hexsha
stringlengths 40
40
| size
int64 5
2.06M
| ext
stringclasses 10
values | lang
stringclasses 1
value | max_stars_repo_path
stringlengths 3
248
| max_stars_repo_name
stringlengths 5
125
| max_stars_repo_head_hexsha
stringlengths 40
78
| max_stars_repo_licenses
listlengths 1
10
| max_stars_count
int64 1
191k
⌀ | max_stars_repo_stars_event_min_datetime
stringlengths 24
24
⌀ | max_stars_repo_stars_event_max_datetime
stringlengths 24
24
⌀ | max_issues_repo_path
stringlengths 3
248
| max_issues_repo_name
stringlengths 5
125
| max_issues_repo_head_hexsha
stringlengths 40
78
| max_issues_repo_licenses
listlengths 1
10
| max_issues_count
int64 1
67k
⌀ | max_issues_repo_issues_event_min_datetime
stringlengths 24
24
⌀ | max_issues_repo_issues_event_max_datetime
stringlengths 24
24
⌀ | max_forks_repo_path
stringlengths 3
248
| max_forks_repo_name
stringlengths 5
125
| max_forks_repo_head_hexsha
stringlengths 40
78
| max_forks_repo_licenses
listlengths 1
10
| max_forks_count
int64 1
105k
⌀ | max_forks_repo_forks_event_min_datetime
stringlengths 24
24
⌀ | max_forks_repo_forks_event_max_datetime
stringlengths 24
24
⌀ | content
stringlengths 5
2.06M
| avg_line_length
float64 1
1.02M
| max_line_length
int64 3
1.03M
| alphanum_fraction
float64 0
1
| count_classes
int64 0
1.6M
| score_classes
float64 0
1
| count_generators
int64 0
651k
| score_generators
float64 0
1
| count_decorators
int64 0
990k
| score_decorators
float64 0
1
| count_async_functions
int64 0
235k
| score_async_functions
float64 0
1
| count_documentation
int64 0
1.04M
| score_documentation
float64 0
1
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
dd99b6d2cdd53e9871b02f6e724fb47ac13372e3
| 12,973
|
py
|
Python
|
programs/loadsheet/loadsheet.py
|
admin-db/OnboardingTools
|
0f9d363d461df8c01e99157386338633828f5f92
|
[
"Apache-2.0"
] | 3
|
2021-04-24T14:39:50.000Z
|
2021-07-20T17:11:19.000Z
|
programs/loadsheet/loadsheet.py
|
admin-db/OnboardingTools
|
0f9d363d461df8c01e99157386338633828f5f92
|
[
"Apache-2.0"
] | 2
|
2020-07-22T21:34:33.000Z
|
2021-01-14T19:26:12.000Z
|
programs/loadsheet/loadsheet.py
|
admin-db/OnboardingTools
|
0f9d363d461df8c01e99157386338633828f5f92
|
[
"Apache-2.0"
] | 2
|
2020-07-16T03:34:35.000Z
|
2020-07-22T21:18:12.000Z
|
#Copyright 2020 DB Engineering
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
__version__ = '0.0.3'
__author__ = 'Trevor S., Shane S., Andrew K.'
# Standard Packages
import os
import sys
import string
from typing import Optional
from typing import Union
from typing import Dict
from typing import List
from typing import Any
# Open-source Packages
import openpyxl
import pandas as pd
sys.path.append('../')
# Proprietary Packages
from rules.rules import Rules
# Module GOBAL and CONTRAINTS
# 01132021: bms specific
_REQ_INPUT_HEADERS_BMS = [
'objectid',
'deviceid',
'objectname'
]
# 01132021: general
_REQ_INPUT_HEADERS = _REQ_INPUT_HEADERS_BMS + ['units', 'objecttype']
_REQ_OUTPUT_HEADERS = [
'required',
'manuallymapped',
'building',
'generaltype',
'typename',
'assetname',
'fullassetpath',
'standardfieldname'
]
class Loadsheet:
"""
Loadsheet Library
Purpose: The Loadsheet Library (loadsheet.py) is a proprietary class
used to load a loadsheet Excel file into the tool
Args: data - the list of dictionaries making up the loadsheet file
Keys are column names, values are column values
Returns: Loadsheet object
Usage Example(s):
1) From records:
data = {'coln1':[1,2,3], 'coln2':['a','b','c']}
ls = Loadsheet(data)
2) From loadsheet excel file*:
ls = Loadsheet.from_loadsheet(<loadsheet_file_path>)
3) From BMS file*:
ls = Loadsheet.from_bms(<bms_file_path>)
* - By default, expects header row at top
Dependencies:
Standard
- os
- sys
Open-source
- openpyxl
- yaml
- typing
Proprietary
- rules
TODOs:
- ini_config not used but will be added in future
- all rows will have same headers, so add header check
"""
def __init__(
self,
data: List[Dict[str,Any]],
std_header_map: Dict[str,str],
#has_normalized_fields: bool= False,
):
# 01132021: moved this check to import format specific method(s)
# currently a quick fix for a much broader update refactor
# that needs to be done
# assert Loadsheet._is_valid_headers(data[0].keys(), has_normalized_fields) == True,\
# "[ERROR] loadsheet headers:\n {} \ndo not match configuration \
# headers:\n {}".format(', '.join(data[0].keys()),', '.join(
# *[_REQ_INPUT_HEADERS+_REQ_OUTPUT_HEADERS if has_normalized_fields
# else _REQ_INPUT_HEADERS]))
# # end by sypks
self._data = data
self._std_header_map = std_header_map
@classmethod
def from_loadsheet(
cls,
filepath: str,
has_normalized_fields: bool= False
):
"""
Initializes loadsheet object from existing loadsheet Excel file
args:
filepath - absolute filepath to loadsheet excel file
has_normalized_fields - flag if has normalized fields
returns:
loadsheet object
"""
# hardcode header rows as [0] for initial release
valid_file_types = {
'.xlsx':'excel',
'.csv':'bms_file'
}
file_type = os.path.splitext(filepath)[1]
if file_type == '.xlsx':
df = pd.read_excel(filepath, header= 0)
elif file_type == '.csv':
df = pd.read_csv(filepath, header= 0)
std_header_map = Loadsheet._to_std_header_mapping(
df.columns)
df.columns = std_header_map.keys()
# 01132021: check to ensure that document has required headers
if not Loadsheet._is_valid_headers(
df.columns,
_REQ_INPUT_HEADERS,
has_normalized_fields
):
raise RuntimeError("[ERROR] Loadsheet headers:\n {} \nDoes not match "
+ "configuration headers:\n {}".format(', '.join(df.columns.tolist()),', '.join(
*[_REQ_INPUT_HEADERS+_REQ_OUTPUT_HEADERS if has_normalized_fields
else _REQ_INPUT_HEADERS])))
return cls(
df.to_dict('records'),
std_header_map
)
# end by sypks
@classmethod
def from_bms(
cls,
filepath: str
):
"""
Initializes loadsheet object from existing BMS file
args:
filepath - absolute filepath to BMS file
ini_config_filepath - not currently enabled, do not use
returns:
loadsheet object
"""
# hardcode header as row 0 for inital release
df = pd.read_csv(filepath, header= 0)
std_header_map = Loadsheet._to_std_header_mapping(
df.columns)
df.columns = std_header_map.keys()
# 01132021: check to ensure that document has required headers
if not Loadsheet._is_valid_headers(
df.columns,
_REQ_INPUT_HEADERS_BMS
):
raise RuntimeError("[ERROR] BMS headers:\n {} \nDoes not match "
"configuration headers:\n {}".format(', '.join(df.columns.tolist()),', '.join(
_REQ_INPUT_HEADERS_BMS)))
return cls(
df.to_dict('records'),
std_header_map
)
# end by sypks
def _rename_to_std(df):
df.columns = self._std_header_map.values()
@staticmethod
def _to_std_headers(headers: List[str]) -> List[str]:
'''
Removes all punctuation characters, spaces, and converts to all
lowercase characters. Returns standardized headers to be used
internally
'''
delete_dict = {sp_char: '' for sp_char in string.punctuation}
delete_dict[' '] = '' # space char not in sp_char by default
trans_table = str.maketrans(delete_dict)
return [sh.translate(trans_table).lower() for sh in headers]
@staticmethod
def _is_valid_headers(
headers: List[str],
required_input_headers: List[str],
has_normalized_fields: bool= False
) -> bool:
'''
Checks column names from loadsheet or BMS file are valid as
defined in _REQ_INPUT_HEADERS and _REQ_OUTPUT_HEADERS
'''
trans_headers = Loadsheet._to_std_headers(headers)
if has_normalized_fields:
return set(required_input_headers+_REQ_OUTPUT_HEADERS) == \
set(required_input_headers+_REQ_OUTPUT_HEADERS).intersection(
set(trans_headers))
else:
return set(required_input_headers) == \
set(required_input_headers).intersection(set(trans_headers))
@staticmethod
def _to_std_header_mapping(
orig_headers: List[str]
) -> Dict[str,str]:
'''
Creates a dict mapping from orig headers to strandardized
headers used interally
'''
std_headers = Loadsheet._to_std_headers(orig_headers)
return {std: orig for (std,orig) in zip(std_headers,orig_headers)}
def get_std_header(
self,
header: str
) -> str:
"""
Returns standardized header used internally based on the document
header passed in
"""
return self._std_header_map[header]
def get_data_row(
self,
row: int
) -> Dict[str, Any]:
pass
def get_data_row_generator(self):
pass
def export_to_loadsheet(self, output_filepath):
"""
exports data in Loadsheet object to excel file
args:
output_filepath - location and name of excel file output
"""
df = pd.DataFrame.from_records(self._data)
df.columns = [self._std_header_map[c] for c in df.columns]
df.to_excel(output_filepath, index=False)
def validate(
self,
non_null_fields: Optional[List[str]]= None
):
""" Perform loadsheet validation. It will not validate the
contents of the loadsheet, in terms of validity of entries, but
will validate that all required fields are filled in and that
no data is missing; the representations layer will handle the
ontology checks.
Checks:
1) Required is always in {YES, NO}
2) non-null fields are filled in where required is YES
3) there are no duplicate fullAssetPath-standardFieldName pairs
Args:
non_null_fields - fields that are checked to have values in step 2
by default set to None to use the following:
'building',
'generalType',
'assetName',
'fullAssetPath',
'standardFieldName',
'deviceId',
'objectType',
'objectId',
'units'
Returns:
None, but throws errors if any issues encountered
"""
# non_null_fields arg included for future user definied check to
# be implemented. Initial commit does not implement this feature
# Therefore we use the hardcoded non_null_fields below
if non_null_fields is None:
non_null_fields = [
'building',
'generaltype',
'assetname',
'fullassetpath',
'standardfieldname',
'deviceid',
'objecttype',
'objectid',
'units'
]
# convert self._data to pd.DataFrame (we will transistion to
# using only dataframes internally in a future update)
df = pd.DataFrame.from_records(self._data)
#required is always in [YES, NO]
assert self._ensure_required_correct(df), "Unacceptable values in required column"
#check for null field_details
null_fields = self._find_null_fields(df, non_null_fields)
assert len(null_fields) == 0, '\n'.join(
["There are rows with missing fields:"]+
[f"\t\t{uid + 2}" for uid in null_fields]
)
#check for duplicate fullAssetPath-standardFieldName combos
repeat_uid = self._get_duplicate_asset_fields(df)
assert len(repeat_uid) == 0, '\n'.join(
["There are duplicated asset-field combinations:"]+
[f"\t\t{uid}" for uid in repeat_uid]
)
def validate_without_errors(
self,
non_null_fields: Optional[List[str]]= None
):
"""
Perform loadsheet validation as in validate
but prints error messages instead of throwing errors
"""
# non_null_fields arg included for future user definied check to
# be implemented. Initial commit does not implement this feature
# Therefore we use the hardcoded non_null_fields below
if non_null_fields is None:
non_null_fields = [
'building',
'generaltype',
'assetname',
'fullassetpath',
'standardfieldname',
'deviceid',
'objecttype',
'objectid',
'units'
]
# convert self._data to pd.DataFrame (we will transistion to
# using only dataframes internally in a future update)
df = pd.DataFrame.from_records(self._data)
#required is always in [YES, NO]
if not self._ensure_required_correct(df):
print("[ERROR]\tUnacceptable values in required column")
#check for null field_details
null_fields = self._find_null_fields(df, non_null_fields)
if len(null_fields) > 0:
print(f"[ERROR]\tThere are rows with missing fields:")
for uid in null_fields:
print(f"\t\t{uid}")
#check for duplicate fullAssetPath-standardFieldName combos
repeat_uid = self._get_duplicate_asset_fields(df)
if len(repeat_uid) > 0:
print(f"[ERROR]\tThere are duplicated asset-field combinations:")
for uid in repeat_uid:
print(f"\t\t{uid}")
@staticmethod
def _ensure_required_correct(
data: pd.DataFrame
) -> bool:
'''
checks that required is in {YES, NO}
'''
return len(data[~data['required'].isin(['YES', 'NO'])]) == 0
@staticmethod
def _find_null_fields(
data: pd.DataFrame,
non_null_fields: list
) -> List[str]:
'''
Checks for null fields in any row marked required = YES
'''
needed_columns = ['required']
needed_columns.extend(non_null_fields)
relevant_df = data[needed_columns]
relevant_df = relevant_df[relevant_df['required'] == 'YES']
null_data = relevant_df[relevant_df.isnull().any(axis=1)]
return null_data.index.tolist()
@staticmethod
def _get_duplicate_asset_fields(
data: pd.DataFrame
) -> List[str]:
'''
finds and returns a list of duplicate FullAssetPath-StandardFieldName pairs
'''
data['uid'] = data['fullassetpath'] + ' ' + data['standardfieldname']
df = data[data['required'] == 'YES']
counts = df['uid'].value_counts()
df_counts = pd.DataFrame({'uid':counts.index, 'amt':counts.values})
repeat_uid = df_counts[df_counts['amt'] > 1]['uid'].tolist()
return repeat_uid
def apply_rules(
self,
rule_file: Dict
) -> None:
"""
Apply rules to the dataset. Will ignore any field where
manuallyMapped is set to YES.
args:
- rule_file: path to the rule file
returns: N/A
Note - See rules/rules.py for further information
"""
r = Rules(rule_file)
for row in self._data:
#add output headers
for output_header in _REQ_OUTPUT_HEADERS:
if output_header not in row.keys():
row[output_header] = ""
self._std_header_map[output_header] = output_header
#add manuallyMapped
if 'manuallymapped'not in row.keys():
row['manuallymapped'] = ''
self._std_header_map['manuallymapped'] = "manuallymapped"
#skip manuallyMapped rows
if row['manuallymapped'] == 'YES':
continue
#apply rules
else:
r.ApplyRules(row)
if __name__ == '__main__':
k = Loadsheet.from_bms(r'C:\Users\ShaneSpencer\Downloads\OnboardingTool-master\OnboardingTool-master\resources\bms_exports\alc\US-MTV-1395.csv')
| 27.427061
| 145
| 0.697757
| 11,459
| 0.883296
| 0
| 0
| 4,658
| 0.359053
| 0
| 0
| 7,036
| 0.542357
|
dd9b08662b0371253cd734386bb9a5108ab7a965
| 59,491
|
py
|
Python
|
anita.py
|
utkarsh009/Bnita
|
0f8ea0b389907f835685c572194b1eb5580a6286
|
[
"BSD-3-Clause"
] | 2
|
2017-06-12T05:40:48.000Z
|
2017-06-23T17:09:51.000Z
|
anita.py
|
utkarsh009/Bnita
|
0f8ea0b389907f835685c572194b1eb5580a6286
|
[
"BSD-3-Clause"
] | null | null | null |
anita.py
|
utkarsh009/Bnita
|
0f8ea0b389907f835685c572194b1eb5580a6286
|
[
"BSD-3-Clause"
] | null | null | null |
#
# This is the library part of Anita, the Automated NetBSD Installation
# and Test Application.
#
import os
import pexpect
import re
import string
import subprocess
import sys
import time
import urllib
import urlparse
__version__='1.40'
# Your preferred NetBSD FTP mirror site.
# This is used only by the obsolete code for getting releases
# by number, not by the recommended method of getting them by URL.
# See http://www.netbsd.org/mirrors/#ftp for the complete list.
netbsd_mirror_url = "ftp://ftp.netbsd.org/pub/NetBSD/"
#netbsd_mirror_url = "ftp://ftp.fi.NetBSD.org/pub/NetBSD/"
arch_qemu_map = {
'i386': 'qemu-system-i386',
'amd64': 'qemu-system-x86_64',
'sparc': 'qemu-system-sparc',
# The following ones don't actually work
'sparc64': 'qemu-system-sparc64',
'macppc': 'qemu-system-ppc',
}
# External commands we rely on
if os.uname()[0] == 'NetBSD':
makefs = ["makefs", "-t", "cd9660", "-o", "rockridge"]
elif os.uname()[0] == 'FreeBSD':
makefs = ["mkisofs", "-r", "-o"]
elif os.uname()[0] == 'Darwin':
makefs = ["hdiutil", "makehybrid", "-iso", "-o"]
else:
# Linux distributions differ. Ubuntu has genisoimage
# and mkisofs (as an alias of genisoimage); CentOS has
# mkisofs only. Debian 7 has genisoimage only.
if os.path.isfile('/usr/bin/genisoimage'):
makefs = ["genisoimage", "-r", "-o"]
else:
makefs = ["mkisofs", "-r", "-o"]
fnull = open(os.devnull, 'w')
# Return true if the given program (+args) can be successfully run
def try_program(argv):
try:
result = subprocess.call(argv, stdout = fnull, stderr = fnull)
return result == 0
except OSError:
return False
# Create a directory if missing
def mkdir_p(dir):
if not os.path.isdir(dir):
os.makedirs(dir)
# Run a shell command safely and with error checking
def spawn(command, args):
print command, ' '.join(args[1:])
ret = os.spawnvp(os.P_WAIT, command, args)
if ret != 0:
raise RuntimeError("could not run " + command)
# Subclass pexpect.spawn to add logging of expect() calls
class pexpect_spawn_log(pexpect.spawn):
def __init__(self, logf, *args, **kwargs):
self.structured_log_f = logf
return super(pexpect_spawn_log, self).__init__(*args, **kwargs)
def expect(self, pattern, *args, **kwargs):
print >>self.structured_log_f, "expect(" + repr(pattern) + ")"
r = pexpect.spawn.expect(self, pattern, *args, **kwargs)
print >>self.structured_log_f, "match(" + repr(self.match.group(0)) + ")"
return r
# Subclass urllib.FancyURLopener so that we can catch
# HTTP 404 errors
class MyURLopener(urllib.FancyURLopener):
def http_error_default(self, url, fp, errcode, errmsg, headers):
raise IOError, 'HTTP error code %d' % errcode
def my_urlretrieve(url, filename):
r = MyURLopener().retrieve(url, filename)
if sys.version_info >= (2, 7, 12):
# Work around https://bugs.python.org/issue27973
urllib.urlcleanup()
return r
# Download a file, cleaning up the partial file if the transfer
# fails or is aborted before completion.
def download_file(file, url, optional = False):
try:
print "Downloading", url + "...",
sys.stdout.flush()
my_urlretrieve(url, file)
print "OK"
sys.stdout.flush()
except IOError, e:
if optional:
print "missing but optional, so that's OK"
else:
print e
sys.stdout.flush()
if os.path.exists(file):
os.unlink(file)
raise
# Create a file of the given size, containing NULs, without holes.
def make_dense_image(fn, size):
f = open(fn, "w")
blocksize = 64 * 1024
while size > 0:
chunk = min(size, blocksize)
f.write("\000" * chunk)
size = size - chunk
f.close()
# Parse a size with optional k/M/G/T suffix and return an integer
def parse_size(size):
m = re.match(r'(\d+)([kMGT])?$', size)
if not m:
raise RuntimeError("%s: invalid size" % size)
size, suffix = m.groups()
mult = dict(k=1024, M=1024**2, G=1024**3, T=1024**4).get(suffix, 1)
return int(size) * mult
# Download "url" to the local file "file". If the file already
# exists locally, do nothing. If "optional" is true, ignore download
# failures and cache the absence of a missing file by creating a marker
# file with the extension ".MISSING".
def download_if_missing_2(url, file, optional = False):
if os.path.exists(file):
return
if os.path.exists(file + ".MISSING"):
return
dir = os.path.dirname(file)
mkdir_p(dir)
try:
download_file(file, url, optional)
except:
if optional:
f = open(file + ".MISSING", "w")
f.close()
else:
raise
# As above, but download a file from the download directory tree
# rooted at "urlbase" into a mirror tree rooted at "dirbase". The
# file name to download is "relfile", which is relative to both roots.
def download_if_missing(urlbase, dirbase, relfile, optional = False):
url = urlbase + relfile
file = os.path.join(dirbase, relfile)
return download_if_missing_2(url, file, optional)
def download_if_missing_3(urlbase, dirbase, relpath, optional = False):
url = urlbase + "/".join(relpath)
file = os.path.join(*([dirbase] + relpath))
return download_if_missing_2(url, file, optional)
# Map a URL to a directory name. No two URLs should map to the same
# directory.
def url2dir(url):
tail = []
def munge(match):
index = string.find("/:+-", match.group())
if index != 0:
tail.append(chr(0x60 + index) + str(match.start()))
return "-"
return "work-" + re.sub("[/:+-]", munge, url) + "+" + "".join(tail)
# Inverse of the above; not used, but included just to show that the
# mapping is invertible and therefore collision-free
class InvalidDir(Exception):
pass
def dir2url(dir):
match = re.match(r"(work-)(.*)\+(.*)", dir)
work, s, tail = match.groups()
if work != 'work-':
raise InvalidDir()
s = re.sub("-", "/", s)
chars = list(s)
while True:
m = re.match(r"([a-z])([0-9]+)", tail)
if not m:
break
c, i = m.groups()
chars[int(i)] = "/:+-"[ord(c) - 0x60]
tail = tail[m.end():]
return "".join(chars)
def check_arch_supported(arch, dist_type):
if arch_qemu_map.get(arch) is None:
raise RuntimeError(("'%s' is not the name of a " + \
"supported NetBSD port") % arch)
if (arch == 'i386' or arch == 'amd64') and dist_type != 'reltree':
raise RuntimeError(("NetBSD/%s must be installed from " +
"a release tree, not an ISO") % arch)
if (arch == 'sparc') and dist_type != 'iso':
raise RuntimeError(("NetBSD/%s must be installed from " +
"an ISO, not a release tree") % arch)
# Expect any of a set of alternatives. The *args are alternating
# patterns and actions; an action can be a string to be sent
# or a function to be called with no arguments. The alternatives
# will be expected repeatedly until the last one in the list has
# been selected.
def expect_any(child, *args):
# http://stackoverflow.com/questions/11702414/split-a-list-into-half-by-even-and-odd-elements
patterns = args[0:][::2]
actions = args[1:][::2]
while True:
r = child.expect(list(patterns))
action = actions[r]
if isinstance(action, str):
child.send(action)
else:
action()
if r == len(actions) - 1:
break
#############################################################################
# A NetBSD version.
#
# Subclasses should define:
#
# dist_url(self)
# the top-level URL for the machine-dependent download tree where
# the version can be downloaded, for example,
# ftp://ftp.netbsd.org/pub/NetBSD/NetBSD-5.0.2/i386/
#
# mi_url(self)
# The top-level URL for the machine-independent download tree,
# for example, ftp://ftp.netbsd.org/pub/NetBSD/NetBSD-5.0.2/
#
# default_workdir(self)
# a file name component identifying the version, for use in
# constructing a unique, version-specific working directory
#
# arch(self)
# the name of the machine architecture the version is for,
# e.g., i386
def make_item(t):
d = dict(zip(['filename', 'label', 'install'], t[0:3]))
if isinstance(t[3], list):
d['group'] = make_set_dict_list(t[3])
else:
d['optional'] = t[3]
return d
def make_set_dict_list(list_):
return [make_item(t) for t in list_]
def flatten_set_dict_list(list_):
def item2list(item):
group = item.get('group')
if group:
return group
else:
return [item]
return sum([item2list(item) for item in list_], [])
class Version:
# Information about the available installation file sets. As the
# set of sets (sic) has evolved over time, this actually represents
# the union of those sets of sets, in other words, this list should
# contain all currently and historically known sets.
#
# This list is used for to determine
# - Which sets we should attempt to download
# - Which sets we should install by default
#
# Each array element is a tuple of four fields:
# - the file name
# - a regular expression matching the label used by sysinst
# (taking into account that it may differ between sysinst versions)
# - a flag indicating that the set should be installed by default
# - a flag indicating that the set is not present in all versions
#
sets = make_set_dict_list([
[ 'kern-GENERIC', 'Kernel (GENERIC)', 1, 0 ],
[ 'kern-GENERIC.NOACPI', 'Kernel \(GENERIC\.NOACPI\)', 0, 1 ],
[ 'modules', 'Kernel [Mm]odules', 1, 1 ],
[ 'base', 'Base', 1, 0 ],
[ 'etc', '(System)|(System configuration files)|(Configuration files) \(/etc\)', 1, 0 ],
[ 'comp', 'Compiler [Tt]ools', 1, 0 ],
[ 'games', 'Games', 0, 0 ],
[ 'man', '(Online )?Manual [Pp]ages', 0, 0 ],
[ 'misc', 'Miscellaneous', 1, 0 ],
[ 'tests', 'Test programs', 1, 1 ],
[ 'text', 'Text [Pp]rocessing [Tt]ools', 0, 0 ],
[ '_x11', 'X11 sets', 0, [
['xbase', 'X11 base and clients', 0, 1 ],
['xcomp', 'X11 programming', 0, 1 ],
['xetc', 'X11 configuration', 0, 1 ],
['xfont', 'X11 fonts', 0, 1 ],
['xserver', 'X11 servers', 0, 1 ],
]],
[ '_src', 'Source (and debug )?sets', 0, [
['syssrc', 'Kernel sources', 0, 1],
['src', 'Base sources', 0, 1],
['sharesrc', 'Share sources', 0, 1],
['gnusrc', 'GNU sources', 0, 1],
['xsrc', 'X11 sources', 0, 1],
['debug', '(debug sets)|(Debug symbols)', 0, 1],
['xdebug', '(debug X11 sets)|(X11 debug symbols)', 0, 1],
]]
])
flat_sets = flatten_set_dict_list(sets)
def __init__(self, sets = None):
self.tempfiles = []
if sets is not None:
if not any([re.match('kern-', s) for s in sets]):
raise RuntimeError("no kernel set specified")
# Create a Python set containing the names of the NetBSD sets we
# want for O(1) lookup. Yes, the multiple meansings of the word
# "set" here are confusing.
sets_wanted = set(sets)
for required in ['base', 'etc']:
if not required in sets_wanted:
raise RuntimeError("the '%s' set is required", required)
for s in self.flat_sets:
s['install'] = (s['filename'] in sets_wanted)
sets_wanted.discard(s['filename'])
if len(sets_wanted):
raise RuntimeError("no such set: " + sets_wanted.pop())
def set_workdir(self, dir):
self.workdir = dir
# The directory where we mirror files needed for installation
def download_local_mi_dir(self):
return self.workdir + "/download/"
def download_local_arch_dir(self):
return self.download_local_mi_dir() + self.arch() + "/"
# The path to the install ISO image
def iso_path(self):
return os.path.join(self.workdir, self.iso_name())
# The directory for the install floppy images
def floppy_dir(self):
return os.path.join(self.download_local_arch_dir(),
"installation/floppy")
def boot_iso_dir(self):
return os.path.join(self.download_local_arch_dir(),
"installation/cdrom")
def boot_from_default(self):
return None
def scratch_disk(self):
arch = self.arch()
if arch == 'i386' or arch == 'amd64':
return "wd1d"
else:
return "sd1c"
def xen_kernel(self):
arch = self.arch()
if arch == 'i386':
return 'netbsd-XEN3PAE_DOMU.gz'
elif arch == 'amd64':
return 'netbsd-XEN3_DOMU.gz'
else:
return None
def xen_install_kernel(self):
arch = self.arch()
if arch == 'i386':
return 'netbsd-INSTALL_XEN3PAE_DOMU.gz'
elif arch == 'amd64':
return 'netbsd-INSTALL_XEN3_DOMU.gz'
else:
return None
# The list of boot floppies we should try downloading;
# not all may actually exist. amd64 currently has five,
# i386 has three, and older versions may have fewer.
# Add a couple extra to accomodate future growth.
def potential_floppies(self):
return ['boot-com1.fs'] + ['boot%i.fs' % i for i in range(2, 8)]
# The list of boot floppies we actually have
def floppies(self):
return [f for f in self.potential_floppies() \
if os.path.exists(os.path.join(self.floppy_dir(), f))]
def boot_isos(self):
return ['boot-com.iso']
def cleanup(self):
for fn in self.tempfiles:
os.unlink(fn)
def set_path(self, setname):
if re.match(r'.*src$', setname):
return ['source', 'sets', setname + '.tgz']
else:
return [self.arch(), 'binary', 'sets', setname + '.tgz']
# Download this release
# The ISO class overrides this to download the ISO only
def download(self):
# Depending on the NetBSD version, there may be two or more
# boot floppies. Treat any floppies past the first two as
# optional files.
i = 0
for floppy in self.potential_floppies():
download_if_missing_3(self.dist_url(),
self.download_local_arch_dir(),
["installation", "floppy", floppy],
True)
i = i + 1
for bootcd in (self.boot_isos()):
download_if_missing_3(self.dist_url(),
self.download_local_arch_dir(),
["installation", "cdrom", bootcd],
True)
# These are used with noemu only
download_if_missing_3(self.dist_url(),
self.download_local_arch_dir(),
["installation", "misc", "pxeboot_ia32.bin"],
True)
download_if_missing_3(self.dist_url(),
self.download_local_arch_dir(),
["binary", "kernel", "netbsd-INSTALL.gz"],
True)
for set in self.flat_sets:
if set['install']:
download_if_missing_3(self.mi_url(),
self.download_local_mi_dir(),
self.set_path(set['filename']),
set['optional'])
# Create an install ISO image to install from
def make_iso(self):
self.download()
spawn(makefs[0], makefs + \
[self.iso_path(), self.download_local_mi_dir()])
self.tempfiles.append(self.iso_path())
# Get the architecture name. This is a hardcoded default for use
# by the obsolete subclasses; the "URL" class overrides it.
def arch(self):
return "i386"
# Backwards compatibility with Anita 1.2 and older
def install(self):
Anita(dist = self).install()
def boot(self):
Anita(dist = self).boot()
def interact(self):
Anita(dist = self).interact()
# Subclass for versions where we pass in the version number explicitly
class NumberedVersion(Version):
def __init__(self, ver, **kwargs):
Version.__init__(self, **kwargs)
self.ver = ver
# The file name of the install ISO (sans directory)
def iso_name(self):
if re.match("^[3-9]", self.ver) is not None:
return "i386cd-" + self.ver + ".iso"
else:
return "i386cd.iso"
# The directory for files related to this release
def default_workdir(self):
return "netbsd-" + self.ver
# An official NetBSD release
class Release(NumberedVersion):
def __init__(self, ver, **kwargs):
NumberedVersion.__init__(self, ver, **kwargs)
pass
def mi_url(self):
return netbsd_mirror_url + "NetBSD-" + self.ver + "/"
def dist_url(self):
return self.mi_url() + self.arch() + "/"
# A daily build
class DailyBuild(NumberedVersion):
def __init__(self, branch, timestamp, **kwargs):
ver = re.sub("^netbsd-", "", branch)
NumberedVersion.__init__(self, ver, **kwargs)
self.timestamp = timestamp
def default_workdir(self):
return NumberedVersion.default_workdir(self) + "-" + self.timestamp
def dist_url(self):
branch = re.sub("[\\._]", "-", self.ver)
if re.match("^[0-9]", branch):
branch = "netbsd-" + branch
return "http://ftp.netbsd.org/pub/NetBSD-daily/" + \
branch + "/" + self.timestamp + "/i386/"
# A local build
class LocalBuild(NumberedVersion):
def __init__(self, ver, release_path, **kwargs):
NumberedVersion.__init__(self, ver, **kwargs)
self.release_path = release_path
def dist_url(self):
return "file://" + self.release_path + "/i386/"
# The top-level URL of a release tree
class URL(Version):
def __init__(self, url, **kwargs):
Version.__init__(self, **kwargs)
self.url = url
match = re.match(r'(^.*/)([^/]+)/$', url)
if match is None:
raise RuntimeError(("URL '%s' doesn't look like the URL of a " + \
"NetBSD distribution") % url)
self.url_mi_part = match.group(1)
self.m_arch = match.group(2)
check_arch_supported(self.m_arch, 'reltree')
def dist_url(self):
return self.url
def mi_url(self):
return self.url_mi_part
def iso_name(self):
return "install_tmp.iso"
def default_workdir(self):
return url2dir(self.url)
def arch(self):
return self.m_arch
# A local release directory
class LocalDirectory(URL):
def __init__(self, dir, **kwargs):
# This could be optimized to avoid copying the files
URL.__init__(self, "file://" + dir, **kwargs)
# An URL or local file name pointing at an ISO image
class ISO(Version):
def __init__(self, iso_url, **kwargs):
Version.__init__(self, **kwargs)
if re.match(r'/', iso_url):
self.m_iso_url = "file://" + iso_url
self.m_iso_path = iso_url
else:
self.m_iso_url = iso_url
self.m_iso_path = None
# We can't determine the final ISO file name yet because the work
# directory is not known at this point, but we can precalculate the
# basename of it.
self.m_iso_basename = os.path.basename(
urllib.url2pathname(urlparse.urlparse(iso_url)[2]))
m = re.match(r"(.*)cd.*iso|NetBSD-[0-9\._A-Z]+-(.*).iso", self.m_iso_basename)
if m is None:
raise RuntimeError("cannot guess architecture from ISO name '%s'"
% self.m_iso_basename)
if m.group(1) is not None:
self.m_arch = m.group(1)
if m.group(2) is not None:
self.m_arch = m.group(2)
check_arch_supported(self.m_arch, 'iso')
def iso_path(self):
if self.m_iso_path is not None:
return self.m_iso_path
else:
return os.path.join(self.download_local_arch_dir(),
self.m_iso_basename)
def default_workdir(self):
return url2dir(self.m_iso_url)
def make_iso(self):
self.download()
def download(self):
if self.m_iso_path is None:
download_if_missing_2(self.m_iso_url, self.iso_path())
else:
mkdir_p(self.workdir)
def arch(self):
return self.m_arch
def boot_from_default(self):
return 'cdrom-with-sets'
#############################################################################
# Helper class for killing the DomU when the last reference to the
# child process is dropped
class DomUKiller:
def __init__(self, frontend, name):
self.name = name
self.frontend = frontend
def __del__(self):
print "destroying domU", self.name
spawn(self.frontend, [self.frontend, "destroy", self.name])
def vmm_is_xen(vmm):
return vmm == 'xm' or vmm == 'xl'
def slog(fd, tag, data):
print >>fd, "%s(%s)" % (tag, repr(data))
def slog_info(fd, data):
slog(fd, 'info', data)
# A file-like object that escapes unprintable data and prefixes each
# line with a tag, for logging I/O.
class Logger:
def __init__(self, tag, fd):
self.tag = tag
self.fd = fd
def write(self, data):
slog(self.fd, self.tag, data)
def __getattr__(self, name):
return getattr(self.fd, name)
# http://stackoverflow.com/questions/616645/how-do-i-duplicate-sys-stdout-to-a-log-file-in-python
class multifile(object):
def __init__(self, files):
self._files = files
def __getattr__(self, attr, *args):
return self._wrap(attr, *args)
def _wrap(self, attr, *args):
def g(*a, **kw):
for f in self._files:
res = getattr(f, attr, *args)(*a, **kw)
return res
return g
class Anita:
def __init__(self, dist, workdir = None, vmm = 'qemu', vmm_args = None,
disk_size = None, memory_size = None, persist = False, boot_from = None,
structured_log = None, structured_log_file = None, no_install = False, test = 'atf'):
self.dist = dist
if workdir:
self.workdir = workdir
else:
self.workdir = dist.default_workdir()
self.structured_log = structured_log
self.structured_log_file = structured_log_file
if self.structured_log_file:
self.structured_log_f = open(self.structured_log_file, "w")
self.unstructured_log_f = sys.stdout
else:
if self.structured_log:
self.structured_log_f = sys.stdout
self.unstructured_log_f = open("/dev/null", "w")
else:
self.structured_log_f = open("/dev/null", "w")
self.unstructured_log_f = sys.stdout
# Set the default disk size if none was given.
if disk_size is None:
disk_size = "1536M"
self.disk_size = disk_size
# Set the default memory size if none was given.
if memory_size is None:
if dist.arch() == 'amd64':
memory_size = "128M"
else:
memory_size = "32M"
self.memory_size_bytes = parse_size(memory_size)
self.persist = persist
self.boot_from = boot_from
self.no_install = no_install
self.qemu = arch_qemu_map.get(dist.arch())
if self.qemu is None:
raise RuntimeError("NetBSD port '%s' is not supported" %
dist.arch())
if self.qemu == 'qemu-system-i386' and \
not try_program(['qemu-system-i386', '--version']) \
and try_program(['qemu', '--version']): \
self.qemu = 'qemu'
# Backwards compatibility
if vmm == 'xen':
vmm = 'xm'
self.vmm = vmm
if vmm_args is None:
vmm_args = []
self.extra_vmm_args = vmm_args
self.is_logged_in = False
self.scratch_disk_args = None
self.test = test
def slog(self, message):
slog_info(self.structured_log_f, message)
# Wrapper around pexpect.spawn to let us log the command for
# debugging. Note that unlike os.spawnvp, args[0] is not
# the name of the command.
def pexpect_spawn(self, command, args):
print command, " \\\n ".join(args)
return pexpect_spawn_log(self.structured_log_f, command, args)
# The path to the NetBSD hard disk image
def wd0_path(self):
return os.path.join(self.workdir, "wd0.img")
# Return the memory size rounded up to whole megabytes
def memory_megs(self):
megs = (self.memory_size_bytes + 2 ** 20 - 1) / 2 ** 20
if megs != self.memory_size_bytes / 2 **20:
print >>sys.stderr, \
"warning: rounding up memory size of %i bytes to %i megabytes" \
% (self.memory_size_bytes, megs)
return megs
def configure_child(self, child):
# Log reads from child
child.logfile_read = multifile([self.unstructured_log_f, Logger('recv', self.structured_log_f)])
# Log writes to child
child.logfile_send = multifile([self.unstructured_log_f, Logger('send', self.structured_log_f)])
child.timeout = 300
child.setecho(False)
# Xen installs sometimes fail if we don't increase this
# from the default of 0.1 seconds
child.delayafterclose = 5.0
# Also increase this just in case
child.delayafterterminate = 5.0
self.child = child
def start_qemu(self, vmm_args, snapshot_system_disk):
child = self.pexpect_spawn(self.qemu, [
"-m", str(self.memory_megs()),
"-drive", "file=%s,format=raw,media=disk,snapshot=%s" %
(self.wd0_path(), ("off", "on")[snapshot_system_disk]),
"-nographic"
] + vmm_args + self.extra_vmm_args)
self.configure_child(child)
return child
def xen_disk_arg(self, path, devno = 0, writable = True):
if self.vmm == 'xm':
return "disk=file:%s,0x%x,%s" % (path, devno, "rw"[writable])
else: # xl
return "disk=file:%s,xvd%s,%s" % (path, chr(ord('a') + devno), "rw"[writable])
def qemu_disk_args(self, path, devno = 0, writable = True, snapshot = False):
return ["-drive", "file=%s,format=raw,media=disk,snapshot=%s" % (path, ["off", "on"][snapshot])]
def qemu_cdrom_args(self, path, devno):
return ["-drive", "file=%s,format=raw,media=cdrom" % (path)]
def string_arg(self, name, value):
if self.vmm == 'xm':
return '%s=%s' % (name, value)
else: # xl
return '%s="%s"' % (name, value)
def start_xen_domu(self, vmm_args):
frontend = self.vmm
name = "anita-%i" % os.getpid()
args = [
frontend,
"create",
"-c",
"/dev/null",
self.xen_disk_arg(os.path.abspath(self.wd0_path()), 0, True),
"memory=" + str(self.memory_megs()),
self.string_arg('name', name)
] + vmm_args + self.extra_vmm_args
# Multiple "disk=" arguments are no longer supported with xl;
# combine them
if self.vmm == 'xl':
disk_args = []
no_disk_args = []
for arg in args:
if arg.startswith('disk='):
disk_args.append(arg[5:])
else:
no_disk_args.append(arg)
args = no_disk_args + [ "disk=[%s]" % (','.join(["'%s'" % arg for arg in disk_args]))]
child = self.pexpect_spawn(args[0], args[1:])
self.configure_child(child)
# This is ugly; we reach into the child object and set an
# additional attribute. The name of the attribute,
# "garbage_collector" below, is arbitrary, but must not
# conflict with any existing attribute of the child
# object. Its purpose is only to hold a reference to the
# DomUKiller object, such that when the child object is
# destroyed, the destructor of the DomUKiller object
# is also invoked.
child.garbage_collector = DomUKiller(frontend, name)
return child
def start_noemu(self, vmm_args):
noemu_always_args = [
'--workdir', self.workdir,
'--releasedir', os.path.join(self.workdir, 'download'),
'--arch', self.dist.arch()
]
child = self.pexpect_spawn('sudo', ['noemu'] +
noemu_always_args + vmm_args + self.extra_vmm_args)
self.configure_child(child)
return child
def _install(self):
# Download or build the install ISO
self.dist.set_workdir(self.workdir)
self.dist.make_iso()
arch = self.dist.arch()
if self.vmm != 'noemu':
print "Creating hard disk image...",
sys.stdout.flush()
make_dense_image(self.wd0_path(), parse_size(self.disk_size))
print "done."
# The name of the CD-ROM device holding the sets
cd_device = None
if vmm_is_xen(self.vmm):
# Download XEN kernels
xenkernels = [k for k in [self.dist.xen_kernel(), self.dist.xen_install_kernel()] if k]
for kernel in xenkernels:
download_if_missing_3(self.dist.dist_url(),
self.dist.download_local_arch_dir(),
["binary", "kernel", kernel],
True)
vmm_args = [
self.string_arg('kernel', os.path.abspath(os.path.join(self.dist.download_local_arch_dir(),
"binary", "kernel", self.dist.xen_install_kernel()))),
self.xen_disk_arg(os.path.abspath(self.dist.iso_path()), 1, False)
]
child = self.start_xen_domu(vmm_args)
cd_device = 'xbd1d'
elif self.vmm == 'qemu':
# Determine what kind of media to boot from.
floppy_paths = [ os.path.join(self.dist.floppy_dir(), f) \
for f in self.dist.floppies() ]
boot_cd_path = os.path.join(self.dist.boot_iso_dir(), self.dist.boot_isos()[0])
if self.boot_from is None:
self.boot_from = self.dist.boot_from_default()
if self.boot_from is None and len(floppy_paths) == 0:
self.boot_from = 'cdrom'
if self.boot_from is None:
self.boot_from = 'floppy'
# Set up VM arguments based on the chosen boot media
if self.boot_from == 'cdrom':
vmm_args = self.qemu_cdrom_args(boot_cd_path, 1)
vmm_args += self.qemu_cdrom_args(self.dist.iso_path(), 2)
vmm_args += ["-boot", "d"]
cd_device = 'cd1a'
elif self.boot_from == 'floppy':
vmm_args = self.qemu_cdrom_args(self.dist.iso_path(), 1)
if len(floppy_paths) == 0:
raise RuntimeError("found no boot floppies")
vmm_args += ["-drive", "file=%s,format=raw,if=floppy" % floppy_paths[0], "-boot", "a"]
cd_device = 'cd0a';
elif self.boot_from == 'cdrom-with-sets':
# Single CD
vmm_args = self.qemu_cdrom_args(self.dist.iso_path(), 1)
vmm_args += ["-boot", "d"]
cd_device = 'cd0a'
child = self.start_qemu(vmm_args, snapshot_system_disk = False)
elif self.vmm == 'noemu':
child = self.start_noemu(['--boot-from', 'net'])
else:
raise RuntimeError('unknown vmm %s' % self.vmm)
term = None
# Do the floppy swapping dance and other pre-sysinst interaction
floppy0_name = None
while True:
# NetBSD/i386 will prompt for a terminal type if booted from a
# CD-ROM, but not when booted from floppies. Sigh.
child.expect(
# Group 1-2
"(insert disk (\d+), and press return...)|" +
# Group 3
"(a: Installation messages in English)|" +
# Group 4
"(Terminal type)|" +
# Group 5
"(Installation medium to load the additional utilities from: )|"
# Group 6
"(1. Install NetBSD)"
)
if child.match.group(1):
# We got the "insert disk" prompt
# There is no floppy 0, hence the "- 1"
floppy_index = int(child.match.group(2)) - 1
# Escape into qemu command mode to switch floppies
child.send("\001c")
# We used to wait for a (qemu) prompt here, but qemu 0.9.1
# no longer prints it
# child.expect('\(qemu\)')
if not floppy0_name:
# Between qemu 0.9.0 and 0.9.1, the name of the floppy
# device accepted by the "change" command changed from
# "fda" to "floppy0" without any provision for backwards
# compatibility. Deal with it. Also deal with the fact
# that as of qemu 0.15, "info block" no longer prints
# "type=floppy" for floppy drives. And in qemu 2.5.0,
# the format changed again from "floppy0: " to
# "floppy0 (#block544): ", so we no longer match the
# colon and space.
child.send("info block\n")
child.expect(r'\n(fda|floppy0)')
floppy0_name = child.match.group(1)
# Now we can change the floppy
child.send("change %s %s\n" %
(floppy0_name, floppy_paths[floppy_index]))
# Exit qemu command mode
child.send("\001c\n")
elif child.match.group(3):
# "Installation messages in English"
break
elif child.match.group(4):
# "Terminal type"
child.send("xterm\n")
term = "xterm"
continue
elif child.match.group(5):
# "Installation medium to load the additional utilities from"
# (SPARC)
child.send("cdrom\n")
child.expect("CD-ROM device to use")
child.send("\n")
child.expect("Path to instfs.tgz")
child.send("\n")
child.expect("Terminal type")
# The default is "sun", but anita is more likely to run
# in an xterm or some other ansi-like terminal than on
# a sun console.
child.send("xterm\n")
term = "xterm"
child.expect("nstall/Upgrade")
child.send("I\n")
elif child.match.group(6):
# "1. Install NetBSD"
child.send("1\n")
# Confirm "Installation messages in English"
child.send("\n")
# i386 and amd64 ask for keyboard type here; sparc doesn't
while True:
child.expect("(Keyboard type)|(a: Install NetBSD to hard disk)|" +
"(Shall we continue)")
if child.match.group(1) or child.match.group(2):
child.send("\n")
elif child.match.group(3):
child.expect("b: Yes")
child.send("b\n")
break
else:
raise AssertionError
# Depending on the number of disks attached, we get either
# "found only one disk" followed by "Hit enter to continue",
# or "On which disk do you want to install".
child.expect("(Hit enter to continue)|" +
"(On which disk do you want to install)")
if child.match.group(1):
child.send("\n")
elif child.match.group(2):
child.send("a\n")
else:
raise AssertionError
def choose_no():
child.expect("([a-z]): No")
child.send(child.match.group(1) + "\n")
def choose_yes():
child.expect("([a-z]): Yes")
child.send(child.match.group(1) + "\n")
# Keep track of sets we have already handled, by label.
# This is needed so that parsing a pop-up submenu is not
# confused by earlier output echoing past choices.
labels_seen = set()
def choose_sets(set_list):
sets_this_screen = []
# First parse the set selection screen or popup; it's messy.
while True:
# Match a letter-label pair, like "h: Compiler Tools",
# followed by an installation status of Yes, No, All,
# or None. The label can be separated from the "Yes/No"
# field either by spaces (at least two, so that there can
# be single spaces within the label), or by a cursor
# positioning escape sequence. In the case of the
# "X11 fonts" set, we strangely get both a single space
# and an escape sequence, which seems disoptimal.
#
# Alternatively, match the special letter "x: " which
# is not followed by an installation status.
child.expect(
"(?:([a-z]): ([^ \x1b]+(?: [^ \x1b]+)*)(?:(?:\s\s+)|(?:\s?\x1b\[\d+;\d+H))(Yes|No|All|None))|(x: )")
(letter, label, yesno, exit) = child.match.groups()
if exit:
if len(sets_this_screen) != 0:
break
else:
for set in set_list:
if re.match(set['label'], label) and label not in labels_seen:
sets_this_screen.append({
'set': set,
'letter': letter,
'state': yesno
})
labels_seen.add(label)
# Then make the actual selections
for item in sets_this_screen:
set = item['set']
enable = set['install']
state = item['state']
group = set.get('group')
if (enable and state == "No" or \
not enable and state == "Yes") \
or group:
child.send(item['letter'] + "\n")
if group:
# Recurse to handle sub-menu
choose_sets(group)
# Exit the set selection menu
child.send("x\n")
# Older NetBSD versions show a prompt like [re0] and ask you
# to type in the interface name (or enter for the default);
# newer versions show a menu.
def choose_interface_oldstyle():
self.slog('old-style interface list')
# Choose the first non-fwip interface
while True:
child.expect(r"([a-z]+)([0-9]) ")
ifname = child.match.group(1)
ifno = child.match.group(2)
self.slog('old-style interface: <%s,%s>' % (ifname, ifno))
if ifname != 'fwip':
# Found an acceptable interface
child.send("%s%s\n" % (ifname, ifno))
break
def choose_interface_newstyle():
self.slog('new-style interface list')
child.expect('Available interfaces')
# Choose the first non-fwip interface
while True:
# Make sure to match the digit after the interface
# name so that we don't accept a partial interface
# name like "fw" from "fwip0".
child.expect(r"([a-z]): ([a-z]+)[0-9]")
if child.match.group(2) != 'fwip':
# Found an acceptable interface
child.send(child.match.group(1) + "\n")
break
def configure_network():
child.expect("Network media type")
child.send("\n")
child.expect("Perform (DHCP )?autoconfiguration")
child.expect("([a-z]): No")
child.send(child.match.group(1) + "\n")
def choose_a():
child.send("a\n")
def choose_dns_server():
child.expect("([a-z]): other")
child.send(child.match.group(1) + "\n")
child.send("10.0.1.1\n")
expect_any(child,
r"Your host name", "anita-test\n",
r"Your DNS domain", "netbsd.org\n",
r"Your IPv4 (number)|(address)", "10.169.0.2\n",
r"IPv4 Netmask", "255.255.255.0\n",
r"IPv4 gateway", "10.169.0.1\n",
r"IPv4 name server", "10.0.1.1\n",
r"Perform IPv6 autoconfiguration", choose_no,
r"Select (IPv6 )?DNS server", choose_dns_server,
r"Are they OK", choose_yes)
self.network_configured = True
self.network_configured = False
# Many different things can happen at this point:
#
# Versions older than 2009/08/23 21:16:17 will display a menu
# for choosing the extraction verbosity
#
# Versions older than 2010/03/30 20:09:25 will display a menu for
# choosing the CD-ROM device (newer versions will choose automatically)
#
# Versions older than Fri Apr 6 23:48:53 2012 UTC will ask
# you to "Please choose the timezone", wheras newer ones will
# instead as you to "Configure the additional items".
#
# At various points, we may or may not get "Hit enter to continue"
# prompts (and some of them seem to appear nondeterministically)
#
# i386/amd64 can ask whether to use normal or serial console bootblocks
#
# Try to deal with all of the possible options.
#
# We specify a longer timeout than the default here, because the
# set extraction can take a long time on slower machines.
#
# It has happened (at least with NetBSD 3.0.1) that sysinst paints the
# screen twice. This can cause problem because we will then respond
# twice, and the second response will be interpreted as a response to
# a subsequent prompt. Therefore, we check whether the match is the
# same as the previous one and ignore it if so.
#
# OTOH, -current as of 2009.08.23.20.57.40 will issue the message "Hit
# enter to continue" twice in a row, first as a result of MAKEDEV
# printing a warning messages "MAKEDEV: dri0: unknown device", and
# then after "sysinst will give you the opportunity to configure
# some essential things first". We match the latter text separately
# so that the "Hit enter to continue" matches are not consecutive.
#
# The changes of Apr 6 2012 broght with them a new redraw problem,
# which is worked around using the seen_essential_things variable.
#
prevmatch = []
seen_essential_things = 0
loop = 0
while True:
loop = loop + 1
if loop == 20:
raise RuntimeError("loop detected")
child.expect(
# Group 1
"(a: Progress bar)|" +
# Group 2
"(a: CD-ROM)|" +
# Group 3-4
"(([cx]): Continue)|" +
# Group 5
"(Hit enter to continue)|" +
# Group 6
"(b: Use serial port com0)|" +
# Group 7
"(Please choose the timezone)|" +
# Group 8
"(essential things)|" +
# Group 9
"(Configure the additional items)|" +
# Group 10
"(Multiple CDs found)|" +
# Group 11
"(The following are the http site)|" +
# Group 12
"(Is the network information you entered accurate)|" +
# Group 13-14 (old-style / new-style)
"(I have found the following network interfaces)|(Which network device would you like to use)|" +
# Group 15
"(No allows you to continue anyway)|" +
# Group 16
r"(Can't connect to)|" +
# Group 17
"(not-in-use)|" +
# Group 18
"(not-in-use)|" +
# Group 19
"(not-in-use)|" +
# Group 20-21
"(([a-z]): Custom installation)|" +
# Group 22
"(a: This is the correct geometry)|" +
# Group 23
"(a: Use one of these disks)|" +
# Group 24
"(a: Set sizes of NetBSD partitions)",
10800)
if child.match.groups() == prevmatch:
self.slog('ignoring repeat match')
continue
prevmatch = child.match.groups()
if child.match.group(1):
# (a: Progress bar)
child.send("\n")
elif child.match.group(2):
# (a: CD-ROM)
if self.vmm == 'noemu':
child.send("c\n") # install from HTTP
# We next end up at either "Which device shall I"
# or "The following are the http site" depending on
# the NetBSD version.
else:
child.send("a\n") # install from CD-ROM
elif child.match.group(3):
# CDROM device selection
if cd_device != 'cd0a':
child.send("a\n" + cd_device + "\n")
# (([cx]): Continue)
# In 3.0.1, you type "c" to continue, whereas in -current,
# you type "x". Handle both cases.
child.send(child.match.group(4) + "\n")
elif child.match.group(5):
# (Hit enter to continue)
if seen_essential_things >= 2:
# This must be a redraw
pass
else:
child.send("\n")
elif child.match.group(6):
# (b: Use serial port com0)
child.send("bx\n")
elif child.match.group(7):
# (Please choose the timezone)
# "Press 'x' followed by RETURN to quit the timezone selection"
child.send("x\n")
# The strange non-deterministic "Hit enter to continue" prompt has
# also been spotted after executing the sed commands to set the
# root password cipher, with 2010.10.27.10.42.12 source.
while True:
child.expect("(([a-z]): DES)|(root password)|(Hit enter to continue)")
if child.match.group(1):
# DES
child.send(child.match.group(2) + "\n")
elif child.match.group(3):
# root password
break
elif child.match.group(4):
# (Hit enter to continue)
child.send("\n")
else:
raise AssertionError
# Don't set a root password
child.expect("b: No")
child.send("b\n")
child.expect("a: /bin/sh")
child.send("\n")
# "The installation of NetBSD-3.1 is now complete. The system
# should boot from hard disk. Follow the instructions in the
# INSTALL document about final configuration of your system.
# The afterboot(8) manpage is another recommended reading; it
# contains a list of things to be checked after the first
# complete boot."
#
# We are supposed to get a single "Hit enter to continue"
# prompt here, but sometimes we get a weird spurious one
# after running chpass above.
while True:
child.expect("(Hit enter to continue)|(x: Exit)")
if child.match.group(1):
child.send("\n")
elif child.match.group(2):
child.send("x\n")
break
else:
raise AssertionError
break
elif child.match.group(8):
# (essential things)
seen_essential_things += 1
elif child.match.group(9):
# (Configure the additional items)
child.expect("x: Finished configuring")
child.send("x\n")
break
elif child.match.group(10):
# (Multiple CDs found)
# This happens if we have a boot CD and a CD with sets;
# we need to choose the latter.
child.send("b\n")
elif child.match.group(11):
# (The following are the http site)
# \027 is control-w, which clears the field
child.send("a\n\02710.169.0.1\n") # IP address
child.send("b\n\027\n") # Directory = empty string
if not self.network_configured:
child.send("j\n") # Configure network
choose_interface_newstyle()
configure_network()
# We get 'Hit enter to continue' if this sysinst
# version tries ping6 even if we have not configured
# IPv6
expect_any(child,
r'Hit enter to continue', '\r',
r'x: Get Distribution', 'x\n')
r = child.expect(["Install from", "/usr/bin/ftp"])
if r == 0:
# ...and I'm back at the "Install from" menu?
# Probably the same bug reported as install/49440.
child.send("c\n") # HTTP
# And again...
child.expect("The following are the http site")
child.expect("x: Get Distribution")
child.send("x\n")
elif r == 1:
pass
else:
assert(0)
elif child.match.group(12):
# "Is the network information you entered accurate"
child.expect("([a-z]): Yes")
child.send(child.match.group(1) + "\n")
elif child.match.group(13):
# "(I have found the following network interfaces)"
choose_interface_oldstyle()
configure_network()
elif child.match.group(14):
# "(Which network device would you like to use)"
choose_interface_newstyle()
configure_network()
elif child.match.group(15):
choose_no()
child.expect("No aborts the install process")
choose_yes()
elif child.match.group(16):
self.slog("network problems detected")
child.send("\003") # control-c
time.sleep(2)
child.send("ifconfig -a\n")
time.sleep(2)
# would run netstat here but it's not on the install media
child.expect("foo") # gather input
time.sys.exit(1)
elif child.match.group(20):
# Custom installation is choice "d" in 6.0,
# but choice "c" or "b" in older versions
# We could use "Minimal", but it doesn't exist in
# older versions.
child.send(child.match.group(21) + "\n")
# Enable/disable sets.
choose_sets(self.dist.sets)
# On non-Xen i386/amd64 we first get group 22 or 23,
# then group 24; on sparc and Xen, we just get group 24.
elif (child.match.group(22) or child.match.group(23)):
if child.match.group(22):
child.send("\n")
elif child.match.group(23):
child.send("a\n")
child.expect("Choose disk")
child.send("0\n")
child.expect("b: Use the entire disk")
child.send("b\n")
while True:
child.expect(r'(Your disk currently has a non-NetBSD partition)|' +
r'(Do you want to install the NetBSD bootcode)|' +
r'(Do you want to update the bootcode)')
if child.match.group(1):
# Your disk currently has a non-NetBSD partition
child.expect("a: Yes")
child.send("\n")
elif child.match.group(2) or child.match.group(3):
# Install or replace bootcode
child.expect("a: Yes")
child.send("\n")
break
elif child.match.group(24):
# (a: Set sizes of NetBSD partitions)
child.send("a\n")
child.expect("Accept partition sizes")
# Press cursor-down enough times to get to the end of the list,
# to the "Accept partition sizes" entry, then press
# enter to continue. Previously, we used control-N ("\016"),
# but if it gets echoed (which has happened), it is interpreted by
# the terminal as "enable line drawing character set", leaving the
# terminal in an unusable state.
if term == 'xterm':
# For unknown reasons, when using a terminal type of "xterm",
# sysinst puts the terminal in "application mode", causing the
# cursor keys to send a different escape sequence than the default.
cursor_down = "\033OB"
else:
# Use the default ANSI cursor-down escape sequence
cursor_down = "\033[B"
child.send(cursor_down * 8 + "\n")
child.expect("x: Partition sizes ok")
child.send("\n")
child.expect("Please enter a name for your NetBSD disk")
child.send("\n")
# "This is your last chance to quit this process..."
child.expect("Shall we continue")
child.expect("b: Yes")
child.send("b\n")
# newfs is run at this point
else:
raise AssertionError
# Installation is finished, halt the system.
# Historically, i386 and amd64, you get a root shell,
# while sparc just halts.
# Since Fri Apr 6 23:48:53 2012 UTC, you are kicked
# back into the main menu.
while True:
child.expect("(Hit enter to continue)|(x: Exit Install System)|(#)|(halting machine)|(halted by root)")
if child.match.group(1):
child.send("\n")
elif child.match.group(2):
# Back in menu
child.send("x\n")
elif child.match.group(3):
# Root shell prompt
child.send("halt\n")
else:
# group 4 or 5: halted
break
child.close()
# Make sure all refs go away
child = None
self.child = None
self.dist.cleanup()
# Install NetBSD if not installed already
def install(self):
# This is needed for Xen and noemu, where we get the kernel
# from the dist rather than the installed image
self.dist.set_workdir(self.workdir)
if self.vmm == 'noemu':
self.dist.download()
self._install()
else:
# Already installed?
if os.path.exists(self.wd0_path()):
return
try:
self._install()
except:
if os.path.exists(self.wd0_path()):
os.unlink(self.wd0_path())
raise
# Boot the virtual machine (installing it first if it's not
# installed already). The vmm_args argument applies when
# booting, but not when installing. Does not wait for
# a login prompt.
def start_boot(self, vmm_args = None):
if vmm_args is None:
vmm_args = []
if not self.no_install:
self.install()
if self.vmm == 'qemu':
child = self.start_qemu(vmm_args, snapshot_system_disk = not self.persist)
# "-net", "nic,model=ne2k_pci", "-net", "user"
elif vmm_is_xen(self.vmm):
child = self.start_xen_domu(vmm_args + [self.string_arg('kernel',
os.path.abspath(os.path.join(self.dist.download_local_arch_dir(),
"binary", "kernel", self.dist.xen_kernel())))])
elif self.vmm == 'noemu':
child = self.start_noemu(vmm_args + ['--boot-from', 'disk'])
else:
raise RuntimeError('unknown vmm %s' % vmm)
self.child = child
return child
# Like start_boot(), but wait for a login prompt.
def boot(self, vmm_args = None):
self.start_boot(vmm_args)
self.child.expect("login:")
# Can't close child here because we still need it if called from
# interact()
return self.child
# Deprecated
def interact(self):
child = self.boot()
console_interaction(child)
def run_tests(self, timeout = 10800):
results_by_net = (self.vmm == 'noemu')
# Create a scratch disk image for exporting test results from the VM.
# The results are stored in tar format because that is more portable
# and easier to manipulate than a file system image, especially if the
# host is a non-NetBSD system.
#
# If we are getting the results back by tftp, this file will
# be overwritten.
scratch_disk_path = os.path.join(self.workdir, "tests-results.img")
if vmm_is_xen(self.vmm):
scratch_disk = 'xbd1d'
else:
scratch_disk = self.dist.scratch_disk()
mkdir_p(self.workdir)
scratch_image_megs = 100
make_dense_image(scratch_disk_path, parse_size('%dM' % scratch_image_megs))
# Leave a 10% safety margin
max_result_size_k = scratch_image_megs * 900
if vmm_is_xen(self.vmm):
self.scratch_disk_args = [self.xen_disk_arg(os.path.abspath(scratch_disk_path), 1, True)]
elif self.vmm == 'qemu':
self.scratch_disk_args = self.qemu_disk_args(os.path.abspath(scratch_disk_path), 1, True, False)
elif self.vmm == 'noemu':
self.scratch_disk_args = []
elif self.scratch_disk_args is None:
raise RuntimeError('unknown vmm')
child = self.boot(self.scratch_disk_args)
self.login()
if self.test == "kyua":
if self.shell_cmd("grep -q 'MKKYUA.*=.*yes' /etc/release") != 0:
raise RuntimeError("kyua is not installed.")
test_cmd = (
"kyua " +
"--loglevel=error " +
"--logfile=/tmp/tests/kyua-test.log " +
"test " +
"--store=/tmp/tests/store.db; " +
"echo $? >/tmp/tests/test.status; " +
"kyua " +
"report " +
"--store=/tmp/tests/store.db " +
"| tail -n 3; " +
"kyua " +
"--loglevel=error " +
"--logfile=/tmp/tests/kyua-report-html.log " +
"report-html " +
"--store=/tmp/tests/store.db " +
"--output=/tmp/tests/html; ")
elif self.test == "atf":
atf_aux_files = ['/usr/share/xsl/atf/tests-results.xsl',
'/usr/share/xml/atf/tests-results.dtd',
'/usr/share/examples/atf/tests-results.css']
test_cmd = (
"{ atf-run; echo $? >/tmp/tests/test.status; } | " +
"tee /tmp/tests/test.tps | " +
"atf-report -o ticker:- -o xml:/tmp/tests/test.xml; " +
"(cd /tmp && for f in %s; do cp $f tests/; done;); " % ' '.join(atf_aux_files))
else:
raise RuntimeError('unknown testing framework %s' % self.test)
exit_status = self.shell_cmd(
"df -k | sed 's/^/df-pre-test /'; " +
"mkdir /tmp/tests && " +
"cd /usr/tests && " +
test_cmd +
("{ cd /tmp && " +
# Make sure the files will fit on the scratch disk
"test `du -sk tests | awk '{print $1}'` -lt %d && " % max_result_size_k +
# To guard against accidentally overwriting the wrong
# disk image, check that the disk contains nothing
# but nulls.
"test `</dev/r%s tr -d '\\000' | wc -c` = 0 && " % scratch_disk +
# "disklabel -W /dev/rwd1d && " +
"tar cf /dev/r%s tests; " % scratch_disk +
"}; " if not results_by_net else \
"{ cd /tmp && tar cf tests-results.img tests && echo put tests-results.img | tftp 10.169.0.1; };") +
"df -k | sed 's/^/df-post-test /'; " +
"ps -glaxw | sed 's/^/ps-post-test /'; " +
"vmstat -s; " +
"sh -c 'exit `cat /tmp/tests/test.status`'",
timeout)
# We give tar an explicit path to extract to guard against
# the possibility of an arbitrary file overwrite attack if
# anita is used to test an untrusted virtual machine.
tarfile = open(scratch_disk_path, "r")
subprocess.call(["tar", "xf", "-", "tests"],
cwd = self.workdir, stdin = tarfile)
# For backwards compatibility, point workdir/atf to workdir/tests.
compat_link = os.path.join(self.workdir, 'atf')
if not os.path.lexists(compat_link):
os.symlink('tests', compat_link)
return exit_status
# Backwards compatibility
run_atf_tests = run_tests
# Log in, if not logged in already
def login(self):
if self.is_logged_in:
return
login(self.child)
self.is_logged_in = True
# Run a shell command
def shell_cmd(self, cmd, timeout = -1):
self.login()
return shell_cmd(self.child, cmd, timeout)
# Halt the VM
def halt(self):
self.login()
self.child.send("halt\n")
try:
# Wait for text confirming the halt, or EOF
self.child.expect("(The operating system has halted)|(entering state S5)", timeout = 60)
except pexpect.EOF:
# Didn't see the text but got an EOF; that's OK.
print "EOF"
except pexpect.TIMEOUT:
# This is unexpected but mostly harmless
print "timeout waiting for halt confirmation:", e
def console_interaction(child):
# We need this in pexpect 2.x or everything will be printed twice
child.logfile = None
child.interact()
# Calling this directly is deprecated, use Anita.login()
def login(child):
child.send("\n")
child.expect("login:")
child.send("root\n")
# This used to be "\n# ", but that doesn't work if the machine has
# a hostname
child.expect("# ")
def net_setup(child):
child.send("dhclient ne2\n")
child.expect("bound to.*\n# ")
# Generate a root shell prompt string that is less likely to appear in
# the console output by accident than the default of "# ". Must end with "# ".
def gen_shell_prompt():
return 'anita-root-shell-prompt-%s# ' % str(time.time())
# Quote a prompt in /bin/sh syntax, with some extra quotes
# in the middle so that an echoed command to set the prompt is not
# mistaken for the prompt itself.
def quote_prompt(s):
midpoint = len(s) / 2
return "".join("'%s'" % part for part in (s[0:midpoint], s[midpoint:]))
# Calling this directly is deprecated, use Anita.shell_cmd()
def shell_cmd(child, cmd, timeout = -1):
child.send("exec /bin/sh\n")
child.expect("# ")
prompt = gen_shell_prompt()
child.send("PS1=" + quote_prompt(prompt) + "\n")
prompt_re = prompt
child.expect(prompt_re)
child.send(cmd + "\n")
child.expect(prompt_re, timeout)
child.send("echo exit_status=$?=\n")
child.expect("exit_status=(\d+)=")
r = int(child.match.group(1))
child.expect(prompt_re, timeout)
return r
def test(child):
raise RuntimeError("global test() function is gone, use Anita.run_tests()")
#############################################################################
| 34.933059
| 120
| 0.599351
| 48,824
| 0.820696
| 0
| 0
| 0
| 0
| 0
| 0
| 25,172
| 0.423123
|
dd9b53c1d51423e3d8a448dcde0235338b5a8f9d
| 5,356
|
py
|
Python
|
solitude/testing/context.py
|
incerto-crypto/solitude
|
1b21a2ca4912da212d413322953ceb4ec2983c17
|
[
"BSD-3-Clause"
] | 7
|
2019-03-25T21:48:42.000Z
|
2022-02-25T08:21:35.000Z
|
solitude/testing/context.py
|
incerto-crypto/solitude
|
1b21a2ca4912da212d413322953ceb4ec2983c17
|
[
"BSD-3-Clause"
] | null | null | null |
solitude/testing/context.py
|
incerto-crypto/solitude
|
1b21a2ca4912da212d413322953ceb4ec2983c17
|
[
"BSD-3-Clause"
] | null | null | null |
# Copyright (c) 2019, Solitude Developers
#
# This source code is licensed under the BSD-3-Clause license found in the
# COPYING file in the root directory of this source tree
from typing import Mapping, Union, Optional # noqa
import os
import shutil
import tempfile
from functools import wraps
from collections import OrderedDict
from solitude._internal.error_util import type_assert, RaiseForParam
from solitude.server import ETHTestServer, kill_all_servers # noqa
from solitude.client import ContractBase, ETHClient, EventLog # noqa
from solitude.common import ContractObjectList
from solitude.compiler import Compiler # noqa
from solitude import Factory, read_config_file
class TestingContext:
def __init__(self, cfg: dict):
"""Create a testing context containing configured instances of the client,
server and compiler.
Contracts from Project.ObjectDir (if not null) are added to the client's collection.
A server is started if Testing.RunServer is true. In this case, the client is
connected to the new server endpoint address, whatever it is, overriding the client
endpoint configuration.
:param cfg: configuration dictionary
"""
self._cfg = cfg
self._factory = Factory(self._cfg)
self._client = None # type: ETHClient
self._server = None # type: ETHTestServer
self._compiler = None # type: Compiler
self._server_started = False
endpoint = None
project_tools = self._factory.get_required()
if "Solc" in project_tools:
self._compiler = self._factory.create_compiler()
if "GanacheCli" in project_tools:
self._server = self._factory.create_server()
if self._cfg["Testing.RunServer"]:
self._server.start()
self._server_started = True
# ovverride endpoint for client
endpoint = self._server.endpoint
self._client = self._factory.create_client(
endpoint=endpoint)
object_dir = self._cfg["Project.ObjectDir"]
if object_dir is not None:
objects = ContractObjectList()
objects.add_directory(object_dir)
self._client.update_contracts(objects)
@property
def cfg(self):
"""Configuration"""
return self._cfg
@property
def client(self):
"""Client instance"""
return self._client
@property
def server(self):
"""Server instance"""
return self._server
@property
def compiler(self):
"""Compiler instance"""
return self._compiler
def teardown(self):
"""Teardown the testing context, terminating the test server if any."""
if self._server_started:
self._server.stop()
@wraps(ETHClient.account)
def account(self, address):
return self._client.account(address)
@wraps(ETHClient.address)
def address(self, account_id: int):
return self._client.address(account_id)
@wraps(ETHClient.deploy)
def deploy(self, contract_selector: str, args=(), wrapper=ContractBase):
return self._client.deploy(contract_selector, args, wrapper)
@wraps(ETHClient.capture)
def capture(self, pattern): # noqa
return self._client.capture(pattern)
@wraps(ETHClient.get_accounts)
def get_accounts(self, reload=False) -> list:
return self._client.get_accounts()
@wraps(ETHClient.get_events)
def get_events(self):
return self._client.get_events()
@wraps(ETHClient.clear_events)
def clear_events(self):
return self._client.clear_events()
@wraps(ETHClient.get_current_account)
def get_current_account(self):
return self._client.get_current_account()
@wraps(ETHClient.mine_block)
def mine_block(self) -> None:
return self._client.mine_block()
@wraps(ETHClient.increase_blocktime_offset)
def increase_blocktime_offset(self, seconds: int) -> int:
return self._client.increase_blocktime_offset(seconds)
@wraps(ETHClient.get_last_blocktime)
def get_last_blocktime(self) -> int:
return self._client.get_last_blocktime()
def SOL_new(
cfg: Union[dict, str]="solitude.yaml",
relative_to: Optional[str]=None) -> TestingContext:
"""Create a new testing context
:param cfg: configuration dictionary or path. If `cfg` is a string, it is interpreted
as a path to the yaml or json file containing the configuration dictionary.
:param relative_to: a path, or None; if `cfg` is a path and `relative_to` is not None,
make the path of the configuration file `cfg` relative to the parent directory of
`relative_to`. This can be used with `__file__` to make the configuration file
location relative to the test script.
