter.safely_convert_to_int.call_count, 2) def test_revert_transaction_conversion(self): expected_result = Transaction( tx="79283647", receivers=[ TransactionReceiver(address="9782364", amount=0.40), TransactionReceiver(address="9782364", amount=0.30) ]) transaction = Transaction( tx="79283647", receivers=[ TransactionReceiver(address="9782364", amount=40), TransactionReceiver(address="9782364", amount=30) ]) with patch.object(self._integer_converter, 'revert_amount_conversion'): def stub(amount: float): return float(amount / 100) self._integer_converter.revert_amount_conversion.side_effect = stub actual_result = self._integer_converter.revert_transaction_conversion(transaction) self.assertEqual(actual_result, expected_result)
37.551724
94
0.67034
3,091
0.946128
0
0
173
0.052954
0
0
221
0.067646
b044475c3b8a25898a8527a87ed6dc1d9dadbb1d
6,670
py
Python
live_demo.py
GerryZhang7/ASL-Translator-
3963311d8dd1f010ee5a19b3760b451bc287ab1e
[ "MIT" ]
null
null
null
live_demo.py
GerryZhang7/ASL-Translator-
3963311d8dd1f010ee5a19b3760b451bc287ab1e
[ "MIT" ]
null
null
null
live_demo.py
GerryZhang7/ASL-Translator-
3963311d8dd1f010ee5a19b3760b451bc287ab1e
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ LIVE DEMO This script loads a pre-trained model (for best results use pre-trained weights for classification block) and classifies American Sign Language finger spelling frame-by-frame in real-time """ import string import cv2 import time from processing import square_pad, preprocess_for_vgg from model import create_model import argparse import numpy as np ap = argparse.ArgumentParser() ap.add_argument("-w", "--weights", default=None, help="path to the model weights") required_ap = ap.add_argument_group('required arguments') required_ap.add_argument("-m", "--model", type=str, default="resnet", required=True, help="name of pre-trained network to use") args = vars(ap.parse_args()) # ====== Create model for real-time classification ====== # ======================================================= # Map model names to classes MODELS = ["resnet", "vgg16", "inception", "xception", "mobilenet"] if args["model"] not in MODELS: raise AssertionError("The --model command line argument should be a key in the `MODELS` dictionary") # Create pre-trained model + classification block, with or without pre-trained weights my_model = create_model(model=args["model"], model_weights_path=args["weights"]) # Dictionary to convert numerical classes to alphabet label_dict = {pos: letter for pos, letter in enumerate(string.ascii_uppercase)} # ====================== Live loop ====================== # ======================================================= video_capture = cv2.VideoCapture(0) #if not video_capture.isOpened(): # raise Exception("Could not open video device") # Set properties. Each returns === True on success (i.e. correct resolution) video_capture.set(cv2.CAP_PROP_FRAME_WIDTH, 5000) video_capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 5000) path = "C:/Users/Desktop/splash.jpg" img = cv2.imread(path) imgWrite = np.zeros((512, 512, 3), np.uint8) flag1 = 0 flag2 = 0 flag3 = 0 fps = 0 i = 0 timer = 0 start = time.time() while True: # Capture frame-by-frame ret, frame = video_capture.read() fps += 1 timer += 1 # Draw rectangle around face x = 313 y = 82 w = 451 h = 568 cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 255, 0), 3) # Crop + process captured frame hand = frame[83:650, 314:764] #hand = frame[0:1000, 0:1000] hand = square_pad(hand) hand = preprocess_for_vgg(hand) # Make prediction my_predict = my_model.predict(hand, batch_size=1, verbose=0) # Predict letter top_prd = np.argmax(my_predict) if (flag1 == 1): cv2.putText(frame, text="hi ", org=(50, (560 + 240)), fontFace=cv2.FONT_HERSHEY_PLAIN, fontScale=6, color=(0, 0, 255), thickness=6, lineType=cv2.LINE_AA) if (flag2 == 1): cv2.putText(frame, text="im ", org=(185, (560 + 240)), fontFace=cv2.FONT_HERSHEY_PLAIN, fontScale=6, color=(0, 0, 255), thickness=6, lineType=cv2.LINE_AA) if (flag3 == 1): cv2.putText(frame, text="good", org=(300, (560 + 240)), fontFace=cv2.FONT_HERSHEY_PLAIN, fontScale=6, color=(0, 0, 255), thickness=6, lineType=cv2.LINE_AA) timer = -50 # Only display predictions with probabilities greater than 0.5 #if np.max(my_predict) >= 0.50: #if timer >= 15: if np.max(my_predict) >= 0.9925 and timer >= 12: timer = 0; prediction_result = "hi im good" #prediction_result = label_dict[top_prd] preds_list = np.argsort(my_predict)[0] #pred_2 = label_dict[preds_list[-2]] #pred_3 = label_dict[preds_list[-3]] width = int(video_capture.get(3) + 0.5) height = int(video_capture.get(4) + 0.5) # Annotate image with most probable prediction if i != 2 and i != 5 and i != 10: cv2.putText(frame, text=prediction_result[i], org=(width // 2 + 230, height // 2 + 75), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=17, color=(255, 255, 0), thickness=15, lineType=cv2.LINE_AA) elif i == 2: cv2.putText(frame, text="[space]", org=(width // 2 + 230, height // 2 + 75), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=5, color=(255, 255, 0), thickness=15, lineType=cv2.LINE_AA) flag1 = 1 #cv2.imshow("img", img) #cv2.imwrite("splash.jpg", img) #cv2.waitKey(0) elif i == 5: cv2.putText(frame, text="[space]", org=(width // 2 + 230, height // 2 + 75), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=5, color=(255, 255, 0), thickness=15, lineType=cv2.LINE_AA) flag2 = 1 cv2.imwrite(path, frame) elif i == 10: cv2.putText(frame, text="[space]", org=(width // 2 + 230, height // 2 + 75), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=5, color=(255, 255, 0), thickness=15, lineType=cv2.LINE_AA) flag3 = 1 i = (i+1) % (len(prediction_result)+1) # Annotate image with second most probable prediction (displayed on bottom left) '''cv2.putText(frame, text=pred_2, org=(width // 2 + width // 5 + 40, (360 + 240)), fontFace=cv2.FONT_HERSHEY_PLAIN, fontScale=6, color=(0, 0, 255), thickness=6, lineType=cv2.LINE_AA) # Annotate image with third probable prediction (displayed on bottom right) cv2.putText(frame, text=pred_3, org=(width // 2 + width // 3 + 5, (360 + 240)), fontFace=cv2.FONT_HERSHEY_PLAIN, fontScale=6, color=(0, 0, 255), thickness=6, lineType=cv2.LINE_AA)''' # Display the resulting frame cv2.imshow('Video', frame) # Press 'q' to exit live loop if cv2.waitKey(10) & 0xFF == ord('q'): break # Calculate frames per second end = time.time() FPS = fps/(end-start) print("[INFO] approx. FPS: {:.2f}".format(FPS)) # Release the capture video_capture.release() cv2.destroyAllWindows()
33.517588
105
0.553373
0
0
0
0
0
0
0
0
2,480
0.371814
b044b434998843e21fedc472b72d6aa6d023641a
8,770
py
Python
prob2020/python/gene_sequence.py
KarchinLab/probabilistic2020
8e0b1b9578bd8189b1690dd2f17476c3305b98dc
[ "Apache-2.0" ]
8
2016-04-30T03:26:40.000Z
2021-09-17T04:47:08.000Z
prob2020/python/gene_sequence.py
KarchinLab/probabilistic2020
8e0b1b9578bd8189b1690dd2f17476c3305b98dc
[ "Apache-2.0" ]
9
2016-08-18T15:19:04.000Z
2019-07-17T18:16:52.000Z
prob2020/python/gene_sequence.py
KarchinLab/probabilistic2020
8e0b1b9578bd8189b1690dd2f17476c3305b98dc
[ "Apache-2.0" ]
7
2016-10-19T03:43:42.000Z
2021-07-31T02:40:20.000Z
"""Fetches gene sequence from gene fasta created by extract_genes.py""" import prob2020.python.utils as utils class GeneSequence(object): def __init__(self, fasta_obj, nuc_context=1.5): self.fasta = fasta_obj self.nuc_context = nuc_context def set_gene(self, bed_line): """Updates gene sequence for a new gene (bed line). Parameters ---------- bed_line : BedLine BedLine object representing a single gene in a BED file """ self.bed = bed_line # gene that was specified as BED self._reset_seq() # fetch sequence for bed line def _reset_seq(self): """Updates attributes for gene represented in the self.bed attribute. Sequences are always upper case. """ exon_seq_list, five_ss_seq_list, three_ss_seq_list = self._fetch_seq() self.exon_seq = ''.join(exon_seq_list) self.three_prime_seq = three_ss_seq_list self.five_prime_seq = five_ss_seq_list self._to_upper() # make sure all sequences are in upper case def add_germline_variants(self, germline_nucs, coding_pos): """Add potential germline variants into the nucleotide sequence. Sequenced individuals may potentially have a SNP at a somatic mutation position. Therefore they may differ from the reference genome. This method updates the gene germline gene sequence to match the actual individual. Parameters ---------- germline_nucs : list of str list of DNA nucleotides containing the germline letter coding_pos : int 0-based nucleotide position in coding sequence NOTE: the self.exon_seq attribute is updated, no return value """ if len(germline_nucs) != len(coding_pos): raise ValueError('Each germline nucleotide should have a coding position') es = list(self.exon_seq) for i in range(len(germline_nucs)): gl_nuc, cpos = germline_nucs[i].upper(), coding_pos[i] if not utils.is_valid_nuc(gl_nuc): raise ValueError('{0} is not a valid nucleotide'.format(gl_nuc)) if cpos >= 0: es[cpos] = gl_nuc self.exon_seq = ''.join(es) def _to_upper(self): """Convert sequences to upper case.""" self.exon_seq = self.exon_seq.upper() self.three_prime_seq = [s.upper() for s in self.three_prime_seq] self.five_prime_seq = [s.upper() for s in self.five_prime_seq] def _fetch_seq(self): """Fetches gene sequence from PySAM fasta object. Returns ------- exons : list of str list of exon nucleotide sequences five_prime_ss : list of str list of 5' splice site sequences three_prime_ss : list of str list of 3' splice site sequences """ exons = [] three_prime_ss = [] five_prime_ss = [] num_exons = self.bed.get_num_exons() for i in range(num_exons): # add exon sequence tmp_id = '{0};exon{1}'.format(self.bed.gene_name, i) tmp_exon = self.fasta.fetch(reference=tmp_id) exons.append(tmp_exon) # add splice site sequence tmp_id_3ss = '{0};3SS'.format(tmp_id) tmp_id_5ss = '{0};5SS'.format(tmp_id) if num_exons == 1: pass elif i == 0: tmp_5ss = self.fasta.fetch(tmp_id_5ss) five_prime_ss.append(tmp_5ss) elif i == (num_exons - 1): tmp_3ss = self.fasta.fetch(tmp_id_3ss) three_prime_ss.append(tmp_3ss) else: tmp_3ss = self.fasta.fetch(tmp_id_3ss) tmp_5ss = self.fasta.fetch(tmp_id_5ss) three_prime_ss.append(tmp_3ss) five_prime_ss.append(tmp_5ss) return exons, five_prime_ss, three_prime_ss def _fetch_5ss_fasta(fasta, gene_name, exon_num, chrom, strand, start, end): """Retreives the 5' SS sequence flanking the specified exon. Returns a string in fasta format with the first line containing a ">" and the second line contains the two base pairs of 5' SS. Parameters ---------- fasta : pysam.Fastafile fasta object from pysam gene_name : str gene name used for fasta seq id exon_num : int the `exon_num` exon, used for seq id chrom : str chromsome strand : str strand, {'+', '-'} start : int 0-based start position end : int 0-based end position Returns ------- ss_fasta : str string in fasta format with first line being seq id """ if strand == '+': ss_seq = fasta.fetch(reference=chrom, start=end-1, end=end+3) elif strand == '-': ss_seq = fasta.fetch(reference=chrom, start=start-3, end=start+1) ss_seq = utils.rev_comp(ss_seq) ss_fasta = '>{0};exon{1};5SS\n{2}\n'.format(gene_name, exon_num, ss_seq.upper()) return ss_fasta def _fetch_3ss_fasta(fasta, gene_name, exon_num, chrom, strand, start, end): """Retreives the 3' SS sequence flanking the specified exon. Returns a string in fasta format with the first line containing a ">" and the second line contains the two base pairs of 3' SS. Parameters ---------- fasta : pysam.Fastafile fasta object from pysam gene_name : str gene name used for fasta seq id exon_num : int the `exon_num` exon, used for seq id chrom : str chromsome strand : str strand, {'+', '-'} start : int 0-based start position end : int 0-based end position Returns ------- ss_fasta : str string in fasta format with first line being seq id """ if strand == '-': ss_seq = fasta.fetch(reference=chrom, start=end-1, end=end+3) ss_seq = utils.rev_comp(ss_seq) elif strand == '+': ss_seq = fasta.fetch(reference=chrom, start=start-3, end=start+1) ss_fasta = '>{0};exon{1};3SS\n{2}\n'.format(gene_name, exon_num, ss_seq.upper()) return ss_fasta def fetch_gene_fasta(gene_bed, fasta_obj): """Retreive gene sequences in FASTA format. Parameters ---------- gene_bed : BedLine BedLine object representing a single gene fasta_obj : pysam.Fastafile fasta object for index retreival of sequence Returns ------- gene_fasta : str sequence of gene in FASTA format """ gene_fasta = '' strand = gene_bed.strand exons = gene_bed.get_exons() if strand == '-': exons.reverse() # order exons 5' to 3', so reverse if '-' strand # iterate over exons for i, exon in enumerate(exons): exon_seq = fasta_obj.fetch(reference=gene_bed.chrom, start=exon[0], end=exon[1]).upper() if strand == '-': exon_seq = utils.rev_comp(exon_seq) exon_fasta = '>{0};exon{1}\n{2}\n'.format(gene_bed.gene_name, i, exon_seq) # get splice site sequence if len(exons) == 1: # splice sites don't matter if there is no splicing ss_fasta = '' elif i == 0: # first exon only, get 3' SS ss_fasta = _fetch_5ss_fasta(fasta_obj, gene_bed.gene_name, i, gene_bed.chrom, strand, exon[0], exon[1]) elif i == (len(exons) - 1): # last exon only, get 5' SS ss_fasta = _fetch_3ss_fasta(fasta_obj, gene_bed.gene_name, i, gene_bed.chrom, strand, exon[0], exon[1]) else: # middle exon, get bot 5' and 3' SS fasta_3ss = _fetch_3ss_fasta(fasta_obj, gene_bed.gene_name, i, gene_bed.chrom, strand, exon[0], exon[1]) fasta_5ss = _fetch_5ss_fasta(fasta_obj, gene_bed.gene_name, i, gene_bed.chrom, strand, exon[0], exon[1]) ss_fasta = fasta_5ss + fasta_3ss gene_fasta += exon_fasta + ss_fasta return gene_fasta
34.801587
89
0.55382
3,881
0.442531
0
0
0
0
0
0
3,686
0.420296
b04538316ec8e7dec6961b4c00010c7027a8e97d
1,118
py
Python
src/main/python/request/http_request.py
photowey/pytest-dynamic-framework
4e7b6d74594191006b50831d42e7aae21e154d56
[ "Apache-2.0" ]
null
null
null
src/main/python/request/http_request.py
photowey/pytest-dynamic-framework
4e7b6d74594191006b50831d42e7aae21e154d56
[ "Apache-2.0" ]
null
null
null
src/main/python/request/http_request.py
photowey/pytest-dynamic-framework
4e7b6d74594191006b50831d42e7aae21e154d56
[ "Apache-2.0" ]
null
null
null
# -*- coding:utf-8 -*- # --------------------------------------------- # @file http_request # @description http_request # @author WcJun # @date 2021/07/19 # --------------------------------------------- from src.main.python.request.options import RequestOptions class HttpRequest: """ Http Request """ def __init__(self, options: RequestOptions): self.url = options.url self.method = options.method self.body = options.body self.headers = options.headers self.parameters = options.parameters self.ssl = options.ssl self.mock_enabled = options.mock_enabled self.mock_response = options.mock_response def populateUrlParameters(self) -> str: param_chain: [] = ['?'] if type(self.parameters) == dict and len(self.parameters) > 0: for parameter_key in self.parameters.keys(): single_param: [] = [parameter_key, '=', self.parameters[parameter_key], '&'] param_chain.append(''.join(single_param)) chain_str: str = ''.join(param_chain) return chain_str[:-1]
29.421053
92
0.573345
851
0.761181
0
0
0
0
0
0
237
0.211986
b04682256b68f1be1d146f950d4cf5cacbc05399
5,728
py
Python
bot/helper/mirror_utils/download_utils/aria2_download.py
vincreator/Eunha
85a702a5b5f30ccea1798122c261d4ff07fe0c0c
[ "Apache-2.0" ]
null
null
null
bot/helper/mirror_utils/download_utils/aria2_download.py
vincreator/Eunha
85a702a5b5f30ccea1798122c261d4ff07fe0c0c
[ "Apache-2.0" ]
null
null
null
bot/helper/mirror_utils/download_utils/aria2_download.py
vincreator/Eunha
85a702a5b5f30ccea1798122c261d4ff07fe0c0c
[ "Apache-2.0" ]
null
null
null
from time import sleep from threading import Thread from bot import aria2, download_dict_lock, download_dict, STOP_DUPLICATE, TORRENT_DIRECT_LIMIT, ZIP_UNZIP_LIMIT, LOGGER, STORAGE_THRESHOLD from bot.helper.mirror_utils.upload_utils.gdriveTools import GoogleDriveHelper from bot.helper.ext_utils.bot_utils import is_magnet, getDownloadByGid, new_thread, get_readable_file_size from bot.helper.mirror_utils.status_utils.aria_download_status import AriaDownloadStatus from bot.helper.telegram_helper.message_utils import sendMarkup, sendStatusMessage, sendMessage from bot.helper.ext_utils.fs_utils import get_base_name, check_storage_threshold @new_thread def __onDownloadStarted(api, gid): try: if any([STOP_DUPLICATE, TORRENT_DIRECT_LIMIT, ZIP_UNZIP_LIMIT, STORAGE_THRESHOLD]): sleep(1.5) dl = getDownloadByGid(gid) if not dl: return download = api.get_download(gid) if STOP_DUPLICATE and not dl.getListener().isLeech: LOGGER.info('Checking File/Folder if already in Drive...') sname = download.name if dl.getListener().isZip: sname = sname + ".zip" elif dl.getListener().extract: try: sname = get_base_name(sname) except: sname = None if sname is not None: smsg, button = GoogleDriveHelper().drive_list(sname, True) if smsg: dl.getListener().onDownloadError('File/Folder already available in Drive.\n\n') api.remove([download], force=True, files=True) return sendMarkup("Here are the search results:", dl.getListener().bot, dl.getListener().message, button) if any([ZIP_UNZIP_LIMIT, TORRENT_DIRECT_LIMIT, STORAGE_THRESHOLD]): sleep(1) limit = None size = api.get_download(gid).total_length arch = any([dl.getListener().isZip, dl.getListener().extract]) if STORAGE_THRESHOLD is not None: acpt = check_storage_threshold(size, arch, True) # True if files allocated, if allocation disabled remove True arg if not acpt: msg = f'You must leave {STORAGE_THRESHOLD}GB free storage.' msg += f'\nYour File/Folder size is {get_readable_file_size(size)}' dl.getListener().onDownloadError(msg) return api.remove([download], force=True, files=True) if ZIP_UNZIP_LIMIT is not None and arch: mssg = f'Zip/Unzip limit is {ZIP_UNZIP_LIMIT}GB' limit = ZIP_UNZIP_LIMIT elif TORRENT_DIRECT_LIMIT is not None: mssg = f'Torrent/Direct limit is {TORRENT_DIRECT_LIMIT}GB' limit = TORRENT_DIRECT_LIMIT if limit is not None: LOGGER.info('Checking File/Folder Size...') if size > limit * 1024**3: dl.getListener().onDownloadError(f'{mssg}.\nYour File/Folder size is {get_readable_file_size(size)}') return api.remove([download], force=True, files=True) except Exception as e: LOGGER.error(f"{e} onDownloadStart: {gid} stop duplicate and size check didn't pass") @new_thread def __onDownloadComplete(api, gid): LOGGER.info(f"onDownloadComplete: {gid}") dl = getDownloadByGid(gid) download = api.get_download(gid) if download.followed_by_ids: new_gid = download.followed_by_ids[0] new_download = api.get_download(new_gid) if not dl: dl = getDownloadByGid(new_gid) with download_dict_lock: download_dict[dl.uid()] = AriaDownloadStatus(new_gid, dl.getListener()) LOGGER.info(f'Changed gid from {gid} to {new_gid}') elif dl: Thread(target=dl.getListener().onDownloadComplete).start() @new_thread def __onDownloadStopped(api, gid): sleep(4) dl = getDownloadByGid(gid) if dl: dl.getListener().onDownloadError('Dead torrent!') @new_thread def __onDownloadError(api, gid): LOGGER.info(f"onDownloadError: {gid}") sleep(0.5) dl = getDownloadByGid(gid) try: download = api.get_download(gid) error = download.error_message LOGGER.info(f"Download Error: {error}") except: pass if dl: dl.getListener().onDownloadError(error) def start_listener(): aria2.listen_to_notifications(threaded=True, on_download_start=__onDownloadStarted, on_download_error=__onDownloadError, on_download_stop=__onDownloadStopped, on_download_complete=__onDownloadComplete, timeout=20) def add_aria2c_download(link: str, path, listener, filename): if is_magnet(link): download = aria2.add_magnet(link, {'dir': path, 'out': filename}) else: download = aria2.add_uris([link], {'dir': path, 'out': filename}) if download.error_message: error = str(download.error_message).replace('<', ' ').replace('>', ' ') LOGGER.info(f"Download Error: {error}") return sendMessage(error, listener.bot, listener.message) with download_dict_lock: download_dict[listener.uid] = AriaDownloadStatus(download.gid, listener) LOGGER.info(f"Started: {download.gid} DIR: {download.dir} ") sendStatusMessage(listener.message, listener.bot) start_listener()
46.569106
138
0.618191
0
0
0
0
3,977
0.694309
0
0
801
0.139839
b047b2781fee7bef3205107d3cc7277c6707a880
3,407
py
Python
gol.py
AjayMT/game-of-life
681bb92e1d7c0644645af7b77f0106ba2d4c9c20
[ "MIT" ]
null
null
null
gol.py
AjayMT/game-of-life
681bb92e1d7c0644645af7b77f0106ba2d4c9c20
[ "MIT" ]
null
null
null
gol.py
AjayMT/game-of-life
681bb92e1d7c0644645af7b77f0106ba2d4c9c20
[ "MIT" ]
null
null
null
import pygame from pygame.locals import * from pygamehelper import * from vec2d import * from random import randrange class Matrix: def __init__(self, w, h): self.w, self.h = w, h self._data = [] for i in range(self.w * self.h): self._data.append(None) def __getitem__(self, i): return self._data[i] def _index(self, x, y): return x + (y * self.w) def get(self, x, y): return self._data[self._index(x, y)] def set(self, x, y, v): self._data[self._index(x, y)] = v class Cell: def __init__(self, x, y, w): self.x, self.y, self.w = x, y, w self.alive = False def draw(self, screen): color = (255, 255, 0) if self.alive else (100, 100, 100) xywh = (self.x * self.w, self.y * self.w, self.w, self.w) pygame.draw.rect(screen, color, xywh, 0) pygame.draw.rect(screen, (100, 0, 0), xywh, 1) class GameOfLife(PygameHelper): def __init__(self): self.w, self.h = 800, 600 PygameHelper.__init__(self, size=(self.w, self.h)) self.begin = raw_input('Begin: ') or [3] self.begin = [int(x) for x in self.begin] self.stay = raw_input('Stay: ') or [3, 2] self.stay = [int(x) for x in self.stay] self.paused = True self.cellw = input('Cell width: ') self.cells = Matrix(self.w / self.cellw, self.h / self.cellw) random = (raw_input ('Random arrangement of live cells? (y/n) ') == 'y') for i in range(self.cells.w): for j in range(self.cells.h): c = Cell(i, j, self.cellw) if random: c.alive = (randrange(2) == 1) self.cells.set(i, j, c) def neighbours(self, c): n = [] x, y = c.x, c.y for i in [1, -1, 0]: for j in [1, -1, 0]: if i == 0 and j == 0: continue if (x + i) < 0: i += self.cells.w if (x + i) >= self.cells.w: i -= self.cells.w if (y + j) < 0: j += self.cells.h if (y + j) >= self.cells.h: j -= self.cells.h n.append(self.cells.get(x + i, y + j)) return n def mouseUp(self, pos): if not self.paused: return x = (pos[0] - (pos[0] % self.cellw)) / self.cellw y = (pos[1] - (pos[1] % self.cellw)) / self.cellw c = self.cells.get(x, y) c.alive = not c.alive def keyDown(self, key): if key == 275 and self.paused: self.paused = False self.update() self.draw() self.paused = True else: self.paused = not self.paused def update(self): if self.paused: return changed = [] for c in self.cells: neighbours = self.neighbours(c) liveneighbours = [n for n in neighbours if n.alive] if c.alive: if len(liveneighbours) not in self.stay: changed.append(c) if not c.alive: if len(liveneighbours) in self.begin: changed.append(c) for c in changed: c.alive = not c.alive def draw(self): self.screen.fill((0, 0, 0)) for c in self.cells: c.draw(self.screen) pygame.display.update() g = GameOfLife() g.mainLoop(60)
