hexsha
stringlengths
40
40
size
int64
7
1.04M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
247
max_stars_repo_name
stringlengths
4
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
368k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
247
max_issues_repo_name
stringlengths
4
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
247
max_forks_repo_name
stringlengths
4
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.04M
avg_line_length
float64
1.77
618k
max_line_length
int64
1
1.02M
alphanum_fraction
float64
0
1
original_content
stringlengths
7
1.04M
filtered:remove_function_no_docstring
int64
-102
942k
filtered:remove_class_no_docstring
int64
-354
977k
filtered:remove_delete_markers
int64
0
60.1k
047b922e0222aa34f6c78018cdd19f790e7e76f5
3,263
py
Python
Optimizer.py
FGDBTKD/Linguistically-Regularized-LSTM-for-Sentiment-Classification
29c1ebd4b59574bb5e66590893c5da55c47ca6b5
[ "MIT" ]
14
2018-08-16T02:40:42.000Z
2021-08-03T11:52:28.000Z
Optimizer.py
FGDBTKD/Linguistically-Regularized-LSTM-for-Sentiment-Classification
29c1ebd4b59574bb5e66590893c5da55c47ca6b5
[ "MIT" ]
3
2018-09-01T08:55:18.000Z
2020-04-17T02:03:00.000Z
Optimizer.py
FGDBTKD/Linguistically-Regularized-LSTM-for-Sentiment-Classification
29c1ebd4b59574bb5e66590893c5da55c47ca6b5
[ "MIT" ]
8
2018-09-01T03:33:05.000Z
2021-01-27T06:04:27.000Z
import numpy as np import logging OptimizerList = {'SGD': SGD, 'ADAGRAD': ADAGRAD, 'ADADELTA': ADADELTA}
42.934211
97
0.583206
import numpy as np import logging class ADADELTA(object): def __init__(self, params, lr=1, lr_word_vector=0.1, lr_decay=0.95, epsilon=1e-6): logging.info('Optimizer ADADELTA lr %f lr_decay %f epsilon %f' % (lr, lr_decay, epsilon)) self.lr = lr self.lr_word_vector = lr_word_vector self.lr_decay = lr_decay self.epsilon = epsilon self.acc_grad = {} self.acc_update = {} for param in params: self.acc_grad[param] = np.zeros_like(param.get_value()) self.acc_update[param] = np.zeros_like(param.get_value()) def iterate(self, grads): lr = self.lr lr_decay = self.lr_decay epsilon = self.epsilon for param, grad in grads.items(): if param.name[0] == 'V': param.set_value(param.get_value() - grad.get_value() * self.lr_word_vector) else: self.acc_grad[param] = lr_decay * self.acc_grad[param] + \ (1 - lr_decay) * (grad.get_value())**2 param_update = np.sqrt(self.acc_update[param] + epsilon) \ / np.sqrt(self.acc_grad[param] + epsilon) * grad.get_value() * lr self.acc_update[param] = lr_decay * self.acc_update[param] \ + (1 - lr_decay) * param_update**2 param.set_value(param.get_value() - param_update) class ADAGRAD(object): def __init__(self, params, lr, lr_word_vector=0.1, epsilon=1e-10): logging.info('Optimizer ADAGRAD lr %f' % (lr, )) self.lr = lr self.lr_word_vector = lr_word_vector self.epsilon = epsilon self.acc_grad = {} for param in params: self.acc_grad[param] = np.zeros_like(param.get_value()) def iterate(self, grads): lr = self.lr epsilon = self.epsilon for param, grad in grads.items(): if param.name[0] == 'V': param.set_value(param.get_value() - grad.get_value() * self.lr_word_vector) else: self.acc_grad[param] = self.acc_grad[param] + grad.get_value()**2 param_update = lr * grad.get_value() / (np.sqrt(self.acc_grad[param]) + epsilon) param.set_value(param.get_value() - param_update) class SGD(object): def __init__(self, params, lr, lr_word_vector=0.1, momentum=0.9): logging.info('Optimizer SGD lr %s momentum %s' % (lr, momentum)) self.lr = lr self.lr_word_vector = lr_word_vector self.momentum = momentum self.sum_grad = {} for param in params: self.sum_grad[param] = np.zeros_like(param.get_value()) def iterate(self, grads): lr = self.lr momentum = self.momentum for param, grad in grads.items(): if param.name[0] == 'V': param.set_value(param.get_value() - grad.get_value() * self.lr_word_vector) else: self.sum_grad[param] = self.sum_grad[param] * momentum + lr * grad.get_value() param.set_value(param.get_value() - self.sum_grad[param]) grad.set_value(np.zeros_like(param.get_value())) OptimizerList = {'SGD': SGD, 'ADAGRAD': ADAGRAD, 'ADADELTA': ADADELTA}
2,929
0
228
22f548c42a9ed87746e00171ecdba0d38c74fe62
702
py
Python
huemans/utils/__init__.py
mikkogozalo/huemans
7ce3807ac9abbdefd618001a768872f9509fe3d5
[ "MIT" ]
1
2017-12-19T15:03:58.000Z
2017-12-19T15:03:58.000Z
huemans/utils/__init__.py
mikkogozalo/huemans
7ce3807ac9abbdefd618001a768872f9509fe3d5
[ "MIT" ]
null
null
null
huemans/utils/__init__.py
mikkogozalo/huemans
7ce3807ac9abbdefd618001a768872f9509fe3d5
[ "MIT" ]
null
null
null
from collections import MutableMapping
21.9375
53
0.638177
from collections import MutableMapping class State(MutableMapping, dict): _dirty_keys = [] def __getitem__(self, item): return dict.__getitem__(self, item) def __setitem__(self, key, value): self._dirty_keys.append(key) dict.__setitem__(self, key, value) def __delitem__(self, key): dict.__delitem__(self, key) def __iter__(self): return dict.__iter__(self) def __len__(self): return dict.__len__(self) def __contains__(self, x): return dict.__contains__(self, x) def set_clean(self): self._dirty_keys = [] @property def dirty(self): return {k: self[k] for k in self._dirty_keys}
375
265
23
88acba4e7609f52d44bc071b4f9a53e54c8c5aae
1,225
py
Python
watson-conversation-python-slackbot/bot/driver.py
relyt0925/kube-samples
48254c80826808bbb4193a6956c7de0e1a707008
[ "Apache-2.0" ]
null
null
null
watson-conversation-python-slackbot/bot/driver.py
relyt0925/kube-samples
48254c80826808bbb4193a6956c7de0e1a707008
[ "Apache-2.0" ]
null
null
null
watson-conversation-python-slackbot/bot/driver.py
relyt0925/kube-samples
48254c80826808bbb4193a6956c7de0e1a707008
[ "Apache-2.0" ]
null
null
null
import ConfigParser import datetime import threading import time from slackclient import SlackClient from responses import bot Config = ConfigParser.ConfigParser() Config.read("credentials.ini") token = Config.get('Slack_Creds', 'token') print "token: " + token sc = SlackClient(token) robot = bot(sc, token) print "Starting up!" connected = False start = time.time() # Spin and try to connect every 5 seconds upon initial boot. while connected is False: if sc.rtm_connect(): print "Successfully connected to Slack!" connected = True while connected: # Read from the Slack Channels that the bot is currently a part of. try: Incoming_Message = sc.rtm_read() except Exception as e: print e Incoming_Message = [] connected = False # Process each incoming message from Slack. for msg in Incoming_Message: thread = threading.Thread( target=robot.Process, args=(msg,)) thread.start() time.sleep(0.1) else: print "Connection Failed, invalid token?" connected = False time.sleep(5)
26.630435
79
0.613061
import ConfigParser import datetime import threading import time from slackclient import SlackClient from responses import bot Config = ConfigParser.ConfigParser() Config.read("credentials.ini") token = Config.get('Slack_Creds', 'token') print "token: " + token sc = SlackClient(token) robot = bot(sc, token) print "Starting up!" connected = False start = time.time() # Spin and try to connect every 5 seconds upon initial boot. while connected is False: if sc.rtm_connect(): print "Successfully connected to Slack!" connected = True while connected: # Read from the Slack Channels that the bot is currently a part of. try: Incoming_Message = sc.rtm_read() except Exception as e: print e Incoming_Message = [] connected = False # Process each incoming message from Slack. for msg in Incoming_Message: thread = threading.Thread( target=robot.Process, args=(msg,)) thread.start() time.sleep(0.1) else: print "Connection Failed, invalid token?" connected = False time.sleep(5)
0
0
0
d9e27346691061707fec955b28eeb371d35a4d2d
15,523
py
Python
pynetbox/core/response.py
louis-oui/pynetbox
4d2c7496ec0560e193f648fca67aae1b6c85bce2
[ "Apache-2.0" ]
null
null
null
pynetbox/core/response.py
louis-oui/pynetbox
4d2c7496ec0560e193f648fca67aae1b6c85bce2
[ "Apache-2.0" ]
null
null
null
pynetbox/core/response.py
louis-oui/pynetbox
4d2c7496ec0560e193f648fca67aae1b6c85bce2
[ "Apache-2.0" ]
null
null
null
""" (c) 2017 DigitalOcean Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from pynetbox.core.query import Request from pynetbox.core.util import Hashabledict import pynetbox.core.endpoint # List of fields that are lists but should be treated as sets. LIST_AS_SET = ("tags", "tagged_vlans") def get_return(lookup, return_fields=None): """Returns simple representations for items passed to lookup. Used to return a "simple" representation of objects and collections sent to it via lookup. If lookup is an IPNetwork object immediately return the string representation. Otherwise, we look to see if lookup is a "choices" field (dict with only 'id' and 'value') or a nested_return. Finally, we check if it's a Record, if so simply return a string. Order is important due to nested_return being self-referential. :arg list,optional return_fields: A list of fields to reference when calling values on lookup. """ for i in return_fields or ["id", "value", "nested_return"]: if isinstance(lookup, dict) and lookup.get(i): return lookup[i] else: if hasattr(lookup, i): return getattr(lookup, i) if isinstance(lookup, Record): return str(lookup) else: return lookup class JsonField(object): """Explicit field type for values that are not to be converted to a Record object""" _json_field = True class Record(object): """Create python objects from netbox API responses. Creates an object from a NetBox response passed as `values`. Nested dicts that represent other endpoints are also turned into Record objects. All fields are then assigned to the object's attributes. If a missing attr is requested (e.g. requesting a field that's only present on a full response on a Record made from a nested response) the pynetbox will make a request for the full object and return the requsted value. :examples: Default representation of the object is usually its name >>> x = nb.dcim.devices.get(1) >>> x test1-switch1 >>> Querying a string field. >>> x = nb.dcim.devices.get(1) >>> x.serial 'ABC123' >>> Querying a field on a nested object. >>> x = nb.dcim.devices.get(1) >>> x.device_type.model 'QFX5100-24Q' >>> Casting the object as a dictionary. >>> from pprint import pprint >>> pprint(dict(x)) {'asset_tag': None, 'cluster': None, 'comments': '', 'config_context': {}, 'created': '2018-04-01', 'custom_fields': {}, 'device_role': {'id': 1, 'name': 'Test Switch', 'slug': 'test-switch', 'url': 'http://localhost:8000/api/dcim/device-roles/1/'}, 'device_type': {...}, 'display_name': 'test1-switch1', 'face': {'label': 'Rear', 'value': 1}, 'id': 1, 'name': 'test1-switch1', 'parent_device': None, 'platform': {...}, 'position': 1, 'primary_ip': {'address': '192.0.2.1/24', 'family': 4, 'id': 1, 'url': 'http://localhost:8000/api/ipam/ip-addresses/1/'}, 'primary_ip4': {...}, 'primary_ip6': None, 'rack': {'display_name': 'Test Rack', 'id': 1, 'name': 'Test Rack', 'url': 'http://localhost:8000/api/dcim/racks/1/'}, 'serial': 'ABC123', 'site': {'id': 1, 'name': 'TEST', 'slug': 'TEST', 'url': 'http://localhost:8000/api/dcim/sites/1/'}, 'status': {'label': 'Active', 'value': 1}, 'tags': [], 'tenant': None, 'vc_position': None, 'vc_priority': None, 'virtual_chassis': None} >>> Iterating over a Record object. >>> for i in x: ... print(i) ... ('id', 1) ('name', 'test1-switch1') ('display_name', 'test1-switch1') >>> """ url = None def __getattr__(self, k): """Default behavior for missing attrs. We'll call `full_details()` if we're asked for an attribute we don't have. In order to prevent non-explicit behavior,`k='keys'` is excluded because casting to dict() calls this attr. """ if self.url: if self.has_details is False and k != "keys": if self.full_details(): ret = getattr(self, k, None) if ret or hasattr(self, k): return ret raise AttributeError('object has no attribute "{}"'.format(k)) def _parse_values(self, values): """ Parses values init arg. Parses values dict at init and sets object attributes with the values within. """ for k, v in values.items(): if isinstance(v, dict): lookup = getattr(self.__class__, k, None) if k == "custom_fields" or hasattr(lookup, "_json_field"): self._add_cache((k, v.copy())) setattr(self, k, v) continue k_endpoint = None if "url" in v: k_path_list = v["url"].split("/") if "api" in k_path_list: offset = k_path_list.index("api") + 1 if len(k_path_list[offset:]) > 0 \ and k_path_list[offset:][0] == "api": # domain name is "api" offset = offset + 1 if len(k_path_list[offset:]) > 1: k_app = k_path_list[offset:][0] k_name = k_path_list[offset:][1] if hasattr(self.api, k_app): k_endpoint = pynetbox.core.endpoint.\ Endpoint(self.api, getattr(self.api, k_app), k_name, model=None) if lookup: v = lookup(v, self.api, k_endpoint) else: v = self.default_ret(v, self.api, k_endpoint) self._add_cache((k, v)) elif isinstance(v, list): v = [list_parser(i) for i in v] to_cache = list(v) self._add_cache((k, to_cache)) else: self._add_cache((k, v)) setattr(self, k, v) def _compare(self): """Compares current attributes to values at instantiation. In order to be idempotent we run this method in `save()`. Returns: Boolean value, True indicates current instance has the same attributes as the ones passed to `values`. """ if self.serialize(init=True) == self.serialize(): return True return False def full_details(self): """Queries the hyperlinked endpoint if 'url' is defined. This method will populate the attributes from the detail endpoint when it's called. Sets the class-level `has_details` attribute when it's called to prevent being called more than once. :returns: True """ if self.url: req = Request( base=self.url, token=self.api.token, session_key=self.api.session_key, ssl_verify=self.api.ssl_verify, http_session=self.api.http_session, ) self._parse_values(req.get()) self.has_details = True return True return False def serialize(self, nested=False, init=False): """Serializes an object Pulls all the attributes in an object and creates a dict that can be turned into the json that netbox is expecting. If an attribute's value is a ``Record`` type it's replaced with the ``id`` field of that object. .. note:: Using this to get a dictionary representation of the record is discouraged. It's probably better to cast to dict() instead. See Record docstring for example. :returns: dict. """ if nested: return get_return(self) if init: init_vals = dict(self._init_cache) ret = {} for i in dict(self): current_val = getattr(self, i) if not init else init_vals.get(i) if i == "custom_fields": ret[i] = flatten_custom(current_val) else: if isinstance(current_val, Record): current_val = getattr(current_val, "serialize")( nested=True ) if isinstance(current_val, list): current_val = [ v.id if isinstance(v, Record) else v for v in current_val ] if i in LIST_AS_SET: current_val = list(set(current_val)) ret[i] = current_val return ret def save(self): """Saves changes to an existing object. Takes a diff between the objects current state and its state at init and sends them as a dictionary to Request.patch(). :returns: True if PATCH request was successful. :example: >>> x = nb.dcim.devices.get(name='test1-a3-tor1b') >>> x.serial u'' >>> x.serial = '1234' >>> x.save() True >>> """ if self.id: diff = self._diff() if diff: serialized = self.serialize() req = Request( key=self.id, base=self.endpoint.url, token=self.api.token, session_key=self.api.session_key, ssl_verify=self.api.ssl_verify, http_session=self.api.http_session, ) if req.patch({i: serialized[i] for i in diff}): return True return False def update(self, data): """Update an object with a dictionary. Accepts a dict and uses it to update the record and call save(). For nested and choice fields you'd pass an int the same as if you were modifying the attribute and calling save(). :arg dict data: Dictionary containing the k/v to update the record object with. :returns: True if PATCH request was successful. :example: >>> x = nb.dcim.devices.get(1) >>> x.update({ ... "name": "test-switch2", ... "serial": "ABC321", ... }) True """ for k, v in data.items(): setattr(self, k, v) return self.save() def delete(self): """Deletes an existing object. :returns: True if DELETE operation was successful. :example: >>> x = nb.dcim.devices.get(name='test1-a3-tor1b') >>> x.delete() True >>> """ req = Request( key=self.id, base=self.endpoint.url, token=self.api.token, session_key=self.api.session_key, ssl_verify=self.api.ssl_verify, http_session=self.api.http_session, ) return True if req.delete() else False
32.339583
78
0.52419
""" (c) 2017 DigitalOcean Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from pynetbox.core.query import Request from pynetbox.core.util import Hashabledict import pynetbox.core.endpoint # List of fields that are lists but should be treated as sets. LIST_AS_SET = ("tags", "tagged_vlans") def get_return(lookup, return_fields=None): """Returns simple representations for items passed to lookup. Used to return a "simple" representation of objects and collections sent to it via lookup. If lookup is an IPNetwork object immediately return the string representation. Otherwise, we look to see if lookup is a "choices" field (dict with only 'id' and 'value') or a nested_return. Finally, we check if it's a Record, if so simply return a string. Order is important due to nested_return being self-referential. :arg list,optional return_fields: A list of fields to reference when calling values on lookup. """ for i in return_fields or ["id", "value", "nested_return"]: if isinstance(lookup, dict) and lookup.get(i): return lookup[i] else: if hasattr(lookup, i): return getattr(lookup, i) if isinstance(lookup, Record): return str(lookup) else: return lookup def flatten_custom(custom_dict): return { k: v if not isinstance(v, dict) else v["value"] for k, v in custom_dict.items() } class JsonField(object): """Explicit field type for values that are not to be converted to a Record object""" _json_field = True class Record(object): """Create python objects from netbox API responses. Creates an object from a NetBox response passed as `values`. Nested dicts that represent other endpoints are also turned into Record objects. All fields are then assigned to the object's attributes. If a missing attr is requested (e.g. requesting a field that's only present on a full response on a Record made from a nested response) the pynetbox will make a request for the full object and return the requsted value. :examples: Default representation of the object is usually its name >>> x = nb.dcim.devices.get(1) >>> x test1-switch1 >>> Querying a string field. >>> x = nb.dcim.devices.get(1) >>> x.serial 'ABC123' >>> Querying a field on a nested object. >>> x = nb.dcim.devices.get(1) >>> x.device_type.model 'QFX5100-24Q' >>> Casting the object as a dictionary. >>> from pprint import pprint >>> pprint(dict(x)) {'asset_tag': None, 'cluster': None, 'comments': '', 'config_context': {}, 'created': '2018-04-01', 'custom_fields': {}, 'device_role': {'id': 1, 'name': 'Test Switch', 'slug': 'test-switch', 'url': 'http://localhost:8000/api/dcim/device-roles/1/'}, 'device_type': {...}, 'display_name': 'test1-switch1', 'face': {'label': 'Rear', 'value': 1}, 'id': 1, 'name': 'test1-switch1', 'parent_device': None, 'platform': {...}, 'position': 1, 'primary_ip': {'address': '192.0.2.1/24', 'family': 4, 'id': 1, 'url': 'http://localhost:8000/api/ipam/ip-addresses/1/'}, 'primary_ip4': {...}, 'primary_ip6': None, 'rack': {'display_name': 'Test Rack', 'id': 1, 'name': 'Test Rack', 'url': 'http://localhost:8000/api/dcim/racks/1/'}, 'serial': 'ABC123', 'site': {'id': 1, 'name': 'TEST', 'slug': 'TEST', 'url': 'http://localhost:8000/api/dcim/sites/1/'}, 'status': {'label': 'Active', 'value': 1}, 'tags': [], 'tenant': None, 'vc_position': None, 'vc_priority': None, 'virtual_chassis': None} >>> Iterating over a Record object. >>> for i in x: ... print(i) ... ('id', 1) ('name', 'test1-switch1') ('display_name', 'test1-switch1') >>> """ url = None def __init__(self, values, api, endpoint): self.has_details = False self._full_cache = [] self._init_cache = [] self.api = api self.endpoint = endpoint self.default_ret = Record if values: self._parse_values(values) def __getattr__(self, k): """Default behavior for missing attrs. We'll call `full_details()` if we're asked for an attribute we don't have. In order to prevent non-explicit behavior,`k='keys'` is excluded because casting to dict() calls this attr. """ if self.url: if self.has_details is False and k != "keys": if self.full_details(): ret = getattr(self, k, None) if ret or hasattr(self, k): return ret raise AttributeError('object has no attribute "{}"'.format(k)) def __iter__(self): for i in dict(self._init_cache): cur_attr = getattr(self, i) if isinstance(cur_attr, Record): yield i, dict(cur_attr) elif isinstance(cur_attr, list) and all( isinstance(i, Record) for i in cur_attr ): yield i, [dict(x) for x in cur_attr] else: yield i, cur_attr def __getitem__(self, item): return item def __str__(self): return ( getattr(self, "name", None) or getattr(self, "label", None) or "" ) def __repr__(self): return str(self) def __getstate__(self): return self.__dict__ def __setstate__(self, d): self.__dict__.update(d) def __key__(self): if hasattr(self, "id"): return (self.endpoint.name, self.id) else: return (self.endpoint.name) def __hash__(self): return hash(self.__key__()) def __eq__(self, other): if isinstance(other, Record): return self.__key__() == other.__key__() return NotImplemented def _add_cache(self, item): key, value = item self._init_cache.append((key, get_return(value))) def _parse_values(self, values): """ Parses values init arg. Parses values dict at init and sets object attributes with the values within. """ def list_parser(list_item): if isinstance(list_item, dict): k_endpoint = None if "url" in list_item: if "url" in list_item: k_path_list = list_item["url"].split("/") if "api" in k_path_list: offset = k_path_list.index("api") + 1 if len(k_path_list[offset:]) > 0 \ and k_path_list[offset:][0] == "api": # domain name is "api" offset = offset + 1 if len(k_path_list[offset:]) > 1: k_app = k_path_list[offset:][0] k_name = k_path_list[offset:][1] if hasattr(self.api, k_app): k_endpoint = pynetbox.core.endpoint.\ Endpoint(self.api, getattr(self.api, k_app), k_name, model=None) return self.default_ret(list_item, self.api, k_endpoint) return list_item for k, v in values.items(): if isinstance(v, dict): lookup = getattr(self.__class__, k, None) if k == "custom_fields" or hasattr(lookup, "_json_field"): self._add_cache((k, v.copy())) setattr(self, k, v) continue k_endpoint = None if "url" in v: k_path_list = v["url"].split("/") if "api" in k_path_list: offset = k_path_list.index("api") + 1 if len(k_path_list[offset:]) > 0 \ and k_path_list[offset:][0] == "api": # domain name is "api" offset = offset + 1 if len(k_path_list[offset:]) > 1: k_app = k_path_list[offset:][0] k_name = k_path_list[offset:][1] if hasattr(self.api, k_app): k_endpoint = pynetbox.core.endpoint.\ Endpoint(self.api, getattr(self.api, k_app), k_name, model=None) if lookup: v = lookup(v, self.api, k_endpoint) else: v = self.default_ret(v, self.api, k_endpoint) self._add_cache((k, v)) elif isinstance(v, list): v = [list_parser(i) for i in v] to_cache = list(v) self._add_cache((k, to_cache)) else: self._add_cache((k, v)) setattr(self, k, v) def _compare(self): """Compares current attributes to values at instantiation. In order to be idempotent we run this method in `save()`. Returns: Boolean value, True indicates current instance has the same attributes as the ones passed to `values`. """ if self.serialize(init=True) == self.serialize(): return True return False def full_details(self): """Queries the hyperlinked endpoint if 'url' is defined. This method will populate the attributes from the detail endpoint when it's called. Sets the class-level `has_details` attribute when it's called to prevent being called more than once. :returns: True """ if self.url: req = Request( base=self.url, token=self.api.token, session_key=self.api.session_key, ssl_verify=self.api.ssl_verify, http_session=self.api.http_session, ) self._parse_values(req.get()) self.has_details = True return True return False def serialize(self, nested=False, init=False): """Serializes an object Pulls all the attributes in an object and creates a dict that can be turned into the json that netbox is expecting. If an attribute's value is a ``Record`` type it's replaced with the ``id`` field of that object. .. note:: Using this to get a dictionary representation of the record is discouraged. It's probably better to cast to dict() instead. See Record docstring for example. :returns: dict. """ if nested: return get_return(self) if init: init_vals = dict(self._init_cache) ret = {} for i in dict(self): current_val = getattr(self, i) if not init else init_vals.get(i) if i == "custom_fields": ret[i] = flatten_custom(current_val) else: if isinstance(current_val, Record): current_val = getattr(current_val, "serialize")( nested=True ) if isinstance(current_val, list): current_val = [ v.id if isinstance(v, Record) else v for v in current_val ] if i in LIST_AS_SET: current_val = list(set(current_val)) ret[i] = current_val return ret def _diff(self): def fmt_dict(k, v): if isinstance(v, dict): return k, Hashabledict(v) if isinstance(v, list): return k, ",".join(map(str, v)) return k, v current = Hashabledict( {fmt_dict(k, v) for k, v in self.serialize().items()} ) init = Hashabledict( {fmt_dict(k, v) for k, v in self.serialize(init=True).items()} ) return set([i[0] for i in set(current.items()) ^ set(init.items())]) def save(self): """Saves changes to an existing object. Takes a diff between the objects current state and its state at init and sends them as a dictionary to Request.patch(). :returns: True if PATCH request was successful. :example: >>> x = nb.dcim.devices.get(name='test1-a3-tor1b') >>> x.serial u'' >>> x.serial = '1234' >>> x.save() True >>> """ if self.id: diff = self._diff() if diff: serialized = self.serialize() req = Request( key=self.id, base=self.endpoint.url, token=self.api.token, session_key=self.api.session_key, ssl_verify=self.api.ssl_verify, http_session=self.api.http_session, ) if req.patch({i: serialized[i] for i in diff}): return True return False def update(self, data): """Update an object with a dictionary. Accepts a dict and uses it to update the record and call save(). For nested and choice fields you'd pass an int the same as if you were modifying the attribute and calling save(). :arg dict data: Dictionary containing the k/v to update the record object with. :returns: True if PATCH request was successful. :example: >>> x = nb.dcim.devices.get(1) >>> x.update({ ... "name": "test-switch2", ... "serial": "ABC321", ... }) True """ for k, v in data.items(): setattr(self, k, v) return self.save() def delete(self): """Deletes an existing object. :returns: True if DELETE operation was successful. :example: >>> x = nb.dcim.devices.get(name='test1-a3-tor1b') >>> x.delete() True >>> """ req = Request( key=self.id, base=self.endpoint.url, token=self.api.token, session_key=self.api.session_key, ssl_verify=self.api.ssl_verify, http_session=self.api.http_session, ) return True if req.delete() else False
3,126
0
378
d71a55c60a56a2572e4916c5e4250c6b4970c260
1,056
py
Python
user.py
k-koech/password_locker
4755fe10f04e4453e95d328d2752c269bbd448e6
[ "MIT" ]
null
null
null
user.py
k-koech/password_locker
4755fe10f04e4453e95d328d2752c269bbd448e6
[ "MIT" ]
null
null
null
user.py
k-koech/password_locker
4755fe10f04e4453e95d328d2752c269bbd448e6
[ "MIT" ]
1
2021-09-04T08:30:08.000Z
2021-09-04T08:30:08.000Z
class User: """ Class that generates new instances of Users. """ user_list = [] # Empty user list def save_user(self): ''' This method saves User objects into user_list ''' User.user_list.append(self) @classmethod def user_exist(cls,username,password): ''' Method that checks if a user exists from the users list. Boolean: True or false depending if the user exists ''' for user in cls.user_list: if user.username == username and user.password==password: return True return False @classmethod def login(cls,username,password): ''' Method that logs in a user if it exists from the user list. ''' for user in cls.user_list: if user.username == username and user.password==password: return user
21.55102
69
0.5625
class User: """ Class that generates new instances of Users. """ def __init__(self,username,password): self.username = username self.password = password user_list = [] # Empty user list def save_user(self): ''' This method saves User objects into user_list ''' User.user_list.append(self) @classmethod def user_exist(cls,username,password): ''' Method that checks if a user exists from the users list. Boolean: True or false depending if the user exists ''' for user in cls.user_list: if user.username == username and user.password==password: return True return False @classmethod def login(cls,username,password): ''' Method that logs in a user if it exists from the user list. ''' for user in cls.user_list: if user.username == username and user.password==password: return user
83
0
30
aa45a19c41356a15e780119763c8e777f62bcc6a
1,161
py
Python
Information search/IS - 2. Indexing/docreader.py
Shemplo/Study-courses
d719cfbddf9358b0f3505e747586d0cc575dd832
[ "Apache-2.0" ]
1
2019-03-27T18:42:12.000Z
2019-03-27T18:42:12.000Z
Information search/IS - 2. Indexing/docreader.py
Shemplo/Study-courses
d719cfbddf9358b0f3505e747586d0cc575dd832
[ "Apache-2.0" ]
3
2018-10-19T07:04:03.000Z
2021-12-14T21:15:10.000Z
Information search/IS - 2. Indexing/docreader.py
Shemplo/Study-courses
d719cfbddf9358b0f3505e747586d0cc575dd832
[ "Apache-2.0" ]
3
2019-03-21T05:16:21.000Z
2021-12-21T11:54:30.000Z
#!/usr/bin/env python import argparse import document_pb2 import struct import gzip import sys if __name__ == '__main__': reader = DocumentStreamReader(parse_command_line().files) for doc in reader: print "%s\t%d bytes" % (doc.url, len(doc.text))
28.317073
89
0.577089
#!/usr/bin/env python import argparse import document_pb2 import struct import gzip import sys class DocumentStreamReader: def __init__(self, paths): self.paths = paths def open_single(self, path): return gzip.open(path, 'rb') if path.endswith('.gz') else open(path, 'rb') def __iter__(self): for path in self.paths: with self.open_single(path) as stream: while True: sb = stream.read(4) if sb == '': break size = struct.unpack('i', sb)[0] msg = stream.read(size) doc = document_pb2.document() doc.ParseFromString(msg) yield doc def parse_command_line(): parser = argparse.ArgumentParser(description='compressed documents reader') parser.add_argument('files', nargs='+', help='Input files (.gz or plain) to process') return parser.parse_args() if __name__ == '__main__': reader = DocumentStreamReader(parse_command_line().files) for doc in reader: print "%s\t%d bytes" % (doc.url, len(doc.text))
762
6
126
b81bcbbebeafe80edcb9b654a8607f21f50b6e6c
13,581
py
Python
frameworks/helloworld/tests/test_secrets.py
akshitjain/dcos-commons_edited
371675b07971afc1604800b0fa6b6ce11ae3a705
[ "Apache-2.0" ]
null
null
null
frameworks/helloworld/tests/test_secrets.py
akshitjain/dcos-commons_edited
371675b07971afc1604800b0fa6b6ce11ae3a705
[ "Apache-2.0" ]
null
null
null
frameworks/helloworld/tests/test_secrets.py
akshitjain/dcos-commons_edited
371675b07971afc1604800b0fa6b6ce11ae3a705
[ "Apache-2.0" ]
null
null
null
import pytest from shakedown import * import sdk_cmd as cmd import sdk_install as install import sdk_plan as plan import sdk_tasks as tasks import sdk_marathon as marathon import time import json from tests.config import ( PACKAGE_NAME ) NUM_HELLO = 2 NUM_WORLD = 3 secret_content_default = "hello-world-secret-data" secret_content_alternative = "hello-world-secret-data-alternative" secret_options = { "service": { "spec_file": "examples/secrets.yml" }, "hello": { "count": NUM_HELLO, "secret1": "hello-world/secret1", "secret2": "hello-world/secret2" }, "world": { "count": NUM_WORLD, "secret1": "hello-world/secret1", "secret2": "hello-world/secret2", "secret3": "hello-world/secret3" } } options_dcos_space_test = { "service": { "spec_file": "examples/secrets.yml" }, "hello": { "count": NUM_HELLO, "secret1": "hello-world/somePath/secret1", "secret2": "hello-world/somePath/secret2" }, "world": { "count": NUM_WORLD, "secret1": "hello-world/somePath/secret1", "secret2": "hello-world/somePath/secret2", "secret3": "hello-world/somePath/secret3" } } @pytest.mark.sanity @pytest.mark.smoke @pytest.mark.secrets @dcos_1_10 @pytest.mark.sanity @pytest.mark.secrets @dcos_1_10 @pytest.mark.sanity @pytest.mark.secrets @dcos_1_10 @pytest.mark.sanity @pytest.mark.secrets @dcos_1_10 @pytest.mark.sanity @pytest.mark.secrets @pytest.mark.skip(reason="DCOS_SPACE authorization is not working in testing/master. Enable this test later.") @dcos_1_10
35.928571
113
0.71519
import pytest from shakedown import * import sdk_cmd as cmd import sdk_install as install import sdk_plan as plan import sdk_tasks as tasks import sdk_marathon as marathon import time import json from tests.config import ( PACKAGE_NAME ) NUM_HELLO = 2 NUM_WORLD = 3 secret_content_default = "hello-world-secret-data" secret_content_alternative = "hello-world-secret-data-alternative" secret_options = { "service": { "spec_file": "examples/secrets.yml" }, "hello": { "count": NUM_HELLO, "secret1": "hello-world/secret1", "secret2": "hello-world/secret2" }, "world": { "count": NUM_WORLD, "secret1": "hello-world/secret1", "secret2": "hello-world/secret2", "secret3": "hello-world/secret3" } } options_dcos_space_test = { "service": { "spec_file": "examples/secrets.yml" }, "hello": { "count": NUM_HELLO, "secret1": "hello-world/somePath/secret1", "secret2": "hello-world/somePath/secret2" }, "world": { "count": NUM_WORLD, "secret1": "hello-world/somePath/secret1", "secret2": "hello-world/somePath/secret2", "secret3": "hello-world/somePath/secret3" } } def setup_module(module): install.uninstall(PACKAGE_NAME) cmd.run_cli("package install --cli dcos-enterprise-cli") delete_secrets_all("{}/".format(PACKAGE_NAME)) delete_secrets_all("{}/somePath/".format(PACKAGE_NAME)) delete_secrets_all() def teardown_module(module): install.uninstall(PACKAGE_NAME) delete_secrets_all("{}/".format(PACKAGE_NAME)) delete_secrets_all("{}/somePath/".format(PACKAGE_NAME)) delete_secrets_all() @pytest.mark.sanity @pytest.mark.smoke @pytest.mark.secrets @dcos_1_10 def test_secrets_basic(): # 1) create Secrets # 2) install examples/secrets.yml # 3) if secret file is not created, tasks will fail # 4) wait till deployment finishes # 5) do replace operation # 6) ensure all tasks are running # 7) delete Secrets install.uninstall(PACKAGE_NAME) create_secrets("{}/".format(PACKAGE_NAME)) install.install(PACKAGE_NAME, NUM_HELLO + NUM_WORLD, additional_options=secret_options) # default is serial strategy, hello deploys first # launch will fail if secrets are not available or not accessible plan.wait_for_completed_deployment(PACKAGE_NAME) hello_tasks_0 = tasks.get_task_ids(PACKAGE_NAME, "hello-0") world_tasks_0 = tasks.get_task_ids(PACKAGE_NAME, "word-0") # ensure that secrets work after replace cmd.run_cli('hello-world pods replace hello-0') cmd.run_cli('hello-world pods replace world-0') tasks.check_tasks_updated(PACKAGE_NAME, "hello-0", hello_tasks_0) tasks.check_tasks_updated(PACKAGE_NAME, 'world-0', world_tasks_0) # tasks will fail if secret files are not created by mesos module tasks.check_running(PACKAGE_NAME, NUM_HELLO + NUM_WORLD) # clean up and delete secrets delete_secrets("{}/".format(PACKAGE_NAME)) @pytest.mark.sanity @pytest.mark.secrets @dcos_1_10 def test_secrets_verify(): # 1) create Secrets # 2) install examples/secrets.yml # 3) verify Secrets content # 4) delete Secrets install.uninstall(PACKAGE_NAME) create_secrets("{}/".format(PACKAGE_NAME)) install.install(PACKAGE_NAME, NUM_HELLO + NUM_WORLD, additional_options=secret_options) # launch will fail if secrets are not available or not accessible plan.wait_for_completed_deployment(PACKAGE_NAME) # tasks will fail if secret file is not created tasks.check_running(PACKAGE_NAME, NUM_HELLO + NUM_WORLD) # Verify secret content, one from each pod type # get task id - only first pod hello_tasks = tasks.get_task_ids(PACKAGE_NAME, "hello-0") world_tasks = tasks.get_task_ids(PACKAGE_NAME, "world-0") # first secret: environment variable name is given in yaml assert secret_content_default == task_exec(world_tasks[0], "bash -c 'echo $WORLD_SECRET1_ENV'") # second secret: file path is given in yaml assert secret_content_default == task_exec(world_tasks[0], "cat WORLD_SECRET2_FILE") # third secret : no file path is given in yaml # default file path is equal to secret path assert secret_content_default == task_exec(world_tasks[0], "cat hello-world/secret3") # hello tasks has container image, world tasks do not # first secret : environment variable name is given in yaml assert secret_content_default == task_exec(hello_tasks[0], "bash -c 'echo $HELLO_SECRET1_ENV'") # first secret : both environment variable name and file path are given in yaml assert secret_content_default == task_exec(hello_tasks[0], "cat HELLO_SECRET1_FILE") # second secret : file path is given in yaml assert secret_content_default == task_exec(hello_tasks[0], "cat HELLO_SECRET2_FILE") # clean up and delete secrets delete_secrets("{}/".format(PACKAGE_NAME)) @pytest.mark.sanity @pytest.mark.secrets @dcos_1_10 def test_secrets_update(): # 1) create Secrets # 2) install examples/secrets.yml # 3) update Secrets # 4) restart task # 5) verify Secrets content (updated after restart) # 6) delete Secrets install.uninstall(PACKAGE_NAME) create_secrets("{}/".format(PACKAGE_NAME)) install.install(PACKAGE_NAME, NUM_HELLO + NUM_WORLD, additional_options=secret_options) # launch will fail if secrets are not available or not accessible plan.wait_for_completed_deployment(PACKAGE_NAME) # tasks will fail if secret file is not created tasks.check_running(PACKAGE_NAME, NUM_HELLO + NUM_WORLD) cmd.run_cli("security secrets update --value={} {}/secret1".format(secret_content_alternative, PACKAGE_NAME)) cmd.run_cli("security secrets update --value={} {}/secret2".format(secret_content_alternative, PACKAGE_NAME)) cmd.run_cli("security secrets update --value={} {}/secret3".format(secret_content_alternative, PACKAGE_NAME)) # Verify with hello-0 and world-0, just check with one of the pods hello_tasks_old = tasks.get_task_ids(PACKAGE_NAME, "hello-0") world_tasks_old = tasks.get_task_ids(PACKAGE_NAME, "world-0") # restart pods to retrieve new secret's content cmd.run_cli('hello-world pods restart hello-0') cmd.run_cli('hello-world pods restart world-0') # wait pod restart to complete tasks.check_tasks_updated(PACKAGE_NAME, "hello-0", hello_tasks_old) tasks.check_tasks_updated(PACKAGE_NAME, 'world-0', world_tasks_old) # wait till it is running tasks.check_running(PACKAGE_NAME, NUM_HELLO + NUM_WORLD) # get new task ids - only first pod hello_tasks = tasks.get_task_ids(PACKAGE_NAME, "hello-0") world_tasks = tasks.get_task_ids(PACKAGE_NAME, "world-0") # make sure content is changed assert secret_content_alternative == task_exec(world_tasks[0], "bash -c 'echo $WORLD_SECRET1_ENV'") assert secret_content_alternative == task_exec(world_tasks[0], "cat WORLD_SECRET2_FILE") assert secret_content_alternative == task_exec(world_tasks[0], "cat {}/secret3".format(PACKAGE_NAME)) # make sure content is changed assert secret_content_alternative == task_exec(hello_tasks[0], "bash -c 'echo $HELLO_SECRET1_ENV'") assert secret_content_alternative == task_exec(hello_tasks[0], "cat HELLO_SECRET1_FILE") assert secret_content_alternative == task_exec(hello_tasks[0], "cat HELLO_SECRET2_FILE") # clean up and delete secrets delete_secrets("{}/".format(PACKAGE_NAME)) @pytest.mark.sanity @pytest.mark.secrets @dcos_1_10 def test_secrets_config_update(): # 1) install examples/secrets.yml # 2) create new Secrets, delete old Secrets # 2) update configuration with new Secrets # 4) verify secret content (using new Secrets after config update) install.uninstall(PACKAGE_NAME) create_secrets("{}/".format(PACKAGE_NAME)) install.install(PACKAGE_NAME, NUM_HELLO + NUM_WORLD, additional_options=secret_options) # launch will fail if secrets are not available or not accessible plan.wait_for_completed_deployment(PACKAGE_NAME) # tasks will fail if secret file is not created tasks.check_running(PACKAGE_NAME, NUM_HELLO + NUM_WORLD) # Verify secret content, one from each pod type # get tasks ids - only first pods hello_tasks = tasks.get_task_ids(PACKAGE_NAME, "hello-0") world_tasks = tasks.get_task_ids(PACKAGE_NAME, "world-0") # make sure it has the default value assert secret_content_default == task_exec(world_tasks[0], "bash -c 'echo $WORLD_SECRET1_ENV'") assert secret_content_default == task_exec(world_tasks[0], "cat WORLD_SECRET2_FILE") assert secret_content_default == task_exec(world_tasks[0], "cat {}/secret3".format(PACKAGE_NAME)) # hello tasks has container image assert secret_content_default == task_exec(hello_tasks[0], "bash -c 'echo $HELLO_SECRET1_ENV'") assert secret_content_default == task_exec(hello_tasks[0], "cat HELLO_SECRET1_FILE") assert secret_content_default == task_exec(hello_tasks[0], "cat HELLO_SECRET2_FILE") # clean up and delete secrets (defaults) delete_secrets("{}/".format(PACKAGE_NAME)) # create new secrets with new content -- New Value create_secrets(secret_content_arg=secret_content_alternative) config = marathon.get_config(PACKAGE_NAME) config['env']['HELLO_SECRET1'] = 'secret1' config['env']['HELLO_SECRET2'] = 'secret2' config['env']['WORLD_SECRET1'] = 'secret1' config['env']['WORLD_SECRET2'] = 'secret2' config['env']['WORLD_SECRET3'] = 'secret3' # config update marathon.update_app(PACKAGE_NAME, config) # wait till plan is complete - pods are supposed to restart plan.wait_for_completed_deployment(PACKAGE_NAME) # all tasks are running tasks.check_running(PACKAGE_NAME, NUM_HELLO + NUM_WORLD) # Verify secret content is changed # get task ids - only first pod hello_tasks = tasks.get_task_ids(PACKAGE_NAME, "hello-0") world_tasks = tasks.get_task_ids(PACKAGE_NAME, "world-0") assert secret_content_alternative == task_exec(world_tasks[0], "bash -c 'echo $WORLD_SECRET1_ENV'") assert secret_content_alternative == task_exec(world_tasks[0], "cat WORLD_SECRET2_FILE") assert secret_content_alternative == task_exec(world_tasks[0], "cat secret3") assert secret_content_alternative == task_exec(hello_tasks[0], "bash -c 'echo $HELLO_SECRET1_ENV'") assert secret_content_alternative == task_exec(hello_tasks[0], "cat HELLO_SECRET1_FILE") assert secret_content_alternative == task_exec(hello_tasks[0], "cat HELLO_SECRET2_FILE") # clean up and delete secrets delete_secrets() @pytest.mark.sanity @pytest.mark.secrets @pytest.mark.skip(reason="DCOS_SPACE authorization is not working in testing/master. Enable this test later.") @dcos_1_10 def test_secrets_dcos_space(): # 1) create secrets in hello-world/somePath, i.e. hello-world/somePath/secret1 ... # 2) Tasks with DCOS_SPACE hello-world/somePath # or some DCOS_SPACE path under hello-world/somePath # (for example hello-world/somePath/anotherPath/) # can access these Secrets install.uninstall(PACKAGE_NAME) # cannot access these secrets because of DCOS_SPACE authorization create_secrets("{}/somePath/".format(PACKAGE_NAME)) try: install.install(PACKAGE_NAME, NUM_HELLO + NUM_WORLD, additional_options=options_dcos_space_test) plan.wait_for_completed_deployment(PACKAGE_NAME) assert False, "Should have failed to install" except AssertionError as arg: raise arg except: pass # expected to fail # clean up and delete secrets delete_secrets("{}/somePath/".format(PACKAGE_NAME)) def create_secrets(path_prefix="", secret_content_arg=secret_content_default): cmd.run_cli("security secrets create --value={} {}secret1".format(secret_content_arg, path_prefix)) cmd.run_cli("security secrets create --value={} {}secret2".format(secret_content_arg, path_prefix)) cmd.run_cli("security secrets create --value={} {}secret3".format(secret_content_arg, path_prefix)) def delete_secrets(path_prefix=""): cmd.run_cli("security secrets delete {}secret1".format(path_prefix)) cmd.run_cli("security secrets delete {}secret2".format(path_prefix)) cmd.run_cli("security secrets delete {}secret3".format(path_prefix)) def delete_secrets_all(path_prefix=""): # if there is any secret left, delete # use in teardown_module try: cmd.run_cli("security secrets get {}secret1".format(path_prefix)) cmd.run_cli("security secrets delete {}secret1".format(path_prefix)) except: pass try: cmd.run_cli("security secrets get {}secret2".format(path_prefix)) cmd.run_cli("security secrets delete {}secret2".format(path_prefix)) except: pass try: cmd.run_cli("security secrets get {}secret3".format(path_prefix)) cmd.run_cli("security secrets delete {}secret3".format(path_prefix)) except: pass def task_exec(task_name, command): lines = cmd.run_cli("task exec {} {}".format(task_name, command)).split('\n') print(lines) for i in lines: # ignore text starting with: # Overwriting Environment Variable .... # Overwriting PATH ...... if not i.isspace() and not i.startswith("Overwriting"): return i return ""
11,627
0
248
78fae72f384b91868f4f205ab3c67b076ca00abb
1,481
py
Python
pre_commit_hooks/convert_beginning_helper.py
toddnguyen47/pre-commit-hooks
ce500b759db3627ac88598dd183bcac473b4f1bb
[ "MIT" ]
null
null
null
pre_commit_hooks/convert_beginning_helper.py
toddnguyen47/pre-commit-hooks
ce500b759db3627ac88598dd183bcac473b4f1bb
[ "MIT" ]
null
null
null
pre_commit_hooks/convert_beginning_helper.py
toddnguyen47/pre-commit-hooks
ce500b759db3627ac88598dd183bcac473b4f1bb
[ "MIT" ]
null
null
null
"""Helper functions for converting beginning whitesspace characters""" import argparse from collections import deque from typing import Callable, List def add_tab_size_option(parser: argparse.ArgumentParser) -> argparse.ArgumentParser: """Add the `--tab-size` option""" parser.add_argument( "--tab-size", type=int, required=False, help="number of whitespaces to substitute tabs with. defaults to 4 spaces", default=4, dest="tab_size", ) return parser def read_file_convert( full_path: str, num_spaces: int, handle_per_line: Callable[[List[str], int], str] ): """Read file and convert its beginning whitespace per line""" lines = _read_lines_rb(full_path) new_lines = [] while lines: encoded_str = handle_per_line(lines, num_spaces) new_lines.append(encoded_str) with open(full_path, mode="wb") as output_file: output_file.writelines(new_lines) def _read_lines_rb(full_path: str) -> deque: """ We need to open using binary and encode/decode appropriate to enforce that files need to be saved with Linux line endings """ with open(full_path, mode="rb") as input_file: lines = input_file.readlines() lines = deque(lines) return lines def print_check_changes_message(): """Print check changes message""" print( 'You can check the changes made. Then simply "git add --update ." and re-commit' ) return 1
28.480769
101
0.678596
"""Helper functions for converting beginning whitesspace characters""" import argparse from collections import deque from typing import Callable, List def add_tab_size_option(parser: argparse.ArgumentParser) -> argparse.ArgumentParser: """Add the `--tab-size` option""" parser.add_argument( "--tab-size", type=int, required=False, help="number of whitespaces to substitute tabs with. defaults to 4 spaces", default=4, dest="tab_size", ) return parser def read_file_convert( full_path: str, num_spaces: int, handle_per_line: Callable[[List[str], int], str] ): """Read file and convert its beginning whitespace per line""" lines = _read_lines_rb(full_path) new_lines = [] while lines: encoded_str = handle_per_line(lines, num_spaces) new_lines.append(encoded_str) with open(full_path, mode="wb") as output_file: output_file.writelines(new_lines) def _read_lines_rb(full_path: str) -> deque: """ We need to open using binary and encode/decode appropriate to enforce that files need to be saved with Linux line endings """ with open(full_path, mode="rb") as input_file: lines = input_file.readlines() lines = deque(lines) return lines def print_check_changes_message(): """Print check changes message""" print( 'You can check the changes made. Then simply "git add --update ." and re-commit' ) return 1
0
0
0
203e3d9089902e24a0a0a006d3ce997493ff8bc6
16,783
py
Python
src/buildstream/_protos/build/bazel/remote/asset/v1/remote_asset_pb2_grpc.py
doraskayo/buildstream
1c72d4342ae7df360808de22c5e49f55dbb6bec6
[ "Apache-2.0" ]
null
null
null
src/buildstream/_protos/build/bazel/remote/asset/v1/remote_asset_pb2_grpc.py
doraskayo/buildstream
1c72d4342ae7df360808de22c5e49f55dbb6bec6
[ "Apache-2.0" ]
null
null
null
src/buildstream/_protos/build/bazel/remote/asset/v1/remote_asset_pb2_grpc.py
doraskayo/buildstream
1c72d4342ae7df360808de22c5e49f55dbb6bec6
[ "Apache-2.0" ]
null
null
null
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! """Client and server classes corresponding to protobuf-defined services.""" import grpc from buildstream._protos.build.bazel.remote.asset.v1 import remote_asset_pb2 as build_dot_bazel_dot_remote_dot_asset_dot_v1_dot_remote__asset__pb2 class FetchStub(object): """The Fetch service resolves or fetches assets referenced by URI and Qualifiers, returning a Digest for the content in [ContentAddressableStorage][build.bazel.remote.execution.v2.ContentAddressableStorage]. As with other services in the Remote Execution API, any call may return an error with a [RetryInfo][google.rpc.RetryInfo] error detail providing information about when the client should retry the request; clients SHOULD respect the information provided. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.FetchBlob = channel.unary_unary( '/build.bazel.remote.asset.v1.Fetch/FetchBlob', request_serializer=build_dot_bazel_dot_remote_dot_asset_dot_v1_dot_remote__asset__pb2.FetchBlobRequest.SerializeToString, response_deserializer=build_dot_bazel_dot_remote_dot_asset_dot_v1_dot_remote__asset__pb2.FetchBlobResponse.FromString, ) self.FetchDirectory = channel.unary_unary( '/build.bazel.remote.asset.v1.Fetch/FetchDirectory', request_serializer=build_dot_bazel_dot_remote_dot_asset_dot_v1_dot_remote__asset__pb2.FetchDirectoryRequest.SerializeToString, response_deserializer=build_dot_bazel_dot_remote_dot_asset_dot_v1_dot_remote__asset__pb2.FetchDirectoryResponse.FromString, ) class FetchServicer(object): """The Fetch service resolves or fetches assets referenced by URI and Qualifiers, returning a Digest for the content in [ContentAddressableStorage][build.bazel.remote.execution.v2.ContentAddressableStorage]. As with other services in the Remote Execution API, any call may return an error with a [RetryInfo][google.rpc.RetryInfo] error detail providing information about when the client should retry the request; clients SHOULD respect the information provided. """ def FetchBlob(self, request, context): """Resolve or fetch referenced assets, making them available to the caller and other consumers in the [ContentAddressableStorage][build.bazel.remote.execution.v2.ContentAddressableStorage]. Servers *MAY* fetch content that they do not already have cached, for any URLs they support. Servers *SHOULD* ensure that referenced files are present in the CAS at the time of the response, and (if supported) that they will remain available for a reasonable period of time. The TTLs of the referenced blobs *SHOULD* be increased if necessary and applicable. In the event that a client receives a reference to content that is no longer present, it *MAY* re-issue the request with `oldest_content_accepted` set to a more recent timestamp than the original attempt, to induce a re-fetch from origin. Servers *MAY* cache fetched content and reuse it for subsequent requests, subject to `oldest_content_accepted`. Servers *MAY* support the complementary [Push][build.bazel.remote.asset.v1.Push] API and allow content to be directly inserted for use in future fetch responses. Servers *MUST* ensure Fetch'd content matches all the specified qualifiers except in the case of previously Push'd resources, for which the server *MAY* trust the pushing client to have set the qualifiers correctly, without validation. Servers not implementing the complementary [Push][build.bazel.remote.asset.v1.Push] API *MUST* reject requests containing qualifiers it does not support. Servers *MAY* transform assets as part of the fetch. For example a tarball fetched by [FetchDirectory][build.bazel.remote.asset.v1.Fetch.FetchDirectory] might be unpacked, or a Git repository fetched by [FetchBlob][build.bazel.remote.asset.v1.Fetch.FetchBlob] might be passed through `git-archive`. Errors handling the requested assets will be returned as gRPC Status errors here; errors outside the server's control will be returned inline in the `status` field of the response (see comment there for details). The possible RPC errors include: * `INVALID_ARGUMENT`: One or more arguments were invalid, such as a qualifier that is not supported by the server. * `RESOURCE_EXHAUSTED`: There is insufficient quota of some resource to perform the requested operation. The client may retry after a delay. * `UNAVAILABLE`: Due to a transient condition the operation could not be completed. The client should retry. * `INTERNAL`: An internal error occurred while performing the operation. The client should retry. * `DEADLINE_EXCEEDED`: The fetch could not be completed within the given RPC deadline. The client should retry for at least as long as the value provided in `timeout` field of the request. In the case of unsupported qualifiers, the server *SHOULD* additionally send a [BadRequest][google.rpc.BadRequest] error detail where, for each unsupported qualifier, there is a `FieldViolation` with a `field` of `qualifiers.name` and a `description` of `"{qualifier}" not supported` indicating the name of the unsupported qualifier. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def FetchDirectory(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') # This class is part of an EXPERIMENTAL API. class Fetch(object): """The Fetch service resolves or fetches assets referenced by URI and Qualifiers, returning a Digest for the content in [ContentAddressableStorage][build.bazel.remote.execution.v2.ContentAddressableStorage]. As with other services in the Remote Execution API, any call may return an error with a [RetryInfo][google.rpc.RetryInfo] error detail providing information about when the client should retry the request; clients SHOULD respect the information provided. """ @staticmethod @staticmethod class PushStub(object): """The Push service is complementary to the Fetch, and allows for associating contents of URLs to be returned in future Fetch API calls. As with other services in the Remote Execution API, any call may return an error with a [RetryInfo][google.rpc.RetryInfo] error detail providing information about when the client should retry the request; clients SHOULD respect the information provided. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.PushBlob = channel.unary_unary( '/build.bazel.remote.asset.v1.Push/PushBlob', request_serializer=build_dot_bazel_dot_remote_dot_asset_dot_v1_dot_remote__asset__pb2.PushBlobRequest.SerializeToString, response_deserializer=build_dot_bazel_dot_remote_dot_asset_dot_v1_dot_remote__asset__pb2.PushBlobResponse.FromString, ) self.PushDirectory = channel.unary_unary( '/build.bazel.remote.asset.v1.Push/PushDirectory', request_serializer=build_dot_bazel_dot_remote_dot_asset_dot_v1_dot_remote__asset__pb2.PushDirectoryRequest.SerializeToString, response_deserializer=build_dot_bazel_dot_remote_dot_asset_dot_v1_dot_remote__asset__pb2.PushDirectoryResponse.FromString, ) class PushServicer(object): """The Push service is complementary to the Fetch, and allows for associating contents of URLs to be returned in future Fetch API calls. As with other services in the Remote Execution API, any call may return an error with a [RetryInfo][google.rpc.RetryInfo] error detail providing information about when the client should retry the request; clients SHOULD respect the information provided. """ def PushBlob(self, request, context): """These APIs associate the identifying information of a resource, as indicated by URI and optionally Qualifiers, with content available in the CAS. For example, associating a repository url and a commit id with a Directory Digest. Servers *SHOULD* only allow trusted clients to associate content, and *MAY* only allow certain URIs to be pushed. Clients *MUST* ensure associated content is available in CAS prior to pushing. Clients *MUST* ensure the Qualifiers listed correctly match the contents, and Servers *MAY* trust these values without validation. Fetch servers *MAY* require exact match of all qualifiers when returning content previously pushed, or allow fetching content with only a subset of the qualifiers specified on Push. Clients can specify expiration information that the server *SHOULD* respect. Subsequent requests can be used to alter the expiration time. A minimal compliant Fetch implementation may support only Push'd content and return `NOT_FOUND` for any resource that was not pushed first. Alternatively, a compliant implementation may choose to not support Push and only return resources that can be Fetch'd from origin. Errors will be returned as gRPC Status errors. The possible RPC errors include: * `INVALID_ARGUMENT`: One or more arguments to the RPC were invalid. * `RESOURCE_EXHAUSTED`: There is insufficient quota of some resource to perform the requested operation. The client may retry after a delay. * `UNAVAILABLE`: Due to a transient condition the operation could not be completed. The client should retry. * `INTERNAL`: An internal error occurred while performing the operation. The client should retry. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def PushDirectory(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') # This class is part of an EXPERIMENTAL API. class Push(object): """The Push service is complementary to the Fetch, and allows for associating contents of URLs to be returned in future Fetch API calls. As with other services in the Remote Execution API, any call may return an error with a [RetryInfo][google.rpc.RetryInfo] error detail providing information about when the client should retry the request; clients SHOULD respect the information provided. """ @staticmethod @staticmethod
50.857576
148
0.718227
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! """Client and server classes corresponding to protobuf-defined services.""" import grpc from buildstream._protos.build.bazel.remote.asset.v1 import remote_asset_pb2 as build_dot_bazel_dot_remote_dot_asset_dot_v1_dot_remote__asset__pb2 class FetchStub(object): """The Fetch service resolves or fetches assets referenced by URI and Qualifiers, returning a Digest for the content in [ContentAddressableStorage][build.bazel.remote.execution.v2.ContentAddressableStorage]. As with other services in the Remote Execution API, any call may return an error with a [RetryInfo][google.rpc.RetryInfo] error detail providing information about when the client should retry the request; clients SHOULD respect the information provided. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.FetchBlob = channel.unary_unary( '/build.bazel.remote.asset.v1.Fetch/FetchBlob', request_serializer=build_dot_bazel_dot_remote_dot_asset_dot_v1_dot_remote__asset__pb2.FetchBlobRequest.SerializeToString, response_deserializer=build_dot_bazel_dot_remote_dot_asset_dot_v1_dot_remote__asset__pb2.FetchBlobResponse.FromString, ) self.FetchDirectory = channel.unary_unary( '/build.bazel.remote.asset.v1.Fetch/FetchDirectory', request_serializer=build_dot_bazel_dot_remote_dot_asset_dot_v1_dot_remote__asset__pb2.FetchDirectoryRequest.SerializeToString, response_deserializer=build_dot_bazel_dot_remote_dot_asset_dot_v1_dot_remote__asset__pb2.FetchDirectoryResponse.FromString, ) class FetchServicer(object): """The Fetch service resolves or fetches assets referenced by URI and Qualifiers, returning a Digest for the content in [ContentAddressableStorage][build.bazel.remote.execution.v2.ContentAddressableStorage]. As with other services in the Remote Execution API, any call may return an error with a [RetryInfo][google.rpc.RetryInfo] error detail providing information about when the client should retry the request; clients SHOULD respect the information provided. """ def FetchBlob(self, request, context): """Resolve or fetch referenced assets, making them available to the caller and other consumers in the [ContentAddressableStorage][build.bazel.remote.execution.v2.ContentAddressableStorage]. Servers *MAY* fetch content that they do not already have cached, for any URLs they support. Servers *SHOULD* ensure that referenced files are present in the CAS at the time of the response, and (if supported) that they will remain available for a reasonable period of time. The TTLs of the referenced blobs *SHOULD* be increased if necessary and applicable. In the event that a client receives a reference to content that is no longer present, it *MAY* re-issue the request with `oldest_content_accepted` set to a more recent timestamp than the original attempt, to induce a re-fetch from origin. Servers *MAY* cache fetched content and reuse it for subsequent requests, subject to `oldest_content_accepted`. Servers *MAY* support the complementary [Push][build.bazel.remote.asset.v1.Push] API and allow content to be directly inserted for use in future fetch responses. Servers *MUST* ensure Fetch'd content matches all the specified qualifiers except in the case of previously Push'd resources, for which the server *MAY* trust the pushing client to have set the qualifiers correctly, without validation. Servers not implementing the complementary [Push][build.bazel.remote.asset.v1.Push] API *MUST* reject requests containing qualifiers it does not support. Servers *MAY* transform assets as part of the fetch. For example a tarball fetched by [FetchDirectory][build.bazel.remote.asset.v1.Fetch.FetchDirectory] might be unpacked, or a Git repository fetched by [FetchBlob][build.bazel.remote.asset.v1.Fetch.FetchBlob] might be passed through `git-archive`. Errors handling the requested assets will be returned as gRPC Status errors here; errors outside the server's control will be returned inline in the `status` field of the response (see comment there for details). The possible RPC errors include: * `INVALID_ARGUMENT`: One or more arguments were invalid, such as a qualifier that is not supported by the server. * `RESOURCE_EXHAUSTED`: There is insufficient quota of some resource to perform the requested operation. The client may retry after a delay. * `UNAVAILABLE`: Due to a transient condition the operation could not be completed. The client should retry. * `INTERNAL`: An internal error occurred while performing the operation. The client should retry. * `DEADLINE_EXCEEDED`: The fetch could not be completed within the given RPC deadline. The client should retry for at least as long as the value provided in `timeout` field of the request. In the case of unsupported qualifiers, the server *SHOULD* additionally send a [BadRequest][google.rpc.BadRequest] error detail where, for each unsupported qualifier, there is a `FieldViolation` with a `field` of `qualifiers.name` and a `description` of `"{qualifier}" not supported` indicating the name of the unsupported qualifier. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def FetchDirectory(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_FetchServicer_to_server(servicer, server): rpc_method_handlers = { 'FetchBlob': grpc.unary_unary_rpc_method_handler( servicer.FetchBlob, request_deserializer=build_dot_bazel_dot_remote_dot_asset_dot_v1_dot_remote__asset__pb2.FetchBlobRequest.FromString, response_serializer=build_dot_bazel_dot_remote_dot_asset_dot_v1_dot_remote__asset__pb2.FetchBlobResponse.SerializeToString, ), 'FetchDirectory': grpc.unary_unary_rpc_method_handler( servicer.FetchDirectory, request_deserializer=build_dot_bazel_dot_remote_dot_asset_dot_v1_dot_remote__asset__pb2.FetchDirectoryRequest.FromString, response_serializer=build_dot_bazel_dot_remote_dot_asset_dot_v1_dot_remote__asset__pb2.FetchDirectoryResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'build.bazel.remote.asset.v1.Fetch', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) # This class is part of an EXPERIMENTAL API. class Fetch(object): """The Fetch service resolves or fetches assets referenced by URI and Qualifiers, returning a Digest for the content in [ContentAddressableStorage][build.bazel.remote.execution.v2.ContentAddressableStorage]. As with other services in the Remote Execution API, any call may return an error with a [RetryInfo][google.rpc.RetryInfo] error detail providing information about when the client should retry the request; clients SHOULD respect the information provided. """ @staticmethod def FetchBlob(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/build.bazel.remote.asset.v1.Fetch/FetchBlob', build_dot_bazel_dot_remote_dot_asset_dot_v1_dot_remote__asset__pb2.FetchBlobRequest.SerializeToString, build_dot_bazel_dot_remote_dot_asset_dot_v1_dot_remote__asset__pb2.FetchBlobResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def FetchDirectory(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/build.bazel.remote.asset.v1.Fetch/FetchDirectory', build_dot_bazel_dot_remote_dot_asset_dot_v1_dot_remote__asset__pb2.FetchDirectoryRequest.SerializeToString, build_dot_bazel_dot_remote_dot_asset_dot_v1_dot_remote__asset__pb2.FetchDirectoryResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) class PushStub(object): """The Push service is complementary to the Fetch, and allows for associating contents of URLs to be returned in future Fetch API calls. As with other services in the Remote Execution API, any call may return an error with a [RetryInfo][google.rpc.RetryInfo] error detail providing information about when the client should retry the request; clients SHOULD respect the information provided. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.PushBlob = channel.unary_unary( '/build.bazel.remote.asset.v1.Push/PushBlob', request_serializer=build_dot_bazel_dot_remote_dot_asset_dot_v1_dot_remote__asset__pb2.PushBlobRequest.SerializeToString, response_deserializer=build_dot_bazel_dot_remote_dot_asset_dot_v1_dot_remote__asset__pb2.PushBlobResponse.FromString, ) self.PushDirectory = channel.unary_unary( '/build.bazel.remote.asset.v1.Push/PushDirectory', request_serializer=build_dot_bazel_dot_remote_dot_asset_dot_v1_dot_remote__asset__pb2.PushDirectoryRequest.SerializeToString, response_deserializer=build_dot_bazel_dot_remote_dot_asset_dot_v1_dot_remote__asset__pb2.PushDirectoryResponse.FromString, ) class PushServicer(object): """The Push service is complementary to the Fetch, and allows for associating contents of URLs to be returned in future Fetch API calls. As with other services in the Remote Execution API, any call may return an error with a [RetryInfo][google.rpc.RetryInfo] error detail providing information about when the client should retry the request; clients SHOULD respect the information provided. """ def PushBlob(self, request, context): """These APIs associate the identifying information of a resource, as indicated by URI and optionally Qualifiers, with content available in the CAS. For example, associating a repository url and a commit id with a Directory Digest. Servers *SHOULD* only allow trusted clients to associate content, and *MAY* only allow certain URIs to be pushed. Clients *MUST* ensure associated content is available in CAS prior to pushing. Clients *MUST* ensure the Qualifiers listed correctly match the contents, and Servers *MAY* trust these values without validation. Fetch servers *MAY* require exact match of all qualifiers when returning content previously pushed, or allow fetching content with only a subset of the qualifiers specified on Push. Clients can specify expiration information that the server *SHOULD* respect. Subsequent requests can be used to alter the expiration time. A minimal compliant Fetch implementation may support only Push'd content and return `NOT_FOUND` for any resource that was not pushed first. Alternatively, a compliant implementation may choose to not support Push and only return resources that can be Fetch'd from origin. Errors will be returned as gRPC Status errors. The possible RPC errors include: * `INVALID_ARGUMENT`: One or more arguments to the RPC were invalid. * `RESOURCE_EXHAUSTED`: There is insufficient quota of some resource to perform the requested operation. The client may retry after a delay. * `UNAVAILABLE`: Due to a transient condition the operation could not be completed. The client should retry. * `INTERNAL`: An internal error occurred while performing the operation. The client should retry. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def PushDirectory(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_PushServicer_to_server(servicer, server): rpc_method_handlers = { 'PushBlob': grpc.unary_unary_rpc_method_handler( servicer.PushBlob, request_deserializer=build_dot_bazel_dot_remote_dot_asset_dot_v1_dot_remote__asset__pb2.PushBlobRequest.FromString, response_serializer=build_dot_bazel_dot_remote_dot_asset_dot_v1_dot_remote__asset__pb2.PushBlobResponse.SerializeToString, ), 'PushDirectory': grpc.unary_unary_rpc_method_handler( servicer.PushDirectory, request_deserializer=build_dot_bazel_dot_remote_dot_asset_dot_v1_dot_remote__asset__pb2.PushDirectoryRequest.FromString, response_serializer=build_dot_bazel_dot_remote_dot_asset_dot_v1_dot_remote__asset__pb2.PushDirectoryResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'build.bazel.remote.asset.v1.Push', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) # This class is part of an EXPERIMENTAL API. class Push(object): """The Push service is complementary to the Fetch, and allows for associating contents of URLs to be returned in future Fetch API calls. As with other services in the Remote Execution API, any call may return an error with a [RetryInfo][google.rpc.RetryInfo] error detail providing information about when the client should retry the request; clients SHOULD respect the information provided. """ @staticmethod def PushBlob(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/build.bazel.remote.asset.v1.Push/PushBlob', build_dot_bazel_dot_remote_dot_asset_dot_v1_dot_remote__asset__pb2.PushBlobRequest.SerializeToString, build_dot_bazel_dot_remote_dot_asset_dot_v1_dot_remote__asset__pb2.PushBlobResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def PushDirectory(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/build.bazel.remote.asset.v1.Push/PushDirectory', build_dot_bazel_dot_remote_dot_asset_dot_v1_dot_remote__asset__pb2.PushDirectoryRequest.SerializeToString, build_dot_bazel_dot_remote_dot_asset_dot_v1_dot_remote__asset__pb2.PushDirectoryResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
5,058
0
150
be531dde26d46e2c0939b8834da01888321fbd6d
2,847
py
Python
chia/instrumentation/message.py
cabrust/chia
3eaf815b261dc8a85d64fd698e0079515ec0dde9
[ "BSD-3-Clause" ]
null
null
null
chia/instrumentation/message.py
cabrust/chia
3eaf815b261dc8a85d64fd698e0079515ec0dde9
[ "BSD-3-Clause" ]
2
2021-10-06T13:19:09.000Z
2021-10-20T17:32:36.000Z
chia/instrumentation/message.py
cabrust/chia
3eaf815b261dc8a85d64fd698e0079515ec0dde9
[ "BSD-3-Clause" ]
null
null
null
import logging import time import typing class ShutdownMessage(Message): """This message tells the observers that they should save their data."""