"""
with RaiseForParam("cfg"):
type_assert(cfg, (dict, str))
if isinstance(cfg, str):
path = cfg
if relative_to is not None:
rel_dir = os.path.dirname(
os.path.abspath(relative_to))
path = os.path.join(rel_dir, path)
cfg_dict = read_config_file(path)
else:
cfg_dict = cfg
try:
return TestingContext(cfg_dict)
except Exception:
kill_all_servers()
raise
| 32.460606
| 92
| 0.668969
| 3,542
| 0.661314
| 0
| 0
| 1,687
| 0.314974
| 0
| 0
| 1,512
| 0.2823
|
dd9c212b2612a151f4e10e08866ba944cee12a2b
| 2,883
|
py
|
Python
|
openwater/zone/model.py
|
jeradM/openwater
|
740b7e76622a1ee909b970d9e5c612a840466cec
|
[
"MIT"
] | null | null | null |
openwater/zone/model.py
|
jeradM/openwater
|
740b7e76622a1ee909b970d9e5c612a840466cec
|
[
"MIT"
] | null | null | null |
openwater/zone/model.py
|
jeradM/openwater
|
740b7e76622a1ee909b970d9e5c612a840466cec
|
[
"MIT"
] | null | null | null |
from abc import ABC, abstractmethod
from datetime import datetime
from typing import TYPE_CHECKING, Dict, Any, List, Optional
if TYPE_CHECKING:
from openwater.core import OpenWater
class ZoneRun:
def __init__(self, id: int, zone_id: int, start: datetime, duration: int):
self.id = id
self.zone_id = zone_id
self.start = start
self.duration = duration
def to_dict(self) -> dict:
return {
"id": self.id,
"zone_id": self.zone_id,
"start": self.start,
"duration": self.duration,
}
def to_db(self) -> dict:
return self.to_dict()
class BaseZone(ABC):
def __init__(
self,
ow: "OpenWater",
id: int,
name: str,
zone_type: str,
is_master: bool,
attrs: dict,
open_offset: int = 0,
close_offset: int = 0,
last_run: Optional[ZoneRun] = None,
):
self._ow = ow
self.id = id
self.name = name
self.zone_type = zone_type
self.is_master = is_master
self.attrs = attrs
self.open_offset = open_offset
self.close_offset = close_offset
self.last_run = last_run
self.master_zones: Optional[List[BaseZone]] = None
@classmethod
def of(cls, ow: "OpenWater", data: Dict[str, Any]):
return cls(
ow=ow,
id=data.get("id"),
name=data["name"],
zone_type=data["zone_type"],
is_master=data["is_master"],
open_offset=data["open_offset"],
close_offset=data["close_offset"],
attrs=data["attrs"],
)
def to_dict(self):
return {
"id": self.id,
"name": self.name,
"zone_type": self.zone_type,
"is_master": self.is_master,
"open_offset": self.open_offset,
"close_offset": self.close_offset,
"open": self.is_open(),
"attrs": dict(self.attrs, **self.extra_attrs),
"last_run": self.last_run,
"master_zones": self.master_zones,
}
def to_db(self):
return {
"id": self.id,
"name": self.name,
"zone_type": self.zone_type,
"is_master": self.is_master,
"open": self.is_open(),
"attrs": dict(self.attrs, **self.extra_attrs),
}
@abstractmethod
def is_open(self) -> bool:
pass
@abstractmethod
async def open(self) -> None:
pass
@abstractmethod
async def close(self) -> None:
pass
@abstractmethod
def get_zone_type(self) -> str:
pass
@property
def extra_attrs(self) -> dict:
return {}
def __eq__(self, other):
return self.id == other.id
def __hash__(self):
return hash(self.id)
| 25.289474
| 78
| 0.539369
| 2,691
| 0.933403
| 0
| 0
| 696
| 0.241415
| 85
| 0.029483
| 259
| 0.089837
|
dd9c57daac230a88704ee45525c7ddcffe34b216
| 2,339
|
py
|
Python
|
shrinkaddrspace/fix_preinit.py
|
vusec/midfat
|
9eb8d3c5188c0c262ad5f5de84f9e26530e38a4c
|
[
"Apache-2.0"
] | 6
|
2017-06-02T00:16:57.000Z
|
2018-12-08T20:49:19.000Z
|
shrinkaddrspace/fix_preinit.py
|
vusec/midfat
|
9eb8d3c5188c0c262ad5f5de84f9e26530e38a4c
|
[
"Apache-2.0"
] | null | null | null |
shrinkaddrspace/fix_preinit.py
|
vusec/midfat
|
9eb8d3c5188c0c262ad5f5de84f9e26530e38a4c
|
[
"Apache-2.0"
] | 3
|
2019-05-12T08:52:48.000Z
|
2019-08-08T11:17:52.000Z
|
#!/usr/bin/env python
import struct
from elftools.elf.elffile import ELFFile
def elf_get_preinit(elffile):
preinit_offset = None
preinit_funcs = tuple()
for sec in elffile.iter_sections():
if sec.name == '.preinit_array':
sz = sec['sh_size']
preinit_offset = sec['sh_offset']
ptrsize = struct.calcsize("P")
num_funcs = sz / ptrsize
elffile.stream.seek(preinit_offset)
buf = elffile.stream.read(sz)
preinit_funcs = struct.unpack_from("%dP" % num_funcs, buf)
return preinit_offset, preinit_funcs
def elf_get_symbol(elffile, symname):
for sec in elffile.iter_sections():
if sec.name == '.symtab':
for symbol in sec.iter_symbols():
if symbol.name == symname:
return symbol['st_value']
return None
def main():
import argparse
parser = argparse.ArgumentParser(description="Move a certain preinit "
"function to the front of the preinit array in an ELF binary.")
parser.add_argument("binary", help="The ELF binary")
parser.add_argument("preinit_name", help="Name of the preinit function")
args = parser.parse_args()
with open(args.binary, 'rb+') as f:
elffile = ELFFile(f)
func_loc = elf_get_symbol(elffile, args.preinit_name)
if func_loc is None:
print "Could not find function %s in binary %s" % \
(args.preinit_name, args.binary)
sys.exit(1)
preinit_loc, preinit_funcs = elf_get_preinit(elffile)
if preinit_loc is None:
print "Could not find preinit-array location in binary %s" % \
args.binary
sys.exit(1)
print "Original preinit-array:", map(hex, preinit_funcs)
if func_loc not in preinit_funcs:
print "Could not find func %s(%x) in preinit-array in binary %s" % \
(args.preinit_name, func_loc, args.binary)
sys.exit(1)
preinit_funcs = sorted(preinit_funcs,
key=lambda addr: 0 if addr == func_loc else 1)
print "New preinit-array:", map(hex, preinit_funcs)
f.seek(preinit_loc)
f.write(struct.pack("%dP" % len(preinit_funcs), *preinit_funcs))
if __name__ == '__main__':
main()
| 32.486111
| 80
| 0.607525
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 455
| 0.194528
|
dd9d9e745268a05b2a5397b1a32f3f6189d22b3b
| 41
|
py
|
Python
|
ppq/utils/__init__.py
|
openppl-public/ppq
|
0fdea7d4982bc57feb6bb8548c7f012707fbd607
|
[
"Apache-2.0"
] | 100
|
2021-12-31T09:34:06.000Z
|
2022-03-25T02:54:51.000Z
|
ppq/utils/__init__.py
|
openppl-public/ppq
|
0fdea7d4982bc57feb6bb8548c7f012707fbd607
|
[
"Apache-2.0"
] | 12
|
2021-12-31T10:28:15.000Z
|
2022-03-31T07:08:44.000Z
|
ppq/utils/__init__.py
|
openppl-public/ppq
|
0fdea7d4982bc57feb6bb8548c7f012707fbd607
|
[
"Apache-2.0"
] | 21
|
2021-12-31T09:51:02.000Z
|
2022-03-30T12:21:55.000Z
|
from .attribute import process_attribute
| 20.5
| 40
| 0.878049
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
dda05eca52f0bd879e75366f591fdb92e3e9abbd
| 855
|
py
|
Python
|
tests/test_views.py
|
pennlabs/django-shortener
|
a8f362863d4d8f13916e9e924ed316384f588373
|
[
"MIT"
] | 3
|
2018-11-04T15:46:01.000Z
|
2020-01-06T13:49:46.000Z
|
tests/test_views.py
|
pennlabs/shortener
|
a8f362863d4d8f13916e9e924ed316384f588373
|
[
"MIT"
] | 1
|
2019-07-30T04:31:19.000Z
|
2019-07-30T04:31:19.000Z
|
tests/test_views.py
|
pennlabs/shortener
|
a8f362863d4d8f13916e9e924ed316384f588373
|
[
"MIT"
] | 2
|
2021-02-22T18:12:27.000Z
|
2021-09-16T18:51:47.000Z
|
import hashlib
from django.test import TestCase
from django.urls import reverse
from shortener.models import Url
class RedirectViewTestCase(TestCase):
def setUp(self):
self.redirect = "https://pennlabs.org"
self.url, _ = Url.objects.get_or_create(long_url=self.redirect)
def test_exists(self):
try:
hashed = hashlib.sha3_256(self.redirect.encode("utf-8")).hexdigest()
except AttributeError:
hashed = hashlib.sha256(self.redirect.encode("utf-8")).hexdigest()
response = self.client.get(reverse("shortener:index", args=[hashed[:5]]))
self.assertRedirects(response, self.redirect, fetch_redirect_response=False)
def test_no_exists(self):
response = self.client.get(reverse("shortener:index", args=["abcd"]))
self.assertEqual(response.status_code, 404)
| 34.2
| 84
| 0.691228
| 737
| 0.861988
| 0
| 0
| 0
| 0
| 0
| 0
| 76
| 0.088889
|
dda073c654623fd4431b83697b75b0c9003f460a
| 1,758
|
py
|
Python
|
Models/Loss/__init__.py
|
bobo0810/classification
|
b27397308c5294dcc30a5aaddab4692becfc45d3
|
[
"MIT"
] | null | null | null |
Models/Loss/__init__.py
|
bobo0810/classification
|
b27397308c5294dcc30a5aaddab4692becfc45d3
|
[
"MIT"
] | null | null | null |
Models/Loss/__init__.py
|
bobo0810/classification
|
b27397308c5294dcc30a5aaddab4692becfc45d3
|
[
"MIT"
] | null | null | null |
import torch
import torch.nn as nn
from timm.loss import LabelSmoothingCrossEntropy
from pytorch_metric_learning import losses
class create_class_loss(nn.Module):
"""
常规分类 - 损失函数入口
"""
def __init__(self, name):
super(create_class_loss, self).__init__()
assert name in ["cross_entropy", "label_smooth"]
self.loss = self.init_loss(name)
def forward(self, predict, target):
return self.loss(predict, target)
def init_loss(self, name):
"""
常规分类
"""
loss_dict = {
"cross_entropy": nn.CrossEntropyLoss,
"label_smooth": LabelSmoothingCrossEntropy,
}
loss = loss_dict[name]()
return loss
class create_metric_loss(nn.Module):
"""
度量学习 - 损失函数入口
"""
def __init__(self, name, num_classes, embedding_size):
"""
name: 损失函数名称
num_classes: 类别数
embedding_size: 特征维度
"""
super(create_metric_loss, self).__init__()
assert name in ["cosface", "arcface", "subcenter_arcface", "circleloss"]
self.loss = self.init_loss(name, num_classes, embedding_size)
def forward(self, predict, target, hard_tuples):
return self.loss(predict, target, hard_tuples)
def init_loss(self, name, num_classes, embedding_size):
loss_dict = {
"cosface": losses.CosFaceLoss,
"arcface": losses.ArcFaceLoss,
"subcenter_arcface": losses.SubCenterArcFaceLoss,
}
if name in loss_dict.keys():
loss = loss_dict[name](
num_classes=num_classes, embedding_size=embedding_size
)
elif name == "circleloss":
loss = losses.CircleLoss()
return loss
| 27.46875
| 80
| 0.609215
| 1,699
| 0.927402
| 0
| 0
| 0
| 0
| 0
| 0
| 406
| 0.221616
|
dda150ca1f3fdf6e22fc599876192f67eb4fbf8e
| 1,195
|
py
|
Python
|
tests/main.py
|
caspervg/geontology
|
e5660629f57747d05cfe6e15721bca23039a672d
|
[
"MIT"
] | 1
|
2015-12-25T10:46:27.000Z
|
2015-12-25T10:46:27.000Z
|
tests/main.py
|
caspervg/geontology
|
e5660629f57747d05cfe6e15721bca23039a672d
|
[
"MIT"
] | null | null | null |
tests/main.py
|
caspervg/geontology
|
e5660629f57747d05cfe6e15721bca23039a672d
|
[
"MIT"
] | null | null | null |
from rdflib import URIRef
from rdflib.namespace import DC, RDF, OWL, RDFS
from geontology import GeoOntology
ont = GeoOntology("geo_ontology.ttl", frmt='n3')
# print ont.serialize()
graph = ont.graph
print "InfoColumns"
for s, p, o in graph.triples(
(None, RDFS.subClassOf, URIRef('http://move.ugent.be/geodata/ontology/InfoColumn'))):
print "[%s, %s, %s]" % (s, p, o)
for _s, _p, _o in graph.triples(
(None, RDF.type, s)):
print " [%s, %s, %s]" % (_s, _p, _o)
for __s, __p, __o in graph.triples(
(_s, None, None)):
print " [%s, %s, %s]" % (__s, __p, __o)
print "\n\nGeoColumns"
for s, p, o in graph.triples(
(None, RDFS.subClassOf, URIRef('http://move.ugent.be/geodata/ontology/GeoColumn'))):
print "[%s, %s, %s]" % (s, p, o)
for _s, _p, _o in graph.triples(
(None, RDF.type, s)):
print " [%s, %s, %s]" % (_s, _p, _o)
for __s, __p, __o in graph.triples(
(_s, None, None)):
print " [%s, %s, %s]" % (__s, __p, __o)
if (None, URIRef('http://move.ugent.be/geodata/ontology/defines'), DC.date) in graph:
print "some defines"
| 29.146341
| 93
| 0.551464
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 336
| 0.281172
|
dda2bd0af7d3de24450c99ea2968e3067f121da2
| 1,397
|
py
|
Python
|
VGG_GRU/TrainTestlist/Emotiw/getTraintest_Emotiw.py
|
XiaoYee/emotion_classification
|
6122e1b575bce5235169f155295b549a8f721ca1
|
[
"MIT"
] | 74
|
2018-06-29T06:46:33.000Z
|
2022-02-26T19:15:55.000Z
|
VGG_GRU/TrainTestlist/Emotiw/getTraintest_Emotiw.py
|
JIangjiang1108/emotion_classification
|
6122e1b575bce5235169f155295b549a8f721ca1
|
[
"MIT"
] | 6
|
2018-07-02T09:29:05.000Z
|
2020-01-30T14:21:26.000Z
|
VGG_GRU/TrainTestlist/Emotiw/getTraintest_Emotiw.py
|
JIangjiang1108/emotion_classification
|
6122e1b575bce5235169f155295b549a8f721ca1
|
[
"MIT"
] | 23
|
2018-06-29T12:52:40.000Z
|
2020-12-02T12:55:13.000Z
|
import os
import os.path as osp
import argparse
import random
parser = argparse.ArgumentParser(description='Emotiw dataset list producer')
args = parser.parse_args()
train = "/home/quxiaoye/disk/FR/Emotiw2018/data/Train_AFEW_all/Emotiw-faces"
test = "/home/quxiaoye/disk/FR/Emotiw2018/data/Val_AFEW/Emotiw-faces"
train_path = osp.join(train)
test_path = osp.join(test)
Face_category = open("./TrainTestlist/Emotiw/Emotiw_TRAIN.txt","w")
Face_category_test = open("./TrainTestlist/Emotiw/Emotiw_VAL.txt","w")
train_img_folders = os.listdir(train_path)
train_img_folders.sort()
for i in range(len(train_img_folders)):
path_folder = osp.join(train_path,train_img_folders[i])
emotion_folders = os.listdir(path_folder)
emotion_folders.sort()
for emotion_folder in emotion_folders:
path_write = osp.join(path_folder,emotion_folder)
Face_category.write(path_write+" "+train_img_folders[i]+"\n")
Face_category.close()
test_img_folders = os.listdir(test_path)
test_img_folders.sort()
for i in range(len(test_img_folders)):
path_folder = osp.join(test_path,test_img_folders[i])
emotion_folders = os.listdir(path_folder)
emotion_folders.sort()
for emotion_folder in emotion_folders:
path_write = osp.join(path_folder,emotion_folder)
Face_category_test.write(path_write+" "+test_img_folders[i]+"\n")
Face_category_test.close()
| 29.723404
| 76
| 0.7602
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 260
| 0.186113
|
06b3cc12c35c6a81cb3cf69f89310f5caed75723
| 141
|
py
|
Python
|
config_default.py
|
wecassidy/pishow
|
310f935688e0b3ceeb8fe11bd0fda902c041dd45
|
[
"MIT"
] | null | null | null |
config_default.py
|
wecassidy/pishow
|
310f935688e0b3ceeb8fe11bd0fda902c041dd45
|
[
"MIT"
] | null | null | null |
config_default.py
|
wecassidy/pishow
|
310f935688e0b3ceeb8fe11bd0fda902c041dd45
|
[
"MIT"
] | null | null | null |
IMG_DIR = "/path/to/pictures"
IMG_POLL_RATE = 1 # minute
DWELL_TIME = 5 # seconds
FADE_TIME = 1 # seconds
REFRESH_RATE = 10 # milliseconds
| 17.625
| 32
| 0.723404
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 59
| 0.41844
|
06b3ddf241a1d83947506562980f958105dbb002
| 5,050
|
py
|
Python
|
src/stdlib.py
|
tweakoz/zed64
|
c0231444418999191182d53d9319bf7978422bfb
|
[
"CC-BY-3.0"
] | 4
|
2015-06-04T01:14:43.000Z
|
2018-06-16T05:45:57.000Z
|
src/stdlib.py
|
tweakoz/zed64
|
c0231444418999191182d53d9319bf7978422bfb
|
[
"CC-BY-3.0"
] | null | null | null |
src/stdlib.py
|
tweakoz/zed64
|
c0231444418999191182d53d9319bf7978422bfb
|
[
"CC-BY-3.0"
] | null | null | null |
#######################################################################
##
## Zed64 MetroComputer
##
## Unless a module otherwise marked,
## Copyright 2014, Michael T. Mayers (michael@tweakoz.com
## Provided under the Creative Commons Attribution License 3.0
## Please see https://creativecommons.org/licenses/by/3.0/us/legalcode
##
#######################################################################
#!/usr/bin/python
from myhdl import *
import sys, os, md5, string
import localopts
hvcount_bits = 12
################################################33
def SigReset():
return ResetSignal(0, active=1, async=True)
def SigWord(size=1,def_val=0):
return Signal(intbv(def_val)[size:])
def SigBool(def_val=False):
return Signal(intbv(def_val)[1:])
def SigNyb(def_val=0):
return Signal(intbv(def_val)[4:])
def SigByte(def_val=0):
return Signal(intbv(def_val)[8:])
def SigAdr16(def_val=0):
return Signal(intbv(def_val)[16:])
def SigMod64(def_val=0):
return modbv(def_val)[64:]
def SigMod(w=4,def_val=0):
return modbv(def_val)[w:]
def pixdimval(value):
return modbv(value)[hvcount_bits:]
def SigPixCnt(initval=0):
return Signal(pixdimval(initval))
def Sel2(output,inpa,inpb,sel):
@always_comb
def logic():
if sel:
output.next = inpb
else:
output.next = inpa
__verilog__ = \
"""assign %(output)s = %(sel)s ? %(inpb)s : %(inpa)s;"""
output.driven = "wire"
return logic
def SigColorChannel():
return Signal(intbv(0)[4:])
################################################33
def Gen2( x ):
return x(), x()
def Gen3( x ):
return x(), x(), x()
################################################33
class UcfLine:
def __init__(self,txt,newline=True):
self.txt = txt
self.newline = newline
def gen(self):
str = "%s" % self.txt
if self.newline:
str += ";\n"
return str
class UcfNet:
def __init__(self,name,loc,std,constraints=None):
self.name = name
self.loc = loc
self.std = std
self.constraints = constraints
self.txt = None
def gen(self):
str = 'NET "%s" LOC="%s" | IOSTANDARD="%s";\n' % (self.name,self.loc,self.std)
if self.constraints!=None:
str += 'NET "%s" %s;\n' % (self.name,self.constraints)
return str
class UcfGen:
def __init__(self,ucf_name,def_std="LVCMOS33"):
self.ucf_name = ucf_name
self.nets = list()
self.def_std = def_std
self.addsep()
self.addline("# UCF : %s autogenerated with tozedakit\n" % ucf_name, False)
self.addsep()
def addline(self,txt,newline=True):
lin = UcfLine(txt,newline)
self.nets.append(lin)
def addnet(self,name,loc,std=None,constraints=None):
if std==None:
std=self.def_std
net = UcfNet( name, loc, std, constraints )
self.nets.append(net)
def addnetarray(self,basename,locs,std=None):
loclist = string.split(locs)
index = 0
for item in loclist:
self.addnet( "%s<%d>"%(basename,index) ,item, std )
index += 1
def addsep(self):
self.addline("##############################################\n",False)
def emit(self,filename):
fout = open(filename,"wt")
for item in self.nets:
fout.write("%s"%item.gen())
fout.close()
################################################33
def pushdir(newdir):
olddir = os.getcwd()
os.chdir(newdir)
return olddir
def popdir(a):
os.chdir(a)
################################################33
class verilog_params:
def __init__(self,outfolder,timescale,ios):
self.outfolder = outfolder
self.timescale = timescale
self.ios = ios
################################################33
states = enum( "Reset",
"StateA",
"StateB",
"StateC",
encoding="one_hot" )
def FSM(reset,clock):
st = Signal(states.Reset)
@always(clock.posedge)
def gen():
if reset:
st.next = states.Reset
else:
if st==states.Reset:
st.next = states.StateA
elif st==states.StateA:
st.next = states.StateC
elif st==states.StateB:
st.next = states.StateA
elif st==states.StateC:
st.next = states.StateB
else:
st.next = states.Reset
return instances()
timescale = "1ns/1ps"
__all__ = [ 'timescale',
"verilog_params",
"SigReset",
"SigWord",
"SigMod",
'pixdimval',
'SigColorChannel',
'SigBool',
'SigMod64',
'SigPixCnt',
'SigByte',
'SigNyb',
'SigAdr16',
'Sel2',
'Gen2',
'Gen3',
'UcfGen',
'pushdir','popdir']
| 24.278846
| 86
| 0.50198
| 1,886
| 0.373465
| 0
| 0
| 583
| 0.115446
| 0
| 0
| 1,189
| 0.235446
|
06bb33b3d53b354d7a98d017485acac1da8698a5
| 1,127
|
py
|
Python
|
py/1081. Smallest Subsequence of Distinct Characters.py
|
longwangjhu/LeetCode
|
a5c33e8d67e67aedcd439953d96ac7f443e2817b
|
[
"MIT"
] | 3
|
2021-08-07T07:01:34.000Z
|
2021-08-07T07:03:02.000Z
|
py/1081. Smallest Subsequence of Distinct Characters.py
|
longwangjhu/LeetCode
|
a5c33e8d67e67aedcd439953d96ac7f443e2817b
|
[
"MIT"
] | null | null | null |
py/1081. Smallest Subsequence of Distinct Characters.py
|
longwangjhu/LeetCode
|
a5c33e8d67e67aedcd439953d96ac7f443e2817b
|
[
"MIT"
] | null | null | null |
# https://leetcode.com/problems/smallest-subsequence-of-distinct-characters/
# Return the lexicographically smallest subsequence of s that contains all the
# distinct characters of s exactly once.
# Note: This question is the same as 316: https://leetcode.com/problems/remove-
# duplicate-letters/
################################################################################
# record last postion of each char
# use stack and pop previous chars when i) new char is smaller and ii) we can add the popped char back later
class Solution:
def smallestSubsequence(self, s: str) -> str:
last_pos = {}
for idx, char in enumerate(s):
last_pos[char] = idx
stack = []
for idx, char in enumerate(s):
if char not in stack:
# pop the previous chars if the new char is smaller
# but only when we can add the popped char back: idx < last_pos[popped_char]
while stack and char < stack[-1] and idx < last_pos[stack[-1]]:
stack.pop()
stack.append(char)
return ''.join(stack)
| 38.862069
| 108
| 0.585626
| 598
| 0.530612
| 0
| 0
| 0
| 0
| 0
| 0
| 644
| 0.571429
|
06bbd57d69031c72132de965a30424f3da29237c
| 2,207
|
py
|
Python
|
ebs-snapshot-manager.py
|
phanirajendra/aws-ebs-snapshots-lambda
|
0464ec54de7e812163e33db73d1cb9d46c35c029
|
[
"Apache-2.0"
] | null | null | null |
ebs-snapshot-manager.py
|
phanirajendra/aws-ebs-snapshots-lambda
|
0464ec54de7e812163e33db73d1cb9d46c35c029
|
[
"Apache-2.0"
] | null | null | null |
ebs-snapshot-manager.py
|
phanirajendra/aws-ebs-snapshots-lambda
|
0464ec54de7e812163e33db73d1cb9d46c35c029
|
[
"Apache-2.0"
] | 1
|
2020-05-17T14:45:51.000Z
|
2020-05-17T14:45:51.000Z
|
import boto3
import re
import datetime
import time
ec = boto3.client('ec2')
iam = boto3.client('iam')
"""
This function looks at *all* snapshots that have the tags "Type:Automated" and
"DeleteOn" containing the current day formatted as YYYY-MM-DD. The function will
delete the if the todays date is > than the "DeleteOn".
"""
def lambda_handler(event, context):
account_ids = list()
try:
"""
You can replace this try/except by filling in `account_ids` yourself.
Get your account ID with:
> import boto3
> iam = boto3.client('iam')
> print iam.get_user()['User']['Arn'].split(':')[4]
"""
iam.get_user()
except Exception as e:
# use the exception message to get the account ID the function executes under
account_ids.append(re.search(r'(arn:aws:sts::)([0-9]+)', str(e)).groups()[1])
today = datetime.datetime.now()
print "\tDelete snapshots < %s " % today
filters = [
{ 'Name': 'tag:Type', 'Values': ['Automated'] },
]
snapshot_response = ec.describe_snapshots(OwnerIds=account_ids, Filters=filters)
for snap in snapshot_response['Snapshots']:
skipping_this_one = False
snapshot_delete_on = ""
for tag in snap['Tags']:
if tag['Key'] == 'KeepForever':
skipping_this_one = True
if tag['Key'] == 'DeleteOn':
snapshot_delete_on = tag['Value']
if skipping_this_one == True:
print "\tSkipping snapshot %s marked KeepForever" % snap['SnapshotId']
# do nothing else
else:
if snapshot_delete_on == "":
print "\There is no DeleteOn Tag for this backup: %s" % snap['SnapshotId']
continue
snapshot_expires = datetime.datetime.strptime(snapshot_delete_on, "%Y-%m-%d")
if snapshot_expires < today:
print "\tDeleting %s with expiry date %s" % (snap['SnapshotId'], snapshot_delete_on)
ec.delete_snapshot(SnapshotId=snap['SnapshotId'])
else:
print "\tKeeping %s until %s" % (snap['SnapshotId'], snapshot_delete_on)
| 34.484375
| 100
| 0.593113
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 939
| 0.425464
|
06bd33902db8a6c06128727e29c0eae037cf9894
| 378
|
py
|
Python
|
Cartwheel/lib/Python26/Lib/site-packages/OpenGL/GL/NV/fragment_program.py
|
MontyThibault/centre-of-mass-awareness
|
58778f148e65749e1dfc443043e9fc054ca3ff4d
|
[
"MIT"
] | null | null | null |
Cartwheel/lib/Python26/Lib/site-packages/OpenGL/GL/NV/fragment_program.py
|
MontyThibault/centre-of-mass-awareness
|
58778f148e65749e1dfc443043e9fc054ca3ff4d
|
[
"MIT"
] | null | null | null |
Cartwheel/lib/Python26/Lib/site-packages/OpenGL/GL/NV/fragment_program.py
|
MontyThibault/centre-of-mass-awareness
|
58778f148e65749e1dfc443043e9fc054ca3ff4d
|
[
"MIT"
] | null | null | null |
'''OpenGL extension NV.fragment_program
This module customises the behaviour of the
OpenGL.raw.GL.NV.fragment_program to provide a more
Python-friendly API
'''
from OpenGL import platform, constants, constant, arrays
from OpenGL import extensions, wrapper
from OpenGL.GL import glget
import ctypes
from OpenGL.raw.GL.NV.fragment_program import *
### END AUTOGENERATED SECTION
| 31.5
| 56
| 0.812169
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 191
| 0.505291
|
06be7d0ae668828822753247461cfec9b2e4f3d3
| 675
|
py
|
Python
|
kpm/commands/push.py
|
ericchiang/kpm
|
3653b1dba8359f086a6a21d3a5003e80a46083a7
|
[
"Apache-2.0"
] | 121
|
2016-08-05T17:54:27.000Z
|
2022-02-21T14:21:59.000Z
|
kpm/commands/push.py
|
ericchiang/kpm
|
3653b1dba8359f086a6a21d3a5003e80a46083a7
|
[
"Apache-2.0"
] | 82
|
2016-08-07T01:42:41.000Z
|
2017-05-05T17:35:45.000Z
|
kpm/commands/push.py
|
ericchiang/kpm
|
3653b1dba8359f086a6a21d3a5003e80a46083a7
|
[
"Apache-2.0"
] | 30
|
2016-08-15T13:12:10.000Z
|
2022-02-21T14:22:00.000Z
|
from appr.commands.push import PushCmd as ApprPushCmd
from kpm.manifest_jsonnet import ManifestJsonnet
class PushCmd(ApprPushCmd):
default_media_type = 'kpm'
def _kpm(self):
self.filter_files = True
self.manifest = ManifestJsonnet()
ns, name = self.manifest.package['name'].split("/")
if not self.namespace:
self.namespace = ns
if not self.pname:
self.pname = name
self.package_name = "%s/%s" % (self.namespace, self.pname)
if not self.version or self.version == "default":
self.version = self.manifest.package['version']
self.metadata = self.manifest.metadata()
| 32.142857
| 66
| 0.638519
| 568
| 0.841481
| 0
| 0
| 0
| 0
| 0
| 0
| 39
| 0.057778
|
06be9a64516dc7d92276fa93579a7f01f96fc979
| 360
|
py
|
Python
|
QASMToQuEST/errors.py
|
oerc0122/QASMParser
|
701b6f25f498ea67670f2d85ae0f2e6920aea267
|
[
"MIT"
] | 5
|
2019-05-10T08:17:57.000Z
|
2021-12-19T05:06:18.000Z
|
QASMToQuEST/errors.py
|
oerc0122/QASMParser
|
701b6f25f498ea67670f2d85ae0f2e6920aea267
|
[
"MIT"
] | 14
|
2019-04-11T11:28:08.000Z
|
2020-02-13T15:18:56.000Z
|
QASMToQuEST/errors.py
|
oerc0122/QASMParser
|
701b6f25f498ea67670f2d85ae0f2e6920aea267
|
[
"MIT"
] | 2
|
2019-05-10T08:17:23.000Z
|
2021-12-18T16:37:02.000Z
|
"""
Define the errors which may occur
"""
langMismatchWarning = "Classical language {} does not match output language {}"
langNotDefWarning = "Language {0} translation not found, check QASMToQuEST/langs/{0}.py exists"
noLangSpecWarning = "No language specified for screen print"
noSpecWarning = "Neither language nor output with recognised language specified"
| 45
| 95
| 0.786111
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 277
| 0.769444
|
06bfd7cd414a9434b1f295b51c26d7407c29f08d
| 383
|
py
|
Python
|
problem_29/distinct_powers.py
|
plilja/project-euler
|
646d1989cf15e903ef7e3c6e487284847d522ec9
|
[
"Apache-2.0"
] | null | null | null |
problem_29/distinct_powers.py
|
plilja/project-euler
|
646d1989cf15e903ef7e3c6e487284847d522ec9
|
[
"Apache-2.0"
] | null | null | null |
problem_29/distinct_powers.py
|
plilja/project-euler
|
646d1989cf15e903ef7e3c6e487284847d522ec9
|
[
"Apache-2.0"
] | null | null | null |
from common.matrix import Matrix
def distinct_powers(n):
m = Matrix(n + 2, n + 2)
for i in range(2, n + 1):
m[i][2] = i ** 2
for j in range(3, n + 1):
m[i][j] = m[i][j - 1] * i
distinct_values = set()
for i in range(2, n + 1):
for j in range(2, n + 1):
distinct_values |= {m[i][j]}
return len(distinct_values)
| 21.277778
| 40
| 0.488251
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
06c21871e9ad89697d51562c488828bc64f7390f
| 1,436
|
py
|
Python
|
1-python/python/transpose.py
|
Domin-Imperial/Domin-Respository
|
2e531aabc113ed3511f349107695847b5c4e4320
|
[
"MIT"
] | null | null | null |
1-python/python/transpose.py
|
Domin-Imperial/Domin-Respository
|
2e531aabc113ed3511f349107695847b5c4e4320
|
[
"MIT"
] | null | null | null |
1-python/python/transpose.py
|
Domin-Imperial/Domin-Respository
|
2e531aabc113ed3511f349107695847b5c4e4320
|
[
"MIT"
] | 1
|
2021-05-24T20:09:38.000Z
|
2021-05-24T20:09:38.000Z
|
# exercism exercise "transpose"
def transpose(lines: str) -> str:
input_list = lines.split('\n') # or splitlines
input_height = len(input_list)
input_width = get_input_width(input_list)
output_list = []
for colnum in range(input_width):
output = ''
for rownum in range(input_height):
output += get_char(input_list, rownum, colnum)
output = output.rstrip('*').replace('*', ' ')
output_list.append(output)
return '\n'.join(output_list)
def get_char(input_list, rownum, colnum):
# row = input_list[rownum]
# if colnum >= len(row):
# return '*'
# return row[colnum]
try:
return input_list[rownum][colnum]
except IndexError:
return '*'
def get_input_width(input_list):
# max_length = 0
# for i in range(len(input_list)):
# row = input_list[i]
# if len(row) > max_length:
# max_length = len(row)
# max_length = 0
# for row in input_list:
# if len(row) > max_length:
# max_length = len(row)
# list comprehension
# lengths = [len(x) for x in input_list] # list of ints
# max_length = max(lengths)
# generator expression
# an expression that acts like a sequence, that's not built yet
max_length = max((len(x) for x in input_list), default=0)
return max_length
print(transpose("AB\nC"))
print(repr(transpose("AB\nC").split('\n')))
| 27.615385
| 67
| 0.612117
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 598
| 0.416435
|
06c29fb490c1f0aa4c9251b922a903b4e7ce1750
| 548
|
py
|
Python
|
tests/create_file.py
|
stompsjo/RadClass
|
3bce664fbc1ea48c067e035adb18cc064db5df4b
|
[
"BSD-3-Clause"
] | null | null | null |
tests/create_file.py
|
stompsjo/RadClass
|
3bce664fbc1ea48c067e035adb18cc064db5df4b
|
[
"BSD-3-Clause"
] | 2
|
2021-05-11T15:11:17.000Z
|
2021-07-02T17:42:35.000Z
|
tests/create_file.py
|
stompsjo/RadClass
|
3bce664fbc1ea48c067e035adb18cc064db5df4b
|
[
"BSD-3-Clause"
] | null | null | null |
import h5py
def create_file(filename, datapath, labels, live, timestamps, spectra):
# Creating sample dataset
f = h5py.File(filename, "w")
# data structure for MUSE files
dset1 = f.create_dataset(datapath + labels['live'], (1000,))
dset2 = f.create_dataset(datapath + labels['timestamps'], (1000,))
dset3 = f.create_dataset(datapath + labels['spectra'], (10,1000))
# store randomized data in test file
dset1[...] = live
dset2[...] = timestamps
dset3[...] = spectra
# close test file
f.close()
| 30.444444
| 71
| 0.642336
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 139
| 0.25365
|
06c2aad42518b04959fd06448a4c2d1ef11c34fe
| 4,318
|
py
|
Python
|
core/models.py
|
mcflydesigner/innorussian
|
70bec97ad349f340bd66cd8234d94f8829540397
|
[
"MIT"
] | 1
|
2021-04-12T18:54:37.000Z
|
2021-04-12T18:54:37.000Z
|
core/models.py
|
mcflydesigner/InnoRussian
|
70bec97ad349f340bd66cd8234d94f8829540397
|
[
"MIT"
] | null | null | null |
core/models.py
|
mcflydesigner/InnoRussian
|
70bec97ad349f340bd66cd8234d94f8829540397
|
[
"MIT"
] | null | null | null |
from django.db import models
from django.utils.timezone import now
from django.core.validators import FileExtensionValidator
from django.contrib.auth import get_user_model
from django.contrib.postgres.fields import ArrayField
from django.db.models import (Func, Value, CharField, IntegerField)
from .shortcuts import upload_to
"""
Models of core app.
The architecture is done in the following way.
An user accesses the content sequentially:
Category -> Subcategory -> List of words
"""
class Category(models.Model):
"""
The model for categories
"""
name = models.CharField('Name', max_length=55, unique=True)
# Here we use FileField instead of ImageField to allow only .svg extension for images.
picture = models.FileField('Picture', upload_to=upload_to('categories/pictures/'),
validators=[FileExtensionValidator(allowed_extensions=['svg'])])
class Meta:
verbose_name_plural = 'categories'
ordering = ['id']
def __str__(self):
return self.name + '(' + str(self.id) + ')'
class SubCategory(models.Model):
"""
The model for subcategories which are connected
with the corresponding categories. One subcategory can be connected
to different categories(many to many relationship).
"""
categoryId = models.ManyToManyField(Category)
name = models.CharField('Name', max_length=55, unique=True)
# Here we use FileField instead of ImageField to allow only .svg extension for images.
picture = models.FileField('Picture', upload_to=upload_to('subcategories/pictures/'),
validators=[FileExtensionValidator(allowed_extensions=['svg'])])
class Meta:
verbose_name_plural = 'subcategories'
ordering = ['id']
def __str__(self):
return self.name + '(' + str(self.id) + ')'
class TypesOfCard(models.TextChoices):
""" Each card must have a type for the convenience of the user(sorting) """
WORD = 'W', 'Word'
DIALOGUE = 'D', 'Dialogue'
SENTENCE = 'S', 'Sentence'
class Card(models.Model):
"""
Model for the cards with the content.
The card can be connected to different categories at
the same time(many to many relationship)
"""
subCategoryId = models.ManyToManyField(SubCategory)
content = models.TextField('Content')
# The card must have exactly one type out of TypesOfCard
type = models.CharField(max_length=1, choices=TypesOfCard.choices,
default=TypesOfCard.WORD)
# notes = models.CharField('Notes', blank=True, max_length=255)
# Pronunciation for the card is optional
pronunciation = models.FileField('Pronunciation', upload_to=upload_to('cards/sounds/'),
validators=[FileExtensionValidator(allowed_extensions=['mp3'])],
null=True, blank=True)
# Translit of pronunciation is optional
translit_of_pronunciation = models.TextField('Translit of pronunciation', null=True, blank=True)
class Meta:
ordering = ['-pk']
def __str__(self):
return self.content + '(' + str(self.id) + ')'
class Favourite(models.Model):
"""
Model for user's favourite cards.
"""
card = models.ForeignKey(Card, on_delete=models.CASCADE)
owner = models.ForeignKey(get_user_model(), on_delete=models.CASCADE)
# For sorting by `default`
data_added = models.DateTimeField(default=now)
class Meta:
ordering = ['-data_added']
def __str__(self):
return 'card ' + str(self.card.id) + ' -> user ' + str(self.owner.id) + \
' (' + str(self.id) + ') '
class ArrayPosition(Func):
"""
Class to solve one of the Django's problems.
This class is used for filtering(user's sorting option) the cards.
"""
function = 'array_position'
def __init__(self, items, *expressions, **extra):
if isinstance(items[0], int):
base_field = IntegerField()
else:
base_field = CharField(max_length=max(len(i) for i in items))
first_arg = Value(list(items), output_field=ArrayField(base_field))
expressions = (first_arg,) + expressions
super().__init__(*expressions, **extra)
| 35.393443
| 101
| 0.652154
| 3,795
| 0.878879
| 0
| 0
| 0
| 0
| 0
| 0
| 1,557
| 0.360584
|
06c565b07d3d63057b60da7cadb5483464d2b8ef
| 250
|
py
|
Python
|
tests/tushare_to_MongoDB.py
|
sibuzu/OnePy
|
464fca1c68a10f90ad128da3bfb03f05d2fc24bc
|
[
"MIT"
] | null | null | null |
tests/tushare_to_MongoDB.py
|
sibuzu/OnePy
|
464fca1c68a10f90ad128da3bfb03f05d2fc24bc
|
[
"MIT"
] | null | null | null |
tests/tushare_to_MongoDB.py
|
sibuzu/OnePy
|
464fca1c68a10f90ad128da3bfb03f05d2fc24bc
|
[
"MIT"
] | null | null | null |
import OnePy as op
instrument = "000001"
ktype = "D"
start = "2017-01-01"
end = None
test = op.Tushare_to_MongoDB(database=instrument, collection=ktype)
test.data_to_db(code=instrument, start=start, end=end, ktype=ktype, autype="qfq", index=False)
| 25
| 94
| 0.748
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 28
| 0.112
|
06c71c090d4fa330c0d0b447373205ef201db5b3
| 1,836
|
py
|
Python
|
costar_models/python/costar_models/datasets/h5f_generator.py
|
cpaxton/costar_plan
|
be5c12f9d0e9d7078e6a5c283d3be059e7f3d040
|
[
"Apache-2.0"
] | 66
|
2018-10-31T04:58:53.000Z
|
2022-03-17T02:32:25.000Z
|
costar_models/python/costar_models/datasets/h5f_generator.py
|
cpaxton/costar_plan
|
be5c12f9d0e9d7078e6a5c283d3be059e7f3d040
|
[
"Apache-2.0"
] | 8
|
2018-10-23T21:19:25.000Z
|
2018-12-03T02:08:41.000Z
|
costar_models/python/costar_models/datasets/h5f_generator.py
|
cpaxton/costar_plan
|
be5c12f9d0e9d7078e6a5c283d3be059e7f3d040
|
[
"Apache-2.0"
] | 25
|
2018-10-19T00:54:17.000Z
|
2021-10-10T08:28:15.000Z
|
from __future__ import print_function
import h5py as h5f
import numpy as np
import six
import os
from .npy_generator import NpzGeneratorDataset
from .image import *
class H5fGeneratorDataset(NpzGeneratorDataset):
'''
Placeholder class for use with the ctp training tool. This one generates
samples from an h5f encoded set of data.
The Npz generator version implements a generic version of this that just
takes the load function so all we need to do is implement things so they'll
load a particular class.
'''
def __init__(self, *args, **kwargs):
super(H5fGeneratorDataset, self).__init__(*args, **kwargs)
self.file_extension = 'h5'
self.file = None
# Interface for with statement
def __enter__(self):
return self.file
def __exit__(self, *args):
self.file.close()
self.file = None
def _load(self, filename, verbose=0):
'''
Helper to load the hdf5 file data into a dictionary of numpy arrays in memory.
'''
if verbose > 0:
print('loading hf5 filename: ' + str(filename))
debug_str = 'loading data:\n'
dataset = h5f.File(filename, 'r')
self.file = dataset
# TODO: fix up this horrible code
for k, v in six.iteritems(dataset):
if verbose > 0:
debug_str += 'key: ' + str(k)
if k == "image_type" or k == "type_image":
if verbose > 0:
debug_str += ' skipped\n'
continue
if verbose > 0:
debug_str += ' added\n'
if k == "image":
self.load_jpeg.append(k)
elif k == "depth_image":
self.load_png.append(k)
if verbose > 0:
print(debug_str)
return self
| 30.098361
| 86
| 0.582789
| 1,667
| 0.907952
| 0
| 0
| 0
| 0
| 0
| 0
| 606
| 0.330065
|
06c7a3448e8983e9a265c812e501b174dd35b66d
| 5,821
|
py
|
Python
|
SegmentationAlgorithms/CBSMoT.py
|
JRose6/TrajLib
|
2a5749bf6e9517835801926d6a5e92564ef2c7f0
|
[
"Apache-2.0"
] | null | null | null |
SegmentationAlgorithms/CBSMoT.py
|
JRose6/TrajLib
|
2a5749bf6e9517835801926d6a5e92564ef2c7f0
|
[
"Apache-2.0"
] | null | null | null |
SegmentationAlgorithms/CBSMoT.py
|
JRose6/TrajLib
|
2a5749bf6e9517835801926d6a5e92564ef2c7f0
|
[
"Apache-2.0"
] | null | null | null |
import Distances as d
import pandas as pd
import numpy as np
class CBSmot:
nano_to_seconds = 1000000000
def count_neighbors(self, traj, position, max_dist):
neighbors = 0
yet = True
j = position + 1
while j < len(traj.index) and yet:
if d.Distances.calculate_two_point_distance(traj.iloc[position]['lat'],
traj.iloc[position]['lon'],
traj.iloc[j]['lat'],
traj.iloc[j]['lon']) < max_dist:
neighbors += 1
else:
yet = False
j += 1
return neighbors
def centroid(self, subtraj):
x = 0
y = 0
for index, row in subtraj.iterrows():
x += row['lat']
y += row['lon']
return [x/len(subtraj.index), y/len(subtraj.index)]
def clean_stops(self, stops, min_time):
stops_aux = stops.copy()
for stop in stops:
p1 = stop.index.values[0]
p2 = stop.index.values[-1]
if (p2 - p1).item() / CBSmot.nano_to_seconds < min_time:
stops_aux.remove(stop)
return stops_aux
def clean_stops_segment(self, stops, min_time, index):
stops_aux = stops.copy()
i = 0
curr_idx=0
for stop in stops:
p1 = stop.index.values[0]
p2 = stop.index.values[-1]
if (p2 - p1).item() / CBSmot.nano_to_seconds < min_time:
stops_aux.pop(i)
index.pop(i)
else:
i += 1
return index, stops_aux
def merge_stop(self, stops, max_dist, time_tolerance):
i = 0
while i < len(stops):
if (i+1) < len(stops):
s1 = stops[i]
s2 = stops[i+1]
p2 = s2.index.values[0]
p1 = s1.index.values[-1]
if (p2 - p1).item() / CBSmot.nano_to_seconds <= time_tolerance:
c1 = self.centroid(s1)
c2 = self.centroid(s2)
if d.Distances.calculate_two_point_distance(c1[0], c1[1], c2[0], c2[1]) <= max_dist:
stops.pop(i+1)
s1.append(s2, ignore_index=True)
stops[i] = s1
i -= 1
i += 1
return stops
def merge_stop_segment(self, stops, max_dist, time_tolerance, index):
i = 0
while i < len(stops):
if (i+1) < len(stops):
s1 = stops[i]
s2 = stops[i+1]
p2 = s2.index.values[0]
p1 = s1.index.values[-1]
if (p2 - p1).item() / CBSmot.nano_to_seconds <= time_tolerance:
c1 = self.centroid(s1)
c2 = self.centroid(s2)
if d.Distances.calculate_two_point_distance(c1[0], c1[1], c2[0], c2[1]) <= max_dist:
index_i = index[i]
index_i_1 = index[i+1]
stops.pop(i+1)
index.pop(i+1)
s1.append(s2, ignore_index=True)
stops[i] = s1
index[i] = [index_i[0], index_i_1[-1]]
i -= 1
i += 1
return index, stops
def find_stops(self, traj, max_dist, min_time, time_tolerance, merge_tolerance):
neighborhood = [0]*len(traj.index)
stops = []
traj.sort_index(inplace=True)
j = 0
while j < len(traj.index):
valor = self.count_neighbors(traj, j, max_dist)
neighborhood[j] = valor
j += valor
j += 1
for i in range(len(neighborhood)):
if neighborhood[i] > 0:
p1 = pd.to_datetime(traj.iloc[i].name)
p2 = pd.to_datetime(traj.iloc[i + neighborhood[i]-1].name)
diff = (p2 - p1).total_seconds()
if diff >= time_tolerance:
stops.append(traj.loc[p1:p2])
stops = self.merge_stop(stops, max_dist, merge_tolerance)
stops = self.clean_stops(stops, min_time)
return stops
def segment_stops_moves(self, traj, max_dist, min_time, time_tolerance, merge_tolerance):
neighborhood = [0]*len(traj.index)
stops = []
index = []
traj.sort_index(inplace=True)
j = 0
while j < len(traj.index):
valor = self.count_neighbors(traj, j, max_dist)
neighborhood[j] = valor
j += valor
j += 1
#print(neighborhood)
for i in range(len(neighborhood)):
if neighborhood[i] > 0:
p1 = pd.to_datetime(traj.iloc[i].name)
p2 = pd.to_datetime(traj.iloc[i + neighborhood[i]-1].name)
diff = (p2 - p1).total_seconds()
if diff >= time_tolerance:
stops.append(traj.loc[p1:p2])
index.append([p1, p2])
#print(len(index))
index, stops = self.merge_stop_segment(stops, max_dist, merge_tolerance, index)
#print(len(index))
index, stops = self.clean_stops_segment(stops, min_time, index)
#print(len(index))
return index, stops
@staticmethod
def get_quantile(traj,area):
if area>1 or area<0:
raise ValueError("Area must be >=0 and <=1")
distances = [1]
for i in range(len(traj)-1):
p1 = traj.iloc[i]
p2 = traj.iloc[i+1]
distances.append(d.Distances.calculate_two_point_distance(p1.lat,p1.lon,p2.lat,p2.lon))
return np.quantile(distances,area,overwrite_input=True)
| 35.932099
| 104
| 0.489263
| 5,758
| 0.989177
| 0
| 0
| 419
| 0.071981
| 0
| 0
| 130
| 0.022333
|
06c9a2b8530162b36b57399f64b942d4d2384eb7
| 164
|
py
|
Python
|
apps/presupuesto/admin.py
|
edilio/cubanoshaciamiami.com
|
541a22998b7c7ad3acda784c5657bfdf79cc7f07
|
[
"MIT"
] | null | null | null |
apps/presupuesto/admin.py
|
edilio/cubanoshaciamiami.com
|
541a22998b7c7ad3acda784c5657bfdf79cc7f07
|
[
"MIT"
] | null | null | null |
apps/presupuesto/admin.py
|
edilio/cubanoshaciamiami.com
|
541a22998b7c7ad3acda784c5657bfdf79cc7f07
|
[
"MIT"
] | null | null | null |
from django.contrib import admin
from .models import TipoDeGasto, PresupuestoDeGasto
admin.site.register(TipoDeGasto)
admin.site.register(PresupuestoDeGasto)
| 27.333333
| 52
| 0.829268
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
06c9d2978cf880b3371f69c40666eeeea090512c
| 13,838
|
py
|
Python
|
Support/validate.py
|
sgarbesi/javascript-eslint.tmbundle
|
b117fe0133582676113a96fc9804795c033d0b78
|
[
"BSD-3-Clause"
] | 1
|
2015-05-01T14:24:39.000Z
|
2015-05-01T14:24:39.000Z
|
Support/validate.py
|
sgarbesi/javascript-eslint.tmbundle
|
b117fe0133582676113a96fc9804795c033d0b78
|
[
"BSD-3-Clause"
] | null | null | null |
Support/validate.py
|
sgarbesi/javascript-eslint.tmbundle
|
b117fe0133582676113a96fc9804795c033d0b78
|
[
"BSD-3-Clause"
] | null | null | null |
#!/usr/bin/env python
# encoding: utf-8
"""
Validate a JavaScript file using eslint.
Author: Nate Silva
Copyright 2014 Nate Silva
License: MIT
"""
from __future__ import print_function
import sys
import os
import re
import time
import json
import subprocess
import tempfile
import hashlib
import shutil
def find_up_the_tree(dir_name, filename, max_depth=30):
"""
Search for the named file in the dir_name or any of its parent
directories, up to the root directory.
"""
while True:
if max_depth <= 0:
return None
full_path = os.path.abspath(os.path.join(dir_name, filename))
if os.path.isfile(full_path):
return full_path
(drive, path) = os.path.splitdrive(dir_name)
is_root = (path == os.sep or path == os.altsep)
if is_root:
return None
max_depth -= 1
dir_name = os.path.abspath(os.path.join(dir_name, os.pardir))
def find_eslintrc(start_dir):
"""
Locates the most relevant .eslintrc file. Of the following
locations, the first to be found will be used:
1. An .eslintrc file in the start_dir or any of its parents.
2. If the file has not been saved yet, ~/.eslintrc will be
used.
start_dir is normally set to the directory of the file being
validated.
When start_dir is not provided (which happens with files that
are not saved yet), ~/.eslintrc is the only candidate that is
considered.
If no relevant .eslintrc is found, the return value is None.
"""
if start_dir:
# locate the nearest .eslintrc
eslintrc = find_up_the_tree(start_dir, '.eslintrc')
if eslintrc:
return eslintrc
# last ditch: look for .eslintrc in the user’s home directory
home_eslintrc = os.path.expanduser('~/.eslintrc')
if os.path.isfile(home_eslintrc):
return home_eslintrc
return None
def show_error_message(message):
context = {
'message': message,
'timestamp': time.strftime('%c')
}
my_dir = os.path.abspath(os.path.dirname(__file__))
error_ejs_path = os.path.join(my_dir, 'error.ejs')
error_ejs = open(error_ejs_path, 'r').read()
template_path = os.path.join(my_dir, 'template.html')
template = open(template_path, 'r').read()
template = template.replace('{{ TM_BUNDLE_SUPPORT }}',
os.environ['TM_BUNDLE_SUPPORT'])
template = template.replace('{{ EJS_TEMPLATE }}', json.dumps(error_ejs))
template = template.replace('{{ CONTEXT }}', json.dumps(context))
print(template)
def get_marker_directory():
"""
Create the directory that will hold "marker" files that we use
to detect which files have a validation window open. Used to
implement the following feature:
Normally, when you hit Cmd-S, the validation window appears
only if there is a warning or error.
Assume you had previously validated a file, and the validation
window showing its errors is still open. Now you fix the
errors and press Cmd-S. We want that validation window to
update to show no errors.
In order to do this, we have to somehow detect if TextMate has
a validation window open for the current file. It’s not easy.
We use marker files.
This script creates a marker file before returning the HTML
document that will be shown in the validation window.
When the HTML document detects that it is being hidden (closed),
it runs a TextMate.system command to delete its marker file.
"""
baseDir = os.path.join(tempfile.gettempdir(), 'javascript-eslint-tmbundle')
if not os.path.isdir(baseDir):
os.makedirs(baseDir)
today = time.strftime('%Y-%m-%d')
markerDir = os.path.join(baseDir, today)
if not os.path.isdir(markerDir):
os.makedirs(markerDir)
# Deletion should happen automatically, but to be clean(er),
# delete any previous-day marker dirs.
children = os.listdir(baseDir)
children = [_ for _ in children if _ != today]
children = [os.path.join(baseDir, _) for _ in children]
children = [_ for _ in children if os.path.isdir(_)]
[shutil.rmtree(_, True) for _ in children]
return markerDir
def validate(quiet=False):
# locate the .eshintrc to use
eslintrc = find_eslintrc(os.environ.get('TM_DIRECTORY', None))
# Copy stdin to a named temporary file: at this time eslint
# doesn’t support reading from stdin.
file_to_validate = tempfile.NamedTemporaryFile(suffix='.js')
if os.environ['TM_SCOPE'].startswith('source.js'):
shutil.copyfileobj(sys.stdin, file_to_validate)
else:
# If we are validating an HTML file with embedded
# JavaScript, only copy content within the
# <script>…</script> tags to the subprocess.
start_tag = re.compile('(\<\s*script)[\s\>]', re.IGNORECASE)
end_tag = re.compile('\<\/\s*script[\s\>]', re.IGNORECASE)
state = 'IGNORE'
for line in sys.stdin:
while line:
if state == 'IGNORE':
match = start_tag.search(line)
if match:
# found a script tag
line = ' ' * match.end(1) + line[match.end(1):]
state = 'LOOK_FOR_END_OF_OPENING_TAG'
else:
file_to_validate.write('\n')
line = None
elif state == 'LOOK_FOR_END_OF_OPENING_TAG':
gt_pos = line.find('>')
if gt_pos != -1:
line = ' ' * (gt_pos + 1) + line[gt_pos + 1:]
state = 'PIPE_TO_OUTPUT'
else:
file_to_validate.write('\n')
line = None
elif state == 'PIPE_TO_OUTPUT':
match = end_tag.search(line)
if match:
# found closing </script> tag
file_to_validate.write(line[:match.start()])
line = line[match.end():]
state = 'IGNORE'
else:
file_to_validate.write(line)
line = None
file_to_validate.flush()
# build eslint args
args = [
os.environ.get('TM_JAVASCRIPT_ESLINT_ESLINT', 'eslint'),
'-f',
'compact'
]
if eslintrc:
args.append('-c')
args.append(eslintrc)
args.append(file_to_validate.name)
# Build env for our command: ESLint (and Node) are often
# installed to /usr/local/bin, which may not be on the
# bundle’s PATH in a default install of TextMate.
env = os.environ.copy()
path_parts = env['PATH'].split(':')
if '/bin' not in path_parts:
path_parts.append('/bin')
if '/usr/bin' not in path_parts:
path_parts.append('/usr/bin')
if '/usr/local/bin' not in path_parts:
path_parts.append('/usr/local/bin')
env['PATH'] = ':'.join(path_parts)
try:
eslint = subprocess.Popen(args, stdout=subprocess.PIPE,
stderr=subprocess.PIPE, env=env)
(child_stdout, child_stderr) = eslint.communicate()
if child_stderr:
msg = [
'Hi there. This is the “JavaScript ESLint” bundle for ' +
'TextMate. I validate your code using ESLint.',
'',
'I had the following problem running <code>eslint</code>:',
'',
'<code>%s</code>' % child_stderr,
'',
'<h4>How to disable validation</h4>',
'If you mistakenly installed this validation tool and want to ' +
'disable it, you can do so in TextMate:',
'',
'<ol>' +
'<li>On the TextMate menu, choose ' +
'<i>Bundles</i> > <i>Edit Bundles…</i></li>' +
'<li>Locate “JavaScript ESLint”</li>' +
'<li>Uncheck “Enable this item”</li>' +
'<li>Close the Bundle Editor and choose “Save”</li>' +
'</ol>'
]
show_error_message('<br>'.join(msg))
sys.exit()
except OSError as e:
msg = [
'Hi there. This is the “JavaScript ESLint” bundle for ' +
'TextMate. I validate your code using ESLint.',
'',
'I had the following problem running <code>eslint</code>:',
'',
'<code>%s</code>' % e,
'',
'<h4>How to fix it</h4>',
'Make sure the <code>eslint</code> and <code>node</code> ' +
'commands are on the <code>PATH</code>.',
'',
'<ol>' +
'<li>Go to <i>TextMate</i> > <i>Preferences…</i> > ' +
'<i>Variables</i></li>' +
'<li>Ensure the <code>PATH</code> is enabled there and that ' +
'it includes the location of your <code>eslint</code> ' +
'and <code>node</code> commands.</li>'
'</ol>',
'The path currently used by TextMate bundles is:',
'',
'<div style="overflow:auto"><code>%s</code></div>' % env['PATH'],
'<h4>How to disable validation</h4>',
'If you mistakenly installed this validation tool and want to ' +
'disable it, you can do so in TextMate:',
'',
'<ol>' +
'<li>On the TextMate menu, choose ' +
'<i>Bundles</i> > <i>Edit Bundles…</i></li>' +
'<li>Locate “JavaScript ESLint”</li>' +
'<li>Uncheck “Enable this item”</li>' +
'<li>Close the Bundle Editor and choose “Save”</li>' +
'</ol>'
]
show_error_message('<br>'.join(msg))
sys.exit()
# parse the results
rx = re.compile('^[^:]+\: line (?P<line>\d+), col (?P<character>\d+), ' +
'(?P<code>\w+) - (?P<reason>.+?)(\s\((?P<shortname>[\w\-]+)\))?$')
issues = []
for line in child_stdout.split('\n'):
line = line.strip()
if not line:
continue
m = rx.match(line)
if not m:
continue
issue = {
'line': int(m.group('line')),
'character': int(m.group('character')) + 1,
'code': m.group('code'),
'reason': m.group('reason')
}
if m.group('shortname'):
issue['shortname'] = m.group('shortname')
issues.append(issue)
# normalize line numbers
input_start_line = int(os.environ['TM_INPUT_START_LINE']) - 1
for issue in issues:
issue['line'] += input_start_line
# add URLs to the issues
if 'TM_FILEPATH' in os.environ:
url_maker = lambda x: \
'txmt://open?url=file://%s&line=%d&column=%d' % \
(os.environ['TM_FILEPATH'], x['line'], x['character'])
else:
url_maker = lambda x: \
'txmt://open?line=%d&column=%d' % (x['line'], x['character'])
for issue in issues:
issue['url'] = url_maker(issue)
# context data we will send to JavaScript
context = {
'eslintrc': eslintrc,
'issues': issues,
'timestamp': time.strftime('%c')
}
if 'TM_FILEPATH' in os.environ:
context['fileUrl'] = \
'txmt://open?url=file://%s' % os.environ['TM_FILEPATH']
context['targetFilename'] = os.path.basename(os.environ['TM_FILEPATH'])
else:
context['fileUrl'] = 'txmt://open?line=1&column=0'
context['targetFilename'] = '(current unsaved file)'
# Identify the marker file that we will use to indicate the
# TM_FILEPATH of the file currently shown in the validation
# window.
markerDir = get_marker_directory()
hash = hashlib.sha224(context['fileUrl']).hexdigest()
context['markerFile'] = os.path.join(markerDir, hash + '.marker')
context['errorCount'] = \
len([_ for _ in context['issues'] if _['code'][0] == 'E'])
context['warningCount'] = \
len([_ for _ in context['issues'] if _['code'][0] == 'W'])
if context['errorCount'] == 0 and context['warningCount'] == 0:
# There are no errors or warnings. We can bail out if all of
# the following are True:
#
# * There is no validation window currently open for
# this document.
# * quiet is True.
if not os.path.exists(context['markerFile']):
if quiet:
return
# create the marker file
markerFile = open(context['markerFile'], 'w+')
markerFile.close()
# read and prepare the template
my_dir = os.path.abspath(os.path.dirname(__file__))
content_ejs_path = os.path.join(my_dir, 'content.ejs')
content_ejs = open(content_ejs_path, 'r').read()
template_path = os.path.join(my_dir, 'template.html')
template = open(template_path, 'r').read()
template = template.replace('{{ TM_BUNDLE_SUPPORT }}',
os.environ['TM_BUNDLE_SUPPORT'])
template = template.replace('{{ EJS_TEMPLATE }}', json.dumps(content_ejs))
template = template.replace('{{ CONTEXT }}', json.dumps(context))
# print(template)
# @sgarbesi Tooltips for Textmate
if context['errorCount'] == 0 and context['warningCount'] == 0:
print('Lint Free!')
return
template = '%s Errors / %s Warnings' % (context['errorCount'], context['warningCount'])
template = '%s\r\n---' % (template)
for issue in context['issues']:
template = '%s\r\n%s: L%s: %s' % (template, issue['code'], issue['line'], issue['reason'])
print(template)
if __name__ == '__main__':
quiet = ('-q' in sys.argv or '--quiet' in sys.argv)
validate(quiet)
| 33.833741
| 98
| 0.568001
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 6,160
| 0.443612
|
06cdfe64d4ce6044067a25d0bf7f0ef2fa35cf39
| 240
|
py
|
Python
|
Home_Work_2_B_Naychuk_Anastasiya/Task2.py
|
NaychukAnastasiya/goiteens-python3-naychuk
|
a79d0af238a15f58a822bb5d8e4d48227d4a7bc1
|
[
"MIT"
] | null | null | null |
Home_Work_2_B_Naychuk_Anastasiya/Task2.py
|
NaychukAnastasiya/goiteens-python3-naychuk
|
a79d0af238a15f58a822bb5d8e4d48227d4a7bc1
|
[
"MIT"
] | null | null | null |
Home_Work_2_B_Naychuk_Anastasiya/Task2.py
|
NaychukAnastasiya/goiteens-python3-naychuk
|
a79d0af238a15f58a822bb5d8e4d48227d4a7bc1
|
[
"MIT"
] | null | null | null |
# y = f(X)
# y = 2*x -10 # x>0
# y = 0# x=0
# y = 2 * abs(x) -1 # x<0
print("Введіть число")
x = float(input())
y = 0
if x > 0:
y = 2*x -10
elif x == 0:
y = 0
else: #x<0
y = 2 * abs(x) -1
print ("y: ",y)
| 13.333333
| 26
| 0.375
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 107
| 0.424603
|
06d128fc6f207aa019def30c73ff71c2d5f4ad72
| 8,745
|
py
|
Python
|
imagenet_pytorch/utils.py
|
lishuliang/Emotion-Recognition
|
a8aea1b71b2508e6157410089b20ab463fe901f5
|
[
"MIT"
] | 1
|
2019-03-16T08:11:53.000Z
|
2019-03-16T08:11:53.000Z
|
imagenet_pytorch/utils.py
|
lishuliang/Emotion-Recognition
|
a8aea1b71b2508e6157410089b20ab463fe901f5
|
[
"MIT"
] | null | null | null |
imagenet_pytorch/utils.py
|
lishuliang/Emotion-Recognition
|
a8aea1b71b2508e6157410089b20ab463fe901f5
|
[
"MIT"
] | null | null | null |
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.nn.functional as F
from torch.nn import init
class attention(nn.Module):
def __init__(self, input_channels, map_size):
super(attention, self).__init__()
self.pool = nn.AvgPool2d(kernel_size=map_size)
self.fc1 = nn.Linear(in_features=input_channels,
out_features=input_channels // 2)
self.fc2 = nn.Linear(in_features=input_channels //
2, out_features=input_channels)
def forward(self, x):
output = self.pool(x)
output = output.view(output.size()[0], output.size()[1])
output = self.fc1(output)
output = F.relu(output)
output = self.fc2(output)
output = F.sigmoid(output)
output = output.view(output.size()[0], output.size()[1], 1, 1)
output = torch.mul(x, output)
return output
class transition(nn.Module):
def __init__(self, if_att, current_size, input_channels, keep_prob):
super(transition, self).__init__()
self.input_channels = input_channels
self.keep_prob = keep_prob
self.bn = nn.BatchNorm2d(self.input_channels)
self.conv = nn.Conv2d(self.input_channels,
self.input_channels, kernel_size=1, bias=False)
# self.dropout = nn.Dropout2d(1 - self.keep_prob)
self.pool = nn.AvgPool2d(kernel_size=2)
self.if_att = if_att
if self.if_att == True:
self.attention = attention(
input_channels=self.input_channels, map_size=current_size)
def forward(self, x):
output = self.bn(x)
output = F.relu(output)
output = self.conv(output)
if self.if_att == True:
output = self.attention(output)
# output = self.dropout(output)
output = self.pool(output)
return output
class global_pool(nn.Module):
def __init__(self, input_size, input_channels):
super(global_pool, self).__init__()
self.input_size = input_size
self.input_channels = input_channels
self.bn = nn.BatchNorm2d(self.input_channels)
self.pool = nn.AvgPool2d(kernel_size=self.input_size)
def forward(self, x):
output = self.bn(x)
output = F.relu(output)
output = self.pool(output)
return output
class compress(nn.Module):
def __init__(self, input_channels, keep_prob):
super(compress, self).__init__()
self.keep_prob = keep_prob
self.bn = nn.BatchNorm2d(input_channels)
self.conv = nn.Conv2d(input_channels, input_channels //
2, kernel_size=1, padding=0, bias=False)
def forward(self, x):
output = self.bn(x)
output = F.relu(output)
output = self.conv(output)
# output = F.dropout2d(output, 1 - self.keep_prob)
return output
class clique_block(nn.Module):
def __init__(self, input_channels, channels_per_layer, layer_num, loop_num, keep_prob):
super(clique_block, self).__init__()
self.input_channels = input_channels
self.channels_per_layer = channels_per_layer
self.layer_num = layer_num
self.loop_num = loop_num
self.keep_prob = keep_prob
# conv 1 x 1
self.conv_param = nn.ModuleList([nn.Conv2d(self.channels_per_layer, self.channels_per_layer, kernel_size=1, padding=0, bias=False)
for i in range((self.layer_num + 1) ** 2)])
for i in range(1, self.layer_num + 1):
self.conv_param[i] = nn.Conv2d(
self.input_channels, self.channels_per_layer, kernel_size=1, padding=0, bias=False)
for i in range(1, self.layer_num + 1):
self.conv_param[i * (self.layer_num + 2)] = None
for i in range(0, self.layer_num + 1):
self.conv_param[i * (self.layer_num + 1)] = None
self.forward_bn = nn.ModuleList([nn.BatchNorm2d(
self.input_channels + i * self.channels_per_layer) for i in range(self.layer_num)])
self.forward_bn_b = nn.ModuleList(
[nn.BatchNorm2d(self.channels_per_layer) for i in range(self.layer_num)])
self.loop_bn = nn.ModuleList([nn.BatchNorm2d(
self.channels_per_layer * (self.layer_num - 1)) for i in range(self.layer_num)])
self.loop_bn_b = nn.ModuleList(
[nn.BatchNorm2d(self.channels_per_layer) for i in range(self.layer_num)])
# conv 3 x 3
self.conv_param_bottle = nn.ModuleList([nn.Conv2d(self.channels_per_layer, self.channels_per_layer, kernel_size=3, padding=1, bias=False)
for i in range(self.layer_num)])
def forward(self, x):
# key: 1, 2, 3, 4, 5, update every loop
self.blob_dict = {}
# save every loops results
self.blob_dict_list = []
# first forward
for layer_id in range(1, self.layer_num + 1):
bottom_blob = x
# bottom_param = self.param_dict['0_' + str(layer_id)]
bottom_param = self.conv_param[layer_id].weight
for layer_id_id in range(1, layer_id):
# pdb.set_trace()
bottom_blob = torch.cat(
(bottom_blob, self.blob_dict[str(layer_id_id)]), 1)
# bottom_param = torch.cat((bottom_param, self.param_dict[str(layer_id_id) + '_' + str(layer_id)]), 1)
bottom_param = torch.cat(
(bottom_param, self.conv_param[layer_id_id * (self.layer_num + 1) + layer_id].weight), 1)
next_layer = self.forward_bn[layer_id - 1](bottom_blob)
next_layer = F.relu(next_layer)
# conv 1 x 1
next_layer = F.conv2d(
next_layer, bottom_param, stride=1, padding=0)
# conv 3 x 3
next_layer = self.forward_bn_b[layer_id - 1](next_layer)
next_layer = F.relu(next_layer)
next_layer = F.conv2d(
next_layer, self.conv_param_bottle[layer_id - 1].weight, stride=1, padding=1)
# next_layer = F.dropout2d(next_layer, 1 - self.keep_prob)
self.blob_dict[str(layer_id)] = next_layer
self.blob_dict_list.append(self.blob_dict)
# loop
for loop_id in range(self.loop_num):
for layer_id in range(1, self.layer_num + 1):
layer_list = [l_id for l_id in range(1, self.layer_num + 1)]
layer_list.remove(layer_id)
bottom_blobs = self.blob_dict[str(layer_list[0])]
# bottom_param = self.param_dict[layer_list[0] + '_' + str(layer_id)]
bottom_param = self.conv_param[layer_list[0]
* (self.layer_num + 1) + layer_id].weight
for bottom_id in range(len(layer_list) - 1):
bottom_blobs = torch.cat(
(bottom_blobs, self.blob_dict[str(layer_list[bottom_id + 1])]), 1)
# bottom_param = torch.cat((bottom_param, self.param_dict[layer_list[bottom_id+1]+'_'+str(layer_id)]), 1)
bottom_param = torch.cat(
(bottom_param, self.conv_param[layer_list[bottom_id + 1] * (self.layer_num + 1) + layer_id].weight), 1)
bottom_blobs = self.loop_bn[layer_id - 1](bottom_blobs)
bottom_blobs = F.relu(bottom_blobs)
# conv 1 x 1
mid_blobs = F.conv2d(
bottom_blobs, bottom_param, stride=1, padding=0)
# conv 3 x 3
top_blob = self.loop_bn_b[layer_id - 1](mid_blobs)
top_blob = F.relu(top_blob)
top_blob = F.conv2d(
top_blob, self.conv_param_bottle[layer_id - 1].weight, stride=1, padding=1)
self.blob_dict[str(layer_id)] = top_blob
self.blob_dict_list.append(self.blob_dict)
assert len(self.blob_dict_list) == 1 + self.loop_num
# output
block_feature_I = self.blob_dict_list[0]['1']
for layer_id in range(2, self.layer_num + 1):
block_feature_I = torch.cat(
(block_feature_I, self.blob_dict_list[0][str(layer_id)]), 1)
block_feature_I = torch.cat((x, block_feature_I), 1)
block_feature_II = self.blob_dict_list[self.loop_num]['1']
for layer_id in range(2, self.layer_num + 1):
block_feature_II = torch.cat(
(block_feature_II, self.blob_dict_list[self.loop_num][str(layer_id)]), 1)
return block_feature_I, block_feature_II
| 43.507463
| 145
| 0.5992
| 8,532
| 0.975643
| 0
| 0
| 0
| 0
| 0
| 0
| 707
| 0.080846
|
06d1d332e24aee96ce48f604359996ef77a12eea
| 1,349
|
py
|
Python
|
setup.py
|
jopo666/HistoPrep
|
1b74c346b38c7ca44f92269246571f5f850836af
|
[
"MIT"
] | 11
|
2021-04-21T10:37:22.000Z
|
2021-12-19T22:32:59.000Z
|
setup.py
|
jopo666/HistoPrep
|
1b74c346b38c7ca44f92269246571f5f850836af
|
[
"MIT"
] | 1
|
2021-02-24T09:15:13.000Z
|
2021-04-19T06:38:58.000Z
|
setup.py
|
jopo666/HistoPrep
|
1b74c346b38c7ca44f92269246571f5f850836af
|
[
"MIT"
] | 1
|
2021-09-16T05:00:21.000Z
|
2021-09-16T05:00:21.000Z
|
import setuptools
exec(open('histoprep/_version.py').read())
with open("README.md", "r", encoding="utf-8") as fh:
long_description = fh.read()
setuptools.setup(
name="histoprep",
version=__version__,
author="jopo666",
scripts=['HistoPrep'],
author_email="jopo@birdlover.com",
description="Preprocessing module for large histological images.",
long_description=long_description,
long_description_content_type="text/markdown",
url="https://github.com/jopo666/HistoPrep",
packages=setuptools.find_packages(include=['histoprep','histoprep.*']),
install_requires=[
'opencv-python==4.5.1.48',
'openslide-python==1.1.2',
'pandas==1.2.1',
'Pillow==8.0.0',
'seaborn==0.11.0',
'numpy==1.19.2',
'tqdm==4.60.0',
'aicspylibczi==2.8.0',
'shapely==1.7.1',
'scikit-learn==0.24.1',
'ipywidgets==7.6.3',
],
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
"Development Status :: 3 - Alpha",
"Intended Audience :: Science/Research",
"Topic :: Scientific/Engineering :: Bio-Informatics",
],
keywords='image-analysis preprocessing histology openslide',
python_requires='>=3.8',
)
| 32.119048
| 75
| 0.614529
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 723
| 0.535953
|
06d23d367076f35c30b175f7a472c7335658ae54
| 389
|
py
|
Python
|
setup.py
|
cprogrammer1994/python-depth-sort
|
5399d6d0791eb897d0cac16d2e38b26041478a82
|
[
"MIT"
] | null | null | null |
setup.py
|
cprogrammer1994/python-depth-sort
|
5399d6d0791eb897d0cac16d2e38b26041478a82
|
[
"MIT"
] | null | null | null |
setup.py
|
cprogrammer1994/python-depth-sort
|
5399d6d0791eb897d0cac16d2e38b26041478a82
|
[
"MIT"
] | null | null | null |
import platform
from setuptools import Extension, setup
target = platform.system().lower()
extra_compile_args = []
if target.startswith('linux'):
extra_compile_args.append('-std=c++11')
ext = Extension(
name='depth_sort',
sources=['depth_sort.cpp'],
extra_compile_args=extra_compile_args,
)
setup(
name='depth_sort',
version='0.1.0',
ext_modules=[ext],
)
| 16.913043
| 43
| 0.691517
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 66
| 0.169666
|
06d28dfe07994e25ac5013d571490aa1301605ee
| 15,260
|
py
|
Python
|
train.py
|
Kiwi-PUJ/DataTraining
|
706642996e884b47a0aa7dfb19da33a7234a311e
|
[
"CC0-1.0"
] | 3
|
2021-06-04T00:07:54.000Z
|
2021-06-09T01:14:07.000Z
|
train.py
|
Kiwi-PUJ/DataTraining
|
706642996e884b47a0aa7dfb19da33a7234a311e
|
[
"CC0-1.0"
] | null | null | null |
train.py
|
Kiwi-PUJ/DataTraining
|
706642996e884b47a0aa7dfb19da33a7234a311e
|
[
"CC0-1.0"
] | null | null | null |
## @package Training_app
# Training code developed with Tensorflow Keras. Content: Unet, Unet++ and FCN
#
# @version 1
#
# Pontificia Universidad Javeriana
#
# Electronic Enginnering
#
# Developed by:
# - Andrea Juliana Ruiz Gomez
# Mail: <andrea_ruiz@javeriana.edu.co>
# GitHub: andrearuizg
# - Pedro Eli Ruiz Zarate
# Mail: <pedro.ruiz@javeriana.edu.co>
# GitHub: PedroRuizCode
#
# With support of:
# - Francisco Carlos Calderon Bocanegra
# Mail: <calderonf@javeriana.edu.co>
# GitHub: calderonf
# - John Alberto Betancout Gonzalez
# Mail: <john@kiwibot.com>
# GitHub: JohnBetaCode
import os
from time import time
import numpy as np
import cv2
from glob import glob
from sklearn.model_selection import train_test_split
import tensorflow as tf
from tensorflow.keras.layers import *
from tensorflow.keras.models import Model
from tensorflow.keras.metrics import Recall, Precision
from tensorflow.keras.callbacks import (EarlyStopping, ModelCheckpoint,
ReduceLROnPlateau, CSVLogger, TensorBoard)
## Load data
# Load the data
# @param path Path of the image
def load_data(path):
images_train = sorted(glob(os.path.join(path, "images/train/*")))
masks_train = sorted(glob(os.path.join(path, "masks/train/*")))
images_valid = sorted(glob(os.path.join(path, "images/valid/*")))
masks_valid = sorted(glob(os.path.join(path, "masks/valid/*")))
train_x, valid_x = images_train, images_valid
train_y, valid_y = masks_train, masks_valid
return (train_x, train_y), (valid_x, valid_y)
## Read image
# Read the images
# @param path Path of the image
def read_image(path):
path = path.decode()
x = cv2.imread(path, cv2.IMREAD_COLOR)
x = cv2.resize(x, (256, 256))
x = x / 255.0
return x
## Read mask
# Read the mask of the images
# @param path Path of the mask
def read_mask(path):
path = path.decode()
x = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
x = cv2.resize(x, (256, 256))
x = x / 1.0
x = np.expand_dims(x, axis=-1)
return x
## Parse
# Read images and masks and convert to TensorFlow dataformat
# @param x Images
# @param y Masks
def tf_parse(x, y):
def _parse(x, y):
x = read_image(x)
y = read_mask(y)
return x, y
x, y = tf.numpy_function(_parse, [x, y], [tf.float64, tf.float64])
x.set_shape([256, 256, 3])
y.set_shape([256, 256, 1])
return x, y
## Dataset
# Read images and masks and convert to TensorFlow format
# @param x Images
# @param y Masks
# @param batch Batch size
def tf_dataset(x, y, batch):
dataset = tf.data.Dataset.from_tensor_slices((x, y))
options = tf.data.Options()
options.experimental_distribute.auto_shard_policy = (
tf.data.experimental.AutoShardPolicy.OFF)
dataset = dataset.with_options(options)
dataset = dataset.map(tf_parse)
dataset = dataset.batch(batch)
dataset = dataset.repeat()
return dataset
## Down sample function
# Make the down sample of the layer
# @param x Input
# @param filters The dimensionality of the output space
# @param kernel_size Height and width of the 2D convolution window
# @param padding Padding
# @param strides Strides of the convolution along the height and width
def down_block(x, filters, kernel_size=(3, 3), padding="same", strides=1):
c = Conv2D(filters, kernel_size, padding=padding, strides=strides,
activation="relu")(x)
c = BatchNormalization()(c)
c = Conv2D(filters, kernel_size, padding=padding, strides=strides,
activation="relu")(c)
c = BatchNormalization()(c)
p = MaxPool2D((2, 2), (2, 2))(c)
return c, p
## Up sample function
# Make the up sample of the layer
# @param x Input
# @param skip The skip connection is made to avoid the loss of accuracy
# in the downsampling layers. In case the image becomes so small that
# it has no information, the weights are calculated with the skip layer.
# @param filters The dimensionality of the output space
# @param kernel_size Height and width of the 2D convolution window
# @param padding Padding
# @param strides Strides of the convolution along the height and width
def up_block(x, skip, filters, kernel_size=(3, 3), padding="same", strides=1):
us = UpSampling2D((2, 2))(x)
concat = Concatenate()([us, skip])
c = Conv2D(filters, kernel_size, padding=padding, strides=strides,
activation="relu")(concat)
c = BatchNormalization()(c)
c = Conv2D(filters, kernel_size, padding=padding, strides=strides,
activation="relu")(c)
c = BatchNormalization()(c)
return c
## Bottleneck function
# Added to reduce the number of feature maps in the network
# @param x Input
# @param filters The dimensionality of the output space
# @param kernel_size Height and width of the 2D convolution window
# @param padding Padding
# @param strides Strides of the convolution along the height and width
def bottleneck(x, filters, kernel_size=(3, 3), padding="same", strides=1):
c = Conv2D(filters, kernel_size, padding=padding, strides=strides,
activation="relu")(x)
c = BatchNormalization()(c)
c = Conv2D(filters, kernel_size, padding=padding, strides=strides,
activation="relu")(c)
c = BatchNormalization()(c)
return c
## Unet 1
# Unet implementation
# @param f Filters dimensionality
def UNet_1(f):
inputs = Input((256, 256, 3))
p0 = inputs
c1, p1 = down_block(p0, f[0]) # 256 -> 128
c2, p2 = down_block(p1, f[1]) # 128 -> 64
c3, p3 = down_block(p2, f[2]) # 64 -> 32
c4, p4 = down_block(p3, f[3]) # 32 -> 16
bn = bottleneck(p4, f[4])
u3 = up_block(bn, c4, f[3]) # 16 -> 32
u4 = up_block(u3, c3, f[2]) # 32 -> 64
u5 = up_block(u4, c2, f[1]) # 64 -> 128
u6 = up_block(u5, c1, f[0]) # 128 -> 256
# Classifying layer
outputs = Dropout(0.1)(u6)
outputs = Conv2D(1, (1, 1), padding="same", activation="sigmoid")(outputs)
model = Model(inputs, outputs)
return model
## Unet 2
# Unet implementation
# @param f Filters dimensionality
def UNet_2(f):
inputs = Input((256, 256, 3))
p0 = inputs
c1, p1 = down_block(p0, f[0]) # 256 -> 128
c2, p2 = down_block(p1, f[1]) # 128 -> 64
c3, p3 = down_block(p2, f[2]) # 64 -> 32
c4, p4 = down_block(p3, f[3]) # 32 -> 16
c5, p5 = down_block(p4, f[4]) # 16 -> 8
c6, p6 = down_block(p5, f[5]) # 8 -> 4
bn = bottleneck(p6, f[6])
u1 = up_block(bn, c6, f[5]) # 4 -> 8
u2 = up_block(u1, c5, f[4]) # 8 -> 16
u3 = up_block(u2, c4, f[3]) # 16 -> 32
u4 = up_block(u3, c3, f[2]) # 32 -> 64
u5 = up_block(u4, c2, f[1]) # 64 -> 128
u6 = up_block(u5, c1, f[0]) # 128 -> 256
# Classifying layer
outputs = Dropout(0.1)(u6)
outputs = Conv2D(1, (1, 1), padding="same", activation="sigmoid")(outputs)
model = Model(inputs, outputs)
return model
## Unet++ 1
# Unet++ implementation
# @param f Filters dimensionality
def UNetpp_1(f):
inputs = Input((256, 256, 3))
p0 = inputs
c1, p1 = down_block(p0, f[0]) # 256 -> 128
c2, p2 = down_block(p1, f[1]) # 128 -> 64
c3, p3 = down_block(p2, f[2]) # 64 -> 32
c4, p4 = down_block(p3, f[3]) # 32 -> 16
u11 = up_block(c2, c1, f[0]) # 128 -> 256
u21 = up_block(c3, c2, f[1]) # 64 -> 128
u31 = up_block(c4, c3, f[2]) # 32 -> 64
u21_1 = Concatenate()([c2, u21])
u22 = up_block(u31, u21_1, f[1]) # 128 -> 256
u11_1 = Concatenate()([c1, u11])
u12 = up_block(u21, u11_1, f[0]) # 64 -> 128
u12_1 = Concatenate()([u11_1, u12])
u13 = up_block(u22, u12_1, f[0]) # 128 -> 256
bn = bottleneck(p4, f[4])
u3 = up_block(bn, c4, f[3]) # 16 -> 32
u31_1 = Concatenate()([c3, u31])
u4 = up_block(u3, u31_1, f[2]) # 32 -> 64
u22_1 = Concatenate()([u21_1, u22])
u5 = up_block(u4, u22_1, f[1]) # 64 -> 128
u13_1 = Concatenate()([u12_1, u13])
u6 = up_block(u5, u13_1, f[0]) # 128 -> 256
# Classifying layer
outputs = Dropout(0.1)(u6)
outputs = Conv2D(1, (1, 1), padding="same", activation="sigmoid")(outputs)
model = Model(inputs, outputs)
return model
## Unet++ 2
# Unet++ implementation
# @param f Filters dimensionality
def UNetpp_2(f):
inputs = Input((256, 256, 3))
p0 = inputs
c1, p1 = down_block(p0, f[0]) # 256 -> 128
c2, p2 = down_block(p1, f[1]) # 128 -> 64
c3, p3 = down_block(p2, f[2]) # 64 -> 32
c4, p4 = down_block(p3, f[3]) # 32 -> 16
c5, p5 = down_block(p4, f[4]) # 16 -> 8
c6, p6 = down_block(p5, f[5]) # 8 -> 4
u11 = up_block(c2, c1, f[0]) # 128 -> 256
u21 = up_block(c3, c2, f[1]) # 64 -> 128
u31 = up_block(c4, c3, f[2]) # 32 -> 64
u41 = up_block(c5, c4, f[3]) # 16 -> 32
u51 = up_block(c6, c5, f[4]) # 8 -> 16
u11_1 = Concatenate()([c1, u11])
u12 = up_block(u21, u11_1, f[0]) # 128 -> 256
u21_1 = Concatenate()([c2, u21])
u22 = up_block(u31, u21_1, f[1]) # 64 -> 128
u31_1 = Concatenate()([c3, u31])
u32 = up_block(u41, u31_1, f[2]) # 32 -> 64
u41_1 = Concatenate()([c4, u41])
u42 = up_block(u51, u41_1, f[3]) # 16 -> 32
u12_1 = Concatenate()([u11_1, u12])
u13 = up_block(u22, u12_1, f[0]) # 128 -> 256
u22_1 = Concatenate()([u21_1, u22])
u23 = up_block(u32, u22_1, f[1]) # 64 -> 128
u32_1 = Concatenate()([u31_1, u32])
u33 = up_block(u42, u32_1, f[2]) # 32 -> 64
u13_1 = Concatenate()([u12_1, u13])
u14 = up_block(u23, u13_1, f[0]) # 128 -> 256
u23_1 = Concatenate()([u22_1, u23])
u24 = up_block(u33, u23_1, f[1]) # 64 -> 128
u14_1 = Concatenate()([u13_1, u14])
u15 = up_block(u24, u14_1, f[0]) # 128 -> 256
bn = bottleneck(p6, f[6])
u1 = up_block(bn, c6, f[5]) # 4 -> 8
u51_1 = Concatenate()([c5, u51])
u2 = up_block(u1, u51_1, f[4]) # 8 -> 16
u42_1 = Concatenate()([u41_1, u42])
u3 = up_block(u2, u42_1, f[3]) # 16 -> 32
u33_1 = Concatenate()([u32_1, u33])
u4 = up_block(u3, u33_1, f[2]) # 32 -> 64
u24_1 = Concatenate()([u23_1, u24])
u5 = up_block(u4, u24_1, f[1]) # 64 -> 128
u15_1 = Concatenate()([u14_1, u15])
u6 = up_block(u5, u15_1, f[0]) # 128 -> 256
# Classifying layer
outputs = Dropout(0.1)(u6)
outputs = Conv2D(1, (1, 1), padding="same", activation="sigmoid")(outputs)
model = Model(inputs, outputs)
return model
## FCN 1
# Fully Convolutional Network implementation
# @param f Filters dimensionality
def FCN_1(f):
inputs = Input((256, 256, 3))
p0 = inputs
c1, p1 = down_block(p0, f[0]) # 256 -> 128
c2, p2 = down_block(p1, f[1]) # 128 -> 64
c3, p3 = down_block(p2, f[2]) # 64 -> 32
c4, p4 = down_block(p3, f[3]) # 32 -> 16
bn = bottleneck(p4, f[4])
pr1 = Conv2D(1, (4, 4), activation='relu', padding='same', strides=1)(bn)
pr2 = Conv2D(1, (8, 8), activation='relu', padding='same', strides=1)(p3)
pr3 = Conv2D(1, (16, 16), activation='relu', padding='same', strides=1)(p2)
us1 = UpSampling2D((2, 2))(pr1)
add1 = Add()([us1, pr2])
us2 = UpSampling2D((2, 2))(add1)
add2 = Add()([us2, pr3])
us3 = UpSampling2D((4, 4))(add2)
# Classifying layer
outputs = Dropout(0.1)(us3)
outputs = Conv2D(1, (32, 32), activation='sigmoid', padding='same')(outputs)
model = Model(inputs, outputs)
return model
## FCN 2
# Fully Convolutional Network implementation
# @param f Filters dimensionality
def FCN_2(f):
inputs = Input((256, 256, 3))
p0 = inputs
c1, p1 = down_block(p0, f[0]) # 256 -> 128
c2, p2 = down_block(p1, f[1]) # 128 -> 64
c3, p3 = down_block(p2, f[2]) # 64 -> 32
c4, p4 = down_block(p3, f[3]) # 32 -> 16
c5, p5 = down_block(p4, f[4]) # 16 -> 8
c6, p6 = down_block(p5, f[5]) # 8 -> 4
bn = bottleneck(p6, f[6])
pr1 = Conv2D(1, (1, 1), activation='relu', padding='same', strides=1)(bn)
pr2 = Conv2D(1, (2, 2), activation='relu', padding='same', strides=1)(p5)
pr3 = Conv2D(1, (4, 4), activation='relu', padding='same', strides=1)(p4)
pr4 = Conv2D(1, (8, 8), activation='relu', padding='same', strides=1)(p3)
pr5 = Conv2D(1, (16, 16), activation='relu', padding='same', strides=1)(p2)
us1 = UpSampling2D((2, 2))(pr1)
add1 = Add()([us1, pr2])
us2 = UpSampling2D((2, 2))(add1)
add2 = Add()([us2, pr3])
us3 = UpSampling2D((2, 2))(add2)
add3 = Add()([us3, pr4])
us4 = UpSampling2D((2, 2))(add3)
add4 = Add()([us4, pr5])
us5 = UpSampling2D((4, 4))(add4)
# Classifying layer
outputs = Dropout(0.1)(us5)
outputs = Conv2D(1, (32, 32), activation='sigmoid', padding='same')(outputs)
model = Model(inputs, outputs)
return model
## Training
# CNN training
def training(m_name):
## Dataset
path = "media/"
(train_x, train_y), (valid_x, valid_y) = load_data(path)
## Hyperparameters
batch = 15
epochs = 190
train_dataset = tf_dataset(train_x, train_y, batch=batch)
valid_dataset = tf_dataset(valid_x, valid_y, batch=batch)
## Time
t0 = time()
## Filters
f = [16, 32, 64, 128, 256, 512, 1024]
if m_name == "unetv1":
model = UNet_1(f)
elif m_name == "unetv2":
model = UNet_2(f)
elif m_name == "unetppv1":
model = UNetpp_1(f)
elif m_name == "unetppv2":
model = UNetpp_2(f)
elif m_name == "fcnv1":
model = FCN_1(f)
else:
model = FCN_2(f)
m_sum = 'files/model_summary_%s_BN.txt' % m_name
m_log = 'logs/%s_BN/scalars/' % m_name
m_h5 = 'files/model_%s_BN.h5' % m_name
m_data = 'files/data_%s_BN.csv' % m_name
m_time = 'files/time_%s_BN.txt' % m_name
model.compile(optimizer="adam", loss="binary_crossentropy",
metrics=["acc", Precision(), Recall()])
with open(m_sum, 'w') as fh:
model.summary(print_fn=lambda x: fh.write(x + '\n'))
train_steps = len(train_x) // batch
valid_steps = len(valid_x) // batch
if len(train_x) % batch != 0:
train_steps += 1
if len(valid_x) % batch != 0:
valid_steps += 1
logdir = m_log
tensorboard_callback = TensorBoard(log_dir=logdir)
callbacks = [
ModelCheckpoint(m_h5),
ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=10),
CSVLogger(m_data),
tensorboard_callback,
EarlyStopping(monitor='val_loss', patience=33,
restore_best_weights=False)
]
model.fit(train_dataset, validation_data=valid_dataset,
steps_per_epoch=train_steps,
validation_steps=valid_steps, epochs=epochs,
callbacks=callbacks)
time_tr = open(m_time, 'w')
time_tr.write(str(time() - t0))
if __name__ == "__main__":
strategy = tf.distribute.MirroredStrategy()
print('Number of devices: {}'.format(strategy.num_replicas_in_sync))
model_l = ["unetv1", "unetv2", "unetppv1", "unetppv2", "fcnv1", "fcnv2"]
for model in model_l:
with strategy.scope():
print("\n\n\n\n\n Training", model, "model\n\n\n\n\n")
training(model)
| 29.921569
| 80
| 0.602687
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 4,142
| 0.271429
|
06d2f75b09d1b2bbd785ce87a1527c0fb7ae9040
| 12,133
|
py
|
Python
|
src_RealData/FCN_Object.py
|
XYZsake/DRFNS
|
73fc5683db5e9f860846e22c8c0daf73b7103082
|
[
"MIT"
] | 42
|
2018-10-07T08:19:01.000Z
|
2022-02-08T17:41:24.000Z
|
src_RealData/FCN_Object.py
|
XYZsake/DRFNS
|
73fc5683db5e9f860846e22c8c0daf73b7103082
|
[
"MIT"
] | 11
|
2018-12-22T00:15:46.000Z
|
2021-12-03T10:29:32.000Z
|
src_RealData/FCN_Object.py
|
XYZsake/DRFNS
|
73fc5683db5e9f860846e22c8c0daf73b7103082
|
[
"MIT"
] | 14
|
2018-08-26T06:47:06.000Z
|
2021-07-24T11:52:58.000Z
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
import copy
from tf_image_segmentation.models.fcn_8s import FCN_8s
from tf_image_segmentation.utils.tf_records import read_tfrecord_and_decode_into_image_annotation_pair_tensors
from tf_image_segmentation.utils.training import get_valid_logits_and_labels
from tf_image_segmentation.utils.inference import adapt_network_for_any_size_input
from tf_image_segmentation.utils.visualization import visualize_segmentation_adaptive
from tf_image_segmentation.utils.augmentation import (distort_randomly_image_color,
flip_randomly_left_right_image_with_annotation,
scale_randomly_image_with_annotation_with_fixed_size_output)
import os
from glob import glob
import numpy as np
from scipy import misc
slim = tf.contrib.slim
from utils import ComputeMetrics
class FCN8():
"""
FCN8 object for performing training, testing and validating.