27.039683
70
0.502495
3,246
0.952744
0
0
0
0
0
0
76
0.022307
b048467d0a750345394b6d343d01156aad3e1cef
109
py
Python
pylib/gna/graph/__init__.py
gnafit/gna
c1a58dac11783342c97a2da1b19c97b85bce0394
[ "MIT" ]
5
2019-10-14T01:06:57.000Z
2021-02-02T16:33:06.000Z
pylib/gna/graph/__init__.py
gnafit/gna
c1a58dac11783342c97a2da1b19c97b85bce0394
[ "MIT" ]
null
null
null
pylib/gna/graph/__init__.py
gnafit/gna
c1a58dac11783342c97a2da1b19c97b85bce0394
[ "MIT" ]
null
null
null
from gna.graph.walk import GraphWalker from gna.graph.timeit import * from gna.graph.walk_functions import *
27.25
38
0.816514
0
0
0
0
0
0
0
0
0
0
b048ccf5383075a3e3ddc09cd04494ee80c2a300
434
py
Python
Recursion/Aditya_Verma/Hypothesis_Method/Print_N_to_1.py
prash-kr-meena/GoogleR
27aca71e51cc2442e604e07ab00406a98d8d63a4
[ "Apache-2.0" ]
null
null
null
Recursion/Aditya_Verma/Hypothesis_Method/Print_N_to_1.py
prash-kr-meena/GoogleR
27aca71e51cc2442e604e07ab00406a98d8d63a4
[ "Apache-2.0" ]
null
null
null
Recursion/Aditya_Verma/Hypothesis_Method/Print_N_to_1.py
prash-kr-meena/GoogleR
27aca71e51cc2442e604e07ab00406a98d8d63a4
[ "Apache-2.0" ]
null
null
null
# Forward Implementation def print_to_n_reverse(n): if n == 1: # Base Condition print(1, end=" ") return print(n, end=" ") # Induction print_to_n_reverse(n - 1) # Hypothesis # Backward implementation # - Here backward implementation, would be a bit typical to do, # - Forward implementation makes more sense, if you think in terms of the input n if __name__ == "__main__": print_to_n_reverse(7)
25.529412
81
0.675115
0
0
0
0
0
0
0
0
248
0.571429
b04a94197db758a9aeced9b7588eec2e7e3ada18
7,835
py
Python
certbot_azure/azure_agw.py
loufa-io/certbot-azure
f081da34fa74c3d2fded08af2da0ca2b5380fa14
[ "MIT" ]
null
null
null
certbot_azure/azure_agw.py
loufa-io/certbot-azure
f081da34fa74c3d2fded08af2da0ca2b5380fa14
[ "MIT" ]
null
null
null
certbot_azure/azure_agw.py
loufa-io/certbot-azure
f081da34fa74c3d2fded08af2da0ca2b5380fa14
[ "MIT" ]
null
null
null
"""Azure App Gateway Certbot installer plugin.""" from __future__ import print_function import os import sys import logging import time import OpenSSL import base64 try: from secrets import token_urlsafe except ImportError: from os import urandom def token_urlsafe(nbytes=None): return urandom(nbytes) import zope.component import zope.interface from certbot import interfaces from certbot import errors from certbot.plugins import common from azure.common.client_factory import get_client_from_auth_file from azure.mgmt.resource import ResourceManagementClient from azure.mgmt.network import NetworkManagementClient from msrestazure.azure_exceptions import CloudError from azure.identity import CredentialUnavailableError from .cred_wrapper import CredentialWrapper MSDOCS = 'https://docs.microsoft.com/' ACCT_URL = MSDOCS + 'python/azure/python-sdk-azure-authenticate?view=azure-python#mgmt-auth-file' AZURE_CLI_URL = MSDOCS + 'cli/azure/install-azure-cli?view=azure-cli-latest' AZURE_CLI_COMMAND = ("az ad sp create-for-rbac" " --name Certbot --sdk-auth" " --scope /subscriptions/<SUBSCRIPTION_ID>/resourceGroups/<RESOURCE_GROUP_ID>" " > mycredentials.json") logger = logging.getLogger(__name__) class Installer(common.Plugin, interfaces.Installer): description = "Certbot Azure Installer" @classmethod def add_parser_arguments(cls, add): add('resource-group', help=('Resource Group in which the DNS zone is located'), default=None) add('app-gateway-name', help=('Name of the application gateway'), default=None) add('subscription-id', help=('ID of the subscription containing the DNS Zone or Application Gateway'), default=None) def __init__(self, *args, **kwargs): super(Installer, self).__init__(*args, **kwargs) self._setup_credentials() self.azure_client = _AzureClient(self.conf('resource-group'), self.conf('subscription-id')) def _setup_credentials(self): if self.conf('resource-group') is None: raise errors.PluginError('Please specify a resource group using ' '--azure-agw-resource-group <RESOURCEGROUP>') if self.conf('app-gateway-name') is None: raise errors.PluginError('Please specify the app gateway name using' '--azure-agw-resource-group <RESOURCEGROUP>') if self.conf('subscription-id') is None: raise errors.PluginError( 'Please specify your subscription id with --azure-agw-subscription-id') def prepare(self): # pylint: disable=missing-docstring,no-self-use pass # pragma: no cover def more_info(self): # pylint: disable=missing-docstring,no-self-use return ("") def get_all_names(self): # pylint: disable=missing-docstring,no-self-use pass # pragma: no cover def deploy_cert(self, domain, cert_path, key_path, chain_path, fullchain_path): """ Upload Certificate to the app gateway """ self.azure_client.update_agw(self.conf('app-gateway-name'),domain, key_path, fullchain_path) def enhance(self, domain, enhancement, options=None): # pylint: disable=missing-docstring,no-self-use pass # pragma: no cover def supported_enhancements(self): # pylint: disable=missing-docstring,no-self-use return [] # pragma: no cover def get_all_certs_keys(self): # pylint: disable=missing-docstring,no-self-use pass # pragma: no cover def save(self, title=None, temporary=False): # pylint: disable=missing-docstring,no-self-use pass # pragma: no cover def rollback_checkpoints(self, rollback=1): # pylint: disable=missing-docstring,no-self-use pass # pragma: no cover def recovery_routine(self): # pylint: disable=missing-docstring,no-self-use pass # pragma: no cover def view_config_changes(self): # pylint: disable=missing-docstring,no-self-use pass # pragma: no cover def config_test(self): # pylint: disable=missing-docstring,no-self-use pass # pragma: no cover def restart(self): # pylint: disable=missing-docstring,no-self-use pass # pragma: no cover def renew_deploy(self, lineage, *args, **kwargs): # pylint: disable=missing-docstring,no-self-use """ Renew certificates when calling `certbot renew` """ # Run deploy_cert with the lineage params self.deploy_cert( lineage.names()[0], lineage.cert_path, lineage.key_path, lineage.chain_path, lineage.fullchain_path) return class _AzureClient(object): """ Encapsulates all communication with the Azure Cloud DNS API. """ def __init__(self, resource_group, subscription_id): self.resource_group = resource_group try: self.credential = CredentialWrapper() except CredentialUnavailableError as e: errors.PluginError('Unable to acquire identity') self.resource_client = ResourceManagementClient(self.credential, subscription_id) self.network_client = NetworkManagementClient(self.credential, subscription_id) def update_agw(self, agw_name, domain, key_path, fullchain_path): from azure.mgmt.network.models import ApplicationGatewaySslCertificate # Generate random password for pfx password = token_urlsafe(16) # Get app gateway from client agw = self.network_client.application_gateways.get(self.resource_group, agw_name) if "Updating" in [ssl.provisioning_state for ssl in agw.ssl_certificates]: raise errors.PluginError('There is a certificate in Updating state. Cowardly refusing to add a new one.') ssl = ApplicationGatewaySslCertificate() ssl.name = domain + str(int(time.time())) ssl.data = self._generate_pfx_from_pems(key_path, fullchain_path, password) ssl.password = password agw.ssl_certificates.append(ssl) try: self.network_client.application_gateways.create_or_update(self.resource_group, agw_name, agw) except CloudError as e: logger.warning('Encountered error updating app gateway: %s', e) raise errors.PluginError('Error communicating with the Azure API: {0}'.format(e)) def _generate_pfx_from_pems(self, key_path, fullchain_path, password): """Generate PFX file out of PEMs in order to meet App Gateway requirements""" from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives import serialization from cryptography import x509 p12 = OpenSSL.crypto.PKCS12() # Load Key into PKCS12 object with open(key_path, "rb") as key_file: private_key = serialization.load_pem_private_key( key_file.read(), password=None, backend=default_backend() ) key = OpenSSL.crypto.PKey.from_cryptography_key(private_key) p12.set_privatekey(key) # Load Cert into PKCS12 object with open(fullchain_path, "rb") as cert_file: crypto_cert = x509.load_pem_x509_certificate( cert_file.read(), default_backend()) cert = OpenSSL.crypto.X509.from_cryptography(crypto_cert) p12.set_certificate(cert) # Export object data = p12.export(passphrase=password) # Return base64 encoded string return str(base64.b64encode(data), "utf-8")
36.957547
117
0.664199
6,539
0.834588
0
0
439
0.056031
0
0
2,458
0.31372
b04b28603590e6dad8f700f43ec0e40f0f4392cb
1,999
py
Python
image/apps/Ignitions.py
AnthonyRawlinsUoM/MetricsDashboard
37594e46b0cec340e10d3123bbaf94b277a3ce22
[ "MIT" ]
null
null
null
image/apps/Ignitions.py
AnthonyRawlinsUoM/MetricsDashboard
37594e46b0cec340e10d3123bbaf94b277a3ce22
[ "MIT" ]
null
null
null
image/apps/Ignitions.py
AnthonyRawlinsUoM/MetricsDashboard
37594e46b0cec340e10d3123bbaf94b277a3ce22
[ "MIT" ]
null
null
null
from pathlib import Path from glob import glob as glob from extractor.Ignition import Ignition import logging logger = logging.getLogger(__name__) class Ignitions: """ """ def __init__(self, path, scenario_name, redis): self.redis = redis self.active = False self.name = "Ignitions" self.path = path self.scenario_name = scenario_name def load(self, pb, saving=False): if self.active: logger.debug('>>> Will extract %s' % self.name) if saving: logger.debug('>>> Will save %s' % self.name) """ TODO -> take path components from instance parameters and dynamically generate paths and globs using OS-agnostic calls to pathlib. Ensure Windows compatability. """ scn = str(Path(self.path).joinpath( self.scenario_name)) + "_{}*".format(pb) batch_list = sorted( glob(scn + "/centralhigh_*/regsim_ignitions.txt")) for bat in batch_list: replicate = Util.bid(bat) with open(bat, 'r') as ig: line_count = 0 fdata = ig.read() for c in fdata.split('\n'): line_count += 1 if c != '': try: line_place = '[line: %10d]' % (line_count) i = Ignition(c, bat + line_place) if i.store(pb, replicate, redis): logger.debug(line_place, '[OK]', str(i)) else: logger.debug(line_place, '[XX]', c) except KeyError as e: logger.error('Ignition Parsing Error') def question(self): return "Would you like to extract {} Metrics?".format(self.name)
36.345455
76
0.477239
1,848
0.924462
0
0
0
0
0
0
421
0.210605
b04cbd151462272c28fb0ccf978f4c3ccbb776cd
11,913
py
Python
frontend/alexa/alexa.py
jjanetzki/HackHPI-2017
5345a4b385b92dff8b665818127e85eb1e14b31f
[ "MIT" ]
1
2017-06-17T18:18:55.000Z
2017-06-17T18:18:55.000Z
frontend/alexa/alexa.py
janetzki/Productivity-Bot
5345a4b385b92dff8b665818127e85eb1e14b31f
[ "MIT" ]
null
null
null
frontend/alexa/alexa.py
janetzki/Productivity-Bot
5345a4b385b92dff8b665818127e85eb1e14b31f
[ "MIT" ]
null
null
null
""" This code sample is a part of a simple demo to show beginners how to create a skill (app) for the Amazon Echo using AWS Lambda and the Alexa Skills Kit. For the full code sample visit https://github.com/pmckinney8/Alexa_Dojo_Skill.git """ from __future__ import print_function import requests import json alcohol_url = "https://hpi.de/naumann/sites/ingestion/hackhpi/alcohol/add" caffeine_url = "https://hpi.de/naumann/sites/ingestion/hackhpi/caffeine/add" profile_url = "https://hpi.de/naumann/sites/ingestion/hackhpi/alcohol/setprofile" caffeine_recommendation_url = "https://hpi.de/naumann/sites/ingestion/hackhpi/caffeine/recommendation" alcohol_recommendation_url = "https://hpi.de/naumann/sites/ingestion/hackhpi/alcohol/recommendation" def lambda_handler(event, context): """ Route the incoming request based on type (LaunchRequest, IntentRequest, etc.) The JSON body of the request is provided in the event parameter. """ print("event.session.application.applicationId=" + event['session']['application']['applicationId']) """ Uncomment this if statement and populate with your skill's application ID to prevent someone else from configuring a skill that sends requests to this function. """ # if (event['session']['application']['applicationId'] != # "amzn1.echo-sdk-ams.app.[unique-value-here]"): # raise ValueError("Invalid Application ID") if event['session']['new']: on_session_started({'requestId': event['request']['requestId']}, event['session']) if event['request']['type'] == "LaunchRequest": return on_launch(event['request'], event['session']) elif event['request']['type'] == "IntentRequest": return on_intent(event['request'], event['session']) elif event['request']['type'] == "SessionEndedRequest": return on_session_ended(event['request'], event['session']) def on_session_started(session_started_request, session): """ Called when the session starts """ print("on_session_started requestId=" + session_started_request['requestId'] + ", sessionId=" + session['sessionId']) def on_launch(launch_request, session): """ Called when the user launches the skill without specifying what they want """ # Dispatch to your skill's launch return get_welcome_response() def on_intent(intent_request, session): """ Called when the user specifies an intent for this skill """ print("on_intent requestId=" + intent_request['requestId'] + ", sessionId=" + session['sessionId']) intent = intent_request['intent'] intent_name = intent_request['intent']['name'] # Dispatch to your skill's intent handlers if intent_name == "DrinkIntend": return get_drink_response(intent_request) elif intent_name == "DrinkFinishedIntend": return get_finished_drink(intent_request) elif intent_name == "CaffeineIntend": return get_caffeine(intent_request) elif intent_name == "AlcoholIntend": return get_alcohol(intent_request) elif intent_name == "CaffeineRecommendationIntend": return get_caffeine_recommendation() elif intent_name == "AlcoholRecommendationIntend": return get_alcohol_recommendation() elif intent_name == "CaffeineLevelIntend": return get_caffeine_level() elif intent_name == "AlcoholLevelIntend": return get_alcohol_level() elif intent_name == "SexIntend": return set_sex(intent_request) elif intent_name == "BodyweightIntend": return set_bodyweight(intent_request) elif intent_name == "AgeIntend": return set_age(intent_request) elif intent_name == "AMAZON.HelpIntent": return get_help_response() elif intent_name == "AMAZON.CancelIntent" or intent_name == "AMAZON.StopIntent": return handle_session_end_request() else: raise ValueError("Invalid intent") def on_session_ended(session_ended_request, session): """ Called when the user ends the session. Is not called when the skill returns should_end_session=true """ print("on_session_ended requestId=" + session_ended_request['requestId'] + ", sessionId=" + session['sessionId']) # add cleanup logic here # --------------- Functions that control the skill's behavior ------------------ def get_welcome_response(): session_attributes = {} card_title = "Welcome" speech_output = "Welcome to the Productivity Bot. I will help you stay in your Ballmer Peak." # If the user either does not reply to the welcome message or says something # that is not understood, they will be prompted again with the same text. reprompt_text = speech_output should_end_session = False return build_response(session_attributes, build_speechlet_response( card_title, speech_output, reprompt_text, should_end_session)) def get_help_response(): session_attributes = {} card_title = "Help" speech_output = "Welcome to the help section for the Productivity Bot. A couple of examples of phrases that I can except are... What shall I drink... or, how much alcohol does a drink contain. Lets get started now by trying one of these." reprompt_text = speech_output should_end_session = False return build_response(session_attributes, build_speechlet_response(card_title, speech_output, reprompt_text, should_end_session)) def get_drink_response(intent_request): session_attributes = {} card_title = "Drink response" drink = intent_request["intent"]["slots"]["Drink"]["value"] requests.post(caffeine_url, json={"drink": drink}) # todo: specify serving (ml) requests.post(alcohol_url, json={"drink": drink}) # todo: specify serving (ml) speech_output = f"Enjoy your {drink}." reprompt_text = speech_output should_end_session = False return build_response(session_attributes, build_speechlet_response(card_title, speech_output, reprompt_text, should_end_session)) def get_finished_drink(intent_request): session_attributes = {} card_title = "Finished drink response" drink = intent_request["intent"]["slots"]["Drink"]["value"] # requests.post("https://hpi.de/naumann/sites/ingestion/hackhpi/", json={"drink finished": drink}) speech_output = f"I hope your {drink} was tasty." reprompt_text = speech_output should_end_session = False return build_response(session_attributes, build_speechlet_response(card_title, speech_output, reprompt_text, should_end_session)) def get_caffeine_recommendation(): session_attributes = {} card_title = "Caffeine recommendation response" json_answer = requests.get(caffeine_recommendation_url).text speech_output = json.loads(json_answer)["results"] reprompt_text = speech_output should_end_session = False return build_response(session_attributes, build_speechlet_response(card_title, speech_output, reprompt_text, should_end_session)) def get_alcohol_recommendation(): session_attributes = {} card_title = "Alcohol recommendation response" json_answer = requests.get(alcohol_recommendation_url).text speech_output = json.loads(json_answer)["results"] reprompt_text = speech_output should_end_session = False return build_response(session_attributes, build_speechlet_response(card_title, speech_output, reprompt_text, should_end_session)) def get_caffeine(intent_request): session_attributes = {} card_title = "Caffeine response" drink = intent_request["intent"]["slots"]["Drink"]["value"] speech_output = f"{drink} contains a lot of caffeine." reprompt_text = speech_output should_end_session = False return build_response(session_attributes, build_speechlet_response(card_title, speech_output, reprompt_text, should_end_session)) def get_alcohol(intent_request): session_attributes = {} card_title = "Alcohol response" drink = intent_request["intent"]["slots"]["Drink"]["value"] speech_output = f"{drink} contains a lot of alcohol." reprompt_text = speech_output should_end_session = False return build_response(session_attributes, build_speechlet_response(card_title, speech_output, reprompt_text, should_end_session)) def get_caffeine_level(): session_attributes = {} card_title = "Caffeine level response" speech_output = "Your caffeine level is over 9000." reprompt_text = speech_output should_end_session = False return build_response(session_attributes, build_speechlet_response(card_title, speech_output, reprompt_text, should_end_session)) def get_alcohol_level(): session_attributes = {} card_title = "Alcohol level response" speech_output = "Your alcohol level is over 9000." reprompt_text = speech_output should_end_session = False return build_response(session_attributes, build_speechlet_response(card_title, speech_output, reprompt_text, should_end_session)) def set_sex(intent_request): session_attributes = {} card_title = "Sex response" sex = intent_request["intent"]["slots"]["Sex"]["value"] requests.post(profile_url, json={"sex": sex}) speech_output = f"Yes, you are so {sex}." reprompt_text = speech_output should_end_session = False return build_response(session_attributes, build_speechlet_response(card_title, speech_output, reprompt_text, should_end_session)) def set_bodyweight(intent_request): session_attributes = {} card_title = "Bodyweight response" weight = intent_request["intent"]["slots"]["Number"]["value"] requests.post(profile_url, json={"bodyweight": weight}) speech_output = f"A bodyweight of {weight} is just perfect!" reprompt_text = speech_output should_end_session = False return build_response(session_attributes, build_speechlet_response(card_title, speech_output, reprompt_text, should_end_session)) def set_age(intent_request): session_attributes = {} card_title = "Age response" age = intent_request["intent"]["slots"]["Number"]["value"] requests.post(profile_url, json={"age": age}) speech_output = f"I am less than {age} years old." reprompt_text = speech_output should_end_session = False return build_response(session_attributes, build_speechlet_response(card_title, speech_output, reprompt_text, should_end_session)) def handle_session_end_request(): card_title = "Session Ended" speech_output = "Thank you for using the Productivity bot! I hope you were productive." # Setting this to true ends the session and exits the skill. should_end_session = True return build_response({}, build_speechlet_response( card_title, speech_output, None, should_end_session)) # --------------- Helpers that build all of the responses ---------------------- def build_speechlet_response(title, output, reprompt_text, should_end_session): return { 'outputSpeech': { 'type': 'PlainText', 'text': output }, 'card': { 'type': 'Simple', 'title': 'SessionSpeechlet - ' + title, 'content': 'SessionSpeechlet - ' + output }, 'reprompt': { 'outputSpeech': { 'type': 'PlainText', 'text': reprompt_text } }, 'shouldEndSession': should_end_session } def build_response(session_attributes, speechlet_response): return { 'version': '1.0', 'sessionAttributes': session_attributes, 'response': speechlet_response }
39.44702
242
0.697138
0
0
0
0
0
0
0
0
4,205
0.352976
b04d338c3d1c16a12edd8387b7d2185efd9aed7b
474
py
Python
day1.py
kdrag0n/aoc2021
469bd861a7d7c0add14412a705ec4cb1e1b5a10f
[ "MIT" ]
2
2021-12-04T21:15:14.000Z