29.968421
99
0.582016
import logging import time import typing class Message: def __init__(self, sender: str): self.sender = sender self.timestamp: float = time.time() def _format_timestamp(self) -> str: return time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.timestamp)) def __str__(self): return f"[{self._format_timestamp()}] [MESSAGE] [{self.sender}]: {self.__class__.__name__}" class LogMessage(Message): def __init__(self, sender: str, level: int, message: str): super().__init__(sender=sender) self.sender = sender self.level = level self.message = message def __str__(self): return ( f"[{self._format_timestamp()}] [{logging.getLevelName(self.level)}] " f"[{self.sender}]: {self.message}" ) class ConfigMessage(Message): def __init__(self, sender: str, field: str, value: typing.Any, source: str): super().__init__(sender=sender) self.field = field self.value = value self.source = source def __str__(self): return ( f"[{self._format_timestamp()}] [CONFIGURATION] [{self.sender}]: " f"config field {self.field} set to {self.value} from {self.source}" ) class MetricMessage(Message): def __init__(self, sender: str, metric: str, value: float, step: int): super().__init__(sender=sender) self.metric = metric self.value = value self.step = step def __str__(self): return ( f"[{self._format_timestamp()}] [METRIC] [{self.sender}]: " f"metric {self.metric} @{self.step} = {self.value}" ) class ResultMessage(Message): def __init__(self, sender: str, result_dict: dict, step: int): super().__init__(sender=sender) self.result_dict = result_dict self.step = step def __str__(self): result_strings = [] for key, value in self.result_dict.items(): if isinstance(value, int): result_strings += [f"{key}={value}"] elif isinstance(value, float): result_strings += [f"{key}={value:.3f}"] else: result_strings += [f"{key}=[...]"] result_string = ",".join(result_strings) return ( f"[{self._format_timestamp()}] [RESULT] [{self.sender}]: " f"keys are {result_string} @{self.step}" ) class ShutdownMessage(Message): """This message tells the observers that they should save their data.""" def __init__(self, sender: str, successful: bool): super().__init__(sender) self.successful = successful def __str__(self): return ( f"[{self._format_timestamp()}] [SHUTDOWN] [{self.sender}] " f"Successful: {self.successful}" )
2,207
22
461
54c92cb6f666cfd61232245deafe4d692362e0d7
4,278
py
Python
src/fully-connected-network/gradient-descent/model.py
aligholamee/UD730
936ef8ae4a0a285de6b19919f351a956c72e4cc8
[ "MIT" ]
2
2018-02-07T21:31:09.000Z
2018-02-08T06:34:38.000Z
src/fully-connected-network/gradient-descent/model.py
aligholamee/UD730
936ef8ae4a0a285de6b19919f351a956c72e4cc8
[ "MIT" ]
null
null
null
src/fully-connected-network/gradient-descent/model.py
aligholamee/UD730
936ef8ae4a0a285de6b19919f351a956c72e4cc8
[ "MIT" ]
2
2020-04-07T06:39:26.000Z
2021-02-03T09:59:38.000Z
# ======================================== # [] File Name : model.py # # [] Creation Date : January 2018 # # [] Created By : Ali Gholami (aligholami7596@gmail.com) # ======================================== """ Training and Validation on notMNIST Dataset Fully connected network implementation with tensorflow """ import pickle as pickle import numpy as np import tensorflow as tf # Data destination path PICKLE_FILE = "../../../data/notMNIST.pickle" # Load the data to the RAM with open(PICKLE_FILE, "rb") as f: SAVE_FILE = pickle.load(f) TRAIN_DATASET = SAVE_FILE['train_dataset'] TRAIN_LABELS = SAVE_FILE['train_labels'] VALID_DATASET = SAVE_FILE['valid_dataset'] VALID_LABELS = SAVE_FILE['valid_labels'] TEST_DATASET = SAVE_FILE['test_dataset'] TEST_LABELS = SAVE_FILE['test_labels'] # Free some memory del SAVE_FILE # Reformat to the one-hot encoding mode # def reformatData(dataset, labels): IMAGE_SIZE = 28 NUM_LABELS = 10 def accuracy(predictions, labels): """ Divides the number of true predictions to the number of total predictions """ return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1)) / predictions.shape[0]) def reformat(dataset, labels): """ Reformat data to the one-hot and flattened mode """ n_dataset = dataset.reshape((-1, IMAGE_SIZE * IMAGE_SIZE)).astype(np.float32) # Convert to the one hot format n_labels = (np.arange(NUM_LABELS) == labels[:, None]).astype(np.float32) return n_dataset, n_labels TRAIN_DATASET, TRAIN_LABELS = reformat(TRAIN_DATASET, TRAIN_LABELS) VALID_DATASET, VALID_LABELS = reformat(VALID_DATASET, VALID_LABELS) TEST_DATASET, TEST_LABELS = reformat(TEST_DATASET, TEST_LABELS) # Display the openend files print("Training Set ", TRAIN_DATASET.shape, TRAIN_LABELS.shape) print("Validation Set", VALID_DATASET.shape, VALID_LABELS.shape) print("Test Set", TEST_DATASET.shape, TEST_LABELS.shape) # Implements a gradient descent using tensorflow computational graph TRAIN_SUBSET = 10000 GRAPH = tf.Graph() with GRAPH.as_default(): """ Load the training, validation and test data into the constants attached to the graph """ TF_TRAIN_DATASET = tf.constant(TRAIN_DATASET[:TRAIN_SUBSET, :]) TF_TRAIN_LABELS = tf.constant(TRAIN_LABELS[:TRAIN_SUBSET]) TF_VALID_DATASET = tf.constant(VALID_DATASET[:TRAIN_SUBSET]) TF_TEST_DATASET = tf.constant(TEST_DATASET[:TRAIN_SUBSET]) """ Initialize the weights matrix with normal distribution and the biases with zero values """ WEIGHTS = tf.Variable(tf.truncated_normal([IMAGE_SIZE * IMAGE_SIZE, NUM_LABELS])) BIASES = tf.Variable(tf.zeros([NUM_LABELS])) """ Compute the logits WX + b and then apply D(S(WX + b), L) on them """ LOGITS = tf.matmul(TF_TRAIN_DATASET, WEIGHTS) + BIASES LOSS = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels = TF_TRAIN_LABELS, logits = LOGITS)) """ Find the minimum of the loss using gradient descent optimizer remember that the optimizer is an algorithm now - ready to be tested on the test data """ OPTIMIZER = tf.train.GradientDescentOptimizer(0.1).minimize(LOSS) """ Predictions for the training, validation, and test data. """ TRAIN_PREDICTION = tf.nn.softmax(LOGITS) VALID_PREDICTION = tf.nn.softmax(tf.matmul(TF_VALID_DATASET, WEIGHTS) + BIASES) TEST_PREDICTION = tf.nn.softmax(tf.matmul(TF_TEST_DATASET, WEIGHTS) + BIASES) NUM_ITERATIONS = 3000 with tf.Session(graph=GRAPH) as session: """ Start the above variable initialization """ tf.initialize_all_variables().run() print("Variables initialized") for step in range(NUM_ITERATIONS): _, l, predictions = session.run([OPTIMIZER, LOSS, TRAIN_PREDICTION]) if(step % 100 == 0): print("Loss at step ", step, ": ", l) print("Training accuracy: ", accuracy(predictions, TRAIN_LABELS[:TRAIN_SUBSET, :])) """ Displays the test prediction results """ print("Validation accuracy: ", accuracy(VALID_PREDICTION.eval(), VALID_LABELS)) print("Test accuracy: ", accuracy(TEST_PREDICTION.eval(), TEST_LABELS))
31.455882
109
0.683263
# ======================================== # [] File Name : model.py # # [] Creation Date : January 2018 # # [] Created By : Ali Gholami (aligholami7596@gmail.com) # ======================================== """ Training and Validation on notMNIST Dataset Fully connected network implementation with tensorflow """ import pickle as pickle import numpy as np import tensorflow as tf # Data destination path PICKLE_FILE = "../../../data/notMNIST.pickle" # Load the data to the RAM with open(PICKLE_FILE, "rb") as f: SAVE_FILE = pickle.load(f) TRAIN_DATASET = SAVE_FILE['train_dataset'] TRAIN_LABELS = SAVE_FILE['train_labels'] VALID_DATASET = SAVE_FILE['valid_dataset'] VALID_LABELS = SAVE_FILE['valid_labels'] TEST_DATASET = SAVE_FILE['test_dataset'] TEST_LABELS = SAVE_FILE['test_labels'] # Free some memory del SAVE_FILE # Reformat to the one-hot encoding mode # def reformatData(dataset, labels): IMAGE_SIZE = 28 NUM_LABELS = 10 def accuracy(predictions, labels): """ Divides the number of true predictions to the number of total predictions """ return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1)) / predictions.shape[0]) def reformat(dataset, labels): """ Reformat data to the one-hot and flattened mode """ n_dataset = dataset.reshape((-1, IMAGE_SIZE * IMAGE_SIZE)).astype(np.float32) # Convert to the one hot format n_labels = (np.arange(NUM_LABELS) == labels[:, None]).astype(np.float32) return n_dataset, n_labels TRAIN_DATASET, TRAIN_LABELS = reformat(TRAIN_DATASET, TRAIN_LABELS) VALID_DATASET, VALID_LABELS = reformat(VALID_DATASET, VALID_LABELS) TEST_DATASET, TEST_LABELS = reformat(TEST_DATASET, TEST_LABELS) # Display the openend files print("Training Set ", TRAIN_DATASET.shape, TRAIN_LABELS.shape) print("Validation Set", VALID_DATASET.shape, VALID_LABELS.shape) print("Test Set", TEST_DATASET.shape, TEST_LABELS.shape) # Implements a gradient descent using tensorflow computational graph TRAIN_SUBSET = 10000 GRAPH = tf.Graph() with GRAPH.as_default(): """ Load the training, validation and test data into the constants attached to the graph """ TF_TRAIN_DATASET = tf.constant(TRAIN_DATASET[:TRAIN_SUBSET, :]) TF_TRAIN_LABELS = tf.constant(TRAIN_LABELS[:TRAIN_SUBSET]) TF_VALID_DATASET = tf.constant(VALID_DATASET[:TRAIN_SUBSET]) TF_TEST_DATASET = tf.constant(TEST_DATASET[:TRAIN_SUBSET]) """ Initialize the weights matrix with normal distribution and the biases with zero values """ WEIGHTS = tf.Variable(tf.truncated_normal([IMAGE_SIZE * IMAGE_SIZE, NUM_LABELS])) BIASES = tf.Variable(tf.zeros([NUM_LABELS])) """ Compute the logits WX + b and then apply D(S(WX + b), L) on them """ LOGITS = tf.matmul(TF_TRAIN_DATASET, WEIGHTS) + BIASES LOSS = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels = TF_TRAIN_LABELS, logits = LOGITS)) """ Find the minimum of the loss using gradient descent optimizer remember that the optimizer is an algorithm now - ready to be tested on the test data """ OPTIMIZER = tf.train.GradientDescentOptimizer(0.1).minimize(LOSS) """ Predictions for the training, validation, and test data. """ TRAIN_PREDICTION = tf.nn.softmax(LOGITS) VALID_PREDICTION = tf.nn.softmax(tf.matmul(TF_VALID_DATASET, WEIGHTS) + BIASES) TEST_PREDICTION = tf.nn.softmax(tf.matmul(TF_TEST_DATASET, WEIGHTS) + BIASES) NUM_ITERATIONS = 3000 with tf.Session(graph=GRAPH) as session: """ Start the above variable initialization """ tf.initialize_all_variables().run() print("Variables initialized") for step in range(NUM_ITERATIONS): _, l, predictions = session.run([OPTIMIZER, LOSS, TRAIN_PREDICTION]) if(step % 100 == 0): print("Loss at step ", step, ": ", l) print("Training accuracy: ", accuracy(predictions, TRAIN_LABELS[:TRAIN_SUBSET, :])) """ Displays the test prediction results """ print("Validation accuracy: ", accuracy(VALID_PREDICTION.eval(), VALID_LABELS)) print("Test accuracy: ", accuracy(TEST_PREDICTION.eval(), TEST_LABELS))
0
0
0
cfc0994fa0ab433301f0722a11cc7d4dc07ffd9f
876
py
Python
utils/validators.py
rilder-almeida/soulchef_bot
0f2f20961c91334cbfcf80429fcac782d39da5db
[ "MIT" ]
null
null
null
utils/validators.py
rilder-almeida/soulchef_bot
0f2f20961c91334cbfcf80429fcac782d39da5db
[ "MIT" ]
null
null
null
utils/validators.py
rilder-almeida/soulchef_bot
0f2f20961c91334cbfcf80429fcac782d39da5db
[ "MIT" ]
null
null
null
import re
23.675676
150
0.429224
import re def cpf_valid(cpf: str) -> bool: cpf = cpf.replace('.', '').replace('-', '').replace(' ', '') if len(cpf) != 11 or len(set(cpf)) == 1: return False for NUM in range(9, 11): c = [int(n) for n in cpf[:NUM]] n = list(range(NUM + 1, 1, -1)) s = sum(map(lambda i: c[i] * n[i], range(NUM))) dv = 0 if (s % 11) >= 2: dv = 11 - (s % 11) if not int(cpf[NUM]) == dv: return False return True def phone_valid(phone: str) -> bool: return bool( re.match( "^(?:(?:\+|00)?(55)\s?)?\(?[0]?(?:[14689][1-9]|2[12478]|3[1234578]|5[1345]|7[134579])\)? ?(?:[2-8]|9[1-9])[0-9]{3} ?\-?[0-9]{4}$", # noqa phone, ) ) def email_valid(email: str) -> bool: return bool(re.match("^[^\s@]+@([^\s@.,]+\.)+[^\s@.,]{2,}$", email)) # noqa
794
0
69
7ff7531e0abdb0ef22687c2a2b673f88b060ca02
2,388
py
Python
grove/tests/circuit_primitives/test_swap.py
mkeshita/grove
dc6bf6ec63e8c435fe52b1e00f707d5ce4cdb9b3
[ "Apache-2.0" ]
229
2017-01-10T03:11:54.000Z
2018-11-26T10:57:49.000Z
grove/tests/circuit_primitives/test_swap.py
mkeshita/grove
dc6bf6ec63e8c435fe52b1e00f707d5ce4cdb9b3
[ "Apache-2.0" ]
123
2017-01-10T21:06:51.000Z
2018-11-27T19:38:22.000Z
grove/tests/circuit_primitives/test_swap.py
mkeshita/grove
dc6bf6ec63e8c435fe52b1e00f707d5ce4cdb9b3
[ "Apache-2.0" ]
95
2017-01-10T03:03:45.000Z
2018-11-28T00:42:28.000Z
""" Tests on the swap test in the circuit_primitives module """ import numpy as np import pytest from unittest.mock import patch from pyquil import Program from pyquil.gates import CSWAP, H from grove.circuit_primitives.swap import (swap_circuit_generator, run_swap_test, RegisterSizeMismatch) def test_swap_circuit_gen_type(): """ Test the type checking """ with pytest.raises(TypeError): swap_circuit_generator(5, [1, 2], 0) with pytest.raises(TypeError): swap_circuit_generator([1, 2], 5, 0) with pytest.raises(RegisterSizeMismatch): swap_circuit_generator([1, 2], [3], 0) def test_default_ancilla_assignment(): """ Make sure ancilla is assigned to max(regA + regB) + 1 by default :return: """ test_prog_for_ancilla = swap_circuit_generator([1, 2], [5, 6], None) instruction = test_prog_for_ancilla.pop() assert instruction.qubits[0].index == 7 def test_cswap_program(): """ Test if the correct program is returned. Half way to system test """ test_prog = swap_circuit_generator([1, 2], [5, 6], None) true_prog = Program() true_prog += H(7) true_prog += CSWAP(7, 1, 5) true_prog += CSWAP(7, 2, 6) true_prog += H(7) assert test_prog.out() == true_prog.out() def test_run_swap(): """ Test the qvm return piece """ expected_bitstring = [1, 1, 1, 0, 0, 0, 0, 0, 0] prog_a = Program().inst(H(0)) prog_b = Program().inst(H(1)) with patch("pyquil.api.QuantumComputer") as qc: qc.run.return_value = expected_bitstring test_overlap = run_swap_test(prog_a, prog_b, number_of_measurements=5, quantum_resource=qc) assert np.isclose(np.sqrt(1 - 2 * np.mean(expected_bitstring)), test_overlap) expected_bitstring = [1, 1, 1, 0, 1] prog_a = Program().inst(H(0)) prog_b = Program().inst(H(1)) with patch("pyquil.api.QuantumComputer") as qc: qc.run.return_value = expected_bitstring with pytest.raises(ValueError): test_overlap = run_swap_test(prog_a, prog_b, number_of_measurements=5, quantum_resource=qc)
30.615385
72
0.595059
""" Tests on the swap test in the circuit_primitives module """ import numpy as np import pytest from unittest.mock import patch from pyquil import Program from pyquil.gates import CSWAP, H from grove.circuit_primitives.swap import (swap_circuit_generator, run_swap_test, RegisterSizeMismatch) def test_swap_circuit_gen_type(): """ Test the type checking """ with pytest.raises(TypeError): swap_circuit_generator(5, [1, 2], 0) with pytest.raises(TypeError): swap_circuit_generator([1, 2], 5, 0) with pytest.raises(RegisterSizeMismatch): swap_circuit_generator([1, 2], [3], 0) def test_default_ancilla_assignment(): """ Make sure ancilla is assigned to max(regA + regB) + 1 by default :return: """ test_prog_for_ancilla = swap_circuit_generator([1, 2], [5, 6], None) instruction = test_prog_for_ancilla.pop() assert instruction.qubits[0].index == 7 def test_cswap_program(): """ Test if the correct program is returned. Half way to system test """ test_prog = swap_circuit_generator([1, 2], [5, 6], None) true_prog = Program() true_prog += H(7) true_prog += CSWAP(7, 1, 5) true_prog += CSWAP(7, 2, 6) true_prog += H(7) assert test_prog.out() == true_prog.out() def test_run_swap(): """ Test the qvm return piece """ expected_bitstring = [1, 1, 1, 0, 0, 0, 0, 0, 0] prog_a = Program().inst(H(0)) prog_b = Program().inst(H(1)) with patch("pyquil.api.QuantumComputer") as qc: qc.run.return_value = expected_bitstring test_overlap = run_swap_test(prog_a, prog_b, number_of_measurements=5, quantum_resource=qc) assert np.isclose(np.sqrt(1 - 2 * np.mean(expected_bitstring)), test_overlap) expected_bitstring = [1, 1, 1, 0, 1] prog_a = Program().inst(H(0)) prog_b = Program().inst(H(1)) with patch("pyquil.api.QuantumComputer") as qc: qc.run.return_value = expected_bitstring with pytest.raises(ValueError): test_overlap = run_swap_test(prog_a, prog_b, number_of_measurements=5, quantum_resource=qc)
0
0
0
5382b7f814bf0d8ce5cb66f429170d006417a64d
7,291
py
Python
neural_style_transfer.py
CarlFredriksson/neural_style_transfer
1dd640c78a9fc5f25a4c4f5fd474cc54992ee3b5
[ "MIT" ]
null
null
null
neural_style_transfer.py
CarlFredriksson/neural_style_transfer
1dd640c78a9fc5f25a4c4f5fd474cc54992ee3b5
[ "MIT" ]
null
null
null
neural_style_transfer.py
CarlFredriksson/neural_style_transfer
1dd640c78a9fc5f25a4c4f5fd474cc54992ee3b5
[ "MIT" ]
null
null
null
import os import cv2 import numpy as np import tensorflow as tf from tensorflow.keras import backend as K from tensorflow.keras.applications import VGG19 from tensorflow.keras.layers import MaxPooling2D #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # Settings #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# CONTENT_IMG_PATH = "./input/cat.jpg" STYLE_IMG_PATH = "./input/starry_night.jpg" GENERATED_IMG_PATH = "./output/generated_img.jpg" IMG_SIZE = (400, 300) NUM_COLOR_CHANNELS = 3 ALPHA = 10 BETA = 40 NOISE_RATIO = 0.6 CONTENT_LAYER_INDEX = 13 STYLE_LAYER_INDICES = [1, 4, 7, 12, 17] STYLE_LAYER_COEFFICIENTS = [0.2, 0.2, 0.2, 0.2, 0.2] NUM_ITERATIONS = 500 LEARNING_RATE = 2 VGG_IMAGENET_MEANS = np.array([103.939, 116.779, 123.68]).reshape((1, 1, 3)) # In blue-green-red order LOG_GRAPH = False #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # Functions #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# def create_output_dir(): """Create output dir if it does not exist.""" cwd = os.getcwd() output_dir_path = os.path.join(cwd, "output") if not os.path.exists(output_dir_path): os.makedirs(output_dir_path) def load_img(path, size, color_means): """Load image from path, preprocess it, and return the image.""" img = cv2.imread(path) img = cv2.resize(img, dsize=size, interpolation=cv2.INTER_CUBIC) img = img.astype("float32") img -= color_means img = np.expand_dims(img, axis=0) return img def save_img(img, path, color_means): """Save image to path after postprocessing.""" img += color_means img = np.clip(img, 0, 255) img = img.astype("uint8") cv2.imwrite(path, img) def create_noisy_img(img, noise_ratio): """Add noise to img and return it.""" noise = np.random.uniform(-20, 20, (img.shape[0], img.shape[1], img.shape[2], img.shape[3])).astype("float32") noisy_img = noise_ratio * noise + (1 - noise_ratio) * img return noisy_img def create_output_tensors(input_variable, content_layer_index, style_layer_indices): """ Create output tensors, using a pretrained Keras VGG19-model. Return tensors for content and style layers. """ vgg_model = VGG19(weights="imagenet", include_top=False) layers = [l for l in vgg_model.layers] x = layers[1](input_variable) x_content_tensor = x x_style_tensors = [] if 1 in style_layer_indices: x_style_tensors.append(x) for i in range(2, len(layers)): # Use layers from vgg model, but swap max pooling layers for average pooling if type(layers[i]) == MaxPooling2D: x = tf.nn.avg_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') else: x = layers[i](x) # Store appropriate layer outputs if i == content_layer_index: x_content_tensor = x if i in style_layer_indices: x_style_tensors.append(x) return x_content_tensor, x_style_tensors def content_cost(a_c, a_g): """Return a tensor representing the content cost.""" _, n_h, n_w, n_c = a_c.shape return (1/(4 * n_h * n_w * n_c)) * tf.reduce_sum(tf.square(tf.subtract(a_c, a_g))) def style_cost(a_s_layers, a_g_layers, style_layer_coefficients): """Return a tensor representing the style cost.""" style_cost = 0 for i in range(len(a_s_layers)): # Compute gram matrix for the activations of the style image a_s = a_s_layers[i] _, n_h, n_w, n_c = a_s.shape a_s_unrolled = tf.reshape(tf.transpose(a_s), [n_c, n_h*n_w]) a_s_gram = tf.matmul(a_s_unrolled, tf.transpose(a_s_unrolled)) # Compute gram matrix for the activations of the generated image a_g = a_g_layers[i] a_g_unrolled = tf.reshape(tf.transpose(a_g), [n_c, n_h*n_w]) a_g_gram = tf.matmul(a_g_unrolled, tf.transpose(a_g_unrolled)) # Compute style cost for the current layer style_cost_layer = (1/(4 * n_c**2 * (n_w* n_h)**2)) * tf.reduce_sum(tf.square(tf.subtract(a_s_gram, a_g_gram))) style_cost += style_cost_layer * style_layer_coefficients[i] return style_cost def total_cost(content_cost, style_cost, alpha, beta): """Return a tensor representing the total cost.""" return alpha * content_cost + beta * style_cost #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # Model #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# create_output_dir() # Load, resize, and preprocess content and style images content_img = load_img(CONTENT_IMG_PATH, IMG_SIZE, VGG_IMAGENET_MEANS) style_img = load_img(STYLE_IMG_PATH, IMG_SIZE, VGG_IMAGENET_MEANS) # Create initial generated image, this is the starting point for the optimization process generated_img_init = create_noisy_img(content_img, NOISE_RATIO) # Create tensorflow variable that will be used as an input to the network. # This variable will later be assigned generated_img_init and trained. input_var = tf.Variable(content_img, dtype=tf.float32, expected_shape=(None, None, None, NUM_COLOR_CHANNELS), name="input_var") # Create output tensors for the activations of the content and style layers, # using a Keras VGG19-model pretrained on the ImageNet dataset. x_content, x_styles = create_output_tensors(input_var, CONTENT_LAYER_INDEX, STYLE_LAYER_INDICES) optimizer = tf.train.AdamOptimizer(LEARNING_RATE) # Use the Keras session instead of creating a new one with K.get_session() as sess: sess.run(tf.variables_initializer([input_var])) # Extract the layer activations for content and style images a_content = sess.run(x_content, feed_dict={K.learning_phase(): 0}) sess.run(input_var.assign(style_img)) a_styles = sess.run(x_styles, feed_dict={K.learning_phase(): 0}) # Define the cost function J_content = content_cost(a_content, x_content) J_style = style_cost(a_styles, x_styles, STYLE_LAYER_COEFFICIENTS) J_total = total_cost(J_content, J_style, ALPHA, BETA) # Log the graph. To display use "tensorboard --logdir=log". if LOG_GRAPH: writer = tf.summary.FileWriter("log", sess.graph) writer.close() # Assign the generated random initial image as input sess.run(input_var.assign(generated_img_init)) # Create the training operation train_op = optimizer.minimize(J_total, var_list=[input_var]) sess.run(tf.variables_initializer(optimizer.variables())) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # Train the generated image #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# for i in range(NUM_ITERATIONS): sess.run(train_op) if (i%20) == 0: print( "Iteration: " + str(i) + ", Content cost: " + "{:.2e}".format(sess.run(J_content)) + ", Style cost: " + "{:.2e}".format(sess.run(J_style)) + ", Total cost: " + "{:.2e}".format(sess.run(J_total)) ) # Save the generated image generated_img = sess.run(input_var)[0] save_img(generated_img, GENERATED_IMG_PATH, VGG_IMAGENET_MEANS) # Save the generated image generated_img = sess.run(input_var)[0] save_img(generated_img, GENERATED_IMG_PATH, VGG_IMAGENET_MEANS)
37.973958
127
0.642436
import os import cv2 import numpy as np import tensorflow as tf from tensorflow.keras import backend as K from tensorflow.keras.applications import VGG19 from tensorflow.keras.layers import MaxPooling2D #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # Settings #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# CONTENT_IMG_PATH = "./input/cat.jpg" STYLE_IMG_PATH = "./input/starry_night.jpg" GENERATED_IMG_PATH = "./output/generated_img.jpg" IMG_SIZE = (400, 300) NUM_COLOR_CHANNELS = 3 ALPHA = 10 BETA = 40 NOISE_RATIO = 0.6 CONTENT_LAYER_INDEX = 13 STYLE_LAYER_INDICES = [1, 4, 7, 12, 17] STYLE_LAYER_COEFFICIENTS = [0.2, 0.2, 0.2, 0.2, 0.2] NUM_ITERATIONS = 500 LEARNING_RATE = 2 VGG_IMAGENET_MEANS = np.array([103.939, 116.779, 123.68]).reshape((1, 1, 3)) # In blue-green-red order LOG_GRAPH = False #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # Functions #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# def create_output_dir(): """Create output dir if it does not exist.""" cwd = os.getcwd() output_dir_path = os.path.join(cwd, "output") if not os.path.exists(output_dir_path): os.makedirs(output_dir_path) def load_img(path, size, color_means): """Load image from path, preprocess it, and return the image.""" img = cv2.imread(path) img = cv2.resize(img, dsize=size, interpolation=cv2.INTER_CUBIC) img = img.astype("float32") img -= color_means img = np.expand_dims(img, axis=0) return img def save_img(img, path, color_means): """Save image to path after postprocessing.""" img += color_means img = np.clip(img, 0, 255) img = img.astype("uint8") cv2.imwrite(path, img) def create_noisy_img(img, noise_ratio): """Add noise to img and return it.""" noise = np.random.uniform(-20, 20, (img.shape[0], img.shape[1], img.shape[2], img.shape[3])).astype("float32") noisy_img = noise_ratio * noise + (1 - noise_ratio) * img return noisy_img def create_output_tensors(input_variable, content_layer_index, style_layer_indices): """ Create output tensors, using a pretrained Keras VGG19-model. Return tensors for content and style layers. """ vgg_model = VGG19(weights="imagenet", include_top=False) layers = [l for l in vgg_model.layers] x = layers[1](input_variable) x_content_tensor = x x_style_tensors = [] if 1 in style_layer_indices: x_style_tensors.append(x) for i in range(2, len(layers)): # Use layers from vgg model, but swap max pooling layers for average pooling if type(layers[i]) == MaxPooling2D: x = tf.nn.avg_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') else: x = layers[i](x) # Store appropriate layer outputs if i == content_layer_index: x_content_tensor = x if i in style_layer_indices: x_style_tensors.append(x) return x_content_tensor, x_style_tensors def content_cost(a_c, a_g): """Return a tensor representing the content cost.""" _, n_h, n_w, n_c = a_c.shape return (1/(4 * n_h * n_w * n_c)) * tf.reduce_sum(tf.square(tf.subtract(a_c, a_g))) def style_cost(a_s_layers, a_g_layers, style_layer_coefficients): """Return a tensor representing the style cost.""" style_cost = 0 for i in range(len(a_s_layers)): # Compute gram matrix for the activations of the style image a_s = a_s_layers[i] _, n_h, n_w, n_c = a_s.shape a_s_unrolled = tf.reshape(tf.transpose(a_s), [n_c, n_h*n_w]) a_s_gram = tf.matmul(a_s_unrolled, tf.transpose(a_s_unrolled)) # Compute gram matrix for the activations of the generated image a_g = a_g_layers[i] a_g_unrolled = tf.reshape(tf.transpose(a_g), [n_c, n_h*n_w]) a_g_gram = tf.matmul(a_g_unrolled, tf.transpose(a_g_unrolled)) # Compute style cost for the current layer style_cost_layer = (1/(4 * n_c**2 * (n_w* n_h)**2)) * tf.reduce_sum(tf.square(tf.subtract(a_s_gram, a_g_gram))) style_cost += style_cost_layer * style_layer_coefficients[i] return style_cost def total_cost(content_cost, style_cost, alpha, beta): """Return a tensor representing the total cost.""" return alpha * content_cost + beta * style_cost #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # Model #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# create_output_dir() # Load, resize, and preprocess content and style images content_img = load_img(CONTENT_IMG_PATH, IMG_SIZE, VGG_IMAGENET_MEANS) style_img = load_img(STYLE_IMG_PATH, IMG_SIZE, VGG_IMAGENET_MEANS) # Create initial generated image, this is the starting point for the optimization process generated_img_init = create_noisy_img(content_img, NOISE_RATIO) # Create tensorflow variable that will be used as an input to the network. # This variable will later be assigned generated_img_init and trained. input_var = tf.Variable(content_img, dtype=tf.float32, expected_shape=(None, None, None, NUM_COLOR_CHANNELS), name="input_var") # Create output tensors for the activations of the content and style layers, # using a Keras VGG19-model pretrained on the ImageNet dataset. x_content, x_styles = create_output_tensors(input_var, CONTENT_LAYER_INDEX, STYLE_LAYER_INDICES) optimizer = tf.train.AdamOptimizer(LEARNING_RATE) # Use the Keras session instead of creating a new one with K.get_session() as sess: sess.run(tf.variables_initializer([input_var])) # Extract the layer activations for content and style images a_content = sess.run(x_content, feed_dict={K.learning_phase(): 0}) sess.run(input_var.assign(style_img)) a_styles = sess.run(x_styles, feed_dict={K.learning_phase(): 0}) # Define the cost function J_content = content_cost(a_content, x_content) J_style = style_cost(a_styles, x_styles, STYLE_LAYER_COEFFICIENTS) J_total = total_cost(J_content, J_style, ALPHA, BETA) # Log the graph. To display use "tensorboard --logdir=log". if LOG_GRAPH: writer = tf.summary.FileWriter("log", sess.graph) writer.close() # Assign the generated random initial image as input sess.run(input_var.assign(generated_img_init)) # Create the training operation train_op = optimizer.minimize(J_total, var_list=[input_var]) sess.run(tf.variables_initializer(optimizer.variables())) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # Train the generated image #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# for i in range(NUM_ITERATIONS): sess.run(train_op) if (i%20) == 0: print( "Iteration: " + str(i) + ", Content cost: " + "{:.2e}".format(sess.run(J_content)) + ", Style cost: " + "{:.2e}".format(sess.run(J_style)) + ", Total cost: " + "{:.2e}".format(sess.run(J_total)) ) # Save the generated image generated_img = sess.run(input_var)[0] save_img(generated_img, GENERATED_IMG_PATH, VGG_IMAGENET_MEANS) # Save the generated image generated_img = sess.run(input_var)[0] save_img(generated_img, GENERATED_IMG_PATH, VGG_IMAGENET_MEANS)
0
0
0
004b00f5d71ab4c3568ca60038dc9509d5e81656
9,891
py
Python
train_nerf.py
AnimatedRNG/nerf-jax
c940bcfbb986623691aff7a4e28bf8273ea70147
[ "Apache-2.0" ]
5
2020-10-22T07:27:15.000Z
2022-02-25T02:54:39.000Z
train_nerf.py
AnimatedRNG/nerf-jax
c940bcfbb986623691aff7a4e28bf8273ea70147
[ "Apache-2.0" ]
11
2021-01-27T01:52:38.000Z
2021-02-03T06:35:34.000Z
train_nerf.py
AnimatedRNG/nerf-jax
c940bcfbb986623691aff7a4e28bf8273ea70147
[ "Apache-2.0" ]
2
2020-12-15T14:44:07.000Z
2021-01-27T03:39:01.000Z
#!/usr/bin/env python3 import argparse import functools from pathlib import Path from datetime import datetime from collections import namedtuple import numpy as np import yaml from box import Box import jax from jax import jit, vmap, pmap, grad, value_and_grad import jax.numpy as jnp from jax.tree_util import register_pytree_node from jax.experimental.optimizers import adam import haiku as hk from tensorboardX import SummaryWriter from tqdm import tqdm, trange from nerf import loader, sampler from nerf import run_one_iter_of_nerf, run_network from nerf import FlexibleNeRFModel, compute_embedding_size from reference import torch_to_jax from util import get_ray_bundle Losses = namedtuple("Losses", ["coarse_loss", "fine_loss"]) register_pytree_node(Losses, lambda xs: (tuple(xs), None), lambda _, xs: Losses(*xs)) if __name__ == "__main__": import cv2 import torch from reference import * import time main()
32.323529
88
0.632696
#!/usr/bin/env python3 import argparse import functools from pathlib import Path from datetime import datetime from collections import namedtuple import numpy as np import yaml from box import Box import jax from jax import jit, vmap, pmap, grad, value_and_grad import jax.numpy as jnp from jax.tree_util import register_pytree_node from jax.experimental.optimizers import adam import haiku as hk from tensorboardX import SummaryWriter from tqdm import tqdm, trange from nerf import loader, sampler from nerf import run_one_iter_of_nerf, run_network from nerf import FlexibleNeRFModel, compute_embedding_size from reference import torch_to_jax from util import get_ray_bundle Losses = namedtuple("Losses", ["coarse_loss", "fine_loss"]) register_pytree_node(Losses, lambda xs: (tuple(xs), None), lambda _, xs: Losses(*xs)) def create_networks(config): coarse_embedding = compute_embedding_size( include_input_xyz=True, include_input_dir=True, num_encoding_fn_xyz=config.nerf.model.coarse.num_encoding_fn_xyz, num_encoding_fn_dir=config.nerf.model.coarse.num_encoding_fn_dir, ) fine_embedding = compute_embedding_size( include_input_xyz=True, include_input_dir=True, num_encoding_fn_xyz=config.nerf.model.fine.num_encoding_fn_xyz, num_encoding_fn_dir=config.nerf.model.fine.num_encoding_fn_dir, ) model_coarse = hk.transform( lambda x: FlexibleNeRFModel( num_encoding_fn_xyz=config.nerf.model.coarse.num_encoding_fn_xyz, num_encoding_fn_dir=config.nerf.model.coarse.num_encoding_fn_dir, include_input_xyz=True, include_input_dir=True, use_viewdirs=config.nerf.model.coarse.use_viewdirs, )(x) ) model_fine = hk.transform( lambda x: FlexibleNeRFModel( num_encoding_fn_xyz=config.nerf.model.fine.num_encoding_fn_xyz, num_encoding_fn_dir=config.nerf.model.fine.num_encoding_fn_dir, include_input_xyz=True, include_input_dir=True, use_viewdirs=config.nerf.model.fine.use_viewdirs, )(x) ) return ( model_coarse, model_fine, coarse_embedding, fine_embedding, ) def init_networks( rng, model_coarse, model_fine, coarse_embedding, fine_embedding, config ): dummy_input_coarse = jnp.zeros((config.nerf.train.chunksize, sum(coarse_embedding))) dummy_input_fine = jnp.zeros((config.nerf.train.chunksize, sum(fine_embedding))) coarse_params = model_coarse.init(rng[0], dummy_input_coarse) fine_params = model_fine.init(rng[1], dummy_input_fine) return (coarse_params, fine_params) def load_networks_from_torch(checkpoint_file="./checkpoint/checkpoint199999.ckpt"): checkpoint = torch.load(checkpoint_file) model_coarse_params = torch_to_jax( checkpoint["model_coarse_state_dict"], "flexible_ne_rf_model" ) model_fine_params = torch_to_jax( checkpoint["model_fine_state_dict"], "flexible_ne_rf_model" ) return (model_coarse_params, model_fine_params) def train_nerf(config): # Create random number generator rng = jax.random.PRNGKey(config.experiment.seed) # create models model_coarse, model_fine, coarse_embedding, fine_embedding = create_networks(config) # model_coarse_params, model_fine_params = load_networks_from_torch( # "checkpoint/checkpoint00000.ckpt" # ) rng, *subrng = jax.random.split(rng, 3) model_coarse_params, model_fine_params = init_networks( subrng, model_coarse, model_fine, coarse_embedding, fine_embedding, config ) model_coarse, model_fine = ( hk.without_apply_rng(model_coarse), hk.without_apply_rng(model_fine), ) # Create loader basedir = config.dataset.basedir print(f"Loading images/poses from {basedir}...") images, poses, intrinsics = loader( Path(".") / basedir, config.dataset.filter_chain, jax.devices()[0], ) print("...done!") # TODO: figure out optimizer num_decay_steps = config.nerf.model.optimizer.lr_decay * 1000 init_adam, update, get_params = adam( lambda iteration: config.nerf.model.optimizer.initial_lr * (config.nerf.model.optimizer.lr_decay_factor ** (iteration / num_decay_steps)) ) optimizer_state = init_adam((model_coarse_params, model_fine_params)) # Logging logdir = Path("logs") / "lego" / datetime.now().strftime("%d_%m_%Y_%H_%M_%S") logdir.mkdir(exist_ok=True) writer = SummaryWriter(logdir.absolute()) (logdir / "config.yml").open("w").write(config.to_yaml()) rng, subrng_img = jax.random.split(rng, 2) train_image_seq = jax.random.randint( subrng_img, shape=(config.experiment.train_iters,), minval=0, maxval=images["train"].shape[0], dtype=jnp.uint32, ) def loss_fn(f_rng, cp, fp, image_id): H, W, focal = ( intrinsics["train"].height, intrinsics["train"].width, intrinsics["train"].focal_length, ) ray_origins, ray_directions, target_s = sampler( images["train"][image_id], poses["train"][image_id], intrinsics["train"], f_rng[0], config.dataset.sampler, ) _, rendered_images = run_one_iter_of_nerf( H, W, focal, functools.partial(model_coarse.apply, cp), functools.partial(model_fine.apply, fp), ray_origins, ray_directions, config.nerf.train, config.nerf.model, config.dataset.projection, f_rng[1], False, ) rgb_coarse, _, _, rgb_fine, _, _ = ( rendered_images[..., :3], rendered_images[..., 3:4], rendered_images[..., 4:5], rendered_images[..., 5:8], rendered_images[..., 8:9], rendered_images[..., 9:10], ) coarse_loss = jnp.mean(((target_s[..., :3] - rgb_coarse) ** 2.0).flatten()) loss = coarse_loss if config.nerf.train.num_fine > 0: fine_loss = jnp.mean(((target_s[..., :3] - rgb_fine) ** 2.0).flatten()) loss = loss + fine_loss return loss, Losses(coarse_loss=coarse_loss, fine_loss=fine_loss) @jit def validation(f_rng, cp, fp, image_id): H, W, focal = ( intrinsics["val"].height, intrinsics["val"].width, intrinsics["val"].focal_length, ) ray_origins, ray_directions = get_ray_bundle( H, W, focal, poses["val"][0][:3, :4].astype(np.float32), ) rng, rendered_images = run_one_iter_of_nerf( H, W, focal, functools.partial(model_coarse.apply, cp), functools.partial(model_fine.apply, fp), ray_origins, ray_directions, config.nerf.validation, config.nerf.model, config.dataset.projection, f_rng, True, ) rgb_coarse, _, _, rgb_fine, _, _ = ( rendered_images[..., :3], rendered_images[..., 3:4], rendered_images[..., 4:5], rendered_images[..., 5:8], rendered_images[..., 8:9], rendered_images[..., 9:10], ) return rgb_coarse, rgb_fine @jit def update_loop(rng, optimizer_state, start, num_iterations): def inner(i, rng_optimizer_state): rng, optimizer_state, _ = rng_optimizer_state rng, *subrng = jax.random.split(rng, 3) (model_coarse_params, model_fine_params) = get_params(optimizer_state) (_, losses), (cp_grad, fp_grad) = value_and_grad( loss_fn, argnums=(1, 2), has_aux=True )(subrng, model_coarse_params, model_fine_params, train_image_seq[i]) optimizer_state = update(i, (cp_grad, fp_grad), optimizer_state) return rng, optimizer_state, losses return jax.lax.fori_loop( start, start + num_iterations, inner, (rng, optimizer_state, Losses(coarse_loss=0.0, fine_loss=0.0)), ) for i in trange(0, config.experiment.train_iters, config.experiment.jit_loop): rng, optimizer_state, losses = update_loop( rng, optimizer_state, i, config.experiment.jit_loop ) loss = losses.coarse_loss + losses.fine_loss # Validation if ( i % config.experiment.print_every == 0 or i == config.experiment.train_iters - 1 ): tqdm.write(f"Iter {i}: Loss {loss}") writer.add_scalar("train/loss", loss, i) writer.add_scalar("train/coarse_loss", losses.coarse_loss, i) writer.add_scalar("train/fine_loss", losses.fine_loss, i) if i % config.experiment.validate_every == 0: start = time.time() rgb_coarse, rgb_fine = validation(rng, *get_params(optimizer_state), 0) end = time.time() to_img = lambda x: np.array( np.clip(jnp.transpose(x, axes=(2, 1, 0)), 0.0, 1.0) * 255 ).astype(np.uint8) writer.add_image("validation/rgb_coarse", to_img(rgb_coarse), i) writer.add_image("validation/rgb_fine", to_img(rgb_fine), i) def main(): parser = argparse.ArgumentParser() parser.add_argument("--config", type=str, required=True) config_args = parser.parse_args() with open(config_args.config, "r") as f: config_dictionary = yaml.load(f, Loader=yaml.FullLoader) config = Box(config_dictionary) train_nerf(config) if __name__ == "__main__": import cv2 import torch from reference import * import time main()
8,826
0
115
2dcc1dfe862513682983900b78ea51d0e14b216f
477
py
Python
insta/forms.py
Ruweydha/Insta-clone
dc0c08b8daa941bffeee751f8e6f77e1ae41f7c0
[ "Unlicense" ]
null
null
null
insta/forms.py
Ruweydha/Insta-clone
dc0c08b8daa941bffeee751f8e6f77e1ae41f7c0
[ "Unlicense" ]
null
null
null
insta/forms.py
Ruweydha/Insta-clone
dc0c08b8daa941bffeee751f8e6f77e1ae41f7c0
[ "Unlicense" ]
null
null
null
from pyexpat import model from django import forms from .models import Profile, Images, Comments
26.5
55
0.660377
from pyexpat import model from django import forms from .models import Profile, Images, Comments class UpdateProfileForm(forms.ModelForm): class Meta: model = Profile exclude = ['user', 'pub_date'] class ImagesForm(forms.ModelForm): class Meta: model = Images exclude = ['profile', 'date_posted'] class CommentsForm(forms.ModelForm): class Meta: model = Comments exclude =['commentor', 'date_posted', 'image' ]
0
308
73
0fbd0c29ffc03075b101be02d82f3c616c84a5ed
152
py
Python
Udemy/GeekUniversity/secao_4/ex16_converso_polegada_p_centimetro.py
SandboxGTASA/Python-1
bbb5f8bdf7d5110528e457b2a9ebdb2d67e40805
[ "MIT" ]
null
null
null
Udemy/GeekUniversity/secao_4/ex16_converso_polegada_p_centimetro.py
SandboxGTASA/Python-1
bbb5f8bdf7d5110528e457b2a9ebdb2d67e40805
[ "MIT" ]
null
null
null
Udemy/GeekUniversity/secao_4/ex16_converso_polegada_p_centimetro.py
SandboxGTASA/Python-1
bbb5f8bdf7d5110528e457b2a9ebdb2d67e40805
[ "MIT" ]
null
null
null
# Convertendo polegadas em centimetros polegadas = float(input('Entre com o tamanho em polegadas: ')) centimetros = polegadas * 2.54 print(centimetros)
30.4
62
0.776316
# Convertendo polegadas em centimetros polegadas = float(input('Entre com o tamanho em polegadas: ')) centimetros = polegadas * 2.54 print(centimetros)
0
0
0
248d3ffb18d87c23c825d18f3cf219a8e26cd866
179
py
Python
payjp/util.py
payjp/payjp-python
994b16addd8327781eb936eca60d1abe7f7c7819
[ "MIT" ]
15
2015-09-13T14:40:48.000Z
2021-04-29T15:21:13.000Z
payjp/util.py
payjp/payjp-python
994b16addd8327781eb936eca60d1abe7f7c7819
[ "MIT" ]
9
2015-09-07T07:57:20.000Z
2020-12-14T07:11:59.000Z
payjp/util.py
payjp/payjp-python
994b16addd8327781eb936eca60d1abe7f7c7819
[ "MIT" ]
10
2015-09-07T07:56:09.000Z
2020-05-22T12:43:21.000Z
# coding: utf-8 import sys
17.9
64
0.620112
# coding: utf-8 import sys def utf8(value): if sys.version_info < (3, 0) and isinstance(value, unicode): return value.encode('utf-8') else: return value
128
0
23
6bb791e549adf13891b287887a7403545ed07d97
17,713
py
Python
examples/pretraining/swav/main_swav.py
caglasozen/wilds
db2ff095304891244962509459ee48e2fc5fd5e6
[ "MIT" ]
null
null
null
examples/pretraining/swav/main_swav.py
caglasozen/wilds
db2ff095304891244962509459ee48e2fc5fd5e6
[ "MIT" ]
null
null
null
examples/pretraining/swav/main_swav.py
caglasozen/wilds
db2ff095304891244962509459ee48e2fc5fd5e6
[ "MIT" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # This file has been modified from the original repository's version in the following ways: # 1. The model loading logic uses a SwAVModel class that acts as a wrapper around WILDS-Unlabeled # models. # 2. The data loading logic uses a CustomSplitMultiCropDataset class that is compatible with all # WILDS-Unlabeled datasets. # More information about both of these classes can be found in the src/ directory. # import argparse import math import os import pdb import shutil import sys import time from logging import getLogger import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.distributed as dist import torch.optim try: import apex from apex.parallel.LARC import LARC except ImportError as e: print("Apex not found. Proceeding without it...") try: import wandb except Exception as e: print("wandb not found. Proceeding without it...") import wilds from src.utils import ( bool_flag, initialize_exp, restart_from_checkpoint, fix_random_seeds, AverageMeter, init_distributed_mode, ParseKwargs, plot_experiment, populate_defaults_for_swav ) from src.multicropdataset import CustomSplitMultiCropDataset from src.model import SwAVModel from examples.models.initializer import initialize_model from examples.utils import initialize_wandb logger = getLogger() parser = argparse.ArgumentParser(description="Implementation of SwAV") ######################### ##### dataset params #### ######################### parser.add_argument('-d', '--dataset', required=True, choices=wilds.unlabeled_datasets) parser.add_argument('--root_dir', required=True, help='The directory where [dataset]/data can be found (or should be downloaded to, if it does not exist).') parser.add_argument('--dataset_kwargs', nargs='*', action=ParseKwargs, default={}) parser.add_argument('--loader_kwargs', nargs='*', action=ParseKwargs, default={}) parser.add_argument('--splits', nargs='+') ######################### #### data aug params #### ######################### parser.add_argument("--nmb_crops", type=int, nargs="+", help="list of number of crops") parser.add_argument("--size_crops", type=int, nargs="+", help="crops resolutions") parser.add_argument("--min_scale_crops", type=float, nargs="+", help="argument in RandomResizedCrop") parser.add_argument("--max_scale_crops", type=float, nargs="+", help="argument in RandomResizedCrop") ######################### ## swav specific params # ######################### parser.add_argument("--crops_for_assign", type=int, nargs="+", default=[0, 1], help="list of crops id used for computing assignments (default: [0, 1])") parser.add_argument("--temperature", default=0.1, type=float, help="temperature parameter in training loss (default: 0.1)") parser.add_argument("--epsilon", default=0.03, type=float, help="regularization parameter for Sinkhorn-Knopp algorithm (default: 0.03)") parser.add_argument("--sinkhorn_iterations", default=3, type=int, help="number of iterations in Sinkhorn-Knopp algorithm") parser.add_argument("--feat_dim", default=128, type=int, help="feature dimension") parser.add_argument("--nmb_prototypes", type=int, help="number of prototypes") parser.add_argument("--queue_length", type=int, default=0, help="length of the queue (0 for no queue)") parser.add_argument("--epoch_queue_starts", type=int, default=500, help="from this epoch, we start using a queue") ######################### #### optim parameters ### ######################### parser.add_argument('--optimizer_kwargs', nargs='*', action=ParseKwargs, default={}) parser.add_argument("--n_epochs", default=400, type=int, help="number of total epochs to run") parser.add_argument("--warmup_epochs", default=0, type=int, help="number of warmup epochs (default: 0)") parser.add_argument("--batch_size", type=int, help="batch size per gpu, i.e. how many unique instances per gpu") parser.add_argument("--lr", type=float, help="base learning rate") parser.add_argument("--final_lr", type=float, help="final learning rate") parser.add_argument("--freeze_prototypes_niters", default=5005, type=int, help="freeze the prototypes during this many iterations from the start (default: 5005).") parser.add_argument("--weight_decay", default=1e-6, type=float, help="weight decay") parser.add_argument("--start_warmup", default=0, type=float, help="initial warmup learning rate") ######################### #### dist parameters ### ######################### parser.add_argument("--dist_url", default="env://", type=str, help="""url used to set up distributed training; see https://pytorch.org/docs/stable/distributed.html""") parser.add_argument("--world_size", default=-1, type=int, help=""" number of processes: it is set automatically and should not be passed as argument""") parser.add_argument("--rank", default=0, type=int, help="""rank of this process: it is set automatically and should not be passed as argument""") parser.add_argument("--local_rank", default=0, type=int, help="this argument is not used and should be ignored") ######################### #### other parameters ### ######################### parser.add_argument("--model", type=str, help="convnet architecture. If not set, uses default model specified in WILDS.") parser.add_argument('--model_kwargs', nargs='*', action=ParseKwargs, default={}, help='keyword arguments for model initialization passed as key1=value1 key2=value2') parser.add_argument("--hidden_mlp", default=2048, type=int, help="hidden layer dimension in projection head") parser.add_argument("--checkpoint_freq", type=int, default=50, help="Save the model periodically") parser.add_argument("--use_fp16", type=bool_flag, default=True, help="whether to train with mixed precision or not") parser.add_argument("--sync_bn", type=str, default="pytorch", help="synchronize bn") parser.add_argument("--syncbn_process_group_size", type=int, default=8, help=""" see https://github.com/NVIDIA/apex/blob/master/apex/parallel/__init__.py#L58-L67""") parser.add_argument("--log_dir", type=str, default=".", help="experiment dump path for checkpoints and log") parser.add_argument("--seed", type=int, default=0, help="seed") parser.add_argument("--is_not_slurm_job", type=bool_flag, default=True, help="Set to true if not running in Slurm.") parser.add_argument("--cpu_only", type=bool_flag, default=False, help="Set to true to run experiment on CPUs instead of GPUs (for debugging).") parser.add_argument('--pretrained_model_path', default=None, type=str) # Weights & Biases parser.add_argument('--use_wandb', type=bool_flag, nargs='?', default=False) parser.add_argument('--wandb_api_key_path', type=str, help="Path to Weights & Biases API Key. If use_wandb is set to True and this argument is not specified, user will be prompted to authenticate.") parser.add_argument('--wandb_kwargs', nargs='*', action=ParseKwargs, default={}, help="Will be passed directly into wandb.init().") @torch.no_grad() if __name__ == "__main__": main()
40.533181
164
0.614351
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # This file has been modified from the original repository's version in the following ways: # 1. The model loading logic uses a SwAVModel class that acts as a wrapper around WILDS-Unlabeled # models. # 2. The data loading logic uses a CustomSplitMultiCropDataset class that is compatible with all # WILDS-Unlabeled datasets. # More information about both of these classes can be found in the src/ directory. # import argparse import math import os import pdb import shutil import sys import time from logging import getLogger import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.distributed as dist import torch.optim try: import apex from apex.parallel.LARC import LARC except ImportError as e: print("Apex not found. Proceeding without it...") try: import wandb except Exception as e: print("wandb not found. Proceeding without it...") import wilds from src.utils import ( bool_flag, initialize_exp, restart_from_checkpoint, fix_random_seeds, AverageMeter, init_distributed_mode, ParseKwargs, plot_experiment, populate_defaults_for_swav ) from src.multicropdataset import CustomSplitMultiCropDataset from src.model import SwAVModel from examples.models.initializer import initialize_model from examples.utils import initialize_wandb logger = getLogger() parser = argparse.ArgumentParser(description="Implementation of SwAV") ######################### ##### dataset params #### ######################### parser.add_argument('-d', '--dataset', required=True, choices=wilds.unlabeled_datasets) parser.add_argument('--root_dir', required=True, help='The directory where [dataset]/data can be found (or should be downloaded to, if it does not exist).') parser.add_argument('--dataset_kwargs', nargs='*', action=ParseKwargs, default={}) parser.add_argument('--loader_kwargs', nargs='*', action=ParseKwargs, default={}) parser.add_argument('--splits', nargs='+') ######################### #### data aug params #### ######################### parser.add_argument("--nmb_crops", type=int, nargs="+", help="list of number of crops") parser.add_argument("--size_crops", type=int, nargs="+", help="crops resolutions") parser.add_argument("--min_scale_crops", type=float, nargs="+", help="argument in RandomResizedCrop") parser.add_argument("--max_scale_crops", type=float, nargs="+", help="argument in RandomResizedCrop") ######################### ## swav specific params # ######################### parser.add_argument("--crops_for_assign", type=int, nargs="+", default=[0, 1], help="list of crops id used for computing assignments (default: [0, 1])") parser.add_argument("--temperature", default=0.1, type=float, help="temperature parameter in training loss (default: 0.1)") parser.add_argument("--epsilon", default=0.03, type=float, help="regularization parameter for Sinkhorn-Knopp algorithm (default: 0.03)") parser.add_argument("--sinkhorn_iterations", default=3, type=int, help="number of iterations in Sinkhorn-Knopp algorithm") parser.add_argument("--feat_dim", default=128, type=int, help="feature dimension") parser.add_argument("--nmb_prototypes", type=int, help="number of prototypes") parser.add_argument("--queue_length", type=int, default=0, help="length of the queue (0 for no queue)") parser.add_argument("--epoch_queue_starts", type=int, default=500, help="from this epoch, we start using a queue") ######################### #### optim parameters ### ######################### parser.add_argument('--optimizer_kwargs', nargs='*', action=ParseKwargs, default={}) parser.add_argument("--n_epochs", default=400, type=int, help="number of total epochs to run") parser.add_argument("--warmup_epochs", default=0, type=int, help="number of warmup epochs (default: 0)") parser.add_argument("--batch_size", type=int, help="batch size per gpu, i.e. how many unique instances per gpu") parser.add_argument("--lr", type=float, help="base learning rate") parser.add_argument("--final_lr", type=float, help="final learning rate") parser.add_argument("--freeze_prototypes_niters", default=5005, type=int, help="freeze the prototypes during this many iterations from the start (default: 5005).") parser.add_argument("--weight_decay", default=1e-6, type=float, help="weight decay") parser.add_argument("--start_warmup", default=0, type=float, help="initial warmup learning rate") ######################### #### dist parameters ### ######################### parser.add_argument("--dist_url", default="env://", type=str, help="""url used to set up distributed training; see https://pytorch.org/docs/stable/distributed.html""") parser.add_argument("--world_size", default=-1, type=int, help=""" number of processes: it is set automatically and should not be passed as argument""") parser.add_argument("--rank", default=0, type=int, help="""rank of this process: it is set automatically and should not be passed as argument""") parser.add_argument("--local_rank", default=0, type=int, help="this argument is not used and should be ignored") ######################### #### other parameters ### ######################### parser.add_argument("--model", type=str, help="convnet architecture. If not set, uses default model specified in WILDS.") parser.add_argument('--model_kwargs', nargs='*', action=ParseKwargs, default={}, help='keyword arguments for model initialization passed as key1=value1 key2=value2') parser.add_argument("--hidden_mlp", default=2048, type=int, help="hidden layer dimension in projection head") parser.add_argument("--checkpoint_freq", type=int, default=50, help="Save the model periodically") parser.add_argument("--use_fp16", type=bool_flag, default=True, help="whether to train with mixed precision or not") parser.add_argument("--sync_bn", type=str, default="pytorch", help="synchronize bn") parser.add_argument("--syncbn_process_group_size", type=int, default=8, help=""" see https://github.com/NVIDIA/apex/blob/master/apex/parallel/__init__.py#L58-L67""") parser.add_argument("--log_dir", type=str, default=".", help="experiment dump path for checkpoints and log") parser.add_argument("--seed", type=int, default=0, help="seed") parser.add_argument("--is_not_slurm_job", type=bool_flag, default=True, help="Set to true if not running in Slurm.") parser.add_argument("--cpu_only", type=bool_flag, default=False, help="Set to true to run experiment on CPUs instead of GPUs (for debugging).") parser.add_argument('--pretrained_model_path', default=None, type=str) # Weights & Biases parser.add_argument('--use_wandb', type=bool_flag, nargs='?', default=False) parser.add_argument('--wandb_api_key_path', type=str, help="Path to Weights & Biases API Key. If use_wandb is set to True and this argument is not specified, user will be prompted to authenticate.") parser.add_argument('--wandb_kwargs', nargs='*', action=ParseKwargs, default={}, help="Will be passed directly into wandb.init().") def main(): global args args = parser.parse_args() args = populate_defaults_for_swav(args) init_distributed_mode(args) fix_random_seeds(args.seed) if not os.path.exists(args.log_dir): os.makedirs(args.log_dir) logger, training_stats = initialize_exp(args, "epoch", "loss") logger.info(f"Initialized distributed mode and applied WILDS default...\n{args}") if args.use_wandb: initialize_wandb(args) train_dataset = CustomSplitMultiCropDataset( args.dataset, args.root_dir, args.size_crops, args.nmb_crops, args.min_scale_crops, args.max_scale_crops, args, ) sampler = torch.utils.data.distributed.DistributedSampler(train_dataset) train_loader = torch.utils.data.DataLoader( train_dataset, sampler=sampler, batch_size=args.batch_size, **args.loader_kwargs, ) logger.info("Building data done with {} images loaded.".format(len(train_dataset))) d_out = 1 # this can be arbitrary; final layer is discarded for SwAVModel base_model, _ = initialize_model(args, d_out, is_featurizer=True) # discard classifier model = SwAVModel( base_model, normalize=True, output_dim=args.feat_dim, hidden_mlp=args.hidden_mlp, nmb_prototypes=args.nmb_prototypes ) # synchronize batch norm layers if args.sync_bn == "pytorch": model = nn.SyncBatchNorm.convert_sync_batchnorm(model) elif args.sync_bn == "apex": # with apex syncbn we sync bn per group because it speeds up computation # compared to global syncbn process_group = apex.parallel.create_syncbn_process_group(args.syncbn_process_group_size) model = apex.parallel.convert_syncbn_model(model, process_group=process_group) # copy model to GPU model = model.cuda() if args.rank == 0: logger.info(model) logger.info("Building model done.") # build optimizer optimizer = torch.optim.SGD( model.parameters(), lr=args.lr, momentum=0.9, weight_decay=args.weight_decay, ) optimizer = LARC(optimizer=optimizer, trust_coefficient=0.001, clip=False) warmup_lr_schedule = np.linspace(args.start_warmup, args.lr, len(train_loader) * args.warmup_epochs) iters = np.arange(len(train_loader) * (args.n_epochs - args.warmup_epochs)) cosine_lr_schedule = np.array([args.final_lr + 0.5 * (args.lr - args.final_lr) * (1 + \ math.cos(math.pi * t / (len(train_loader) * (args.n_epochs - args.warmup_epochs)))) for t in iters]) lr_schedule = np.concatenate((warmup_lr_schedule, cosine_lr_schedule)) logger.info("Building optimizer done.") # init mixed precision if args.use_fp16: model, optimizer = apex.amp.initialize(model, optimizer, opt_level="O1") logger.info("Initializing mixed precision done.") # wrap model model = nn.parallel.DistributedDataParallel( model, device_ids=[args.gpu_to_work_on] ) # optionally resume from a checkpoint to_restore = {"epoch": 0} restart_from_checkpoint( os.path.join(args.log_dir, "checkpoint.pth.tar"), run_variables=to_restore, state_dict=model, optimizer=optimizer, amp=apex.amp, ) start_epoch = to_restore["epoch"] # build the queue queue = None queue_path = os.path.join(args.log_dir, "queue" + str(args.rank) + ".pth") if os.path.isfile(queue_path): queue = torch.load(queue_path)["queue"] # the queue needs to be divisible by the batch size args.queue_length -= args.queue_length % (args.batch_size * args.world_size) cudnn.benchmark = True for epoch in range(start_epoch, args.n_epochs): # train the network for one epoch logger.info("============ Starting epoch %i ... ============" % epoch) # set sampler train_loader.sampler.set_epoch(epoch) # optionally starts a queue if args.queue_length > 0 and epoch >= args.epoch_queue_starts and queue is None: queue = torch.zeros( len(args.crops_for_assign), args.queue_length // args.world_size, args.feat_dim, ).cuda() # train the network scores, queue = train(train_loader, model, optimizer, epoch, lr_schedule, queue) training_stats.update(scores) # save checkpoints if args.rank == 0: save_dict = { "epoch": epoch + 1, "state_dict": model.state_dict(), "optimizer": optimizer.state_dict(), } if args.use_fp16: save_dict["amp"] = apex.amp.state_dict() torch.save( save_dict, os.path.join(args.log_dir, "checkpoint.pth.tar"), ) if epoch % args.checkpoint_freq == 0 or epoch == args.n_epochs - 1: shutil.copyfile( os.path.join(args.log_dir, "checkpoint.pth.tar"), os.path.join(args.dump_checkpoints, "ckp-" + str(epoch) + ".pth"), ) if queue is not None: torch.save({"queue": queue}, queue_path) if args.rank == 0: plot_experiment(args.log_dir) def train(train_loader, model, optimizer, epoch, lr_schedule, queue): batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() model.train() use_the_queue = False end = time.time() for it, inputs in enumerate(train_loader): # measure data loading time data_time.update(time.time() - end) # update learning rate iteration = epoch * len(train_loader) + it for param_group in optimizer.param_groups: param_group["lr"] = lr_schedule[iteration] # normalize the prototypes with torch.no_grad(): w = model.module.prototypes.weight.data.clone() w = nn.functional.normalize(w, dim=1, p=2) model.module.prototypes.weight.copy_(w) # ============ multi-res forward passes ... ============ embedding, output = model(inputs) embedding = embedding.detach() bs = inputs[0].size(0) # ============ swav loss ... ============ loss = 0 for i, crop_id in enumerate(args.crops_for_assign): with torch.no_grad(): out = output[bs * crop_id: bs * (crop_id + 1)].detach() # time to use the queue if queue is not None: if use_the_queue or not torch.all(queue[i, -1, :] == 0): use_the_queue = True out = torch.cat((torch.mm( queue[i], model.module.prototypes.weight.t() ), out)) # fill the queue queue[i, bs:] = queue[i, :-bs].clone() queue[i, :bs] = embedding[crop_id * bs: (crop_id + 1) * bs] # get assignments q = distributed_sinkhorn(out)[-bs:] # cluster assignment prediction subloss = 0 for v in np.delete(np.arange(np.sum(args.nmb_crops)), crop_id): x = output[bs * v: bs * (v + 1)] / args.temperature subloss -= torch.mean(torch.sum(q * F.log_softmax(x, dim=1), dim=1)) loss += subloss / (np.sum(args.nmb_crops) - 1) loss /= len(args.crops_for_assign) # ============ backward and optim step ... ============ optimizer.zero_grad() if args.use_fp16: with apex.amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() # cancel gradients for the prototypes if iteration < args.freeze_prototypes_niters: for name, p in model.named_parameters(): if "prototypes" in name: p.grad = None optimizer.step() # ============ misc ... ============ losses.update(loss.item(), inputs[0].size(0)) batch_time.update(time.time() - end) end = time.time() if args.rank ==0 and it % 50 == 0: logger.info( "Epoch: [{0}][{1}]\t" "Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t" "Data {data_time.val:.3f} ({data_time.avg:.3f})\t" "Loss {loss.val:.4f} ({loss.avg:.4f})\t" "Lr: {lr:.4f}".format( epoch, it, batch_time=batch_time, data_time=data_time, loss=losses, lr=optimizer.optim.param_groups[0]["lr"], ) ) if args.use_wandb: wandb.log( { "epoch": epoch, "loss": losses.val, "loss_avg": losses.avg, } ) return (epoch, losses.avg), queue @torch.no_grad() def distributed_sinkhorn(out): Q = torch.exp(out / args.epsilon).t() # Q is K-by-B for consistency with notations from our paper B = Q.shape[1] * args.world_size # number of samples to assign K = Q.shape[0] # how many prototypes # make the matrix sums to 1 sum_Q = torch.sum(Q) dist.all_reduce(sum_Q) Q /= sum_Q for it in range(args.sinkhorn_iterations): # normalize each row: total weight per prototype must be 1/K sum_of_rows = torch.sum(Q, dim=1, keepdim=True) dist.all_reduce(sum_of_rows) Q /= sum_of_rows Q /= K # normalize each column: total weight per sample must be 1/B Q /= torch.sum(Q, dim=0, keepdim=True) Q /= B Q *= B # the colomns must sum to 1 so that Q is an assignment return Q.t() if __name__ == "__main__": main()
9,880
0
68
0ed6edb1cfba4fa32c570eb33da74bbda6c23148
10,300
py
Python
bokeh-app/mainold.py
nyc-public-schools/bokeh
bad0334b43ad9df295efa980d7c2a2f704888732
[ "BSD-3-Clause" ]
null
null
null
bokeh-app/mainold.py
nyc-public-schools/bokeh
bad0334b43ad9df295efa980d7c2a2f704888732
[ "BSD-3-Clause" ]
null
null
null
bokeh-app/mainold.py
nyc-public-schools/bokeh
bad0334b43ad9df295efa980d7c2a2f704888732
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 # In[7]: import pandas as pd import numpy as np from os.path import dirname, join from bokeh.io import show, output_notebook,output_file, show, save, curdoc, output_notebook, export_png from bokeh.plotting import figure, output_file, show,save from bokeh.models.widgets import Panel, Tabs from bokeh.layouts import column, row, widgetbox from bokeh.models import HoverTool, LinearColorMapper,TextInput,Label,LabelSet,Title,CustomJS,DataTable, Slider, Div,RangeSlider, Button,RadioGroup,LinearAxis, Range1d, ColumnDataSource, Paragraph,Select, TableColumn from bokeh.tile_providers import CARTODBPOSITRON, get_provider,OSM, STAMEN_TERRAIN #colors for each borough colors=['#7bccc4','#4eb3d3','#2b8cbe','#0868ac','#084081'] #Load data mid_dyn = pd.read_csv(join(dirname(__file__), "data/MiddleSchools_2006-2018_clean.csv")) mid_stat = pd.read_csv(join(dirname(__file__), "data/MiddleSchools_2018_clean.csv")) nums =['female_rate', 'male_rate', 'asian_rate', 'black_rate', 'hispanic_rate', 'other_rate', 'white_rate', 'disabilities_rate', 'ell_rate', 'poverty_rate', 'total_schooldays', 'presence_rate', 'absense_rate', 'release_rate', 'mean_score_math', 'mean_score_ela', 'diversity_index','crime_rate','avg_rent_per_sqft'] for num in nums: mid_stat[num] = round(mid_stat[num],1) if num not in ['crime_rate','avg_rent_per_sqft']: mid_dyn[num] = round(mid_dyn[num],1) # In[8]: # In[9]: #Get data from csv to lists # In[10]: # In[14]: # In[31]: text_input = TextInput(value='01M034') text_input.on_change('value',update1,update2) div1 = Div(text="<b> Write School DBN </b>") variables = ['Etnicities','Gender','Mean Score'] div2 = Div(text="<b> Choose variable </b>") radio_group = RadioGroup(labels=variables, active=1) radio_group.on_change('active',update1,update2) div3 = Div(text="<b> Location of School </b>") div4 = Div(text="<b> Overview </b>") plot,para,m,table = create_plot() layout = create_slider(plot, 2006, 2018) div5 = Div(text="<b> </b>") div6 = Div(text="<b> </b>") #Combine all controls to get in column col1= column(div1,text_input,div2,radio_group,div3,m, width=260) col2 = column(div6, layout, width=510) col3 = column(div5,table, width=230) col4 = column(div4, para, width=230) #Layout layout = row(col1,col2,col3,col4) curdoc().add_root(layout) curdoc().title = "NYC_map" #output_file("details.html") #save(layout) show(layout)
31.987578
224
0.618155
#!/usr/bin/env python # coding: utf-8 # In[7]: import pandas as pd import numpy as np from os.path import dirname, join from bokeh.io import show, output_notebook,output_file, show, save, curdoc, output_notebook, export_png from bokeh.plotting import figure, output_file, show,save from bokeh.models.widgets import Panel, Tabs from bokeh.layouts import column, row, widgetbox from bokeh.models import HoverTool, LinearColorMapper,TextInput,Label,LabelSet,Title,CustomJS,DataTable, Slider, Div,RangeSlider, Button,RadioGroup,LinearAxis, Range1d, ColumnDataSource, Paragraph,Select, TableColumn from bokeh.tile_providers import CARTODBPOSITRON, get_provider,OSM, STAMEN_TERRAIN #colors for each borough colors=['#7bccc4','#4eb3d3','#2b8cbe','#0868ac','#084081'] #Load data mid_dyn = pd.read_csv(join(dirname(__file__), "data/MiddleSchools_2006-2018_clean.csv")) mid_stat = pd.read_csv(join(dirname(__file__), "data/MiddleSchools_2018_clean.csv")) nums =['female_rate', 'male_rate', 'asian_rate', 'black_rate', 'hispanic_rate', 'other_rate', 'white_rate', 'disabilities_rate', 'ell_rate', 'poverty_rate', 'total_schooldays', 'presence_rate', 'absense_rate', 'release_rate', 'mean_score_math', 'mean_score_ela', 'diversity_index','crime_rate','avg_rent_per_sqft'] for num in nums: mid_stat[num] = round(mid_stat[num],1) if num not in ['crime_rate','avg_rent_per_sqft']: mid_dyn[num] = round(mid_dyn[num],1) # In[8]: def geographic_to_web_mercator(x_lon, y_lat): if abs(x_lon) <= 180 and abs(y_lat) < 90: num = x_lon * 0.017453292519943295 x = 6378137.0 * num a = y_lat * 0.017453292519943295 x_mercator = x y_mercator = 3189068.5 * np.log((1.0 + np.sin(a)) / (1.0 - np.sin(a))) return x_mercator, y_mercator # In[9]: #Get data from csv to lists def get_data(school): school_data = mid_dyn[mid_dyn['dbn']==school] source = ColumnDataSource(school_data) return source, school_data # In[10]: def create_slider(plot, startYear, endYear): callback = CustomJS(args=dict(plot=plot), code=""" var a = cb_obj.value; plot.x_range.start = a[0]; plot.x_range.end = a[1]; """) range_slider = RangeSlider(start=startYear, end=endYear,value=(startYear, endYear), step=1, width= 500, title="Year Range") range_slider.js_on_change('value', callback) layout = column(plot,column(range_slider)) return layout # In[14]: def create_plot(): colors=['#7bccc4','#4eb3d3','#2b8cbe','#0868ac','#084081'] radio_idx = radio_group.active school = text_input.value variables = ['Etnicities','Gender','Mean Score'] text = mid_stat[mid_stat['dbn']==school]['overview'].iloc[0] data = mid_stat[mid_stat['dbn']==school] src, school_data = get_data(school) if radio_idx == 0: plot = figure(plot_width = 500, plot_height = 400, toolbar_location=None, x_axis_label = 'Year', y_axis_label = '% Etnicity') races = ['asian_rate', 'black_rate', 'hispanic_rate', 'white_rate'] race_title =['Asian', 'Black', 'Hispanic', 'White'] colors1 = colors[1:] for (race,tit,color) in zip(races,race_title,colors1): line=plot.line('year', race, line_width=2, line_color=color, source=src,legend_label=tit) plot.circle('year', race, fill_color=color, line_color=color, size=8, source=src) hover = HoverTool(renderers=[line]) hover.tooltips=[ ('Year', '@year'), (tit, '@'+race+'{1.1} %') ] plot.add_tools(hover) plot.legend.location ='top_left' #plot.add_layout(Title(text= '{} School \n'.format(level), text_font_style="italic",text_font_size="14pt", align='center'), 'above') plot.add_layout(Title(text=school_data['school_name'].unique()[0], text_font_size="16pt",align='center'), 'above',) #plot.title.align ='center' #plot.title.text_font_size = "18px" elif radio_idx == 1: plot = figure(plot_width = 500, plot_height = 400, toolbar_location=None, x_axis_label = 'Year', y_axis_label = '% Gender') genders = ['female_rate','male_rate'] gender_title =['% Female','% Male'] colors2 = [colors[2]]+[colors[4]] for (gender,tit,color) in zip(genders,gender_title,colors2): line=plot.line('year', gender, line_width=2, line_color=color, source=src,legend_label=tit) plot.circle('year', gender, fill_color=color, line_color=color, size=8, source=src) hover = HoverTool(renderers=[line]) hover.tooltips=[ ('Year', '@year'), (tit, '@'+gender+'{1.1} %') ] plot.add_tools(hover) plot.legend.location ='top_left' # plot.add_layout(Title(text= '{} School \n'.format(level), text_font_style="italic",text_font_size="14pt", align='center'), 'above') plot.add_layout(Title(text=school_data['school_name'].unique()[0], text_font_size="16pt",align='center'), 'above',) elif radio_idx == 2: plot = figure(plot_width = 500, plot_height = 400, toolbar_location=None, x_axis_label = 'Year', y_axis_label = 'Mean Score') cols = ['mean_score_math', 'mean_score_ela'] cols_tit = ['Mean Math Score', 'Mean ELA Score'] colors3 = [colors[2]]+[colors[4]] for (col,tit,color) in zip(cols,cols_tit,colors3): line=plot.line('year', col, line_width=2, line_color=color, source=src,legend_label=tit) plot.circle('year', col, fill_color=color, line_color=color, size=8, source=src) hover = HoverTool(renderers=[line]) hover.tooltips=[ ('Year', '@year'), (tit, '@'+col+'{1.1}') ] plot.add_tools(hover) plot.legend.location ='top_left' #plot.add_layout(Title(text= '{} School \n'.format(level), text_font_style="italic",text_font_size="14pt", align='center'), 'above') plot.add_layout(Title(text=school_data['school_name'].unique()[0], text_font_size="16pt",align='center'), 'above',) #Add overview paragraph para = Div(text=text, width=400, height=400) cols=[ 'school_name', 'category', 'open_year', 'borough', 'neighborhood', 'district', 'address', 'website', 'total_enrollment', 'female_rate', 'male_rate', 'diversity_index', 'asian_rate', 'black_rate', 'hispanic_rate', 'white_rate', 'ell_rate', 'poverty_rate', 'total_schooldays', 'presence_rate', 'absense_rate', 'mean_score_math', 'mean_score_ela', 'schoolday_duration', 'uniform', 'extendedday', 'summersession', 'weekendprogram', 'electives', 'activities', 'sports', 'pupil_teacher_ratio', 'student_trust_score', 'crime_rate', 'avg_rent_per_sqft'] col_name=[ 'Name', 'Categpry', 'Open year', 'Borough', 'Neighborhood', 'District', 'Address', 'Website', 'Enrollment', '% Female', '% Male', 'Diversity index', '% Asian', '% Black', '% Hispanic', '% White', '% ELL', '% Supported', 'Schooldays', '% Presence', '% Absense', 'Mean math score', 'Mean ELA score', 'Schoolday', 'Uniform', 'Extended day', 'Summer session', 'Weekend program', 'Electives', 'Activities', 'Sports', 'Class size', 'Satisfaction', 'Crime rate', 'Rent per sqft $'] data_dict ={'columns': col_name, 'data': list(data[cols].iloc[0].values)} source = ColumnDataSource(data_dict) columns = [ TableColumn(field="columns", title='DBN: '+data['dbn'].iloc[0],width=100), TableColumn(field="data", title="",width=1000), ] table = DataTable(source=source, columns=columns, width=220, height=450, fit_columns=False,index_position=None) #Get map x,y = geographic_to_web_mercator(data['lon'].iloc[0],data['lat'].iloc[0]) tile_provider = get_provider(CARTODBPOSITRON) # range bounds supplied in web mercator coordinates m = figure(x_range=(x-500, x+500), y_range=(y-500, y+500),height=300,width=260, x_axis_location=None, y_axis_location=None,toolbar_location='below',tools="pan,wheel_zoom,reset",active_scroll='auto') m.add_tile(tile_provider) square=m.circle(x=x,y=y,size=12, fill_color=colors[4], fill_alpha=1) tooltips = [('Name', data['school_name'].iloc[0]),('Address', data['address'].iloc[0])] m.add_tools(HoverTool(renderers=[square],tooltips=tooltips)) return plot, para, m, table # In[31]: def update1(attr, old, new): plot,para,m,table = create_plot() layout.children[1].children[1]= create_slider(plot, 2006, 2018) def update2(attr, old, new): plot,para,m,table = create_plot() layout.children[2].children[1] = table layout.children[3].children[1] = para layout.children[0].children[5] = m text_input = TextInput(value='01M034') text_input.on_change('value',update1,update2) div1 = Div(text="<b> Write School DBN </b>") variables = ['Etnicities','Gender','Mean Score'] div2 = Div(text="<b> Choose variable </b>") radio_group = RadioGroup(labels=variables, active=1) radio_group.on_change('active',update1,update2) div3 = Div(text="<b> Location of School </b>") div4 = Div(text="<b> Overview </b>") plot,para,m,table = create_plot() layout = create_slider(plot, 2006, 2018) div5 = Div(text="<b> </b>") div6 = Div(text="<b> </b>") #Combine all controls to get in column col1= column(div1,text_input,div2,radio_group,div3,m, width=260) col2 = column(div6, layout, width=510) col3 = column(div5,table, width=230) col4 = column(div4, para, width=230) #Layout layout = row(col1,col2,col3,col4) curdoc().add_root(layout) curdoc().title = "NYC_map" #output_file("details.html") #save(layout) show(layout)
7,652
0
144
35b186f995d1aac5ce56c24edf771e8630572c33
2,183
py
Python
tools/deploy/ops/BBoxTransform.py
qingswu/Detectron2-CenterNet
40b80d1a6aa85c7352d5088f44225d64c242cf83
[ "Apache-2.0" ]
5
2020-07-01T07:55:45.000Z
2022-03-05T04:03:09.000Z
tools/deploy/ops/BBoxTransform.py
qingswu/Detectron2-CenterNet
40b80d1a6aa85c7352d5088f44225d64c242cf83
[ "Apache-2.0" ]
2
2020-12-08T12:40:43.000Z
2021-09-08T02:15:21.000Z
tools/deploy/ops/BBoxTransform.py
qingswu/Detectron2-CenterNet
40b80d1a6aa85c7352d5088f44225d64c242cf83
[ "Apache-2.0" ]
2
2021-01-17T14:51:09.000Z
2021-03-23T02:07:35.000Z
import torch import torch.nn from detectron2.export.tensorrt import TensorRTModel from detectron2.utils.logger import setup_logger from ops import export_onnx, get_inputs, SimpleTracer if __name__ == '__main__': logger = setup_logger() logger.info("example: BBoxTransform") m = BBoxTransform() data = get_inputs("rois", "box_regression", "im_info", root="/autox-sz/users/dongqixu/share/trt_plugins/BBoxTransform", map_location="cpu") export_onnx(m, data, "model.onnx") targets = m(data) TensorRTModel.build_engine("model.onnx", "model.trt", 4, device="CUDA") e = TensorRTModel("model.trt") outputs = e.inference(data) # compare torch output and tensorrt output assert len(targets) == len(outputs), "Number of outputs does not match!" targets = [(k, v.cuda()) for k, v in targets.items()] for i, (name, tensor) in enumerate(targets): logger.info(name) diff = outputs[name] - tensor unique = torch.unique(diff) logger.info("unique\n{}".format(unique)) logger.info("max\n{}".format(torch.abs(unique).max())) assert torch.abs(unique).max() < 1e-3
31.185714
106
0.619789
import torch import torch.nn from detectron2.export.tensorrt import TensorRTModel from detectron2.utils.logger import setup_logger from ops import export_onnx, get_inputs, SimpleTracer class BBoxTransform(SimpleTracer): def __init__(self): super(BBoxTransform, self).__init__() self.cuda() self.eval() def inference(self, inputs): rois = inputs["rois"] box_regression = inputs["box_regression"] im_info = inputs["im_info"] roi_pred_bbox, roi_batch_splits = torch.ops._caffe2.BBoxTransform( rois, box_regression, im_info, weights=(10.0, 10.0, 5.0, 5.0), apply_scale=True, rotated=False, angle_bound_on=True, angle_bound_lo=-180, angle_bound_hi=180, clip_angle_thresh=1.0, legacy_plus_one=False, ) return { "roi_pred_bbox": roi_pred_bbox, "roi_batch_splits": roi_batch_splits, } def get_input_names(self): return ["rois", "box_regression", "im_info"] def get_output_names(self): return ["roi_pred_bbox", "roi_batch_splits"] if __name__ == '__main__': logger = setup_logger() logger.info("example: BBoxTransform") m = BBoxTransform() data = get_inputs("rois", "box_regression", "im_info", root="/autox-sz/users/dongqixu/share/trt_plugins/BBoxTransform", map_location="cpu") export_onnx(m, data, "model.onnx") targets = m(data) TensorRTModel.build_engine("model.onnx", "model.trt", 4, device="CUDA") e = TensorRTModel("model.trt") outputs = e.inference(data) # compare torch output and tensorrt output assert len(targets) == len(outputs), "Number of outputs does not match!" targets = [(k, v.cuda()) for k, v in targets.items()] for i, (name, tensor) in enumerate(targets): logger.info(name) diff = outputs[name] - tensor unique = torch.unique(diff) logger.info("unique\n{}".format(unique)) logger.info("max\n{}".format(torch.abs(unique).max())) assert torch.abs(unique).max() < 1e-3
866
13
131
5b755f777f1ac2efb82d36a71ca1cacf64bd869b
446
py
Python
setup.py
dsvensson/subsevenzip-python
078c3876e5fd1ffd84e57ae992a142d247a5832f
[ "0BSD" ]
3
2015-01-05T14:09:25.000Z
2018-03-21T19:33:15.000Z
setup.py
dsvensson/subsevenzip-python
078c3876e5fd1ffd84e57ae992a142d247a5832f
[ "0BSD" ]
null
null
null
setup.py
dsvensson/subsevenzip-python
078c3876e5fd1ffd84e57ae992a142d247a5832f
[ "0BSD" ]
null
null
null
from setuptools import setup, find_packages setup( name="subsevenzip", version="0.1", description="7-Zip decompressor", author="Daniel Svensson", author_email="dsvensson@gmail.com", license="ISC", packages=find_packages(), test_suite="nose.collector", setup_requires=[ "coverage", "flake8", "nose" ], classifiers=[ "Programming Language :: Python :: 3 :: Only" ] )
21.238095
53
0.605381
from setuptools import setup, find_packages setup( name="subsevenzip", version="0.1", description="7-Zip decompressor", author="Daniel Svensson", author_email="dsvensson@gmail.com", license="ISC", packages=find_packages(), test_suite="nose.collector", setup_requires=[ "coverage", "flake8", "nose" ], classifiers=[ "Programming Language :: Python :: 3 :: Only" ] )
0
0
0
d4c5e81f71bbec9487f5339b12bc91e1a50a3d76
11,459
py
Python
grr/endtoend_tests/base.py
mikecb/grr
52fdd977729af2a09a147301c55b8b7f1eccfa67
[ "Apache-2.0" ]
null
null
null
grr/endtoend_tests/base.py
mikecb/grr
52fdd977729af2a09a147301c55b8b7f1eccfa67
[ "Apache-2.0" ]
null
null
null
grr/endtoend_tests/base.py
mikecb/grr
52fdd977729af2a09a147301c55b8b7f1eccfa67
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python """Base module for end to end tests that run flows on clients.""" import re import time import traceback import unittest from grr.lib import aff4 from grr.lib import client_index from grr.lib import config_lib from grr.lib import data_store from grr.lib import flow_utils from grr.lib import rdfvalue from grr.lib import registry from grr.lib.aff4_objects import aff4_grr from grr.lib.flows.console import debugging from grr.lib.rdfvalues import client as rdf_client class Error(Exception): """Test base error.""" class ErrorEmptyCollection(Error): """Raise when we expect values in a collection, but it is empty.""" class TestStateUncleanError(Error): """Raised when tests encounter bad state that indicates a cleanup failure.""" class ClientTestBase(unittest.TestCase): """This is the base class for all client tests. Tests should only inherit from this class if they are not safe to be run in prod with the EndToEndTests cronjob. """ platforms = [] flow = None args = {} network_bytes_limit = None timeout = flow_utils.DEFAULT_TIMEOUT test_output_path = None # How long after flow is marked complete we should expect results to be # available in the collection. This is essentially how quickly we expect # results to be available to users in the UI. RESULTS_SLA_SECONDS = 10 # Only run on clients after this version client_min_version = None __metaclass__ = registry.MetaclassRegistry def VerifyEmpty(self, urns): """Verify urns have been deleted.""" try: for urn in urns: # TODO(user): aff4.FACTORY.Stat() is the right thing to use here. # We open each urn to generate InstantiationError on failures, multiopen # ignores these errors. This isn't too slow since it's almost always # just one path anyway. aff4.FACTORY.Open(urn, aff4_type=aff4.AFF4Volume, token=self.token) except aff4.InstantiationError: raise TestStateUncleanError("Path wasn't deleted: %s" % traceback.format_exc()) def DeleteUrn(self, urn): """Deletes an object from the db and the index, and flushes the caches.""" data_store.DB.DeleteSubject(urn, token=self.token) aff4.FACTORY._DeleteChildFromIndex(urn, token=self.token) aff4.FACTORY.Flush() def CheckCollectionNotEmptyWithRetry(self, collection_urn, token): """Check collection for results, return list if they exist. Args: collection_urn: URN of the collection token: User token Returns: The collection contents as a list Raises: ErrorEmptyCollection: if the collection has no results after self.RESULTS_SLA_SECONDS """ coll = aff4.FACTORY.Open(collection_urn, mode="r", token=token) coll_list = list(coll) if not coll_list: for _ in range(self.RESULTS_SLA_SECONDS): time.sleep(1) coll_list = list(coll) if coll_list: return coll_list raise ErrorEmptyCollection("No values in %s after SLA: %s seconds" % (collection_urn, self.RESULTS_SLA_SECONDS)) return coll_list def OpenFDWithRetry(self, file_urn, token): """Try to open a aff4 path, retry if it is AFF4Volume.""" fd = aff4.FACTORY.Open(file_urn, mode="r", token=token) # All types are instances of AFF4Volume so we can't use isinstance. if fd.__class__ is aff4.AFF4Volume: for _ in range(self.RESULTS_SLA_SECONDS): time.sleep(1) fd = aff4.FACTORY.Open(file_urn, mode="r", token=token) if fd.__class__ is not aff4.AFF4Volume: return fd self.fail(("No results were written to the data store. Maybe the GRR " "client is not running with root privileges?")) return fd class AutomatedTest(ClientTestBase): """All tests that are safe to run in prod should inherit from this class.""" __metaclass__ = registry.MetaclassRegistry # Prevents this from automatically registering. __abstract = True # pylint: disable=g-bad-name class TestVFSPathExists(AutomatedTest): """Test that checks expected VFS files were created.""" result_type = aff4_grr.VFSFile def CheckFlow(self): """Verify VFS paths were created.""" urn = self.GetURNFromGlobPathWithRetry(self.test_output_path) fd = self.OpenFDWithRetry(urn, token=self.token) self.assertEqual(type(fd), self.result_type) def GetClientTestTargets(client_ids=None, hostnames=None, token=None, checkin_duration_threshold="20m"): """Get client urns for end-to-end tests. Args: client_ids: list of client id URN strings or rdf_client.ClientURNs hostnames: list of hostnames to search for token: access token checkin_duration_threshold: clients that haven't checked in for this long will be excluded Returns: client_id_set: set of rdf_client.ClientURNs available for end-to-end tests. """ if client_ids: client_ids = set(client_ids) else: client_ids = set(config_lib.CONFIG.Get("Test.end_to_end_client_ids")) if hostnames: hosts = set(hostnames) else: hosts = set(config_lib.CONFIG.Get("Test.end_to_end_client_hostnames")) if hosts: client_id_dict = client_index.GetClientURNsForHostnames(hosts, token=token) for client_list in client_id_dict.values(): client_ids.update(client_list) client_id_set = set([rdf_client.ClientURN(x) for x in client_ids]) duration_threshold = rdfvalue.Duration(checkin_duration_threshold) for client in aff4.FACTORY.MultiOpen(client_id_set, token=token): # Only test against client IDs that have checked in recently. Test machines # tend to have lots of old client IDs hanging around that will cause lots of # waiting for timeouts in the tests. if (rdfvalue.RDFDatetime.Now() - client.Get(client.Schema.LAST) > duration_threshold): client_id_set.remove(client.urn) return client_id_set