"""
def __init__(self, checkpoint, save_dir, record,
size, num_labels, n_print, split='train'):
self.checkpoint8 = checkpoint
self.Setuped = False
self.checkpointnew = save_dir
self.record = record
self.size = size
self.num_labels = num_labels
self.n_print = n_print
self.setup_record()
self.class_labels = range(num_labels)
self.class_labels.append(255)
if split != "validation":
self.fcn_8s_checkpoint_path = glob(self.checkpoint8 + "/*.data*")[0].split(".data")[0]
else:
self.setup_val(record)
def setup_record(self):
"""
Setup record reading.
"""
filename_queue = tf.train.string_input_producer(
[self.record], num_epochs=10)
self.image, self.annotation = read_tfrecord_and_decode_into_image_annotation_pair_tensors(filename_queue)
self.resized_image, resized_annotation = scale_randomly_image_with_annotation_with_fixed_size_output(self.image, self.annotation, (self.size, self.size))
self.resized_annotation = tf.squeeze(resized_annotation)
def setup_train8(self, lr):
"""
Setups queues and model evaluation.
"""
image_batch, annotation_batch = tf.train.shuffle_batch( [self.resized_image, self.resized_annotation],
batch_size=1,
capacity=3000,
num_threads=2,
min_after_dequeue=1000)
upsampled_logits_batch, fcn_8s_variables_mapping = FCN_8s(image_batch_tensor=image_batch,
number_of_classes=self.num_labels,
is_training=True)
valid_labels_batch_tensor, valid_logits_batch_tensor = get_valid_logits_and_labels(annotation_batch_tensor=annotation_batch,
logits_batch_tensor=upsampled_logits_batch,
class_labels=self.class_labels)
# Count true positives, true negatives, false positives and false negatives.
actual = tf.contrib.layers.flatten(tf.cast(annotation_batch, tf.int64))
self.predicted_img = tf.argmax(upsampled_logits_batch, axis=3)
cross_entropies = tf.nn.softmax_cross_entropy_with_logits(logits=valid_logits_batch_tensor,
labels=valid_labels_batch_tensor)
self.cross_entropy_sum = tf.reduce_mean(cross_entropies)
pred = tf.argmax(upsampled_logits_batch, dimension=3)
probabilities = tf.nn.softmax(upsampled_logits_batch)
with tf.variable_scope("adam_vars"):
self.train_step = tf.train.AdamOptimizer(learning_rate=lr).minimize(self.cross_entropy_sum)
# Variable's initialization functions
self.init_fn = slim.assign_from_checkpoint_fn(model_path=self.fcn_8s_checkpoint_path,
var_list=fcn_8s_variables_mapping)
global_vars_init_op = tf.global_variables_initializer()
self.merged_summary_op = tf.summary.merge_all()
self.summary_string_writer = tf.summary.FileWriter("./log_8_{}".format(lr))
if not os.path.exists(self.checkpointnew):
os.makedirs(self.checkpointnew)
#The op for initializing the variables.
local_vars_init_op = tf.local_variables_initializer()
self.combined_op = tf.group(local_vars_init_op, global_vars_init_op)
# We need this to save only model variables and omit
# optimization-related and other variables.
model_variables = slim.get_model_variables()
self.saver = tf.train.Saver(model_variables)
def train8(self, iters, lr):
"""
Trains the model.
"""
self.setup_train8(lr)
model_save = os.path.join(self.checkpointnew, self.checkpointnew)
with tf.Session() as sess:
sess.run(self.combined_op)
self.init_fn(sess)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
# 10 epochs
for i in xrange(0, iters):
cross_entropy, summary_string, _ = sess.run([self.cross_entropy_sum,
self.merged_summary_op,
self.train_step ])
if i % self.n_print == 0:
self.summary_string_writer.add_summary(summary_string, i)
save_path = self.saver.save(sess, model_save)
print("Model saved in file: %s" % save_path)
coord.request_stop()
coord.join(threads)
save_path = self.saver.save(sess, model_save)
print("Model saved in file: %s" % save_path)
def test8(self, steps, restore, p1):
"""
Tests the model.
"""
# Fake batch for image and annotation by adding
# leading empty axis.
image_batch_tensor = tf.expand_dims(self.image, axis=0)
annotation_batch_tensor = tf.expand_dims(self.annotation, axis=0)
# Be careful: after adaptation, network returns final labels
# and not logits
FCN_8s_bis = adapt_network_for_any_size_input(FCN_8s, 32)
pred, fcn_16s_variables_mapping = FCN_8s_bis(image_batch_tensor=image_batch_tensor,
number_of_classes=self.num_labels,
is_training=False)
prob = [h for h in [s for s in [t for t in pred.op.inputs][0].op.inputs][0].op.inputs][0]
initializer = tf.local_variables_initializer()
saver = tf.train.Saver()
loss, roc = 0., 0.
acc, F1, recall = 0., 0., 0.
precision, jac, AJI = 0., 0., 0.
with tf.Session() as sess:
sess.run(initializer)
saver.restore(sess, restore)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
for i in xrange(steps):
image_np, annotation_np, pred_np, prob_np = sess.run([self.image, self.annotation, pred, prob])
prob_float = np.exp(-prob_np[0,:,:,0]) / (np.exp(-prob_np[0,:,:,0]) + np.exp(-prob_np[0,:,:,1]))
prob_int8 = misc.imresize(prob_float, size=image_np[:,:,0].shape)
prob_float = (prob_int8.copy().astype(float) / 255)
out = ComputeMetrics(prob_float, annotation_np[:,:,0], p1, 0.5)
acc += out[0]
roc += out[1]
jac += out[2]
recall += out[3]
precision += out[4]
F1 += out[5]
AJI += out[6]
coord.request_stop()
coord.join(threads)
loss, acc, F1 = np.array([loss, acc, F1]) / steps
recall, precision, roc = np.array([recall, precision, roc]) / steps
jac, AJI = np.array([jac, AJI]) / steps
return loss, acc, F1, recall, precision, roc, jac, AJI
def setup_val(self, tfname):
"""
Setups the model in case we need to validate.
"""
self.restore = glob(os.path.join(self.checkpoint8, "FCN__*", "*.data*" ))[0].split(".data")[0]
filename_queue = tf.train.string_input_producer(
[tfname], num_epochs=10)
self.image_queue, self.annotation_queue = read_tfrecord_and_decode_into_image_annotation_pair_tensors(filename_queue)
self.image = tf.placeholder_with_default(self.image, shape=[None,
None,
3])
self.annotation = tf.placeholder_with_default(self.annotation_queue, shape=[None,
None,
1])
self.resized_image, resized_annotation = scale_randomly_image_with_annotation_with_fixed_size_output(self.image, self.annotation, (self.size, self.size))
self.resized_annotation = tf.squeeze(resized_annotation)
image_batch_tensor = tf.expand_dims(self.image, axis=0)
annotation_batch_tensor = tf.expand_dims(self.annotation, axis=0)
# Be careful: after adaptation, network returns final labels
# and not logits
FCN_8s_bis = adapt_network_for_any_size_input(FCN_8s, 32)
self.pred, fcn_16s_variables_mapping = FCN_8s_bis(image_batch_tensor=image_batch_tensor,
number_of_classes=self.num_labels,
is_training=False)
self.prob = [h for h in [s for s in [t for t in self.pred.op.inputs][0].op.inputs][0].op.inputs][0]
initializer = tf.local_variables_initializer()
self.saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(initializer)
self.saver.restore(sess, self.restore)
def validation(self, DG_TEST, steps, p1, p2, save_organ):
"""
Validates the model.
"""
tmp_name = os.path.basename(save_organ) + ".tfRecord"
res = []
print "DOing this {}".format(save_organ)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
self.saver.restore(sess, self.restore)
#coord = tf.train.Coordinator()
#threads = tf.train.start_queue_runners(coord=coord)
for i in xrange(steps):
Xval, Yval = DG_TEST.Batch(0, 1)
feed_dict = {self.image: Xval[0], self.annotation: Yval[0]}
image_np, annotation_np, pred_np, prob_np = sess.run([self.image, self.annotation, self.pred, self.prob], feed_dict=feed_dict)
prob_float = np.exp(-prob_np[0,:,:,0]) / (np.exp(-prob_np[0,:,:,0]) + np.exp(-prob_np[0,:,:,1]))
prob_int8 = misc.imresize(prob_float, size=image_np[:,:,0].shape)
prob_float = (prob_int8.copy().astype(float) / 255)
out = ComputeMetrics(prob_float, annotation_np[:,:,0], p1, 0.5, rgb=image_np, save_path=save_organ, ind=i)
out = [0.] + list(out)
res.append(out)
return res
def copy(self):
"""
Copies itself and returns a copied version of himself.
"""
return copy.deepcopy(self)
| 45.784906
| 161
| 0.570675
| 11,204
| 0.923432
| 0
| 0
| 0
| 0
| 0
| 0
| 1,216
| 0.100223
|
06d355973fd78ec8f3b614057e835f98f36682ef
| 379
|
py
|
Python
|
qt__pyqt__pyside__pyqode/qt_ini.py
|
DazEB2/SimplePyScripts
|
1dde0a42ba93fe89609855d6db8af1c63b1ab7cc
|
[
"CC-BY-4.0"
] | 117
|
2015-12-18T07:18:27.000Z
|
2022-03-28T00:25:54.000Z
|
qt__pyqt__pyside__pyqode/qt_ini.py
|
DazEB2/SimplePyScripts
|
1dde0a42ba93fe89609855d6db8af1c63b1ab7cc
|
[
"CC-BY-4.0"
] | 8
|
2018-10-03T09:38:46.000Z
|
2021-12-13T19:51:09.000Z
|
qt__pyqt__pyside__pyqode/qt_ini.py
|
DazEB2/SimplePyScripts
|
1dde0a42ba93fe89609855d6db8af1c63b1ab7cc
|
[
"CC-BY-4.0"
] | 28
|
2016-08-02T17:43:47.000Z
|
2022-03-21T08:31:12.000Z
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
__author__ = 'ipetrash'
try:
from PyQt4.QtCore import QSettings
except:
from PyQt5.QtCore import QSettings
if __name__ == '__main__':
config = QSettings('config.ini', QSettings.IniFormat)
counter = int(config.value('counter', 0))
config.setValue('counter', counter + 1)
config.setValue('key2', 'abc')
| 18.95
| 57
| 0.664908
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 106
| 0.279683
|
06d39356c17a9b2e38d63f8d9aaf9f0140911fdf
| 46
|
py
|
Python
|
wafw00f/__init__.py
|
nofunofunofunofun/wafw00f
|
a1c3f3a045077d893cd9ed970f5d687b590abfa5
|
[
"BSD-3-Clause"
] | 1
|
2022-03-22T09:15:04.000Z
|
2022-03-22T09:15:04.000Z
|
wafw00f/__init__.py
|
nofunofunofunofun/wafw00f
|
a1c3f3a045077d893cd9ed970f5d687b590abfa5
|
[
"BSD-3-Clause"
] | null | null | null |
wafw00f/__init__.py
|
nofunofunofunofun/wafw00f
|
a1c3f3a045077d893cd9ed970f5d687b590abfa5
|
[
"BSD-3-Clause"
] | 1
|
2021-01-11T17:26:14.000Z
|
2021-01-11T17:26:14.000Z
|
#!/usr/bin/env python
__version__ = '0.9.6'
| 9.2
| 21
| 0.630435
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 28
| 0.608696
|
06d4487239efe1a625efc060f8606eba1b8fb684
| 3,410
|
py
|
Python
|
tests/api_tests.py
|
muhozi/WeConnect
|
46825d6ae27a7addbe8f7f2e298f5ee07cd9cf5f
|
[
"MIT"
] | 3
|
2018-04-07T07:39:19.000Z
|
2018-04-13T14:15:26.000Z
|
tests/api_tests.py
|
muhozi/WeConnect
|
46825d6ae27a7addbe8f7f2e298f5ee07cd9cf5f
|
[
"MIT"
] | 8
|
2018-03-01T21:11:05.000Z
|
2022-03-21T22:16:43.000Z
|
tests/api_tests.py
|
muhozi/WeConnect
|
46825d6ae27a7addbe8f7f2e298f5ee07cd9cf5f
|
[
"MIT"
] | 3
|
2018-04-24T03:34:44.000Z
|
2018-07-19T09:53:08.000Z
|
"""
Main test
"""
import unittest
import uuid
from api import APP
from flask import json
from api.models.user import User
from api.models.business import Business
from api.helpers import get_token
class MainTests(unittest.TestCase):
"""
Main test
"""
url_prefix = '/api/v1/'
def setUp(self):
"""
Set up test data
"""
self.app = APP.test_client()
self.app.testing = True
self.sample_user = {
'id': uuid.uuid4().hex,
'username': 'Muhozi',
'email': 'emery@andela.com',
'password': 'secret',
'confirm_password': 'secret'
}
self.exist_user = {
'id': uuid.uuid4().hex,
'username': 'Kudo',
'email': 'kaka@andela.com',
'password': 'secret',
'confirm_password': 'secret'
}
self.business_data = {
'id': uuid.uuid4().hex,
'name': 'Inzora rooftop coffee',
'description': 'We have best coffee for you,',
'country': 'Kenya',
'city': 'Nairobi'
}
save_user = User()
save_user.save({
'id': self.sample_user['id'],
'username': self.sample_user['username'],
'email': self.sample_user['email'],
'password': self.sample_user['password'],
'confirm_password': self.sample_user['confirm_password']
})
# Save business for reviews testing
self.rev_business_data = {
'id': uuid.uuid4().hex,
'name': 'KFC',
'description': 'Finger lickin\' good',
'country': 'Kenya',
'city': 'Nairobi'
}
# Add user(owner) to the business data dict
self.rev_business_data['user_id'] = self.sample_user['id']
# Save business in the storage list for testing
Business.save(self.rev_business_data)
with APP.test_request_context():
# Orphan id: User id that will be used to create an orphan token
orphan_id = uuid.uuid4().hex
save_user.save({
'id': orphan_id,
'username': "uname",
'email': "anyemail@gmail.com",
'password': self.exist_user['password'],
'confirm_password': self.exist_user['confirm_password']
})
# Issue a token the the test user (sample_user)
# Store test token in auth storage auth_token list
token = get_token(self.sample_user['id'])
# Orphan token: User token that do not have any registered business
orphan_token = get_token(orphan_id)
expired_token = get_token(self.sample_user['id'], -3600)
# Create bad signature token
# Bad signature: #nt secret key from the one used in our API used
# to hash tokens
other_signature_token = get_token(
self.sample_user['id'], 3600, 'other_signature')
User().add_token(token)
User().add_token(expired_token)
User().add_token(orphan_token)
User().add_token(other_signature_token)
self.test_token = token
self.expired_test_token = expired_token
self.other_signature_token = other_signature_token
self.orphan_test_token = orphan_token
| 35.520833
| 79
| 0.550733
| 3,206
| 0.940176
| 0
| 0
| 0
| 0
| 0
| 0
| 1,177
| 0.345161
|
06d6a4324acde5c358d0bd6522e052a2ede943db
| 423
|
py
|
Python
|
cookbook/c05/p03_print_sepend.py
|
itpubs/python3-cookbook
|
140f5e4cc0416b9674edca7f4c901b1f58fc1415
|
[
"Apache-2.0"
] | 3
|
2018-09-19T06:44:13.000Z
|
2019-03-24T10:07:07.000Z
|
cookbook/c05/p03_print_sepend.py
|
itpubs/python3-cookbook
|
140f5e4cc0416b9674edca7f4c901b1f58fc1415
|
[
"Apache-2.0"
] | 2
|
2020-09-19T17:10:23.000Z
|
2020-10-17T16:43:52.000Z
|
cookbook/c05/p03_print_sepend.py
|
itpubs/python3-cookbook
|
140f5e4cc0416b9674edca7f4c901b1f58fc1415
|
[
"Apache-2.0"
] | 1
|
2020-12-22T06:33:18.000Z
|
2020-12-22T06:33:18.000Z
|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
"""
Topic: print分隔符和结尾符
Desc :
"""
def print_sepend():
print('ACME', 50, 91.5)
print('ACME', 50, 91.5, sep=',')
print('ACME', 50, 91.5, sep=',', end='!!\n')
for i in range(5):
print(i)
for i in range(5):
print(i, end=' ')
print()
row = ['ACME', 50, 91.5]
print(*row, sep=',')
if __name__ == '__main__':
print_sepend()
| 17.625
| 48
| 0.501182
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 147
| 0.336384
|
06da3baaeb27b37984af143aca6a52ab058a5588
| 122
|
py
|
Python
|
src/config/config_loader.py
|
roybenyosef/loc-to-spot
|
1db54a8481317f5cd2f746974dcdda2a632d02ec
|
[
"MIT"
] | null | null | null |
src/config/config_loader.py
|
roybenyosef/loc-to-spot
|
1db54a8481317f5cd2f746974dcdda2a632d02ec
|
[
"MIT"
] | null | null | null |
src/config/config_loader.py
|
roybenyosef/loc-to-spot
|
1db54a8481317f5cd2f746974dcdda2a632d02ec
|
[
"MIT"
] | null | null | null |
import yaml
def read_config():
file_stream = open("config/config.yaml", "r")
return yaml.safe_load(file_stream)
| 17.428571
| 49
| 0.704918
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 23
| 0.188525
|
06da67599586f6f3ad731d357524246723f211dc
| 331
|
py
|
Python
|
python/demo-django/code/character/models.py
|
denisroldan/talentum-2015-examples
|
4980f49dca56a55d26722f4f6d1fdd88e06f38dd
|
[
"MIT"
] | null | null | null |
python/demo-django/code/character/models.py
|
denisroldan/talentum-2015-examples
|
4980f49dca56a55d26722f4f6d1fdd88e06f38dd
|
[
"MIT"
] | null | null | null |
python/demo-django/code/character/models.py
|
denisroldan/talentum-2015-examples
|
4980f49dca56a55d26722f4f6d1fdd88e06f38dd
|
[
"MIT"
] | null | null | null |
from django.db import models
from game.models import Game
class Character(models.Model):
name = models.CharField(max_length=250)
game = models.ManyToManyField(Game, related_name='characters')
def __unicode__(self):
return "{0}".format(self.name)
def __str__(self):
return "{0}".format(self.name)
| 25.461538
| 66
| 0.694864
| 271
| 0.818731
| 0
| 0
| 0
| 0
| 0
| 0
| 22
| 0.066465
|
06dacdda970f273fddcf69cadb01b1f2dd499e8c
| 296
|
py
|
Python
|
sim_test_model.py
|
feiyanke/simpy
|
bde9d09e47596e0bfe66dc7001f556bafd03acc5
|
[
"MIT"
] | 1
|
2019-01-28T09:13:58.000Z
|
2019-01-28T09:13:58.000Z
|
sim_test_model.py
|
feiyanke/simpy
|
bde9d09e47596e0bfe66dc7001f556bafd03acc5
|
[
"MIT"
] | null | null | null |
sim_test_model.py
|
feiyanke/simpy
|
bde9d09e47596e0bfe66dc7001f556bafd03acc5
|
[
"MIT"
] | 2
|
2019-01-28T09:13:59.000Z
|
2020-12-13T09:48:20.000Z
|
import math
import matplotlib.pyplot as plt
from simpy import model
ax1 = plt.subplot(121)
ax2 = plt.subplot(122)
model_sin = model.TimedFunctionModel(math.sin)
model_cos = model.TimedFunctionModel(math.cos)
scope = model.ScopeModel(ax1, ax2)
def run():
scope(model_sin(), model_cos())
| 17.411765
| 46
| 0.75
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
06db5fed30a40e13ffe36a7460de36bf7c61b325
| 655
|
py
|
Python
|
monthlysal.py
|
aja512/Python-Lab
|
8f9c57d6d7f835e31a595223cdddf9c52ebe1cc9
|
[
"Apache-2.0"
] | null | null | null |
monthlysal.py
|
aja512/Python-Lab
|
8f9c57d6d7f835e31a595223cdddf9c52ebe1cc9
|
[
"Apache-2.0"
] | null | null | null |
monthlysal.py
|
aja512/Python-Lab
|
8f9c57d6d7f835e31a595223cdddf9c52ebe1cc9
|
[
"Apache-2.0"
] | null | null | null |
bs=input("Enter basic salary:")
days=input("Enter no. of working days:")
ovrti=input("Enter no. of overtime working hrs:")
deduct=0
if days<6:
deduct=3500
salary=calci(bs,days,ovrti,deduct)
elif days>=6 and days<=12:
deduct=1000
salary= calci(bs,days,ovrti,deduct)
elif days>=13 and days<=18:
deduct=800
salary=calci(bs,days,ovrti,deduct)
else:
deduct=0
salary=calci(bs,days,ovrti,deduct)
def calci(bs,days,ovrti,deduct):
sal=0
emp=str(input('Enter type of Employee:'))
if emp=='Permanent':
bonus=22500
sal=bs+ovrti*500+bonus-deduct
print(sal)
else:
bonus=2500
sal=bs+ovrti*500+bonus-deduct
print(sal)
| 22.586207
| 49
| 0.690076
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 121
| 0.184733
|
06db8ba3ca98cc15e56e2db049c572bc5f7c97a3
| 2,760
|
py
|
Python
|
Day_10_classes_and_objects/day10_uzd1.py
|
ValRCS/Python_TietoEvry_Sep2021
|
e11dac38deb17ba695ce8ad9dab9cf78b4adb99d
|
[
"MIT"
] | null | null | null |
Day_10_classes_and_objects/day10_uzd1.py
|
ValRCS/Python_TietoEvry_Sep2021
|
e11dac38deb17ba695ce8ad9dab9cf78b4adb99d
|
[
"MIT"
] | null | null | null |
Day_10_classes_and_objects/day10_uzd1.py
|
ValRCS/Python_TietoEvry_Sep2021
|
e11dac38deb17ba695ce8ad9dab9cf78b4adb99d
|
[
"MIT"
] | null | null | null |
# class Song: # Song is name of Class, start with Capital letter
# def __init__(self, title="", author="", lyrics=tuple()): # constructor method called upon creation of object
# self.title = title
# self.author = author
# self.lyrics = lyrics
# # print(f"New Song made by Author: {self.author=} Title: {self.title=}")
#
# def sing(self): # method definition which is function associated with objects
# print(f"New Song Title: {self.title}")
# print(f"Lyrics made by Author: {self.author}")
# for line in self.lyrics:
# print(line)
# return self
#
# def yell(self):
# for line in self.lyrics:
# print(line.upper())
# return self
# can be put inside the class or it's better to make _print_lyrics static inside the class?
class Song:
def __init__(self, title, author, lyrics):
self.title = title
self.author = author
self.lyrics = lyrics
if title == '':
title = 'Unknown'
if author == '':
author = 'Unknown'
print(f"\n\nNew song made:\nTitle: {title} \nAuthor: {author}")
@classmethod # this means that this method is a class method can be called without any objects
def print_lines(cls, lyrics, line_count=-1):
all_lines_count = len(lyrics)
if line_count == -1:
line_count = len(lyrics)
elif line_count <= 0:
print("no lines to print")
elif all_lines_count < line_count:
print(f"only {all_lines_count} lines can be printed:\n")
for i in lyrics[:line_count]:
print(i)
def sing(self, lines_present=-1):
x = '_' * (len(self.author + self.title) + 3)
print(x, '\nSinging:')
self.print_lines(self.lyrics, lines_present)
return self
def yell(self, lines_present=-1):
x = '_' * (len(self.author + self.title) + 3)
lines_upper = [line.upper() for line in self.lyrics]
print(x, '\nYELLING:')
self.print_lines(lines_upper, lines_present)
return self
class Rap(Song):
def break_it(self, lines_present=-1, drop="yeah"):
x = '_' * (len(self.author + self.title) + 3)
lyrics = [line.replace(' ', f' {drop.upper()} ') + ' ' + drop.upper() for line in self.lyrics]
print(x, '\nRapping:')
self.print_lines(lyrics, lines_present)
return self
ziemelmeita = Song('Ziemeļmeita', 'Jumprava', ['Gāju meklēt ziemeļmeitu', 'Garu, tālu ceļu veicu'])
ziemelmeita.sing(1).yell(10).sing().sing(-3)
zrap = Rap("Ziemeļmeita", "Jumprava", ["Gāju meklēt ziemeļmeitu", "Garu, tālu ceļu veicu"])
zrap.break_it(1, "yah").yell(1)
ziemelmeita.sing().yell().sing(1)
| 34.5
| 115
| 0.595652
| 1,601
| 0.577561
| 0
| 0
| 488
| 0.176046
| 0
| 0
| 1,284
| 0.463203
|
06dc17868ef7177e219fa324d4ee2030cbe721d0
| 51
|
py
|
Python
|
appengine/src/greenday_core/settings/__init__.py
|
meedan/montage
|
4da0116931edc9af91f226876330645837dc9bcc
|
[
"Apache-2.0"
] | 6
|
2018-07-31T16:48:07.000Z
|
2020-02-01T03:17:51.000Z
|
appengine/src/greenday_core/settings/__init__.py
|
meedan/montage
|
4da0116931edc9af91f226876330645837dc9bcc
|
[
"Apache-2.0"
] | 41
|
2018-08-07T16:43:07.000Z
|
2020-06-05T18:54:50.000Z
|
appengine/src/greenday_core/settings/__init__.py
|
meedan/montage
|
4da0116931edc9af91f226876330645837dc9bcc
|
[
"Apache-2.0"
] | 1
|
2018-08-07T16:40:18.000Z
|
2018-08-07T16:40:18.000Z
|
"""
Modules to configure Django's settings
"""
| 12.75
| 42
| 0.647059
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 50
| 0.980392
|
06dc1c17dd56d7e1a1011a34a1e1d9b273c1982c
| 1,956
|
py
|
Python
|
rurina2/widgets/text.py
|
TeaCondemns/rurina
|
43725ebea5872953125271a9abb300a4e3a80a64
|
[
"MIT"
] | null | null | null |
rurina2/widgets/text.py
|
TeaCondemns/rurina
|
43725ebea5872953125271a9abb300a4e3a80a64
|
[
"MIT"
] | null | null | null |
rurina2/widgets/text.py
|
TeaCondemns/rurina
|
43725ebea5872953125271a9abb300a4e3a80a64
|
[
"MIT"
] | null | null | null |
from constants import STYLE_NORMAL, STYLE_BOLD, STYLE_ITALIC
from prefabs.text import write_autoline
from widgets.widget import WidgetByRect
from base_node import get_surface
from prefabs.surface import blit
from shape import Rect
import pygame
class Text(WidgetByRect):
def __init__(
self,
font: pygame.font.Font,
value: str = '',
text_color=pygame.Color('white'),
linespacing: int = 0,
*args,
**kwargs
):
super().__init__(*args, **kwargs)
self.font = font
self.value = value
self.text_color = text_color
self.linespacing = linespacing
self.sprite.region_enabled = True
@property
def can_be_drawn(self):
return self.visible and self.alpha > 0 and self.scale != 0 and len(self.value) > 0
@property
def style(self) -> int:
__style = STYLE_NORMAL
if self.font.get_bold():
__style |= STYLE_BOLD
if self.font.get_italic():
__style |= STYLE_ITALIC
return __style
@style.setter
def style(self, value):
self.font.set_bold(value & STYLE_BOLD)
self.font.set_italic(value & STYLE_ITALIC)
def draw(self, surface: pygame.Surface = ...) -> None:
if self.can_be_drawn:
surface = get_surface(surface)
self.sprite.draw(surface)
blit(
surface,
write_autoline(
self.value,
self.font,
Rect(0, 0, *self.rect.size),
self.text_color,
self.gravity,
pygame.Surface(self.rect.size, pygame.SRCALPHA, 32),
self.linespacing
),
self.rect.rpos,
self.ralpha,
self.rscale
)
super().draw(surface)
__all__ = [
'Text'
]
| 25.402597
| 90
| 0.541922
| 1,681
| 0.859407
| 0
| 0
| 499
| 0.255112
| 0
| 0
| 15
| 0.007669
|
06dcdfc975ea640979bb4f316bbb031845b68fa5
| 5,350
|
py
|
Python
|
Chapter05/B12322_05_code upload/topic_categorization.py
|
PacktPublishing/Python-Machine-Learning-By-Example-Second-Edition
|
830ad0124dc72c3a24929ff1b67081a66894f1f9
|
[
"MIT"
] | 31
|
2019-05-25T11:28:23.000Z
|
2022-02-09T15:19:20.000Z
|
Chapter05/B12322_05_code upload/topic_categorization.py
|
PacktPublishing/Python-Machine-Learning-By-Example-Second-Edition
|
830ad0124dc72c3a24929ff1b67081a66894f1f9
|
[
"MIT"
] | null | null | null |
Chapter05/B12322_05_code upload/topic_categorization.py
|
PacktPublishing/Python-Machine-Learning-By-Example-Second-Edition
|
830ad0124dc72c3a24929ff1b67081a66894f1f9
|
[
"MIT"
] | 22
|
2019-02-27T20:11:39.000Z
|
2022-03-07T21:46:38.000Z
|
'''
Source codes for Python Machine Learning By Example 2nd Edition (Packt Publishing)
Chapter 5: Classifying Newsgroup Topic with Support Vector Machine
Author: Yuxi (Hayden) Liu
'''
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.datasets import fetch_20newsgroups
from nltk.corpus import names
from nltk.stem import WordNetLemmatizer
all_names = set(names.words())
lemmatizer = WordNetLemmatizer()
def is_letter_only(word):
return word.isalpha()
from nltk.corpus import stopwords
stop_words = stopwords.words('english')
def clean_text(docs):
docs_cleaned = []
for doc in docs:
doc = doc.lower()
doc_cleaned = ' '.join(lemmatizer.lemmatize(word) for word in doc.split()
if is_letter_only(word) and word not in all_names and word not in stop_words)
docs_cleaned.append(doc_cleaned)
return docs_cleaned
# Binary classification
categories = ['comp.graphics', 'sci.space']
data_train = fetch_20newsgroups(subset='train', categories=categories, random_state=42)
data_test = fetch_20newsgroups(subset='test', categories=categories, random_state=42)
cleaned_train = clean_text(data_train.data)
label_train = data_train.target
cleaned_test = clean_text(data_test.data)
label_test = data_test.target
from collections import Counter
Counter(label_train)
tfidf_vectorizer = TfidfVectorizer(stop_words='english', max_features=None)
term_docs_train = tfidf_vectorizer.fit_transform(cleaned_train)
term_docs_test = tfidf_vectorizer.transform(cleaned_test)
from sklearn.svm import SVC
svm = SVC(kernel='linear', C=1.0, random_state=42)
svm.fit(term_docs_train, label_train)
accuracy = svm.score(term_docs_test, label_test)
print('The accuracy of binary classification is: {0:.1f}%'.format(accuracy*100))
# Multiclass classification
categories = [
'alt.atheism',
'talk.religion.misc',
'comp.graphics',
'sci.space',
'rec.sport.hockey'
]
data_train = fetch_20newsgroups(subset='train', categories=categories, random_state=42)
data_test = fetch_20newsgroups(subset='test', categories=categories, random_state=42)
cleaned_train = clean_text(data_train.data)
label_train = data_train.target
cleaned_test = clean_text(data_test.data)
label_test = data_test.target
term_docs_train = tfidf_vectorizer.fit_transform(cleaned_train)
term_docs_test = tfidf_vectorizer.transform(cleaned_test)
svm = SVC(kernel='linear', C=1.0, random_state=42)
svm.fit(term_docs_train, label_train)
accuracy = svm.score(term_docs_test, label_test)
print('The accuracy of 5-class classification is: {0:.1f}%'.format(accuracy*100))
from sklearn.metrics import classification_report
prediction = svm.predict(term_docs_test)
report = classification_report(label_test, prediction)
print(report)
# Grid search
categories = None
data_train = fetch_20newsgroups(subset='train', categories=categories, random_state=42)
data_test = fetch_20newsgroups(subset='test', categories=categories, random_state=42)
cleaned_train = clean_text(data_train.data)
label_train = data_train.target
cleaned_test = clean_text(data_test.data)
label_test = data_test.target
tfidf_vectorizer = TfidfVectorizer(stop_words='english', max_features=None)
term_docs_train = tfidf_vectorizer.fit_transform(cleaned_train)
term_docs_test = tfidf_vectorizer.transform(cleaned_test)
parameters = {'C': [0.1, 1, 10, 100]}
svc_libsvm = SVC(kernel='linear')
from sklearn.model_selection import GridSearchCV
grid_search = GridSearchCV(svc_libsvm, parameters, n_jobs=-1, cv=5)
import timeit
start_time = timeit.default_timer()
grid_search.fit(term_docs_train, label_train)
print("--- %0.3fs seconds ---" % (timeit.default_timer() - start_time))
print(grid_search.best_params_)
print(grid_search.best_score_)
svc_libsvm_best = grid_search.best_estimator_
accuracy = svc_libsvm_best.score(term_docs_test, label_test)
print('The accuracy of 20-class classification is: {0:.1f}%'.format(accuracy*100))
from sklearn.svm import LinearSVC
svc_linear = LinearSVC()
grid_search = GridSearchCV(svc_linear, parameters, n_jobs=-1, cv=5)
start_time = timeit.default_timer()
grid_search.fit(term_docs_train, label_train)
print("--- %0.3fs seconds ---" % (timeit.default_timer() - start_time))
print(grid_search.best_params_)
print(grid_search.best_score_)
svc_linear_best = grid_search.best_estimator_
accuracy = svc_linear_best.score(term_docs_test, label_test)
print('TThe accuracy of 20-class classification is: {0:.1f}%'.format(accuracy*100))
# Pipeline
from sklearn.pipeline import Pipeline
pipeline = Pipeline([
('tfidf', TfidfVectorizer(stop_words='english')),
('svc', LinearSVC()),
])
parameters_pipeline = {
'tfidf__max_df': (0.25, 0.5, 1.0),
'tfidf__max_features': (10000, None),
'tfidf__sublinear_tf': (True, False),
'tfidf__smooth_idf': (True, False),
'svc__C': (0.3, 1, 3),
}
grid_search = GridSearchCV(pipeline, parameters_pipeline, n_jobs=-1, cv=5)
start_time = timeit.default_timer()
grid_search.fit(cleaned_train, label_train)
print("--- %0.3fs seconds ---" % (timeit.default_timer() - start_time))
print(grid_search.best_params_)
print(grid_search.best_score_)
pipeline_best = grid_search.best_estimator_
accuracy = pipeline_best.score(cleaned_test, label_test)
print('The accuracy of 20-class classification is: {0:.1f}%'.format(accuracy*100))
| 31.470588
| 108
| 0.774393
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 900
| 0.168224
|
06de4f84c6d45b4b9c062aad81f802376fdf7b81
| 9,076
|
py
|
Python
|
lib/enthought/traits/ui/key_bindings.py
|
mattfoster/matplotlib
|
0b47697b19b77226c633ec6a3d74a2199a153315
|
[
"PSF-2.0",
"BSD-3-Clause"
] | 1
|
2016-05-08T18:33:12.000Z
|
2016-05-08T18:33:12.000Z
|
lib/enthought/traits/ui/key_bindings.py
|
mattfoster/matplotlib
|
0b47697b19b77226c633ec6a3d74a2199a153315
|
[
"PSF-2.0",
"BSD-3-Clause"
] | null | null | null |
lib/enthought/traits/ui/key_bindings.py
|
mattfoster/matplotlib
|
0b47697b19b77226c633ec6a3d74a2199a153315
|
[
"PSF-2.0",
"BSD-3-Clause"
] | null | null | null |
#-------------------------------------------------------------------------------
#
# Written by: David C. Morrill
#
# Date: 05/20/2005
#
# (c) Copyright 2005 by Enthought, Inc.
#
# Classes defined: KeyBinding, KeyBindings
#
#-------------------------------------------------------------------------------
""" Defines KeyBinding and KeyBindings classes, which manage the mapping of
keystroke events into method calls on controller objects that are supplied by
the application.
"""
#-------------------------------------------------------------------------------
# Imports:
#-------------------------------------------------------------------------------
from enthought.traits.api \
import TraitError, HasStrictTraits, Str, List, Any, Instance, Event
from enthought.traits.ui.api \
import View, Item, ListEditor, KeyBindingEditor, toolkit
#-------------------------------------------------------------------------------
# Key binding trait definition:
#-------------------------------------------------------------------------------
# Trait definition for key bindings
Binding = Str( event = 'binding', editor = KeyBindingEditor() )
#-------------------------------------------------------------------------------
# 'KeyBinding' class:
#-------------------------------------------------------------------------------
class KeyBinding ( HasStrictTraits ):
""" Binds one or two keystrokes to a method.
"""
#---------------------------------------------------------------------------
# Trait definitions:
#---------------------------------------------------------------------------
# First key binding
binding1 = Binding
# Second key binding
binding2 = Binding
# Description of what application function the method performs
description = Str
# Name of controller method the key is bound to
method_name = Str
# KeyBindings object that "owns" the KeyBinding
owner = Instance( 'KeyBindings' )
#---------------------------------------------------------------------------
# Traits view definitions:
#---------------------------------------------------------------------------
traits_view = View( [ 'binding1', 'binding2', 'description~#', '-<>' ] )
#---------------------------------------------------------------------------
# Handles a binding trait being changed:
#---------------------------------------------------------------------------
def _binding_changed ( self ):
if self.owner is not None:
self.owner.binding_modified = self
#-------------------------------------------------------------------------------
# 'KeyBindings' class:
#-------------------------------------------------------------------------------
class KeyBindings ( HasStrictTraits ):
""" A set of key bindings.
"""
#---------------------------------------------------------------------------
# Trait definitions:
#---------------------------------------------------------------------------
# Set of defined key bindings (added dynamically)
#bindings = List( KeyBinding )
# Optional prefix to add to each method name
prefix = Str
# Optional suffix to add to each method name
suffix = Str
# Event fired when one of the contained KeyBinding objects is changed
binding_modified = Event( KeyBinding )
# Control that currently has the focus (if any)
focus_owner = Any
#---------------------------------------------------------------------------
# Traits view definitions:
#---------------------------------------------------------------------------
traits_view = View( [ Item( 'bindings@#',
editor = ListEditor( style = 'custom' ) ),
'|{Click on a first or second column entry, then '
'press the key to assign to the corresponding '
'function}<>' ],
title = 'Update Key Bindings',
kind = 'livemodal',
resizable = True,
width = 0.4,
height = 0.4,
help = False )
#---------------------------------------------------------------------------
# Initializes the object:
#---------------------------------------------------------------------------
def __init__ ( self, *bindings, **traits ):
super( KeyBindings, self ).__init__( **traits )
n = len( bindings )
self.add_trait( 'bindings', List( KeyBinding, minlen = n,
maxlen = n,
mode = 'list' ) )
self.bindings = [ binding.set( owner = self ) for binding in bindings ]
#---------------------------------------------------------------------------
# Processes a keyboard event:
#---------------------------------------------------------------------------
def do ( self, event, controller, *args ):
""" Processes a keyboard event.
"""
key_name = toolkit().key_event_to_name( event )
for binding in self.bindings:
if (key_name == binding.binding1) or (key_name == binding.binding2):
method_name = '%s%s%s' % (
self.prefix, binding.method_name, self.suffix )
return (getattr( controller, method_name )( *args ) !=
False)
return False
#---------------------------------------------------------------------------
# Merges another set of key bindings into this set:
#---------------------------------------------------------------------------
def merge ( self, key_bindings ):
""" Merges another set of key bindings into this set.
"""
binding_dic = {}
for binding in self.bindings:
binding_dic[ binding.method_name ] = binding
for binding in key_bindings.bindings:
binding2 = binding_dic.get( binding.method_name )
if binding2 is not None:
binding2.binding1 = binding.binding1
binding2.binding2 = binding.binding2
#---------------------------------------------------------------------------
# Returns the current binding for a specified key (if any):
#---------------------------------------------------------------------------
def key_binding_for ( self, binding, key_name ):
""" Returns the current binding for a specified key (if any).
"""
if key_name != '':
for a_binding in self.bindings:
if ((a_binding is not binding) and
((key_name == a_binding.binding1) or
(key_name == a_binding.binding2))):
return a_binding
return None
#---------------------------------------------------------------------------
# Handles a binding being changed:
#---------------------------------------------------------------------------
def _binding_modified_changed ( self, binding ):
binding1 = binding.binding1
binding2 = binding.binding2
for a_binding in self.bindings:
if binding is not a_binding:
if binding1 == a_binding.binding1:
a_binding.binding1 = ''
if binding1 == a_binding.binding2:
a_binding.binding2 = ''
if binding2 == a_binding.binding1:
a_binding.binding1 = ''
if binding2 == a_binding.binding2:
a_binding.binding2 = ''
#---------------------------------------------------------------------------
# Handles the focus owner being changed:
#---------------------------------------------------------------------------
def _focus_owner_changed ( self, old, new ):
if old is not None:
old.border_size = 0
#-- object overrides -----------------------------------------------------------
#---------------------------------------------------------------------------
# Restores the state of a previously pickled object:
#---------------------------------------------------------------------------
def __setstate__ ( self, state ):
""" Restores the state of a previously pickled object.
"""
n = len( state[ 'bindings' ] )
self.add_trait( 'bindings', List( KeyBinding, minlen = n, maxlen = n ) )
self.__dict__.update( state )
self.bindings = self.bindings[:]
| 42.213953
| 80
| 0.368114
| 7,519
| 0.828449
| 0
| 0
| 0
| 0
| 0
| 0
| 4,688
| 0.516527
|
06e007230d32188f666bcfa817cb0d72deaa62d6
| 639
|
py
|
Python
|
cocos#275--HTMLLabel/html_label_test.py
|
los-cocos/etc_code
|
71c642a5e0f7ff8049cb5fb4ecac3f166ca20280
|
[
"MIT"
] | 2
|
2016-08-28T19:41:47.000Z
|
2018-12-14T22:01:26.000Z
|
cocos#275--HTMLLabel/html_label_test.py
|
los-cocos/etc_code
|
71c642a5e0f7ff8049cb5fb4ecac3f166ca20280
|
[
"MIT"
] | null | null | null |
cocos#275--HTMLLabel/html_label_test.py
|
los-cocos/etc_code
|
71c642a5e0f7ff8049cb5fb4ecac3f166ca20280
|
[
"MIT"
] | 2
|
2015-09-21T06:55:12.000Z
|
2020-05-29T14:34:34.000Z
|
#!/usr/bin/env python3
# -*-coding:utf-8 -*
import cocos
from cocos.text import HTMLLabel
from cocos.director import director
class TestLayer(cocos.layer.Layer):
def __init__(self):
super(TestLayer, self).__init__()
x, y = director.get_window_size()
self.text = HTMLLabel("""<center><font color=white size=4>
Image here --><img src="grossini.png"><-- here.</font></center>""",
(100, y//2))
self.add(self.text)
def main():
director.init()
test_layer = TestLayer()
main_scene = cocos.scene.Scene(test_layer)
director.run(main_scene)
if __name__ == '__main__':
main()
| 24.576923
| 68
| 0.640063
| 334
| 0.522692
| 0
| 0
| 0
| 0
| 0
| 0
| 155
| 0.242567
|
06e062374abeb59d36c97a31d852af3b3fb9d03c
| 4,284
|
py
|
Python
|
depronoun.py
|
rui-bettencourt/AutomaticSentenceDivision
|
4cb29897103189791c932aaea42c8d5b4ecd8bcd
|
[
"MIT"
] | null | null | null |
depronoun.py
|
rui-bettencourt/AutomaticSentenceDivision
|
4cb29897103189791c932aaea42c8d5b4ecd8bcd
|
[
"MIT"
] | null | null | null |
depronoun.py
|
rui-bettencourt/AutomaticSentenceDivision
|
4cb29897103189791c932aaea42c8d5b4ecd8bcd
|
[
"MIT"
] | null | null | null |
#
from nltk.tokenize import word_tokenize
from xml.dom import minidom
import progressbar
from time import sleep
input_file = 'data/dataset_output.txt'
num_lines = sum(1 for line in open(input_file))
read_file = open(input_file, 'r')
write_output_file = open('data/dataset_output_no_pronouns.txt', 'w')
pronouns = ['him','her']
pronouns_objects = ['it']
names = []
objects = []
special_objects = []
pronoun_error_counter_p = 0
pronoun_error_counter_o = 0
pronoun_misplacements = 0
# parse an xml file by name
mydoc_names = minidom.parse('Names.xml')
mydoc_objects = minidom.parse('Objects.xml')
names_raw = mydoc_names.getElementsByTagName('name')
for elem in names_raw:
names.append(elem.firstChild.data)
objects_raw = mydoc_objects.getElementsByTagName('object')
category_raw = mydoc_objects.getElementsByTagName('category')
for elem in objects_raw:
if ' ' not in elem.attributes['name'].value:
objects.append(elem.attributes['name'].value)
else:
complex_word = []
for word in elem.attributes['name'].value.split(' '):
complex_word.append(word)
special_objects.append(complex_word)
for elem in category_raw:
if ' ' not in elem.attributes['name'].value:
objects.append(elem.attributes['name'].value)
else:
complex_word = []
for word in elem.attributes['name'].value.split(' '):
complex_word.append(word)
special_objects.append(complex_word)
names.sort()
objects.sort()
print("The availabe names are: ")
print(names)
print("\n\n")
print("The availabe objects are: ")
print(objects)
print("\n\n")
print("The availabe special objects are: ")
print(special_objects)
print("\n\n")
bar = progressbar.ProgressBar(maxval=num_lines, \
widgets=[progressbar.Bar('=', '[', ']'), ' ', progressbar.Percentage()])
bar.start()
##### Actual code
i = 0
for line in read_file:
i += 1
used_name = None
used_object = None
words = word_tokenize(line)
if any(pronoun in words for pronoun in pronouns):
#Loop the tokenized line for the pronoun and name
for word in words:
if word in names:
used_name = word
if word in pronouns and used_name is not None:
#if a pronoun was found and previously also a name, replace that pronoun by the name
words[words.index(word)] = used_name
elif word in pronouns and used_name is None:
print("PRONOUN WITH NO NAME!")
pronoun_error_counter_p += 1
if any(pronoun in words for pronoun in pronouns_objects):
#Loop the tokenized line for the pronoun and object
for word in words:
if word in objects:
used_object = word
if word in names:
used_name = word
if word in pronouns_objects and used_object is not None:
words[words.index(word)] = "the " + used_object
elif word in pronouns_objects and used_object is None:
# print("PRONOUN WITH NO NAME!")
success = False
for special in special_objects:
correct_special = True
for item in special:
if item not in words:
correct_special = False
break
if correct_special:
to_add = ' '.join(special)
words[words.index(word)] = "the " + to_add
success = True
if not success and used_name is not None:
words[words.index(word)] = used_name
pronoun_misplacements += 1
elif not success:
pronoun_error_counter_o += 1
#Write the output into a file
write_output_file.write(' '.join(words).replace(' .','.') + '\n')
# print("Iter: " + str(i))
bar.update(i)
bar.finish()
print("Success! With " + str(pronoun_error_counter_p) + " sentences that had a pronoun but no name and " + str(pronoun_error_counter_o) + " with no object.")
print("A total of " + str(pronoun_misplacements) + " were considered as pronoun misplacements and the it was replace by a name")
| 33.46875
| 157
| 0.614613
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 837
| 0.195378
|
06e4f094f267243cc672eb7459a8a3c1167d18f8
| 2,794
|
py
|
Python
|
pyaws/utils/userinput.py
|
mwozniczak/pyaws
|
af8f6d64ff47fd2ef2eb9fef25680e4656523fa3
|
[
"MIT"
] | null | null | null |
pyaws/utils/userinput.py
|
mwozniczak/pyaws
|
af8f6d64ff47fd2ef2eb9fef25680e4656523fa3
|
[
"MIT"
] | null | null | null |
pyaws/utils/userinput.py
|
mwozniczak/pyaws
|
af8f6d64ff47fd2ef2eb9fef25680e4656523fa3
|
[
"MIT"
] | null | null | null |
"""
Python3 Module
Summary:
User Input Manipulation
"""
import re
from string import ascii_lowercase
def bool_assignment(arg, patterns=None):
"""
Summary:
Enforces correct bool argment assignment
Arg:
:arg (*): arg which must be interpreted as either bool True or False
Returns:
bool assignment | TYPE: bool
"""
arg = str(arg) # only eval type str
try:
if patterns is None:
patterns = (
(re.compile(r'^(true|false)$', flags=re.IGNORECASE), lambda x: x.lower() == 'true'),
(re.compile(r'^(yes|no)$', flags=re.IGNORECASE), lambda x: x.lower() == 'yes'),
(re.compile(r'^(y|n)$', flags=re.IGNORECASE), lambda x: x.lower() == 'y')
)
if not arg:
return '' # default selected
else:
for pattern, func in patterns:
if pattern.match(arg):
return func(arg)
except Exception as e:
raise e
def range_bind(min_value, max_value, value):
""" binds number to a type and range """
if value not in range(min_value, max_value + 1):
value = min(value, max_value)
value = max(min_value, value)
return int(value)
def userchoice_mapping(choice):
"""
Summary:
Maps the number of an option presented to the user to the
correct letters in sequential a-z series when choice parameter
is provided as a number.
When given a letter as an input parameter (choice is a single
letter), returns the integer number corresponding to the letter
in the alphabet (a-z)
Examples:
- userchoice_mapping(3) returns 'c'
- userchoice_mapping('z') returns 26 (integer)
Args:
choice, TYPE: int or str
Returns:
ascii (lowercase), TYPE: str OR None
"""
# prepare mapping dict containing all 26 letters
map_dict = {}
letters = ascii_lowercase
for index in range(1, 27):
map_dict[index] = letters[index - 1]
# process user input
try:
if isinstance(choice, str):
if choice in letters:
for k, v in map_dict.items():
if v == choice.lower():
return k
elif int(choice) in range(1, 27):
# integer string provided
return map_dict[int(choice)]
else:
# not in letters or integer string outside range
return None
elif choice not in range(1, 27):
return None
except KeyError:
# integer outside range provided
return None
except ValueError:
# string outside range provided
return None
return map_dict[choice]
| 30.043011
| 100
| 0.566929
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1,203
| 0.430565
|
06e51ad894ceaca1307a132e1efdb1fe4242fe80
| 17,008
|
py
|
Python
|
batches.py
|
NRHelmi/ldbc_snb_data_converter
|
42eb5dfbe8b46bcb4d8ad56e1fd988e7635deea3
|
[
"Apache-2.0"
] | 2
|
2021-01-22T10:07:18.000Z
|
2021-02-09T18:13:28.000Z
|
batches.py
|
NRHelmi/ldbc_snb_data_converter
|
42eb5dfbe8b46bcb4d8ad56e1fd988e7635deea3
|
[
"Apache-2.0"
] | 5
|
2021-02-11T23:12:05.000Z
|
2021-05-21T12:16:29.000Z
|
batches.py
|
szarnyasg/ldbc-example-graph
|
1fd52bc60d50cf5184ee1331369d754db2b8489f
|
[
"Apache-2.0"
] | 1
|
2022-03-24T20:02:23.000Z
|
2022-03-24T20:02:23.000Z
|
import duckdb
from datetime import date
from dateutil.relativedelta import relativedelta
import os
import shutil
con = duckdb.connect(database='ldbc.duckdb', read_only=False)
# batches are selected from the [network_start_date, network_end_date) interval,
# each batch denotes a [batch_start_date, batch_end_date) where
# batch_end_date = batch_start_date + batch_size
network_start_date = date(2011, 1, 1)
network_end_date = date(2014, 1, 1)
batch_size = relativedelta(years=1)
if os.path.isdir("batches"):
shutil.rmtree("batches")
os.mkdir("batches")
batch_start_date = network_start_date
while batch_start_date < network_end_date:
batch_end_date = batch_start_date + batch_size
interval = [batch_start_date, batch_end_date]
print(f"Batch: {interval}")
######################################## cleanup #######################################
# clean insert tables
con.execute("DELETE FROM Person") # INS1
con.execute("DELETE FROM Person_hasInterest_Tag")
con.execute("DELETE FROM Person_studyAt_University")
con.execute("DELETE FROM Person_workAt_Company")
con.execute("DELETE FROM Person_likes_Post") # INS2
con.execute("DELETE FROM Person_likes_Comment") # INS3
con.execute("DELETE FROM Forum") # INS4
con.execute("DELETE FROM Forum_hasTag_Tag")
con.execute("DELETE FROM Forum_hasMember_Person") # INS5
con.execute("DELETE FROM Post") # INS6
con.execute("DELETE FROM Post_hasTag_Tag")
con.execute("DELETE FROM Comment") # INS7
con.execute("DELETE FROM Comment_hasTag_Tag") # INS8
con.execute("DELETE FROM Person_knows_Person")
# clean delete tables
con.execute("DELETE FROM Person_Delete_candidates") # DEL1
con.execute("DELETE FROM Person_likes_Post_Delete_candidates") # DEL2
con.execute("DELETE FROM Person_likes_Comment_Delete_candidates") # DEL3
con.execute("DELETE FROM Forum_Delete_candidates") # DEL4
con.execute("DELETE FROM Forum_hasMember_Person_Delete_candidates") # DEL5
con.execute("DELETE FROM Post_Delete_candidates") # DEL6
con.execute("DELETE FROM Comment_Delete_candidates") # DEL7
con.execute("DELETE FROM Person_knows_Person_Delete_candidates") # DEL8
######################################## inserts #######################################
insertion_params = [batch_start_date, batch_end_date, batch_end_date]
# INS1
con.execute("""
INSERT INTO Person
SELECT creationDate, id, firstName, lastName, gender, birthday, locationIP, browserUsed, isLocatedIn_City, speaks, email
FROM Raw_Person
WHERE creationDate >= ?
AND creationDate < ?
AND deletionDate >= ?
""",
insertion_params)
con.execute("""
INSERT INTO Person_hasInterest_Tag
SELECT creationDate, id, hasInterest_Tag
FROM Raw_Person_hasInterest_Tag
WHERE creationDate >= ?
AND creationDate < ?
AND deletionDate >= ?
""",
insertion_params)
con.execute("""
INSERT INTO Person_studyAt_University
SELECT creationDate, id, studyAt_University, classYear
FROM Raw_Person_studyAt_University
WHERE creationDate >= ?
AND creationDate < ?
AND deletionDate >= ?
""",
insertion_params)
con.execute("""
INSERT INTO Person_workAt_Company
SELECT creationDate, id, workAt_Company, workFrom
FROM Raw_Person_workAt_Company
WHERE creationDate >= ?
AND creationDate < ?
AND deletionDate >= ?
""",
insertion_params)
# INS2
con.execute("""
INSERT INTO Person_likes_Post
SELECT creationDate, id, likes_Post
FROM Raw_Person_likes_Post
WHERE creationDate >= ?
AND creationDate < ?
AND deletionDate >= ?
""",
insertion_params)
# INS3
con.execute("""
INSERT INTO Person_likes_Comment
SELECT creationDate, id, likes_Comment
FROM Raw_Person_likes_Comment
WHERE creationDate >= ?
AND creationDate < ?
AND deletionDate >= ?
""",
insertion_params)
# INS4
con.execute("""
INSERT INTO Forum
SELECT creationDate, id, title, hasModerator_Person
FROM Raw_Forum
WHERE creationDate >= ?
AND creationDate < ?
AND deletionDate >= ?
""",
insertion_params)
con.execute("""
INSERT INTO Forum_hasTag_Tag
SELECT creationDate, id, hasTag_Tag
FROM Raw_Forum_hasTag_Tag
WHERE creationDate >= ?
AND creationDate < ?
AND deletionDate >= ?
""",
insertion_params)
# INS5
con.execute("""
INSERT INTO Forum_hasMember_Person
SELECT creationDate, id, hasMember_Person
FROM Raw_Forum_hasMember_Person
WHERE creationDate >= ?
AND creationDate < ?
AND deletionDate >= ?
""",
insertion_params)
# INS6
con.execute("""
INSERT INTO Post
SELECT creationDate, id, imageFile, locationIP, browserUsed, language, content, length, hasCreator_Person, Forum_containerOf, isLocatedIn_Country
FROM Raw_Post
WHERE creationDate >= ?
AND creationDate < ?
AND deletionDate >= ?
""",
insertion_params)
con.execute("""
INSERT INTO Post_hasTag_Tag
SELECT creationDate, id, hasTag_Tag
FROM Raw_Post_hasTag_Tag
WHERE creationDate >= ?
AND creationDate < ?
AND deletionDate >= ?
""",
insertion_params)
# INS7
con.execute("""
INSERT INTO Comment
SELECT creationDate, id, locationIP, browserUsed, content, length, hasCreator_Person, isLocatedIn_Country, replyOf_Post, replyOf_Comment
FROM Raw_Comment
WHERE creationDate >= ?
AND creationDate < ?
AND deletionDate >= ?
""",
insertion_params)
con.execute("""
INSERT INTO Comment_hasTag_Tag
SELECT creationDate, id, hasTag_Tag
FROM Raw_Comment_hasTag_Tag
WHERE creationDate >= ?
AND creationDate < ?
AND deletionDate >= ?
""",
insertion_params)
# INS8
con.execute("""
INSERT INTO Person_knows_Person
SELECT creationDate, Person1id, Person2id
FROM Raw_Person_knows_Person
WHERE creationDate >= ?
AND creationDate < ?
AND deletionDate >= ?
""",
insertion_params)
######################################## deletes #######################################
deletion_params = [batch_start_date, batch_start_date, batch_end_date]
# DEL1 (Persons are always explicitly deleted)
con.execute("""
INSERT INTO Person_Delete_candidates
SELECT deletionDate, id
FROM Raw_Person
WHERE creationDate < ?
AND deletionDate >= ?
AND deletionDate < ?
""",
deletion_params)
# DEL2
con.execute("""
INSERT INTO Person_likes_Post_Delete_candidates
SELECT deletionDate, id, likes_Post
FROM Raw_Person_likes_Post
WHERE explicitlyDeleted
AND creationDate < ?
AND deletionDate >= ?
AND deletionDate < ?
""",
deletion_params)
# DEL3
con.execute("""
INSERT INTO Person_likes_Comment_Delete_candidates
SELECT deletionDate, id, likes_Comment
FROM Raw_Person_likes_Comment
WHERE explicitlyDeleted
AND creationDate < ?
AND deletionDate >= ?
AND deletionDate < ?
""",
deletion_params)
# DEL4 (Forums are always explicitly deleted -- TODO: check in generated data for walls/albums/groups)
con.execute("""
INSERT INTO Forum_Delete_candidates
SELECT deletionDate, id
FROM Raw_Forum
WHERE creationDate < ?
AND deletionDate >= ?
AND deletionDate < ?
""",
deletion_params)
# DEL5
con.execute("""
INSERT INTO Forum_hasMember_Person_Delete_candidates
SELECT deletionDate, id, hasMember_Person
FROM Raw_Forum_hasMember_Person
WHERE explicitlyDeleted
AND creationDate < ?
AND deletionDate >= ?
AND deletionDate < ?
""",
deletion_params)
# DEL6
con.execute("""
INSERT INTO Post_Delete_candidates
SELECT deletionDate, id
FROM Raw_Post
WHERE explicitlyDeleted
AND creationDate < ?
AND deletionDate >= ?
AND deletionDate < ?
""",
deletion_params)
# DEL7
con.execute("""
INSERT INTO Comment_Delete_candidates
SELECT deletionDate, id
FROM Raw_Comment
WHERE explicitlyDeleted
AND creationDate < ?
AND deletionDate >= ?
AND deletionDate < ?
""",
deletion_params)
# DEL8
con.execute("""
INSERT INTO Person_knows_Person_Delete_candidates
SELECT deletionDate, Person1id, Person2id
FROM Raw_Person_knows_Person
WHERE explicitlyDeleted
AND creationDate < ?
AND deletionDate >= ?
AND deletionDate < ?
""",
deletion_params)
######################################## export ########################################
batch_dir = f"batches/{batch_start_date}"
os.mkdir(f"{batch_dir}")
os.mkdir(f"{batch_dir}/inserts")
os.mkdir(f"{batch_dir}/deletes")
# inserts
con.execute(f"COPY (SELECT strftime(creationDate, '%Y-%m-%dT%H:%M:%S.%g+00:00') AS creationDate, id, firstName, lastName, gender, birthday, locationIP, browserUsed, isLocatedIn_City, speaks, email FROM Person) TO 'batches/{batch_start_date}/inserts/Person.csv' (HEADER, FORMAT CSV, DELIMITER '|')") #INS1
con.execute(f"COPY (SELECT strftime(creationDate, '%Y-%m-%dT%H:%M:%S.%g+00:00') AS creationDate, id, hasInterest_Tag FROM Person_hasInterest_Tag) TO 'batches/{batch_start_date}/inserts/Person_hasInterest_Tag.csv' (HEADER, FORMAT CSV, DELIMITER '|')")
con.execute(f"COPY (SELECT strftime(creationDate, '%Y-%m-%dT%H:%M:%S.%g+00:00') AS creationDate, id, studyAt_University, classYear FROM Person_studyAt_University) TO 'batches/{batch_start_date}/inserts/Person_studyAt_University.csv' (HEADER, FORMAT CSV, DELIMITER '|')")
con.execute(f"COPY (SELECT strftime(creationDate, '%Y-%m-%dT%H:%M:%S.%g+00:00') AS creationDate, id, workAt_Company, workFrom FROM Person_workAt_Company) TO 'batches/{batch_start_date}/inserts/Person_workAt_Company.csv' (HEADER, FORMAT CSV, DELIMITER '|')")
con.execute(f"COPY (SELECT strftime(creationDate, '%Y-%m-%dT%H:%M:%S.%g+00:00') AS creationDate, id, likes_Post FROM Person_likes_Post) TO 'batches/{batch_start_date}/inserts/Person_likes_Post.csv' (HEADER, FORMAT CSV, DELIMITER '|')") #INS2
con.execute(f"COPY (SELECT strftime(creationDate, '%Y-%m-%dT%H:%M:%S.%g+00:00') AS creationDate, id, likes_Comment FROM Person_likes_Comment) TO 'batches/{batch_start_date}/inserts/Person_likes_Comment.csv' (HEADER, FORMAT CSV, DELIMITER '|')") #INS3
con.execute(f"COPY (SELECT strftime(creationDate, '%Y-%m-%dT%H:%M:%S.%g+00:00') AS creationDate, id, title, hasModerator_Person FROM Forum) TO 'batches/{batch_start_date}/inserts/Forum.csv' (HEADER, FORMAT CSV, DELIMITER '|')") #INS4
con.execute(f"COPY (SELECT strftime(creationDate, '%Y-%m-%dT%H:%M:%S.%g+00:00') AS creationDate, id, hasTag_Tag FROM Forum_hasTag_Tag) TO 'batches/{batch_start_date}/inserts/Forum_hasTag_Tag.csv' (HEADER, FORMAT CSV, DELIMITER '|')")
con.execute(f"COPY (SELECT strftime(creationDate, '%Y-%m-%dT%H:%M:%S.%g+00:00') AS creationDate, id, hasMember_Person FROM Forum_hasMember_Person) TO 'batches/{batch_start_date}/inserts/Forum_hasMember_Person.csv' (HEADER, FORMAT CSV, DELIMITER '|')") #INS5
con.execute(f"COPY (SELECT strftime(creationDate, '%Y-%m-%dT%H:%M:%S.%g+00:00') AS creationDate, id, imageFile, locationIP, browserUsed, language, content, length, hasCreator_Person, Forum_containerOf, isLocatedIn_Country FROM Post) TO 'batches/{batch_start_date}/inserts/Post.csv' (HEADER, FORMAT CSV, DELIMITER '|')") #INS6
con.execute(f"COPY (SELECT strftime(creationDate, '%Y-%m-%dT%H:%M:%S.%g+00:00') AS creationDate, id, hasTag_Tag FROM Post_hasTag_Tag) TO 'batches/{batch_start_date}/inserts/Post_hasTag_Tag.csv' (HEADER, FORMAT CSV, DELIMITER '|')")
con.execute(f"COPY (SELECT strftime(creationDate, '%Y-%m-%dT%H:%M:%S.%g+00:00') AS creationDate, id, locationIP, browserUsed, content, length, hasCreator_Person, isLocatedIn_Country, replyOf_Post, replyOf_Comment FROM Comment) TO 'batches/{batch_start_date}/inserts/Comment.csv' (HEADER, FORMAT CSV, DELIMITER '|')") #INS7
con.execute(f"COPY (SELECT strftime(creationDate, '%Y-%m-%dT%H:%M:%S.%g+00:00') AS creationDate, id, hasTag_Tag FROM Comment_hasTag_Tag) TO 'batches/{batch_start_date}/inserts/Comment_hasTag_Tag.csv' (HEADER, FORMAT CSV, DELIMITER '|')")
con.execute(f"COPY (SELECT strftime(creationDate, '%Y-%m-%dT%H:%M:%S.%g+00:00') AS creationDate, Person1id, Person2id FROM Person_knows_Person) TO 'batches/{batch_start_date}/inserts/Person_knows_Person.csv' (HEADER, FORMAT CSV, DELIMITER '|')") #INS8
# deletes
con.execute(f"COPY (SELECT strftime(deletionDate, '%Y-%m-%dT%H:%M:%S.%g+00:00') AS deletionDate, id FROM Person_Delete_candidates) TO 'batches/{batch_start_date}/deletes/Person.csv' (HEADER, FORMAT CSV, DELIMITER '|')") #DEL1
con.execute(f"COPY (SELECT strftime(deletionDate, '%Y-%m-%dT%H:%M:%S.%g+00:00') AS deletionDate, src, trg FROM Person_likes_Post_Delete_candidates) TO 'batches/{batch_start_date}/deletes/Person_likes_Post.csv' (HEADER, FORMAT CSV, DELIMITER '|')") #DEL2
con.execute(f"COPY (SELECT strftime(deletionDate, '%Y-%m-%dT%H:%M:%S.%g+00:00') AS deletionDate, src, trg FROM Person_likes_Comment_Delete_candidates) TO 'batches/{batch_start_date}/deletes/Person_likes_Comment.csv' (HEADER, FORMAT CSV, DELIMITER '|')") #DEL3
con.execute(f"COPY (SELECT strftime(deletionDate, '%Y-%m-%dT%H:%M:%S.%g+00:00') AS deletionDate, id FROM Forum_Delete_candidates) TO 'batches/{batch_start_date}/deletes/Forum.csv' (HEADER, FORMAT CSV, DELIMITER '|')") #DEL4
con.execute(f"COPY (SELECT strftime(deletionDate, '%Y-%m-%dT%H:%M:%S.%g+00:00') AS deletionDate, src, trg FROM Forum_hasMember_Person_Delete_candidates) TO 'batches/{batch_start_date}/deletes/Forum_hasMember_Person.csv' (HEADER, FORMAT CSV, DELIMITER '|')") #DEL5
con.execute(f"COPY (SELECT strftime(deletionDate, '%Y-%m-%dT%H:%M:%S.%g+00:00') AS deletionDate, id FROM Post_Delete_candidates) TO 'batches/{batch_start_date}/deletes/Post.csv' (HEADER, FORMAT CSV, DELIMITER '|')") #DEL6
con.execute(f"COPY (SELECT strftime(deletionDate, '%Y-%m-%dT%H:%M:%S.%g+00:00') AS deletionDate, id FROM Comment_Delete_candidates) TO 'batches/{batch_start_date}/deletes/Comment.csv' (HEADER, FORMAT CSV, DELIMITER '|')") #DEL7
con.execute(f"COPY (SELECT strftime(deletionDate, '%Y-%m-%dT%H:%M:%S.%g+00:00') AS deletionDate, src, trg FROM Person_knows_Person_Delete_candidates) TO 'batches/{batch_start_date}/deletes/Person_knows_Person.csv' (HEADER, FORMAT CSV, DELIMITER '|')") #DEL8
############################# set interval for next iteration ##########################
batch_start_date = batch_end_date
| 50.619048
| 350
| 0.596954
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 14,060
| 0.82667
|
06e980c4f9e4c64a9ff9ed3aae6e787174a3969c
| 193
|
py
|
Python
|
College grade 2/Python 3/Lab_2/Ansel/exercise 1.py
|
SimonH19009/Lzu_Data-science
|
bd35c5e156b0db21c3585c11dce15fba0b7003e2
|
[
"MIT"
] | 1
|
2022-03-06T05:30:44.000Z
|
2022-03-06T05:30:44.000Z
|
College grade 2/Python 3/Lab_2/Ansel/exercise 1.py
|
SimonH19009/Lzu_Data-science
|
bd35c5e156b0db21c3585c11dce15fba0b7003e2
|
[
"MIT"
] | null | null | null |
College grade 2/Python 3/Lab_2/Ansel/exercise 1.py
|
SimonH19009/Lzu_Data-science
|
bd35c5e156b0db21c3585c11dce15fba0b7003e2
|
[
"MIT"
] | 1
|
2022-03-06T06:07:40.000Z
|
2022-03-06T06:07:40.000Z
|
try:
a=int(input("Please enter a number:"))
if 9<a<100:
a = str(a)
print(a[0])
print(a[1])
else:
print("no correct")
except:
print("no correct")
| 17.545455
| 42
| 0.487047
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 48
| 0.248705
|
06eb8e9951d11356b784f19e2310c1cacd28857e
| 122
|
py
|
Python
|
gameLogic/__init__.py
|
JoelEager/pyTanks-Server
|
4455c0475980ea1372f11d7ec41d95990b3c8f44
|
[
"MIT"
] | 5
|
2017-09-04T09:36:40.000Z
|
2019-10-31T20:52:13.000Z
|
gameLogic/__init__.py
|
JoelEager/pyTanks-Server
|
4455c0475980ea1372f11d7ec41d95990b3c8f44
|
[
"MIT"
] | 3
|
2018-12-28T08:09:51.000Z
|
2019-01-04T20:36:47.000Z
|
gameLogic/__init__.py
|
JoelEager/pyTanks-Server
|
4455c0475980ea1372f11d7ec41d95990b3c8f44
|
[
"MIT"
] | 1
|
2018-12-28T08:12:36.000Z
|
2018-12-28T08:12:36.000Z
|
"""
Contains all the logic for running the game (game clock, per-frame logic, game state update generation, and so on)
"""
| 40.666667
| 114
| 0.737705
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 122
| 1
|
06f25df0cac2fd1a3b4a6fa7c42cbde635e84014
| 1,131
|
py
|
Python
|
hypothesis/nn/neuromodulation/base.py
|
boyali/hypothesis-sre
|
f44d25eb281d49663d49d134ee73ad542849714b
|
[
"BSD-3-Clause"
] | 45
|
2019-02-13T14:16:35.000Z
|
2022-02-23T21:30:02.000Z
|
hypothesis/nn/neuromodulation/base.py
|
boyali/hypothesis-sre
|
f44d25eb281d49663d49d134ee73ad542849714b
|
[
"BSD-3-Clause"
] | 1
|
2020-01-13T08:29:50.000Z
|
2020-01-22T10:28:02.000Z
|
hypothesis/nn/neuromodulation/base.py
|
boyali/hypothesis-sre
|
f44d25eb281d49663d49d134ee73ad542849714b
|
[
"BSD-3-Clause"
] | 8
|
2019-04-23T14:25:08.000Z
|
2021-07-28T15:05:31.000Z
|
import hypothesis
import torch
from hypothesis.nn.util import list_modules_with_type
def allocate_neuromodulated_activation(activation, allocator):
class LambdaNeuromodulatedActivation(BaseNeuromodulatedModule):
def __init__(self):
super(LambdaNeuromodulatedActivation, self).__init__(
controller=allocator(),
activation=activation)
return LambdaNeuromodulatedActivation
def list_neuromodulated_modules(module):
desired_type = BaseNeuromodulatedModule
return list_modules_with_type(module, desired_type)
class BaseNeuromodulatedModule(torch.nn.Module):
def __init__(self, controller, activation=hypothesis.default.activation, **kwargs):
super(BaseNeuromodulatedModule, self).__init__()
self.activation = activation(**kwargs)
self.bias = torch.randn(1, 1)
self.controller = controller
def forward(self, x, context=None):
if context is not None:
self.update(context)
return self.activation(x + self.bias)
def update(self, context):
self.bias = self.controller(context)
| 26.928571
| 87
| 0.715296
| 783
| 0.692308
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
06f368aa1460565e63ed4a80b862ae97a70212cf
| 1,151
|
py
|
Python
|
2.py
|
zweed4u/dailycodingproblem
|
6e40eaad347e283f86a11adeff01c6426211a0be
|
[
"MIT"
] | null | null | null |
2.py
|
zweed4u/dailycodingproblem
|
6e40eaad347e283f86a11adeff01c6426211a0be
|
[
"MIT"
] | null | null | null |
2.py
|
zweed4u/dailycodingproblem
|
6e40eaad347e283f86a11adeff01c6426211a0be
|
[
"MIT"
] | null | null | null |
#!/usr/bin/python3
"""
Good morning! Here's your coding interview problem for today.
This problem was asked by Uber.
Given an array of integers, return a new array such that each element at index i of the new array is the product of all the numbers in the original array except the one at i.
For example, if our input was [1, 2, 3, 4, 5], the expected output would be [120, 60, 40, 30, 24]. If our input was [3, 2, 1], the expected output would be [2, 3, 6].
Follow-up: what if you can't use division?
"""
def func(in_array):
out_array = []
for number in in_array:
product = 1
for v in in_array:
if number == v:
continue
product *= v
out_array.append(product)
return out_array
def division_func(in_array):
# Using folllow up as hint for a solution using division
out_array = []
for number in in_array:
product = 1
for v in in_array:
product *= v
out_array.append(int(product/number))
return out_array
print(division_func([1,2,3,4,5]))
print(division_func([3, 2, 1]))
print(func([1,2,3,4,5]))
print(func([3, 2, 1]))
| 28.775
| 174
| 0.636838
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 564
| 0.490009
|
06fbcffd6a9d16ac26a727dde7c14ddf62ce182c
| 3,685
|
py
|
Python
|
ldap_login/management/commands/importLDAPusers.py
|
knightsamar/change_agent
|
53e8b6335f5f6856ae12dba6a509e4147c68a004
|
[
"Apache-2.0"
] | null | null | null |
ldap_login/management/commands/importLDAPusers.py
|
knightsamar/change_agent
|
53e8b6335f5f6856ae12dba6a509e4147c68a004
|
[
"Apache-2.0"
] | null | null | null |
ldap_login/management/commands/importLDAPusers.py
|
knightsamar/change_agent
|
53e8b6335f5f6856ae12dba6a509e4147c68a004
|
[
"Apache-2.0"
] | null | null | null |
from django.core.management.base import NoArgsCommand, CommandError;
from ldap_login.ldapUtils import ldapManager;
from ldap_login.models import user,group,Role;
from datetime import datetime;
import traceback;
class Command(NoArgsCommand):
"""Import LDAP users from Active Directory.
Uses the ldapUtils backend.
Creates the users in our databases else uses existings users.
Updates group bindings and full names for existing and new users also.