2021-12-12T09:28:28.000Z
day1.py
kdrag0n/aoc2021
469bd861a7d7c0add14412a705ec4cb1e1b5a10f
[ "MIT" ]
null
null
null
day1.py
kdrag0n/aoc2021
469bd861a7d7c0add14412a705ec4cb1e1b5a10f
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import sys def ints(itr): return [int(i) for i in itr] with open(sys.argv[1], "r") as f: lines = [l for l in f.read().split("\n") if l] ilist = [] imap = {} total = 0 result = 0 other = 0 last = -1 while True: for l in lines: val = int(l.split()[0]) if last != -1 and val > last: total += 1 last = val break print(f"Total: {total}") print(f"Result: {result}") print(f"Other: {other}")
12.810811
50
0.529536
0
0
0
0
0
0
0
0
82
0.172996
b04e83f0c6c5bd946cc75a63519557d702719e38
2,142
py
Python
pythingspeak/test_pythingspeak.py
mdauphin/pythingspeak
d5971e9347b17a14221564a368fe032ca6acaa03
[ "MIT" ]
null
null
null
pythingspeak/test_pythingspeak.py
mdauphin/pythingspeak
d5971e9347b17a14221564a368fe032ca6acaa03
[ "MIT" ]
null
null
null
pythingspeak/test_pythingspeak.py
mdauphin/pythingspeak
d5971e9347b17a14221564a368fe032ca6acaa03
[ "MIT" ]
null
null
null
#-*- coding: utf-8 -*- import pythingspeak import unittest class TestPyThingSpeak(unittest.TestCase): def test_update(self): ts = pythingspeak.ThingSpeak( channel_id=59596, api_key='ISXCEH1JHRQR85O4' ) results = ts.update( [ 1, 2 ] ) self.assertTrue(results) def test_feeds(self): ts = pythingspeak.ThingSpeak( channel_id=59596, api_key='ISXCEH1JHRQR85O4' ) results = ts.feeds() self.assertTrue(results) def test_last(self): ts = pythingspeak.ThingSpeak( channel_id=59596, api_key='ISXCEH1JHRQR85O4' ) results = ts.last() self.assertTrue(results) def test_entry(self): ts = pythingspeak.ThingSpeak( channel_id=59596, api_key='ISXCEH1JHRQR85O4' ) results = ts.entry(1) self.assertTrue(results) def test_fields(self): ts = pythingspeak.ThingSpeak( channel_id=59596, api_key='ISXCEH1JHRQR85O4' ) results = ts.fields(1) self.assertTrue(results) def test_fields(self): ts = pythingspeak.ThingSpeak( channel_id=59596, api_key='ISXCEH1JHRQR85O4' ) results = ts.fields(1) self.assertTrue(results) def test_last_field(self): ts = pythingspeak.ThingSpeak( channel_id=59596, api_key='ISXCEH1JHRQR85O4' ) results = ts.last_field(1) self.assertTrue(results) def test_status_update(self): ts = pythingspeak.ThingSpeak( channel_id=59596, api_key='ISXCEH1JHRQR85O4' ) results = ts.status_update() self.assertTrue(results) def test_list_public_channels(self): ts = pythingspeak.ThingSpeak( channel_id=59596, api_key='ISXCEH1JHRQR85O4' ) results = ts.list_public_channels() self.assertTrue(results) def test_list_my_channels(self): ts = pythingspeak.ThingSpeak( channel_id=59596, api_key='ISXCEH1JHRQR85O4' ) results = ts.list_my_channels() self.assertTrue(results) def test_view_channel(self): ts = pythingspeak.ThingSpeak( channel_id=59596, api_key='ISXCEH1JHRQR85O4' ) results = ts.view_channel() self.assertTrue(results) def test_create_channel(self): ts = pythingspeak.ThingSpeak( channel_id=59596, api_key='ISXCEH1JHRQR85O4' ) results = ts.create_channel() self.assertTrue(results) if __name__ == '__main__': unittest.main()
31.5
78
0.745565
2,028
0.946779
0
0
0
0
0
0
248
0.11578
b04f12eb656c69facb8b7d0c196d013597b90eb0
11,920
py
Python
esst/utils/historygraph.py
etcher-be/esst
ac41cd0c07af8ca8532997f533756c529c9609a4
[ "MIT" ]
4
2018-06-24T14:03:44.000Z
2019-01-21T01:20:02.000Z
esst/utils/historygraph.py
etcher-be/esst
ac41cd0c07af8ca8532997f533756c529c9609a4
[ "MIT" ]
106
2018-06-24T13:59:52.000Z
2019-11-26T09:05:14.000Z
esst/utils/historygraph.py
theendsofinvention/esst
ac41cd0c07af8ca8532997f533756c529c9609a4
[ "MIT" ]
null
null
null
# coding=utf-8 """ Creates graphic of perfs """ import datetime import typing from collections import namedtuple from tempfile import mktemp import humanize from esst.core import CTX PLT = GRID_SPEC = TICKER = None # https://stackoverflow.com/questions/4931376/generating-matplotlib-graphs-without-a-running-x-server/4935945#4935945 # noinspection SpellCheckingInspection def _init_mpl(): """ This is a very stupid hack to go around Matplotlib being stupid about Tkinter. My linters don't like import statements mixed within the code, so this will do. """ global PLT, GRID_SPEC, TICKER # pylint: disable=global-statement import matplotlib as mpl mpl.use('Agg') from matplotlib import pyplot as plt_ from matplotlib import gridspec as grd_, ticker as tick_ PLT = plt_ GRID_SPEC = grd_ TICKER = tick_ _init_mpl() GraphValues = namedtuple('GraphValues', ['server_cpu_history', 'server_mem_history', 'server_bytes_sent_history', 'server_bytes_recv_history', 'dcs_cpu_history', 'dcs_mem_history', 'players_history', ]) PlotLine = namedtuple('PlotValue', [ 'values', 'label', 'style', ]) def process_values(values_to_process: GraphValues, time_delta: float) -> GraphValues: """ Converts raw values for plotting Args: values_to_process: values in set from CTX time_delta: how far behind? Returns: processed values """ def _process(values): return [data for data in values if data[0] >= time_delta] or [(time_delta, 0)] server_cpu_history = _process(values_to_process.server_cpu_history) server_mem_history = _process(values_to_process.server_mem_history) server_bytes_sent_history = _process(values_to_process.server_bytes_sent_history) server_bytes_recv_history = _process(values_to_process.server_bytes_recv_history) dcs_cpu_history = _process(values_to_process.dcs_cpu_history) dcs_mem_history = _process(values_to_process.dcs_mem_history) players_history = _process(values_to_process.players_history) return GraphValues( server_cpu_history=zip(*server_cpu_history), server_mem_history=zip(*server_mem_history), server_bytes_sent_history=zip(*server_bytes_sent_history), server_bytes_recv_history=zip(*server_bytes_recv_history), dcs_cpu_history=zip(*dcs_cpu_history), dcs_mem_history=zip(*dcs_mem_history), players_history=tuple(zip(*players_history)), ) def _make_delta(now, days, hours, minutes): delta = datetime.timedelta( days=days, hours=hours, minutes=minutes).total_seconds() if delta == 0: delta = datetime.timedelta(hours=2).total_seconds() return now - delta def _x_format_func(val, _): val = datetime.datetime.fromtimestamp(val) return str(val).replace(' ', '\n') def _y_format_func_percent(val, _): return str(int(val)) + '%' def _y_format_func_bytes(val, _): return humanize.naturalsize(val) def _plot_axis(grid_spec, grid_pos, # pylint: disable=too-many-arguments values_to_plot: typing.Set[PlotLine], title, y_label_text, values, now, y_format_func, visible_x_labels=False, share_x=None): axis = PLT.subplot(grid_spec[grid_pos], sharex=share_x) # type: ignore axis.set_title(title) PLT.setp(axis.get_xticklabels(), visible=visible_x_labels) # type: ignore axis.set_ylabel(y_label_text) for line in values_to_plot: line_, = axis.plot(*line.values, line.style) PLT.setp(line_, label=line.label) # type: ignore _add_players_count_to_axis(axis, values.players_history) axis.xaxis.set_major_formatter(TICKER.FuncFormatter(_x_format_func)) # type: ignore axis.yaxis.set_major_formatter(TICKER.FuncFormatter(y_format_func)) # type: ignore axis.grid(True) axis.set_xlim(right=now) return axis # pylint: disable=too-many-arguments,too-many-locals def _get_axis( grid_spec, now, values, grid_pos, values_list: typing.List[typing.Any], labels_list: typing.List[str], title: str, y_label: str, visible_x: bool, y_format_func: typing.Callable, share_x=None, ): lines_to_plot = set() styles = ['r', 'b'] for _values, _label in zip(values_list, labels_list): lines_to_plot.add( PlotLine( values=_values, style=styles.pop(), label=_label ) ) axis = _plot_axis(grid_spec, now=now, values_to_plot=lines_to_plot, grid_pos=grid_pos, title=title, y_label_text=y_label, values=values, visible_x_labels=visible_x, share_x=share_x, y_format_func=y_format_func) return axis def _plot_server(grid_spec, values, now): axis = _get_axis( grid_spec=grid_spec, now=now, values=values, grid_pos=0, values_list=[values.server_cpu_history, values.server_mem_history], labels_list=['CPU', 'Memory'], title='Server stats', y_label='Percentage used', visible_x=False, y_format_func=_y_format_func_percent, ) axis.set_ylim([0, 100]) return axis def _plot_dcs(grid_spec, values, now, share_x=None): axis = _get_axis( grid_spec=grid_spec, now=now, values=values, grid_pos=1, values_list=[values.dcs_cpu_history, values.dcs_mem_history], labels_list=['CPU', 'Memory'], title='DCS stats', y_label='Percentage used', visible_x=False, y_format_func=_y_format_func_percent, share_x=share_x ) axis.set_ylim([0, 100]) return axis def _plot_bandwidth(grid_spec, values, now, share_x=None): axis = _get_axis( grid_spec=grid_spec, now=now, values=values, grid_pos=2, values_list=[values.server_bytes_sent_history, values.server_bytes_recv_history], labels_list=['Bytes sent', 'Bytes received'], title='Bytes sent', y_label='Bytes received', visible_x=True, y_format_func=_y_format_func_bytes, share_x=share_x ) return axis def _add_players_count_to_axis(axis, players_history): ax_players = axis.twinx() max_player_count = max( max((players_count for players_count in players_history[1])), 10) ax_players.set_ylim([0, max_player_count + (max_player_count / 4)]) ax_players.yaxis.set_major_locator(TICKER.MaxNLocator(integer=True)) ax_players.set_ylabel('Connected players') players_history, = ax_players.plot(*players_history, 'k.', ) PLT.setp(players_history, label='Players count') lines, labels = axis.get_legend_handles_labels() lines2, labels2 = ax_players.get_legend_handles_labels() axis.legend(lines + lines2, labels + labels2) def _make_history_graph( # pylint: disable=too-many-arguments values_to_process, days=0, hours=0, minutes=0, show: bool = False, save_path=None): """ Creates a graph of perfs Args: show: show and exit save_path: specify path to save to (default to temp path) """ # noinspection PyTypeChecker now = datetime.datetime.now().timestamp() time_delta = _make_delta(now, days, hours, minutes) values = process_values(values_to_process, time_delta) figure = PLT.figure(figsize=(18, 12)) # type: ignore grid_spec = GRID_SPEC.GridSpec(3, 1, height_ratios=[1, 1, 1]) # type: ignore ax_server = _plot_server(grid_spec, values, now) _plot_dcs(grid_spec, values, now, share_x=ax_server) _plot_bandwidth(grid_spec, values, now, share_x=ax_server) PLT.tight_layout() # type: ignore figure.tight_layout() if show: PLT.show() # type: ignore PLT.close() # type: ignore return None if not save_path: save_path = mktemp('.png') # nosec PLT.savefig(save_path) # type: ignore PLT.close() # type: ignore return save_path # pylint: disable=too-many-arguments def make_history_graph(callback=None, days=0, hours=0, minutes=0, show: bool = False, save_path=None): """ Creates a graph of perfs Args: minutes: number of minutes to go back hours: number of hours to go back days: number of days to go back callback: optional call back to the future show: show and exit save_path: specify path to save to (default to temp path) """ values_to_process = GraphValues( dcs_cpu_history=CTX.dcs_cpu_history, dcs_mem_history=CTX.dcs_mem_history, server_cpu_history=CTX.server_cpu_history, server_mem_history=CTX.server_mem_history, server_bytes_recv_history=CTX.server_bytes_recv_history, server_bytes_sent_history=CTX.server_bytes_sent_history, players_history=CTX.players_history, ) graph = _make_history_graph(values_to_process, days, hours, minutes, show, save_path) if callback: callback(graph) # process_pool = futures.ProcessPoolExecutor(max_workers=1) # values_to_process = GraphValues( # dcs_cpu_history=CTX.dcs_cpu_history, # dcs_mem_history=CTX.dcs_mem_history, # server_cpu_history=CTX.server_cpu_history, # server_mem_history=CTX.server_mem_history, # server_bytes_recv_history=CTX.server_bytes_recv_history, # server_bytes_sent_history=CTX.server_bytes_sent_history, # players_history=CTX.players_history, # ) # future = process_pool.submit( # _make_history_graph, values_to_process, days, hours, minutes, show, save_path # ) # if callback: # future.add_done_callback(callback) if __name__ == '__main__': # Debug code import random TIME_DELTA = datetime.timedelta(hours=5) TOTAL_SECONDS = int(TIME_DELTA.total_seconds()) NOW = datetime.datetime.now().timestamp() PLAYER_COUNT = 0 CTX.players_history.append((NOW - TOTAL_SECONDS, 0)) SKIP = 0 for time_stamp in range(TOTAL_SECONDS, 0, -10): CTX.server_mem_history.append( (NOW - time_stamp, random.randint(60, 70))) # nosec CTX.dcs_cpu_history.append((NOW - time_stamp, random.randint(20, 30))) # nosec CTX.dcs_mem_history.append((NOW - time_stamp, random.randint(60, 70))) # nosec SKIP += 1 if SKIP > 20: SKIP = 0 CTX.server_bytes_recv_history.append( (NOW - time_stamp, random.randint(0, 50000000))) # nosec CTX.server_bytes_sent_history.append( (NOW - time_stamp, random.randint(0, 50000000))) # nosec if time_stamp <= int(TOTAL_SECONDS / 2): CTX.server_cpu_history.append( (NOW - time_stamp, random.randint(20, 30))) # nosec if random.randint(0, 100) > 99: # nosec PLAYER_COUNT += random.choice([-1, 1]) # nosec if PLAYER_COUNT < 0: PLAYER_COUNT = 0 continue CTX.players_history.append((NOW - time_stamp, PLAYER_COUNT)) TIME_DELTA = datetime.datetime.now() - TIME_DELTA # type: ignore TIME_DELTA = TIME_DELTA.timestamp() # type: ignore make_history_graph(hours=5, save_path='./test.png')
32.747253
117
0.640017
0
0
0
0
0
0
0
0
2,552
0.214094
b04f60f28cbb6155e0266d15a62d61ce814d26c3
1,267
py
Python
20.valid-parentheses.py
Qianli-Ma/LeetCode
ebda421c3d652adffca5e547a22937bf1726a532
[ "MIT" ]
null
null
null
20.valid-parentheses.py
Qianli-Ma/LeetCode
ebda421c3d652adffca5e547a22937bf1726a532
[ "MIT" ]
null
null
null
20.valid-parentheses.py
Qianli-Ma/LeetCode
ebda421c3d652adffca5e547a22937bf1726a532
[ "MIT" ]
null
null
null
# # @lc app=leetcode id=20 lang=python3 # # [20] Valid Parentheses # # https://leetcode.com/problems/valid-parentheses/description/ # # algorithms # Easy (36.20%) # Total Accepted: 554.4K # Total Submissions: 1.5M # Testcase Example: '"()"' # # Given a string containing just the characters '(', ')', '{', '}', '[' and # ']', determine if the input string is valid. # # An input string is valid if: # # # Open brackets must be closed by the same type of brackets. # Open brackets must be closed in the correct order. # # # Note that an empty string is also considered valid. # # Example 1: # # # Input: "()" # Output: true # # # Example 2: # # # Input: "()[]{}" # Output: true # # # Example 3: # # # Input: "(]" # Output: false # # # Example 4: # # # Input: "([)]" # Output: false # # # Example 5: # # # Input: "{[]}" # Output: true # # # class Solution: def isValid(self, s: str) -> bool: stack = [] dict = {"]": "[", "}": "{", ")": "("} for char in s: if char in dict.values(): stack.append(char) elif char in dict.keys(): if stack == [] or dict[char] != stack.pop(): return False else: return False return stack == []
16.454545
75
0.534333
421
0.332019
0
0
0
0
0
0
801
0.631703
b0578e2fd0b0bbd54ee3add80281e9bcba12bdeb
428
py
Python
airypi/redis_queue.py
airypi/airypi
c7e3e781eaf2e6b3e2e87b576d5202e381544d0c
[ "Apache-2.0" ]
3
2015-11-04T19:45:48.000Z
2017-10-26T19:40:18.000Z
airypi/redis_queue.py
airypi/airypi
c7e3e781eaf2e6b3e2e87b576d5202e381544d0c
[ "Apache-2.0" ]
null
null
null
airypi/redis_queue.py
airypi/airypi
c7e3e781eaf2e6b3e2e87b576d5202e381544d0c
[ "Apache-2.0" ]
null
null
null
import redis from flask import g, session import device import message_queue import os class RedisMQ(message_queue.MessageQueue): redis = None def push(self, data): RedisMQ.redis.lpush(self.queue_key, data) RedisMQ.redis.ltrim(self.queue_key, 0, self.max_size) def pop(self): return RedisMQ.redis.rpop(self.queue_key) def clear(self): RedisMQ.redis.delete(self.queue_key)
22.526316
61
0.698598
339
0.792056
0
0
0
0
0
0
0
0
b05916119eca4a721a156d9e476326122efd26e2
4,956
py
Python
rnnApp.py
RiboswitchClassifier/RiboswitchClassification
4a4ab0590aa50aa765638b2bd8aa0cfd84054ac7
[ "MIT" ]
2
2019-12-16T13:08:28.000Z
2021-02-23T03:03:18.000Z
rnnApp.py
RiboswitchClassifier/RiboswitchClassification
4a4ab0590aa50aa765638b2bd8aa0cfd84054ac7
[ "MIT" ]
null
null
null
rnnApp.py
RiboswitchClassifier/RiboswitchClassification
4a4ab0590aa50aa765638b2bd8aa0cfd84054ac7
[ "MIT" ]
3
2019-01-01T06:00:20.000Z
2020-01-28T13:57:49.000Z
import tensorflow as tf import theano import pandas as pd import numpy as np import matplotlib # matplotlib.use('pdf') import matplotlib.pyplot as plt from keras.layers import Dense, Dropout, LSTM, Embedding, Activation, Lambda, Bidirectional from sklearn.preprocessing import OneHotEncoder from keras.engine import Input, Model, InputSpec from keras.preprocessing.sequence import pad_sequences from keras.utils import plot_model from keras.utils.data_utils import get_file from keras.models import Sequential from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint from sklearn.utils import class_weight from keras import backend as K from keras.preprocessing import sequence from keras.models import model_from_json from keras.utils import to_categorical from sklearn.utils import shuffle from sklearn.metrics import classification_report,confusion_matrix from sklearn.preprocessing import label_binarize import os import pydot from keras.models import load_model import multiclassROC import graphviz import functools import preprocess # Hyperparameters and Parameters EPOCHS = 25 # an arbitrary cutoff, generally defined as "one pass over the entire dataset", used to separate training into distinct phases, which is useful for logging and periodic evaluation. BATCH_SIZE = 128 # a set of N samples. The samples in a batch are processed` independently, in parallel. If training, a batch results in only one update to the model. ALLOWED_ALPHABETS = 'ATGCN' # Allowed Charecters INPUT_DIM = len(ALLOWED_ALPHABETS) # a vocabulary of 5 words in case of genome sequence 'ATGCN' CLASSES = 32 # Number of Classes to Classify -> Change this to 16 when needed OUTPUT_DIM = 50 # Embedding output of Layer 1 RNN_HIDDEN_DIM = 62 # Hidden Layers DROPOUT_RATIO = 0.2 # proportion of neurones not used for training MAXLEN = 250 # cuts text after number of these characters in pad_sequences VALIDATION_SPLIT = 0.1 # Create Directory for Checkpoints checkpoint_dir ='epoch_tuning/RNN/32_checkpoints' os.path.exists(checkpoint_dir) # Path to save and load Model model_file_h5 = "models/rnn_32_model.h5" # Path to Dataset input_file_train = 'processed_datasets/final_32train.csv' input_file_test = 'processed_datasets/final_32test.csv' # Create the RNN def create_lstm(input_length, rnn_hidden_dim = RNN_HIDDEN_DIM, output_dim = OUTPUT_DIM, input_dim = INPUT_DIM, dropout = DROPOUT_RATIO): model = Sequential() model.add(Embedding(input_dim = INPUT_DIM, output_dim = output_dim, input_length = input_length, name='embedding_layer')) model.add(Bidirectional(LSTM(rnn_hidden_dim, return_sequences=True))) model.add(Dropout(dropout)) model.add(Bidirectional(LSTM(rnn_hidden_dim))) model.add(Dropout(dropout)) model.add(Dense(CLASSES, activation='softmax')) model.compile('adam', 'sparse_categorical_crossentropy', metrics=['accuracy']) # binary_crossentropy # categorical_crossentropy return model # Train RNN def train_model_and_save(X_train, y_train, model): # Save Checkpoint filepath= checkpoint_dir + "/weights-improvement-{epoch:02d}-{val_acc:.2f}.hdf5" checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=0, save_best_only=True, mode='max') callbacks_list = [checkpoint] class_weights = class_weight.compute_class_weight('balanced', np.unique(y_train), y_train) history = model.fit(X_train, y_train, batch_size=BATCH_SIZE, class_weight=class_weights, epochs=EPOCHS, callbacks=callbacks_list, validation_split = VALIDATION_SPLIT, verbose = 1, shuffle=True) model.save(model_file_h5) print("Saved model to disk") return model # Classification Report def generate_classification_report(model_loaded, X_test, y_test): print (classification_report(y_test,model_loaded.predict_classes(X_test))) # Predict Classes, Probabilities, Call AucRoc Function def generate_auc_roc(X_test, y_test): model_loaded = load_model(model_file_h5) generate_classification_report(model_loaded, X_test, y_test) predicted_classes = model_loaded.predict_classes(X_test) print ("Predicted Classes") print (predicted_classes) score, acc = model_loaded.evaluate(X_test, y_test,batch_size=BATCH_SIZE) print (score) print (acc) y_score = model_loaded.predict_proba(X_test) print ("Predicted Probabilities") print (y_score) bin_output = preprocess.binarize(y_test) multiclassROC.calculate_roc(bin_output, y_score, "RnnClassifierModel", CLASSES) if __name__ == '__main__': # Load Training Datasets X_train, y_train = preprocess.load_data(input_file_train,True) # Create Model Structure model = create_lstm(len(X_train[0])) model.summary() # Load Test Datasets X_test, y_test = preprocess.load_data(input_file_test, False) # Train Model and Save it model = train_model_and_save(X_train, y_train, model) # Generate Auc and Roc Curve generate_auc_roc(X_test, y_test)
43.858407
193
0.7841
0
0
0
0
0
0
0
0
1,443
0.291162
b05b358493a6597bac995a34db28dd63e04524e6
72
py
Python
geetiles/config/prod.py
icpac-igad/gee-tiles
713a58e00b4377dd54aeaa77416ad7fe7b2c9206
[ "MIT" ]
1
2020-09-28T12:23:25.000Z
2020-09-28T12:23:25.000Z
geetiles/config/prod.py
icpac-igad/gee-tiles
713a58e00b4377dd54aeaa77416ad7fe7b2c9206
[ "MIT" ]
6
2019-08-28T17:17:25.000Z
2021-10-13T07:19:14.000Z
geetiles/config/prod.py
icpac-igad/gee-tiles
713a58e00b4377dd54aeaa77416ad7fe7b2c9206
[ "MIT" ]
5
2019-11-15T10:37:56.000Z
2021-07-15T08:07:27.000Z
"""-""" SETTINGS = { 'logging': { 'level': 'DEBUG' } }
9
24
0.347222
0
0
0
0
0
0
0
0
30
0.416667
b05bf40e3728937480f8f42cb9c975d60036475f
6,911
py
Python
neptune-python-utils/neptune_python_utils/glue_gremlin_client.py
Alfian878787/amazon-neptune-tools
a447da238e99612a290babc66878fe772727a19e
[ "Apache-2.0" ]
null
null
null
neptune-python-utils/neptune_python_utils/glue_gremlin_client.py
Alfian878787/amazon-neptune-tools
a447da238e99612a290babc66878fe772727a19e
[ "Apache-2.0" ]
null
null
null
neptune-python-utils/neptune_python_utils/glue_gremlin_client.py
Alfian878787/amazon-neptune-tools
a447da238e99612a290babc66878fe772727a19e