31.480769
80
0.68444
#!/usr/bin/env python """Base module for end to end tests that run flows on clients.""" import re import time import traceback import unittest from grr.lib import aff4 from grr.lib import client_index from grr.lib import config_lib from grr.lib import data_store from grr.lib import flow_utils from grr.lib import rdfvalue from grr.lib import registry from grr.lib.aff4_objects import aff4_grr from grr.lib.flows.console import debugging from grr.lib.rdfvalues import client as rdf_client class Error(Exception): """Test base error.""" class ErrorEmptyCollection(Error): """Raise when we expect values in a collection, but it is empty.""" class TestStateUncleanError(Error): """Raised when tests encounter bad state that indicates a cleanup failure.""" def RecursiveListChildren(prefix=None, token=None): all_urns = set() act_urns = set([prefix]) while act_urns: next_urns = set() for _, children in aff4.FACTORY.MultiListChildren(act_urns, token=token): for urn in children: next_urns.add(urn) all_urns |= next_urns act_urns = next_urns return all_urns class ClientTestBase(unittest.TestCase): """This is the base class for all client tests. Tests should only inherit from this class if they are not safe to be run in prod with the EndToEndTests cronjob. """ platforms = [] flow = None args = {} network_bytes_limit = None timeout = flow_utils.DEFAULT_TIMEOUT test_output_path = None # How long after flow is marked complete we should expect results to be # available in the collection. This is essentially how quickly we expect # results to be available to users in the UI. RESULTS_SLA_SECONDS = 10 # Only run on clients after this version client_min_version = None __metaclass__ = registry.MetaclassRegistry def __str__(self): return self.__class__.__name__ def __init__(self, client_id=None, platform=None, local_worker=False, token=None, local_client=True): # If we get passed a string, turn it into a urn. self.client_id = rdf_client.ClientURN(client_id) self.platform = platform self.token = token self.local_worker = local_worker self.local_client = local_client self.delete_urns = set() super(ClientTestBase, self).__init__(methodName="runTest") def _CleanState(self): if self.test_output_path: self.delete_urns.add(self.client_id.Add(self.test_output_path)) for urn in self.delete_urns: self.DeleteUrn(urn) if self.delete_urns: self.VerifyEmpty(self.delete_urns) def setUp(self): self._CleanState() def tearDown(self): self._CleanState() def runTest(self): if self.client_min_version: target_client = aff4.FACTORY.Open(self.client_id, token=self.token) client_info = target_client.Get(target_client.Schema.CLIENT_INFO) if client_info.client_version < self.client_min_version: message = "Skipping version %s less than client_min_version: %s" % ( client_info.client_version, self.client_min_version) return self.skipTest(message) if self.local_worker: self.session_id = debugging.StartFlowAndWorker(self.client_id, self.flow, **self.args) else: self.session_id = flow_utils.StartFlowAndWait( self.client_id, flow_name=self.flow, timeout=self.timeout, token=self.token, **self.args) self.CheckFlow() def CheckFlow(self): pass def VerifyEmpty(self, urns): """Verify urns have been deleted.""" try: for urn in urns: # TODO(user): aff4.FACTORY.Stat() is the right thing to use here. # We open each urn to generate InstantiationError on failures, multiopen # ignores these errors. This isn't too slow since it's almost always # just one path anyway. aff4.FACTORY.Open(urn, aff4_type=aff4.AFF4Volume, token=self.token) except aff4.InstantiationError: raise TestStateUncleanError("Path wasn't deleted: %s" % traceback.format_exc()) def DeleteUrn(self, urn): """Deletes an object from the db and the index, and flushes the caches.""" data_store.DB.DeleteSubject(urn, token=self.token) aff4.FACTORY._DeleteChildFromIndex(urn, token=self.token) aff4.FACTORY.Flush() def GetGRRBinaryName(self, run_interrogate=True): client = aff4.FACTORY.Open(self.client_id, mode="r", token=self.token) self.assertIsInstance(client, aff4_grr.VFSGRRClient) config = client.Get(aff4_grr.VFSGRRClient.SchemaCls.GRR_CONFIGURATION) if config is None: # Try running Interrogate once. if run_interrogate: flow_utils.StartFlowAndWait( self.client_id, flow_name="Interrogate", token=self.token) return self.GetGRRBinaryName(run_interrogate=False) else: self.fail("No valid configuration found, interrogate the client before " "running this test.") else: try: self.binary_name = config["Client.binary_name"] except KeyError: self.binary_name = config["Client.name"] return self.binary_name def CheckMacMagic(self, fd): data = fd.Read(10) magic_values = ["cafebabe", "cefaedfe", "cffaedfe"] magic_values = [x.decode("hex") for x in magic_values] self.assertIn( data[:4], magic_values, msg="Data %s not one of %s" % (data[:4], magic_values)) def CheckELFMagic(self, fd): data = fd.Read(10) self.assertEqual(data[1:4], "ELF") def CheckPEMagic(self, fd): data = fd.Read(10) self.assertEqual(data[:2], "MZ") def CheckCollectionNotEmptyWithRetry(self, collection_urn, token): """Check collection for results, return list if they exist. Args: collection_urn: URN of the collection token: User token Returns: The collection contents as a list Raises: ErrorEmptyCollection: if the collection has no results after self.RESULTS_SLA_SECONDS """ coll = aff4.FACTORY.Open(collection_urn, mode="r", token=token) coll_list = list(coll) if not coll_list: for _ in range(self.RESULTS_SLA_SECONDS): time.sleep(1) coll_list = list(coll) if coll_list: return coll_list raise ErrorEmptyCollection("No values in %s after SLA: %s seconds" % (collection_urn, self.RESULTS_SLA_SECONDS)) return coll_list def OpenFDWithRetry(self, file_urn, token): """Try to open a aff4 path, retry if it is AFF4Volume.""" fd = aff4.FACTORY.Open(file_urn, mode="r", token=token) # All types are instances of AFF4Volume so we can't use isinstance. if fd.__class__ is aff4.AFF4Volume: for _ in range(self.RESULTS_SLA_SECONDS): time.sleep(1) fd = aff4.FACTORY.Open(file_urn, mode="r", token=token) if fd.__class__ is not aff4.AFF4Volume: return fd self.fail(("No results were written to the data store. Maybe the GRR " "client is not running with root privileges?")) return fd def GetURNFromGlobPathWithRetry(self, path): pos = path.find("*") if pos > 0: base_urn = self.client_id.Add(path[:pos]) for _ in range(self.RESULTS_SLA_SECONDS): for file_urn in RecursiveListChildren( prefix=base_urn, token=self.token): if re.search(path + "$", str(file_urn)): self.delete_urns.add(file_urn) return file_urn time.sleep(1) self.fail(("Output file %s not found. Maybe the GRR client " "is not running with root privileges?" % path)) else: self.delete_urns.add(self.client_id.Add(path)) return self.client_id.Add(path) class AutomatedTest(ClientTestBase): """All tests that are safe to run in prod should inherit from this class.""" __metaclass__ = registry.MetaclassRegistry # Prevents this from automatically registering. __abstract = True # pylint: disable=g-bad-name class TestVFSPathExists(AutomatedTest): """Test that checks expected VFS files were created.""" result_type = aff4_grr.VFSFile def CheckFlow(self): """Verify VFS paths were created.""" urn = self.GetURNFromGlobPathWithRetry(self.test_output_path) fd = self.OpenFDWithRetry(urn, token=self.token) self.assertEqual(type(fd), self.result_type) class VFSPathContentExists(AutomatedTest): test_output_path = None def CheckFlow(self): urn = self.GetURNFromGlobPathWithRetry(self.test_output_path) fd = self.OpenFDWithRetry(urn, token=self.token) return self.CheckFile(fd) def CheckFile(self, fd): data = fd.Read(10) # Some value was read from the sysctl. self.assertTrue(data) class VFSPathContentIsELF(VFSPathContentExists): def CheckFile(self, fd): self.CheckELFMagic(fd) class VFSPathContentIsMachO(VFSPathContentExists): def CheckFile(self, fd): self.CheckMacMagic(fd) class VFSPathContentIsPE(VFSPathContentExists): def CheckFile(self, fd): self.CheckPEMagic(fd) class LocalWorkerTest(ClientTestBase): SKIP_MESSAGE = ("This test uses a flow that is debug only. Use a " "local worker to run this test.") def runTest(self): if not self.local_worker: print self.SKIP_MESSAGE return self.skipTest(self.SKIP_MESSAGE) super(LocalWorkerTest, self).runTest() class LocalClientTest(ClientTestBase): SKIP_MESSAGE = ("This test needs to run with a local client and be invoked" " with local_client=True.") def runTest(self): if not self.local_client: print self.SKIP_MESSAGE return self.skipTest(self.SKIP_MESSAGE) super(LocalClientTest, self).runTest() def GetClientTestTargets(client_ids=None, hostnames=None, token=None, checkin_duration_threshold="20m"): """Get client urns for end-to-end tests. Args: client_ids: list of client id URN strings or rdf_client.ClientURNs hostnames: list of hostnames to search for token: access token checkin_duration_threshold: clients that haven't checked in for this long will be excluded Returns: client_id_set: set of rdf_client.ClientURNs available for end-to-end tests. """ if client_ids: client_ids = set(client_ids) else: client_ids = set(config_lib.CONFIG.Get("Test.end_to_end_client_ids")) if hostnames: hosts = set(hostnames) else: hosts = set(config_lib.CONFIG.Get("Test.end_to_end_client_hostnames")) if hosts: client_id_dict = client_index.GetClientURNsForHostnames(hosts, token=token) for client_list in client_id_dict.values(): client_ids.update(client_list) client_id_set = set([rdf_client.ClientURN(x) for x in client_ids]) duration_threshold = rdfvalue.Duration(checkin_duration_threshold) for client in aff4.FACTORY.MultiOpen(client_id_set, token=token): # Only test against client IDs that have checked in recently. Test machines # tend to have lots of old client IDs hanging around that will cause lots of # waiting for timeouts in the tests. if (rdfvalue.RDFDatetime.Now() - client.Get(client.Schema.LAST) > duration_threshold): client_id_set.remove(client.urn) return client_id_set
4,382
510
536
5d38c82f8b5b5aab3e6e5cd285d57442d2cff181
13,803
py
Python
src/gluonts/model/predictor.py
Xiaoxiong-Liu/gluon-ts
097c492769258dd70b7f223f826b17b0051ceee9
[ "Apache-2.0" ]
2,648
2019-06-03T17:18:27.000Z
2022-03-31T08:29:22.000Z
src/gluonts/model/predictor.py
Xiaoxiong-Liu/gluon-ts
097c492769258dd70b7f223f826b17b0051ceee9
[ "Apache-2.0" ]
1,220
2019-06-04T09:00:14.000Z
2022-03-31T10:45:43.000Z
src/gluonts/model/predictor.py
Xiaoxiong-Liu/gluon-ts
097c492769258dd70b7f223f826b17b0051ceee9
[ "Apache-2.0" ]
595
2019-06-04T01:04:31.000Z
2022-03-30T10:40:26.000Z
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. import functools import itertools import json import logging import multiprocessing as mp import sys import traceback from pathlib import Path from pydoc import locate from tempfile import TemporaryDirectory from typing import TYPE_CHECKING, Callable, Iterator, Optional, Type import numpy as np import gluonts from gluonts.core import fqname_for from gluonts.core.component import equals, from_hyperparameters, validated from gluonts.core.serde import dump_json, load_json from gluonts.dataset.common import DataEntry, Dataset from gluonts.exceptions import GluonTSException from gluonts.model.forecast import Forecast if TYPE_CHECKING: # avoid circular import from gluonts.model.estimator import Estimator # noqa OutputTransform = Callable[[DataEntry, np.ndarray], np.ndarray] class Predictor: """ Abstract class representing predictor objects. Parameters ---------- prediction_length Prediction horizon. freq Frequency of the predicted data. """ __version__: str = gluonts.__version__ def predict(self, dataset: Dataset, **kwargs) -> Iterator[Forecast]: """ Compute forecasts for the time series in the provided dataset. This method is not implemented in this abstract class; please use one of the subclasses. Parameters ---------- dataset The dataset containing the time series to predict. Returns ------- Iterator[Forecast] Iterator over the forecasts, in the same order as the dataset iterable was provided. """ raise NotImplementedError @classmethod def deserialize(cls, path: Path, **kwargs) -> "Predictor": """ Load a serialized predictor from the given path Parameters ---------- path Path to the serialized files predictor. **kwargs Optional context/device parameter to be used with the predictor. If nothing is passed will use the GPU if available and CPU otherwise. """ # deserialize Predictor type with (path / "type.txt").open("r") as fp: tpe = locate(fp.readline()) # ensure that predictor_cls is a subtype of Predictor if not issubclass(tpe, Predictor): raise IOError( f"Class {fqname_for(tpe)} is not " f"a subclass of {fqname_for(Predictor)}" ) # call deserialize() for the concrete Predictor type return tpe.deserialize(path, **kwargs) @classmethod @classmethod @classmethod class RepresentablePredictor(Predictor): """ An abstract predictor that can be subclassed by models that are not based on Gluon. Subclasses should have @validated() constructors. (De)serialization and value equality are all implemented on top of the @validated() logic. Parameters ---------- prediction_length Prediction horizon. freq Frequency of the predicted data. """ @validated() def __eq__(self, that): """ Two RepresentablePredictor instances are considered equal if they have the same constructor arguments. """ return equals(self, that) @classmethod def _worker_loop( predictor_path: Path, input_queue: mp.Queue, output_queue: mp.Queue, worker_id, **kwargs, ): """ Worker loop for multiprocessing Predictor. Loads the predictor serialized in predictor_path reads inputs from input_queue and writes forecasts to output_queue """ predictor = Predictor.deserialize(predictor_path) while True: idx, data_chunk = input_queue.get() if idx is None: output_queue.put((None, None, None)) break try: result = list(predictor.predict(data_chunk, **kwargs)) except Exception: we = WorkerError( "".join(traceback.format_exception(*sys.exc_info())) ) output_queue.put((we, None, None)) break output_queue.put((idx, worker_id, result)) class ParallelizedPredictor(Predictor): """ Runs multiple instances (workers) of a predictor in parallel. Exceptions are propagated from the workers. Note: That there is currently an issue with tqdm that will cause things to hang if the ParallelizedPredictor is used with tqdm and an exception occurs during prediction. https://github.com/tqdm/tqdm/issues/548 Parameters ---------- base_predictor A representable predictor that will be used num_workers Number of workers (processes) to use. If set to None, one worker per CPU will be used. chunk_size Number of items to pass per call """ class Localizer(Predictor): """ A Predictor that uses an estimator to train a local model per time series and immediatly calls this to predict. Parameters ---------- estimator The estimator object to train on each dataset entry at prediction time. """
32.942721
102
0.606897
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. import functools import itertools import json import logging import multiprocessing as mp import sys import traceback from pathlib import Path from pydoc import locate from tempfile import TemporaryDirectory from typing import TYPE_CHECKING, Callable, Iterator, Optional, Type import numpy as np import gluonts from gluonts.core import fqname_for from gluonts.core.component import equals, from_hyperparameters, validated from gluonts.core.serde import dump_json, load_json from gluonts.dataset.common import DataEntry, Dataset from gluonts.exceptions import GluonTSException from gluonts.model.forecast import Forecast if TYPE_CHECKING: # avoid circular import from gluonts.model.estimator import Estimator # noqa OutputTransform = Callable[[DataEntry, np.ndarray], np.ndarray] class Predictor: """ Abstract class representing predictor objects. Parameters ---------- prediction_length Prediction horizon. freq Frequency of the predicted data. """ __version__: str = gluonts.__version__ def __init__( self, prediction_length: int, freq: str, lead_time: int = 0 ) -> None: assert ( prediction_length > 0 ), "The value of `prediction_length` should be > 0" assert lead_time >= 0, "The value of `lead_time` should be >= 0" self.prediction_length = prediction_length self.freq = freq self.lead_time = lead_time def predict(self, dataset: Dataset, **kwargs) -> Iterator[Forecast]: """ Compute forecasts for the time series in the provided dataset. This method is not implemented in this abstract class; please use one of the subclasses. Parameters ---------- dataset The dataset containing the time series to predict. Returns ------- Iterator[Forecast] Iterator over the forecasts, in the same order as the dataset iterable was provided. """ raise NotImplementedError def serialize(self, path: Path) -> None: # serialize Predictor type with (path / "type.txt").open("w") as fp: fp.write(fqname_for(self.__class__)) with (path / "version.json").open("w") as fp: json.dump( {"model": self.__version__, "gluonts": gluonts.__version__}, fp ) @classmethod def deserialize(cls, path: Path, **kwargs) -> "Predictor": """ Load a serialized predictor from the given path Parameters ---------- path Path to the serialized files predictor. **kwargs Optional context/device parameter to be used with the predictor. If nothing is passed will use the GPU if available and CPU otherwise. """ # deserialize Predictor type with (path / "type.txt").open("r") as fp: tpe = locate(fp.readline()) # ensure that predictor_cls is a subtype of Predictor if not issubclass(tpe, Predictor): raise IOError( f"Class {fqname_for(tpe)} is not " f"a subclass of {fqname_for(Predictor)}" ) # call deserialize() for the concrete Predictor type return tpe.deserialize(path, **kwargs) @classmethod def from_hyperparameters(cls, **hyperparameters): return from_hyperparameters(cls, **hyperparameters) @classmethod def derive_auto_fields(cls, train_iter): return {} @classmethod def from_inputs(cls, train_iter, **params): # auto_params usually include `use_feat_dynamic_real`, `use_feat_static_cat` and `cardinality` auto_params = cls.derive_auto_fields(train_iter) # user specified 'params' will take precedence: params = {**auto_params, **params} return cls.from_hyperparameters(**params) class RepresentablePredictor(Predictor): """ An abstract predictor that can be subclassed by models that are not based on Gluon. Subclasses should have @validated() constructors. (De)serialization and value equality are all implemented on top of the @validated() logic. Parameters ---------- prediction_length Prediction horizon. freq Frequency of the predicted data. """ @validated() def __init__( self, prediction_length: int, freq: str, lead_time: int = 0 ) -> None: super().__init__( freq=freq, lead_time=lead_time, prediction_length=prediction_length ) def predict(self, dataset: Dataset, **kwargs) -> Iterator[Forecast]: for item in dataset: yield self.predict_item(item) def predict_item(self, item: DataEntry) -> Forecast: raise NotImplementedError def __eq__(self, that): """ Two RepresentablePredictor instances are considered equal if they have the same constructor arguments. """ return equals(self, that) def serialize(self, path: Path) -> None: # call Predictor.serialize() in order to serialize the class name super().serialize(path) with (path / "predictor.json").open("w") as fp: print(dump_json(self), file=fp) @classmethod def deserialize(cls, path: Path) -> "RepresentablePredictor": with (path / "predictor.json").open("r") as fp: return load_json(fp.read()) class WorkerError: def __init__(self, msg): self.msg = msg def _worker_loop( predictor_path: Path, input_queue: mp.Queue, output_queue: mp.Queue, worker_id, **kwargs, ): """ Worker loop for multiprocessing Predictor. Loads the predictor serialized in predictor_path reads inputs from input_queue and writes forecasts to output_queue """ predictor = Predictor.deserialize(predictor_path) while True: idx, data_chunk = input_queue.get() if idx is None: output_queue.put((None, None, None)) break try: result = list(predictor.predict(data_chunk, **kwargs)) except Exception: we = WorkerError( "".join(traceback.format_exception(*sys.exc_info())) ) output_queue.put((we, None, None)) break output_queue.put((idx, worker_id, result)) class ParallelizedPredictor(Predictor): """ Runs multiple instances (workers) of a predictor in parallel. Exceptions are propagated from the workers. Note: That there is currently an issue with tqdm that will cause things to hang if the ParallelizedPredictor is used with tqdm and an exception occurs during prediction. https://github.com/tqdm/tqdm/issues/548 Parameters ---------- base_predictor A representable predictor that will be used num_workers Number of workers (processes) to use. If set to None, one worker per CPU will be used. chunk_size Number of items to pass per call """ def __init__( self, base_predictor: Predictor, num_workers: Optional[int] = None, chunk_size=1, ) -> None: super().__init__( freq=base_predictor.freq, lead_time=base_predictor.lead_time, prediction_length=base_predictor.prediction_length, ) self._base_predictor = base_predictor self._num_workers = ( num_workers if num_workers is not None else mp.cpu_count() ) self._chunk_size = chunk_size self._num_running_workers = 0 self._input_queues = [] self._output_queue = None def _grouper(self, iterable, n): iterator = iter(iterable) group = tuple(itertools.islice(iterator, n)) while group: yield group group = tuple(itertools.islice(iterator, n)) def terminate(self): for q in self._input_queues: q.put((None, None)) for w in self._workers: w.terminate() for i, w in enumerate(self._workers): w.join() def predict(self, dataset: Dataset, **kwargs) -> Iterator[Forecast]: with TemporaryDirectory() as tempdir: predictor_path = Path(tempdir) self._base_predictor.serialize(predictor_path) # TODO: Consider using shared memory for the data transfer. self._input_queues = [mp.Queue() for _ in range(self._num_workers)] self._output_queue = mp.Queue() workers = [] for worker_id, in_q in enumerate(self._input_queues): worker = mp.Process( target=_worker_loop, args=(predictor_path, in_q, self._output_queue, worker_id), kwargs=kwargs, ) worker.daemon = True worker.start() workers.append(worker) self._num_running_workers += 1 self._workers = workers chunked_data = self._grouper(dataset, self._chunk_size) self._send_idx = 0 self._next_idx = 0 self._data_buffer = {} worker_ids = list(range(self._num_workers)) def receive(): idx, worker_id, result = self._output_queue.get() if isinstance(idx, WorkerError): self._num_running_workers -= 1 self.terminate() raise Exception(idx.msg) if idx is not None: self._data_buffer[idx] = result return idx, worker_id, result def get_next_from_buffer(): while self._next_idx in self._data_buffer: result_batch = self._data_buffer.pop(self._next_idx) self._next_idx += 1 for result in result_batch: yield result def send(worker_id, chunk): q = self._input_queues[worker_id] q.put((self._send_idx, chunk)) self._send_idx += 1 try: # prime the queues for wid in worker_ids: chunk = next(chunked_data) send(wid, chunk) while True: idx, wid, result = receive() for res in get_next_from_buffer(): yield res chunk = next(chunked_data) send(wid, chunk) except StopIteration: # signal workers end of data for q in self._input_queues: q.put((None, None)) # collect any outstanding results while self._num_running_workers > 0: idx, worker_id, result = receive() if idx is None: self._num_running_workers -= 1 continue for res in get_next_from_buffer(): yield res assert len(self._data_buffer) == 0 assert self._send_idx == self._next_idx class Localizer(Predictor): """ A Predictor that uses an estimator to train a local model per time series and immediatly calls this to predict. Parameters ---------- estimator The estimator object to train on each dataset entry at prediction time. """ def __init__(self, estimator: "Estimator"): super().__init__( freq=estimator.freq, lead_time=estimator.lead_time, prediction_length=estimator.prediction_length, ) self.estimator = estimator def predict(self, dataset: Dataset, **kwargs) -> Iterator[Forecast]: logger = logging.getLogger(__name__) for i, ts in enumerate(dataset, start=1): logger.info(f"training for time series {i} / {len(dataset)}") trained_pred = self.estimator.train([ts]) logger.info(f"predicting for time series {i} / {len(dataset)}") yield from trained_pred.predict([ts], **kwargs) class FallbackPredictor(Predictor): @classmethod def from_predictor( cls, base: RepresentablePredictor, **overrides ) -> Predictor: # Create predictor based on an existing predictor. # This let's us create a MeanPredictor as a fallback on the fly. return cls.from_hyperparameters( **getattr(base, "__init_args__"), **overrides ) def fallback(fallback_cls: Type[FallbackPredictor]): def decorator(predict_item): @functools.wraps(predict_item) def fallback_predict(self, item: DataEntry) -> Forecast: try: return predict_item(self, item) except GluonTSException: raise except Exception: logging.warning( f"Base predictor failed with: {traceback.format_exc()}" ) fallback_predictor = fallback_cls.from_predictor(self) return fallback_predictor.predict_item(item) return fallback_predict return decorator
7,521
54
522
ab2c952692c66b0a5c9210538c5e5f17b73574c5
14,213
py
Python
c7n/actions/securityhub.py
edonkor1/cloud-custodian
6f54735acd071b6fc6a0cca851d36e1a1fa46aa0
[ "Apache-2.0" ]
null
null
null
c7n/actions/securityhub.py
edonkor1/cloud-custodian
6f54735acd071b6fc6a0cca851d36e1a1fa46aa0
[ "Apache-2.0" ]
null
null
null
c7n/actions/securityhub.py
edonkor1/cloud-custodian
6f54735acd071b6fc6a0cca851d36e1a1fa46aa0
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 Capital One Services, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import Counter from datetime import datetime from dateutil.tz import tzutc import hashlib import jmespath import json from .core import BaseAction from c7n.utils import type_schema, local_session, chunks, dumps, filter_empty from c7n.manager import resources as aws_resources from c7n.version import version FindingTypes = { "Software and Configuration Checks": [ "Vulnerabilities", "Vulnerabilities/CVE", "AWS Security Best Practices", "AWS Security Best Practices/Network Reachability", "Industry and Regulatory Standards", "Industry and Regulatory Standards/CIS Host Hardening Benchmarks", "Industry and Regulatory Standards/CIS AWS Foundations Benchmark", "Industry and Regulatory Standards/PCI-DSS Controls", "Industry and Regulatory Standards/Cloud Security Alliance Controls", "Industry and Regulatory Standards/ISO 90001 Controls", "Industry and Regulatory Standards/ISO 27001 Controls", "Industry and Regulatory Standards/ISO 27017 Controls", "Industry and Regulatory Standards/ISO 27018 Controls", "Industry and Regulatory Standards/SOC 1", "Industry and Regulatory Standards/SOC 2", "Industry and Regulatory Standards/HIPAA Controls (USA)", "Industry and Regulatory Standards/NIST 800-53 Controls (USA)", "Industry and Regulatory Standards/NIST CSF Controls (USA)", "Industry and Regulatory Standards/IRAP Controls (Australia)", "Industry and Regulatory Standards/K-ISMS Controls (Korea)", "Industry and Regulatory Standards/MTCS Controls (Singapore)", "Industry and Regulatory Standards/FISC Controls (Japan)", "Industry and Regulatory Standards/My Number Act Controls (Japan)", "Industry and Regulatory Standards/ENS Controls (Spain)", "Industry and Regulatory Standards/Cyber Essentials Plus Controls (UK)", "Industry and Regulatory Standards/G-Cloud Controls (UK)", "Industry and Regulatory Standards/C5 Controls (Germany)", "Industry and Regulatory Standards/IT-Grundschutz Controls (Germany)", "Industry and Regulatory Standards/GDPR Controls (Europe)", "Industry and Regulatory Standards/TISAX Controls (Europe)", ], "TTPs": [ "Initial Access", "Execution", "Persistence", "Privilege Escalation", "Defense Evasion", "Credential Access", "Discovery", "Lateral Movement", "Collection", "Command and Control", ], "Effects": [ "Data Exposure", "Data Exfiltration", "Data Destruction", "Denial of Service", "Resource Consumption", ], } # Mostly undocumented value size limit SECHUB_VALUE_SIZE_LIMIT = 1024 class PostFinding(BaseAction): """Report a finding to AWS Security Hub. Custodian acts as a finding provider, allowing users to craft policies that report to the AWS SecurityHub. For resources that are taggable, we will tag the resource with an identifier such that further findings generate updates. Example generate a finding for accounts that don't have shield enabled. :example: .. code-block:: yaml policies: - name: account-shield-enabled resource: account filters: - shield-enabled actions: - type: post-finding severity_normalized: 6 types: - "Software and Configuration Checks/Industry and Regulatory Standards/NIST CSF Controls (USA)" recommendation: "Enable shield" recommendation_url: "https://www.example.com/policies/AntiDDoS.html" confidence: 100 compliance_status: FAILED """ # NOQA FindingVersion = "2018-10-08" ProductName = "default" permissions = ('securityhub:BatchImportFindings',) schema_alias = True schema = type_schema( "post-finding", required=["types"], title={"type": "string"}, severity={"type": "number", 'default': 0}, severity_normalized={"type": "number", "min": 0, "max": 100, 'default': 0}, confidence={"type": "number", "min": 0, "max": 100}, criticality={"type": "number", "min": 0, "max": 100}, # Cross region aggregation region={'type': 'string', 'description': 'cross-region aggregation target'}, recommendation={"type": "string"}, recommendation_url={"type": "string"}, fields={"type": "object"}, batch_size={'type': 'integer', 'minimum': 1, 'maximum': 10}, types={ "type": "array", "items": {"type": "string", "enum": build_vocabulary()}, }, compliance_status={ "type": "string", "enum": ["PASSED", "WARNING", "FAILED", "NOT_AVAILABLE"], }, ) NEW_FINDING = 'New' aws_resources.subscribe( aws_resources.EVENT_FINAL, OtherResourcePostFinding.register_resource)
36.821244
110
0.576585
# Copyright 2018 Capital One Services, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import Counter from datetime import datetime from dateutil.tz import tzutc import hashlib import jmespath import json from .core import BaseAction from c7n.utils import type_schema, local_session, chunks, dumps, filter_empty from c7n.manager import resources as aws_resources from c7n.version import version FindingTypes = { "Software and Configuration Checks": [ "Vulnerabilities", "Vulnerabilities/CVE", "AWS Security Best Practices", "AWS Security Best Practices/Network Reachability", "Industry and Regulatory Standards", "Industry and Regulatory Standards/CIS Host Hardening Benchmarks", "Industry and Regulatory Standards/CIS AWS Foundations Benchmark", "Industry and Regulatory Standards/PCI-DSS Controls", "Industry and Regulatory Standards/Cloud Security Alliance Controls", "Industry and Regulatory Standards/ISO 90001 Controls", "Industry and Regulatory Standards/ISO 27001 Controls", "Industry and Regulatory Standards/ISO 27017 Controls", "Industry and Regulatory Standards/ISO 27018 Controls", "Industry and Regulatory Standards/SOC 1", "Industry and Regulatory Standards/SOC 2", "Industry and Regulatory Standards/HIPAA Controls (USA)", "Industry and Regulatory Standards/NIST 800-53 Controls (USA)", "Industry and Regulatory Standards/NIST CSF Controls (USA)", "Industry and Regulatory Standards/IRAP Controls (Australia)", "Industry and Regulatory Standards/K-ISMS Controls (Korea)", "Industry and Regulatory Standards/MTCS Controls (Singapore)", "Industry and Regulatory Standards/FISC Controls (Japan)", "Industry and Regulatory Standards/My Number Act Controls (Japan)", "Industry and Regulatory Standards/ENS Controls (Spain)", "Industry and Regulatory Standards/Cyber Essentials Plus Controls (UK)", "Industry and Regulatory Standards/G-Cloud Controls (UK)", "Industry and Regulatory Standards/C5 Controls (Germany)", "Industry and Regulatory Standards/IT-Grundschutz Controls (Germany)", "Industry and Regulatory Standards/GDPR Controls (Europe)", "Industry and Regulatory Standards/TISAX Controls (Europe)", ], "TTPs": [ "Initial Access", "Execution", "Persistence", "Privilege Escalation", "Defense Evasion", "Credential Access", "Discovery", "Lateral Movement", "Collection", "Command and Control", ], "Effects": [ "Data Exposure", "Data Exfiltration", "Data Destruction", "Denial of Service", "Resource Consumption", ], } # Mostly undocumented value size limit SECHUB_VALUE_SIZE_LIMIT = 1024 def build_vocabulary(): vocab = [] for ns, quals in FindingTypes.items(): for q in quals: vocab.append("{}/{}".format(ns, q)) return vocab class PostFinding(BaseAction): """Report a finding to AWS Security Hub. Custodian acts as a finding provider, allowing users to craft policies that report to the AWS SecurityHub. For resources that are taggable, we will tag the resource with an identifier such that further findings generate updates. Example generate a finding for accounts that don't have shield enabled. :example: .. code-block:: yaml policies: - name: account-shield-enabled resource: account filters: - shield-enabled actions: - type: post-finding severity_normalized: 6 types: - "Software and Configuration Checks/Industry and Regulatory Standards/NIST CSF Controls (USA)" recommendation: "Enable shield" recommendation_url: "https://www.example.com/policies/AntiDDoS.html" confidence: 100 compliance_status: FAILED """ # NOQA FindingVersion = "2018-10-08" ProductName = "default" permissions = ('securityhub:BatchImportFindings',) schema_alias = True schema = type_schema( "post-finding", required=["types"], title={"type": "string"}, severity={"type": "number", 'default': 0}, severity_normalized={"type": "number", "min": 0, "max": 100, 'default': 0}, confidence={"type": "number", "min": 0, "max": 100}, criticality={"type": "number", "min": 0, "max": 100}, # Cross region aggregation region={'type': 'string', 'description': 'cross-region aggregation target'}, recommendation={"type": "string"}, recommendation_url={"type": "string"}, fields={"type": "object"}, batch_size={'type': 'integer', 'minimum': 1, 'maximum': 10}, types={ "type": "array", "items": {"type": "string", "enum": build_vocabulary()}, }, compliance_status={ "type": "string", "enum": ["PASSED", "WARNING", "FAILED", "NOT_AVAILABLE"], }, ) NEW_FINDING = 'New' def get_finding_tag(self, resource): finding_tag = None tags = resource.get('Tags', []) finding_key = '{}:{}'.format('c7n:FindingId', self.data.get('title', self.manager.ctx.policy.name)) # Support Tags as dictionary if isinstance(tags, dict): return tags.get(finding_key) # Support Tags as list of {'Key': 'Value'} for t in tags: key = t['Key'] value = t['Value'] if key == finding_key: finding_tag = value return finding_tag def group_resources(self, resources): grouped_resources = {} for r in resources: finding_tag = self.get_finding_tag(r) or self.NEW_FINDING grouped_resources.setdefault(finding_tag, []).append(r) return grouped_resources def process(self, resources, event=None): region_name = self.data.get('region', self.manager.config.region) client = local_session( self.manager.session_factory).client( "securityhub", region_name=region_name) now = datetime.utcnow().replace(tzinfo=tzutc()).isoformat() # default batch size to one to work around security hub console issue # which only shows a single resource in a finding. batch_size = self.data.get('batch_size', 1) stats = Counter() for key, grouped_resources in self.group_resources(resources).items(): for resource_set in chunks(grouped_resources, batch_size): stats['Finding'] += 1 if key == self.NEW_FINDING: finding_id = None created_at = now updated_at = now else: finding_id, created_at = self.get_finding_tag( resource_set[0]).split(':', 1) updated_at = now finding = self.get_finding( resource_set, finding_id, created_at, updated_at) import_response = client.batch_import_findings( Findings=[finding]) if import_response['FailedCount'] > 0: stats['Failed'] += import_response['FailedCount'] self.log.error( "import_response=%s" % (import_response)) if key == self.NEW_FINDING: stats['New'] += len(resource_set) # Tag resources with new finding ids tag_action = self.manager.action_registry.get('tag') if tag_action is None: continue tag_action({ 'key': '{}:{}'.format( 'c7n:FindingId', self.data.get( 'title', self.manager.ctx.policy.name)), 'value': '{}:{}'.format( finding['Id'], created_at)}, self.manager).process(resource_set) else: stats['Update'] += len(resource_set) self.log.debug( "policy:%s securityhub %d findings resources %d new %d updated %d failed", self.manager.ctx.policy.name, stats['Finding'], stats['New'], stats['Update'], stats['Failed']) def get_finding(self, resources, existing_finding_id, created_at, updated_at): policy = self.manager.ctx.policy model = self.manager.resource_type region = self.data.get('region', self.manager.config.region) if existing_finding_id: finding_id = existing_finding_id else: finding_id = '{}/{}/{}/{}'.format( self.manager.config.region, self.manager.config.account_id, hashlib.md5(json.dumps( policy.data).encode('utf8')).hexdigest(), hashlib.md5(json.dumps(list(sorted( [r[model.id] for r in resources]))).encode( 'utf8')).hexdigest()) finding = { "SchemaVersion": self.FindingVersion, "ProductArn": "arn:aws:securityhub:{}:{}:product/{}/{}".format( region, self.manager.config.account_id, self.manager.config.account_id, self.ProductName, ), "AwsAccountId": self.manager.config.account_id, "Description": self.data.get( "description", policy.data.get("description", "") ).strip(), "Title": self.data.get("title", policy.name), 'Id': finding_id, "GeneratorId": policy.name, 'CreatedAt': created_at, 'UpdatedAt': updated_at, "RecordState": "ACTIVE", } severity = {'Product': 0, 'Normalized': 0} if self.data.get("severity") is not None: severity["Product"] = self.data["severity"] if self.data.get("severity_normalized") is not None: severity["Normalized"] = self.data["severity_normalized"] if severity: finding["Severity"] = severity recommendation = {} if self.data.get("recommendation"): recommendation["Text"] = self.data["recommendation"] if self.data.get("recommendation_url"): recommendation["Url"] = self.data["recommendation_url"] if recommendation: finding["Remediation"] = {"Recommendation": recommendation} if "confidence" in self.data: finding["Confidence"] = self.data["confidence"] if "criticality" in self.data: finding["Criticality"] = self.data["criticality"] if "compliance_status" in self.data: finding["Compliance"] = {"Status": self.data["compliance_status"]} fields = { 'resource': policy.resource_type, 'ProviderName': 'CloudCustodian', 'ProviderVersion': version } if "fields" in self.data: fields.update(self.data["fields"]) else: tags = {} for t in policy.tags: if ":" in t: k, v = t.split(":", 1) else: k, v = t, "" tags[k] = v fields.update(tags) if fields: finding["ProductFields"] = fields finding_resources = [] for r in resources: finding_resources.append(self.format_resource(r)) finding["Resources"] = finding_resources finding["Types"] = list(self.data["types"]) return filter_empty(finding) def format_resource(self, r): raise NotImplementedError("subclass responsibility") class OtherResourcePostFinding(PostFinding): fields = () def format_resource(self, r): details = {} for k in r: if isinstance(k, (list, dict)): continue details[k] = r[k] for f in self.fields: value = jmespath.search(f['expr'], r) if not value: continue details[f['key']] = value for k, v in details.items(): if isinstance(v, datetime): v = v.isoformat() elif isinstance(v, (list, dict)): v = dumps(v) elif isinstance(v, (int, float, bool)): v = str(v) else: continue details[k] = v[:SECHUB_VALUE_SIZE_LIMIT] details['c7n:resource-type'] = self.manager.type other = { 'Type': 'Other', 'Id': self.manager.get_arns([r])[0], 'Region': self.manager.config.region, 'Details': {'Other': filter_empty(details)} } tags = {t['Key']: t['Value'] for t in r.get('Tags', [])} if tags: other['Tags'] = tags return other @classmethod def register_resource(klass, registry, event): for rtype, resource_manager in registry.items(): if not resource_manager.has_arn(): continue if 'post-finding' in resource_manager.action_registry: continue resource_manager.action_registry.register('post-finding', klass) aws_resources.subscribe( aws_resources.EVENT_FINAL, OtherResourcePostFinding.register_resource)
8,282
111
181
c072119317e8f50050b11b6d6e6ffec573282f73
640
py
Python
daemon/core/gui/graph/tags.py
b00ga/core
e0842197e389f3f14c73dc5db6cc26f78e665f62
[ "BSD-2-Clause" ]
null
null
null
daemon/core/gui/graph/tags.py
b00ga/core
e0842197e389f3f14c73dc5db6cc26f78e665f62
[ "BSD-2-Clause" ]
null
null
null
daemon/core/gui/graph/tags.py
b00ga/core
e0842197e389f3f14c73dc5db6cc26f78e665f62
[ "BSD-2-Clause" ]
null
null
null
ANNOTATION = "annotation" GRIDLINE = "gridline" SHAPE = "shape" SHAPE_TEXT = "shapetext" EDGE = "edge" LINK_LABEL = "linklabel" WIRELESS_EDGE = "wireless" ANTENNA = "antenna" NODE_LABEL = "nodename" NODE = "node" WALLPAPER = "wallpaper" SELECTION = "selectednodes" MARKER = "marker" ORGANIZE_TAGS = [ WALLPAPER, GRIDLINE, SHAPE, SHAPE_TEXT, EDGE, WIRELESS_EDGE, LINK_LABEL, ANTENNA, NODE, NODE_LABEL, SELECTION, MARKER, ] RESET_TAGS = [ EDGE, NODE, NODE_LABEL, WALLPAPER, LINK_LABEL, ANTENNA, WIRELESS_EDGE, SELECTION, SHAPE, SHAPE_TEXT, MARKER, ]
15.609756
27
0.640625
ANNOTATION = "annotation" GRIDLINE = "gridline" SHAPE = "shape" SHAPE_TEXT = "shapetext" EDGE = "edge" LINK_LABEL = "linklabel" WIRELESS_EDGE = "wireless" ANTENNA = "antenna" NODE_LABEL = "nodename" NODE = "node" WALLPAPER = "wallpaper" SELECTION = "selectednodes" MARKER = "marker" ORGANIZE_TAGS = [ WALLPAPER, GRIDLINE, SHAPE, SHAPE_TEXT, EDGE, WIRELESS_EDGE, LINK_LABEL, ANTENNA, NODE, NODE_LABEL, SELECTION, MARKER, ] RESET_TAGS = [ EDGE, NODE, NODE_LABEL, WALLPAPER, LINK_LABEL, ANTENNA, WIRELESS_EDGE, SELECTION, SHAPE, SHAPE_TEXT, MARKER, ]
0
0
0
24804bfc195e51973e66a3f559e01d09536750e9
17,099
py
Python
custom_components/sun2/sensor.py
Nag94/HomeAssistantConfig
d5f806e05be8d92bf487c58322d20cd9b08c6b98
[ "Unlicense" ]
97
2019-06-19T19:06:53.000Z
2022-03-30T06:58:06.000Z
custom_components/sun2/sensor.py
Nag94/HomeAssistantConfig
d5f806e05be8d92bf487c58322d20cd9b08c6b98
[ "Unlicense" ]
42
2019-06-19T20:20:45.000Z
2022-03-31T13:02:35.000Z
custom_components/sun2/sensor.py
Nag94/HomeAssistantConfig
d5f806e05be8d92bf487c58322d20cd9b08c6b98
[ "Unlicense" ]
20
2020-04-18T19:28:47.000Z
2022-03-06T18:23:09.000Z
"""Sun2 Sensor.""" from datetime import datetime, time, timedelta import logging import voluptuous as vol from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.const import ( CONF_ELEVATION, CONF_LATITUDE, CONF_LONGITUDE, CONF_MONITORED_CONDITIONS, CONF_TIME_ZONE, DEVICE_CLASS_TIMESTAMP, ) from homeassistant.core import callback from homeassistant.util import dt as dt_util from homeassistant.helpers import config_validation as cv from homeassistant.helpers.dispatcher import async_dispatcher_connect from homeassistant.helpers.entity import Entity from homeassistant.helpers.event import async_track_point_in_utc_time from homeassistant.util import slugify from .helpers import ( async_init_astral_loc, astral_event, get_local_info, nearest_second, SIG_LOC_UPDATED, ) _LOGGER = logging.getLogger(__name__) _SOLAR_DEPRESSIONS = ("astronomical", "civil", "nautical") _ELEV_RND = 0.5 _ELEV_MAX_ERR = 0.02 _DELTA = timedelta(minutes=5) _ONE_DAY = timedelta(days=1) ATTR_NEXT_CHANGE = "next_change" class Sun2Sensor(Entity): """Sun2 Sensor.""" def __init__(self, hass, sensor_type, icon, info, default_solar_depression=0): """Initialize sensor.""" self.hass = hass if any(sol_dep in sensor_type for sol_dep in _SOLAR_DEPRESSIONS): self._solar_depression, self._event = sensor_type.rsplit("_", 1) else: self._solar_depression = default_solar_depression self._event = sensor_type self._icon = icon self._name = self._orig_name = sensor_type.replace("_", " ").title() self._state = None self._yesterday = None self._today = None self._tomorrow = None self._use_local_info = info is None if self._use_local_info: self._info = get_local_info(hass) else: self._info = info self._unsub_loc_updated = None self._unsub_update = None @property @_info.setter @property def should_poll(self): """Do not poll.""" return False @property def name(self): """Return the name of the entity.""" return self._name @property def state(self): """Return the state of the entity.""" return self._state @property def device_state_attributes(self): """Return device specific state attributes.""" return self._device_state_attributes() @property def icon(self): """Return the icon to use in the frontend.""" return self._icon async def async_loc_updated(self): """Location updated.""" self._loc_updated() async def async_added_to_hass(self): """Subscribe to update signal and set up fixed updating.""" slug = slugify(self._orig_name) object_id = self.entity_id.split('.')[1] if slug != object_id and object_id.endswith(slug): prefix = object_id[:-len(slug)].replace("_", " ").strip().title() self._name = f"{prefix} {self._orig_name}" if self._use_local_info: self._unsub_loc_updated = async_dispatcher_connect( self.hass, SIG_LOC_UPDATED, self.async_loc_updated ) self._setup_fixed_updating() async def async_will_remove_from_hass(self): """Disconnect from update signal and cancel fixed updating.""" if self._unsub_loc_updated: self._unsub_loc_updated() if self._unsub_update: self._unsub_update() self._name = self._orig_name async def async_update(self): """Update state.""" self._update() class Sun2PointInTimeSensor(Sun2Sensor): """Sun2 Point in Time Sensor.""" def __init__(self, hass, sensor_type, icon, info): """Initialize sensor.""" super().__init__(hass, sensor_type, icon, info, "civil") @property def device_class(self): """Return the class of this device.""" return DEVICE_CLASS_TIMESTAMP class Sun2PeriodOfTimeSensor(Sun2Sensor): """Sun2 Period of Time Sensor.""" def __init__(self, hass, sensor_type, icon, info): """Initialize sensor.""" super().__init__(hass, sensor_type, icon, info, 0.833) @property def unit_of_measurement(self): """Return the unit of measurement.""" return "hr" class Sun2MinMaxElevationSensor(Sun2Sensor): """Sun2 Min/Max Elevation Sensor.""" def __init__(self, hass, sensor_type, icon, info, is_min): """Initialize sensor.""" super().__init__(hass, sensor_type, icon, info) self._event = "solar_midnight" if is_min else "solar_noon" @property def unit_of_measurement(self): """Return the unit of measurement.""" return "°" class Sun2MinElevationSensor(Sun2MinMaxElevationSensor): """Sun2 Min Elevation Sensor.""" def __init__(self, hass, sensor_type, icon, info): """Initialize sensor.""" super().__init__(hass, sensor_type, icon, info, is_min=True) class Sun2MaxElevationSensor(Sun2MinMaxElevationSensor): """Sun2 Max Elevation Sensor.""" def __init__(self, hass, sensor_type, icon, info): """Initialize sensor.""" super().__init__(hass, sensor_type, icon, info, is_min=False) class Sun2ElevationSensor(Sun2Sensor): """Sun2 Elevation Sensor.""" def __init__(self, hass, sensor_type, icon, info): """Initialize sensor.""" super().__init__(hass, sensor_type, icon, info) self._reset() @property def device_state_attributes(self): """Return device specific state attributes.""" return {ATTR_NEXT_CHANGE: self._next_change} @property def unit_of_measurement(self): """Return the unit of measurement.""" return "°" def _loc_updated(self): """Location updated.""" self._reset() super()._loc_updated() _SENSOR_TYPES = { # Points in time "solar_midnight": (Sun2PointInTimeSensor, "mdi:weather-night"), "astronomical_dawn": (Sun2PointInTimeSensor, "mdi:weather-sunset-up"), "nautical_dawn": (Sun2PointInTimeSensor, "mdi:weather-sunset-up"), "dawn": (Sun2PointInTimeSensor, "mdi:weather-sunset-up"), "sunrise": (Sun2PointInTimeSensor, "mdi:weather-sunset-up"), "solar_noon": (Sun2PointInTimeSensor, "mdi:weather-sunny"), "sunset": (Sun2PointInTimeSensor, "mdi:weather-sunset-down"), "dusk": (Sun2PointInTimeSensor, "mdi:weather-sunset-down"), "nautical_dusk": (Sun2PointInTimeSensor, "mdi:weather-sunset-down"), "astronomical_dusk": (Sun2PointInTimeSensor, "mdi:weather-sunset-down"), # Time periods "daylight": (Sun2PeriodOfTimeSensor, "mdi:weather-sunny"), "civil_daylight": (Sun2PeriodOfTimeSensor, "mdi:weather-sunny"), "nautical_daylight": (Sun2PeriodOfTimeSensor, "mdi:weather-sunny"), "astronomical_daylight": (Sun2PeriodOfTimeSensor, "mdi:weather-sunny"), "night": (Sun2PeriodOfTimeSensor, "mdi:weather-night"), "civil_night": (Sun2PeriodOfTimeSensor, "mdi:weather-night"), "nautical_night": (Sun2PeriodOfTimeSensor, "mdi:weather-night"), "astronomical_night": (Sun2PeriodOfTimeSensor, "mdi:weather-night"), # Min/Max elevation "min_elevation": (Sun2MinElevationSensor, "mdi:weather-night"), "max_elevation": (Sun2MaxElevationSensor, "mdi:weather-sunny"), # Elevation "elevation": (Sun2ElevationSensor, "mdi:weather-sunny"), } PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Required(CONF_MONITORED_CONDITIONS): vol.All( cv.ensure_list, [vol.In(_SENSOR_TYPES)] ), vol.Inclusive(CONF_LATITUDE, "location"): cv.latitude, vol.Inclusive(CONF_LONGITUDE, "location"): cv.longitude, vol.Inclusive(CONF_TIME_ZONE, "location"): cv.time_zone, vol.Inclusive(CONF_ELEVATION, "location"): vol.Coerce(float), } ) async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Set up sensors.""" if CONF_LATITUDE in config: info = ( config[CONF_LATITUDE], config[CONF_LONGITUDE], config[CONF_TIME_ZONE], config[CONF_ELEVATION], ) else: info = None async_add_entities( [ _SENSOR_TYPES[event][0](hass, event, _SENSOR_TYPES[event][1], info) for event in config[CONF_MONITORED_CONDITIONS] ], True, )
33.926587
87
0.62606
"""Sun2 Sensor.""" from datetime import datetime, time, timedelta import logging import voluptuous as vol from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.const import ( CONF_ELEVATION, CONF_LATITUDE, CONF_LONGITUDE, CONF_MONITORED_CONDITIONS, CONF_TIME_ZONE, DEVICE_CLASS_TIMESTAMP, ) from homeassistant.core import callback from homeassistant.util import dt as dt_util from homeassistant.helpers import config_validation as cv from homeassistant.helpers.dispatcher import async_dispatcher_connect from homeassistant.helpers.entity import Entity from homeassistant.helpers.event import async_track_point_in_utc_time from homeassistant.util import slugify from .helpers import ( async_init_astral_loc, astral_event, get_local_info, nearest_second, SIG_LOC_UPDATED, ) _LOGGER = logging.getLogger(__name__) _SOLAR_DEPRESSIONS = ("astronomical", "civil", "nautical") _ELEV_RND = 0.5 _ELEV_MAX_ERR = 0.02 _DELTA = timedelta(minutes=5) _ONE_DAY = timedelta(days=1) ATTR_NEXT_CHANGE = "next_change" def next_midnight(dt): return datetime.combine(dt.date() + _ONE_DAY, time(), dt.tzinfo) class Sun2Sensor(Entity): """Sun2 Sensor.""" def __init__(self, hass, sensor_type, icon, info, default_solar_depression=0): """Initialize sensor.""" self.hass = hass if any(sol_dep in sensor_type for sol_dep in _SOLAR_DEPRESSIONS): self._solar_depression, self._event = sensor_type.rsplit("_", 1) else: self._solar_depression = default_solar_depression self._event = sensor_type self._icon = icon self._name = self._orig_name = sensor_type.replace("_", " ").title() self._state = None self._yesterday = None self._today = None self._tomorrow = None self._use_local_info = info is None if self._use_local_info: self._info = get_local_info(hass) else: self._info = info self._unsub_loc_updated = None self._unsub_update = None @property def _info(self): return self.__info @_info.setter def _info(self, info): self.__info = info self._tzinfo = dt_util.get_time_zone(info[2]) async_init_astral_loc(self.hass, info) @property def should_poll(self): """Do not poll.""" return False @property def name(self): """Return the name of the entity.""" return self._name @property def state(self): """Return the state of the entity.""" return self._state def _device_state_attributes(self): return { "yesterday": self._yesterday, "today": self._today, "tomorrow": self._tomorrow, } @property def device_state_attributes(self): """Return device specific state attributes.""" return self._device_state_attributes() @property def icon(self): """Return the icon to use in the frontend.""" return self._icon def _setup_fixed_updating(self): # Default behavior is to update every midnight. # Override for sensor types that should update at a different time, # or that have a more dynamic update schedule (in which case override # with a method that does nothing and set up the update at the end of # an override of _update instead.) @callback def async_update_at_midnight(now): next_midn = next_midnight(now.astimezone(self._tzinfo)) self._unsub_update = async_track_point_in_utc_time( self.hass, async_update_at_midnight, next_midn ) self.async_schedule_update_ha_state(True) next_midn = next_midnight(dt_util.now(self._tzinfo)) self._unsub_update = async_track_point_in_utc_time( self.hass, async_update_at_midnight, next_midn ) def _loc_updated(self): if self._unsub_update: self._unsub_update() self._unsub_update = None self._info = get_local_info(self.hass) self._setup_fixed_updating() self.async_schedule_update_ha_state(True) async def async_loc_updated(self): """Location updated.""" self._loc_updated() async def async_added_to_hass(self): """Subscribe to update signal and set up fixed updating.""" slug = slugify(self._orig_name) object_id = self.entity_id.split('.')[1] if slug != object_id and object_id.endswith(slug): prefix = object_id[:-len(slug)].replace("_", " ").strip().title() self._name = f"{prefix} {self._orig_name}" if self._use_local_info: self._unsub_loc_updated = async_dispatcher_connect( self.hass, SIG_LOC_UPDATED, self.async_loc_updated ) self._setup_fixed_updating() async def async_will_remove_from_hass(self): """Disconnect from update signal and cancel fixed updating.""" if self._unsub_loc_updated: self._unsub_loc_updated() if self._unsub_update: self._unsub_update() self._name = self._orig_name def _get_astral_event(self, event, date_or_dt): return astral_event(self._info, event, date_or_dt, self._solar_depression) def _get_data(self, date_or_dt): return self._get_astral_event(self._event, date_or_dt) def _update(self): today = dt_util.now(self._tzinfo).date() self._yesterday = self._get_data(today - _ONE_DAY) self._state = self._today = self._get_data(today) self._tomorrow = self._get_data(today + _ONE_DAY) async def async_update(self): """Update state.""" self._update() class Sun2PointInTimeSensor(Sun2Sensor): """Sun2 Point in Time Sensor.""" def __init__(self, hass, sensor_type, icon, info): """Initialize sensor.""" super().__init__(hass, sensor_type, icon, info, "civil") @property def device_class(self): """Return the class of this device.""" return DEVICE_CLASS_TIMESTAMP def _update(self): super()._update() if self._state != "none": self._state = self._state.isoformat() def _hours_to_hms(hours): try: return str(timedelta(hours=hours)).split(".")[0] except TypeError: return None class Sun2PeriodOfTimeSensor(Sun2Sensor): """Sun2 Period of Time Sensor.""" def __init__(self, hass, sensor_type, icon, info): """Initialize sensor.""" super().__init__(hass, sensor_type, icon, info, 0.833) @property def unit_of_measurement(self): """Return the unit of measurement.""" return "hr" def _device_state_attributes(self): data = super()._device_state_attributes() data.update( { "yesterday_hms": _hours_to_hms(data["yesterday"]), "today_hms": _hours_to_hms(data["today"]), "tomorrow_hms": _hours_to_hms(data["tomorrow"]), } ) return data def _get_data(self, date_or_dt): if "daylight" in self._event: start = self._get_astral_event("dawn", date_or_dt) end = self._get_astral_event("dusk", date_or_dt) else: start = self._get_astral_event("dusk", date_or_dt) end = self._get_astral_event("dawn", date_or_dt + _ONE_DAY) if "none" in (start, end): return None return (end - start).total_seconds() / 3600 def _update(self): super()._update() if self._state is not None: self._state = round(self._state, 3) class Sun2MinMaxElevationSensor(Sun2Sensor): """Sun2 Min/Max Elevation Sensor.""" def __init__(self, hass, sensor_type, icon, info, is_min): """Initialize sensor.""" super().__init__(hass, sensor_type, icon, info) self._event = "solar_midnight" if is_min else "solar_noon" @property def unit_of_measurement(self): """Return the unit of measurement.""" return "°" def _get_data(self, date_or_dt): event_time = self._get_astral_event(self._event, date_or_dt) return self._get_astral_event("solar_elevation", event_time) def _update(self): super()._update() if self._state is not None: self._state = round(self._state, 3) class Sun2MinElevationSensor(Sun2MinMaxElevationSensor): """Sun2 Min Elevation Sensor.""" def __init__(self, hass, sensor_type, icon, info): """Initialize sensor.""" super().__init__(hass, sensor_type, icon, info, is_min=True) class Sun2MaxElevationSensor(Sun2MinMaxElevationSensor): """Sun2 Max Elevation Sensor.""" def __init__(self, hass, sensor_type, icon, info): """Initialize sensor.""" super().__init__(hass, sensor_type, icon, info, is_min=False) def _nearest_multiple(value, multiple): return int(round(value / multiple)) * multiple def _calc_nxt_time(time0, elev0, time1, elev1, trg_elev): return nearest_second( time0 + (time1 - time0) * ((trg_elev - elev0) / (elev1 - elev0)) ) class Sun2ElevationSensor(Sun2Sensor): """Sun2 Elevation Sensor.""" def __init__(self, hass, sensor_type, icon, info): """Initialize sensor.""" super().__init__(hass, sensor_type, icon, info) self._reset() def _reset(self): self._prv_sol_midn = None self._sol_noon = None self._sol_midn = None self._prv_time = None self._prv_elev = None self._next_change = None @property def device_state_attributes(self): """Return device specific state attributes.""" return {ATTR_NEXT_CHANGE: self._next_change} @property def unit_of_measurement(self): """Return the unit of measurement.""" return "°" def _loc_updated(self): """Location updated.""" self._reset() super()._loc_updated() def _setup_fixed_updating(self): pass def _get_nxt_time(self, time1, elev1, trg_elev, min_time, max_time): if self._prv_time < min_time: return None time0 = self._prv_time elev0 = self._prv_elev nxt_elev = trg_elev + 1.5 * _ELEV_MAX_ERR while abs(nxt_elev - trg_elev) >= _ELEV_MAX_ERR: try: nxt_time = _calc_nxt_time(time0, elev0, time1, elev1, trg_elev) except ZeroDivisionError: return None if nxt_time < min_time or nxt_time > max_time: return None if nxt_time in (time0, time1): break nxt_elev = astral_event(self._info, "solar_elevation", nxt_time) if nxt_time > time1: time0 = time1 elev0 = elev1 time1 = nxt_time elev1 = nxt_elev elif elev0 < trg_elev < nxt_elev or elev0 > trg_elev > nxt_elev: time1 = nxt_time elev1 = nxt_elev else: time0 = nxt_time elev0 = nxt_elev return nxt_time def _set_nxt_time(self, cur_time): if self._sol_noon - _DELTA <= cur_time < self._sol_noon: return self._sol_noon elif self._sol_midn - _DELTA <= cur_time: return self._sol_midn else: return cur_time + _DELTA def _update(self): # Astral package ignores microseconds, so round to nearest second # before continuing. cur_time = nearest_second(dt_util.now(self._tzinfo)) cur_elev = astral_event(self._info, "solar_elevation", cur_time) self._state = f"{cur_elev:0.1f}" _LOGGER.debug("Raw elevation = %f -> %s", cur_elev, self._state) # Find the next solar midnight AFTER the current time, and the solar noon and # solar midnight that precede it. This only needs to be done once a day when we # reach or pass the previously determined solar midnight. if not self._sol_midn or cur_time >= self._sol_midn: date = cur_time.date() # solar_midnight() returns the solar midnight (which is when the # sun reaches its lowest point) nearest to the start of today. Note # that it may have occurred yesterday. self._sol_midn = astral_event(self._info, "solar_midnight", date) while self._sol_midn <= cur_time: date += _ONE_DAY self._sol_midn = astral_event(self._info, "solar_midnight", date) self._sol_noon = astral_event(self._info, "solar_noon", date - _ONE_DAY) self._prv_sol_midn = astral_event( self._info, "solar_midnight", date - _ONE_DAY ) _LOGGER.debug( "Solar midnight/noon/midnight: %s/%0.2f, %s/%0.2f, %s/%0.2f", self._prv_sol_midn, astral_event(self._info, "solar_elevation", self._prv_sol_midn), self._sol_noon, astral_event(self._info, "solar_elevation", self._sol_noon), self._sol_midn, astral_event(self._info, "solar_elevation", self._sol_midn), ) if self._prv_time: # Extrapolate based on previous point and current point to find # next point. rnd_elev = _nearest_multiple(cur_elev, _ELEV_RND) if cur_time < self._sol_noon: nxt_time = self._get_nxt_time( cur_time, cur_elev, rnd_elev + _ELEV_RND, self._prv_sol_midn, self._sol_noon, ) else: nxt_time = self._get_nxt_time( cur_time, cur_elev, rnd_elev - _ELEV_RND, self._sol_noon, self._sol_midn, ) else: nxt_time = None if not nxt_time: nxt_time = self._set_nxt_time(cur_time) self._prv_time = cur_time self._prv_elev = cur_elev self._next_change = dt_util.as_local(nxt_time) @callback def async_update(now): self._unsub_update = None self.async_schedule_update_ha_state(True) self._unsub_update = async_track_point_in_utc_time( self.hass, async_update, nxt_time ) _SENSOR_TYPES = { # Points in time "solar_midnight": (Sun2PointInTimeSensor, "mdi:weather-night"), "astronomical_dawn": (Sun2PointInTimeSensor, "mdi:weather-sunset-up"), "nautical_dawn": (Sun2PointInTimeSensor, "mdi:weather-sunset-up"), "dawn": (Sun2PointInTimeSensor, "mdi:weather-sunset-up"), "sunrise": (Sun2PointInTimeSensor, "mdi:weather-sunset-up"), "solar_noon": (Sun2PointInTimeSensor, "mdi:weather-sunny"), "sunset": (Sun2PointInTimeSensor, "mdi:weather-sunset-down"), "dusk": (Sun2PointInTimeSensor, "mdi:weather-sunset-down"), "nautical_dusk": (Sun2PointInTimeSensor, "mdi:weather-sunset-down"), "astronomical_dusk": (Sun2PointInTimeSensor, "mdi:weather-sunset-down"), # Time periods "daylight": (Sun2PeriodOfTimeSensor, "mdi:weather-sunny"), "civil_daylight": (Sun2PeriodOfTimeSensor, "mdi:weather-sunny"), "nautical_daylight": (Sun2PeriodOfTimeSensor, "mdi:weather-sunny"), "astronomical_daylight": (Sun2PeriodOfTimeSensor, "mdi:weather-sunny"), "night": (Sun2PeriodOfTimeSensor, "mdi:weather-night"), "civil_night": (Sun2PeriodOfTimeSensor, "mdi:weather-night"), "nautical_night": (Sun2PeriodOfTimeSensor, "mdi:weather-night"), "astronomical_night": (Sun2PeriodOfTimeSensor, "mdi:weather-night"), # Min/Max elevation "min_elevation": (Sun2MinElevationSensor, "mdi:weather-night"), "max_elevation": (Sun2MaxElevationSensor, "mdi:weather-sunny"), # Elevation "elevation": (Sun2ElevationSensor, "mdi:weather-sunny"), } PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Required(CONF_MONITORED_CONDITIONS): vol.All( cv.ensure_list, [vol.In(_SENSOR_TYPES)] ), vol.Inclusive(CONF_LATITUDE, "location"): cv.latitude, vol.Inclusive(CONF_LONGITUDE, "location"): cv.longitude, vol.Inclusive(CONF_TIME_ZONE, "location"): cv.time_zone, vol.Inclusive(CONF_ELEVATION, "location"): vol.Coerce(float), } ) async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Set up sensors.""" if CONF_LATITUDE in config: info = ( config[CONF_LATITUDE], config[CONF_LONGITUDE], config[CONF_TIME_ZONE], config[CONF_ELEVATION], ) else: info = None async_add_entities( [ _SENSOR_TYPES[event][0](hass, event, _SENSOR_TYPES[event][1], info) for event in config[CONF_MONITORED_CONDITIONS] ], True, )
8,004
0
603
a1eadad05f7982e2c83e9588ec9bbf91d80cb087
780
py
Python
backend/applications/models/abstract/allable.py
simonfong6/applications
dea9e324f33b3647ab8e1fcf01f67b37e20e37a9
[ "MIT" ]
null
null
null
backend/applications/models/abstract/allable.py
simonfong6/applications
dea9e324f33b3647ab8e1fcf01f67b37e20e37a9
[ "MIT" ]
null
null
null
backend/applications/models/abstract/allable.py
simonfong6/applications
dea9e324f33b3647ab8e1fcf01f67b37e20e37a9
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """ Allable """ from applications.database.table import Table from .base import Base from .buildable import Buildable from .jsonable import Jsonable if __name__ == '__main__': from argparse import ArgumentParser parser = ArgumentParser() parser.add_argument('-a', '--arg1', help="An argument.", type=str, default='default') args = parser.parse_args() main(args)
17.727273
50
0.580769
#!/usr/bin/env python3 """ Allable """ from applications.database.table import Table from .base import Base from .buildable import Buildable from .jsonable import Jsonable class Allable( Buildable, Jsonable ): @classmethod def all(cls, json=False): items = cls.table.get_all() objs = [cls.build(item) for item in items] if json: objs = [obj.json() for obj in objs] return objs def main(args): pass if __name__ == '__main__': from argparse import ArgumentParser parser = ArgumentParser() parser.add_argument('-a', '--arg1', help="An argument.", type=str, default='default') args = parser.parse_args() main(args)
182
68
46
a554c06e0f65bba35d7853d913b3a09e1943fe3a
8,166
py
Python
tests/test_views.py
gradel/aldryn-forms
a53e751078e810436504a175101f3216649d21cd
[ "BSD-3-Clause" ]
24
2019-03-31T17:27:37.000Z
2021-12-14T22:38:10.000Z
tests/test_views.py
gradel/aldryn-forms
a53e751078e810436504a175101f3216649d21cd
[ "BSD-3-Clause" ]
126
2015-01-21T19:39:42.000Z
2019-01-09T06:50:45.000Z
tests/test_views.py
gradel/aldryn-forms
a53e751078e810436504a175101f3216649d21cd
[ "BSD-3-Clause" ]
44
2015-08-25T08:19:45.000Z
2019-01-03T12:34:18.000Z
import sys from distutils.version import LooseVersion from unittest import skipIf, skipUnless from django import VERSION as DJANGO_VERSION from django.urls import clear_url_caches import cms from cms.api import add_plugin, create_page from cms.appresolver import clear_app_resolvers from cms.test_utils.testcases import CMSTestCase # These means "less than or equal" DJANGO_111 = DJANGO_VERSION[:2] >= (1, 11) CMS_3_6 = LooseVersion(cms.__version__) < LooseVersion('4.0')
28.354167
104
0.563189
import sys from distutils.version import LooseVersion from unittest import skipIf, skipUnless from django import VERSION as DJANGO_VERSION from django.urls import clear_url_caches import cms from cms.api import add_plugin, create_page from cms.appresolver import clear_app_resolvers from cms.test_utils.testcases import CMSTestCase # These means "less than or equal" DJANGO_111 = DJANGO_VERSION[:2] >= (1, 11) CMS_3_6 = LooseVersion(cms.__version__) < LooseVersion('4.0') class SubmitFormViewTest(CMSTestCase): def setUp(self): self.APP_MODULE = 'aldryn_forms.cms_apps.FormsApp' clear_app_resolvers() clear_url_caches() if self.APP_MODULE in sys.modules: del sys.modules[self.APP_MODULE] self.page = create_page( 'tpage', 'test_page.html', 'en', published=True, apphook='FormsApp', ) try: self.placeholder = self.page.placeholders.get(slot='content') except AttributeError: self.placeholder = self.page.get_placeholders('en').get(slot='content') self.redirect_url = 'http://www.google.com' plugin_data = { 'redirect_type': 'redirect_to_url', 'url': self.redirect_url, } self.form_plugin = add_plugin(self.placeholder, 'FormPlugin', 'en', **plugin_data) # noqa: E501 add_plugin( self.placeholder, 'SubmitButton', 'en', target=self.form_plugin, label='Submit', ) self.form_plugin.action_backend = 'default' self.form_plugin.save() if CMS_3_6: self.page.publish('en') self.reload_urls() self.apphook_clear() def tearDown(self): clear_app_resolvers() clear_url_caches() if self.APP_MODULE in sys.modules: del sys.modules[self.APP_MODULE] self.reload_urls() self.apphook_clear() def reload_urls(self): from django.conf import settings url_modules = [ 'cms.urls', self.APP_MODULE, settings.ROOT_URLCONF, ] clear_app_resolvers() clear_url_caches() for module in url_modules: if module in sys.modules: del sys.modules[module] @skipUnless(DJANGO_111, 'Django>=1.11') def test_form_view_and_submission_with_apphook_django_gte_111(self): if CMS_3_6: public_page = self.page.publisher_public else: public_page = self.page try: public_placeholder = public_page.placeholders.first() except AttributeError: public_placeholder = public_page.get_placeholders('en').first() public_page_form_plugin = ( public_placeholder .cmsplugin_set .filter(plugin_type='FormPlugin') .first() ) response = self.client.get(self.page.get_absolute_url('en')) input_string = '<input type="hidden" name="form_plugin_id" value="{}"' self.assertContains(response, input_string.format(public_page_form_plugin.id)) # noqa: E501 response = self.client.post(self.page.get_absolute_url('en'), { 'form_plugin_id': public_page_form_plugin.id, }) self.assertRedirects(response, self.redirect_url, fetch_redirect_response=False) # noqa: E501 @skipIf(DJANGO_111, 'Django<1.11') def test_form_view_and_submission_with_apphook_django_lt_111(self): public_placeholder = ( self .page .publisher_public .placeholders .first() ) public_page_form_plugin = ( public_placeholder .cmsplugin_set .filter(plugin_type='FormPlugin') .first() ) response = self.client.get(self.page.get_absolute_url('en')) input_string = '<input type="hidden" name="form_plugin_id" value="{}"' self.assertContains(response, input_string.format(public_page_form_plugin.id)) # noqa: E501 response = self.client.post(self.page.get_absolute_url('en'), { 'form_plugin_id': public_page_form_plugin.id, }) self.assertRedirects(response, self.redirect_url, fetch_redirect_response=False) # noqa: E501 def test_view_submit_one_form_instead_multiple(self): """Test checks if only one form is send instead of multiple on page together""" page = create_page( 'multiple forms', 'test_page.html', 'en', published=True, apphook='FormsApp', ) placeholder = page.placeholders.get(slot='content') form_plugin = add_plugin( placeholder, 'FormPlugin', 'en', ) # noqa: E501 add_plugin( placeholder, 'EmailField', 'en', name='email_1', required=True, target=form_plugin, label='Submit', ) add_plugin( placeholder, 'SubmitButton', 'en', target=form_plugin, label='Submit', ) form_plugin.action_backend = 'default' form_plugin.save() plugin_data2 = { 'redirect_type': 'redirect_to_url', 'url': 'https://google.com/', } form_plugin2 = add_plugin( placeholder, 'FormPlugin', 'en', **plugin_data2 ) # noqa: E501 add_plugin( placeholder, 'SubmitButton', 'en', target=form_plugin2, label='Submit', ) form_plugin2.action_backend = 'default' form_plugin2.save() page.publish('en') self.reload_urls() self.apphook_clear() response = self.client.post(page.get_absolute_url('en'), { 'form_plugin_id': form_plugin2.id, 'email_1': 'test@test', }) self.assertRedirects(response, plugin_data2['url'], fetch_redirect_response=False) # noqa: E501 def test_view_submit_one_valid_form_instead_multiple(self): """Test checks if only one form is validated instead multiple on a page""" page = create_page( 'multiple forms', 'test_page.html', 'en', published=True, apphook='FormsApp', ) placeholder = page.placeholders.get(slot='content') form_plugin = add_plugin( placeholder, 'FormPlugin', 'en', ) # noqa: E501 add_plugin( placeholder, 'EmailField', 'en', name='email_1', required=True, target=form_plugin, ) add_plugin( placeholder, 'SubmitButton', 'en', target=form_plugin, label='Submit', ) form_plugin.action_backend = 'default' form_plugin.save() form_plugin2 = add_plugin( placeholder, 'FormPlugin', 'en', ) # noqa: E501 add_plugin( placeholder, 'EmailField', 'en', name='email_2', required=True, target=form_plugin2, ) add_plugin( placeholder, 'SubmitButton', 'en', target=form_plugin2, label='Submit', ) form_plugin2.action_backend = 'default' form_plugin2.save() page.publish('en') self.reload_urls() self.apphook_clear() response = self.client.post(page.get_absolute_url('en'), { 'form_plugin_id': form_plugin2.id, 'email_2': 'test@test', }) email_field = '<input type="email" name="{name}"' self.assertContains(response, email_field.format(name='email_1')) self.assertContains(response, email_field.format(name='email_2'))
3,649
4,017
23
4988e3e2f37fae2c39d045aac6365b9829ae00a4
478
py
Python
deepl/main.py
bitplus/deepl-cli
da7c76f1ea20977275d009552c1c02f756cbf32b
[ "MIT" ]
56
2020-10-30T15:05:32.000Z
2022-03-27T21:16:58.000Z
deepl/main.py
bitplus/deepl-cli
da7c76f1ea20977275d009552c1c02f756cbf32b
[ "MIT" ]
38
2020-07-13T06:22:35.000Z
2022-03-31T20:16:28.000Z
deepl/main.py
bitplus/deepl-cli
da7c76f1ea20977275d009552c1c02f756cbf32b
[ "MIT" ]
10
2020-07-28T18:40:22.000Z
2022-03-17T11:07:17.000Z
#!/usr/bin/env python3 import sys from . import deepl if __name__ == '__main__': try: main() except KeyboardInterrupt: pass
20.782609
64
0.604603
#!/usr/bin/env python3 import sys from . import deepl def main() -> None: t = deepl.DeepLCLI() t.chk_cmdargs() t.fr_lang, t.to_lang = sys.argv[1].split(':') script = sys.stdin.read() print('Translating...', end='', file=sys.stderr, flush=True) result = t.translate(script) print('\033[1K\033[G', end='', file=sys.stderr, flush=True) print(result) if __name__ == '__main__': try: main() except KeyboardInterrupt: pass
303
0
23
9447782acc0cd1ca418445929d22ee41dc741757
3,101
py
Python
babyrobot/src/speech_features/src/speech_feature_server.py
babyrobot-eu/core-modules
7e8c006c40153fb649208c9a78fc71aa70243f69
[ "MIT" ]
1
2019-02-07T15:32:06.000Z
2019-02-07T15:32:06.000Z
babyrobot/src/speech_features/src/speech_feature_server.py
babyrobot-eu/core-modules
7e8c006c40153fb649208c9a78fc71aa70243f69
[ "MIT" ]
9
2020-01-28T22:09:41.000Z
2022-03-11T23:39:17.000Z
babyrobot/src/speech_features/src/speech_feature_server.py
babyrobot-eu/core-modules
7e8c006c40153fb649208c9a78fc71aa70243f69
[ "MIT" ]
null
null
null
#!/usr/bin/env python import csv import os import rospy import uuid from babyrobot.lib import utils as br_utils from babyrobot.speech_features import config as sf_config from babyrobot_msgs.msg import SpeechFeatures, Feature from babyrobot_msgs.srv import SpeechFeatureExtraction from babyrobot_msgs.srv import SpeechFeatureExtractionResponse def handle_speech_features(req): ''' Extract speech features upon a client request. Args: req: A request object containing the following fields: audio_segment opensmile_config response_format metadata Returns: A SpeechFeatureExtractionResponse containing a SpeechFeatures ROS message. ''' br_utils.write_wav(req.audio_segment.clip, sf_config.TEMP_FILE.WAV) if req.response_format == 'arff': out_file = sf_config.TEMP_FILE.ARFF_OUTPUT out_file_cmd = '--arffoutput {}'.format(out_file) else: out_file = sf_config.TEMP_FILE.CSV_OUTPUT out_file_cmd = '--csvoutput {}'.format(out_file) opensmile_conf = os.path.join(sf_config.OPENSMILE.CONFIG_DIR, req.opensmile_conf) if not opensmile_conf.endswith('.conf'): opensmile_conf += '.conf' cmd = '{0}/SMILExtract -C {1} -I {2} {3}'.format( sf_config.OPENSMILE.ROOT_DIR, opensmile_conf, sf_config.TEMP_FILE.WAV, out_file_cmd) #rospy.loginfo('Extracting features using "{}"'.format(cmd)) ret_code, stdout, stderr = br_utils.run_cmd(cmd) if ret_code != 0: rospy.logerr('Failed to extract features. Returning empty message') rospy.logerr(stdout) rospy.logerr(stderr) return SpeechFeatureExtractionResponse(SpeechFeatures()) msg = SpeechFeatures() msg.related_segment_id = req.audio_segment.header.id msg.header.id = str(uuid.uuid1()) msg.header.timestamp = rospy.Time.now() with open(out_file, 'r') as out_fd: if req.response_format == 'arff': msg.arff_file = out_fd.read() elif req.response_format in ['list', '']: reader = csv.DictReader(out_fd) data = reader.next() msg.features = [] for d in data.iteritems(): feat = Feature() feat.feature_name = d[0] feat.feature_value = float(d[1]) msg.features.append(feat) else: rospy.logerr('Invalid response format. Returning empty message') return SpeechFeatureExtractionResponse(SpeechFeatures()) return SpeechFeatureExtractionResponse(msg) def speech_features_server(): ''' Initialize a ROS node and run the SpeechFeatureExtraction service Args: Returns: ''' rospy.init_node(sf_config.ROS_CONFIG.SERVER_NODE) rospy.Service(sf_config.ROS_CONFIG.SERVICE_NAME, SpeechFeatureExtraction, handle_speech_features) #rospy.loginfo("Speech Features server started.") rospy.spin() if __name__ == "__main__": speech_features_server()
32.302083
76
0.656885
#!/usr/bin/env python import csv import os import rospy import uuid from babyrobot.lib import utils as br_utils from babyrobot.speech_features import config as sf_config from babyrobot_msgs.msg import SpeechFeatures, Feature from babyrobot_msgs.srv import SpeechFeatureExtraction from babyrobot_msgs.srv import SpeechFeatureExtractionResponse def handle_speech_features(req): ''' Extract speech features upon a client request. Args: req: A request object containing the following fields: audio_segment opensmile_config response_format metadata Returns: A SpeechFeatureExtractionResponse containing a SpeechFeatures ROS message. ''' br_utils.write_wav(req.audio_segment.clip, sf_config.TEMP_FILE.WAV) if req.response_format == 'arff': out_file = sf_config.TEMP_FILE.ARFF_OUTPUT out_file_cmd = '--arffoutput {}'.format(out_file) else: out_file = sf_config.TEMP_FILE.CSV_OUTPUT out_file_cmd = '--csvoutput {}'.format(out_file) opensmile_conf = os.path.join(sf_config.OPENSMILE.CONFIG_DIR, req.opensmile_conf) if not opensmile_conf.endswith('.conf'): opensmile_conf += '.conf' cmd = '{0}/SMILExtract -C {1} -I {2} {3}'.format( sf_config.OPENSMILE.ROOT_DIR, opensmile_conf, sf_config.TEMP_FILE.WAV, out_file_cmd) #rospy.loginfo('Extracting features using "{}"'.format(cmd)) ret_code, stdout, stderr = br_utils.run_cmd(cmd) if ret_code != 0: rospy.logerr('Failed to extract features. Returning empty message') rospy.logerr(stdout) rospy.logerr(stderr) return SpeechFeatureExtractionResponse(SpeechFeatures()) msg = SpeechFeatures() msg.related_segment_id = req.audio_segment.header.id msg.header.id = str(uuid.uuid1()) msg.header.timestamp = rospy.Time.now() with open(out_file, 'r') as out_fd: if req.response_format == 'arff': msg.arff_file = out_fd.read() elif req.response_format in ['list', '']: reader = csv.DictReader(out_fd) data = reader.next() msg.features = [] for d in data.iteritems(): feat = Feature() feat.feature_name = d[0] feat.feature_value = float(d[1]) msg.features.append(feat) else: rospy.logerr('Invalid response format. Returning empty message') return SpeechFeatureExtractionResponse(SpeechFeatures()) return SpeechFeatureExtractionResponse(msg) def speech_features_server(): ''' Initialize a ROS node and run the SpeechFeatureExtraction service Args: Returns: ''' rospy.init_node(sf_config.ROS_CONFIG.SERVER_NODE) rospy.Service(sf_config.ROS_CONFIG.SERVICE_NAME, SpeechFeatureExtraction, handle_speech_features) #rospy.loginfo("Speech Features server started.") rospy.spin() if __name__ == "__main__": speech_features_server()
0
0
0
0193adfbe712d27ed14b6903b2a69b42e44904be
473
py
Python
2015/task_2/first.py
romanthekat/advent_of_code
d9005d9824ab7aadd6bc93fd88421f6fdc95520e
[ "Apache-2.0" ]
null
null
null
2015/task_2/first.py
romanthekat/advent_of_code
d9005d9824ab7aadd6bc93fd88421f6fdc95520e
[ "Apache-2.0" ]
5
2016-07-03T19:07:55.000Z
2019-12-10T19:24:25.000Z
2015/task_2/first.py
EvilKhaosKat/advent_of_code
d9005d9824ab7aadd6bc93fd88421f6fdc95520e
[ "Apache-2.0" ]
null
null
null
total = 0 with open("input.txt") as f: total = sum(calculate_paper(gift) for gift in f.readlines()) print(total)
19.708333
66
0.575053
def get_smallest_area(l, w, h): sizes = [l, w, h] sizes.remove(max(sizes)) return sizes[0] * sizes[1] def calculate_paper(gift): l, w, h = map(int, gift.split("x")) return get_surface_area(h, l, w) + get_smallest_area(l, w, h) def get_surface_area(l, w, h): return 2 * l * w + 2 * w * h + 2 * h * l total = 0 with open("input.txt") as f: total = sum(calculate_paper(gift) for gift in f.readlines()) print(total)
269
0
73
f7a2819ac7ec77e96ae6a88ef722bf74ac99b857
17,937
py
Python
avro_json_serializer/test/test_avro_json_serializer.py
rushton/python-avro-json-serializer
52549a0d5958b08b0fca3e419eaefc3e0c6ec99c
[ "Apache-2.0" ]
126
2015-02-26T20:20:04.000Z
2022-03-25T19:36:22.000Z
avro_json_serializer/test/test_avro_json_serializer.py
rushton/python-avro-json-serializer
52549a0d5958b08b0fca3e419eaefc3e0c6ec99c
[ "Apache-2.0" ]
15
2016-06-01T17:26:58.000Z
2022-03-17T20:40:37.000Z
avro_json_serializer/test/test_avro_json_serializer.py
rushton/python-avro-json-serializer
52549a0d5958b08b0fca3e419eaefc3e0c6ec99c
[ "Apache-2.0" ]