"""
args = None;
help = "imports LDAP users from Active Directory into database"
can_import_settings = True
exclusion_list = ['exam','Domain Controllers']; #list of OUs we do not want to handle at all.
def handle_noargs(self, **options):
#**options is a dictionary of keyword parameters beyond those defined
try:
l = ldapManager();
groups = l.getGroups()
for g in groups:
if g in self.exclusion_list :
continue;
print "-" * 60
print '\nProcessing group %s' % g;
#does this group exist in our database ?
try:
groupObj = group.objects.get(name=g);
print "Using existing group %s" % g
except group.DoesNotExist:
groupObj = group(name=g,created_on=datetime.now());
groupObj.save();
print "Created group %s" % g;
finally:
users = l.getUsers(ou=g,attrs=['sAMAccountName','displayName']);
for u in users:
print "-" * 20
username = u['sAMAccountName'][0]; #because we get a dictionary of lists from ldap!
print '\nSearching for existing user with username : %s ' % username;
try:
userObj = user.objects.get(pk=username)
print "Using existing user %s " % userObj
except user.DoesNotExist:
userObj = user(pk=username);
userObj.created_on = datetime.now();
print "Created user %s " % userObj;
except Exception as e:
print 'An unknown exception occured! ';
print e;
print traceback.print_exc();
finally: #so that we update these properties for all user
if 'displayName' in u:
userObj.fullname = u['displayName'][0] #because it's a dictionary of lists!
else:
userObj.fullname = userObj.pk
#Don't forget to assign role!
if username.startswith('0') or username.startswith('1'):
userObj.role = Role.objects.get_or_create(name='student')[0]
else:
userObj.role = Role.objects.get_or_create(name='faculty')[0]
userObj.save();
#the following must be done after saving
#refer: http://stackoverflow.com/questions/7837033/valueerror-cannot-add-instance-is-on-database-default-value-is-on-databas
userObj.groups.add(groupObj); #add this user to the group;
except KeyError as e:
print 'KeyError happened in the structure :'
print e.message
print 'Structure:', u
print
except Exception as e:
print 'Some unexpected exception occured!';
print e;
print traceback.print_exc()
| 46.64557
| 131
| 0.536228
| 3,459
| 0.93867
| 0
| 0
| 0
| 0
| 0
| 0
| 1,202
| 0.326187
|
06fe538ead84c59a5f996694a885042a2b6cbe93
| 822
|
py
|
Python
|
rocketchat_API/APISections/subscriptions.py
|
dudanogueira/rocketchat_API
|
190952f07ce04a356c79ad29e9d1e01dea620ba6
|
[
"MIT"
] | 210
|
2017-03-20T13:36:24.000Z
|
2022-03-30T17:37:02.000Z
|
rocketchat_API/APISections/subscriptions.py
|
dudanogueira/rocketchat_API
|
190952f07ce04a356c79ad29e9d1e01dea620ba6
|
[
"MIT"
] | 144
|
2017-03-21T13:50:22.000Z
|
2022-03-28T09:43:26.000Z
|
rocketchat_API/APISections/subscriptions.py
|
dudanogueira/rocketchat_API
|
190952f07ce04a356c79ad29e9d1e01dea620ba6
|
[
"MIT"
] | 103
|
2017-03-20T13:54:54.000Z
|
2022-03-22T05:00:18.000Z
|
from rocketchat_API.APISections.base import RocketChatBase
class RocketChatSubscriptions(RocketChatBase):
def subscriptions_get(self, **kwargs):
"""Get all subscriptions."""
return self.call_api_get("subscriptions.get", kwargs=kwargs)
def subscriptions_get_one(self, room_id, **kwargs):
"""Get the subscription by room id."""
return self.call_api_get("subscriptions.getOne", roomId=room_id, kwargs=kwargs)
def subscriptions_unread(self, room_id, **kwargs):
"""Mark messages as unread by roomId or from a message"""
return self.call_api_post("subscriptions.unread", roomId=room_id, kwargs=kwargs)
def subscriptions_read(self, rid, **kwargs):
"""Mark room as read"""
return self.call_api_post("subscriptions.read", rid=rid, kwargs=kwargs)
| 41.1
| 88
| 0.708029
| 760
| 0.924574
| 0
| 0
| 0
| 0
| 0
| 0
| 229
| 0.278589
|
06fefeedf2e0b5eb6fdb9935285ddf733447d30c
| 1,081
|
py
|
Python
|
accounts/models.py
|
Phist0ne/webvirtcloud
|
d94ca38e5c8b5bb1323d33067ee6b991775cc390
|
[
"Apache-2.0"
] | 2
|
2018-03-14T09:46:49.000Z
|
2019-05-14T11:45:14.000Z
|
accounts/models.py
|
JamesLinus/webvirtcloud
|
d94ca38e5c8b5bb1323d33067ee6b991775cc390
|
[
"Apache-2.0"
] | 1
|
2018-03-01T04:05:25.000Z
|
2018-10-01T08:30:00.000Z
|
accounts/models.py
|
caicloud/webvirtcloud
|
d94ca38e5c8b5bb1323d33067ee6b991775cc390
|
[
"Apache-2.0"
] | 1
|
2019-06-11T19:54:08.000Z
|
2019-06-11T19:54:08.000Z
|
from django.db import models
from django.contrib.auth.models import User
from instances.models import Instance
class UserInstance(models.Model):
user = models.ForeignKey(User)
instance = models.ForeignKey(Instance)
is_change = models.BooleanField(default=False)
is_delete = models.BooleanField(default=False)
is_vnc = models.BooleanField(default=False)
def __unicode__(self):
return self.instance.name
class UserSSHKey(models.Model):
user = models.ForeignKey(User)
keyname = models.CharField(max_length=25)
keypublic = models.CharField(max_length=500)
def __unicode__(self):
return self.keyname
class UserAttributes(models.Model):
user = models.OneToOneField(User, on_delete=models.CASCADE)
can_clone_instances = models.BooleanField(default=False)
max_instances = models.IntegerField(default=1)
max_cpus = models.IntegerField(default=1)
max_memory = models.IntegerField(default=2048)
max_disk_size = models.IntegerField(default=20)
def __unicode__(self):
return self.user.username
| 30.885714
| 63
| 0.747456
| 962
| 0.889917
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
6600b5f654aa204f83a56f1407440180c9d9fa01
| 8,744
|
py
|
Python
|
sdk/python/pulumi_cloudflare/custom_ssl.py
|
vijayraavi/pulumi-cloudflare
|
ba61514d650fc7a5a2667147519de213c07344b8
|
[
"ECL-2.0",
"Apache-2.0"
] | null | null | null |
sdk/python/pulumi_cloudflare/custom_ssl.py
|
vijayraavi/pulumi-cloudflare
|
ba61514d650fc7a5a2667147519de213c07344b8
|
[
"ECL-2.0",
"Apache-2.0"
] | null | null | null |
sdk/python/pulumi_cloudflare/custom_ssl.py
|
vijayraavi/pulumi-cloudflare
|
ba61514d650fc7a5a2667147519de213c07344b8
|
[
"ECL-2.0",
"Apache-2.0"
] | null | null | null |
# coding=utf-8
# *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. ***
# *** Do not edit by hand unless you're certain you know what you are doing! ***
import json
import warnings
import pulumi
import pulumi.runtime
from typing import Union
from . import utilities, tables
class CustomSsl(pulumi.CustomResource):
custom_ssl_options: pulumi.Output[dict]
"""
The certificate, private key and associated optional parameters, such as bundle_method, geo_restrictions, and type.
* `bundle_method` (`str`) - Method of building intermediate certificate chain. A ubiquitous bundle has the highest probability of being verified everywhere, even by clients using outdated or unusual trust stores. An optimal bundle uses the shortest chain and newest intermediates. And the force bundle verifies the chain, but does not otherwise modify it. Valid values are `ubiquitous` (default), `optimal`, `force`.
* `certificate` (`str`) - Certificate certificate and the intermediate(s)
* `geo_restrictions` (`str`) - Specifies the region where your private key can be held locally. Valid values are `us`, `eu`, `highest_security`.
* `private_key` (`str`) - Certificate's private key
* `type` (`str`) - Whether to enable support for legacy clients which do not include SNI in the TLS handshake. Valid values are `legacy_custom` (default), `sni_custom`.
"""
custom_ssl_priorities: pulumi.Output[list]
expires_on: pulumi.Output[str]
hosts: pulumi.Output[list]
issuer: pulumi.Output[str]
modified_on: pulumi.Output[str]
priority: pulumi.Output[float]
signature: pulumi.Output[str]
status: pulumi.Output[str]
uploaded_on: pulumi.Output[str]
zone_id: pulumi.Output[str]
"""
The DNS zone id to the custom ssl cert should be added.
"""
def __init__(__self__, resource_name, opts=None, custom_ssl_options=None, custom_ssl_priorities=None, zone_id=None, __props__=None, __name__=None, __opts__=None):
"""
Provides a Cloudflare custom ssl resource.
:param str resource_name: The name of the resource.
:param pulumi.ResourceOptions opts: Options for the resource.
:param pulumi.Input[dict] custom_ssl_options: The certificate, private key and associated optional parameters, such as bundle_method, geo_restrictions, and type.
:param pulumi.Input[str] zone_id: The DNS zone id to the custom ssl cert should be added.
The **custom_ssl_options** object supports the following:
* `bundle_method` (`pulumi.Input[str]`) - Method of building intermediate certificate chain. A ubiquitous bundle has the highest probability of being verified everywhere, even by clients using outdated or unusual trust stores. An optimal bundle uses the shortest chain and newest intermediates. And the force bundle verifies the chain, but does not otherwise modify it. Valid values are `ubiquitous` (default), `optimal`, `force`.
* `certificate` (`pulumi.Input[str]`) - Certificate certificate and the intermediate(s)
* `geo_restrictions` (`pulumi.Input[str]`) - Specifies the region where your private key can be held locally. Valid values are `us`, `eu`, `highest_security`.
* `private_key` (`pulumi.Input[str]`) - Certificate's private key
* `type` (`pulumi.Input[str]`) - Whether to enable support for legacy clients which do not include SNI in the TLS handshake. Valid values are `legacy_custom` (default), `sni_custom`.
The **custom_ssl_priorities** object supports the following:
* `id` (`pulumi.Input[str]`)
* `priority` (`pulumi.Input[float]`)
> This content is derived from https://github.com/terraform-providers/terraform-provider-cloudflare/blob/master/website/docs/r/custom_ssl.html.markdown.
"""
if __name__ is not None:
warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning)
resource_name = __name__
if __opts__ is not None:
warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning)
opts = __opts__
if opts is None:
opts = pulumi.ResourceOptions()
if not isinstance(opts, pulumi.ResourceOptions):
raise TypeError('Expected resource options to be a ResourceOptions instance')
if opts.version is None:
opts.version = utilities.get_version()
if opts.id is None:
if __props__ is not None:
raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource')
__props__ = dict()
__props__['custom_ssl_options'] = custom_ssl_options
__props__['custom_ssl_priorities'] = custom_ssl_priorities
if zone_id is None:
raise TypeError("Missing required property 'zone_id'")
__props__['zone_id'] = zone_id
__props__['expires_on'] = None
__props__['hosts'] = None
__props__['issuer'] = None
__props__['modified_on'] = None
__props__['priority'] = None
__props__['signature'] = None
__props__['status'] = None
__props__['uploaded_on'] = None
super(CustomSsl, __self__).__init__(
'cloudflare:index/customSsl:CustomSsl',
resource_name,
__props__,
opts)
@staticmethod
def get(resource_name, id, opts=None, custom_ssl_options=None, custom_ssl_priorities=None, expires_on=None, hosts=None, issuer=None, modified_on=None, priority=None, signature=None, status=None, uploaded_on=None, zone_id=None):
"""
Get an existing CustomSsl resource's state with the given name, id, and optional extra
properties used to qualify the lookup.
:param str resource_name: The unique name of the resulting resource.
:param str id: The unique provider ID of the resource to lookup.
:param pulumi.ResourceOptions opts: Options for the resource.
:param pulumi.Input[dict] custom_ssl_options: The certificate, private key and associated optional parameters, such as bundle_method, geo_restrictions, and type.
:param pulumi.Input[str] zone_id: The DNS zone id to the custom ssl cert should be added.
The **custom_ssl_options** object supports the following:
* `bundle_method` (`pulumi.Input[str]`) - Method of building intermediate certificate chain. A ubiquitous bundle has the highest probability of being verified everywhere, even by clients using outdated or unusual trust stores. An optimal bundle uses the shortest chain and newest intermediates. And the force bundle verifies the chain, but does not otherwise modify it. Valid values are `ubiquitous` (default), `optimal`, `force`.
* `certificate` (`pulumi.Input[str]`) - Certificate certificate and the intermediate(s)
* `geo_restrictions` (`pulumi.Input[str]`) - Specifies the region where your private key can be held locally. Valid values are `us`, `eu`, `highest_security`.
* `private_key` (`pulumi.Input[str]`) - Certificate's private key
* `type` (`pulumi.Input[str]`) - Whether to enable support for legacy clients which do not include SNI in the TLS handshake. Valid values are `legacy_custom` (default), `sni_custom`.
The **custom_ssl_priorities** object supports the following:
* `id` (`pulumi.Input[str]`)
* `priority` (`pulumi.Input[float]`)
> This content is derived from https://github.com/terraform-providers/terraform-provider-cloudflare/blob/master/website/docs/r/custom_ssl.html.markdown.
"""
opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id))
__props__ = dict()
__props__["custom_ssl_options"] = custom_ssl_options
__props__["custom_ssl_priorities"] = custom_ssl_priorities
__props__["expires_on"] = expires_on
__props__["hosts"] = hosts
__props__["issuer"] = issuer
__props__["modified_on"] = modified_on
__props__["priority"] = priority
__props__["signature"] = signature
__props__["status"] = status
__props__["uploaded_on"] = uploaded_on
__props__["zone_id"] = zone_id
return CustomSsl(resource_name, opts=opts, __props__=__props__)
def translate_output_property(self, prop):
return tables._CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop
def translate_input_property(self, prop):
return tables._SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
| 60.722222
| 440
| 0.688358
| 8,435
| 0.964661
| 0
| 0
| 2,984
| 0.341263
| 0
| 0
| 5,798
| 0.663083
|
66012301064b5709a93a6fcc63e250bae442c6d6
| 1,804
|
py
|
Python
|
main.py
|
PortosKo/Python_Lesson_2
|
160c569f17d21cc1f2e48227b526a49594e90d59
|
[
"MIT"
] | null | null | null |
main.py
|
PortosKo/Python_Lesson_2
|
160c569f17d21cc1f2e48227b526a49594e90d59
|
[
"MIT"
] | null | null | null |
main.py
|
PortosKo/Python_Lesson_2
|
160c569f17d21cc1f2e48227b526a49594e90d59
|
[
"MIT"
] | null | null | null |
#Задачи на циклы и оператор условия------
#----------------------------------------
'''
# Задача 1
Вывести на экран циклом пять строк из нулей, причем каждая строка должна быть пронумерована.
'''
print ('Задача1')
x = 0
for x in range (1,6,):
print (x,0)
'''
Задача 2
Пользователь в цикле вводит 10 цифр. Найти количество введеных пользователем цифр 5.
'''
print ('Задача2')
x = 98535254155
count = 0
while (x // 10) > 0:
if x % 10 == 5:
count += 1
x = x // 10
print(count)
'''
Задача 3
Найти сумму ряда чисел от 1 до 100. Полученный результат вывести на экран.
'''
print ('Задача3')
sum = 0
for i in range(1,101):
sum+=i
print(sum)
'''
Задача 4
Найти произведение ряда чисел от 1 до 10. Полученный результат вывести на экран.
'''
print ('Задача4')
for x in range(1,10):
x += x
print(x)
'''
Задача 5
#Вывести цифры числа на каждой строчке.
'''
print('Задача5')
integer_number = 2129
print(integer_number%10,integer_number//10)
while integer_number>0:
print(integer_number%10)
integer_number = integer_number//10
'''
Задача 6
Найти сумму цифр числа.
'''
print('задача6')
num = int(input('Введите число:'))
sum = 0
while num:
sum = sum + num % 10
num = num // 10
print('Сумма числа =', sum)
'''
Задача 7
Найти произведение цифр числа.
'''
print('Задача7')
num = int(input('Введите число:'))
mult = 1
while num:
mult = mult * (num % 10)
num = num // 10
print('Произведение цифр =', mult)
'''
Задача 8
Дать ответ на вопрос: есть ли среди цифр числа 5?
'''
integer_number = 213413
while integer_number>0:
if integer_number%10 == 5:
print('Yes')
break
integer_number = integer_number//10
else: print('No')
'''
Задача 9
Найти максимальную цифру в числе
'''
'''
Задача 10
Найти количество цифр 5 в числе
'''
| 15.288136
| 92
| 0.636364
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1,551
| 0.64197
|
660235efa168bc77f41850e9696ac1ce83979716
| 5,062
|
py
|
Python
|
config_loader/loader.py
|
egabancho/config-loader
|
af45c7bef3afe4dee930754386a1763a28574d6c
|
[
"MIT"
] | null | null | null |
config_loader/loader.py
|
egabancho/config-loader
|
af45c7bef3afe4dee930754386a1763a28574d6c
|
[
"MIT"
] | null | null | null |
config_loader/loader.py
|
egabancho/config-loader
|
af45c7bef3afe4dee930754386a1763a28574d6c
|
[
"MIT"
] | null | null | null |
"""Configuration loader class."""
import ast
import logging
import os
import types
from operator import attrgetter
import pkg_resources
logger = logging.getLogger(__name__)
class Config(object):
"""Configuration loader, it's like a normal dictionary with super-powers.
It will load configuration in the following order:
1. Load configuration from ``config_loader.module`` entry points
group, following the alphabetical ascending order in case of
multiple entry points defined.
2. Load from file path, if provided via environment variable.
3. Load from keyword arguments when provided.
4. Load configuration from environment variables with the prefix
``env_prefix``.
Once the object is created it can be updated, as a normal dictionary or,
using any of the ``from_`` methods provided.
:param env_var: Name of an environment variable pointing to a configuration
file.
:param env_prefix: Environment variable prefix, it will iterate over all
environment variables and load the ones matching the prefix.
:param entry_point_name: Name of the entry point used to add configuration
files from outside modules.
:param kwargs_config: Dictionary with ad-hoc configuration variables.
"""
def __init__(
self,
env_var='CONFIG_SETTINGS',
env_prefix='CONFIG_',
entry_point_name='config_loader.module',
**kwargs_config
):
"""Initialize new configuration loader instance."""
self._internal_config = None
self.env_var = env_var
self.env_prefix = env_prefix
self.entry_point_name = entry_point_name
self.extra_config = kwargs_config
@property
def _config(self):
"""Hide internal configuration for lazy loading."""
if self._internal_config is None:
self._internal_config = dict()
self.build()
return self._internal_config
def __getattr__(self, name):
"""Fallback to the internal dictionary if attr not found."""
return getattr(self._config, name)
def __repr__(self):
"""Get repr from the internal dictionary."""
return self._config.__repr__()
def __getitem__(self, key):
"""Allow for square bracket notation."""
return self._config.__getitem__(key)
def __setitem__(self, key, value):
"""Allow for square bracket notation."""
return self._config.__setitem(key, value)
def build(self):
"""Build internal configuration."""
self.from_entry_point(self.entry_point_name)
self.from_envvar(self.env_var)
self._config.update(self.extra_config)
self.from_env(self.env_prefix)
def from_entry_point(self, entry_point_name):
"""Update values from module defined by entry point.
Configurations are loaded in alphabetical ascending order.
:param entry_point_name: The name of the entry point.
"""
eps = sorted(
pkg_resources.iter_entry_points(entry_point_name),
key=attrgetter('name'),
)
for ep in eps:
self.from_object(ep.load())
def from_envvar(self, variable_name):
"""Update values from an env variable pointing to a configuration file.
:param variable_name: The name of the environment variable.
"""
filename = os.environ.get(variable_name, None)
if filename:
self.from_pyfile(filename)
else:
logger.debug('Cannot find env file')
def from_pyfile(self, filename):
"""Update the values in the config from a Python file.
:param filename: The filename of the config.
"""
if not os.path.exists(filename):
logger.warn('File %s does not exists', filename)
return
d = types.ModuleType('config')
d.__file__ = filename
with open(filename, mode='rb') as config_file:
exec(compile(config_file.read(), filename, 'exec'), d.__dict__)
self.from_object(d)
def from_object(self, obj):
"""Update the values from the given object.
:param obj: An object to import cfg values from.
"""
for key in dir(obj):
if key.isupper():
self._config[key] = getattr(obj, key)
def from_env(self, prefix):
"""Load configuration from environment variables.
:param prefix: The prefix used to filter the environment variables.
"""
prefix_len = len(prefix)
for varname, value in os.environ.items():
if not varname.startswith(prefix):
continue
# Prepare values
varname = varname[prefix_len:]
value = value or self.get(varname)
# Evaluate value
try:
value = ast.literal_eval(value)
except (SyntaxError, ValueError):
pass
# Set value
self._config[varname] = value
| 32.87013
| 79
| 0.633544
| 4,883
| 0.964638
| 0
| 0
| 239
| 0.047215
| 0
| 0
| 2,340
| 0.462268
|
6603d02ce7ae8ff687520b5fd3b5f402880ef876
| 1,616
|
py
|
Python
|
tginviter/storage/base_storage.py
|
cuamckuu/tg-inviter
|
80b8d4664d1e2628b46ac1a6d58f8495c408d4b4
|
[
"MIT"
] | 20
|
2020-08-24T19:11:38.000Z
|
2022-03-17T19:24:50.000Z
|
tginviter/storage/base_storage.py
|
bequirky12/tg-inviter
|
5cad1bc1afce101be03a2cee805931e77b7f6842
|
[
"MIT"
] | null | null | null |
tginviter/storage/base_storage.py
|
bequirky12/tg-inviter
|
5cad1bc1afce101be03a2cee805931e77b7f6842
|
[
"MIT"
] | 8
|
2021-02-05T11:51:21.000Z
|
2022-03-22T08:48:44.000Z
|
import abc
from typing import AbstractSet
class BaseStorage(abc.ABC):
"""Abstract base class for storing invite link tokens"""
def insert(self, token: str, *, payload: dict, max_uses=1):
"""Insert token to storage. Shoud call super().insert(...)"""
if type(payload) != dict:
raise TypeError("Only dict payloads supported")
if any([x not in payload for x in ["joinchat_key", "channel_id"]]):
raise ValueError("Payload requires channel_id and joinchat_key")
if type(payload["channel_id"]) != int:
raise TypeError("Value of 'channel_id' should be int")
if type(payload["joinchat_key"]) != str:
raise TypeError("Value of 'joinchat_key' should be str")
@abc.abstractmethod
def uses_left(self, token: str) -> int:
"""Return amount of unused invitations for token"""
pass
@abc.abstractmethod
def count_new_use(self, token: str):
"""Increase token usages count"""
pass
@abc.abstractmethod
def get_payload(self, token: str) -> dict:
"""Return payload assosciated with given token"""
pass
@abc.abstractmethod
def get_channel_ids(self) -> AbstractSet[int]:
"""Return set of all inserted channel_ids"""
pass
@abc.abstractmethod
def is_subscribed(self, channel_id: int, user_id: int) -> bool:
"""Check if user is in channel's whitelist"""
pass
@abc.abstractmethod
def add_subscription(self, channel_id: int, user_id: int):
"""Subscribe user to be in channel whitelist"""
pass
| 31.076923
| 76
| 0.631188
| 1,571
| 0.972153
| 0
| 0
| 829
| 0.512995
| 0
| 0
| 590
| 0.365099
|
660466e84335250fcffeb29f786f70f54055b5a4
| 874
|
py
|
Python
|
docker/run.py
|
lvxiaojie111/2019NCCCU-
|
5b2d2b3a6e70e5b447ccaecd02fbead4763db82d
|
[
"Apache-2.0"
] | 3
|
2020-10-18T02:16:37.000Z
|
2020-10-18T02:30:03.000Z
|
docker/run.py
|
lvxiaojie111/2019NCCCU-
|
5b2d2b3a6e70e5b447ccaecd02fbead4763db82d
|
[
"Apache-2.0"
] | null | null | null |
docker/run.py
|
lvxiaojie111/2019NCCCU-
|
5b2d2b3a6e70e5b447ccaecd02fbead4763db82d
|
[
"Apache-2.0"
] | null | null | null |
#! /usr/bin/env python
# -*- coding: utf-8 -*-
import numpy as np
import os
import pandas as pd
import testmodel
import imageio
if __name__ == "__main__":
#################### 不可修改区域开始 ######################
testpath = '/home/data/' #测试集路径。包含验证码图片文件
result_folder_path = '/code/result/submission.csv' #结果输出文件路径
#################### 不可修改区域结束 ######################
# testpath = './test/' #测试集路径。包含验证码图片文件
# result_folder_path = './result/submission.csv' #结果输出文件路径
print("reading start!")
pic_names = [str(x) + ".jpg" for x in range(1, 5001)]
pics = [imageio.imread(testpath + pic_name) for pic_name in pic_names]
print("reading end!")
### 调用自己的工程文件,并这里生成结果文件(dataframe)
result = testmodel.model(testpath)
print(result)
# 注意路径不能更改,index需要设置为None
result.to_csv(result_folder_path, index=None)
### 参考代码结束:输出标准结果文件
| 32.37037
| 74
| 0.613272
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 666
| 0.606557
|
6604fb1cbe01eb3c82eaa8f6e34b1bd3c2c37677
| 359
|
py
|
Python
|
app/api/v1/__init__.py
|
Ethan-Ceng/Flask-CMS
|
2fe2664e9ae60affe277e9c3b50c18a2e32e422b
|
[
"MIT"
] | null | null | null |
app/api/v1/__init__.py
|
Ethan-Ceng/Flask-CMS
|
2fe2664e9ae60affe277e9c3b50c18a2e32e422b
|
[
"MIT"
] | null | null | null |
app/api/v1/__init__.py
|
Ethan-Ceng/Flask-CMS
|
2fe2664e9ae60affe277e9c3b50c18a2e32e422b
|
[
"MIT"
] | null | null | null |
from flask import Blueprint
from app.api.v1 import user, book, client, token
def create_blueprint():
bp_v1 = Blueprint('v1', __name__)
user.api.register(bp_v1, url_prefix='/client')
user.api.register(bp_v1, url_prefix='/user')
book.api.register(bp_v1, url_prefix='/book')
book.api.register(bp_v1, url_prefix='/token')
return bp_v1
| 25.642857
| 50
| 0.707521
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 35
| 0.097493
|
66055a1c87077054947e4816c06f4763187ad5d0
| 3,125
|
py
|
Python
|
draugr/visualisation/seaborn_utilities/seaborn_enums.py
|
cnHeider/draugr
|
b95e0bb1fa5efa581bfb28ff604f296ed2e6b7d6
|
[
"Apache-2.0"
] | 3
|
2019-09-27T08:04:59.000Z
|
2020-12-02T06:14:45.000Z
|
draugr/visualisation/seaborn_utilities/seaborn_enums.py
|
cnHeider/draugr
|
b95e0bb1fa5efa581bfb28ff604f296ed2e6b7d6
|
[
"Apache-2.0"
] | 64
|
2019-09-27T08:03:42.000Z
|
2022-03-28T15:07:30.000Z
|
draugr/visualisation/seaborn_utilities/seaborn_enums.py
|
cnHeider/draugr
|
b95e0bb1fa5efa581bfb28ff604f296ed2e6b7d6
|
[
"Apache-2.0"
] | 1
|
2020-10-01T00:18:57.000Z
|
2020-10-01T00:18:57.000Z
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
__author__ = "Christian Heider Nielsen"
__doc__ = r"""
Created on 26-01-2021
"""
from enum import Enum
from typing import Tuple
import numpy
from matplotlib import patheffects, pyplot
__all__ = ["plot_median_labels", "show_values_on_bars"]
from draugr.visualisation.matplotlib_utilities.styles.annotation import (
semi_opaque_round_tight_bbox,
)
class MatplotlibHorizontalAlignment(Enum):
Center = "center"
Right = "right"
Left = "left"
class MatplotlibVerticalAlignment(Enum):
Center = "center"
Top = "top"
Bottom = "bottom"
Baseline = "baseline"
CenterBaseline = "center_baseline"
def plot_median_labels(
ax: pyplot.Axes,
*,
has_fliers: bool = False,
# text_size: int = 10,
# text_weight: str = "normal",
stroke_width: int = 0,
precision: int = 3,
color: str = "black",
edgecolor: str = "black", # also the stroke color
ha: str = "center",
va: str = "center", # bottom
bbox: Tuple = semi_opaque_round_tight_bbox,
) -> None:
""" """
lines = ax.get_lines()
# depending on fliers, toggle between 5 and 6 lines per box
lines_per_box = 5 + int(has_fliers)
# iterate directly over all median lines, with an interval of lines_per_box
# this enables labeling of grouped data without relying on tick positions
for median_line in lines[4 : len(lines) : lines_per_box]:
# get center of median line
mean_x = sum(median_line._x) / len(median_line._x)
mean_y = sum(median_line._y) / len(median_line._y)
text = ax.text(
mean_x,
mean_y,
f"{round(mean_y, precision)}",
ha=ha,
va=va,
# fontweight=text_weight,
# size=text_size,
color=color,
# edgecolor=edgecolor
bbox=bbox,
) # print text to center coordinates
if stroke_width:
# create small black border around white text
# for better readability on multi-colored boxes
text.set_path_effects(
[
patheffects.Stroke(linewidth=stroke_width, foreground=edgecolor),
patheffects.Normal(),
]
)
def show_values_on_bars(axs: pyplot.Axes, h_v: str = "v", space: float = 0.4) -> None:
""" """
def _show_on_single_plot(ax):
if h_v == "v":
for p in ax.patches:
_x = p.get_x() + p.get_width() / 2
_y = p.get_y() + p.get_height()
value = int(p.get_height())
ax.text(_x, _y, value, ha="center")
elif h_v == "h":
for p in ax.patches:
_x = p.get_x() + p.get_width() + float(space)
_y = p.get_y() + p.get_height()
value = int(p.get_width())
ax.text(_x, _y, value, ha="left")
if isinstance(axs, numpy.ndarray):
for idx, ax in numpy.ndenumerate(axs):
_show_on_single_plot(ax)
else:
_show_on_single_plot(axs)
| 28.935185
| 86
| 0.57632
| 267
| 0.08544
| 0
| 0
| 0
| 0
| 0
| 0
| 836
| 0.26752
|
6606cccffcd956e1fc4991eb79ef12938f47ff11
| 523
|
py
|
Python
|
get_gecko_driver/platforms.py
|
zaironjacobs/get-gecko-driver
|
33a4a90c3a96b2e5519722f3dfab075b57e6482d
|
[
"MIT"
] | 3
|
2021-08-16T14:49:55.000Z
|
2022-03-20T14:44:13.000Z
|
get_gecko_driver/platforms.py
|
zaironjacobs/get-gecko-driver
|
33a4a90c3a96b2e5519722f3dfab075b57e6482d
|
[
"MIT"
] | null | null | null |
get_gecko_driver/platforms.py
|
zaironjacobs/get-gecko-driver
|
33a4a90c3a96b2e5519722f3dfab075b57e6482d
|
[
"MIT"
] | 1
|
2022-02-19T08:41:57.000Z
|
2022-02-19T08:41:57.000Z
|
class Platforms:
@property
def win(self):
return 'win'
@property
def linux(self):
return 'linux'
@property
def macos(self):
return 'macos'
@property
def win_32(self):
return 'win32'
@property
def win_64(self):
return 'win64'
@property
def linux_32(self):
return 'linux32'
@property
def linux_64(self):
return 'linux64'
@property
def list(self):
return [self.win, self.linux, self.macos]
| 15.382353
| 49
| 0.552581
| 522
| 0.998088
| 0
| 0
| 458
| 0.875717
| 0
| 0
| 51
| 0.097514
|
66085420dcc9a5728829c81982cb5b8af048ece5
| 1,061
|
py
|
Python
|
py/callback_dashboard.py
|
pnvnd/plotly
|
ede0bb0bb92484c2e3bf4e3631fa97f547e02c16
|
[
"Unlicense"
] | null | null | null |
py/callback_dashboard.py
|
pnvnd/plotly
|
ede0bb0bb92484c2e3bf4e3631fa97f547e02c16
|
[
"Unlicense"
] | null | null | null |
py/callback_dashboard.py
|
pnvnd/plotly
|
ede0bb0bb92484c2e3bf4e3631fa97f547e02c16
|
[
"Unlicense"
] | 1
|
2022-01-22T17:19:25.000Z
|
2022-01-22T17:19:25.000Z
|
from dash import dash, dcc, html
from dash.dependencies import Input, Output
import plotly.graph_objs as go
import pandas as pd
url = 'csv/covidtesting.csv'
df = pd.read_csv(url)
app = dash.Dash()
# list = df.columns[1:]
# filter_options = []
# for option in list:
# filter_options.append({'label': str(option), 'value': option})
app.layout = html.Div([
dcc.Graph(id='graphs'),
dcc.Dropdown(
id='option-picker',
options=[{"label": x, "value": x} for x in df.columns[1:]],
value=df.columns[1]
)
])
@app.callback(
Output('graphs', 'figure'),
[Input('option-picker', 'value')])
def update_figure(selected_option):
# fig = px.line(df, x='Reported Date', y=selected_option)
# return fig
return {
'data': [go.Scatter(x=df['Reported Date'], y=df[selected_option], mode='lines')],
'layout': go.Layout(
title='COVID Data',
xaxis={'title': 'Date'},
yaxis={'title': 'Number of Cases'}
)
}
if __name__ == '__main__':
app.run_server()
| 24.113636
| 89
| 0.597549
| 0
| 0
| 0
| 0
| 468
| 0.441093
| 0
| 0
| 394
| 0.371348
|
6608592b97fcda5eb8dc5fb8cb22369434750380
| 4,288
|
py
|
Python
|
appface.py
|
iljoong/FaceTag
|
c43fce89c92ce6de2f397580d80aa834d3e2dbb6
|
[
"MIT"
] | 2
|
2021-11-12T15:30:55.000Z
|
2021-11-14T13:53:13.000Z
|
appface.py
|
iljoong/FaceTag
|
c43fce89c92ce6de2f397580d80aa834d3e2dbb6
|
[
"MIT"
] | 1
|
2018-07-31T08:30:33.000Z
|
2018-08-01T04:44:52.000Z
|
appface.py
|
iljoong/FaceTag
|
c43fce89c92ce6de2f397580d80aa834d3e2dbb6
|
[
"MIT"
] | 1
|
2021-11-12T15:31:00.000Z
|
2021-11-12T15:31:00.000Z
|
###############################################################################################
from keras.models import Model, load_model
from PIL import Image
import numpy as np
import time
import cv2
import os
import logging
import pymongo
#import dlib
import requests
import appconfig
import json
cascade = cv2.CascadeClassifier('./face/haarcascade_frontalface_default.xml')
eyeCascade = cv2.CascadeClassifier('./face/haarcascade_eye.xml')
img_size = 200
labels = []
def loadModel():
global labels
try:
modelpath = os.environ.get('MODELPATH')
logging.debug("modelpath = %s" % modelpath)
if (modelpath != None and modelpath != ""):
model = load_model(modelpath)
modeltags = os.environ.get('MODELTAGS', 'tag1;tag2;tag3;tag4;tag5;tag6;tag7;tag8;tag9;tag10')
logging.debug("modeltags = %s" % modeltags)
labels = modeltags.split(';')
else:
model = None
except Exception as e:
raise e
return model
def loadCollection():
# mongodb
mongouri = os.environ.get('MONGOURI', 'mongodb://localhost:27017')
mongodb = os.environ.get('MONGODB', 'facedb')
mongocoll = os.environ.get('MONGOCOLL', 'face')
logging.debug("env: {}, {}, {}".format(mongouri, mongodb, mongocoll))
try:
conn = pymongo.MongoClient(mongouri)
#conn = pymongo.MongoClient(mongoip, 27017)
db = conn.get_database(mongodb)
except Exception as e:
raise e
return db.get_collection(mongocoll)
def detectFaceCV(gray):
start_time = time.time()
faces = []
try:
rects = cascade.detectMultiScale(gray, scaleFactor=1.3, minNeighbors=4, minSize=(30, 30),flags=cv2.CASCADE_SCALE_IMAGE)
for rect in rects:
(x, y, w, h) = rect
roi = gray[y:y+h, x:x+w]
eyes = eyeCascade.detectMultiScale(roi)
if len(eyes):
faces.append(rect)
except Exception as e:
print(e)
return faces, time.time() - start_time
"""
hog_face_detector = dlib.get_frontal_face_detector()
def detectFaceHog(gray):
start_time = time.time()
rects = []
try:
rects = hog_face_detector(gray, 1)
faces = [ [rect.left(), rect.top(), rect.right()-rect.left(), rect.bottom()-rect.top()] for rect in rects ]
except Exception as e:
print(e)
return faces, time.time() - start_time
cnn_face_detector = dlib.cnn_face_detection_model_v1("../face/mmod_human_face_detector.dat")
def detectFaceCNN(gray):
start_time = time.time()
rects = []
try:
rects = cnn_face_detector(gray, 1)
faces = [ [rect.rect.left(), rect.rect.top(), rect.rect.right()-rect.rect.left(), rect.rect.bottom()-rect.rect.top()] for rect in rects ]
except Exception as e:
print(e)
return faces, time.time() - start_time
"""
def classifyFace(model, frame):
global labels
if (model == None):
return ("none", 0.0)
img = cv2.resize(frame, (img_size, img_size), interpolation = cv2.INTER_AREA)
x = np.expand_dims(img, axis=0)
x = x.astype(float)
x /= 255.
start_time = time.time()
classes = model.predict(x)
result = np.squeeze(classes)
result_indices = np.argmax(result)
logging.debug("classify time: {:.2f} sec".format(time.time() - start_time))
return labels[result_indices], result[result_indices]*100
def classifyFaceCV(model, frame):
_, roi = cv2.imencode('.png', frame)
start_time = time.time()
apiurl = 'https://southcentralus.api.cognitive.microsoft.com/customvision/v2.0/Prediction/%s/image?iterationId=%s'
headers = {"Content-Type": "application/octet-stream", "Prediction-Key": appconfig.api_key }
r = requests.post(apiurl % (appconfig.api_id, appconfig.api_iter), headers=headers, data=roi.tostring())
if (r.status_code == 200):
# JSON parse
pred = json.loads(r.content.decode("utf-8"))
conf = float(pred['predictions'][0]['probability'])
label = pred['predictions'][0]['tagName']
logging.debug("classify time: {:.2f} sec".format(time.time() - start_time))
return label, conf*100
else:
return "none", 0.0
| 28.586667
| 145
| 0.614039
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1,598
| 0.372668
|
6608e0e22e04d214ade1044f1d502d28fa22890a
| 5,488
|
py
|
Python
|
src/object2.py
|
vmlaker/sherlock
|
4827803400907cb892b73f74736b151463fcda27
|
[
"MIT"
] | 62
|
2015-01-01T16:26:36.000Z
|
2022-03-07T11:38:57.000Z
|
src/object2.py
|
vmlaker/sherlock
|
4827803400907cb892b73f74736b151463fcda27
|
[
"MIT"
] | null | null | null |
src/object2.py
|
vmlaker/sherlock
|
4827803400907cb892b73f74736b151463fcda27
|
[
"MIT"
] | 13
|
2015-08-01T10:54:13.000Z
|
2020-12-05T02:19:23.000Z
|
"""Object detection pipeline."""
import multiprocessing
import datetime
import time
import sys
import cv2
import numpy as np
import socket
import sharedmem
import mpipe
import coils
import util
DEVICE = int(sys.argv[1])
WIDTH = int(sys.argv[2])
HEIGHT = int(sys.argv[3])
DURATION = float(sys.argv[4]) # In seconds, or -(port#) if negative.
# Create a process-shared table keyed on timestamps
# and holding references to allocated image memory.
images = multiprocessing.Manager().dict()
class Detector(mpipe.OrderedWorker):
"""Detects objects."""
def __init__(self, classifier, color):
self._classifier = classifier
self._color = color
def doTask(self, tstamp):
"""Run object detection."""
result = list()
try:
image = images[tstamp]
size = np.shape(image)[:2]
rects = self._classifier.detectMultiScale(
image,
scaleFactor=1.3,
minNeighbors=3,
minSize=tuple([x/20 for x in size]),
maxSize=tuple([x/2 for x in size]),
)
if len(rects):
for a,b,c,d in rects:
result.append((a,b,c,d, self._color))
except:
print('Error in detector !!!')
return result
# Monitor framerates for the given seconds past.
framerate = coils.RateTicker((2,))
class Postprocessor(mpipe.OrderedWorker):
def doTask(self, (tstamp, rects,)):
"""Augment the input image with results of processing."""
# Make a flat list from a list of lists .
rects = [item for sublist in rects for item in sublist]
# Draw rectangles.
for x1, y1, x2, y2, color in rects:
cv2.rectangle(
images[tstamp],
(x1, y1), (x1+x2, y1+y2),
color=color,
thickness=2,
)
# Write image dimensions and framerate.
size = np.shape(images[tstamp])[:2]
fps_text = '{:.2f} fps'.format(*framerate.tick())
util.writeOSD(
images[tstamp],
('{0}x{1}'.format(size[1], size[0]), fps_text),
)
return tstamp
cv2.namedWindow('object detection 2', cv2.cv.CV_WINDOW_NORMAL)
class Viewer(mpipe.OrderedWorker):
"""Displays image in a window."""
def doTask(self, tstamp):
try:
image = images[tstamp]
cv2.imshow('object detection 2', image)
cv2.waitKey(1)
except:
print('Error in viewer !!!')
return tstamp
# Create the detector stages.
detector_stages = list()
for classi in util.cascade.classifiers:
detector_stages.append(
mpipe.Stage(
Detector, 1,
classifier=classi,
color=util.cascade.colors[classi]),
)
# Assemble the image processing pipeline:
#
# detector(s) viewer
# || ||
# filter_detector --> postproc --> filter_viewer
#
filter_detector = mpipe.FilterStage(
detector_stages,
max_tasks=1,
cache_results=True,
)
postproc = mpipe.Stage(Postprocessor)
filter_viewer = mpipe.FilterStage(
(mpipe.Stage(Viewer),),
max_tasks=2,
drop_results=True,
)
filter_detector.link(postproc)
postproc.link(filter_viewer)
pipe_iproc = mpipe.Pipeline(filter_detector)
# Create an auxiliary process (modeled as a one-task pipeline)
# that simply pulls results from the image processing pipeline,
# and deallocates associated shared memory after allowing
# the designated amount of time to pass.
def deallocate(tdelta):
for tstamp in pipe_iproc.results():
elapsed = datetime.datetime.now() - tstamp
if tdelta - elapsed > datetime.timedelta():
time.sleep(tdelta.total_seconds())
del images[tstamp]
pipe_dealloc = mpipe.Pipeline(mpipe.UnorderedStage(deallocate))
pipe_dealloc.put(datetime.timedelta(microseconds=1e6)) # Start it up right away.
# Create the OpenCV video capture object.
cap = cv2.VideoCapture(DEVICE)
cap.set(3, WIDTH)
cap.set(4, HEIGHT)
# Run the video capture loop, allocating shared memory
# and feeding the image processing pipeline.
# Run for configured duration, or (if duration < 0) until we
# connect to socket (duration re-interpreted as port number.)
now = datetime.datetime.now()
end = now + datetime.timedelta(seconds=abs(DURATION))
while end > now or DURATION < 0:
if DURATION < 0:
# Bail if we connect to socket.
try:
socket.socket().connect(('', int(abs(DURATION))))
print('stopping')
break
except:
pass
# Mark the timestamp. This is the index by which
# image procesing stages will access allocated memory.
now = datetime.datetime.now()
# Capture the image.
hello, image = cap.read()
# Allocate shared memory for a copy of the input image.
shape = np.shape(image)
dtype = image.dtype
image_in = sharedmem.empty(shape, dtype)
# Copy the input image to its shared memory version.
image_in[:] = image.copy()
# Add to the images table.
images[now] = image_in # Input image.
# Put the timestamp on the image processing pipeline.
pipe_iproc.put(now)
# Signal pipelines to stop, and wait for deallocator
# to free all memory.
pipe_iproc.put(None)
pipe_dealloc.put(None)
for result in pipe_dealloc.results():
pass
# The end.
| 29.347594
| 81
| 0.622085
| 1,936
| 0.35277
| 0
| 0
| 0
| 0
| 0
| 0
| 1,725
| 0.314322
|
6609a45086c57a15190dcecf91e35dfc73259aed
| 78
|
py
|
Python
|
answers/001/answer1.py
|
PyLadiesTokyo/pyladies-tokyo-homework
|
3727451d073eb6e9b48f3cd0561c3b64b109f3a5
|
[
"Apache-2.0"
] | null | null | null |
answers/001/answer1.py
|
PyLadiesTokyo/pyladies-tokyo-homework
|
3727451d073eb6e9b48f3cd0561c3b64b109f3a5
|
[
"Apache-2.0"
] | null | null | null |
answers/001/answer1.py
|
PyLadiesTokyo/pyladies-tokyo-homework
|
3727451d073eb6e9b48f3cd0561c3b64b109f3a5
|
[
"Apache-2.0"
] | 1
|
2020-12-27T13:05:44.000Z
|
2020-12-27T13:05:44.000Z
|
# 1から10までの整数を表示する
for num in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:
print(num)
| 26
| 44
| 0.538462
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 42
| 0.411765
|
660ac2d8937432f3e9a4b2a9a74404def921da17
| 132
|
py
|
Python
|
lab2_typyOperacje/2.15.py
|
Damian9449/Python
|
dc9091e15356733821bbb6a768b7d5e428640340
|
[
"MIT"
] | 1
|
2017-11-15T13:03:40.000Z
|
2017-11-15T13:03:40.000Z
|
lab2_typyOperacje/2.15.py
|
Damian9449/Python
|
dc9091e15356733821bbb6a768b7d5e428640340
|
[
"MIT"
] | null | null | null |
lab2_typyOperacje/2.15.py
|
Damian9449/Python
|
dc9091e15356733821bbb6a768b7d5e428640340
|
[
"MIT"
] | null | null | null |
#!/usr/bin/python
L = [1, 3, 6, 77, 34, 45, 26, 81]
result = ""
for number in L:
result = result + str(number)
print(result)
| 13.2
| 33
| 0.575758
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 19
| 0.143939
|
660bd601b31c2cdb55bcbc98f8dc987a833cfa02
| 2,743
|
py
|
Python
|
af_scripts/tmp/blendShapeEditor.py
|
aaronfang/small-Scripts
|
890b10ab19fa9cdf2415aaf2dc08b81cc64fc79d
|
[
"MIT"
] | 1
|
2018-03-08T16:34:00.000Z
|
2018-03-08T16:34:00.000Z
|
af_scripts/tmp/blendShapeEditor.py
|
aaronfang/personal_scripts
|
890b10ab19fa9cdf2415aaf2dc08b81cc64fc79d
|
[
"MIT"
] | null | null | null |
af_scripts/tmp/blendShapeEditor.py
|
aaronfang/personal_scripts
|
890b10ab19fa9cdf2415aaf2dc08b81cc64fc79d
|
[
"MIT"
] | null | null | null |
import maya.cmds as cmds
class blendShapeEditor(object):
def __init__(self):
self.blendshape_node = blendshape_node = []
self.target_nodes = target_nodes = []
def prepareOrginialGeo(self,*args):
sel = cmds.ls(sl=True)[0]
if '_org' in sel:
blendshape_base_geo = cmds.duplicate(sel,n="{0}_blendshape".format(sel.split('_org')[0]))
layers = cmds.ls(type='displayLayer')
if "org_geo_layer" not in layers:
org_layer = cmds.createDisplayLayer(n="org_geo_layer",e=True)
cmds.editDisplayLayerMembers(org_layer,sel,blendshape_base_geo,noRecurse=True)
cmds.setAttr("{0}.displayType".format(org_layer),2)
elif "org_geo_layer" in layers:
cmds.editDisplayLayerMembers(org_layer,sel,noRecurse=True)
cmds.setAttr("{0}.displayType".format(org_layer),2)
else:
cmds.confirmDialog(m="Please Select The Orginial Geo!")
cmds.select(sel,blendshape_base_geo,r=True)
def createBlendShape(self,*args):
objs = cmds.ls(sl=True,fl=True)
blendshape_node = cmds.blendShape(objs[0:-1],objs[-1],n="{0}_blendshape".format(objs[-1]))
if len(blendshape_node)>0:
for obj in objs[0:-1]:
cmds.setAttr("{0}.visibility".format(obj),False)
def _UI(self,*args):
target_nodes = cmds.blendShape(blendshape_node[0],q=True,t=True)
target_weights = cmds.blendShape(blendshape_node[0],q=True,w=True)
if len(target_nodes)>0:
w = 300
if cmds.window('blendshapeWin',exists=True):cmds.deleteUI('blendshapeWin',window=True)
cmds.window('blendshapeWin',t='BlendShape Editor',w=w,rtf=1,mxb=0,mnb=0,s=0)
#cmds.columnLayout("mainColumn",p="blendshapeWin",columnAttach=('both', 2), rowSpacing=10, columnWidth=w)
cmds.rowColumnLayout('mainRowColumn',p='blendshapeWin',numberOfColumns=3, columnWidth=[(1, 100), (2, 150), (3, 50)] )
for i,tgt in enumerate(target_nodes):
cmds.text(p='mainRowColumn',l=tgt)
cmds.floatSlider("{0}FltSld".format(tgt),p='mainRowColumn',v=target_weights[i],max=1,min=0,cc=self.updateTargetValue)
cmds.button(p='mainRowColumn',l='Edit')
cmds.showWindow('blendshapeWin')
def updateTargetValue(self,*args):
for i,tgt in enumerate(target_nodes):
last_value = cmds.blendShape(blendshape_node[0],q=True,w=True)
cur_value = cmds.floatSlider("{0}FltSld".format(tgt),q=True,v=True)
if cur_value != last_value:
cmds.blendShape(blendshape_node[0],e=True,w=(i,cur_value))
blendShapeEditor()._UI()
| 49.872727
| 133
| 0.629603
| 2,682
| 0.977762
| 0
| 0
| 0
| 0
| 0
| 0
| 473
| 0.172439
|
660c4602652eeabae6b9b5b5f22abc8c78653e52
| 134
|
py
|
Python
|
bugtests/test000.py
|
doom38/jython_v2.2.1
|
0803a0c953c294e6d14f9fc7d08edf6a3e630a15
|
[
"CNRI-Jython"
] | null | null | null |
bugtests/test000.py
|
doom38/jython_v2.2.1
|
0803a0c953c294e6d14f9fc7d08edf6a3e630a15
|
[
"CNRI-Jython"
] | null | null | null |
bugtests/test000.py
|
doom38/jython_v2.2.1
|
0803a0c953c294e6d14f9fc7d08edf6a3e630a15
|
[
"CNRI-Jython"
] | null | null | null |
"""
Basic test, just raises a TestWarning
"""
import support
raise support.TestWarning('A test of TestWarning. It is not an error')
| 16.75
| 70
| 0.738806
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 88
| 0.656716
|
660dfb4d814fae5a38c519d53465f866ae0f301e
| 5,511
|
py
|
Python
|
model.py
|
braemt/attentive-multi-task-deep-reinforcement-learning
|
921feefce98076f88c892f0b7e6db8572f596763
|
[
"MIT"
] | 12
|
2019-04-07T02:04:48.000Z
|
2022-03-22T12:57:47.000Z
|
model.py
|
braemt/attentive-multi-task-deep-reinforcement-learning
|
921feefce98076f88c892f0b7e6db8572f596763
|
[
"MIT"
] | null | null | null |
model.py
|
braemt/attentive-multi-task-deep-reinforcement-learning
|
921feefce98076f88c892f0b7e6db8572f596763
|
[
"MIT"
] | 7
|
2019-04-07T02:04:49.000Z
|
2020-12-28T10:30:27.000Z
|
import numpy as np
import tensorflow as tf
def normalized_columns_initializer(std=1.0):
def _initializer(shape, dtype=None, partition_info=None):
out = np.random.randn(*shape).astype(np.float32)
out *= std / np.sqrt(np.square(out).sum(axis=0, keepdims=True))
return tf.constant(out)
return _initializer
def flatten(x):
return tf.reshape(x, [-1, np.prod(x.get_shape().as_list()[1:])])
def conv2d(x, num_filters, name, filter_size=(3, 3), stride=(1, 1), pad="SAME", dtype=tf.float32, collections=None,
trainable=True):
with tf.variable_scope(name):
stride_shape = [1, stride[0], stride[1], 1]
filter_shape = [filter_size[0], filter_size[1], int(x.get_shape()[3]), num_filters]
# there are "num input feature maps * filter height * filter width"
# inputs to each hidden unit
fan_in = np.prod(filter_shape[:3])
# each unit in the lower layer receives a gradient from:
# "num output feature maps * filter height * filter width" /
# pooling size
fan_out = np.prod(filter_shape[:2]) * num_filters
# initialize weights with random weights
w_bound = np.sqrt(6. / (fan_in + fan_out))
w = tf.get_variable("W", filter_shape, dtype, tf.random_uniform_initializer(-w_bound, w_bound),
collections=collections, trainable=trainable)
b = tf.get_variable("b", [1, 1, 1, num_filters], initializer=tf.constant_initializer(0.0),
collections=collections, trainable=trainable)
return tf.nn.conv2d(x, w, stride_shape, pad) + b
def linear(x, size, name, initializer=None, bias_init=0, trainable=True):
w = tf.get_variable(name + "/W", [x.get_shape()[1], size], initializer=initializer, trainable=trainable)
b = tf.get_variable(name + "/b", [size], initializer=tf.constant_initializer(bias_init), trainable=trainable)
return tf.matmul(x, w) + b
def categorical_sample(logits, d):
value = tf.squeeze(tf.multinomial(logits - tf.reduce_max(logits, [1], keep_dims=True), 1), [1])
return tf.one_hot(value, d)
def policy_distribution(logits):
return tf.nn.softmax(logits)
class FFPolicy(object):
def __init__(self, ob_space, ac_spaces, tasks):
self.x = tf.placeholder(tf.float32, [None] + list(ob_space))
self.task = tf.placeholder(tf.uint8, [None])
self.all_entropy = []
self.all_logits = []
self.all_actions = []
self.all_vfs = []
self.nns = int((tasks + 2) / 4) + 1
x = tf.nn.relu(conv2d(self.x, 32, "c1", [3, 3], [2, 2]))
x = tf.nn.relu(conv2d(x, 32, "c2", [3, 3], [1, 1]))
shared_layer = x
for i in range(self.nns + 1):
with tf.variable_scope("nn_" + str(i)):
x = tf.nn.relu(conv2d(shared_layer, 16, "c3", [3, 3], [1, 1]))
x = flatten(x)
if i == self.nns:
x = tf.nn.relu(linear(x, self.nns * tasks, "task_in", normalized_columns_initializer(0.01)))
one_hot_task = tf.one_hot(self.task, tasks)
x = tf.concat([x, one_hot_task], -1)
x = tf.nn.relu(linear(x, 256, "h1", normalized_columns_initializer(0.01)))
if i < self.nns:
self.all_logits.append(linear(x, max(ac_spaces), "action", normalized_columns_initializer(0.01)))
self.all_actions.append(tf.nn.softmax(self.all_logits[-1]))
self.all_vfs.append(tf.reshape(linear(x, 1, "value", normalized_columns_initializer(1.0)), [-1]))
else:
self.w_logits = linear(x, self.nns, "attention", normalized_columns_initializer(0.01))
self.w = tf.nn.softmax(self.w_logits)
self.logits = []
self.vf = []
self.sample = []
self.evaluation_policy_dist = []
logits = tf.log(
tf.clip_by_value(tf.einsum('ij,jik->ik', self.w, tf.convert_to_tensor(self.all_actions)), 1e-8,
1e+8))
vf = tf.einsum('ij,ji->i', self.w, tf.convert_to_tensor(self.all_vfs))
for j in range(tasks):
with tf.variable_scope("task_" + str(j)):
x = linear(logits, ac_spaces[j], "logits", normalized_columns_initializer(0.01))
self.logits.append(x)
self.vf.append(vf)
self.sample.append(categorical_sample(self.logits[-1], ac_spaces[j])[0, :])
self.evaluation_policy_dist.append(policy_distribution(self.logits[-1]))
self.var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, tf.get_variable_scope().name)
def act(self, ob, task):
sess = tf.get_default_session()
result = sess.run([self.sample[task], self.vf[task]], {self.x: [ob], self.task: [task]})
result[1] = result[1][0]
return result
def value(self, ob, task):
sess = tf.get_default_session()
return sess.run(self.vf[task], {self.x: [ob], self.task: [task]})[0]
def evaluation(self, ob, task):
sess = tf.get_default_session()
return sess.run([self.sample[task], self.vf[task], self.logits[task],
self.evaluation_policy_dist[task]], {self.x: [ob], self.task: [task]})
| 46.310924
| 119
| 0.577209
| 3,313
| 0.601161
| 0
| 0
| 0
| 0
| 0
| 0
| 380
| 0.068953
|
660ea1a100d2f6604cf5b576d0992caedb50b349
| 632
|
py
|
Python
|
src/data/852.py
|
NULLCT/LOMC
|
79a16474a8f21310e0fb47e536d527dd5dc6d655
|
[
"MIT"
] | null | null | null |
src/data/852.py
|
NULLCT/LOMC
|
79a16474a8f21310e0fb47e536d527dd5dc6d655
|
[
"MIT"
] | null | null | null |
src/data/852.py
|
NULLCT/LOMC
|
79a16474a8f21310e0fb47e536d527dd5dc6d655
|
[
"MIT"
] | null | null | null |
from collections import deque
n, q = map(int, input().split())
graph = [[] for _ in range(n + 1)]
for i in range(n - 1):
a, b = map(int, input().split())
graph[a].append(b)
graph[b].append(a)
CD = []
for i in range(q):
e, f = map(int, input().split())
CD.append([e, f])
dist = [-1] * (n + 1)
dist[0] = 0
dist[1] = 0
d = deque()
d.append(1)
while d:
v = d.popleft()
for i in graph[v]:
if dist[i] != -1:
continue
dist[i] = dist[v] + 1
d.append(i)
for i, j in CD:
x = dist[i] + dist[j]
if x % 2 == 0:
print("Town")
else:
print("Road")
| 16.631579
| 36
| 0.47943
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 12
| 0.018987
|
6611e568c85da823794769b3aacdd4d28bc257c0
| 265,414
|
py
|
Python
|
stashboard/contrib/status_images.py
|
l1kw1d/stashboard
|
3e4b18a8168c102d1e1d7f88fec22bcbfc530d23
|
[
"MIT"
] | 761
|
2015-01-01T05:28:26.000Z
|
2022-03-24T10:07:31.000Z
|
stashboard/contrib/status_images.py
|
l1kw1d/stashboard
|
3e4b18a8168c102d1e1d7f88fec22bcbfc530d23
|
[
"MIT"
] | 11
|
2015-02-05T23:43:47.000Z
|
2019-01-10T13:43:42.000Z
|
stashboard/contrib/status_images.py
|
l1kw1d/stashboard
|
3e4b18a8168c102d1e1d7f88fec22bcbfc530d23
|
[
"MIT"
] | 226
|
2015-01-05T15:04:45.000Z
|
2022-03-23T11:41:00.000Z
|
# Copyright (c) 2010 Twilio Inc.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
images = [
{
"url": "/images/status/address-book--arrow.png",
"name": "address-book--arrow"
},
{
"url": "/images/status/address-book--exclamation.png",
"name": "address-book--exclamation"
},
{
"url": "/images/status/address-book--minus.png",
"name": "address-book--minus"
},
{
"url": "/images/status/address-book--pencil.png",
"name": "address-book--pencil"
},
{
"url": "/images/status/address-book--plus.png",
"name": "address-book--plus"
},
{
"url": "/images/status/address-book-blue.png",
"name": "address-book-blue"
},
{
"url": "/images/status/address-book-open.png",
"name": "address-book-open"
},
{
"url": "/images/status/address-book.png",
"name": "address-book"
},
{
"url": "/images/status/alarm-clock--arrow.png",
"name": "alarm-clock--arrow"
},
{
"url": "/images/status/alarm-clock--exclamation.png",
"name": "alarm-clock--exclamation"
},
{
"url": "/images/status/alarm-clock--minus.png",
"name": "alarm-clock--minus"
},
{
"url": "/images/status/alarm-clock--pencil.png",
"name": "alarm-clock--pencil"
},
{
"url": "/images/status/alarm-clock--plus.png",
"name": "alarm-clock--plus"
},
{
"url": "/images/status/alarm-clock-blue.png",
"name": "alarm-clock-blue"
},
{
"url": "/images/status/alarm-clock-select-remain.png",
"name": "alarm-clock-select-remain"
},
{
"url": "/images/status/alarm-clock-select.png",
"name": "alarm-clock-select"
},
{
"url": "/images/status/alarm-clock.png",
"name": "alarm-clock"
},
{
"url": "/images/status/anchor.png",
"name": "anchor"
},
{
"url": "/images/status/application--arrow.png",
"name": "application--arrow"
},
{
"url": "/images/status/application--exclamation.png",
"name": "application--exclamation"
},
{
"url": "/images/status/application--minus.png",
"name": "application--minus"
},
{
"url": "/images/status/application--pencil.png",
"name": "application--pencil"
},
{
"url": "/images/status/application--plus.png",
"name": "application--plus"
},
{
"url": "/images/status/application-block.png",
"name": "application-block"
},
{
"url": "/images/status/application-blog.png",
"name": "application-blog"
},
{
"url": "/images/status/application-blue.png",
"name": "application-blue"
},
{
"url": "/images/status/application-browser.png",
"name": "application-browser"
},
{
"url": "/images/status/application-detail.png",
"name": "application-detail"
},
{
"url": "/images/status/application-dialog.png",
"name": "application-dialog"
},
{
"url": "/images/status/application-dock-090.png",
"name": "application-dock-090"
},
{
"url": "/images/status/application-dock-180.png",
"name": "application-dock-180"
},
{
"url": "/images/status/application-dock-270.png",
"name": "application-dock-270"
},
{
"url": "/images/status/application-dock-tab.png",
"name": "application-dock-tab"
},
{
"url": "/images/status/application-dock.png",
"name": "application-dock"
},
{
"url": "/images/status/application-document.png",
"name": "application-document"
},
{
"url": "/images/status/application-documents.png",
"name": "application-documents"
},
{
"url": "/images/status/application-export.png",
"name": "application-export"
},
{
"url": "/images/status/application-form.png",
"name": "application-form"
},
{
"url": "/images/status/application-home.png",
"name": "application-home"
},
{
"url": "/images/status/application-icon.png",
"name": "application-icon"
},
{
"url": "/images/status/application-image.png",
"name": "application-image"
},
{
"url": "/images/status/application-import.png",
"name": "application-import"
},
{
"url": "/images/status/application-list.png",
"name": "application-list"
},
{
"url": "/images/status/application-monitor.png",
"name": "application-monitor"
},
{
"url": "/images/status/application-network.png",
"name": "application-network"
},
{
"url": "/images/status/application-rename.png",
"name": "application-rename"
},
{
"url": "/images/status/application-resize-actual.png",
"name": "application-resize-actual"
},
{
"url": "/images/status/application-resize-full.png",
"name": "application-resize-full"
},
{
"url": "/images/status/application-resize.png",
"name": "application-resize"
},
{
"url": "/images/status/application-run.png",
"name": "application-run"
},
{
"url": "/images/status/application-search-result.png",
"name": "application-search-result"
},
{
"url": "/images/status/application-share.png",
"name": "application-share"
},
{
"url": "/images/status/application-sidebar-collapse.png",
"name": "application-sidebar-collapse"
},
{
"url": "/images/status/application-sidebar-expand.png",
"name": "application-sidebar-expand"
},
{
"url": "/images/status/application-sidebar-list.png",
"name": "application-sidebar-list"
},
{
"url": "/images/status/application-sidebar.png",
"name": "application-sidebar"
},
{
"url": "/images/status/application-small-blue.png",
"name": "application-small-blue"
},
{
"url": "/images/status/application-small-list-blue.png",
"name": "application-small-list-blue"
},
{
"url": "/images/status/application-small-list.png",
"name": "application-small-list"
},
{
"url": "/images/status/application-small.png",
"name": "application-small"
},
{
"url": "/images/status/application-split-tile.png",
"name": "application-split-tile"
},
{
"url": "/images/status/application-split-vertical.png",
"name": "application-split-vertical"
},
{
"url": "/images/status/application-split.png",
"name": "application-split"
},
{
"url": "/images/status/application-table.png",
"name": "application-table"
},
{
"url": "/images/status/application-task.png",
"name": "application-task"
},
{
"url": "/images/status/application-terminal.png",
"name": "application-terminal"
},
{
"url": "/images/status/application-text-image.png",
"name": "application-text-image"
},
{
"url": "/images/status/application-text.png",
"name": "application-text"
},
{
"url": "/images/status/application-tree.png",
"name": "application-tree"
},
{
"url": "/images/status/application-wave.png",
"name": "application-wave"
},
{
"url": "/images/status/application.png",
"name": "application"
},
{
"url": "/images/status/applications-blue.png",
"name": "applications-blue"
},
{
"url": "/images/status/applications-stack.png",
"name": "applications-stack"
},
{
"url": "/images/status/applications.png",
"name": "applications"
},
{
"url": "/images/status/arrow-000-medium.png",
"name": "arrow-000-medium"
},
{
"url": "/images/status/arrow-000-small.png",
"name": "arrow-000-small"
},
{
"url": "/images/status/arrow-045-medium.png",
"name": "arrow-045-medium"
},
{
"url": "/images/status/arrow-045-small.png",
"name": "arrow-045-small"
},
{
"url": "/images/status/arrow-045.png",
"name": "arrow-045"
},
{
"url": "/images/status/arrow-090-medium.png",
"name": "arrow-090-medium"
},
{
"url": "/images/status/arrow-090-small.png",
"name": "arrow-090-small"
},
{
"url": "/images/status/arrow-090.png",
"name": "arrow-090"
},
{
"url": "/images/status/arrow-135-medium.png",
"name": "arrow-135-medium"
},
{
"url": "/images/status/arrow-135-small.png",
"name": "arrow-135-small"
},
{
"url": "/images/status/arrow-135.png",
"name": "arrow-135"
},
{
"url": "/images/status/arrow-180-medium.png",
"name": "arrow-180-medium"
},
{
"url": "/images/status/arrow-180-small.png",
"name": "arrow-180-small"
},
{
"url": "/images/status/arrow-180.png",
"name": "arrow-180"
},
{
"url": "/images/status/arrow-225-medium.png",
"name": "arrow-225-medium"
},
{
"url": "/images/status/arrow-225-small.png",
"name": "arrow-225-small"
},
{
"url": "/images/status/arrow-225.png",
"name": "arrow-225"
},
{
"url": "/images/status/arrow-270-medium.png",
"name": "arrow-270-medium"
},
{
"url": "/images/status/arrow-270-small.png",
"name": "arrow-270-small"
},
{
"url": "/images/status/arrow-270.png",
"name": "arrow-270"
},
{
"url": "/images/status/arrow-315-medium.png",
"name": "arrow-315-medium"
},
{
"url": "/images/status/arrow-315-small.png",
"name": "arrow-315-small"
},
{
"url": "/images/status/arrow-315.png",
"name": "arrow-315"
},
{
"url": "/images/status/arrow-branch-000-left.png",
"name": "arrow-branch-000-left"
},
{
"url": "/images/status/arrow-branch-090-left.png",
"name": "arrow-branch-090-left"
},
{
"url": "/images/status/arrow-branch-090.png",
"name": "arrow-branch-090"
},
{
"url": "/images/status/arrow-branch-180-left.png",
"name": "arrow-branch-180-left"
},
{
"url": "/images/status/arrow-branch-180.png",
"name": "arrow-branch-180"
},
{
"url": "/images/status/arrow-branch-270-left.png",
"name": "arrow-branch-270-left"
},
{
"url": "/images/status/arrow-branch-270.png",
"name": "arrow-branch-270"
},
{
"url": "/images/status/arrow-branch.png",
"name": "arrow-branch"
},
{
"url": "/images/status/arrow-circle-045-left.png",
"name": "arrow-circle-045-left"
},
{
"url": "/images/status/arrow-circle-135-left.png",
"name": "arrow-circle-135-left"
},
{
"url": "/images/status/arrow-circle-135.png",
"name": "arrow-circle-135"
},
{
"url": "/images/status/arrow-circle-225-left.png",
"name": "arrow-circle-225-left"
},
{
"url": "/images/status/arrow-circle-225.png",
"name": "arrow-circle-225"
},
{
"url": "/images/status/arrow-circle-315-left.png",
"name": "arrow-circle-315-left"
},
{
"url": "/images/status/arrow-circle-315.png",
"name": "arrow-circle-315"
},
{
"url": "/images/status/arrow-circle-double-135.png",
"name": "arrow-circle-double-135"
},
{
"url": "/images/status/arrow-circle-double.png",
"name": "arrow-circle-double"
},
{
"url": "/images/status/arrow-circle.png",
"name": "arrow-circle"
},
{
"url": "/images/status/arrow-continue-000-top.png",
"name": "arrow-continue-000-top"
},
{
"url": "/images/status/arrow-continue-090-left.png",
"name": "arrow-continue-090-left"
},
{
"url": "/images/status/arrow-continue-090.png",
"name": "arrow-continue-090"
},
{
"url": "/images/status/arrow-continue-180-top.png",
"name": "arrow-continue-180-top"
},
{
"url": "/images/status/arrow-continue-180.png",
"name": "arrow-continue-180"
},
{
"url": "/images/status/arrow-continue-270-left.png",
"name": "arrow-continue-270-left"
},
{
"url": "/images/status/arrow-continue-270.png",
"name": "arrow-continue-270"
},
{
"url": "/images/status/arrow-continue.png",
"name": "arrow-continue"
},
{
"url": "/images/status/arrow-curve-000-double.png",
"name": "arrow-curve-000-double"
},
{
"url": "/images/status/arrow-curve-000-left.png",
"name": "arrow-curve-000-left"
},
{
"url": "/images/status/arrow-curve-090-left.png",
"name": "arrow-curve-090-left"
},
{
"url": "/images/status/arrow-curve-090.png",
"name": "arrow-curve-090"
},
{
"url": "/images/status/arrow-curve-180-double.png",
"name": "arrow-curve-180-double"
},
{
"url": "/images/status/arrow-curve-180-left.png",
"name": "arrow-curve-180-left"
},
{
"url": "/images/status/arrow-curve-180.png",
"name": "arrow-curve-180"
},
{
"url": "/images/status/arrow-curve-270-left.png",
"name": "arrow-curve-270-left"
},
{
"url": "/images/status/arrow-curve-270.png",
"name": "arrow-curve-270"
},
{
"url": "/images/status/arrow-curve.png",
"name": "arrow-curve"
},
{
"url": "/images/status/arrow-in.png",
"name": "arrow-in"
},
{
"url": "/images/status/arrow-join-090.png",
"name": "arrow-join-090"
},
{
"url": "/images/status/arrow-join-180.png",
"name": "arrow-join-180"
},
{
"url": "/images/status/arrow-join-270.png",
"name": "arrow-join-270"
},
{
"url": "/images/status/arrow-join.png",
"name": "arrow-join"
},
{
"url": "/images/status/arrow-merge-000-left.png",
"name": "arrow-merge-000-left"
},
{
"url": "/images/status/arrow-merge-090-left.png",
"name": "arrow-merge-090-left"
},
{
"url": "/images/status/arrow-merge-090.png",
"name": "arrow-merge-090"
},
{
"url": "/images/status/arrow-merge-180-left.png",
"name": "arrow-merge-180-left"
},
{
"url": "/images/status/arrow-merge-180.png",
"name": "arrow-merge-180"
},
{
"url": "/images/status/arrow-merge-270-left.png",
"name": "arrow-merge-270-left"
},
{
"url": "/images/status/arrow-merge-270.png",
"name": "arrow-merge-270"
},
{
"url": "/images/status/arrow-merge.png",
"name": "arrow-merge"
},
{
"url": "/images/status/arrow-move.png",
"name": "arrow-move"
},
{
"url": "/images/status/arrow-out.png",
"name": "arrow-out"
},
{
"url": "/images/status/arrow-repeat-once.png",
"name": "arrow-repeat-once"
},
{
"url": "/images/status/arrow-repeat.png",
"name": "arrow-repeat"
},
{
"url": "/images/status/arrow-resize-045.png",
"name": "arrow-resize-045"
},
{
"url": "/images/status/arrow-resize-090.png",
"name": "arrow-resize-090"
},
{
"url": "/images/status/arrow-resize-135.png",
"name": "arrow-resize-135"
},
{
"url": "/images/status/arrow-resize.png",
"name": "arrow-resize"
},
{
"url": "/images/status/arrow-return-000-left.png",
"name": "arrow-return-000-left"
},
{
"url": "/images/status/arrow-return-090-left.png",
"name": "arrow-return-090-left"
},
{
"url": "/images/status/arrow-return-090.png",
"name": "arrow-return-090"
},
{
"url": "/images/status/arrow-return-180-left.png",
"name": "arrow-return-180-left"
},
{
"url": "/images/status/arrow-return-180.png",
"name": "arrow-return-180"
},
{
"url": "/images/status/arrow-return-270-left.png",
"name": "arrow-return-270-left"
},
{
"url": "/images/status/arrow-return-270.png",
"name": "arrow-return-270"
},
{
"url": "/images/status/arrow-return.png",
"name": "arrow-return"
},
{
"url": "/images/status/arrow-retweet.png",
"name": "arrow-retweet"
},
{
"url": "/images/status/arrow-skip-090.png",
"name": "arrow-skip-090"
},
{
"url": "/images/status/arrow-skip-180.png",
"name": "arrow-skip-180"
},
{
"url": "/images/status/arrow-skip-270.png",
"name": "arrow-skip-270"
},
{
"url": "/images/status/arrow-skip.png",
"name": "arrow-skip"
},
{
"url": "/images/status/arrow-split-090.png",
"name": "arrow-split-090"
},
{
"url": "/images/status/arrow-split-180.png",
"name": "arrow-split-180"
},
{
"url": "/images/status/arrow-split-270.png",
"name": "arrow-split-270"
},
{
"url": "/images/status/arrow-split.png",
"name": "arrow-split"
},
{
"url": "/images/status/arrow-step-out.png",
"name": "arrow-step-out"
},
{
"url": "/images/status/arrow-step-over.png",
"name": "arrow-step-over"
},
{
"url": "/images/status/arrow-step.png",
"name": "arrow-step"
},
{
"url": "/images/status/arrow-stop-090.png",
"name": "arrow-stop-090"
},
{
"url": "/images/status/arrow-stop-180.png",
"name": "arrow-stop-180"
},
{
"url": "/images/status/arrow-stop-270.png",
"name": "arrow-stop-270"
},
{
"url": "/images/status/arrow-stop.png",
"name": "arrow-stop"
},
{
"url": "/images/status/arrow-switch-090.png",
"name": "arrow-switch-090"
},
{
"url": "/images/status/arrow-switch-180.png",
"name": "arrow-switch-180"
},
{
"url": "/images/status/arrow-switch-270.png",
"name": "arrow-switch-270"
},
{
"url": "/images/status/arrow-switch.png",
"name": "arrow-switch"
},
{
"url": "/images/status/arrow-transition-090.png",
"name": "arrow-transition-090"
},
{
"url": "/images/status/arrow-transition-180.png",
"name": "arrow-transition-180"
},
{
"url": "/images/status/arrow-transition-270.png",
"name": "arrow-transition-270"
},
{
"url": "/images/status/arrow-transition.png",
"name": "arrow-transition"
},
{
"url": "/images/status/arrow-turn-000-left.png",
"name": "arrow-turn-000-left"
},
{
"url": "/images/status/arrow-turn-090-left.png",
"name": "arrow-turn-090-left"
},
{
"url": "/images/status/arrow-turn-090.png",
"name": "arrow-turn-090"
},
{
"url": "/images/status/arrow-turn-180-left.png",
"name": "arrow-turn-180-left"
},
{
"url": "/images/status/arrow-turn-180.png",
"name": "arrow-turn-180"
},
{
"url": "/images/status/arrow-turn-270-left.png",
"name": "arrow-turn-270-left"
},
{
"url": "/images/status/arrow-turn-270.png",
"name": "arrow-turn-270"
},
{
"url": "/images/status/arrow-turn.png",
"name": "arrow-turn"
},
{
"url": "/images/status/arrow.png",
"name": "arrow"
},
{
"url": "/images/status/asterisk.png",
"name": "asterisk"
},
{
"url": "/images/status/auction-hammer--arrow.png",
"name": "auction-hammer--arrow"
},
{
"url": "/images/status/auction-hammer--exclamation.png",
"name": "auction-hammer--exclamation"
},
{
"url": "/images/status/auction-hammer--minus.png",
"name": "auction-hammer--minus"
},
{
"url": "/images/status/auction-hammer--pencil.png",
"name": "auction-hammer--pencil"
},
{
"url": "/images/status/auction-hammer--plus.png",
"name": "auction-hammer--plus"
},
{
"url": "/images/status/auction-hammer-gavel.png",
"name": "auction-hammer-gavel"
},
{
"url": "/images/status/auction-hammer.png",
"name": "auction-hammer"
},
{
"url": "/images/status/balance--arrow.png",
"name": "balance--arrow"
},
{
"url": "/images/status/balance--exclamation.png",
"name": "balance--exclamation"
},
{
"url": "/images/status/balance--minus.png",
"name": "balance--minus"
},
{
"url": "/images/status/balance--pencil.png",
"name": "balance--pencil"
},
{
"url": "/images/status/balance--plus.png",
"name": "balance--plus"
},
{
"url": "/images/status/balance-unbalance.png",
"name": "balance-unbalance"
},
{
"url": "/images/status/balance.png",
"name": "balance"
},
{
"url": "/images/status/balloon--arrow.png",
"name": "balloon--arrow"
},
{
"url": "/images/status/balloon--exclamation.png",
"name": "balloon--exclamation"
},
{
"url": "/images/status/balloon--minus.png",
"name": "balloon--minus"
},
{
"url": "/images/status/balloon--pencil.png",
"name": "balloon--pencil"
},
{
"url": "/images/status/balloon--plus.png",
"name": "balloon--plus"
},
{
"url": "/images/status/balloon-ellipsis.png",
"name": "balloon-ellipsis"
},
{
"url": "/images/status/balloon-facebook-left.png",
"name": "balloon-facebook-left"
},
{
"url": "/images/status/balloon-facebook.png",
"name": "balloon-facebook"
},
{
"url": "/images/status/balloon-left.png",
"name": "balloon-left"
},
{
"url": "/images/status/balloon-quotation.png",
"name": "balloon-quotation"
},
{
"url": "/images/status/balloon-small-left.png",
"name": "balloon-small-left"
},
{
"url": "/images/status/balloon-small.png",
"name": "balloon-small"
},
{
"url": "/images/status/balloon-smiley.png",
"name": "balloon-smiley"
},
{
"url": "/images/status/balloon-sound.png",
"name": "balloon-sound"
},
{
"url": "/images/status/balloon-twitter-left.png",
"name": "balloon-twitter-left"
},
{
"url": "/images/status/balloon-twitter-retweet.png",
"name": "balloon-twitter-retweet"
},
{
"url": "/images/status/balloon-twitter.png",
"name": "balloon-twitter"
},
{
"url": "/images/status/balloon.png",
"name": "balloon"
},
{
"url": "/images/status/balloons-facebook.png",
"name": "balloons-facebook"
},
{
"url": "/images/status/balloons-twitter.png",
"name": "balloons-twitter"
},
{
"url": "/images/status/balloons.png",
"name": "balloons"
},
{
"url": "/images/status/bandaid--arrow.png",
"name": "bandaid--arrow"
},
{
"url": "/images/status/bandaid--exclamation.png",
"name": "bandaid--exclamation"
},
{
"url": "/images/status/bandaid--minus.png",
"name": "bandaid--minus"
},
{
"url": "/images/status/bandaid--pencil.png",
"name": "bandaid--pencil"
},
{
"url": "/images/status/bandaid--plus.png",
"name": "bandaid--plus"
},
{
"url": "/images/status/bandaid-small.png",
"name": "bandaid-small"
},
{
"url": "/images/status/bandaid.png",
"name": "bandaid"
},
{
"url": "/images/status/bank--arrow.png",
"name": "bank--arrow"
},
{
"url": "/images/status/bank--exclamation.png",
"name": "bank--exclamation"
},
{
"url": "/images/status/bank--minus.png",
"name": "bank--minus"
},
{
"url": "/images/status/bank--pencil.png",
"name": "bank--pencil"
},
{
"url": "/images/status/bank--plus.png",
"name": "bank--plus"
},
{
"url": "/images/status/bank.png",
"name": "bank"
},
{
"url": "/images/status/barcode-2d.png",
"name": "barcode-2d"
},
{
"url": "/images/status/barcode.png",
"name": "barcode"
},
{
"url": "/images/status/battery--arrow.png",
"name": "battery--arrow"
},
{
"url": "/images/status/battery--exclamation.png",
"name": "battery--exclamation"
},
{
"url": "/images/status/battery--minus.png",
"name": "battery--minus"
},
{
"url": "/images/status/battery--pencil.png",
"name": "battery--pencil"
},
{
"url": "/images/status/battery--plus.png",
"name": "battery--plus"
},
{
"url": "/images/status/battery-charge.png",
"name": "battery-charge"
},
{
"url": "/images/status/battery-empty.png",
"name": "battery-empty"
},
{
"url": "/images/status/battery-full.png",
"name": "battery-full"
},
{
"url": "/images/status/battery-low.png",
"name": "battery-low"
},
{
"url": "/images/status/battery-plug.png",
"name": "battery-plug"
},
{
"url": "/images/status/battery.png",
"name": "battery"
},
{
"url": "/images/status/beaker--arrow.png",
"name": "beaker--arrow"
},
{
"url": "/images/status/beaker--exclamation.png",
"name": "beaker--exclamation"
},
{
"url": "/images/status/beaker--minus.png",
"name": "beaker--minus"
},
{
"url": "/images/status/beaker--pencil.png",
"name": "beaker--pencil"
},
{
"url": "/images/status/beaker--plus.png",
"name": "beaker--plus"
},
{
"url": "/images/status/beaker-empty.png",
"name": "beaker-empty"
},
{
"url": "/images/status/beaker.png",
"name": "beaker"
},
{
"url": "/images/status/bean--arrow.png",
"name": "bean--arrow"
},
{
"url": "/images/status/bean--exclamation.png",
"name": "bean--exclamation"
},
{
"url": "/images/status/bean--minus.png",
"name": "bean--minus"
},
{
"url": "/images/status/bean--pencil.png",
"name": "bean--pencil"
},
{
"url": "/images/status/bean--plus.png",
"name": "bean--plus"
},
{
"url": "/images/status/bean-green.png",
"name": "bean-green"
},
{
"url": "/images/status/bean-small-green.png",
"name": "bean-small-green"
},
{
"url": "/images/status/bean-small.png",
"name": "bean-small"
},
{
"url": "/images/status/bean.png",
"name": "bean"
},
{
"url": "/images/status/beans.png",
"name": "beans"
},
{
"url": "/images/status/bell--arrow.png",
"name": "bell--arrow"
},
{
"url": "/images/status/bell--exclamation.png",
"name": "bell--exclamation"
},
{
"url": "/images/status/bell--minus.png",
"name": "bell--minus"
},
{
"url": "/images/status/bell--pencil.png",
"name": "bell--pencil"
},
{
"url": "/images/status/bell--plus.png",
"name": "bell--plus"
},
{
"url": "/images/status/bell-small.png",
"name": "bell-small"
},
{
"url": "/images/status/bell.png",
"name": "bell"
},
{
"url": "/images/status/bin--arrow.png",
"name": "bin--arrow"
},
{
"url": "/images/status/bin--exclamation.png",
"name": "bin--exclamation"
},
{
"url": "/images/status/bin--minus.png",
"name": "bin--minus"
},
{
"url": "/images/status/bin--pencil.png",
"name": "bin--pencil"
},
{
"url": "/images/status/bin--plus.png",
"name": "bin--plus"
},
{
"url": "/images/status/bin-full.png",
"name": "bin-full"
},
{