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Amazon.com, Inc. or its affiliates. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. # This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, # either express or implied. See the License for the specific language governing permissions # and limitations under the License. import sys from pyspark.sql.functions import lit from pyspark.sql.functions import format_string from gremlin_python import statics from gremlin_python.structure.graph import Graph from gremlin_python.process.graph_traversal import __ from gremlin_python.process.strategies import * from gremlin_python.driver.driver_remote_connection import DriverRemoteConnection from gremlin_python.driver.protocol import GremlinServerError from gremlin_python.process.traversal import * from neptune_python_utils.gremlin_utils import GremlinUtils from neptune_python_utils.endpoints import Endpoints class GlueGremlinClient: def __init__(self, endpoints): self.gremlin_utils = GremlinUtils(endpoints) GremlinUtils.init_statics(globals()) def add_vertices(self, label): """Adds a vertex with the supplied label for each row in a DataFrame partition. If the DataFrame contains an '~id' column, the values in this column will be treated as user-supplied IDs for the new vertices. If the DataFrame does not have an '~id' column, Neptune will autogenerate a UUID for each vertex. Example: >>> dynamicframe.toDF().foreachPartition(neptune.add_vertices('Product')) """ def add_vertices_for_label(rows): try: conn = self.gremlin_utils.remote_connection() g = self.gremlin_utils.traversal_source(connection=conn) for row in rows: entries = row.asDict() traversal = g.addV(label) for key, value in entries.items(): key = key.split(':')[0] if key == '~id': traversal.property(id, value) elif key == '~label': pass else: traversal.property(key, value) traversal.next() conn.close() except GremlinServerError as err: print("Neptune error: {0}".format(err)) except: print("Unexpected error:", sys.exc_info()[0]) return add_vertices_for_label def upsert_vertices(self, label): """Conditionally adds vertices for the rows in a DataFrame partition using the Gremlin coalesce() idiom. The DataFrame must contain an '~id' column. Example: >>> dynamicframe.toDF().foreachPartition(neptune.upsert_vertices('Product')) """ def upsert_vertices_for_label(rows): try: conn = self.gremlin_utils.remote_connection() g = self.gremlin_utils.traversal_source(connection=conn) for row in rows: entries = row.asDict() create_traversal = __.addV(label) for key, value in entries.items(): key = key.split(':')[0] if key == '~id': create_traversal.property(id, value) elif key == '~label': pass else: create_traversal.property(key, value) g.V(entries['~id']).fold().coalesce(__.unfold(), create_traversal).next() conn.close() except GremlinServerError as err: print("Neptune error: {0}".format(err)) except: print("Unexpected error:", sys.exc_info()[0]) return upsert_vertices_for_label def add_edges(self, label): """Adds an edge with the supplied label for each row in a DataFrame partition. If the DataFrame contains an '~id' column, the values in this column will be treated as user-supplied IDs for the new edges. If the DataFrame does not have an '~id' column, Neptune will autogenerate a UUID for each edge. Example: >>> dynamicframe.toDF().foreachPartition(neptune.add_edges('ORDER_DETAIL')) """ def add_edges_for_label(rows): try: conn = self.gremlin_utils.remote_connection() g = self.gremlin_utils.traversal_source(connection=conn) for row in rows: entries = row.asDict() traversal = g.V(row['~from']).addE(label).to(V(row['~to'])).property(id, row['~id']) for key, value in entries.items(): key = key.split(':')[0] if key not in ['~id', '~from', '~to', '~label']: traversal.property(key, value) traversal.next() conn.close() except GremlinServerError as err: print("Neptune error: {0}".format(err)) except: print("Unexpected error:", sys.exc_info()[0]) return add_edges_for_label def upsert_edges(self, label): """Conditionally adds edges for the rows in a DataFrame partition using the Gremlin coalesce() idiom. The DataFrame must contain '~id', '~from', '~to' and '~label' columns. Example: >>> dynamicframe.toDF().foreachPartition(neptune.upsert_edges('ORDER_DETAIL')) """ def add_edges_for_label(rows): try: conn = self.gremlin_utils.remote_connection() g = self.gremlin_utils.traversal_source(connection=conn) for row in rows: entries = row.asDict() create_traversal = __.V(row['~from']).addE(label).to(V(row['~to'])).property(id, row['~id']) for key, value in entries.items(): key = key.split(':')[0] if key not in ['~id', '~from', '~to', '~label']: create_traversal.property(key, value) g.E(entries['~id']).fold().coalesce(__.unfold(), create_traversal).next() conn.close() except GremlinServerError as err: print("Neptune error: {0}".format(err)) except: print("Unexpected error:", sys.exc_info()[0]) return add_edges_for_label
46.073333
135
0.570395
5,751
0.832152
0
0
0
0
0
0
2,307
0.333816
b05fe1389ad39d5ec1240e047aa523f2264c0d97
343
py
Python
floyd_warshall/messages/rate_request.py
hrs231/sample-code
91c2972d1a414397d3505d3b4df9ee80b67bcac0
[ "MIT" ]
null
null
null
floyd_warshall/messages/rate_request.py
hrs231/sample-code
91c2972d1a414397d3505d3b4df9ee80b67bcac0
[ "MIT" ]
null
null
null
floyd_warshall/messages/rate_request.py
hrs231/sample-code
91c2972d1a414397d3505d3b4df9ee80b67bcac0
[ "MIT" ]
null
null
null
class RateRequest(object): """" Used by Price Engine Clients to query the Price Engine """ def __init__(self, exch_1, curr_1, exch_2, curr_2): self.exch_1 = exch_1 self.curr_1 = curr_1 self.exch_2 = exch_2 self.curr_2 = curr_2 self.rate = 0 self.path = [] self.error_msg = None
28.583333
67
0.594752
341
0.994169
0
0
0
0
0
0
63
0.183673
b0618e2deaae21564649c946c7681a44ee75680f
2,613
py
Python
backend/app/api/api_v1/router/file/excel_tool.py
PY-GZKY/fastapi-crawl-admin
6535054994d11e3c31b4caeae65e8fa0f495d2b7
[ "MIT" ]
13
2021-07-25T15:26:04.000Z
2022-03-02T12:12:02.000Z
backend/app/api/api_v1/router/file/excel_tool.py
PY-GZKY/fastapi-crawl-admin
6535054994d11e3c31b4caeae65e8fa0f495d2b7
[ "MIT" ]
1
2021-07-26T03:26:09.000Z
2021-07-26T09:05:38.000Z
backend/app/api/api_v1/router/file/excel_tool.py
PY-GZKY/fastapi-crawl-admin
6535054994d11e3c31b4caeae65e8fa0f495d2b7
[ "MIT" ]
3
2021-07-26T01:44:24.000Z
2021-07-31T14:31:49.000Z
# -*- coding: utf-8 -* # @Time : 2020/12/22 15:58 from fastapi import Depends from motor.motor_asyncio import AsyncIOMotorClient from app.api.db.mongoDB import get_database import pandas as pd import numpy as np from io import BytesIO class ExcelTools: def __init__(self, columns_map=None, order=None): ''' :param columns_map: 列名映射 => {"name":"姓名","score":"成绩","sex":"性别"} :param columns_map: 列排序列表 => ["name","sex","score"] ''' self.columns_map = columns_map self.order = order def get_excel_header(self,excel): df = pd.read_excel(excel, skiprows=None) print(df.columns) return df.columns # 表格转字典 def excel_to_dict(self,excel,skiprows=1): ''' Excel转Python dict :param excel: bytes :return: ''' if not excel: return [] df = pd.read_excel(excel, skiprows=None) df = df.replace(np.nan, '', regex=True) # 去除所有列数据中的空格 stripstr = lambda x: x.strip() if isinstance(x, np.unicode) else x df = df.applymap(stripstr) # 列名映射 if self.columns_map: columns_map = dict(zip(self.columns_map.values(), self.columns_map.keys())) df = df.rename(columns=columns_map) result = df.to_dict(orient='records') return result # 字典转表格 def dict_to_excel(self, datas): """ :param datas: 数据集 => [{"name":"张三","score":90,"sex":"男"}] :return: """ # 初始化IO output = BytesIO() # 将字典列表转换为DataFrame pf = pd.DataFrame(datas) # 按字段排序 if self.order: pf = pf[self.order] # 将列名替换为中文 if self.columns_map: pf.rename(columns=self.columns_map, inplace=True) # 指定生成的Excel表格名称 writer = pd.ExcelWriter(output, engine='xlsxwriter') # 替换空单元格 pf.fillna(' ', inplace=True) # 输出 pf.to_excel(writer, encoding='utf-8', sheet_name='sheet1', index=False) # 格式化Excel workbook = writer.book worksheet = writer.sheets['sheet1'] format = workbook.add_format({'text_wrap': True}) # 设置列宽 for i, col in enumerate(pf.columns): # find and set length of column column_len = pf[col].astype(str).str.len().max() column_len = max(column_len, len(col)) + 2 # set column length worksheet.set_column(i, i, column_len) # 保存到IO writer.close() output.seek(0) return output if __name__ == '__main__': pass
25.871287
87
0.564485
2,534
0.900818
0
0
0
0
0
0
828
0.294348
b0619b37fbd880320070eeeb51552bb149486090
1,164
py
Python
Lab8/1 + 2 (Simple socket server)/simple_client.py
marianfx/python-labs
7066db410ad19cababb7b66745641e65a28ccd98
[ "MIT" ]
null
null
null
Lab8/1 + 2 (Simple socket server)/simple_client.py
marianfx/python-labs
7066db410ad19cababb7b66745641e65a28ccd98
[ "MIT" ]
null
null
null
Lab8/1 + 2 (Simple socket server)/simple_client.py
marianfx/python-labs
7066db410ad19cababb7b66745641e65a28ccd98
[ "MIT" ]
null
null
null
"""Simple socket client for the simple socket client.""" import sys import socket import time SOCKET_ADDRESS = "127.0.0.1" SOCKET_PORT = 6996 def build_client_tcp(address: str, port: int): """Builds the TCP client.""" try: sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((address, port)) time.sleep(1) sock.close() except: print("Cannot connect to the target server.") def build_client_udp(address: str, port: int, message: str): """Builds the UDP client.""" sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) sock.sendto(message.encode(), (address, port)) if __name__ == "__main__": if len(sys.argv) < 5: print("You must give as args the mode, server address, the port and the message to send.") exit() MODE = sys.argv[1] SOCKET_ADDRESS = sys.argv[2] SOCKET_PORT = int(sys.argv[3]) MESSAGE = sys.argv[4] if MODE == "TCP": build_client_tcp(SOCKET_ADDRESS, SOCKET_PORT) elif MODE == "UDP": build_client_udp(SOCKET_ADDRESS, SOCKET_PORT, MESSAGE) else: print("Unable to determine what you want.")
28.390244
98
0.649485
0
0
0
0
0
0
0
0
300
0.257732
b062b0f29115369104d664570dbb03f1de934fe3
2,689
py
Python
009/app.py
ilos-vigil/random-script
bf8d45196d4faa6912dc0469a86b8370f43ce7ac
[ "MIT" ]
null
null
null
009/app.py
ilos-vigil/random-script
bf8d45196d4faa6912dc0469a86b8370f43ce7ac
[ "MIT" ]
null
null
null
009/app.py
ilos-vigil/random-script
bf8d45196d4faa6912dc0469a86b8370f43ce7ac
[ "MIT" ]
null
null
null
import bs4 import nltk import json import re import requests with open('./acronym_abbreviation_id.json', 'r') as f: data = f.read() list_acronym_abbreviation = json.loads(data) from_wikipedia = False if from_wikipedia: # Take text with Indonesian language from Wikipedia randomly html = requests.get('https://id.wikipedia.org/wiki/Istimewa:Halaman_sembarang').text soup = bs4.BeautifulSoup(html, 'html.parser') for p in soup.find('div', class_='mw-parser-output').find_all('p'): text = f'{text}{p.get_text()}' text = re.sub(r'\n', '', text) text = re.sub(r'\[\d*\]', '', text) else: text = ''' Linux (atau GNU/Linux, lihat kontroversi penamaannya) adalah nama yang diberikan kepada kumpulan sistem operasi Mirip Unix yang menggunakan Kernel Linux sebagai kernelnya. Linux merupakan proyek perangkat lunak bebas dan sumber terbuka terbesar di dunia. Seperti perangkat lunak bebas dan sumber terbuka lainnya pada umumnya, kode sumber Linux dapat dimodifikasi, digunakan dan didistribusikan kembali secara bebas oleh siapa saja ''' text = re.sub(r'\n', '', text) print(f'Input : {text}') # pisah berdasarkan kalimat # step 1 boundary = '••' rule = { r'\.': f'.•', r'\?': f'?•', '!': f'!•', ';': f';•', ':': f':•' } for old, new in rule.items(): text = re.sub(old, new, text) # step 2 for word in re.finditer(r'"(.+)"', text): start_position, end_position = word.regs[0][0], word.regs[0][1] quoted_sentence = text[start_position:end_position] quoted_sentence = re.sub('•', '', quoted_sentence) # remove boundary if text[end_position] == '.': # move boundary if character after " is . text = text[:start_position] + quoted_sentence + text[end_position:] else: text = text[:start_position] + quoted_sentence + '•' + text[end_position:] # step 3 for word in re.finditer(r'([\w]*)(\.|\?|!|;|:)•', text): # [word][sign]• # [0] -> position start, [1] -> position for [word], [2] -> position for [sign] # position value is adalah (start, end + 1) word_start_position, word_end_position, boundary_position = word.regs[1][0], word.regs[2][1], word.regs[0][1] if text[word_start_position:word_end_position] in list_acronym_abbreviation: text = text[:word_end_position] + text[boundary_position:] # remove boundary # step 4 for word in re.finditer(r'([\w]+) ?(!|\?)(•) ?[a-z]', text): #[word](optional space)[sign][•](optional space)[lowercase char] boundary_position = word.regs[2][1] text = text[:boundary_position] + text[boundary_position:] # step 5 sentences = text.split('•') print('Output:') [print(s.lstrip(' ').rstrip(' ')) for s in sentences]
38.414286
430
0.661584
0
0
0
0
0
0
0
0
1,205
0.443667
b062c54e4119bba9afb9e6fce3e62bb1a445400e
2,295
py
Python
graphs/page_rank.py
tg12/Python
398d1dbf4b780d1725aeae9a91b4c79f4410e2f0
[ "MIT" ]
null
null
null
graphs/page_rank.py
tg12/Python
398d1dbf4b780d1725aeae9a91b4c79f4410e2f0
[ "MIT" ]
null
null
null
graphs/page_rank.py
tg12/Python
398d1dbf4b780d1725aeae9a91b4c79f4410e2f0
[ "MIT" ]
1
2020-06-26T09:46:17.000Z
2020-06-26T09:46:17.000Z
'''THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' # Bitcoin Cash (BCH) qpz32c4lg7x7lnk9jg6qg7s4uavdce89myax5v5nuk # Ether (ETH) - 0x843d3DEC2A4705BD4f45F674F641cE2D0022c9FB # Litecoin (LTC) - Lfk5y4F7KZa9oRxpazETwjQnHszEPvqPvu # Bitcoin (BTC) - 34L8qWiQyKr8k4TnHDacfjbaSqQASbBtTd # contact :- github@jamessawyer.co.uk """ Author: https://github.com/bhushan-borole """ """ The input graph for the algorithm is: A B C A 0 1 1 B 0 0 1 C 1 0 0 """ graph = [[0, 1, 1], [0, 0, 1], [1, 0, 0]] class Node: def __init__(self, name): self.name = name self.inbound = [] self.outbound = [] def add_inbound(self, node): self.inbound.append(node) def add_outbound(self, node): self.outbound.append(node) def __repr__(self): return "Node {}: Inbound: {} ; Outbound: {}".format( self.name, self.inbound, self.outbound ) def page_rank(nodes, limit=3, d=0.85): ranks = {} for node in nodes: ranks[node.name] = 1 outbounds = {} for node in nodes: outbounds[node.name] = len(node.outbound) for i in range(limit): print("======= Iteration {} =======".format(i + 1)) for j, node in enumerate(nodes): ranks[node.name] = (1 - d) + d * sum( [ranks[ib] / outbounds[ib] for ib in node.inbound] ) print(ranks) def main(): names = list(input("Enter Names of the Nodes: ").split()) nodes = [Node(name) for name in names] for ri, row in enumerate(graph): for ci, col in enumerate(row): if col == 1: nodes[ci].add_inbound(names[ri]) nodes[ri].add_outbound(names[ci]) print("======= Nodes =======") for node in nodes: print(node) page_rank(nodes) if __name__ == "__main__": main()
25.21978
74
0.616122
404
0.176035
0
0
0
0
0
0
1,016
0.442702
b064a795cdfc5cdd50a92817a383a97f8144e544
4,330
py
Python
DeepRTS/python/game.py
cair/deep-rts
7aa5dde0c5df10ae3a3d057e7b89641aec58e115
[ "MIT" ]
144
2018-07-13T07:47:50.000Z
2022-03-31T06:29:50.000Z
DeepRTS/python/game.py
cair/DeepRTS
2ea4de0993ea0ca2677fdb36a172779db4ce7868
[ "MIT" ]
18
2019-03-29T10:37:01.000Z
2022-03-02T12:47:34.000Z
DeepRTS/python/game.py
cair/DeepRTS
2ea4de0993ea0ca2677fdb36a172779db4ce7868
[ "MIT" ]
23
2018-11-02T18:12:51.000Z
2022-02-15T20:32:18.000Z
from DeepRTS import Engine, Constants from DeepRTS.python import GUI from DeepRTS.python import Config from DeepRTS.python import DeepRTSPlayer import numpy as np import random import os import argparse import gym dir_path = os.path.dirname(os.path.realpath(__file__)) class Game(Engine.Game): def __init__(self, map_name, n_players=2, engine_config=Engine.Config.defaults(), gui_config=None, tile_size=32, terminal_signal=False ): # This sets working directory, so that the C++ can load files correctly (dir_path not directly accessible in # c++) os.chdir(dir_path) # Override map try: # This sometimmes fails under ray parser = argparse.ArgumentParser(description='Process some integers.') parser.add_argument('--map', action="store", dest="map", type=str) args = parser.parse_args() if args.map is not None: map_name = args.map except: pass # TODO if engine_config: engine_config.set_terminal_signal(terminal_signal) # Disable terminal signal engine_config.set_terminal_signal(terminal_signal) # Call C++ constructor super(Game, self).__init__(map_name, engine_config) # Event listeners self._listeners = { "on_tile_change": [] } self._render_every = 1 self._view_every = 1 self._capture_every = 1 self.gui = GUI(self, tile_size=tile_size, config=gui_config if isinstance(gui_config, Config) else Config()) self._py_players = [] # Keep reference of the py object for i in range(n_players): player = DeepRTSPlayer(self) self.insert_player(player) self._py_players.append(player) # Select first player as default self.set_player(self.players[0]) # Define the action space self.action_space = LimitedDiscrete(Constants.action_min, Constants.action_max) # Define the observation space, here we assume that max is 255 (image) # TODO self.observation_space = gym.spaces.Box( 0, 255, shape=self.get_state().shape, dtype=np.float32) self.start() @property def players(self): return self._py_players @staticmethod def sample_action(self): return int(Engine.Constants.action_max * random.random()) + Engine.Constants.action_min def update(self): self.tick() if self.gui.config.input: self.event() super().update() self.caption() if self.gui.config.render: self.render() if self.gui.config.view: self.view() def _render(self): if self.get_ticks() % self._render_every == 0: self.gui.render() def view(self): if self.get_ticks() % self._view_every == 0: self.gui.view() def event(self): self.gui.event() def capture(self): if self.get_ticks() % self._capture_every == 0: return self.gui.capture() return None def get_state(self, image=False, copy=True): if image: return self.gui.capture(copy=copy) else: return np.array(self.state, copy=copy) def _caption(self): pass def _on_unit_create(self, unit): pass def _on_unit_destroy(self, unit): pass def _on_episode_start(self): pass # for tile in self.tilemap.tiles: # self.gui.gui_tiles.set_tile(tile.x, tile.y, tile.get_type_id()) def _on_episode_end(self): pass def _on_tile_deplete(self, tile): # TODO pass # self.gui.gui_tiles.set_tile(tile.x, tile.y, tile.get_type_id()) def _on_tile_change(self, tile): self.gui.on_tile_change(tile) def set_render_frequency(self, interval): self._render_every = interval def set_player(self, player: DeepRTSPlayer): self.set_selected_player(player) def set_view_every(self, n): self._view_every = n def set_capture_every(self, n): self._capture_every = n
26.564417
116
0.599769
4,055
0.93649
0
0
202
0.046651
0
0
629
0.145266
b064ac81a6a14605eca93bb63e07f0834ed4309a
1,147
py
Python
lairgpt/utils/assets.py
lightonai/lairgpt
7580e1339a39662b2ff636d158c36195eb7fe3fb
[ "MIT" ]
19
2021-05-04T13:54:45.000Z
2022-01-05T15:45:12.000Z
lairgpt/utils/assets.py
lightonai/lairgpt
7580e1339a39662b2ff636d158c36195eb7fe3fb
[ "MIT" ]
null
null
null
lairgpt/utils/assets.py
lightonai/lairgpt
7580e1339a39662b2ff636d158c36195eb7fe3fb
[ "MIT" ]
1
2021-05-28T15:25:12.000Z
2021-05-28T15:25:12.000Z
from enum import Enum from os.path import expanduser from lairgpt.utils.remote import local_dir class Config(Enum): """Settings for preconfigured models instances """ SMALL = { "d_model": 768, "n_heads": 12, "n_layers": 12, "vocab_size": 50262, "max_seq_len": 1024 } MEDIUM = { "d_model": 1024, "n_heads": 16, "n_layers": 24, "vocab_size": 50262, "max_seq_len": 1024 } LARGE = { "d_model": 1280, "n_heads": 20, "n_layers": 36, "vocab_size": 50262, "max_seq_len": 1024 } XLARGE = { "d_model": 1280, "n_heads": 20, "n_layers": 36, "vocab_size": 50262, "max_seq_len": 1024 } class Snapshot(Enum): """Snapshots for preconfigured models state dictionaries """ SMALL = local_dir + "small.pt" MEDIUM = local_dir + "medium.pt" LARGE = local_dir + "large.pt" XLARGE = local_dir + "xlarge.pt" class Tokenizer(Enum): """Tokenizers for preconfigured models inference """ CCNET = local_dir + "tokenizer_ccnet.json"
23.408163
60
0.558849
1,045
0.911072
0
0
0
0
0
0
450
0.392328
b0651029340e768b51b715881e03f9826ce6837f
1,546
py
Python
smart_open/__init__.py
DataTron-io/smart_open
3565eff8f0ffe19d7fd31063753384e0084fb1e0
[ "MIT" ]
1
2020-09-28T06:47:58.000Z
2020-09-28T06:47:58.000Z
smart_open/__init__.py
DataTron-io/smart_open
3565eff8f0ffe19d7fd31063753384e0084fb1e0
[ "MIT" ]
null
null
null
smart_open/__init__.py
DataTron-io/smart_open
3565eff8f0ffe19d7fd31063753384e0084fb1e0
[ "MIT" ]
null
null
null
import shutil from .smart_open_lib import * DEFAULT_CHUNKSIZE = 16*1024*1024 # 16mb def copy_file(src, dest, close_src=True, close_dest=True, make_path=False): """ Copies file from src to dest. Supports s3 and webhdfs (does not include kerberos support) If src does not exist, a FileNotFoundError is raised. :param src: file-like object or path :param dest: file-like object or path :param close_src: boolean (optional). if True, src file is closed after use. :param close_dest: boolean (optional). if True, dest file is closed after use. :param make_path: str (optional, default False). if True, destination parent directories are created if missing. Only if path is local """ logging.info("Copy file from {} to {}".format(src, dest)) if make_path: dir_path, _ = os.path.split(dest) if not os.path.isdir(dir_path): os.makedirs(dir_path) in_file = smart_open(src, 'rb') out_file = smart_open(dest, 'wb') try: shutil.copyfileobj(in_file, out_file, DEFAULT_CHUNKSIZE) except NotImplementedError as e: logging.info("Error encountered copying file. Falling back to looping over input file. {}".format(e)) for line in in_file: out_file.write(line) try: out_file.flush() except Exception as e: logging.info("Unable to flush out_file") if in_file and not in_file.closed and close_src: in_file.close() if out_file and not out_file.closed and close_dest: out_file.close()
34.355556
138
0.679172
0
0
0
0
0
0
0
0
694
0.4489
b068470f8ca662453890dee9ded5d2a25fb6fcdd
4,706
py
Python
guacozy_server/backend/api/utils.py
yinm8315/guacozy-django-react
99a8270cb660052d3b4868b7959a5750968d9cc3
[ "MIT" ]
121
2019-10-28T09:23:05.000Z
2022-03-19T00:30:36.000Z
guacozy_server/backend/api/utils.py
peppelinux/guacozy
ff4ca3fae8b9a5cb379a7a73d39f0d0ea8b6521c
[ "MIT" ]
43
2019-10-28T09:22:59.000Z
2022-03-18T23:01:25.000Z
guacozy_server/backend/api/utils.py