39
2015-01-20T22:12:05.000Z
2022-02-18T03:23:41.000Z
# -*- coding: utf-8 -*- # (c) [2014] LinkedIn Corp. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License");
 # you may not use this file except in compliance with the License.
 # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software
 # distributed under the License is distributed on an "AS IS" BASIS,
 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import avro.io import avro.schema import six from unittest import TestCase if six.PY2: from avro.schema import make_avsc_object else: from avro.schema import SchemaFromJSONData as make_avsc_object long = int from avro_json_serializer import AvroJsonSerializer, AvroJsonDeserializer
34.560694
233
0.53543
# -*- coding: utf-8 -*- # (c) [2014] LinkedIn Corp. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License");
 # you may not use this file except in compliance with the License.
 # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software
 # distributed under the License is distributed on an "AS IS" BASIS,
 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import avro.io import avro.schema import six from unittest import TestCase if six.PY2: from avro.schema import make_avsc_object else: from avro.schema import SchemaFromJSONData as make_avsc_object long = int from avro_json_serializer import AvroJsonSerializer, AvroJsonDeserializer class TestAvroJsonSerializer(TestCase): FIELD_ENUM = { "name": "fruit", "type": { "name": "Fruit", "type": "enum", "symbols": [ "ORANGE", "APPLE", "PINEAPPLE" ] } } FIELD_INT = { "name": "fint", "type": "int" } FIELD_LONG = { "name": "flong", "type": "long" } FIELD_FLOAT = { "name": "ffloat", "type": "float" } FIELD_DOUBLE = { "name": "fdouble", "type": "double" } FIELD_STRING = { "name": "fstring", "type": "string" } FIELD_ARRAY_INT = { "type": {"type": "array", "items": "int"}, "name": "intarr" } FIELD_MAP_INT = { "type": {"type": "map", "values": "int"}, "name": "intmap" } FIELD_FIXED = { "type": { "name": "fixed_16", "size": 16, "type": "fixed" }, "size": 16, "name": "ffixed" } FIELD_RECORD = { "type": { "name": "Rec", "fields": [{ "name": "subfint", "type": "int" }], "type": "record" }, "name": "frec" } FIELD_UNION_NULL_INT = { "name": "funion_null", "type": [ "int", "null" ] } FIELD_UNION_RECORDS = { "name": "funion_rec", "type": [ { "type": "record", "name": "rec1", "fields": [ { "name": "field", "type": "int" } ] }, { "type": "record", "namespace": "example.avro", "name": "rec2", "fields": [ { "name": "field", "type": "string" } ] } ] } ALL_FIELDS_SCHEMA = { "type": "record", "name": "all_field", "fields": [ FIELD_ENUM, FIELD_INT, FIELD_LONG, FIELD_STRING, FIELD_FIXED, FIELD_RECORD, FIELD_UNION_NULL_INT, FIELD_FLOAT, FIELD_DOUBLE, FIELD_ARRAY_INT, FIELD_MAP_INT ], "namespace": "com.some.thing" } UNION_FIELDS_SCHEMA = { "type": "record", "name": "unions", "fields": [ FIELD_UNION_NULL_INT ] } UNION_RECORDS_SCHEMA = { "type": "record", "name": "unions", "fields": [ FIELD_UNION_RECORDS ] } VALID_DATA_ALL_FIELDS = { "fruit": "ORANGE", "fint": 1, "flong": long(1), "ffloat": 1.0, "fdouble": 2.0, "fstring": "hi there", "ffixed": b"1234567890123456", "frec": { "subfint": 2 }, "funion_null": None, "intarr": [1, 2, 3], "intmap": {"one": 1} } # unions can't be serialized directly; must be in a record INDIVIDUALLY_SERIALIZABLE = list(ALL_FIELDS_SCHEMA['fields']) INDIVIDUALLY_SERIALIZABLE.remove(FIELD_UNION_NULL_INT) def test_all_supported_types(self): avro_schema = make_avsc_object(self.ALL_FIELDS_SCHEMA, avro.schema.Names()) data = self.VALID_DATA_ALL_FIELDS avro_json = AvroJsonSerializer(avro_schema).to_json(data) self.assertEquals(avro_json, """{"fruit":"ORANGE","fint":1,"flong":1,"fstring":"hi there","ffixed":"1234567890123456","frec":{"subfint":2},"funion_null":null,"ffloat":1.0,"fdouble":2.0,"intarr":[1,2,3],"intmap":{"one":1}}""") json_data = AvroJsonDeserializer(avro_schema).from_json(avro_json) self.assertEquals(json_data, data) def test_individually_allowed_fields_separately(self): for field in self.INDIVIDUALLY_SERIALIZABLE: # unwrap enum, fixed, array, and map but save the name for value lookup name = field['name'] if isinstance(field['type'], dict): field = field['type'] avro_schema = make_avsc_object(field, avro.schema.Names()) data = self.VALID_DATA_ALL_FIELDS[name] avro_json = AvroJsonSerializer(avro_schema).to_json(data) json_data = AvroJsonDeserializer(avro_schema).from_json(avro_json) self.assertEquals(json_data, data) def test_fails_validation(self): avro_schema = make_avsc_object(self.ALL_FIELDS_SCHEMA, avro.schema.Names()) data = dict(self.VALID_DATA_ALL_FIELDS) data["ffloat"] = "hi" serializer = AvroJsonSerializer(avro_schema) self.assertRaises(avro.io.AvroTypeException, serializer.to_json, data) def test_union_serialization_null(self): avro_schema = make_avsc_object(self.UNION_FIELDS_SCHEMA, avro.schema.Names()) data = { "funion_null": None } avro_json = AvroJsonSerializer(avro_schema).to_json(data) self.assertEquals(avro_json, """{"funion_null":null}""") json_data = AvroJsonDeserializer(avro_schema).from_json(avro_json) self.assertEquals(json_data, data) def test_union_serialization_not_null(self): avro_schema = make_avsc_object(self.UNION_FIELDS_SCHEMA, avro.schema.Names()) data = { "funion_null": 1 } avro_json = AvroJsonSerializer(avro_schema).to_json(data) self.assertEquals(avro_json, """{"funion_null":{"int":1}}""") json_data = AvroJsonDeserializer(avro_schema).from_json(avro_json) self.assertEquals(json_data, data) def test_union_serialization_invalid(self): avro_schema = make_avsc_object(self.UNION_FIELDS_SCHEMA, avro.schema.Names()) data = { "funion_null": "hi" } serializer = AvroJsonSerializer(avro_schema) self.assertRaises(avro.io.AvroTypeException, serializer.to_json, data) def test_records_union(self): avro_schema = make_avsc_object(self.UNION_RECORDS_SCHEMA, avro.schema.Names()) data = { "funion_rec": { "field": 1 } } avro_json = AvroJsonSerializer(avro_schema).to_json(data) self.assertEquals(avro_json, """{"funion_rec":{"rec1":{"field":1}}}""") json_data = AvroJsonDeserializer(avro_schema).from_json(avro_json) self.assertEquals(json_data, data) data_another_record = { "funion_rec": { "field": "hi" } } another_record_json = AvroJsonSerializer(avro_schema).to_json(data_another_record) self.assertEquals(another_record_json, """{"funion_rec":{"example.avro.rec2":{"field":"hi"}}}""") another_json_data = AvroJsonDeserializer(avro_schema).from_json(another_record_json) self.assertEquals(another_json_data, data_another_record) def test_map(self): schema_dict = { "type": "record", "name": "rec", "fields": [ self.FIELD_MAP_INT ] } data = { "intmap": { "one": 1, "two": 2 } } unicode_dict = { 'intmap': { 'one': 1, u'two': 2 } } avro_schema = make_avsc_object(schema_dict, avro.schema.Names()) avro_json = AvroJsonSerializer(avro_schema).to_json(data) # Dictionaries are unsorted self.assertIn(avro_json, ("""{"intmap":{"one":1,"two":2}}""", """{"intmap":{"two":2,"one":1}}""")) deserializer = AvroJsonDeserializer(avro_schema) json_data = deserializer.from_json(avro_json) self.assertEquals(json_data, data) mixed_unicode = deserializer.from_dict(unicode_dict) self.assertEquals(mixed_unicode, data) def test_array(self): schema_dict = { "type": "record", "name": "rec", "fields": [ self.FIELD_ARRAY_INT ] } data = { "intarr": [1, 2, 3] } avro_schema = make_avsc_object(schema_dict, avro.schema.Names()) avro_json = AvroJsonSerializer(avro_schema).to_json(data) self.assertEquals(avro_json, """{"intarr":[1,2,3]}""") json_data = AvroJsonDeserializer(avro_schema).from_json(avro_json) self.assertEquals(json_data, data) def test_user_record(self): """ This schema example is from documentation http://avro.apache.org/docs/1.7.6/gettingstartedpython.html """ schema_dict = { "namespace": "example.avro", "type": "record", "name": "User", "fields": [ {"name": "name", "type": "string"}, {"name": "favorite_number", "type": ["int", "null"]}, {"name": "favorite_color", "type": ["string", "null"]} ] } avro_schema = make_avsc_object(schema_dict, avro.schema.Names()) serializer = AvroJsonSerializer(avro_schema) deserializer = AvroJsonDeserializer(avro_schema) alyssa = {"name": "Alyssa", "favorite_number": 256} alyssa_full = {"name": "Alyssa", "favorite_number": 256, "favorite_color": None} alyssa_json = """{"name":"Alyssa","favorite_number":{"int":256},"favorite_color":null}""" self.assertEquals(serializer.to_json(alyssa), alyssa_json) self.assertEquals(deserializer.from_json(alyssa_json), alyssa_full) ben = {"name": "Ben", "favorite_number": 7, "favorite_color": "red"} ben_json = """{"name":"Ben","favorite_number":{"int":7},"favorite_color":{"string":"red"}}""" self.assertEquals(serializer.to_json(ben), ben_json) self.assertEquals(deserializer.from_json(ben_json), ben) lion = {"name": "Lion"} lion_full = {"name": "Lion", "favorite_number": None, "favorite_color": None} lion_json = """{"name":"Lion","favorite_number":null,"favorite_color":null}""" self.assertEquals(serializer.to_json(lion), lion_json) self.assertEquals(deserializer.from_json(lion_json), lion_full) def test_nested_union_records(self): schema_dict = { "namespace": "nested", "name": "OuterType", "type": "record", "fields": [{ "name": "outer", "type": ["null", { "name": "MiddleType", "type": "record", "fields": [{ "name": "middle", "type": ["null", { "name": "InnerType", "type": "record", "fields": [{ "name": "inner", "type": "int" }] }] }] }] }] } data1 = {"outer": {"middle": {"inner": 1}}} data2 = {"outer": {"middle": None}} avro1 = """{"outer":{"nested.MiddleType":{"middle":{"nested.InnerType":{"inner":1}}}}}""" avro2 = """{"outer":{"nested.MiddleType":{"middle":null}}}""" avro_schema = make_avsc_object(schema_dict, avro.schema.Names()) serializer = AvroJsonSerializer(avro_schema) self.assertEquals(serializer.to_json(data1), avro1) self.assertEquals(serializer.to_json(data2), avro2) deserializer = AvroJsonDeserializer(avro_schema) self.assertEquals(deserializer.from_json(avro1), data1) self.assertEquals(deserializer.from_json(avro2), data2) def test_fixed_non_ascii(self): schema_dict = { "namespace": "example.avro", "type": "record", "name": "WithFixed", "fields": [ self.FIELD_FIXED ] } data = {"ffixed": b"(~^\xfbzoW\x13p\x19!4\x0b+\x00\x00"} avro_schema = make_avsc_object(schema_dict, avro.schema.Names()) serializer = AvroJsonSerializer(avro_schema) avro_json = serializer.to_json(data) self.assertEquals(avro_json, """{"ffixed":"(~^\\u00fbzoW\\u0013p\\u0019!4\\u000b+\\u0000\\u0000"}""") json_data = AvroJsonDeserializer(avro_schema).from_json(avro_json) self.assertEquals(json_data, data) def test_fixed_ascii(self): schema_dict = { "namespace": "example.avro", "type": "record", "name": "WithFixed", "fields": [ self.FIELD_FIXED ] } data = {"ffixed": b"fixed text here!"} avro_schema = make_avsc_object(schema_dict, avro.schema.Names()) serializer = AvroJsonSerializer(avro_schema) avro_json = serializer.to_json(data) self.assertEquals(avro_json, """{"ffixed":"fixed text here!"}""") json_data = AvroJsonDeserializer(avro_schema).from_json(avro_json) self.assertEquals(json_data, data) def test_bytes_field_non_ascii(self): schema_dict = { "namespace": "example.avro", "type": "record", "name": "WithFixed", "fields": [ { "type": "bytes", "name": "fbytes" } ] } data = {"fbytes": b"(~^\xfbzoW\x13p\x19!4\x0b+\x00\x00\x0b+\x00\x00"} avro_schema = make_avsc_object(schema_dict, avro.schema.Names()) serializer = AvroJsonSerializer(avro_schema) avro_json = serializer.to_json(data) self.assertEquals(avro_json, """{"fbytes":"(~^\\u00fbzoW\\u0013p\\u0019!4\\u000b+\\u0000\\u0000\\u000b+\\u0000\\u0000"}""") json_data = AvroJsonDeserializer(avro_schema).from_json(avro_json) self.assertEquals(json_data, data) def test_bytes_field_ascii(self): schema_dict = { "namespace": "example.avro", "type": "record", "name": "WithFixed", "fields": [ { "type": "bytes", "name": "fbytes" } ] } data = {"fbytes": b"this is some long bytes field"} avro_schema = make_avsc_object(schema_dict, avro.schema.Names()) serializer = AvroJsonSerializer(avro_schema) avro_json = serializer.to_json(data) self.assertEquals(avro_json, """{"fbytes":"this is some long bytes field"}""") json_data = AvroJsonDeserializer(avro_schema).from_json(avro_json) self.assertEquals(json_data, data) class TestAvroJsonDeserializer(TestCase): def test_missing_nullable_field(self): schema_dict = { "type": "record", "name": "WithDefault", "fields": [ { "type": "string", "name": "name" }, { "type": ["null", "int"], "name": "version", "default": None } ] } avro_json = """{"name":"mcnameface"}""" avro_schema = make_avsc_object(schema_dict, avro.schema.Names()) deserializer = AvroJsonDeserializer(avro_schema) self.assertRaises(avro.io.AvroTypeException, deserializer.from_json, avro_json) def test_unknown_fields_are_ignored(self): schema_dict = { "type": "record", "name": "BasicName", "fields": [ { "type": "string", "name": "name" } ] } avro_json = """{"name":"todd","age":1}""" avro_schema = make_avsc_object(schema_dict, avro.schema.Names()) json_data = AvroJsonDeserializer(avro_schema).from_json(avro_json) self.assertEquals(json_data, {"name": "todd"}) def test_dict_with_unicode_bytes(self): schema_dict = { "namespace": "example.avro", "type": "record", "name": "WithBytes", "fields": [ { "type": "bytes", "name": "fbytes" } ] } # byte arrays should be left alone byte_data = {"fbytes": b"(~^\xfbzoW\x13p\x19!4\x0b+\x00\x00\x0b+\x00\x00"} avro_schema = make_avsc_object(schema_dict, avro.schema.Names()) self.assertEquals(AvroJsonDeserializer(avro_schema).from_dict(byte_data), byte_data) # unicode strings should be turned into iso-8859-1 bytes iso8859_data = {'fbytes': b"(~^\xfbzoW\x13p\x19!4\x0b+\x00\x00"} unicode_data = {u'fbytes': u'(~^\xfbzoW\x13p\x19!4\x0b+\x00\x00'} self.assertEquals(AvroJsonDeserializer(avro_schema).from_dict(unicode_data), iso8859_data)
11,461
5,541
126
37d5a92d4d65aceb39da6abee706d1d900f41616
74
py
Python
src/vve_cli/__init__.py
buckw6eat/vve_cli
0efd238818ac7f620c4707542aa815110777c69a
[ "MIT" ]
null
null
null
src/vve_cli/__init__.py
buckw6eat/vve_cli
0efd238818ac7f620c4707542aa815110777c69a
[ "MIT" ]
null
null
null
src/vve_cli/__init__.py
buckw6eat/vve_cli
0efd238818ac7f620c4707542aa815110777c69a
[ "MIT" ]
null
null
null
from vve_cli.main import run __version__ = "0.0.1" __all__ = ["run"]
14.8
29
0.648649
from vve_cli.main import run __version__ = "0.0.1" __all__ = ["run"]
0
0
0
3ec7091ec5c1783e0cf99f2f40d55b372d54f92b
134
py
Python
graph_db/driver/null/__init__.py
josegomezr/graph_db
1ef286c9afdd4fd18559cccee9456dbc72ba7a8d
[ "Apache-2.0" ]
4
2015-11-19T01:22:19.000Z
2020-09-05T03:03:24.000Z
graph_db/driver/null/__init__.py
josegomezr/graph_db
1ef286c9afdd4fd18559cccee9456dbc72ba7a8d
[ "Apache-2.0" ]
1
2016-03-10T01:11:03.000Z
2016-03-10T01:11:03.000Z
graph_db/driver/null/__init__.py
josegomezr/graph_db
1ef286c9afdd4fd18559cccee9456dbc72ba7a8d
[ "Apache-2.0" ]
1
2016-03-08T00:03:18.000Z
2016-03-08T00:03:18.000Z
from . import driver from ... import exceptions def Factory(settings): """@todo docstring""" return driver.DBDriver(settings)
22.333333
36
0.708955
from . import driver from ... import exceptions def Factory(settings): """@todo docstring""" return driver.DBDriver(settings)
0
0
0
0ac7b5a001174a156fb9a33cfe506c862fca047e
18,781
py
Python
cpp_faster_fifo/cpp_lib/googletest/googletest-1.10.0/googletest/test/gtest_xml_output_unittest.py
leikinman/faster-fifo
a8d472247640de592c3b332cc0e3068be50f083b
[ "MIT" ]
72
2020-04-09T01:43:31.000Z
2022-03-24T17:08:31.000Z
cpp_faster_fifo/cpp_lib/googletest/googletest-1.10.0/googletest/test/gtest_xml_output_unittest.py
leikinman/faster-fifo
a8d472247640de592c3b332cc0e3068be50f083b
[ "MIT" ]
26
2020-04-09T02:33:14.000Z
2022-03-31T11:41:21.000Z
cpp_faster_fifo/cpp_lib/googletest/googletest-1.10.0/googletest/test/gtest_xml_output_unittest.py
leikinman/faster-fifo
a8d472247640de592c3b332cc0e3068be50f083b
[ "MIT" ]
13
2020-04-08T04:10:45.000Z
2022-02-08T07:10:38.000Z
#!/usr/bin/env python # # Copyright 2006, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Unit test for the gtest_xml_output module""" import datetime import errno import os import re import sys from xml.dom import minidom import gtest_test_utils import gtest_xml_test_utils GTEST_FILTER_FLAG = '--gtest_filter' GTEST_LIST_TESTS_FLAG = '--gtest_list_tests' GTEST_OUTPUT_FLAG = '--gtest_output' GTEST_DEFAULT_OUTPUT_FILE = 'test_detail.xml' GTEST_PROGRAM_NAME = 'gtest_xml_output_unittest_' # The flag indicating stacktraces are not supported NO_STACKTRACE_SUPPORT_FLAG = '--no_stacktrace_support' # The environment variables for test sharding. TOTAL_SHARDS_ENV_VAR = 'GTEST_TOTAL_SHARDS' SHARD_INDEX_ENV_VAR = 'GTEST_SHARD_INDEX' SHARD_STATUS_FILE_ENV_VAR = 'GTEST_SHARD_STATUS_FILE' SUPPORTS_STACK_TRACES = NO_STACKTRACE_SUPPORT_FLAG not in sys.argv if SUPPORTS_STACK_TRACES: STACK_TRACE_TEMPLATE = '\nStack trace:\n*' else: STACK_TRACE_TEMPLATE = '' # unittest.main() can't handle unknown flags sys.argv.remove(NO_STACKTRACE_SUPPORT_FLAG) EXPECTED_NON_EMPTY_XML = """<?xml version="1.0" encoding="UTF-8"?> <testsuites tests="24" failures="4" disabled="2" errors="0" time="*" timestamp="*" name="AllTests" ad_hoc_property="42"> <testsuite name="SuccessfulTest" tests="1" failures="0" disabled="0" errors="0" time="*" timestamp="*"> <testcase name="Succeeds" status="run" result="completed" time="*" timestamp="*" classname="SuccessfulTest"/> </testsuite> <testsuite name="FailedTest" tests="1" failures="1" disabled="0" errors="0" time="*" timestamp="*"> <testcase name="Fails" status="run" result="completed" time="*" timestamp="*" classname="FailedTest"> <failure message="gtest_xml_output_unittest_.cc:*&#x0A;Expected equality of these values:&#x0A; 1&#x0A; 2" type=""><![CDATA[gtest_xml_output_unittest_.cc:* Expected equality of these values: 1 2%(stack)s]]></failure> </testcase> </testsuite> <testsuite name="MixedResultTest" tests="3" failures="1" disabled="1" errors="0" time="*" timestamp="*"> <testcase name="Succeeds" status="run" result="completed" time="*" timestamp="*" classname="MixedResultTest"/> <testcase name="Fails" status="run" result="completed" time="*" timestamp="*" classname="MixedResultTest"> <failure message="gtest_xml_output_unittest_.cc:*&#x0A;Expected equality of these values:&#x0A; 1&#x0A; 2" type=""><![CDATA[gtest_xml_output_unittest_.cc:* Expected equality of these values: 1 2%(stack)s]]></failure> <failure message="gtest_xml_output_unittest_.cc:*&#x0A;Expected equality of these values:&#x0A; 2&#x0A; 3" type=""><![CDATA[gtest_xml_output_unittest_.cc:* Expected equality of these values: 2 3%(stack)s]]></failure> </testcase> <testcase name="DISABLED_test" status="notrun" result="suppressed" time="*" timestamp="*" classname="MixedResultTest"/> </testsuite> <testsuite name="XmlQuotingTest" tests="1" failures="1" disabled="0" errors="0" time="*" timestamp="*"> <testcase name="OutputsCData" status="run" result="completed" time="*" timestamp="*" classname="XmlQuotingTest"> <failure message="gtest_xml_output_unittest_.cc:*&#x0A;Failed&#x0A;XML output: &lt;?xml encoding=&quot;utf-8&quot;&gt;&lt;top&gt;&lt;![CDATA[cdata text]]&gt;&lt;/top&gt;" type=""><![CDATA[gtest_xml_output_unittest_.cc:* Failed XML output: <?xml encoding="utf-8"><top><![CDATA[cdata text]]>]]&gt;<![CDATA[</top>%(stack)s]]></failure> </testcase> </testsuite> <testsuite name="InvalidCharactersTest" tests="1" failures="1" disabled="0" errors="0" time="*" timestamp="*"> <testcase name="InvalidCharactersInMessage" status="run" result="completed" time="*" timestamp="*" classname="InvalidCharactersTest"> <failure message="gtest_xml_output_unittest_.cc:*&#x0A;Failed&#x0A;Invalid characters in brackets []" type=""><![CDATA[gtest_xml_output_unittest_.cc:* Failed Invalid characters in brackets []%(stack)s]]></failure> </testcase> </testsuite> <testsuite name="DisabledTest" tests="1" failures="0" disabled="1" errors="0" time="*" timestamp="*"> <testcase name="DISABLED_test_not_run" status="notrun" result="suppressed" time="*" timestamp="*" classname="DisabledTest"/> </testsuite> <testsuite name="SkippedTest" tests="1" failures="0" disabled="0" errors="0" time="*" timestamp="*"> <testcase name="Skipped" status="run" result="skipped" time="*" timestamp="*" classname="SkippedTest"/> </testsuite> <testsuite name="PropertyRecordingTest" tests="4" failures="0" disabled="0" errors="0" time="*" timestamp="*" SetUpTestSuite="yes" TearDownTestSuite="aye"> <testcase name="OneProperty" status="run" result="completed" time="*" timestamp="*" classname="PropertyRecordingTest"> <properties> <property name="key_1" value="1"/> </properties> </testcase> <testcase name="IntValuedProperty" status="run" result="completed" time="*" timestamp="*" classname="PropertyRecordingTest"> <properties> <property name="key_int" value="1"/> </properties> </testcase> <testcase name="ThreeProperties" status="run" result="completed" time="*" timestamp="*" classname="PropertyRecordingTest"> <properties> <property name="key_1" value="1"/> <property name="key_2" value="2"/> <property name="key_3" value="3"/> </properties> </testcase> <testcase name="TwoValuesForOneKeyUsesLastValue" status="run" result="completed" time="*" timestamp="*" classname="PropertyRecordingTest"> <properties> <property name="key_1" value="2"/> </properties> </testcase> </testsuite> <testsuite name="NoFixtureTest" tests="3" failures="0" disabled="0" errors="0" time="*" timestamp="*"> <testcase name="RecordProperty" status="run" result="completed" time="*" timestamp="*" classname="NoFixtureTest"> <properties> <property name="key" value="1"/> </properties> </testcase> <testcase name="ExternalUtilityThatCallsRecordIntValuedProperty" status="run" result="completed" time="*" timestamp="*" classname="NoFixtureTest"> <properties> <property name="key_for_utility_int" value="1"/> </properties> </testcase> <testcase name="ExternalUtilityThatCallsRecordStringValuedProperty" status="run" result="completed" time="*" timestamp="*" classname="NoFixtureTest"> <properties> <property name="key_for_utility_string" value="1"/> </properties> </testcase> </testsuite> <testsuite name="Single/ValueParamTest" tests="4" failures="0" disabled="0" errors="0" time="*" timestamp="*"> <testcase name="HasValueParamAttribute/0" value_param="33" status="run" result="completed" time="*" timestamp="*" classname="Single/ValueParamTest" /> <testcase name="HasValueParamAttribute/1" value_param="42" status="run" result="completed" time="*" timestamp="*" classname="Single/ValueParamTest" /> <testcase name="AnotherTestThatHasValueParamAttribute/0" value_param="33" status="run" result="completed" time="*" timestamp="*" classname="Single/ValueParamTest" /> <testcase name="AnotherTestThatHasValueParamAttribute/1" value_param="42" status="run" result="completed" time="*" timestamp="*" classname="Single/ValueParamTest" /> </testsuite> <testsuite name="TypedTest/0" tests="1" failures="0" disabled="0" errors="0" time="*" timestamp="*"> <testcase name="HasTypeParamAttribute" type_param="*" status="run" result="completed" time="*" timestamp="*" classname="TypedTest/0" /> </testsuite> <testsuite name="TypedTest/1" tests="1" failures="0" disabled="0" errors="0" time="*" timestamp="*"> <testcase name="HasTypeParamAttribute" type_param="*" status="run" result="completed" time="*" timestamp="*" classname="TypedTest/1" /> </testsuite> <testsuite name="Single/TypeParameterizedTestSuite/0" tests="1" failures="0" disabled="0" errors="0" time="*" timestamp="*"> <testcase name="HasTypeParamAttribute" type_param="*" status="run" result="completed" time="*" timestamp="*" classname="Single/TypeParameterizedTestSuite/0" /> </testsuite> <testsuite name="Single/TypeParameterizedTestSuite/1" tests="1" failures="0" disabled="0" errors="0" time="*" timestamp="*"> <testcase name="HasTypeParamAttribute" type_param="*" status="run" result="completed" time="*" timestamp="*" classname="Single/TypeParameterizedTestSuite/1" /> </testsuite> </testsuites>""" % { 'stack': STACK_TRACE_TEMPLATE } EXPECTED_FILTERED_TEST_XML = """<?xml version="1.0" encoding="UTF-8"?> <testsuites tests="1" failures="0" disabled="0" errors="0" time="*" timestamp="*" name="AllTests" ad_hoc_property="42"> <testsuite name="SuccessfulTest" tests="1" failures="0" disabled="0" errors="0" time="*" timestamp="*"> <testcase name="Succeeds" status="run" result="completed" time="*" timestamp="*" classname="SuccessfulTest"/> </testsuite> </testsuites>""" EXPECTED_SHARDED_TEST_XML = """<?xml version="1.0" encoding="UTF-8"?> <testsuites tests="3" failures="0" disabled="0" errors="0" time="*" timestamp="*" name="AllTests" ad_hoc_property="42"> <testsuite name="SuccessfulTest" tests="1" failures="0" disabled="0" errors="0" time="*" timestamp="*"> <testcase name="Succeeds" status="run" result="completed" time="*" timestamp="*" classname="SuccessfulTest"/> </testsuite> <testsuite name="PropertyRecordingTest" tests="1" failures="0" disabled="0" errors="0" time="*" timestamp="*" SetUpTestSuite="yes" TearDownTestSuite="aye"> <testcase name="TwoValuesForOneKeyUsesLastValue" status="run" result="completed" time="*" timestamp="*" classname="PropertyRecordingTest"> <properties> <property name="key_1" value="2"/> </properties> </testcase> </testsuite> <testsuite name="Single/ValueParamTest" tests="1" failures="0" disabled="0" errors="0" time="*" timestamp="*"> <testcase name="AnotherTestThatHasValueParamAttribute/0" value_param="33" status="run" result="completed" time="*" timestamp="*" classname="Single/ValueParamTest" /> </testsuite> </testsuites>""" EXPECTED_EMPTY_XML = """<?xml version="1.0" encoding="UTF-8"?> <testsuites tests="0" failures="0" disabled="0" errors="0" time="*" timestamp="*" name="AllTests"> </testsuites>""" GTEST_PROGRAM_PATH = gtest_test_utils.GetTestExecutablePath(GTEST_PROGRAM_NAME) SUPPORTS_TYPED_TESTS = 'TypedTest' in gtest_test_utils.Subprocess( [GTEST_PROGRAM_PATH, GTEST_LIST_TESTS_FLAG], capture_stderr=False).output class GTestXMLOutputUnitTest(gtest_xml_test_utils.GTestXMLTestCase): """ Unit test for Google Test's XML output functionality. """ # This test currently breaks on platforms that do not support typed and # type-parameterized tests, so we don't run it under them. if SUPPORTS_TYPED_TESTS: def testNonEmptyXmlOutput(self): """ Runs a test program that generates a non-empty XML output, and tests that the XML output is expected. """ self._TestXmlOutput(GTEST_PROGRAM_NAME, EXPECTED_NON_EMPTY_XML, 1) def testEmptyXmlOutput(self): """Verifies XML output for a Google Test binary without actual tests. Runs a test program that generates an empty XML output, and tests that the XML output is expected. """ self._TestXmlOutput('gtest_no_test_unittest', EXPECTED_EMPTY_XML, 0) def testTimestampValue(self): """Checks whether the timestamp attribute in the XML output is valid. Runs a test program that generates an empty XML output, and checks if the timestamp attribute in the testsuites tag is valid. """ actual = self._GetXmlOutput('gtest_no_test_unittest', [], {}, 0) date_time_str = actual.documentElement.getAttributeNode('timestamp').value # datetime.strptime() is only available in Python 2.5+ so we have to # parse the expected datetime manually. match = re.match(r'(\d+)-(\d\d)-(\d\d)T(\d\d):(\d\d):(\d\d)', date_time_str) self.assertTrue( re.match, 'XML datettime string %s has incorrect format' % date_time_str) date_time_from_xml = datetime.datetime( year=int(match.group(1)), month=int(match.group(2)), day=int(match.group(3)), hour=int(match.group(4)), minute=int(match.group(5)), second=int(match.group(6))) time_delta = abs(datetime.datetime.now() - date_time_from_xml) # timestamp value should be near the current local time self.assertTrue(time_delta < datetime.timedelta(seconds=600), 'time_delta is %s' % time_delta) actual.unlink() def testDefaultOutputFile(self): """ Confirms that Google Test produces an XML output file with the expected default name if no name is explicitly specified. """ output_file = os.path.join(gtest_test_utils.GetTempDir(), GTEST_DEFAULT_OUTPUT_FILE) gtest_prog_path = gtest_test_utils.GetTestExecutablePath( 'gtest_no_test_unittest') try: os.remove(output_file) except OSError: e = sys.exc_info()[1] if e.errno != errno.ENOENT: raise p = gtest_test_utils.Subprocess( [gtest_prog_path, '%s=xml' % GTEST_OUTPUT_FLAG], working_dir=gtest_test_utils.GetTempDir()) self.assert_(p.exited) self.assertEquals(0, p.exit_code) self.assert_(os.path.isfile(output_file)) def testSuppressedXmlOutput(self): """ Tests that no XML file is generated if the default XML listener is shut down before RUN_ALL_TESTS is invoked. """ xml_path = os.path.join(gtest_test_utils.GetTempDir(), GTEST_PROGRAM_NAME + 'out.xml') if os.path.isfile(xml_path): os.remove(xml_path) command = [GTEST_PROGRAM_PATH, '%s=xml:%s' % (GTEST_OUTPUT_FLAG, xml_path), '--shut_down_xml'] p = gtest_test_utils.Subprocess(command) if p.terminated_by_signal: # p.signal is available only if p.terminated_by_signal is True. self.assertFalse( p.terminated_by_signal, '%s was killed by signal %d' % (GTEST_PROGRAM_NAME, p.signal)) else: self.assert_(p.exited) self.assertEquals(1, p.exit_code, "'%s' exited with code %s, which doesn't match " 'the expected exit code %s.' % (command, p.exit_code, 1)) self.assert_(not os.path.isfile(xml_path)) def testFilteredTestXmlOutput(self): """Verifies XML output when a filter is applied. Runs a test program that executes only some tests and verifies that non-selected tests do not show up in the XML output. """ self._TestXmlOutput(GTEST_PROGRAM_NAME, EXPECTED_FILTERED_TEST_XML, 0, extra_args=['%s=SuccessfulTest.*' % GTEST_FILTER_FLAG]) def testShardedTestXmlOutput(self): """Verifies XML output when run using multiple shards. Runs a test program that executes only one shard and verifies that tests from other shards do not show up in the XML output. """ self._TestXmlOutput( GTEST_PROGRAM_NAME, EXPECTED_SHARDED_TEST_XML, 0, extra_env={SHARD_INDEX_ENV_VAR: '0', TOTAL_SHARDS_ENV_VAR: '10'}) def _GetXmlOutput(self, gtest_prog_name, extra_args, extra_env, expected_exit_code): """ Returns the xml output generated by running the program gtest_prog_name. Furthermore, the program's exit code must be expected_exit_code. """ xml_path = os.path.join(gtest_test_utils.GetTempDir(), gtest_prog_name + 'out.xml') gtest_prog_path = gtest_test_utils.GetTestExecutablePath(gtest_prog_name) command = ([gtest_prog_path, '%s=xml:%s' % (GTEST_OUTPUT_FLAG, xml_path)] + extra_args) environ_copy = os.environ.copy() if extra_env: environ_copy.update(extra_env) p = gtest_test_utils.Subprocess(command, env=environ_copy) if p.terminated_by_signal: self.assert_(False, '%s was killed by signal %d' % (gtest_prog_name, p.signal)) else: self.assert_(p.exited) self.assertEquals(expected_exit_code, p.exit_code, "'%s' exited with code %s, which doesn't match " 'the expected exit code %s.' % (command, p.exit_code, expected_exit_code)) actual = minidom.parse(xml_path) return actual def _TestXmlOutput(self, gtest_prog_name, expected_xml, expected_exit_code, extra_args=None, extra_env=None): """ Asserts that the XML document generated by running the program gtest_prog_name matches expected_xml, a string containing another XML document. Furthermore, the program's exit code must be expected_exit_code. """ actual = self._GetXmlOutput(gtest_prog_name, extra_args or [], extra_env or {}, expected_exit_code) expected = minidom.parseString(expected_xml) self.NormalizeXml(actual.documentElement) self.AssertEquivalentNodes(expected.documentElement, actual.documentElement) expected.unlink() actual.unlink() if __name__ == '__main__': os.environ['GTEST_STACK_TRACE_DEPTH'] = '1' gtest_test_utils.Main()
48.15641
225
0.694159
#!/usr/bin/env python # # Copyright 2006, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Unit test for the gtest_xml_output module""" import datetime import errno import os import re import sys from xml.dom import minidom import gtest_test_utils import gtest_xml_test_utils GTEST_FILTER_FLAG = '--gtest_filter' GTEST_LIST_TESTS_FLAG = '--gtest_list_tests' GTEST_OUTPUT_FLAG = '--gtest_output' GTEST_DEFAULT_OUTPUT_FILE = 'test_detail.xml' GTEST_PROGRAM_NAME = 'gtest_xml_output_unittest_' # The flag indicating stacktraces are not supported NO_STACKTRACE_SUPPORT_FLAG = '--no_stacktrace_support' # The environment variables for test sharding. TOTAL_SHARDS_ENV_VAR = 'GTEST_TOTAL_SHARDS' SHARD_INDEX_ENV_VAR = 'GTEST_SHARD_INDEX' SHARD_STATUS_FILE_ENV_VAR = 'GTEST_SHARD_STATUS_FILE' SUPPORTS_STACK_TRACES = NO_STACKTRACE_SUPPORT_FLAG not in sys.argv if SUPPORTS_STACK_TRACES: STACK_TRACE_TEMPLATE = '\nStack trace:\n*' else: STACK_TRACE_TEMPLATE = '' # unittest.main() can't handle unknown flags sys.argv.remove(NO_STACKTRACE_SUPPORT_FLAG) EXPECTED_NON_EMPTY_XML = """<?xml version="1.0" encoding="UTF-8"?> <testsuites tests="24" failures="4" disabled="2" errors="0" time="*" timestamp="*" name="AllTests" ad_hoc_property="42"> <testsuite name="SuccessfulTest" tests="1" failures="0" disabled="0" errors="0" time="*" timestamp="*"> <testcase name="Succeeds" status="run" result="completed" time="*" timestamp="*" classname="SuccessfulTest"/> </testsuite> <testsuite name="FailedTest" tests="1" failures="1" disabled="0" errors="0" time="*" timestamp="*"> <testcase name="Fails" status="run" result="completed" time="*" timestamp="*" classname="FailedTest"> <failure message="gtest_xml_output_unittest_.cc:*&#x0A;Expected equality of these values:&#x0A; 1&#x0A; 2" type=""><![CDATA[gtest_xml_output_unittest_.cc:* Expected equality of these values: 1 2%(stack)s]]></failure> </testcase> </testsuite> <testsuite name="MixedResultTest" tests="3" failures="1" disabled="1" errors="0" time="*" timestamp="*"> <testcase name="Succeeds" status="run" result="completed" time="*" timestamp="*" classname="MixedResultTest"/> <testcase name="Fails" status="run" result="completed" time="*" timestamp="*" classname="MixedResultTest"> <failure message="gtest_xml_output_unittest_.cc:*&#x0A;Expected equality of these values:&#x0A; 1&#x0A; 2" type=""><![CDATA[gtest_xml_output_unittest_.cc:* Expected equality of these values: 1 2%(stack)s]]></failure> <failure message="gtest_xml_output_unittest_.cc:*&#x0A;Expected equality of these values:&#x0A; 2&#x0A; 3" type=""><![CDATA[gtest_xml_output_unittest_.cc:* Expected equality of these values: 2 3%(stack)s]]></failure> </testcase> <testcase name="DISABLED_test" status="notrun" result="suppressed" time="*" timestamp="*" classname="MixedResultTest"/> </testsuite> <testsuite name="XmlQuotingTest" tests="1" failures="1" disabled="0" errors="0" time="*" timestamp="*"> <testcase name="OutputsCData" status="run" result="completed" time="*" timestamp="*" classname="XmlQuotingTest"> <failure message="gtest_xml_output_unittest_.cc:*&#x0A;Failed&#x0A;XML output: &lt;?xml encoding=&quot;utf-8&quot;&gt;&lt;top&gt;&lt;![CDATA[cdata text]]&gt;&lt;/top&gt;" type=""><![CDATA[gtest_xml_output_unittest_.cc:* Failed XML output: <?xml encoding="utf-8"><top><![CDATA[cdata text]]>]]&gt;<![CDATA[</top>%(stack)s]]></failure> </testcase> </testsuite> <testsuite name="InvalidCharactersTest" tests="1" failures="1" disabled="0" errors="0" time="*" timestamp="*"> <testcase name="InvalidCharactersInMessage" status="run" result="completed" time="*" timestamp="*" classname="InvalidCharactersTest"> <failure message="gtest_xml_output_unittest_.cc:*&#x0A;Failed&#x0A;Invalid characters in brackets []" type=""><![CDATA[gtest_xml_output_unittest_.cc:* Failed Invalid characters in brackets []%(stack)s]]></failure> </testcase> </testsuite> <testsuite name="DisabledTest" tests="1" failures="0" disabled="1" errors="0" time="*" timestamp="*"> <testcase name="DISABLED_test_not_run" status="notrun" result="suppressed" time="*" timestamp="*" classname="DisabledTest"/> </testsuite> <testsuite name="SkippedTest" tests="1" failures="0" disabled="0" errors="0" time="*" timestamp="*"> <testcase name="Skipped" status="run" result="skipped" time="*" timestamp="*" classname="SkippedTest"/> </testsuite> <testsuite name="PropertyRecordingTest" tests="4" failures="0" disabled="0" errors="0" time="*" timestamp="*" SetUpTestSuite="yes" TearDownTestSuite="aye"> <testcase name="OneProperty" status="run" result="completed" time="*" timestamp="*" classname="PropertyRecordingTest"> <properties> <property name="key_1" value="1"/> </properties> </testcase> <testcase name="IntValuedProperty" status="run" result="completed" time="*" timestamp="*" classname="PropertyRecordingTest"> <properties> <property name="key_int" value="1"/> </properties> </testcase> <testcase name="ThreeProperties" status="run" result="completed" time="*" timestamp="*" classname="PropertyRecordingTest"> <properties> <property name="key_1" value="1"/> <property name="key_2" value="2"/> <property name="key_3" value="3"/> </properties> </testcase> <testcase name="TwoValuesForOneKeyUsesLastValue" status="run" result="completed" time="*" timestamp="*" classname="PropertyRecordingTest"> <properties> <property name="key_1" value="2"/> </properties> </testcase> </testsuite> <testsuite name="NoFixtureTest" tests="3" failures="0" disabled="0" errors="0" time="*" timestamp="*"> <testcase name="RecordProperty" status="run" result="completed" time="*" timestamp="*" classname="NoFixtureTest"> <properties> <property name="key" value="1"/> </properties> </testcase> <testcase name="ExternalUtilityThatCallsRecordIntValuedProperty" status="run" result="completed" time="*" timestamp="*" classname="NoFixtureTest"> <properties> <property name="key_for_utility_int" value="1"/> </properties> </testcase> <testcase name="ExternalUtilityThatCallsRecordStringValuedProperty" status="run" result="completed" time="*" timestamp="*" classname="NoFixtureTest"> <properties> <property name="key_for_utility_string" value="1"/> </properties> </testcase> </testsuite> <testsuite name="Single/ValueParamTest" tests="4" failures="0" disabled="0" errors="0" time="*" timestamp="*"> <testcase name="HasValueParamAttribute/0" value_param="33" status="run" result="completed" time="*" timestamp="*" classname="Single/ValueParamTest" /> <testcase name="HasValueParamAttribute/1" value_param="42" status="run" result="completed" time="*" timestamp="*" classname="Single/ValueParamTest" /> <testcase name="AnotherTestThatHasValueParamAttribute/0" value_param="33" status="run" result="completed" time="*" timestamp="*" classname="Single/ValueParamTest" /> <testcase name="AnotherTestThatHasValueParamAttribute/1" value_param="42" status="run" result="completed" time="*" timestamp="*" classname="Single/ValueParamTest" /> </testsuite> <testsuite name="TypedTest/0" tests="1" failures="0" disabled="0" errors="0" time="*" timestamp="*"> <testcase name="HasTypeParamAttribute" type_param="*" status="run" result="completed" time="*" timestamp="*" classname="TypedTest/0" /> </testsuite> <testsuite name="TypedTest/1" tests="1" failures="0" disabled="0" errors="0" time="*" timestamp="*"> <testcase name="HasTypeParamAttribute" type_param="*" status="run" result="completed" time="*" timestamp="*" classname="TypedTest/1" /> </testsuite> <testsuite name="Single/TypeParameterizedTestSuite/0" tests="1" failures="0" disabled="0" errors="0" time="*" timestamp="*"> <testcase name="HasTypeParamAttribute" type_param="*" status="run" result="completed" time="*" timestamp="*" classname="Single/TypeParameterizedTestSuite/0" /> </testsuite> <testsuite name="Single/TypeParameterizedTestSuite/1" tests="1" failures="0" disabled="0" errors="0" time="*" timestamp="*"> <testcase name="HasTypeParamAttribute" type_param="*" status="run" result="completed" time="*" timestamp="*" classname="Single/TypeParameterizedTestSuite/1" /> </testsuite> </testsuites>""" % { 'stack': STACK_TRACE_TEMPLATE } EXPECTED_FILTERED_TEST_XML = """<?xml version="1.0" encoding="UTF-8"?> <testsuites tests="1" failures="0" disabled="0" errors="0" time="*" timestamp="*" name="AllTests" ad_hoc_property="42"> <testsuite name="SuccessfulTest" tests="1" failures="0" disabled="0" errors="0" time="*" timestamp="*"> <testcase name="Succeeds" status="run" result="completed" time="*" timestamp="*" classname="SuccessfulTest"/> </testsuite> </testsuites>""" EXPECTED_SHARDED_TEST_XML = """<?xml version="1.0" encoding="UTF-8"?> <testsuites tests="3" failures="0" disabled="0" errors="0" time="*" timestamp="*" name="AllTests" ad_hoc_property="42"> <testsuite name="SuccessfulTest" tests="1" failures="0" disabled="0" errors="0" time="*" timestamp="*"> <testcase name="Succeeds" status="run" result="completed" time="*" timestamp="*" classname="SuccessfulTest"/> </testsuite> <testsuite name="PropertyRecordingTest" tests="1" failures="0" disabled="0" errors="0" time="*" timestamp="*" SetUpTestSuite="yes" TearDownTestSuite="aye"> <testcase name="TwoValuesForOneKeyUsesLastValue" status="run" result="completed" time="*" timestamp="*" classname="PropertyRecordingTest"> <properties> <property name="key_1" value="2"/> </properties> </testcase> </testsuite> <testsuite name="Single/ValueParamTest" tests="1" failures="0" disabled="0" errors="0" time="*" timestamp="*"> <testcase name="AnotherTestThatHasValueParamAttribute/0" value_param="33" status="run" result="completed" time="*" timestamp="*" classname="Single/ValueParamTest" /> </testsuite> </testsuites>""" EXPECTED_EMPTY_XML = """<?xml version="1.0" encoding="UTF-8"?> <testsuites tests="0" failures="0" disabled="0" errors="0" time="*" timestamp="*" name="AllTests"> </testsuites>""" GTEST_PROGRAM_PATH = gtest_test_utils.GetTestExecutablePath(GTEST_PROGRAM_NAME) SUPPORTS_TYPED_TESTS = 'TypedTest' in gtest_test_utils.Subprocess( [GTEST_PROGRAM_PATH, GTEST_LIST_TESTS_FLAG], capture_stderr=False).output class GTestXMLOutputUnitTest(gtest_xml_test_utils.GTestXMLTestCase): """ Unit test for Google Test's XML output functionality. """ # This test currently breaks on platforms that do not support typed and # type-parameterized tests, so we don't run it under them. if SUPPORTS_TYPED_TESTS: def testNonEmptyXmlOutput(self): """ Runs a test program that generates a non-empty XML output, and tests that the XML output is expected. """ self._TestXmlOutput(GTEST_PROGRAM_NAME, EXPECTED_NON_EMPTY_XML, 1) def testEmptyXmlOutput(self): """Verifies XML output for a Google Test binary without actual tests. Runs a test program that generates an empty XML output, and tests that the XML output is expected. """ self._TestXmlOutput('gtest_no_test_unittest', EXPECTED_EMPTY_XML, 0) def testTimestampValue(self): """Checks whether the timestamp attribute in the XML output is valid. Runs a test program that generates an empty XML output, and checks if the timestamp attribute in the testsuites tag is valid. """ actual = self._GetXmlOutput('gtest_no_test_unittest', [], {}, 0) date_time_str = actual.documentElement.getAttributeNode('timestamp').value # datetime.strptime() is only available in Python 2.5+ so we have to # parse the expected datetime manually. match = re.match(r'(\d+)-(\d\d)-(\d\d)T(\d\d):(\d\d):(\d\d)', date_time_str) self.assertTrue( re.match, 'XML datettime string %s has incorrect format' % date_time_str) date_time_from_xml = datetime.datetime( year=int(match.group(1)), month=int(match.group(2)), day=int(match.group(3)), hour=int(match.group(4)), minute=int(match.group(5)), second=int(match.group(6))) time_delta = abs(datetime.datetime.now() - date_time_from_xml) # timestamp value should be near the current local time self.assertTrue(time_delta < datetime.timedelta(seconds=600), 'time_delta is %s' % time_delta) actual.unlink() def testDefaultOutputFile(self): """ Confirms that Google Test produces an XML output file with the expected default name if no name is explicitly specified. """ output_file = os.path.join(gtest_test_utils.GetTempDir(), GTEST_DEFAULT_OUTPUT_FILE) gtest_prog_path = gtest_test_utils.GetTestExecutablePath( 'gtest_no_test_unittest') try: os.remove(output_file) except OSError: e = sys.exc_info()[1] if e.errno != errno.ENOENT: raise p = gtest_test_utils.Subprocess( [gtest_prog_path, '%s=xml' % GTEST_OUTPUT_FLAG], working_dir=gtest_test_utils.GetTempDir()) self.assert_(p.exited) self.assertEquals(0, p.exit_code) self.assert_(os.path.isfile(output_file)) def testSuppressedXmlOutput(self): """ Tests that no XML file is generated if the default XML listener is shut down before RUN_ALL_TESTS is invoked. """ xml_path = os.path.join(gtest_test_utils.GetTempDir(), GTEST_PROGRAM_NAME + 'out.xml') if os.path.isfile(xml_path): os.remove(xml_path) command = [GTEST_PROGRAM_PATH, '%s=xml:%s' % (GTEST_OUTPUT_FLAG, xml_path), '--shut_down_xml'] p = gtest_test_utils.Subprocess(command) if p.terminated_by_signal: # p.signal is available only if p.terminated_by_signal is True. self.assertFalse( p.terminated_by_signal, '%s was killed by signal %d' % (GTEST_PROGRAM_NAME, p.signal)) else: self.assert_(p.exited) self.assertEquals(1, p.exit_code, "'%s' exited with code %s, which doesn't match " 'the expected exit code %s.' % (command, p.exit_code, 1)) self.assert_(not os.path.isfile(xml_path)) def testFilteredTestXmlOutput(self): """Verifies XML output when a filter is applied. Runs a test program that executes only some tests and verifies that non-selected tests do not show up in the XML output. """ self._TestXmlOutput(GTEST_PROGRAM_NAME, EXPECTED_FILTERED_TEST_XML, 0, extra_args=['%s=SuccessfulTest.*' % GTEST_FILTER_FLAG]) def testShardedTestXmlOutput(self): """Verifies XML output when run using multiple shards. Runs a test program that executes only one shard and verifies that tests from other shards do not show up in the XML output. """ self._TestXmlOutput( GTEST_PROGRAM_NAME, EXPECTED_SHARDED_TEST_XML, 0, extra_env={SHARD_INDEX_ENV_VAR: '0', TOTAL_SHARDS_ENV_VAR: '10'}) def _GetXmlOutput(self, gtest_prog_name, extra_args, extra_env, expected_exit_code): """ Returns the xml output generated by running the program gtest_prog_name. Furthermore, the program's exit code must be expected_exit_code. """ xml_path = os.path.join(gtest_test_utils.GetTempDir(), gtest_prog_name + 'out.xml') gtest_prog_path = gtest_test_utils.GetTestExecutablePath(gtest_prog_name) command = ([gtest_prog_path, '%s=xml:%s' % (GTEST_OUTPUT_FLAG, xml_path)] + extra_args) environ_copy = os.environ.copy() if extra_env: environ_copy.update(extra_env) p = gtest_test_utils.Subprocess(command, env=environ_copy) if p.terminated_by_signal: self.assert_(False, '%s was killed by signal %d' % (gtest_prog_name, p.signal)) else: self.assert_(p.exited) self.assertEquals(expected_exit_code, p.exit_code, "'%s' exited with code %s, which doesn't match " 'the expected exit code %s.' % (command, p.exit_code, expected_exit_code)) actual = minidom.parse(xml_path) return actual def _TestXmlOutput(self, gtest_prog_name, expected_xml, expected_exit_code, extra_args=None, extra_env=None): """ Asserts that the XML document generated by running the program gtest_prog_name matches expected_xml, a string containing another XML document. Furthermore, the program's exit code must be expected_exit_code. """ actual = self._GetXmlOutput(gtest_prog_name, extra_args or [], extra_env or {}, expected_exit_code) expected = minidom.parseString(expected_xml) self.NormalizeXml(actual.documentElement) self.AssertEquivalentNodes(expected.documentElement, actual.documentElement) expected.unlink() actual.unlink() if __name__ == '__main__': os.environ['GTEST_STACK_TRACE_DEPTH'] = '1' gtest_test_utils.Main()
0
0
0
b9e3aa32da7570f3bf7048bb5bf62a38902e8fb3
7,796
py
Python
3_MNIST/4_5_fc_layers_relu_lrdeclay.py
ray-g/TensorFlow-Examples
9f0360f0d7f30ffc36e34ea42606da3300e26df2
[ "MIT" ]
null
null
null
3_MNIST/4_5_fc_layers_relu_lrdeclay.py
ray-g/TensorFlow-Examples
9f0360f0d7f30ffc36e34ea42606da3300e26df2
[ "MIT" ]
null
null
null
3_MNIST/4_5_fc_layers_relu_lrdeclay.py
ray-g/TensorFlow-Examples
9f0360f0d7f30ffc36e34ea42606da3300e26df2
[ "MIT" ]
null
null
null
import os import inspect import shutil import math import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_data as mnist_data tf.set_random_seed(0) # Calculate LOG_DIR according to current file CUR_FILE = inspect.getfile(inspect.currentframe()) LOG_DIR = os.path.join( os.path.dirname(os.path.abspath(CUR_FILE)), 'logs', os.path.splitext(os.path.basename(CUR_FILE))[0]) LOG_DIR_TRAIN = os.path.join(LOG_DIR, 'train') LOG_DIR_VALID = os.path.join(LOG_DIR, 'valid') LOG_DIR_TEST = os.path.join(LOG_DIR, 'test') # Check is the LOG_DIR empty. If not ask for clean. clean_logs(LOG_DIR, False) print('TensorFlow Version: ' + tf.__version__) ###################################################################### # Main _DEBUG_GRAPH = False MNIST_WIDTH = 28 MNIST_HEIGHT = 28 MNIST_CHANNEL = 1 NUM_CLASSES = 10 BATCH_SIZE = 100 EPOCH_NUM = 20 LEARNING_RATE = 5e-3 TRAIN_SIZE = 55000 VALID_SIZE = 5000 TEST_SIZE = 10000 ###################################################################### # The Model # neural network with 5 layers # # · · · · · · · · · · (input data, flattened pixels) X [batch, 784] # 784 = 28*28 # \x/x\x/x\x/x\x/x\x/ -- fully connected layer (relu) W1 [784, 200] B1[200] # · · · · · · · · · Y1 [batch, 200] # \x/x\x/x\x/x\x/ -- fully connected layer (relu) W2 [200, 100] B2[100] # · · · · · · · Y2 [batch, 100] # \x/x\x/x\x/ -- fully connected layer (relu) W3 [100, 60] B3[60] # · · · · · Y3 [batch, 60] # \x/x\x/ -- fully connected layer (relu) W4 [60, 30] B4[30] # · · · Y4 [batch, 30] # \x/ -- fully connected layer (softmax) W5 [30, 10] B5[10] # · Y5 [batch, 10] # ###################################################################### mnist = mnist_data.read_data_sets("data", one_hot=True, reshape=False) with tf.name_scope('Input'): x = tf.placeholder(tf.float32, [None, MNIST_HEIGHT, MNIST_WIDTH, MNIST_CHANNEL], name='X') y = tf.placeholder(tf.float32, [None, NUM_CLASSES], name='Y') x_flatten = tf.reshape(x, [-1, MNIST_HEIGHT*MNIST_WIDTH], name='X_Flatten') last_output = x_flatten layer_size = [MNIST_HEIGHT*MNIST_WIDTH, 200, 100, 60, 30] for layer in range(4): name = "layer_{}".format(layer) last_output = create_fc_layer(last_output, layer_size[layer], layer_size[layer+1], name=name) with tf.name_scope('Output'): W = tf.Variable(tf.truncated_normal([layer_size[-1], NUM_CLASSES], stddev=0.1), name='Weights') b = tf.Variable(tf.zeros([NUM_CLASSES]), name='Biases') logits = tf.matmul(last_output, W) + b y_pred = tf.argmax(logits) tf.summary.histogram('weight', W) tf.summary.histogram('bias', b) tf.summary.histogram('logits', logits) with tf.name_scope('Loss'): # loss function: cross-entropy = - sum( Y_true * log(Y_pred) ) xent = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y) xent = tf.reduce_mean(xent) * BATCH_SIZE tf.summary.scalar('xent', xent) with tf.name_scope('Accuracy'): correct_pred = tf.equal(tf.argmax(logits, axis=1), tf.argmax(y, axis=1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) tf.summary.scalar('accuracy', accuracy) with tf.name_scope('Optimizer'): lr = tf.placeholder(tf.float32, name='lr') optimize = tf.train.AdamOptimizer(lr).minimize(xent) with tf.name_scope('Status'): global_step = tf.Variable(tf.constant(0), 'step') with tf.name_scope('Summaries'): all_summaries = tf.summary.merge_all() with tf.name_scope('Global_Ops'): init = tf.global_variables_initializer() inc_step = global_step.assign_add(1) if _DEBUG_GRAPH: writer = tf.summary.FileWriter(LOG_DIR, tf.get_default_graph()) writer.flush() writer.close() else: with tf.Session() as sess: train_writer = tf.summary.FileWriter(LOG_DIR_TRAIN, sess.graph) # valid_writer = tf.summary.FileWriter(LOG_DIR_VALID, sess.graph) test_writer = tf.summary.FileWriter(LOG_DIR_TEST, sess.graph) sess.run(init) best_acc = 0 for epoch in range(EPOCH_NUM + 1): for i in range(TRAIN_SIZE//BATCH_SIZE + 1): max_lr = 3e-3 min_lr = 1e-4 declay_speed = 2000. learning_rate = min_lr + (max_lr - min_lr) * math.exp(-i/declay_speed) # Train x_batch, y_batch = mnist.train.next_batch(BATCH_SIZE) step_, _ = sess.run([inc_step, optimize], feed_dict = {x: x_batch, y: y_batch, lr: learning_rate}) if step_ % 10 == 0 or step_ == 1: acc_, xent_, summ_ = sess.run([accuracy, xent, all_summaries], feed_dict = {x: x_batch, y: y_batch}) print("Train Accuracy: {}, Train loss: {}, step: {}, epoch: {}, iter: {}".format(acc_, xent_, step_, epoch, i)) train_writer.add_summary(summ_, global_step=step_) if step_ % 100 == 0 or step_ == 1: # acc_, xent_, summ_ = sess.run([accuracy, xent, all_summaries], feed_dict = {x: mnist.validation.images, y: mnist.validation.labels}) # print("Validation Accuracy: {}, Validation loss: {}, step: {}, epoch: {}, iter: {}".format(acc_, xent_, step_, epoch, i)) # valid_writer.add_summary(summ_, global_step=step_) acc_, xent_, summ_ = sess.run([accuracy, xent, all_summaries], feed_dict = {x: mnist.test.images, y: mnist.test.labels}) test_writer.add_summary(summ_, global_step=step_) if acc_ > best_acc: best_acc = acc_ print("******** Epoch: {} ********: Test Accuracy: {}, Test Loss: {}".format(epoch, acc_, xent_)) print("All Done. Best accuracy: {}".format(best_acc)) train_writer.flush() train_writer.close() test_writer.flush() test_writer.close() # End of Main ###################################################################### # Automatically show TensorBoard if needed. show_tensorboard(True)
40.604167
155
0.557081
import os import inspect import shutil import math import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_data as mnist_data tf.set_random_seed(0) # Calculate LOG_DIR according to current file CUR_FILE = inspect.getfile(inspect.currentframe()) LOG_DIR = os.path.join( os.path.dirname(os.path.abspath(CUR_FILE)), 'logs', os.path.splitext(os.path.basename(CUR_FILE))[0]) LOG_DIR_TRAIN = os.path.join(LOG_DIR, 'train') LOG_DIR_VALID = os.path.join(LOG_DIR, 'valid') LOG_DIR_TEST = os.path.join(LOG_DIR, 'test') # Check is the LOG_DIR empty. If not ask for clean. def clean_logs(logdir, ask=True): if logdir == None or len(logdir) < 4: return if os.path.exists(logdir) and len(os.listdir(logdir)) > 0: if ask: answer = input('Log Folder: ' + logdir + ' is not empty. Clean it? [y/N]') if answer in ['Y', 'y']: shutil.rmtree(logdir) else: shutil.rmtree(logdir) clean_logs(LOG_DIR, False) print('TensorFlow Version: ' + tf.__version__) ###################################################################### # Main _DEBUG_GRAPH = False MNIST_WIDTH = 28 MNIST_HEIGHT = 28 MNIST_CHANNEL = 1 NUM_CLASSES = 10 BATCH_SIZE = 100 EPOCH_NUM = 20 LEARNING_RATE = 5e-3 TRAIN_SIZE = 55000 VALID_SIZE = 5000 TEST_SIZE = 10000 ###################################################################### # The Model # neural network with 5 layers # # · · · · · · · · · · (input data, flattened pixels) X [batch, 784] # 784 = 28*28 # \x/x\x/x\x/x\x/x\x/ -- fully connected layer (relu) W1 [784, 200] B1[200] # · · · · · · · · · Y1 [batch, 200] # \x/x\x/x\x/x\x/ -- fully connected layer (relu) W2 [200, 100] B2[100] # · · · · · · · Y2 [batch, 100] # \x/x\x/x\x/ -- fully connected layer (relu) W3 [100, 60] B3[60] # · · · · · Y3 [batch, 60] # \x/x\x/ -- fully connected layer (relu) W4 [60, 30] B4[30] # · · · Y4 [batch, 30] # \x/ -- fully connected layer (softmax) W5 [30, 10] B5[10] # · Y5 [batch, 10] # ###################################################################### mnist = mnist_data.read_data_sets("data", one_hot=True, reshape=False) def create_fc_layer(inputs, size_in, size_out, stddev=0.1, name='fc'): with tf.name_scope(name): W = tf.Variable(tf.truncated_normal([size_in, size_out], stddev=stddev), name='Weight') b = tf.Variable(tf.ones([size_out])/10, name='Bias') act = tf.nn.relu(tf.matmul(inputs, W) + b) tf.summary.histogram('Weight', W) tf.summary.histogram('Bias', b) return act with tf.name_scope('Input'): x = tf.placeholder(tf.float32, [None, MNIST_HEIGHT, MNIST_WIDTH, MNIST_CHANNEL], name='X') y = tf.placeholder(tf.float32, [None, NUM_CLASSES], name='Y') x_flatten = tf.reshape(x, [-1, MNIST_HEIGHT*MNIST_WIDTH], name='X_Flatten') last_output = x_flatten layer_size = [MNIST_HEIGHT*MNIST_WIDTH, 200, 100, 60, 30] for layer in range(4): name = "layer_{}".format(layer) last_output = create_fc_layer(last_output, layer_size[layer], layer_size[layer+1], name=name) with tf.name_scope('Output'): W = tf.Variable(tf.truncated_normal([layer_size[-1], NUM_CLASSES], stddev=0.1), name='Weights') b = tf.Variable(tf.zeros([NUM_CLASSES]), name='Biases') logits = tf.matmul(last_output, W) + b y_pred = tf.argmax(logits) tf.summary.histogram('weight', W) tf.summary.histogram('bias', b) tf.summary.histogram('logits', logits) with tf.name_scope('Loss'): # loss function: cross-entropy = - sum( Y_true * log(Y_pred) ) xent = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y) xent = tf.reduce_mean(xent) * BATCH_SIZE tf.summary.scalar('xent', xent) with tf.name_scope('Accuracy'): correct_pred = tf.equal(tf.argmax(logits, axis=1), tf.argmax(y, axis=1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) tf.summary.scalar('accuracy', accuracy) with tf.name_scope('Optimizer'): lr = tf.placeholder(tf.float32, name='lr') optimize = tf.train.AdamOptimizer(lr).minimize(xent) with tf.name_scope('Status'): global_step = tf.Variable(tf.constant(0), 'step') with tf.name_scope('Summaries'): all_summaries = tf.summary.merge_all() with tf.name_scope('Global_Ops'): init = tf.global_variables_initializer() inc_step = global_step.assign_add(1) if _DEBUG_GRAPH: writer = tf.summary.FileWriter(LOG_DIR, tf.get_default_graph()) writer.flush() writer.close() else: with tf.Session() as sess: train_writer = tf.summary.FileWriter(LOG_DIR_TRAIN, sess.graph) # valid_writer = tf.summary.FileWriter(LOG_DIR_VALID, sess.graph) test_writer = tf.summary.FileWriter(LOG_DIR_TEST, sess.graph) sess.run(init) best_acc = 0 for epoch in range(EPOCH_NUM + 1): for i in range(TRAIN_SIZE//BATCH_SIZE + 1): max_lr = 3e-3 min_lr = 1e-4 declay_speed = 2000. learning_rate = min_lr + (max_lr - min_lr) * math.exp(-i/declay_speed) # Train x_batch, y_batch = mnist.train.next_batch(BATCH_SIZE) step_, _ = sess.run([inc_step, optimize], feed_dict = {x: x_batch, y: y_batch, lr: learning_rate}) if step_ % 10 == 0 or step_ == 1: acc_, xent_, summ_ = sess.run([accuracy, xent, all_summaries], feed_dict = {x: x_batch, y: y_batch}) print("Train Accuracy: {}, Train loss: {}, step: {}, epoch: {}, iter: {}".format(acc_, xent_, step_, epoch, i)) train_writer.add_summary(summ_, global_step=step_) if step_ % 100 == 0 or step_ == 1: # acc_, xent_, summ_ = sess.run([accuracy, xent, all_summaries], feed_dict = {x: mnist.validation.images, y: mnist.validation.labels}) # print("Validation Accuracy: {}, Validation loss: {}, step: {}, epoch: {}, iter: {}".format(acc_, xent_, step_, epoch, i)) # valid_writer.add_summary(summ_, global_step=step_) acc_, xent_, summ_ = sess.run([accuracy, xent, all_summaries], feed_dict = {x: mnist.test.images, y: mnist.test.labels}) test_writer.add_summary(summ_, global_step=step_) if acc_ > best_acc: best_acc = acc_ print("******** Epoch: {} ********: Test Accuracy: {}, Test Loss: {}".format(epoch, acc_, xent_)) print("All Done. Best accuracy: {}".format(best_acc)) train_writer.flush() train_writer.close() test_writer.flush() test_writer.close() # End of Main ###################################################################### # Automatically show TensorBoard if needed. def show_tensorboard(auto_show=False): cmd = 'tensorboard --logdir=train:' + LOG_DIR_TRAIN + ',validation:' + LOG_DIR_VALID + ',test:' + LOG_DIR_TEST if auto_show: answer = input('Show tensorboard? [Y/n]') if not answer in ['N', 'n']: os.system(cmd) else: print("\nRun this command to see logs:\n" + cmd) show_tensorboard(True)
1,104
0
71
0a194f9bd131b7ce2b90308f5d00bdcf14b64528
147
py
Python
textract-pipeline/node_modules/aws-cdk/lib/init-templates/app/python/app.template.py
musa-b/amazon-textract-serverless-large-scale-document-processing
eb628684bc661c9a1fdde4d9d5032b5b3632eece
[ "Apache-2.0" ]
null
null
null
textract-pipeline/node_modules/aws-cdk/lib/init-templates/app/python/app.template.py
musa-b/amazon-textract-serverless-large-scale-document-processing
eb628684bc661c9a1fdde4d9d5032b5b3632eece
[ "Apache-2.0" ]
null
null
null
textract-pipeline/node_modules/aws-cdk/lib/init-templates/app/python/app.template.py
musa-b/amazon-textract-serverless-large-scale-document-processing
eb628684bc661c9a1fdde4d9d5032b5b3632eece
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 from aws_cdk import cdk from %name%.%name%_stack import PyStack app = cdk.App() PyStack(app, "%name%-cdk-1") app.run()
12.25
39
0.680272
#!/usr/bin/env python3 from aws_cdk import cdk from %name%.%name%_stack import PyStack app = cdk.App() PyStack(app, "%name%-cdk-1") app.run()
0
0
0
33dfded66f6f6ed12c10687161b04860c3c771dc
372
py
Python
oembed/tests/tests/__init__.py
EightMedia/djangoembed
ee325f7375c48405f9c3e7e2c0fa7f5a08fafd48
[ "MIT" ]
8
2015-02-06T19:18:49.000Z
2021-01-01T05:46:02.000Z
oembed/tests/tests/__init__.py
ericholscher/djangoembed
8d6c3edcde782285076445577c4a2ad1c96a0350
[ "MIT" ]
null
null
null
oembed/tests/tests/__init__.py
ericholscher/djangoembed
8d6c3edcde782285076445577c4a2ad1c96a0350
[ "MIT" ]
5
2015-03-15T11:41:26.000Z
2018-03-08T09:45:26.000Z
from oembed.tests.tests.consumer import * from oembed.tests.tests.models import * from oembed.tests.tests.parsers import * from oembed.tests.tests.providers import * from oembed.tests.tests.resources import * from oembed.tests.tests.sites import * from oembed.tests.tests.templatetags import * from oembed.tests.tests.utils import * from oembed.tests.tests.views import *
37.2
45
0.806452
from oembed.tests.tests.consumer import * from oembed.tests.tests.models import * from oembed.tests.tests.parsers import * from oembed.tests.tests.providers import * from oembed.tests.tests.resources import * from oembed.tests.tests.sites import * from oembed.tests.tests.templatetags import * from oembed.tests.tests.utils import * from oembed.tests.tests.views import *
0
0
0
97e99c470df1390f7aea25ce8ca02429083c1569
2,097
py
Python
my_app/io/cts_parser.py
gedoensmanagement/Transkribus_spell_checker
1413f1de137e786a4f078e6806b2e856120e78ea
[ "MIT" ]
null
null
null
my_app/io/cts_parser.py
gedoensmanagement/Transkribus_spell_checker
1413f1de137e786a4f078e6806b2e856120e78ea
[ "MIT" ]
null
null
null
my_app/io/cts_parser.py
gedoensmanagement/Transkribus_spell_checker
1413f1de137e786a4f078e6806b2e856120e78ea
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ A collection of functions that can extract additional data fields from the work and passage fields of a Cts object. Which additional fields are possible depends on the namespace. The "parse_cts" function recognizes the namespace and decides which function to use for the extraction. At the end of the whole process the Cts object with its additional data fields will be returned. Created on Thu Sep 17 17:58:49 2020 @author: muell018 """ import re def zotero_parser(zt): """ Treats the Cts object as a Zotero cts object. """ #print("zotero_parser") #print(zt) if zt.m.group(4) != '': zt.mode = zt.m.group(4) zt.number = zt.m.group(6) #print(f"Zotero extras: mode = {zt.mode}, number = {zt.number}") return zt def transkribus_parser(tr): """ Treats the Cts object as a Transkribus cts object. """ #print("transkribus_parser") #print(tr) tr.col = tr.m.group(2) tr.doc = tr.m.group(3) tr.page = tr.m.group(5) #print(f"Transkribus extras:\ncol = {tr.col}\ndoc = {tr.doc}\npage = {tr.page}") if tr.m.group(6) != '': tr.rl = '' p = re.compile(r'r(\d?)l?(\d?)') m = p.match(tr.m.group(6)) if m.group(1): tr.region = m.group(1) tr.rl += "r"+tr.region #print(f"region = {tr.region}") if m.group(2): tr.line = m.group(2) tr.rl += "l"+tr.line #print(f"line = {tr.line}") if tr.subreference != '': tr.word = tr.subreference #print(f"word = {tr.word}") return tr def censorship_parser(zs): """ Treats the Cts object as a censorship cts. """ #print("censorship_parser: yet to be programmed... ") if __name__ == "__main__": main()
29.535211
85
0.570815
# -*- coding: utf-8 -*- """ A collection of functions that can extract additional data fields from the work and passage fields of a Cts object. Which additional fields are possible depends on the namespace. The "parse_cts" function recognizes the namespace and decides which function to use for the extraction. At the end of the whole process the Cts object with its additional data fields will be returned. Created on Thu Sep 17 17:58:49 2020 @author: muell018 """ import re def parse_cts(cts_object): namespaces = {'zt': zotero_parser, 'tr': transkribus_parser, 'zs': censorship_parser} namespaces[cts_object.namespace](cts_object) def zotero_parser(zt): """ Treats the Cts object as a Zotero cts object. """ #print("zotero_parser") #print(zt) if zt.m.group(4) != '': zt.mode = zt.m.group(4) zt.number = zt.m.group(6) #print(f"Zotero extras: mode = {zt.mode}, number = {zt.number}") return zt def transkribus_parser(tr): """ Treats the Cts object as a Transkribus cts object. """ #print("transkribus_parser") #print(tr) tr.col = tr.m.group(2) tr.doc = tr.m.group(3) tr.page = tr.m.group(5) #print(f"Transkribus extras:\ncol = {tr.col}\ndoc = {tr.doc}\npage = {tr.page}") if tr.m.group(6) != '': tr.rl = '' p = re.compile(r'r(\d?)l?(\d?)') m = p.match(tr.m.group(6)) if m.group(1): tr.region = m.group(1) tr.rl += "r"+tr.region #print(f"region = {tr.region}") if m.group(2): tr.line = m.group(2) tr.rl += "l"+tr.line #print(f"line = {tr.line}") if tr.subreference != '': tr.word = tr.subreference #print(f"word = {tr.word}") return tr def censorship_parser(zs): """ Treats the Cts object as a censorship cts. """ #print("censorship_parser: yet to be programmed... ") def main(): pass if __name__ == "__main__": main()
190
0
54
f12ba53f4df48091653b5508515d7229865bd54b
3,647
py
Python
handlers/drive_handler.py
google/b-con
365ba51cef6fbdd05ceb410ce6fad3e542a65cf4
[ "Apache-2.0" ]
4
2020-08-27T07:00:09.000Z
2021-10-21T00:43:36.000Z
handlers/drive_handler.py
google/b-con
365ba51cef6fbdd05ceb410ce6fad3e542a65cf4
[ "Apache-2.0" ]
null
null
null
handlers/drive_handler.py
google/b-con
365ba51cef6fbdd05ceb410ce6fad3e542a65cf4
[ "Apache-2.0" ]
2
2020-09-15T04:17:28.000Z
2020-09-15T04:23:27.000Z
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Handler for accessing files and folders on sharepoint. This handler includes all the functions needed to access and modify files and folders on sharepoint. """ import glob import io import os import pathlib import zipfile from typing import List from absl import app from absl import flags from absl import logging from googleapiclient import http from utils import config from utils import service_account_credentials FLAGS = flags.FLAGS def _download_file(service: object, file_id: str, file_name: str, download_path: str): """Download files to the specified path.""" request = service.files().get_media(fileId=file_id) fh = io.BytesIO() downloader = http.MediaIoBaseDownload(fh, request) done = False while not done: status, done = downloader.next_chunk() with open(f'{download_path}/{file_name}', 'wb') as f: f.write(fh.getvalue()) def download_invoices(folder_id: str, download_path: str): """Downloads invoices from the given drive folder id to the specified path.""" # Check that the destination folder exists. pathlib.Path(download_path).mkdir(parents=True, exist_ok=True) service = service_account_credentials.get_drive_service() files = service.files().list( q=f'(\'{folder_id}\' in parents) and (mimeType != \'application/vnd.google-apps.folder\')', ).execute() for f in files['files']: _download_file(service, f['id'], f['name'], download_path) def extract_zip_files(download_path: str, extract_path: str): """Extracts the zip files of the invoices downloaded.""" for f in glob.glob(os.path.join(download_path, '*.zip')): with zipfile.ZipFile(f) as zf: zf.extractall(extract_path) def get_files(extract_path: str): """Fetch the paths to all the files.""" files = [] for f in glob.glob(os.path.join(extract_path, '*.csv')): files.append(f) return files def delete_downloaded_files(folder_paths: List[str]): """Deletes downloaded files.""" for folder_path in folder_paths: for f in glob.glob(os.path.join(folder_path, '*')): logging.info('Deleting %s', f) pathlib.Path(f).unlink() def _move_drive_file_to_completed(service: object, file_obj: object, completed_folder_id: str): """Moves the file object to the completed drive folder.""" file_id = file_obj['id'] previous_parents = ','.join(file_obj['parents']) service.files().update( fileId=file_id, addParents=completed_folder_id, removeParents=previous_parents, fields='id, parents', ).execute() def mark_drive_files_completed(folder_id, completed_folder_id): """Marks all the files in the folder as completed.""" logging.info('Marking all drive files completed.') service = service_account_credentials.get_drive_service() files = service.files().list( q=f'(\'{folder_id}\' in parents) and (mimeType != \'application/vnd.google-apps.folder\')', fields='files(id, parents)', ).execute() for f in files['files']: _move_drive_file_to_completed(service, f, completed_folder_id)
31.439655
97
0.717302
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Handler for accessing files and folders on sharepoint. This handler includes all the functions needed to access and modify files and folders on sharepoint. """ import glob import io import os import pathlib import zipfile from typing import List from absl import app from absl import flags from absl import logging from googleapiclient import http from utils import config from utils import service_account_credentials FLAGS = flags.FLAGS def _download_file(service: object, file_id: str, file_name: str, download_path: str): """Download files to the specified path.""" request = service.files().get_media(fileId=file_id) fh = io.BytesIO() downloader = http.MediaIoBaseDownload(fh, request) done = False while not done: status, done = downloader.next_chunk() with open(f'{download_path}/{file_name}', 'wb') as f: f.write(fh.getvalue()) def download_invoices(folder_id: str, download_path: str): """Downloads invoices from the given drive folder id to the specified path.""" # Check that the destination folder exists. pathlib.Path(download_path).mkdir(parents=True, exist_ok=True) service = service_account_credentials.get_drive_service() files = service.files().list( q=f'(\'{folder_id}\' in parents) and (mimeType != \'application/vnd.google-apps.folder\')', ).execute() for f in files['files']: _download_file(service, f['id'], f['name'], download_path) def extract_zip_files(download_path: str, extract_path: str): """Extracts the zip files of the invoices downloaded.""" for f in glob.glob(os.path.join(download_path, '*.zip')): with zipfile.ZipFile(f) as zf: zf.extractall(extract_path) def get_files(extract_path: str): """Fetch the paths to all the files.""" files = [] for f in glob.glob(os.path.join(extract_path, '*.csv')): files.append(f) return files def delete_downloaded_files(folder_paths: List[str]): """Deletes downloaded files.""" for folder_path in folder_paths: for f in glob.glob(os.path.join(folder_path, '*')): logging.info('Deleting %s', f) pathlib.Path(f).unlink() def _move_drive_file_to_completed(service: object, file_obj: object, completed_folder_id: str): """Moves the file object to the completed drive folder.""" file_id = file_obj['id'] previous_parents = ','.join(file_obj['parents']) service.files().update( fileId=file_id, addParents=completed_folder_id, removeParents=previous_parents, fields='id, parents', ).execute() def mark_drive_files_completed(folder_id, completed_folder_id): """Marks all the files in the folder as completed.""" logging.info('Marking all drive files completed.') service = service_account_credentials.get_drive_service() files = service.files().list( q=f'(\'{folder_id}\' in parents) and (mimeType != \'application/vnd.google-apps.folder\')', fields='files(id, parents)', ).execute() for f in files['files']: _move_drive_file_to_completed(service, f, completed_folder_id)
0
0
0
117de2060310920f81abc8439d94be701d21ee15
335
py
Python
Testes/type_set.py
Renanrbsc/PadawanPython
6dc06a502d59127d0f180847e19b40c581baddd0
[ "MIT" ]
null
null
null
Testes/type_set.py
Renanrbsc/PadawanPython
6dc06a502d59127d0f180847e19b40c581baddd0
[ "MIT" ]
null
null
null
Testes/type_set.py
Renanrbsc/PadawanPython
6dc06a502d59127d0f180847e19b40c581baddd0
[ "MIT" ]
null
null
null
import random # Efetua 1000 testes: for _ in range(1000): # Gera um conjunto de 10 números inteiros entre 0 e 9: a = set(random.randint(0, 9) for __ in range(10)) # Verifica se o conjunto é igual à sua respectiva lista sortida: if list(a) != sorted(a): # Se for diferente, exibe o conjunto: print(a)
25.769231
68
0.644776
import random # Efetua 1000 testes: for _ in range(1000): # Gera um conjunto de 10 números inteiros entre 0 e 9: a = set(random.randint(0, 9) for __ in range(10)) # Verifica se o conjunto é igual à sua respectiva lista sortida: if list(a) != sorted(a): # Se for diferente, exibe o conjunto: print(a)
0
0
0
173b1c09a24ba29b73e806482460e8a77d27c133
4,051
py
Python
alipay/aop/api/domain/AlipayOverseasTaxNeworderStatusSyncModel.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
213
2018-08-27T16:49:32.000Z
2021-12-29T04:34:12.000Z
alipay/aop/api/domain/AlipayOverseasTaxNeworderStatusSyncModel.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
29
2018-09-29T06:43:00.000Z
2021-09-02T03:27:32.000Z
alipay/aop/api/domain/AlipayOverseasTaxNeworderStatusSyncModel.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
59
2018-08-27T16:59:26.000Z
2022-03-25T10:08:15.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import *
30.923664
87
0.602567
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class AlipayOverseasTaxNeworderStatusSyncModel(object): def __init__(self): self._doc_id = None self._extend_param = None self._status = None self._status_change_time = None self._status_msg = None self._tax_order_no = None self._tax_payment_no = None @property def doc_id(self): return self._doc_id @doc_id.setter def doc_id(self, value): self._doc_id = value @property def extend_param(self): return self._extend_param @extend_param.setter def extend_param(self, value): self._extend_param = value @property def status(self): return self._status @status.setter def status(self, value): self._status = value @property def status_change_time(self): return self._status_change_time @status_change_time.setter def status_change_time(self, value): self._status_change_time = value @property def status_msg(self): return self._status_msg @status_msg.setter def status_msg(self, value): self._status_msg = value @property def tax_order_no(self): return self._tax_order_no @tax_order_no.setter def tax_order_no(self, value): self._tax_order_no = value @property def tax_payment_no(self): return self._tax_payment_no @tax_payment_no.setter def tax_payment_no(self, value): self._tax_payment_no = value def to_alipay_dict(self): params = dict() if self.doc_id: if hasattr(self.doc_id, 'to_alipay_dict'): params['doc_id'] = self.doc_id.to_alipay_dict() else: params['doc_id'] = self.doc_id if self.extend_param: if hasattr(self.extend_param, 'to_alipay_dict'): params['extend_param'] = self.extend_param.to_alipay_dict() else: params['extend_param'] = self.extend_param if self.status: if hasattr(self.status, 'to_alipay_dict'): params['status'] = self.status.to_alipay_dict() else: params['status'] = self.status if self.status_change_time: if hasattr(self.status_change_time, 'to_alipay_dict'): params['status_change_time'] = self.status_change_time.to_alipay_dict() else: params['status_change_time'] = self.status_change_time if self.status_msg: if hasattr(self.status_msg, 'to_alipay_dict'): params['status_msg'] = self.status_msg.to_alipay_dict() else: params['status_msg'] = self.status_msg if self.tax_order_no: if hasattr(self.tax_order_no, 'to_alipay_dict'): params['tax_order_no'] = self.tax_order_no.to_alipay_dict() else: params['tax_order_no'] = self.tax_order_no if self.tax_payment_no: if hasattr(self.tax_payment_no, 'to_alipay_dict'): params['tax_payment_no'] = self.tax_payment_no.to_alipay_dict() else: params['tax_payment_no'] = self.tax_payment_no return params @staticmethod def from_alipay_dict(d): if not d: return None o = AlipayOverseasTaxNeworderStatusSyncModel() if 'doc_id' in d: o.doc_id = d['doc_id'] if 'extend_param' in d: o.extend_param = d['extend_param'] if 'status' in d: o.status = d['status'] if 'status_change_time' in d: o.status_change_time = d['status_change_time'] if 'status_msg' in d: o.status_msg = d['status_msg'] if 'tax_order_no' in d: o.tax_order_no = d['tax_order_no'] if 'tax_payment_no' in d: o.tax_payment_no = d['tax_payment_no'] return o
3,140
773
23
dd0d1e45a6b03586912ed2af58c3ca9521a86418
618
py
Python
migrations/versions/4b01613bfbed_.py
J4LP/J4OAuth
ca757958f1e7069f08e0dae3becd70b90507c871
[ "MIT" ]
1
2015-12-15T03:17:15.000Z
2015-12-15T03:17:15.000Z
migrations/versions/4b01613bfbed_.py
J4LP/J4OAuth
ca757958f1e7069f08e0dae3becd70b90507c871
[ "MIT" ]
null
null
null
migrations/versions/4b01613bfbed_.py
J4LP/J4OAuth
ca757958f1e7069f08e0dae3becd70b90507c871
[ "MIT" ]
1
2015-12-15T03:17:19.000Z
2015-12-15T03:17:19.000Z
"""empty message Revision ID: 4b01613bfbed Revises: 406cccb640c3 Create Date: 2014-02-07 00:29:22.150808 """ # revision identifiers, used by Alembic. revision = '4b01613bfbed' down_revision = '406cccb640c3' from alembic import op import sqlalchemy as sa
22.888889
88
0.697411