"url": "/images/status/bin-metal-full.png",
"name": "bin-metal-full"
},
{
"url": "/images/status/bin-metal.png",
"name": "bin-metal"
},
{
"url": "/images/status/bin.png",
"name": "bin"
},
{
"url": "/images/status/binocular--arrow.png",
"name": "binocular--arrow"
},
{
"url": "/images/status/binocular--exclamation.png",
"name": "binocular--exclamation"
},
{
"url": "/images/status/binocular--minus.png",
"name": "binocular--minus"
},
{
"url": "/images/status/binocular--pencil.png",
"name": "binocular--pencil"
},
{
"url": "/images/status/binocular--plus.png",
"name": "binocular--plus"
},
{
"url": "/images/status/binocular-small.png",
"name": "binocular-small"
},
{
"url": "/images/status/binocular.png",
"name": "binocular"
},
{
"url": "/images/status/block--arrow.png",
"name": "block--arrow"
},
{
"url": "/images/status/block--exclamation.png",
"name": "block--exclamation"
},
{
"url": "/images/status/block--minus.png",
"name": "block--minus"
},
{
"url": "/images/status/block--pencil.png",
"name": "block--pencil"
},
{
"url": "/images/status/block--plus.png",
"name": "block--plus"
},
{
"url": "/images/status/block-share.png",
"name": "block-share"
},
{
"url": "/images/status/block-small.png",
"name": "block-small"
},
{
"url": "/images/status/block.png",
"name": "block"
},
{
"url": "/images/status/blog--arrow.png",
"name": "blog--arrow"
},
{
"url": "/images/status/blog--exclamation.png",
"name": "blog--exclamation"
},
{
"url": "/images/status/blog--minus.png",
"name": "blog--minus"
},
{
"url": "/images/status/blog--pencil.png",
"name": "blog--pencil"
},
{
"url": "/images/status/blog--plus.png",
"name": "blog--plus"
},
{
"url": "/images/status/blog-blue.png",
"name": "blog-blue"
},
{
"url": "/images/status/blog.png",
"name": "blog"
},
{
"url": "/images/status/blogs-stack.png",
"name": "blogs-stack"
},
{
"url": "/images/status/blogs.png",
"name": "blogs"
},
{
"url": "/images/status/blueprint--arrow.png",
"name": "blueprint--arrow"
},
{
"url": "/images/status/blueprint--exclamation.png",
"name": "blueprint--exclamation"
},
{
"url": "/images/status/blueprint--minus.png",
"name": "blueprint--minus"
},
{
"url": "/images/status/blueprint--pencil.png",
"name": "blueprint--pencil"
},
{
"url": "/images/status/blueprint--plus.png",
"name": "blueprint--plus"
},
{
"url": "/images/status/blueprint-horizontal.png",
"name": "blueprint-horizontal"
},
{
"url": "/images/status/blueprint.png",
"name": "blueprint"
},
{
"url": "/images/status/blueprints.png",
"name": "blueprints"
},
{
"url": "/images/status/bluetooth.png",
"name": "bluetooth"
},
{
"url": "/images/status/bomb.png",
"name": "bomb"
},
{
"url": "/images/status/book--arrow.png",
"name": "book--arrow"
},
{
"url": "/images/status/book--exclamation.png",
"name": "book--exclamation"
},
{
"url": "/images/status/book--minus.png",
"name": "book--minus"
},
{
"url": "/images/status/book--pencil.png",
"name": "book--pencil"
},
{
"url": "/images/status/book--plus.png",
"name": "book--plus"
},
{
"url": "/images/status/book-bookmark.png",
"name": "book-bookmark"
},
{
"url": "/images/status/book-brown.png",
"name": "book-brown"
},
{
"url": "/images/status/book-open-bookmark.png",
"name": "book-open-bookmark"
},
{
"url": "/images/status/book-open-next.png",
"name": "book-open-next"
},
{
"url": "/images/status/book-open-previous.png",
"name": "book-open-previous"
},
{
"url": "/images/status/book-open.png",
"name": "book-open"
},
{
"url": "/images/status/book-question.png",
"name": "book-question"
},
{
"url": "/images/status/book-small-brown.png",
"name": "book-small-brown"
},
{
"url": "/images/status/book-small.png",
"name": "book-small"
},
{
"url": "/images/status/book.png",
"name": "book"
},
{
"url": "/images/status/bookmark--arrow.png",
"name": "bookmark--arrow"
},
{
"url": "/images/status/bookmark--exclamation.png",
"name": "bookmark--exclamation"
},
{
"url": "/images/status/bookmark--minus.png",
"name": "bookmark--minus"
},
{
"url": "/images/status/bookmark--pencil.png",
"name": "bookmark--pencil"
},
{
"url": "/images/status/bookmark--plus.png",
"name": "bookmark--plus"
},
{
"url": "/images/status/bookmark-export.png",
"name": "bookmark-export"
},
{
"url": "/images/status/bookmark-import.png",
"name": "bookmark-import"
},
{
"url": "/images/status/bookmark-small.png",
"name": "bookmark-small"
},
{
"url": "/images/status/bookmark.png",
"name": "bookmark"
},
{
"url": "/images/status/books-brown.png",
"name": "books-brown"
},
{
"url": "/images/status/books-stack.png",
"name": "books-stack"
},
{
"url": "/images/status/books.png",
"name": "books"
},
{
"url": "/images/status/border-all.png",
"name": "border-all"
},
{
"url": "/images/status/border-bottom-double.png",
"name": "border-bottom-double"
},
{
"url": "/images/status/border-bottom-thick.png",
"name": "border-bottom-thick"
},
{
"url": "/images/status/border-bottom.png",
"name": "border-bottom"
},
{
"url": "/images/status/border-color.png",
"name": "border-color"
},
{
"url": "/images/status/border-dash.png",
"name": "border-dash"
},
{
"url": "/images/status/border-down.png",
"name": "border-down"
},
{
"url": "/images/status/border-draw.png",
"name": "border-draw"
},
{
"url": "/images/status/border-horizontal-all.png",
"name": "border-horizontal-all"
},
{
"url": "/images/status/border-horizontal.png",
"name": "border-horizontal"
},
{
"url": "/images/status/border-inside.png",
"name": "border-inside"
},
{
"url": "/images/status/border-left.png",
"name": "border-left"
},
{
"url": "/images/status/border-outside-thick.png",
"name": "border-outside-thick"
},
{
"url": "/images/status/border-outside.png",
"name": "border-outside"
},
{
"url": "/images/status/border-right.png",
"name": "border-right"
},
{
"url": "/images/status/border-top-bottom-double.png",
"name": "border-top-bottom-double"
},
{
"url": "/images/status/border-top-bottom-thick.png",
"name": "border-top-bottom-thick"
},
{
"url": "/images/status/border-top-bottom.png",
"name": "border-top-bottom"
},
{
"url": "/images/status/border-top.png",
"name": "border-top"
},
{
"url": "/images/status/border-up.png",
"name": "border-up"
},
{
"url": "/images/status/border-vertical-all.png",
"name": "border-vertical-all"
},
{
"url": "/images/status/border-vertical.png",
"name": "border-vertical"
},
{
"url": "/images/status/border-weight.png",
"name": "border-weight"
},
{
"url": "/images/status/border.png",
"name": "border"
},
{
"url": "/images/status/box--arrow.png",
"name": "box--arrow"
},
{
"url": "/images/status/box--exclamation.png",
"name": "box--exclamation"
},
{
"url": "/images/status/box--minus.png",
"name": "box--minus"
},
{
"url": "/images/status/box--pencil.png",
"name": "box--pencil"
},
{
"url": "/images/status/box--plus.png",
"name": "box--plus"
},
{
"url": "/images/status/box-label.png",
"name": "box-label"
},
{
"url": "/images/status/box-search-result.png",
"name": "box-search-result"
},
{
"url": "/images/status/box-share.png",
"name": "box-share"
},
{
"url": "/images/status/box-small.png",
"name": "box-small"
},
{
"url": "/images/status/box.png",
"name": "box"
},
{
"url": "/images/status/briefcase--arrow.png",
"name": "briefcase--arrow"
},
{
"url": "/images/status/briefcase--exclamation.png",
"name": "briefcase--exclamation"
},
{
"url": "/images/status/briefcase--minus.png",
"name": "briefcase--minus"
},
{
"url": "/images/status/briefcase--pencil.png",
"name": "briefcase--pencil"
},
{
"url": "/images/status/briefcase--plus.png",
"name": "briefcase--plus"
},
{
"url": "/images/status/briefcase-small.png",
"name": "briefcase-small"
},
{
"url": "/images/status/briefcase.png",
"name": "briefcase"
},
{
"url": "/images/status/brightness-control-up.png",
"name": "brightness-control-up"
},
{
"url": "/images/status/brightness-control.png",
"name": "brightness-control"
},
{
"url": "/images/status/brightness-low.png",
"name": "brightness-low"
},
{
"url": "/images/status/brightness-small-low.png",
"name": "brightness-small-low"
},
{
"url": "/images/status/brightness-small.png",
"name": "brightness-small"
},
{
"url": "/images/status/brightness.png",
"name": "brightness"
},
{
"url": "/images/status/broom--arrow.png",
"name": "broom--arrow"
},
{
"url": "/images/status/broom--exclamation.png",
"name": "broom--exclamation"
},
{
"url": "/images/status/broom--minus.png",
"name": "broom--minus"
},
{
"url": "/images/status/broom--pencil.png",
"name": "broom--pencil"
},
{
"url": "/images/status/broom--plus.png",
"name": "broom--plus"
},
{
"url": "/images/status/broom-code.png",
"name": "broom-code"
},
{
"url": "/images/status/broom.png",
"name": "broom"
},
{
"url": "/images/status/bug--arrow.png",
"name": "bug--arrow"
},
{
"url": "/images/status/bug--exclamation.png",
"name": "bug--exclamation"
},
{
"url": "/images/status/bug--minus.png",
"name": "bug--minus"
},
{
"url": "/images/status/bug--pencil.png",
"name": "bug--pencil"
},
{
"url": "/images/status/bug--plus.png",
"name": "bug--plus"
},
{
"url": "/images/status/bug.png",
"name": "bug"
},
{
"url": "/images/status/building--arrow.png",
"name": "building--arrow"
},
{
"url": "/images/status/building--exclamation.png",
"name": "building--exclamation"
},
{
"url": "/images/status/building--minus.png",
"name": "building--minus"
},
{
"url": "/images/status/building--pencil.png",
"name": "building--pencil"
},
{
"url": "/images/status/building--plus.png",
"name": "building--plus"
},
{
"url": "/images/status/building-low.png",
"name": "building-low"
},
{
"url": "/images/status/building-medium.png",
"name": "building-medium"
},
{
"url": "/images/status/building-network.png",
"name": "building-network"
},
{
"url": "/images/status/building-old.png",
"name": "building-old"
},
{
"url": "/images/status/building-small.png",
"name": "building-small"
},
{
"url": "/images/status/building.png",
"name": "building"
},
{
"url": "/images/status/burn--arrow.png",
"name": "burn--arrow"
},
{
"url": "/images/status/burn--exclamation.png",
"name": "burn--exclamation"
},
{
"url": "/images/status/burn--minus.png",
"name": "burn--minus"
},
{
"url": "/images/status/burn--pencil.png",
"name": "burn--pencil"
},
{
"url": "/images/status/burn--plus.png",
"name": "burn--plus"
},
{
"url": "/images/status/burn-small.png",
"name": "burn-small"
},
{
"url": "/images/status/burn.png",
"name": "burn"
},
{
"url": "/images/status/cake--arrow.png",
"name": "cake--arrow"
},
{
"url": "/images/status/cake--exclamation.png",
"name": "cake--exclamation"
},
{
"url": "/images/status/cake--minus.png",
"name": "cake--minus"
},
{
"url": "/images/status/cake--pencil.png",
"name": "cake--pencil"
},
{
"url": "/images/status/cake--plus.png",
"name": "cake--plus"
},
{
"url": "/images/status/cake-plain.png",
"name": "cake-plain"
},
{
"url": "/images/status/cake.png",
"name": "cake"
},
{
"url": "/images/status/calculator--arrow.png",
"name": "calculator--arrow"
},
{
"url": "/images/status/calculator--exclamation.png",
"name": "calculator--exclamation"
},
{
"url": "/images/status/calculator--minus.png",
"name": "calculator--minus"
},
{
"url": "/images/status/calculator--pencil.png",
"name": "calculator--pencil"
},
{
"url": "/images/status/calculator--plus.png",
"name": "calculator--plus"
},
{
"url": "/images/status/calculator-gray.png",
"name": "calculator-gray"
},
{
"url": "/images/status/calculator-scientific.png",
"name": "calculator-scientific"
},
{
"url": "/images/status/calculator.png",
"name": "calculator"
},
{
"url": "/images/status/calendar--arrow.png",
"name": "calendar--arrow"
},
{
"url": "/images/status/calendar--exclamation.png",
"name": "calendar--exclamation"
},
{
"url": "/images/status/calendar--minus.png",
"name": "calendar--minus"
},
{
"url": "/images/status/calendar--pencil.png",
"name": "calendar--pencil"
},
{
"url": "/images/status/calendar--plus.png",
"name": "calendar--plus"
},
{
"url": "/images/status/calendar-blue.png",
"name": "calendar-blue"
},
{
"url": "/images/status/calendar-day.png",
"name": "calendar-day"
},
{
"url": "/images/status/calendar-delete.png",
"name": "calendar-delete"
},
{
"url": "/images/status/calendar-empty.png",
"name": "calendar-empty"
},
{
"url": "/images/status/calendar-export.png",
"name": "calendar-export"
},
{
"url": "/images/status/calendar-import.png",
"name": "calendar-import"
},
{
"url": "/images/status/calendar-insert.png",
"name": "calendar-insert"
},
{
"url": "/images/status/calendar-list.png",
"name": "calendar-list"
},
{
"url": "/images/status/calendar-month.png",
"name": "calendar-month"
},
{
"url": "/images/status/calendar-next.png",
"name": "calendar-next"
},
{
"url": "/images/status/calendar-previous.png",
"name": "calendar-previous"
},
{
"url": "/images/status/calendar-relation.png",
"name": "calendar-relation"
},
{
"url": "/images/status/calendar-search-result.png",
"name": "calendar-search-result"
},
{
"url": "/images/status/calendar-select-days-span.png",
"name": "calendar-select-days-span"
},
{
"url": "/images/status/calendar-select-days.png",
"name": "calendar-select-days"
},
{
"url": "/images/status/calendar-select-month.png",
"name": "calendar-select-month"
},
{
"url": "/images/status/calendar-select-week.png",
"name": "calendar-select-week"
},
{
"url": "/images/status/calendar-select.png",
"name": "calendar-select"
},
{
"url": "/images/status/calendar-small-month.png",
"name": "calendar-small-month"
},
{
"url": "/images/status/calendar-small.png",
"name": "calendar-small"
},
{
"url": "/images/status/calendar-task.png",
"name": "calendar-task"
},
{
"url": "/images/status/calendar.png",
"name": "calendar"
},
{
"url": "/images/status/camcorder--arrow.png",
"name": "camcorder--arrow"
},
{
"url": "/images/status/camcorder--exclamation.png",
"name": "camcorder--exclamation"
},
{
"url": "/images/status/camcorder--minus.png",
"name": "camcorder--minus"
},
{
"url": "/images/status/camcorder--pencil.png",
"name": "camcorder--pencil"
},
{
"url": "/images/status/camcorder--plus.png",
"name": "camcorder--plus"
},
{
"url": "/images/status/camcorder-image.png",
"name": "camcorder-image"
},
{
"url": "/images/status/camcorder.png",
"name": "camcorder"
},
{
"url": "/images/status/camera--arrow.png",
"name": "camera--arrow"
},
{
"url": "/images/status/camera--exclamation.png",
"name": "camera--exclamation"
},
{
"url": "/images/status/camera--minus.png",
"name": "camera--minus"
},
{
"url": "/images/status/camera--pencil.png",
"name": "camera--pencil"
},
{
"url": "/images/status/camera--plus.png",
"name": "camera--plus"
},
{
"url": "/images/status/camera-black.png",
"name": "camera-black"
},
{
"url": "/images/status/camera-lens.png",
"name": "camera-lens"
},
{
"url": "/images/status/camera-small-black.png",
"name": "camera-small-black"
},
{
"url": "/images/status/camera-small.png",
"name": "camera-small"
},
{
"url": "/images/status/camera.png",
"name": "camera"
},
{
"url": "/images/status/car--arrow.png",
"name": "car--arrow"
},
{
"url": "/images/status/car--exclamation.png",
"name": "car--exclamation"
},
{
"url": "/images/status/car--minus.png",
"name": "car--minus"
},
{
"url": "/images/status/car--pencil.png",
"name": "car--pencil"
},
{
"url": "/images/status/car--plus.png",
"name": "car--plus"
},
{
"url": "/images/status/car-red.png",
"name": "car-red"
},
{
"url": "/images/status/car.png",
"name": "car"
},
{
"url": "/images/status/card--arrow.png",
"name": "card--arrow"
},
{
"url": "/images/status/card--exclamation.png",
"name": "card--exclamation"
},
{
"url": "/images/status/card--minus.png",
"name": "card--minus"
},
{
"url": "/images/status/card--pencil.png",
"name": "card--pencil"
},
{
"url": "/images/status/card--plus.png",
"name": "card--plus"
},
{
"url": "/images/status/card-address.png",
"name": "card-address"
},
{
"url": "/images/status/card-export.png",
"name": "card-export"
},
{
"url": "/images/status/card-import.png",
"name": "card-import"
},
{
"url": "/images/status/card-small.png",
"name": "card-small"
},
{
"url": "/images/status/card.png",
"name": "card"
},
{
"url": "/images/status/cards-address.png",
"name": "cards-address"
},
{
"url": "/images/status/cards-bind-address.png",
"name": "cards-bind-address"
},
{
"url": "/images/status/cards-bind.png",
"name": "cards-bind"
},
{
"url": "/images/status/cards-stack.png",
"name": "cards-stack"
},
{
"url": "/images/status/cards.png",
"name": "cards"
},
{
"url": "/images/status/cassette--arrow.png",
"name": "cassette--arrow"
},
{
"url": "/images/status/cassette--exclamation.png",
"name": "cassette--exclamation"
},
{
"url": "/images/status/cassette--minus.png",
"name": "cassette--minus"
},
{
"url": "/images/status/cassette--pencil.png",
"name": "cassette--pencil"
},
{
"url": "/images/status/cassette--plus.png",
"name": "cassette--plus"
},
{
"url": "/images/status/cassette-label.png",
"name": "cassette-label"
},
{
"url": "/images/status/cassette-small.png",
"name": "cassette-small"
},
{
"url": "/images/status/cassette.png",
"name": "cassette"
},
{
"url": "/images/status/category.png",
"name": "category"
},
{
"url": "/images/status/chain--arrow.png",
"name": "chain--arrow"
},
{
"url": "/images/status/chain--exclamation.png",
"name": "chain--exclamation"
},
{
"url": "/images/status/chain--minus.png",
"name": "chain--minus"
},
{
"url": "/images/status/chain--pencil.png",
"name": "chain--pencil"
},
{
"url": "/images/status/chain--plus.png",
"name": "chain--plus"
},
{
"url": "/images/status/chain-small.png",
"name": "chain-small"
},
{
"url": "/images/status/chain-unchain.png",
"name": "chain-unchain"
},
{
"url": "/images/status/chain.png",
"name": "chain"
},
{
"url": "/images/status/chart--arrow.png",
"name": "chart--arrow"
},
{
"url": "/images/status/chart--exclamation.png",
"name": "chart--exclamation"
},
{
"url": "/images/status/chart--minus.png",
"name": "chart--minus"
},
{
"url": "/images/status/chart--pencil.png",
"name": "chart--pencil"
},
{
"url": "/images/status/chart--plus.png",
"name": "chart--plus"
},
{
"url": "/images/status/chart-down-color.png",
"name": "chart-down-color"
},
{
"url": "/images/status/chart-down.png",
"name": "chart-down"
},
{
"url": "/images/status/chart-up-color.png",
"name": "chart-up-color"
},
{
"url": "/images/status/chart-up.png",
"name": "chart-up"
},
{
"url": "/images/status/chart.png",
"name": "chart"
},
{
"url": "/images/status/chevron-expand.png",
"name": "chevron-expand"
},
{
"url": "/images/status/chevron-small-expand.png",
"name": "chevron-small-expand"
},
{
"url": "/images/status/chevron-small.png",
"name": "chevron-small"
},
{
"url": "/images/status/chevron.png",
"name": "chevron"
},
{
"url": "/images/status/cigarette-stop.png",
"name": "cigarette-stop"
},
{
"url": "/images/status/cigarette.png",
"name": "cigarette"
},
{
"url": "/images/status/clapperboard--arrow.png",
"name": "clapperboard--arrow"
},
{
"url": "/images/status/clapperboard--exclamation.png",
"name": "clapperboard--exclamation"
},
{
"url": "/images/status/clapperboard--minus.png",
"name": "clapperboard--minus"
},
{
"url": "/images/status/clapperboard--pencil.png",
"name": "clapperboard--pencil"
},
{
"url": "/images/status/clapperboard--plus.png",
"name": "clapperboard--plus"
},
{
"url": "/images/status/clapperboard.png",
"name": "clapperboard"
},
{
"url": "/images/status/clipboard--arrow.png",
"name": "clipboard--arrow"
},
{
"url": "/images/status/clipboard--exclamation.png",
"name": "clipboard--exclamation"
},
{
"url": "/images/status/clipboard--minus.png",
"name": "clipboard--minus"
},
{
"url": "/images/status/clipboard--pencil.png",
"name": "clipboard--pencil"
},
{
"url": "/images/status/clipboard--plus.png",
"name": "clipboard--plus"
},
{
"url": "/images/status/clipboard-empty.png",
"name": "clipboard-empty"
},
{
"url": "/images/status/clipboard-list.png",
"name": "clipboard-list"
},
{
"url": "/images/status/clipboard-paste-document-text.png",
"name": "clipboard-paste-document-text"
},
{
"url": "/images/status/clipboard-paste-image.png",
"name": "clipboard-paste-image"
},
{
"url": "/images/status/clipboard-paste-word.png",
"name": "clipboard-paste-word"
},
{
"url": "/images/status/clipboard-paste.png",
"name": "clipboard-paste"
},
{
"url": "/images/status/clipboard-search-result.png",
"name": "clipboard-search-result"
},
{
"url": "/images/status/clipboard-sign-out.png",
"name": "clipboard-sign-out"
},
{
"url": "/images/status/clipboard-sign.png",
"name": "clipboard-sign"
},
{
"url": "/images/status/clipboard-task.png",
"name": "clipboard-task"
},
{
"url": "/images/status/clipboard-text.png",
"name": "clipboard-text"
},
{
"url": "/images/status/clipboard.png",
"name": "clipboard"
},
{
"url": "/images/status/clock--arrow.png",
"name": "clock--arrow"
},
{
"url": "/images/status/clock--exclamation.png",
"name": "clock--exclamation"
},
{
"url": "/images/status/clock--minus.png",
"name": "clock--minus"
},
{
"url": "/images/status/clock--pencil.png",
"name": "clock--pencil"
},
{
"url": "/images/status/clock--plus.png",
"name": "clock--plus"
},
{
"url": "/images/status/clock-frame.png",
"name": "clock-frame"
},
{
"url": "/images/status/clock-history-frame.png",
"name": "clock-history-frame"
},
{
"url": "/images/status/clock-history.png",
"name": "clock-history"
},
{
"url": "/images/status/clock-select-remain.png",
"name": "clock-select-remain"
},
{
"url": "/images/status/clock-select.png",
"name": "clock-select"
},
{
"url": "/images/status/clock-small.png",
"name": "clock-small"
},
{
"url": "/images/status/clock.png",
"name": "clock"
},
{
"url": "/images/status/color--arrow.png",
"name": "color--arrow"
},
{
"url": "/images/status/color--exclamation.png",
"name": "color--exclamation"
},
{
"url": "/images/status/color--minus.png",
"name": "color--minus"
},
{
"url": "/images/status/color--pencil.png",
"name": "color--pencil"
},
{
"url": "/images/status/color--plus.png",
"name": "color--plus"
},
{
"url": "/images/status/color-adjustment-green.png",
"name": "color-adjustment-green"
},
{
"url": "/images/status/color-adjustment-red.png",
"name": "color-adjustment-red"
},
{
"url": "/images/status/color-adjustment.png",
"name": "color-adjustment"
},
{
"url": "/images/status/color-small.png",
"name": "color-small"
},
{
"url": "/images/status/color-swatch-small.png",
"name": "color-swatch-small"
},
{
"url": "/images/status/color-swatch.png",
"name": "color-swatch"
},
{
"url": "/images/status/color-swatches.png",
"name": "color-swatches"
},
{
"url": "/images/status/color.png",
"name": "color"
},
{
"url": "/images/status/compass--arrow.png",
"name": "compass--arrow"
},
{
"url": "/images/status/compass--exclamation.png",
"name": "compass--exclamation"
},
{
"url": "/images/status/compass--minus.png",
"name": "compass--minus"
},
{
"url": "/images/status/compass--pencil.png",
"name": "compass--pencil"
},
{
"url": "/images/status/compass--plus.png",
"name": "compass--plus"
},
{
"url": "/images/status/compass.png",
"name": "compass"
},
{
"url": "/images/status/compile-error.png",
"name": "compile-error"
},
{
"url": "/images/status/compile-warning.png",
"name": "compile-warning"
},
{
"url": "/images/status/compile.png",
"name": "compile"
},
{
"url": "/images/status/computer--arrow.png",
"name": "computer--arrow"
},
{
"url": "/images/status/computer--exclamation.png",
"name": "computer--exclamation"
},
{
"url": "/images/status/computer--minus.png",
"name": "computer--minus"
},
{
"url": "/images/status/computer--pencil.png",
"name": "computer--pencil"
},
{
"url": "/images/status/computer--plus.png",
"name": "computer--plus"
},
{
"url": "/images/status/computer-network.png",
"name": "computer-network"
},
{
"url": "/images/status/computer-off.png",
"name": "computer-off"
},
{
"url": "/images/status/computer.png",
"name": "computer"
},
{
"url": "/images/status/construction.png",
"name": "construction"
},
{
"url": "/images/status/contrast-control-up.png",
"name": "contrast-control-up"
},
{
"url": "/images/status/contrast-control.png",
"name": "contrast-control"
},
{
"url": "/images/status/contrast-low.png",
"name": "contrast-low"
},
{
"url": "/images/status/contrast-small-low.png",
"name": "contrast-small-low"
},
{
"url": "/images/status/contrast-small.png",
"name": "contrast-small"
},
{
"url": "/images/status/contrast.png",
"name": "contrast"
},
{
"url": "/images/status/control-000-small.png",
"name": "control-000-small"
},
{
"url": "/images/status/control-090-small.png",
"name": "control-090-small"
},
{
"url": "/images/status/control-090.png",
"name": "control-090"
},
{
"url": "/images/status/control-180-small.png",
"name": "control-180-small"
},
{
"url": "/images/status/control-180.png",
"name": "control-180"
},
{
"url": "/images/status/control-270-small.png",
"name": "control-270-small"
},
{
"url": "/images/status/control-270.png",
"name": "control-270"
},
{
"url": "/images/status/control-cursor.png",
"name": "control-cursor"
},
{
"url": "/images/status/control-double-000-small.png",
"name": "control-double-000-small"
},
{
"url": "/images/status/control-double-090-small.png",
"name": "control-double-090-small"
},
{
"url": "/images/status/control-double-090.png",
"name": "control-double-090"
},
{
"url": "/images/status/control-double-180-small.png",
"name": "control-double-180-small"
},
{
"url": "/images/status/control-double-180.png",
"name": "control-double-180"
},
{
"url": "/images/status/control-double-270-small.png",
"name": "control-double-270-small"
},
{
"url": "/images/status/control-double-270.png",
"name": "control-double-270"
},
{
"url": "/images/status/control-double.png",
"name": "control-double"
},
{
"url": "/images/status/control-eject-small.png",
"name": "control-eject-small"
},
{
"url": "/images/status/control-eject.png",
"name": "control-eject"
},
{
"url": "/images/status/control-pause-record-small.png",
"name": "control-pause-record-small"
},
{
"url": "/images/status/control-pause-record.png",
"name": "control-pause-record"
},
{
"url": "/images/status/control-pause-small.png",
"name": "control-pause-small"
},
{
"url": "/images/status/control-pause.png",
"name": "control-pause"
},
{
"url": "/images/status/control-power-small.png",
"name": "control-power-small"
},
{
"url": "/images/status/control-power.png",
"name": "control-power"
},
{
"url": "/images/status/control-record-small.png",
"name": "control-record-small"
},
{
"url": "/images/status/control-record.png",
"name": "control-record"
},
{
"url": "/images/status/control-skip-000-small.png",
"name": "control-skip-000-small"
},
{
"url": "/images/status/control-skip-090-small.png",
"name": "control-skip-090-small"
},
{
"url": "/images/status/control-skip-090.png",
"name": "control-skip-090"
},
{
"url": "/images/status/control-skip-180-small.png",
"name": "control-skip-180-small"
},
{
"url": "/images/status/control-skip-180.png",
"name": "control-skip-180"
},
{
"url": "/images/status/control-skip-270-small.png",
"name": "control-skip-270-small"
},
{
"url": "/images/status/control-skip-270.png",
"name": "control-skip-270"
},
{
"url": "/images/status/control-skip.png",
"name": "control-skip"
},
{
"url": "/images/status/control-stop-000-small.png",
"name": "control-stop-000-small"
},
{
"url": "/images/status/control-stop-090-small.png",
"name": "control-stop-090-small"
},
{
"url": "/images/status/control-stop-090.png",
"name": "control-stop-090"
},
{
"url": "/images/status/control-stop-180-small.png",
"name": "control-stop-180-small"
},
{
"url": "/images/status/control-stop-180.png",
"name": "control-stop-180"
},
{
"url": "/images/status/control-stop-270-small.png",
"name": "control-stop-270-small"
},
{
"url": "/images/status/control-stop-270.png",
"name": "control-stop-270"
},
{
"url": "/images/status/control-stop-square-small.png",
"name": "control-stop-square-small"
},
{
"url": "/images/status/control-stop-square.png",
"name": "control-stop-square"
},
{
"url": "/images/status/control-stop.png",
"name": "control-stop"
},
{
"url": "/images/status/control.png",
"name": "control"
},
{
"url": "/images/status/controller.png",
"name": "controller"
},
{
"url": "/images/status/cookie--arrow.png",
"name": "cookie--arrow"
},
{
"url": "/images/status/cookie--exclamation.png",
"name": "cookie--exclamation"
},
{
"url": "/images/status/cookie--minus.png",
"name": "cookie--minus"
},
{
"url": "/images/status/cookie--pencil.png",
"name": "cookie--pencil"
},
{
"url": "/images/status/cookie--plus.png",
"name": "cookie--plus"
},
{
"url": "/images/status/cookie-bite.png",
"name": "cookie-bite"
},
{
"url": "/images/status/cookie-chocolate.png",
"name": "cookie-chocolate"
},
{
"url": "/images/status/cookie.png",
"name": "cookie"
},
{
"url": "/images/status/cookies.png",
"name": "cookies"
},
{
"url": "/images/status/counter-count-up.png",
"name": "counter-count-up"
},
{
"url": "/images/status/counter-count.png",
"name": "counter-count"
},
{
"url": "/images/status/counter-reset.png",
"name": "counter-reset"
},
{
"url": "/images/status/counter-stop.png",
"name": "counter-stop"
},
{
"url": "/images/status/counter.png",
"name": "counter"
},
{
"url": "/images/status/create-json.py",
"name": "create-json"
},
{
"url": "/images/status/creative-commons.png",
"name": "creative-commons"
},
{
"url": "/images/status/credit-card--arrow.png",
"name": "credit-card--arrow"
},
{
"url": "/images/status/credit-card--exclamation.png",
"name": "credit-card--exclamation"
},
{
"url": "/images/status/credit-card--minus.png",
"name": "credit-card--minus"
},
{
"url": "/images/status/credit-card--pencil.png",
"name": "credit-card--pencil"
},
{
"url": "/images/status/credit-card--plus.png",
"name": "credit-card--plus"
},
{
"url": "/images/status/credit-card-green.png",
"name": "credit-card-green"
},
{
"url": "/images/status/credit-card.png",
"name": "credit-card"
},
{
"url": "/images/status/credit-cards.png",
"name": "credit-cards"
},
{
"url": "/images/status/cross-button.png",
"name": "cross-button"
},
{
"url": "/images/status/cross-circle-frame.png",
"name": "cross-circle-frame"
},
{
"url": "/images/status/cross-circle.png",
"name": "cross-circle"
},
{
"url": "/images/status/cross-octagon-frame.png",
"name": "cross-octagon-frame"
},
{
"url": "/images/status/cross-octagon.png",
"name": "cross-octagon"
},
{
"url": "/images/status/cross-script.png",
"name": "cross-script"
},
{
"url": "/images/status/cross-shield.png",
"name": "cross-shield"
},
{
"url": "/images/status/cross-small-circle.png",
"name": "cross-small-circle"
},
{
"url": "/images/status/cross-small-white.png",
"name": "cross-small-white"
},
{
"url": "/images/status/cross-small.png",
"name": "cross-small"
},
{
"url": "/images/status/cross-white.png",
"name": "cross-white"
},
{
"url": "/images/status/cross.png",
"name": "cross"
},
{
"url": "/images/status/crown--arrow.png",
"name": "crown--arrow"
},
{
"url": "/images/status/crown--exclamation.png",
"name": "crown--exclamation"
},
{
"url": "/images/status/crown--minus.png",
"name": "crown--minus"
},
{
"url": "/images/status/crown--pencil.png",
"name": "crown--pencil"
},
{
"url": "/images/status/crown--plus.png",
"name": "crown--plus"
},
{
"url": "/images/status/crown-bronze.png",
"name": "crown-bronze"
},
{
"url": "/images/status/crown-silver.png",
"name": "crown-silver"
},
{
"url": "/images/status/crown.png",
"name": "crown"
},
{
"url": "/images/status/cup--arrow.png",
"name": "cup--arrow"
},
{
"url": "/images/status/cup--exclamation.png",
"name": "cup--exclamation"
},
{
"url": "/images/status/cup--minus.png",
"name": "cup--minus"
},
{
"url": "/images/status/cup--pencil.png",
"name": "cup--pencil"
},
{
"url": "/images/status/cup--plus.png",
"name": "cup--plus"
},
{
"url": "/images/status/cup-empty.png",
"name": "cup-empty"
},
{
"url": "/images/status/cup.png",
"name": "cup"
},
{
"url": "/images/status/currency-dollar-aud.png",
"name": "currency-dollar-aud"
},
{
"url": "/images/status/currency-dollar-cad.png",
"name": "currency-dollar-cad"
},
{
"url": "/images/status/currency-dollar-nzd.png",
"name": "currency-dollar-nzd"
},
{
"url": "/images/status/currency-dollar-usd.png",
"name": "currency-dollar-usd"
},
{
"url": "/images/status/currency-euro.png",
"name": "currency-euro"
},
{
"url": "/images/status/currency-pound.png",
"name": "currency-pound"
},
{
"url": "/images/status/currency-yen.png",
"name": "currency-yen"
},
{
"url": "/images/status/currency.png",
"name": "currency"
},
{
"url": "/images/status/cursor-question.png",
"name": "cursor-question"
},
{
"url": "/images/status/cursor-small.png",
"name": "cursor-small"
},
{
"url": "/images/status/cursor.png",
"name": "cursor"
},
{
"url": "/images/status/cutlery-fork.png",
"name": "cutlery-fork"
},
{
"url": "/images/status/cutlery-knife.png",
"name": "cutlery-knife"
},
{
"url": "/images/status/cutlery-spoon.png",
"name": "cutlery-spoon"
},
{
"url": "/images/status/cutlery.png",
"name": "cutlery"
},
{
"url": "/images/status/dashboard--arrow.png",
"name": "dashboard--arrow"
},
{
"url": "/images/status/dashboard--exclamation.png",
"name": "dashboard--exclamation"
},
{
"url": "/images/status/dashboard--minus.png",
"name": "dashboard--minus"
},
{
"url": "/images/status/dashboard--pencil.png",
"name": "dashboard--pencil"
},
{
"url": "/images/status/dashboard--plus.png",
"name": "dashboard--plus"
},
{
"url": "/images/status/dashboard.png",
"name": "dashboard"
},
{
"url": "/images/status/database--arrow.png",
"name": "database--arrow"
},
{
"url": "/images/status/database--exclamation.png",
"name": "database--exclamation"
},
{
"url": "/images/status/database--minus.png",
"name": "database--minus"
},
{
"url": "/images/status/database--pencil.png",
"name": "database--pencil"
},
{
"url": "/images/status/database--plus.png",
"name": "database--plus"
},
{
"url": "/images/status/database-delete.png",
"name": "database-delete"
},
{
"url": "/images/status/database-export.png",
"name": "database-export"
},
{
"url": "/images/status/database-import.png",
"name": "database-import"
},
{
"url": "/images/status/database-insert.png",
"name": "database-insert"
},
{
"url": "/images/status/database-network.png",
"name": "database-network"
},
{
"url": "/images/status/database-share.png",
"name": "database-share"
},
{
"url": "/images/status/database-small.png",
"name": "database-small"
},
{
"url": "/images/status/database.png",
"name": "database"
},
{
"url": "/images/status/databases-relation.png",
"name": "databases-relation"
},
{
"url": "/images/status/databases.png",
"name": "databases"
},
{
"url": "/images/status/desktop-empty.png",
"name": "desktop-empty"
},
{
"url": "/images/status/desktop-image.png",
"name": "desktop-image"
},
{
"url": "/images/status/desktop-network.png",
"name": "desktop-network"
},
{
"url": "/images/status/desktop.png",
"name": "desktop"
},
{
"url": "/images/status/diamond.png",
"name": "diamond"
},
{
"url": "/images/status/direction--arrow.png",
"name": "direction--arrow"
},
{
"url": "/images/status/direction--exclamation.png",
"name": "direction--exclamation"
},
{
"url": "/images/status/direction--minus.png",
"name": "direction--minus"
},
{
"url": "/images/status/direction--pencil.png",
"name": "direction--pencil"
},
{
"url": "/images/status/direction--plus.png",
"name": "direction--plus"
},
{
"url": "/images/status/direction.png",
"name": "direction"
},
{
"url": "/images/status/disc--arrow.png",
"name": "disc--arrow"
},
{
"url": "/images/status/disc--exclamation.png",
"name": "disc--exclamation"
},
{
"url": "/images/status/disc--minus.png",
"name": "disc--minus"
},
{
"url": "/images/status/disc--pencil.png",
"name": "disc--pencil"
},
{
"url": "/images/status/disc--plus.png",
"name": "disc--plus"
},
{
"url": "/images/status/disc-blue.png",
"name": "disc-blue"
},
{
"url": "/images/status/disc-case-label.png",
"name": "disc-case-label"
},
{
"url": "/images/status/disc-case.png",
"name": "disc-case"
},
{
"url": "/images/status/disc-label.png",
"name": "disc-label"
},
{
"url": "/images/status/disc-small.png",
"name": "disc-small"
},
{
"url": "/images/status/disc.png",
"name": "disc"
},
{
"url": "/images/status/discs.png",
"name": "discs"
},
{
"url": "/images/status/disk--arrow.png",
"name": "disk--arrow"
},
{
"url": "/images/status/disk--exclamation.png",
"name": "disk--exclamation"
},
{
"url": "/images/status/disk--minus.png",
"name": "disk--minus"
},
{
"url": "/images/status/disk--pencil.png",
"name": "disk--pencil"
},
{
"url": "/images/status/disk--plus.png",
"name": "disk--plus"
},
{
"url": "/images/status/disk-black.png",
"name": "disk-black"
},
{
"url": "/images/status/disk-return-black.png",
"name": "disk-return-black"
},
{
"url": "/images/status/disk-return.png",
"name": "disk-return"
},
{
"url": "/images/status/disk-small-black.png",
"name": "disk-small-black"
},
{
"url": "/images/status/disk-small.png",
"name": "disk-small"
},
{
"url": "/images/status/disk.png",
"name": "disk"
},
{
"url": "/images/status/disks-black.png",
"name": "disks-black"
},
{
"url": "/images/status/disks.png",
"name": "disks"
},
{
"url": "/images/status/do-not-disturb-sign-cross.png",
"name": "do-not-disturb-sign-cross"
},
{
"url": "/images/status/do-not-disturb-sign.png",
"name": "do-not-disturb-sign"
},
{
"url": "/images/status/document--arrow.png",
"name": "document--arrow"
},
{
"url": "/images/status/document--exclamation.png",
"name": "document--exclamation"
},
{
"url": "/images/status/document--minus.png",
"name": "document--minus"
},
{
"url": "/images/status/document--pencil.png",
"name": "document--pencil"
},
{
"url": "/images/status/document--plus.png",
"name": "document--plus"
},
{
"url": "/images/status/document-access.png",
"name": "document-access"
},
{
"url": "/images/status/document-attribute-b.png",
"name": "document-attribute-b"
},
{
"url": "/images/status/document-attribute-c.png",
"name": "document-attribute-c"
},
{
"url": "/images/status/document-attribute-d.png",
"name": "document-attribute-d"
},
{
"url": "/images/status/document-attribute-e.png",
"name": "document-attribute-e"
},
{
"url": "/images/status/document-attribute-f.png",
"name": "document-attribute-f"
},
{
"url": "/images/status/document-attribute-g.png",
"name": "document-attribute-g"
},
{
"url": "/images/status/document-attribute-h.png",
"name": "document-attribute-h"
},
{
"url": "/images/status/document-attribute-i.png",
"name": "document-attribute-i"
},
{
"url": "/images/status/document-attribute-j.png",
"name": "document-attribute-j"
},
{
"url": "/images/status/document-attribute-k.png",
"name": "document-attribute-k"
},
{
"url": "/images/status/document-attribute-l.png",
"name": "document-attribute-l"
},
{
"url": "/images/status/document-attribute-m.png",
"name": "document-attribute-m"
},
{
"url": "/images/status/document-attribute-n.png",
"name": "document-attribute-n"
},
{
"url": "/images/status/document-attribute-o.png",
"name": "document-attribute-o"
},
{
"url": "/images/status/document-attribute-p.png",
"name": "document-attribute-p"
},
{
"url": "/images/status/document-attribute-q.png",
"name": "document-attribute-q"
},
{
"url": "/images/status/document-attribute-r.png",
"name": "document-attribute-r"
},
{
"url": "/images/status/document-attribute-s.png",
"name": "document-attribute-s"
},
{
"url": "/images/status/document-attribute-t.png",
"name": "document-attribute-t"
},
{
"url": "/images/status/document-attribute-u.png",
"name": "document-attribute-u"
},
{
"url": "/images/status/document-attribute-v.png",
"name": "document-attribute-v"
},
{
"url": "/images/status/document-attribute-w.png",
"name": "document-attribute-w"
},
{
"url": "/images/status/document-attribute-x.png",
"name": "document-attribute-x"
},
{
"url": "/images/status/document-attribute-y.png",
"name": "document-attribute-y"
},
{
"url": "/images/status/document-attribute-z.png",
"name": "document-attribute-z"
},
{
"url": "/images/status/document-attribute.png",
"name": "document-attribute"
},
{
"url": "/images/status/document-binary.png",
"name": "document-binary"
},
{
"url": "/images/status/document-block.png",
"name": "document-block"
},
{
"url": "/images/status/document-bookmark.png",
"name": "document-bookmark"
},
{
"url": "/images/status/document-break.png",
"name": "document-break"
},
{
"url": "/images/status/document-clock.png",
"name": "document-clock"
},
{
"url": "/images/status/document-code.png",
"name": "document-code"
},
{
"url": "/images/status/document-convert.png",
"name": "document-convert"
},
{
"url": "/images/status/document-copy.png",
"name": "document-copy"
},
{
"url": "/images/status/document-excel-csv.png",
"name": "document-excel-csv"
},
{
"url": "/images/status/document-excel-table.png",
"name": "document-excel-table"
},
{
"url": "/images/status/document-excel.png",
"name": "document-excel"
},
{
"url": "/images/status/document-export.png",
"name": "document-export"
},
{
"url": "/images/status/document-film.png",
"name": "document-film"
},
{
"url": "/images/status/document-flash-movie.png",
"name": "document-flash-movie"
},
{
"url": "/images/status/document-flash.png",
"name": "document-flash"
},
{
"url": "/images/status/document-globe.png",
"name": "document-globe"
},
{
"url": "/images/status/document-hf-delete-footer.png",
"name": "document-hf-delete-footer"
},
{
"url": "/images/status/document-hf-delete.png",
"name": "document-hf-delete"
},
{
"url": "/images/status/document-hf-insert-footer.png",
"name": "document-hf-insert-footer"
},
{
"url": "/images/status/document-hf-insert.png",
"name": "document-hf-insert"
},
{
"url": "/images/status/document-hf-select-footer.png",
"name": "document-hf-select-footer"
},
{
"url": "/images/status/document-hf-select.png",
"name": "document-hf-select"
},
{
"url": "/images/status/document-hf.png",
"name": "document-hf"
},
{
"url": "/images/status/document-horizontal-text.png",
"name": "document-horizontal-text"
},
{
"url": "/images/status/document-horizontal.png",
"name": "document-horizontal"
},
{
"url": "/images/status/document-illustrator.png",
"name": "document-illustrator"
},
{
"url": "/images/status/document-image.png",
"name": "document-image"
},
{
"url": "/images/status/document-import.png",
"name": "document-import"
},
{
"url": "/images/status/document-insert.png",
"name": "document-insert"
},
{
"url": "/images/status/document-invoice.png",
"name": "document-invoice"
},
{
"url": "/images/status/document-list.png",
"name": "document-list"
},
{
"url": "/images/status/document-music-playlist.png",
"name": "document-music-playlist"
},
{
"url": "/images/status/document-music.png",
"name": "document-music"
},
{
"url": "/images/status/document-number.png",
"name": "document-number"
},
{
"url": "/images/status/document-office-text.png",
"name": "document-office-text"
},
{
"url": "/images/status/document-office.png",
"name": "document-office"
},
{
"url": "/images/status/document-outlook.png",
"name": "document-outlook"
},
{
"url": "/images/status/document-page-last.png",
"name": "document-page-last"
},
{
"url": "/images/status/document-page-next.png",
"name": "document-page-next"
},
{
"url": "/images/status/document-page-previous.png",
"name": "document-page-previous"
},
{
"url": "/images/status/document-page.png",
"name": "document-page"
},
{
"url": "/images/status/document-pdf-text.png",
"name": "document-pdf-text"
},
{
"url": "/images/status/document-pdf.png",
"name": "document-pdf"
},
{
"url": "/images/status/document-photoshop-image.png",
"name": "document-photoshop-image"
},
{
"url": "/images/status/document-photoshop.png",
"name": "document-photoshop"
},
{
"url": "/images/status/document-php.png",
"name": "document-php"
},
{
"url": "/images/status/document-powerpoint.png",
"name": "document-powerpoint"
},
{
"url": "/images/status/document-rename.png",
"name": "document-rename"
},
{
"url": "/images/status/document-resize-actual.png",
"name": "document-resize-actual"
},
{
"url": "/images/status/document-resize.png",
"name": "document-resize"
},
{
"url": "/images/status/document-search-result.png",
"name": "document-search-result"
},
{
"url": "/images/status/document-share.png",
"name": "document-share"
},
{
"url": "/images/status/document-shred.png",
"name": "document-shred"
},
{
"url": "/images/status/document-small-list.png",
"name": "document-small-list"
},
{
"url": "/images/status/document-small.png",
"name": "document-small"
},
{
"url": "/images/status/document-snippet.png",
"name": "document-snippet"
},
{
"url": "/images/status/document-stamp.png",
"name": "document-stamp"
},
{
"url": "/images/status/document-stand.png",
"name": "document-stand"
},
{
"url": "/images/status/document-sub.png",
"name": "document-sub"
},
{
"url": "/images/status/document-table.png",
"name": "document-table"
},
{
"url": "/images/status/document-tag.png",
"name": "document-tag"
},
{
"url": "/images/status/document-task.png",
"name": "document-task"
},
{
"url": "/images/status/document-template.png",
"name": "document-template"
},
{
"url": "/images/status/document-text-image.png",
"name": "document-text-image"
},
{
"url": "/images/status/document-text.png",
"name": "document-text"
},
{
"url": "/images/status/document-view-book.png",
"name": "document-view-book"
},
{
"url": "/images/status/document-view-thumbnail.png",
"name": "document-view-thumbnail"
},
{
"url": "/images/status/document-view.png",
"name": "document-view"
},
{
"url": "/images/status/document-visual-studio.png",
"name": "document-visual-studio"
},
{
"url": "/images/status/document-word-text.png",
"name": "document-word-text"
},
{
"url": "/images/status/document-word.png",
"name": "document-word"
},
{
"url": "/images/status/document-zipper.png",
"name": "document-zipper"
},
{
"url": "/images/status/document.png",
"name": "document"
},
{
"url": "/images/status/documents-stack.png",
"name": "documents-stack"
},
{
"url": "/images/status/documents-text.png",
"name": "documents-text"
},
{
"url": "/images/status/documents.png",
"name": "documents"
},
{
"url": "/images/status/door--arrow.png",
"name": "door--arrow"
},
{
"url": "/images/status/door--exclamation.png",
"name": "door--exclamation"
},
{
"url": "/images/status/door--minus.png",
"name": "door--minus"
},
{
"url": "/images/status/door--pencil.png",
"name": "door--pencil"
},
{
"url": "/images/status/door--plus.png",
"name": "door--plus"
},
{
"url": "/images/status/door-open-in.png",
"name": "door-open-in"
},
{
"url": "/images/status/door-open-out.png",
"name": "door-open-out"
},
{
"url": "/images/status/door-open.png",
"name": "door-open"
},
{
"url": "/images/status/door.png",
"name": "door"
},
{
"url": "/images/status/drawer--arrow.png",
"name": "drawer--arrow"
},
{
"url": "/images/status/drawer--exclamation.png",
"name": "drawer--exclamation"
},
{
"url": "/images/status/drawer--minus.png",
"name": "drawer--minus"
},
{
"url": "/images/status/drawer--pencil.png",
"name": "drawer--pencil"
},
{
"url": "/images/status/drawer--plus.png",
"name": "drawer--plus"
},
{
"url": "/images/status/drawer-open.png",
"name": "drawer-open"
},
{
"url": "/images/status/drawer.png",
"name": "drawer"
},
{
"url": "/images/status/drill--arrow.png",
"name": "drill--arrow"
},
{
"url": "/images/status/drill--exclamation.png",
"name": "drill--exclamation"
},
{
"url": "/images/status/drill--minus.png",
"name": "drill--minus"
},
{
"url": "/images/status/drill--pencil.png",
"name": "drill--pencil"
},
{
"url": "/images/status/drill--plus.png",
"name": "drill--plus"
},
{
"url": "/images/status/drill.png",
"name": "drill"
},
{
"url": "/images/status/drive--arrow.png",
"name": "drive--arrow"
},
{
"url": "/images/status/drive--exclamation.png",
"name": "drive--exclamation"
},
{
"url": "/images/status/drive--minus.png",
"name": "drive--minus"
},
{
"url": "/images/status/drive--pencil.png",
"name": "drive--pencil"
},
{
"url": "/images/status/drive--plus.png",
"name": "drive--plus"
},
{
"url": "/images/status/drive-download.png",
"name": "drive-download"
},
{
"url": "/images/status/drive-globe.png",
"name": "drive-globe"
},
{
"url": "/images/status/drive-network.png",
"name": "drive-network"
},
{
"url": "/images/status/drive-rename.png",
"name": "drive-rename"
},
{
"url": "/images/status/drive-small.png",
"name": "drive-small"
},
{
"url": "/images/status/drive-upload.png",
"name": "drive-upload"
},
{
"url": "/images/status/drive.png",
"name": "drive"
},
{
"url": "/images/status/dummy.png",
"name": "dummy"
},
{
"url": "/images/status/e-book-reader-white.png",
"name": "e-book-reader-white"
},
{
"url": "/images/status/e-book-reader.png",
"name": "e-book-reader"
},
{
"url": "/images/status/edit-alignment-center.png",
"name": "edit-alignment-center"
},
{
"url": "/images/status/edit-alignment-justify-distribute.png",
"name": "edit-alignment-justify-distribute"
},
{
"url": "/images/status/edit-alignment-justify.png",
"name": "edit-alignment-justify"
},
{
"url": "/images/status/edit-alignment-right.png",
"name": "edit-alignment-right"
},
{
"url": "/images/status/edit-alignment.png",
"name": "edit-alignment"
},
{
"url": "/images/status/edit-all-caps.png",
"name": "edit-all-caps"
},
{
"url": "/images/status/edit-bold.png",
"name": "edit-bold"
},
{
"url": "/images/status/edit-code.png",
"name": "edit-code"
},
{
"url": "/images/status/edit-color.png",
"name": "edit-color"
},
{
"url": "/images/status/edit-column.png",
"name": "edit-column"
},
{
"url": "/images/status/edit-comma.png",
"name": "edit-comma"
},
{
"url": "/images/status/edit-decimal-decrease.png",
"name": "edit-decimal-decrease"
},
{
"url": "/images/status/edit-decimal.png",
"name": "edit-decimal"
},
{
"url": "/images/status/edit-diff.png",
"name": "edit-diff"
},
{
"url": "/images/status/edit-direction-rtl.png",
"name": "edit-direction-rtl"
},
{
"url": "/images/status/edit-direction.png",
"name": "edit-direction"
},
{
"url": "/images/status/edit-drop-cap.png",
"name": "edit-drop-cap"
},
{
"url": "/images/status/edit-heading.png",
"name": "edit-heading"
},
{
"url": "/images/status/edit-hyphenation.png",
"name": "edit-hyphenation"
},
{
"url": "/images/status/edit-image-center.png",
"name": "edit-image-center"
},
{
"url": "/images/status/edit-image-right.png",
"name": "edit-image-right"
},
{
"url": "/images/status/edit-image.png",
"name": "edit-image"
},
{
"url": "/images/status/edit-indent.png",
"name": "edit-indent"
},
{
"url": "/images/status/edit-italic.png",
"name": "edit-italic"
},
{
"url": "/images/status/edit-kerning.png",
"name": "edit-kerning"
},
{
"url": "/images/status/edit-language.png",
"name": "edit-language"
},
{
"url": "/images/status/edit-letter-spacing.png",
"name": "edit-letter-spacing"
},
{
"url": "/images/status/edit-line-spacing.png",
"name": "edit-line-spacing"
},
{
"url": "/images/status/edit-list-order.png",
"name": "edit-list-order"
},
{
"url": "/images/status/edit-list.png",
"name": "edit-list"
},
{
"url": "/images/status/edit-lowercase.png",
"name": "edit-lowercase"
},
{
"url": "/images/status/edit-mathematics.png",
"name": "edit-mathematics"
},
{
"url": "/images/status/edit-number.png",
"name": "edit-number"
},
{
"url": "/images/status/edit-outdent.png",
"name": "edit-outdent"
},
{
"url": "/images/status/edit-outline.png",
"name": "edit-outline"
},
{
"url": "/images/status/edit-overline.png",
"name": "edit-overline"
},
{
"url": "/images/status/edit-padding-left.png",
"name": "edit-padding-left"
},
{
"url": "/images/status/edit-padding-right.png",
"name": "edit-padding-right"
},
{
"url": "/images/status/edit-padding-top.png",
"name": "edit-padding-top"
},
{
"url": "/images/status/edit-padding.png",
"name": "edit-padding"
},
{
"url": "/images/status/edit-percent.png",
"name": "edit-percent"
},
{
"url": "/images/status/edit-pilcrow.png",
"name": "edit-pilcrow"
},
{
"url": "/images/status/edit-quotation.png",
"name": "edit-quotation"
},
{
"url": "/images/status/edit-replace.png",
"name": "edit-replace"
},
{
"url": "/images/status/edit-rotate.png",
"name": "edit-rotate"
},
{
"url": "/images/status/edit-rule.png",
"name": "edit-rule"
},
{
"url": "/images/status/edit-scale-vertical.png",
"name": "edit-scale-vertical"
},
{
"url": "/images/status/edit-scale.png",
"name": "edit-scale"
},
{
"url": "/images/status/edit-shade.png",
"name": "edit-shade"
},
{
"url": "/images/status/edit-shadow.png",
"name": "edit-shadow"
},
{
"url": "/images/status/edit-signiture.png",
"name": "edit-signiture"
},
{
"url": "/images/status/edit-size-down.png",
"name": "edit-size-down"
},
{
"url": "/images/status/edit-size-up.png",
"name": "edit-size-up"
},
{
"url": "/images/status/edit-size.png",
"name": "edit-size"
},
{
"url": "/images/status/edit-small-caps.png",
"name": "edit-small-caps"
},
{
"url": "/images/status/edit-space.png",
"name": "edit-space"
},
{
"url": "/images/status/edit-strike-double.png",
"name": "edit-strike-double"
},
{
"url": "/images/status/edit-strike.png",
"name": "edit-strike"
},
{
"url": "/images/status/edit-subscript.png",
"name": "edit-subscript"
},
{
"url": "/images/status/edit-superscript.png",
"name": "edit-superscript"
},
{
"url": "/images/status/edit-symbol.png",
"name": "edit-symbol"
},
{
"url": "/images/status/edit-underline-double.png",
"name": "edit-underline-double"
},
{
"url": "/images/status/edit-underline.png",
"name": "edit-underline"
},
{
"url": "/images/status/edit-uppercase.png",
"name": "edit-uppercase"
},
{
"url": "/images/status/edit-vertical-alignment-middle.png",
"name": "edit-vertical-alignment-middle"
},
{
"url": "/images/status/edit-vertical-alignment-top.png",
"name": "edit-vertical-alignment-top"
},
{
"url": "/images/status/edit-vertical-alignment.png",
"name": "edit-vertical-alignment"
},
{
"url": "/images/status/edit-writing-mode-tbrl.png",
"name": "edit-writing-mode-tbrl"
},
{
"url": "/images/status/edit-writing-mode.png",
"name": "edit-writing-mode"
},
{
"url": "/images/status/edit.png",
"name": "edit"
},
{
"url": "/images/status/envelope--arrow.png",
"name": "envelope--arrow"
},
{
"url": "/images/status/envelope--exclamation.png",
"name": "envelope--exclamation"
},
{
"url": "/images/status/envelope--minus.png",
"name": "envelope--minus"
},
{
"url": "/images/status/envelope--pencil.png",
"name": "envelope--pencil"
},
{
"url": "/images/status/envelope--plus.png",
"name": "envelope--plus"
},
{
"url": "/images/status/envelope-label.png",
"name": "envelope-label"
},
{
"url": "/images/status/envelope.png",
"name": "envelope"
},
{
"url": "/images/status/equalizer--arrow.png",
"name": "equalizer--arrow"
},
{
"url": "/images/status/equalizer--exclamation.png",
"name": "equalizer--exclamation"
},
{
"url": "/images/status/equalizer--minus.png",
"name": "equalizer--minus"
},
{
"url": "/images/status/equalizer--pencil.png",
"name": "equalizer--pencil"
},
{
"url": "/images/status/equalizer--plus.png",
"name": "equalizer--plus"
},
{
"url": "/images/status/equalizer-flat.png",
"name": "equalizer-flat"
},
{
"url": "/images/status/equalizer-high.png",
"name": "equalizer-high"
},
{
"url": "/images/status/equalizer-low.png",
"name": "equalizer-low"
},
{
"url": "/images/status/equalizer.png",
"name": "equalizer"
},
{
"url": "/images/status/eraser--arrow.png",
"name": "eraser--arrow"
},
{
"url": "/images/status/eraser--exclamation.png",
"name": "eraser--exclamation"
},
{
"url": "/images/status/eraser--minus.png",
"name": "eraser--minus"
},
{
"url": "/images/status/eraser--pencil.png",
"name": "eraser--pencil"
},
{
"url": "/images/status/eraser--plus.png",
"name": "eraser--plus"
},
{
"url": "/images/status/eraser-small.png",
"name": "eraser-small"
},
{
"url": "/images/status/eraser.png",
"name": "eraser"
},
{
"url": "/images/status/exclamation--frame.png",
"name": "exclamation--frame"
},
{
"url": "/images/status/exclamation-button.png",
"name": "exclamation-button"
},
{
"url": "/images/status/exclamation-diamond-frame.png",
"name": "exclamation-diamond-frame"
},
{
"url": "/images/status/exclamation-diamond.png",
"name": "exclamation-diamond"
},
{
"url": "/images/status/exclamation-octagon-frame.png",
"name": "exclamation-octagon-frame"
},
{
"url": "/images/status/exclamation-octagon.png",
"name": "exclamation-octagon"
},
{
"url": "/images/status/exclamation-red-frame.png",
"name": "exclamation-red-frame"
},
{
"url": "/images/status/exclamation-red.png",
"name": "exclamation-red"
},
{
"url": "/images/status/exclamation-shield-frame.png",
"name": "exclamation-shield-frame"
},
{
"url": "/images/status/exclamation-shield.png",
"name": "exclamation-shield"
},
{
"url": "/images/status/exclamation-small-red.png",
"name": "exclamation-small-red"
},
{
"url": "/images/status/exclamation-small-white.png",
"name": "exclamation-small-white"
},
{
"url": "/images/status/exclamation-small.png",
"name": "exclamation-small"
},
{
"url": "/images/status/exclamation-white.png",
"name": "exclamation-white"
},
{
"url": "/images/status/exclamation.png",
"name": "exclamation"
},
{
"url": "/images/status/external-small.png",
"name": "external-small"
},
{
"url": "/images/status/external.png",
"name": "external"
},
{
"url": "/images/status/eye--arrow.png",
"name": "eye--arrow"
},
{
"url": "/images/status/eye--exclamation.png",
"name": "eye--exclamation"
},
{
"url": "/images/status/eye--minus.png",
"name": "eye--minus"
},
{
"url": "/images/status/eye--pencil.png",
"name": "eye--pencil"
},
{
"url": "/images/status/eye--plus.png",
"name": "eye--plus"
},
{
"url": "/images/status/eye-close.png",
"name": "eye-close"
},
{
"url": "/images/status/eye-half.png",
"name": "eye-half"
},
{
"url": "/images/status/eye-red.png",
"name": "eye-red"
},
{
"url": "/images/status/eye.png",
"name": "eye"
},
{
"url": "/images/status/feed--arrow.png",
"name": "feed--arrow"
},
{
"url": "/images/status/feed--exclamation.png",
"name": "feed--exclamation"
},
{
"url": "/images/status/feed--minus.png",
"name": "feed--minus"
},
{
"url": "/images/status/feed--pencil.png",
"name": "feed--pencil"
},
{
"url": "/images/status/feed--plus.png",
"name": "feed--plus"
},
{
"url": "/images/status/feed-balloon.png",
"name": "feed-balloon"
},
{
"url": "/images/status/feed-document.png",
"name": "feed-document"
},
{
"url": "/images/status/feed-small.png",
"name": "feed-small"
},
{
"url": "/images/status/feed.png",
"name": "feed"
},
{
"url": "/images/status/fill-090.png",
"name": "fill-090"
},
{
"url": "/images/status/fill-180.png",
"name": "fill-180"
},
{
"url": "/images/status/fill-270.png",
"name": "fill-270"
},
{
"url": "/images/status/fill.png",
"name": "fill"
},
{
"url": "/images/status/film--arrow.png",
"name": "film--arrow"
},
{
"url": "/images/status/film--exclamation.png",
"name": "film--exclamation"
},
{
"url": "/images/status/film--minus.png",
"name": "film--minus"
},
{
"url": "/images/status/film--pencil.png",
"name": "film--pencil"
},
{
"url": "/images/status/film--plus.png",
"name": "film--plus"
},
{
"url": "/images/status/film-cast.png",
"name": "film-cast"
},
{
"url": "/images/status/film-small.png",
"name": "film-small"
},
{
"url": "/images/status/film.png",
"name": "film"
},
{
"url": "/images/status/films.png",
"name": "films"
},
{
"url": "/images/status/fingerprint-recognition.png",
"name": "fingerprint-recognition"
},
{
"url": "/images/status/fingerprint.png",
"name": "fingerprint"
},
{
"url": "/images/status/fire--arrow.png",
"name": "fire--arrow"
},
{
"url": "/images/status/fire--exclamation.png",
"name": "fire--exclamation"
},
{
"url": "/images/status/fire--minus.png",
"name": "fire--minus"
},
{
"url": "/images/status/fire--pencil.png",
"name": "fire--pencil"
},
{
"url": "/images/status/fire--plus.png",
"name": "fire--plus"
},
{
"url": "/images/status/fire-big.png",
"name": "fire-big"
},
{
"url": "/images/status/fire-small.png",
"name": "fire-small"
},
{
"url": "/images/status/fire.png",
"name": "fire"
},
{
"url": "/images/status/flag--arrow.png",
"name": "flag--arrow"
},
{
"url": "/images/status/flag--exclamation.png",
"name": "flag--exclamation"
},
{
"url": "/images/status/flag--minus.png",
"name": "flag--minus"
},
{
"url": "/images/status/flag--pencil.png",
"name": "flag--pencil"
},
{
"url": "/images/status/flag--plus.png",
"name": "flag--plus"
},
{
"url": "/images/status/flag-small.png",
"name": "flag-small"
},
{
"url": "/images/status/flag.png",
"name": "flag"
},
{
"url": "/images/status/flashlight--arrow.png",
"name": "flashlight--arrow"
},
{
"url": "/images/status/flashlight--exclamation.png",
"name": "flashlight--exclamation"
},
{
"url": "/images/status/flashlight--minus.png",
"name": "flashlight--minus"
},
{
"url": "/images/status/flashlight--pencil.png",
"name": "flashlight--pencil"
},
{
"url": "/images/status/flashlight--plus.png",
"name": "flashlight--plus"
},
{
"url": "/images/status/flashlight-shine.png",
"name": "flashlight-shine"
},
{
"url": "/images/status/flashlight.png",
"name": "flashlight"
},
{
"url": "/images/status/flask--arrow.png",
"name": "flask--arrow"
},
{
"url": "/images/status/flask--exclamation.png",
"name": "flask--exclamation"
},
{
"url": "/images/status/flask--minus.png",
"name": "flask--minus"
},
{
"url": "/images/status/flask--pencil.png",
"name": "flask--pencil"
},
{
"url": "/images/status/flask--plus.png",
"name": "flask--plus"
},
{
"url": "/images/status/flask-empty.png",
"name": "flask-empty"
},
{
"url": "/images/status/flask.png",
"name": "flask"
},
{
"url": "/images/status/foaf.png",
"name": "foaf"
},
{
"url": "/images/status/folder--arrow.png",
"name": "folder--arrow"
},
{
"url": "/images/status/folder--exclamation.png",
"name": "folder--exclamation"
},
{
"url": "/images/status/folder--minus.png",
"name": "folder--minus"
},
{
"url": "/images/status/folder--pencil.png",
"name": "folder--pencil"
},
{
"url": "/images/status/folder--plus.png",
"name": "folder--plus"
},
{
"url": "/images/status/folder-bookmark.png",
"name": "folder-bookmark"
},
{
"url": "/images/status/folder-export.png",
"name": "folder-export"
},
{
"url": "/images/status/folder-horizontal-open.png",
"name": "folder-horizontal-open"
},
{
"url": "/images/status/folder-horizontal.png",
"name": "folder-horizontal"
},
{
"url": "/images/status/folder-import.png",
"name": "folder-import"
},
{
"url": "/images/status/folder-network.png",
"name": "folder-network"
},
{
"url": "/images/status/folder-open-document-music-playlist.png",
"name": "folder-open-document-music-playlist"
},
{
"url": "/images/status/folder-open-document-music.png",
"name": "folder-open-document-music"
},
{
"url": "/images/status/folder-open-document-text.png",
"name": "folder-open-document-text"
},
{
"url": "/images/status/folder-open-document.png",
"name": "folder-open-document"
},
{
"url": "/images/status/folder-open-film.png",
"name": "folder-open-film"
},
{
"url": "/images/status/folder-open-image.png",
"name": "folder-open-image"
},
{
"url": "/images/status/folder-open-slide.png",
"name": "folder-open-slide"
},
{
"url": "/images/status/folder-open-table.png",
"name": "folder-open-table"
},
{
"url": "/images/status/folder-open.png",
"name": "folder-open"
},
{
"url": "/images/status/folder-rename.png",
"name": "folder-rename"
},
{
"url": "/images/status/folder-search-result.png",
"name": "folder-search-result"
},
{
"url": "/images/status/folder-share.png",
"name": "folder-share"
},
{
"url": "/images/status/folder-shred.png",
"name": "folder-shred"
},
{
"url": "/images/status/folder-small-horizontal.png",
"name": "folder-small-horizontal"
},
{
"url": "/images/status/folder-small.png",
"name": "folder-small"
},
{
"url": "/images/status/folder-stamp.png",
"name": "folder-stamp"
},
{
"url": "/images/status/folder-stand.png",
"name": "folder-stand"
},
{
"url": "/images/status/folder-zipper.png",
"name": "folder-zipper"
},
{
"url": "/images/status/folder.png",
"name": "folder"
},
{
"url": "/images/status/folders-stack.png",
"name": "folders-stack"
},
{
"url": "/images/status/folders.png",
"name": "folders"
},
{
"url": "/images/status/fruit-orange.png",
"name": "fruit-orange"
},
{
"url": "/images/status/fruit.png",
"name": "fruit"
},
{
"url": "/images/status/function.png",
"name": "function"
},
{
"url": "/images/status/funnel--arrow.png",
"name": "funnel--arrow"
},
{
"url": "/images/status/funnel--exclamation.png",
"name": "funnel--exclamation"
},
{
"url": "/images/status/funnel--minus.png",
"name": "funnel--minus"
},
{
"url": "/images/status/funnel--pencil.png",
"name": "funnel--pencil"
},
{
"url": "/images/status/funnel--plus.png",
"name": "funnel--plus"
},
{
"url": "/images/status/funnel-small.png",
"name": "funnel-small"
},
{
"url": "/images/status/funnel.png",
"name": "funnel"
},
{
"url": "/images/status/game-monitor.png",
"name": "game-monitor"
},
{
"url": "/images/status/game.png",
"name": "game"
},
{
"url": "/images/status/gear--arrow.png",
"name": "gear--arrow"
},
{
"url": "/images/status/gear--exclamation.png",
"name": "gear--exclamation"
},
{
"url": "/images/status/gear--minus.png",
"name": "gear--minus"
},
{
"url": "/images/status/gear--pencil.png",
"name": "gear--pencil"
},
{
"url": "/images/status/gear--plus.png",
"name": "gear--plus"
},
{
"url": "/images/status/gear-small.png",
"name": "gear-small"
},
{
"url": "/images/status/gear.png",
"name": "gear"
},
{
"url": "/images/status/gender-female.png",
"name": "gender-female"
},
{
"url": "/images/status/gender.png",
"name": "gender"
},
{
"url": "/images/status/geotag-balloon.png",
"name": "geotag-balloon"
},
{
"url": "/images/status/geotag-document.png",
"name": "geotag-document"
},
{
"url": "/images/status/geotag-small.png",
"name": "geotag-small"
},
{
"url": "/images/status/geotag.png",
"name": "geotag"
},
{
"url": "/images/status/ghost-small.png",
"name": "ghost-small"
},
{
"url": "/images/status/ghost.png",
"name": "ghost"
},
{
"url": "/images/status/glass--arrow.png",
"name": "glass--arrow"
},
{
"url": "/images/status/glass--exclamation.png",
"name": "glass--exclamation"
},
{
"url": "/images/status/glass--minus.png",
"name": "glass--minus"
},
{
"url": "/images/status/glass--pencil.png",
"name": "glass--pencil"
},
{
"url": "/images/status/glass--plus.png",
"name": "glass--plus"
},
{
"url": "/images/status/glass-empty.png",
"name": "glass-empty"
},
{
"url": "/images/status/glass.png",
"name": "glass"
},
{
"url": "/images/status/globe--arrow.png",
"name": "globe--arrow"
},
{
"url": "/images/status/globe--exclamation.png",
"name": "globe--exclamation"
},
{
"url": "/images/status/globe--minus.png",
"name": "globe--minus"
},
{
"url": "/images/status/globe--pencil.png",
"name": "globe--pencil"
},
{
"url": "/images/status/globe--plus.png",
"name": "globe--plus"
},
{
"url": "/images/status/globe-green.png",
"name": "globe-green"
},
{
"url": "/images/status/globe-medium-green.png",
"name": "globe-medium-green"
},
{
"url": "/images/status/globe-medium.png",
"name": "globe-medium"
},
{
"url": "/images/status/globe-model.png",
"name": "globe-model"
},
{
"url": "/images/status/globe-network.png",
"name": "globe-network"
},
{
"url": "/images/status/globe-place.png",
"name": "globe-place"
},
{
"url": "/images/status/globe-small-green.png",
"name": "globe-small-green"
},
{
"url": "/images/status/globe-small.png",
"name": "globe-small"
},
{
"url": "/images/status/globe.png",
"name": "globe"
},
{
"url": "/images/status/gradient-small.png",
"name": "gradient-small"
},
{
"url": "/images/status/gradient.png",
"name": "gradient"
},
{
"url": "/images/status/grid-dot.png",
"name": "grid-dot"
},
{
"url": "/images/status/grid-small-dot.png",
"name": "grid-small-dot"
},
{
"url": "/images/status/grid-small.png",
"name": "grid-small"
},
{
"url": "/images/status/grid-snap-dot.png",
"name": "grid-snap-dot"
},
{
"url": "/images/status/grid-snap.png",
"name": "grid-snap"
},
{
"url": "/images/status/grid.png",
"name": "grid"
},
{
"url": "/images/status/guide-snap.png",
"name": "guide-snap"
},
{
"url": "/images/status/guide.png",
"name": "guide"
},
{
"url": "/images/status/guitar--arrow.png",
"name": "guitar--arrow"
},
{
"url": "/images/status/guitar--exclamation.png",
"name": "guitar--exclamation"
},
{
"url": "/images/status/guitar--minus.png",
"name": "guitar--minus"
},
{
"url": "/images/status/guitar--pencil.png",
"name": "guitar--pencil"
},
{
"url": "/images/status/guitar--plus.png",
"name": "guitar--plus"
},
{
"url": "/images/status/guitar.png",
"name": "guitar"
},
{
"url": "/images/status/hammer--arrow.png",
"name": "hammer--arrow"
},
{
"url": "/images/status/hammer--exclamation.png",
"name": "hammer--exclamation"
},
{
"url": "/images/status/hammer--minus.png",
"name": "hammer--minus"
},
{
"url": "/images/status/hammer--pencil.png",
"name": "hammer--pencil"
},
{
"url": "/images/status/hammer--plus.png",
"name": "hammer--plus"
},
{
"url": "/images/status/hammer-left.png",
"name": "hammer-left"
},
{
"url": "/images/status/hammer-screwdriver.png",
"name": "hammer-screwdriver"
},
{
"url": "/images/status/hammer.png",
"name": "hammer"
},
{
"url": "/images/status/hand-point-090.png",
"name": "hand-point-090"
},
{
"url": "/images/status/hand-point-180.png",
"name": "hand-point-180"
},
{
"url": "/images/status/hand-point-270.png",
"name": "hand-point-270"
},
{
"url": "/images/status/hand-point.png",
"name": "hand-point"
},
{
"url": "/images/status/hand-property.png",
"name": "hand-property"
},
{
"url": "/images/status/hand-share.png",
"name": "hand-share"
},
{
"url": "/images/status/hand.png",
"name": "hand"
},
{
"url": "/images/status/hard-hat--arrow.png",
"name": "hard-hat--arrow"
},
{
"url": "/images/status/hard-hat--exclamation.png",
"name": "hard-hat--exclamation"
},
{
"url": "/images/status/hard-hat--minus.png",
"name": "hard-hat--minus"
},
{
"url": "/images/status/hard-hat--pencil.png",
"name": "hard-hat--pencil"
},
{
"url": "/images/status/hard-hat--plus.png",
"name": "hard-hat--plus"
},
{
"url": "/images/status/hard-hat-military.png",
"name": "hard-hat-military"
},
{
"url": "/images/status/hard-hat-mine.png",
"name": "hard-hat-mine"
},
{
"url": "/images/status/hard-hat.png",
"name": "hard-hat"
},
{
"url": "/images/status/headphone--arrow.png",
"name": "headphone--arrow"
},
{
"url": "/images/status/headphone--exclamation.png",
"name": "headphone--exclamation"
},
{
"url": "/images/status/headphone--minus.png",
"name": "headphone--minus"
},
{
"url": "/images/status/headphone--pencil.png",
"name": "headphone--pencil"
},
{
"url": "/images/status/headphone--plus.png",
"name": "headphone--plus"
},
{
"url": "/images/status/headphone-microphone.png",
"name": "headphone-microphone"
},
{
"url": "/images/status/headphone.png",
"name": "headphone"
},
{
"url": "/images/status/heart--arrow.png",
"name": "heart--arrow"
},
{
"url": "/images/status/heart--exclamation.png",
"name": "heart--exclamation"
},
{
"url": "/images/status/heart--minus.png",
"name": "heart--minus"
},
{
"url": "/images/status/heart--pencil.png",
"name": "heart--pencil"
},
{
"url": "/images/status/heart--plus.png",
"name": "heart--plus"
},
{
"url": "/images/status/heart-break.png",
"name": "heart-break"
},
{
"url": "/images/status/heart-empty.png",
"name": "heart-empty"
},
{
"url": "/images/status/heart-half.png",
"name": "heart-half"
},
{
"url": "/images/status/heart-small-empty.png",
"name": "heart-small-empty"
},
{
"url": "/images/status/heart-small-half.png",
"name": "heart-small-half"
},
{
"url": "/images/status/heart-small.png",
"name": "heart-small"
},
{
"url": "/images/status/heart.png",
"name": "heart"
},
{
"url": "/images/status/highlighter--arrow.png",
"name": "highlighter--arrow"
},
{
"url": "/images/status/highlighter--exclamation.png",
"name": "highlighter--exclamation"
},
{
"url": "/images/status/highlighter--minus.png",
"name": "highlighter--minus"
},
{
"url": "/images/status/highlighter--plus.png",
"name": "highlighter--plus"
},
{
"url": "/images/status/highlighter-color.png",
"name": "highlighter-color"
},
{
"url": "/images/status/highlighter-small.png",
"name": "highlighter-small"
},
{
"url": "/images/status/highlighter-text.png",
"name": "highlighter-text"
},
{
"url": "/images/status/highlighter.png",
"name": "highlighter"
},
{
"url": "/images/status/home--arrow.png",
"name": "home--arrow"
},
{
"url": "/images/status/home--exclamation.png",
"name": "home--exclamation"
},
{
"url": "/images/status/home--minus.png",
"name": "home--minus"
},
{
"url": "/images/status/home--pencil.png",
"name": "home--pencil"
},
{
"url": "/images/status/home--plus.png",
"name": "home--plus"
},
{
"url": "/images/status/home-network.png",
"name": "home-network"
},
{
"url": "/images/status/home-small.png",
"name": "home-small"
},
{
"url": "/images/status/home.png",
"name": "home"
},
{
"url": "/images/status/hourglass--arrow.png",
"name": "hourglass--arrow"
},
{
"url": "/images/status/hourglass--exclamation.png",
"name": "hourglass--exclamation"
},
{
"url": "/images/status/hourglass--minus.png",
"name": "hourglass--minus"
},
{
"url": "/images/status/hourglass--pencil.png",
"name": "hourglass--pencil"
},
{
"url": "/images/status/hourglass--plus.png",
"name": "hourglass--plus"
},
{
"url": "/images/status/hourglass-select-remain.png",
"name": "hourglass-select-remain"
},
{
"url": "/images/status/hourglass-select.png",
"name": "hourglass-select"
},
{
"url": "/images/status/hourglass.png",
"name": "hourglass"
},
{
"url": "/images/status/ice--arrow.png",
"name": "ice--arrow"
},
{
"url": "/images/status/ice--exclamation.png",
"name": "ice--exclamation"
},
{
"url": "/images/status/ice--minus.png",
"name": "ice--minus"
},
{
"url": "/images/status/ice--pencil.png",
"name": "ice--pencil"
},
{
"url": "/images/status/ice--plus.png",
"name": "ice--plus"
},
{
"url": "/images/status/ice.png",
"name": "ice"
},
{
"url": "/images/status/image--arrow.png",
"name": "image--arrow"
},
{
"url": "/images/status/image--exclamation.png",
"name": "image--exclamation"
},
{
"url": "/images/status/image--minus.png",
"name": "image--minus"
},
{
"url": "/images/status/image--pencil.png",
"name": "image--pencil"
},
{
"url": "/images/status/image--plus.png",
"name": "image--plus"
},
{
"url": "/images/status/image-balloon.png",
"name": "image-balloon"
},
{
"url": "/images/status/image-blur.png",
"name": "image-blur"
},
{
"url": "/images/status/image-cast.png",
"name": "image-cast"
},
{
"url": "/images/status/image-crop.png",
"name": "image-crop"
},
{
"url": "/images/status/image-empty.png",
"name": "image-empty"
},
{
"url": "/images/status/image-export.png",
"name": "image-export"
},
{
"url": "/images/status/image-import.png",
"name": "image-import"
},
{
"url": "/images/status/image-reflection.png",
"name": "image-reflection"
},
{
"url": "/images/status/image-resize-actual.png",
"name": "image-resize-actual"