peppelinux/guacozy
ff4ca3fae8b9a5cb379a7a73d39f0d0ea8b6521c
[ "MIT" ]
44
2019-11-05T01:58:05.000Z
2022-03-30T08:05:18.000Z
import rules from backend.models import Folder def add_folder_to_tree_dictionary(folder, resulting_set, include_ancestors=False): """ Adds folder, folder's ancestors and folder's descendants Ancestors are needed to build the traverse path in tree view Descendants are needed because user has permission to see them :type folder: Folder :type resulting_set: set :type include_ancestors: bool} """ # Include all ancestors, which we get from django-mptt's get_ancestors() # it's a "cheap" query if include_ancestors and folder.parent is not None: for ancestor in folder.parent.get_ancestors(ascending=False, include_self=True): resulting_set.add(ancestor) # add this folder resulting_set.add(folder) # add all foldres children for child in folder.children.all(): add_folder_to_tree_dictionary(child, resulting_set, include_ancestors=False) def check_folder_permissions(folder, resulting_set, user, require_view_permission=False): """ Recursively check folders and adds it to resulting_set if user has direct permission on folder If require_view_permission is set to True, it returns only folders with direct permission and all child folders If require_view_permission is set to True, it also returns all ancestor folders :type folder: backend.Folder :type user: users.User :type resulting_set: set :type require_view_permission: bool """ if rules.test_rule('has_direct_permission', user, folder): add_folder_to_tree_dictionary(folder, resulting_set, include_ancestors=not require_view_permission) else: for child in folder.children.all(): check_folder_permissions(child, resulting_set, user, require_view_permission) def folder_to_object(folder, user, allowed_to_list=None, allowed_to_view=None, include_objects=True): """ Given folder converts it and it's children and objects to a tree format, which is used in API :type folder: Folder :type user: users.User :type allowed_to_list: set :type allowed_to_view: set :type include_objects: bool """ if allowed_to_list is None: allowed_to_list = user_allowed_folders_ids(user, require_view_permission=False) if allowed_to_view is None: allowed_to_view = user_allowed_folders_ids(user, require_view_permission=True) result = {'id': folder.id, 'text': folder.name, 'isFolder': True} result_children = [] # For every child check if it is included in allowed folders # (precalculated list of folders allowed and # their ancestors, which is needed to get to this folder for child in folder.children.all(): if child in allowed_to_list: result_children += [folder_to_object( folder=child, user=user, allowed_to_list=allowed_to_list, allowed_to_view=allowed_to_view, include_objects=include_objects ) ] # If we are asked (include_objects) and folder is in allowed_to_view list # include all objects (currently only connections) if include_objects and folder.id in allowed_to_view: for connection in folder.connections.all(): connection_object = {'id': connection.id, 'text': connection.name, 'isFolder': False, 'protocol': connection.protocol, } result_children += [connection_object] result['children'] = result_children return result def user_allowed_folders(user, require_view_permission=False): """ If require_view_permission is False, return list of folders user is allowed to list If require_view_permission is True, return list of folders user is allowed to view :type require_view_permission: bool :type user: users.User """ resulting_folder = set() # iterate over root folders for folder in Folder.objects.all().filter(parent=None): check_folder_permissions(folder, resulting_folder, user, require_view_permission) return resulting_folder def user_allowed_folders_ids(user, require_view_permission=False): """ If require_view_permission is False, return list of ids of folders user is allowed to list If require_view_permission is True, return list of ids of folders user is allowed to view :type require_view_permission: bool :type user: users.User """ resulting_set = set() for folder in user_allowed_folders(user, require_view_permission): resulting_set.add(folder.id) return resulting_set
36.765625
115
0.698683
0
0
0
0
0
0
0
0
2,043
0.434127
b06a64034b02fc50eab6da81b27b39ddfc4affcc
348
py
Python
web/services/device-service/src/app.py
fhgrings/match-io
0acb0b006ae8d8073f1d148e80275a568c2517ae
[ "MIT" ]
null
null
null
web/services/device-service/src/app.py
fhgrings/match-io
0acb0b006ae8d8073f1d148e80275a568c2517ae
[ "MIT" ]
null
null
null
web/services/device-service/src/app.py
fhgrings/match-io
0acb0b006ae8d8073f1d148e80275a568c2517ae
[ "MIT" ]
null
null
null
from flask import Flask from flask_cors import CORS from src.ext import configuration def minimal_app(**config): app = Flask(__name__) configuration.init_app(app, **config) CORS(app) return app def create_app(**config): app = minimal_app(**config) configuration.load_extensions(app) return app
19.333333
42
0.672414
0
0
0
0
0
0
0
0
0
0
b06a839b9e9c3f3cd1914d16be145f347a1d20cd
11,314
py
Python
nyc/nyc-new-cases.py
btrr/covid19-epicenters
4134967f6dbbdeb5ad91a435dc72d905e9886fd6
[ "MIT" ]
1
2020-04-02T15:48:28.000Z
2020-04-02T15:48:28.000Z
nyc/nyc-new-cases.py
btrr/covid19-epicenters
4134967f6dbbdeb5ad91a435dc72d905e9886fd6
[ "MIT" ]
null
null
null
nyc/nyc-new-cases.py
btrr/covid19-epicenters
4134967f6dbbdeb5ad91a435dc72d905e9886fd6
[ "MIT" ]
null
null
null
import datetime as dt import matplotlib.pyplot as plt import matplotlib.dates as mdates import matplotlib.ticker as ticker from matplotlib.dates import MO, TU, WE, TH, FR, SA, SU dates = ['2/29/2020', '3/1/2020', '3/2/2020', '3/3/2020', '3/4/2020', '3/5/2020', '3/6/2020', '3/7/2020', '3/8/2020', '3/9/2020', '3/10/2020', '3/11/2020', '3/12/2020', '3/13/2020', '3/14/2020', '3/15/2020', '3/16/2020', '3/17/2020', '3/18/2020', '3/19/2020', '3/20/2020', '3/21/2020', '3/22/2020', '3/23/2020', '3/24/2020', '3/25/2020', '3/26/2020', '3/27/2020', '3/28/2020', '3/29/2020', '3/30/2020', '3/31/2020', '4/1/2020', '4/2/2020', '4/3/2020', '4/4/2020', '4/5/2020', '4/6/2020', '4/7/2020', '4/8/2020', '4/9/2020', '4/10/2020', '4/11/2020', '4/12/2020', '4/13/2020', '4/14/2020', '4/15/2020', '4/16/2020', '4/17/2020', '4/18/2020', '4/19/2020', '4/20/2020', '4/21/2020', '4/22/2020', '4/23/2020', '4/24/2020', '4/25/2020', '4/26/2020', '4/27/2020', '4/28/2020', '4/29/2020', '4/30/2020', '5/1/2020', '5/2/2020', '5/3/2020', '5/4/2020', '5/5/2020', '5/6/2020', '5/7/2020', '5/8/2020', '5/9/2020', '5/10/2020', '5/11/2020', '5/12/2020', '5/13/2020', '5/14/2020', '5/15/2020', '5/16/2020', '5/17/2020', '5/18/2020', '5/19/2020', '5/20/2020', '5/21/2020', '5/22/2020', '5/23/2020', '5/24/2020', '5/25/2020', '5/26/2020', '5/27/2020', '5/28/2020', '5/29/2020', '5/30/2020', '5/31/2020', '6/1/2020', '6/2/2020', '6/3/2020', '6/4/2020', '6/5/2020', '6/6/2020', '6/7/2020', '6/8/2020', '6/9/2020', '6/10/2020', '6/11/2020', '6/12/2020', '6/13/2020', '6/14/2020', '6/15/2020', '6/16/2020', '6/17/2020', '6/18/2020', '6/19/2020', '6/20/2020', '6/21/2020', '6/22/2020', '6/23/2020', '6/24/2020', '6/25/2020', '6/26/2020', '6/27/2020', '6/28/2020', '6/30/2020', '7/01/2020', '7/02/2020', '7/03/2020', '7/04/2020', '7/05/2020', '7/06/2020', '7/07/2020', '7/08/2020', '7/09/2020', '7/10/2020', '7/11/2020', '7/12/2020', '7/13/2020', '7/14/2020', '7/15/2020', '7/16/2020', '7/17/2020', '7/18/2020', '7/19/2020', '7/20/2020', '7/21/2020', '7/22/2020', '7/23/2020', '7/24/2020', '7/25/2020', '7/26/2020', '7/27/2020', '7/28/2020', '7/29/2020', '7/30/2020', '7/31/2020', '8/01/2020', '8/02/2020', '8/03/2020', '8/04/2020', '8/05/2020', '8/06/2020', '8/07/2020', '8/08/2020', '8/09/2020', '8/10/2020', '8/11/2020', '8/12/2020', '8/13/2020', '8/14/2020', '8/15/2020', '8/16/2020', '8/17/2020', '8/18/2020', '8/19/2020', '8/20/2020', '8/21/2020', '8/22/2020', '8/23/2020', '8/24/2020', '8/25/2020', '8/26/2020', '8/27/2020', '8/28/2020', '8/29/2020', '8/30/2020', '8/31/2020', '9/01/2020', '9/02/2020', '9/3/2020', '9/4/2020', '9/5/2020', '9/7/2020', '9/08/2020', '9/09/2020', '9/10/2020', '9/11/2020', '9/12/2020', '9/14/2020', '9/15/2020', '9/16/2020', '9/17/2020', '9/18/2020', '9/19/2020', '9/20/2020', '9/21/2020', '9/22/2020', '9/23/2020', '9/24/2020', '9/25/2020', '9/26/2020', '9/27/2020', '9/28/2020', '9/29/2020', '9/30/2020', '10/01/2020', '10/02/2020', '10/03/2020', '10/04/2020', '10/05/2020', '10/06/2020', '10/07/2020', '10/08/2020', '10/09/2020', '10/10/2020', '10/11/2020', '10/12/2020', '10/13/2020', '10/14/2020', '10/15/2020', '10/16/2020', '10/17/2020', '10/18/2020', '10/19/2020', '10/20/2020', '10/21/2020', '10/22/2020', '10/23/2020', '10/24/2020', '10/25/2020', '10/26/2020', '10/27/2020', '10/28/2020', '10/29/2020', '10/30/2020', '10/31/2020', '11/01/2020', '11/02/2020', '11/03/2020', '11/04/2020', '11/05/2020', '11/06/2020', '11/07/2020', '11/08/2020', '11/09/2020', '11/10/2020', '11/11/2020', '11/12/2020', '11/13/2020', '11/14/2020', '11/15/2020', '11/16/2020', '11/17/2020', '11/18/2020', '11/19/2020', '11/20/2020', '11/21/2020', '11/22/2020', '11/23/2020', '11/24/2020', '11/25/2020', '11/26/2020', '11/27/2020', '11/28/2020', '11/29/2020', '11/30/2020', '12/01/2020', '12/02/2020', '12/03/2020', '12/04/2020', '12/05/2020', '12/06/2020', '12/07/2020', '12/08/2020', '12/09/2020', '12/10/2020', '12/11/2020', '12/12/2020', '12/13/2020', '12/14/2020', '12/15/2020', '12/16/2020', '12/17/2020', '12/18/2020', '12/19/2020', '12/20/2020', '12/21/2020', '12/22/2020', '12/23/2020', '12/24/2020', '12/25/2020', '12/26/2020', '12/27/2020', '12/28/2020', '12/29/2020', '12/30/2020', '12/31/2020', '01/01/2021', '01/02/2021', '01/03/2021', '01/04/2021', '01/05/2021', '01/06/2021', '01/07/2021', '01/08/2021', '01/09/2021', '01/10/2021', '01/11/2021', '01/12/2021', '01/13/2021', '01/14/2021', '01/15/2021', '01/16/2021', '01/17/2021', '01/18/2021', '01/19/2021', '01/20/2021', '01/21/2021', '01/22/2021', '01/23/2021', '01/24/2021', '01/25/2021', '01/26/2021', '01/27/2021', '01/28/2021', '01/29/2021', '01/30/2021', '01/31/2021', '02/01/2021', '02/02/2021', '02/03/2021', '02/04/2021', '02/05/2021', '02/06/2021', '02/07/2021', '02/08/2021', '02/09/2021', '02/10/2021', '02/11/2021', '02/12/2021', '02/13/2021', '02/14/2021', '02/15/2021', '02/16/2021', '02/17/2021', '02/18/2021', '02/19/2021', '02/20/2021', '02/21/2021', '02/22/2021', '02/23/2021', '02/24/2021', '02/25/2021', '02/26/2021', '02/27/2021', '02/28/2021', '03/01/2021', '03/02/2021', '03/03/2021', '03/04/2021', '03/05/2021', '03/06/2021', '03/07/2021', '03/08/2021', '03/09/2021', '03/10/2021', '03/11/2021', '03/12/2021', '03/13/2021', '03/14/2021', '03/15/2021', '03/16/2021', '03/17/2021', '03/18/2021', '03/19/2021', '03/20/2021', '03/24/2021', '03/25/2021', '03/26/2021', '03/27/2021', '03/28/2021', '03/29/2021', '03/30/2021', '03/31/2021', '04/01/2021', '04/02/2021', '04/03/2021', '04/04/2021', '04/05/2021', '04/06/2021', '04/07/2021', '04/08/2021', '04/09/2021', '04/10/2021', '04/11/2021', '04/12/2021', '04/13/2021', '04/14/2021', '04/15/2021', '04/16/2021', '04/17/2021', '04/18/2021', '04/19/2021', '04/20/2021', '04/21/2021', '04/22/2021', '04/23/2021', '04/24/2021', '04/25/2021', '04/26/2021', '04/27/2021', '04/28/2021', '04/29/2021', '04/30/2021', '05/01/2021', '05/02/2021', '05/03/2021', '05/04/2021', '05/05/2021', '05/06/2021', '05/07/2021', '05/08/2021', '05/09/2021', '05/10/2021', '05/11/2021', '05/12/2021', '05/13/2021', '05/14/2021', '05/15/2021', '05/16/2021', '05/17/2021', '05/18/2021', '05/19/2021', '05/20/2021', '05/21/2021', '05/22/2021', '05/23/2021', '05/24/2021', '05/25/2021', '05/26/2021', '05/27/2021', '05/28/2021', '05/29/2021', '05/30/2021', '05/31/2021', '06/01/2021', '06/02/2021', '06/03/2021', '06/04/2021', '06/05/2021', '06/06/2021', '06/07/2021', '06/08/2021', '06/09/2021', '06/10/2021', '06/11/2021', '06/12/2021', '06/13/2021', '06/14/2021', '06/15/2021', '06/16/2021', '06/17/2021', '06/18/2021', '06/19/2021', '06/20/2021', '06/21/2021', '06/22/2021', '06/23/2021', '06/24/2021', '06/25/2021', '06/26/2021', '06/27/2021', '06/28/2021', '06/29/2021', '06/30/2021', '07/01/2021', '07/02/2021', '07/03/2021', '07/04/2021', '07/05/2021'] # format dates x_values = [dt.datetime.strptime(d, "%m/%d/%Y").date() for d in dates] ax = plt.gca() formatter = mdates.DateFormatter("%m/%d") ax.xaxis.set_major_formatter(formatter) # create x-axis ax.xaxis.set_major_locator(mdates.WeekdayLocator( byweekday=(MO, TU, WE, TH, FR, SA, SU), interval=21)) # minor tick = daily ax.xaxis.set_minor_locator(mdates.WeekdayLocator( byweekday=(MO, TU, WE, TH, FR, SA, SU))) # format y-axis ax.get_yaxis().set_major_formatter( ticker.FuncFormatter(lambda x, pos: format(int(x/1000), ','))) # schools closed plt.axvline(dt.datetime(2020, 3, 18), linestyle='--', color='orange', linewidth=2, label='schools') # non-essential businesses closed plt.axvline(dt.datetime(2020, 3, 20), linestyle='--', color='red', linewidth=2, label='nonessential') # stay-at-home plt.axvline(dt.datetime(2020, 3, 22), color='black', linewidth=2, label='stay at home') # massive funeral in brooklyn plt.axvline(dt.datetime(2020, 4, 29), color='black', linestyle='--', linewidth=2, label='funeral') # reopening, phase 1 plt.axvline(dt.datetime(2020, 6, 8), color='green', linewidth=2, label='stay at home') # schools reopen plt.axvline(dt.datetime(2020, 9, 21), color='red', linewidth=2, label='schools reopen') # schools close again plt.axvline(dt.datetime(2020, 11, 19), color='blue', linewidth=2, label='schools close') # new cases by day new_cases = [0, 1, 0, 0, 0, 3, 0, 7, 9, 7, 5, 23, 47, 59, 115, 60, 485, 109, 1086, 1606, 2068, 2432, 2649, 2355, 2478, 4414, 3101, 3585, 4033, 2744, 4613, 5052, 4210, 2358, 6582, 4561, 4105, 3821, 5825, 5603, 7521, 6684, 4306, 5695, 2403, 450, 4161, 6141, 4583, 4220, 3420, 2679, 2407, 3561, 3319, 4385, 4437, 2628, 2896, 1613, 2152, 2347, 2293, 2378, 1962, 1689, 1189, 1565, 1421, 1377, 1395, 1285, 4896, 657, 887, 1087, 1555, 1183, 1377, 665, 577, 724, 466, 1111, 716, 785, 646, 525, 728, 904, 783, 855, 654, 283, 293, 683, 513, 510, 601, 389, 434, 323, 435, 394, 441, 476, 284, 443, 324, 448, 276, 358, 308, 550, 249, 331, 292, 338, 385, 321, 340, 503, 340, 362, 438, 349, 291, 209, 310, 199, 382, 313, 333, 326, 275, 269, 366, 396, 332, 333, 264, 319, 552, 98, 361, 152, 531, 94, 217, 424, 313, 314, 288, 309, 199, 192, 318, 346, 287, 403, 241, 321, 210, 272, 364, 429, 330, 224, 489, 221, 181, 261, 305, 203, 217, 284, 189, 171, 183, 236, 311, 233, 229, 225, 291, 248, 324, 222, 304, 230, 212, 196, 478, 216, 290, 420, 336, 253, 275, 327, 634, 188, 320, 284, 209, 379, 386, 401, 343, 367, 395, 486, 466, 579, 609, 530, 439, 473, 587, 421, 652, 680, 473, 352, 416, 502, 438, 555, 545, 486, 523, 390, 718, 436, 481, 968, 343, 367, 568, 561, 314, 1117, 641, 585, 447, 732, 592, 800, 1087, 1151, 646, 52, 1389, 963, 1127, 1154, 1228, 1489, 973, 1552, 1264, 1486, 1420, 1572, 1398, 1642, 1350, 1312, 1959, 1889, 1905, 1282, 2100, 2218, 2384, 2512, 2855, 2498, 2406, 2298, 2715, 2561, 2582, 2643, 3168, 2630, 2367, 3265, 2531, 2539, 3874, 2633, 2256, 2761, 2693, 3199, 3766, 3452, 3222, 2653, 2512, 4029, 3366, 3851, 4800, 5041, 2937, 2892, 3956, 3969, 5077, 5241, 4770, 5045, 4306, 5168, 4508, 4746, 6222, 5018, 4988, 4520, 4509, 3571, 4283, 5127, 4844, 5130, 4086, 3982, 3013, 4964, 4774, 5229, 4533, 3375, 3069, 2570, 2084, 2463, 4394, 3973, 4160, 3811, 2144, 3870, 3407, 3590, 3398, 2945, 2904, 1914, 5296, 3819, 3515, 2306, 2554, 2974, 2558, 3459, 3149, 3265, 3318, 2806, 2979, 2369, 3084, 3389, 3245, 3087, 1994, 3443, 2058, 2680, 3003, 2124, 2397, 3400, 2833, 2229, 1127, 820, 2142, 17319, 3147, 2857, 3078, 3387, 4477, 1518, 2734, 3319, 3241, 2543, 3017, 2563, 2778, 2229, 3166, 3027, 2774, 2213, 2431, 1749, 1522, 2120, 2648, 1750, 2220, 2190, 2012, 1452, 1973, 1625, 1412, 1358, 1249, 1256, 850, 1169, 1323, 1360, 982, 855, 684, 809, 827, 777, 878, 865, 650, 419, 564, 667, 650, 347, 772, 468, 662, 312, 502, 456, 402, 406, 316, 260, 206, 376, 298, 265, 289, 210, 137, 143, 124, 258, 274, 148, 181, 191, 172, 208, 329, 154, 139, 179, 130, 76, 173, 162, 160, 151, 137, 120, 129, 132, 136, 174, 152, 158, 110, 92, 177, 200, 71, 153, 195] # text labels plt.title('Covid-19 in NYC: New Cases') plt.xlabel('Date') plt.ylabel('Number of New Cases (in thousands)') plt.legend(['Schools Closure', 'Non-Essential Businesses Closure', 'Statewide Stay-at-Home Order', 'Massive Funeral Crowd in Brooklyn', 'Reopening, Phase 1', 'Schools Reopen', 'Schools Close'], loc='best') # create the graph plt.plot(x_values, new_cases, color='#730af2', linewidth=2) plt.show()
176.78125
4,998
0.595457
0
0
0
0
0
0
0
0
6,274
0.554534
b06d15947556e9e4b04c29a89022d993e3d2bccf
4,357
py
Python
src/face_utils/save_figure.py
hankyul2/FaceDA
73006327df3668923d4206f81d4976ca1240329d
[ "Apache-2.0" ]
null
null
null
src/face_utils/save_figure.py
hankyul2/FaceDA
73006327df3668923d4206f81d4976ca1240329d
[ "Apache-2.0" ]
null
null
null
src/face_utils/save_figure.py
hankyul2/FaceDA
73006327df3668923d4206f81d4976ca1240329d
[ "Apache-2.0" ]
null
null
null
import os import numpy as np import matplotlib.pyplot as plt from PIL import Image import albumentations as A from pathlib import Path import torch from torch import nn from src_backup.cdan import get_model from src.backbone.iresnet import get_arcface_backbone class MyModel(nn.Module): def __init__(self, backbone): super().__init__() self.backbone = backbone self.layers = [backbone.layer1, backbone.layer2, backbone.layer3, backbone.layer4] def forward(self, x): activations = [] x = self.backbone.prelu(self.backbone.bn1(self.backbone.conv1(x))) for layer in self.layers: x = layer(x) activations.append(x) return activations def get_best_model(mode='arcface', base_path='log/best_weight/{}.pth'): model_path_dict = {'BSP': 'FACE_CDAN_BSP_BOTH', 'DAN': 'FACE_DAN_BOTH', 'BOTH': 'FACE_BOTH', 'FACE': 'FACE'} backbone = get_arcface_backbone('cpu') if mode != 'arcface': backbone = get_model(backbone, fc_dim=512, embed_dim=512, nclass=460, hidden_dim=1024, pretrained_path=base_path.format(model_path_dict[mode])).backbone backbone.eval() return MyModel(backbone) def img_preprocessing(img): transforms = A.Compose([ A.SmallestMaxSize(112), A.CenterCrop(112, 112, p=1), ]) img = ((np.transpose(transforms(image=np.array(img))['image'], (2, 0, 1)) / 255) - 0.5) / 0.5 return img def activation_based_map_f(activations): attention_map = [] for activation in activations: img = activation.pow(2).mean(1).detach().numpy()[0, :, :, np.newaxis] resized_img = A.Resize(112, 112, 4)(image=img)['image'] attention_map.append((resized_img, img)) return attention_map def show_example(img_path='iu_mask.jpg', mode='arcface', show=True): img = Image.open(img_path) img_resized = A.Resize(112, 112)(image=np.array(img))['image'] img_np = np.array(img) img_np = img_preprocessing(img) input_img = torch.from_numpy(img_np).float().unsqueeze(0) model = get_best_model(mode) activations = model(input_img) attention_maps = activation_based_map_f(activations) if show: plt.imshow(img) plt.show() for attention_map in attention_maps: plt.figure(figsize=(16, 10)) plt.subplot(1, 2, 1) plt.imshow(img_resized, interpolation='bicubic') plt.imshow(attention_map[0], alpha=0.8, interpolation='bicubic') plt.subplot(1, 2, 2) plt.imshow(attention_map[1], interpolation='bicubic') plt.show() return [maps[0] for maps in attention_maps] def compare_example(img_path, mode1='arcface', mode2='BSP', alpha=0.7, show=False): transforms = A.Compose([ A.SmallestMaxSize(112), A.CenterCrop(112, 112, p=1), ]) img = transforms(image=np.array(Image.open(img_path)))['image'] attn1 = show_example(img_path=img_path, mode=mode1, show=False) attn2 = show_example(img_path=img_path, mode=mode2, show=False) plt.figure(figsize=(16, 6)) plt.subplot(2, 5, 1) plt.imshow(img) plt.xticks([]) plt.yticks([]) for i, attention_map in enumerate(zip(attn1, attn2)): plt.subplot(2, 5, 2 + i) plt.imshow(img, alpha=0.8) plt.imshow(attention_map[0], alpha=alpha, interpolation='bicubic') plt.xticks([]) plt.yticks([]) plt.subplot(2, 5, 7 + i) plt.imshow(img, alpha=0.8) plt.imshow(attention_map[1], alpha=alpha, interpolation='bicubic') plt.xticks([]) plt.yticks([]) if show: plt.show() else: Path('result/attention_fig/').mkdir(exist_ok=True, parents=True) plt.savefig('result/attention_fig/{}_{}_{}_{}.jpg'.format( os.path.basename(img_path).split('.')[0], mode1, mode2, int(alpha*10))) plt.close('all') def run(args): for mode in ['FACE', 'BSP', 'BOTH', 'DAN']: for image_path in ['iu.jpg', 'iu_mask1.jpg', 'iu_mask2.jpg', 'iu_mask3.jpg', 'iu_mask4.jpg']: for alpha in [0.8, 0.9]: print('mode: {}'.format(mode)) print('alpha: {}'.format(alpha)) compare_example(img_path='examples/{}'.format(image_path), mode1='arcface', mode2=mode, alpha=alpha)
36.008264
116
0.627037
457
0.104889
0
0
0
0
0
0
428
0.098233
b070934d7222c882ff718596c5213477b01b49fc
2,481
py
Python
tests/unit/tests_standard_lib/tests_sample_generation/test_time_parser.py
monishshah18/pytest-splunk-addon
1600f2c7d30ec304e9855642e63511780556b406
[ "Apache-2.0" ]
39
2020-06-09T17:37:21.000Z
2022-02-08T01:57:35.000Z
tests/unit/tests_standard_lib/tests_sample_generation/test_time_parser.py
monishshah18/pytest-splunk-addon
1600f2c7d30ec304e9855642e63511780556b406
[ "Apache-2.0" ]
372
2020-04-15T13:55:09.000Z
2022-03-31T17:14:56.000Z
tests/unit/tests_standard_lib/tests_sample_generation/test_time_parser.py
isabella232/pytest-splunk-addon
5e6ae2b47df7a1feb6f358bbbd1f02197b5024f6
[ "Apache-2.0" ]
22
2020-05-06T10:43:45.000Z
2022-03-16T15:50:08.000Z