"""empty message Revision ID: 4b01613bfbed Revises: 406cccb640c3 Create Date: 2014-02-07 00:29:22.150808 """ # revision identifiers, used by Alembic. revision = '4b01613bfbed' down_revision = '406cccb640c3' from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.add_column('client', sa.Column('homepage', sa.String(length=255), nullable=True)) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_column('client', 'homepage') ### end Alembic commands ###
312
0
46
963b388fd46ae6be2ff0ea7cc00541ff85694744
529
py
Python
django_auth2/tasks.py
Nick1994209/django-auth2
b8678f06ade985d2b5b0606e6e49bd9d2a49931a
[ "MIT" ]
null
null
null
django_auth2/tasks.py
Nick1994209/django-auth2
b8678f06ade985d2b5b0606e6e49bd9d2a49931a
[ "MIT" ]
null
null
null
django_auth2/tasks.py
Nick1994209/django-auth2
b8678f06ade985d2b5b0606e6e49bd9d2a49931a
[ "MIT" ]
null
null
null
from __future__ import absolute_import # for python 2.7 from django.conf import settings from django.core.mail import send_mail as django_send_mail try: from celery.task import task except ImportError: task = func_add_delay @task
24.045455
78
0.720227
from __future__ import absolute_import # for python 2.7 from django.conf import settings from django.core.mail import send_mail as django_send_mail try: from celery.task import task except ImportError: def func_add_delay(func): def wrapper(*args, **kwargs): return func(*args, **kwargs) wrapper.delay = func return wrapper task = func_add_delay @task def send_mail(subject, message, to_emails): django_send_mail(subject, message, settings.DEFAULT_FROM_EMAIL, to_emails)
237
0
48
c603a2f92a55764ce391c8c6d64d7603bd21bea4
2,938
py
Python
main/summary.py
tucan9389/MobileHumanPose
94183778c8384a2412729fec179e66ca2cd15b60
[ "MIT" ]
137
2021-04-13T14:33:32.000Z
2022-03-24T22:28:15.000Z
main/summary.py
tucan9389/MobileHumanPose
94183778c8384a2412729fec179e66ca2cd15b60
[ "MIT" ]
27
2021-05-16T08:52:03.000Z
2022-03-30T11:49:38.000Z
main/summary.py
tucan9389/MobileHumanPose
94183778c8384a2412729fec179e66ca2cd15b60
[ "MIT" ]
13
2021-04-13T17:18:28.000Z
2022-03-22T12:49:03.000Z
import torch import argparse import os import os.path as osp import torch.backends.cudnn as cudnn from torchsummary import summary from torch.nn.parallel.data_parallel import DataParallel from config import cfg from model import get_pose_net from thop import profile from thop import clever_format from ptflops import get_model_complexity_info # argument parsing args = parse_args() cfg.set_args(args.gpu_ids) cudnn.benchmark = True # joint set joint_num = args.joint joints_name = ('Head_top', 'Thorax', 'R_Shoulder', 'R_Elbow', 'R_Wrist', 'L_Shoulder', 'L_Elbow', 'L_Wrist', 'R_Hip', 'R_Knee', 'R_Ankle', 'L_Hip', 'L_Knee', 'L_Ankle', 'Pelvis', 'Spine', 'Head', 'R_Hand', 'L_Hand', 'R_Toe', 'L_Toe') flip_pairs = ( (2, 5), (3, 6), (4, 7), (8, 11), (9, 12), (10, 13), (17, 18), (19, 20) ) if joint_num == 18: skeleton = ( (0, 7), (7, 8), (8, 9), (9, 10), (8, 11), (11, 12), (12, 13), (8, 14), (14, 15), (15, 16), (0, 1), (1, 2), (2, 3), (0, 4), (4, 5), (5, 6) ) if joint_num == 21: skeleton = ( (0, 16), (16, 1), (1, 15), (15, 14), (14, 8), (14, 11), (8, 9), (9, 10), (10, 19), (11, 12), (12, 13), (13, 20), (1, 2), (2, 3), (3, 4), (4, 17), (1, 5), (5, 6), (6, 7), (7, 18) ) # snapshot load model_path = os.path.join(cfg.model_dir, 'snapshot_%d.pth.tar' % args.test_epoch) assert osp.exists(model_path), 'Cannot find model at ' + model_path model = get_pose_net(args.backbone, args.frontbone, False, joint_num) model = DataParallel(model).cuda() ckpt = torch.load(model_path) model.load_state_dict(ckpt['network']) single_model = model.module summary(single_model, (3, 256, 256)) input = torch.randn(1, 3, 256, 256).cuda() macs, params = profile(single_model, inputs=(input,)) macs, params = clever_format([macs, params], "%.3f") flops, params1 = get_model_complexity_info(single_model, (3, 256, 256),as_strings=True, print_per_layer_stat=False) print('{:<30} {:<8}'.format('Computational complexity: ', flops)) print('{:<30} {:<8}'.format('Computational complexity: ', macs)) print('{:<30} {:<8}'.format('Number of parameters: ', params)) print('{:<30} {:<8}'.format('Number of parameters: ', params1))
41.971429
233
0.642954
import torch import argparse import os import os.path as osp import torch.backends.cudnn as cudnn from torchsummary import summary from torch.nn.parallel.data_parallel import DataParallel from config import cfg from model import get_pose_net from thop import profile from thop import clever_format from ptflops import get_model_complexity_info def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--gpu', type=str, dest='gpu_ids') parser.add_argument('--epoch', type=int, dest='test_epoch') parser.add_argument('--jointnum', type=int, dest='joint') parser.add_argument('--backbone', type=str, dest='backbone') args = parser.parse_args() # test gpus if not args.gpu_ids: assert 0, print("Please set proper gpu ids") if not args.joint: assert print("please insert number of joint") if '-' in args.gpu_ids: gpus = args.gpu_ids.split('-') gpus[0] = 0 if not gpus[0].isdigit() else int(gpus[0]) gpus[1] = len(mem_info()) if not gpus[1].isdigit() else int(gpus[1]) + 1 args.gpu_ids = ','.join(map(lambda x: str(x), list(range(*gpus)))) return args # argument parsing args = parse_args() cfg.set_args(args.gpu_ids) cudnn.benchmark = True # joint set joint_num = args.joint joints_name = ('Head_top', 'Thorax', 'R_Shoulder', 'R_Elbow', 'R_Wrist', 'L_Shoulder', 'L_Elbow', 'L_Wrist', 'R_Hip', 'R_Knee', 'R_Ankle', 'L_Hip', 'L_Knee', 'L_Ankle', 'Pelvis', 'Spine', 'Head', 'R_Hand', 'L_Hand', 'R_Toe', 'L_Toe') flip_pairs = ( (2, 5), (3, 6), (4, 7), (8, 11), (9, 12), (10, 13), (17, 18), (19, 20) ) if joint_num == 18: skeleton = ( (0, 7), (7, 8), (8, 9), (9, 10), (8, 11), (11, 12), (12, 13), (8, 14), (14, 15), (15, 16), (0, 1), (1, 2), (2, 3), (0, 4), (4, 5), (5, 6) ) if joint_num == 21: skeleton = ( (0, 16), (16, 1), (1, 15), (15, 14), (14, 8), (14, 11), (8, 9), (9, 10), (10, 19), (11, 12), (12, 13), (13, 20), (1, 2), (2, 3), (3, 4), (4, 17), (1, 5), (5, 6), (6, 7), (7, 18) ) # snapshot load model_path = os.path.join(cfg.model_dir, 'snapshot_%d.pth.tar' % args.test_epoch) assert osp.exists(model_path), 'Cannot find model at ' + model_path model = get_pose_net(args.backbone, args.frontbone, False, joint_num) model = DataParallel(model).cuda() ckpt = torch.load(model_path) model.load_state_dict(ckpt['network']) single_model = model.module summary(single_model, (3, 256, 256)) input = torch.randn(1, 3, 256, 256).cuda() macs, params = profile(single_model, inputs=(input,)) macs, params = clever_format([macs, params], "%.3f") flops, params1 = get_model_complexity_info(single_model, (3, 256, 256),as_strings=True, print_per_layer_stat=False) print('{:<30} {:<8}'.format('Computational complexity: ', flops)) print('{:<30} {:<8}'.format('Computational complexity: ', macs)) print('{:<30} {:<8}'.format('Number of parameters: ', params)) print('{:<30} {:<8}'.format('Number of parameters: ', params1))
792
0
23
eadd411cee7bade1921682585bda0bf351b1063a
3,302
py
Python
fastflix/models/encode.py
benedicteb/FastFlix
45208b7c74a21758cb528c949422effcd0c01f44
[ "MIT" ]
null
null
null
fastflix/models/encode.py
benedicteb/FastFlix
45208b7c74a21758cb528c949422effcd0c01f44
[ "MIT" ]
null
null
null
fastflix/models/encode.py
benedicteb/FastFlix
45208b7c74a21758cb528c949422effcd0c01f44
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from dataclasses import dataclass, field from pathlib import Path from typing import List, Union from fastflix.models.base import BaseDataClass @dataclass @dataclass @dataclass @dataclass @dataclass @dataclass @dataclass @dataclass @dataclass @dataclass @dataclass @dataclass @dataclass
22.161074
56
0.633253
# -*- coding: utf-8 -*- from dataclasses import dataclass, field from pathlib import Path from typing import List, Union from fastflix.models.base import BaseDataClass @dataclass class AudioTrack(BaseDataClass): index: int outdex: int codec: str = "" downmix: int = 0 title: str = "" language: str = "" conversion_bitrate: str = "" conversion_codec: str = "" @dataclass class SubtitleTrack(BaseDataClass): index: int outdex: int disposition: str = "" burn_in: bool = False language: str = "" @dataclass class AttachmentTrack(BaseDataClass): outdex: int index: Union[int, None] = None attachment_type: str = "cover" file_path: Union[Path, None] = None filename: Union[str, None] = None @dataclass class EncoderSettings(BaseDataClass): max_muxing_queue_size: str = "1024" pix_fmt: str = "yuv420p10le" extra: str = "" @dataclass class x265Settings(EncoderSettings): name = "HEVC (x265)" # MUST match encoder main.name preset: str = "medium" intra_encoding: bool = False profile: str = "default" tune: str = "default" hdr10: bool = False hdr10_opt: bool = False dhdr10_opt: bool = False repeat_headers: bool = False aq_mode: int = 2 hdr10plus_metadata: str = "" crf: Union[int, None] = None bitrate: Union[str, None] = None x265_params: List[str] = field(default_factory=list) bframes: int = 4 lossless: bool = False b_adapt: int = 2 intra_refresh: bool = False intra_smoothing: bool = True frame_threads: int = 0 @dataclass class x264Settings(EncoderSettings): name = "AVC (x264)" preset: str = "medium" profile: str = "default" tune: str = "default" pix_fmt: str = "yuv420p" crf: Union[int, None] = None bitrate: Union[str, None] = None @dataclass class rav1eSettings(EncoderSettings): name = "AV1 (rav1e)" speed: str = "-1" tile_columns: str = "-1" tile_rows: str = "-1" tiles: str = "0" single_pass: bool = False qp: Union[int, None] = None bitrate: Union[str, None] = None @dataclass class SVTAV1Settings(EncoderSettings): name = "AV1 (SVT AV1)" tile_columns: str = "0" tile_rows: str = "0" tier: str = "main" # scene_detection: str = "false" single_pass: bool = False speed: str = "7" qp: Union[int, None] = None bitrate: Union[str, None] = None @dataclass class VP9Settings(EncoderSettings): name = "VP9" profile: int = 2 quality: str = "good" speed: str = "0" row_mt: int = 0 single_pass: bool = False crf: Union[int, None] = None bitrate: Union[str, None] = None @dataclass class AOMAV1Settings(EncoderSettings): name = "AV1 (AOM)" tile_columns: str = "0" tile_rows: str = "0" usage: str = "good" row_mt: str = "enabled" cpu_used: str = "4" crf: Union[int, None] = None bitrate: Union[str, None] = None @dataclass class WebPSettings(EncoderSettings): name = "WebP" lossless: str = "0" compression: str = "3" preset: str = "none" qscale: int = 15 @dataclass class GIFSettings(EncoderSettings): name = "GIF" fps: int = 15 dither: str = "sierra2_4a" @dataclass class CopySettings(EncoderSettings): name = "Copy"
0
2,678
286
8929dca934368386b0442cdca9cb8e9309b1777f
17,130
py
Python
scripts/featureGenerator.py
dcompgriff/cs839_Entity_Extractor
a117256061cc75850c1da1ce837a2992c15db0fb
[ "MIT" ]
null
null
null
scripts/featureGenerator.py
dcompgriff/cs839_Entity_Extractor
a117256061cc75850c1da1ce837a2992c15db0fb
[ "MIT" ]
null
null
null
scripts/featureGenerator.py
dcompgriff/cs839_Entity_Extractor
a117256061cc75850c1da1ce837a2992c15db0fb
[ "MIT" ]
null
null
null
import numpy as np import pandas as pd import argparse import glob import os import time import re from multiprocessing import Pool ''' **************************************************************** GLOBAL VARIABLES **************************************************************** ''' MAX_ENTITY_LENGTH = 20 MAX_ENTITY_WORD_LENGTH = 8 NUM_FEATURES = 20 globalVerbSet = set() with open('../data/verbs.txt', 'r') as f: for line in f: globalVerbSet.add(line.strip()) instituteKeywords = re.compile(r'\b(Inc|Incorporation|Corp|Corporation|Institute|\ University|School|College|Department|Org|Organization|Times|Committee|Foundation|\ Party|Agency|Council|News)\b', re.I) badKeywords = re.compile(r'\b(the|an|as|be|am|is|are|was|were|has|have|had|\ at|from|to|in|under|before|after|near|far|away|\ that|them|there|their|they|his|her|hers|him|it|you|your|yours|\ ceo|chairman|founder|head|director|\ email)\b', re.I) #allow . - _ & : ' ` and " inside entity words. As these are there while marking up badpunc = re.compile(r'\~|\!|\@|\#|\$|\%|\^|\*|\(|\)|\+|\=|\{|\}|\[|\]|\;|\<|\>|\,|\?|\/|\\') endSentence = re.compile(r'(\d\s*\.\s*\D)|([a-z]\s*\.)') domain = re.compile(r'\.\s*(com|org)\b') globalCount = 0 missedTuples = [] ''' **************************************************************** PROGRAM FUNCTION SCRIPTS **************************************************************** ''' ''' This function accepts a list of strings, where each string represents a single line in a text file (which has been pre-processed with at most 1 word on each line. @:param fileContents List with every line of the file contents. @:return A pandas dataframe object that has ''' ''' Feature list: F0: "[The]" occurs 1 or two lines before string. F1: Number of capitol Letters. F2: Verb occurs 1 or two lines after the string. F3: Total character length F4: Total number of words F5: Number of capitol letters before the string. F5: Number of capitol letters in line after this string. F6: "on" comes before F7: "called" comes before # shouldn't the verb have taken care of it? F8: "they" comes after F9: .?! comes in the middle of and entry# should no longer be true ever F10: Number of "."s F11: "," is in the raw string "NOTE: This feature reliably improves precision!", #should no longer be True ever F12: "," is in the first or last raw string position "NOTE: This feature reliably improves precision!", #should no lenger be True ever F13: "." is in the first or last raw string position. F14: "as", "a", "an" is in the raw string., # Invalid as discussed, to be removed F15: The faction of the number of words where only the first character is capitalized to all words. F16: The rawString has a Single capitalized word after it. F17: Contains a keyword F18: fraction of capital letters to wordCount F19: Contains bad punctuation in raw string. Each "tuple" object is a Pandas series with first entry tuple[0] the index, and all following entries the entries of each row from the string tuples dataframe. ''' ''' **************************************************************** PROGRAM RUNNING AND MANAGEMENT SCRIPTS **************************************************************** ''' ''' For each file in the directory provided to the program, generate all of the possible feature sets. ''' if __name__ == '__main__': #Parse command line arguments parser = argparse.ArgumentParser(description="""Fake news feature generator. Generates features from files whos' words have been split to multiple lines. It also handles files where entities have been pre-marked.""") parser.add_argument('FileFolder', metavar='f', type=str) parser.add_argument('Mode', metavar='m', type=str, help="""U is for update, and C is for create""") parser.add_argument('UpdateListString', metavar='--l', type=str, default="", help="""Use a string 'F0 F12 F13' of features, or '' empty string if no features. """) args = parser.parse_args() main(args)
39.837209
167
0.588266
import numpy as np import pandas as pd import argparse import glob import os import time import re from multiprocessing import Pool ''' **************************************************************** GLOBAL VARIABLES **************************************************************** ''' MAX_ENTITY_LENGTH = 20 MAX_ENTITY_WORD_LENGTH = 8 NUM_FEATURES = 20 globalVerbSet = set() with open('../data/verbs.txt', 'r') as f: for line in f: globalVerbSet.add(line.strip()) instituteKeywords = re.compile(r'\b(Inc|Incorporation|Corp|Corporation|Institute|\ University|School|College|Department|Org|Organization|Times|Committee|Foundation|\ Party|Agency|Council|News)\b', re.I) badKeywords = re.compile(r'\b(the|an|as|be|am|is|are|was|were|has|have|had|\ at|from|to|in|under|before|after|near|far|away|\ that|them|there|their|they|his|her|hers|him|it|you|your|yours|\ ceo|chairman|founder|head|director|\ email)\b', re.I) #allow . - _ & : ' ` and " inside entity words. As these are there while marking up badpunc = re.compile(r'\~|\!|\@|\#|\$|\%|\^|\*|\(|\)|\+|\=|\{|\}|\[|\]|\;|\<|\>|\,|\?|\/|\\') endSentence = re.compile(r'(\d\s*\.\s*\D)|([a-z]\s*\.)') domain = re.compile(r'\.\s*(com|org)\b') globalCount = 0 missedTuples = [] ''' **************************************************************** PROGRAM FUNCTION SCRIPTS **************************************************************** ''' ''' This function accepts a list of strings, where each string represents a single line in a text file (which has been pre-processed with at most 1 word on each line. @:param fileContents List with every line of the file contents. @:return A pandas dataframe object that has ''' def generateStringTuples(fileContents, fileName): global globalCount # Create initial pandas dataframe for data objects. # rawString: as read form the file after removing entity markers # string: after stripping punctuations from inside rawString # wordCount: number of words in 'string' field # start, end: index in file # class: class label if marked entity #tupleDF = pd.DataFrame(columns=['rawString', 'file', 'start', 'end', 'string', 'wordCount' 'class']) # Create native python list for appending to, which is faster than pandas DF append or concat. tupleList = [] reg = re.compile(r'[a-zA-Z0-9_\’\']+')# use to strip inner punctuations, except _ and \’ tupleColumns=['rawString', 'file', 'start', 'end', 'string', 'wordCount', 'label'] global missedTuples for entityLength in range(1, MAX_ENTITY_LENGTH): for i in range(len(fileContents)-entityLength):#reversed order here to prevent i+entityLength overflow # For each possible entityLength, generate string from each index. # Strip punctuations in order to get wordCount # make tuples only from those whose word count is <= MAX_ENTITY_WORD_LENGTH, >=0 and unique try: tuple = ['', fileName, i, i+entityLength, '', 0, '-'] entityList = list(map(lambda item: str(item).strip(), fileContents[i:i+entityLength])) # Set class to positive if '<[>' in first list word, and '<]>' in last word in list. if '<[>' in entityList[0].strip() and '<]>' in entityList[-1].strip(): # If '<[>' and '<]>' appear in any other places internally in the string, then the # string isn't a single entity, and is actually two entities that have been grouped # together. Ex '<[>Project Veritas<]> shows how the <[>Clinton campaign<]>'. # Count the number of times left and right tags occur in the string. lCount = 0#sum(map(lambda item: 1 if '<[>' in item else 0, entityList)) rCount = 0#sum(map(lambda item: 1 if '<]>' in item else 0, entityList)) for cStr in entityList: if '<[>' in cStr: lCount += 1 if '<]>' in cStr: rCount += 1 if lCount + rCount == 2: tuple[-1] = '+' globalCount += 1 else: tuple[-1] = '-' # Remove any entity tags from the string. entityList = list(map(lambda item: item.replace('<[>', ''), entityList)) entityList = list(map(lambda item: item.replace('<]>', ''), entityList)) # Update the rest of the tuple information. tuple[0] = ' '.join(entityList).strip()#rawString #groups of only continuous alpha numeric characters. Not including '.' as a separate group. words = re.findall(reg, tuple[0]) tuple[4] = ' '.join(words).strip()# string after stripping inner punctuations tuple[5] = len(words)# wordCount ################################# # PRE-PROCESSING RULES ################################# #if ',' in tuple[0].strip().split()[0] or ',' in tuple[0].strip().split()[-1]: # continue # #if ('.' in tuple[0].strip().split()[0] or '.' in tuple[0].strip().split()[-1]) and len(entityList): # # continue # if ('-' in tuple[0].strip()): # continue #if ('(' in tuple[0].strip() or ')' in tuple[0].strip()): # continue # if 'as' in tuple[0].lower() or 'a' in tuple[0].lower() or 'an' in tuple[0].lower(): # continue failed = False# use this to remove negative entries #empty or too long remaining string failed = failed or tuple[5]==0 or tuple[5]>MAX_ENTITY_WORD_LENGTH #begins with a . failed = failed or tuple[0][0]=='.' #full tuple contains any unwanted punctuations failed = failed or len(re.findall(badpunc, tuple[0]))>0 #Want atleast 2 english chars. Removes number only cases failed = failed or len(re.findall(r'[a-zA-Z]', tuple[4]))<2 #Looks like end of a sentence, except when a domain name failed = failed or len(re.findall(endSentence, tuple[0])) - len(re.findall(domain, tuple[0]))>0 #contains a bad keyword failed = failed or len(re.findall(badKeywords, tuple[4])) if failed: if tuple[-1] == '+': missedTuples.append(tuple) continue tupleList.append(tuple) except IndexError: continue return pd.DataFrame(tupleList, columns=tupleColumns) def F0(tuple, fileContents): try: if fileContents[tuple.start - 1].strip().lower() == 'the' or fileContents[tuple.start - 2].strip().lower() == 'the': return 1 else: return 0 except IndexError: return 0 def F1(tuple, fileContents): return sum(1 for char in tuple.string if char.isupper()) def F2(tuple, fileContents): try: if fileContents[tuple.end].strip().lower() in globalVerbSet: return 1 else: return 0 except IndexError: return 0 def F3(tuple, fileContents): return len(tuple.string.strip()) def F4(tuple, fileContents): return tuple.wordCount#len(tuple.string.strip().split()) def F5(tuple, fileContents): try: return sum(1 for char in fileContents[tuple.start - 1] if char.isupper()) except: return -1 def F6(tuple, fileContents): try: if fileContents[tuple.start - 1].strip().lower() == 'on': return 1 else: return 0 except IndexError: return 0 def F7(tuple, fileContents): try: if fileContents[tuple.start - 1].strip().lower() == 'called': return 1 else: return 0 except IndexError: return 0 def F8(tuple, fileContents): try: if fileContents[tuple.end].strip().lower() == 'they': return 1 else: return 0 except IndexError: return 0 def F9(tuple, fileContents): try: if "." in tuple.rawString.split()[1:-1] or "!" in tuple.rawString.split()[1:-1] or "?" in tuple.rawString.split()[1:-1]: return 1 else: return 0 except IndexError: return 0 def F10(tuple, fileContents): return tuple.rawString.count('.') def F11(tuple, fileContents): if ',' in tuple.rawString: return 1 else: return 0 def F12(tuple, fileContents): if ',' in tuple.rawString.strip().split()[0] or ',' in tuple.rawString.strip().split()[-1]: return 1 else: return 0 def F13(tuple, fileContents): if '.' in tuple.rawString.strip().split()[0] or '.' in tuple.rawString.strip().split()[-1]: return 1 else: return 0 def F14(tuple, fileContents): if 'as' in tuple.rawString.lower() or 'a' in tuple.rawString.lower() or 'an' in tuple.rawString.lower(): return 1 else: return 0 def F15(tuple, fileContents): count = 0 for word in tuple.rawString.strip().split(): if word[0].isupper() and word[1:] == word[1:].lower(): count += 1 return count / len(tuple.rawString.strip().split()) def F16(tuple, fileContents): try: if fileContents[tuple.end][0].isupper() and fileContents[tuple.end][1:] == fileContents[tuple.end][1:].lower(): return 1 else: return 0 except: return 0 def F17(tuple, fileContents): return 1 if len(re.findall(instituteKeywords, tuple.string))>0 else 0#case ignoring search criteria def F18(tuple, fileContents): try: return sum(1 for char in tuple.string if char.isupper())*1.0/tuple.wordCount except: return -1 def F19(tuple, fileContents): if ":" in tuple.rawString or "-" in tuple.rawString or '"' in tuple.rawString or "&" in tuple.rawString: return 1 else: return 0 ''' Feature list: F0: "[The]" occurs 1 or two lines before string. F1: Number of capitol Letters. F2: Verb occurs 1 or two lines after the string. F3: Total character length F4: Total number of words F5: Number of capitol letters before the string. F5: Number of capitol letters in line after this string. F6: "on" comes before F7: "called" comes before # shouldn't the verb have taken care of it? F8: "they" comes after F9: .?! comes in the middle of and entry# should no longer be true ever F10: Number of "."s F11: "," is in the raw string "NOTE: This feature reliably improves precision!", #should no longer be True ever F12: "," is in the first or last raw string position "NOTE: This feature reliably improves precision!", #should no lenger be True ever F13: "." is in the first or last raw string position. F14: "as", "a", "an" is in the raw string., # Invalid as discussed, to be removed F15: The faction of the number of words where only the first character is capitalized to all words. F16: The rawString has a Single capitalized word after it. F17: Contains a keyword F18: fraction of capital letters to wordCount F19: Contains bad punctuation in raw string. Each "tuple" object is a Pandas series with first entry tuple[0] the index, and all following entries the entries of each row from the string tuples dataframe. ''' def generateFeaturesFromFile(fileContents, fileName): tuplesDF = generateStringTuples(fileContents, fileName) allFeaturesList = [] # Call each feature generation function on each dataframe tuple. for i in range(0, NUM_FEATURES): featureList = [] for tuple in tuplesDF.itertuples(): featureList.append(eval('F' + str(i) + '(tuple, fileContents)')) allFeaturesList.append(featureList) allFeaturesList.append(tuplesDF['label'].tolist()) # TODO: write to a csv file the entire matrix of examples and features. Randomize. Remove some to ensure almost even split b/w + and - return pd.DataFrame(np.array(allFeaturesList).T, columns=['F' + str(i) for i in range(NUM_FEATURES)] + ['label']), tuplesDF def updateFeaturesFromFile(fileContents, fileName, functionName): tuplesDF = generateStringTuples(fileContents, fileName) featureList = [] for tuple in tuplesDF.itertuples(): featureList.append(eval(functionName + '(tuple, fileContents)')) return featureList ''' **************************************************************** PROGRAM RUNNING AND MANAGEMENT SCRIPTS **************************************************************** ''' ''' For each file in the directory provided to the program, generate all of the possible feature sets. ''' def main(args): if args.Mode == "C": # Get sorted file list names from the given directory. fileList = sorted(filter(lambda item: '.txt' in str(item), os.listdir(args.FileFolder)), key=lambda item: int(item.split('_')[0])) startTime = time.time() global missedTuples missedTuples = [] global globalCount globalCount = 0 fullDF = pd.DataFrame(columns=['F' + str(i) for i in range(NUM_FEATURES)] + ['label']) tuplesDF = pd.DataFrame(columns=['rawString', 'file', 'start', 'end', 'string', 'wordCount', 'label']) # For each file, parse into tuples, then parse into features, and create a full pandas data frame object. print('Performing featurization...') for file in fileList: if '.txt' in file: with open(args.FileFolder + file, "r", encoding="ISO-8859-1") as f: print(file) fileDF, fileTuplesDF = generateFeaturesFromFile(f.readlines(), file) fullDF = pd.concat([fullDF, fileDF]) tuplesDF = pd.concat([tuplesDF, fileTuplesDF]) endTime = time.time() print(fullDF.shape) print('Done!') print("Total time to run: %s seconds." %str(endTime-startTime)) # Save the entire pandas data frame object of features and classes. print('Saving the full dataframe...') fullDF.to_csv('../data/featurized_instances.csv') # Update tuples index to full data set. tuplesDF.index = pd.Series(list(range(0, fullDF.shape[0]))) tuplesDF.to_csv('../data/tuples_instances.csv') print('Done!') print(globalCount) if len(missedTuples)>0: print("Missed", len(missedTuples), "items overall") elif args.Mode == "U": fullDF = pd.read_csv('../data/featurized_instances.csv', index_col=0) tuplesDF = pd.read_csv('../data/tuples_instances.csv', index_col=0) fileList = sorted(filter(lambda item: '.txt' in str(item), os.listdir(args.FileFolder)), key=lambda item: int(item.split('_')[0])) # For each file, parse into tuples, then parse into features, and create a full pandas data frame object. print('Performing featurization...') startTime = time.time() for functionName in args.UpdateListString.strip().split(): print(functionName) featureList = [] for file in fileList: if '.txt' in file: print(file) with open(args.FileFolder + file, "r", encoding="ISO-8859-1") as f: newList = updateFeaturesFromFile(f.readlines(), file, functionName) featureList.extend(newList) # All features for current function have been generated, so update the full data frame. fullDF.loc[:, functionName] = pd.Series(featureList, index=fullDF.index) endTime = time.time() print('Done!') print("Total time to run: %s seconds." % str(endTime - startTime)) columnsList = list(fullDF.columns) columnsList.remove('label') fullDF = fullDF[columnsList + ['label']] # Save the entire pandas data frame object of features and classes. print('Saving the full dataframe...') fullDF.to_csv('../data/featurized_instances.csv') tuplesDF.to_csv('../data/tuples_instances.csv') if __name__ == '__main__': #Parse command line arguments parser = argparse.ArgumentParser(description="""Fake news feature generator. Generates features from files whos' words have been split to multiple lines. It also handles files where entities have been pre-marked.""") parser.add_argument('FileFolder', metavar='f', type=str) parser.add_argument('Mode', metavar='m', type=str, help="""U is for update, and C is for create""") parser.add_argument('UpdateListString', metavar='--l', type=str, default="", help="""Use a string 'F0 F12 F13' of features, or '' empty string if no features. """) args = parser.parse_args() main(args)
12,510
0
549
27ea8f89b590262da723db9961dd54d30a7fc92d
9,134
py
Python
zodiacy/corpus.py
greenify/zodiacy
faf46a10b9b70869cb4caca02027921f1418cfcf
[ "MIT" ]
1
2015-10-16T10:24:53.000Z
2015-10-16T10:24:53.000Z
zodiacy/corpus.py
greenify/zodiacy
faf46a10b9b70869cb4caca02027921f1418cfcf
[ "MIT" ]
null
null
null
zodiacy/corpus.py
greenify/zodiacy
faf46a10b9b70869cb4caca02027921f1418cfcf
[ "MIT" ]
null
null
null
import collections import logging from math import sqrt from wordnik import swagger, WordApi from .utils import weighted_choice """corpus.py: Generates horoscopes based provided corpuses""" __author__ = "Project Zodiacy" __copyright__ = "Copyright 2015, Project Zodiacy" logger = logging.getLogger('root') class Corpus(): """ Generates a corpus from the provided database Args: zodiac_sign: select only entries for a specific zodiac sign keyword: select only entries for a specific keyword with_rating: weight entries after a predefined rating threshold: minimal amount of entries needed for a valid corpus with_synonyms: query wordnik for synonyms wordnik_api_url: Wordnik API URL wordnik_api_key: Wordnik API Key """ def __str__(self): """ dumps the class on print - useful for debugging """ return str(self.__dict__) def _get_zodiac_sign(self, zodiac_sign=None): """ converts the string representation of a zodiac sign into a ordinal one Arguments: zodiac_sign: sign as string Returns: ordinal zodiac sign (from 0 to 12) """ zodiac_signs = dict(zip(['general', 'aries', 'taurus', 'gemini', 'cancer', 'leo', 'virgo', 'libra', 'scorpio', 'sagittarius', 'capricorn', 'aquarius', 'pisces'], range(13))) if zodiac_sign not in zodiac_signs: if zodiac_sign is not None: raise ValueError('Invalid zodiac sign') else: return zodiac_signs[zodiac_sign] def _add_filter(self, filter_sql, filter_value): """ help method to add a new filter Arguments: filter_sql: SQL string (with '?' for parameters) filter_value: parameters to bind to the SQL string (either a single value or list) """ self._filters.append(filter_sql) if isinstance(filter_value, collections.MutableSequence): assert filter_sql.count("?") == len(filter_value) self._filters_values += filter_value else: assert filter_sql.count("?") == 1 self._filters_values.append(filter_value) def _create_filters(self): """ builds all filters """ self._filters = [] self._filters_values = [] if self.zodiac_sign is not None: self._add_filter("sign=?", self.zodiac_sign_ordinal) if self.with_synonyms: present_synonyms = self.get_present_synonyms() if len(present_synonyms) == 0: logger.warn("No related synonyms found") present_synonyms.append(self.keyword) synonyms_sql_array = ','.join(('?' for _ in present_synonyms)) self._add_filter('keyword in (%s)' % synonyms_sql_array, present_synonyms) elif self.keyword is not None: # synonyms is already filtering on keyword self._add_filter("keyword=?", self.keyword) def _build_filters(self): """ concatenates all available filter to SQL """ filters = "" if len(self._filters) > 0: filters += " WHERE " filters += " AND ".join(self._filters) return filters def _execute_and_log(self, base_stmt, values=[]): """ execute logs the entire SQL string This is expensive as we need to make a request to our SQLite database. Hence it is only performed when the debugging is enabled - the level of the root logger needs to be logging.DEBUG or less""" if logger.getEffectiveLevel() <= logging.DEBUG: sql_with_vals = base_stmt if len(values) > 0: self.cursor.execute( "SELECT " + ", ".join(["quote(?)" for i in values]), values) quoted_values = self.cursor.fetchone() for quoted_value in quoted_values: sql_with_vals = sql_with_vals.replace( '?', str(quoted_value), 1) logger.debug("query: %s", sql_with_vals) self.cursor.execute(base_stmt, values) def _execute_query(self): """ Builds and executes the SQL query to fetch the corpus """ columns = 'interp' columns += ',rating' if self.with_rating or self.with_synonyms else '' columns += ',keyword' if self.keyword else '' base_stmt = 'SELECT %s from %s' % (columns, self._table_name) base_stmt += self._build_filters() self._execute_and_log(base_stmt, self._filters_values) def _count_entries(self): """ Returns the number of found entries in the database Reason: cursor.rowcount returns -1 until all results have been fetched """ base_stmt = 'SELECT COUNT(*) from %s' % self._table_name base_stmt += self._build_filters() self.cursor.execute(base_stmt, self._filters_values) return self.cursor.fetchone()[0] def _build(self): """ Returns a cursor with all horoscopes for the given parameters """ self._create_filters() nr_entries = self._count_entries() if nr_entries < self.threshold: raise ValueError("Found %d matches" % nr_entries) logger.debug("%d entries found in corpus db", nr_entries) self._execute_query() def __iter__(self): """ Lazy corpus iterator """ self._build() return self def __next__(self): """ returns the corpus lazy """ row = next(self.cursor, None) if row is None or row[0] is None: # maybe someone wants to access the results again raise StopIteration rating = None if self.with_rating: rating = row[1] if self.with_synonyms: if row[0] is None: # filter invalid entries logger.debug("invalid row %s", row) return self.__next__() if row[0] == self.keyword or len(self.synonyms) == 0: rating = row[1] else: rating = self.synonym_influence * \ row[1] * sqrt(len(self.synonyms)) if rating is None: return (row[0],) else: return (row[0], rating) def list_keywords(self): """ lists all available keywords """ self._execute_and_log(("SELECT keyword, count(*) as count FROM horoscopes " "WHERE length(keyword) > 0 GROUP BY keyword ORDER BY count desc")) return self.cursor.fetchall() def select_keyword_range(self, min_val=0, max_val=1, val=1): """ evenly maps a val with min and max to the keywords As the mapping is surjective the remaining slice is then weighted_chosen""" kws = [k for k in self.list_keywords() if k[1] >= self.threshold] val_range = max_val - min_val factor = int(len(kws) / val_range) upper_end = val * factor if upper_end < factor: upper_end = factor lower_end = upper_end - factor self.keyword = weighted_choice(kws[lower_end:upper_end]) logger.debug("moon keyword selected: %s", self.keyword) def _get_synonyms(self, keyword): """ Queries Wordnik for synonyms """ client = swagger.ApiClient(self.wordnik_api_key, self.wordnik_api_url) word_api = WordApi.WordApi(client) words = word_api.getRelatedWords(keyword, relationshipTypes='synonym') if words is None or len(words) == 0: return [] else: return words[0].words def get_present_synonyms(self): """ Compares Wordnik result with present synonyms in DB Returns: List of synonyms occurring in the database """ self.synonyms = self._get_synonyms(self.keyword) logger.debug("found %d synonyms", len(self.synonyms)) if len(self.synonyms) > 0: self._execute_and_log('SELECT keyword FROM horoscopes WHERE keyword IN (%s) GROUP BY keyword' % ','.join('?' for _ in self.synonyms), tuple(self.synonyms)) return [row[0] for row in self.cursor if row is not None] else: return []
38.868085
115
0.600285
import collections import logging from math import sqrt from wordnik import swagger, WordApi from .utils import weighted_choice """corpus.py: Generates horoscopes based provided corpuses""" __author__ = "Project Zodiacy" __copyright__ = "Copyright 2015, Project Zodiacy" logger = logging.getLogger('root') class Corpus(): """ Generates a corpus from the provided database Args: zodiac_sign: select only entries for a specific zodiac sign keyword: select only entries for a specific keyword with_rating: weight entries after a predefined rating threshold: minimal amount of entries needed for a valid corpus with_synonyms: query wordnik for synonyms wordnik_api_url: Wordnik API URL wordnik_api_key: Wordnik API Key """ def __init__(self, conn, with_rating=False, with_synonyms=False, zodiac_sign=None, keyword=None, threshold=5, wordnik_api_url=None, wordnik_api_key=None): kws = locals() for key, val in kws.items(): if key != "conn": self.__dict__[key] = val assert conn is not None self.cursor = conn.cursor() self.synonym_influence = 0.2 self.zodiac_sign_ordinal = self._get_zodiac_sign(self.zodiac_sign) self._table_name = "horoscopes" def __str__(self): """ dumps the class on print - useful for debugging """ return str(self.__dict__) def _get_zodiac_sign(self, zodiac_sign=None): """ converts the string representation of a zodiac sign into a ordinal one Arguments: zodiac_sign: sign as string Returns: ordinal zodiac sign (from 0 to 12) """ zodiac_signs = dict(zip(['general', 'aries', 'taurus', 'gemini', 'cancer', 'leo', 'virgo', 'libra', 'scorpio', 'sagittarius', 'capricorn', 'aquarius', 'pisces'], range(13))) if zodiac_sign not in zodiac_signs: if zodiac_sign is not None: raise ValueError('Invalid zodiac sign') else: return zodiac_signs[zodiac_sign] def _add_filter(self, filter_sql, filter_value): """ help method to add a new filter Arguments: filter_sql: SQL string (with '?' for parameters) filter_value: parameters to bind to the SQL string (either a single value or list) """ self._filters.append(filter_sql) if isinstance(filter_value, collections.MutableSequence): assert filter_sql.count("?") == len(filter_value) self._filters_values += filter_value else: assert filter_sql.count("?") == 1 self._filters_values.append(filter_value) def _create_filters(self): """ builds all filters """ self._filters = [] self._filters_values = [] if self.zodiac_sign is not None: self._add_filter("sign=?", self.zodiac_sign_ordinal) if self.with_synonyms: present_synonyms = self.get_present_synonyms() if len(present_synonyms) == 0: logger.warn("No related synonyms found") present_synonyms.append(self.keyword) synonyms_sql_array = ','.join(('?' for _ in present_synonyms)) self._add_filter('keyword in (%s)' % synonyms_sql_array, present_synonyms) elif self.keyword is not None: # synonyms is already filtering on keyword self._add_filter("keyword=?", self.keyword) def _build_filters(self): """ concatenates all available filter to SQL """ filters = "" if len(self._filters) > 0: filters += " WHERE " filters += " AND ".join(self._filters) return filters def _execute_and_log(self, base_stmt, values=[]): """ execute logs the entire SQL string This is expensive as we need to make a request to our SQLite database. Hence it is only performed when the debugging is enabled - the level of the root logger needs to be logging.DEBUG or less""" if logger.getEffectiveLevel() <= logging.DEBUG: sql_with_vals = base_stmt if len(values) > 0: self.cursor.execute( "SELECT " + ", ".join(["quote(?)" for i in values]), values) quoted_values = self.cursor.fetchone() for quoted_value in quoted_values: sql_with_vals = sql_with_vals.replace( '?', str(quoted_value), 1) logger.debug("query: %s", sql_with_vals) self.cursor.execute(base_stmt, values) def _execute_query(self): """ Builds and executes the SQL query to fetch the corpus """ columns = 'interp' columns += ',rating' if self.with_rating or self.with_synonyms else '' columns += ',keyword' if self.keyword else '' base_stmt = 'SELECT %s from %s' % (columns, self._table_name) base_stmt += self._build_filters() self._execute_and_log(base_stmt, self._filters_values) def _count_entries(self): """ Returns the number of found entries in the database Reason: cursor.rowcount returns -1 until all results have been fetched """ base_stmt = 'SELECT COUNT(*) from %s' % self._table_name base_stmt += self._build_filters() self.cursor.execute(base_stmt, self._filters_values) return self.cursor.fetchone()[0] def _build(self): """ Returns a cursor with all horoscopes for the given parameters """ self._create_filters() nr_entries = self._count_entries() if nr_entries < self.threshold: raise ValueError("Found %d matches" % nr_entries) logger.debug("%d entries found in corpus db", nr_entries) self._execute_query() def __iter__(self): """ Lazy corpus iterator """ self._build() return self def __next__(self): """ returns the corpus lazy """ row = next(self.cursor, None) if row is None or row[0] is None: # maybe someone wants to access the results again raise StopIteration rating = None if self.with_rating: rating = row[1] if self.with_synonyms: if row[0] is None: # filter invalid entries logger.debug("invalid row %s", row) return self.__next__() if row[0] == self.keyword or len(self.synonyms) == 0: rating = row[1] else: rating = self.synonym_influence * \ row[1] * sqrt(len(self.synonyms)) if rating is None: return (row[0],) else: return (row[0], rating) def random_keyword(self): valid_keywords = [k for k in self.list_keywords() if k[1] >= self.threshold] self.keyword = weighted_choice(valid_keywords) logger.debug("keyword selected: %s", self.keyword) def list_keywords(self): """ lists all available keywords """ self._execute_and_log(("SELECT keyword, count(*) as count FROM horoscopes " "WHERE length(keyword) > 0 GROUP BY keyword ORDER BY count desc")) return self.cursor.fetchall() def select_keyword_range(self, min_val=0, max_val=1, val=1): """ evenly maps a val with min and max to the keywords As the mapping is surjective the remaining slice is then weighted_chosen""" kws = [k for k in self.list_keywords() if k[1] >= self.threshold] val_range = max_val - min_val factor = int(len(kws) / val_range) upper_end = val * factor if upper_end < factor: upper_end = factor lower_end = upper_end - factor self.keyword = weighted_choice(kws[lower_end:upper_end]) logger.debug("moon keyword selected: %s", self.keyword) def _get_synonyms(self, keyword): """ Queries Wordnik for synonyms """ client = swagger.ApiClient(self.wordnik_api_key, self.wordnik_api_url) word_api = WordApi.WordApi(client) words = word_api.getRelatedWords(keyword, relationshipTypes='synonym') if words is None or len(words) == 0: return [] else: return words[0].words def get_present_synonyms(self): """ Compares Wordnik result with present synonyms in DB Returns: List of synonyms occurring in the database """ self.synonyms = self._get_synonyms(self.keyword) logger.debug("found %d synonyms", len(self.synonyms)) if len(self.synonyms) > 0: self._execute_and_log('SELECT keyword FROM horoscopes WHERE keyword IN (%s) GROUP BY keyword' % ','.join('?' for _ in self.synonyms), tuple(self.synonyms)) return [row[0] for row in self.cursor if row is not None] else: return []
721
0
54
f49d473cc0d800aa406361c6dce4b00757bccf54
2,906
py
Python
remedy/remedy.py
4n6ir/remedy-delete-default-vpcs
ce1250140c7f3c967646c9be5ef09dde88c191b0
[ "Apache-2.0" ]
null
null
null
remedy/remedy.py
4n6ir/remedy-delete-default-vpcs
ce1250140c7f3c967646c9be5ef09dde88c191b0
[ "Apache-2.0" ]
null
null
null
remedy/remedy.py
4n6ir/remedy-delete-default-vpcs
ce1250140c7f3c967646c9be5ef09dde88c191b0
[ "Apache-2.0" ]
null
null
null
import boto3 import json import logging import os logger = logging.getLogger() logger.setLevel(logging.INFO)
44.707692
93
0.399862
import boto3 import json import logging import os logger = logging.getLogger() logger.setLevel(logging.INFO) def handler(event, context): client = boto3.client('ec2') regions = client.describe_regions() for region in regions['Regions']: ec2_client = boto3.client('ec2', region_name=region['RegionName']) paginator = ec2_client.get_paginator('describe_vpcs') response_iterator = paginator.paginate() for page in response_iterator: if len(page['Vpcs']) > 0: for item in page['Vpcs']: if item['IsDefault'] is True: paginator2 = ec2_client.get_paginator('describe_internet_gateways') response_iterator2 = paginator2.paginate() for page2 in response_iterator2: for item2 in page2['InternetGateways']: if len(page2['InternetGateways']) > 0: if item2['Attachments'][0]['VpcId'] == item['VpcId']: try: ec2_client.detach_internet_gateway( InternetGatewayId=item2['InternetGatewayId'], VpcId=item['VpcId'] ) ec2_client.delete_internet_gateway( InternetGatewayId=item2['InternetGatewayId'] ) except: logger.info('USED '+str(item2)) paginator3 = ec2_client.get_paginator('describe_subnets') response_iterator3 = paginator3.paginate() for page3 in response_iterator3: for item3 in page3['Subnets']: if len(page3['Subnets']) > 0: if item3['VpcId'] == item['VpcId']: try: ec2_client.delete_subnet( SubnetId=item3['SubnetId'] ) except: logger.info('USED '+str(item3)) try: ec2_client.delete_vpc( VpcId=item['VpcId'] ) except: logger.info('USED '+str(item)) pass return { 'statusCode': 200, 'body': json.dumps('Delete Default VPCs') }
2,773
0
23
39869b293ee78812692ef8612d361826ac2281dd
5,815
py
Python
papers/BLS/BLSBasic/BLS.py
mindspore-ai/contrib
85dccac7a2ba6e962092ecd51aefd962d7f2aeac
[ "Apache-2.0" ]
2
2021-11-10T06:16:55.000Z
2022-02-22T11:30:04.000Z
papers/BLS/BLSBasic/BLS.py
mindspore-ai/contrib
85dccac7a2ba6e962092ecd51aefd962d7f2aeac
[ "Apache-2.0" ]
null
null
null
papers/BLS/BLSBasic/BLS.py
mindspore-ai/contrib
85dccac7a2ba6e962092ecd51aefd962d7f2aeac
[ "Apache-2.0" ]
1
2022-03-22T06:03:15.000Z
2022-03-22T06:03:15.000Z
import numpy import numpy as np from mindspore import Tensor, dtype from mindspore.train.serialization import export, save_checkpoint import mindspore.dataset as ds import mindspore.context as context import mindspore.ops as ops import mindspore.nn as N import mindspore.numpy as mnp
44.389313
115
0.692863
import numpy import numpy as np from mindspore import Tensor, dtype from mindspore.train.serialization import export, save_checkpoint import mindspore.dataset as ds import mindspore.context as context import mindspore.ops as ops import mindspore.nn as N import mindspore.numpy as mnp class BLSBasicTrain(N.Cell): def __init__(self) -> None: super(BLSBasicTrain, self).__init__() self.s = 0.8 self.c = 2 ** -15 self.n1 = 10 self.n2 = 10 self.n3 = 20 self.y_max = 1 self.y_min = 0 self.iterations = 2 # 用于训练结果输出 self.argmax_op = ops.Argmax() self.sign_op = ops.Sign() self.select_op = ops.Select() self.accuracy_op = N.Accuracy('classification') def construct(self, _train_data, _train_label): output, weight, _, _, _, _, _ = self.train(_train_data, _train_label) return output, weight def train(self, x, y): standardized_data = self.standardize_input(x) feature, mapped_features, _, _ = self.generate_mapped_features(standardized_data) feature_with_bias = self.enhance_layer_input(feature) enhance_layer_weight = self.generate_random_weight_of_enhance_layer() enhance_layer_output, shrink_parameter = self.enhance_layer_output(feature_with_bias, enhance_layer_weight) output, output_weight = self.final_output(feature, enhance_layer_output, y) return output, output_weight, mapped_features, _, _, enhance_layer_weight, shrink_parameter def generate_mapped_features(self, standardized_train_x): feature = self.input_features(standardized_train_x) output = [] weight = mnp.full((self.n2, feature.shape[1], self.n1), 0.0) max_list = mnp.full((self.n2, self.n1), 0.0) min_list = mnp.full((self.n2, self.n1), 0.0) for i in range(self.n2): # 生成随机权重 weight_of_each_window = self.generate_random_weight_of_window(standardized_train_x, i) # 生成窗口特征 temp_feature_of_each_window = mnp.matmul(feature, weight_of_each_window) # 压缩 feature_of_each_window, _, _ = self.mapminmax(temp_feature_of_each_window, -1.0, 1.0) # 通过稀疏化计算,生成最终权重 beta = self.sparse_bls(feature_of_each_window, feature) # 计算窗口输出 T1 output_of_each_window_next = self.window_output(feature, beta) # 压缩 output_of_each_window_next, max_list, min_list = self.mapminmax(output_of_each_window_next, 0.0, 1.0) # 拼接窗口输出 output = self.concat_window_output(output, output_of_each_window_next) # 更新输出的权重 weight[i] = beta max_list[i] = max_list min_list[i] = min_list output = self.stack_window_output(output) return output, weight, max_list, min_list def generate_random_weight_of_enhance_layer(self): weight = [] uniform = ops.UniformReal(seed=2) rand = uniform((self.n2 * self.n1 + 1, self.n3), 0.0, 1.0) weight.append(self.orthonormalize(2 * rand - mnp.full(rand.shape, 1.0))) return mnp.stack(weight, axis=1) def final_output(self, _output_of_feature_mapping_layer, _output_of_enhance_layer, _train_label): # 拼接T2和y, 生成T3 concat = mnp.concatenate((_output_of_feature_mapping_layer, _output_of_enhance_layer), axis=1) weight = self.pseudo_inverse(concat, _train_label) # 生成训练输出 output = self.output_layer(concat, weight) return output, weight def generate_random_weight_of_window(self, standardized_x, i): uniform = ops.UniformReal(seed=2) weight = 2.0 * uniform((standardized_x.shape[1] + 1, self.n1)) - 1.0 # 生成每个窗口的权重系数,最后一行为偏差 return weight def input_features(self, standardized_train_x): ones = mnp.full((standardized_train_x.shape[0], 1), 0.1) feature_of_input_data_with_bias = mnp.concatenate((standardized_train_x, ones), axis=1) return feature_of_input_data_with_bias def window_output(self, feature_of_input_data_with_bias, beta): output_of_each_window = mnp.matmul(feature_of_input_data_with_bias, beta) return output_of_each_window def concat_window_output(self, output_of_feature_mapping_layer, t1): output_of_feature_mapping_layer.append(t1) return output_of_feature_mapping_layer def stack_window_output(self, output_of_feature_mapping_layer): res = mnp.stack(output_of_feature_mapping_layer, axis=1) res = mnp.reshape(res, (res.shape[0], -1)) return res def enhance_layer_input(self, mapped_feature): data_concat_second = mnp.full((mapped_feature.shape[0], 1), 0.1) res = mnp.concatenate((mapped_feature, data_concat_second), axis=1) return res def enhance_layer_output(self, _input_of_enhance_layer_with_bias, _weight_of_enhance_layer): res_squeeze_input0 = mnp.squeeze(_input_of_enhance_layer_with_bias) res_squeeze_input1 = mnp.squeeze(_weight_of_enhance_layer) res_matmul = mnp.matmul(res_squeeze_input0, res_squeeze_input1) res_reduce_max = mnp.amax(res_matmul) shrink_parameter = self.s * mnp.full(res_reduce_max.shape, 1.0) / res_reduce_max res_tanh = mnp.tanh(res_matmul * shrink_parameter) return res_tanh, shrink_parameter def pseudo_inverse(self, _concatenate_of_two_layer, _train_y): pseudo_inverse = self.pinv(_concatenate_of_two_layer, self.c) new_output_weight = mnp.matmul(pseudo_inverse, _train_y) return new_output_weight def output_layer(self, concatenate_of_two_layer, output_weight): output_of_result = mnp.matmul(concatenate_of_two_layer, output_weight) return output_of_result
5,270
7
427
ced8f7377ff6afeb026e4db4b64351647f6b9de4
8,333
py
Python
tests/zquantum/core/wip/circuits/_gates_test.py
bartubisgin/z-quantum-core
b61aef12cc86f0a8234229b9b26b21cde950d6f1
[ "Apache-2.0" ]
null
null
null
tests/zquantum/core/wip/circuits/_gates_test.py
bartubisgin/z-quantum-core
b61aef12cc86f0a8234229b9b26b21cde950d6f1
[ "Apache-2.0" ]
null
null
null
tests/zquantum/core/wip/circuits/_gates_test.py
bartubisgin/z-quantum-core
b61aef12cc86f0a8234229b9b26b21cde950d6f1
[ "Apache-2.0" ]
1
2022-03-19T02:23:53.000Z
2022-03-19T02:23:53.000Z
"""Test cases for _gates module.""" from unittest.mock import Mock import pytest import sympy from zquantum.core.wip.circuits import _builtin_gates from zquantum.core.wip.circuits._gates import GateOperation, MatrixFactoryGate GATES_REPRESENTATIVES = [ _builtin_gates.X, _builtin_gates.Y, _builtin_gates.Z, _builtin_gates.T, _builtin_gates.H, _builtin_gates.I, _builtin_gates.RX(sympy.Symbol("theta")), _builtin_gates.RY(0.5), _builtin_gates.RZ(0), _builtin_gates.PHASE(sympy.pi / 5), _builtin_gates.CZ, _builtin_gates.CNOT, _builtin_gates.SWAP, _builtin_gates.ISWAP, _builtin_gates.XX(sympy.cos(sympy.Symbol("phi"))), _builtin_gates.YY(sympy.pi), _builtin_gates.ZZ(sympy.Symbol("x") + sympy.Symbol("y")), _builtin_gates.CPHASE(1.5), ] @pytest.mark.parametrize("gate", GATES_REPRESENTATIVES) @pytest.mark.parametrize("gate", GATES_REPRESENTATIVES)
37.200893
88
0.677667
"""Test cases for _gates module.""" from unittest.mock import Mock import pytest import sympy from zquantum.core.wip.circuits import _builtin_gates from zquantum.core.wip.circuits._gates import GateOperation, MatrixFactoryGate GATES_REPRESENTATIVES = [ _builtin_gates.X, _builtin_gates.Y, _builtin_gates.Z, _builtin_gates.T, _builtin_gates.H, _builtin_gates.I, _builtin_gates.RX(sympy.Symbol("theta")), _builtin_gates.RY(0.5), _builtin_gates.RZ(0), _builtin_gates.PHASE(sympy.pi / 5), _builtin_gates.CZ, _builtin_gates.CNOT, _builtin_gates.SWAP, _builtin_gates.ISWAP, _builtin_gates.XX(sympy.cos(sympy.Symbol("phi"))), _builtin_gates.YY(sympy.pi), _builtin_gates.ZZ(sympy.Symbol("x") + sympy.Symbol("y")), _builtin_gates.CPHASE(1.5), ] def example_one_qubit_matrix_factory(a, b): return sympy.Matrix([[a, b], [b, a]]) def example_two_qubit_matrix_factory(a, b, c): return sympy.Matrix([[a, 0, 0, 0], [0, b, 0, 0], [0, 0, c, 0], [0, 0, 0, 1]]) class TestMatrixFactoryGate: @pytest.mark.parametrize( "params, factory, num_qubits", [ ((0.5, sympy.Symbol("theta")), example_one_qubit_matrix_factory, 1), ( (sympy.Symbol("alpha"), sympy.Symbol("beta"), 1), example_two_qubit_matrix_factory, 2, ), ], ) def test_constructs_its_matrix_by_calling_factory_with_bound_parameter( self, params, factory, num_qubits ): wrapped_factory = Mock(wraps=factory) gate = MatrixFactoryGate("U", wrapped_factory, params, num_qubits) assert gate.matrix == factory(*params) wrapped_factory.assert_called_once_with(*params) def test_binding_parameters_creates_new_instance_with_substituted_free_params(self): gamma, theta, x, y = sympy.symbols("gamma, theta, x, y") params = (theta, x + y) gate = MatrixFactoryGate("U", example_one_qubit_matrix_factory, params, 1) new_gate = gate.bind({theta: 0.5, x: gamma, y: 3}) assert new_gate.name == gate.name assert new_gate.matrix_factory == gate.matrix_factory assert new_gate.num_qubits == gate.num_qubits assert new_gate.params == (0.5, gamma + 3) def test_binding_parameters_with_symbol_outside_of_free_symbols_does_not_raise( self, ): gamma, theta = sympy.symbols("gamma, theta") params = (theta, 2 * theta) gate = MatrixFactoryGate("U", example_one_qubit_matrix_factory, params, 1) new_gate = gate.bind({gamma: 0.5, theta: 1}) assert new_gate.params == (1, 2) def test_binding_parameters_does_not_change_parameters_without_free_symbols(self): theta = sympy.Symbol("theta") gate = MatrixFactoryGate("V", example_one_qubit_matrix_factory, (1, 2), 1) new_gate = gate.bind({theta: 5.0}) assert new_gate.params == (1, 2) def test_replace_parameters_correctly_gives_instance_with_correctly_set_parameters( self, ): theta = sympy.Symbol("theta") gate = MatrixFactoryGate("V", example_one_qubit_matrix_factory, (1, 2), 1) new_gate = gate.replace_params((theta, 0.5)) assert new_gate == MatrixFactoryGate( "V", example_one_qubit_matrix_factory, (theta, 0.5), 1 ) def test_daggers_matrix_is_adjoint_of_original_gates_matrix(self): gate = MatrixFactoryGate("V", example_one_qubit_matrix_factory, (1, 2), 1) assert gate.dagger.matrix == gate.matrix.adjoint() def test_dagger_has_the_same_params_and_num_qubits_as_wrapped_gate(self): gate = MatrixFactoryGate( "U", example_two_qubit_matrix_factory, (0.5, 0.1, sympy.Symbol("a")), 2 ) assert gate.dagger.num_qubits == gate.num_qubits assert gate.dagger.params == gate.params def test_dagger_of_hermitian_gate_is_the_same_gate(self): gate = MatrixFactoryGate( "V", example_one_qubit_matrix_factory, (1, 0), 1, is_hermitian=True ) assert gate.dagger is gate def test_binding_gates_in_dagger_is_propagated_to_wrapped_gate(self): theta = sympy.Symbol("theta") gate = MatrixFactoryGate("V", example_one_qubit_matrix_factory, (theta, 0), 1) assert gate.dagger.bind({theta: 0.5}) == gate.bind({theta: 0.5}).dagger def test_dagger_of_dagger_is_the_same_as_original_gate(self): gate = MatrixFactoryGate("V", example_one_qubit_matrix_factory, (1, 0), 1) assert gate.dagger.dagger is gate def test_applying_dagger_and_replacing_parameters_commutes(self): gate = MatrixFactoryGate("V", example_one_qubit_matrix_factory, (1, 0), 1) new_params = (sympy.Symbol("theta"), 4.2) assert ( gate.dagger.replace_params(new_params) == gate.replace_params(new_params).dagger ) def test_applying_gate_returns_operation_with_correct_gate_and_indices(self): theta = sympy.Symbol("theta") gamma = sympy.Symbol("gamma") gate = MatrixFactoryGate( "A", example_two_qubit_matrix_factory, (theta, gamma, 42), 2 ) operation = gate(4, 1) assert operation.gate == gate assert operation.qubit_indices == (4, 1) @pytest.mark.parametrize("gate", GATES_REPRESENTATIVES) class TestControlledGate: def test_num_qubits_equal_to_wrapped_gates_num_qubits_plus_num_controlled_qubits( self, gate ): assert gate.controlled(3).num_qubits == gate.num_qubits + 3 def test_has_matrix_with_eye_and_wrapped_gates_matrix_as_bottom_left_block( self, gate ): controlled_gate = gate.controlled(2) n = gate.matrix.shape[0] assert gate.matrix.shape[1] == n assert controlled_gate.matrix[0:-n, 0:-n] == sympy.eye( 2 ** controlled_gate.num_qubits - n ) assert controlled_gate.matrix[-n:, -n:] == gate.matrix def test_controlled_of_controlled_gate_has_summed_number_of_control_qubits( self, gate ): controlled_gate = gate.controlled(2) double_controlled_gate = controlled_gate.controlled(3) assert double_controlled_gate.wrapped_gate == gate assert double_controlled_gate.num_qubits == gate.num_qubits + 2 + 3 assert double_controlled_gate.num_control_qubits == 2 + 3 assert double_controlled_gate.matrix.shape == 2 * ( 2 ** (gate.num_qubits + 2 + 3), ) def test_has_the_same_parameters_as_wrapped_gate(self, gate): controlled_gate = gate.controlled(4) assert controlled_gate.params == gate.params def test_dagger_of_controlled_gate_is_controlled_gate_wrapping_dagger(self, gate): controlled_gate = gate.controlled(4) assert controlled_gate.dagger == gate.dagger.controlled(4) def test_binding_parameters_in_control_gate_is_propagated_to_wrapped_gate( self, gate ): controlled_gate = gate.controlled(2) symbols_map = {sympy.Symbol("theta"): 0.5, sympy.Symbol("x"): 3} assert controlled_gate.bind(symbols_map) == gate.bind(symbols_map).controlled(2) def test_constructing_controlled_gate_and_replacing_parameters_commute(self, gate): controlled_gate = gate.controlled(2) new_params = tuple(3 * param for param in controlled_gate.params) assert controlled_gate.replace_params(new_params) == gate.replace_params( new_params ).controlled(2) @pytest.mark.parametrize("gate", GATES_REPRESENTATIVES) class TestGateOperation: def test_bound_symbols_are_not_present_in_gate_parameters(self, gate): op = GateOperation(gate, tuple(range(gate.num_qubits))) symbols_map = {sympy.Symbol("phi"): 0.5, sympy.Symbol("y"): 1.1} assert all( symbol not in sympy.sympify(param).atoms(sympy.Symbol) for symbol in symbols_map for param in op.bind(symbols_map).params ) def test_replacing_parameters_constructs_operation_of_gate_with_new_parameters( self, gate ): op = GateOperation(gate, tuple(range(gate.num_qubits))) new_params = tuple(-1 * param for param in op.params) assert op.replace_params(new_params).params == new_params
6,372
678
354
5a4509ded52d8b17265869fdb30826814374cffa
2,138
py
Python
8-puzzle-game/manhattan.py
itepifanio/jogo-dos-8-numeros
692b84f9b48fef5d8da9afba67adb1a1f9c13b28
[ "MIT" ]
null
null
null
8-puzzle-game/manhattan.py
itepifanio/jogo-dos-8-numeros
692b84f9b48fef5d8da9afba67adb1a1f9c13b28
[ "MIT" ]
null
null
null
8-puzzle-game/manhattan.py
itepifanio/jogo-dos-8-numeros
692b84f9b48fef5d8da9afba67adb1a1f9c13b28
[ "MIT" ]
null
null
null
from game.game import Game from heapq import heappush, heappop import time import itertools import time if __name__ == '__main__': algorithm = Manhanttan() algorithm.run()
30.542857
89
0.563143
from game.game import Game from heapq import heappush, heappop import time import itertools import time class Manhanttan(Game): def heuristic(self, a): result = 0 node = list(itertools.chain(*a)) for current, target in enumerate(node): currentRow = int(current/3) currentColumn = current%3 targetRow = int(target/3) targetColumn = target%3 result += abs(currentRow-targetRow) + abs(currentColumn-targetColumn) return result def run(self): self.nodeList.append(self.startNode) self.visitedList.append(self.startNode) t0 = time.time() found = False while (not found and len(self.nodeList) != 0): fList = [] for node in self.nodeList: h = self.heuristic(node) g = len(node) f = g+h heappush(fList, (f, node)) currentNode = self.nodeList.pop( self.nodeList.index( heappop(fList)[1] ) ) blankIndex = self.getBlankIndexes(currentNode) if self.board.canMoveTop(blankIndex): topNode = self.board.top(currentNode, blankIndex[0], blankIndex[1]) found = self.checkFinal(topNode) if self.board.canMoveLeft(blankIndex) and found == False: leftNode = self.board.left(currentNode, blankIndex[0], blankIndex[1]) found = self.checkFinal(leftNode) if self.board.canMoveRight(blankIndex) and found == False: rightNode = self.board.right(currentNode, blankIndex[0], blankIndex[1]) found = self.checkFinal(rightNode) if self.board.canMoveBottom(blankIndex) and found == False: bottomNode = self.board.bottom(currentNode, blankIndex[0], blankIndex[1]) found = self.checkFinal(bottomNode) t1 = time.time() print('Time:', t1-t0) print('------') if __name__ == '__main__': algorithm = Manhanttan() algorithm.run()
1,870
2
80
8747cd2d839a44ad5113082afaedeed9aa0cc8f8
9,839
py
Python
benchmark_utils.py
neyudin/AcceleratedGNMethodEquations
b5606f98221d72ff3e9ebb8ce0709981db08cefd
[ "BSD-3-Clause" ]
null
null
null
benchmark_utils.py
neyudin/AcceleratedGNMethodEquations
b5606f98221d72ff3e9ebb8ce0709981db08cefd
[ "BSD-3-Clause" ]
null
null
null
benchmark_utils.py
neyudin/AcceleratedGNMethodEquations
b5606f98221d72ff3e9ebb8ce0709981db08cefd
[ "BSD-3-Clause" ]
null
null
null
from optimizers import * import gc import time def experiment_runner(args, x_0_dict): """ Runner routine which performs the whole experiment set. Parameters ---------- args : populated namespace object from ArgumentParser The system of equations evaluated at point x. x_0_dict : dict The dictionary of initial points x. Returns ------- dict Aggregated experiment data. """ gc.enable() gc.collect() exp_res_dict = dict() if args.verbose: print("Started DetGNM!") exp_res_dict['DetGNM'] = dict() for oracle_class, name in [(NesterovSkokovOracle, 'Nesterov-Skokov'), (HatOracle, 'Hat'), (PLOracle, 'PL')]: if args.verbose: print('Oracle:', name) exp_res_dict['DetGNM'][name] = dict() for n in args.n_dims: if args.verbose: print(' n:', n) exp_res_dict['DetGNM'][name][n] = dict() for i in range(args.n_starts): if args.verbose: print(' start #:', i + 1) start = time.time() _, f_vals, nabla_f_2_norm_vals, _, _ = DetGNM(oracle_class(n), args.N_iter, x_0_dict[n][i], args.L_0, True, None) start = time.time() - start exp_res_dict['DetGNM'][name][n][i] = {'f_vals': f_vals, 'nabla_f_2_norm_vals': nabla_f_2_norm_vals, 'avg_time_s': start / len(f_vals), 'time_s': start} del _, f_vals, nabla_f_2_norm_vals, start gc.collect() if args.verbose: print("Started ArmijoAccDetGNM!") exp_res_dict['ArmijoAccDetGNM'] = dict() for oracle_class, name in [(NesterovSkokovOracle, 'Nesterov-Skokov'), (HatOracle, 'Hat'), (PLOracle, 'PL')]: if args.verbose: print('Oracle:', name) exp_res_dict['ArmijoAccDetGNM'][name] = dict() for n in args.n_dims: if args.verbose: print(' n:', n) exp_res_dict['ArmijoAccDetGNM'][name][n] = dict() for pair_num, (c1, c2) in enumerate(zip(args.c1_list, args.c2_list)): if args.verbose: print(' c1 = {:.4f}, c2 = {:.4f}:'.format(c1, c2)) exp_res_dict['ArmijoAccDetGNM'][name][n][pair_num] = dict() for i in range(args.n_starts): if args.verbose: print(' start #:', i + 1) start = time.time() _, f_vals, nabla_f_2_norm_vals, _, _, local_steps_list, spec_steps_list = AccDetGNM(oracle_class(n), args.N_iter, x_0_dict[n][i], args.L_0, True, None, "Armijo", c1=c1, c2=c2) start = time.time() - start exp_res_dict['ArmijoAccDetGNM'][name][n][pair_num][i] = {'f_vals': f_vals, 'nabla_f_2_norm_vals': nabla_f_2_norm_vals, 'local_steps_list': local_steps_list, 'spec_steps_list': spec_steps_list, 'avg_time_s': start / len(f_vals), 'time_s': start} del _, f_vals, nabla_f_2_norm_vals, local_steps_list, spec_steps_list, start gc.collect() if args.verbose: print("Started ExtrapolationAccDetGNM!") exp_res_dict['ExtrapolationAccDetGNM'] = dict() for oracle_class, name in [(NesterovSkokovOracle, 'Nesterov-Skokov'), (HatOracle, 'Hat'), (PLOracle, 'PL')]: if args.verbose: print('Oracle:', name) exp_res_dict['ExtrapolationAccDetGNM'][name] = dict() for n in args.n_dims: if args.verbose: print(' n:', n) exp_res_dict['ExtrapolationAccDetGNM'][name][n] = dict() for i in range(args.n_starts): if args.verbose: print(' start #:', i + 1) start = time.time() _, f_vals, nabla_f_2_norm_vals, _, _, n_iter_list = AccDetGNM(oracle_class(n), args.N_iter, x_0_dict[n][i], args.L_0, True, None, "Extrapolation") start = time.time() - start exp_res_dict['ExtrapolationAccDetGNM'][name][n][i] = {'f_vals': f_vals, 'nabla_f_2_norm_vals': nabla_f_2_norm_vals, 'n_iter_list': n_iter_list, 'avg_time_s': start / len(f_vals), 'time_s': start} del _, f_vals, nabla_f_2_norm_vals, n_iter_list, start gc.collect() if args.verbose: print("Started InterpolationAccDetGNM!") exp_res_dict['InterpolationAccDetGNM'] = dict() for oracle_class, name in [(NesterovSkokovOracle, 'Nesterov-Skokov'), (HatOracle, 'Hat'), (PLOracle, 'PL')]: if args.verbose: print('Oracle:', name) exp_res_dict['InterpolationAccDetGNM'][name] = dict() for n in args.n_dims: if args.verbose: print(' n:', n) exp_res_dict['InterpolationAccDetGNM'][name][n] = dict() for n_points in args.n_points_list: if args.verbose: print(' n_points:', n_points) exp_res_dict['InterpolationAccDetGNM'][name][n][n_points] = dict() for i in range(args.n_starts): if args.verbose: print(' start #:', i + 1) start = time.time() _, f_vals, nabla_f_2_norm_vals, _, _ = AccDetGNM(oracle_class(n), args.N_iter, x_0_dict[n][i], args.L_0, True, None, "Interpolation") start = time.time() - start exp_res_dict['InterpolationAccDetGNM'][name][n][n_points][i] = {'f_vals': f_vals, 'nabla_f_2_norm_vals': nabla_f_2_norm_vals, 'avg_time_s': start / len(f_vals), 'time_s': start} del _, f_vals, nabla_f_2_norm_vals, start gc.collect() if args.verbose: print("Started SamplingAccDetGNM!") exp_res_dict['SamplingAccDetGNM'] = dict() for oracle_class, name in [(NesterovSkokovOracle, 'Nesterov-Skokov'), (HatOracle, 'Hat'), (PLOracle, 'PL')]: if args.verbose: print('Oracle:', name) exp_res_dict['SamplingAccDetGNM'][name] = dict() for n in args.n_dims: if args.verbose: print(' n:', n) exp_res_dict['SamplingAccDetGNM'][name][n] = dict() for n_points in args.n_points_list: if args.verbose: print(' n_points:', n_points) exp_res_dict['SamplingAccDetGNM'][name][n][n_points] = dict() for i in range(args.n_starts): if args.verbose: print(' start #:', i + 1) start = time.time() _, f_vals, nabla_f_2_norm_vals, _, _ = AccDetGNM(oracle_class(n), args.N_iter, x_0_dict[n][i], args.L_0, True, None, "Sampling") start = time.time() - start exp_res_dict['SamplingAccDetGNM'][name][n][n_points][i] = {'f_vals': f_vals, 'nabla_f_2_norm_vals': nabla_f_2_norm_vals, 'avg_time_s': start / len(f_vals), 'time_s': start} del _, f_vals, nabla_f_2_norm_vals, start gc.collect() if args.verbose: print("Started GoldenRatioAccDetGNM!") exp_res_dict['GoldenRatioAccDetGNM'] = dict() for oracle_class, name in [(NesterovSkokovOracle, 'Nesterov-Skokov'), (HatOracle, 'Hat'), (PLOracle, 'PL')]: if args.verbose: print('Oracle:', name) exp_res_dict['GoldenRatioAccDetGNM'][name] = dict() for n in args.n_dims: if args.verbose: print(' n:', n) exp_res_dict['GoldenRatioAccDetGNM'][name][n] = dict() for i in range(args.n_starts): if args.verbose: print(' start #:', i + 1) start = time.time() _, f_vals, nabla_f_2_norm_vals, _, _, n_iter_list = AccDetGNM(oracle_class(n), args.N_iter, x_0_dict[n][i], args.L_0, True, None, "GoldenRatio") start = time.time() - start exp_res_dict['GoldenRatioAccDetGNM'][name][n][i] = {'f_vals': f_vals, 'nabla_f_2_norm_vals': nabla_f_2_norm_vals, 'n_iter_list': n_iter_list, 'avg_time_s': start / len(f_vals), 'time_s': start} del _, f_vals, nabla_f_2_norm_vals, n_iter_list, start gc.collect() return exp_res_dict
53.472826
195
0.476979
from optimizers import * import gc import time def experiment_runner(args, x_0_dict): """ Runner routine which performs the whole experiment set. Parameters ---------- args : populated namespace object from ArgumentParser The system of equations evaluated at point x. x_0_dict : dict The dictionary of initial points x. Returns ------- dict Aggregated experiment data. """ gc.enable() gc.collect() exp_res_dict = dict() if args.verbose: print("Started DetGNM!") exp_res_dict['DetGNM'] = dict() for oracle_class, name in [(NesterovSkokovOracle, 'Nesterov-Skokov'), (HatOracle, 'Hat'), (PLOracle, 'PL')]: if args.verbose: print('Oracle:', name) exp_res_dict['DetGNM'][name] = dict() for n in args.n_dims: if args.verbose: print(' n:', n) exp_res_dict['DetGNM'][name][n] = dict() for i in range(args.n_starts): if args.verbose: print(' start #:', i + 1) start = time.time() _, f_vals, nabla_f_2_norm_vals, _, _ = DetGNM(oracle_class(n), args.N_iter, x_0_dict[n][i], args.L_0, True, None) start = time.time() - start exp_res_dict['DetGNM'][name][n][i] = {'f_vals': f_vals, 'nabla_f_2_norm_vals': nabla_f_2_norm_vals, 'avg_time_s': start / len(f_vals), 'time_s': start} del _, f_vals, nabla_f_2_norm_vals, start gc.collect() if args.verbose: print("Started ArmijoAccDetGNM!") exp_res_dict['ArmijoAccDetGNM'] = dict() for oracle_class, name in [(NesterovSkokovOracle, 'Nesterov-Skokov'), (HatOracle, 'Hat'), (PLOracle, 'PL')]: if args.verbose: print('Oracle:', name) exp_res_dict['ArmijoAccDetGNM'][name] = dict() for n in args.n_dims: if args.verbose: print(' n:', n) exp_res_dict['ArmijoAccDetGNM'][name][n] = dict() for pair_num, (c1, c2) in enumerate(zip(args.c1_list, args.c2_list)): if args.verbose: print(' c1 = {:.4f}, c2 = {:.4f}:'.format(c1, c2)) exp_res_dict['ArmijoAccDetGNM'][name][n][pair_num] = dict() for i in range(args.n_starts): if args.verbose: print(' start #:', i + 1) start = time.time() _, f_vals, nabla_f_2_norm_vals, _, _, local_steps_list, spec_steps_list = AccDetGNM(oracle_class(n), args.N_iter, x_0_dict[n][i], args.L_0, True, None, "Armijo", c1=c1, c2=c2) start = time.time() - start exp_res_dict['ArmijoAccDetGNM'][name][n][pair_num][i] = {'f_vals': f_vals, 'nabla_f_2_norm_vals': nabla_f_2_norm_vals, 'local_steps_list': local_steps_list, 'spec_steps_list': spec_steps_list, 'avg_time_s': start / len(f_vals), 'time_s': start} del _, f_vals, nabla_f_2_norm_vals, local_steps_list, spec_steps_list, start gc.collect() if args.verbose: print("Started ExtrapolationAccDetGNM!") exp_res_dict['ExtrapolationAccDetGNM'] = dict() for oracle_class, name in [(NesterovSkokovOracle, 'Nesterov-Skokov'), (HatOracle, 'Hat'), (PLOracle, 'PL')]: if args.verbose: print('Oracle:', name) exp_res_dict['ExtrapolationAccDetGNM'][name] = dict() for n in args.n_dims: if args.verbose: print(' n:', n) exp_res_dict['ExtrapolationAccDetGNM'][name][n] = dict() for i in range(args.n_starts): if args.verbose: print(' start #:', i + 1) start = time.time() _, f_vals, nabla_f_2_norm_vals, _, _, n_iter_list = AccDetGNM(oracle_class(n), args.N_iter, x_0_dict[n][i], args.L_0, True, None, "Extrapolation") start = time.time() - start exp_res_dict['ExtrapolationAccDetGNM'][name][n][i] = {'f_vals': f_vals, 'nabla_f_2_norm_vals': nabla_f_2_norm_vals, 'n_iter_list': n_iter_list, 'avg_time_s': start / len(f_vals), 'time_s': start} del _, f_vals, nabla_f_2_norm_vals, n_iter_list, start gc.collect() if args.verbose: print("Started InterpolationAccDetGNM!") exp_res_dict['InterpolationAccDetGNM'] = dict() for oracle_class, name in [(NesterovSkokovOracle, 'Nesterov-Skokov'), (HatOracle, 'Hat'), (PLOracle, 'PL')]: if args.verbose: print('Oracle:', name) exp_res_dict['InterpolationAccDetGNM'][name] = dict() for n in args.n_dims: if args.verbose: print(' n:', n) exp_res_dict['InterpolationAccDetGNM'][name][n] = dict() for n_points in args.n_points_list: if args.verbose: print(' n_points:', n_points) exp_res_dict['InterpolationAccDetGNM'][name][n][n_points] = dict() for i in range(args.n_starts): if args.verbose: print(' start #:', i + 1) start = time.time() _, f_vals, nabla_f_2_norm_vals, _, _ = AccDetGNM(oracle_class(n), args.N_iter, x_0_dict[n][i], args.L_0, True, None, "Interpolation") start = time.time() - start exp_res_dict['InterpolationAccDetGNM'][name][n][n_points][i] = {'f_vals': f_vals, 'nabla_f_2_norm_vals': nabla_f_2_norm_vals, 'avg_time_s': start / len(f_vals), 'time_s': start} del _, f_vals, nabla_f_2_norm_vals, start gc.collect() if args.verbose: print("Started SamplingAccDetGNM!") exp_res_dict['SamplingAccDetGNM'] = dict() for oracle_class, name in [(NesterovSkokovOracle, 'Nesterov-Skokov'), (HatOracle, 'Hat'), (PLOracle, 'PL')]: if args.verbose: print('Oracle:', name) exp_res_dict['SamplingAccDetGNM'][name] = dict() for n in args.n_dims: if args.verbose: print(' n:', n) exp_res_dict['SamplingAccDetGNM'][name][n] = dict() for n_points in args.n_points_list: if args.verbose: print(' n_points:', n_points) exp_res_dict['SamplingAccDetGNM'][name][n][n_points] = dict() for i in range(args.n_starts): if args.verbose: print(' start #:', i + 1) start = time.time() _, f_vals, nabla_f_2_norm_vals, _, _ = AccDetGNM(oracle_class(n), args.N_iter, x_0_dict[n][i], args.L_0, True, None, "Sampling") start = time.time() - start exp_res_dict['SamplingAccDetGNM'][name][n][n_points][i] = {'f_vals': f_vals, 'nabla_f_2_norm_vals': nabla_f_2_norm_vals, 'avg_time_s': start / len(f_vals), 'time_s': start} del _, f_vals, nabla_f_2_norm_vals, start gc.collect() if args.verbose: print("Started GoldenRatioAccDetGNM!") exp_res_dict['GoldenRatioAccDetGNM'] = dict() for oracle_class, name in [(NesterovSkokovOracle, 'Nesterov-Skokov'), (HatOracle, 'Hat'), (PLOracle, 'PL')]: if args.verbose: print('Oracle:', name) exp_res_dict['GoldenRatioAccDetGNM'][name] = dict() for n in args.n_dims: if args.verbose: print(' n:', n) exp_res_dict['GoldenRatioAccDetGNM'][name][n] = dict() for i in range(args.n_starts): if args.verbose: print(' start #:', i + 1) start = time.time() _, f_vals, nabla_f_2_norm_vals, _, _, n_iter_list = AccDetGNM(oracle_class(n), args.N_iter, x_0_dict[n][i], args.L_0, True, None, "GoldenRatio") start = time.time() - start exp_res_dict['GoldenRatioAccDetGNM'][name][n][i] = {'f_vals': f_vals, 'nabla_f_2_norm_vals': nabla_f_2_norm_vals, 'n_iter_list': n_iter_list, 'avg_time_s': start / len(f_vals), 'time_s': start} del _, f_vals, nabla_f_2_norm_vals, n_iter_list, start gc.collect() return exp_res_dict
0
0
0
3f735b40adc91055ec645c76cf232232a3b35167
344
py
Python
testing/mpy_dummy/utime.py
dpm76/Microvacbot
b89c7e7e0e1e7b21d946d2f6a312c217c08badd6
[ "MIT" ]
1
2020-04-02T14:32:53.000Z
2020-04-02T14:32:53.000Z
testing/mpy_dummy/utime.py
dpm76/Microvacbot
b89c7e7e0e1e7b21d946d2f6a312c217c08badd6
[ "MIT" ]
null
null
null
testing/mpy_dummy/utime.py
dpm76/Microvacbot
b89c7e7e0e1e7b21d946d2f6a312c217c08badd6
[ "MIT" ]
null
null
null
import time
11.096774
35
0.517442
import time def sleep(s): time.sleep(s) def sleep_ms(ms): time.sleep(ms/1e3) def sleep_us(us): time.sleep(us/1e6) def ticks_us(): time.time() * 1e6 def ticks_ms(): time.time() * 1e3 def ticks_diff(timeEnd, timeStart): return timeEnd-timeStart
153
0
154
51311d98800bb3f9984f334fadd5802ed4789387
509
py
Python
docs/components_page/components/button/usage.py
glsdown/dash-bootstrap-components
0ebea4f7de43975f6e3a2958359c4480ae1d4927
[ "Apache-2.0" ]
776
2019-02-07T19:36:59.000Z
2022-03-31T05:53:04.000Z
docs/components_page/components/button/usage.py
glsdown/dash-bootstrap-components
0ebea4f7de43975f6e3a2958359c4480ae1d4927
[ "Apache-2.0" ]
350
2019-02-05T10:42:19.000Z
2022-03-31T19:23:35.000Z
docs/components_page/components/button/usage.py
glsdown/dash-bootstrap-components
0ebea4f7de43975f6e3a2958359c4480ae1d4927
[ "Apache-2.0" ]
219
2019-02-10T13:46:25.000Z
2022-03-23T17:03:39.000Z
import dash_bootstrap_components as dbc from dash import Input, Output, html button = html.Div( [ dbc.Button( "Click me", id="example-button", className="me-2", n_clicks=0 ), html.Span(id="example-output", style={"verticalAlign": "middle"}), ] ) @app.callback( Output("example-output", "children"), [Input("example-button", "n_clicks")] )
23.136364
79
0.607073
import dash_bootstrap_components as dbc from dash import Input, Output, html button = html.Div( [ dbc.Button( "Click me", id="example-button", className="me-2", n_clicks=0 ), html.Span(id="example-output", style={"verticalAlign": "middle"}), ] ) @app.callback( Output("example-output", "children"), [Input("example-button", "n_clicks")] ) def on_button_click(n): if n is None: return "Not clicked." else: return f"Clicked {n} times."