},
{
"url": "/images/status/image-resize.png",
"name": "image-resize"
},
{
"url": "/images/status/image-select.png",
"name": "image-select"
},
{
"url": "/images/status/image-sharpen.png",
"name": "image-sharpen"
},
{
"url": "/images/status/image-small-sunset.png",
"name": "image-small-sunset"
},
{
"url": "/images/status/image-small.png",
"name": "image-small"
},
{
"url": "/images/status/image-sunset.png",
"name": "image-sunset"
},
{
"url": "/images/status/image-vertical-sunset.png",
"name": "image-vertical-sunset"
},
{
"url": "/images/status/image-vertical.png",
"name": "image-vertical"
},
{
"url": "/images/status/image.png",
"name": "image"
},
{
"url": "/images/status/images-flickr.png",
"name": "images-flickr"
},
{
"url": "/images/status/images-stack.png",
"name": "images-stack"
},
{
"url": "/images/status/images.png",
"name": "images"
},
{
"url": "/images/status/inbox--arrow.png",
"name": "inbox--arrow"
},
{
"url": "/images/status/inbox--exclamation.png",
"name": "inbox--exclamation"
},
{
"url": "/images/status/inbox--minus.png",
"name": "inbox--minus"
},
{
"url": "/images/status/inbox--pencil.png",
"name": "inbox--pencil"
},
{
"url": "/images/status/inbox--plus.png",
"name": "inbox--plus"
},
{
"url": "/images/status/inbox-document-music-playlist.png",
"name": "inbox-document-music-playlist"
},
{
"url": "/images/status/inbox-document-music.png",
"name": "inbox-document-music"
},
{
"url": "/images/status/inbox-document-text.png",
"name": "inbox-document-text"
},
{
"url": "/images/status/inbox-document.png",
"name": "inbox-document"
},
{
"url": "/images/status/inbox-film.png",
"name": "inbox-film"
},
{
"url": "/images/status/inbox-image.png",
"name": "inbox-image"
},
{
"url": "/images/status/inbox-slide.png",
"name": "inbox-slide"
},
{
"url": "/images/status/inbox-table.png",
"name": "inbox-table"
},
{
"url": "/images/status/inbox.png",
"name": "inbox"
},
{
"url": "/images/status/infocard-small.png",
"name": "infocard-small"
},
{
"url": "/images/status/infocard.png",
"name": "infocard"
},
{
"url": "/images/status/information-balloon.png",
"name": "information-balloon"
},
{
"url": "/images/status/information-button.png",
"name": "information-button"
},
{
"url": "/images/status/information-frame.png",
"name": "information-frame"
},
{
"url": "/images/status/information-octagon-frame.png",
"name": "information-octagon-frame"
},
{
"url": "/images/status/information-octagon.png",
"name": "information-octagon"
},
{
"url": "/images/status/information-shield.png",
"name": "information-shield"
},
{
"url": "/images/status/information-small-white.png",
"name": "information-small-white"
},
{
"url": "/images/status/information-small.png",
"name": "information-small"
},
{
"url": "/images/status/information-white.png",
"name": "information-white"
},
{
"url": "/images/status/information.png",
"name": "information"
},
{
"url": "/images/status/jar--arrow.png",
"name": "jar--arrow"
},
{
"url": "/images/status/jar--exclamation.png",
"name": "jar--exclamation"
},
{
"url": "/images/status/jar--minus.png",
"name": "jar--minus"
},
{
"url": "/images/status/jar--pencil.png",
"name": "jar--pencil"
},
{
"url": "/images/status/jar--plus.png",
"name": "jar--plus"
},
{
"url": "/images/status/jar-empty.png",
"name": "jar-empty"
},
{
"url": "/images/status/jar-label.png",
"name": "jar-label"
},
{
"url": "/images/status/jar-open.png",
"name": "jar-open"
},
{
"url": "/images/status/jar.png",
"name": "jar"
},
{
"url": "/images/status/json.png",
"name": "json"
},
{
"url": "/images/status/key--arrow.png",
"name": "key--arrow"
},
{
"url": "/images/status/key--exclamation.png",
"name": "key--exclamation"
},
{
"url": "/images/status/key--minus.png",
"name": "key--minus"
},
{
"url": "/images/status/key--pencil.png",
"name": "key--pencil"
},
{
"url": "/images/status/key--plus.png",
"name": "key--plus"
},
{
"url": "/images/status/key-solid.png",
"name": "key-solid"
},
{
"url": "/images/status/key.png",
"name": "key"
},
{
"url": "/images/status/keyboard--arrow.png",
"name": "keyboard--arrow"
},
{
"url": "/images/status/keyboard--exclamation.png",
"name": "keyboard--exclamation"
},
{
"url": "/images/status/keyboard--minus.png",
"name": "keyboard--minus"
},
{
"url": "/images/status/keyboard--pencil.png",
"name": "keyboard--pencil"
},
{
"url": "/images/status/keyboard--plus.png",
"name": "keyboard--plus"
},
{
"url": "/images/status/keyboard-space.png",
"name": "keyboard-space"
},
{
"url": "/images/status/keyboard.png",
"name": "keyboard"
},
{
"url": "/images/status/language-balloon.png",
"name": "language-balloon"
},
{
"url": "/images/status/language-document.png",
"name": "language-document"
},
{
"url": "/images/status/language-small.png",
"name": "language-small"
},
{
"url": "/images/status/language.png",
"name": "language"
},
{
"url": "/images/status/layer--arrow.png",
"name": "layer--arrow"
},
{
"url": "/images/status/layer--exclamation.png",
"name": "layer--exclamation"
},
{
"url": "/images/status/layer--minus.png",
"name": "layer--minus"
},
{
"url": "/images/status/layer--pencil.png",
"name": "layer--pencil"
},
{
"url": "/images/status/layer--plus.png",
"name": "layer--plus"
},
{
"url": "/images/status/layer-flip-vertical.png",
"name": "layer-flip-vertical"
},
{
"url": "/images/status/layer-flip.png",
"name": "layer-flip"
},
{
"url": "/images/status/layer-mask.png",
"name": "layer-mask"
},
{
"url": "/images/status/layer-resize-actual.png",
"name": "layer-resize-actual"
},
{
"url": "/images/status/layer-resize-replicate-vertical.png",
"name": "layer-resize-replicate-vertical"
},
{
"url": "/images/status/layer-resize-replicate.png",
"name": "layer-resize-replicate"
},
{
"url": "/images/status/layer-resize.png",
"name": "layer-resize"
},
{
"url": "/images/status/layer-rotate-left.png",
"name": "layer-rotate-left"
},
{
"url": "/images/status/layer-rotate.png",
"name": "layer-rotate"
},
{
"url": "/images/status/layer-select-point.png",
"name": "layer-select-point"
},
{
"url": "/images/status/layer-select.png",
"name": "layer-select"
},
{
"url": "/images/status/layer-shade.png",
"name": "layer-shade"
},
{
"url": "/images/status/layer-shape-curve.png",
"name": "layer-shape-curve"
},
{
"url": "/images/status/layer-shape-ellipse.png",
"name": "layer-shape-ellipse"
},
{
"url": "/images/status/layer-shape-line.png",
"name": "layer-shape-line"
},
{
"url": "/images/status/layer-shape-polygon.png",
"name": "layer-shape-polygon"
},
{
"url": "/images/status/layer-shape-polyline.png",
"name": "layer-shape-polyline"
},
{
"url": "/images/status/layer-shape-round.png",
"name": "layer-shape-round"
},
{
"url": "/images/status/layer-shape-text.png",
"name": "layer-shape-text"
},
{
"url": "/images/status/layer-shape.png",
"name": "layer-shape"
},
{
"url": "/images/status/layer-shred.png",
"name": "layer-shred"
},
{
"url": "/images/status/layer-small.png",
"name": "layer-small"
},
{
"url": "/images/status/layer-transparent.png",
"name": "layer-transparent"
},
{
"url": "/images/status/layer-vector.png",
"name": "layer-vector"
},
{
"url": "/images/status/layer.png",
"name": "layer"
},
{
"url": "/images/status/layers-alignment-bottom.png",
"name": "layers-alignment-bottom"
},
{
"url": "/images/status/layers-alignment-center.png",
"name": "layers-alignment-center"
},
{
"url": "/images/status/layers-alignment-left.png",
"name": "layers-alignment-left"
},
{
"url": "/images/status/layers-alignment-middle.png",
"name": "layers-alignment-middle"
},
{
"url": "/images/status/layers-alignment-right.png",
"name": "layers-alignment-right"
},
{
"url": "/images/status/layers-alignment.png",
"name": "layers-alignment"
},
{
"url": "/images/status/layers-arrange-back.png",
"name": "layers-arrange-back"
},
{
"url": "/images/status/layers-arrange.png",
"name": "layers-arrange"
},
{
"url": "/images/status/layers-group.png",
"name": "layers-group"
},
{
"url": "/images/status/layers-small.png",
"name": "layers-small"
},
{
"url": "/images/status/layers-stack-arrange-back.png",
"name": "layers-stack-arrange-back"
},
{
"url": "/images/status/layers-stack-arrange.png",
"name": "layers-stack-arrange"
},
{
"url": "/images/status/layers-stack.png",
"name": "layers-stack"
},
{
"url": "/images/status/layers-ungroup.png",
"name": "layers-ungroup"
},
{
"url": "/images/status/layers.png",
"name": "layers"
},
{
"url": "/images/status/layout-2-equal.png",
"name": "layout-2-equal"
},
{
"url": "/images/status/layout-2.png",
"name": "layout-2"
},
{
"url": "/images/status/layout-3-mix.png",
"name": "layout-3-mix"
},
{
"url": "/images/status/layout-3.png",
"name": "layout-3"
},
{
"url": "/images/status/layout-design.png",
"name": "layout-design"
},
{
"url": "/images/status/layout-header-2-equal.png",
"name": "layout-header-2-equal"
},
{
"url": "/images/status/layout-header-2.png",
"name": "layout-header-2"
},
{
"url": "/images/status/layout-header-3-mix.png",
"name": "layout-header-3-mix"
},
{
"url": "/images/status/layout-header-3.png",
"name": "layout-header-3"
},
{
"url": "/images/status/layout-header.png",
"name": "layout-header"
},
{
"url": "/images/status/layout-hf-2-equal.png",
"name": "layout-hf-2-equal"
},
{
"url": "/images/status/layout-hf-2.png",
"name": "layout-hf-2"
},
{
"url": "/images/status/layout-hf-3-mix.png",
"name": "layout-hf-3-mix"
},
{
"url": "/images/status/layout-hf-3.png",
"name": "layout-hf-3"
},
{
"url": "/images/status/layout-hf.png",
"name": "layout-hf"
},
{
"url": "/images/status/layout-join-vertical.png",
"name": "layout-join-vertical"
},
{
"url": "/images/status/layout-join.png",
"name": "layout-join"
},
{
"url": "/images/status/layout-select-content.png",
"name": "layout-select-content"
},
{
"url": "/images/status/layout-select-footer.png",
"name": "layout-select-footer"
},
{
"url": "/images/status/layout-select-sidebar.png",
"name": "layout-select-sidebar"
},
{
"url": "/images/status/layout-select.png",
"name": "layout-select"
},
{
"url": "/images/status/layout-split-vertical.png",
"name": "layout-split-vertical"
},
{
"url": "/images/status/layout-split.png",
"name": "layout-split"
},
{
"url": "/images/status/layout.png",
"name": "layout"
},
{
"url": "/images/status/leaf--arrow.png",
"name": "leaf--arrow"
},
{
"url": "/images/status/leaf--exclamation.png",
"name": "leaf--exclamation"
},
{
"url": "/images/status/leaf--minus.png",
"name": "leaf--minus"
},
{
"url": "/images/status/leaf--pencil.png",
"name": "leaf--pencil"
},
{
"url": "/images/status/leaf--plus.png",
"name": "leaf--plus"
},
{
"url": "/images/status/leaf-wormhole.png",
"name": "leaf-wormhole"
},
{
"url": "/images/status/leaf.png",
"name": "leaf"
},
{
"url": "/images/status/license-key.png",
"name": "license-key"
},
{
"url": "/images/status/lifebuoy--arrow.png",
"name": "lifebuoy--arrow"
},
{
"url": "/images/status/lifebuoy--exclamation.png",
"name": "lifebuoy--exclamation"
},
{
"url": "/images/status/lifebuoy--minus.png",
"name": "lifebuoy--minus"
},
{
"url": "/images/status/lifebuoy--pencil.png",
"name": "lifebuoy--pencil"
},
{
"url": "/images/status/lifebuoy--plus.png",
"name": "lifebuoy--plus"
},
{
"url": "/images/status/lifebuoy.png",
"name": "lifebuoy"
},
{
"url": "/images/status/light-bulb--arrow.png",
"name": "light-bulb--arrow"
},
{
"url": "/images/status/light-bulb--exclamation.png",
"name": "light-bulb--exclamation"
},
{
"url": "/images/status/light-bulb--minus.png",
"name": "light-bulb--minus"
},
{
"url": "/images/status/light-bulb--pencil.png",
"name": "light-bulb--pencil"
},
{
"url": "/images/status/light-bulb--plus.png",
"name": "light-bulb--plus"
},
{
"url": "/images/status/light-bulb-code.png",
"name": "light-bulb-code"
},
{
"url": "/images/status/light-bulb-off.png",
"name": "light-bulb-off"
},
{
"url": "/images/status/light-bulb-small-off.png",
"name": "light-bulb-small-off"
},
{
"url": "/images/status/light-bulb-small.png",
"name": "light-bulb-small"
},
{
"url": "/images/status/light-bulb.png",
"name": "light-bulb"
},
{
"url": "/images/status/lightning--arrow.png",
"name": "lightning--arrow"
},
{
"url": "/images/status/lightning--exclamation.png",
"name": "lightning--exclamation"
},
{
"url": "/images/status/lightning--minus.png",
"name": "lightning--minus"
},
{
"url": "/images/status/lightning--pencil.png",
"name": "lightning--pencil"
},
{
"url": "/images/status/lightning--plus.png",
"name": "lightning--plus"
},
{
"url": "/images/status/lightning-small.png",
"name": "lightning-small"
},
{
"url": "/images/status/lightning.png",
"name": "lightning"
},
{
"url": "/images/status/locale.png",
"name": "locale"
},
{
"url": "/images/status/lock--arrow.png",
"name": "lock--arrow"
},
{
"url": "/images/status/lock--exclamation.png",
"name": "lock--exclamation"
},
{
"url": "/images/status/lock--minus.png",
"name": "lock--minus"
},
{
"url": "/images/status/lock--pencil.png",
"name": "lock--pencil"
},
{
"url": "/images/status/lock--plus.png",
"name": "lock--plus"
},
{
"url": "/images/status/lock-small.png",
"name": "lock-small"
},
{
"url": "/images/status/lock-unlock.png",
"name": "lock-unlock"
},
{
"url": "/images/status/lock.png",
"name": "lock"
},
{
"url": "/images/status/luggage--arrow.png",
"name": "luggage--arrow"
},
{
"url": "/images/status/luggage--exclamation.png",
"name": "luggage--exclamation"
},
{
"url": "/images/status/luggage--minus.png",
"name": "luggage--minus"
},
{
"url": "/images/status/luggage--pencil.png",
"name": "luggage--pencil"
},
{
"url": "/images/status/luggage--plus.png",
"name": "luggage--plus"
},
{
"url": "/images/status/luggage-tag.png",
"name": "luggage-tag"
},
{
"url": "/images/status/luggage.png",
"name": "luggage"
},
{
"url": "/images/status/magnet--arrow.png",
"name": "magnet--arrow"
},
{
"url": "/images/status/magnet--exclamation.png",
"name": "magnet--exclamation"
},
{
"url": "/images/status/magnet--minus.png",
"name": "magnet--minus"
},
{
"url": "/images/status/magnet--pencil.png",
"name": "magnet--pencil"
},
{
"url": "/images/status/magnet--plus.png",
"name": "magnet--plus"
},
{
"url": "/images/status/magnet-blue.png",
"name": "magnet-blue"
},
{
"url": "/images/status/magnet-small.png",
"name": "magnet-small"
},
{
"url": "/images/status/magnet.png",
"name": "magnet"
},
{
"url": "/images/status/magnifier--arrow.png",
"name": "magnifier--arrow"
},
{
"url": "/images/status/magnifier--exclamation.png",
"name": "magnifier--exclamation"
},
{
"url": "/images/status/magnifier--minus.png",
"name": "magnifier--minus"
},
{
"url": "/images/status/magnifier--pencil.png",
"name": "magnifier--pencil"
},
{
"url": "/images/status/magnifier--plus.png",
"name": "magnifier--plus"
},
{
"url": "/images/status/magnifier-history-left.png",
"name": "magnifier-history-left"
},
{
"url": "/images/status/magnifier-history.png",
"name": "magnifier-history"
},
{
"url": "/images/status/magnifier-left.png",
"name": "magnifier-left"
},
{
"url": "/images/status/magnifier-medium-left.png",
"name": "magnifier-medium-left"
},
{
"url": "/images/status/magnifier-medium.png",
"name": "magnifier-medium"
},
{
"url": "/images/status/magnifier-small.png",
"name": "magnifier-small"
},
{
"url": "/images/status/magnifier-zoom-actual-equal.png",
"name": "magnifier-zoom-actual-equal"
},
{
"url": "/images/status/magnifier-zoom-actual.png",
"name": "magnifier-zoom-actual"
},
{
"url": "/images/status/magnifier-zoom-fit.png",
"name": "magnifier-zoom-fit"
},
{
"url": "/images/status/magnifier-zoom-in.png",
"name": "magnifier-zoom-in"
},
{
"url": "/images/status/magnifier-zoom-out.png",
"name": "magnifier-zoom-out"
},
{
"url": "/images/status/magnifier-zoom.png",
"name": "magnifier-zoom"
},
{
"url": "/images/status/magnifier.png",
"name": "magnifier"
},
{
"url": "/images/status/mahjong--arrow.png",
"name": "mahjong--arrow"
},
{
"url": "/images/status/mahjong--exclamation.png",
"name": "mahjong--exclamation"
},
{
"url": "/images/status/mahjong--minus.png",
"name": "mahjong--minus"
},
{
"url": "/images/status/mahjong--pencil.png",
"name": "mahjong--pencil"
},
{
"url": "/images/status/mahjong--plus.png",
"name": "mahjong--plus"
},
{
"url": "/images/status/mahjong-white.png",
"name": "mahjong-white"
},
{
"url": "/images/status/mahjong.png",
"name": "mahjong"
},
{
"url": "/images/status/mail--arrow.png",
"name": "mail--arrow"
},
{
"url": "/images/status/mail--exclamation.png",
"name": "mail--exclamation"
},
{
"url": "/images/status/mail--minus.png",
"name": "mail--minus"
},
{
"url": "/images/status/mail--pencil.png",
"name": "mail--pencil"
},
{
"url": "/images/status/mail--plus.png",
"name": "mail--plus"
},
{
"url": "/images/status/mail-open-document-music-playlist.png",
"name": "mail-open-document-music-playlist"
},
{
"url": "/images/status/mail-open-document-music.png",
"name": "mail-open-document-music"
},
{
"url": "/images/status/mail-open-document-text.png",
"name": "mail-open-document-text"
},
{
"url": "/images/status/mail-open-document.png",
"name": "mail-open-document"
},
{
"url": "/images/status/mail-open-film.png",
"name": "mail-open-film"
},
{
"url": "/images/status/mail-open-image.png",
"name": "mail-open-image"
},
{
"url": "/images/status/mail-open-table.png",
"name": "mail-open-table"
},
{
"url": "/images/status/mail-open.png",
"name": "mail-open"
},
{
"url": "/images/status/mail-small.png",
"name": "mail-small"
},
{
"url": "/images/status/mail.png",
"name": "mail"
},
{
"url": "/images/status/mails-stack.png",
"name": "mails-stack"
},
{
"url": "/images/status/mails.png",
"name": "mails"
},
{
"url": "/images/status/map--arrow.png",
"name": "map--arrow"
},
{
"url": "/images/status/map--exclamation.png",
"name": "map--exclamation"
},
{
"url": "/images/status/map--minus.png",
"name": "map--minus"
},
{
"url": "/images/status/map--pencil.png",
"name": "map--pencil"
},
{
"url": "/images/status/map--plus.png",
"name": "map--plus"
},
{
"url": "/images/status/map-pin.png",
"name": "map-pin"
},
{
"url": "/images/status/map.png",
"name": "map"
},
{
"url": "/images/status/maps-stack.png",
"name": "maps-stack"
},
{
"url": "/images/status/maps.png",
"name": "maps"
},
{
"url": "/images/status/marker--arrow.png",
"name": "marker--arrow"
},
{
"url": "/images/status/marker--exclamation.png",
"name": "marker--exclamation"
},
{
"url": "/images/status/marker--minus.png",
"name": "marker--minus"
},
{
"url": "/images/status/marker--pencil.png",
"name": "marker--pencil"
},
{
"url": "/images/status/marker--plus.png",
"name": "marker--plus"
},
{
"url": "/images/status/marker.png",
"name": "marker"
},
{
"url": "/images/status/mask.png",
"name": "mask"
},
{
"url": "/images/status/medal--arrow.png",
"name": "medal--arrow"
},
{
"url": "/images/status/medal--exclamation.png",
"name": "medal--exclamation"
},
{
"url": "/images/status/medal--minus.png",
"name": "medal--minus"
},
{
"url": "/images/status/medal--pencil.png",
"name": "medal--pencil"
},
{
"url": "/images/status/medal--plus.png",
"name": "medal--plus"
},
{
"url": "/images/status/medal-bronze-red.png",
"name": "medal-bronze-red"
},
{
"url": "/images/status/medal-bronze.png",
"name": "medal-bronze"
},
{
"url": "/images/status/medal-red.png",
"name": "medal-red"
},
{
"url": "/images/status/medal-silver-red.png",
"name": "medal-silver-red"
},
{
"url": "/images/status/medal-silver.png",
"name": "medal-silver"
},
{
"url": "/images/status/medal.png",
"name": "medal"
},
{
"url": "/images/status/media-player--arrow.png",
"name": "media-player--arrow"
},
{
"url": "/images/status/media-player--exclamation.png",
"name": "media-player--exclamation"
},
{
"url": "/images/status/media-player--minus.png",
"name": "media-player--minus"
},
{
"url": "/images/status/media-player--pencil.png",
"name": "media-player--pencil"
},
{
"url": "/images/status/media-player--plus.png",
"name": "media-player--plus"
},
{
"url": "/images/status/media-player-black.png",
"name": "media-player-black"
},
{
"url": "/images/status/media-player-cast.png",
"name": "media-player-cast"
},
{
"url": "/images/status/media-player-medium-black.png",
"name": "media-player-medium-black"
},
{
"url": "/images/status/media-player-medium-blue.png",
"name": "media-player-medium-blue"
},
{
"url": "/images/status/media-player-medium-green.png",
"name": "media-player-medium-green"
},
{
"url": "/images/status/media-player-medium-orange.png",
"name": "media-player-medium-orange"
},
{
"url": "/images/status/media-player-medium-pink.png",
"name": "media-player-medium-pink"
},
{
"url": "/images/status/media-player-medium-purple.png",
"name": "media-player-medium-purple"
},
{
"url": "/images/status/media-player-medium-red.png",
"name": "media-player-medium-red"
},
{
"url": "/images/status/media-player-medium-yellow.png",
"name": "media-player-medium-yellow"
},
{
"url": "/images/status/media-player-medium.png",
"name": "media-player-medium"
},
{
"url": "/images/status/media-player-phone-horizontal.png",
"name": "media-player-phone-horizontal"
},
{
"url": "/images/status/media-player-phone.png",
"name": "media-player-phone"
},
{
"url": "/images/status/media-player-small-blue.png",
"name": "media-player-small-blue"
},
{
"url": "/images/status/media-player-small-green.png",
"name": "media-player-small-green"
},
{
"url": "/images/status/media-player-small-pink.png",
"name": "media-player-small-pink"
},
{
"url": "/images/status/media-player-small-red.png",
"name": "media-player-small-red"
},
{
"url": "/images/status/media-player-small.png",
"name": "media-player-small"
},
{
"url": "/images/status/media-player-xsmall-black.png",
"name": "media-player-xsmall-black"
},
{
"url": "/images/status/media-player-xsmall-blue.png",
"name": "media-player-xsmall-blue"
},
{
"url": "/images/status/media-player-xsmall-green.png",
"name": "media-player-xsmall-green"
},
{
"url": "/images/status/media-player-xsmall-pink.png",
"name": "media-player-xsmall-pink"
},
{
"url": "/images/status/media-player-xsmall-polish.png",
"name": "media-player-xsmall-polish"
},
{
"url": "/images/status/media-player-xsmall.png",
"name": "media-player-xsmall"
},
{
"url": "/images/status/media-player.png",
"name": "media-player"
},
{
"url": "/images/status/media-players.png",
"name": "media-players"
},
{
"url": "/images/status/megaphone--arrow.png",
"name": "megaphone--arrow"
},
{
"url": "/images/status/megaphone--exclamation.png",
"name": "megaphone--exclamation"
},
{
"url": "/images/status/megaphone--minus.png",
"name": "megaphone--minus"
},
{
"url": "/images/status/megaphone--pencil.png",
"name": "megaphone--pencil"
},
{
"url": "/images/status/megaphone--plus.png",
"name": "megaphone--plus"
},
{
"url": "/images/status/megaphone.png",
"name": "megaphone"
},
{
"url": "/images/status/memory.png",
"name": "memory"
},
{
"url": "/images/status/metronome--arrow.png",
"name": "metronome--arrow"
},
{
"url": "/images/status/metronome--exclamation.png",
"name": "metronome--exclamation"
},
{
"url": "/images/status/metronome--minus.png",
"name": "metronome--minus"
},
{
"url": "/images/status/metronome--pencil.png",
"name": "metronome--pencil"
},
{
"url": "/images/status/metronome--plus.png",
"name": "metronome--plus"
},
{
"url": "/images/status/metronome.png",
"name": "metronome"
},
{
"url": "/images/status/microformats.png",
"name": "microformats"
},
{
"url": "/images/status/microphone--arrow.png",
"name": "microphone--arrow"
},
{
"url": "/images/status/microphone--exclamation.png",
"name": "microphone--exclamation"
},
{
"url": "/images/status/microphone--minus.png",
"name": "microphone--minus"
},
{
"url": "/images/status/microphone--pencil.png",
"name": "microphone--pencil"
},
{
"url": "/images/status/microphone--plus.png",
"name": "microphone--plus"
},
{
"url": "/images/status/microphone.png",
"name": "microphone"
},
{
"url": "/images/status/minus-button.png",
"name": "minus-button"
},
{
"url": "/images/status/minus-circle-frame.png",
"name": "minus-circle-frame"
},
{
"url": "/images/status/minus-circle.png",
"name": "minus-circle"
},
{
"url": "/images/status/minus-octagon-frame.png",
"name": "minus-octagon-frame"
},
{
"url": "/images/status/minus-octagon.png",
"name": "minus-octagon"
},
{
"url": "/images/status/minus-shield.png",
"name": "minus-shield"
},
{
"url": "/images/status/minus-small-circle.png",
"name": "minus-small-circle"
},
{
"url": "/images/status/minus-small-white.png",
"name": "minus-small-white"
},
{
"url": "/images/status/minus-small.png",
"name": "minus-small"
},
{
"url": "/images/status/minus-white.png",
"name": "minus-white"
},
{
"url": "/images/status/minus.png",
"name": "minus"
},
{
"url": "/images/status/mobile-phone--arrow.png",
"name": "mobile-phone--arrow"
},
{
"url": "/images/status/mobile-phone--exclamation.png",
"name": "mobile-phone--exclamation"
},
{
"url": "/images/status/mobile-phone--minus.png",
"name": "mobile-phone--minus"
},
{
"url": "/images/status/mobile-phone--pencil.png",
"name": "mobile-phone--pencil"
},
{
"url": "/images/status/mobile-phone--plus.png",
"name": "mobile-phone--plus"
},
{
"url": "/images/status/mobile-phone-cast.png",
"name": "mobile-phone-cast"
},
{
"url": "/images/status/mobile-phone-off.png",
"name": "mobile-phone-off"
},
{
"url": "/images/status/mobile-phone.png",
"name": "mobile-phone"
},
{
"url": "/images/status/money--arrow.png",
"name": "money--arrow"
},
{
"url": "/images/status/money--exclamation.png",
"name": "money--exclamation"
},
{
"url": "/images/status/money--minus.png",
"name": "money--minus"
},
{
"url": "/images/status/money--pencil.png",
"name": "money--pencil"
},
{
"url": "/images/status/money--plus.png",
"name": "money--plus"
},
{
"url": "/images/status/money-coin.png",
"name": "money-coin"
},
{
"url": "/images/status/money.png",
"name": "money"
},
{
"url": "/images/status/monitor--arrow.png",
"name": "monitor--arrow"
},
{
"url": "/images/status/monitor--exclamation.png",
"name": "monitor--exclamation"
},
{
"url": "/images/status/monitor--minus.png",
"name": "monitor--minus"
},
{
"url": "/images/status/monitor--pencil.png",
"name": "monitor--pencil"
},
{
"url": "/images/status/monitor--plus.png",
"name": "monitor--plus"
},
{
"url": "/images/status/monitor-cast.png",
"name": "monitor-cast"
},
{
"url": "/images/status/monitor-image.png",
"name": "monitor-image"
},
{
"url": "/images/status/monitor-network.png",
"name": "monitor-network"
},
{
"url": "/images/status/monitor-off.png",
"name": "monitor-off"
},
{
"url": "/images/status/monitor-screensaver.png",
"name": "monitor-screensaver"
},
{
"url": "/images/status/monitor-sidebar.png",
"name": "monitor-sidebar"
},
{
"url": "/images/status/monitor-wallpaper.png",
"name": "monitor-wallpaper"
},
{
"url": "/images/status/monitor-window-3d.png",
"name": "monitor-window-3d"
},
{
"url": "/images/status/monitor-window-flow.png",
"name": "monitor-window-flow"
},
{
"url": "/images/status/monitor-window.png",
"name": "monitor-window"
},
{
"url": "/images/status/monitor.png",
"name": "monitor"
},
{
"url": "/images/status/mouse--arrow.png",
"name": "mouse--arrow"
},
{
"url": "/images/status/mouse--exclamation.png",
"name": "mouse--exclamation"
},
{
"url": "/images/status/mouse--minus.png",
"name": "mouse--minus"
},
{
"url": "/images/status/mouse--pencil.png",
"name": "mouse--pencil"
},
{
"url": "/images/status/mouse--plus.png",
"name": "mouse--plus"
},
{
"url": "/images/status/mouse-select-right.png",
"name": "mouse-select-right"
},
{
"url": "/images/status/mouse-select-wheel.png",
"name": "mouse-select-wheel"
},
{
"url": "/images/status/mouse-select.png",
"name": "mouse-select"
},
{
"url": "/images/status/mouse.png",
"name": "mouse"
},
{
"url": "/images/status/music--arrow.png",
"name": "music--arrow"
},
{
"url": "/images/status/music--exclamation.png",
"name": "music--exclamation"
},
{
"url": "/images/status/music--minus.png",
"name": "music--minus"
},
{
"url": "/images/status/music--pencil.png",
"name": "music--pencil"
},
{
"url": "/images/status/music--plus.png",
"name": "music--plus"
},
{
"url": "/images/status/music-beam-16.png",
"name": "music-beam-16"
},
{
"url": "/images/status/music-beam.png",
"name": "music-beam"
},
{
"url": "/images/status/music-small.png",
"name": "music-small"
},
{
"url": "/images/status/music.png",
"name": "music"
},
{
"url": "/images/status/na.png",
"name": "na"
},
{
"url": "/images/status/navigation-000-button.png",
"name": "navigation-000-button"
},
{
"url": "/images/status/navigation-000-frame.png",
"name": "navigation-000-frame"
},
{
"url": "/images/status/navigation-000-white.png",
"name": "navigation-000-white"
},
{
"url": "/images/status/navigation-090-button.png",
"name": "navigation-090-button"
},
{
"url": "/images/status/navigation-090-frame.png",
"name": "navigation-090-frame"
},
{
"url": "/images/status/navigation-090-white.png",
"name": "navigation-090-white"
},
{
"url": "/images/status/navigation-090.png",
"name": "navigation-090"
},
{
"url": "/images/status/navigation-180-button.png",
"name": "navigation-180-button"
},
{
"url": "/images/status/navigation-180-frame.png",
"name": "navigation-180-frame"
},
{
"url": "/images/status/navigation-180-white.png",
"name": "navigation-180-white"
},
{
"url": "/images/status/navigation-180.png",
"name": "navigation-180"
},
{
"url": "/images/status/navigation-270-button.png",
"name": "navigation-270-button"
},
{
"url": "/images/status/navigation-270-frame.png",
"name": "navigation-270-frame"
},
{
"url": "/images/status/navigation-270-white.png",
"name": "navigation-270-white"
},
{
"url": "/images/status/navigation-270.png",
"name": "navigation-270"
},
{
"url": "/images/status/navigation.png",
"name": "navigation"
},
{
"url": "/images/status/network-cloud.png",
"name": "network-cloud"
},
{
"url": "/images/status/network-clouds.png",
"name": "network-clouds"
},
{
"url": "/images/status/network-ethernet.png",
"name": "network-ethernet"
},
{
"url": "/images/status/network-hub.png",
"name": "network-hub"
},
{
"url": "/images/status/network.png",
"name": "network"
},
{
"url": "/images/status/new.png",
"name": "new"
},
{
"url": "/images/status/newspaper--arrow.png",
"name": "newspaper--arrow"
},
{
"url": "/images/status/newspaper--exclamation.png",
"name": "newspaper--exclamation"
},
{
"url": "/images/status/newspaper--minus.png",
"name": "newspaper--minus"
},
{
"url": "/images/status/newspaper--pencil.png",
"name": "newspaper--pencil"
},
{
"url": "/images/status/newspaper--plus.png",
"name": "newspaper--plus"
},
{
"url": "/images/status/newspaper.png",
"name": "newspaper"
},
{
"url": "/images/status/newspapers.png",
"name": "newspapers"
},
{
"url": "/images/status/node-delete-child.png",
"name": "node-delete-child"
},
{
"url": "/images/status/node-delete-next.png",
"name": "node-delete-next"
},
{
"url": "/images/status/node-delete-previous.png",
"name": "node-delete-previous"
},
{
"url": "/images/status/node-delete.png",
"name": "node-delete"
},
{
"url": "/images/status/node-design.png",
"name": "node-design"
},
{
"url": "/images/status/node-insert-child.png",
"name": "node-insert-child"
},
{
"url": "/images/status/node-insert-next.png",
"name": "node-insert-next"
},
{
"url": "/images/status/node-insert-previous.png",
"name": "node-insert-previous"
},
{
"url": "/images/status/node-insert.png",
"name": "node-insert"
},
{
"url": "/images/status/node-magnifier.png",
"name": "node-magnifier"
},
{
"url": "/images/status/node-select-all.png",
"name": "node-select-all"
},
{
"url": "/images/status/node-select-child.png",
"name": "node-select-child"
},
{
"url": "/images/status/node-select-next.png",
"name": "node-select-next"
},
{
"url": "/images/status/node-select-previous.png",
"name": "node-select-previous"
},
{
"url": "/images/status/node-select.png",
"name": "node-select"
},
{
"url": "/images/status/node.png",
"name": "node"
},
{
"url": "/images/status/notebook--arrow.png",
"name": "notebook--arrow"
},
{
"url": "/images/status/notebook--exclamation.png",
"name": "notebook--exclamation"
},
{
"url": "/images/status/notebook--minus.png",
"name": "notebook--minus"
},
{
"url": "/images/status/notebook--pencil.png",
"name": "notebook--pencil"
},
{
"url": "/images/status/notebook--plus.png",
"name": "notebook--plus"
},
{
"url": "/images/status/notebook.png",
"name": "notebook"
},
{
"url": "/images/status/notebooks.png",
"name": "notebooks"
},
{
"url": "/images/status/open-share-balloon.png",
"name": "open-share-balloon"
},
{
"url": "/images/status/open-share-document.png",
"name": "open-share-document"
},
{
"url": "/images/status/open-share-small.png",
"name": "open-share-small"
},
{
"url": "/images/status/open-share.png",
"name": "open-share"
},
{
"url": "/images/status/open-source.png",
"name": "open-source"
},
{
"url": "/images/status/openid.png",
"name": "openid"
},
{
"url": "/images/status/opml-balloon.png",
"name": "opml-balloon"
},
{
"url": "/images/status/opml-document.png",
"name": "opml-document"
},
{
"url": "/images/status/opml-small.png",
"name": "opml-small"
},
{
"url": "/images/status/opml.png",
"name": "opml"
},
{
"url": "/images/status/paint-brush--arrow.png",
"name": "paint-brush--arrow"
},
{
"url": "/images/status/paint-brush--exclamation.png",
"name": "paint-brush--exclamation"
},
{
"url": "/images/status/paint-brush--minus.png",
"name": "paint-brush--minus"
},
{
"url": "/images/status/paint-brush--pencil.png",
"name": "paint-brush--pencil"
},
{
"url": "/images/status/paint-brush--plus.png",
"name": "paint-brush--plus"
},
{
"url": "/images/status/paint-brush-color.png",
"name": "paint-brush-color"
},
{
"url": "/images/status/paint-brush-small.png",
"name": "paint-brush-small"
},
{
"url": "/images/status/paint-brush.png",
"name": "paint-brush"
},
{
"url": "/images/status/paint-can--arrow.png",
"name": "paint-can--arrow"
},
{
"url": "/images/status/paint-can--exclamation.png",
"name": "paint-can--exclamation"
},
{
"url": "/images/status/paint-can--minus.png",
"name": "paint-can--minus"
},
{
"url": "/images/status/paint-can--pencil.png",
"name": "paint-can--pencil"
},
{
"url": "/images/status/paint-can--plus.png",
"name": "paint-can--plus"
},
{
"url": "/images/status/paint-can-color.png",
"name": "paint-can-color"
},
{
"url": "/images/status/paint-can-paint-brush.png",
"name": "paint-can-paint-brush"
},
{
"url": "/images/status/paint-can.png",
"name": "paint-can"
},
{
"url": "/images/status/paint-tube--arrow.png",
"name": "paint-tube--arrow"
},
{
"url": "/images/status/paint-tube--exclamation.png",
"name": "paint-tube--exclamation"
},
{
"url": "/images/status/paint-tube--minus.png",
"name": "paint-tube--minus"
},
{
"url": "/images/status/paint-tube--pencil.png",
"name": "paint-tube--pencil"
},
{
"url": "/images/status/paint-tube--plus.png",
"name": "paint-tube--plus"
},
{
"url": "/images/status/paint-tube-color.png",
"name": "paint-tube-color"
},
{
"url": "/images/status/paint-tube.png",
"name": "paint-tube"
},
{
"url": "/images/status/palette--arrow.png",
"name": "palette--arrow"
},
{
"url": "/images/status/palette--exclamation.png",
"name": "palette--exclamation"
},
{
"url": "/images/status/palette--minus.png",
"name": "palette--minus"
},
{
"url": "/images/status/palette--pencil.png",
"name": "palette--pencil"
},
{
"url": "/images/status/palette--plus.png",
"name": "palette--plus"
},
{
"url": "/images/status/palette-color.png",
"name": "palette-color"
},
{
"url": "/images/status/palette-paint-brush.png",
"name": "palette-paint-brush"
},
{
"url": "/images/status/palette.png",
"name": "palette"
},
{
"url": "/images/status/paper-bag--arrow.png",
"name": "paper-bag--arrow"
},
{
"url": "/images/status/paper-bag--exclamation.png",
"name": "paper-bag--exclamation"
},
{
"url": "/images/status/paper-bag--minus.png",
"name": "paper-bag--minus"
},
{
"url": "/images/status/paper-bag--pencil.png",
"name": "paper-bag--pencil"
},
{
"url": "/images/status/paper-bag--plus.png",
"name": "paper-bag--plus"
},
{
"url": "/images/status/paper-bag-label.png",
"name": "paper-bag-label"
},
{
"url": "/images/status/paper-bag.png",
"name": "paper-bag"
},
{
"url": "/images/status/paper-clip-small.png",
"name": "paper-clip-small"
},
{
"url": "/images/status/paper-clip.png",
"name": "paper-clip"
},
{
"url": "/images/status/paper-plane--arrow.png",
"name": "paper-plane--arrow"
},
{
"url": "/images/status/paper-plane--exclamation.png",
"name": "paper-plane--exclamation"
},
{
"url": "/images/status/paper-plane--minus.png",
"name": "paper-plane--minus"
},
{
"url": "/images/status/paper-plane--pencil.png",
"name": "paper-plane--pencil"
},
{
"url": "/images/status/paper-plane--plus.png",
"name": "paper-plane--plus"
},
{
"url": "/images/status/paper-plane-return.png",
"name": "paper-plane-return"
},
{
"url": "/images/status/paper-plane.png",
"name": "paper-plane"
},
{
"url": "/images/status/party-hat.png",
"name": "party-hat"
},
{
"url": "/images/status/pda--arrow.png",
"name": "pda--arrow"
},
{
"url": "/images/status/pda--exclamation.png",
"name": "pda--exclamation"
},
{
"url": "/images/status/pda--minus.png",
"name": "pda--minus"
},
{
"url": "/images/status/pda--pencil.png",
"name": "pda--pencil"
},
{
"url": "/images/status/pda--plus.png",
"name": "pda--plus"
},
{
"url": "/images/status/pda-off.png",
"name": "pda-off"
},
{
"url": "/images/status/pda.png",
"name": "pda"
},
{
"url": "/images/status/pencil--arrow.png",
"name": "pencil--arrow"
},
{
"url": "/images/status/pencil--exclamation.png",
"name": "pencil--exclamation"
},
{
"url": "/images/status/pencil--minus.png",
"name": "pencil--minus"
},
{
"url": "/images/status/pencil--plus.png",
"name": "pencil--plus"
},
{
"url": "/images/status/pencil-color.png",
"name": "pencil-color"
},
{
"url": "/images/status/pencil-field.png",
"name": "pencil-field"
},
{
"url": "/images/status/pencil-ruler.png",
"name": "pencil-ruler"
},
{
"url": "/images/status/pencil-small.png",
"name": "pencil-small"
},
{
"url": "/images/status/pencil.png",
"name": "pencil"
},
{
"url": "/images/status/photo-album--arrow.png",
"name": "photo-album--arrow"
},
{
"url": "/images/status/photo-album--exclamation.png",
"name": "photo-album--exclamation"
},
{
"url": "/images/status/photo-album--minus.png",
"name": "photo-album--minus"
},
{
"url": "/images/status/photo-album--pencil.png",
"name": "photo-album--pencil"
},
{
"url": "/images/status/photo-album--plus.png",
"name": "photo-album--plus"
},
{
"url": "/images/status/photo-album-blue.png",
"name": "photo-album-blue"
},
{
"url": "/images/status/photo-album.png",
"name": "photo-album"
},
{
"url": "/images/status/piano--arrow.png",
"name": "piano--arrow"
},
{
"url": "/images/status/piano--exclamation.png",
"name": "piano--exclamation"
},
{
"url": "/images/status/piano--minus.png",
"name": "piano--minus"
},
{
"url": "/images/status/piano--pencil.png",
"name": "piano--pencil"
},
{
"url": "/images/status/piano--plus.png",
"name": "piano--plus"
},
{
"url": "/images/status/piano.png",
"name": "piano"
},
{
"url": "/images/status/picture--arrow.png",
"name": "picture--arrow"
},
{
"url": "/images/status/picture--exclamation.png",
"name": "picture--exclamation"
},
{
"url": "/images/status/picture--minus.png",
"name": "picture--minus"
},
{
"url": "/images/status/picture--pencil.png",
"name": "picture--pencil"
},
{
"url": "/images/status/picture--plus.png",
"name": "picture--plus"
},
{
"url": "/images/status/picture-small-sunset.png",
"name": "picture-small-sunset"
},
{
"url": "/images/status/picture-small.png",
"name": "picture-small"
},
{
"url": "/images/status/picture-sunset.png",
"name": "picture-sunset"
},
{
"url": "/images/status/picture.png",
"name": "picture"
},
{
"url": "/images/status/pictures-stack.png",
"name": "pictures-stack"
},
{
"url": "/images/status/pictures.png",
"name": "pictures"
},
{
"url": "/images/status/pill--arrow.png",
"name": "pill--arrow"
},
{
"url": "/images/status/pill--exclamation.png",
"name": "pill--exclamation"
},
{
"url": "/images/status/pill--minus.png",
"name": "pill--minus"
},
{
"url": "/images/status/pill--pencil.png",
"name": "pill--pencil"
},
{
"url": "/images/status/pill--plus.png",
"name": "pill--plus"
},
{
"url": "/images/status/pill-small.png",
"name": "pill-small"
},
{
"url": "/images/status/pill.png",
"name": "pill"
},
{
"url": "/images/status/pin--arrow.png",
"name": "pin--arrow"
},
{
"url": "/images/status/pin--exclamation.png",
"name": "pin--exclamation"
},
{
"url": "/images/status/pin--minus.png",
"name": "pin--minus"
},
{
"url": "/images/status/pin--pencil.png",
"name": "pin--pencil"
},
{
"url": "/images/status/pin--plus.png",
"name": "pin--plus"
},
{
"url": "/images/status/pin-small.png",
"name": "pin-small"
},
{
"url": "/images/status/pin.png",
"name": "pin"
},
{
"url": "/images/status/pipette--arrow.png",
"name": "pipette--arrow"
},
{
"url": "/images/status/pipette--exclamation.png",
"name": "pipette--exclamation"
},
{
"url": "/images/status/pipette--minus.png",
"name": "pipette--minus"
},
{
"url": "/images/status/pipette--pencil.png",
"name": "pipette--pencil"
},
{
"url": "/images/status/pipette--plus.png",
"name": "pipette--plus"
},
{
"url": "/images/status/pipette-color.png",
"name": "pipette-color"
},
{
"url": "/images/status/pipette.png",
"name": "pipette"
},
{
"url": "/images/status/playing-card--arrow.png",
"name": "playing-card--arrow"
},
{
"url": "/images/status/playing-card--exclamation.png",
"name": "playing-card--exclamation"
},
{
"url": "/images/status/playing-card--minus.png",
"name": "playing-card--minus"
},
{
"url": "/images/status/playing-card--pencil.png",
"name": "playing-card--pencil"
},
{
"url": "/images/status/playing-card--plus.png",
"name": "playing-card--plus"
},
{
"url": "/images/status/playing-card.png",
"name": "playing-card"
},
{
"url": "/images/status/plug--arrow.png",
"name": "plug--arrow"
},
{
"url": "/images/status/plug--exclamation.png",
"name": "plug--exclamation"
},
{
"url": "/images/status/plug--minus.png",
"name": "plug--minus"
},
{
"url": "/images/status/plug--pencil.png",
"name": "plug--pencil"
},
{
"url": "/images/status/plug--plus.png",
"name": "plug--plus"
},
{
"url": "/images/status/plug.png",
"name": "plug"
},
{
"url": "/images/status/plus-button.png",
"name": "plus-button"
},
{
"url": "/images/status/plus-circle-frame.png",
"name": "plus-circle-frame"
},
{
"url": "/images/status/plus-circle.png",
"name": "plus-circle"
},
{
"url": "/images/status/plus-octagon-frame.png",
"name": "plus-octagon-frame"
},
{
"url": "/images/status/plus-octagon.png",
"name": "plus-octagon"
},
{
"url": "/images/status/plus-shield.png",
"name": "plus-shield"
},
{
"url": "/images/status/plus-small-circle.png",
"name": "plus-small-circle"
},
{
"url": "/images/status/plus-small-white.png",
"name": "plus-small-white"
},
{
"url": "/images/status/plus-small.png",
"name": "plus-small"
},
{
"url": "/images/status/plus-white.png",
"name": "plus-white"
},
{
"url": "/images/status/plus.png",
"name": "plus"
},
{
"url": "/images/status/point--arrow.png",
"name": "point--arrow"
},
{
"url": "/images/status/point--exclamation.png",
"name": "point--exclamation"
},
{
"url": "/images/status/point--minus.png",
"name": "point--minus"
},
{
"url": "/images/status/point--pencil.png",
"name": "point--pencil"
},
{
"url": "/images/status/point--plus.png",
"name": "point--plus"
},
{
"url": "/images/status/point-bronze.png",
"name": "point-bronze"
},
{
"url": "/images/status/point-silver.png",
"name": "point-silver"
},
{
"url": "/images/status/point-small.png",
"name": "point-small"
},
{
"url": "/images/status/point.png",
"name": "point"
},
{
"url": "/images/status/points.png",
"name": "points"
},
{
"url": "/images/status/postage-stamp--arrow.png",
"name": "postage-stamp--arrow"
},
{
"url": "/images/status/postage-stamp--exclamation.png",
"name": "postage-stamp--exclamation"
},
{
"url": "/images/status/postage-stamp--minus.png",
"name": "postage-stamp--minus"
},
{
"url": "/images/status/postage-stamp--pencil.png",
"name": "postage-stamp--pencil"
},
{
"url": "/images/status/postage-stamp--plus.png",
"name": "postage-stamp--plus"
},
{
"url": "/images/status/postage-stamp.png",
"name": "postage-stamp"
},
{
"url": "/images/status/present--arrow.png",
"name": "present--arrow"
},
{
"url": "/images/status/present--exclamation.png",
"name": "present--exclamation"
},
{
"url": "/images/status/present--minus.png",
"name": "present--minus"
},
{
"url": "/images/status/present--pencil.png",
"name": "present--pencil"
},
{
"url": "/images/status/present--plus.png",
"name": "present--plus"
},
{
"url": "/images/status/present-label.png",
"name": "present-label"
},
{
"url": "/images/status/present.png",
"name": "present"
},
{
"url": "/images/status/price-tag--arrow.png",
"name": "price-tag--arrow"
},
{
"url": "/images/status/price-tag--exclamation.png",
"name": "price-tag--exclamation"
},
{
"url": "/images/status/price-tag--minus.png",
"name": "price-tag--minus"
},
{
"url": "/images/status/price-tag--pencil.png",
"name": "price-tag--pencil"
},
{
"url": "/images/status/price-tag--plus.png",
"name": "price-tag--plus"
},
{
"url": "/images/status/price-tag-label.png",
"name": "price-tag-label"
},
{
"url": "/images/status/price-tag.png",
"name": "price-tag"
},
{
"url": "/images/status/printer--arrow.png",
"name": "printer--arrow"
},
{
"url": "/images/status/printer--exclamation.png",
"name": "printer--exclamation"
},
{
"url": "/images/status/printer--minus.png",
"name": "printer--minus"
},
{
"url": "/images/status/printer--pencil.png",
"name": "printer--pencil"
},
{
"url": "/images/status/printer--plus.png",
"name": "printer--plus"
},
{
"url": "/images/status/printer-empty.png",
"name": "printer-empty"
},
{
"url": "/images/status/printer-network.png",
"name": "printer-network"
},
{
"url": "/images/status/printer-small.png",
"name": "printer-small"
},
{
"url": "/images/status/printer.png",
"name": "printer"
},
{
"url": "/images/status/processor.png",
"name": "processor"
},
{
"url": "/images/status/projection-screen--arrow.png",
"name": "projection-screen--arrow"
},
{
"url": "/images/status/projection-screen--exclamation.png",
"name": "projection-screen--exclamation"
},
{
"url": "/images/status/projection-screen--minus.png",
"name": "projection-screen--minus"
},
{
"url": "/images/status/projection-screen--pencil.png",
"name": "projection-screen--pencil"
},
{
"url": "/images/status/projection-screen--plus.png",
"name": "projection-screen--plus"
},
{
"url": "/images/status/projection-screen-presentation.png",
"name": "projection-screen-presentation"
},
{
"url": "/images/status/projection-screen.png",
"name": "projection-screen"
},
{
"url": "/images/status/property-blue.png",
"name": "property-blue"
},
{
"url": "/images/status/property-export.png",
"name": "property-export"
},
{
"url": "/images/status/property-import.png",
"name": "property-import"
},
{
"url": "/images/status/property.png",
"name": "property"
},
{
"url": "/images/status/puzzle--arrow.png",
"name": "puzzle--arrow"
},
{
"url": "/images/status/puzzle--exclamation.png",
"name": "puzzle--exclamation"
},
{
"url": "/images/status/puzzle--minus.png",
"name": "puzzle--minus"
},
{
"url": "/images/status/puzzle--pencil.png",
"name": "puzzle--pencil"
},
{
"url": "/images/status/puzzle--plus.png",
"name": "puzzle--plus"
},
{
"url": "/images/status/puzzle.png",
"name": "puzzle"
},
{
"url": "/images/status/question-balloon.png",
"name": "question-balloon"
},
{
"url": "/images/status/question-button.png",
"name": "question-button"
},
{
"url": "/images/status/question-frame.png",
"name": "question-frame"
},
{
"url": "/images/status/question-octagon-frame.png",
"name": "question-octagon-frame"
},
{
"url": "/images/status/question-octagon.png",
"name": "question-octagon"
},
{
"url": "/images/status/question-shield.png",
"name": "question-shield"
},
{
"url": "/images/status/question-small-white.png",
"name": "question-small-white"
},
{
"url": "/images/status/question-small.png",
"name": "question-small"
},
{
"url": "/images/status/question-white.png",
"name": "question-white"
},
{
"url": "/images/status/question.png",
"name": "question"
},
{
"url": "/images/status/quill--arrow.png",
"name": "quill--arrow"
},
{
"url": "/images/status/quill--exclamation.png",
"name": "quill--exclamation"
},
{
"url": "/images/status/quill--minus.png",
"name": "quill--minus"
},
{
"url": "/images/status/quill--plus.png",
"name": "quill--plus"
},
{
"url": "/images/status/quill.png",
"name": "quill"
},
{
"url": "/images/status/rainbow.png",
"name": "rainbow"
},
{
"url": "/images/status/receipt--arrow.png",
"name": "receipt--arrow"
},
{
"url": "/images/status/receipt--exclamation.png",
"name": "receipt--exclamation"
},
{
"url": "/images/status/receipt--minus.png",
"name": "receipt--minus"
},
{
"url": "/images/status/receipt--pencil.png",
"name": "receipt--pencil"
},
{
"url": "/images/status/receipt--plus.png",
"name": "receipt--plus"
},
{
"url": "/images/status/receipt-excel-text.png",
"name": "receipt-excel-text"
},
{
"url": "/images/status/receipt-excel.png",
"name": "receipt-excel"
},
{
"url": "/images/status/receipt-export.png",
"name": "receipt-export"
},
{
"url": "/images/status/receipt-import.png",
"name": "receipt-import"
},
{
"url": "/images/status/receipt-invoice.png",
"name": "receipt-invoice"
},
{
"url": "/images/status/receipt-shred.png",
"name": "receipt-shred"
},
{
"url": "/images/status/receipt-stamp.png",
"name": "receipt-stamp"
},
{
"url": "/images/status/receipt-text.png",
"name": "receipt-text"
},
{
"url": "/images/status/receipt.png",
"name": "receipt"
},
{
"url": "/images/status/receipts-text.png",
"name": "receipts-text"
},
{
"url": "/images/status/receipts.png",
"name": "receipts"
},
{
"url": "/images/status/report--arrow.png",
"name": "report--arrow"
},
{
"url": "/images/status/report--exclamation.png",
"name": "report--exclamation"
},
{
"url": "/images/status/report--minus.png",
"name": "report--minus"
},
{
"url": "/images/status/report--pencil.png",
"name": "report--pencil"
},
{
"url": "/images/status/report--plus.png",
"name": "report--plus"
},
{
"url": "/images/status/report-excel.png",
"name": "report-excel"
},
{
"url": "/images/status/report-paper.png",
"name": "report-paper"
},
{
"url": "/images/status/report-word.png",
"name": "report-word"
},
{
"url": "/images/status/report.png",
"name": "report"
},
{
"url": "/images/status/reports-stack.png",
"name": "reports-stack"
},
{
"url": "/images/status/reports.png",
"name": "reports"
},
{
"url": "/images/status/robot-off.png",
"name": "robot-off"
},
{
"url": "/images/status/robot.png",
"name": "robot"
},
{
"url": "/images/status/rocket--arrow.png",
"name": "rocket--arrow"
},
{
"url": "/images/status/rocket--exclamation.png",
"name": "rocket--exclamation"
},
{
"url": "/images/status/rocket--minus.png",
"name": "rocket--minus"
},
{
"url": "/images/status/rocket--pencil.png",
"name": "rocket--pencil"
},
{
"url": "/images/status/rocket--plus.png",
"name": "rocket--plus"
},
{
"url": "/images/status/rocket-fly.png",
"name": "rocket-fly"
},
{
"url": "/images/status/rocket.png",
"name": "rocket"
},
{
"url": "/images/status/ruby.png",
"name": "ruby"
},
{
"url": "/images/status/ruler--arrow.png",
"name": "ruler--arrow"
},
{
"url": "/images/status/ruler--exclamation.png",
"name": "ruler--exclamation"
},
{
"url": "/images/status/ruler--minus.png",
"name": "ruler--minus"
},
{
"url": "/images/status/ruler--pencil.png",
"name": "ruler--pencil"
},
{
"url": "/images/status/ruler--plus.png",
"name": "ruler--plus"
},
{
"url": "/images/status/ruler-crop.png",
"name": "ruler-crop"
},
{
"url": "/images/status/ruler-triangle.png",
"name": "ruler-triangle"
},
{
"url": "/images/status/ruler.png",
"name": "ruler"
},
{
"url": "/images/status/safe--arrow.png",
"name": "safe--arrow"
},
{
"url": "/images/status/safe--exclamation.png",
"name": "safe--exclamation"
},
{
"url": "/images/status/safe--minus.png",
"name": "safe--minus"
},
{
"url": "/images/status/safe--pencil.png",
"name": "safe--pencil"
},
{
"url": "/images/status/safe--plus.png",
"name": "safe--plus"
},
{
"url": "/images/status/safe.png",
"name": "safe"
},
{
"url": "/images/status/scanner--arrow.png",
"name": "scanner--arrow"
},
{
"url": "/images/status/scanner--exclamation.png",
"name": "scanner--exclamation"
},
{
"url": "/images/status/scanner--minus.png",
"name": "scanner--minus"
},
{
"url": "/images/status/scanner--pencil.png",
"name": "scanner--pencil"
},
{
"url": "/images/status/scanner--plus.png",
"name": "scanner--plus"
},
{
"url": "/images/status/scanner-off.png",
"name": "scanner-off"
},
{
"url": "/images/status/scanner.png",
"name": "scanner"
},
{
"url": "/images/status/scissors--arrow.png",
"name": "scissors--arrow"
},
{
"url": "/images/status/scissors--exclamation.png",
"name": "scissors--exclamation"
},
{
"url": "/images/status/scissors--minus.png",
"name": "scissors--minus"
},
{
"url": "/images/status/scissors--pencil.png",
"name": "scissors--pencil"
},
{
"url": "/images/status/scissors--plus.png",
"name": "scissors--plus"
},
{
"url": "/images/status/scissors-blue.png",
"name": "scissors-blue"
},
{
"url": "/images/status/scissors.png",
"name": "scissors"
},
{
"url": "/images/status/screwdriver--arrow.png",
"name": "screwdriver--arrow"
},
{
"url": "/images/status/screwdriver--exclamation.png",
"name": "screwdriver--exclamation"
},
{
"url": "/images/status/screwdriver--minus.png",
"name": "screwdriver--minus"
},
{
"url": "/images/status/screwdriver--pencil.png",
"name": "screwdriver--pencil"
},
{
"url": "/images/status/screwdriver--plus.png",
"name": "screwdriver--plus"
},
{
"url": "/images/status/screwdriver.png",
"name": "screwdriver"
},
{
"url": "/images/status/script--arrow.png",
"name": "script--arrow"
},
{
"url": "/images/status/script--exclamation.png",
"name": "script--exclamation"
},
{
"url": "/images/status/script--minus.png",
"name": "script--minus"
},
{
"url": "/images/status/script--pencil.png",
"name": "script--pencil"
},
{
"url": "/images/status/script--plus.png",
"name": "script--plus"
},
{
"url": "/images/status/script-attribute-b.png",
"name": "script-attribute-b"
},
{
"url": "/images/status/script-attribute-c.png",
"name": "script-attribute-c"
},
{
"url": "/images/status/script-attribute-d.png",
"name": "script-attribute-d"
},
{
"url": "/images/status/script-attribute-e.png",
"name": "script-attribute-e"
},
{
"url": "/images/status/script-attribute-f.png",
"name": "script-attribute-f"
},
{
"url": "/images/status/script-attribute-g.png",
"name": "script-attribute-g"
},
{
"url": "/images/status/script-attribute-h.png",
"name": "script-attribute-h"
},
{
"url": "/images/status/script-attribute-i.png",
"name": "script-attribute-i"
},
{
"url": "/images/status/script-attribute-j.png",
"name": "script-attribute-j"
},
{
"url": "/images/status/script-attribute-k.png",
"name": "script-attribute-k"
},
{
"url": "/images/status/script-attribute-l.png",
"name": "script-attribute-l"
},
{
"url": "/images/status/script-attribute-m.png",
"name": "script-attribute-m"
},
{
"url": "/images/status/script-attribute-n.png",
"name": "script-attribute-n"
},
{
"url": "/images/status/script-attribute-o.png",
"name": "script-attribute-o"
},
{
"url": "/images/status/script-attribute-p.png",
"name": "script-attribute-p"
},
{
"url": "/images/status/script-attribute-q.png",
"name": "script-attribute-q"
},
{
"url": "/images/status/script-attribute-r.png",
"name": "script-attribute-r"
},
{
"url": "/images/status/script-attribute-s.png",
"name": "script-attribute-s"
},
{
"url": "/images/status/script-attribute-t.png",
"name": "script-attribute-t"
},
{
"url": "/images/status/script-attribute-u.png",
"name": "script-attribute-u"
},
{
"url": "/images/status/script-attribute-v.png",
"name": "script-attribute-v"
},
{
"url": "/images/status/script-attribute-w.png",
"name": "script-attribute-w"
},
{
"url": "/images/status/script-attribute-x.png",
"name": "script-attribute-x"
},
{
"url": "/images/status/script-attribute-y.png",
"name": "script-attribute-y"
},
{
"url": "/images/status/script-attribute-z.png",
"name": "script-attribute-z"
},
{
"url": "/images/status/script-attribute.png",
"name": "script-attribute"
},
{
"url": "/images/status/script-binary.png",
"name": "script-binary"
},
{
"url": "/images/status/script-block.png",
"name": "script-block"
},
{
"url": "/images/status/script-code.png",
"name": "script-code"
},
{
"url": "/images/status/script-excel.png",
"name": "script-excel"
},
{
"url": "/images/status/script-export.png",
"name": "script-export"
},
{
"url": "/images/status/script-flash.png",
"name": "script-flash"
},
{
"url": "/images/status/script-globe.png",
"name": "script-globe"
},
{
"url": "/images/status/script-import.png",
"name": "script-import"
},
{
"url": "/images/status/script-office.png",
"name": "script-office"
},
{
"url": "/images/status/script-php.png",
"name": "script-php"
},
{
"url": "/images/status/script-stamp.png",
"name": "script-stamp"
},
{
"url": "/images/status/script-text.png",
"name": "script-text"
},
{
"url": "/images/status/script-visual-studio.png",
"name": "script-visual-studio"
},
{
"url": "/images/status/script-word.png",
"name": "script-word"
},
{
"url": "/images/status/script.png",
"name": "script"
},
{
"url": "/images/status/scripts-text.png",
"name": "scripts-text"
},
{
"url": "/images/status/scripts.png",
"name": "scripts"
},
{
"url": "/images/status/selection-input.png",
"name": "selection-input"
},
{
"url": "/images/status/selection-select-input.png",
"name": "selection-select-input"
},
{
"url": "/images/status/selection-select.png",
"name": "selection-select"
},
{
"url": "/images/status/selection.png",
"name": "selection"
},
{
"url": "/images/status/server--arrow.png",
"name": "server--arrow"
},
{
"url": "/images/status/server--exclamation.png",
"name": "server--exclamation"
},
{
"url": "/images/status/server--minus.png",
"name": "server--minus"
},
{
"url": "/images/status/server--pencil.png",
"name": "server--pencil"
},
{
"url": "/images/status/server--plus.png",
"name": "server--plus"
},
{
"url": "/images/status/server-cast.png",
"name": "server-cast"
},
{
"url": "/images/status/server-network.png",
"name": "server-network"
},
{
"url": "/images/status/server-property.png",
"name": "server-property"
},
{
"url": "/images/status/server.png",
"name": "server"
},
{
"url": "/images/status/servers-network.png",
"name": "servers-network"
},
{
"url": "/images/status/servers.png",
"name": "servers"
},
{
"url": "/images/status/service-bell--arrow.png",
"name": "service-bell--arrow"
},
{
"url": "/images/status/service-bell--exclamation.png",
"name": "service-bell--exclamation"
},
{
"url": "/images/status/service-bell--minus.png",
"name": "service-bell--minus"
},
{
"url": "/images/status/service-bell--pencil.png",
"name": "service-bell--pencil"
},
{
"url": "/images/status/service-bell--plus.png",
"name": "service-bell--plus"
},
{
"url": "/images/status/service-bell.png",
"name": "service-bell"
},
{
"url": "/images/status/share-balloon.png",
"name": "share-balloon"
},
{
"url": "/images/status/share-document.png",
"name": "share-document"
},
{
"url": "/images/status/share-small.png",
"name": "share-small"
},
{
"url": "/images/status/share.png",
"name": "share"
},
{
"url": "/images/status/shield--arrow.png",
"name": "shield--arrow"
},
{
"url": "/images/status/shield--exclamation.png",
"name": "shield--exclamation"
},
{
"url": "/images/status/shield--minus.png",
"name": "shield--minus"
},
{
"url": "/images/status/shield--pencil.png",
"name": "shield--pencil"
},
{
"url": "/images/status/shield--plus.png",
"name": "shield--plus"
},
{
"url": "/images/status/shield.png",
"name": "shield"
},
{
"url": "/images/status/shopping-basket--arrow.png",
"name": "shopping-basket--arrow"
},
{
"url": "/images/status/shopping-basket--exclamation.png",
"name": "shopping-basket--exclamation"
},
{
"url": "/images/status/shopping-basket--minus.png",
"name": "shopping-basket--minus"
},
{
"url": "/images/status/shopping-basket--pencil.png",
"name": "shopping-basket--pencil"
},
{
"url": "/images/status/shopping-basket--plus.png",
"name": "shopping-basket--plus"
},
{
"url": "/images/status/shopping-basket.png",
"name": "shopping-basket"
},
{
"url": "/images/status/shortcut-small.png",
"name": "shortcut-small"
},
{
"url": "/images/status/shortcut.png",
"name": "shortcut"
},
{
"url": "/images/status/sitemap-application-blue.png",
"name": "sitemap-application-blue"
},
{
"url": "/images/status/sitemap-application.png",
"name": "sitemap-application"
},
{
"url": "/images/status/sitemap-image.png",
"name": "sitemap-image"
},
{
"url": "/images/status/sitemap.png",
"name": "sitemap"
},
{
"url": "/images/status/slash-button.png",
"name": "slash-button"
},
{
"url": "/images/status/slash-small.png",
"name": "slash-small"
},
{
"url": "/images/status/slash.png",
"name": "slash"
},
{
"url": "/images/status/slide--arrow.png",
"name": "slide--arrow"
},
{
"url": "/images/status/slide--exclamation.png",
"name": "slide--exclamation"
},
{
"url": "/images/status/slide--minus.png",
"name": "slide--minus"
},
{
"url": "/images/status/slide--pencil.png",
"name": "slide--pencil"
},
{
"url": "/images/status/slide--plus.png",
"name": "slide--plus"
},
{
"url": "/images/status/slide-powerpoint.png",
"name": "slide-powerpoint"
},
{
"url": "/images/status/slide.png",
"name": "slide"
},
{
"url": "/images/status/slides-stack.png",
"name": "slides-stack"
},
{
"url": "/images/status/slides.png",
"name": "slides"
},
{
"url": "/images/status/smiley-confuse.png",
"name": "smiley-confuse"
},
{
"url": "/images/status/smiley-cool.png",
"name": "smiley-cool"
},
{
"url": "/images/status/smiley-cry.png",
"name": "smiley-cry"
},
{
"url": "/images/status/smiley-draw.png",
"name": "smiley-draw"
},
{
"url": "/images/status/smiley-eek.png",
"name": "smiley-eek"
},
{
"url": "/images/status/smiley-evil.png",
"name": "smiley-evil"
},
{
"url": "/images/status/smiley-fat.png",
"name": "smiley-fat"
},
{
"url": "/images/status/smiley-grin.png",
"name": "smiley-grin"
},
{
"url": "/images/status/smiley-kiss.png",
"name": "smiley-kiss"
},
{
"url": "/images/status/smiley-kitty.png",
"name": "smiley-kitty"
},
{
"url": "/images/status/smiley-lol.png",
"name": "smiley-lol"
},
{
"url": "/images/status/smiley-mad.png",
"name": "smiley-mad"
},
{
"url": "/images/status/smiley-money.png",
"name": "smiley-money"
},
{
"url": "/images/status/smiley-mr-green.png",
"name": "smiley-mr-green"
},
{
"url": "/images/status/smiley-neutral.png",
"name": "smiley-neutral"
},
{
"url": "/images/status/smiley-razz.png",
"name": "smiley-razz"
},
{
"url": "/images/status/smiley-red.png",
"name": "smiley-red"
},
{
"url": "/images/status/smiley-roll-sweat.png",
"name": "smiley-roll-sweat"
},
{
"url": "/images/status/smiley-roll.png",
"name": "smiley-roll"
},
{
"url": "/images/status/smiley-sad.png",
"name": "smiley-sad"
},
{
"url": "/images/status/smiley-sleep.png",
"name": "smiley-sleep"
},
{
"url": "/images/status/smiley-slim.png",
"name": "smiley-slim"
},
{
"url": "/images/status/smiley-small.png",
"name": "smiley-small"
},
{
"url": "/images/status/smiley-surprise.png",
"name": "smiley-surprise"
},
{
"url": "/images/status/smiley-sweat.png",
"name": "smiley-sweat"
},
{
"url": "/images/status/smiley-twist.png",
"name": "smiley-twist"
},
{
"url": "/images/status/smiley-wink.png",
"name": "smiley-wink"
},
{
"url": "/images/status/smiley-yell.png",
"name": "smiley-yell"
},
{
"url": "/images/status/smiley-zipper.png",
"name": "smiley-zipper"
},
{
"url": "/images/status/smiley.png",
"name": "smiley"
},
{
"url": "/images/status/snowman-hat.png",
"name": "snowman-hat"
},
{
"url": "/images/status/snowman.png",
"name": "snowman"
},
{
"url": "/images/status/soap-body.png",
"name": "soap-body"
},
{
"url": "/images/status/soap-header.png",
"name": "soap-header"
},
{
"url": "/images/status/soap.png",
"name": "soap"
},
{
"url": "/images/status/socket--arrow.png",
"name": "socket--arrow"
},
{
"url": "/images/status/socket--exclamation.png",
"name": "socket--exclamation"
},
{
"url": "/images/status/socket--minus.png",
"name": "socket--minus"
},
{
"url": "/images/status/socket--pencil.png",
"name": "socket--pencil"
},
{
"url": "/images/status/socket--plus.png",
"name": "socket--plus"
},
{
"url": "/images/status/socket.png",
"name": "socket"
},
{
"url": "/images/status/sockets.png",
"name": "sockets"
},
{
"url": "/images/status/sofa--arrow.png",
"name": "sofa--arrow"
},
{
"url": "/images/status/sofa--exclamation.png",
"name": "sofa--exclamation"
},
{
"url": "/images/status/sofa--minus.png",
"name": "sofa--minus"
},
{
"url": "/images/status/sofa--pencil.png",
"name": "sofa--pencil"
},
{
"url": "/images/status/sofa--plus.png",
"name": "sofa--plus"
},
{
"url": "/images/status/sofa.png",
"name": "sofa"
},
{
"url": "/images/status/sort--arrow.png",
"name": "sort--arrow"
},
{
"url": "/images/status/sort--exclamation.png",
"name": "sort--exclamation"
},
{
"url": "/images/status/sort--minus.png",
"name": "sort--minus"
},
{
"url": "/images/status/sort--pencil.png",
"name": "sort--pencil"
},
{
"url": "/images/status/sort--plus.png",
"name": "sort--plus"
},
{
"url": "/images/status/sort-alphabet-descending.png",
"name": "sort-alphabet-descending"
},
{
"url": "/images/status/sort-alphabet.png",
"name": "sort-alphabet"
},
{
"url": "/images/status/sort-date-descending.png",
"name": "sort-date-descending"
},
{
"url": "/images/status/sort-date.png",
"name": "sort-date"
},
{
"url": "/images/status/sort-number-descending.png",
"name": "sort-number-descending"
},
{
"url": "/images/status/sort-number.png",
"name": "sort-number"
},
{
"url": "/images/status/sort-price-descending.png",
"name": "sort-price-descending"
},
{
"url": "/images/status/sort-price.png",
"name": "sort-price"
},
{
"url": "/images/status/sort-quantity-descending.png",
"name": "sort-quantity-descending"
},
{
"url": "/images/status/sort-quantity.png",
"name": "sort-quantity"
},
{
"url": "/images/status/sort-rating-descending.png",
"name": "sort-rating-descending"
},
{
"url": "/images/status/sort-rating.png",
"name": "sort-rating"
},
{
"url": "/images/status/sort-small.png",
"name": "sort-small"
},
{
"url": "/images/status/sort.png",
"name": "sort"
},
{
"url": "/images/status/speaker--arrow.png",
"name": "speaker--arrow"
},
{
"url": "/images/status/speaker--exclamation.png",
"name": "speaker--exclamation"
},
{
"url": "/images/status/speaker--minus.png",
"name": "speaker--minus"
},
{
"url": "/images/status/speaker--pencil.png",
"name": "speaker--pencil"
},
{
"url": "/images/status/speaker--plus.png",
"name": "speaker--plus"
},
{
"url": "/images/status/speaker-volume-control-mute.png",
"name": "speaker-volume-control-mute"
},
{
"url": "/images/status/speaker-volume-control-up.png",
"name": "speaker-volume-control-up"
},
{
"url": "/images/status/speaker-volume-control.png",
"name": "speaker-volume-control"
},
{
"url": "/images/status/speaker-volume-low.png",
"name": "speaker-volume-low"
},
{
"url": "/images/status/speaker-volume-none.png",
"name": "speaker-volume-none"
},
{
"url": "/images/status/speaker-volume.png",
"name": "speaker-volume"
},
{
"url": "/images/status/speaker.png",
"name": "speaker"
},
{
"url": "/images/status/spectacle-small.png",
"name": "spectacle-small"
},
{
"url": "/images/status/spectacle-sunglass.png",
"name": "spectacle-sunglass"
},
{
"url": "/images/status/spectacle.png",
"name": "spectacle"
},
{
"url": "/images/status/spell-check-error.png",
"name": "spell-check-error"
},
{
"url": "/images/status/spell-check.png",
"name": "spell-check"
},
{
"url": "/images/status/spray--arrow.png",
"name": "spray--arrow"
},
{
"url": "/images/status/spray--exclamation.png",
"name": "spray--exclamation"
},
{
"url": "/images/status/spray--minus.png",
"name": "spray--minus"
},
{
"url": "/images/status/spray--pencil.png",
"name": "spray--pencil"
},
{
"url": "/images/status/spray--plus.png",
"name": "spray--plus"
},
{
"url": "/images/status/spray-color.png",
"name": "spray-color"
},
{
"url": "/images/status/spray.png",
"name": "spray"
},
{
"url": "/images/status/sql-join-inner.png",
"name": "sql-join-inner"
},
{
"url": "/images/status/sql-join-left-exclude.png",
"name": "sql-join-left-exclude"
},
{
"url": "/images/status/sql-join-left.png",
"name": "sql-join-left"
},
{
"url": "/images/status/sql-join-outer-exclude.png",
"name": "sql-join-outer-exclude"
},
{
"url": "/images/status/sql-join-outer.png",
"name": "sql-join-outer"
},
{
"url": "/images/status/sql-join-right-exclude.png",
"name": "sql-join-right-exclude"
},
{
"url": "/images/status/sql-join-right.png",
"name": "sql-join-right"
},
{
"url": "/images/status/sql-join.png",
"name": "sql-join"
},
{
"url": "/images/status/sql.png",
"name": "sql"
},
{
"url": "/images/status/stamp--arrow.png",
"name": "stamp--arrow"
},
{
"url": "/images/status/stamp--exclamation.png",
"name": "stamp--exclamation"
},
{
"url": "/images/status/stamp--minus.png",
"name": "stamp--minus"
},
{
"url": "/images/status/stamp--pencil.png",
"name": "stamp--pencil"
},
{
"url": "/images/status/stamp--plus.png",
"name": "stamp--plus"
},
{
"url": "/images/status/stamp-pattern.png",
"name": "stamp-pattern"
},
{
"url": "/images/status/stamp.png",
"name": "stamp"
},
{
"url": "/images/status/star--arrow.png",
"name": "star--arrow"
},
{
"url": "/images/status/star--exclamation.png",
"name": "star--exclamation"
},
{
"url": "/images/status/star--minus.png",
"name": "star--minus"
},
{
"url": "/images/status/star--pencil.png",
"name": "star--pencil"
},
{
"url": "/images/status/star--plus.png",
"name": "star--plus"
},
{
"url": "/images/status/star-empty.png",
"name": "star-empty"
},
{
"url": "/images/status/star-half.png",
"name": "star-half"
},
{
"url": "/images/status/star-small-empty.png",
"name": "star-small-empty"
},
{
"url": "/images/status/star-small-half.png",
"name": "star-small-half"
},
{
"url": "/images/status/star-small.png",
"name": "star-small"
},
{
"url": "/images/status/star.png",
"name": "star"
},
{
"url": "/images/status/status-away.png",
"name": "status-away"
},
{
"url": "/images/status/status-busy.png",
"name": "status-busy"
},
{
"url": "/images/status/status-offline.png",
"name": "status-offline"
},
{
"url": "/images/status/status.png",
"name": "status"
},
{
"url": "/images/status/sticky-note--arrow.png",
"name": "sticky-note--arrow"
},
{
"url": "/images/status/sticky-note--exclamation.png",
"name": "sticky-note--exclamation"
},
{
"url": "/images/status/sticky-note--minus.png",
"name": "sticky-note--minus"
},
{
"url": "/images/status/sticky-note--pencil.png",
"name": "sticky-note--pencil"
},
{
"url": "/images/status/sticky-note--plus.png",
"name": "sticky-note--plus"
},
{
"url": "/images/status/sticky-note-pin.png",
"name": "sticky-note-pin"
},
{
"url": "/images/status/sticky-note-shred.png",
"name": "sticky-note-shred"
},
{
"url": "/images/status/sticky-note-small-pin.png",
"name": "sticky-note-small-pin"
},
{
"url": "/images/status/sticky-note-small.png",
"name": "sticky-note-small"
},
{
"url": "/images/status/sticky-note-text.png",
"name": "sticky-note-text"
},
{
"url": "/images/status/sticky-note.png",
"name": "sticky-note"
},
{
"url": "/images/status/sticky-notes-pin.png",
"name": "sticky-notes-pin"
},
{
"url": "/images/status/sticky-notes-stack.png",
"name": "sticky-notes-stack"
},
{
"url": "/images/status/sticky-notes-text.png",
"name": "sticky-notes-text"
},
{
"url": "/images/status/sticky-notes.png",
"name": "sticky-notes"
},
{
"url": "/images/status/store--arrow.png",
"name": "store--arrow"
},
{
"url": "/images/status/store--exclamation.png",
"name": "store--exclamation"
},
{
"url": "/images/status/store--minus.png",
"name": "store--minus"
},
{
"url": "/images/status/store--pencil.png",
"name": "store--pencil"
},
{
"url": "/images/status/store--plus.png",
"name": "store--plus"
},
{
"url": "/images/status/store-label.png",
"name": "store-label"
},
{
"url": "/images/status/store-network.png",
"name": "store-network"
},
{
"url": "/images/status/store-open.png",
"name": "store-open"
},
{
"url": "/images/status/store-small.png",
"name": "store-small"
},
{
"url": "/images/status/store.png",
"name": "store"
},
{
"url": "/images/status/subversion-small.png",
"name": "subversion-small"
},
{
"url": "/images/status/subversion.png",
"name": "subversion"
},
{
"url": "/images/status/sum.png",
"name": "sum"
},
{
"url": "/images/status/switch--arrow.png",
"name": "switch--arrow"
},
{
"url": "/images/status/switch--exclamation.png",
"name": "switch--exclamation"
},
{
"url": "/images/status/switch--minus.png",
"name": "switch--minus"
},
{
"url": "/images/status/switch--pencil.png",
"name": "switch--pencil"
},
{
"url": "/images/status/switch--plus.png",
"name": "switch--plus"
},
{
"url": "/images/status/switch-network.png",
"name": "switch-network"
},
{
"url": "/images/status/switch-small.png",
"name": "switch-small"
},
{
"url": "/images/status/switch.png",
"name": "switch"
},
{
"url": "/images/status/system-monitor--arrow.png",
"name": "system-monitor--arrow"
},
{
"url": "/images/status/system-monitor--exclamation.png",
"name": "system-monitor--exclamation"
},
{
"url": "/images/status/system-monitor--minus.png",
"name": "system-monitor--minus"
},
{
"url": "/images/status/system-monitor--pencil.png",
"name": "system-monitor--pencil"
},
{
"url": "/images/status/system-monitor--plus.png",
"name": "system-monitor--plus"
},
{
"url": "/images/status/system-monitor.png",
"name": "system-monitor"
},
{
"url": "/images/status/t-shirt-gray.png",
"name": "t-shirt-gray"
},
{
"url": "/images/status/t-shirt-print-gray.png",
"name": "t-shirt-print-gray"
},
{
"url": "/images/status/t-shirt-print.png",
"name": "t-shirt-print"
},
{
"url": "/images/status/t-shirt.png",
"name": "t-shirt"
},
{
"url": "/images/status/table--arrow.png",
"name": "table--arrow"
},
{
"url": "/images/status/table--exclamation.png",
"name": "table--exclamation"
},
{
"url": "/images/status/table--minus.png",
"name": "table--minus"
},
{
"url": "/images/status/table--pencil.png",
"name": "table--pencil"
},
{
"url": "/images/status/table--plus.png",
"name": "table--plus"
},
{
"url": "/images/status/table-delete-column.png",
"name": "table-delete-column"
},
{
"url": "/images/status/table-delete-row.png",
"name": "table-delete-row"
},
{
"url": "/images/status/table-delete.png",
"name": "table-delete"
},
{
"url": "/images/status/table-excel.png",
"name": "table-excel"
},
{
"url": "/images/status/table-export.png",
"name": "table-export"
},
{
"url": "/images/status/table-import.png",