import pytest from datetime import datetime from freezegun import freeze_time from pytest_splunk_addon.standard_lib.sample_generation.time_parser import ( time_parse, ) @pytest.fixture(scope="session") def tp(): return time_parse() def generate_parameters(): result = [] for s in ("s", "sec", "secs", "second", "seconds"): result.append(("-", "60", s, datetime(2020, 9, 1, 8, 15, 13))) for m in ("m", "min", "minute", "minutes"): result.append(("-", "60", m, datetime(2020, 9, 1, 7, 16, 13))) for h in ("h", "hr", "hrs", "hour", "hours"): result.append(("-", "60", h, datetime(2020, 8, 29, 20, 16, 13))) for d in ("d", "day", "days"): result.append(("-", "1", d, datetime(2020, 8, 31, 8, 16, 13))) for w in ("w", "week", "weeks"): result.append(("-", "2", w, datetime(2020, 8, 18, 8, 16, 13))) for m in ("mon", "month", "months"): result.append(("-", "2", m, datetime(2020, 7, 1, 8, 16, 13))) for q in ("q", "qtr", "qtrs", "quarter", "quarters"): result.append(("-", "2", q, datetime(2020, 3, 1, 8, 16, 13))) for y in ("y", "yr", "yrs", "year", "years"): result.append(("-", "2", y, datetime(2018, 9, 1, 8, 16, 13))) result.extend( [ ("+", "5", "months", datetime(2021, 2, 1, 8, 16, 13)), ("+", "3", "months", datetime(2020, 12, 1, 8, 16, 13)), ("-", "11", "months", datetime(2019, 10, 1, 8, 16, 13)), ("smth", "15", "minutes", datetime(2020, 9, 1, 8, 31, 13)), ] ) return result class Testtime_parse: @freeze_time("2020-09-01T04:16:13-04:00") @pytest.mark.parametrize("sign, num, unit, expected", generate_parameters()) def test_convert_to_time(self, tp, sign, num, unit, expected): assert tp.convert_to_time(sign, num, unit) == expected @pytest.mark.parametrize( "timezone_time, expected", [ ("+1122", datetime(2020, 9, 1, 19, 37, 13)), ("+0022", datetime(2020, 9, 1, 8, 15, 13)), ("+2322", datetime(2020, 9, 1, 8, 15, 13)), ("+1200", datetime(2020, 9, 1, 8, 15, 13)), ("+0559", datetime(2020, 9, 1, 8, 15, 13)), ("-1122", datetime(2020, 8, 31, 20, 53, 13)), ], ) def test_get_timezone_time(self, tp, timezone_time, expected): assert ( tp.get_timezone_time(datetime(2020, 9, 1, 8, 15, 13), timezone_time) == expected )
37.590909
80
0.523176
909
0.366385
0
0
943
0.380089
0
0
432
0.174123
c65e7d463bac4685e30ec3b3b04bcf2f66cd3d98
2,756
py
Python
igcollect/artfiles.py
brainexe/igcollect
12a2fa81331f305f8852b5a30c8d90d2a8895738
[ "MIT" ]
15
2016-04-13T11:13:41.000Z
2020-12-04T17:25:43.000Z
igcollect/artfiles.py
brainexe/igcollect
12a2fa81331f305f8852b5a30c8d90d2a8895738
[ "MIT" ]
10
2016-12-01T15:15:31.000Z
2020-05-07T13:54:57.000Z
igcollect/artfiles.py
brainexe/igcollect
12a2fa81331f305f8852b5a30c8d90d2a8895738
[ "MIT" ]
18
2016-03-16T11:06:10.000Z
2022-03-14T14:56:05.000Z
#!/usr/bin/env python """igcollect - Artfiles Hosting Metrics Copyright (c) 2019 InnoGames GmbH """ import base64 from argparse import ArgumentParser from time import time try: # Try importing the Python3 packages from urllib.request import Request, urlopen from urllib.parse import urlencode except ImportError: # On failure, import the Python2 from urllib2 import Request, urlopen from urllib import urlencode def parse_args(): parser = ArgumentParser() parser.add_argument('--prefix', default='artfiles') parser.add_argument( "-u", "--user", dest="http_user", type=str, required=True, help="the http user name to authenticate") parser.add_argument( "-p", "--pass", dest="http_pass", type=str, required=True, help="the http password to authenticate") return parser.parse_args() def main(): args = parse_args() request = Request('https://dcp.c.artfiles.de/api/stats/get_estats.html') credentials = '{}:{}'.format(args.http_user, args.http_pass) base64credentials = base64.b64encode(credentials.encode()) request.add_header('Authorization', 'Basic {}'.format(base64credentials.decode())) data = urlopen(request) template = args.prefix + '.{dc}.{rack}.{pdu_nr}.{unit} {value} ' + str( int(time())) for csv in data.readlines(): csv = csv.decode() if csv.startswith('"level3"') or csv.startswith('"w408'): parse_and_print(template, csv) def parse_and_print(template, csv): values = [v.strip('\n "') for v in csv.split(',')] dc = values[0].replace('/', '_') rack = values[1].replace('/', '') pdu_nr = values[2] maxcur = values[3] measurement_type = values[4] maxval_watt = values[5] curval = values[6] if maxcur == '10A': print(template.format(dc=dc, rack=rack, pdu_nr=pdu_nr, unit='max', value='10.00')) elif maxcur == '16A': print(template.format(dc=dc, rack=rack, pdu_nr=pdu_nr, unit='max', value='16.00')) elif maxcur == 'redundant': print(template.format(dc=dc, rack=rack, pdu_nr=pdu_nr, unit='max', value='20.00')) if measurement_type == 'ampere': ampere = curval.replace(' A', '') print(template.format(dc=dc, rack=rack, pdu_nr=pdu_nr, unit='ampere', value=ampere)) if measurement_type == 'kwh': kwh = maxval_watt.replace(' kWh', '') print(template.format(dc=dc, rack=rack, pdu_nr=pdu_nr, unit='kwh', value=kwh)) if __name__ == '__main__': main()
30.966292
77
0.589623
0
0
0
0
0
0
0
0
572
0.207547
c65ec057f48af79a642c8637764b523b537f83f6
5,459
py
Python
sem/storage/corpus.py
YoannDupont/SEM
ff21c5dc9a8e99eda81dc266e67cfa97dec7c243
[ "MIT" ]
22
2016-11-13T21:08:58.000Z
2021-04-26T07:04:54.000Z
sem/storage/corpus.py
Raphencoder/SEM
ff21c5dc9a8e99eda81dc266e67cfa97dec7c243
[ "MIT" ]
15
2016-11-15T10:21:07.000Z
2021-11-08T10:08:05.000Z
sem/storage/corpus.py
Raphencoder/SEM
ff21c5dc9a8e99eda81dc266e67cfa97dec7c243
[ "MIT" ]
8
2016-11-15T10:21:41.000Z
2022-03-04T21:28:05.000Z
# -*- coding: utf-8 -*- """ file: corpus.py Description: defines the Corpus object. It is an object representation of a CoNLL-formatted corpus. author: Yoann Dupont MIT License Copyright (c) 2018 Yoann Dupont Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from sem.IO import KeyReader, KeyWriter _train_set = set([u"train", u"eval", u"evaluate", u"evaluation"]) _train = u"train" _label_set = set([u"label", u"annotate", u"annotation"]) _label = "label" _modes = _train_set | _label_set _equivalence = dict([[mode, _train] for mode in _train_set] + [[mode, _label] for mode in _label_set]) class Entry(object): """ The Entry object. It represents a field's identifier in a CoNLL corpus. An Entry may be used only in certain circumstances: for example, the output tag may only appear in train mode. """ def __init__(self, name, mode=u"label"): if mode not in _modes: raise ValueError("Unallowed mode for entry: {0}".format(mode)) self._name = name self._mode = _equivalence[mode] def __eq__(self, other): return self.name == other.name @property def name(self): return self._name @property def mode(self): return self._mode @mode.setter def mode(self, mode): self._mode = _equivalence[mode] @property def is_train(self): return self._mode == _train @property def is_label(self): return self._mode == _label @staticmethod def fromXML(xml_element): return Entry(**xml_element.attrib) def has_mode(self, mode): return self.mode == _equivalence[mode] class Corpus(object): def __init__(self, fields=None, sentences=None): if fields: self.fields = fields[:] else: self.fields = [] if sentences: self.sentences = sentences[:] else: self.sentences = [] def __contains__(self, item): return item in self.fields def __len__(self): return len(self.sentences) def __iter__(self): for element in self.iterate_on_sentences(): yield element def __unicode__(self): return self.unicode(self.fields) @classmethod def from_conll(cls, filename, fields, encoding="utf-8"): def tab_split(s): return s.split(u"\t") corpus = Corpus(fields) for sentence in KeyReader(filename, encoding, fields, splitter=tab_split): corpus.append_sentence([token.copy() for token in sentence]) return corpus def unicode(self, fields, separator=u"\t"): fmt = u"\t".join([u"{{{0}}}".format(field) for field in fields]) sentences = [] for sentence in self: sentences.append([]) for token in sentence: sentences[-1].append((fmt.format(**token)) + u"\n") return u"\n".join([u"".join(sentence) for sentence in sentences]) def to_matrix(self, sentence): sent = [] for token in sentence: sent.append([token[field] for field in self.fields]) return sent def iterate_on_sentences(self): for element in self.sentences: yield element def is_empty(self): return 0 == len(self.sentences) def has_key(self, key): return key in self.fields def append_sentence(self, sentence): self.sentences.append(sentence) def from_sentences(self, sentences, field_name=u"word"): del self.fields[:] del self.sentences[:] self.fields = [field_name] for sentence in sentences: self.sentences.append([]) for token in sentence: self.sentences[-1].append({field_name : token}) def from_segmentation(self, content, tokens, sentences, field_name=u"word"): self.fields = [field_name] for sentence in sentences.spans: sentence_tokens = [] self.append_sentence([{field_name:content[token.lb : token.ub]} for token in tokens.spans[sentence.lb : sentence.ub]]) def write(self, fd, fields=None): fmt = u"\t".join(["{{{0}}}".format(field) for field in (fields or self.fields)]) + u"\n" for sentence in self: for token in sentence: fd.write(fmt.format(**token)) fd.write(u"\n")
32.301775
130
0.634365
3,877
0.710203
193
0.035354
755
0.138304
0
0
1,653
0.302803
c660dc00601aa00fc2df39ad1285ba2cbf2bab57
3,426
py
Python
recbole/utils/inferred_lm.py
ghazalehnt/RecBole
f1219847005e2c8d72b8c3cd5c49a138fe83276d
[ "MIT" ]
null
null
null
recbole/utils/inferred_lm.py
ghazalehnt/RecBole
f1219847005e2c8d72b8c3cd5c49a138fe83276d
[ "MIT" ]
null
null
null
recbole/utils/inferred_lm.py
ghazalehnt/RecBole
f1219847005e2c8d72b8c3cd5c49a138fe83276d
[ "MIT" ]
null
null
null
import time import torch from recbole.config import Config from recbole.utils import get_model, init_seed import gensim import gensim.downloader as api from recbole.data import create_dataset, data_preparation import numpy as np URL_FIELD = "item_url" class ItemLM: def __init__(self, checkpoint_file, model_name, dataset_name, k=20, step=5000, load_docs=None, config_dict=None, config_file_list=None): checkpoint = torch.load(checkpoint_file, map_location=torch.device('cpu')) config = Config(model=model_name, dataset=dataset_name, config_file_list=config_file_list, config_dict=config_dict) init_seed(config['seed'], config['reproducibility']) dataset = create_dataset(config) train_data, valid_data, test_data = data_preparation(config, dataset) model = get_model(config['model'])(config, train_data).to(config['device']) model.load_state_dict(checkpoint['state_dict']) item_ids = dataset.get_item_feature()['item_id'] items = model.item_embedding(item_ids) item_identifiers = dataset.get_item_feature()[URL_FIELD] item_identifiers = dataset.id2token(URL_FIELD, item_identifiers) url_id = {} for i in range(1, len(item_identifiers)): url_id[item_identifiers[i]] = i url_id_temp = {} if load_docs is not None: item_ids = set() for url in load_docs: if url in url_id: item_ids.add(url_id[url]) url_id_temp[url] = url_id[url] else: # print(f"{url} does not exist in model") pass item_ids = [0] + list(item_ids) url_id = url_id_temp id_url = {} for url, id in url_id.items(): id_url[id] = url print("loading glove") s = time.time() pretrained_embedding_name = "glove-wiki-gigaword-50" model_path = api.load(pretrained_embedding_name, return_path=True) w2v_model = gensim.models.KeyedVectors.load_word2vec_format(model_path) w2v_id_terms = np.array(w2v_model.index_to_key) print(f"done: {time.time() - s}") self.item_lms = {} print("making item lm...") ts = time.time() s = 1 e = step if e > len(item_ids) > s: e = len(item_ids) while e <= len(item_ids): print(f"{s}:{e}") batch_ids = item_ids[s:e] batch_items = items[batch_ids].detach().clone() batch_lms = torch.matmul(batch_items, model.word_embedding.weight.T) batch_lms = torch.softmax(batch_lms, 1) batch_lms_top = batch_lms.topk(k, dim=1) probs_normalized_topk = (batch_lms_top.values.T / batch_lms_top.values.sum(1)).T min_ps = probs_normalized_topk.min(dim=1) estimated_length = torch.ones(e - s) / min_ps.values item_lm_probs = (probs_normalized_topk.T * estimated_length).T item_lm_keys = w2v_id_terms[batch_lms_top.indices] for i in range(len(batch_ids)): self.item_lms[id_url[int(batch_ids[i])]] = (item_lm_keys[i], item_lm_probs[i].numpy()) s = e e += step if e > len(item_ids) > s: e = len(item_ids) print(f"done: {time.time()-ts}") def get_lm(self): return self.item_lms
40.305882
140
0.613543
3,170
0.925277
0
0
0
0
0
0
234
0.068301
c660f9f806690fc5f7e2f8042a3e47405144af39
2,842
py
Python
alchemist_py/parsetab.py
Kenta11/alchemist_py
49d013dde4688f663eb2d35519347047739ecace
[ "MIT" ]
null
null
null
alchemist_py/parsetab.py
Kenta11/alchemist_py
49d013dde4688f663eb2d35519347047739ecace
[ "MIT" ]
1
2021-08-04T14:14:09.000Z
2021-08-04T14:14:09.000Z
alchemist_py/parsetab.py
Kenta11/alchemist_py
49d013dde4688f663eb2d35519347047739ecace
[ "MIT" ]
1
2021-07-15T07:05:42.000Z
2021-07-15T07:05:42.000Z
# parsetab.py # This file is automatically generated. Do not edit. # pylint: disable=W,C,R _tabversion = '3.10' _lr_method = 'LALR' _lr_signature = 'INTEGER L_BRACE L_BRACKET RESERVED R_BRACE R_BRACKET SEMICOLON STRUCT TYPE_BOOL TYPE_CSTDINT TYPE_PRIMITIVE_FLOAT TYPE_PRIMITIVE_INT TYPE_STRING TYPE_UNSIGNED VAR_NAMEMESSAGE : PARAMS\n PARAMS : PARAM\n | PARAMS PARAM\n \n PARAM : TYPE VAR_NAME SEMICOLON\n | TYPE VAR_NAME ARRAY SEMICOLON\n \n TYPE : TYPE_PRIMITIVE_INT\n | TYPE_PRIMITIVE_FLOAT\n | TYPE_CSTDINT\n | TYPE_BOOL\n | TYPE_STRING\n | TYPE_UNSIGNED TYPE_PRIMITIVE_INT\n \n ARRAY : L_BRACKET INTEGER R_BRACKET\n | ARRAY L_BRACKET INTEGER R_BRACKET\n ' _lr_action_items = {'TYPE_PRIMITIVE_INT':([0,2,3,10,11,14,17,],[5,5,-2,13,-3,-4,-5,]),'TYPE_PRIMITIVE_FLOAT':([0,2,3,11,14,17,],[6,6,-2,-3,-4,-5,]),'TYPE_CSTDINT':([0,2,3,11,14,17,],[7,7,-2,-3,-4,-5,]),'TYPE_BOOL':([0,2,3,11,14,17,],[8,8,-2,-3,-4,-5,]),'TYPE_STRING':([0,2,3,11,14,17,],[9,9,-2,-3,-4,-5,]),'TYPE_UNSIGNED':([0,2,3,11,14,17,],[10,10,-2,-3,-4,-5,]),'$end':([1,2,3,11,14,17,],[0,-1,-2,-3,-4,-5,]),'VAR_NAME':([4,5,6,7,8,9,13,],[12,-6,-7,-8,-9,-10,-11,]),'SEMICOLON':([12,15,21,22,],[14,17,-12,-13,]),'L_BRACKET':([12,15,21,22,],[16,18,-12,-13,]),'INTEGER':([16,18,],[19,20,]),'R_BRACKET':([19,20,],[21,22,]),} _lr_action = {} for _k, _v in _lr_action_items.items(): for _x,_y in zip(_v[0],_v[1]): if not _x in _lr_action: _lr_action[_x] = {} _lr_action[_x][_k] = _y del _lr_action_items _lr_goto_items = {'MESSAGE':([0,],[1,]),'PARAMS':([0,],[2,]),'PARAM':([0,2,],[3,11,]),'TYPE':([0,2,],[4,4,]),'ARRAY':([12,],[15,]),} _lr_goto = {} for _k, _v in _lr_goto_items.items(): for _x, _y in zip(_v[0], _v[1]): if not _x in _lr_goto: _lr_goto[_x] = {} _lr_goto[_x][_k] = _y del _lr_goto_items _lr_productions = [ ("S' -> MESSAGE","S'",1,None,None,None), ('MESSAGE -> PARAMS','MESSAGE',1,'p_MESSAGE','yacc.py',6), ('PARAMS -> PARAM','PARAMS',1,'p_PARAMS','yacc.py',11), ('PARAMS -> PARAMS PARAM','PARAMS',2,'p_PARAMS','yacc.py',12), ('PARAM -> TYPE VAR_NAME SEMICOLON','PARAM',3,'p_PARAM','yacc.py',21), ('PARAM -> TYPE VAR_NAME ARRAY SEMICOLON','PARAM',4,'p_PARAM','yacc.py',22), ('TYPE -> TYPE_PRIMITIVE_INT','TYPE',1,'p_TYPE','yacc.py',34), ('TYPE -> TYPE_PRIMITIVE_FLOAT','TYPE',1,'p_TYPE','yacc.py',35), ('TYPE -> TYPE_CSTDINT','TYPE',1,'p_TYPE','yacc.py',36), ('TYPE -> TYPE_BOOL','TYPE',1,'p_TYPE','yacc.py',37), ('TYPE -> TYPE_STRING','TYPE',1,'p_TYPE','yacc.py',38), ('TYPE -> TYPE_UNSIGNED TYPE_PRIMITIVE_INT','TYPE',2,'p_TYPE','yacc.py',39), ('ARRAY -> L_BRACKET INTEGER R_BRACKET','ARRAY',3,'p_ARRAY','yacc.py',67), ('ARRAY -> ARRAY L_BRACKET INTEGER R_BRACKET','ARRAY',4,'p_ARRAY','yacc.py',68), ]
64.590909
622
0.611189
0
0
0
0
0
0
0
0
1,612
0.567206
c665a58b2ec63745fb6a56eded667c424d56d832
548
py
Python
fisica.py
Kenedw/RSSF
b9e7f2f0c6f2304af4de645039e70800d22d2b0c
[ "MIT" ]
1
2019-09-01T20:28:35.000Z
2019-09-01T20:28:35.000Z
fisica.py
Kenedw/RSSF
b9e7f2f0c6f2304af4de645039e70800d22d2b0c
[ "MIT" ]
null
null
null
fisica.py
Kenedw/RSSF
b9e7f2f0c6f2304af4de645039e70800d22d2b0c
[ "MIT" ]
1
2019-05-18T00:09:26.000Z
2019-05-18T00:09:26.000Z
from packet import packet # Camada Fisica class fisica(): ''' @param link list(hosts) @param ativo boolean (true|false) ''' def __init__(self): self.__link = [] # self.__link = link self.__is_ativo = False self.__dado = packet def __SetAtivo(self,ativo): self.__is_ativo = ativo def __GetAtivo(self): return self.__is_ativo def __SetDado(self,dado): self.__dado = dado def __GetDado(self): return self.__dado def __SendDado(self,hostDest): hostDest.send(hostDest.ID,self.__GetDado())
18.896552
47
0.669708
504
0.919708
0
0
0
0
0
0
107
0.195255
c666e9dcacd68dd1abb51bc4ffb6d2640c170719
11,792
py
Python
programs/pyeos/tests/python/cryptokitties/kittyownership.py
learnforpractice/pyeos
4f04eb982c86c1fdb413084af77c713a6fda3070
[ "MIT" ]
144
2017-10-18T16:38:51.000Z
2022-01-09T12:43:57.000Z
programs/pyeos/tests/python/cryptokitties/kittyownership.py
openchatproject/safeos
2c8dbf57d186696ef6cfcbb671da9705b8f3d9f7
[ "MIT" ]
60
2017-10-11T13:07:43.000Z
2019-03-26T04:33:27.000Z
programs/pyeos/tests/python/cryptokitties/kittyownership.py
learnforpractice/pyeos
4f04eb982c86c1fdb413084af77c713a6fda3070
[ "MIT" ]
38
2017-12-05T01:13:56.000Z
2022-01-07T07:06:53.000Z
from backend import * from basement import * from pausable import * from kittyaccesscontrol import * from kittybase import KittyBase from erc721 import ERC721 from erc721metadata import ERC721Metadata # @title The facet of the CryptoKitties core contract that manages ownership, ERC-721 (draft) compliant. # @author Axiom Zen (https://www.axiomzen.co) # @dev Ref: https://github.com/ethereum/EIPs/issues/721 # See the KittyCore contract documentation to understand how the various contract facets are arranged. class KittyOwnership(KittyBase, ERC721): def __init__(self): KittyBase.__init__(self) ERC721.__init__(self) # @notice Name and symbol of the non fungible token, as defined in ERC721. #string public constant name = "CryptoKitties"; #string public constant symbol = "CK"; self.name = "CryptoKitties" self.symbol = "CK" # The contract that will return kitty metadata #ERC721Metadata public erc721Metadata; self.erc721Metadata = ERC721Metadata() self.InterfaceSignature_ERC165 = bytes4(keccak256('supportsInterface(bytes4)')); self.InterfaceSignature_ERC721 = bytes4(keccak256('InterfaceSignature_ERC721(bytes4)')); '''FIXME bytes4 constant InterfaceSignature_ERC721 = bytes4(keccak256('name()')) ^ bytes4(keccak256('symbol()')) ^ bytes4(keccak256('totalSupply()')) ^ bytes4(keccak256('balanceOf(address)')) ^ bytes4(keccak256('ownerOf(uint256)')) ^ bytes4(keccak256('approve(address,uint256)')) ^ bytes4(keccak256('transfer(address,uint256)')) ^ bytes4(keccak256('transferFrom(address,address,uint256)')) ^ bytes4(keccak256('tokensOfOwner(address)')) ^ bytes4(keccak256('tokenMetadata(uint256,string)')); ''' # @notice Introspection interface as per ERC-165 (https://github.com/ethereum/EIPs/issues/165). # Returns true for any standardized interfaces implemented by this contract. We implement # ERC-165 (obviously!) and ERC-721. def supportsInterface(self, _interfaceID: bytes) -> bool: # DEBUG ONLY #require((InterfaceSignature_ERC165 == 0x01ffc9a7) && (InterfaceSignature_ERC721 == 0x9a20483d)); return (_interfaceID == self.InterfaceSignature_ERC165) or (_interfaceID == self.InterfaceSignature_ERC721) # @dev Set the address of the sibling contract that tracks metadata. # CEO only. @onlyCEO def setMetadataAddress(self, _contractAddress: address): self.erc721Metadata = ERC721Metadata(_contractAddress) # Internal utility functions: These functions all assume that their input arguments # are valid. We leave it to public methods to sanitize their inputs and follow # the required logic. # @dev Checks if a given address is the current owner of a particular Kitty. # @param _claimant the address we are validating against. # @param _tokenId kitten id, only valid when > 0 def _owns(self, _claimant: address, _tokenId: uint256) -> bool: return self.kittyIndexToOwner[_tokenId] == _claimant # @dev Checks if a given address currently has transferApproval for a particular Kitty. # @param _claimant the address we are confirming kitten is approved for. # @param _tokenId kitten id, only valid when > 0 def _approvedFor(self, _claimant: address, _tokenId: uint256) -> bool: return self.kittyIndexToApproved[_tokenId] == _claimant # @dev Marks an address as being approved for transferFrom(), overwriting any previous # approval. Setting _approved to address(0) clears all transfer approval. # NOTE: _approve() does NOT send the Approval event. This is intentional because # _approve() and transferFrom() are used together for putting Kitties on auction, and # there is no value in spamming the log with Approval events in that case. def _approve(self, _tokenId: uint256, _approved: address): self.kittyIndexToApproved[_tokenId] = _approved # @notice Returns the number of Kitties owned by a specific address. # @param _owner The owner address to check. # @dev Required for ERC-721 compliance def balanceOf(self, _owner: address) -> uint256: return self.ownershipTokenCount[_owner] # @notice Transfers a Kitty to another address. If transferring to a smart # contract be VERY CAREFUL to ensure that it is aware of ERC-721 (or # CryptoKitties specifically) or your Kitty may be lost forever. Seriously. # @param _to The address of the recipient, can be a user or contract. # @param _tokenId The ID of the Kitty to transfer. # @dev Required for ERC-721 compliance. def transfer(self, _to: address, _tokenId: uint256): self.whenNotPaused() # Safety check to prevent against an unexpected 0x0 default. require(_to != address(0)) # Disallow transfers to this contract to prevent accidental misuse. # The contract should never own any kitties (except very briefly # after a gen0 cat is created and before it goes on auction). require(_to != address(this)) # Disallow transfers to the auction contracts to prevent accidental # misuse. Auction contracts should only take ownership of kitties # through the allow + transferFrom flow. require(_to != address(self.saleAuction)) require(_to != address(self.siringAuction)) # You can only send your own cat. require(self._owns(msg.sender, _tokenId)) # Reassign ownership, clear pending approvals, emit Transfer event. self._transfer(msg.sender, _to, _tokenId) # @notice Grant another address the right to transfer a specific Kitty via # transferFrom(). This is the preferred flow for transfering NFTs to contracts. # @param _to The address to be granted transfer approval. Pass address(0) to # clear all approvals. # @param _tokenId The ID of the Kitty that can be transferred if this call succeeds. # @dev Required for ERC-721 compliance. @whenNotPaused def approve(self, _to: address, _tokenId: uint256): # Only an owner can grant transfer approval. require(self._owns(msg.sender, _tokenId)) # Register the approval (replacing any previous approval). self._approve(_tokenId, _to) # Emit approval event. self.Approval(msg.sender, _to, _tokenId) # @notice Transfer a Kitty owned by another address, for which the calling address # has previously been granted transfer approval by the owner. # @param _from The address that owns the Kitty to be transfered. # @param _to The address that