97
0
22
2946bf995e423ab9f90fecaffdfbde0077702bb0
284
py
Python
blackdog/forms.py
UncleGoogle/dafipost
5e19d6a69dde9b7e5267bbdba680906bdb5e56eb
[ "MIT" ]
null
null
null
blackdog/forms.py
UncleGoogle/dafipost
5e19d6a69dde9b7e5267bbdba680906bdb5e56eb
[ "MIT" ]
1
2021-02-08T01:44:32.000Z
2021-02-08T01:44:32.000Z
blackdog/forms.py
UncleGoogle/dafipost
5e19d6a69dde9b7e5267bbdba680906bdb5e56eb
[ "MIT" ]
null
null
null
from django import forms from .models import Bark
20.285714
78
0.623239
from django import forms from .models import Bark class BarkForm(forms.ModelForm): class Meta: model = Bark fields = ['content'] def clean_views(self): """Every new form or updated form is submitted we reset the counter""" return 0
0
205
23
4fef830c6935b201ebe3270607f09b48471f7f26
4,094
py
Python
python/functions/calculateInterest.py
Z88897050/emulateSamples
57a519422e0e15aadc301470ac6a8397848d93c3
[ "Apache-2.0" ]
null
null
null
python/functions/calculateInterest.py
Z88897050/emulateSamples
57a519422e0e15aadc301470ac6a8397848d93c3
[ "Apache-2.0" ]
1
2021-09-21T14:38:33.000Z
2021-09-21T14:38:33.000Z
python/functions/calculateInterest.py
Z88897050/emulateSamples
57a519422e0e15aadc301470ac6a8397848d93c3
[ "Apache-2.0" ]
1
2019-05-17T11:31:47.000Z
2019-05-17T11:31:47.000Z
# 等额本金和等额本息贷款计算 import math area = float(input('请输入房屋面积(m^2): ')) unit_price = float(input('请输入单价(元): ')) year_interest = float(input('请输入贷款利率(%): ')) # ''' # 等额本金的每月还款情况文件,格式如下: # 1月,5700.79(元) # 2月,5691.69(元) # 3月,5682.59(元) # 4月,5673.5(元) # ...... # # ''' # # # # 读取文件内容,即每个月的还款数据 # def get_average_capital(): # file_path = input('请输入等额本金文件路径: ') # average_capital_data = [] # file_object = open(file_path, 'r') # try: # for line in file_object: # average_capital_data.append(float(line[line.find(',') + 1:line.find('(')])) # finally: # file_object.close() # print(average_capital_data) # return average_capital_data ''' 等额本金还款法: 设:A=贷款额 B=贷款月利率 C=贷款月数 D=每月还款额 E=还款利息总和 每月应还本金=贷款额÷还款月数=A÷C 第一月还款利息=剩余本金×月利率=A×B 第二月还款利息:(贷款额-第一月已归还本金额)×月利率=(A-A÷C)×B 第三月还款利息:(A-2×A÷C)×B ... 第C月还款利息:(A-(C-1)×A÷C)×B 求以上和得E=B(AC-[A+2A+3A+...+(C-1)A]÷C)=B(AC-A(C-1)÷2)=A×B×(C+1)÷2 每n月还款:D=本金+第n月利息=A÷C+(A-(n-1)×A÷C)×B=(1+B(C-n+1))×A÷C ''' # 等额本金计算,默认30年 ''' 等额本息还款法: 设:A=贷款额 B=贷款月利率 C=贷款月数 D=每月还款额 E=还款利息总和 第一月还款利息为【贷款额×月利率】:A×B 第二月还款利息为【[贷款额-第一个月已还本金]×月利率】:〔A-(D-A×B)〕×B=(A×B-D)×(1+B)^1+D 第三月还款利息为:{A-(D-A×B)-〔D-(A×B-D)×(1+B)^1-D〕}×B=(A×B-D)×(1+B)^2+D 第四月还款利息为:=(A×B-D)×(1+B)^3+D ..... 第C月还款利息为:=(A×B-D)×(1+B)^(C-1)+D 求以上和为:E=(A×B-D)[(1+B)^0+(1+B)^1+...+(1+B)^(C-1)]+C×D=(A×B-D)×〔(1+B)^C-1〕÷B+C×D 而利息总和E=C×D-A,两项E值相等求得 月均还款:D=A×B×(1+B)^C÷〔(1+B)^C-1〕 支付利息总和:E=C×D-A=C×A×B×(1+B)^C÷〔(1+B)^C-1〕-A 还款总额:E+A=C×A×B×(1+B)^C÷〔(1+B)^C-1〕 附注:a^b表示a的b次方。 ''' # 等额本息计算,默认30年 total = unit_price * area loan = int((total - total * 0.3) / 10000) * 10000 first_pay = total - loan print('房屋总价:', total, '贷款额:', loan, '首付款:', first_pay) print("===============等额本金已还款总额(本金+利息)================") for j in range(1, 31): # print(first_pay + prepayment_average_capital(j), first_pay + prepayment_average_capital_plus_interest(j), total) print(first_pay + prepayment_average_capital(j)) print("===============等额本息已还款总额(本金+利息)=================") for k in range(1, 31): print(first_pay + prepayment_average_capital_plus_interest(k)) print("===============等额本息已还款总额-等额本金已还款总额======") for m in range(1, 31): print(prepayment_average_capital_plus_interest(m) - prepayment_average_capital(m)) print("===============一次性还清剩余贷款本金======") for n in range(1, 31): print(loan - (n / 30) * loan) print("===============总房价=================") for l in range(1, 31): print(total) print("===============等额本金总还款额======") for o in range(1, 31): t1 = first_pay + prepayment_average_capital(o) t2 = loan - (o / 30) * loan print(t1 + t2) print("===============等额本息总还款额======") for p in range(1, 31): t1 = first_pay + prepayment_average_capital_plus_interest(p) t2 = loan - (p / 30) * loan print(t1 + t2) # # 输入年份计算等额本金已经付给银行的钱,默认15年(提前还) # prepayment_average_capital_data = prepayment_average_capital() # # 输入年份计算等额本息已经付给银行的钱,默认15年(提前还) # prepayment_average_capital_plus_interest_data = prepayment_average_capital_plus_interest() # # print('等额本金总耗资:', first_pay + prepayment_average_capital_data) # print('等额本息总耗资:', first_pay + prepayment_average_capital_plus_interest_data) # print('少还利息:', prepayment_average_capital_plus_interest_data - prepayment_average_capital_data)
27.662162
118
0.610405
# 等额本金和等额本息贷款计算 import math area = float(input('请输入房屋面积(m^2): ')) unit_price = float(input('请输入单价(元): ')) year_interest = float(input('请输入贷款利率(%): ')) # ''' # 等额本金的每月还款情况文件,格式如下: # 1月,5700.79(元) # 2月,5691.69(元) # 3月,5682.59(元) # 4月,5673.5(元) # ...... # # ''' # # # # 读取文件内容,即每个月的还款数据 # def get_average_capital(): # file_path = input('请输入等额本金文件路径: ') # average_capital_data = [] # file_object = open(file_path, 'r') # try: # for line in file_object: # average_capital_data.append(float(line[line.find(',') + 1:line.find('(')])) # finally: # file_object.close() # print(average_capital_data) # return average_capital_data ''' 等额本金还款法: 设:A=贷款额 B=贷款月利率 C=贷款月数 D=每月还款额 E=还款利息总和 每月应还本金=贷款额÷还款月数=A÷C 第一月还款利息=剩余本金×月利率=A×B 第二月还款利息:(贷款额-第一月已归还本金额)×月利率=(A-A÷C)×B 第三月还款利息:(A-2×A÷C)×B ... 第C月还款利息:(A-(C-1)×A÷C)×B 求以上和得E=B(AC-[A+2A+3A+...+(C-1)A]÷C)=B(AC-A(C-1)÷2)=A×B×(C+1)÷2 每n月还款:D=本金+第n月利息=A÷C+(A-(n-1)×A÷C)×B=(1+B(C-n+1))×A÷C ''' def get_average_capital(): average_capital_data = [] for i in range(0, 360): average_capital_data.append((loan / 360) + ((loan - loan * i / 360) * (year_interest / (12 * 100)))) return average_capital_data # 等额本金计算,默认30年 def prepayment_average_capital(year=30): arr_float = get_average_capital() count = 0 pay = 0 # pay = loan - (year / 30) * loan for i in arr_float: pay += i count += 1 if count == year * 12: break return pay ''' 等额本息还款法: 设:A=贷款额 B=贷款月利率 C=贷款月数 D=每月还款额 E=还款利息总和 第一月还款利息为【贷款额×月利率】:A×B 第二月还款利息为【[贷款额-第一个月已还本金]×月利率】:〔A-(D-A×B)〕×B=(A×B-D)×(1+B)^1+D 第三月还款利息为:{A-(D-A×B)-〔D-(A×B-D)×(1+B)^1-D〕}×B=(A×B-D)×(1+B)^2+D 第四月还款利息为:=(A×B-D)×(1+B)^3+D ..... 第C月还款利息为:=(A×B-D)×(1+B)^(C-1)+D 求以上和为:E=(A×B-D)[(1+B)^0+(1+B)^1+...+(1+B)^(C-1)]+C×D=(A×B-D)×〔(1+B)^C-1〕÷B+C×D 而利息总和E=C×D-A,两项E值相等求得 月均还款:D=A×B×(1+B)^C÷〔(1+B)^C-1〕 支付利息总和:E=C×D-A=C×A×B×(1+B)^C÷〔(1+B)^C-1〕-A 还款总额:E+A=C×A×B×(1+B)^C÷〔(1+B)^C-1〕 附注:a^b表示a的b次方。 ''' # 等额本息计算,默认30年 def prepayment_average_capital_plus_interest(year=30): # pay = loan - (year / 30) * loan pay = 0 month_interest = year_interest / (12 * 100) month_pay = (loan * month_interest * math.pow((1 + month_interest), 360)) / ( math.pow((1 + month_interest), 360) - 1) for i in range(1, year * 12 + 1): pay += month_pay return pay total = unit_price * area loan = int((total - total * 0.3) / 10000) * 10000 first_pay = total - loan print('房屋总价:', total, '贷款额:', loan, '首付款:', first_pay) print("===============等额本金已还款总额(本金+利息)================") for j in range(1, 31): # print(first_pay + prepayment_average_capital(j), first_pay + prepayment_average_capital_plus_interest(j), total) print(first_pay + prepayment_average_capital(j)) print("===============等额本息已还款总额(本金+利息)=================") for k in range(1, 31): print(first_pay + prepayment_average_capital_plus_interest(k)) print("===============等额本息已还款总额-等额本金已还款总额======") for m in range(1, 31): print(prepayment_average_capital_plus_interest(m) - prepayment_average_capital(m)) print("===============一次性还清剩余贷款本金======") for n in range(1, 31): print(loan - (n / 30) * loan) print("===============总房价=================") for l in range(1, 31): print(total) print("===============等额本金总还款额======") for o in range(1, 31): t1 = first_pay + prepayment_average_capital(o) t2 = loan - (o / 30) * loan print(t1 + t2) print("===============等额本息总还款额======") for p in range(1, 31): t1 = first_pay + prepayment_average_capital_plus_interest(p) t2 = loan - (p / 30) * loan print(t1 + t2) # # 输入年份计算等额本金已经付给银行的钱,默认15年(提前还) # prepayment_average_capital_data = prepayment_average_capital() # # 输入年份计算等额本息已经付给银行的钱,默认15年(提前还) # prepayment_average_capital_plus_interest_data = prepayment_average_capital_plus_interest() # # print('等额本金总耗资:', first_pay + prepayment_average_capital_data) # print('等额本息总耗资:', first_pay + prepayment_average_capital_plus_interest_data) # print('少还利息:', prepayment_average_capital_plus_interest_data - prepayment_average_capital_data)
789
0
68
10f7ff6712dc6b5dcc4a16b9b8b4446dac1019fe
4,949
py
Python
cmsplugin_blog_categories/migrations/0001_initial.py
bitmazk/cmsplugin-blog-categories
05e2fa3d50a8501f3f3f9cab784269838079cc37
[ "MIT" ]
null
null
null
cmsplugin_blog_categories/migrations/0001_initial.py
bitmazk/cmsplugin-blog-categories
05e2fa3d50a8501f3f3f9cab784269838079cc37
[ "MIT" ]
3
2020-02-11T22:01:45.000Z
2021-06-10T17:38:13.000Z
cmsplugin_blog_categories/migrations/0001_initial.py
bitmazk/cmsplugin-blog-categories
05e2fa3d50a8501f3f3f9cab784269838079cc37
[ "MIT" ]
null
null
null
# flake8: noqa # -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models
53.793478
137
0.62255
# flake8: noqa # -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'Category' db.create_table('cmsplugin_blog_categories_category', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('creation_date', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, blank=True)), ('slug', self.gf('django.db.models.fields.SlugField')(max_length=512)), )) db.send_create_signal('cmsplugin_blog_categories', ['Category']) # Adding model 'CategoryTitle' db.create_table('cmsplugin_blog_categories_categorytitle', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('title', self.gf('django.db.models.fields.CharField')(max_length=256)), ('category', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['cmsplugin_blog_categories.Category'])), ('language', self.gf('django.db.models.fields.CharField')(max_length=5)), )) db.send_create_signal('cmsplugin_blog_categories', ['CategoryTitle']) # Adding model 'EntryCategory' db.create_table('cmsplugin_blog_categories_entrycategory', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('entry', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['cmsplugin_blog.Entry'])), ('category', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['cmsplugin_blog_categories.Category'])), )) db.send_create_signal('cmsplugin_blog_categories', ['EntryCategory']) # Adding unique constraint on 'EntryCategory', fields ['entry', 'category'] db.create_unique('cmsplugin_blog_categories_entrycategory', ['entry_id', 'category_id']) def backwards(self, orm): # Removing unique constraint on 'EntryCategory', fields ['entry', 'category'] db.delete_unique('cmsplugin_blog_categories_entrycategory', ['entry_id', 'category_id']) # Deleting model 'Category' db.delete_table('cmsplugin_blog_categories_category') # Deleting model 'CategoryTitle' db.delete_table('cmsplugin_blog_categories_categorytitle') # Deleting model 'EntryCategory' db.delete_table('cmsplugin_blog_categories_entrycategory') models = { 'cms.placeholder': { 'Meta': {'object_name': 'Placeholder'}, 'default_width': ('django.db.models.fields.PositiveSmallIntegerField', [], {'null': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'slot': ('django.db.models.fields.CharField', [], {'max_length': '50', 'db_index': 'True'}) }, 'cmsplugin_blog.entry': { 'Meta': {'ordering': "('-pub_date',)", 'object_name': 'Entry'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_published': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'placeholders': ('djangocms_utils.fields.M2MPlaceholderField', [], {'to': "orm['cms.Placeholder']", 'symmetrical': 'False'}), 'pub_date': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'tags': ('tagging.fields.TagField', [], {}) }, 'cmsplugin_blog_categories.category': { 'Meta': {'object_name': 'Category'}, 'creation_date': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '512'}) }, 'cmsplugin_blog_categories.categorytitle': { 'Meta': {'object_name': 'CategoryTitle'}, 'category': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['cmsplugin_blog_categories.Category']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'language': ('django.db.models.fields.CharField', [], {'max_length': '5'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '256'}) }, 'cmsplugin_blog_categories.entrycategory': { 'Meta': {'unique_together': "(('entry', 'category'),)", 'object_name': 'EntryCategory'}, 'category': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['cmsplugin_blog_categories.Category']"}), 'entry': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['cmsplugin_blog.Entry']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) } } complete_apps = ['cmsplugin_blog_categories']
2,250
2,530
23
715bfc9c37739cc5dc1ee47ee653d0ae23d340ef
5,326
py
Python
src/analyze/track/analyze_race.py
kishorekolli/deep_racer_guru
0a0a56103f395f958e8177ee0bd5ae1481f93d98
[ "MIT" ]
9
2020-07-31T03:04:24.000Z
2021-11-02T13:44:11.000Z
src/analyze/track/analyze_race.py
kishorekolli/deep_racer_guru
0a0a56103f395f958e8177ee0bd5ae1481f93d98
[ "MIT" ]
137
2020-08-04T08:04:11.000Z
2021-11-10T10:35:58.000Z
src/analyze/track/analyze_race.py
kishorekolli/deep_racer_guru
0a0a56103f395f958e8177ee0bd5ae1481f93d98
[ "MIT" ]
11
2020-06-24T23:38:38.000Z
2021-11-02T14:42:31.000Z
# # DeepRacer Guru # # Version 3.0 onwards # # Copyright (c) 2021 dmh23 # import threading import time import src.utils.geometry as geometry import tkinter as tk from src.analyze.track.track_analyzer import TrackAnalyzer from src.episode.episode import Episode from src.graphics.track_graphics import TrackGraphics from src.analyze.core.controls import VideoControls, LapTimeControl from src.personalize.configuration.appearance import RACE_COLOURS
37.507042
111
0.665039
# # DeepRacer Guru # # Version 3.0 onwards # # Copyright (c) 2021 dmh23 # import threading import time import src.utils.geometry as geometry import tkinter as tk from src.analyze.track.track_analyzer import TrackAnalyzer from src.episode.episode import Episode from src.graphics.track_graphics import TrackGraphics from src.analyze.core.controls import VideoControls, LapTimeControl from src.personalize.configuration.appearance import RACE_COLOURS class AnalyzeRace(TrackAnalyzer): def __init__(self, guru_parent_redraw, track_graphics :TrackGraphics, control_frame :tk.Frame): super().__init__(guru_parent_redraw, track_graphics, control_frame) self._video_controls = VideoControls(self._button_pressed, control_frame) self._display_lap_time = LapTimeControl(control_frame) self._timer = AnalyzeRace.Timer(self._draw) # self._race_episode = self.all_episodes[0] def build_control_frame(self, control_frame): self._display_lap_time.add_to_control_frame() self._video_controls.add_to_control_frame() def _button_pressed(self, button_type): if button_type == VideoControls.STOP: self._timer.stop() elif button_type == VideoControls.RESET: self._timer.reset() elif button_type == VideoControls.PLAY: self._timer.play() def redraw(self): self._timer.redraw() def warning_filtered_episodes_changed(self): self._timer.reset(False) def warning_lost_control(self): self._timer.stop() def _draw(self, simulation_time): self._display_lap_time.show_time(simulation_time) self.track_graphics.prepare_to_remove_old_cars() all_done = True if self.filtered_episodes: for i, episode in enumerate(self.filtered_episodes[0:len(RACE_COLOURS)]): self._draw_episode_car(episode, simulation_time, RACE_COLOURS[i]) if simulation_time < episode.time_taken: all_done = False self.track_graphics.remove_cars() if all_done: self._timer.soft_stop() def _draw_episode_car(self, episode: Episode, simulation_time: float, colour: str): event_index = episode.get_latest_event_index_on_or_before(simulation_time) before_event = episode.events[event_index] if event_index == len(episode.events) - 1: self.track_graphics.draw_car(before_event.x, before_event.y, colour, before_event.heading) else: after_event = episode.events[event_index + 1] event_x_gap = after_event.x - before_event.x event_y_gap = after_event.y - before_event.y event_time_gap = after_event.time_elapsed - before_event.time_elapsed event_heading_gap = geometry.get_turn_between_directions(before_event.heading, after_event.heading) ratio = (simulation_time - before_event.time_elapsed) / event_time_gap x = before_event.x + ratio * event_x_gap y = before_event.y + ratio * event_y_gap heading = geometry.get_angle_in_proper_range(before_event.heading + ratio * event_heading_gap) self.track_graphics.draw_car(x, y, colour, heading) class Timer: def __init__(self, redraw_callback: callable): self._machine_start_time = 0.0 self._simulation_start_time = 0.0 self._simulation_stop_time = 0.0 self._keep_running = False self._is_still_running = False self._thread = None self._redraw_callback = redraw_callback def stop(self): if self._keep_running: self._keep_running = False if self._is_still_running: self._thread.join(0.2) def soft_stop(self): self._keep_running = False def play(self): if not self._keep_running and not self._is_still_running: self._keep_running = True self._thread = threading.Thread(target=self._run_until_stopped) self._thread.daemon = True # Set as daemon so thread is killed if main GUI is closed self._thread.start() def reset(self, redraw=True): self.stop() self._simulation_stop_time = 0.0 self._simulation_start_time = 0.0 if redraw: self._redraw_callback(0.0) def redraw(self): if self._is_still_running: self._redraw_callback(self.get_current_simulation_time()) else: self._redraw_callback(self._simulation_stop_time) def _run_until_stopped(self): self._is_still_running = True self._simulation_start_time = self._simulation_stop_time self._machine_start_time = time.time() while self._keep_running: simulation_time = self.get_current_simulation_time() self._redraw_callback(simulation_time) time.sleep(0.02) self._simulation_stop_time = self.get_current_simulation_time() self._is_still_running = False def get_current_simulation_time(self): return time.time() - self._machine_start_time + self._simulation_start_time
4,356
493
23
f0e86e901437c0295d3035b8e8488571c49c3943
1,821
py
Python
algospot/lec11/[cutz]gamecover.py
cutz-j/AlgorithmStudy
de0f81220e29bd5e109d174800f507b12a3bee36
[ "MIT" ]
3
2019-11-26T14:31:01.000Z
2020-01-10T18:19:46.000Z
algospot/lec11/[cutz]gamecover.py
cutz-j/AlgorithmStudy
de0f81220e29bd5e109d174800f507b12a3bee36
[ "MIT" ]
null
null
null
algospot/lec11/[cutz]gamecover.py
cutz-j/AlgorithmStudy
de0f81220e29bd5e109d174800f507b12a3bee36
[ "MIT" ]
null
null
null
import sys cover = [[[0, 0], [1, 0], [0, 1]], [[0, 0], [0, 1], [1, 1]], [[0, 0], [1, 0], [1, 1]], [[0, 0], [1, 0], [1, -1]]] #rl = lambda: sys.stdin.readline() rl = input C = int(rl()) for _ in range(C): H, W = map(int, rl().split()) block_list = [] white, black = 0, 0 for __ in range(H): block_row = rl() tmp_list = [] for b in block_row: if b == '#': black += 1 tmp_list.append(1) else: white += 1 tmp_list.append(0) block_list.append(tmp_list) if white % 3 != 0: print(0) continue if black == (W*H): print(1) continue print(cover_block(block_list))
21.939759
62
0.409665
import sys cover = [[[0, 0], [1, 0], [0, 1]], [[0, 0], [0, 1], [1, 1]], [[0, 0], [1, 0], [1, 1]], [[0, 0], [1, 0], [1, -1]]] def set_block(board, y, x, cover_type, delta): # delta 1 --> cover // -1 --> clear ok = True for i in range(3): new_x = x + cover[cover_type][i][1] new_y = y + cover[cover_type][i][0] # 게임판을 넘어가는 경우 if new_y < 0 or new_y >= H or new_x < 0 or new_x >= W: ok = False # 중복으로 덮은 경우 else: board[new_y][new_x] += delta if board[new_y][new_x] > 1: ok = False return ok def cover_block(board): x, y = -1, -1 for i in range(H): for j in range(W): if board[i][j] == 0: x = j y = i break if y != -1: break # basis if y == -1: return 1 ret = 0 # 4가지 방법 모두 실행 for t in range(4): # block 넣기 if set_block(board, y, x, t, 1) == True: ret += cover_block(board) # block 치우기 set_block(board, y, x, t, -1) return ret #rl = lambda: sys.stdin.readline() rl = input C = int(rl()) for _ in range(C): H, W = map(int, rl().split()) block_list = [] white, black = 0, 0 for __ in range(H): block_row = rl() tmp_list = [] for b in block_row: if b == '#': black += 1 tmp_list.append(1) else: white += 1 tmp_list.append(0) block_list.append(tmp_list) if white % 3 != 0: print(0) continue if black == (W*H): print(1) continue print(cover_block(block_list))
1,026
0
46
64c67a4ed2acbb4051af77291436c1f297af4078
1,167
py
Python
cmsplugin_soundcloud/cms_plugins.py
misli/cmsplugin-soundcloud
d50e6fd1fd95916eb5a396fd9a437483d96626b3
[ "BSD-3-Clause" ]
null
null
null
cmsplugin_soundcloud/cms_plugins.py
misli/cmsplugin-soundcloud
d50e6fd1fd95916eb5a396fd9a437483d96626b3
[ "BSD-3-Clause" ]
1
2021-05-13T15:23:09.000Z
2021-06-29T09:25:36.000Z
cmsplugin_soundcloud/cms_plugins.py
misli/cmsplugin-soundcloud
d50e6fd1fd95916eb5a396fd9a437483d96626b3
[ "BSD-3-Clause" ]
1
2017-06-01T15:46:46.000Z
2017-06-01T15:46:46.000Z
from cms.plugin_base import CMSPluginBase from cms.plugin_pool import plugin_pool from .models import SoundCloud, COLORS from django.conf import settings from django.utils.translation import ugettext as _ from django.utils.safestring import mark_safe # use CMSPLUGIN_SOUNDCLOUD_PARAMS to override PARAMS PARAMS = getattr(settings, 'CMSPLUGIN_SOUNDCLOUD_PARAMS', 'width="100%" height="166" scrolling="no" frameborder="no"') plugin_pool.register_plugin(SoundCloudPlugin)
30.710526
78
0.709512
from cms.plugin_base import CMSPluginBase from cms.plugin_pool import plugin_pool from .models import SoundCloud, COLORS from django.conf import settings from django.utils.translation import ugettext as _ from django.utils.safestring import mark_safe # use CMSPLUGIN_SOUNDCLOUD_PARAMS to override PARAMS PARAMS = getattr(settings, 'CMSPLUGIN_SOUNDCLOUD_PARAMS', 'width="100%" height="166" scrolling="no" frameborder="no"') class SoundCloudPlugin(CMSPluginBase): model = SoundCloud name = _('SoundCloud') text_enabled = True render_template = 'cmsplugin_soundcloud/cmsplugin_soundcloud.html' def render(self, context, instance, placeholder): context.update({'plugin_soundcloud': instance}) return context def icon_src(self, instance): return instance.thumbnail_url #def get_form(self, request, obj=None, **kwargs): # if obj: # kwargs['exclude'] = ['url'] # else: # kwargs['exclude'] = ['title', 'description', 'thumbnail_url'] # return super(SoundCloudPlugin, self).get_form(request, obj, **kwargs) plugin_pool.register_plugin(SoundCloudPlugin)
153
498
23
43cbe788101c59dea633374ac2936b60b77131a3
408
py
Python
1/find_inimum_in_rotated_sorted_array.py
IronCore864/leetcode
a62a4cdde9814ae48997176debcaad537f7ad01f
[ "Apache-2.0" ]
4
2018-03-07T02:56:03.000Z
2021-06-15T05:43:31.000Z
1/find_inimum_in_rotated_sorted_array.py
IronCore864/leetcode
a62a4cdde9814ae48997176debcaad537f7ad01f
[ "Apache-2.0" ]
null
null
null
1/find_inimum_in_rotated_sorted_array.py
IronCore864/leetcode
a62a4cdde9814ae48997176debcaad537f7ad01f
[ "Apache-2.0" ]
1
2021-09-02T12:05:15.000Z
2021-09-02T12:05:15.000Z
s = Solution() print s.findMin([4, 5, 5, 6, 7, 0, 1, 2, 2, 2])
20.4
47
0.360294
class Solution(object): def findMin(self, nums): """ :type nums: List[int] :rtype: int """ i = 0 j = len(nums) - 1 while i < j: m = i + (j - i) / 2 if nums[m] > nums[j]: i = m + 1 else: j = m return nums[i] s = Solution() print s.findMin([4, 5, 5, 6, 7, 0, 1, 2, 2, 2])
0
321
22
e965a8d33c910c1887e79ac768c1271d3fda827c
3,711
py
Python
qiling/qiling/os/posix/syscall/fcntl.py
mrTavas/owasp-fstm-auto
6e9ff36e46d885701c7419db3eca15f12063a7f3
[ "CC0-1.0" ]
2
2021-05-05T12:03:01.000Z
2021-06-04T14:27:15.000Z
qiling/qiling/os/posix/syscall/fcntl.py
mrTavas/owasp-fstm-auto
6e9ff36e46d885701c7419db3eca15f12063a7f3
[ "CC0-1.0" ]
null
null
null
qiling/qiling/os/posix/syscall/fcntl.py
mrTavas/owasp-fstm-auto
6e9ff36e46d885701c7419db3eca15f12063a7f3
[ "CC0-1.0" ]
2
2021-05-05T12:03:09.000Z
2021-06-04T14:27:21.000Z
#!/usr/bin/env python3 # # Cross Platform and Multi Architecture Advanced Binary Emulation Framework # from qiling.const import * from qiling.os.linux.thread import * from qiling.const import * from qiling.os.posix.filestruct import * from qiling.os.filestruct import * from qiling.os.posix.const_mapping import * from qiling.exception import *
27.488889
118
0.61924
#!/usr/bin/env python3 # # Cross Platform and Multi Architecture Advanced Binary Emulation Framework # from qiling.const import * from qiling.os.linux.thread import * from qiling.const import * from qiling.os.posix.filestruct import * from qiling.os.filestruct import * from qiling.os.posix.const_mapping import * from qiling.exception import * def ql_syscall_open(ql, filename, flags, mode, *args, **kw): path = ql.mem.string(filename) real_path = ql.os.path.transform_to_real_path(path) relative_path = ql.os.path.transform_to_relative_path(path) flags = flags & 0xffffffff mode = mode & 0xffffffff for i in range(256): if ql.os.fd[i] == 0: idx = i break else: idx = -1 if idx == -1: # errno ENOMEM Insufficient kernel memory was available. regreturn = -12 else: try: if ql.archtype== QL_ARCH.ARM: mode = 0 flags = ql_open_flag_mapping(ql, flags) ql.os.fd[idx] = ql.os.fs_mapper.open_ql_file(path, flags, mode) regreturn = idx except QlSyscallError as e: regreturn = - e.errno ql.log.debug("open(%s, %s, 0o%o) = %d" % (relative_path, open_flags_mapping(flags, ql.archtype), mode, regreturn)) if regreturn >= 0 and regreturn != 2: ql.log.debug("File Found: %s" % real_path) else: ql.log.debug("File Not Found %s" % real_path) return regreturn def ql_syscall_openat(ql, openat_fd, openat_path, openat_flags, openat_mode, *args, **kw): openat_fd = ql.unpacks(ql.pack(openat_fd)) openat_path = ql.mem.string(openat_path) real_path = ql.os.path.transform_to_real_path(openat_path) relative_path = ql.os.path.transform_to_relative_path(openat_path) openat_flags = openat_flags & 0xffffffff openat_mode = openat_mode & 0xffffffff for i in range(256): if ql.os.fd[i] == 0: idx = i break else: idx = -1 if idx == -1: regreturn = -1 else: try: if ql.archtype== QL_ARCH.ARM: mode = 0 openat_flags = ql_open_flag_mapping(ql, openat_flags) ql.os.fd[idx] = ql.os.fs_mapper.open_ql_file(openat_path, openat_flags, openat_mode) regreturn = idx except QlSyscallError: regreturn = -1 ql.log.debug("openat(%d, %s, %s, 0o%o) = %d" % ( openat_fd, relative_path, open_flags_mapping(openat_flags, ql.archtype), openat_mode, regreturn)) if regreturn >= 0 and regreturn != 2: ql.log.debug("File Found: %s" % real_path) else: ql.log.debug("File Not Found %s" % real_path) return regreturn def ql_syscall_fcntl(ql, fcntl_fd, fcntl_cmd, *args, **kw): F_SETFD = 2 F_GETFL = 3 F_SETFL = 4 regreturn = 0 if fcntl_cmd == F_SETFD: regreturn = 0 elif fcntl_cmd == F_GETFL: regreturn = 2 elif fcntl_cmd == F_SETFL: regreturn = 0 return regreturn def ql_syscall_fcntl64(ql, fcntl_fd, fcntl_cmd, fcntl_arg, *args, **kw): F_GETFD = 1 F_SETFD = 2 F_GETFL = 3 F_SETFL = 4 if fcntl_cmd == F_GETFL: regreturn = 2 elif fcntl_cmd == F_SETFL: if isinstance(ql.os.fd[fcntl_fd], ql_socket): ql.os.fd[fcntl_fd].fcntl(fcntl_cmd, fcntl_arg) regreturn = 0 elif fcntl_cmd == F_GETFD: regreturn = 2 elif fcntl_cmd == F_SETFD: regreturn = 0 else: regreturn = 0 return regreturn def ql_syscall_flock(ql, flock_fd, flock_operation, *args, **kw): # Should always return 0, we don't need a actual file lock regreturn = 0 return regreturn
3,245
0
115
4e431cabe02f617dd38da093c80ad9c5404af08a
2,904
py
Python
test/unit/mysql_rep_admin/add_miss_slaves.py
mjpernot/mysql-rep-admin
08b8f5daf28bc3e462bd72968842f2c44161c084
[ "MIT" ]
null
null
null
test/unit/mysql_rep_admin/add_miss_slaves.py
mjpernot/mysql-rep-admin
08b8f5daf28bc3e462bd72968842f2c44161c084
[ "MIT" ]
null
null
null
test/unit/mysql_rep_admin/add_miss_slaves.py
mjpernot/mysql-rep-admin
08b8f5daf28bc3e462bd72968842f2c44161c084
[ "MIT" ]
null
null
null
#!/usr/bin/python # Classification (U) """Program: add_miss_slaves.py Description: Unit testing of add_miss_slaves in mysql_rep_admin.py. Usage: test/unit/mysql_rep_admin/add_miss_slaves.py Arguments: """ # Libraries and Global Variables # Standard import sys import os if sys.version_info < (2, 7): import unittest2 as unittest else: import unittest # Third-party # Local sys.path.append(os.getcwd()) import mysql_rep_admin import version __version__ = version.__version__ class MasterRep(object): """Class: MasterRep Description: Class stub holder for mysql_class.MasterRep class. Methods: __init__ show_slv_hosts """ def __init__(self): """Method: __init__ Description: Class initialization. Arguments: """ self.name = "Master_Name" self.slv_hosts = [{"Host": "slave1"}, {"Host": "slave2"}, {"Host": "slave3"}] def show_slv_hosts(self): """Method: show_slv_hosts Description: Stub method holder for SlaveRep.get_err_stat. Arguments: """ return self.slv_hosts class UnitTest(unittest.TestCase): """Class: UnitTest Description: Class which is a representation of a unit testing. Methods: setUp test_no_slv_miss test_one_slv_miss """ def setUp(self): """Function: setUp Description: Initialization for unit testing. Arguments: """ self.master = MasterRep() self.outdata = {"Slaves": [{"Name": "slave1", "LagTime": None}, {"Name": "slave2", "LagTime": None}]} self.outdata2 = {"Slaves": [{"Name": "slave1", "LagTime": None}, {"Name": "slave2", "LagTime": None}, {"Name": "slave3", "LagTime": None}]} self.final_list = {"Slaves": [{"Name": "slave1", "LagTime": None}, {"Name": "slave2", "LagTime": None}, {"Name": "slave3", "LagTime": None}]} def test_no_slv_miss(self): """Function: test_no_slv_miss Description: Test with no slave missing. Arguments: """ self.assertEqual(mysql_rep_admin.add_miss_slaves(self.master, self.outdata2), self.final_list) def test_one_slv_miss(self): """Function: test_one_slv_miss Description: Test with one slave missing. Arguments: """ self.assertEqual(mysql_rep_admin.add_miss_slaves(self.master, self.outdata), self.final_list) if __name__ == "__main__": unittest.main()
20.892086
75
0.539945
#!/usr/bin/python # Classification (U) """Program: add_miss_slaves.py Description: Unit testing of add_miss_slaves in mysql_rep_admin.py. Usage: test/unit/mysql_rep_admin/add_miss_slaves.py Arguments: """ # Libraries and Global Variables # Standard import sys import os if sys.version_info < (2, 7): import unittest2 as unittest else: import unittest # Third-party # Local sys.path.append(os.getcwd()) import mysql_rep_admin import version __version__ = version.__version__ class MasterRep(object): """Class: MasterRep Description: Class stub holder for mysql_class.MasterRep class. Methods: __init__ show_slv_hosts """ def __init__(self): """Method: __init__ Description: Class initialization. Arguments: """ self.name = "Master_Name" self.slv_hosts = [{"Host": "slave1"}, {"Host": "slave2"}, {"Host": "slave3"}] def show_slv_hosts(self): """Method: show_slv_hosts Description: Stub method holder for SlaveRep.get_err_stat. Arguments: """ return self.slv_hosts class UnitTest(unittest.TestCase): """Class: UnitTest Description: Class which is a representation of a unit testing. Methods: setUp test_no_slv_miss test_one_slv_miss """ def setUp(self): """Function: setUp Description: Initialization for unit testing. Arguments: """ self.master = MasterRep() self.outdata = {"Slaves": [{"Name": "slave1", "LagTime": None}, {"Name": "slave2", "LagTime": None}]} self.outdata2 = {"Slaves": [{"Name": "slave1", "LagTime": None}, {"Name": "slave2", "LagTime": None}, {"Name": "slave3", "LagTime": None}]} self.final_list = {"Slaves": [{"Name": "slave1", "LagTime": None}, {"Name": "slave2", "LagTime": None}, {"Name": "slave3", "LagTime": None}]} def test_no_slv_miss(self): """Function: test_no_slv_miss Description: Test with no slave missing. Arguments: """ self.assertEqual(mysql_rep_admin.add_miss_slaves(self.master, self.outdata2), self.final_list) def test_one_slv_miss(self): """Function: test_one_slv_miss Description: Test with one slave missing. Arguments: """ self.assertEqual(mysql_rep_admin.add_miss_slaves(self.master, self.outdata), self.final_list) if __name__ == "__main__": unittest.main()
0
0
0
99017e06c8585e5388a22a35b7a3f448afce5ddd
9,116
py
Python
SUnCNN_DC2.py
BehnoodRasti/SUnCNN
f19245cd7fc0e142bfc66c9a809444d22ed7da36
[ "Apache-2.0" ]
3
2021-11-17T09:34:15.000Z
2022-03-26T11:51:48.000Z
SUnCNN_DC2.py
BehnoodRasti/SUnCNN
f19245cd7fc0e142bfc66c9a809444d22ed7da36
[ "Apache-2.0" ]
null
null
null
SUnCNN_DC2.py
BehnoodRasti/SUnCNN
f19245cd7fc0e142bfc66c9a809444d22ed7da36
[ "Apache-2.0" ]
2
2022-02-24T12:41:02.000Z
2022-03-30T12:26:21.000Z
# -*- coding: utf-8 -*- """ Created on Fri Dec 4 17:53:50 2020 @author: behnood """ from __future__ import print_function import matplotlib.pyplot as plt #%matplotlib inline import os #os.environ['CUDA_VISIBLE_DEVICES'] = '3' import numpy as np from models import * import torch import torch.optim from skimage.measure import compare_psnr from skimage.measure import compare_mse from utils.denoising_utils import * from skimage._shared import * from skimage.util import * from skimage.metrics.simple_metrics import _as_floats from skimage.metrics.simple_metrics import mean_squared_error from UtilityMine import * from utils.sr_utils import tv_loss from numpy import linalg as LA torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark =True dtype = torch.cuda.FloatTensor PLOT = False import scipy.io #%% #%% fname2 = "Data/DC2/Y_clean.mat" mat2 = scipy.io.loadmat(fname2) img_np_gt = mat2["Y_clean"] img_np_gt = img_np_gt.transpose(2,0,1) [p1, nr1, nc1] = img_np_gt.shape #%% fname3 = "Data/DC2/XT.mat" mat3 = scipy.io.loadmat(fname3) A_true_np = mat3["XT"] #%% fname4 = "Data/DC2/EE.mat" mat4 = scipy.io.loadmat(fname4) EE = mat4["EE"] #%% LibS=EE.shape[1] #%% npar=np.zeros((1,3)) npar[0,0]=14.7 npar[0,1]=46.5 npar[0,2]=147 #npar[0,3]=367 tol1=npar.shape[1] tol2=1 save_result=False import time from tqdm import tqdm rmax=9 for fi in tqdm(range(tol1)): for fj in tqdm(range(tol2)): #%% img_np_gt=np.clip(img_np_gt, 0, 1) img_noisy_np = add_noise(img_np_gt, 1/npar[0,fi])#11.55 20 dB, 36.7 30 dB, 116.5 40 dB print(compare_snr(img_np_gt, img_noisy_np)) img_resh=np.reshape(img_noisy_np,(p1,nr1*nc1)) V, SS, U = scipy.linalg.svd(img_resh, full_matrices=False) PC=np.diag(SS)@U img_resh_DN=V[:,:rmax]@PC[:rmax,:] img_noisy_np=np.reshape(np.clip(img_resh_DN, 0, 1),(p1,nr1,nc1)) INPUT = 'noise' # 'meshgrid' pad = 'reflection' need_bias=True OPT_OVER = 'net' # 'net,input' # reg_noise_std = 0.0 LR1 = 0.001 OPTIMIZER1='adam'# 'RMSprop'#'adam' # 'LBFGS' show_every = 500 exp_weight=0.99 if fi==0: num_iter1 = 4000 elif fi==1: num_iter1 = 8000 elif fi==2: num_iter1 = 12000 input_depth =img_noisy_np.shape[0] net1 = CAE_AbEst() net1.cuda() print(net1) # Compute number of parameters s = sum([np.prod(list(p11.size())) for p11 in net1.parameters()]); print ('Number of params: %d' % s) # Loss mse = torch.nn.MSELoss().type(dtype) img_noisy_torch = np_to_torch(img_noisy_np).type(dtype) # if fk==0: net_input1 = get_noise(input_depth, INPUT, (img_noisy_np.shape[1], img_noisy_np.shape[2])).type(dtype).detach() # net_input1 = img_noisy_torch E_torch = np_to_torch(EE).type(dtype) #%% net_input_saved = net_input1.detach().clone() noise = net_input1.detach().clone() out_avg = None out_HR_avg= None last_net = None RMSE_LR_last = 0 loss=np.zeros((num_iter1,1)) AE=np.zeros((num_iter1,1)) i = 0 p11 = get_params(OPT_OVER, net1, net_input1) optimize(OPTIMIZER1, p11, closure1, LR1, num_iter1) if 1: out_LR_np = out_LR.detach().cpu().squeeze().numpy() out_avg_np = out_avg.detach().cpu().squeeze().numpy() MAE_LR_avg= 100*np.mean(abs(A_true_np.astype(np.float32)- np.clip(out_avg_np, 0, 1))) MAE_LR= 100*np.mean(abs(A_true_np.astype(np.float32)- np.clip(out_LR_np, 0, 1))) SRE=10*np.log10(LA.norm(A_true_np.astype(np.float32).reshape((EE.shape[1],nr1*nc1)),'fro')/LA.norm((A_true_np.astype(np.float32)- np.clip(out_LR_np, 0, 1)).reshape((EE.shape[1],nr1*nc1)),'fro')) SRE_avg=10*np.log10(LA.norm(A_true_np.astype(np.float32).reshape((EE.shape[1],nr1*nc1)),'fro')/LA.norm((A_true_np.astype(np.float32)- np.clip(out_avg_np, 0, 1)).reshape((EE.shape[1],nr1*nc1)),'fro')) print ('Iteration %05d MAE_LR: %f MAE_LR_avg: %f SRE: %f SRE_avg: %f ' % (i, MAE_LR, MAE_LR_avg, SRE, SRE_avg), '\r', end='') # if save_result is True: # scipy.io.savemat("C:/Users/behnood/Desktop/Sparse Unmixing/Results/Sim2/demo1/10runs/out_avg_np%01d%01d.mat" % (fi+2,fj+1), # {'out_avg_np%01d%01d' % (fi+2, fj+1):out_avg_np.transpose(1,2,0)}) # scipy.io.savemat("C:/Users/behnood/Desktop/Sparse Unmixing/Results/Sim2/demo1/10runs/out_LR_np%01d%01d.mat" % (fi+2,fj+1), # {'out_LR_np%01d%01d' % (fi+2, fj+1):out_LR_np.transpose(1,2,0)}) #%%
41.625571
213
0.554739
# -*- coding: utf-8 -*- """ Created on Fri Dec 4 17:53:50 2020 @author: behnood """ from __future__ import print_function import matplotlib.pyplot as plt #%matplotlib inline import os #os.environ['CUDA_VISIBLE_DEVICES'] = '3' import numpy as np from models import * import torch import torch.optim from skimage.measure import compare_psnr from skimage.measure import compare_mse from utils.denoising_utils import * from skimage._shared import * from skimage.util import * from skimage.metrics.simple_metrics import _as_floats from skimage.metrics.simple_metrics import mean_squared_error from UtilityMine import * from utils.sr_utils import tv_loss from numpy import linalg as LA torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark =True dtype = torch.cuda.FloatTensor PLOT = False import scipy.io #%% #%% fname2 = "Data/DC2/Y_clean.mat" mat2 = scipy.io.loadmat(fname2) img_np_gt = mat2["Y_clean"] img_np_gt = img_np_gt.transpose(2,0,1) [p1, nr1, nc1] = img_np_gt.shape #%% fname3 = "Data/DC2/XT.mat" mat3 = scipy.io.loadmat(fname3) A_true_np = mat3["XT"] #%% fname4 = "Data/DC2/EE.mat" mat4 = scipy.io.loadmat(fname4) EE = mat4["EE"] #%% LibS=EE.shape[1] #%% npar=np.zeros((1,3)) npar[0,0]=14.7 npar[0,1]=46.5 npar[0,2]=147 #npar[0,3]=367 tol1=npar.shape[1] tol2=1 save_result=False import time from tqdm import tqdm rmax=9 for fi in tqdm(range(tol1)): for fj in tqdm(range(tol2)): #%% img_np_gt=np.clip(img_np_gt, 0, 1) img_noisy_np = add_noise(img_np_gt, 1/npar[0,fi])#11.55 20 dB, 36.7 30 dB, 116.5 40 dB print(compare_snr(img_np_gt, img_noisy_np)) img_resh=np.reshape(img_noisy_np,(p1,nr1*nc1)) V, SS, U = scipy.linalg.svd(img_resh, full_matrices=False) PC=np.diag(SS)@U img_resh_DN=V[:,:rmax]@PC[:rmax,:] img_noisy_np=np.reshape(np.clip(img_resh_DN, 0, 1),(p1,nr1,nc1)) INPUT = 'noise' # 'meshgrid' pad = 'reflection' need_bias=True OPT_OVER = 'net' # 'net,input' # reg_noise_std = 0.0 LR1 = 0.001 OPTIMIZER1='adam'# 'RMSprop'#'adam' # 'LBFGS' show_every = 500 exp_weight=0.99 if fi==0: num_iter1 = 4000 elif fi==1: num_iter1 = 8000 elif fi==2: num_iter1 = 12000 input_depth =img_noisy_np.shape[0] class CAE_AbEst(nn.Module): def __init__(self): super(CAE_AbEst, self).__init__() self.conv1 = nn.Sequential( UnmixArch( input_depth, EE.shape[1], # num_channels_down = [8, 16, 32, 64, 128], # num_channels_up = [8, 16, 32, 64, 128], # num_channels_skip = [4, 4, 4, 4, 4], num_channels_down = [ 256], num_channels_up = [ 256], num_channels_skip = [ 4], filter_size_up = 3,filter_size_down = 3, filter_skip_size=1, upsample_mode='bilinear', # downsample_mode='avg', need1x1_up=True, need_sigmoid=True, need_bias=True, pad=pad, act_fun='ReLU').type(dtype) ) def forward(self, x): x = self.conv1(x) return x net1 = CAE_AbEst() net1.cuda() print(net1) # Compute number of parameters s = sum([np.prod(list(p11.size())) for p11 in net1.parameters()]); print ('Number of params: %d' % s) # Loss mse = torch.nn.MSELoss().type(dtype) img_noisy_torch = np_to_torch(img_noisy_np).type(dtype) # if fk==0: net_input1 = get_noise(input_depth, INPUT, (img_noisy_np.shape[1], img_noisy_np.shape[2])).type(dtype).detach() # net_input1 = img_noisy_torch E_torch = np_to_torch(EE).type(dtype) #%% net_input_saved = net_input1.detach().clone() noise = net_input1.detach().clone() out_avg = None out_HR_avg= None last_net = None RMSE_LR_last = 0 loss=np.zeros((num_iter1,1)) AE=np.zeros((num_iter1,1)) i = 0 def closure1(): global i, RMSE_LR, RMSE_LR_ave, RMSE_HR, out_LR_np, out_avg_np, out_LR\ , out_avg,out_HR_np, out_HR_avg, out_HR_avg_np, RMSE_LR_last, last_net\ , net_input,RMSE_LR_avg,RMSE_HR_avg,RE_HR_avg, RE_HR, Eest,loss,AE\ , MAE_LR,MAE_LR_avg,MAE_HR,MAE_HR_avg if reg_noise_std > 0: net_input = net_input_saved + (noise.normal_() * reg_noise_std) out_LR = net1(net_input1) out_HR=torch.mm(E_torch.view(p1,LibS),out_LR.view(LibS,nr1*nc1)) # Smoothing if out_avg is None: out_avg = out_LR.detach() out_HR_avg = out_HR.detach() else: out_avg = out_avg * exp_weight + out_LR.detach() * (1 - exp_weight) out_HR_avg = out_HR_avg * exp_weight + out_HR.detach() * (1 - exp_weight) #%% out_HR=out_HR.view((1,p1,nr1,nc1)) total_loss = mse(img_noisy_torch, out_HR) total_loss.backward() if 1: out_LR_np = out_LR.detach().cpu().squeeze().numpy() out_avg_np = out_avg.detach().cpu().squeeze().numpy() SRE=10*np.log10(LA.norm(A_true_np.astype(np.float32).reshape((EE.shape[1],nr1*nc1)),'fro')/LA.norm((A_true_np.astype(np.float32)- np.clip(out_LR_np, 0, 1)).reshape((EE.shape[1],nr1*nc1)),'fro')) SRE_avg=10*np.log10(LA.norm(A_true_np.astype(np.float32).reshape((EE.shape[1],nr1*nc1)),'fro')/LA.norm((A_true_np.astype(np.float32)- np.clip(out_avg_np, 0, 1)).reshape((EE.shape[1],nr1*nc1)),'fro')) MAE_LR= 100*np.mean(abs(A_true_np.astype(np.float32)- np.clip(out_LR_np, 0, 1))) MAE_LR_avg= 100*np.mean(abs(A_true_np.astype(np.float32)- np.clip(out_avg_np, 0, 1))) print ('Iteration %05d Loss %f MAE_LR: %f MAE_LR_avg: %f SRE: %f SRE_avg: %f' % (i, total_loss.item(), MAE_LR, MAE_LR_avg, SRE, SRE_avg), '\r', end='') if PLOT and i % show_every == 0: out_LR_np = torch_to_np(out_LR) out_avg_np = torch_to_np(out_avg) # plot_image_grid([np.clip(out_np, 0, 1), # np.clip(torch_to_np(out_avg), 0, 1)], factor=figsize, nrow=1) # out_LR_np = np.clip(out_LR_np, 0, 1) # out_avg_np = np.clip(out_avg_np, 0, 1) # f, (ax1, ax2, ax3) = plt.subplots(1, 3, sharey=True, figsize=(10,10)) # ax1.imshow(np.stack((out_LR_np[2,:,:],out_LR_np[1,:,:],out_LR_np[0,:,:]),2)) # ax2.imshow(np.stack((out_avg_np[2,:,:],out_avg_np[1,:,:],out_avg_np[0,:,:]),2)) # ax3.imshow(np.stack((A_true_np[2,:,:],A_true_np[1,:,:],A_true_np[0,:,:]),2)) # plt.show() plt.plot(out_LR_np.reshape(LibS,nr1*nc1)) loss[i]=total_loss.item() i += 1 return total_loss p11 = get_params(OPT_OVER, net1, net_input1) optimize(OPTIMIZER1, p11, closure1, LR1, num_iter1) if 1: out_LR_np = out_LR.detach().cpu().squeeze().numpy() out_avg_np = out_avg.detach().cpu().squeeze().numpy() MAE_LR_avg= 100*np.mean(abs(A_true_np.astype(np.float32)- np.clip(out_avg_np, 0, 1))) MAE_LR= 100*np.mean(abs(A_true_np.astype(np.float32)- np.clip(out_LR_np, 0, 1))) SRE=10*np.log10(LA.norm(A_true_np.astype(np.float32).reshape((EE.shape[1],nr1*nc1)),'fro')/LA.norm((A_true_np.astype(np.float32)- np.clip(out_LR_np, 0, 1)).reshape((EE.shape[1],nr1*nc1)),'fro')) SRE_avg=10*np.log10(LA.norm(A_true_np.astype(np.float32).reshape((EE.shape[1],nr1*nc1)),'fro')/LA.norm((A_true_np.astype(np.float32)- np.clip(out_avg_np, 0, 1)).reshape((EE.shape[1],nr1*nc1)),'fro')) print ('Iteration %05d MAE_LR: %f MAE_LR_avg: %f SRE: %f SRE_avg: %f ' % (i, MAE_LR, MAE_LR_avg, SRE, SRE_avg), '\r', end='') # if save_result is True: # scipy.io.savemat("C:/Users/behnood/Desktop/Sparse Unmixing/Results/Sim2/demo1/10runs/out_avg_np%01d%01d.mat" % (fi+2,fj+1), # {'out_avg_np%01d%01d' % (fi+2, fj+1):out_avg_np.transpose(1,2,0)}) # scipy.io.savemat("C:/Users/behnood/Desktop/Sparse Unmixing/Results/Sim2/demo1/10runs/out_LR_np%01d%01d.mat" % (fi+2,fj+1), # {'out_LR_np%01d%01d' % (fi+2, fj+1):out_LR_np.transpose(1,2,0)}) #%%
4,026
6
142
75b9590a65adb6b1e657e5a4109bd8c90e601615
379
py
Python
Curso de Python/numeros_primos.py
Cazcode/Curso_python
cbaaedacec8801da2d62da4c3aadce052f04bd64
[ "MIT" ]
null
null
null
Curso de Python/numeros_primos.py
Cazcode/Curso_python
cbaaedacec8801da2d62da4c3aadce052f04bd64
[ "MIT" ]
null
null
null
Curso de Python/numeros_primos.py
Cazcode/Curso_python
cbaaedacec8801da2d62da4c3aadce052f04bd64
[ "MIT" ]
null
null
null
if __name__ == '__main__': run()
18.047619
46
0.522427
def es_primo(number): if number < 2 or number % 2 == 0: return False for i in range(3, number): if number % i == 0: return False return True def run(): number = int(input('Ingrese un número: ')) if es_primo(number): print('Es Primo') else: print('No es primo') if __name__ == '__main__': run()
296
0
45
813f1d0c8d016d91369c44e1d9a6e6b88e01a527
23,140
py
Python
fdc/fdc.py
alexandreday/Fast_Density_Clustering
91e7ee0ccf2b297b40747823302a21cd70d59dc9
[ "BSD-3-Clause" ]
7
2019-11-02T02:07:17.000Z
2022-01-25T10:50:09.000Z
fdc/fdc.py
alexandreday/Fast_Density_Clustering
91e7ee0ccf2b297b40747823302a21cd70d59dc9
[ "BSD-3-Clause" ]
1
2021-09-21T16:47:37.000Z
2022-01-30T00:58:11.000Z
fdc/fdc.py
alexandreday/Fast_Density_Clustering
91e7ee0ccf2b297b40747823302a21cd70d59dc9
[ "BSD-3-Clause" ]
7
2017-12-05T03:18:08.000Z
2021-12-20T19:10:49.000Z
''' Created : Jan 16, 2017 Last major update : June 29, 2017 @author: Alexandre Day Purpose: Fast density clustering ''' import numpy as np import time from numpy.random import random import sys, os from .density_estimation import KDE import pickle from collections import OrderedDict as OD from sklearn.neighbors import NearestNeighbors import multiprocessing class FDC: """ Fast Density Clustering via kernel density modelling for low-dimensional data (D <~ 8) Parameters ---------- nh_size : int, optional (default = 'auto') Neighborhood size. This is the scale used for identifying the initial modes in the density distribution, regardless of the covariance. If a point has the maximum density among it's nh_size neighbors, it is marked as a potential cluster center. 'auto' means that the nh_size is scaled with number of samples. We use nh_size = 100 for 10000 samples. The minimum neighborhood size is set to 10. eta : float, optional (default = 0.4) Noise threshold used to merge clusters. This is done by quenching directly to the specified noise threshold (as opposed to progressively coarse-graining). The noise threshold determines the extended neighborhood of cluster centers. Points that have a relative density difference of less than "noise_threshold" and that are density-reachable, are part of the extended neighborhood. random_state: int, optional (default = 0) Random number for seeding random number generator. By default, the method generates the same results. This random is used to seed the cross-validation (set partitions) which will in turn affect the bandwitdth value test_ratio_size: float, optional (default = 0.8) Ratio size of the test set used when performing maximum likehood estimation. In order to have smooth density estimations (prevent overfitting), it is recommended to use a large test_ratio_size (closer to 1.0) rather than a small one. verbose: int, optional (default = 1) Set to 0 if you don't want to see print to screen. bandwidth: float, optional (default = None) If you want the bandwidth for kernel density to be set automatically or want to set it yourself. By default it is set automatically. merge: bool, optinal (default = True) Optional merging at zero noise threshold, merges overlapping minimal clusters atol: float, optional (default = 0.000005) kernel density estimate precision parameter. determines the precision used for kde. smaller values leads to slower execution but better precision rtol: float, optional (default = 0.00005) kernel density estimate precision parameter. determines the precision used for kde. smaller values leads to slower execution but better precision xtol: float, optional (default = 0.01) precision parameter for optimizing the bandwidth using maximum likelihood on a test set search_size: int, optional (default = 20) when performing search over neighborhoods, size of each local neighborhood to check when expanding. This drastically slows the coarse-graining if chosen to be too big ! kernel: str, optional (default='gaussian') Type of Kernel to use for density estimates. Other options are {'epanechnikov'|'linear','tophat'}. """ def fit(self, X): """ Performs density clustering on given data set Parameters ---------- X : array, (n_sample, n_feature) Data to cluster. Returns ---------- self : fdc object To obtain new cluster labels use self.cluster_label """ t = time.time() self.X = X # shallow copy self.n_sample = X.shape[0] if self.n_sample < 10: assert False, "Too few samples for computing densities !" if self.nh_size is 'auto': self.nh_size = max([int(25*np.log10(self.n_sample)), 10]) if self.search_size > self.nh_size: self.search_size = self.nh_size if self.verbose == 0: blockPrint() self.display_main_parameters() print("[fdc] Starting clustering with n=%i samples..." % X.shape[0]) start = time.time() print("[fdc] Fitting kernel model for density estimation ...") self.fit_density(X) #print("here") print("[fdc] Finding centers ...") self.compute_delta(X, self.rho) print("[fdc] Found %i potential centers ..." % self.idx_centers_unmerged.shape[0]) # temporary idx for the centers : self.idx_centers = self.idx_centers_unmerged self.cluster_label = assign_cluster(self.idx_centers_unmerged, self.nn_delta, self.density_graph) if self.merge: # usually by default one should perform this minimal merging .. print("[fdc] Merging overlapping minimal clusters ...") self.check_cluster_stability_fast(X, 0.) # given if self.eta >= 1e-3 : print("[fdc] Iterating up to specified noise threshold ...") self.check_cluster_stability_fast(X, self.eta) # merging 'unstable' clusters print("[fdc] Done in %.3f s" % (time.time()-start)) enablePrint() return self def save(self, name=None): """ Saves current model to specified path 'name' """ if name is None: fname = self.make_file_name() else: fname = name fopen = open(fname,'wb') pickle.dump(self,fopen) fopen.close() return fname def f_tmp(self, X_, i_): """evaluating density and keeping track of threading order""" return (i_, self.density_model.evaluate_density(X_)) #@profile def coarse_grain(self, noise_iterable): """Started from an initial noise scale, progressively merges clusters. If specified, saves the cluster assignments at every level of the coarse graining. Parameters ----------- noise_iterable : iterable of floats Should be an iterable containg noise values at which to perform coarse graining. Usually one should start from 0 and go to larger values by small increments. The whole clustering information is stored in self.hierarchy Return ------ self """ if self.verbose == 0: blockPrint() print("[fdc] Coarse graining until desired noise threshold ...") noise_range = [n for n in noise_iterable] #hierarchy = [] self.max_noise = -1 n_cluster = 0 # note to self, if no merger is done, no need to store hierarchy ... just work with noise_range dict ... for nt in noise_range: if self.n_cluster_init is not None: if len(self.idx_centers) <= self.n_cluster_init: print("[fdc.py] Reached number of specified clusters [= %i] (or close to), n_cluster = %i"%(self.n_cluster_init,len(self.idx_centers))) break self.check_cluster_stability_fast(self.X, eta = nt) #hierarchy.append(OD({'idx_centers': self.idx_centers, 'cluster_labels': self.cluster_label})) # -> the only required information <- if len(self.idx_centers) != n_cluster: n_cluster = len(self.idx_centers) self.max_noise = nt #self.hierarchy = hierarchy self.noise_range = noise_range self.noise_threshold = noise_range[-1] enablePrint() return self #@profile def compute_delta(self, X, rho = None): """ Purpose: Computes distance to nearest-neighbor with higher density Return: delta,nn_delta,idx_centers,density_graph :delta: distance to n.n. with higher density (within some neighborhood cutoff) :nn_delta: index of n.n. with ... :idx_centers: list of points that have the largest density in their neigborhood cutoff :density_graph: for every point, list of points are incoming (via the density gradient) """ if rho is None: rho = self.rho n_sample, n_feature = X.shape maxdist = np.linalg.norm([np.max(X[:,i])-np.min(X[:,i]) for i in range(n_feature)]) delta = maxdist*np.ones(n_sample, dtype=np.float) nn_delta = np.ones(n_sample, dtype=np.int) density_graph = [[] for i in range(n_sample)] # store incoming leaves ### -----------> nn_list = self.nn_list # restricted over neighborhood (nh_size) ### -----------> for i in range(n_sample): idx = index_greater(rho[nn_list[i]]) if idx: density_graph[nn_list[i,idx]].append(i) nn_delta[i] = nn_list[i,idx] delta[i] = self.nn_dist[i,idx] else: nn_delta[i]=-1 idx_centers=np.array(range(n_sample))[delta > 0.999*maxdist] self.delta = delta self.nn_delta = nn_delta self.idx_centers_unmerged = idx_centers self.density_graph = density_graph return self def estimate_eta(self): """ Based on the density distribution, computes a scale for eta Need more experimenting, this is not quite working ... """ from matplotlib import pyplot as plt idx = int(self.n_sample/10.) idx = np.argsort(self.rho)[:-5*idx]#[2:idx:4*idx] drho = [] for i in idx: rho_init = self.rho[i] nn_i = self.nn_delta[i] while nn_i != -1: rho_c = self.rho[nn_i] nn_i = self.nn_delta[nn_i] drho.append(rho_c- rho_init) """ plt.his(drho,bins=60) plt.show() exit() """ eta = np.mean(drho)#+0.5*np.std(drho) self.cout("Using std eta of %.3f"%eta) return eta """ def get_cluster_info(self, eta = None): if eta is None: return self.cluster_label, self.idx_centers else: pos = np.argmin(np.abs(np.array(self.noise_range)-eta)) #delta_ = self.noise_range[pos] #idx_centers = self.hierarchy[pos]['idx_centers'] cluster_label = self.hierarchy[pos]['cluster_labels'] idx_center = self.hierarchy[pos]['idx_centers'] return cluster_label, idx_center """ """ def update_labels(self, idx_centers, cluster_label): self.idx_centers = idx_centers self.cluster_label = cluster_label """ #@profile def find_NH_tree_search(self, idx, eta, cluster_label): """ Function for searching for nearest neighbors within some density threshold. NH should be an empty set for the inital function call. Note to myself : lots of optimization, this is pretty time/memory consumming ! Parameters ----------- idx : int index of the cluster centroid to start from eta : float maximum density you can spill over (this is "density_center - eta") cluster_label: array of int cluster label for every datapoint. Returns ----------- List of points in the neighborhood of point idx : 1D array """ rho = self.rho zero_array = np.zeros(len(self.nn_list),dtype=bool) nn_list = self.nn_list zero_array[nn_list[idx, :self.search_size]] = True new_leaves = zero_array is_NH = (rho > eta) & (new_leaves) current_label = cluster_label[idx] # This could probably be improved, but at least it's fully vectorized and scalable (NlogN in time and N in memory) while True: update = False leaves=np.copy(new_leaves) #y_leave = cluster_label[leaves] leaves_cluster = (leaves) & (cluster_label == current_label) new_leaves=np.zeros(len(self.nn_list), dtype=bool) nn_leaf = np.unique(nn_list[leaves_cluster][:self.search_size].flatten()) res = nn_leaf[is_NH[nn_leaf]==False] pos = np.where(rho[res] > eta)[0] if len(pos) > 0: update=True is_NH[res[pos]] = True new_leaves[res[pos]] = True if update is False: break return np.where(is_NH)[0] def find_NH_tree_search_v1(self, idx, eta, cluster_label): """ Function for searching for nearest neighbors within some density threshold. NH should be an empty set for the inital function call. Note to myself : lots of optimization, this is pretty time consumming ! Returns ----------- List of points in the neighborhood of point idx : 1D array """ rho = self.rho nn_list = self.nn_list new_leaves=nn_list[idx][:self.search_size] is_NH = np.zeros(len(self.nn_list),dtype=np.int) is_NH[new_leaves[rho[new_leaves] > eta]] = 1 current_label = cluster_label[idx] # ideally here we cythonize what's below... this is highly ineficient ... while True: update = False leaves=np.hstack(new_leaves) new_leaves=[] y_leave = cluster_label[leaves] leaves_cluster = leaves[y_leave == current_label] nn_leaf = nn_list[leaves_cluster] for i in range(1, self.search_size): res = nn_leaf[is_NH[nn_leaf[:,i]] == 0, i] pos = np.where(rho[res] > eta)[0] if len(pos) > 0: update=True is_NH[res[pos]] = 1 new_leaves.append(res[pos]) if update is False: break return np.where(is_NH == 1)[0] """ def compute_coarse_grain_graph(self): graph = {} for idx in self.idx_centers: # at some scale NH = self.find_NH_tree_search(idx, eta, cluster_label) label_centers_nn = np.unique([cluster_label[ni] for ni in NH]) """ ##################################################### ##################################################### ############ utility functions below ################ ##################################################### ##################################################### def check_cluster_stability(self, X, threshold): """ Given the identified cluster centers, performs a more rigourous neighborhood search (based on some noise threshold) for points with higher densities. This is vaguely similar to a watershed cuts in image segmentation and basically makes sure we haven't identified spurious cluster centers w.r.t to some noise threshold (false positive). This has bad memory complexity, needs improvement if we want to run on N>10^5 data points. """ density_graph = self.density_graph nn_delta = self.nn_delta delta = self.delta rho = self.rho nn_list = self.nn_list idx_centers = self.idx_centers_unmerged cluster_label = self.cluster_label n_false_pos = 0 idx_true_centers = [] for idx in idx_centers: rho_center = rho[idx] delta_rho = rho_center - threshold if threshold < 1e-3: # just check nn_list ... NH=nn_list[idx][1:self.search_size] else: NH = self.find_NH_tree_search(idx, delta_rho, cluster_label) #print(len(NH)) label_centers_nn = np.unique(self.cluster_label[NH])#[cluster_label[ni] for ni in NH]) idx_max = idx_centers[ label_centers_nn[np.argmax(rho[idx_centers[label_centers_nn]])] ] rho_current = rho[idx] if ( rho_current < rho[idx_max] ) & ( idx != idx_max ) : nn_delta[idx] = idx_max delta[idx] = np.linalg.norm(X[idx_max]-X[idx]) density_graph[idx_max].append(idx) n_false_pos+=1 else: idx_true_centers.append(idx) return np.array(idx_true_centers,dtype=np.int), n_false_pos def assign_cluster(idx_centers, nn_delta, density_graph): """ Given the cluster centers and the local gradients (nn_delta) assign to every point a cluster label """ n_center = idx_centers.shape[0] n_sample = nn_delta.shape[0] cluster_label = -1*np.ones(n_sample,dtype=np.int) # reinitialized every time. for c, label in zip(idx_centers, range(n_center) ): cluster_label[c] = label assign_cluster_deep(density_graph[c], cluster_label, density_graph, label) return cluster_label def assign_cluster_deep(root,cluster_label,density_graph,label): """ Recursive function for assigning labels for a tree graph. Stopping condition is met when the root is empty (i.e. a leaf has been reached) """ if not root: # then must be a leaf ! return else: for child in root: cluster_label[child]=label assign_cluster_deep(density_graph[child],cluster_label,density_graph,label) def index_greater(array, prec=1e-8): """ Purpose: Function for finding first item in an array that has a value greater than the first element in that array If no element is found, returns None Precision: 1e-8 Return: int or None """ item=array[0] for idx, val in np.ndenumerate(array): # slow ! : could be cythonized if val > (item + prec): return idx[0] def blockPrint(): """Blocks printing to screen""" sys.stdout = open(os.devnull, 'w') def enablePrint(): """Enables printing to screen""" sys.stdout = sys.__stdout__
34.485842
158
0.591357