"name": "table-import"
},
{
"url": "/images/status/table-insert-column.png",
"name": "table-insert-column"
},
{
"url": "/images/status/table-insert-row.png",
"name": "table-insert-row"
},
{
"url": "/images/status/table-insert.png",
"name": "table-insert"
},
{
"url": "/images/status/table-join.png",
"name": "table-join"
},
{
"url": "/images/status/table-money.png",
"name": "table-money"
},
{
"url": "/images/status/table-paint-can.png",
"name": "table-paint-can"
},
{
"url": "/images/status/table-select-all.png",
"name": "table-select-all"
},
{
"url": "/images/status/table-select-cells.png",
"name": "table-select-cells"
},
{
"url": "/images/status/table-select-column.png",
"name": "table-select-column"
},
{
"url": "/images/status/table-select-row.png",
"name": "table-select-row"
},
{
"url": "/images/status/table-select.png",
"name": "table-select"
},
{
"url": "/images/status/table-sheet.png",
"name": "table-sheet"
},
{
"url": "/images/status/table-small.png",
"name": "table-small"
},
{
"url": "/images/status/table-split.png",
"name": "table-split"
},
{
"url": "/images/status/table-sum.png",
"name": "table-sum"
},
{
"url": "/images/status/table.png",
"name": "table"
},
{
"url": "/images/status/tables-relation.png",
"name": "tables-relation"
},
{
"url": "/images/status/tables-stacks.png",
"name": "tables-stacks"
},
{
"url": "/images/status/tables.png",
"name": "tables"
},
{
"url": "/images/status/tag--arrow.png",
"name": "tag--arrow"
},
{
"url": "/images/status/tag--exclamation.png",
"name": "tag--exclamation"
},
{
"url": "/images/status/tag--minus.png",
"name": "tag--minus"
},
{
"url": "/images/status/tag--pencil.png",
"name": "tag--pencil"
},
{
"url": "/images/status/tag--plus.png",
"name": "tag--plus"
},
{
"url": "/images/status/tag-export.png",
"name": "tag-export"
},
{
"url": "/images/status/tag-import.png",
"name": "tag-import"
},
{
"url": "/images/status/tag-label.png",
"name": "tag-label"
},
{
"url": "/images/status/tag-small.png",
"name": "tag-small"
},
{
"url": "/images/status/tag.png",
"name": "tag"
},
{
"url": "/images/status/tags-label.png",
"name": "tags-label"
},
{
"url": "/images/status/tags.png",
"name": "tags"
},
{
"url": "/images/status/target--arrow.png",
"name": "target--arrow"
},
{
"url": "/images/status/target--exclamation.png",
"name": "target--exclamation"
},
{
"url": "/images/status/target--minus.png",
"name": "target--minus"
},
{
"url": "/images/status/target--pencil.png",
"name": "target--pencil"
},
{
"url": "/images/status/target--plus.png",
"name": "target--plus"
},
{
"url": "/images/status/target.png",
"name": "target"
},
{
"url": "/images/status/task--arrow.png",
"name": "task--arrow"
},
{
"url": "/images/status/task--exclamation.png",
"name": "task--exclamation"
},
{
"url": "/images/status/task--minus.png",
"name": "task--minus"
},
{
"url": "/images/status/task--pencil.png",
"name": "task--pencil"
},
{
"url": "/images/status/task--plus.png",
"name": "task--plus"
},
{
"url": "/images/status/task-select-first.png",
"name": "task-select-first"
},
{
"url": "/images/status/task-select-last.png",
"name": "task-select-last"
},
{
"url": "/images/status/task-select.png",
"name": "task-select"
},
{
"url": "/images/status/task.png",
"name": "task"
},
{
"url": "/images/status/telephone--arrow.png",
"name": "telephone--arrow"
},
{
"url": "/images/status/telephone--exclamation.png",
"name": "telephone--exclamation"
},
{
"url": "/images/status/telephone--minus.png",
"name": "telephone--minus"
},
{
"url": "/images/status/telephone--pencil.png",
"name": "telephone--pencil"
},
{
"url": "/images/status/telephone--plus.png",
"name": "telephone--plus"
},
{
"url": "/images/status/telephone-fax.png",
"name": "telephone-fax"
},
{
"url": "/images/status/telephone-off.png",
"name": "telephone-off"
},
{
"url": "/images/status/telephone.png",
"name": "telephone"
},
{
"url": "/images/status/television--arrow.png",
"name": "television--arrow"
},
{
"url": "/images/status/television--exclamation.png",
"name": "television--exclamation"
},
{
"url": "/images/status/television--minus.png",
"name": "television--minus"
},
{
"url": "/images/status/television--pencil.png",
"name": "television--pencil"
},
{
"url": "/images/status/television--plus.png",
"name": "television--plus"
},
{
"url": "/images/status/television-image.png",
"name": "television-image"
},
{
"url": "/images/status/television-off.png",
"name": "television-off"
},
{
"url": "/images/status/television.png",
"name": "television"
},
{
"url": "/images/status/terminal--arrow.png",
"name": "terminal--arrow"
},
{
"url": "/images/status/terminal--exclamation.png",
"name": "terminal--exclamation"
},
{
"url": "/images/status/terminal--minus.png",
"name": "terminal--minus"
},
{
"url": "/images/status/terminal--pencil.png",
"name": "terminal--pencil"
},
{
"url": "/images/status/terminal--plus.png",
"name": "terminal--plus"
},
{
"url": "/images/status/terminal.png",
"name": "terminal"
},
{
"url": "/images/status/thumb-up.png",
"name": "thumb-up"
},
{
"url": "/images/status/thumb.png",
"name": "thumb"
},
{
"url": "/images/status/tick-button.png",
"name": "tick-button"
},
{
"url": "/images/status/tick-circle-frame.png",
"name": "tick-circle-frame"
},
{
"url": "/images/status/tick-circle.png",
"name": "tick-circle"
},
{
"url": "/images/status/tick-octagon-frame.png",
"name": "tick-octagon-frame"
},
{
"url": "/images/status/tick-octagon.png",
"name": "tick-octagon"
},
{
"url": "/images/status/tick-shield.png",
"name": "tick-shield"
},
{
"url": "/images/status/tick-small-circle.png",
"name": "tick-small-circle"
},
{
"url": "/images/status/tick-small-white.png",
"name": "tick-small-white"
},
{
"url": "/images/status/tick-small.png",
"name": "tick-small"
},
{
"url": "/images/status/tick-white.png",
"name": "tick-white"
},
{
"url": "/images/status/tick.png",
"name": "tick"
},
{
"url": "/images/status/ticket--arrow.png",
"name": "ticket--arrow"
},
{
"url": "/images/status/ticket--exclamation.png",
"name": "ticket--exclamation"
},
{
"url": "/images/status/ticket--minus.png",
"name": "ticket--minus"
},
{
"url": "/images/status/ticket--pencil.png",
"name": "ticket--pencil"
},
{
"url": "/images/status/ticket--plus.png",
"name": "ticket--plus"
},
{
"url": "/images/status/ticket-small.png",
"name": "ticket-small"
},
{
"url": "/images/status/ticket-stub.png",
"name": "ticket-stub"
},
{
"url": "/images/status/ticket.png",
"name": "ticket"
},
{
"url": "/images/status/toggle-expand.png",
"name": "toggle-expand"
},
{
"url": "/images/status/toggle-small-expand.png",
"name": "toggle-small-expand"
},
{
"url": "/images/status/toggle-small.png",
"name": "toggle-small"
},
{
"url": "/images/status/toggle.png",
"name": "toggle"
},
{
"url": "/images/status/toolbox.png",
"name": "toolbox"
},
{
"url": "/images/status/traffic-cone--arrow.png",
"name": "traffic-cone--arrow"
},
{
"url": "/images/status/traffic-cone--exclamation.png",
"name": "traffic-cone--exclamation"
},
{
"url": "/images/status/traffic-cone--minus.png",
"name": "traffic-cone--minus"
},
{
"url": "/images/status/traffic-cone--pencil.png",
"name": "traffic-cone--pencil"
},
{
"url": "/images/status/traffic-cone--plus.png",
"name": "traffic-cone--plus"
},
{
"url": "/images/status/traffic-cone.png",
"name": "traffic-cone"
},
{
"url": "/images/status/traffic-light--arrow.png",
"name": "traffic-light--arrow"
},
{
"url": "/images/status/traffic-light--exclamation.png",
"name": "traffic-light--exclamation"
},
{
"url": "/images/status/traffic-light--minus.png",
"name": "traffic-light--minus"
},
{
"url": "/images/status/traffic-light--pencil.png",
"name": "traffic-light--pencil"
},
{
"url": "/images/status/traffic-light--plus.png",
"name": "traffic-light--plus"
},
{
"url": "/images/status/traffic-light-off.png",
"name": "traffic-light-off"
},
{
"url": "/images/status/traffic-light.png",
"name": "traffic-light"
},
{
"url": "/images/status/trophy--arrow.png",
"name": "trophy--arrow"
},
{
"url": "/images/status/trophy--exclamation.png",
"name": "trophy--exclamation"
},
{
"url": "/images/status/trophy--minus.png",
"name": "trophy--minus"
},
{
"url": "/images/status/trophy--pencil.png",
"name": "trophy--pencil"
},
{
"url": "/images/status/trophy--plus.png",
"name": "trophy--plus"
},
{
"url": "/images/status/trophy-bronze.png",
"name": "trophy-bronze"
},
{
"url": "/images/status/trophy-silver.png",
"name": "trophy-silver"
},
{
"url": "/images/status/trophy.png",
"name": "trophy"
},
{
"url": "/images/status/ui-accordion.png",
"name": "ui-accordion"
},
{
"url": "/images/status/ui-address-bar-green.png",
"name": "ui-address-bar-green"
},
{
"url": "/images/status/ui-address-bar-red.png",
"name": "ui-address-bar-red"
},
{
"url": "/images/status/ui-address-bar-yellow.png",
"name": "ui-address-bar-yellow"
},
{
"url": "/images/status/ui-address-bar.png",
"name": "ui-address-bar"
},
{
"url": "/images/status/ui-breadcrumb.png",
"name": "ui-breadcrumb"
},
{
"url": "/images/status/ui-button-default.png",
"name": "ui-button-default"
},
{
"url": "/images/status/ui-button-navigation-back.png",
"name": "ui-button-navigation-back"
},
{
"url": "/images/status/ui-button-navigation.png",
"name": "ui-button-navigation"
},
{
"url": "/images/status/ui-button-toggle.png",
"name": "ui-button-toggle"
},
{
"url": "/images/status/ui-button.png",
"name": "ui-button"
},
{
"url": "/images/status/ui-buttons.png",
"name": "ui-buttons"
},
{
"url": "/images/status/ui-check-box-mix.png",
"name": "ui-check-box-mix"
},
{
"url": "/images/status/ui-check-box-uncheck.png",
"name": "ui-check-box-uncheck"
},
{
"url": "/images/status/ui-check-box.png",
"name": "ui-check-box"
},
{
"url": "/images/status/ui-check-boxes-series.png",
"name": "ui-check-boxes-series"
},
{
"url": "/images/status/ui-check-boxes.png",
"name": "ui-check-boxes"
},
{
"url": "/images/status/ui-color-picker-default.png",
"name": "ui-color-picker-default"
},
{
"url": "/images/status/ui-color-picker-switch.png",
"name": "ui-color-picker-switch"
},
{
"url": "/images/status/ui-color-picker-transparent.png",
"name": "ui-color-picker-transparent"
},
{
"url": "/images/status/ui-color-picker.png",
"name": "ui-color-picker"
},
{
"url": "/images/status/ui-combo-box-blue.png",
"name": "ui-combo-box-blue"
},
{
"url": "/images/status/ui-combo-box-calendar.png",
"name": "ui-combo-box-calendar"
},
{
"url": "/images/status/ui-combo-box-edit.png",
"name": "ui-combo-box-edit"
},
{
"url": "/images/status/ui-combo-box.png",
"name": "ui-combo-box"
},
{
"url": "/images/status/ui-combo-boxes.png",
"name": "ui-combo-boxes"
},
{
"url": "/images/status/ui-flow.png",
"name": "ui-flow"
},
{
"url": "/images/status/ui-group-box.png",
"name": "ui-group-box"
},
{
"url": "/images/status/ui-label-link.png",
"name": "ui-label-link"
},
{
"url": "/images/status/ui-label.png",
"name": "ui-label"
},
{
"url": "/images/status/ui-labels.png",
"name": "ui-labels"
},
{
"url": "/images/status/ui-layout-panel.png",
"name": "ui-layout-panel"
},
{
"url": "/images/status/ui-list-box-blue.png",
"name": "ui-list-box-blue"
},
{
"url": "/images/status/ui-list-box.png",
"name": "ui-list-box"
},
{
"url": "/images/status/ui-menu-blue.png",
"name": "ui-menu-blue"
},
{
"url": "/images/status/ui-menu.png",
"name": "ui-menu"
},
{
"url": "/images/status/ui-paginator.png",
"name": "ui-paginator"
},
{
"url": "/images/status/ui-progress-bar-indeterminate.png",
"name": "ui-progress-bar-indeterminate"
},
{
"url": "/images/status/ui-progress-bar.png",
"name": "ui-progress-bar"
},
{
"url": "/images/status/ui-radio-button-uncheck.png",
"name": "ui-radio-button-uncheck"
},
{
"url": "/images/status/ui-radio-button.png",
"name": "ui-radio-button"
},
{
"url": "/images/status/ui-radio-buttons.png",
"name": "ui-radio-buttons"
},
{
"url": "/images/status/ui-ruler.png",
"name": "ui-ruler"
},
{
"url": "/images/status/ui-scroll-bar-horizontal.png",
"name": "ui-scroll-bar-horizontal"
},
{
"url": "/images/status/ui-scroll-bar.png",
"name": "ui-scroll-bar"
},
{
"url": "/images/status/ui-scroll-pane-blog.png",
"name": "ui-scroll-pane-blog"
},
{
"url": "/images/status/ui-scroll-pane-both.png",
"name": "ui-scroll-pane-both"
},
{
"url": "/images/status/ui-scroll-pane-detail.png",
"name": "ui-scroll-pane-detail"
},
{
"url": "/images/status/ui-scroll-pane-form.png",
"name": "ui-scroll-pane-form"
},
{
"url": "/images/status/ui-scroll-pane-horizontal.png",
"name": "ui-scroll-pane-horizontal"
},
{
"url": "/images/status/ui-scroll-pane-icon.png",
"name": "ui-scroll-pane-icon"
},
{
"url": "/images/status/ui-scroll-pane-image.png",
"name": "ui-scroll-pane-image"
},
{
"url": "/images/status/ui-scroll-pane-list.png",
"name": "ui-scroll-pane-list"
},
{
"url": "/images/status/ui-scroll-pane-table.png",
"name": "ui-scroll-pane-table"
},
{
"url": "/images/status/ui-scroll-pane-text-image.png",
"name": "ui-scroll-pane-text-image"
},
{
"url": "/images/status/ui-scroll-pane-text.png",
"name": "ui-scroll-pane-text"
},
{
"url": "/images/status/ui-scroll-pane-tree.png",
"name": "ui-scroll-pane-tree"
},
{
"url": "/images/status/ui-scroll-pane.png",
"name": "ui-scroll-pane"
},
{
"url": "/images/status/ui-search-field.png",
"name": "ui-search-field"
},
{
"url": "/images/status/ui-slider-050.png",
"name": "ui-slider-050"
},
{
"url": "/images/status/ui-slider-100.png",
"name": "ui-slider-100"
},
{
"url": "/images/status/ui-slider-vertical-050.png",
"name": "ui-slider-vertical-050"
},
{
"url": "/images/status/ui-slider-vertical-100.png",
"name": "ui-slider-vertical-100"
},
{
"url": "/images/status/ui-slider-vertical.png",
"name": "ui-slider-vertical"
},
{
"url": "/images/status/ui-slider.png",
"name": "ui-slider"
},
{
"url": "/images/status/ui-spin.png",
"name": "ui-spin"
},
{
"url": "/images/status/ui-splitter-horizontal.png",
"name": "ui-splitter-horizontal"
},
{
"url": "/images/status/ui-splitter.png",
"name": "ui-splitter"
},
{
"url": "/images/status/ui-status-bar-blue.png",
"name": "ui-status-bar-blue"
},
{
"url": "/images/status/ui-status-bar.png",
"name": "ui-status-bar"
},
{
"url": "/images/status/ui-tab--arrow.png",
"name": "ui-tab--arrow"
},
{
"url": "/images/status/ui-tab--exclamation.png",
"name": "ui-tab--exclamation"
},
{
"url": "/images/status/ui-tab--minus.png",
"name": "ui-tab--minus"
},
{
"url": "/images/status/ui-tab--pencil.png",
"name": "ui-tab--pencil"
},
{
"url": "/images/status/ui-tab--plus.png",
"name": "ui-tab--plus"
},
{
"url": "/images/status/ui-tab-bottom.png",
"name": "ui-tab-bottom"
},
{
"url": "/images/status/ui-tab-content.png",
"name": "ui-tab-content"
},
{
"url": "/images/status/ui-tab-side.png",
"name": "ui-tab-side"
},
{
"url": "/images/status/ui-tab.png",
"name": "ui-tab"
},
{
"url": "/images/status/ui-text-field-hidden.png",
"name": "ui-text-field-hidden"
},
{
"url": "/images/status/ui-text-field-password.png",
"name": "ui-text-field-password"
},
{
"url": "/images/status/ui-text-field-select.png",
"name": "ui-text-field-select"
},
{
"url": "/images/status/ui-text-field-suggestion.png",
"name": "ui-text-field-suggestion"
},
{
"url": "/images/status/ui-text-field.png",
"name": "ui-text-field"
},
{
"url": "/images/status/ui-toolbar--arrow.png",
"name": "ui-toolbar--arrow"
},
{
"url": "/images/status/ui-toolbar--exclamation.png",
"name": "ui-toolbar--exclamation"
},
{
"url": "/images/status/ui-toolbar--minus.png",
"name": "ui-toolbar--minus"
},
{
"url": "/images/status/ui-toolbar--pencil.png",
"name": "ui-toolbar--pencil"
},
{
"url": "/images/status/ui-toolbar--plus.png",
"name": "ui-toolbar--plus"
},
{
"url": "/images/status/ui-toolbar-bookmark.png",
"name": "ui-toolbar-bookmark"
},
{
"url": "/images/status/ui-toolbar.png",
"name": "ui-toolbar"
},
{
"url": "/images/status/ui-tooltip-balloon.png",
"name": "ui-tooltip-balloon"
},
{
"url": "/images/status/ui-tooltip.png",
"name": "ui-tooltip"
},
{
"url": "/images/status/umbrella--arrow.png",
"name": "umbrella--arrow"
},
{
"url": "/images/status/umbrella--exclamation.png",
"name": "umbrella--exclamation"
},
{
"url": "/images/status/umbrella--minus.png",
"name": "umbrella--minus"
},
{
"url": "/images/status/umbrella--pencil.png",
"name": "umbrella--pencil"
},
{
"url": "/images/status/umbrella--plus.png",
"name": "umbrella--plus"
},
{
"url": "/images/status/umbrella.png",
"name": "umbrella"
},
{
"url": "/images/status/universal.png",
"name": "universal"
},
{
"url": "/images/status/usb-flash-drive--arrow.png",
"name": "usb-flash-drive--arrow"
},
{
"url": "/images/status/usb-flash-drive--exclamation.png",
"name": "usb-flash-drive--exclamation"
},
{
"url": "/images/status/usb-flash-drive--minus.png",
"name": "usb-flash-drive--minus"
},
{
"url": "/images/status/usb-flash-drive--pencil.png",
"name": "usb-flash-drive--pencil"
},
{
"url": "/images/status/usb-flash-drive--plus.png",
"name": "usb-flash-drive--plus"
},
{
"url": "/images/status/usb-flash-drive.png",
"name": "usb-flash-drive"
},
{
"url": "/images/status/user--arrow.png",
"name": "user--arrow"
},
{
"url": "/images/status/user--exclamation.png",
"name": "user--exclamation"
},
{
"url": "/images/status/user--minus.png",
"name": "user--minus"
},
{
"url": "/images/status/user--pencil.png",
"name": "user--pencil"
},
{
"url": "/images/status/user--plus.png",
"name": "user--plus"
},
{
"url": "/images/status/user-black-female.png",
"name": "user-black-female"
},
{
"url": "/images/status/user-black.png",
"name": "user-black"
},
{
"url": "/images/status/user-business-boss.png",
"name": "user-business-boss"
},
{
"url": "/images/status/user-business-gray-boss.png",
"name": "user-business-gray-boss"
},
{
"url": "/images/status/user-business-gray.png",
"name": "user-business-gray"
},
{
"url": "/images/status/user-business.png",
"name": "user-business"
},
{
"url": "/images/status/user-detective-gray.png",
"name": "user-detective-gray"
},
{
"url": "/images/status/user-detective.png",
"name": "user-detective"
},
{
"url": "/images/status/user-female.png",
"name": "user-female"
},
{
"url": "/images/status/user-gray-female.png",
"name": "user-gray-female"
},
{
"url": "/images/status/user-gray.png",
"name": "user-gray"
},
{
"url": "/images/status/user-green-female.png",
"name": "user-green-female"
},
{
"url": "/images/status/user-green.png",
"name": "user-green"
},
{
"url": "/images/status/user-medium-female.png",
"name": "user-medium-female"
},
{
"url": "/images/status/user-medium.png",
"name": "user-medium"
},
{
"url": "/images/status/user-nude-female.png",
"name": "user-nude-female"
},
{
"url": "/images/status/user-nude.png",
"name": "user-nude"
},
{
"url": "/images/status/user-red-female.png",
"name": "user-red-female"
},
{
"url": "/images/status/user-red.png",
"name": "user-red"
},
{
"url": "/images/status/user-silhouette-question.png",
"name": "user-silhouette-question"
},
{
"url": "/images/status/user-silhouette.png",
"name": "user-silhouette"
},
{
"url": "/images/status/user-small-female.png",
"name": "user-small-female"
},
{
"url": "/images/status/user-small.png",
"name": "user-small"
},
{
"url": "/images/status/user-thief-baldie.png",
"name": "user-thief-baldie"
},
{
"url": "/images/status/user-thief-female.png",
"name": "user-thief-female"
},
{
"url": "/images/status/user-thief.png",
"name": "user-thief"
},
{
"url": "/images/status/user-white-female.png",
"name": "user-white-female"
},
{
"url": "/images/status/user-white.png",
"name": "user-white"
},
{
"url": "/images/status/user-worker-boss.png",
"name": "user-worker-boss"
},
{
"url": "/images/status/user-worker.png",
"name": "user-worker"
},
{
"url": "/images/status/user-yellow-female.png",
"name": "user-yellow-female"
},
{
"url": "/images/status/user-yellow.png",
"name": "user-yellow"
},
{
"url": "/images/status/user.png",
"name": "user"
},
{
"url": "/images/status/users.png",
"name": "users"
},
{
"url": "/images/status/validation-document.png",
"name": "validation-document"
},
{
"url": "/images/status/validation-invalid-document.png",
"name": "validation-invalid-document"
},
{
"url": "/images/status/validation-invalid.png",
"name": "validation-invalid"
},
{
"url": "/images/status/validation-label-html.png",
"name": "validation-label-html"
},
{
"url": "/images/status/validation-label.png",
"name": "validation-label"
},
{
"url": "/images/status/validation-valid-document.png",
"name": "validation-valid-document"
},
{
"url": "/images/status/validation-valid.png",
"name": "validation-valid"
},
{
"url": "/images/status/validation.png",
"name": "validation"
},
{
"url": "/images/status/vise-drawer.png",
"name": "vise-drawer"
},
{
"url": "/images/status/vise.png",
"name": "vise"
},
{
"url": "/images/status/wall--arrow.png",
"name": "wall--arrow"
},
{
"url": "/images/status/wall--exclamation.png",
"name": "wall--exclamation"
},
{
"url": "/images/status/wall--minus.png",
"name": "wall--minus"
},
{
"url": "/images/status/wall--pencil.png",
"name": "wall--pencil"
},
{
"url": "/images/status/wall--plus.png",
"name": "wall--plus"
},
{
"url": "/images/status/wall-break.png",
"name": "wall-break"
},
{
"url": "/images/status/wall-brick.png",
"name": "wall-brick"
},
{
"url": "/images/status/wall-small-brick.png",
"name": "wall-small-brick"
},
{
"url": "/images/status/wall-small.png",
"name": "wall-small"
},
{
"url": "/images/status/wall.png",
"name": "wall"
},
{
"url": "/images/status/wallet--arrow.png",
"name": "wallet--arrow"
},
{
"url": "/images/status/wallet--exclamation.png",
"name": "wallet--exclamation"
},
{
"url": "/images/status/wallet--minus.png",
"name": "wallet--minus"
},
{
"url": "/images/status/wallet--pencil.png",
"name": "wallet--pencil"
},
{
"url": "/images/status/wallet--plus.png",
"name": "wallet--plus"
},
{
"url": "/images/status/wallet.png",
"name": "wallet"
},
{
"url": "/images/status/wand--arrow.png",
"name": "wand--arrow"
},
{
"url": "/images/status/wand--exclamation.png",
"name": "wand--exclamation"
},
{
"url": "/images/status/wand--minus.png",
"name": "wand--minus"
},
{
"url": "/images/status/wand--pencil.png",
"name": "wand--pencil"
},
{
"url": "/images/status/wand--plus.png",
"name": "wand--plus"
},
{
"url": "/images/status/wand-hat.png",
"name": "wand-hat"
},
{
"url": "/images/status/wand-small.png",
"name": "wand-small"
},
{
"url": "/images/status/wand.png",
"name": "wand"
},
{
"url": "/images/status/water--arrow.png",
"name": "water--arrow"
},
{
"url": "/images/status/water--exclamation.png",
"name": "water--exclamation"
},
{
"url": "/images/status/water--minus.png",
"name": "water--minus"
},
{
"url": "/images/status/water--pencil.png",
"name": "water--pencil"
},
{
"url": "/images/status/water--plus.png",
"name": "water--plus"
},
{
"url": "/images/status/water.png",
"name": "water"
},
{
"url": "/images/status/weather-cloud.png",
"name": "weather-cloud"
},
{
"url": "/images/status/weather-clouds.png",
"name": "weather-clouds"
},
{
"url": "/images/status/weather-cloudy.png",
"name": "weather-cloudy"
},
{
"url": "/images/status/weather-fog.png",
"name": "weather-fog"
},
{
"url": "/images/status/weather-lightning.png",
"name": "weather-lightning"
},
{
"url": "/images/status/weather-moon-clouds.png",
"name": "weather-moon-clouds"
},
{
"url": "/images/status/weather-moon-fog.png",
"name": "weather-moon-fog"
},
{
"url": "/images/status/weather-moon.png",
"name": "weather-moon"
},
{
"url": "/images/status/weather-rain.png",
"name": "weather-rain"
},
{
"url": "/images/status/weather-snow.png",
"name": "weather-snow"
},
{
"url": "/images/status/weather.png",
"name": "weather"
},
{
"url": "/images/status/webcam--arrow.png",
"name": "webcam--arrow"
},
{
"url": "/images/status/webcam--exclamation.png",
"name": "webcam--exclamation"
},
{
"url": "/images/status/webcam--minus.png",
"name": "webcam--minus"
},
{
"url": "/images/status/webcam--pencil.png",
"name": "webcam--pencil"
},
{
"url": "/images/status/webcam--plus.png",
"name": "webcam--plus"
},
{
"url": "/images/status/webcam-network.png",
"name": "webcam-network"
},
{
"url": "/images/status/webcam.png",
"name": "webcam"
},
{
"url": "/images/status/wheel.png",
"name": "wheel"
},
{
"url": "/images/status/wooden-box--arrow.png",
"name": "wooden-box--arrow"
},
{
"url": "/images/status/wooden-box--exclamation.png",
"name": "wooden-box--exclamation"
},
{
"url": "/images/status/wooden-box--minus.png",
"name": "wooden-box--minus"
},
{
"url": "/images/status/wooden-box--pencil.png",
"name": "wooden-box--pencil"
},
{
"url": "/images/status/wooden-box--plus.png",
"name": "wooden-box--plus"
},
{
"url": "/images/status/wooden-box-label.png",
"name": "wooden-box-label"
},
{
"url": "/images/status/wooden-box.png",
"name": "wooden-box"
},
{
"url": "/images/status/wrench--arrow.png",
"name": "wrench--arrow"
},
{
"url": "/images/status/wrench--exclamation.png",
"name": "wrench--exclamation"
},
{
"url": "/images/status/wrench--minus.png",
"name": "wrench--minus"
},
{
"url": "/images/status/wrench--pencil.png",
"name": "wrench--pencil"
},
{
"url": "/images/status/wrench--plus.png",
"name": "wrench--plus"
},
{
"url": "/images/status/wrench-screwdriver.png",
"name": "wrench-screwdriver"
},
{
"url": "/images/status/wrench.png",
"name": "wrench"
},
{
"url": "/images/status/xfn-colleague-met.png",
"name": "xfn-colleague-met"
},
{
"url": "/images/status/xfn-colleague.png",
"name": "xfn-colleague"
},
{
"url": "/images/status/xfn-friend-met.png",
"name": "xfn-friend-met"
},
{
"url": "/images/status/xfn-friend.png",
"name": "xfn-friend"
},
{
"url": "/images/status/xfn-sweetheart-met.png",
"name": "xfn-sweetheart-met"
},
{
"url": "/images/status/xfn-sweetheart.png",
"name": "xfn-sweetheart"
},
{
"url": "/images/status/xfn.png",
"name": "xfn"
},
{
"url": "/images/status/yin-yang.png",
"name": "yin-yang"
},
{
"url": "/images/status/zone--arrow.png",
"name": "zone--arrow"
},
{
"url": "/images/status/zone--exclamation.png",
"name": "zone--exclamation"
},
{
"url": "/images/status/zone--minus.png",
"name": "zone--minus"
},
{
"url": "/images/status/zone--pencil.png",
"name": "zone--pencil"
},
{
"url": "/images/status/zone--plus.png",
"name": "zone--plus"
},
{
"url": "/images/status/zone-money.png",
"name": "zone-money"
},
{
"url": "/images/status/zone-select.png",
"name": "zone-select"
},
{
"url": "/images/status/zone.png",
"name": "zone"
},
{
"url": "/images/status/zones-stack.png",
"name": "zones-stack"
},
{
"url": "/images/status/zones.png",
"name": "zones"
}
]
| 25.193545
| 79
| 0.472439
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 165,519
| 0.623626
|
6613dec8d628000fe7b472846f82eac73bd8f3ea
| 49,047
|
py
|
Python
|
autojail/config/memory.py
|
ekut-es/autojail
|
bc16e40e6df55c0a28a3059715851ffa59b14ba8
|
[
"MIT"
] | 6
|
2020-08-12T08:16:15.000Z
|
2022-03-05T02:25:53.000Z
|
autojail/config/memory.py
|
ekut-es/autojail
|
bc16e40e6df55c0a28a3059715851ffa59b14ba8
|
[
"MIT"
] | 1
|
2021-03-30T10:34:51.000Z
|
2021-06-09T11:24:00.000Z
|
autojail/config/memory.py
|
ekut-es/autojail
|
bc16e40e6df55c0a28a3059715851ffa59b14ba8
|
[
"MIT"
] | 1
|
2021-11-21T09:30:58.000Z
|
2021-11-21T09:30:58.000Z
|
import copy
import logging
import math
import sys
from collections import defaultdict
from functools import reduce
from typing import (
Any,
Callable,
Dict,
Iterable,
List,
Optional,
Sequence,
Tuple,
Union,
)
import tabulate
from ortools.sat.python import cp_model
from ..model import (
Board,
CellConfig,
DeviceMemoryRegion,
HypervisorMemoryRegion,
JailhouseConfig,
MemoryRegion,
MemoryRegionData,
ShMemNetRegion,
)
from ..model.datatypes import HexInt
from ..model.parameters import GenerateConfig, GenerateParameters, ScalarChoice
from ..utils import get_overlap
from .passes import BasePass
class MemoryAllocationInfeasibleException(Exception):
pass
class AllocatorSegment:
def __init__(
self,
name: str = "unnamed",
alignment: int = 2 ** 12,
shared_regions: Optional[
Dict[
str,
List[
Union[
MemoryRegion, DeviceMemoryRegion, HypervisorMemoryRegion
]
],
]
] = None,
) -> None:
self.name = name
self.shared_regions: Optional[
Dict[
str,
List[
Union[
MemoryRegion, DeviceMemoryRegion, HypervisorMemoryRegion
]
],
]
] = defaultdict(list)
if shared_regions:
self.shared_regions.update(shared_regions)
self.alignment = alignment
self.constraint: Optional[MemoryConstraint] = None
@property
def physical_start_addr(self):
key = self.shared_regions.keys()[0]
return self.shared_regions[key][0].physical_start_addr
@property
def size(self):
key = list(self.shared_regions)[0]
return sum(map(lambda r: r.size, self.shared_regions[key]))
class MemoryConstraint(object):
"""Implements a generic constraint for AllocatorSegments"""
def __init__(
self, size: int, virtual: bool, start_addr: int = None
) -> None:
self.size = size
self.virtual = virtual
self.start_addr: Optional[int] = start_addr
self.address_range: Optional[Tuple[int, int]] = None
# Addresses must be aligned such that
# addr % self.alignment == 0
self.alignment: Optional[int] = None
# Constraint for Memory regions where physical == virtual address
# E.g. mem loadable in root cell
self.equal_constraint: Optional["MemoryConstraint"] = None
# Solver Interval Variable
self.bound_vars: Optional[Tuple[Any, Any]] = None
# Values for the allocated range after constraint solving
self.allocated_range: Optional[Tuple[int, int]] = None
# allow arbitrary actions upon resolving a constraint
# this method is called iff, the solver found a valid
# solution and assigned start_addr
# Parameters:
# - self: MemoryConstraint
self.resolved: Optional[Callable[[MemoryConstraint], None]] = None
def __str__(self):
ret = ""
if self.start_addr is not None:
ret += f"addr: {hex(self.start_addr)} "
if self.address_range:
ret += f"range: {hex(self.address_range[0])}-{hex(self.address_range[1])} "
if self.alignment:
ret += f"alignment: {self.alignment} "
if self.address_range:
ret += f"allocated: {hex(self.address_range[0])}-{hex(self.adress_range[1])} "
ret += f"size: {self.size} virtual: {self.virtual}"
return ret
# Returns a constraint that satisfies both
# <self> and <other>, if possible
# Fails otherwise
def merge(self, other):
assert (
self.virtual == other.virtual
and "Unable to merge constraints for physical and virtual addresses"
)
assert (
self.size == other.size
and "Unable to merge constraints with different size"
)
assert (
self.start_addr == other.start_addr
and "Unbable to merge constraints with different start addresses"
)
alignment = self.alignment
if other.alignment:
if alignment:
alignment = (self.alignment * other.alignment) / math.gcd(
self.alignment, other.alignment
)
else:
alignment = other.alignment
resolved = self.resolved
if other.resolved:
if resolved:
def callback(mc: MemoryConstraint):
assert self.resolved
assert other.resolved
self.resolved(mc)
other.resolved(mc)
resolved = callback
else:
resolved = other.resolved
mc = MemoryConstraint(self.size, self.virtual)
mc.virtual = self.virtual
mc.start_addr = self.start_addr
mc.alignment = alignment
mc.resolved = resolved
class NoOverlapConstraint(object):
"""Implements a generic no-overlap constraint"""
def __init__(self) -> None:
self.constraints: List[MemoryConstraint] = []
def add_memory_constraint(self, mc: MemoryConstraint) -> None:
self.constraints.append(mc)
def __str__(self):
return str(self.__dict__)
class CPMemorySolver(object):
def __init__(
self,
constraints: List[NoOverlapConstraint],
physical_domain: cp_model.Domain,
virtual_domain: cp_model.Domain,
):
self.constraints = constraints
self.model = cp_model.CpModel()
self.physical_domain = physical_domain
self.virtual_domain = virtual_domain
self.ivars: Dict[cp_model.IntervalVar, MemoryConstraint] = dict()
self.vars: Dict[
cp_model.IntervalVar, Tuple[cp_model.IntVar, cp_model.IntVar]
] = dict()
self._build_cp_constraints()
def solve(self):
solver = cp_model.CpSolver()
solver.parameters.log_search_progress = True
status = solver.Solve(self.model)
if status == cp_model.FEASIBLE or status == cp_model.OPTIMAL:
for ivar, mc in self.ivars.items():
lower, upper = self.vars[ivar]
mc.allocated_range = solver.Value(lower), solver.Value(upper)
else:
print("Memory allocation infeasible")
raise MemoryAllocationInfeasibleException()
def _build_cp_constraints(self):
equal_pairs = []
for overlap_index, no_overlap in enumerate(self.constraints):
cp_no_overlap = []
for constr_index, constr in enumerate(no_overlap.constraints):
lower = None
upper = None
constr_name = f"constr_{overlap_index}_{constr_index}"
if constr.start_addr is not None:
lower = self.model.NewConstant(constr.start_addr)
upper = self.model.NewConstant(
constr.start_addr + constr.size
)
else:
if constr.address_range:
l_addr, u_addr = constr.address_range
lower = self.model.NewIntVar(
l_addr, u_addr, f"{constr_name}_lower"
)
else:
domain = self.physical_domain
if constr.virtual:
domain = self.virtual_domain
lower = self.model.NewIntVarFromDomain(
domain, f"{constr_name}_lower"
)
if constr.address_range:
l_addr, u_addr = constr.address_range
upper = self.model.NewIntVar(
l_addr, u_addr, f"{constr_name}_upper"
)
else:
domain = self.physical_domain
if constr.virtual:
domain = self.virtual_domain
upper = self.model.NewIntVarFromDomain(
domain, f"{constr_name}_upper"
)
ivar = self.model.NewIntervalVar(
lower, constr.size, upper, f"{constr_name}_ivar"
)
print(lower, constr.size, upper)
constr.bound_vars = (lower, upper)
if constr.alignment:
self.model.AddModuloEquality(0, lower, constr.alignment)
if constr.equal_constraint:
equal_pairs.append((constr, constr.equal_constraint))
cp_no_overlap.append(ivar)
self.ivars[ivar] = constr
self.vars[ivar] = (lower, upper)
self.model.AddNoOverlap(cp_no_overlap)
for first, second in equal_pairs:
self.model.Add(first.bound_vars[0] == second.bound_vars[0])
self.model.Add(first.bound_vars[1] == second.bound_vars[1])
class AllocateMemoryPass(BasePass):
"""Implements a simple MemoryAllocator for AutoJail"""
def __init__(self) -> None:
self.logger = logging.getLogger("autojail")
self.config: Optional[JailhouseConfig] = None
self.board: Optional[Board] = None
self.root_cell: Optional[CellConfig] = None
self.root_cell_id: Optional[str] = None
self.unallocated_segments: List[AllocatorSegment] = []
self.allocated_regions: List[MemoryRegionData] = []
self.per_region_constraints: Dict[str, MemoryConstraint] = dict()
# data structure for creating and handling generic
# constraints
self.physical_domain: cp_model.Domain = None
self.virtual_domain: cp_model.Domain = None
self.global_no_overlap = NoOverlapConstraint()
self.no_overlap_constraints: Dict[
str, NoOverlapConstraint
] = defaultdict(NoOverlapConstraint)
self.memory_constraints: Dict[
MemoryConstraint, AllocatorSegment
] = dict()
def _iter_constraints(self, f_no_overlap, f_mc):
for cell_name, no_overlap in self.no_overlap_constraints.items():
if not f_no_overlap(cell_name, no_overlap):
continue
for mc in no_overlap.constraints:
f_mc(cell_name, mc)
def _dump_constraints(self):
constraint_tables = {}
def f_no_overlap(
cell_name: str, no_overlap: NoOverlapConstraint
) -> bool:
constraint_tables[cell_name] = []
return True
def f_mc(cell_name: str, mc: MemoryConstraint) -> None:
constraint_tables[cell_name].append(
[
hex(mc.start_addr) if mc.start_addr is not None else "-",
hex(mc.address_range[0]) + "-" + hex(mc.address_range[1])
if mc.address_range
else "-",
str(mc.size) if mc.size is not None else "-",
str(mc.alignment) if mc.alignment else "-",
str(mc.virtual),
"yes" if mc.equal_constraint else "-",
str(mc.resolved) if mc.resolved else "-",
]
)
self._iter_constraints(f_no_overlap, f_mc)
self.logger.info("")
self.logger.info("Memory Constraints:")
for cell_name, constraints in constraint_tables.items():
self.logger.info("Cell: %s", cell_name)
formatted = tabulate.tabulate(
constraints,
headers=[
"Start Address",
"Start Address Range",
"Size",
"Alignment",
"Virtual?",
"Equal?",
"Resolved callback",
],
)
self.logger.info(formatted)
self.logger.info("")
def _check_constraints(self):
def f_no_overlap(cell_name, no_overlap):
full_regions = []
def insert_region(region):
o_start, o_end = region
for (start, end) in full_regions:
if (
(o_start <= start and start <= o_end)
or (o_start <= end and end <= o_end)
or (start <= o_start and o_start <= end)
or (start <= o_end and o_end <= end)
):
print(
f"Regions overlap for {cell_name}: (0x{start:x}, 0x{end:x}) and (0x{o_start:x}, 0x{o_end:x})"
)
if mc not in self.memory_constraints:
continue
seg = self.memory_constraints[mc]
print("Affected memory cells:")
for sharer in seg.shared_regions.keys():
print(f"\t{sharer}")
full_regions.append(region)
for mc in no_overlap.constraints:
if mc.start_addr is not None:
region = (mc.start_addr, mc.start_addr + mc.size - 1)
insert_region(region)
return False
def f_mc(cell_name, mc):
pass
self._iter_constraints(f_no_overlap, f_mc)
def __call__(
self, board: Board, config: JailhouseConfig
) -> Tuple[Board, JailhouseConfig]:
self.logger.info("Memory Allocator")
self.board = board
self.config = config
self.root_cell = None
for id, cell in self.config.cells.items():
if cell.type == "root":
self.root_cell = cell
self.root_cell_id = id
break
vmem_size = 2 ** 32
if self.board.virtual_address_bits > 32:
vmem_size = 2 ** (self.board.virtual_address_bits - 1)
self.virtual_domain = cp_model.Domain(0, vmem_size)
self._build_allocation_domain()
self.logger.info(
"Physical Memory Domain: %s",
str(self.physical_domain.FlattenedIntervals()),
)
self.logger.info(
"Virtual Memory domain: %s",
str(self.virtual_domain.FlattenedIntervals()),
)
self.no_overlap_constraints["__global"] = self.global_no_overlap
self.unallocated_segments = self._build_unallocated_segments()
self._lift_loadable()
self._preallocate_vpci()
self.logger.info("")
self.logger.info("Unallocated physical segments: ")
table = [
[
s.name,
s.size,
len(s.shared_regions if s.shared_regions else []),
",".join(s.shared_regions.keys() if s.shared_regions else []),
]
for s in self.unallocated_segments
]
self.logger.info(
tabulate.tabulate(
table,
headers=["Name", "Size (Byte)", "# Subregions", "Sharers"],
)
)
for seg in self.unallocated_segments:
assert seg.size > 0
assert seg.shared_regions
mc_global = None
for sharer, regions in seg.shared_regions.items():
mc_seg = seg.constraint
mc_local = MemoryConstraint(seg.size, True)
if mc_seg and mc_seg.alignment:
mc_local.alignment = mc_seg.alignment
else:
if regions[0].virtual_start_addr is None:
mc_local.alignment = seg.alignment
fst_region = regions[0]
if fst_region.virtual_start_addr is not None:
if mc_seg and mc_seg.start_addr and mc_seg.virtual:
assert (
mc_seg.start_addr == fst_region.virtual_start_addr
and "Invalid state detected: start addresses must be equal"
)
mc_local.start_addr = fst_region.virtual_start_addr
elif mc_seg and mc_seg.start_addr and mc_seg.virtual:
mc_local.start_addr = mc_seg.start_addr
if mc_seg and mc_seg.virtual:
mc_local.resolved = mc_seg.resolved
if not mc_global:
mc_global = copy.deepcopy(mc_local)
mc_global.virtual = False
mc_global.start_addr = None
if fst_region.physical_start_addr is not None:
if mc_seg and mc_seg.start_addr and not mc_seg.virtual:
assert (
mc_seg.start_addr
== fst_region.virtual_start_addr
and "Invalid state detected: start addresses must be equal"
)
mc_global.start_addr = fst_region.physical_start_addr
elif mc_seg and mc_seg.start_addr and not mc_seg.virtual:
mc_global.start_addr = mc_seg.start_addr
if mc_seg and not mc_seg.virtual:
mc_global.resolved = mc_seg.resolved
if mc_global.start_addr and mc_global.size:
print(
f"Adding global no-overlapp (shared): [0x{mc_global.start_addr:x}, 0x{mc_global.start_addr + mc_global.size:x}]"
)
self.global_no_overlap.add_memory_constraint(mc_global)
self.memory_constraints[mc_global] = seg
# Add physical == virtual constraint for MEM_LOADABLEs in root cell
if sharer == self.root_cell_id:
is_loadable = False
for shared_regions in seg.shared_regions.values():
for shared_region in shared_regions:
if isinstance(shared_region, MemoryRegionData):
for flag in shared_region.flags:
if flag == "MEM_LOADABLE":
is_loadable = True
if is_loadable:
mc_local.equal_constraint = mc_global
self.no_overlap_constraints[sharer].add_memory_constraint(
mc_local
)
self.memory_constraints[mc_local] = seg
# Add virtually reserved segments
for cell_name, cell in self.config.cells.items():
assert cell.memory_regions is not None
for memory_region in cell.memory_regions.values():
assert memory_region is not None
if isinstance(memory_region, HypervisorMemoryRegion):
continue
if isinstance(memory_region, ShMemNetRegion):
continue
assert isinstance(memory_region, MemoryRegionData)
if (
memory_region.virtual_start_addr is not None
and memory_region.physical_start_addr is not None
):
if memory_region.allocatable:
continue
assert memory_region.size is not None
memory_constraint = MemoryConstraint(
size=int(memory_region.size),
virtual=True,
start_addr=memory_region.virtual_start_addr,
)
self.no_overlap_constraints[
cell_name
].add_memory_constraint(memory_constraint)
self._add_gic_constraints()
self._dump_constraints()
solver = CPMemorySolver(
list(self.no_overlap_constraints.values()),
self.physical_domain,
self.virtual_domain,
)
try:
solver.solve()
except MemoryAllocationInfeasibleException:
self._check_constraints()
sys.exit(-1)
for cell_name, no_overlap_constr in self.no_overlap_constraints.items():
for constr in no_overlap_constr.constraints:
if not constr.allocated_range:
print(constr, "has not been allocated")
continue
(start, _) = constr.allocated_range
if constr.resolved:
constr.resolved(constr)
if constr not in self.memory_constraints:
continue
seg = self.memory_constraints[constr]
if cell_name == "__global":
assert seg.shared_regions
for _, regions in seg.shared_regions.items():
for region in regions:
if region.physical_start_addr is None:
region.physical_start_addr = HexInt(start)
else:
assert seg.shared_regions
assert constr.virtual
for region in seg.shared_regions[cell_name]:
if region.virtual_start_addr is None:
region.virtual_start_addr = HexInt(start)
self._remove_allocatable()
return self.board, self.config
def _add_gic_constraints(self):
interrupt_ranges: List[Tuple[int, int]] = []
for interrupt_controller in self.board.interrupt_controllers:
if interrupt_controller.gic_version == 2:
interrupt_ranges.append(
(interrupt_controller.gicd_base, 0x1000)
)
interrupt_ranges.append(
(interrupt_controller.gicc_base, 0x2000)
)
interrupt_ranges.append(
(interrupt_controller.gich_base, 0x2000)
)
interrupt_ranges.append(
(interrupt_controller.gicv_base, 0x2000)
)
elif interrupt_controller.gic_version == 3:
interrupt_ranges.append(
(interrupt_controller.gicd_base, 0x10000)
)
interrupt_ranges.append(
(interrupt_controller.gicr_base, 0x20000)
)
for name, constraint in self.no_overlap_constraints.items():
for interrupt_range in interrupt_ranges:
mc = MemoryConstraint(
size=interrupt_range[1],
start_addr=interrupt_range[0],
virtual=False if name == "__global" else True,
)
constraint.add_memory_constraint(mc)
def _lift_loadable(self):
root_cell = self.root_cell
for cell_name, cell in self.config.cells.items():
if cell.type == "root":
continue
for name, region in cell.memory_regions.items():
if region.flags and "MEM_LOADABLE" in region.flags:
root_region_name = f"{name}@{cell_name}"
print("Adding region:", root_region_name, "to root cell")
copy_region = copy.deepcopy(region)
copy_region.flags.remove("MEM_LOADABLE")
if "MEM_EXECUTE" in copy_region.flags:
copy_region.flags.remove("MEM_EXECUTE")
if "MEM_DMA" in copy_region.flags:
copy_region.flags.remove("MEM_DMA")
# FIXME: is it really true, that that MEM_LOADABLE must be the same at their respective memory region
copy_region.virtual_start_addr = (
copy_region.physical_start_addr
)
root_cell.memory_regions[root_region_name] = copy_region
for seg in self.unallocated_segments:
if cell_name not in seg.shared_regions:
continue
if region not in seg.shared_regions[cell_name]:
continue
seg.shared_regions["root"].append(copy_region)
def _build_allocation_domain(self) -> None:
assert self.root_cell is not None
assert self.root_cell.memory_regions is not None
assert self.board is not None
start = None
end = 0
allocatable_regions = []
for region in self.board.memory_regions.values():
assert region is not None
if isinstance(region, MemoryRegionData) and region.allocatable:
assert region.physical_start_addr is not None
assert region.size is not None
allocatable_regions.append(region)
tmp_start = region.physical_start_addr
tmp_end = region.physical_start_addr + region.size
if start is None:
start = tmp_start
if tmp_start < start:
start = tmp_start
if tmp_end > end:
end = tmp_end
allocatable_regions.sort(
key=lambda r: r.physical_start_addr
if r.physical_start_addr is not None
else 0
)
holes: List[List[int]] = []
for i in range(0, len(allocatable_regions) - 1):
r0 = allocatable_regions[i]
r1 = allocatable_regions[i + 1]
assert r0.physical_start_addr is not None and r0.size is not None
assert r1.physical_start_addr is not None
r0_end = r0.physical_start_addr + r0.size
r1_start = r1.physical_start_addr
if r0_end != r1_start:
holes.append([r0_end, r1_start])
# Physical domain spans the entire range from the first allocatable memory region
# to the end of the last one. Any holes in that range are accomodated for using
# constant interval constraints
def remove_hole(start, end):
try:
holes.remove([start, end])
except ValueError:
pass
self.physical_domain = cp_model.Domain.FromIntervals([[start, end]])
# Make sure all pre-allocated regions part of a cell have a corresponding
# constraint (technically, we only need constraints for those regions that
# overlapp with the allocatable range/physical domain)
non_alloc_ranges: List[List[int]] = []
assert self.config
for cell in self.config.cells.values():
assert cell.memory_regions
for r in cell.memory_regions.values():
if not isinstance(r, ShMemNetRegion) and not isinstance(
r, MemoryRegion
):
continue
if r.physical_start_addr is not None:
assert r.size is not None
end = r.physical_start_addr + r.size
non_alloc_range = [r.physical_start_addr, end]
if non_alloc_range in non_alloc_ranges:
continue
if not self.physical_domain.Contains(
non_alloc_range[0]
) and not self.physical_domain.Contains(non_alloc_range[1]):
continue
non_alloc_ranges.append(non_alloc_range)
remove_hole(r.physical_start_addr, end)
mc = MemoryConstraint(r.size, False, r.physical_start_addr)
self.global_no_overlap.add_memory_constraint(mc)
# fill remaining holes in between allocatable regions
for hole in holes:
s, e = hole
size = e - s
mc = MemoryConstraint(size, False, s)
self.global_no_overlap.add_memory_constraint(mc)
def _remove_allocatable(self):
"""Finally remove allocatable memory regions from cells"""
assert self.config is not None
for cell in self.config.cells.values():
delete_list = []
for name, region in cell.memory_regions.items():
if isinstance(region, MemoryRegionData):
if region.allocatable:
delete_list.append(name)
for name in delete_list:
del cell.memory_regions[name]
def _build_unallocated_segments(
self, key: Callable = lambda x: x.physical_start_addr
) -> List[AllocatorSegment]:
assert self.config
assert self.config.cells
ana = UnallocatedOrSharedSegmentsAnalysis(
self.root_cell,
self.config.cells,
self.logger,
self.per_region_constraints,
self.physical_domain,
key,
)
ana.run()
unallocated = ana.unallocated
assert unallocated
return unallocated
def _preallocate_vpci(self):
"""Preallocate a virtual page on all devices"""
assert self.config is not None
if self.root_cell and self.root_cell.platform_info:
# see hypvervisor/pci.c:850
end_bus = self.root_cell.platform_info.pci_mmconfig_end_bus
vpci_size = (end_bus + 2) * 256 * 4096
if self.root_cell.platform_info.pci_mmconfig_base:
for constraints in self.no_overlap_constraints.values():
mc = MemoryConstraint(
vpci_size,
True,
self.root_cell.platform_info.pci_mmconfig_base,
)
constraints.add_memory_constraint(mc)
else:
def callback(mc: MemoryConstraint):
assert mc.allocated_range
assert self.root_cell
assert self.root_cell.platform_info
assert self.root_cell.memory_regions
physical_start_addr, _ = mc.allocated_range
self.root_cell.platform_info.pci_mmconfig_base = HexInt(
physical_start_addr
)
self.logger.info(
"Print resolved pci_mmconfig %s",
hex(physical_start_addr),
)
# Allocate vpci physically
last_mc = MemoryConstraint(
vpci_size, True
) # This is a physical constraint, but it does not need to be backed by allocatable memory
last_mc.resolved = callback
last_mc.alignment = self.board.pagesize
last_mc.address_range = (0x0, 2 ** 32 - 1)
self.no_overlap_constraints["__global"].add_memory_constraint(
last_mc
)
for cell_name in self.config.cells.keys():
mc = MemoryConstraint(vpci_size, True)
mc.equal_constraint = last_mc
self.no_overlap_constraints[
cell_name
].add_memory_constraint(mc)
mc.alignment = self.board.pagesize
last_mc = mc
class UnallocatedOrSharedSegmentsAnalysis(object):
""" Group unallocated memory regions into segments
that are allocated continuously.
Detect (un-)allocated regions that are shared
between cells
"""
def __init__(
self,
root_cell,
cells,
logger,
per_region_constraints,
physical_domain,
key=lambda x: x.physical_start_addr,
) -> None:
self.root_cell: CellConfig = root_cell
self.cells: Dict[str, CellConfig] = cells
self.logger = logger
self.key = key
self.per_region_constraints = per_region_constraints
self.physical_domain: Optional[cp_model.Domain] = physical_domain
# result store
self.unallocated: List[AllocatorSegment] = []
self.shared: Dict[str, AllocatorSegment] = {}
def _detect_shared_memio(self):
shared: Dict[
Tuple[int, int], Tuple[int, List[MemoryRegionData]]
] = defaultdict(lambda: (0, []))
for cell in self.cells.values():
for region in cell.memory_regions.values():
if not isinstance(region, MemoryRegionData):
continue
if not self.key(region) or "MEM_IO" not in region.flags:
continue
start = region.physical_start_addr
key = (start, region.size)
count, regions = shared[key]
regions.append(region)
shared[key] = (count + 1, regions)
for count, regions in shared.values():
if count > 1:
for region in regions:
region.shared = True
def _log_shared_segments(self):
self.logger.info("Shared segments:")
for name, seg in self.shared.items():
self.logger.info(f"Region: '{name}' shared by")
for cell_name in seg.shared_regions:
self.logger.info(f"\t{cell_name}")
self.logger.info("\n")
def run(self) -> None:
assert self.root_cell is not None
assert self.cells is not None
self._detect_shared_memio()
# Add cell memories
self.logger.debug("building allocatable regions")
for cell_name, cell in self.cells.items():
assert cell is not None
assert cell.memory_regions is not None
for region_name, region in cell.memory_regions.items():
if not isinstance(region, MemoryRegionData):
continue
if region.allocatable:
continue
assert self.shared is not None
if region.shared and region_name in self.shared:
current_segment = self.shared[region_name]
assert current_segment.shared_regions
current_segment.shared_regions[cell_name].append(region)
if region_name in self.per_region_constraints:
constraint = self.per_region_constraints[region_name]
if current_segment.constraint:
constraint = constraint.merge(
current_segment.constraint
)
current_segment.constraint = constraint
else:
current_segment = AllocatorSegment(
region_name, shared_regions={cell_name: [region]},
)
if region_name in self.per_region_constraints:
current_segment.constraint = self.per_region_constraints[
region_name
]
if region.physical_start_addr is None:
self.unallocated.append(current_segment)
# TODO are shared regions required to have
# the same name accross cells?
if region.shared:
self.shared[region_name] = current_segment
# Add hypervisor memories
hypervisor_memory = self.root_cell.hypervisor_memory
assert isinstance(hypervisor_memory, HypervisorMemoryRegion)
if hypervisor_memory.physical_start_addr is None:
self.unallocated.append(
AllocatorSegment(
"hypervisor_memory",
alignment=hypervisor_memory.size, # FIXME: this is too much alignment
shared_regions={"hypervisor": [hypervisor_memory]},
)
)
self._log_shared_segments()
class MergeIoRegionsPass(BasePass):
""" Merge IO regions in root cell that are at most n kB apart.
n defaults to 64 kb
"""
def __init__(
self,
set_params: Optional[GenerateConfig],
gen_params: Optional[GenerateParameters],
) -> None:
self.config: Optional[JailhouseConfig] = None
self.board: Optional[Board] = None
self.root_cell: Optional[CellConfig] = None
self.logger = logging.getLogger("autojail")
self.max_dist = 64 * 1024
if set_params:
self.max_dist = set_params.mem_io_merge_threshold
if gen_params:
threshold_choice = ScalarChoice()
threshold_choice.lower = 1024
threshold_choice.upper = 64 * 1024 * 1024
threshold_choice.step = 1024
threshold_choice.integer = True
threshold_choice.log = True
gen_params.mem_io_merge_threshold = threshold_choice
def __call__(
self, board: Board, config: JailhouseConfig
) -> Tuple[Board, JailhouseConfig]:
self.logger.info("Merge IO Regions")
self.board = board
self.config = config
for cell in self.config.cells.values():
if cell.type == "root":
self.root_cell = cell
assert self.root_cell
assert self.root_cell.memory_regions
shared_regions_ana = UnallocatedOrSharedSegmentsAnalysis(
self.root_cell,
self.config.cells,
self.logger,
dict(),
None,
key=lambda region: region.physical_start_addr,
)
shared_regions_ana.run()
def get_io_regions(
regions: Dict[
str,
Union[str, ShMemNetRegion, MemoryRegion, DeviceMemoryRegion],
]
) -> List[Tuple[str, Union[DeviceMemoryRegion, MemoryRegion]]]:
return list(
[
(name, r)
for name, r in regions.items()
if isinstance(r, MemoryRegionData) and "MEM_IO" in r.flags
]
)
regions: Sequence[Tuple[str, MemoryRegionData]] = get_io_regions(
self.root_cell.memory_regions
)
regions = sorted(
regions,
key=lambda t: t[1].physical_start_addr
if t[1].physical_start_addr is not None
else 0,
)
grouped_regions: List[List[Tuple[str, MemoryRegionData]]] = []
current_group: List[Tuple[str, MemoryRegionData]] = []
max_dist = self.max_dist
vpci_start_addr = None
vpci_end_addr = None
if (
self.root_cell.platform_info is not None
and self.root_cell.platform_info.pci_mmconfig_base is not None
and self.root_cell.platform_info.pci_mmconfig_base > 0
):
vpci_start_addr = self.root_cell.platform_info.pci_mmconfig_base
vpci_end_addr = (
vpci_start_addr
+ (self.root_cell.platform_info.pci_mmconfig_end_bus + 1)
* 256
* 4096
)
for name, r in regions:
assert r.physical_start_addr is not None
assert r.size is not None
if current_group:
r1_end = r.physical_start_addr + r.size
r1_start = r.physical_start_addr
assert current_group[-1][1].physical_start_addr is not None
assert current_group[-1][1].size is not None
assert current_group[0][1].physical_start_addr is not None
last_region_end = (
current_group[-1][1].physical_start_addr
+ current_group[-1][1].size
)
# Do not merge regions if merged regions would
# overlap with gic
gic_overlap = False
interrupt_ranges = []
for interrupt_controller in board.interrupt_controllers:
if interrupt_controller.gic_version == 2:
interrupt_ranges.append(
(interrupt_controller.gicd_base, 0x1000)
)
interrupt_ranges.append(
(interrupt_controller.gicc_base, 0x2000)
)
interrupt_ranges.append(
(interrupt_controller.gich_base, 0x2000)
)
interrupt_ranges.append(
(interrupt_controller.gicv_base, 0x2000)
)
elif interrupt_controller.gic_version == 3:
interrupt_ranges.append(
(interrupt_controller.gicd_base, 0x10000)
)
interrupt_ranges.append(
(interrupt_controller.gicr_base, 0x20000)
)
for interrupt_range in interrupt_ranges:
if (
current_group[0][1].physical_start_addr
< interrupt_range[0] + interrupt_range[1]
):
if r1_end > interrupt_range[0]:
gic_overlap = True
break
vpci_overlap = False
if vpci_start_addr is not None and vpci_end_addr is not None:
if (
get_overlap(
(r1_start, r1_end), (vpci_start_addr, vpci_end_addr)
)
> 0
):
vpci_overlap = True
if (
r1_start - last_region_end > max_dist
or gic_overlap
or vpci_overlap
):
grouped_regions.append(current_group)
if not gic_overlap and not vpci_overlap:
current_group = [(name, r)]
else:
current_group = []
else:
current_group.append((name, r))
else:
current_group.append((name, r))
if current_group:
grouped_regions.append(current_group)
self.logger.info(f"Got {len(grouped_regions)} grouped region(s):")
for group in grouped_regions:
assert group[0][1].physical_start_addr is not None
assert group[-1][1].physical_start_addr is not None
assert group[-1][1].size is not None
group_begin = group[0][1].physical_start_addr
group_end = group[-1][1].physical_start_addr + group[-1][1].size
self.logger.info(
f"Group-Begin: (0x{group_begin:x} - 0x{group_end:x})"
)
for region in group:
self.logger.info(f"\t{region}")
self.logger.info("Group-End\n")
for index, regions in enumerate(grouped_regions):
r_start = regions[0][1]
r_end = regions[-1][1]
assert r_start.physical_start_addr is not None
assert r_end.size is not None
assert r_end.physical_start_addr is not None
new_size = (
r_end.physical_start_addr + r_end.size
) - r_start.physical_start_addr
def aux(
acc: Iterable[str], t: Tuple[str, MemoryRegionData]
) -> Iterable[str]:
_, r = t
return set(acc) | set(r.flags)
init: Iterable[str] = set()
flags: List[str] = sorted(list(reduce(aux, regions, init)))
physical_start_addr = r_start.physical_start_addr
virtual_start_addr = r_start.virtual_start_addr
new_region = MemoryRegion(
size=new_size,
physical_start_addr=physical_start_addr,
virtual_start_addr=virtual_start_addr,
flags=flags,
allocatable=False,
shared=False,
)
assert self.root_cell.memory_regions
for name, _ in regions:
del self.root_cell.memory_regions[name]
self.root_cell.memory_regions[f"mmio_{index}"] = new_region
return (self.board, self.config)
class PrepareMemoryRegionsPass(BasePass):
""" Prepare memory regions by merging regions from Extracted Board Info and Cell Configuration"""
def __init__(self) -> None:
self.config: Optional[JailhouseConfig] = None
self.board: Optional[Board] = None
def __call__(
self, board: Board, config: JailhouseConfig
) -> Tuple[Board, JailhouseConfig]:
self.board = board
self.config = config
assert self.board is not None
assert self.config is not None
for cell in self.config.cells.values():
assert cell.memory_regions is not None
for region in cell.memory_regions.values():
if isinstance(region, MemoryRegionData) and region.size is None:
region.size = self.board.pagesize
if cell.type == "root":
self._prepare_memory_regions_root(cell)
return self.board, self.config
def _prepare_memory_regions_root(self, cell: CellConfig) -> None:
assert self.board is not None
assert self.board.memory_regions is not None
assert cell.memory_regions is not None
allocatable_ranges = []
for region in self.board.memory_regions.values():
if region.allocatable:
assert region.size is not None
assert region.physical_start_addr is not None
start = region.physical_start_addr
end = start + region.size
allocatable_ranges.append([start, end])
allocatable_ranges.sort(key=lambda r: r[0])
def overlaps_allocatable_region(start, end):
for r in allocatable_ranges:
if (
r[0] <= start
and start <= r[1]
or r[0] <= end
and end <= r[1]
):
return True
return False
for name, memory_region in self.board.memory_regions.items():
if memory_region.physical_start_addr is None:
continue
if memory_region.virtual_start_addr is None:
continue
if memory_region.size is None:
continue
p_start = memory_region.physical_start_addr
v_start = memory_region.virtual_start_addr
p_end = memory_region.physical_start_addr + memory_region.size
v_end = memory_region.virtual_start_addr + memory_region.size
assert p_start is not None
assert v_start is not None
assert p_end is not None
assert v_end is not None
if overlaps_allocatable_region(p_start, p_end):
continue
skip = False
for cell_region in cell.memory_regions.values():
if not isinstance(cell_region, MemoryRegionData):
continue
assert cell_region.size is not None
if cell_region.physical_start_addr is not None:
if (
p_start >= cell_region.physical_start_addr
and p_start
< cell_region.physical_start_addr + cell_region.size
):
skip = True
if (
p_end >= cell_region.physical_start_addr
and p_end
< cell_region.physical_start_addr + cell_region.size
):
skip = True
if cell_region.virtual_start_addr is not None:
if (
v_start >= cell_region.virtual_start_addr
and v_start
< cell_region.virtual_start_addr + cell_region.size
):
skip = True
if (
v_end >= cell_region.virtual_start_addr
and v_end
< cell_region.virtual_start_addr + cell_region.size
):
skip = True
if skip is True:
continue
cell.memory_regions[name] = memory_region
| 35.438584
| 140
| 0.538728
| 48,355
| 0.985891
| 0
| 0
| 291
| 0.005933
| 0
| 0
| 4,099
| 0.083573
|
661499e1d6e03e831ef662b0f10bed15a0e0160c
| 806
|
py
|
Python
|
tests/test_util.py
|
tsufeki/python-restclientaio
|
2af2ded9e22ba5552ace193691ed3a4b520cadf8
|
[
"BSD-2-Clause"
] | null | null | null |
tests/test_util.py
|
tsufeki/python-restclientaio
|
2af2ded9e22ba5552ace193691ed3a4b520cadf8
|
[
"BSD-2-Clause"
] | null | null | null |
tests/test_util.py
|
tsufeki/python-restclientaio
|
2af2ded9e22ba5552ace193691ed3a4b520cadf8
|
[
"BSD-2-Clause"
] | null | null | null |
import pytest
from restclientaio._util import *
class TestFullName:
@pytest.mark.parametrize('args,expected', [
((str,), 'builtins.str'),
((str, 'lower'), 'builtins.str.lower'),
])
def test_full_name(self, args, expected):
assert full_name(*args) == expected
class TestFormatRecur:
@pytest.mark.parametrize('args,kwargs,expected', [
(('{}', 42), {}, '42'),
(({'{0}': '{foo}foo'}, 'bar'), {'foo': 'FOO'}, {'bar': 'FOOfoo'}),
((['{0.real:02d}'], 1), {}, ['01']),
])
def test_format_recur(self, args, kwargs, expected):
assert format_recur(*args, **kwargs) == expected
def test_throws_on_self_referencing(self):
d = {}
d['foo'] = d
with pytest.raises(ValueError):
format_recur(d)
| 25.1875
| 74
| 0.555831
| 750
| 0.930521
| 0
| 0
| 545
| 0.676179
| 0
| 0
| 152
| 0.188586
|
6615213f91d714c671d2fcc45dfcb7ea7995394c
| 1,112
|
py
|
Python
|
experiments/test_experiments.py
|
srikarym/torchrl
|
fee98e78ac1657a2c9a4063dd8d63ba207a121e2
|
[
"Apache-2.0"
] | 3
|
2019-02-27T19:00:32.000Z
|
2020-07-19T03:18:28.000Z
|
experiments/test_experiments.py
|
srikarym/torchrl
|
fee98e78ac1657a2c9a4063dd8d63ba207a121e2
|
[
"Apache-2.0"
] | null | null | null |
experiments/test_experiments.py
|
srikarym/torchrl
|
fee98e78ac1657a2c9a4063dd8d63ba207a121e2
|
[
"Apache-2.0"
] | null | null | null |
# pylint: disable=redefined-outer-name
"""Test Experiments.
This test runs all problems and hyperparameter
pairs for 100 time steps. It only guarantees
correct API compatiblity and not the problem
performance metrics.
"""
import pytest
from torchrl import registry
from torchrl.cli.commands.run import do_run
problem_hparams_tuples = []
for problem_id, hparams_list in registry.list_problem_hparams().items():
for hparam_set_id in hparams_list:
problem_hparams_tuples.append((problem_id, hparam_set_id))
@pytest.fixture(scope='function')
def problem_argv(request):
problem_id, hparam_set_id = request.param
args_dict = {
'problem': problem_id,
'hparam_set': hparam_set_id,
'seed': None,
'extra_hparams': {
'num_total_steps': 100,
},
'log_interval': 50,
'eval_interval': 50,
'num_eval': 1,
}
yield args_dict
@pytest.mark.parametrize('problem_argv', problem_hparams_tuples,
indirect=['problem_argv'])
def test_problem(problem_argv):
problem = problem_argv.pop('problem')
do_run(problem, **problem_argv)
| 24.711111
| 72
| 0.714029
| 0
| 0
| 335
| 0.301259
| 591
| 0.531475
| 0
| 0
| 366
| 0.329137
|
661546474c795c91d1a7e8fb806431b8b074972c
| 3,289
|
py
|
Python
|
gw2_price_get.py
|
rpatricktaylor/gw2_pricepull
|
ede658cd7cb567d8ab7e6c7698acee83eacc78a3
|
[
"MIT"
] | null | null | null |
gw2_price_get.py
|
rpatricktaylor/gw2_pricepull
|
ede658cd7cb567d8ab7e6c7698acee83eacc78a3
|
[
"MIT"
] | null | null | null |
gw2_price_get.py
|
rpatricktaylor/gw2_pricepull
|
ede658cd7cb567d8ab7e6c7698acee83eacc78a3
|
[
"MIT"
] | null | null | null |
import json
import time
import bs4
import numpy as np
import pandas as pd
import requests as rqs
url_apiV2 = r'https://api.guildwars2.com/v2'
working_dir = r'/home/ubuntu/'
def gw2_request(request_type, item_nums, retries = 25):
item_num_str = ','.join([str(num) for num in item_nums])
request_url = '{}/{}?ids={}'.format(url_apiV2, request_type, item_num_str)
retry = 0
success = False
while True:
try:
r = rqs.get(request_url)
except:
retry += 1
else:
success = True
break
finally:
if retry == retries:
break
if not success:
return None
j = r.json()
return j
def item_request(item_nums):
return gw2_request('items', item_nums)
def price_request(item_nums):
return gw2_request('commerce/prices', item_nums)
def listings_request(item_nums):
return gw2_request('commerce/listings', item_nums)
def avg_prices(item_nums, min_quantity=1000, max_quantity=50000, max_price=500000):
def listing_avg_price(listings):
quantity_total = 0
quantity = 0
cost = 0
for listing in listings:
q = listing['quantity']
p = listing['unit_price']
quantity_total += q
if (quantity < max_quantity) and (cost < max_price):
quantity += q
cost += p * q
return cost, quantity, quantity_total
listings = listings_request(item_nums)
out = []
request_time = time.strftime('%Y-%m-%d %H:00')
if listings:
for listing in listings:
if 'buys' not in listing or 'sells' not in listing or 'id' not in listing:
continue
bid_listings = listing['buys']
ask_listings = listing['sells']
item_id = listing['id']
bid_cost, bid_quantity, bid_quantity_total = listing_avg_price(bid_listings)
ask_cost, ask_quantity, ask_quantity_total = listing_avg_price(ask_listings)
if bid_quantity_total < min_quantity or ask_quantity_total < min_quantity:
continue
out.append((str(item_id), request_time,
bid_cost / bid_quantity, bid_quantity_total,
ask_cost / ask_quantity, ask_quantity_total))
return out
with open(working_dir + 'item_nums', 'r') as f:
item_nums = [int(line[:-1]) for line in f]
price_data_fetch = []
k = 0
while k < len(item_nums):
price_data_fetch += avg_prices(item_nums[k:(k+200)])
k += 200
price_hist = pd.DataFrame(price_data_fetch,
columns=['item_id', 'time',
'bid_price', 'bid_quantity',
'ask_price', 'ask_quantity'])
price_hist['liquidity_score'] = price_hist['ask_price'] / price_hist['bid_price'] - 1.1
out_path = '{}price_hist_{}.csv'.format(working_dir, time.strftime('%Y-%m-%d_%H00'))
price_hist.to_csv(out_path)
| 29.366071
| 89
| 0.549407
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 334
| 0.101551
|
66160d3954e8f1108b126460356e2b0740e00e9e
| 2,055
|
py
|
Python
|
create_db.py
|
vladstorm98/TaskBoard
|
ebe4244cc5cbdfda2fdaac84c0158692f440517c
|
[
"MIT"
] | null | null | null |
create_db.py
|
vladstorm98/TaskBoard
|
ebe4244cc5cbdfda2fdaac84c0158692f440517c
|
[
"MIT"
] | null | null | null |
create_db.py
|
vladstorm98/TaskBoard
|
ebe4244cc5cbdfda2fdaac84c0158692f440517c
|
[
"MIT"
] | null | null | null |
from flask import Flask
from flask_sqlalchemy import SQLAlchemy
from config import Config
app = Flask(__name__)
app.config.from_object(Config)
db = SQLAlchemy(app)
class User(db.Model):
__tablename__ = 'user'
id = db.Column(db.Integer, primary_key=True)
email = db.Column(db.String(128), index=True, unique=True)
password_hash = db.Column(db.String(128))
last_seen = db.Column(db.DateTime)
profile = db.relationship('Profile', backref='user', lazy='dynamic')
class Profile(db.Model):
__tablename__ = 'profile'
id = db.Column(db.Integer, primary_key=True)
first_name = db.Column(db.String(64), index=True)
last_name = db.Column(db.String(64), index=True)
number = db.Column(db.Integer)
price = db.Column(db.String(32))
address = db.Column(db.String(128), index=True)
about_client = db.Column(db.String(256))
last_order = db.Column(db.String(32))
user_id = db.Column(db.Integer, db.ForeignKey('user.id'))
tasks = db.relationship('Task', backref='client', lazy='dynamic')
class Task(db.Model):
__tablename__ = 'task'
__searchable__ = ['title', 'address', 'note', 'price']
id = db.Column(db.Integer, primary_key=True)
title = db.Column(db.String(32))
name = db.Column(db.String(128))
address = db.Column(db.String(128))
note = db.Column(db.String(512))
price = db.Column(db.String(32))
date = db.Column(db.String(32))
in_progress = db.Column(db.Boolean)
client_id = db.Column(db.Integer, db.ForeignKey('profile.id'))
db.create_all()
db.session.commit()
# from flask import Flask
# from flask_babel import Babel
# from flask_babel import format_datetime
# from datetime import datetime
# from flask import render_template
#
# ap = Flask(__name__)
# babel = Babel(ap)
#
# @ap.route('/', methods=['GET'])
# def index():
# f = format_datetime(datetime(1987, 3, 5, 17, 12), 'EEEE, d. MMMM yyyy H:mm')
#
# print(f)
# return render_template('1')
#
#
# ap.run()
| 29.357143
| 83
| 0.654988
| 1,392
| 0.677372
| 0
| 0
| 0
| 0
| 0
| 0
| 531
| 0.258394
|
661759e4ea700063225bc588e580457ea479d76a
| 1,954
|
py
|
Python
|
02_assignment/toolbox/Toolbox_Python02450/Scripts/ex3_1_2.py
|
LukaAvbreht/ML_projects
|
8b36acdeb017ce8a57959c609b96111968852d5f
|
[
"MIT"
] | null | null | null |
02_assignment/toolbox/Toolbox_Python02450/Scripts/ex3_1_2.py
|
LukaAvbreht/ML_projects
|
8b36acdeb017ce8a57959c609b96111968852d5f
|
[
"MIT"
] | null | null | null |
02_assignment/toolbox/Toolbox_Python02450/Scripts/ex3_1_2.py
|
LukaAvbreht/ML_projects
|
8b36acdeb017ce8a57959c609b96111968852d5f
|
[
"MIT"
] | null | null | null |
# exercise 3.1.4
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
# Load the textDocs.txt as a long string into raw_file:
with open('../Data/textDocs.txt', 'r') as f:
raw_file = f.read()
# raw_file contains sentences seperated by newline characters,
# so we split by '\n':
corpus = raw_file.split('\n')
# corpus is now list of "documents" (sentences), but some of them are empty,
# because textDocs.txt has a lot of empty lines, we filter/remove them:
corpus = list(filter(None, corpus))
# Display the result
print('Document-term matrix analysis')
print()
print('Corpus (5 documents/sentences):')
print(np.asmatrix(corpus))
print()
# To automatically obtain the bag of words representation, we use sklearn's
# feature_extraction.text module, which has a function CountVectorizer.
# We make a CounterVectorizer:
vectorizer = CountVectorizer(token_pattern=r'\b[^\d\W]+\b')
# The token pattern is a regular expression (marked by the r), which ensures
# that the vectorizer ignores digit/non-word tokens - in this case, it ensures
# the 10 in the last document is not recognized as a token. It's not important
# that you should understand it the regexp.
# The object vectorizer can now be used to first 'fit' the vectorizer to the
# corpus, and the subsequently transform the data. We start by fitting:
vectorizer.fit(corpus)
# The vectorizer has now determined the unique terms (or tokens) in the corpus
# and we can extract them using:
attributeNames = vectorizer.get_feature_names()
print('Found terms:')
print(attributeNames)
print()
# The next step is to count how many times each term is found in each document,
# which we do using the transform function:
X = vectorizer.transform(corpus)
N,M = X.shape
print('Number of documents (data objects, N):\t %i' % N)
print('Number of terms (attributes, M):\t %i' % M )
print()
print('Document-term matrix:')
print(X.toarray())
print()
print('Ran Exercise 3.1.2')
| 37.576923
| 79
| 0.746162
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1,405
| 0.719038
|
661950464dde57e4e6f43aa2be8e46d0304ef9f0
| 797
|
py
|
Python
|
vid 18 dream logo.py
|
agneay/turtle-projects
|
88f7de0c8eb1bb0f37255746c3d11b9c272d1c10
|
[
"MIT"
] | null | null | null |
vid 18 dream logo.py
|
agneay/turtle-projects
|
88f7de0c8eb1bb0f37255746c3d11b9c272d1c10
|
[
"MIT"
] | null | null | null |
vid 18 dream logo.py
|
agneay/turtle-projects
|
88f7de0c8eb1bb0f37255746c3d11b9c272d1c10
|
[
"MIT"
] | null | null | null |
from turtle import *
def l(y,x):
lt(y)
fd(x)
def r(y,x):
rt(y)
fd(x)
def gt(x,y):
pu()
goto(x,y)
pd()
bgcolor("lime")
color("black","white")
shape("circle")
ht()
speed(1)
width(15)
gt(-365,-380)
begin_fill()
seth(90)
fd(20)
r(5,20)
r(4,60)
r(5,100)
r(5,120)
l(85,50)
r(10,25)
r(15,10)
r(15,40)
r(15,50)
r(10,90)
r(20,50)
r(20,25)
r(10,75)
r(30,20)
r(10,10)
l(30,50)
r(15,10)
r(10,20)
r(10,80)
r(10,40)
for _ in range(7):
r(10,30)
r(10,80)
r(20,35)
l(30,150)
for _ in range(3):
r(5,150)
end_fill()
gt(-290,-70)
l(90,30)
l(10,120)
l(15,60)
l(10,30)
l(5,40)
l(10,40)
gt(-320,50)
r(70,30)
l(10,30)
l(15,30)
l(5,60)
l(5,60)
l(15,40)
r(10,20)
l(20,35)
color("black")
gt(-50,170)
stamp()
gt(-340,135)
stamp()
gt(40,-115)
write("dream", font = ('Arial', 85, 'italic','bold'))
done()
| 9.16092
| 53
| 0.567127
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 63
| 0.079046
|
661ea642755905b0144b877774494043f351d6cb
| 1,316
|
py
|
Python
|
magicauth/otp_forms.py
|
glibersat/django-magicauth
|
545cb0df2b2368b27089e253fafa666ca8a870f1
|
[
"MIT"
] | null | null | null |
magicauth/otp_forms.py
|
glibersat/django-magicauth
|
545cb0df2b2368b27089e253fafa666ca8a870f1
|
[
"MIT"
] | null | null | null |
magicauth/otp_forms.py
|
glibersat/django-magicauth
|
545cb0df2b2368b27089e253fafa666ca8a870f1
|
[
"MIT"
] | null | null | null |
from django import forms
from django.core.validators import RegexValidator
from django.core.exceptions import ValidationError
from django_otp import user_has_device, devices_for_user
from magicauth import settings as magicauth_settings
class OTPForm(forms.Form):
OTP_NUM_DIGITS = magicauth_settings.OTP_NUM_DIGITS
otp_token = forms.CharField(
max_length=OTP_NUM_DIGITS,
min_length=OTP_NUM_DIGITS,
validators=[RegexValidator(r"^\d{6}$")],
label=f"Entrez le code à {OTP_NUM_DIGITS} chiffres généré par votre téléphone ou votre carte OTP",
widget=forms.TextInput(attrs={"autocomplete": "off"}),
)
def __init__(self, user, *args, **kwargs):
super(OTPForm, self).__init__(*args, **kwargs)
self.user = user
def clean_otp_token(self):
otp_token = self.cleaned_data["otp_token"]
user = self.user
if not user_has_device(user):
raise ValidationError("Le système n'a pas trouvé d'appareil (carte OTP ou générateur sur téléphone) pour votre compte. Contactez le support pour en ajouter un.")
for device in devices_for_user(user):
if device.verify_is_allowed() and device.verify_token(otp_token):
return otp_token
raise ValidationError("Ce code n'est pas valide.")