should take ownership of the Kitty. Can be any address, # including the caller. # @param _tokenId The ID of the Kitty to be transferred. # @dev Required for ERC-721 compliance. @whenNotPaused def transferFrom(self, _from: address, _to: address, _tokenId: uint256): # Safety check to prevent against an unexpected 0x0 default. require(_to != address(0)) # Disallow transfers to this contract to prevent accidental misuse. # The contract should never own any kitties (except very briefly # after a gen0 cat is created and before it goes on auction). require(_to != address(this)) # Check for approval and valid ownership require(self._approvedFor(msg.sender, _tokenId)) require(self._owns(_from, _tokenId)) # Reassign ownership (also clears pending approvals and emits Transfer event). self._transfer(_from, _to, _tokenId) # @notice Returns the total number of Kitties currently in existence. # @dev Required for ERC-721 compliance. def totalSupply(self) -> uint: return self.kitties.length - 1 # @notice Returns the address currently assigned ownership of a given Kitty. # @dev Required for ERC-721 compliance. def ownerOf(self, _tokenId: uint256) -> address: owner = self.kittyIndexToOwner[_tokenId] require(owner != address(0)) return owner # @notice Returns a list of all Kitty IDs assigned to an address. # @param _owner The owner whose Kitties we are interested in. # @dev This method MUST NEVER be called by smart contract code. First, it's fairly # expensive (it walks the entire Kitty array looking for cats belonging to owner), # but it also returns a dynamic array, which is only supported for web3 calls, and # not contract-to-contract calls. def tokensOfOwner(self, _owner: address) -> List: tokenCount = self.balanceOf(_owner) result = List([],uint256) if tokenCount == 0: # Return an empty array return result else: #FIXME memory type # uint256[] memory result = new uint256[](tokenCount); # uint256 totalCats = self.totalSupply(); # uint256 resultIndex = 0; result = List(size = tokenCount, value_type=uint256) totalCats = self.totalSupply() resultIndex = 0 # We count on the fact that all cats have IDs starting at 1 and increasing # sequentially up to the totalCat count. # uint256 catId; for catId in range(1, totalCats+1): if self.kittyIndexToOwner[catId] == _owner: result[resultIndex] = catId resultIndex+=1 return result # @dev Adapted from memcpy() by @arachnid (Nick Johnson <arachnid@notdot.net>) # This method is licenced under the Apache License. # Ref: https://github.com/Arachnid/solidity-stringutils/blob/2f6ca9accb48ae14c66f1437ec50ed19a0616f78/strings.sol def _memcpy(self, _dest: uint, _src: uint, _len: uint): pass ''' def _memcpy(uint _dest, uint _src, uint _len) private view { # Copy word-length chunks while possible for(; _len >= 32; _len -= 32) { assembly { mstore(_dest, mload(_src)) } _dest += 32; _src += 32; } # Copy remaining bytes uint256 mask = 256 ** (32 - _len) - 1; assembly { let srcpart := and(mload(_src), not(mask)) let destpart := and(mload(_dest), mask) mstore(_dest, or(destpart, srcpart)) } } ''' # @dev Adapted from toString(slice) by @arachnid (Nick Johnson <arachnid@notdot.net>) # This method is licenced under the Apache License. # Ref: https://github.com/Arachnid/solidity-stringutils/blob/2f6ca9accb48ae14c66f1437ec50ed19a0616f78/strings.sol #FIXME def _toString(self, _rawBytes, _stringLength) -> str: assert False ''' def _toString(bytes32[4] _rawBytes, uint256 _stringLength) private view returns (string) { var outputString = new string(_stringLength); uint256 outputPtr; uint256 bytesPtr; assembly { outputPtr := add(outputString, 32) bytesPtr := _rawBytes } _memcpy(outputPtr, bytesPtr, _stringLength); return outputString; ''' # @notice Returns a URI pointing to a metadata package for this token conforming to # ERC-721 (https://github.com/ethereum/EIPs/issues/721) # @param _tokenId The ID number of the Kitty whose metadata should be returned. def tokenMetadata(self, _tokenId: uint256, _preferredTransport: str) -> str: require(self.erc721Metadata != address(0)) # bytes32[4] memory buffer; # uint256 count; buffer, count = self.erc721Metadata.getMetadata(_tokenId, _preferredTransport) return self._toString(buffer, count)
45.180077
118
0.672914
11,277
0.956326
0
0
1,227
0.104054
0
0
7,699
0.6529
c6690d881a99354cf92a13a7b705df947e112eb1
5,009
py
Python
menu.py
kokohi28/stock-prediction
82d18cbb6366d522a01252e0cdc6eafa9fffea6d
[ "MIT" ]
11
2020-06-15T12:38:57.000Z
2021-12-08T13:34:28.000Z
menu.py
kokohi28/stock-prediction
82d18cbb6366d522a01252e0cdc6eafa9fffea6d
[ "MIT" ]
null
null
null
menu.py
kokohi28/stock-prediction
82d18cbb6366d522a01252e0cdc6eafa9fffea6d
[ "MIT" ]
5
2020-12-17T16:58:36.000Z
2022-02-08T09:29:28.000Z
import os import const as CONST from datetime import datetime # Const MENU_ROOT = 0 MENU_SPECIFY_DATE = 1 MENU_SPECIFY_PERCENT_TRAINED = 2 currMenu = MENU_ROOT stockList = ['AAPL', '^DJI', '^HSI', '^GSPC'] def welcomeMessage(): print('##############################################################################') print('#### ####') print('#### Stock Prediction using Long short-term memory (LSTM) ####') print('#### ####') print('#### BY : - Malik Dwi Yoni Fordana (17051204024) ####') print('#### - Roy Belmiro Virgiant (17051204016) ####') print('#### - Koko Himawan Permadi (19051204111) ####') print('#### ####') print('##############################################################################') return def validateDate(date_text): try: datetime.strptime(date_text, '%Y/%m/%d') return True except ValueError: return False def menuSpecifyPercentTrained(): print('\nEnter trained data percentage (%) :') print('') print('Press [B] for Back') return def menuSpecifyDate(): print('\nEnter period of stock, start date - end date :') print('example : 2010/01/05-2015/01/05') print('') print('Press [B] for Back') return def menuRoot(): print('\nSelect Stock:') print('1. Apple (AAPL)') print('2. Dow Jones Industrial Average (^DJI)') print('3. Hang Seng Index (^HSI)') print('4. S&P 500 (^GSPC)') print('') print('Press [Q] for Exit') return def handleInputDate(inputVal): if inputVal == 'B' or \ inputVal == 'b': return (-1, []) else: dateSplit = inputVal.split('-') if len(dateSplit) < 2: print('\nRange INVALID... (Press any key to continue)') input('') return (0, []) else: if validateDate(dateSplit[0]) == False: print('\nDate start INVALID... (Press any key to continue)') input('') return (0, []) if validateDate(dateSplit[1]) == False: print('\nDate end INVALID... (Press any key to continue)') input('') return (0, []) return (1, dateSplit) def handleInputPercentTrained(inputVal): if inputVal == 'B' or \ inputVal == 'b': return -1 else: if inputVal.isnumeric(): num = int(inputVal) if num == 0 or \ num > 100: print('\nPercentage INVALID... (Press any key to continue)') input('') return 0 else: return num else: print('\nPercentage INVALID... (Press any key to continue)') input('') return 0 def clearScreen(): os.system('cls' if os.name == 'nt' else 'clear') return def menuLoop(): loopMenu = True global currMenu stock = '' dateRange = [] percentTrained = 0 while loopMenu: try: # Clear screen clearScreen() # Display Welcome welcomeMessage() # Display Input inputMsg = '' if currMenu == MENU_ROOT: menuRoot() inputMsg = 'Select : ' elif currMenu == MENU_SPECIFY_DATE: menuSpecifyDate() inputMsg = 'Specify : ' elif currMenu == MENU_SPECIFY_PERCENT_TRAINED: menuSpecifyPercentTrained() inputMsg = 'Percentage : ' # Get Input inputVal = input(inputMsg) # Listen Quit Input if inputVal == 'Q' or \ inputVal == 'q': stock = '' dateRange = [] percentTrained = 0 loopMenu = False else: # Root if currMenu == MENU_ROOT: if inputVal.isnumeric(): num = int(inputVal) if num == 0 or \ num > len(stockList): print('\nSelection INVALID... (Press any key to continue)') input('') else: stock = stockList[num - 1] currMenu = currMenu + 1 else: print('\nSelection INVALID... (Press any key to continue)') input('') # Date elif currMenu == MENU_SPECIFY_DATE: res, dateRange = handleInputDate(inputVal) if res < 0: currMenu = currMenu - 1 elif res == 0: pass elif res > 0: currMenu = currMenu + 1 # Percent trained elif currMenu == MENU_SPECIFY_PERCENT_TRAINED: percentTrained = handleInputPercentTrained(inputVal) if percentTrained < 0: currMenu = currMenu - 1 elif percentTrained == 0: pass elif percentTrained > 0: # EXIT MENU LOOP loopMenu = False except KeyboardInterrupt: stock = '' dateRange = [] percentTrained = 0 loopMenu = False return (stock, dateRange, percentTrained)
27.075676
89
0.502296
0
0
0
0
0
0
0
0
1,652
0.329806
c6692746527064fc0f46c5e36e6e97f09870ae4f
3,410
py
Python
demo/infinity/triton_client.py
dumpmemory/transformer-deploy
36993d8dd53c7440e49dce36c332fa4cc08cf9fb
[ "Apache-2.0" ]
698
2021-11-22T17:42:40.000Z
2022-03-31T11:16:08.000Z
demo/infinity/triton_client.py
dumpmemory/transformer-deploy
36993d8dd53c7440e49dce36c332fa4cc08cf9fb
[ "Apache-2.0" ]
38
2021-11-23T13:45:04.000Z
2022-03-31T10:36:45.000Z
demo/infinity/triton_client.py
dumpmemory/transformer-deploy
36993d8dd53c7440e49dce36c332fa4cc08cf9fb
[ "Apache-2.0" ]
58
2021-11-24T11:46:21.000Z
2022-03-29T08:45:16.000Z
# Copyright 2022, Lefebvre Dalloz Services # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import numpy as np import tritonclient.http from transformer_deploy.benchmarks.utils import print_timings, setup_logging, track_infer_time if __name__ == "__main__": parser = argparse.ArgumentParser( description="require inference", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("--length", required=True, help="sequence length", choices=(16, 128), type=int) parser.add_argument("--model", required=True, help="model type", choices=("onnx", "tensorrt")) args, _ = parser.parse_known_args() setup_logging() model_name = f"transformer_{args.model}_inference" url = "127.0.0.1:8000" model_version = "1" batch_size = 1 if args.length == 128: # from https://venturebeat.com/2021/08/25/how-hugging-face-is-tackling-bias-in-nlp/, text used in the HF demo text = """Today, Hugging Face has expanded to become a robust NLP startup, known primarily for making open-source software such as Transformers and Datasets, used for building NLP systems. “The software Hugging Face develops can be used for classification, question answering, translation, and many other NLP tasks,” Rush said. Hugging Face also hosts a range of pretrained NLP models, on GitHub, that practitioners can download and apply for their problems, Rush added.""" # noqa: W291 else: text = "This live event is great. I will sign-up for Infinity." triton_client = tritonclient.http.InferenceServerClient(url=url, verbose=False) assert triton_client.is_model_ready( model_name=model_name, model_version=model_version ), f"model {model_name} not yet ready" model_metadata = triton_client.get_model_metadata(model_name=model_name, model_version=model_version) model_config = triton_client.get_model_config(model_name=model_name, model_version=model_version) query = tritonclient.http.InferInput(name="TEXT", shape=(batch_size,), datatype="BYTES") model_score = tritonclient.http.InferRequestedOutput(name="output", binary_data=False) time_buffer = list() for _ in range(10000): query.set_data_from_numpy(np.asarray([text] * batch_size, dtype=object)) _ = triton_client.infer( model_name=model_name, model_version=model_version, inputs=[query], outputs=[model_score] ) for _ in range(1000): with track_infer_time(time_buffer): query.set_data_from_numpy(np.asarray([text] * batch_size, dtype=object)) response = triton_client.infer( model_name=model_name, model_version=model_version, inputs=[query], outputs=[model_score] ) print_timings(name="triton transformers", timings=time_buffer) print(response.as_numpy("output"))
46.712329
117
0.72346
0
0
0
0
0
0
0
0
1,512
0.442882
c66969c34948d04bc70f6e069bd8dabc5e27f5b6
2,361
py
Python
mf/knnbased.py
waashk/extended-pipeline
1f8cdfcd1530a9dd502ea0d76d89b5010d19daf7
[ "MIT" ]
null
null
null
mf/knnbased.py
waashk/extended-pipeline
1f8cdfcd1530a9dd502ea0d76d89b5010d19daf7
[ "MIT" ]
null
null
null
mf/knnbased.py
waashk/extended-pipeline
1f8cdfcd1530a9dd502ea0d76d89b5010d19daf7
[ "MIT" ]
null
null
null
import numpy as np from tqdm import tqdm from scipy.sparse import csr_matrix, hstack, vstack from sklearn.neighbors import NearestNeighbors class MFKnn(object): """ Implementation of """ def __init__(self, metric, k): self.k = k self.metric = metric def fit(self, X, y): # self.X_train = X self.y_train = y # self.classes = sorted(map(int, list(set(self.y_train)))) self.n_classes = len(self.classes) # self.docs_by_class = [len(np.where(self.y_train == i)[0]) for i in self.classes] # self.X_by_class = [] self.knn_by_class = [] #self.scores = {} # njobs=-1 if self.metric == 'l1': njobs=1 for i in self.classes: X_tmp = self.X_train[np.where(self.y_train == i)] #print ("xtmp"+str(X_tmp.shape[0])+" class: "+str(i)) data=[] data.append(0) ind=[] ind.append(0) auxf=csr_matrix((data, (ind,ind)), shape=(1,self.X_train.shape[1]),dtype=np.float64) #zero a linha if X_tmp.shape[0]<self.k+1: newxtmp=[] for iww in list(range(X_tmp.shape[0])): newxtmp.append(X_tmp[iww]) for iww in list(range(self.k+1-X_tmp.shape[0])): newxtmp.append(auxf) X_tmp=vstack(newxtmp) knn = NearestNeighbors(n_neighbors=self.k+1, algorithm="brute", metric=self.metric, n_jobs=njobs) knn.fit(X_tmp) self.knn_by_class.append(knn) return self def csr_matrix_equal2(self, a1, a2): return all((np.array_equal(a1.indptr, a2.indptr), np.array_equal(a1.indices, a2.indices), np.array_equal(a1.data, a2.data))) def transform(self, X): # istrain = True if self.csr_matrix_equal2(self.X_train, X) else False #print(istrain) n_neighbors = self.k+1 if istrain else self.k metafeatures = [] scores = {} for j in self.classes: if self.metric == "l1" or self.metric == "l2": scores[j] = 0.0 + self.knn_by_class[j].kneighbors(X, n_neighbors, return_distance=True)[0] if self.metric == "cosine": scores[j] = 1.0 - self.knn_by_class[j].kneighbors(X, n_neighbors, return_distance=True)[0] # for i, doc in enumerate(X): for j in self.classes: if istrain: if self.y_train[i] == j: metafeatures += list(scores[j][i][1:]) else: metafeatures += list(scores[j][i][:-1]) else: metafeatures += list(scores[j][i]) return np.array(metafeatures).reshape((X.shape[0],self.k*self.n_classes))
23.147059
105
0.647183
2,216
0.938585
0
0
0
0
0
0
160
0.067768
c66bd961fbf8bcb3556ef3c4fc46854f04ab9b95
581
py
Python
general-practice/Exercises solved/codingbat/Warmup2/string_match.py
lugabrielbueno/Projeto
f012c5bb9ce6f6d7c9e8196cc7986127dba3eba0
[ "MIT" ]
null
null
null
general-practice/Exercises solved/codingbat/Warmup2/string_match.py
lugabrielbueno/Projeto
f012c5bb9ce6f6d7c9e8196cc7986127dba3eba0
[ "MIT" ]
null
null
null
general-practice/Exercises solved/codingbat/Warmup2/string_match.py
lugabrielbueno/Projeto
f012c5bb9ce6f6d7c9e8196cc7986127dba3eba0
[ "MIT" ]
null
null
null
#Given 2 strings, a and b, return the number of the positions where they contain the same length 2 substring. So "xxcaazz" and "xxbaaz" yields 3, since the "xx", "aa", and "az" substrings appear in the same place in both strings. #string_match('xxcaazz', 'xxbaaz') → 3 #string_match('abc', 'abc') → 2 #string_match('abc', 'axc') → 0 def string_match(a,b): if a > b : higher = a else: higher = b count = 0 for i in range(len(higher)): if a[i:i+2] == b[i:i+2] and len(a[i:i+2]) == len(b[i:i+2]) == 2: count +=1 return count
34.176471
229
0.593804
0
0
0
0
0
0
0
0
335
0.570698
c66c55f72d0c193656a8d7f34187cd20b4099a6f
2,458
py
Python
pycondor/tools.py
kant/pycondor
ee87854504e8f4023feda860d8a9ddbecc7a70da
[ "BSD-3-Clause" ]
6
2015-04-17T08:25:30.000Z
2020-04-11T23:58:16.000Z
pycondor/tools.py
kant/pycondor
ee87854504e8f4023feda860d8a9ddbecc7a70da
[ "BSD-3-Clause" ]
3
2015-12-22T07:40:02.000Z
2019-01-21T15:07:00.000Z
pycondor/tools.py
kant/pycondor
ee87854504e8f4023feda860d8a9ddbecc7a70da
[ "BSD-3-Clause" ]
6
2015-11-13T18:55:22.000Z
2020-03-12T19:32:56.000Z
#!/usr/bin/env python #-*- coding:utf-8 -*- """ Tools http://en.wikipedia.org/wiki/Haversine_formula ToDo: ToFix / ToTest """ import math def waypoint_bearing(lat1, lon1, lat2, lon2): """ Calculates the bearing between 2 locations. Method calculates the bearing between 2 locations. @param lon1 First point longitude. @param lat1 First point latitude. @param lon2 Second point longitude. @param lat2 Second point latitude. @return The bearing between 2 locations. """ longitude1 = math.radians(lon1) latitude1 = math.radians(lat1) longitude2 = math.radians(lon2) latitude2 = math.radians(lat2) clat1 = math.cos(latitude1) clat2 = math.cos(latitude2) dlon = longitude2 - longitude1 y = math.sin(dlon) * clat2 x = clat1 * math.sin(latitude2) - math.sin(latitude1) * clat2 * math.cos(dlon) if x==0 and y==0: return(0.0) else: return((360 + math.degrees(math.atan2(y, x)) + 0.5) % 360.0) def haversine_bearing(lat1, lon1, lat2, lon2): """ Calculate the bearing from 1 point to 1 other on the earth (specified in decimal degrees) """ # convert decimal degrees to radians lat1, lon1, lat2, lon2 = map(math.radians, [lat1, lon1, lat2, lon2]) dlon = lon2 - lon1 b = math.atan2(math.sin(dlon) * math.cos(lat2), math.cos(lat1) * math.sin(lat2) - math.sin(lat1) * math.cos(lat2) * math.cos(dlon)) # bearing calc bd = math.degrees(b) br, bn = divmod(bd + 360, 360) # the bearing remainder and final bearing return bn def haversine_distance(lat1, lon1, lat2, lon2): """ Calculate the great circle distance between two points on the earth (specified in decimal degrees) """ # convert decimal degrees to radians lat1, lon1, lat2, lon2 = map(math.radians, [lat1, lon1, lat2, lon2]) # haversine formula dlon = lon2 - lon1 dlat = lat2 - lat1 a = math.sin(dlat/2)**2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon/2)**2 c = 2 * math.asin(math.sqrt(a)) r = 6371.0 # Radius of earth in kilometers. Use 3956 for miles return(c * r) def main(): # Just some tests (should be removed) (lon1, lat1, lon2, lat2) = (45.0, 1.0, 45.5, 2.0) bearing = waypoint_bearing(lon1, lat1, lon2, lat2) print(bearing) bearing = haversine_bearing(lon1, lat1, lon2, lat2) print(bearing) if __name__ == '__main__': main()
25.340206
83
0.633849
0
0
0
0
0
0
0
0
920
0.374288
c66f914aa66ae752fa396361357e16cd39293db5
10,951
py
Python
courses/views.py
mdavoodi/konkourse-python
50f2904e7bbb31f00c4dd66fb55cd644ea3c4eee
[ "MIT" ]
4
2015-06-23T22:17:50.000Z
2019-01-17T21:32:02.000Z
courses/views.py
mdavoodi/konkourse-python
50f2904e7bbb31f00c4dd66fb55cd644ea3c4eee
[ "MIT" ]
null
null
null
courses/views.py
mdavoodi/konkourse-python
50f2904e7bbb31f00c4dd66fb55cd644ea3c4eee
[ "MIT" ]
null
null
null
from django.shortcuts import render, redirect, render_to_response from django.template.context import RequestContext from account.views import login from models import Course from website.views import index from forms import CourseForm, CourseInitialForm from account.util import createImage from django.core.context_processors import csrf from events.forms import EventForm from events.models import Event import datetime from documents.forms import DocumentForm from datetime import timedelta from conversation.models import ConvoWall, ConversationPost from documents.views import __upload_core from documents.models import Document from endless_pagination.decorators import page_template from notification.views import notifyCreateEvent, notifyDocShareCourse from page.models import Page def _course_context(request, course_id): course = Course.objects.get(id=course_id) institution = Page.objects.get(title=course.institution) variables_for_template = { 'name': request.user.first_name + ' ' + request.user.last_name, 'image': course.image, 'course_name': course.name, 'course_number': course.number, 'institution': institution, 'description': course.about, 'professor': course.professor, 'course_id': course_id, 'course_form': CourseInitialForm(), 'courses': Course.objects.filter(course_users__username=request.user.username), 'current_course': course, 'section_number': course.course_id, 'is_logged_in': True, } return variables_for_template def _course_exists(request): form = CourseInitialForm(request.POST, request.FILES) if form.is_valid(): section_number = "" if request.user.get_profile().school.title == "James Madison University": section_number = request.POST['course_id'].zfill(4) else: section_number = request.POST['course_id'] try: course = Course.objects.get( number__iexact=request.POST['course_number'], course_id__iexact=section_number, institution__iexact=request.user.get_profile().school.title) return (True, course) except Course.DoesNotExist: wall = ConvoWall(wall_type=3) wall.save() course = Course( wall=wall, number=request.POST['course_number'], course_id=section_number, institution=request.user.get_profile().school.title) course.save() return (False, course) return (False, None) @page_template('website/course/course_page.html') def course(request, course_id, error_message='', template='website/course/course.html', extra_context=None): if not request.user.is_authenticated() or not request.user.is_active: return redirect(index) else: variables = _course_context(request, course_id) variables['event_form'] = EventForm() variables['doc_form'] = DocumentForm() c = Course.objects.get(id=course_id) posts = ConversationPost.objects.filter(wall=c.wall, deleted=False).order_by('created') variables['wall'] = c.wall variables['posts'] = posts.reverse() if error_message != '': variables['error_message'] = error_message variables.update(csrf(request)) if extra_context is not None: variables.update(extra_context) return render_to_response( template, variables, context_instance=RequestContext(request)) def create(request): if not request.user.is_authenticated(): return login(request) if request.method == 'POST': exists, c = get_or_add_course(request) if(c is None): return index(request) if(not exists): return course_info_edit(request, c.id) else: return course(request, c.id) return redirect(index) def get_or_add_course(request): exists, c = _course_exists(request=request) if c is None: return (exists, c) c = Course.objects.get(id=c.id) c.add_student(request.user) return (exists, c) def course_leave(request, course_id): c = Course.objects.get(id=course_id) if(c.in_course(request.user)): c.remove_student(request.user) return redirect(index) return redirect(404) def course_info(request, course_id): if not