''' Created : Jan 16, 2017 Last major update : June 29, 2017 @author: Alexandre Day Purpose: Fast density clustering ''' import numpy as np import time from numpy.random import random import sys, os from .density_estimation import KDE import pickle from collections import OrderedDict as OD from sklearn.neighbors import NearestNeighbors import multiprocessing class FDC: """ Fast Density Clustering via kernel density modelling for low-dimensional data (D <~ 8) Parameters ---------- nh_size : int, optional (default = 'auto') Neighborhood size. This is the scale used for identifying the initial modes in the density distribution, regardless of the covariance. If a point has the maximum density among it's nh_size neighbors, it is marked as a potential cluster center. 'auto' means that the nh_size is scaled with number of samples. We use nh_size = 100 for 10000 samples. The minimum neighborhood size is set to 10. eta : float, optional (default = 0.4) Noise threshold used to merge clusters. This is done by quenching directly to the specified noise threshold (as opposed to progressively coarse-graining). The noise threshold determines the extended neighborhood of cluster centers. Points that have a relative density difference of less than "noise_threshold" and that are density-reachable, are part of the extended neighborhood. random_state: int, optional (default = 0) Random number for seeding random number generator. By default, the method generates the same results. This random is used to seed the cross-validation (set partitions) which will in turn affect the bandwitdth value test_ratio_size: float, optional (default = 0.8) Ratio size of the test set used when performing maximum likehood estimation. In order to have smooth density estimations (prevent overfitting), it is recommended to use a large test_ratio_size (closer to 1.0) rather than a small one. verbose: int, optional (default = 1) Set to 0 if you don't want to see print to screen. bandwidth: float, optional (default = None) If you want the bandwidth for kernel density to be set automatically or want to set it yourself. By default it is set automatically. merge: bool, optinal (default = True) Optional merging at zero noise threshold, merges overlapping minimal clusters atol: float, optional (default = 0.000005) kernel density estimate precision parameter. determines the precision used for kde. smaller values leads to slower execution but better precision rtol: float, optional (default = 0.00005) kernel density estimate precision parameter. determines the precision used for kde. smaller values leads to slower execution but better precision xtol: float, optional (default = 0.01) precision parameter for optimizing the bandwidth using maximum likelihood on a test set search_size: int, optional (default = 20) when performing search over neighborhoods, size of each local neighborhood to check when expanding. This drastically slows the coarse-graining if chosen to be too big ! kernel: str, optional (default='gaussian') Type of Kernel to use for density estimates. Other options are {'epanechnikov'|'linear','tophat'}. """ def __init__(self, nh_size='auto', eta=0.5, random_state=0, test_ratio_size=0.8, verbose=1, bandwidth=None, merge=True, atol=0.01, rtol=0.0001, xtol=0.01, search_size = 20, n_cluster_init = None, kernel = 'gaussian', n_job='auto' ): self.test_ratio_size = test_ratio_size self.random_state = random_state self.verbose = verbose self.nh_size = nh_size self.bandwidth = bandwidth self.eta = eta self.merge = merge self.atol = atol self.rtol = rtol self.xtol = xtol self.cluster_label = None self.search_size = search_size self.n_cluster_init = n_cluster_init self.kernel = kernel self.nbrs= None self.nn_dist= None self.nn_list= None self.density_model = None if n_job == 'auto': self.n_job=multiprocessing.cpu_count() else: if n_job > multiprocessing.cpu_count(): self.n_job=multiprocessing.cpu_count() else: self.n_job=n_job def fit(self, X): """ Performs density clustering on given data set Parameters ---------- X : array, (n_sample, n_feature) Data to cluster. Returns ---------- self : fdc object To obtain new cluster labels use self.cluster_label """ t = time.time() self.X = X # shallow copy self.n_sample = X.shape[0] if self.n_sample < 10: assert False, "Too few samples for computing densities !" if self.nh_size is 'auto': self.nh_size = max([int(25*np.log10(self.n_sample)), 10]) if self.search_size > self.nh_size: self.search_size = self.nh_size if self.verbose == 0: blockPrint() self.display_main_parameters() print("[fdc] Starting clustering with n=%i samples..." % X.shape[0]) start = time.time() print("[fdc] Fitting kernel model for density estimation ...") self.fit_density(X) #print("here") print("[fdc] Finding centers ...") self.compute_delta(X, self.rho) print("[fdc] Found %i potential centers ..." % self.idx_centers_unmerged.shape[0]) # temporary idx for the centers : self.idx_centers = self.idx_centers_unmerged self.cluster_label = assign_cluster(self.idx_centers_unmerged, self.nn_delta, self.density_graph) if self.merge: # usually by default one should perform this minimal merging .. print("[fdc] Merging overlapping minimal clusters ...") self.check_cluster_stability_fast(X, 0.) # given if self.eta >= 1e-3 : print("[fdc] Iterating up to specified noise threshold ...") self.check_cluster_stability_fast(X, self.eta) # merging 'unstable' clusters print("[fdc] Done in %.3f s" % (time.time()-start)) enablePrint() return self def save(self, name=None): """ Saves current model to specified path 'name' """ if name is None: fname = self.make_file_name() else: fname = name fopen = open(fname,'wb') pickle.dump(self,fopen) fopen.close() return fname def load(self, name=None): if name is None: name = self.make_file_name() self.__dict__.update(pickle.load(open(name,'rb')).__dict__) return self def fit_density(self, X): # nearest neighbors class self.nbrs = NearestNeighbors(n_neighbors = self.nh_size, algorithm='kd_tree').fit(X) # get k-NN self.nn_dist, self.nn_list = self.nbrs.kneighbors(X) # density model class self.density_model = KDE(bandwidth=self.bandwidth, test_ratio_size=self.test_ratio_size, atol=self.atol, rtol=self.rtol, xtol=self.xtol, nn_dist = self.nn_dist, kernel=self.kernel) # fit density model to data self.density_model.fit(X) # save bandwidth self.bandwidth = self.density_model.bandwidth # compute density map based on kernel density model if (self.n_sample > 30000) & (self.n_job !=1) : print("[fdc] Computing density with %i threads..."%self.n_job) p = multiprocessing.Pool(self.n_job) size_split = X.shape[0]//self.n_job results =[] idx_split = chunkIt(len(X), self.n_job) # find the index to split the array in approx. n_job equal parts. for i in range(self.n_job): results.append(p.apply_async(self.f_tmp, [X[idx_split[i][0]:idx_split[i][1]], i])) results = [res.get() for res in results] asort = np.argsort([results[i][0] for i in range(self.n_job)]) # reordering #print(asort) self.rho=np.hstack([results[a][1] for a in asort]) else: print("[fdc] Computing density with 1 thread...") self.rho = self.density_model.evaluate_density(X) return self def f_tmp(self, X_, i_): """evaluating density and keeping track of threading order""" return (i_, self.density_model.evaluate_density(X_)) #@profile def coarse_grain(self, noise_iterable): """Started from an initial noise scale, progressively merges clusters. If specified, saves the cluster assignments at every level of the coarse graining. Parameters ----------- noise_iterable : iterable of floats Should be an iterable containg noise values at which to perform coarse graining. Usually one should start from 0 and go to larger values by small increments. The whole clustering information is stored in self.hierarchy Return ------ self """ if self.verbose == 0: blockPrint() print("[fdc] Coarse graining until desired noise threshold ...") noise_range = [n for n in noise_iterable] #hierarchy = [] self.max_noise = -1 n_cluster = 0 # note to self, if no merger is done, no need to store hierarchy ... just work with noise_range dict ... for nt in noise_range: if self.n_cluster_init is not None: if len(self.idx_centers) <= self.n_cluster_init: print("[fdc.py] Reached number of specified clusters [= %i] (or close to), n_cluster = %i"%(self.n_cluster_init,len(self.idx_centers))) break self.check_cluster_stability_fast(self.X, eta = nt) #hierarchy.append(OD({'idx_centers': self.idx_centers, 'cluster_labels': self.cluster_label})) # -> the only required information <- if len(self.idx_centers) != n_cluster: n_cluster = len(self.idx_centers) self.max_noise = nt #self.hierarchy = hierarchy self.noise_range = noise_range self.noise_threshold = noise_range[-1] enablePrint() return self #@profile def compute_delta(self, X, rho = None): """ Purpose: Computes distance to nearest-neighbor with higher density Return: delta,nn_delta,idx_centers,density_graph :delta: distance to n.n. with higher density (within some neighborhood cutoff) :nn_delta: index of n.n. with ... :idx_centers: list of points that have the largest density in their neigborhood cutoff :density_graph: for every point, list of points are incoming (via the density gradient) """ if rho is None: rho = self.rho n_sample, n_feature = X.shape maxdist = np.linalg.norm([np.max(X[:,i])-np.min(X[:,i]) for i in range(n_feature)]) delta = maxdist*np.ones(n_sample, dtype=np.float) nn_delta = np.ones(n_sample, dtype=np.int) density_graph = [[] for i in range(n_sample)] # store incoming leaves ### -----------> nn_list = self.nn_list # restricted over neighborhood (nh_size) ### -----------> for i in range(n_sample): idx = index_greater(rho[nn_list[i]]) if idx: density_graph[nn_list[i,idx]].append(i) nn_delta[i] = nn_list[i,idx] delta[i] = self.nn_dist[i,idx] else: nn_delta[i]=-1 idx_centers=np.array(range(n_sample))[delta > 0.999*maxdist] self.delta = delta self.nn_delta = nn_delta self.idx_centers_unmerged = idx_centers self.density_graph = density_graph return self def estimate_eta(self): """ Based on the density distribution, computes a scale for eta Need more experimenting, this is not quite working ... """ from matplotlib import pyplot as plt idx = int(self.n_sample/10.) idx = np.argsort(self.rho)[:-5*idx]#[2:idx:4*idx] drho = [] for i in idx: rho_init = self.rho[i] nn_i = self.nn_delta[i] while nn_i != -1: rho_c = self.rho[nn_i] nn_i = self.nn_delta[nn_i] drho.append(rho_c- rho_init) """ plt.his(drho,bins=60) plt.show() exit() """ eta = np.mean(drho)#+0.5*np.std(drho) self.cout("Using std eta of %.3f"%eta) return eta def check_cluster_stability_fast(self, X, eta = None): # given if self.verbose == 0: blockPrint() if eta is None: eta = self.eta while True: # iterates untill number of cluster does not change ... self.cluster_label = assign_cluster(self.idx_centers_unmerged, self.nn_delta, self.density_graph) # first approximation of assignments self.idx_centers, n_false_pos = check_cluster_stability(self, X, eta) self.idx_centers_unmerged = self.idx_centers if n_false_pos == 0: print(" # of stable clusters with noise %.6f : %i" % (eta, self.idx_centers.shape[0])) break enablePrint() """ def get_cluster_info(self, eta = None): if eta is None: return self.cluster_label, self.idx_centers else: pos = np.argmin(np.abs(np.array(self.noise_range)-eta)) #delta_ = self.noise_range[pos] #idx_centers = self.hierarchy[pos]['idx_centers'] cluster_label = self.hierarchy[pos]['cluster_labels'] idx_center = self.hierarchy[pos]['idx_centers'] return cluster_label, idx_center """ """ def update_labels(self, idx_centers, cluster_label): self.idx_centers = idx_centers self.cluster_label = cluster_label """ #@profile def find_NH_tree_search(self, idx, eta, cluster_label): """ Function for searching for nearest neighbors within some density threshold. NH should be an empty set for the inital function call. Note to myself : lots of optimization, this is pretty time/memory consumming ! Parameters ----------- idx : int index of the cluster centroid to start from eta : float maximum density you can spill over (this is "density_center - eta") cluster_label: array of int cluster label for every datapoint. Returns ----------- List of points in the neighborhood of point idx : 1D array """ rho = self.rho zero_array = np.zeros(len(self.nn_list),dtype=bool) nn_list = self.nn_list zero_array[nn_list[idx, :self.search_size]] = True new_leaves = zero_array is_NH = (rho > eta) & (new_leaves) current_label = cluster_label[idx] # This could probably be improved, but at least it's fully vectorized and scalable (NlogN in time and N in memory) while True: update = False leaves=np.copy(new_leaves) #y_leave = cluster_label[leaves] leaves_cluster = (leaves) & (cluster_label == current_label) new_leaves=np.zeros(len(self.nn_list), dtype=bool) nn_leaf = np.unique(nn_list[leaves_cluster][:self.search_size].flatten()) res = nn_leaf[is_NH[nn_leaf]==False] pos = np.where(rho[res] > eta)[0] if len(pos) > 0: update=True is_NH[res[pos]] = True new_leaves[res[pos]] = True if update is False: break return np.where(is_NH)[0] def find_NH_tree_search_v1(self, idx, eta, cluster_label): """ Function for searching for nearest neighbors within some density threshold. NH should be an empty set for the inital function call. Note to myself : lots of optimization, this is pretty time consumming ! Returns ----------- List of points in the neighborhood of point idx : 1D array """ rho = self.rho nn_list = self.nn_list new_leaves=nn_list[idx][:self.search_size] is_NH = np.zeros(len(self.nn_list),dtype=np.int) is_NH[new_leaves[rho[new_leaves] > eta]] = 1 current_label = cluster_label[idx] # ideally here we cythonize what's below... this is highly ineficient ... while True: update = False leaves=np.hstack(new_leaves) new_leaves=[] y_leave = cluster_label[leaves] leaves_cluster = leaves[y_leave == current_label] nn_leaf = nn_list[leaves_cluster] for i in range(1, self.search_size): res = nn_leaf[is_NH[nn_leaf[:,i]] == 0, i] pos = np.where(rho[res] > eta)[0] if len(pos) > 0: update=True is_NH[res[pos]] = 1 new_leaves.append(res[pos]) if update is False: break return np.where(is_NH == 1)[0] def cout(self, s): print('[fdc] '+s) def make_file_name(self): t_name = "fdc_nhSize=%i_eta=%.3f_ratio=%.2f.pkl" return t_name%(self.nh_size, self.eta, self.test_ratio_size) """ def compute_coarse_grain_graph(self): graph = {} for idx in self.idx_centers: # at some scale NH = self.find_NH_tree_search(idx, eta, cluster_label) label_centers_nn = np.unique([cluster_label[ni] for ni in NH]) """ def display_main_parameters(self): if self.eta is not 'auto': eta = "%.3f"%self.eta else: eta = self.eta out = [ "[fdc] {0:<20s}{1:<4s}{2:<6d}".format("nh_size",":",self.nh_size), "[fdc] {0:<20s}{1:<4s}{2:<6s}".format("eta",":",eta), "[fdc] {0:<20s}{1:<4s}{2:<6s}".format("merge",":",str(self.merge)), "[fdc] {0:<20s}{1:<4s}{2:<6d}".format("search_size",":",self.search_size), "[fdc] {0:<20s}{1:<4s}{2:<6.3f}".format("test_size_ratio",":",self.test_ratio_size) ] for o in out: print(o) def reset(self): self.bandwidth = None ##################################################### ##################################################### ############ utility functions below ################ ##################################################### ##################################################### def check_cluster_stability(self, X, threshold): """ Given the identified cluster centers, performs a more rigourous neighborhood search (based on some noise threshold) for points with higher densities. This is vaguely similar to a watershed cuts in image segmentation and basically makes sure we haven't identified spurious cluster centers w.r.t to some noise threshold (false positive). This has bad memory complexity, needs improvement if we want to run on N>10^5 data points. """ density_graph = self.density_graph nn_delta = self.nn_delta delta = self.delta rho = self.rho nn_list = self.nn_list idx_centers = self.idx_centers_unmerged cluster_label = self.cluster_label n_false_pos = 0 idx_true_centers = [] for idx in idx_centers: rho_center = rho[idx] delta_rho = rho_center - threshold if threshold < 1e-3: # just check nn_list ... NH=nn_list[idx][1:self.search_size] else: NH = self.find_NH_tree_search(idx, delta_rho, cluster_label) #print(len(NH)) label_centers_nn = np.unique(self.cluster_label[NH])#[cluster_label[ni] for ni in NH]) idx_max = idx_centers[ label_centers_nn[np.argmax(rho[idx_centers[label_centers_nn]])] ] rho_current = rho[idx] if ( rho_current < rho[idx_max] ) & ( idx != idx_max ) : nn_delta[idx] = idx_max delta[idx] = np.linalg.norm(X[idx_max]-X[idx]) density_graph[idx_max].append(idx) n_false_pos+=1 else: idx_true_centers.append(idx) return np.array(idx_true_centers,dtype=np.int), n_false_pos def assign_cluster(idx_centers, nn_delta, density_graph): """ Given the cluster centers and the local gradients (nn_delta) assign to every point a cluster label """ n_center = idx_centers.shape[0] n_sample = nn_delta.shape[0] cluster_label = -1*np.ones(n_sample,dtype=np.int) # reinitialized every time. for c, label in zip(idx_centers, range(n_center) ): cluster_label[c] = label assign_cluster_deep(density_graph[c], cluster_label, density_graph, label) return cluster_label def assign_cluster_deep(root,cluster_label,density_graph,label): """ Recursive function for assigning labels for a tree graph. Stopping condition is met when the root is empty (i.e. a leaf has been reached) """ if not root: # then must be a leaf ! return else: for child in root: cluster_label[child]=label assign_cluster_deep(density_graph[child],cluster_label,density_graph,label) def index_greater(array, prec=1e-8): """ Purpose: Function for finding first item in an array that has a value greater than the first element in that array If no element is found, returns None Precision: 1e-8 Return: int or None """ item=array[0] for idx, val in np.ndenumerate(array): # slow ! : could be cythonized if val > (item + prec): return idx[0] def blockPrint(): """Blocks printing to screen""" sys.stdout = open(os.devnull, 'w') def enablePrint(): """Enables printing to screen""" sys.stdout = sys.__stdout__ def chunkIt(length_seq, num): avg = length_seq / float(num) out = [] last = 0.0 idx_list = [] while last < length_seq: idx_list.append([int(last),int(last + avg)]) last += avg if len(idx_list) > num: idx_list.pop() idx_list[-1] = [idx_list[-1][0], length_seq] return idx_list
4,753
0
255
8af9843b14b841e700e5b71b89c9be14eff3deb2
539
py
Python
aztk_cli/spark/endpoints/job/get_app.py
Geims83/aztk
8f8e7b268bdbf82c3ae4ecdcd907077bd6fe69b6
[ "MIT" ]
161
2017-10-04T08:58:27.000Z
2022-01-03T13:01:04.000Z
aztk_cli/spark/endpoints/job/get_app.py
Geims83/aztk
8f8e7b268bdbf82c3ae4ecdcd907077bd6fe69b6
[ "MIT" ]
400
2017-09-29T21:52:08.000Z
2021-01-08T02:48:56.000Z
aztk_cli/spark/endpoints/job/get_app.py
isabella232/aztk
6e04372d19661ead6744387edab7beda16e3d928
[ "MIT" ]
74
2017-10-13T04:41:26.000Z
2021-12-20T15:56:42.000Z
import argparse import typing import aztk.spark from aztk_cli import config, utils
31.705882
104
0.762523
import argparse import typing import aztk.spark from aztk_cli import config, utils def setup_parser(parser: argparse.ArgumentParser): parser.add_argument("--id", dest="job_id", required=True, help="The unique id of your AZTK job") parser.add_argument("--name", dest="app_name", required=True, help="The unique id of your job name") def execute(args: typing.NamedTuple): spark_client = aztk.spark.Client(config.load_aztk_secrets()) utils.print_application(spark_client.job.get_application(args.job_id, args.app_name))
407
0
46
f3302cd3e06d5ffb2be99f117180800962602ad7
1,021
py
Python
src/start_stop_timer.py
MarioMey/OBS-Studio-Python-Scripting-Cheatsheet-obspython-Examples-of-API
7f1f2a00c2731c558f6b9fd75edb697fc0719a7c
[ "MIT" ]
4
2021-03-23T05:25:24.000Z
2021-12-29T16:46:01.000Z
src/start_stop_timer.py
MarioMey/OBS-Studio-Python-Scripting-Cheatsheet-obspython-Examples-of-API
7f1f2a00c2731c558f6b9fd75edb697fc0719a7c
[ "MIT" ]
null
null
null
src/start_stop_timer.py
MarioMey/OBS-Studio-Python-Scripting-Cheatsheet-obspython-Examples-of-API
7f1f2a00c2731c558f6b9fd75edb697fc0719a7c
[ "MIT" ]
null
null
null
import obspython as obs from random import choices FLAG = True INTERVAL = 100 eg = Example() # class created ,obs part starts
22.688889
76
0.624878
import obspython as obs from random import choices FLAG = True INTERVAL = 100 class Example: def __init__(self): self.lock = True def random_numbers(self): print(choices(range(1,10),k=3)) def ticker(self): """ how fast update.One callback at time with lock""" if self.lock: self.random_numbers() if not self.lock: obs.remove_current_callback() eg = Example() # class created ,obs part starts def stop_pressed(props, prop): global FLAG FLAG = True eg.lock = False def start_pressed(props, prop): global FLAG # to keep only one timer callback if FLAG: obs.timer_add(eg.ticker, INTERVAL) eg.lock = True FLAG = False def script_properties(): # ui props = obs.obs_properties_create() obs.obs_properties_add_button(props, "button", "Stop", stop_pressed) obs.obs_properties_add_button(props, "button2", "Start", start_pressed) return props
510
265
100
e825db0cd14e732018d8765c992065e614f82878
1,048
py
Python
checkout_sdk/disputes/disputes.py
riaz-bordie-cko/checkout-sdk-python
d9bc073306c1a98544c326be693ed722576ea895
[ "MIT" ]
null
null
null
checkout_sdk/disputes/disputes.py
riaz-bordie-cko/checkout-sdk-python
d9bc073306c1a98544c326be693ed722576ea895
[ "MIT" ]
null
null
null
checkout_sdk/disputes/disputes.py
riaz-bordie-cko/checkout-sdk-python
d9bc073306c1a98544c326be693ed722576ea895
[ "MIT" ]
null
null
null
from datetime import datetime
28.324324
53
0.78626
from datetime import datetime class DisputesQueryFilter: limit: int skip: int from_: datetime to: datetime id: str statuses: str payment_id: str payment_reference: str payment_arn: str this_channel_only: bool # Only available for CS2 entity_ids: str sub_entity_ids: str payment_mcc: str class DisputeEvidenceRequest: proof_of_delivery_or_service_file: str proof_of_delivery_or_service_text: str invoice_or_receipt_file: str invoice_or_receipt_text: str invoice_showing_distinct_transactions_file: str invoice_showing_distinct_transactions_text: str customer_communication_file: str customer_communication_text: str refund_or_cancellation_policy_file: str refund_or_cancellation_policy_text: str recurring_transaction_agreement_file: str recurring_transaction_agreement_text: str additional_evidence_file: str additional_evidence_text: str proof_of_delivery_or_service_date_file: str proof_of_delivery_or_service_date_text: str
0
970
46
6f8866f4896b6cf29e177021809a4addfceb41c6
3,582
py
Python
esp32/sensor_identifikation/ntc.py
phofmeier/wifi_temp_sensor
93ebc466b6913842cac6eb9385272c79651d2479
[ "MIT" ]
null
null
null
esp32/sensor_identifikation/ntc.py
phofmeier/wifi_temp_sensor
93ebc466b6913842cac6eb9385272c79651d2479
[ "MIT" ]
null
null
null
esp32/sensor_identifikation/ntc.py
phofmeier/wifi_temp_sensor
93ebc466b6913842cac6eb9385272c79651d2479
[ "MIT" ]
null
null
null
import numpy as np import matplotlib.pyplot as plt import casadi as cas # define functions # Check if Sensor is a NTC and find out the Resistance R_measured = [103e3, 120e3, 70e3, 15.2e3] T_measured_C = [25, 20, 33, 74] R_N = 103e3 T_N = 298.15 U_ges = 3.3 T_range_C = [0, 200] # Kelvin from Temp T_range = [i + 273.15 for i in T_range_C] T_measured = [i + 273.15 for i in T_measured_C] # Fit B B_sym = cas.SX.sym("B") f = 0 for R, T in zip(R_measured, T_measured): f += (R-R_ntc(R_N, B_sym, T, T_N))**2 nlp = {'x': B_sym, 'f': f} S = cas.nlpsol('S', 'ipopt', nlp) res = S() B = res['x'].full()[0] # Search for the Value of R_1 which minimizes the deviation of Measured Voltage at a specific Temperature T_Nenn_C = 65 T_Nenn = T_Nenn_C + 273.15 R_1 = cas.SX.sym("R_1") T_sym = cas.SX.sym("T") U = U_meas(U_ges, R_1, R_ntc(R_N, B, T_sym, T_N)) jac = cas.Function("dudT", [R_1, T_sym], [cas.jacobian(U, T_sym)]) lbx = [0] ubx = [cas.inf] nlp = {'x': R_1, 'f': jac(R_1, T_Nenn)} S = cas.nlpsol('S', 'ipopt', nlp) res = S(lbx=lbx, ubx=ubx) R_1 = res['x'].full()[0] # plot T = np.linspace(T_range[0], T_range[1], num=200) T_C = np.linspace(T_range_C[0], T_range_C[1], num=200) print("R_1: %e" % R_1) print("B: %e" % B) plt.figure() plt.title("Fitted and Measured Resistance of the NTC") plt.plot(T_C, R_ntc(R_N, B, T, T_N), label="R_fitted") plt.plot(T_measured_C, R_measured, "x", label="R_measured") plt.xlabel("Temp [Grad]") plt.ylabel("R [Ohm]") plt.legend() U_range = U_meas(U_ges, R_1, R_ntc(R_N, B, T, T_N)) plt.figure() plt.title("Voltage vs. Temperature with optimal Resistance. Vertical line shows the optimal Temperature.") plt.plot(T_C, U_range, label="R/NTC") plt.vlines(T_Nenn_C, U_range.min(), U_range.max()) plt.xlabel("Temp [Grad]") plt.ylabel("U [V]") plt.legend() # Calibrate Sensor from ADC measurements # measurements adc_voltage_measured = [2.21634, 2.17343, 1.59904, 1.49781, 0.84637, 0.71773, 0.59042, 0.67618, 0.18674, 0.22936,0.18058,0.16265, 0.31080, 0.35350, 0.51420, 0.54871, 0.69035, 0.74026, 0.93252, 0.97848, 1.14037, 1.22280, 1.62269, 1.66503, 2.68944, 2.70243] T_measured = [42, 43, 60, 65, 92, 99, 106, 101, 156, 146, 158, 161, 133, 128, 112, 109, 100, 97, 87, 85, 78, 75, 61, 59, 24, 23] # Fit Model R1 = 24.9e3 B_sym = cas.SX.sym("B") Rn_sym = cas.SX.sym("Rn") Tn_sym = cas.SX.sym("Tn") syms = cas.vertcat(B_sym, Rn_sym, Tn_sym) x0 = [B, 103e3, T_N] f = 0 for T, adc_voltage in zip(T_measured, adc_voltage_measured): f += (T-Temp(adc_voltage, R1, U_ges, B_sym, Rn_sym, Tn_sym))**2 f += (Rn_sym-103e3)**2+(Tn_sym-T_N)**2 nlp = {'x': syms, 'f': f} S = cas.nlpsol('S', 'ipopt', nlp) res = S(x0=x0) B = res['x'].full()[0] Rn = res['x'].full()[1] Tn = res['x'].full()[2] print("B:", B, "R1:", R1, "Rn:", Rn, "Tn:", Tn) plt.figure() plt.title("Fitted Model for measured Voltage vs. Temperature") adc_range = np.linspace(min(adc_voltage_measured), max(adc_voltage_measured)) plt.plot(adc_range, Temp(adc_range, R1, U_ges, B, Rn, Tn), label="Fitted Model") plt.plot(adc_voltage_measured, T_measured, 'x', label="Measured") plt.xlabel("ADC voltage [V]") plt.ylabel("Temp [Grad]") plt.legend() plt.show()
27.343511
255
0.650475
import numpy as np import matplotlib.pyplot as plt import casadi as cas # define functions def R_ntc(R_N, B, T, T_N): return R_N * np.exp(B*(1/T-1/T_N)) def U_meas(U_ges, R_1, R_2): return U_ges/(R_1+R_2) * R_2 def Temp(U_meas, R_1, U_ges, B, R_N, T_N): R_NTC = U_meas * R_1 / (U_ges - U_meas) T_kelvin = 1 / (np.log(R_NTC / R_N) / B + 1 / T_N) return T_kelvin - 273.15 def Temp_adc(adc_value, R_1, U_ges, B, R_N, T_N): return Temp(U_ges/4096 * adc_value, R_1, U_ges, B, R_N, T_N) # Check if Sensor is a NTC and find out the Resistance R_measured = [103e3, 120e3, 70e3, 15.2e3] T_measured_C = [25, 20, 33, 74] R_N = 103e3 T_N = 298.15 U_ges = 3.3 T_range_C = [0, 200] # Kelvin from Temp T_range = [i + 273.15 for i in T_range_C] T_measured = [i + 273.15 for i in T_measured_C] # Fit B B_sym = cas.SX.sym("B") f = 0 for R, T in zip(R_measured, T_measured): f += (R-R_ntc(R_N, B_sym, T, T_N))**2 nlp = {'x': B_sym, 'f': f} S = cas.nlpsol('S', 'ipopt', nlp) res = S() B = res['x'].full()[0] # Search for the Value of R_1 which minimizes the deviation of Measured Voltage at a specific Temperature T_Nenn_C = 65 T_Nenn = T_Nenn_C + 273.15 R_1 = cas.SX.sym("R_1") T_sym = cas.SX.sym("T") U = U_meas(U_ges, R_1, R_ntc(R_N, B, T_sym, T_N)) jac = cas.Function("dudT", [R_1, T_sym], [cas.jacobian(U, T_sym)]) lbx = [0] ubx = [cas.inf] nlp = {'x': R_1, 'f': jac(R_1, T_Nenn)} S = cas.nlpsol('S', 'ipopt', nlp) res = S(lbx=lbx, ubx=ubx) R_1 = res['x'].full()[0] # plot T = np.linspace(T_range[0], T_range[1], num=200) T_C = np.linspace(T_range_C[0], T_range_C[1], num=200) print("R_1: %e" % R_1) print("B: %e" % B) plt.figure() plt.title("Fitted and Measured Resistance of the NTC") plt.plot(T_C, R_ntc(R_N, B, T, T_N), label="R_fitted") plt.plot(T_measured_C, R_measured, "x", label="R_measured") plt.xlabel("Temp [Grad]") plt.ylabel("R [Ohm]") plt.legend() U_range = U_meas(U_ges, R_1, R_ntc(R_N, B, T, T_N)) plt.figure() plt.title("Voltage vs. Temperature with optimal Resistance. Vertical line shows the optimal Temperature.") plt.plot(T_C, U_range, label="R/NTC") plt.vlines(T_Nenn_C, U_range.min(), U_range.max()) plt.xlabel("Temp [Grad]") plt.ylabel("U [V]") plt.legend() # Calibrate Sensor from ADC measurements # measurements adc_voltage_measured = [2.21634, 2.17343, 1.59904, 1.49781, 0.84637, 0.71773, 0.59042, 0.67618, 0.18674, 0.22936,0.18058,0.16265, 0.31080, 0.35350, 0.51420, 0.54871, 0.69035, 0.74026, 0.93252, 0.97848, 1.14037, 1.22280, 1.62269, 1.66503, 2.68944, 2.70243] T_measured = [42, 43, 60, 65, 92, 99, 106, 101, 156, 146, 158, 161, 133, 128, 112, 109, 100, 97, 87, 85, 78, 75, 61, 59, 24, 23] # Fit Model R1 = 24.9e3 B_sym = cas.SX.sym("B") Rn_sym = cas.SX.sym("Rn") Tn_sym = cas.SX.sym("Tn") syms = cas.vertcat(B_sym, Rn_sym, Tn_sym) x0 = [B, 103e3, T_N] f = 0 for T, adc_voltage in zip(T_measured, adc_voltage_measured): f += (T-Temp(adc_voltage, R1, U_ges, B_sym, Rn_sym, Tn_sym))**2 f += (Rn_sym-103e3)**2+(Tn_sym-T_N)**2 nlp = {'x': syms, 'f': f} S = cas.nlpsol('S', 'ipopt', nlp) res = S(x0=x0) B = res['x'].full()[0] Rn = res['x'].full()[1] Tn = res['x'].full()[2] print("B:", B, "R1:", R1, "Rn:", Rn, "Tn:", Tn) plt.figure() plt.title("Fitted Model for measured Voltage vs. Temperature") adc_range = np.linspace(min(adc_voltage_measured), max(adc_voltage_measured)) plt.plot(adc_range, Temp(adc_range, R1, U_ges, B, Rn, Tn), label="Fitted Model") plt.plot(adc_voltage_measured, T_measured, 'x', label="Measured") plt.xlabel("ADC voltage [V]") plt.ylabel("Temp [Grad]") plt.legend() plt.show()
327
0
91
11b074486878ba17beb24bb3f56ff683fc015de8
2,698
py
Python
tools/diff_filter.py
caizhanjin/deepseg
5e91a387683ad73075b51b49da8957d8f4bb6b7f
[ "Apache-2.0" ]
null
null
null
tools/diff_filter.py
caizhanjin/deepseg
5e91a387683ad73075b51b49da8957d8f4bb6b7f
[ "Apache-2.0" ]
null
null
null
tools/diff_filter.py
caizhanjin/deepseg
5e91a387683ad73075b51b49da8957d8f4bb6b7f
[ "Apache-2.0" ]
null
null
null
import os import re if __name__ == "__main__": filters = [SingleChineseFilter()] diff_file = "C:\\Users\\allen.luo\\Desktop\\diff_filter\\test.diff.txt" differ = DiffFilter(diff_file) differ.filter(filters)
32.506024
92
0.490734
import os import re class Filter(object): def accept(self, line): raise NotImplementedError() class SingleChineseFilter(Filter): def __init__(self): self.pattern = re.compile("[\u4e00-\u9fa5]+") self.key_words = ['号', '层', '幢', '与', '栋', '旁', '室', '楼'] def accept(self, line): words = line.split(" ") acc = False for w in words: if len(w) > 1: continue if w in self.key_words: continue m = self.pattern.findall(w) if not m: continue acc = True break return acc class DiffFilter(object): def __init__(self, diff_file): self.diff_file = diff_file def filter(self, filters): filepath = str(self.diff_file).split(os.sep)[0:-1] skipped_file = os.path.join(os.sep.join(filepath), "skipped.txt") selected_file = os.path.join(os.sep.join(filepath), "selected.txt") editable = os.path.join(os.sep.join(filepath), "editable.txt") with open(self.diff_file, mode="rt", encoding="utf8", buffering=8192) as f, \ open(skipped_file, mode="wt", encoding="utf8", buffering=8192) as skip, \ open(selected_file, mode="wt", encoding="utf8", buffering=8192) as select, \ open(editable, mode="wt", encoding="utf8", buffering=8192) as ed: while True: line = f.readline() if not line: break # empty = f.readline() jieba = f.readline().replace("STD_label:", "").strip("\n") model = f.readline().replace("SEG_label:", "").strip("\n") print(jieba) print(model) print() if not jieba or not model: continue skip_line = True for flt in filters: if flt.accept(model): skip_line = False break if not skip_line: select.write("jieba: %s\n" % jieba) select.write("model: %s\n" % model) select.write("\n") ed.write(model + "\n") ed.write("\n\n") else: skip.write("jieba: %s\n" % jieba) skip.write("model: %s\n" % model) skip.write("\n") if __name__ == "__main__": filters = [SingleChineseFilter()] diff_file = "C:\\Users\\allen.luo\\Desktop\\diff_filter\\test.diff.txt" differ = DiffFilter(diff_file) differ.filter(filters)
2,265
17
204
644df2770b74634974010bc59eadeb47c1623f79
2,967
py
Python
tests/onegov/agency/conftest.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
tests/onegov/agency/conftest.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
tests/onegov/agency/conftest.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
from onegov.agency.app import AgencyApp from onegov.agency.initial_content import create_new_organisation from onegov.user import User from os import path from pytest import fixture from sqlalchemy.orm.session import close_all_sessions from tests.shared import Client from tests.shared.utils import create_app from transaction import commit from yaml import dump @fixture(scope='function') @fixture(scope='function') @fixture(scope='function') @fixture(scope='function') @fixture(scope='function')
26.491071
76
0.601618
from onegov.agency.app import AgencyApp from onegov.agency.initial_content import create_new_organisation from onegov.user import User from os import path from pytest import fixture from sqlalchemy.orm.session import close_all_sessions from tests.shared import Client from tests.shared.utils import create_app from transaction import commit from yaml import dump @fixture(scope='function') def cfg_path(postgres_dsn, session_manager, temporary_directory, redis_url): cfg = { 'applications': [ { 'path': '/agency/*', 'application': 'onegov.agency.app.AgencyApp', 'namespace': 'agency', 'configuration': { 'dsn': postgres_dsn, 'redis_url': redis_url, 'depot_backend': 'depot.io.memory.MemoryFileStorage', 'filestorage': 'fs.osfs.OSFS', 'filestorage_options': { 'root_path': '{}/file-storage'.format( temporary_directory ), 'create': 'true' }, } } ] } cfg_path = path.join(temporary_directory, 'onegov.yml') with open(cfg_path, 'w') as f: f.write(dump(cfg)) return cfg_path def create_agency_app(request, use_elasticsearch=False): app = create_app( AgencyApp, request, use_smtp=True, use_elasticsearch=use_elasticsearch ) org = create_new_organisation(app, name="Govikon") org.meta['reply_to'] = 'mails@govikon.ch' org.meta['locales'] = 'de_CH' session = app.session() test_password = request.getfixturevalue('test_password') session.add( User( username='admin@example.org', password_hash=test_password, role='admin' ) ) session.add( User( username='editor@example.org', password_hash=test_password, role='editor' ) ) session.add( User( username='member@example.org', password_hash=test_password, role='member' ) ) commit() close_all_sessions() return app @fixture(scope='function') def agency_app(request): app = create_agency_app(request, use_elasticsearch=False) yield app app.session_manager.dispose() @fixture(scope='function') def es_agency_app(request): app = create_agency_app(request, use_elasticsearch=True) yield app app.session_manager.dispose() @fixture(scope='function') def client(agency_app): client = Client(agency_app) client.skip_first_form = True client.use_intercooler = True return client @fixture(scope='function') def client_with_es(es_agency_app): client = Client(es_agency_app) client.skip_first_form = True client.use_intercooler = True return client
2,325
0
133
8b67b98d8ea2d3b839bcd5bef3e02df81aed5aca
1,142
py
Python
instances/apps.py
glzjin/webvirtcloud
ecaf11e02aeb57654257ed502d3da6fd8405f21b
[ "Apache-2.0" ]
null
null
null
instances/apps.py
glzjin/webvirtcloud
ecaf11e02aeb57654257ed502d3da6fd8405f21b
[ "Apache-2.0" ]
null
null
null
instances/apps.py
glzjin/webvirtcloud
ecaf11e02aeb57654257ed502d3da6fd8405f21b
[ "Apache-2.0" ]
null
null
null
from django.apps import AppConfig from django.db.models.signals import post_migrate def migrate_can_clone_instances(sender, **kwargs): ''' Migrate can clone instances user attribute to permission ''' from django.conf import settings from django.contrib.auth.models import User, Permission from accounts.models import UserAttributes plan = kwargs['plan'] for migration, rolled_back in plan: if migration.app_label == 'instances' and migration.name == '0002_permissionset' and not rolled_back: users = User.objects.all() permission = Permission.objects.get(codename='clone_instances') print('\033[92mMigrating can_clone_instaces user attribute to permission\033[0m') for user in users: if user.userattributes: if user.userattributes.can_clone_instances: user.user_permissions.add(permission) break
35.6875
109
0.683888
from django.apps import AppConfig from django.db.models.signals import post_migrate def migrate_can_clone_instances(sender, **kwargs): ''' Migrate can clone instances user attribute to permission ''' from django.conf import settings from django.contrib.auth.models import User, Permission from accounts.models import UserAttributes plan = kwargs['plan'] for migration, rolled_back in plan: if migration.app_label == 'instances' and migration.name == '0002_permissionset' and not rolled_back: users = User.objects.all() permission = Permission.objects.get(codename='clone_instances') print('\033[92mMigrating can_clone_instaces user attribute to permission\033[0m') for user in users: if user.userattributes: if user.userattributes.can_clone_instances: user.user_permissions.add(permission) break class InstancesConfig(AppConfig): name = 'instances' verbose_name = 'instances' def ready(self): post_migrate.connect(migrate_can_clone_instances, sender=self)
66
93
23
db9b52b59816ce2444968110f44841a8d37eb201
9,759
py
Python
tests/opc/test_rel.py
revvsales/python-docx-1
5b3ff2b828cc30f1567cb1682a8cb399143732d7
[ "MIT" ]
3,031
2015-01-02T11:11:24.000Z
2022-03-30T00:57:17.000Z
tests/opc/test_rel.py
revvsales/python-docx-1
5b3ff2b828cc30f1567cb1682a8cb399143732d7
[ "MIT" ]
934
2015-01-06T20:53:56.000Z
2022-03-28T10:08:03.000Z
tests/opc/test_rel.py
revvsales/python-docx-1
5b3ff2b828cc30f1567cb1682a8cb399143732d7
[ "MIT" ]
901
2015-01-07T18:22:07.000Z
2022-03-31T18:38:51.000Z
# encoding: utf-8 """ Unit test suite for the docx.opc.rel module """ from __future__ import ( absolute_import, division, print_function, unicode_literals ) import pytest from docx.opc.oxml import CT_Relationships from docx.opc.packuri import PackURI from docx.opc.part import Part from docx.opc.rel import _Relationship, Relationships from ..unitutil.mock import ( call, class_mock, instance_mock, Mock, patch, PropertyMock )
34.242105
77
0.630905
# encoding: utf-8 """ Unit test suite for the docx.opc.rel module """ from __future__ import ( absolute_import, division, print_function, unicode_literals ) import pytest from docx.opc.oxml import CT_Relationships from docx.opc.packuri import PackURI from docx.opc.part import Part from docx.opc.rel import _Relationship, Relationships from ..unitutil.mock import ( call, class_mock, instance_mock, Mock, patch, PropertyMock ) class Describe_Relationship(object): def it_remembers_construction_values(self): # test data -------------------- rId = 'rId9' reltype = 'reltype' target = Mock(name='target_part') external = False # exercise --------------------- rel = _Relationship(rId, reltype, target, None, external) # verify ----------------------- assert rel.rId == rId assert rel.reltype == reltype assert rel.target_part == target assert rel.is_external == external def it_should_raise_on_target_part_access_on_external_rel(self): rel = _Relationship(None, None, None, None, external=True) with pytest.raises(ValueError): rel.target_part def it_should_have_target_ref_for_external_rel(self): rel = _Relationship(None, None, 'target', None, external=True) assert rel.target_ref == 'target' def it_should_have_relative_ref_for_internal_rel(self): """ Internal relationships (TargetMode == 'Internal' in the XML) should have a relative ref, e.g. '../slideLayouts/slideLayout1.xml', for the target_ref attribute. """ part = Mock(name='part', partname=PackURI('/ppt/media/image1.png')) baseURI = '/ppt/slides' rel = _Relationship(None, None, part, baseURI) # external=False assert rel.target_ref == '../media/image1.png' class DescribeRelationships(object): def it_can_add_a_relationship(self, _Relationship_): baseURI, rId, reltype, target, external = ( 'baseURI', 'rId9', 'reltype', 'target', False ) rels = Relationships(baseURI) rel = rels.add_relationship(reltype, target, rId, external) _Relationship_.assert_called_once_with( rId, reltype, target, baseURI, external ) assert rels[rId] == rel assert rel == _Relationship_.return_value def it_can_add_an_external_relationship(self, add_ext_rel_fixture_): rels, reltype, url = add_ext_rel_fixture_ rId = rels.get_or_add_ext_rel(reltype, url) rel = rels[rId] assert rel.is_external assert rel.target_ref == url assert rel.reltype == reltype def it_can_find_a_relationship_by_rId(self): rel = Mock(name='rel', rId='foobar') rels = Relationships(None) rels['foobar'] = rel assert rels['foobar'] == rel def it_can_find_or_add_a_relationship( self, rels_with_matching_rel_, rels_with_missing_rel_): rels, reltype, part, matching_rel = rels_with_matching_rel_ assert rels.get_or_add(reltype, part) == matching_rel rels, reltype, part, new_rel = rels_with_missing_rel_ assert rels.get_or_add(reltype, part) == new_rel def it_can_find_or_add_an_external_relationship( self, add_matching_ext_rel_fixture_): rels, reltype, url, rId = add_matching_ext_rel_fixture_ _rId = rels.get_or_add_ext_rel(reltype, url) assert _rId == rId assert len(rels) == 1 def it_can_find_a_related_part_by_rId(self, rels_with_known_target_part): rels, rId, known_target_part = rels_with_known_target_part part = rels.related_parts[rId] assert part is known_target_part def it_raises_on_related_part_not_found(self, rels): with pytest.raises(KeyError): rels.related_parts['rId666'] def it_can_find_a_related_part_by_reltype( self, rels_with_target_known_by_reltype): rels, reltype, known_target_part = rels_with_target_known_by_reltype part = rels.part_with_reltype(reltype) assert part is known_target_part def it_can_compose_rels_xml(self, rels, rels_elm): # exercise --------------------- rels.xml # verify ----------------------- rels_elm.assert_has_calls( [ call.add_rel( 'rId1', 'http://rt-hyperlink', 'http://some/link', True ), call.add_rel( 'rId2', 'http://rt-image', '../media/image1.png', False ), call.xml() ], any_order=True ) def it_knows_the_next_available_rId_to_help(self, rels_with_rId_gap): rels, expected_next_rId = rels_with_rId_gap next_rId = rels._next_rId assert next_rId == expected_next_rId # fixtures --------------------------------------------- @pytest.fixture def add_ext_rel_fixture_(self, reltype, url): rels = Relationships(None) return rels, reltype, url @pytest.fixture def add_matching_ext_rel_fixture_(self, request, reltype, url): rId = 'rId369' rels = Relationships(None) rels.add_relationship(reltype, url, rId, is_external=True) return rels, reltype, url, rId # fixture components ----------------------------------- @pytest.fixture def _baseURI(self): return '/baseURI' @pytest.fixture def _Relationship_(self, request): return class_mock(request, 'docx.opc.rel._Relationship') @pytest.fixture def _rel_with_target_known_by_reltype( self, _rId, reltype, _target_part, _baseURI): rel = _Relationship(_rId, reltype, _target_part, _baseURI) return rel, reltype, _target_part @pytest.fixture def rels(self): """ Populated Relationships instance that will exercise the rels.xml property. """ rels = Relationships('/baseURI') rels.add_relationship( reltype='http://rt-hyperlink', target='http://some/link', rId='rId1', is_external=True ) part = Mock(name='part') part.partname.relative_ref.return_value = '../media/image1.png' rels.add_relationship(reltype='http://rt-image', target=part, rId='rId2') return rels @pytest.fixture def rels_elm(self, request): """ Return a rels_elm mock that will be returned from CT_Relationships.new() """ # create rels_elm mock with a .xml property rels_elm = Mock(name='rels_elm') xml = PropertyMock(name='xml') type(rels_elm).xml = xml rels_elm.attach_mock(xml, 'xml') rels_elm.reset_mock() # to clear attach_mock call # patch CT_Relationships to return that rels_elm patch_ = patch.object(CT_Relationships, 'new', return_value=rels_elm) patch_.start() request.addfinalizer(patch_.stop) return rels_elm @pytest.fixture def _rel_with_known_target_part( self, _rId, reltype, _target_part, _baseURI): rel = _Relationship(_rId, reltype, _target_part, _baseURI) return rel, _rId, _target_part @pytest.fixture def rels_with_known_target_part(self, rels, _rel_with_known_target_part): rel, rId, target_part = _rel_with_known_target_part rels.add_relationship(None, target_part, rId) return rels, rId, target_part @pytest.fixture def rels_with_matching_rel_(self, request, rels): matching_reltype_ = instance_mock( request, str, name='matching_reltype_' ) matching_part_ = instance_mock( request, Part, name='matching_part_' ) matching_rel_ = instance_mock( request, _Relationship, name='matching_rel_', reltype=matching_reltype_, target_part=matching_part_, is_external=False ) rels[1] = matching_rel_ return rels, matching_reltype_, matching_part_, matching_rel_ @pytest.fixture def rels_with_missing_rel_(self, request, rels, _Relationship_): missing_reltype_ = instance_mock( request, str, name='missing_reltype_' ) missing_part_ = instance_mock( request, Part, name='missing_part_' ) new_rel_ = instance_mock( request, _Relationship, name='new_rel_', reltype=missing_reltype_, target_part=missing_part_, is_external=False ) _Relationship_.return_value = new_rel_ return rels, missing_reltype_, missing_part_, new_rel_ @pytest.fixture def rels_with_rId_gap(self, request): rels = Relationships(None) rel_with_rId1 = instance_mock( request, _Relationship, name='rel_with_rId1', rId='rId1' ) rel_with_rId3 = instance_mock( request, _Relationship, name='rel_with_rId3', rId='rId3' ) rels['rId1'] = rel_with_rId1 rels['rId3'] = rel_with_rId3 return rels, 'rId2' @pytest.fixture def rels_with_target_known_by_reltype( self, rels, _rel_with_target_known_by_reltype): rel, reltype, target_part = _rel_with_target_known_by_reltype rels[1] = rel return rels, reltype, target_part @pytest.fixture def reltype(self): return 'http://rel/type' @pytest.fixture def _rId(self): return 'rId6' @pytest.fixture def _target_part(self, request): return instance_mock(request, Part) @pytest.fixture def url(self): return 'https://github.com/scanny/python-docx'
6,314
2,957
46
5d363713f0c567c72f60e40b049c1d6047d88f04
4,873
py
Python
python/plugins/broker/mqtt/tests/test_params.py
ulen2000/sinetstream
efbd1688be0754c38b0ea88f0f253f91b44689be
[ "Apache-2.0" ]
1
2020-03-24T15:29:23.000Z
2020-03-24T15:29:23.000Z
python/plugins/broker/mqtt/tests/test_params.py
ulen2000/sinetstream
efbd1688be0754c38b0ea88f0f253f91b44689be
[ "Apache-2.0" ]
null
null
null
python/plugins/broker/mqtt/tests/test_params.py
ulen2000/sinetstream
efbd1688be0754c38b0ea88f0f253f91b44689be
[ "Apache-2.0" ]
null
null
null
#!/usr/local/bin/python3.6 # vim: expandtab shiftwidth=4 # Copyright (C) 2020 National Institute of Informatics # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest from sinetstream import MessageReader, MessageWriter, InvalidArgumentError from conftest import ( SERVICE, TOPIC, BROKER, WS_BROKER, WSS_BROKER, CACERT_PATH, ) from itertools import product pytestmark = pytest.mark.usefixtures('setup_config') @pytest.mark.parametrize("io,config_params", product( [MessageReader, MessageWriter], [{'protocol': x} for x in ['MQTTv31', 'MQTTv311', 'MQTTv5']], )) @pytest.mark.parametrize("io,config_params", [ (MessageReader, {'protocol': 'xxx'}), (MessageWriter, {'protocol': 'xxx'}), ]) @pytest.mark.parametrize("io,config_params", [ (MessageReader, {'transport': 'tcp'}), (MessageWriter, {'transport': 'tcp'}), ]) @pytest.mark.skipif(WS_BROKER is None, reason='MQTT_WS_BROKER is not set.') @pytest.mark.parametrize("io,config_params,config_brokers", [ (MessageReader, {'transport': 'websockets'}, WS_BROKER), (MessageWriter, {'transport': 'websockets'}, WS_BROKER), ]) wss_params = { 'transport': 'websockets', 'tls': { 'ca_certs': str(CACERT_PATH), }, } @pytest.mark.skipif(WSS_BROKER is None, reason='MQTT_WSS_BROKER is not set.') @pytest.mark.parametrize("io,config_params,config_brokers", [ (MessageReader, wss_params, WSS_BROKER), (MessageWriter, wss_params, WSS_BROKER), ]) @pytest.mark.parametrize("io,config_params", [ (MessageReader, {'transport': 'xxx'}), (MessageWriter, {'transport': 'xxx'}), ]) @pytest.mark.parametrize("io,config_params", product( [MessageReader, MessageWriter], [{'clean_session': x} for x in [True, False]], )) @pytest.mark.parametrize("io,config_params", product( [MessageReader, MessageWriter], [{'max_inflight_messages_set': {'inflight': x}} for x in [20, 40]], )) @pytest.mark.parametrize("io,config_params", product( [MessageReader, MessageWriter], [{'max_queued_messages_set': {'queue_size': x}} for x in [0, 10]], )) @pytest.mark.parametrize("io,config_params", product( [MessageReader, MessageWriter], [{'message_retry_set': {'retry': x}} for x in [5, 10]], )) ws_set_options_params = { 'transport': 'websockets', 'ws_set_options': { 'path': '/mqtt', }, } @pytest.mark.skipif(WS_BROKER is None, reason='MQTT_WS_BROKER is not set.') @pytest.mark.parametrize("io,config_params,config_brokers", [ (MessageReader, ws_set_options_params, WS_BROKER), (MessageWriter, ws_set_options_params, WS_BROKER), ]) will_set_params = { 'will_set': { 'topic': TOPIC, 'payload': 'XXX', 'qos': 1, 'retain': True, } } @pytest.mark.parametrize("io,config_params", [ (MessageReader, will_set_params), (MessageWriter, will_set_params), ]) reconnect_delay_params = { 'reconnect_delay_set': { 'min_delay': 1, 'max_delay': 120, } } @pytest.mark.parametrize("io,config_params", [ (MessageReader, reconnect_delay_params), (MessageWriter, reconnect_delay_params), ])
26.058824
77
0.682742
#!/usr/local/bin/python3.6 # vim: expandtab shiftwidth=4 # Copyright (C) 2020 National Institute of Informatics # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest from sinetstream import MessageReader, MessageWriter, InvalidArgumentError from conftest import ( SERVICE, TOPIC, BROKER, WS_BROKER, WSS_BROKER, CACERT_PATH, ) from itertools import product pytestmark = pytest.mark.usefixtures('setup_config') @pytest.mark.parametrize("io,config_params", product( [MessageReader, MessageWriter], [{'protocol': x} for x in ['MQTTv31', 'MQTTv311', 'MQTTv5']], )) def test_protocol(io): with io(SERVICE) as f: pass @pytest.mark.parametrize("io,config_params", [ (MessageReader, {'protocol': 'xxx'}), (MessageWriter, {'protocol': 'xxx'}), ]) def test_bad_protocol(io): with pytest.raises(InvalidArgumentError): with io(SERVICE) as f: pass @pytest.mark.parametrize("io,config_params", [ (MessageReader, {'transport': 'tcp'}), (MessageWriter, {'transport': 'tcp'}), ]) def test_transport_tcp(io): with io(SERVICE) as f: pass @pytest.mark.skipif(WS_BROKER is None, reason='MQTT_WS_BROKER is not set.') @pytest.mark.parametrize("io,config_params,config_brokers", [ (MessageReader, {'transport': 'websockets'}, WS_BROKER), (MessageWriter, {'transport': 'websockets'}, WS_BROKER), ]) def test_transport_ws(io): with io(SERVICE) as f: pass wss_params = { 'transport': 'websockets', 'tls': { 'ca_certs': str(CACERT_PATH), }, } @pytest.mark.skipif(WSS_BROKER is None, reason='MQTT_WSS_BROKER is not set.') @pytest.mark.parametrize("io,config_params,config_brokers", [ (MessageReader, wss_params, WSS_BROKER), (MessageWriter, wss_params, WSS_BROKER), ]) def test_transport_wss(io): with io(SERVICE) as f: pass @pytest.mark.parametrize("io,config_params", [ (MessageReader, {'transport': 'xxx'}), (MessageWriter, {'transport': 'xxx'}), ]) def test_transport_bad_value(io): with pytest.raises(InvalidArgumentError): with io(SERVICE) as f: pass @pytest.mark.parametrize("io,config_params", product( [MessageReader, MessageWriter], [{'clean_session': x} for x in [True, False]], )) def test_clean_session(io): with io(SERVICE) as f: pass @pytest.mark.parametrize("io,config_params", product( [MessageReader, MessageWriter], [{'max_inflight_messages_set': {'inflight': x}} for x in [20, 40]], )) def test_max_inflight_messages(io): with io(SERVICE) as f: pass @pytest.mark.parametrize("io,config_params", product( [MessageReader, MessageWriter], [{'max_queued_messages_set': {'queue_size': x}} for x in [0, 10]], )) def test_max_queued_messages(io): with io(SERVICE) as f: pass @pytest.mark.parametrize("io,config_params", product( [MessageReader, MessageWriter], [{'message_retry_set': {'retry': x}} for x in [5, 10]], )) def test_message_retry(io): with io(SERVICE) as f: pass ws_set_options_params = { 'transport': 'websockets', 'ws_set_options': { 'path': '/mqtt', }, } @pytest.mark.skipif(WS_BROKER is None, reason='MQTT_WS_BROKER is not set.') @pytest.mark.parametrize("io,config_params,config_brokers", [ (MessageReader, ws_set_options_params, WS_BROKER), (MessageWriter, ws_set_options_params, WS_BROKER), ]) def test_ws_set_options(io): with io(SERVICE) as f: pass will_set_params = { 'will_set': { 'topic': TOPIC, 'payload': 'XXX', 'qos': 1, 'retain': True, } } @pytest.mark.parametrize("io,config_params", [ (MessageReader, will_set_params), (MessageWriter, will_set_params), ]) def test_will(io): with io(SERVICE) as f: pass reconnect_delay_params = { 'reconnect_delay_set': { 'min_delay': 1, 'max_delay': 120, } } @pytest.mark.parametrize("io,config_params", [ (MessageReader, reconnect_delay_params), (MessageWriter, reconnect_delay_params), ]) def test_reconnect_delay(io): with io(SERVICE) as f: pass
713
0
286
3d601cf4bfe04df1b7cde903f2017afd1f54a428
407
py
Python
test/backup_setup.py
jinyiabc/china_stock_lib
d580b9f2a3f20ca9f87c7a4d42aeedccfa450f4f
[ "MIT" ]
null
null
null
test/backup_setup.py
jinyiabc/china_stock_lib
d580b9f2a3f20ca9f87c7a4d42aeedccfa450f4f
[ "MIT" ]
null
null
null
test/backup_setup.py
jinyiabc/china_stock_lib
d580b9f2a3f20ca9f87c7a4d42aeedccfa450f4f
[ "MIT" ]
2
2021-12-30T23:53:55.000Z
2022-02-01T18:10:42.000Z
# from distutils.core import setup # setup(name='helper', # version='0.1.1', # py_modules=['upload_github'], # data_files=[('config', ['mysql.cfg'])], # ) # from setuptools import setup # # setup( # name='mypackage', # version='0.0.1', # packages=['mypackage'], # install_requires=[ # 'requests', # 'importlib; python_version == "2.6"', # ], # )
22.611111
47
0.538084
# from distutils.core import setup # setup(name='helper', # version='0.1.1', # py_modules=['upload_github'], # data_files=[('config', ['mysql.cfg'])], # ) # from setuptools import setup # # setup( # name='mypackage', # version='0.0.1', # packages=['mypackage'], # install_requires=[ # 'requests', # 'importlib; python_version == "2.6"', # ], # )
0
0
0
79225c470cde861cd7490495560ca1243733a6b2
4,223
py
Python
tests/unit_tests/test_units/test_core.py
radical-project/radical.dreamer
74bb2a9a705fc90b0dc773963f2bfd48af6e1b84
[ "MIT" ]
4
2021-04-30T04:25:12.000Z
2021-12-16T19:53:37.000Z
tests/unit_tests/test_units/test_core.py
radical-project/radical.dreamer
74bb2a9a705fc90b0dc773963f2bfd48af6e1b84
[ "MIT" ]
1
2021-04-20T22:08:24.000Z
2021-04-20T22:08:24.000Z
tests/unit_tests/test_units/test_core.py
radical-project/radical.dreamer
74bb2a9a705fc90b0dc773963f2bfd48af6e1b84
[ "MIT" ]
1
2021-01-10T20:09:19.000Z
2021-01-10T20:09:19.000Z
__copyright__ = 'Copyright 2021, The RADICAL-Cybertools Team' __license__ = 'MIT' import glob import radical.utils as ru from radical.dreamer.units import Core, Task, CORE_STATE from unittest import TestCase TEST_CASES_PATH = 'tests/unit_tests/test_units/test_cases/core.*.json'
35.487395
76
0.600047
__copyright__ = 'Copyright 2021, The RADICAL-Cybertools Team' __license__ = 'MIT' import glob import radical.utils as ru from radical.dreamer.units import Core, Task, CORE_STATE from unittest import TestCase TEST_CASES_PATH = 'tests/unit_tests/test_units/test_cases/core.*.json' class CoreTestClass(TestCase): @classmethod def setUpClass(cls): cls._test_cases = [] for f in glob.glob(TEST_CASES_PATH): cls._test_cases.extend(ru.read_json(f)) def test_init(self): # default attributes c = Core() self.assertTrue(c.uid.startswith('core.')) self.assertEqual(c.perf, 1.) self.assertEqual(c.perf_dynamic, 1.) self.assertFalse(c.perf_history) self.assertIsInstance(c.perf_history, list) self.assertEqual(c.io_rate, 0.) self.assertEqual(c.io_time, 0.) self.assertEqual(c.acquire_time, 0.) self.assertEqual(c.release_time, 0.) self.assertEqual(c.planned_compute_time, 0.) self.assertEqual(c.planned_release_time, 0.) self.assertEqual(c.state, CORE_STATE.Idle) # with input data for test_case in self._test_cases: c = Core(**test_case['input']) result = dict(test_case['input']) for k, v in Core._defaults.items(): if k not in result: result[k] = v if result.get('uid'): self.assertEqual(c.uid, result['uid']) self.assertEqual(c.perf, result['perf']) self.assertEqual(c.perf_dynamic, result['perf_dynamic']) self.assertEqual(c.perf_history, result['perf_history']) self.assertEqual(c.io_rate, result['io_rate']) self.assertEqual(c.io_time, result['io_time']) self.assertEqual(c.acquire_time, result['acquire_time']) self.assertEqual(c.release_time, result['release_time']) self.assertEqual(c.planned_compute_time, result['planned_compute_time']) self.assertEqual(c.planned_release_time, result['planned_release_time']) self.assertEqual(c.state, result['state']) def test_execute(self): for test_case in self._test_cases: if 'task' not in test_case or 'result_execute' not in test_case: continue t = Task(**test_case['task']) c = Core(**test_case['input']) previous_release_time = c.release_time ret_c = c.execute(task=t) result = test_case['result_execute'] self.assertIsInstance(ret_c, Core) self.assertEqual(ret_c.io_time, result['io_time']) self.assertEqual(ret_c.acquire_time, previous_release_time) self.assertEqual(ret_c.release_time, result['release_time']) self.assertEqual(ret_c.planned_compute_time, result['planned_compute_time']) self.assertEqual(ret_c.planned_release_time, result['planned_release_time']) self.assertEqual(ret_c.planned_compute_time, ret_c.planned_release_time - ret_c.acquire_time - ret_c.io_time) self.assertTrue(ret_c.is_busy) self.assertEqual(t.start_time, ret_c.acquire_time) self.assertEqual(t.end_time, ret_c.release_time) def test_release(self): for test_case in self._test_cases: if 'task' not in test_case: continue c = Core(**test_case['input']) t = Task(**test_case['task']) c.execute(task=t) perf_history_len = len(c.perf_history) self.assertEqual(c.state, CORE_STATE.Busy) ret_c = c.release() self.assertIsInstance(ret_c, Core) self.assertEqual(ret_c.perf_dynamic, ret_c.perf_history[-1]) self.assertEqual(len(ret_c.perf_history), perf_history_len + 1) self.assertFalse(ret_c.is_busy) self.assertFalse(ret_c.io_time) self.assertFalse(ret_c.planned_compute_time)
3,778
134
23
bcf1f57f33b1cf0327c51d531ce1989a4096bd93
24,349
py
Python
LivSim Processing/event.py
kbui1993/LivSim-Codes
5317fa6ea773d5967871dfb67dec1a0118ec2f5e
[ "MIT" ]
2
2018-05-07T03:31:54.000Z
2019-07-02T18:30:41.000Z
LivSim Processing/event.py
kbui1993/LivSim-Codes
5317fa6ea773d5967871dfb67dec1a0118ec2f5e
[ "MIT" ]
null
null
null
LivSim Processing/event.py
kbui1993/LivSim-Codes
5317fa6ea773d5967871dfb67dec1a0118ec2f5e
[ "MIT" ]
1
2019-01-19T19:56:43.000Z
2019-01-19T19:56:43.000Z
import entity, allocate import numpy as nump import datetime from copy import deepcopy ndsa = 58 #######################################################################Event Processes#################################################################################### def Arrival(arrivalinfo, Sim, Stat, OPTN): """ This function simulates the arrival of patients. It computes the MELD score of the patient and adds him to the corresponding DSA waiting list. Input: @arrivalinfo: all the patient's information @Sim: class object that contains variables relevant to the simulation @Stat: class object that containts statistical info of the simulation @OPTN: complete patient data Output: @Sim: updated Sim @Stat: updated Stat @OPTN updated OPTN """ #Create Patient Entity newpatient = entity.Patient(arrivalinfo[1].astype(int),arrivalinfo[3].astype(int),Sim.clock) #Assign Patient Characteristics newpatient.Status1 = arrivalinfo[9].astype(int) newpatient.ABO = arrivalinfo[5].astype(int) newpatient.HCC = arrivalinfo[8].astype(int) newpatient.Na = arrivalinfo[10].astype(int) newpatient.lMELD = arrivalinfo[7].astype(int) newpatient.MELD = arrivalinfo[6].astype(int) newpatient.Inactive = arrivalinfo[11].astype(int) #Assign Allocation MELD based on policy if Sim.sodium ==1: #if sodium policy is selected #bound the sodium score effective_na = newpatient.Na if effective_na <125: effective_na = 125 elif effective_na > 137: effective_na = 137 #compute the allocation MELD score if nump.rint(newpatient.lMELD + 1.32*(137-effective_na)-(0.033*newpatient.lMELD*(137-effective_na))) <6: newpatient.MELD =6 elif nump.rint(newpatient.lMELD + 1.32*(137-effective_na)-(0.033*newpatient.lMELD*(137-effective_na))) > 40: newpatient.MELD =40 else: newpatient.MELD = nump.rint(newpatient.lMELD + 1.32*(137-effective_na)-(0.033*newpatient.lMELD*(137-effective_na))) else: #if sodium policy not selected #bound the sodium score if newpatient.MELD <6: newpatient.MELD =6 elif newpatient.MELD >40: newpatient.MELD = 40 #Apply Status1 and HCC exceptions (if applicable) if newpatient.Status1 ==1: newpatient.MELD =41 elif newpatient.HCC ==1 and Sim.capanddelay ==1: newpatient.MELD = min(newpatient.lMELD,28) #Place Patient in DSA List if newpatient.DSA >= 0: OPTN[newpatient.DSA].append(newpatient) #Update Stats Stat.yarrivals[newpatient.DSA] = Stat.yarrivals[newpatient.DSA] + 1 Stat.numcandidates[newpatient.DSA] = Stat.numcandidates[newpatient.DSA] + 1 #return updated Sim, Stat, and OPTN return Sim, Stat, OPTN #Diagnostic Info #here def Progression(proginfo, Sim, Stat, OPTN, reps): """ This function searches for a particular patient from the OPTN data structure and update the patient's characteristics Input: @proginfo: all of the information of the patient being searched up @Sim: class object containing relevant information of the patient being searched up @Stat: class object containing statistical information of the simulation @OPTN: complete patient data @reps: current replication number Output: @Sim: updated Sim @Stat: updated Stat @OPTN: updated OPTN """ progdsa = proginfo[9].astype(int) #obtain DSA #test =0 #run if we have an actual DSA if progdsa >=0: #search for patient in the OPTN data structure for i, patient in enumerate(OPTN[progdsa]): #check if the id matches if patient.id == proginfo[1].astype(int): #Update Patient if patient.Relist ==1: #Ignore updates for relisted patients break elif proginfo[3].astype(int) == 1: #Patient dies, remove and update stats Stat.ydeaths[progdsa] = Stat.ydeaths[progdsa] + 1 #increment the number of deaths by one Stat.numcandidates[progdsa] = Stat.numcandidates[progdsa] - 1 #decrement the number of candidates waiting by one del OPTN[progdsa][i] #delete the patient object since patient died break elif proginfo[4].astype(int) ==1: #Patient removed, remove and update stats Stat.yremoved[progdsa] = Stat.yremoved[progdsa] + 1 #increment the number of removals by one Stat.numcandidates[progdsa] = Stat.numcandidates[progdsa] - 1 #decrement the number of candidates waiting by one #record as follows (time of removal, repetition, patient id, patient allocation MELD, patient lab MELD) oidreport = [nump.floor(Sim.clock), reps, Sim.clock, patient.id,patient.MELD, patient.lMELD] Sim.record_removals = nump.vstack((Sim.record_removals, oidreport)) #concatenate the row oidreport to the record of removals del OPTN[progdsa][i] #delete patient object since patient is removed break else: #Update candidate patient.lMELD = proginfo[6].astype(int) patient.Na = proginfo[7].astype(int) patient.MELD = proginfo[5].astype(int) patient.Inactive = proginfo[10].astype(int) #set bound on MELD score if patient.MELD <6: patient.MELD =6 elif patient.MELD >40: patient.MELD = 40 #Update Allocation MELD based on policy (if applicable) if Sim.sodium ==1 and patient.Status1 != 1 and patient.HCC != 1: #if sodium score policy is selected, then update the meld score for non-status1, non-HCC patient #set bound on sodium score effective_na = patient.Na if effective_na <125: effective_na = 125 elif effective_na > 137: effective_na = 137 #compute MELD score if nump.rint(patient.lMELD + 1.32*(137-effective_na)-(0.033*patient.lMELD*(137-effective_na))) <6: patient.MELD =6 elif nump.rint(patient.lMELD + 1.32*(137-effective_na)-(0.033*patient.lMELD*(137-effective_na))) > 40: patient.MELD =40 else: patient.MELD = nump.rint(patient.lMELD + 1.32*(137-effective_na)-(0.033*patient.lMELD*(137-effective_na))) elif Sim.capanddelay ==1 and patient.Status1 != 1 and patient.HCC == 1: #if cap and delay policy is selected, update meld score for status1, HCC patient #compute MELD score if Sim.clock - patient.create_time <= .5: patient.MELD = max(28,patient.MELD) elif (Sim.clock - patient.create_time) > .5 and (Sim.clock - patient.create_time <= .75): patient.MELD = max(29,patient.MELD) elif (Sim.clock - patient.create_time) > .75 and (Sim.clock - patient.create_time <= 1): patient.MELD = max(31,patient.MELD) elif (Sim.clock - patient.create_time) > 1 and (Sim.clock - patient.create_time <= 1.25): patient.MELD = max(33,patient.MELD) elif (Sim.clock - patient.create_time) > 1.25 and (Sim.clock - patient.create_time <= 1.5): patient.MELD = max(34,patient.MELD) else: patient.MELD = min(patient.MELD+1,40) break #return updated Sim, Stat, and OPTN return Sim, Stat, OPTN def OrganArrival(organinfo, Sim, Stat, OPTN, Regions, SharingPartners, Patients_Accept, Donor_Accept, DSA_Avg_Times, AcceptanceModelS1, AcceptanceModel, Relist, reps): """ This function simulates the organ arrival. It tries to match the organ to a patient from the corresponding DSA waitlist. Input: @organinfo: information on the organ @Sim: class object containing relevant variables for simulation @Stat: class object containing statistical information of simulation @OPTN: complete patient data @Regions: neighbhorhood map for regions, districts, or neighbhorhoods @SharingPartners: neighborhood map adding sharing partners to existing geographic relationships among OPOs @Patients_Accept: coefficients regarding donor's characteristics for acceptance model @Donor_Accept: coefficients regarding donor's characteristics for acceptance model @DSA_Avg_Times: data on average transport times between DSAs @AcceptanceModelS1: coefficients regarding patient's characteristics for status-1 acceptance model @AccpetanceModel: coefficients regarding patient's characteristics for non-status-1 acceptance model @Relist: values regarding the probability that a transplanted patient will relist @reps: replication number Output: @Sim: updated Sim @Stat: updated Stat @OPTN: updated OPTN """ #Create Organ neworgan = entity.Organ(int(organinfo[2])) neworgan.organid = Sim.oid Sim.oid = Sim.oid + 1 #Assign Organ Attributes neworgan.ABO = organinfo[4].astype(int) #Allocate Organ #disposition is tuple of organ status (accept/reject) , transplanting DSA, and patient id if accepted disposition = allocate.Allocate(neworgan, OPTN, Sim, Regions, SharingPartners, Patients_Accept, Donor_Accept, DSA_Avg_Times, AcceptanceModelS1, AcceptanceModel) if disposition[0] == 1: #organ is transplanted #Remove transplanted patient from waiting list and update statistics for i, patient in enumerate(OPTN[disposition[1]]): #search for the patient in the OPTN data structure if patient.id == disposition[2]: #Determine if patient will relist and assign special attributes if necesary willrelist = 0 if patient.Relist ==0: #if patient has not been relisted #Determine if patient will be relisted if was not already r1 =nump.random.uniform(Relist[0],Relist[1],1) r2 =nump.random.uniform(0,1,1) if r2 < r1: willrelist =1 #Determine when current graft will fail r3 = nump.random.uniform(0,1,1) if r3 < .4: patient.RelistTxTime = Sim.clock + 5 elif r3 >= .4 and r3 < .6: patient.RelistTxTime = Sim.clock + 2 elif r3 >= 6 and r3 < .8: patient.RelistTxTime = Sim.clock + 1 else: patient.RelistTxTime = Sim.clock #Update relist statistics Stat.yrelists[disposition[1]] = Stat.yrelists[disposition[1]] +1 #record the floor of current time, reptitiion, current time, patient id, patient meld score, and relist tx time relistidreport = [nump.floor(Sim.clock), reps, Sim.clock, patient.id,patient.MELD,patient.RelistTxTime] #concatenate the relistidreport to the record of relists Sim.record_relists = nump.vstack((Sim.record_relists, relistidreport)) #Update Stats for Transplants #Number of Transplants and Regrafts Stat.ytransplants[disposition[1]] = Stat.ytransplants[disposition[1]] +1 Sim.record_txDSA[neworgan.DSA,disposition[1]] = Sim.record_txDSA[neworgan.DSA,disposition[1]] +1 if patient.Relist ==1: #if patient is relisted Stat.yregrafts[disposition[1]] = Stat.yregrafts[disposition[1]] +1 #increase number of retransplanted patients by 1 #Compute waiting Time if patient.Relist ==0: #if patient is not relisted Stat.ywait[disposition[1]] = Stat.ywait[disposition[1]] + (Sim.clock - patient.create_time) else: #if patient is relisted Stat.ywait[disposition[1]] = Stat.ywait[disposition[1]] + (Sim.clock - patient.RelistTxTime) #Waiting List Sizes if willrelist ==0: Stat.numcandidates[disposition[1]] = Stat.numcandidates[disposition[1]] -1 #decrease the number of waitling list candidates for the DSA by 1 #1st Transplant MELD if patient.Status1 ==0 and patient.Relist ==0: #Tx-MELD at measure assumed to exclude re-grafts Stat.yMELD[disposition[1]] = Stat.yMELD[disposition[1]] + patient.MELD #increase the MELD score the DSA Stat.ymedMELD[disposition[1]].append(patient.MELD) #record the patient MELD score #Output for Posttransplant processing for those who were not ever relisted or will be if willrelist ==0 and patient.Relist ==0: regtx =0 nattx = 0 if patient.DSA != neworgan.DSA and (Regions[neworgan.DSA,patient.DSA] ==1 or SharingPartners[neworgan.DSA, patient.DSA] == 1): regtx =1 #patient had regional transplant elif patient.DSA != neworgan.DSA: nattx=1 #patient had national transplant #record the floor of the current time, repetition, current time, patient id, indicator for regional transplant, indicator for national #transplant txidreport = [nump.floor(Sim.clock), reps, Sim.clock, patient.id,regtx,nattx] Sim.record_txID = nump.vstack((Sim.record_txID, txidreport)) #add new record to list of transplant records #record as follows (time of removal, repetition, patient id, patient allocation MELD, patient lab MElD) oidreport = [nump.floor(Sim.clock), reps, Sim.clock, patient.id,Sim.oid] #add to list of transplant records Sim.record_doID = nump.vstack((Sim.record_doID, oidreport)) #Out for Posttransplant proceesing for regrafts if patient.Relist ==1: regtx =0 #indicator for regional transplant nattx = 0 #indicator for national transplant if patient.DSA != neworgan.DSA and (Regions[neworgan.DSA,patient.DSA] ==1 or SharingPartners[neworgan.DSA, patient.DSA] == 1): regtx =1 #patient had regional transplant elif patient.DSA != neworgan.DSA: nattx=1 #patient had national transplant #record the floor of the current time, repetition, current time, patient id, indicator for regional transplant, indicator for national transplant txidreport = [nump.floor(Sim.clock), reps, Sim.clock, patient.id,regtx,nattx] #add to list of relisted transplants Sim.record_txIDregraft = nump.vstack((Sim.record_txIDregraft, txidreport)) #record as follows (time of removal, repetition, patient id, patient allocation MELD, patient lab MELD) oidreport = [nump.floor(Sim.clock), reps, Sim.clock, patient.id,Sim.oid] #add to list of retransplant records Sim.record_doIDregraft = nump.vstack((Sim.record_doIDregraft, oidreport)) if willrelist ==1: #if patient will relist, update relist status and MELD score OPTN[disposition[1]][i].Relist =1 OPTN[disposition[1]][i].MELD = 32 OPTN[disposition[1]][i].lMELD = 32 else: #remove transplanted patient if will not be relisted del OPTN[disposition[1]][i] break else: #organ is discarded; update statistics (optional) pass #return updated Sim, Stat, and OPTN return Sim, Stat, OPTN def Year(Sim, Stat, reps): """ This function updates the statistics of the simulation per year Input: @Sim: class object that contains relevant variables for the simulation @Stat: class object that contains statistical information of the simulation @reps: current replication number Output: @Sim: updated Sim @Stat: updated Stat """ #Annual Disparity Statistics mr_1 = nump.zeros(shape=(ndsa,1),dtype=float) tr_1 = nump.zeros(shape=(ndsa,1),dtype=float) wt_1 = nump.zeros(shape=(ndsa,1),dtype=float) meld_l = nump.zeros(shape=(ndsa,1),dtype=float) for i in range(0,ndsa): if Stat.ytransplants[i] > 0: wt_1[i] = Stat.ywait[i] / Stat.ytransplants[i] #compute the total waiting list/total # of transplant per DSA meld_l[i] = Stat.yMELD[i] / Stat.ytransplants[i] #compute the total MELD score/total # of transplant per DSA else: #write nan if no values available wt_1[i] = nump.nan meld_l[i] = nump.nan if (Stat.yarrivals[i] + Stat.ycandidates[i]) == 0: #write nan if no values available mr_1[i] = nump.nan tr_1[i] = nump.nan else: mr_1[i] = Stat.ydeaths[i] / (Stat.yarrivals[i] + Stat.ycandidates[i]) #compute mortality rate (number of deaths/number of waiting candidates) tr_1[i] = Stat.ytransplants[i] / (Stat.yarrivals[i] + Stat.ycandidates[i]) #compute transplant rate (number of transplants/number of waiting candidates) #compute the median MELD score medianmelds = nump.zeros(shape=(ndsa,1),dtype=float) for i in range(0,ndsa): if Stat.ymedMELD[i] != []: medianmelds[i] = nump.nanmedian(Stat.ymedMELD[i]) else: medianmelds[i] = nump.nan #Intermediate Data Outputs #nump.savetxt("Output_check.txt", Stat.numcandidates, fmt='%1.4e', delimiter='\t', newline='\n') #nump.savetxt("Output_check2.txt", Stat.yremoved, fmt='%1.4e', delimiter='\t', newline='\n') #nump.savetxt("Output_check3.txt", Stat.yarrivals, fmt='%1.4e', delimiter='\t', newline='\n') #nump.savetxt("Output_check4.txt", Stat.ydeaths, fmt='%1.4e', delimiter='\t', newline='\n') #nump.savetxt("Output_check5.txt", Stat.ytransplants, fmt='%1.4e', delimiter='\t', newline='\n') #nump.savetxt("Output_check6.txt", mr_1, fmt='%1.4e', delimiter='\t', newline='\n') mr_numdeaths = [nump.sum(Stat.ydeaths),nump.floor(Sim.clock),reps] #record the total number of deaths along with its current time and current repetition #mr_disparity = [nump.linalg.norm(mr_1,ord=1),nump.floor(Sim.clock),reps] #tx_disparity = [nump.linalg.norm(tr_1,ord=1),nump.floor(Sim.clock),reps] #wt_disparity = [nump.linalg.norm(wt_1,ord=1),nump.floor(Sim.clock),reps] mr_disparity_mean = [nump.nanmean(mr_1),nump.floor(Sim.clock),reps] #record the mean mortality rate along with its current time and current repetition mr_disparity_std = [nump.nanstd(mr_1),nump.floor(Sim.clock),reps] #record the standard deviation of mortality rate along withs current time and current repetition meld_disparity_mean = [nump.nanmean(meld_l),nump.floor(Sim.clock),reps] #record the mean MELD score along with current time and current repetition meld_disparity_std = [nump.nanstd(meld_l),nump.floor(Sim.clock),reps] #record the standard deviation of the MELD score along with current time and current repetition medmeld_mean = [nump.nanmean(medianmelds),nump.floor(Sim.clock),reps] #record the mean median MELD score along with current time and current repetition medmeld_std = [nump.nanstd(medianmelds),nump.floor(Sim.clock),reps] #record the standard deviation of the median MELD score along with current time and current repetition #print(tx_disparity) #add the records to the list of yearly statistics Sim.record_deaths = nump.vstack((Sim.record_deaths, mr_numdeaths)) Sim.record_mr_disparity_mean = nump.vstack((Sim.record_mr_disparity_mean, mr_disparity_mean)) Sim.record_mr_disparity_std = nump.vstack((Sim.record_mr_disparity_std, mr_disparity_std)) Sim.record_meld_disparity_mean = nump.vstack((Sim.record_meld_disparity_mean, meld_disparity_mean)) Sim.record_meld_disparity_std = nump.vstack((Sim.record_meld_disparity_std, meld_disparity_std)) Sim.record_medMELDmean = nump.vstack((Sim.record_medMELDmean, medmeld_mean)) Sim.record_medMELDstd = nump.vstack((Sim.record_medMELDstd, medmeld_std)) Sim.record_txDSAoutput = nump.vstack((Sim.record_txDSAoutput, Sim.record_txDSA)) #create array that records the current time and repetition recindex =nump.ndarray(shape=(1,3)) recindex[0,0] = nump.floor(Sim.clock) recindex[0,1] = reps #add DSA vector regarding deaths, transplants, etc. to the list of records Sim.record_ydeaths =nump.concatenate((Sim.record_ydeaths,nump.concatenate((recindex,nump.transpose(Stat.ydeaths)),axis=1)),axis=0) Sim.record_ytransplants = nump.concatenate((Sim.record_ytransplants,nump.concatenate((recindex,nump.transpose(Stat.ytransplants)),axis=1)),axis=0) Sim.record_yarrivals = nump.concatenate((Sim.record_yarrivals,nump.concatenate((recindex,nump.transpose(Stat.yarrivals)),axis=1)),axis=0) Sim.record_ycandidates = nump.concatenate((Sim.record_ycandidates,nump.concatenate((recindex,nump.transpose(Stat.ycandidates)),axis=1)),axis=0) Sim.record_yremoved =nump.concatenate((Sim.record_yremoved,nump.concatenate((recindex,nump.transpose(Stat.yremoved)),axis=1)),axis=0) Sim.record_ywait = nump.concatenate((Sim.record_ywait,nump.concatenate((recindex,nump.transpose(Stat.ywait)),axis=1)),axis=0) Sim.record_yMELD = nump.concatenate((Sim.record_yMELD,nump.concatenate((recindex,nump.transpose(Stat.yMELD)),axis=1)),axis=0) Sim.record_yrelists =nump.concatenate((Sim.record_yrelists,nump.concatenate((recindex,nump.transpose(Stat.yrelists)),axis=1)),axis=0) Sim.record_yregrafts =nump.concatenate((Sim.record_yregrafts,nump.concatenate((recindex,nump.transpose(Stat.yregrafts)),axis=1)),axis=0) #Reset Statistics for Following Year Stat.yarrivals = nump.zeros(shape=(ndsa,1),dtype=int) Stat.ydeaths = nump.zeros(shape=(ndsa,1),dtype=int) Stat.yremoved = nump.zeros(shape=(ndsa,1),dtype=int) Stat.ytransplants = nump.zeros(shape=(ndsa,1),dtype=int) Stat.ycandidates = deepcopy(Stat.numcandidates) Stat.ywait = nump.zeros(shape=(ndsa,1),dtype=float) Stat.yMELD = nump.zeros(shape=(ndsa,1),dtype=int) Stat.ymedMELD = [[] for i in range(0,ndsa)] Stat.yrelists = nump.zeros(shape=(ndsa,1),dtype=int) Stat.yregrafts = nump.zeros(shape=(ndsa,1),dtype=int) #return updated Sim, Stat return Sim, Stat def EndRep(): """ Prints a message saying that a replication ended. """ print("Ending replication, time is: ", datetime.datetime.now().time()) #print(Sim.clock) #####################################################################################################################################################################################################################