| 37.6
| 173
| 0.705167
| 1,087
| 0.818524
| 0
| 0
| 0
| 0
| 0
| 0
| 308
| 0.231928
|
6620a1da84d2b9ed5781d255a6553d73c0a0fa9e
| 186
|
py
|
Python
|
backend/users/schema.py
|
DDoS000/Event_Registers
|
84a77d0914333ee830a72e2d31fa5374f70dea35
|
[
"MIT"
] | null | null | null |
backend/users/schema.py
|
DDoS000/Event_Registers
|
84a77d0914333ee830a72e2d31fa5374f70dea35
|
[
"MIT"
] | null | null | null |
backend/users/schema.py
|
DDoS000/Event_Registers
|
84a77d0914333ee830a72e2d31fa5374f70dea35
|
[
"MIT"
] | null | null | null |
from pydantic import BaseModel
class UserUpdate(BaseModel):
fullname: str
class ChangePassword(BaseModel):
current_password: str
new_password: str
confirm_password: str
| 20.666667
| 32
| 0.768817
| 152
| 0.817204
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
662106942718d48504f32ad0e27db934931029d3
| 19,428
|
py
|
Python
|
tests/adapters/test_s3_adapter.py
|
MonolithAILtd/monolith-filemanager
|
2369e244e4d8a48890f55d00419a83001a5c6c40
|
[
"Apache-2.0"
] | 3
|
2021-06-02T09:45:00.000Z
|
2022-02-01T14:30:01.000Z
|
tests/adapters/test_s3_adapter.py
|
MonolithAILtd/monolith-filemanager
|
2369e244e4d8a48890f55d00419a83001a5c6c40
|
[
"Apache-2.0"
] | 3
|
2021-05-26T11:46:28.000Z
|
2021-11-04T10:14:42.000Z
|
tests/adapters/test_s3_adapter.py
|
MonolithAILtd/monolith-filemanager
|
2369e244e4d8a48890f55d00419a83001a5c6c40
|
[
"Apache-2.0"
] | 2
|
2021-06-04T15:02:14.000Z
|
2021-09-03T09:26:45.000Z
|
from unittest import TestCase, main
from unittest.mock import patch, MagicMock, call
from monolith_filemanager.adapters.s3_processes import S3ProcessesAdapter, S3ProcessesAdapterError
class TestS3ProcessesAdapter(TestCase):
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.__init__")
def setUp(self, mock_init) -> None:
mock_init.return_value = None
self.test_file = S3ProcessesAdapter(file_path="mock/folder/test.xlsx")
self.test_file.path = "mock/folder/test.xlsx"
self.test_folder = S3ProcessesAdapter(file_path="mock/folder/path")
self.test_folder.path = "mock/folder/path"
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter._strip_path_slash")
@patch("monolith_filemanager.adapters.s3_processes.V1Engine")
@patch("monolith_filemanager.adapters.s3_processes.Base.__init__")
def test___init__(self, mock_init, mock_engine, mock_strip_path_slash):
mock_init.return_value = None
mock_strip_path_slash.return_value = None
test = S3ProcessesAdapter(file_path="test")
mock_init.assert_called_once_with(file_path="test")
mock_engine.assert_called_once_with()
self.assertEqual(mock_engine.return_value, test._engine)
mock_strip_path_slash.assert_called_once_with()
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.__init__")
def test_local_file_object(self, mock_init):
mock_init.return_value = None
test = S3ProcessesAdapter(file_path="test path")
test.file_types = MagicMock()
test.path = MagicMock()
out_come = test.local_file_object()
test.file_types.get_file.assert_called_once_with(file_path=test.path)
test.file_types.get_file.return_value.assert_called_once_with(path=test.path)
self.assertEqual(test.file_types.get_file.return_value.return_value, out_come)
@patch("monolith_filemanager.adapters.s3_processes.FilePath")
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.local_file_object")
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.__init__")
def test_read_file(self, mock_init, mock_local_file_object, mock_file_path):
mock_init.return_value = None
test = S3ProcessesAdapter(file_path=MagicMock())
test.path = MagicMock()
test._cache = MagicMock()
test._pickle_factory = MagicMock()
test._engine = MagicMock()
test.file_types = MagicMock()
test.path.file_type = "pickle"
with self.assertRaises(S3ProcessesAdapterError):
test.read_file()
test.path.file_type = "not pickle"
second_cached_path = test.path.to_string.return_value
second_out_come = test.read_file()
test._cache.create_cache.assert_called_once_with()
test._engine.download_data_file.assert_called_once_with(storage_path=second_cached_path,
file_path=test._cache.cache_path)
mock_local_file_object.return_value.read.assert_called_once_with()
mock_file_path.assert_called_once_with(test._engine.download_data_file.return_value)
self.assertEqual(mock_file_path.return_value, test.path)
self.assertEqual(mock_local_file_object.return_value.read.return_value, second_out_come)
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.__init__")
def test_read_raw_file(self, mock_init):
mock_init.return_value = None
test = S3ProcessesAdapter(file_path=MagicMock())
test.path = MagicMock()
test._engine = MagicMock()
out_come = test.read_raw_file()
test._engine.download_raw_data_file.assert_called_once_with(storage_path=test.path.to_string.return_value)
self.assertEqual(out_come, test._engine.download_raw_data_file.return_value)
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.__init__")
def test_custom_read_file(self, mock_init):
mock_init.return_value = None
test = S3ProcessesAdapter(file_path="test path")
test.path = MagicMock()
test._cache = MagicMock()
test._engine = MagicMock()
test.file_types = MagicMock()
test.path.file_type = "any"
source_path = test.path
custom_read_function = MagicMock(name='read function')
data_output = MagicMock(name='data')
custom_read_function.return_value = data_output
out_come = test.custom_read_file(custom_read_function)
test._cache.create_cache.assert_called_once_with()
test._engine.download_data_file.assert_called_once_with(storage_path=source_path,
file_path=test._cache.cache_path)
self.assertEqual(test._engine.download_data_file.return_value, test.path)
custom_read_function.assert_called_once_with(test.path)
self.assertEqual(out_come, data_output)
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.local_file_object")
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.__init__")
def test_write_file_supports_s3(self, mock_init, mock_local_file_object):
mock_init.return_value = None
test = S3ProcessesAdapter(file_path=MagicMock())
test._engine = MagicMock()
test.path = MagicMock()
mock_local_file_object.return_value.supports_s3.return_value = True
mock_data = MagicMock()
test.write_file(data=mock_data)
mock_local_file_object.return_value.write.assert_called_once_with(mock_data)
@patch("monolith_filemanager.adapters.s3_processes.FilePath")
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.local_file_object")
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.__init__")
def test_write_file_not_supports_s3(self, mock_init, mock_local_file_object, mock_file_path):
mock_init.return_value = None
test = S3ProcessesAdapter(file_path=MagicMock())
test._engine = MagicMock()
test.path = MagicMock()
test._cache = MagicMock()
mock_local_file_object.return_value.supports_s3.return_value = False
mock_local_file_object.return_value.path = test.path
mock_data = MagicMock()
test.write_file(data=mock_data)
test._engine.upload_data_from_file.assert_called_once_with(file_path=mock_file_path.return_value.to_string.return_value, storage_path=test.path.to_string.return_value)
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.__init__")
def test_write_raw_file(self, mock_init):
mock_init.return_value = None
test = S3ProcessesAdapter(file_path=MagicMock())
test._engine = MagicMock()
test.path = MagicMock()
mock_data = MagicMock()
test.write_raw_file(data=mock_data)
test._engine.upload_data.assert_called_once_with(storage_path=test.path.to_string.return_value, data=mock_data)
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.__init__")
def test_delete_file(self, mock_init):
mock_init.return_value = None
test = S3ProcessesAdapter(file_path="test path")
test._engine = MagicMock()
test.path = MagicMock()
test.delete_file()
test._engine.delete.assert_called_once_with(storage_path=test.path)
@patch("monolith_filemanager.adapters.s3_processes.V1Engine._split_s3_path")
def test_delete_folder(self, mock_split_path):
mock_engine = MagicMock()
mock_engine.delete_file.return_value = None
self.test_folder._engine = mock_engine
mock_split_path.return_value = ("mock-bucket", "mock/folder", "folder")
self.test_folder.delete_folder()
mock_engine.delete_file.assert_called_once_with(bucket_name="mock-bucket", file_name="mock/folder/")
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.increment_files")
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.exists")
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.check_name_taken")
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.ls")
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.__init__")
def test_write_stream(self, mock_init, mock_ls, mock_name_taken, mock_exists, mock_increment_files):
mock_init.return_value = None
test = S3ProcessesAdapter(file_path=MagicMock())
test._engine = MagicMock()
test.path = "mock/folder/file.txt"
test._cache = MagicMock()
mock_ls.return_value = ([], [])
mock_stream = MagicMock()
# test name already taken
mock_name_taken.return_value = True
with self.assertRaises(S3ProcessesAdapterError):
test.write_stream(mock_stream)
mock_stream.save.assert_called_once()
# test already exists
mock_stream.reset_mock()
mock_name_taken.return_value = False
mock_exists.return_value = True
mock_increment_files.return_value = None
self.assertEqual("file.txt", test.write_stream(mock_stream))
cache_path = mock_stream.save.call_args_list[0][0][0]
test._engine.upload_data_from_file.assert_called_once_with(storage_path=test.path, file_path=cache_path)
mock_increment_files.assert_called_once_with()
mock_stream.save.assert_called_once()
# test doesn't already exist
mock_stream.reset_mock()
test._engine.reset_mock()
mock_increment_files.reset_mock()
mock_exists.return_value = False
self.assertEqual("file.txt", test.write_stream(mock_stream))
mock_stream.save.assert_called_once()
cache_path = mock_stream.save.call_args_list[0][0][0]
test._engine.upload_data_from_file.assert_called_once_with(storage_path=test.path, file_path=cache_path)
mock_increment_files.assert_has_calls = []
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.exists")
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.__init__")
def test_increment_files(self, mock_init, mock_exists):
mock_init.return_value = None
test = S3ProcessesAdapter(file_path=MagicMock())
test.path = "mock/path/folder/file.txt"
mock_exists.return_value = False
test.increment_files()
self.assertEqual("mock/path/folder/file 2.txt", test.path)
test.path = "mock/path/folder/file.txt"
mock_exists.side_effect = [True, False]
test.increment_files()
self.assertEqual("mock/path/folder/file 3.txt", test.path)
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.__init__")
def test_create_directory_if_not_exists(self, mock_init):
mock_init.return_value = None
mock_path = MagicMock()
test = S3ProcessesAdapter(file_path=mock_path)
test._engine = MagicMock()
test.path = mock_path
test.create_directory_if_not_exists()
test._engine.create_folder.assert_called_once_with(storage_path=mock_path)
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.__init__")
def test_exists(self, mock_init):
mock_init.return_value = None
test = S3ProcessesAdapter(file_path="test path")
test._engine = MagicMock()
test.path = MagicMock()
test.exists()
test._engine.exists.assert_called_once_with(storage_path=test.path)
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.__init__")
def test_ls(self, mock_init):
mock_init.return_value = None
test = S3ProcessesAdapter(file_path="test path")
test._engine = MagicMock()
test.path = MagicMock()
test.ls()
test._engine.ls.assert_called_once_with(storage_path=test.path.to_string.return_value)
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.delete_file")
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.__init__")
def test_batch_delete(self, mock_init, mock_delete_file):
mock_init.return_value = None
test = S3ProcessesAdapter(file_path="test/path")
test.path = "test/path"
test.path = "mock/folder/path"
mock_paths = ["mock_folder", "mock_file"]
mock_delete_file.side_effect = [None, None]
test.batch_delete(paths=mock_paths)
mock_delete_file.assert_has_calls = [call(path=test.path + mock_paths[0]),
call(path=test.path + mock_paths[1])]
def test_copy_file(self):
mock_new_path = "mock/new/path"
mock_engine = MagicMock()
mock_engine._split_s3_path.side_effect = [("mock-bucket", "old/file.txt", None),
("mock-bucket", "new/file.txt", None)]
mockObject = MagicMock()
mockObject.copy_from.return_value = None
mock_engine.resource.Object.return_value = mockObject
self.test_file._engine = mock_engine
self.test_file.copy_file(mock_new_path)
mock_engine._split_s3_path.assert_has_calls = [call(self.test_file.path), call(mock_new_path)]
mockObject.copy_from.assert_called_once_with(CopySource="mock-bucket/old/file.txt")
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.delete_file")
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.copy_file")
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.check_name_taken")
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.exists")
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.ls")
@patch("monolith_filemanager.adapters.s3_processes.FilePath")
def test_rename_file(self, mock_filepath, mock_ls, mock_exists, mock_check_name_taken, mock_copy_file,
mock_delete_file):
new_name = "new_name"
mock_ext = ".xlsx"
mock_filepath.side_effect = ["/".join(self.test_file.path.split("/")[:-1]) + f"/{new_name}" + mock_ext,
"/".join(self.test_file.path.split("/")[:-1]) + "/"]
mock_ls.return_value = ({}, [])
mock_exists.return_value = True
mock_check_name_taken.return_value = False
mock_copy_file.return_value = None
mock_delete_file.return_value = None
self.test_file.rename_file(new_name=new_name)
mock_ls.assert_called_once_with(path="mock/folder/")
mock_copy_file.assert_called_once_with(new_path='mock/folder/new_name.xlsx')
mock_delete_file.assert_called_once_with()
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.delete_folder")
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.copy_folder")
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.exists")
@patch("monolith_filemanager.adapters.s3_processes.FilePath")
def test_rename_folder(self, mock_filepath, mock_exists, mock_copy_folder, mock_delete_folder):
new_name = "new_folder"
mock_filepath.return_value = "/".join(self.test_folder.path.split("/")[:-1]) + f"/{new_name}"
mock_exists.return_value = False
mock_copy_folder.return_value = None
mock_delete_folder.return_value = None
self.test_folder.rename_folder(new_name=new_name)
mock_copy_folder.assert_called_once_with(new_folder=f"mock/folder/{new_name}")
mock_delete_folder.assert_called_once_with()
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.delete_file")
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.copy_file")
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.exists")
@patch("monolith_filemanager.adapters.s3_processes.FilePath")
def test_move_file(self, mock_filepath, mock_exists, mock_copy_file, mock_delete_file):
mock_destination_folder = "mock/new/path"
mock_filepath.return_value = "mock/new/path/file.txt"
mock_exists.return_value = False
self.test_file.move_file(destination_folder=mock_destination_folder)
mock_copy_file.assert_called_once_with(new_path=mock_filepath.return_value)
mock_delete_file.assert_called_once_with()
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.delete_folder")
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.copy_folder")
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.exists")
@patch("monolith_filemanager.adapters.s3_processes.FilePath")
def test_move_folder(self, mock_filepath, mock_exists, mock_copy_folder, mock_delete_folder):
mock_destination_folder = "mock/new/path"
mock_filepath.return_value = "mock/new/path/folder"
mock_exists.return_value = False
self.test_folder.move_folder(destination_folder=mock_destination_folder)
mock_copy_folder.assert_called_once_with(new_folder=mock_filepath.return_value)
mock_delete_folder.assert_called_once_with()
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.move_folder")
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.move_file")
@patch("monolith_filemanager.adapters.s3_processes.FilePath")
def test_batch_move(self, mock_filepath, mock_move_file, mock_move_folder):
mock_paths = ["test.xlsx", "test_folder"]
mock_destination_folder = "mock/destination/folder"
mock_filepath1 = MagicMock()
mock_filepath1.to_string.return_value = f"{mock_destination_folder}/{mock_paths[0]}"
mock_filepath1.get_file_type.return_value = "xlsx"
mock_filepath2 = MagicMock()
mock_filepath2.to_string.return_value = f"{mock_destination_folder}/{mock_paths[1]}"
mock_filepath2.get_file_type.return_value = None
mock_filepath.side_effect = [mock_filepath1, None, mock_filepath2, None]
mock_move_file.return_value = None
mock_move_folder.return_value = None
self.test_folder.batch_move(paths=mock_paths, destination_folder=mock_destination_folder)
mock_filepath.assert_has_calls([call(f"{mock_destination_folder}/{mock_paths[0]}"),
call(f"{self.test_folder.path}/{mock_paths[0]}"),
call(f"{mock_destination_folder}/{mock_paths[1]}"),
call(f"{self.test_folder.path}/{mock_paths[1]}")])
mock_move_file.assert_called_once_with(destination_folder=mock_destination_folder)
mock_move_folder.assert_called_once_with(destination_folder=mock_destination_folder)
@patch("monolith_filemanager.adapters.s3_processes.S3ProcessesAdapter.__init__")
def test__strip_path_slash(self, mock_init):
mock_init.return_value = None
mock_path = "mock/folder/path/"
test_folder = S3ProcessesAdapter(file_path=mock_path)
test_folder.path = mock_path
test_folder._strip_path_slash()
self.assertEqual(mock_path.rstrip("/"), test_folder.path)
if __name__ == "__main__":
main()
| 51.261214
| 175
| 0.726992
| 19,201
| 0.988316
| 0
| 0
| 18,308
| 0.942351
| 0
| 0
| 4,850
| 0.24964
|
6621f5308d9319ae5e2c09eb61c97a4f6a12ea20
| 459
|
py
|
Python
|
maleorfemale.py
|
harshals13/Jigglypuffpuff
|
469ea64c71a123cafadc4ae40a1da5171182647b
|
[
"MIT"
] | null | null | null |
maleorfemale.py
|
harshals13/Jigglypuffpuff
|
469ea64c71a123cafadc4ae40a1da5171182647b
|
[
"MIT"
] | null | null | null |
maleorfemale.py
|
harshals13/Jigglypuffpuff
|
469ea64c71a123cafadc4ae40a1da5171182647b
|
[
"MIT"
] | null | null | null |
from sklearn import tree
#[height, weight, shoe size]
X = [[181,80,44], [177,70, 43],[160, 60,38],[154, 54, 37], [166,65,40], [190, 90, 47], [175, 64, 39], [177, 70, 40],[159, 55, 45],[171, 75, 42], [181, 85, 43] ]
Y = ['male', 'female', 'female', 'female', 'male','male', 'male', 'female', 'male', 'female', 'male']
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X, Y)
prediction = clf.predict([[ 180, 80, 33 ]])
print(prediction)
#This code works
| 27
| 160
| 0.586057
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 120
| 0.261438
|
6622d00606e15445d1e62f002d0259e183e527a7
| 1,921
|
py
|
Python
|
Asap-3.8.4/doc/manual/Dislocation.py
|
auag92/n2dm
|
03403ef8da303b79478580ae76466e374ec9da60
|
[
"MIT"
] | 1
|
2021-10-19T11:35:34.000Z
|
2021-10-19T11:35:34.000Z
|
Asap-3.8.4/doc/manual/Dislocation.py
|
auag92/n2dm
|
03403ef8da303b79478580ae76466e374ec9da60
|
[
"MIT"
] | null | null | null |
Asap-3.8.4/doc/manual/Dislocation.py
|
auag92/n2dm
|
03403ef8da303b79478580ae76466e374ec9da60
|
[
"MIT"
] | 3
|
2016-07-18T19:22:48.000Z
|
2021-07-06T03:06:42.000Z
|
#!/usr/bin/env python
from Asap.Setup.Lattice.FCCOrtho import *
from Asap.Setup.Dislocation import Dislocation
from ASE.ChemicalElements import Element
from Asap import *
from Asap.Trajectories import NetCDFTrajectory
from ASE.Visualization.PrimiPlotter import *
from Numeric import *
splitting = 5
size = (25, 35, 10)
# Create a slab of Gold
Gold = Element("Au")
atoms = FCCOrtho(((1,1,-2), (-1,1,0), (1,1,1)), size, Gold)
basis = atoms.GetUnitCell()
print "Number of atoms:", len(atoms)
# Create the dislocation
center = 0.5 * array([basis[0,0], basis[1,1], basis[2,2]]) + array([0.1, 0.1, 0.1])
offset = 0.5 * splitting * atoms.MillerToDirection((-1,0,1))
d1 = Dislocation(center - offset, atoms.MillerToDirection((-1,-1,0)),
atoms.MillerToDirection((-2,-1,1))/6.0)
d2 = Dislocation(center + offset, atoms.MillerToDirection((1,1,0)),
atoms.MillerToDirection((1,2,1))/6.0)
# Insert the dislocation in the slab
(d1+d2).ApplyTo(atoms)
# Write the configuration to a file
traj = NetCDFTrajectory("initial.nc", atoms)
traj.Update()
traj.Close()
# Analyse the local crystal structure prior to plotting.
print "Now running Common Neighbor Analysis"
atoms.SetCalculator(EMT())
CNA(atoms)
# Now make two plots of the system. The surfaces at the back and
# front are removed, and all atoms in perfect FCC order are removed
# from the plot.
c = atoms.GetTags()
y = array(atoms.GetCartesianPositions()[:,1])
z = array(atoms.GetCartesianPositions()[:,2])
invis1 = equal(c, 0) + less(y, 5) + greater(y, basis[1,1] - 5)
invis2 = equal(c, 0) + less(z, 5) + greater(z, basis[2,2] - 5)
p1 = PrimiPlotter(atoms)
p1.SetRotation([-88,0,0])
p1.SetInvisible(invis1)
p1.SetOutput(GifFile("sideview"))
p2 = PrimiPlotter(atoms)
p2.SetInvisible(invis2)
p2.SetOutput(GifFile("topview"))
for p in (p1,p2):
p.SetColors({0:"red", 1:"yellow", 2:"blue"})
p.SetOutput(X11Window())
p.Plot()
| 28.671642
| 83
| 0.692868
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 453
| 0.235815
|
662336d44c462304b2b5f94e8721da8b5b0d3e73
| 7,450
|
py
|
Python
|
supercache/engine/memory.py
|
Peter92/supercache
|
e85ae87e4c2fead6e2a6aa55c0983d249512f34d
|
[
"MIT"
] | 2
|
2020-03-02T01:22:25.000Z
|
2020-05-18T16:52:11.000Z
|
supercache/engine/memory.py
|
huntfx/supercache
|
e85ae87e4c2fead6e2a6aa55c0983d249512f34d
|
[
"MIT"
] | null | null | null |
supercache/engine/memory.py
|
huntfx/supercache
|
e85ae87e4c2fead6e2a6aa55c0983d249512f34d
|
[
"MIT"
] | null | null | null |
import time
from collections import defaultdict
from .. import exceptions, utils
class Memory(object):
"""Cache directly in memory.
This is by far the fastest solution, but the cache cannot be shared
outside the current process.
This is not completely thread safe, but care has been taken to
avoid any errors from stopping the code working.
"""
FIFO = FirstInFirstOut = 0
FILO = FirstInLastOut = 1
LRU = LeastRecentlyUsed = 2
MRU = MostRecentlyUsed = 3
LFU = LeastFrequentlyUsed = 4
def __init__(self, ttl=None, mode=LRU, count=None, size=None):
"""Create a new engine.
Parameters:
mode (int): How to purge the old keys.
ttl (int): Time the cache is valid for.
Set to None for infinite.
count (int): Maximum cache results to store.
Set to None or 0 for infinite.
size (int): Maximum size of cache in bytes.
This is a soft limit, where the memory will be
allocated first, and any extra cache purged later.
The latest cache item will always be stored.
Set to None for infinite.
"""
self.data = dict(
result={},
hits=defaultdict(int),
misses=defaultdict(int),
size={None: 0},
ttl={},
insert={},
access={}
)
self.mode = mode
self.ttl = ttl
self.count = count
self.size = size
self._next_ttl = float('inf')
def keys(self):
"""Get the current stored cache keys."""
return list(iter(self))
def __iter__(self):
"""Iterate through all the keys."""
self._purge()
return iter(self.data['result'])
def exists(self, key):
"""Find if cache currently exists for a given key.
Any key past its ttl will be removed.
"""
if key in self.data['result']:
if self.expired(key):
self.delete(key)
return False
return True
return False
def expired(self, key, _current_time=None):
"""Determine is a key has expired."""
if key not in self.data['ttl']:
return False
if _current_time is None:
_current_time = time.time()
try:
return self.data['ttl'][key] <= _current_time
except KeyError:
return True
def get(self, key, purge=False):
"""Get the value belonging to a key.
An error will be raised if the cache is expired or doesn't
exist.
"""
if purge:
self._purge()
if not self.exists(key):
raise exceptions.CacheNotFound(key)
# If a purge was done, then skip the expiry check
if not purge and self.expired(key):
raise exceptions.CacheExpired(key)
try:
self.data['hits'][key] += 1
self.data['access'][key] = time.time()
return self.data['result'][key]
except KeyError:
raise exceptions.CacheExpired(key)
def put(self, key, value, ttl=None, purge=True):
"""Add a new value to cache.
This will overwrite any old cache with the same key.
"""
if ttl is None:
ttl = self.ttl
self.data['result'][key] = value
try:
self.data['misses'][key] += 1
except KeyError:
self.data['misses'][key] = 1
# Calculate size
if self.size is not None:
size = utils.getsize(value)
self.data['size'][None] += size - self.data['size'].get(key, 0)
self.data['size'][key] = size
# Set insert/access time
current_time = time.time()
self.data['insert'][key] = self.data['access'][key] = current_time
# Set timeout
if ttl is None or ttl <= 0:
try:
del self.data['ttl'][key]
except KeyError:
pass
else:
self.data['ttl'][key] = current_time + ttl
self._next_ttl = min(self._next_ttl, self.data['ttl'][key])
# Clean old keys
if purge:
self._purge(ignore=key)
def delete(self, key):
"""Delete an item of cache.
This will not remove the hits or misses.
"""
if key in self.data['result']:
try:
del self.data['result'][key]
del self.data['insert'][key]
del self.data['access'][key]
if key in self.data['ttl']:
del self.data['ttl'][key]
if self.size is not None:
self.data['size'][None] -= self.data['size'].pop(key)
except KeyError:
pass
return True
return False
def hits(self, key):
"""Return the number of hits on an item of cache."""
return self.data['hits'].get(key, 0)
def misses(self, key):
"""Return the number of misses on an item of cache."""
return self.data['misses'].get(key, 0)
def _purge(self, ignore=None):
"""Remove old cache."""
count = self.count
size = self.size
purged = 0
# Delete expired
if self.data['ttl']:
current_time = time.time()
if current_time > self._next_ttl:
self._next_ttl = float('inf')
for key in tuple(self.data['result']):
if self.expired(key, _current_time=current_time):
self.delete(key)
elif key in self.data['ttl']:
try:
self._next_ttl = min(self._next_ttl, self.data['ttl'][key])
except KeyError:
pass
# Determine if we can skip
if count is not None and len(self.data['result']) < count:
count = None
if size is not None and self.data['size'][None] < size:
size = None
if count is None and size is None:
return purged
# Order the keys
if self.mode == self.FirstInFirstOut:
order_by = lambda k: self.data['insert'][k]
elif self.mode == self.FirstInLastOut:
order_by = lambda k: -self.data['insert'][k]
elif self.mode == self.LeastRecentlyUsed:
order_by = lambda k: self.data['access'][k]
elif self.mode == self.MostRecentlyUsed:
order_by = lambda k: -self.data['access'][k]
elif self.mode == self.LeastFrequentlyUsed:
order_by = lambda k: self.data['hits'][k]
else:
raise NotImplementedError(self.mode)
ordered_keys = sorted(self.data['result'], key=order_by, reverse=True)
# Remove the cache data
if count is not None:
for key in ordered_keys[count:]:
if key == ignore:
continue
self.delete(key)
purged += 1
if size is not None:
total_size = 0
for key in ordered_keys:
if key == ignore:
continue
total_size += self.data['size'][key]
if total_size > size:
self.delete(key)
purged += 1
return purged
| 32.251082
| 87
| 0.52094
| 7,365
| 0.988591
| 0
| 0
| 0
| 0
| 0
| 0
| 2,010
| 0.269799
|
6623eb16f8643fe3f8e712cd421dfd5fbd6d80c3
| 2,541
|
py
|
Python
|
problem_1_falling/test_agent.py
|
victor-armegioiu/ai-mas-challenges
|
c449f4bb3fd7e7a5c1c9b00d22209532c92f39aa
|
[
"MIT"
] | null | null | null |
problem_1_falling/test_agent.py
|
victor-armegioiu/ai-mas-challenges
|
c449f4bb3fd7e7a5c1c9b00d22209532c92f39aa
|
[
"MIT"
] | null | null | null |
problem_1_falling/test_agent.py
|
victor-armegioiu/ai-mas-challenges
|
c449f4bb3fd7e7a5c1c9b00d22209532c92f39aa
|
[
"MIT"
] | null | null | null |
from utils import read_cfg
from falling_objects_env import FallingObjects, PLAYER_KEYS, ACTIONS
from argparse import ArgumentParser
from demo_agent import DemoAgent
from dqn_agent import DDQNAgent
import importlib
import numpy as np
import cv2 as cv2
BATCH_SIZE = 32
if __name__ == "__main__":
arg_parser = ArgumentParser()
arg_parser.add_argument(
'-c', '--config-file', default='configs/default.yaml', type=str, dest='config_file',
help='Default configuration file'
)
arg_parser.add_argument(
'-a', '--agent', default='demo_agent+DemoAgent', type=str, dest='agent',
help='The agent to test in format <module_name>+<class_name>'
)
args = arg_parser.parse_args()
config_file = args.config_file
cfg = read_cfg(config_file)
test_agent_name = args.agent.split("+")
test_steps = cfg.test_steps
test_agent = getattr(importlib.import_module(test_agent_name[0]), test_agent_name[1])
print(f"Testing agent {test_agent_name[1]}")
env = FallingObjects(cfg)
#agent = test_agent(max(ACTIONS.keys()))
# Dueling Deep Q-Learning Agent
agent = DDQNAgent()
all_r = 0
obs = env.reset()
# In lieu of having a state comprised of a single observation, we stack the last 3 images
# at any given time in order to create a state, as suggested in DeepMind's DQN paper;
# we do this in order to preserve the movement of the falling objects.
s1, _, r1, _ = env.step(0)
s2, _, r2, _ = env.step(0)
s3, _, r3, _ = env.step(0)
all_r += (r1 + r2 + r3)
curr_obs = [s1, s2, s3]
# Lambda function to reshape, convert to grayscale and stack the images in our observation list.
make_obs = lambda obs_list : np.stack((cv2.cvtColor(obs, cv2.COLOR_BGR2GRAY).reshape((1, 86, 86)) for obs in obs_list), axis=3)
for i in range(test_steps):
# curr_obs is a list of the last 3 frames
action = agent.act(make_obs(curr_obs))
next_frame, r, done, _ = env.step(action)
all_r += r
print('STEP', i, ':', action, '->', all_r)
# next_obs takes the last 2 entries in our initial observation and adds the current frame
next_obs = curr_obs[1:] + [next_frame]
# We cache the experiences in our replay buffer for further usage in our training steps.
agent.remember(make_obs(curr_obs), action, r, make_obs(next_obs), done)
curr_obs = next_obs
agent.replay(min(len(agent.memory), BATCH_SIZE))
print(f"Reward for {test_steps} steps: {all_r} ")
| 33.88
| 131
| 0.67375
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 914
| 0.359701
|
66240c3ee8769bc3f49297e677406217e8beaf2e
| 1,505
|
py
|
Python
|
TSTP_20210522_CH4_Functions.py
|
adjectiveJ/tstp_challenges
|
e0fcc174594387e0c6142980bf2706d7f5cbc5bd
|
[
"CC0-1.0"
] | null | null | null |
TSTP_20210522_CH4_Functions.py
|
adjectiveJ/tstp_challenges
|
e0fcc174594387e0c6142980bf2706d7f5cbc5bd
|
[
"CC0-1.0"
] | null | null | null |
TSTP_20210522_CH4_Functions.py
|
adjectiveJ/tstp_challenges
|
e0fcc174594387e0c6142980bf2706d7f5cbc5bd
|
[
"CC0-1.0"
] | null | null | null |
"""
The Self-Taught Programmer - Chapter 4 Challenges
Author: Dante Valentine
Date: 22 May, 2021
"""
""" CHALLENGE 1 """
to_square = 12
def square_func(x):
# Returns the square of x.
return x*x
resp = square_func(to_square)
#print("The square of", to_square, "is", str(resp) + ".")
""" CHALLENGE 2 """
to_print = 1.0056
def print_string(x):
# Prints a string.
print(str(x))
#print("Next I will print a string...")
#string_var = print_string(to_print)
""" CHALLENGE 3 """
param1 = "horse"
param2 = "owl"
param3 = "pig"
def mixed_params(x, y, z, a="cat", b="dog"):
# Prints 3 required parameters and two optional parameters.
print(x ,y, z, a, b)
#mixed_params(param1, param2, param3)
#mixed_params(param1, param2, param3, "mouse", "frog")
""" CHALLENGE 4 """
int_var = 3
def int_div_two(x):
# Returns the input value divided by 2.
return x/2
def int_mult_four(y):
# Returns the input value multiplied by 4.
return y*4
var1 = int_div_two(int_var)
var2 = int_mult_four(var1)
#print("Input: " + str(int_var) + " | Div2: " + str(var1) + " | Mult4: " + str(var2))
""" CHALLENGE 5"""
string_var = "ghost"
#string_var = "7.5"
def stringToFloat(x):
# Tries to return the input value as a float, else returns error message.
try:
return float(x)
except ValueError:
print("Error: Value must be a number.")
print_var = stringToFloat(string_var)
print(print_var)
| 21.5
| 87
| 0.621927
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 862
| 0.572757
|
6629f9d2ad476bdf575b8d97233a3d2d8781d35e
| 2,874
|
py
|
Python
|
src/unpurple.py
|
rnbdev/purple-fringe
|
b372c13f0e4d7d7ba9da53d7e6a4326c0e6c453a
|
[
"BSD-3-Clause"
] | 2
|
2021-03-16T03:29:41.000Z
|
2021-05-21T03:32:57.000Z
|
src/unpurple.py
|
rnbdev/purple-fringe
|
b372c13f0e4d7d7ba9da53d7e6a4326c0e6c453a
|
[
"BSD-3-Clause"
] | null | null | null |
src/unpurple.py
|
rnbdev/purple-fringe
|
b372c13f0e4d7d7ba9da53d7e6a4326c0e6c453a
|
[
"BSD-3-Clause"
] | null | null | null |
import cv2
import numpy as np
import argparse
def unpurple(params):
img = cv2.imread(params.input).astype(np.float64)
img_b = img[..., 0]
img_b = np.maximum(0, img_b - params.m * 255)
img_b *= params.i / (1 - params.m)
width = (params.r << 1) + 1
bl = cv2.blur(img_b, (width, width))
if params.mode == "blur":
cv2.imwrite(params.output, bl)
else:
db = np.maximum(img[..., 0] - img[..., 1], 0)
dr = np.maximum(img[..., 2] - img[..., 1], 0)
mb = np.minimum(bl, db)
r_diff = np.minimum(dr, mb * params.maxred)
if params.minred > 0:
b_diff = np.minimum(mb, r_diff / params.minred)
else:
b_diff = mb
if params.mode == "diff":
img_diff = np.dstack(
[b_diff,
np.zeros_like(b_diff),
r_diff]
)
img_diff = img_diff.astype(np.uint8)
cv2.imwrite(params.output, img_diff)
else:
assert(params.mode == "normal")
img_fix = img.copy()
img_fix[..., 0] -= b_diff
img_fix[..., 2] -= r_diff
img_fix = img_fix.astype(np.uint8)
cv2.imwrite(params.output, img_fix)
if __name__ == "__main__":
ap = argparse.ArgumentParser()
ap.add_argument("-i",
help="Intensity (scalar more or less around 1.0)",
type=float,
default=1.)
ap.add_argument("-m",
help="Minimum brightness (positive scalar smaller 1.0)",
type=float,
default=0.)
ap.add_argument("-r",
help="Blur radius (pixel)",
type=int,
default=5)
ap.add_argument("-minred",
help="Minimum red:blue ratio in the fringe",
type=float,
default=0.)
ap.add_argument("-maxred",
help="Maximum red:blue ratio in the fringe",
type=float,
default=.33)
ap.add_argument("-gentle",
help="Gentle (Same as -m 0.8 -minred 0.15)",
action="store_true")
ap.add_argument("-diff", action="store_const",
dest="mode",
const="diff",
default="normal",
help="Output image type")
ap.add_argument("-blur", action="store_const",
dest="mode",
const="blur",
help="Output image type")
ap.add_argument(help="input image",
dest="input")
ap.add_argument(help="output image",
dest="output")
args = ap.parse_args()
if args.gentle:
args.m = 0.8
args.minred = 0.15
img = unpurple(args)
| 29.9375
| 76
| 0.4746
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 462
| 0.160752
|
662b2a0d020eee523039d18045fe01c4d90be8ba
| 61
|
py
|
Python
|
psi/serialize/__init__.py
|
delta-mpc/python-psi
|
1665de12a713b37abd889268c66de84cddb1bf84
|
[
"Apache-2.0"
] | 35
|
2021-05-28T10:03:09.000Z
|
2022-03-24T12:08:19.000Z
|
psi/serialize/__init__.py
|
delta-mpc/python-psi
|
1665de12a713b37abd889268c66de84cddb1bf84
|
[
"Apache-2.0"
] | 9
|
2021-07-15T09:16:34.000Z
|
2022-03-31T03:59:16.000Z
|
psi/serialize/__init__.py
|
delta-mpc/python-psi
|
1665de12a713b37abd889268c66de84cddb1bf84
|
[
"Apache-2.0"
] | 16
|
2021-06-18T02:18:56.000Z
|
2022-03-25T02:43:48.000Z
|
from .bit_arr import *
from .ecc import *
from .int import *
| 15.25
| 22
| 0.704918
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
662b8a1aba28c4cad375998a888ed93da1fcc650
| 1,588
|
py
|
Python
|
scripts/run_episodes.py
|
takuma-ynd/rrc_example_package
|
f53cf3191f4c38f4d1f394ccd55b1d935a6a70ba
|
[
"BSD-3-Clause"
] | null | null | null |
scripts/run_episodes.py
|
takuma-ynd/rrc_example_package
|
f53cf3191f4c38f4d1f394ccd55b1d935a6a70ba
|
[
"BSD-3-Clause"
] | null | null | null |
scripts/run_episodes.py
|
takuma-ynd/rrc_example_package
|
f53cf3191f4c38f4d1f394ccd55b1d935a6a70ba
|
[
"BSD-3-Clause"
] | null | null | null |
#!/usr/bin/env python3
import numpy as np
# from rrc_example_package.code.training_env import make_training_env
from rrc_example_package.code.training_env.env import ActionType
import rrc_example_package.move_cube
import rrc_example_package.cube_env
# env = make_training_env(visualization=False, **eval_config)
# env.unwrapped.initializer = initializer
# eval_config = {
# 'action_space': 'torque_and_position',
# 'frameskip': 3,
# 'residual': True,
# 'reward_fn': f'task{difficulty}_competition_reward',
# 'termination_fn': 'no_termination',
# 'initializer': f'task{difficulty}_init',
# 'monitor': False,
# 'rank': 0
# }
goal = move_cube.sample_goal(3)
goal_dict = {
'position': move_cube.position,
'orientation': move_cube.orientation
}
env = cube_env.RealRobotCubeEnv(goal_dict, 3)
obs = env.reset()
done = False
accumulated_reward = 0
if env.action_type == ActionType.TORQUE_AND_POSITION:
zero_action = {
'torque': (env.action_space['torque'].sample() * 0).astype(np.float64),
'position': (env.action_space['position'].sample() * 0).astype(np.float64)
}
assert zero_action['torque'].dtype == np.float64
assert zero_action['position'].dtype == np.float64
else:
zero_action = np.array(env.action_space.sample() * 0).astype(np.float64)
assert zero_action.dtype == np.float64
while not done:
obs, reward, done, info = env.step(zero_action)
accumulated_reward += reward
print("Accumulated reward: {}".format(accumulated_reward))
| 32.408163
| 82
| 0.687028
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 617
| 0.388539
|
662cd92db90d9d0b17d2a45ad47818909732dc56
| 1,253
|
py
|
Python
|
src/algorithms/utils.py
|
MSwenne/QSB-Suite
|
7860e4634bdce10fa79d7f850b6bc2099357d7b0
|
[
"MIT"
] | null | null | null |
src/algorithms/utils.py
|
MSwenne/QSB-Suite
|
7860e4634bdce10fa79d7f850b6bc2099357d7b0
|
[
"MIT"
] | null | null | null |
src/algorithms/utils.py
|
MSwenne/QSB-Suite
|
7860e4634bdce10fa79d7f850b6bc2099357d7b0
|
[
"MIT"
] | null | null | null |
import random
def QFT(first: int, last: int) -> str:
res = "// Begin QFT\n"
for a in range(first, last+1):
res += f"h q[{a}];\n"
for b in range(a+1,last+1):
res += f"crz({1/(2**(b-a+1))}) q[{a}], q[{b}];\n"
return res
def QFT_inv(first: int, last: int) -> str:
res = "// Begin QFT inverse\n"
for a in range(last, first-1, -1):
for b in range(last,a,-1):
res += f"crz({-1/(2**(b-a+1))}) q[{a}], q[{b}];\n"
res += f"h q[{a}];\n"
return res
def QASM_prefix(qubits: int, bits: int) -> str:
# Initial QASM setup
res = "OPENQASM 2.0;\n"
res += "include \"qelib1.inc\";\n\n"
res += f"qreg q[{qubits}];\n"
res += f"creg c[{bits}];\n\n"
return res
def random_pauli() -> str:
return random.choice(["x", "y", "z"])
def random_cliff3() -> str:
return random.choice(["x", "h", "s"])
def random_cliff7() -> str:
return random.choice(["x", "y", "z", "h", "sx", "sy", "s"])
def random_univeral() -> str:
return random.choice(["x", "y", "z", "h", "t"])
def random_cgate(qubits):
c = random.randint(0,qubits-1)
t = random.randint(0,qubits-1)
while c == t:
t = random.randint(0,qubits-1)
return f"cz q[{c}], q[{t}];\n"
| 27.23913
| 63
| 0.51237
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 342
| 0.272945
|
662db785b141a51d5e5c2d7a6ae200c6d7fc2fa6
| 1,458
|
py
|
Python
|
src/sprite.py
|
GreenXenith/zoria
|
30a16baab3643c820613a8c8669ee6235a2cd47c
|
[
"MIT"
] | null | null | null |
src/sprite.py
|
GreenXenith/zoria
|
30a16baab3643c820613a8c8669ee6235a2cd47c
|
[
"MIT"
] | null | null | null |
src/sprite.py
|
GreenXenith/zoria
|
30a16baab3643c820613a8c8669ee6235a2cd47c
|
[
"MIT"
] | null | null | null |
import pygame
from . import assets
from .vector import *
global registered_sprites
registered_sprites = {}
def register_sprite(name, definition):
registered_sprites[name] = definition
class Sprite:
texture = "none.png"
rect = pygame.Rect(0, 0, 0, 0)
def __init__(self, name, pos, z):
self.name = name
self.pos = pos
self.rot = 0
self.z = z
self.vel = Vector(0, 0)
for key in registered_sprites[name]:
value = registered_sprites[name][key]
if not callable(value):
setattr(self, key, value)
def set_pos(self, vec_or_x, y = None):
self.pos = vec_or_num(vec_or_x, y)
def set_texture(self, filename):
self.texture = assets.get(filename)
def set_rect(self, x, y, w, h):
self.rect = pygame.Rect(x, y, w, h)
def get_rect(self):
return self.rect
def on_step(self, dtime, map, player):
oldx = self.pos.x
self.set_pos(self.pos.x + self.vel.x * dtime, self.pos.y)
if map.collides(self.pos, self.z, self.rect):
self.set_pos(oldx, self.pos.y)
oldy = self.pos.y
self.set_pos(self.pos.x, self.pos.y + self.vel.y * dtime)
if map.collides(self.pos, self.z, self.rect):
self.set_pos(self.pos.x, oldy)
if "on_step" in registered_sprites[self.name]:
registered_sprites[self.name]["on_step"](self, dtime, map, player)
| 27
| 78
| 0.598765
| 1,265
| 0.867627
| 0
| 0
| 0
| 0
| 0
| 0
| 28
| 0.019204
|
662f6bd952e2e4b17cde090c9644c4ad6ec3e3d7
| 5,873
|
py
|
Python
|
pset1 /ps1.py
|
vnb/Data-Science
|
af2936b621d51a6839111b6c793f9a270cded16c
|
[
"MIT"
] | null | null | null |
pset1 /ps1.py
|
vnb/Data-Science
|
af2936b621d51a6839111b6c793f9a270cded16c
|
[
"MIT"
] | null | null | null |
pset1 /ps1.py
|
vnb/Data-Science
|
af2936b621d51a6839111b6c793f9a270cded16c
|
[
"MIT"
] | null | null | null |
###########################
# 6.00.2x Problem Set 1: Space Cows
from ps1_partition import get_partitions
import time
#================================
# Part A: Transporting Space Cows
#================================
def load_cows(filename):
"""
Read the contents of the given file. Assumes the file contents contain
data in the form of comma-separated cow name, weight pairs, and return a
dictionary containing cow names as keys and corresponding weights as values.
Parameters:
filename - the name of the data file as a string
Returns:
a dictionary of cow name (string), weight (int) pairs
"""
cow_dict = dict()
f = open(filename, 'r')
for line in f:
line_data = line.split(',')
cow_dict[line_data[0]] = int(line_data[1])
return cow_dict
# Problem 1
def greedy_cow_transport(cows,limit=10):
"""
Uses a greedy heuristic to determine an allocation of cows that attempts to
minimize the number of spaceship trips needed to transport all the cows. The
returned allocation of cows may or may not be optimal.
The greedy heuristic should follow the following method:
1. As long as the current trip can fit another cow, add the largest cow that will fit
to the trip
2. Once the trip is full, begin a new trip to transport the remaining cows
Does not mutate the given dictionary of cows.
Parameters:
cows - a dictionary of name (string), weight (int) pairs
limit - weight limit of the spaceship (an int)
Returns:
A list of lists, with each inner list containing the names of cows
transported on a particular trip and the overall list containing all the
trips
"""
# # TODO: Your code here
# pass
#initialize trip list
#helper function sub_set
selected_cows = []
cow_names = [x for x in cows]
available_cows = [cows[x] for x in cows]
cows_remaining = [cows[x] for x in cows]
set_limit = limit
trip_list = []
cow_list = []
cow_trip_list = []
while len(available_cows) > 0:
limit = set_limit
cows_remaining = available_cows[:]
selected_cows = []
sub_list = []
while limit > 0:
if len(cows_remaining) == 0:
break
a = max(cows_remaining)
cows_remaining.remove(a)
if a <= limit:
limit -= a
selected_cows.append(a)
available_cows.remove(a)
trip_list.append(selected_cows)
for i in selected_cows:
for name in cows:
if cows[name] == i:
if name in cow_names:
cow_list.append(name)
cow_names.remove(name)
break
cow_trip_list.append(cow_list)
cow_list = []
return cow_trip_list
# Problem 2
def brute_force_cow_transport(cows,limit=10):
"""
Finds the allocation of cows that minimizes the number of spaceship trips
via brute forc
e. The brute force algorithm should follow the following method:
1. Enumerate all possible ways that the cows can be divided into separate trips
2. Select the allocation that minimizes the number of trips without making any trip
that does not obey the weight limitation
Does not mutate the given dictionary of cows.
Parameters:
cows - a dictionary of name (string), weight (int) pairs
limit - weight limit of the spaceship (an int)
Returns:
A list of lists, with each inner list containing the names of cows
transported on a particular trip and the overall list containing all the
trips
"""
def count_sum(listofcows, cows):
weight = 0
for i in listofcows:
weight += cows[i]
if weight > limit:
return False
break
return True
cow_list = list(cows.keys())
flight_list = []
all_partitions = get_partitions(cow_list)
for i in all_partitions:
switch = 'green'
for j in i:
if count_sum(j, cows) == False:
switch = 'red'
break
if switch == 'green':
flight_list.append(i)
trip_len_list = [len(i) for i in flight_list]
for i in flight_list:
if len(i) == min(trip_len_list):
ideal_trip = i
break
return ideal_trip
# Problem 3
def compare_cow_transport_algorithms():
"""
Using the data from ps1_cow_data.txt and the specified weight limit, run your
greedy_cow_transport and brute_force_cow_transport functions here. Use the
default weight limits of 10 for both greedy_cow_transport and
brute_force_cow_transport.
Print out the number of trips returned by each method, and how long each
method takes to run in seconds.
Returns:
Does not return anything.
"""
cows = load_cows("ps1_cow_data.txt")
limit=10
start = time.time()
ans_a = greedy_cow_transport(cows, limit)
end = time.time()
print(end-start)
start = time.time()
ans_b = brute_force_cow_transport(cows, limit)
end = time.time()
print(end-start)
return
"""
Here is some test data for you to see the results of your algorithms with.
Do not submit this along with any of your answers. Uncomment the last two
lines to print the result of your problem.
"""
cows = load_cows("ps1_cow_data.txt")
limit=10
#print(cows)
#
#print(greedy_cow_transport(cows, limit))
#print(brute_force_cow_transport(cows, limit))
print(compare_cow_transport_algorithms())
| 30.910526
| 90
| 0.604461
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 3,141
| 0.53482
|
6630cfae3164736554237dd2d66a2111da1f1715
| 6,080
|
py
|
Python
|
blackboxopt/optimization_loops/dask_distributed.py
|
boschresearch/blackboxopt
|
85abea86f01a4a9d50f05d15e7d850e3288baafd
|
[
"ECL-2.0",
"Apache-2.0"
] | 8
|
2021-07-05T13:37:22.000Z
|
2022-03-11T12:23:27.000Z
|
blackboxopt/optimization_loops/dask_distributed.py
|
boschresearch/blackboxopt
|
85abea86f01a4a9d50f05d15e7d850e3288baafd
|
[
"ECL-2.0",
"Apache-2.0"
] | 14
|
2021-07-07T13:55:23.000Z
|
2022-02-07T13:09:01.000Z
|
blackboxopt/optimization_loops/dask_distributed.py
|
boschresearch/blackboxopt
|
85abea86f01a4a9d50f05d15e7d850e3288baafd
|
[
"ECL-2.0",
"Apache-2.0"
] | null | null | null |
# Copyright (c) 2020 - for information on the respective copyright owner
# see the NOTICE file and/or the repository https://github.com/boschresearch/blackboxopt
#
# SPDX-License-Identifier: Apache-2.0
import logging
import time
from typing import Callable, List, Set, Union
try:
import dask.distributed as dd
except ImportError as e:
raise ImportError(
"Unable to import Dask Distributed specific dependencies. "
+ "Make sure to install blackboxopt[dask]"
) from e
from blackboxopt import (
Evaluation,
EvaluationSpecification,
OptimizationComplete,
OptimizerNotReady,
)
from blackboxopt.base import (
MultiObjectiveOptimizer,
Objective,
SingleObjectiveOptimizer,
)
from blackboxopt.optimization_loops.utils import (
evaluation_function_wrapper,
init_max_evaluations_with_limit_logging,
)
class MinimalDaskScheduler:
def __init__(
self,
dask_client: dd.Client,
objectives: List[Objective],
logger: logging.Logger,
):
self.client = dask_client
self.objectives = objectives
self.logger = logger
self._not_done_futures: Set = set()
def shutdown(self):
return self.client.shutdown()
def has_capacity(self):
idle = [len(task_id) == 0 for task_id in self.client.processing().values()]
return sum(idle)
def has_running_jobs(self):
return len(self._not_done_futures) > 0
def submit(
self,
eval_function: Callable[[EvaluationSpecification], Evaluation],
eval_spec: EvaluationSpecification,
):
f = self.client.submit(
evaluation_function_wrapper,
evaluation_function=eval_function,
evaluation_specification=eval_spec,
objectives=self.objectives,
catch_exceptions_from_evaluation_function=True,
logger=self.logger,
)
f.bbo_eval_spec = eval_spec
self._not_done_futures.add(f)
def check_for_results(self, timeout_s: float = 5.0) -> List[Evaluation]:
try:
all_futures = dd.wait(
self._not_done_futures, timeout=timeout_s, return_when="FIRST_COMPLETED"
)
return_values: List[Evaluation] = []
for f in all_futures.done:
if f.status == "error":
return_values.append(
Evaluation(
objectives={o.name: None for o in self.objectives},
stacktrace=str(f.traceback()),
**f.bbo_eval_spec
)
)
else:
return_values.append(f.result())
self._not_done_futures = all_futures.not_done
except dd.TimeoutError:
return_values = []
return return_values
def run_optimization_loop(
optimizer: Union[SingleObjectiveOptimizer, MultiObjectiveOptimizer],
evaluation_function: Callable[[EvaluationSpecification], Evaluation],
dask_client: dd.Client,
timeout_s: float = float("inf"),
max_evaluations: int = None,
logger: logging.Logger = None,
) -> List[Evaluation]:
"""Convenience wrapper for an optimization loop that uses Dask to parallelize
optimization until a given timeout or maximum number of evaluations is reached.
This already handles signals from the optimizer in case there is no evaluation
specification available yet.
Args:
optimizer: The blackboxopt optimizer to run.
dask_client: A Dask Distributed client that is configured with workers.
evaluation_function: The function that is called with configuration, settings
and optimizer info dictionaries as arguments like provided by an evaluation
specification.
This is the function that encapsulates the actual execution of
a parametrized experiment (e.g. ML model training) and should return a
`blackboxopt.Evaluation` as a result.
timeout_s: If given, the optimization loop will terminate after the first
optimization step that exceeded the timeout (in seconds). Defaults to inf.
max_evaluations: If given, the optimization loop will terminate after the given
number of steps. Defaults to None.
logger: The logger to use for logging progress. Defaults to None.
Returns:
List of evluation specification and result for all evaluations.
"""
logger = logging.getLogger("blackboxopt") if logger is None else logger
objectives = (
optimizer.objectives
if isinstance(optimizer, MultiObjectiveOptimizer)
else [optimizer.objective]
)
evaluations: List[Evaluation] = []
dask_scheduler = MinimalDaskScheduler(
dask_client=dask_client, objectives=objectives, logger=logger
)
_max_evaluations = init_max_evaluations_with_limit_logging(
max_evaluations=max_evaluations, timeout_s=timeout_s, logger=logger
)
n_eval_specs = 0
start = time.time()
while time.time() - start < timeout_s and n_eval_specs < _max_evaluations:
if dask_scheduler.has_capacity():
try:
eval_spec = optimizer.generate_evaluation_specification()
dask_scheduler.submit(evaluation_function, eval_spec)
n_eval_specs += 1
continue
except OptimizerNotReady:
logger.info("Optimizer is not ready yet; will retry after short pause.")
except OptimizationComplete:
logger.info("Optimization is complete")
break
new_evaluations = dask_scheduler.check_for_results(timeout_s=20)
optimizer.report(new_evaluations)
evaluations.extend(new_evaluations)
while dask_scheduler.has_running_jobs():
new_evaluations = dask_scheduler.check_for_results(timeout_s=20)
optimizer.report(new_evaluations)
evaluations.extend(new_evaluations)
return evaluations
| 34.742857
| 88
| 0.659539
| 2,026
| 0.333224
| 0
| 0
| 0
| 0
| 0
| 0
| 1,727
| 0.284046
|
66338488816d4107164bc58a2e6c72cf6c5eff02
| 2,997
|
py
|
Python
|
admit/at/test/test_ingest.py
|
astroumd/admit
|
bbf3d79bb6e1a6f7523553ed8ede0d358d106f2c
|
[
"MIT"
] | 4
|
2017-03-01T17:26:28.000Z
|
2022-03-03T19:23:06.000Z
|
admit/at/test/test_ingest.py
|
teuben/admit
|
1cae54d1937c9af3f719102838df716e7e6d655c
|
[
"MIT"
] | 48
|
2016-10-04T01:25:33.000Z
|
2021-09-08T14:51:10.000Z
|
admit/at/test/test_ingest.py
|
teuben/admit
|
1cae54d1937c9af3f719102838df716e7e6d655c
|
[
"MIT"
] | 2
|
2016-11-10T14:10:22.000Z
|
2017-03-30T18:58:05.000Z
|
#! /usr/bin/env casarun
#
#
# you can either use the "import" method from within casapy
# or use the casarun shortcut to run this from a unix shell
# with the argument being the casa image file to be processed
#
# Typical test usage:
# ./test_ingest.py test123.fits [dummy]
# This will produce admit.xml and
# cim (the casa converted fits) with matching cim.bdp
#
# mkcd new
# ln -s ../../../../data/foobar.fits
# ../test_ingest.py foobar.fits both
# $ADMIT/admit/at/test/test_ingest.py foobar.fits both
import admit.Admit as ad
from admit.at.Ingest_AT import Ingest_AT
def run(fileName, method):
"""
Ingest using ADMIT, and return the ADMIT instance for any
further analysis
method: if blank, only ingest, otherwise use spectrum or stats or both
"""
# instantiate ADMIT, we can only handle .fits files here
loc = fileName.rfind('.')
adir = fileName[:loc] + '.admit'
a = ad.Admit(adir)
a.plotmode(0)
# just set an ADMIT variable
a.set(foobar=1)
print 'admit::foobar =',a.get('foobar')
# Instantiate the AT, add it to ADMIT, and set some Ingest parameters
a0 = Ingest_AT(file=fileName)
i0 = a.addtask(a0)
# run and save
a.run()
a.write()
# inspect BDP? This will be a SpwCube_BDP
b0 = a0[0]
print 'BDP_0 has the following images:',b0.image.images
if True:
# enable if you want to check if indeed nothing happens here
print "BEGIN running again"
a.run()
print "END running again"
if method == "moment":
from admit.at.Moment_AT import Moment_AT
a1 = Moment_AT()
i1 = a.addtask(a1, [(i0,0)])
a1.setkey('moments',[0,1,2])
elif method == "stats":
from admit.at.CubeStats_AT import CubeStats_AT
a1 = CubeStats_AT()
i1 = a.addtask(a1, [(i0,0)])
elif method == "spectrum":
from admit.at.CubeSpectrum_AT import CubeSpectrum_AT
a1 = CubeSpectrum_AT()
a1.setkey('pos',[70,70])
i1 = a.addtask(a1, [(i0,0)])
elif method == "both":
# cubestats will pass its maxpos= to cubespectrum
from admit.at.CubeStats_AT import CubeStats_AT
from admit.at.CubeSpectrum_AT import CubeSpectrum_AT
a1 = CubeStats_AT()
i1 = a.addtask(a1, [(i0,0)])
a2 = CubeSpectrum_AT()
i2 = a.addtask(a2, [(i0,0),(i1,0)])
else:
print "No method ",method
print "Final run"
a.run()
a.write()
print "All done. admit.xml written"
return a
if __name__ == "__main__":
import sys
argv = ad.casa_argv(sys.argv)
if len(argv) > 1:
if len(argv) == 2:
# only one argument: just ingest
print "Ingesting ",argv[1]
a = run(argv[1],False)
else:
print "Ingesting and running a sample %s on %s" % (argv[2],argv[1])
a = run(argv[1],argv[2])
print "One more run, of nothing we hope."
a.run()
| 29.382353
| 79
| 0.602936
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1,344
| 0.448448
|
66349dcef473158c517a2f6336f11fae97c3b0b4
| 2,156
|
py
|
Python
|
app/Duration.py
|
joshuaMarple/phase-vocoder
|
d652a594da2b526eae758c4d0ca6e87e0497b89d
|
[
"Apache-2.0"
] | null | null | null |
app/Duration.py
|
joshuaMarple/phase-vocoder
|
d652a594da2b526eae758c4d0ca6e87e0497b89d
|
[
"Apache-2.0"
] | null | null | null |
app/Duration.py
|
joshuaMarple/phase-vocoder
|
d652a594da2b526eae758c4d0ca6e87e0497b89d
|
[
"Apache-2.0"
] | null | null | null |
"""
Authors: Fernando (UPDATE HIS INFO)
License: GPL 3.0
Description: This file contains functions that allows the user to
change the pitch of a .wav
Comments: None.
"""
import subprocess
import os
from sys import platform as _platform
from lib import pydub
def changeDuration(filename,percent):
"""
Input: filename , tones
filename (string): the path to the soundfile
tones (integer): the number of semitones to change(from negative number to positive number)
Outputs: pitchoutput.wav
Description: This function will change the pitch of a soundfile
"""
tempochange = "-tempo="+str(percent)
if _platform == "linux" or _platform == "linux2":
fn = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'soundpitch')
elif _platform == "darwin":
fn = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'soundpitchmac')
elif _platform == "win32":
fn = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'soundpitchwin32.exe')
subprocess.call([fn,filename, "duroutput.wav","-speech", tempochange])
return "duroutput.wav"
def changeGapDuration(filename,gaptime,gapduration,percentage):
"""
Input: filename , gaptime, gapduration , tones
filename (string): the path to the soundfile
gaptime (float): the time to begin changing the pitch
gapduration (float): the amount of sound to be changed(from the gaptime start to the end of this length)
tones (integer): the number of semitones to change(from negative number to positive number)
Outputs: processefile.wav
Description: This function will change the pitch of a soundfile
"""
file = pydub.AudioSegment.from_wav(filename)
newdurationpart = file[int((gaptime* 1000)) : int(((gaptime+gapduration) * 1000))]
first = file[:int(gaptime * 1000)]
last = file[int((gaptime+gapduration) * 1000):]
newdurationpart.export("durinput.wav", format="wav")
changeDuration("durinput.wav",percentage)
newdurationpart = pydub.AudioSegment.from_wav("duroutput.wav")
newfile = first + newdurationpart + last
newfile.export(filename, format="wav")
os.remove("durinput.wav")
os.remove("duroutput.wav")
return newfile
| 34.222222
| 106
| 0.729128
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1,106
| 0.512987
|
6634c188bd630f307a7ad6ecabe91c09bac5af47
| 12,711
|
py
|
Python
|
network-manager/varanuspy/utils.py
|
netx-ulx/varanus
|
7df5ec70563253d72a4287566b1fbb6bdf804a4c
|
[
"Apache-2.0"
] | null | null | null |
network-manager/varanuspy/utils.py
|
netx-ulx/varanus
|
7df5ec70563253d72a4287566b1fbb6bdf804a4c
|
[
"Apache-2.0"
] | null | null | null |
network-manager/varanuspy/utils.py
|
netx-ulx/varanus
|
7df5ec70563253d72a4287566b1fbb6bdf804a4c
|
[
"Apache-2.0"
] | null | null | null |
from Queue import Empty, Queue
import collections
import ipaddress
import netifaces
import pwd
import signal
import socket
from subprocess import Popen
from threading import Thread
################################################################################
#### String utils
def newline( *args ):
class SingleLine( object ):
def __init__( self, words ):
self.words = words
def __iter__( self ):
return SingleLineIterator( self.words )
def __str__( self ):
return ' '.join( self )
if len( args ) == 1 and isinstance( args[0], list ):
args_list = args[0]
else:
args_list = list( args )
return SingleLine( args_list )
class SingleLineIterator( object ):
def __init__( self, words ):
self.words = words
self.final_idx = len( words ) - 1
self.curr_idx = 0
def __iter__( self ):
return self
def __next__( self ):
i = self.curr_idx
if i < self.final_idx:
self.curr_idx = i + 1
return str( self.words[i] )
elif i == self.final_idx:
self.curr_idx = i + 1
return '{}\n'.format( self.words[i] )
else:
raise StopIteration
next = __next__
def multiline( *args ):
class MultiLine( object ):
def __init__( self, lines ):
self.lines = lines
def __iter__( self ):
return self.lines
def __str__( self ):
return '\n'.join( self.lines )
if len( args ) == 1 and isinstance( args[0], list ):
args_list = args[0]
else:
args_list = list( args )
return MultiLine( args_list )
################################################################################
#### Function utils
def call_until( func, stop_condition ):
""" Calls the provided function (if defined) until the provided stop
condition function returns True.
- func : a callable to be called repeatedly
- stop_condition: a callable that returns True when no more calls to
func should be made
"""
stop_condition = as_callable( stop_condition, name='stop_condition' )
if is_some( func ):
func = as_callable( func, name='func' )
while stop_condition() is not True:
func()
################################################################################
#### OS utils
def user_exists( username ):
try:
pwd.getpwnam( username )
return True
except KeyError:
return False
def get_user_home( username ):
try:
return pwd.getpwnam( username ).pw_dir
except KeyError:
raise ValueError( 'unknown user' )
class AsyncProcess( object ):
""" A wrapper for a Popen object that allows for asynchronous access to its
output one line at a time.
"""
def __init__( self, popen, cmd=None ):
""" Creates a new AsyncProcess object that wraps the provided Popen
object and consumes its output in a separate thread.
"""
self.popen = as_a( popen, instance_of=Popen )
self.queue = Queue()
if is_some( cmd ):
if isinstance( cmd, list ):
cmd = ' '.join( cmd )
self.cmd = cmd
else:
self.cmd = None
t = Thread( target=self.__consume_output )
t.daemon = True
t.start()
def readline( self, block=True, timeout=None ):
block = as_bool( block, name='block' )
try:
return self.queue.get( block=block, timeout=timeout )
except Empty:
return None
def readline_nowait( self ):
return self.readline( block=False )
def read_available_lines( self ):
return list( iter( self.readline_nowait, None ) )
def interrupt( self ):
self.popen.send_signal( signal.SIGINT )
def terminate( self ):
self.popen.terminate()
def kill( self ):
self.popen.kill()
def wait_to_finish( self ):
return self.popen.wait()
def is_finished( self ):
return is_some( self.get_return_code() )
def get_return_code( self ):
return self.popen.poll()
def __consume_output( self ):
with self.popen.stdout as output:
for line in iter( output.readline, b'' ):
line = line.rstrip( '\n\r' )
self.queue.put( line )
################################################################################
#### Network utils
def resolve( hostname ):
hostname = some( hostname, name='hostname' )
try:
return str( ipaddress.ip_address( hostname ) )
except ValueError:
return socket.gethostbyname( hostname )
def ipv4address_of( intf, index=0 ):
index = as_int( index, minim=0 )
ipv4addrs = ipv4addresses_of( intf )
naddrs = len( ipv4addrs )
if naddrs == 0:
raise ValueError( 'interface {} has 0 assigned IPv4 addresses'.format( intf ) )
elif index >= naddrs:
if naddrs == 1:
raise ValueError( 'address index {} is too high; only one address is available'.format( index ) )
else:
raise ValueError( 'address index {} is too high; only {} addresses are available'.format( index, naddrs ) )
else:
return ipv4addrs[index]['addr']
def ipv4addresses_of( intf ):
intf = as_str( some( intf, name='interface' ) )
if not intf in netifaces.interfaces():
raise ValueError( 'unknown interface "{}"'.format( intf ) )
else:
addrs = netifaces.ifaddresses( intf )
if not netifaces.AF_INET in addrs:
raise ValueError( 'interface {} does not have any assigned IPv4 addresses'.format( intf ) )
else:
return addrs[netifaces.AF_INET]
def send_bytes( sock, buf, exit_check=None, exit_on_timeout=False ):
""" Sends some bytes to the provided socket. Returns 'True' on success.
- sock : a socket object
- buf : a buffer containing bytes to send
- exit_check : an optional callable indicating if the send operation should be aborted;
if the callable is defined and returns 'True', and this function detects it,
then the send operation is aborted and 'False' is returned (defaults to
'None')
- exit_on_timeout: if 'True' then raised socket.timeout exceptions are propagated to the
caller, otherwise they are ignored (defaults to 'False')
"""
sock = some( sock, name='sock' )
buf = some( buf, name='buf' )
exit_check = as_callable( exit_check, name='exit_check' ) if is_some( exit_check ) else lambda : False
exit_on_timeout = as_bool( exit_on_timeout, name='exit_on_timeout' )
while not exit_check():
try:
sock.sendall( buf )
return True
except socket.timeout: # no bytes were sent
if exit_on_timeout:
raise # abort
else:
pass # try again
else:
return False
def recv_bytes( sock, nbytes, exit_check=None, exit_on_timeout=False ):
""" Returns a received number of bytes from the provided socket.
- sock : a socket object
- nbytes : the number of bytes to receive
- exit_check : an optional callable indicating if the receive operation should be aborted;
if the callable is defined and returns 'True', and this function detects it,
then the receive operation is aborted and 'None' is returned (defaults to
'None')
- exit_on_timeout: if 'True' then raised socket.timeout exceptions are propagated to the
caller, otherwise they are ignored (defaults to 'False')
An IOError is raised if the socket receives an EOF.
"""
sock = some( sock, name='sock' )
nbytes = as_int( nbytes, minim=0, name='nbytes' )
exit_check = as_callable( exit_check, name='exit_check' ) if is_some( exit_check ) else lambda : False
exit_on_timeout = as_bool( exit_on_timeout, name='exit_on_timeout' )
buf = bytearray( nbytes )
if nbytes == 0:
return buf
bufview = memoryview( buf )
while not exit_check():
try:
nread = sock.recv_into( bufview )
if nread == 0: # EOF
raise IOError( 'remote side terminated the connection' )
else:
bufview = bufview[nread:]
if len( bufview ) == 0:
return buf
except socket.timeout: # no bytes were received
if exit_on_timeout:
raise # abort
else:
pass # try again
else:
return None
################################################################################
#### Value testing utils
def is_some( value ):
return False if value is None else True
def is_somestr( value, allow_empty=False ):
if value is None:
return False
else:
svalue = str( value )
if svalue is None:
return False
elif allow_empty == False and len( svalue ) == 0:
return False
else:
return True
def is_iterable( value ):
if not isinstance( value, collections.Iterable ):
try:
iter( value )
except TypeError:
return False
return True
def is_mapping( value ):
return isinstance( value, collections.Mapping )
################################################################################
#### Value checking utils
def some( value, name='value' ):
if value is None:
raise ValueError( 'expected {} to be defined (not None)'.format( name ) )
else:
return value
def as_oneof( value, container, valname='value', containername='container' ):
if value not in container:
raise ValueError( 'expected {} to be in {}'.format( valname, containername ) )
else:
return value
def as_bool( value, name='value' ):
if value is not True and value is not False:
raise ValueError( 'expected {} to be a boolean'.format( name ) )
else:
return value
def as_int( value, minim=None, maxim=None, name='value' ):
try:
ivalue = int( value )
except ValueError:
raise ValueError( 'expected {} to be an integer'.format( name ) )
if minim is not None and ivalue < minim:
raise ValueError( 'expected {} to be at least {}'.format( name, minim ) )
elif maxim is not None and ivalue > maxim:
raise ValueError( 'expected {} to be at most {}'.format( name, maxim ) )
else:
return ivalue
def as_str( value, allow_empty=False, name='value' ):
if not is_somestr( value, allow_empty ):
raise ValueError( 'expected {} to be a valid string'.format( name ) )
else:
return str( value )
def as_the( value, other, valname='value', othername='other' ):
if value is not other:
raise ValueError( 'expected {} to be the same as {}'.format( valname, othername ) )
else:
return value
def as_a( value, instance_of=None, subclass_of=None, name='value' ):
if instance_of is not None and not isinstance( value, instance_of ):
raise ValueError( 'expected {} to be an instance of {}'.format( name, instance_of ) )
elif subclass_of is not None and not issubclass( value, subclass_of ):
raise ValueError( 'expected {} to be a subclass of {}'.format( name, subclass_of ) )
else:
return value
def as_callable( value, name='value' ):
if not callable( value ):
raise ValueError( 'expected {} to be a callable'.format( name ) )
else:
return value
################################################################################
#### Misc. utils
def fallback( value, default ):
if value is None:
return default
else:
return value
def optional( value, mapper ):
if is_some( value ):
value = mapper( value )
return value
def optional_bool( value ):
return optional( value, as_bool )
def optional_int( value, minim=None, maxim=None ):
return optional( value, lambda x : as_int( x, minim=minim, maxim=maxim ) )
def optional_str( value, allow_empty=False ):
return optional( value, lambda x : as_str( x, allow_empty=allow_empty ) )
def check_duplicate( container, value, containername='container', valname='value' ):
if value in container:
raise ValueError( 'found duplicate {} in {}'.format( valname, containername ) )
| 29.908235
| 119
| 0.571001
| 2,745
| 0.215955
| 0
| 0
| 0
| 0
| 0
| 0
| 3,737
| 0.293997
|
66373663ff85fccb4333f1b45aed30d0b9af2c3c
| 8,824
|
py
|
Python
|
load/DBPLoadController.py
|
faithcomesbyhearing/dbp-etl
|
ffd849111e8e2d40e9b07663408d31b5a2d15ce7
|
[
"MIT"
] | null | null | null |
load/DBPLoadController.py
|
faithcomesbyhearing/dbp-etl
|
ffd849111e8e2d40e9b07663408d31b5a2d15ce7
|
[
"MIT"
] | 4
|
2021-03-10T22:20:29.000Z
|
2022-03-23T22:18:00.000Z
|
load/DBPLoadController.py
|
faithcomesbyhearing/dbp-etl
|
ffd849111e8e2d40e9b07663408d31b5a2d15ce7
|
[
"MIT"
] | 1
|
2021-03-10T20:49:43.000Z
|
2021-03-10T20:49:43.000Z
|
# DBPLoadController.py
# 1) Run Validate on the files to process
# 2) Move any Fileset that is accepted to uploading
# 3) Perform upload
# 4) Move any fully uploaded fileset to database
# 5) Update fileset related tables
# 6) Move updated fileset to complete
import os
from Config import *
from RunStatus import *
from LPTSExtractReader import *
from Log import *
from InputFileset import *
from Validate import *
from S3Utility import *
from SQLBatchExec import *
from UpdateDBPFilesetTables import *
from UpdateDBPBiblesTable import *
from UpdateDBPLPTSTable import *
from UpdateDBPVideoTables import *
from UpdateDBPBibleFilesSecondary import *
class DBPLoadController:
def __init__(self, config, db, lptsReader):
self.config = config
self.db = db
self.lptsReader = lptsReader
self.s3Utility = S3Utility(config)
self.stockNumRegex = re.compile("__[A-Z0-9]{8}")
## This corrects filesets that have stock number instead of damId in the filename.
def repairAudioFileNames(self, inputFilesets):
for inp in inputFilesets:
for index in range(len(inp.files)):
file = inp.files[index]
if file.name.endswith(".mp3"):
namePart = file.name.split(".")[0]
damId = namePart[-10:]
if self.stockNumRegex.match(damId):
inp.files[index].name = namePart[:-10] + inp.filesetId[:10] + ".mp3"
def validate(self, inputFilesets):
validate = Validate(self.config, self.db)
validate.process(inputFilesets)
for inp in inputFilesets:
if os.path.isfile(inp.csvFilename):
InputFileset.upload.append(inp)
else:
RunStatus.set(inp.filesetId, False)
def updateBibles(self):
dbOut = SQLBatchExec(self.config)
bibles = UpdateDBPBiblesTable(self.config, self.db, dbOut, self.lptsReader)
bibles.process()
#dbOut.displayStatements()
dbOut.displayCounts()
success = dbOut.execute("bibles")
RunStatus.set(RunStatus.BIBLE, success)
return success
def upload(self, inputFilesets):
self.s3Utility.uploadAllFilesets(inputFilesets)
secondary = UpdateDBPBibleFilesSecondary(self.config, None, None)
secondary.createAllZipFiles(inputFilesets)
Log.writeLog(self.config)
def updateFilesetTables(self, inputFilesets):
inp = inputFilesets
dbOut = SQLBatchExec(self.config)
update = UpdateDBPFilesetTables(self.config, self.db, dbOut)
video = UpdateDBPVideoTables(self.config, self.db, dbOut)
for inp in inputFilesets:
hashId = update.processFileset(inp)
if inp.typeCode == "video":
video.processFileset(inp.filesetPrefix, inp.filenames(), hashId)
dbOut.displayCounts()
success = dbOut.execute(inp.batchName())
RunStatus.set(inp.filesetId, success)
if success:
InputFileset.complete.append(inp)
else:
print("********** Fileset Table %s Update Failed **********" % (inp.filesetId))
def updateLPTSTables(self):
dbOut = SQLBatchExec(self.config)
lptsDBP = UpdateDBPLPTSTable(self.config, dbOut, self.lptsReader)
lptsDBP.process()
#dbOut.displayStatements()
dbOut.displayCounts()
success = dbOut.execute("lpts")
RunStatus.set(RunStatus.LPTS, success)
return success
if (__name__ == '__main__'):
config = Config()
AWSSession.shared() # ensure AWSSession init
db = SQLUtility(config)
lptsReader = LPTSExtractReader(config.filename_lpts_xml)
ctrl = DBPLoadController(config, db, lptsReader)
if len(sys.argv) != 2:
InputFileset.validate = InputFileset.filesetCommandLineParser(config, AWSSession.shared().s3Client, lptsReader)
ctrl.repairAudioFileNames(InputFileset.validate)
ctrl.validate(InputFileset.validate)
if ctrl.updateBibles():
ctrl.upload(InputFileset.upload)
ctrl.updateFilesetTables(InputFileset.database)
ctrl.updateLPTSTables()
for inputFileset in InputFileset.complete:
print("Completed: ", inputFileset.filesetId)
else:
ctrl.updateBibles()
ctrl.updateLPTSTables()
RunStatus.exit()
# Get currrent lpts-dbp.xml
# aws --profile DBP_DEV s3 cp s3://dbp-etl-upload-newdata-fiu49s0cnup1yr0q/lpts-dbp.xml /Volumes/FCBH/bucket_data/lpts-dbp.xml
# Clean up filesets in dbp-stating and dbp-vid-staging
# Prepare by getting some local data into a test bucket
# aws s3 --profile dbp-etl-dev sync --acl bucket-owner-full-control /Volumes/FCBH/all-dbp-etl-test/audio/UNRWFW/UNRWFWP1DA s3://dbp-etl-upload-dev-zrg0q2rhv7shv7hr/UNRWFWP1DA
# aws s3 --profile dbp-etl-dev sync --acl bucket-owner-full-control /Volumes/FCBH/all-dbp-etl-test/HYWWAVN2ET s3://dbp-etl-upload-dev-zrg0q2rhv7shv7hr/HYWWAVN2ET
# aws s3 --profile dbp-etl-dev sync --acl bucket-owner-full-control /Volumes/FCBH/all-dbp-etl-test/ENGESVP2DV s3://dbp-etl-upload-dev-zrg0q2rhv7shv7hr/ENGESVP2DV
# No parameter, should execute only bible and lpts updates
# time python3 load/DBPLoadController.py test
# Successful tests with source on local drive
# time python3 load/TestCleanup.py test HYWWAV
# time python3 load/TestCleanup.py test HYWWAVN_ET-usx
# time python3 load/TestCleanup.py test ENGESVP2DV
# time python3 load/DBPLoadController.py test /Volumes/FCBH/all-dbp-etl-test/ HYWWAVN2ET
# time python3 load/DBPLoadController.py test /Volumes/FCBH/all-dbp-etl-test/ ENGESVP2DV
# Successful tests with source on s3
# time python3 load/TestCleanup.py test UNRWFWP1DA
# time python3 load/TestCleanup.py test UNRWFWP1DA-opus16
# time python3 load/DBPLoadController.py test s3://dbp-etl-upload-dev-zrg0q2rhv7shv7hr UNRWFWP1DA
# time python3 load/TestCleanup.py test HYWWAV
# time python3 load/TestCleanup.py test HYWWAVN_ET-usx
# time python3 load/DBPLoadController.py test s3://dbp-etl-upload-dev-zrg0q2rhv7shv7hr HYWWAVN2ET
# time python3 load/TestCleanup.py test ENGESVP2DV
# time python3 load/DBPLoadController.py test s3://dbp-etl-upload-dev-zrg0q2rhv7shv7hr ENGESVP2DV
# Combined test of two dissimilar filesets on s3
# time python3 load/TestCleanup.py test UNRWFWP1DA
# time python3 load/TestCleanup.py test HYWWAV
# time python3 load/TestCleanup.py test HYWWAVN_ET-usx
# time python3 load/DBPLoadController.py test s3://dbp-etl-upload-dev-zrg0q2rhv7shv7hr UNRWFWP1DA HYWWAVN2ET
# Some video uploads
# time python3 load/TestCleanup.py test ENGESVP2DV
# time python3 load/DBPLoadController.py test /Volumes/FCBH/all-dbp-etl-test/ ENGESVP2DV
# time python3 load/DBPLoadController.py test /Volumes/FCBH/all-dbp-etl-test/ video/ENGESV/ENGESVP2DV
# time python3 load/DBPLoadController.py test /Volumes/FCBH/all-dbp-etl-test/ video/ENGESX/ENGESVP2DV
# Successful tests with source on local drive and full path
# time python3 load/TestCleanup.py test GNWNTM
# time python3 load/TestCleanup.py test GNWNTMN_ET-usx
# time python3 load/DBPLoadController.py test /Volumes/FCBH/all-dbp-etl-test/ GNWNTMN2ET
# time python3 load/TestCleanup.py test GNWNTM
# time python3 load/TestCleanup.py test GNWNTMN_ET-usx
# time python3 load/DBPLoadController.py test /Volumes/FCBH/all-dbp-etl-test/ text/GNWNTM/GNWNTMN2ET
### prepare test data in bucket
### aws --profile DBP_DEV s3 sync /Volumes/FCBH/TextStockNo/Barai_N2BBBWBT_USX/ s3://dbp-etl-upload-dev-zrg0q2rhv7shv7hr/Barai_N2BBBWBT_USX/
### aws --profile DBP_DEV s3 sync /Volumes/FCBH/TextStockNo/Orma_N2ORCBTL_USX/ s3://dbp-etl-upload-dev-zrg0q2rhv7shv7hr/Orma_N2ORCBTL_USX/
### aws --profile DBP_DEV s3 sync /Volumes/FCBH/TextStockNo/Urdu_N2URDPAK_USX/ s3://dbp-etl-upload-dev-zrg0q2rhv7shv7hr/Urdu_N2URDPAK_USX/
# Test stock number upload from Drive with path
# time python3 load/TestCleanup.py test BBBWBT
# time python3 load/TestCleanup.py test BBBWBTN_ET-usx
# time python3 load/DBPLoadController.py test s3://dbp-etl-upload-dev-zrg0q2rhv7shv7hr/ Barai_N2BBBWBT_USX
# time python3 load/TestCleanup.py test ORCBTL
# time python3 load/TestCleanup.py test ORCBTLN_ET-usx
# time python3 load/DBPLoadController.py test s3://dbp-etl-upload-dev-zrg0q2rhv7shv7hr/ Orma_N2ORCBTL_USX
# time python3 load/TestCleanup.py test URDPAK
# time python3 load/TestCleanup.py test URDPAKN_ET-usx
# time python3 load/DBPLoadController.py test s3://dbp-etl-upload-dev-zrg0q2rhv7shv7hr/ Urdu_N2URDPAK_USX
# python3 load/TestCleanup.py test ABIWBT
# python3 load/TestCleanup.py test ABIWBTN_ET-usx
# python3 load/DBPLoadController.py test s3://dbp-etl-mass-batch "Abidji N2ABIWBT/05 DBP & GBA/Abidji_N2ABIWBT/Abidji_N2ABIWBT_USX"
# This one BiblePublisher has two copies of 1CO:16, but I can only find one in the USX file.
# python3 load/TestCleanup.py test ACHBSU
# python3 load/TestCleanup.py test ACHBSUN_ET-usx
# python3 load/DBPLoadController.py test s3://dbp-etl-mass-batch "Acholi N2ACHBSU/05 DBP & GBA/Acholi_N2ACHBSU - Update/Acholi_N2ACHBSU_USX"
# python3 load/TestCleanup.py test CRXWYI
# python3 load/TestCleanup.py test CRXWYIP_ET-usx
# python3 load/TestCleanup.py test CRXWYIN_ET-usx
# python3 load/DBPLoadController.py test s3://dbp-etl-mass-batch "Carrier, Central N2CRXWYI/05 DBP & GBA/Carrier, Central_P1CRXWYI/Carrier, Central_P1CRXWYI_USX"
| 40.477064
| 174
| 0.779012
| 2,433
| 0.275725
| 0
| 0
| 0
| 0
| 0
| 0
| 5,420
| 0.614234
|