request.user.is_authenticated(): return login(request) course = Course.objects.get(id=course_id) variables = _course_context(request, course_id) variables['timeValue'] = course.time variables['semester'] = course.get_semester variables['credits'] = course.credits return render(request, 'website/course/course_info.html', variables, context_instance=RequestContext(request), ) def course_info_edit(request, course_id): if not request.user.is_authenticated(): return login(request) variables = _course_context(request, course_id) variables['form'] = CourseForm(instance=Course.objects.get(id=course_id)) variables.update(csrf(request)) return render(request, 'website/course/course_info_edit.html', variables, context_instance=RequestContext(request), ) def course_update(request, course_id): if request.method == 'POST': c = Course.objects.get(id=course_id) form = CourseForm(request.POST, request.FILES, instance=c) if form.is_valid(): u = request.user c = form.save() dimentions = (150, 150) if len(request.FILES) == 1: image = request.FILES['image'] c.image.save(image.name, createImage(c.image, dimentions)) name = u.first_name + ' ' + u.last_name username = request.user.username variables_for_template = { 'name': name, 'username': username, } return redirect('/course/' + str(course_id) + '/', variables_for_template) else: variables = _course_context(request, course_id) variables['form'] = form variables.update(csrf(request)) return render(request, 'website/course/course_info_edit.html', variables, context_instance=RequestContext(request)) def create_event(request, course_id): if request.method == 'POST': variables = _course_context(request, course_id) c = Course.objects.get(id=course_id) e = Event() e.creator = request.user form = EventForm(request.POST, request.FILES, instance=e) if form.is_valid(): e = form.save() c.add_event(e) e.join_event(request.user.id) c.save() wallPost = ConversationPost(creator=request.user, wall=c.wall, message="", post_type='E', event=e) wallPost.save() notifyCreateEvent(course=c, event=e) return redirect(course_events, course_id) else: variables['form'] = form variables.update(csrf(request)) return course(request, course_id, "Invalid event creation fields!!") return redirect(index) def course_documents(request, course_id): if not request.user.is_authenticated(): return login(request) variables = _course_context(request, course_id) variables['documents'] = Document.objects.filter(course__id=course_id).order_by('modified') return render(request, 'website/course/course_documents.html', variables, context_instance=RequestContext(request), ) def course_upload(request, course_id): doc = __upload_core(request) if isinstance(doc, Exception): return course(request, course_id, "Invalid document!") else: c = Course.objects.get(id=course_id) message = request.POST['message_post'] wallPost = ConversationPost(creator=request.user, wall=c.wall, message=message, post_type='D', document=doc) wallPost.save() doc.course.add(c) doc.save() notifyDocShareCourse(document=doc, course=c) return redirect(course_documents, course_id) def course_events(request, course_id): if not request.user.is_authenticated(): return login(request) variables = _course_context(request, course_id) today = datetime.date.today() week1_end = today + timedelta(days=6 - today.weekday()) week2_end = week1_end + timedelta(days=7) c = Course.objects.get(id=course_id) variables['thisWeek'] = c.events.filter(start_date__range=[today, week1_end], deleted=False) variables['nextWeek'] = c.events.filter(start_date__gt=week1_end, start_date__lte=week2_end, deleted=False) variables['future'] = c.events.filter(start_date__gt=week2_end, deleted=False) return render(request, 'website/course/course_events.html', variables, context_instance=RequestContext(request), ) def course_members(request, course_id): if not request.user.is_authenticated(): return login(request) template_variables = _course_context(request, course_id) c = Course.objects.get(id=course_id) _list = c.course_users.filter(courseuser__role='S') new_list = (chunks(_list, 3)) template_variables['course_members'] = new_list template_variables['user'] = request.user return render(request, 'website/course/course_members.html', template_variables, context_instance=RequestContext(request), ) def course_gradebook(request, course_id): if not request.user.is_authenticated(): return login(request) return render(request, 'website/course/course_gradebook.html', _course_context(request, course_id), context_instance=RequestContext(request), ) def chunks(l, n): for i in xrange(0, len(l), n): yield l[i:i + n] from django.http import HttpResponse from django.utils import simplejson def add_course(request): results = {'success': False} if request.user.is_authenticated() and request.user.is_active: if request.method == 'POST': courses = Course.objects.filter(course_users__username=request.user.username) if courses.count() >= 10: json = simplejson.dumps(results) return HttpResponse(json, mimetype='application/json') exists, c = get_or_add_course(request) if c is not None: results = {'success': True} else: results = {'success': False} json = simplejson.dumps(results) return HttpResponse(json, mimetype='application/json')
37.892734
116
0.649621
0
0
77
0.007031
973
0.08885
0
0
942
0.08602
c67157381752f709d6b39cd4632427d8936411ad
2,701
py
Python
rx/operators/observable/delaywithselector.py
yutiansut/RxPY
c3bbba77f9ebd7706c949141725e220096deabd4
[ "ECL-2.0", "Apache-2.0" ]
1
2018-11-16T09:07:13.000Z
2018-11-16T09:07:13.000Z
rx/operators/observable/delaywithselector.py
yutiansut/RxPY
c3bbba77f9ebd7706c949141725e220096deabd4
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
rx/operators/observable/delaywithselector.py
yutiansut/RxPY
c3bbba77f9ebd7706c949141725e220096deabd4
[ "ECL-2.0", "Apache-2.0" ]
1
2020-05-08T08:23:08.000Z
2020-05-08T08:23:08.000Z
from rx.core import ObservableBase, AnonymousObservable, typing from rx.disposables import CompositeDisposable, \ SingleAssignmentDisposable, SerialDisposable def delay_with_selector(self, subscription_delay=None, delay_duration_mapper=None) -> ObservableBase: """Time shifts the observable sequence based on a subscription delay and a delay mapper function for each element. # with mapper only 1 - res = source.delay_with_selector(lambda x: Scheduler.timer(5000)) # with delay and mapper 2 - res = source.delay_with_selector(Observable.timer(2000), lambda x: Observable.timer(x)) subscription_delay -- [Optional] Sequence indicating the delay for the subscription to the source. delay_duration_mapper [Optional] Selector function to retrieve a sequence indicating the delay for each given element. Returns time-shifted sequence. """ source = self sub_delay, mapper = None, None if isinstance(subscription_delay, typing.Observable): mapper = delay_duration_mapper sub_delay = subscription_delay else: mapper = subscription_delay def subscribe(observer, scheduler=None): delays = CompositeDisposable() at_end = [False] def done(): if (at_end[0] and delays.length == 0): observer.on_completed() subscription = SerialDisposable() def start(): def on_next(x): try: delay = mapper(x) except Exception as error: observer.on_error(error) return d = SingleAssignmentDisposable() delays.add(d) def on_next(_): observer.on_next(x) delays.remove(d) done() def on_completed(): observer.on_next(x) delays.remove(d) done() d.disposable = delay.subscribe_(on_next, observer.on_error, on_completed, scheduler) def on_completed(): at_end[0] = True subscription.dispose() done() subscription.disposable = source.subscribe_(on_next, observer.on_error, on_completed, scheduler) if not sub_delay: start() else: subscription.disposable(sub_delay.subscribe_( lambda _: start(), observer.on_error, start)) return CompositeDisposable(subscription, delays) return AnonymousObservable(subscribe)
32.154762
108
0.585339
0
0
0
0
0
0
0
0
668
0.247316
c6715e41c59947802aabe44b258270730dfcbb52
719
py
Python
w2/palindrome.py
connorw72/connorapcsptri3
2e885644ed2a8d478e5ce193f94b02ad03c6e6b3
[ "MIT" ]
null
null
null
w2/palindrome.py
connorw72/connorapcsptri3
2e885644ed2a8d478e5ce193f94b02ad03c6e6b3
[ "MIT" ]
3
2022-03-14T21:10:05.000Z
2022-03-28T21:11:17.000Z
w2/palindrome.py
connorw72/connorapcsptri3
2e885644ed2a8d478e5ce193f94b02ad03c6e6b3
[ "MIT" ]
2
2022-03-10T06:11:11.000Z
2022-03-11T06:11:11.000Z
class Palindrome: def __init__(self, test): self.test = test def __call__(self): test_strip = list([n for n in self.test if n.isalpha() or n.isnumeric()]) self.test = "".join(test_strip) self.test = self.test.lower() #Test to see if the phrase/word is a palindrome if self.test == self.test[::-1]: return "is a palindrome" else: return "is not a palindrome" # Testing these to see if they are palindromes test_cases = ["A man, a plan, a canal -- Panama", "racecar", "broncos"] def main(): try: for v in test_cases: palindrome = Palindrome(test=v) print(v, palindrome()) except: print("ERROR!")
31.26087
81
0.585535
445
0.618915
0
0
0
0
0
0
193
0.268428
c672a5daf5acf1852874d76a788a6d4edc536ca3
3,890
py
Python
sat-competition-2018/xof-state/sha3-xof.py
cipherboy/sat
65cbcebf03ffdfd64d49359ebb1d654c73e2c720
[ "MIT" ]
1
2019-01-19T23:04:50.000Z
2019-01-19T23:04:50.000Z
sat-competition-2018/xof-state/sha3-xof.py
cipherboy/sat
65cbcebf03ffdfd64d49359ebb1d654c73e2c720
[ "MIT" ]
null
null
null
sat-competition-2018/xof-state/sha3-xof.py
cipherboy/sat
65cbcebf03ffdfd64d49359ebb1d654c73e2c720
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import hash_framework as hf hf.config.model_dir = "/home/cipherboy/GitHub/sat/sat-competition-2018/models" import time, sys, os, random run = False release = False if '--run' in sys.argv: run = True if '--release' in sys.argv: release = True if '-h' in sys.argv or '--help' in sys.argv: print(sys.argv[0] + " [--run] [--release] [--args file] [w r e s]") print('---') print("Generates models for benchmarking. Runs if specified, otherwise only creates models.") print("--run - runs the resulting CNF file") print("--release - deletes the intermediate stages after creation") print("--args file - specify a file to load arguments from") print("w - sha3 w") print("r - sha3 rounds format (str only)") print("e - effective margin (128/256/.../512: as if w=1600)") print("s - steps to apply to base state (extract s*e*w/64 bits from the XOF)") sys.exit(0) def sha3_xof_recreate_args(): r_args = sys.argv[1:] if run: r_args = r_args[1:] if release: r_args = r_args[1:] w = int(r_args[0]) r = int(r_args[1]) e = int(r_args[2]) s = int(r_args[3]) sha3_xof_recreate(w, r, e, s) def sha3_xof_recreate_file(): fname = sys.argv[-1] args = open(fname, 'r').read().split('\n') for s_arg in args: if len(s_arg) == 0: continue arg = s_arg.split(" ") w = int(arg[0]) r = int(arg[1]) e = int(arg[2]) s = int(arg[3]) sha3_xof_recreate(w, r, e, s) def sha3_perform(w, r, in_state): eval_table = hf.algorithms._sha3.perform_sha3({}, in_state, None, rounds=r, w=w) out_state = [] for j in range(0, 25*w): out_state.append(eval_table['out' + str(j)]) return ''.join(out_state) def sha3_xof_recreate(w, r, e, s): margin = e*w//64 algo = hf.algorithms.sha3(w=w, rounds=r) base_seed = [] for j in range(0, 25*w): if random.randint(0, 1) == 0: base_seed.append('F') else: base_seed.append('T') base_seed = ''.join(base_seed) states = [] cstate = sha3_perform(w, r, base_seed) for i in range(0, s): states.append(cstate) cstate = sha3_perform(w, r, cstate) tag = "sha3-xof_recreate-w" + str(w) + "-r" + str(r) + '-e' + str(e) + "-s" + str(s) prefixes = [] for i in range(0, s): prefixes.append('h' + str(i)) m = hf.models() m.start(tag, recreate=True) print(w, r, e, s, margin) print("base_seed: " + base_seed) for i in range(0, s): print("state " + str(i) + ": " + states[i]) hf.models.vars.write_header() hf.models.generate(algo, prefixes, rounds=r, bypass=True) hf.models.vars.write_assign(['cchain', 'cknown']) if s > 1: cchain = ['and'] for i in range(0, s-1): for j in range(0, 25*w): cchain.append(('equal', 'h' + str(i) + 'out' + str(j), 'h' + str(i+1) + 'in' + str(j))) cchain = tuple(cchain) hf.models.vars.write_clause('cchain', cchain, '10-chain.txt') cknown = ['and'] for i in range(0, s): for j in range(0, margin): cknown.append(('equal', 'h' + str(i) + 'out' + str(j), states[i][j])) cknown = tuple(cknown) hf.models.vars.write_clause('cknown', cknown, '20-known.txt') m.collapse() m.build() if run: t1 = time.time() res = m.run(count=1) t2 = (time.time() - t1) print("Run time: " + str(t2)) for result in m.load_results(): o_s = "" for j in range(0, 25*w): o_s += result['h0in' + str(j)] print("predicted_seed: " + str(o_s)) if release: os.system("rm -rf *.txt *.bc *.concat *.out") print("") if '--args' in sys.argv: sha3_xof_recreate_file() else: sha3_xof_recreate_args()
28.814815
103
0.554756
0
0
0
0
0
0
0
0
842
0.216452
c6739210f1e8d51ce9d34502997456a48bfc0ddd
3,357
py
Python
methinks/db.py
andreasgrv/methinks
5c65fdb84e35b8082ee35963431a352e06f4af44
[ "BSD-3-Clause" ]
null
null
null
methinks/db.py
andreasgrv/methinks
5c65fdb84e35b8082ee35963431a352e06f4af44
[ "BSD-3-Clause" ]
null
null
null
methinks/db.py
andreasgrv/methinks
5c65fdb84e35b8082ee35963431a352e06f4af44
[ "BSD-3-Clause" ]
null
null
null
import os import datetime import xxhash import json from flask_sqlalchemy import SQLAlchemy from methinks.utils import str_to_date from methinks.config import get_default_conf db = SQLAlchemy() class Entry(db.Model): __tablename__ = 'entry' id = db.Column(db.Integer, primary_key=True) hexid = db.Column(db.String(16), unique=True, nullable=False, index=True) text = db.Column(db.Text(), nullable=False) date = db.Column(db.Date(), index=True, nullable=False) last_edited = db.Column(db.DateTime(timezone=True), default=datetime.datetime.utcnow) misc = db.Column(db.JSON, nullable=True) def __init__(self, **data): if 'id' in data: raise AttributeError('id cannot be set') if 'hexid' in data: raise AttributeError('hexid cannot be set') self.text = data.pop('text') self.date = data.pop('date') if 'last_edited' in data: self.last_edited = data.pop('last_edited') assert type(self.date) is datetime.date self.misc = data self.hexid = self.hash def __repr__(self): return 'Entry: %r:\n%s' % (self.date, self.text) @property def hash(self): content = '%s%s%s' % (self.text, self.date, json.dumps(self.misc)) hs = xxhash.xxh64(content).hexdigest() return hs @classmethod def string_to_date(cl, text): return datetime.datetime.strptime(text, get_default_conf()['dateformat']).date() @classmethod def date_to_string(cl, date): return date.strftime(get_default_conf()['dateformat']) @property def filename(self): return '%s.md' % Entry.date_to_string(self.date) def as_dict(self): d = dict(id=self.id, hexid=self.hexid, text=self.text, date=self.date, last_edited=self.last_edited, **self.misc) return d @classmethod def from_dict(cl, data): return Entry(text=data['text'], date=str_to_date(data['date']).date(), last_edited=str_to_date(data['last_edited']), **data.get('misc', {})) def to_file(self, folderpath): path = os.path.join(folderpath, self.filename) with open(path, 'w') as f: f.write(self.text) @classmethod def from_file(cl, filepath): with open(filepath, 'r') as f: contents = f.read() filename = os.path.basename(filepath).replace('.md', '') if filename == 'template': date = datetime.date.today() last_edited = datetime.datetime.min else: date = cl.string_to_date(filename) mtime = os.path.getmtime(filepath) last_edited = datetime.datetime.fromtimestamp(mtime) return Entry(text=contents, date=date, last_edited=last_edited) @classmethod def from_config(cl, config): sections = [] for title, cl in config.triggers.items(): line = cl.default_text(title) sections.append(line) contents = '%s\n' % '\n'.join(sections) date = datetime.date.today() last_edited = datetime.datetime.min return Entry(text=contents, date=date, last_edited=last_edited)
31.373832
89
0.593983
3,157
0.940423
0
0
1,744
0.519511
0
0
214
0.063747
c673cb49bd602adacaeaaa1c827fbb7abab3bbf6
580
py
Python
functional/decorator.py
LaurenceYang/learn-python
819994039abd3af298f73b1a73976eaa95071096
[ "Apache-2.0" ]
2
2018-01-20T03:38:58.000Z
2019-07-21T11:33:24.000Z
functional/decorator.py
LaurenceYang/learn-python
819994039abd3af298f73b1a73976eaa95071096
[ "Apache-2.0" ]
null
null
null
functional/decorator.py
LaurenceYang/learn-python
819994039abd3af298f73b1a73976eaa95071096
[ "Apache-2.0" ]
null
null
null
import functools def log(func): @functools.wraps(func) def wrapper(*args, **kw): print('call %s():' % func.__name__) return func(*args, **kw) return wrapper @log def now(): print('2018-01-29') now() def logger(text): def decorator(func): @functools.wraps(func) def wrapper(*args, **kw): print('call %s %s():' % (text, func.__name__)) return func(*args, **kw) return wrapper return decorator @logger('DEBUG') def today(): print('2018-01-29 12:00:00') today() print(today.__name__)
17.575758
58
0.568966
0
0
0
0
382
0.658621
0
0
67
0.115517
c6742b09c8b11bbe5babccf11451efdfb75310ee
2,797
py
Python
dense_estimation/points_estimation.py
zouzhenhong98/kitti-tools
30b7d5c799ca2a44fe88522f6d46ad2a53c61d53
[ "MIT" ]
7
2020-01-03T13:05:36.000Z
2021-08-03T07:51:43.000Z
dense_estimation/points_estimation.py
zouzhenhong98/kitti-tools
30b7d5c799ca2a44fe88522f6d46ad2a53c61d53
[ "MIT" ]
null
null
null
dense_estimation/points_estimation.py
zouzhenhong98/kitti-tools
30b7d5c799ca2a44fe88522f6d46ad2a53c61d53
[ "MIT" ]
3
2020-07-07T03:35:06.000Z
2021-07-21T11:40:38.000Z
''' point clouds estimation: transfer sparse map to dense map, work for both depth and reflectance. ''' import sys sys.path.append("..") from utils import data_provider from utils import velo_2_cam import numpy as np # fetch image and point clouds: coordinates and reflectance def rawData(pc_path_, img_path_): # loar filtered pointcloud lidar = data_provider.read_pc2array(pc_path_, height=None, font=True) lidar = np.array(lidar) print('\nfiltered pointcloud size: ', (np.size(lidar,1), np.size(lidar,0))) # load image img = data_provider.read_img(img_path_) return img, lidar # project points on the image plane def lidarPreprocess(point_cloud_, calib_path_, type_): # type_: r:reflectance, 2d:2d depth, 3d:3d_depth assert type_ in {"r", "2d", "3d"}, \ "type_ should be r:reflectance or 2d:2d_depth or 3d:3d_depth" param = data_provider.read_calib(calib_path_, [2,4,5]) # projection: pixels = cam2img * cam2cam * vel2cam * pointcloud # matrix type: np.array cam2img = param[0].reshape([3,4]) # from camera-view to pixels cam2cam = param[1].reshape([3,3]) # rectify camera-view vel2cam = param[2].reshape([3,4]) # from lidar-view to camera-view # get camera-view coordinates & pixel coordinates(after cam2img) __, pixel = velo_2_cam.lidar_to_camera_project(trans_mat=vel2cam, rec_mat=cam2cam, cam_mat=cam2img, data=point_cloud_, pixel_range=(1242,375) ) if type_=="r": pixel = np.row_stack((pixel[:2,:],pixel[3,:])) print("return 2d coodinates with reflectance") elif type_=="2d": pixel = np.row_stack((pixel[:2,:],pixel[4,:])) print("return 2d coodinates with 2d depth") elif type_=="3d": pixel = np.row_stack((pixel[:2,:],pixel[5,:])) print("return 2d coodinates with 3d depth") return pixel def completion(point_cloud_): """codes wait for completion""" pass if __name__ == "__main__": filename = "um_000000" pc_path = "../data/bin/"+filename+".bin" calib_path = "../data/calib/"+filename+".txt" image_path = "../data/img/"+filename+".png" print('using data ',filename,' for test') img, lidar = rawData(pc_path_=pc_path, img_path_=image_path) pixel = lidarPreprocess(point_cloud_=lidar, calib_path_=calib_path, type_="r") # add pixels to image # velo_2_cam.add_pc_to_img(img_path=image_path, coor=pixel, saveto='./result/'+filename+'_composition.png')
35.405063
111
0.598498
0
0
0
0
0
0
0
0
1,011
0.361459
c6770cd7813960cae894c7947e2f76b45e5169f4
1,014
py
Python
tests/run_compiler.py
yshrdbrn/ogle
529337203b1bd3ec66c08f4ed153dba5fc8349a1
[ "MIT" ]
null
null
null
tests/run_compiler.py
yshrdbrn/ogle
529337203b1bd3ec66c08f4ed153dba5fc8349a1
[ "MIT" ]
null
null
null
tests/run_compiler.py
yshrdbrn/ogle
529337203b1bd3ec66c08f4ed153dba5fc8349a1
[ "MIT" ]
null
null
null
from ogle.code_generator.code_generator import CodeGenerator from ogle.lexer.lexer import Lexer from ogle.parser.parser import Parser from ogle.semantic_analyzer.semantic_analyzer import SemanticAnalyzer def _get_errors_warnings(all_errors): errors = [e for e in all_errors if 'Error' in e[1]] warnings = [e for e in all_errors if 'Warning' in e[1]] return errors, warnings def get_semantic_errors(input_file): lexer = Lexer(input_file) parser = Parser(lexer) parser.parse() semantic_analyzer = SemanticAnalyzer(parser.ast) semantic_analyzer.analyze() return _get_errors_warnings(semantic_analyzer.errors) def run(input_file, output_filename): lexer = Lexer(input_file) parser = Parser(lexer) parser.parse() semantic_analyzer = SemanticAnalyzer(parser.ast) semantic_analyzer.analyze() with open(output_filename, 'w') as output: code_generator = CodeGenerator(parser.ast, semantic_analyzer.symbol_table) code_generator.generate(output)
36.214286
82
0.759369
0
0
0
0
0
0
0
0
19
0.018738
c678c38909ca5f9f3348fe7d0e9471e1720d3bee
817
py
Python
graph/dfs_dict_attempt2.py
automoto/python-code-golf
1a4e0b5984e64620637de9d80e82c6e89997f4af
[ "MIT" ]
null
null
null
graph/dfs_dict_attempt2.py
automoto/python-code-golf
1a4e0b5984e64620637de9d80e82c6e89997f4af
[ "MIT" ]
null
null
null
graph/dfs_dict_attempt2.py
automoto/python-code-golf
1a4e0b5984e64620637de9d80e82c6e89997f4af
[ "MIT" ]
null
null
null
# !depth first search !dfs !graph # dict of nodes as the key and sets for the edges(children) graph = {'A': set(['B', 'C', 'D']), 'B': set(['E', 'F']), 'C': set([]), 'D': set(['G', 'H']), 'E': set([]), 'F': set(['I', 'J']), 'G': set(['K']), 'H': set([]), 'I': set([]), 'J': set([]), 'K': set([])} def dfs(graph, start): visited = set() stack = [start] while stack: current_node = stack.pop() print('visiting node ', current_node) visited.add(current_node) stack.extend(graph[current_node] - visited) dfs(graph, 'A') # PESUDOCODE # create set of visited nodes # create a searching stack with the starting node # while the stack has nodes # pop the current_node off of the stack # add current node to visited # add the connected nodes minus visitsed to the stack to search
24.029412
63
0.597307
0
0
0
0
0
0
0
0
423
0.517748