51.153361
213
0.611278
import entity, allocate import numpy as nump import datetime from copy import deepcopy ndsa = 58 #######################################################################Event Processes#################################################################################### def Arrival(arrivalinfo, Sim, Stat, OPTN): """ This function simulates the arrival of patients. It computes the MELD score of the patient and adds him to the corresponding DSA waiting list. Input: @arrivalinfo: all the patient's information @Sim: class object that contains variables relevant to the simulation @Stat: class object that containts statistical info of the simulation @OPTN: complete patient data Output: @Sim: updated Sim @Stat: updated Stat @OPTN updated OPTN """ #Create Patient Entity newpatient = entity.Patient(arrivalinfo[1].astype(int),arrivalinfo[3].astype(int),Sim.clock) #Assign Patient Characteristics newpatient.Status1 = arrivalinfo[9].astype(int) newpatient.ABO = arrivalinfo[5].astype(int) newpatient.HCC = arrivalinfo[8].astype(int) newpatient.Na = arrivalinfo[10].astype(int) newpatient.lMELD = arrivalinfo[7].astype(int) newpatient.MELD = arrivalinfo[6].astype(int) newpatient.Inactive = arrivalinfo[11].astype(int) #Assign Allocation MELD based on policy if Sim.sodium ==1: #if sodium policy is selected #bound the sodium score effective_na = newpatient.Na if effective_na <125: effective_na = 125 elif effective_na > 137: effective_na = 137 #compute the allocation MELD score if nump.rint(newpatient.lMELD + 1.32*(137-effective_na)-(0.033*newpatient.lMELD*(137-effective_na))) <6: newpatient.MELD =6 elif nump.rint(newpatient.lMELD + 1.32*(137-effective_na)-(0.033*newpatient.lMELD*(137-effective_na))) > 40: newpatient.MELD =40 else: newpatient.MELD = nump.rint(newpatient.lMELD + 1.32*(137-effective_na)-(0.033*newpatient.lMELD*(137-effective_na))) else: #if sodium policy not selected #bound the sodium score if newpatient.MELD <6: newpatient.MELD =6 elif newpatient.MELD >40: newpatient.MELD = 40 #Apply Status1 and HCC exceptions (if applicable) if newpatient.Status1 ==1: newpatient.MELD =41 elif newpatient.HCC ==1 and Sim.capanddelay ==1: newpatient.MELD = min(newpatient.lMELD,28) #Place Patient in DSA List if newpatient.DSA >= 0: OPTN[newpatient.DSA].append(newpatient) #Update Stats Stat.yarrivals[newpatient.DSA] = Stat.yarrivals[newpatient.DSA] + 1 Stat.numcandidates[newpatient.DSA] = Stat.numcandidates[newpatient.DSA] + 1 #return updated Sim, Stat, and OPTN return Sim, Stat, OPTN #Diagnostic Info #here def Progression(proginfo, Sim, Stat, OPTN, reps): """ This function searches for a particular patient from the OPTN data structure and update the patient's characteristics Input: @proginfo: all of the information of the patient being searched up @Sim: class object containing relevant information of the patient being searched up @Stat: class object containing statistical information of the simulation @OPTN: complete patient data @reps: current replication number Output: @Sim: updated Sim @Stat: updated Stat @OPTN: updated OPTN """ progdsa = proginfo[9].astype(int) #obtain DSA #test =0 #run if we have an actual DSA if progdsa >=0: #search for patient in the OPTN data structure for i, patient in enumerate(OPTN[progdsa]): #check if the id matches if patient.id == proginfo[1].astype(int): #Update Patient if patient.Relist ==1: #Ignore updates for relisted patients break elif proginfo[3].astype(int) == 1: #Patient dies, remove and update stats Stat.ydeaths[progdsa] = Stat.ydeaths[progdsa] + 1 #increment the number of deaths by one Stat.numcandidates[progdsa] = Stat.numcandidates[progdsa] - 1 #decrement the number of candidates waiting by one del OPTN[progdsa][i] #delete the patient object since patient died break elif proginfo[4].astype(int) ==1: #Patient removed, remove and update stats Stat.yremoved[progdsa] = Stat.yremoved[progdsa] + 1 #increment the number of removals by one Stat.numcandidates[progdsa] = Stat.numcandidates[progdsa] - 1 #decrement the number of candidates waiting by one #record as follows (time of removal, repetition, patient id, patient allocation MELD, patient lab MELD) oidreport = [nump.floor(Sim.clock), reps, Sim.clock, patient.id,patient.MELD, patient.lMELD] Sim.record_removals = nump.vstack((Sim.record_removals, oidreport)) #concatenate the row oidreport to the record of removals del OPTN[progdsa][i] #delete patient object since patient is removed break else: #Update candidate patient.lMELD = proginfo[6].astype(int) patient.Na = proginfo[7].astype(int) patient.MELD = proginfo[5].astype(int) patient.Inactive = proginfo[10].astype(int) #set bound on MELD score if patient.MELD <6: patient.MELD =6 elif patient.MELD >40: patient.MELD = 40 #Update Allocation MELD based on policy (if applicable) if Sim.sodium ==1 and patient.Status1 != 1 and patient.HCC != 1: #if sodium score policy is selected, then update the meld score for non-status1, non-HCC patient #set bound on sodium score effective_na = patient.Na if effective_na <125: effective_na = 125 elif effective_na > 137: effective_na = 137 #compute MELD score if nump.rint(patient.lMELD + 1.32*(137-effective_na)-(0.033*patient.lMELD*(137-effective_na))) <6: patient.MELD =6 elif nump.rint(patient.lMELD + 1.32*(137-effective_na)-(0.033*patient.lMELD*(137-effective_na))) > 40: patient.MELD =40 else: patient.MELD = nump.rint(patient.lMELD + 1.32*(137-effective_na)-(0.033*patient.lMELD*(137-effective_na))) elif Sim.capanddelay ==1 and patient.Status1 != 1 and patient.HCC == 1: #if cap and delay policy is selected, update meld score for status1, HCC patient #compute MELD score if Sim.clock - patient.create_time <= .5: patient.MELD = max(28,patient.MELD) elif (Sim.clock - patient.create_time) > .5 and (Sim.clock - patient.create_time <= .75): patient.MELD = max(29,patient.MELD) elif (Sim.clock - patient.create_time) > .75 and (Sim.clock - patient.create_time <= 1): patient.MELD = max(31,patient.MELD) elif (Sim.clock - patient.create_time) > 1 and (Sim.clock - patient.create_time <= 1.25): patient.MELD = max(33,patient.MELD) elif (Sim.clock - patient.create_time) > 1.25 and (Sim.clock - patient.create_time <= 1.5): patient.MELD = max(34,patient.MELD) else: patient.MELD = min(patient.MELD+1,40) break #return updated Sim, Stat, and OPTN return Sim, Stat, OPTN def OrganArrival(organinfo, Sim, Stat, OPTN, Regions, SharingPartners, Patients_Accept, Donor_Accept, DSA_Avg_Times, AcceptanceModelS1, AcceptanceModel, Relist, reps): """ This function simulates the organ arrival. It tries to match the organ to a patient from the corresponding DSA waitlist. Input: @organinfo: information on the organ @Sim: class object containing relevant variables for simulation @Stat: class object containing statistical information of simulation @OPTN: complete patient data @Regions: neighbhorhood map for regions, districts, or neighbhorhoods @SharingPartners: neighborhood map adding sharing partners to existing geographic relationships among OPOs @Patients_Accept: coefficients regarding donor's characteristics for acceptance model @Donor_Accept: coefficients regarding donor's characteristics for acceptance model @DSA_Avg_Times: data on average transport times between DSAs @AcceptanceModelS1: coefficients regarding patient's characteristics for status-1 acceptance model @AccpetanceModel: coefficients regarding patient's characteristics for non-status-1 acceptance model @Relist: values regarding the probability that a transplanted patient will relist @reps: replication number Output: @Sim: updated Sim @Stat: updated Stat @OPTN: updated OPTN """ #Create Organ neworgan = entity.Organ(int(organinfo[2])) neworgan.organid = Sim.oid Sim.oid = Sim.oid + 1 #Assign Organ Attributes neworgan.ABO = organinfo[4].astype(int) #Allocate Organ #disposition is tuple of organ status (accept/reject) , transplanting DSA, and patient id if accepted disposition = allocate.Allocate(neworgan, OPTN, Sim, Regions, SharingPartners, Patients_Accept, Donor_Accept, DSA_Avg_Times, AcceptanceModelS1, AcceptanceModel) if disposition[0] == 1: #organ is transplanted #Remove transplanted patient from waiting list and update statistics for i, patient in enumerate(OPTN[disposition[1]]): #search for the patient in the OPTN data structure if patient.id == disposition[2]: #Determine if patient will relist and assign special attributes if necesary willrelist = 0 if patient.Relist ==0: #if patient has not been relisted #Determine if patient will be relisted if was not already r1 =nump.random.uniform(Relist[0],Relist[1],1) r2 =nump.random.uniform(0,1,1) if r2 < r1: willrelist =1 #Determine when current graft will fail r3 = nump.random.uniform(0,1,1) if r3 < .4: patient.RelistTxTime = Sim.clock + 5 elif r3 >= .4 and r3 < .6: patient.RelistTxTime = Sim.clock + 2 elif r3 >= 6 and r3 < .8: patient.RelistTxTime = Sim.clock + 1 else: patient.RelistTxTime = Sim.clock #Update relist statistics Stat.yrelists[disposition[1]] = Stat.yrelists[disposition[1]] +1 #record the floor of current time, reptitiion, current time, patient id, patient meld score, and relist tx time relistidreport = [nump.floor(Sim.clock), reps, Sim.clock, patient.id,patient.MELD,patient.RelistTxTime] #concatenate the relistidreport to the record of relists Sim.record_relists = nump.vstack((Sim.record_relists, relistidreport)) #Update Stats for Transplants #Number of Transplants and Regrafts Stat.ytransplants[disposition[1]] = Stat.ytransplants[disposition[1]] +1 Sim.record_txDSA[neworgan.DSA,disposition[1]] = Sim.record_txDSA[neworgan.DSA,disposition[1]] +1 if patient.Relist ==1: #if patient is relisted Stat.yregrafts[disposition[1]] = Stat.yregrafts[disposition[1]] +1 #increase number of retransplanted patients by 1 #Compute waiting Time if patient.Relist ==0: #if patient is not relisted Stat.ywait[disposition[1]] = Stat.ywait[disposition[1]] + (Sim.clock - patient.create_time) else: #if patient is relisted Stat.ywait[disposition[1]] = Stat.ywait[disposition[1]] + (Sim.clock - patient.RelistTxTime) #Waiting List Sizes if willrelist ==0: Stat.numcandidates[disposition[1]] = Stat.numcandidates[disposition[1]] -1 #decrease the number of waitling list candidates for the DSA by 1 #1st Transplant MELD if patient.Status1 ==0 and patient.Relist ==0: #Tx-MELD at measure assumed to exclude re-grafts Stat.yMELD[disposition[1]] = Stat.yMELD[disposition[1]] + patient.MELD #increase the MELD score the DSA Stat.ymedMELD[disposition[1]].append(patient.MELD) #record the patient MELD score #Output for Posttransplant processing for those who were not ever relisted or will be if willrelist ==0 and patient.Relist ==0: regtx =0 nattx = 0 if patient.DSA != neworgan.DSA and (Regions[neworgan.DSA,patient.DSA] ==1 or SharingPartners[neworgan.DSA, patient.DSA] == 1): regtx =1 #patient had regional transplant elif patient.DSA != neworgan.DSA: nattx=1 #patient had national transplant #record the floor of the current time, repetition, current time, patient id, indicator for regional transplant, indicator for national #transplant txidreport = [nump.floor(Sim.clock), reps, Sim.clock, patient.id,regtx,nattx] Sim.record_txID = nump.vstack((Sim.record_txID, txidreport)) #add new record to list of transplant records #record as follows (time of removal, repetition, patient id, patient allocation MELD, patient lab MElD) oidreport = [nump.floor(Sim.clock), reps, Sim.clock, patient.id,Sim.oid] #add to list of transplant records Sim.record_doID = nump.vstack((Sim.record_doID, oidreport)) #Out for Posttransplant proceesing for regrafts if patient.Relist ==1: regtx =0 #indicator for regional transplant nattx = 0 #indicator for national transplant if patient.DSA != neworgan.DSA and (Regions[neworgan.DSA,patient.DSA] ==1 or SharingPartners[neworgan.DSA, patient.DSA] == 1): regtx =1 #patient had regional transplant elif patient.DSA != neworgan.DSA: nattx=1 #patient had national transplant #record the floor of the current time, repetition, current time, patient id, indicator for regional transplant, indicator for national transplant txidreport = [nump.floor(Sim.clock), reps, Sim.clock, patient.id,regtx,nattx] #add to list of relisted transplants Sim.record_txIDregraft = nump.vstack((Sim.record_txIDregraft, txidreport)) #record as follows (time of removal, repetition, patient id, patient allocation MELD, patient lab MELD) oidreport = [nump.floor(Sim.clock), reps, Sim.clock, patient.id,Sim.oid] #add to list of retransplant records Sim.record_doIDregraft = nump.vstack((Sim.record_doIDregraft, oidreport)) if willrelist ==1: #if patient will relist, update relist status and MELD score OPTN[disposition[1]][i].Relist =1 OPTN[disposition[1]][i].MELD = 32 OPTN[disposition[1]][i].lMELD = 32 else: #remove transplanted patient if will not be relisted del OPTN[disposition[1]][i] break else: #organ is discarded; update statistics (optional) pass #return updated Sim, Stat, and OPTN return Sim, Stat, OPTN def Year(Sim, Stat, reps): """ This function updates the statistics of the simulation per year Input: @Sim: class object that contains relevant variables for the simulation @Stat: class object that contains statistical information of the simulation @reps: current replication number Output: @Sim: updated Sim @Stat: updated Stat """ #Annual Disparity Statistics mr_1 = nump.zeros(shape=(ndsa,1),dtype=float) tr_1 = nump.zeros(shape=(ndsa,1),dtype=float) wt_1 = nump.zeros(shape=(ndsa,1),dtype=float) meld_l = nump.zeros(shape=(ndsa,1),dtype=float) for i in range(0,ndsa): if Stat.ytransplants[i] > 0: wt_1[i] = Stat.ywait[i] / Stat.ytransplants[i] #compute the total waiting list/total # of transplant per DSA meld_l[i] = Stat.yMELD[i] / Stat.ytransplants[i] #compute the total MELD score/total # of transplant per DSA else: #write nan if no values available wt_1[i] = nump.nan meld_l[i] = nump.nan if (Stat.yarrivals[i] + Stat.ycandidates[i]) == 0: #write nan if no values available mr_1[i] = nump.nan tr_1[i] = nump.nan else: mr_1[i] = Stat.ydeaths[i] / (Stat.yarrivals[i] + Stat.ycandidates[i]) #compute mortality rate (number of deaths/number of waiting candidates) tr_1[i] = Stat.ytransplants[i] / (Stat.yarrivals[i] + Stat.ycandidates[i]) #compute transplant rate (number of transplants/number of waiting candidates) #compute the median MELD score medianmelds = nump.zeros(shape=(ndsa,1),dtype=float) for i in range(0,ndsa): if Stat.ymedMELD[i] != []: medianmelds[i] = nump.nanmedian(Stat.ymedMELD[i]) else: medianmelds[i] = nump.nan #Intermediate Data Outputs #nump.savetxt("Output_check.txt", Stat.numcandidates, fmt='%1.4e', delimiter='\t', newline='\n') #nump.savetxt("Output_check2.txt", Stat.yremoved, fmt='%1.4e', delimiter='\t', newline='\n') #nump.savetxt("Output_check3.txt", Stat.yarrivals, fmt='%1.4e', delimiter='\t', newline='\n') #nump.savetxt("Output_check4.txt", Stat.ydeaths, fmt='%1.4e', delimiter='\t', newline='\n') #nump.savetxt("Output_check5.txt", Stat.ytransplants, fmt='%1.4e', delimiter='\t', newline='\n') #nump.savetxt("Output_check6.txt", mr_1, fmt='%1.4e', delimiter='\t', newline='\n') mr_numdeaths = [nump.sum(Stat.ydeaths),nump.floor(Sim.clock),reps] #record the total number of deaths along with its current time and current repetition #mr_disparity = [nump.linalg.norm(mr_1,ord=1),nump.floor(Sim.clock),reps] #tx_disparity = [nump.linalg.norm(tr_1,ord=1),nump.floor(Sim.clock),reps] #wt_disparity = [nump.linalg.norm(wt_1,ord=1),nump.floor(Sim.clock),reps] mr_disparity_mean = [nump.nanmean(mr_1),nump.floor(Sim.clock),reps] #record the mean mortality rate along with its current time and current repetition mr_disparity_std = [nump.nanstd(mr_1),nump.floor(Sim.clock),reps] #record the standard deviation of mortality rate along withs current time and current repetition meld_disparity_mean = [nump.nanmean(meld_l),nump.floor(Sim.clock),reps] #record the mean MELD score along with current time and current repetition meld_disparity_std = [nump.nanstd(meld_l),nump.floor(Sim.clock),reps] #record the standard deviation of the MELD score along with current time and current repetition medmeld_mean = [nump.nanmean(medianmelds),nump.floor(Sim.clock),reps] #record the mean median MELD score along with current time and current repetition medmeld_std = [nump.nanstd(medianmelds),nump.floor(Sim.clock),reps] #record the standard deviation of the median MELD score along with current time and current repetition #print(tx_disparity) #add the records to the list of yearly statistics Sim.record_deaths = nump.vstack((Sim.record_deaths, mr_numdeaths)) Sim.record_mr_disparity_mean = nump.vstack((Sim.record_mr_disparity_mean, mr_disparity_mean)) Sim.record_mr_disparity_std = nump.vstack((Sim.record_mr_disparity_std, mr_disparity_std)) Sim.record_meld_disparity_mean = nump.vstack((Sim.record_meld_disparity_mean, meld_disparity_mean)) Sim.record_meld_disparity_std = nump.vstack((Sim.record_meld_disparity_std, meld_disparity_std)) Sim.record_medMELDmean = nump.vstack((Sim.record_medMELDmean, medmeld_mean)) Sim.record_medMELDstd = nump.vstack((Sim.record_medMELDstd, medmeld_std)) Sim.record_txDSAoutput = nump.vstack((Sim.record_txDSAoutput, Sim.record_txDSA)) #create array that records the current time and repetition recindex =nump.ndarray(shape=(1,3)) recindex[0,0] = nump.floor(Sim.clock) recindex[0,1] = reps #add DSA vector regarding deaths, transplants, etc. to the list of records Sim.record_ydeaths =nump.concatenate((Sim.record_ydeaths,nump.concatenate((recindex,nump.transpose(Stat.ydeaths)),axis=1)),axis=0) Sim.record_ytransplants = nump.concatenate((Sim.record_ytransplants,nump.concatenate((recindex,nump.transpose(Stat.ytransplants)),axis=1)),axis=0) Sim.record_yarrivals = nump.concatenate((Sim.record_yarrivals,nump.concatenate((recindex,nump.transpose(Stat.yarrivals)),axis=1)),axis=0) Sim.record_ycandidates = nump.concatenate((Sim.record_ycandidates,nump.concatenate((recindex,nump.transpose(Stat.ycandidates)),axis=1)),axis=0) Sim.record_yremoved =nump.concatenate((Sim.record_yremoved,nump.concatenate((recindex,nump.transpose(Stat.yremoved)),axis=1)),axis=0) Sim.record_ywait = nump.concatenate((Sim.record_ywait,nump.concatenate((recindex,nump.transpose(Stat.ywait)),axis=1)),axis=0) Sim.record_yMELD = nump.concatenate((Sim.record_yMELD,nump.concatenate((recindex,nump.transpose(Stat.yMELD)),axis=1)),axis=0) Sim.record_yrelists =nump.concatenate((Sim.record_yrelists,nump.concatenate((recindex,nump.transpose(Stat.yrelists)),axis=1)),axis=0) Sim.record_yregrafts =nump.concatenate((Sim.record_yregrafts,nump.concatenate((recindex,nump.transpose(Stat.yregrafts)),axis=1)),axis=0) #Reset Statistics for Following Year Stat.yarrivals = nump.zeros(shape=(ndsa,1),dtype=int) Stat.ydeaths = nump.zeros(shape=(ndsa,1),dtype=int) Stat.yremoved = nump.zeros(shape=(ndsa,1),dtype=int) Stat.ytransplants = nump.zeros(shape=(ndsa,1),dtype=int) Stat.ycandidates = deepcopy(Stat.numcandidates) Stat.ywait = nump.zeros(shape=(ndsa,1),dtype=float) Stat.yMELD = nump.zeros(shape=(ndsa,1),dtype=int) Stat.ymedMELD = [[] for i in range(0,ndsa)] Stat.yrelists = nump.zeros(shape=(ndsa,1),dtype=int) Stat.yregrafts = nump.zeros(shape=(ndsa,1),dtype=int) #return updated Sim, Stat return Sim, Stat def EndRep(): """ Prints a message saying that a replication ended. """ print("Ending replication, time is: ", datetime.datetime.now().time()) #print(Sim.clock) #####################################################################################################################################################################################################################
0
0
0
89b6a5aacdae170197bc3ceae867aa296d074173
594
py
Python
Algorithms/Searching & Sorting/Counting Sort/counting_sort.py
sol4ik/interview-techdev-guide
2f1c755df3f34125850a2d6322edc24dc097c1fb
[ "MIT" ]
null
null
null
Algorithms/Searching & Sorting/Counting Sort/counting_sort.py
sol4ik/interview-techdev-guide
2f1c755df3f34125850a2d6322edc24dc097c1fb
[ "MIT" ]
null
null
null
Algorithms/Searching & Sorting/Counting Sort/counting_sort.py
sol4ik/interview-techdev-guide
2f1c755df3f34125850a2d6322edc24dc097c1fb
[ "MIT" ]
null
null
null
def countSort(array): """ Counting Sort algorithm implementation on Python. :param array: array that need to be sorted :return: resulting sorted array """ output = [0 for i in range(256)] count = [0 for i in range(256)] result = ["" for element in array] for i in array: result[ord(i)] += 1 for i in range(256): result[i] += result[i - 1] for i in range(len(array)): output[result[ord(array[i])] - 1] = array[i] count[ord(array[i])] -= 1 for i in range(len(array)): result[i] = output[i] return result
29.7
53
0.574074
def countSort(array): """ Counting Sort algorithm implementation on Python. :param array: array that need to be sorted :return: resulting sorted array """ output = [0 for i in range(256)] count = [0 for i in range(256)] result = ["" for element in array] for i in array: result[ord(i)] += 1 for i in range(256): result[i] += result[i - 1] for i in range(len(array)): output[result[ord(array[i])] - 1] = array[i] count[ord(array[i])] -= 1 for i in range(len(array)): result[i] = output[i] return result
0
0
0
159c632f19d51c0cb382b2c9ba57cbb71f415051
96
py
Python
samtranslator/public/models.py
eugeniosu/serverless-application-model
d93e15232a1921fa51667389d83aeabbf1ff72d3
[ "Apache-2.0" ]
6
2019-03-29T02:56:59.000Z
2021-03-28T22:07:02.000Z
samtranslator/public/models.py
eugeniosu/serverless-application-model
d93e15232a1921fa51667389d83aeabbf1ff72d3
[ "Apache-2.0" ]
18
2019-10-09T23:27:48.000Z
2021-06-25T15:18:24.000Z
samtranslator/public/models.py
Mattlk13/serverless-application-model
27b5934de46c42d47ba1484d5432310cac694b25
[ "Apache-2.0" ]
15
2019-05-27T01:04:30.000Z
2021-10-01T05:54:45.000Z
# flake8: noqa from samtranslator.model.function_policies import FunctionPolicies, PolicyTypes
24
79
0.854167
# flake8: noqa from samtranslator.model.function_policies import FunctionPolicies, PolicyTypes
0
0
0
43c0f69870ce566bd19cef135e12fb3a3b95c79c
32,952
py
Python
src/shared_gui.py
NicholasPSnow/99-CapstoneProject-201920
ca3baa3b3c53ae6c5af70cd93b3af450a1da41ad
[ "MIT" ]
null
null
null
src/shared_gui.py
NicholasPSnow/99-CapstoneProject-201920
ca3baa3b3c53ae6c5af70cd93b3af450a1da41ad
[ "MIT" ]
null
null
null
src/shared_gui.py
NicholasPSnow/99-CapstoneProject-201920
ca3baa3b3c53ae6c5af70cd93b3af450a1da41ad
[ "MIT" ]
null
null
null
""" Capstone Project. Code to run on a LAPTOP (NOT the robot). Constructs and returns Frame objects for the basics: -- teleoperation -- arm movement -- stopping the robot program This code is SHARED by all team members. It contains both: -- High-level, general-purpose methods for a Snatch3r EV3 robot. -- Lower-level code to interact with the EV3 robot library. Author: Your professors (for the framework and lower-level code) and Nicholas Snow, Katana College, and Zach Kelly. Winter term, 2018-2019. """ import tkinter from tkinter import ttk import time def get_teleoperation_frame(window, mqtt_sender): """ Constructs and returns a frame on the given window, where the frame has Entry and Button objects that control the EV3 robot's motion by passing messages using the given MQTT Sender. :type window: ttk.Frame | ttk.Toplevel :type mqtt_sender: com.MqttClient """ # Construct the frame to return: frame = ttk.Frame(window, padding=10, borderwidth=5, relief="ridge") frame.grid() # Construct the widgets on the frame: frame_label = ttk.Label(frame, text="Teleoperation") left_speed_label = ttk.Label(frame, text="Left wheel speed (0 to 100)") right_speed_label = ttk.Label(frame, text="Right wheel speed (0 to 100)") left_speed_entry = ttk.Entry(frame, width=8) left_speed_entry.insert(0, "100") right_speed_entry = ttk.Entry(frame, width=8, justify=tkinter.RIGHT) right_speed_entry.insert(0, "100") forward_button = ttk.Button(frame, text="Forward") backward_button = ttk.Button(frame, text="Backward") left_button = ttk.Button(frame, text="Left") right_button = ttk.Button(frame, text="Right") stop_button = ttk.Button(frame, text="Stop") # Grid the widgets: frame_label.grid(row=0, column=1) left_speed_label.grid(row=1, column=0) right_speed_label.grid(row=1, column=2) left_speed_entry.grid(row=2, column=0) right_speed_entry.grid(row=2, column=2) forward_button.grid(row=3, column=1) left_button.grid(row=4, column=0) stop_button.grid(row=4, column=1) right_button.grid(row=4, column=2) backward_button.grid(row=5, column=1) # Set the button callbacks: forward_button["command"] = lambda: handle_forward( left_speed_entry, right_speed_entry, mqtt_sender) backward_button["command"] = lambda: handle_backward( left_speed_entry, right_speed_entry, mqtt_sender) left_button["command"] = lambda: handle_left( left_speed_entry, right_speed_entry, mqtt_sender) right_button["command"] = lambda: handle_right( left_speed_entry, right_speed_entry, mqtt_sender) stop_button["command"] = lambda: handle_stop(mqtt_sender) return frame def get_arm_frame(window, mqtt_sender): """ Constructs and returns a frame on the given window, where the frame has Entry and Button objects that control the EV3 robot's Arm by passing messages using the given MQTT Sender. :type window: ttk.Frame | ttk.Toplevel :type mqtt_sender: com.MqttClient """ # Construct the frame to return: frame = ttk.Frame(window, padding=10, borderwidth=5, relief="ridge") frame.grid() # Construct the widgets on the frame: frame_label = ttk.Label(frame, text="Arm and Claw") position_label = ttk.Label(frame, text="Desired arm position:") position_entry = ttk.Entry(frame, width=8) raise_arm_button = ttk.Button(frame, text="Raise arm") lower_arm_button = ttk.Button(frame, text="Lower arm") calibrate_arm_button = ttk.Button(frame, text="Calibrate arm") move_arm_button = ttk.Button(frame, text="Move arm to position (0 to 5112)") blank_label = ttk.Label(frame, text="") # Grid the widgets: frame_label.grid(row=0, column=1) position_label.grid(row=1, column=0) position_entry.grid(row=1, column=1) position_entry.insert(0, "0") move_arm_button.grid(row=1, column=2) blank_label.grid(row=2, column=1) raise_arm_button.grid(row=3, column=0) lower_arm_button.grid(row=3, column=1) calibrate_arm_button.grid(row=3, column=2) # Set the Button callbacks: raise_arm_button["command"] = lambda: handle_raise_arm(mqtt_sender) lower_arm_button["command"] = lambda: handle_lower_arm(mqtt_sender) calibrate_arm_button["command"] = lambda: handle_calibrate_arm(mqtt_sender) move_arm_button["command"] = lambda: handle_move_arm_to_position(position_entry.get(), mqtt_sender) return frame def get_control_frame(window, mqtt_sender): """ Constructs and returns a frame on the given window, where the frame has Button objects to exit this program and/or the robot's program (via MQTT). :type window: ttk.Frame | ttk.Toplevel :type mqtt_sender: com.MqttClient """ # Construct the frame to return: frame = ttk.Frame(window, padding=10, borderwidth=5, relief="ridge") frame.grid() # Construct the widgets on the frame: frame_label = ttk.Label(frame, text="Control") quit_robot_button = ttk.Button(frame, text="Stop the robot's program") exit_button = ttk.Button(frame, text="Stop this and the robot's program") # Grid the widgets: frame_label.grid(row=0, column=1) quit_robot_button.grid(row=1, column=0) exit_button.grid(row=1, column=2) # Set the Button callbacks: quit_robot_button["command"] = lambda: handle_quit(mqtt_sender) exit_button["command"] = lambda: handle_exit(mqtt_sender) return frame ############################################################################### ############################################################################### # The following specifies, for each Button, # what should happen when the Button is pressed. ############################################################################### ############################################################################### ############################################################################### # Handlers for Buttons in the Teleoperation frame. ############################################################################### def handle_forward(left_entry_box, right_entry_box, mqtt_sender): """ Tells the robot to move using the speeds in the given entry boxes, with the speeds used as given. :type left_entry_box: ttk.Entry :type right_entry_box: ttk.Entry :type mqtt_sender: com.MqttClient """ print('forward', left_entry_box.get(), right_entry_box.get()) mqtt_sender.send_message('movement', [left_entry_box.get(), right_entry_box.get()]) def handle_backward(left_entry_box, right_entry_box, mqtt_sender): """ Tells the robot to move using the speeds in the given entry boxes, but using the negatives of the speeds in the entry boxes. :type left_entry_box: ttk.Entry :type right_entry_box: ttk.Entry :type mqtt_sender: com.MqttClient """ print('backward', left_entry_box.get(), right_entry_box.get()) left = -int(left_entry_box.get()) right = -int(right_entry_box.get()) mqtt_sender.send_message('movement', [str(left), str(right)]) def handle_left(left_entry_box, right_entry_box, mqtt_sender): """ Tells the robot to move using the speeds in the given entry boxes, but using the negative of the speed in the left entry box. :type left_entry_box: ttk.Entry :type right_entry_box: ttk.Entry :type mqtt_sender: com.MqttClient """ print('left', left_entry_box.get(), right_entry_box.get()) left = -int(left_entry_box.get()) right = int(right_entry_box.get()) mqtt_sender.send_message('movement', [str(left), str(right)]) def handle_right(left_entry_box, right_entry_box, mqtt_sender): """ Tells the robot to move using the speeds in the given entry boxes, but using the negative of the speed in the right entry box. :type left_entry_box: ttk.Entry :type right_entry_box: ttk.Entry :type mqtt_sender: com.MqttClient """ print('right', left_entry_box.get(), right_entry_box.get()) left = int(left_entry_box.get()) right = -int(right_entry_box.get()) mqtt_sender.send_message('movement', [str(left), str(right)]) def handle_stop(mqtt_sender): """ Tells the robot to stop. :type mqtt_sender: com.MqttClient """ mqtt_sender.send_message('stop') print("Stop") ############################################################################### # Handlers for Buttons in the ArmAndClaw frame. ############################################################################### def handle_raise_arm(mqtt_sender): """ Tells the robot to raise its Arm until its touch sensor is pressed. :type mqtt_sender: com.MqttClient """ mqtt_sender.send_message('up') print("Move Arm Up") def handle_lower_arm(mqtt_sender): """ Tells the robot to lower its Arm until it is all the way down. :type mqtt_sender: com.MqttClient """ mqtt_sender.send_message('down') print("Move Arm Down") def handle_calibrate_arm(mqtt_sender): """ Tells the robot to calibrate its Arm, that is, first to raise its Arm until its touch sensor is pressed, then to lower its Arm until it is all the way down, and then to mark taht position as position 0. :type mqtt_sender: com.MqttClient """ mqtt_sender.send_message('calibrate') print("Calibrate") def handle_move_arm_to_position(position_entry, mqtt_sender): """ Tells the robot to move its Arm to the position in the given Entry box. The robot must have previously calibrated its Arm. :type arm_position_entry ttk.Entry :type mqtt_sender: com.MqttClient """ mqtt_sender.send_message('move_to_pos', [str(position_entry)]) print("Move to Position:",position_entry) ############################################################################### # Handlers for Buttons in the Control frame. ############################################################################### def handle_quit(mqtt_sender): """ Tell the robot's program to stop its loop (and hence quit). :type mqtt_sender: com.MqttClient """ mqtt_sender.send_message('command', ['quit']) print('########') print('# Quit #') print('########') def handle_exit(mqtt_sender): """ Tell the robot's program to stop its loop (and hence quit). Then exit this program. :type mqtt_sender: com.MqttClient """ mqtt_sender.send_message('command', ['exit']) print('########') print('# Exit #') print('########') def get_Sprint_1_Drive_System_frame(window, mqtt_sender): """ Constructs and returns a frame on the given window, where the frame has Special objects that control the EV3 robot's motion by passing messages using the given MQTT Sender. :type window: ttk.Frame | ttk.Toplevel :type mqtt_sender: com.MqttClient """ # Construct the frame to return: frame = ttk.Frame(window, padding=10, borderwidth=5, relief="ridge") frame.grid() # Construct the widgets on the frame: frame_label = ttk.Label(frame, text="Secondary Drive System") wheel_speed_label = ttk.Label(frame, text="Wheel Speed (0 to 100)") time_label = ttk.Label(frame, text="Movement Time (0 to INF)") inches_label = ttk.Label(frame, text="Movement Distance (0 to INF)") wheel_speed_entry = ttk.Entry(frame, width=8) wheel_speed_entry.insert(0, "100") time_entry = ttk.Entry(frame, width=8, justify=tkinter.RIGHT) time_entry.insert(0, "10") inches_entry = ttk.Entry(frame, width=8, justify=tkinter.RIGHT) inches_entry.insert(0, "10") forward_time_button = ttk.Button(frame, text="Forward for Seconds") forward_time_inches_button = ttk.Button(frame, text="Forward for Inches(time)") forward_inches_button = ttk.Button(frame, text="Forward for Inches(Encoder)") # Grid the widgets: frame_label.grid(row=0, column=1) wheel_speed_label.grid(row=1, column=0) time_label.grid(row=1, column=1) inches_label.grid(row=1, column=2) wheel_speed_entry.grid(row=2, column=0) time_entry.grid(row=2, column=1) inches_entry.grid(row=2, column=2) forward_time_button.grid(row=3, column=0) forward_time_inches_button.grid(row=3, column=1) forward_inches_button.grid(row=3, column=2) # Set the button callbacks: forward_time_button["command"] = lambda: handle_forward_time_button(wheel_speed_entry.get(), time_entry.get(), mqtt_sender) forward_time_inches_button["command"] = lambda: handle_forward_time_inches_button(wheel_speed_entry.get(), inches_entry.get(), mqtt_sender) forward_inches_button["command"] = lambda: handle_forward_inches_button(wheel_speed_entry.get(), inches_entry.get(), mqtt_sender) return frame def get_Sprint_1_Beeper_System_frame(window, mqtt_sender): """ Constructs and returns a frame on the given window, where the frame has Beeper objects that control the EV3 robot's motion by passing messages using the given MQTT Sender. :type window: ttk.Frame | ttk.Toplevel :type mqtt_sender: com.MqttClient """ # Construct the frame to return: frame = ttk.Frame(window, padding=10, borderwidth=5, relief="ridge") frame.grid() # Construct the widgets on the frame: frame_label = ttk.Label(frame, text="Sound System") number_of_beeps_label = ttk.Label(frame, text="Number of Beeps") tone_duration_label = ttk.Label(frame, text="Duration of Tone") tone_frequency_label = ttk.Label(frame, text="Tone Frequency") speak_text_label = ttk.Label(frame, text="Text to Speech") number_of_beeps= ttk.Entry(frame, width=8) number_of_beeps.insert(0, "10") tone_duration = ttk.Entry(frame, width=8, justify=tkinter.RIGHT) tone_duration.insert(0, "10") tone_frequency = ttk.Entry(frame, width=8, justify=tkinter.RIGHT) tone_frequency.insert(0, "10") speak_text = ttk.Entry(frame, width=8, justify=tkinter.RIGHT) speak_text.insert(0, "Type Here") beep_button = ttk.Button(frame, text="Play Beeps") tone_button = ttk.Button(frame, text="Play Tone") speak_button = ttk.Button(frame, text="Read Text") # Grid the widgets: frame_label.grid(row=0, column=1) number_of_beeps_label.grid(row=1, column=0) tone_duration_label.grid(row=1, column=1) tone_frequency_label.grid(row=1, column=2) speak_text_label.grid(row=1, column=3) number_of_beeps.grid(row=2, column=0) tone_duration.grid(row=2, column=1) tone_frequency.grid(row=2, column=2) speak_text.grid(row=2, column=3) beep_button.grid(row=3, column=0) tone_button.grid(row=3, column=1) speak_button.grid(row=3, column=3) # Set the button callbacks: beep_button["command"] = lambda: handle_beep_button(number_of_beeps.get(), mqtt_sender) tone_button["command"] = lambda: handle_tone_button(tone_duration.get(), tone_frequency.get(), mqtt_sender) speak_button["command"] = lambda: handle_speak_button(speak_text.get(), mqtt_sender) return frame def get_Katana_frame(window, mqtt_sender): """ Constructs and returns a frame on the given window, where the frame has Beeper objects that control the EV3 robot's motion by passing messages using the given MQTT Sender. :type window: ttk.Frame | ttk.Toplevel :type mqtt_sender: com.MqttClient """ # Construct the frame to return: frame = ttk.Frame(window, padding=10, borderwidth=5, relief="ridge") frame.grid() # Construct the widgets on the frame: frame_label = ttk.Label(frame, text="Katana's System") obtain_with_sensor_label = ttk.Label(frame, text="Get Object with Proximity") obtain_with_sensor_button = ttk.Button(frame, text="Get") wheel_speed_label = ttk.Label(frame, text="Move Speed") rate_of_frequency_label = ttk.Label(frame, text="Frequency Rate (Increasing)") rate_of_frequency = ttk.Entry(frame, width=8, justify=tkinter.LEFT) rate_of_frequency.insert(0, "10") initial_frequency_label = ttk.Label(frame, text="Initial Frequency") initial_frequency = ttk.Entry(frame, width=8, justify=tkinter.LEFT) initial_frequency.insert(0, "5") obtain_with_camera_label = ttk.Label(frame, text="Get Object with Camera") obtain_with_camera_button = ttk.Button(frame, text="Get") wheel_speed_entry = ttk.Entry(frame, width=8) wheel_speed_entry.insert(0, "100") spin_speed_label = ttk.Label(frame, text="Spinning Speed") spin_speed = ttk.Entry(frame, width=8, justify=tkinter.LEFT) spin_speed.insert(0, "10") spin_direction_label = ttk.Label(frame, text="Spinning Direction") spin_direction = ttk.Entry(frame, width=8, justify=tkinter.LEFT) spin_direction.insert(0, "Counter Clockwise") # Grid the widgets: frame_label.grid(row=0, column=2) obtain_with_sensor_label.grid(row=1, column=1) obtain_with_sensor_button.grid(row=2, column=1) rate_of_frequency_label.grid(row=1,column=2) rate_of_frequency.grid(row=2, column=2) initial_frequency_label.grid(row=1, column=3) initial_frequency.grid(row=2, column=3) wheel_speed_label.grid(row=3, column=2) wheel_speed_entry.grid(row=4, column=2) obtain_with_camera_label.grid(row=5, column=1) obtain_with_camera_button.grid(row=6, column=1) spin_speed_label.grid(row=5, column=2) spin_speed.grid(row=6, column=2) spin_direction_label.grid(row=5, column=3) spin_direction.grid(row=6, column=3) # Set the button callbacks: obtain_with_sensor_button["command"] = lambda: handle_obtain_with_sensor_button(wheel_speed_entry.get(),rate_of_frequency.get(), initial_frequency.get(), mqtt_sender) obtain_with_camera_button["command"] = lambda: handle_obtain_with_camera_button(wheel_speed_entry.get(), spin_speed.get(), spin_direction.get(), rate_of_frequency.get(), initial_frequency.get(),mqtt_sender) return frame def get_Nick_frame(window, mqtt_sender): """ Constructs and returns a frame on the given window, where the frame has Beeper objects that control the EV3 robot's motion by passing messages using the given MQTT Sender. :type window: ttk.Frame | ttk.Toplevel :type mqtt_sender: com.MqttClient """ # Construct the frame to return: frame = ttk.Frame(window, padding=10, borderwidth=5, relief="ridge") frame.grid() # Construct the widgets on the frame: frame_label = ttk.Label(frame, text="Nick's Sprint 2 System") proximity_label = ttk.Label(frame, text="Go to and Pick up Object (Proximity)") proximity_button = ttk.Button(frame, text="Run Proximity Grab") camera_label = ttk.Label(frame, text="Go to and Pick up Object (Camera)") camera_button = ttk.Button(frame, text="Run Camera Grab") line_follower_label = ttk.Label(frame, text="Line Follower (Bang Bang Method)") line_button = ttk.Button(frame, text="Follow Line") rate_of_beeps_label = ttk.Label(frame, text="Beep Rate Increase") rate_of_beeps= ttk.Entry(frame, width=8, justify=tkinter.LEFT) rate_of_beeps.insert(0, "10") initial_beeps_label = ttk.Label(frame, text="Initial Beep Rate") initial_beeps = ttk.Entry(frame, width=8, justify=tkinter.LEFT) initial_beeps.insert(0, "5") speed_label = ttk.Label(frame, text="Turning Speed") speed = ttk.Entry(frame, width=8, justify=tkinter.LEFT) speed.insert(0, "100") direction_label = ttk.Label(frame, text="Turning Direction, Clockwise or Counter-Clockwise") direction = ttk.Entry(frame, width=8, justify=tkinter.LEFT) direction.insert(0, "Clockwise") starting_side_label = ttk.Label(frame, text="Turning Direction, Right or Left") starting_side = ttk.Entry(frame, width=8, justify=tkinter.LEFT) starting_side.insert(0, "Right") # Grid the widgets: frame_label.grid(row=0, column=1) proximity_label.grid(row=1, column=0) proximity_button.grid(row=1, column=1) rate_of_beeps_label.grid(row=2, column=0) rate_of_beeps.grid(row=2, column=1) initial_beeps_label.grid(row=3, column=0) initial_beeps.grid(row=3, column=1) camera_label.grid(row=4, column=0) camera_button.grid(row=4, column=1) speed_label.grid(row=5, column=0) speed.grid(row=5, column=1) direction_label.grid(row=6, column=0) direction.grid(row=6, column=1) line_follower_label.grid(row=7, column=0) line_button.grid(row=7, column=1) starting_side_label.grid(row=8, column=0) starting_side.grid(row=8, column=1) # Set the button callbacks: proximity_button["command"] = lambda: handle_proximity_button(rate_of_beeps.get(), initial_beeps.get(), mqtt_sender) camera_button["command"] = lambda: handle_camera_button(speed.get(),direction.get(),rate_of_beeps.get(), initial_beeps.get(), mqtt_sender) line_button["command"] = lambda: handle_line_button(starting_side.get(), mqtt_sender) return frame ##COLOR FRAMING def get_Sprint_2_Color_frame(window, mqtt_sender): """ Constructs and returns a frame on the given window, where the frame has Beeper objects that control the EV3 robot's motion by passing messages using the given MQTT Sender. :type window: ttk.Frame | ttk.Toplevel :type mqtt_sender: com.MqttClient """ # Construct the frame to return: frame = ttk.Frame(window, padding=10, borderwidth=5, relief="ridge") frame.grid() # Construct the widgets on the frame: frame_label = ttk.Label(frame, text="Color Sensor") intensity_less_label = ttk.Label(frame, text="Go Until Intensity is Less Than") intensity_less_button = ttk.Button(frame, text="Run Less than Intensity") intensity_greater_label = ttk.Label(frame, text="Go Until Intensity is Greater Than") intensity_greater_button = ttk.Button(frame, text="Run Greater than Intensity") until_color_label = ttk.Label(frame, text="Go Until Color") until_color_button = ttk.Button(frame, text="Run Go Until Color") until_not_color_label = ttk.Label(frame, text="Go Until Not Color") until_not_color_button = ttk.Button(frame, text="Run Go Until Not Color") color_label = ttk.Label(frame, text="Color") color= ttk.Entry(frame, width=8, justify=tkinter.LEFT) color.insert(0, "Red") speed_label = ttk.Label(frame, text="Speed") speed = ttk.Entry(frame, width=8, justify=tkinter.LEFT) speed.insert(0, "50") intensity_label = ttk.Label(frame, text="Light Intensity") intensity = ttk.Entry(frame, width=8, justify=tkinter.LEFT) intensity.insert(0, "50") # Grid the widgets: frame_label.grid(row=0, column=1) color_label.grid(row=1, column=0) color.grid(row=2, column=0) speed_label.grid(row=1, column=1) speed.grid(row=2, column=1) intensity_label.grid(row=1, column=2) intensity.grid(row=2, column=2) intensity_less_label.grid(row=3, column=0) intensity_less_button.grid(row=4, column=0) intensity_greater_label.grid(row=5, column=0) intensity_greater_button.grid(row=6, column=0) until_color_label.grid(row=3, column=2) until_color_button.grid(row=4, column=2) until_not_color_label.grid(row=5, column=2) until_not_color_button.grid(row=6, column=2) # Set the button callbacks: intensity_less_button["command"] = lambda: handle_intensity_less_button(speed.get(), intensity.get(), mqtt_sender) intensity_greater_button["command"] = lambda: handle_intensity_greater_button(speed.get(),intensity.get(), mqtt_sender) until_color_button["command"] = lambda: handle_until_color_button(speed.get(),color.get(), mqtt_sender) until_not_color_button["command"] = lambda: handle_until_not_color_button(speed.get(),color.get(), mqtt_sender) return frame ##PROXIMITY SENSOR def get_Sprint_2_Proximity_frame(window, mqtt_sender): """ Constructs and returns a frame on the given window, where the frame has Beeper objects that control the EV3 robot's motion by passing messages using the given MQTT Sender. :type window: ttk.Frame | ttk.Toplevel :type mqtt_sender: com.MqttClient """ # Construct the frame to return: frame = ttk.Frame(window, padding=10, borderwidth=5, relief="ridge") frame.grid() # Construct the widgets on the frame: frame_label = ttk.Label(frame, text="Proximity Sensor") distance_less_label = ttk.Label(frame, text="Go Until Distance is Less Than") distance_less_button = ttk.Button(frame, text="Run Less than Distance") distance_greater_label = ttk.Label(frame, text="Go Until Distance is Greater Than") distance_greater_button = ttk.Button(frame, text="Run Greater than Distance") until_distance_label = ttk.Label(frame, text="Go Until Distance Within") until_distance_button = ttk.Button(frame, text="Run Go Until Distance Within") inches_label = ttk.Label(frame, text="Inches") inches = ttk.Entry(frame, width=8, justify=tkinter.LEFT) inches.insert(0, "10") speed_label = ttk.Label(frame, text="Speed") speed = ttk.Entry(frame, width=8, justify=tkinter.LEFT) speed.insert(0, "100") delta_label = ttk.Label(frame, text="Delta Distance") delta = ttk.Entry(frame, width=8, justify=tkinter.LEFT) delta.insert(0, "50") # Grid the widgets: frame_label.grid(row=0, column=1) distance_less_label.grid(row=3, column=0) distance_less_button.grid(row=4, column=0) distance_greater_label.grid(row=3, column=1) distance_greater_button.grid(row=4, column=1) until_distance_label.grid(row=3, column=2) until_distance_button.grid(row=4, column=2) delta_label.grid(row=1, column=0) delta.grid(row=2, column=0) speed_label.grid(row=1, column=1) speed.grid(row=2, column=1) inches_label.grid(row=1, column=2) inches.grid(row=2, column=2) # Set the button callbacks: distance_greater_button["command"] = lambda: handle_distance_greater_button(speed.get(), inches.get(), mqtt_sender) distance_less_button["command"] = lambda: handle_distance_less_button(speed.get(), inches.get(),mqtt_sender) until_distance_button["command"] = lambda: handle_until_distance_button(speed.get(), inches.get(), delta.get(), mqtt_sender) return frame ##Camera SENSOR def get_Sprint_2_Camera_frame(window, mqtt_sender): """ Constructs and returns a frame on the given window, where the frame has Beeper objects that control the EV3 robot's motion by passing messages using the given MQTT Sender. :type window: ttk.Frame | ttk.Toplevel :type mqtt_sender: com.MqttClient """ # Construct the frame to return: frame = ttk.Frame(window, padding=10, borderwidth=5, relief="ridge") frame.grid() # Construct the widgets on the frame: frame_label = ttk.Label(frame, text="Camera Sensor") counter_clockwise_label = ttk.Label(frame, text="Search Counterclockwise") counter_clockwise_button = ttk.Button(frame, text="Run CCW Search") clockwise_label = ttk.Label(frame, text="Search Counterclockwise") clockwise_button = ttk.Button(frame, text="Run CW Search") speed_label = ttk.Label(frame, text="Speed") speed = ttk.Entry(frame, width=8, justify=tkinter.LEFT) speed.insert(0, "100") area_label = ttk.Label(frame, text="Area Size") area = ttk.Entry(frame, width=8, justify=tkinter.LEFT) area.insert(0, "10") # Grid the widgets: frame_label.grid(row=0, column=1) counter_clockwise_label.grid(row=1, column=0) counter_clockwise_button.grid(row=2, column=0) clockwise_label.grid(row=1, column=2) clockwise_button.grid(row=2, column=2) area_label.grid(row=1, column=1) area.grid(row=2, column=1) speed_label.grid(row=3, column=1) speed.grid(row=4, column=1) # Set the button callbacks: counter_clockwise_button["command"] = lambda: handle_counter_clockwise_button(speed.get(), area.get(), mqtt_sender) clockwise_button["command"] = lambda: handle_clockwise_button(speed.get(), area.get(), mqtt_sender) return frame
41.711392
160
0.689306
""" Capstone Project. Code to run on a LAPTOP (NOT the robot). Constructs and returns Frame objects for the basics: -- teleoperation -- arm movement -- stopping the robot program This code is SHARED by all team members. It contains both: -- High-level, general-purpose methods for a Snatch3r EV3 robot. -- Lower-level code to interact with the EV3 robot library. Author: Your professors (for the framework and lower-level code) and Nicholas Snow, Katana College, and Zach Kelly. Winter term, 2018-2019. """ import tkinter from tkinter import ttk import time def get_teleoperation_frame(window, mqtt_sender): """ Constructs and returns a frame on the given window, where the frame has Entry and Button objects that control the EV3 robot's motion by passing messages using the given MQTT Sender. :type window: ttk.Frame | ttk.Toplevel :type mqtt_sender: com.MqttClient """ # Construct the frame to return: frame = ttk.Frame(window, padding=10, borderwidth=5, relief="ridge") frame.grid() # Construct the widgets on the frame: frame_label = ttk.Label(frame, text="Teleoperation") left_speed_label = ttk.Label(frame, text="Left wheel speed (0 to 100)") right_speed_label = ttk.Label(frame, text="Right wheel speed (0 to 100)") left_speed_entry = ttk.Entry(frame, width=8) left_speed_entry.insert(0, "100") right_speed_entry = ttk.Entry(frame, width=8, justify=tkinter.RIGHT) right_speed_entry.insert(0, "100") forward_button = ttk.Button(frame, text="Forward") backward_button = ttk.Button(frame, text="Backward") left_button = ttk.Button(frame, text="Left") right_button = ttk.Button(frame, text="Right") stop_button = ttk.Button(frame, text="Stop") # Grid the widgets: frame_label.grid(row=0, column=1) left_speed_label.grid(row=1, column=0) right_speed_label.grid(row=1, column=2) left_speed_entry.grid(row=2, column=0) right_speed_entry.grid(row=2, column=2) forward_button.grid(row=3, column=1) left_button.grid(row=4, column=0) stop_button.grid(row=4, column=1) right_button.grid(row=4, column=2) backward_button.grid(row=5, column=1) # Set the button callbacks: forward_button["command"] = lambda: handle_forward( left_speed_entry, right_speed_entry, mqtt_sender) backward_button["command"] = lambda: handle_backward( left_speed_entry, right_speed_entry, mqtt_sender) left_button["command"] = lambda: handle_left( left_speed_entry, right_speed_entry, mqtt_sender) right_button["command"] = lambda: handle_right( left_speed_entry, right_speed_entry, mqtt_sender) stop_button["command"] = lambda: handle_stop(mqtt_sender) return frame def get_arm_frame(window, mqtt_sender): """ Constructs and returns a frame on the given window, where the frame has Entry and Button objects that control the EV3 robot's Arm by passing messages using the given MQTT Sender. :type window: ttk.Frame | ttk.Toplevel :type mqtt_sender: com.MqttClient """ # Construct the frame to return: frame = ttk.Frame(window, padding=10, borderwidth=5, relief="ridge") frame.grid() # Construct the widgets on the frame: frame_label = ttk.Label(frame, text="Arm and Claw") position_label = ttk.Label(frame, text="Desired arm position:") position_entry = ttk.Entry(frame, width=8) raise_arm_button = ttk.Button(frame, text="Raise arm") lower_arm_button = ttk.Button(frame, text="Lower arm") calibrate_arm_button = ttk.Button(frame, text="Calibrate arm") move_arm_button = ttk.Button(frame, text="Move arm to position (0 to 5112)") blank_label = ttk.Label(frame, text="") # Grid the widgets: frame_label.grid(row=0, column=1) position_label.grid(row=1, column=0) position_entry.grid(row=1, column=1) position_entry.insert(0, "0") move_arm_button.grid(row=1, column=2) blank_label.grid(row=2, column=1) raise_arm_button.grid(row=3, column=0) lower_arm_button.grid(row=3, column=1) calibrate_arm_button.grid(row=3, column=2) # Set the Button callbacks: raise_arm_button["command"] = lambda: handle_raise_arm(mqtt_sender) lower_arm_button["command"] = lambda: handle_lower_arm(mqtt_sender) calibrate_arm_button["command"] = lambda: handle_calibrate_arm(mqtt_sender) move_arm_button["command"] = lambda: handle_move_arm_to_position(position_entry.get(), mqtt_sender) return frame def get_control_frame(window, mqtt_sender): """ Constructs and returns a frame on the given window, where the frame has Button objects to exit this program and/or the robot's program (via MQTT). :type window: ttk.Frame | ttk.Toplevel :type mqtt_sender: com.MqttClient """ # Construct the frame to return: frame = ttk.Frame(window, padding=10, borderwidth=5, relief="ridge") frame.grid() # Construct the widgets on the frame: frame_label = ttk.Label(frame, text="Control") quit_robot_button = ttk.Button(frame, text="Stop the robot's program") exit_button = ttk.Button(frame, text="Stop this and the robot's program") # Grid the widgets: frame_label.grid(row=0, column=1) quit_robot_button.grid(row=1, column=0) exit_button.grid(row=1, column=2) # Set the Button callbacks: quit_robot_button["command"] = lambda: handle_quit(mqtt_sender) exit_button["command"] = lambda: handle_exit(mqtt_sender) return frame ############################################################################### ############################################################################### # The following specifies, for each Button, # what should happen when the Button is pressed. ############################################################################### ############################################################################### ############################################################################### # Handlers for Buttons in the Teleoperation frame. ############################################################################### def handle_forward(left_entry_box, right_entry_box, mqtt_sender): """ Tells the robot to move using the speeds in the given entry boxes, with the speeds used as given. :type left_entry_box: ttk.Entry :type right_entry_box: ttk.Entry :type mqtt_sender: com.MqttClient """ print('forward', left_entry_box.get(), right_entry_box.get()) mqtt_sender.send_message('movement', [left_entry_box.get(), right_entry_box.get()]) def handle_backward(left_entry_box, right_entry_box, mqtt_sender): """ Tells the robot to move using the speeds in the given entry boxes, but using the negatives of the speeds in the entry boxes. :type left_entry_box: ttk.Entry :type right_entry_box: ttk.Entry :type mqtt_sender: com.MqttClient """ print('backward', left_entry_box.get(), right_entry_box.get()) left = -int(left_entry_box.get()) right = -int(right_entry_box.get()) mqtt_sender.send_message('movement', [str(left), str(right)]) def handle_left(left_entry_box, right_entry_box, mqtt_sender): """ Tells the robot to move using the speeds in the given entry boxes, but using the negative of the speed in the left entry box. :type left_entry_box: ttk.Entry :type right_entry_box: ttk.Entry :type mqtt_sender: com.MqttClient """ print('left', left_entry_box.get(), right_entry_box.get()) left = -int(left_entry_box.get()) right = int(right_entry_box.get()) mqtt_sender.send_message('movement', [str(left), str(right)]) def handle_right(left_entry_box, right_entry_box, mqtt_sender): """ Tells the robot to move using the speeds in the given entry boxes, but using the negative of the speed in the right entry box. :type left_entry_box: ttk.Entry :type right_entry_box: ttk.Entry :type mqtt_sender: com.MqttClient """ print('right', left_entry_box.get(), right_entry_box.get()) left = int(left_entry_box.get()) right = -int(right_entry_box.get()) mqtt_sender.send_message('movement', [str(left), str(right)]) def handle_stop(mqtt_sender): """ Tells the robot to stop. :type mqtt_sender: com.MqttClient """ mqtt_sender.send_message('stop') print("Stop") ############################################################################### # Handlers for Buttons in the ArmAndClaw frame. ############################################################################### def handle_raise_arm(mqtt_sender): """ Tells the robot to raise its Arm until its touch sensor is pressed. :type mqtt_sender: com.MqttClient """ mqtt_sender.send_message('up') print("Move Arm Up") def handle_lower_arm(mqtt_sender): """ Tells the robot to lower its Arm until it is all the way down. :type mqtt_sender: com.MqttClient """ mqtt_sender.send_message('down') print("Move Arm Down") def handle_calibrate_arm(mqtt_sender): """ Tells the robot to calibrate its Arm, that is, first to raise its Arm until its touch sensor is pressed, then to lower its Arm until it is all the way down, and then to mark taht position as position 0. :type mqtt_sender: com.MqttClient """ mqtt_sender.send_message('calibrate') print("Calibrate") def handle_move_arm_to_position(position_entry, mqtt_sender): """ Tells the robot to move its Arm to the position in the given Entry box. The robot must have previously calibrated its Arm. :type arm_position_entry ttk.Entry :type mqtt_sender: com.MqttClient """ mqtt_sender.send_message('move_to_pos', [str(position_entry)]) print("Move to Position:",position_entry) ############################################################################### # Handlers for Buttons in the Control frame. ############################################################################### def handle_quit(mqtt_sender): """ Tell the robot's program to stop its loop (and hence quit). :type mqtt_sender: com.MqttClient """ mqtt_sender.send_message('command', ['quit']) print('########') print('# Quit #') print('########') def handle_exit(mqtt_sender): """ Tell the robot's program to stop its loop (and hence quit). Then exit this program. :type mqtt_sender: com.MqttClient """ mqtt_sender.send_message('command', ['exit']) print('########') print('# Exit #') print('########') def get_Sprint_1_Drive_System_frame(window, mqtt_sender): """ Constructs and returns a frame on the given window, where the frame has Special objects that control the EV3 robot's motion by passing messages using the given MQTT Sender. :type window: ttk.Frame | ttk.Toplevel :type mqtt_sender: com.MqttClient """ # Construct the frame to return: frame = ttk.Frame(window, padding=10, borderwidth=5, relief="ridge") frame.grid() # Construct the widgets on the frame: frame_label = ttk.Label(frame, text="Secondary Drive System") wheel_speed_label = ttk.Label(frame, text="Wheel Speed (0 to 100)") time_label = ttk.Label(frame, text="Movement Time (0 to INF)") inches_label = ttk.Label(frame, text="Movement Distance (0 to INF)") wheel_speed_entry = ttk.Entry(frame, width=8) wheel_speed_entry.insert(0, "100") time_entry = ttk.Entry(frame, width=8, justify=tkinter.RIGHT) time_entry.insert(0, "10") inches_entry = ttk.Entry(frame, width=8, justify=tkinter.RIGHT) inches_entry.insert(0, "10") forward_time_button = ttk.Button(frame, text="Forward for Seconds") forward_time_inches_button = ttk.Button(frame, text="Forward for Inches(time)") forward_inches_button = ttk.Button(frame, text="Forward for Inches(Encoder)") # Grid the widgets: frame_label.grid(row=0, column=1) wheel_speed_label.grid(row=1, column=0) time_label.grid(row=1, column=1) inches_label.grid(row=1, column=2) wheel_speed_entry.grid(row=2, column=0) time_entry.grid(row=2, column=1) inches_entry.grid(row=2, column=2) forward_time_button.grid(row=3, column=0) forward_time_inches_button.grid(row=3, column=1) forward_inches_button.grid(row=3, column=2) # Set the button callbacks: forward_time_button["command"] = lambda: handle_forward_time_button(wheel_speed_entry.get(), time_entry.get(), mqtt_sender) forward_time_inches_button["command"] = lambda: handle_forward_time_inches_button(wheel_speed_entry.get(), inches_entry.get(), mqtt_sender) forward_inches_button["command"] = lambda: handle_forward_inches_button(wheel_speed_entry.get(), inches_entry.get(), mqtt_sender) return frame def handle_forward_time_button(speed,time,mqtt_sender): mqtt_sender.send_message('Forward_Time', [str(speed),str(time)]) print('Forward_Time',speed,time) def handle_forward_time_inches_button(speed,inches,mqtt_sender): mqtt_sender.send_message('Forward_Time_Inches', [str(speed), str(inches)]) print('Forward_Time_Inches', speed, inches) def handle_forward_inches_button(speed,inches,mqtt_sender): mqtt_sender.send_message('Forward_Inches', [str(speed), str(inches)]) print('Forward_Inches', speed, inches) def get_Sprint_1_Beeper_System_frame(window, mqtt_sender): """ Constructs and returns a frame on the given window, where the frame has Beeper objects that control the EV3 robot's motion by passing messages using the given MQTT Sender. :type window: ttk.Frame | ttk.Toplevel :type mqtt_sender: com.MqttClient """ # Construct the frame to return: frame = ttk.Frame(window, padding=10, borderwidth=5, relief="ridge") frame.grid() # Construct the widgets on the frame: frame_label = ttk.Label(frame, text="Sound System") number_of_beeps_label = ttk.Label(frame, text="Number of Beeps") tone_duration_label = ttk.Label(frame, text="Duration of Tone") tone_frequency_label = ttk.Label(frame, text="Tone Frequency") speak_text_label = ttk.Label(frame, text="Text to Speech") number_of_beeps= ttk.Entry(frame, width=8) number_of_beeps.insert(0, "10") tone_duration = ttk.Entry(frame, width=8, justify=tkinter.RIGHT) tone_duration.insert(0, "10") tone_frequency = ttk.Entry(frame, width=8, justify=tkinter.RIGHT) tone_frequency.insert(0, "10") speak_text = ttk.Entry(frame, width=8, justify=tkinter.RIGHT) speak_text.insert(0, "Type Here") beep_button = ttk.Button(frame, text="Play Beeps") tone_button = ttk.Button(frame, text="Play Tone") speak_button = ttk.Button(frame, text="Read Text") # Grid the widgets: frame_label.grid(row=0, column=1) number_of_beeps_label.grid(row=1, column=0) tone_duration_label.grid(row=1, column=1) tone_frequency_label.grid(row=1, column=2) speak_text_label.grid(row=1, column=3) number_of_beeps.grid(row=2, column=0) tone_duration.grid(row=2, column=1) tone_frequency.grid(row=2, column=2) speak_text.grid(row=2, column=3) beep_button.grid(row=3, column=0) tone_button.grid(row=3, column=1) speak_button.grid(row=3, column=3) # Set the button callbacks: beep_button["command"] = lambda: handle_beep_button(number_of_beeps.get(), mqtt_sender) tone_button["command"] = lambda: handle_tone_button(tone_duration.get(), tone_frequency.get(), mqtt_sender) speak_button["command"] = lambda: handle_speak_button(speak_text.get(), mqtt_sender) return frame def handle_beep_button(numberofbeeps,mqtt_sender): mqtt_sender.send_message('beep_button', [str(numberofbeeps)]) print('beep_button',numberofbeeps) def handle_tone_button(duration,frequency,mqtt_sender): mqtt_sender.send_message('tone_button', [str(duration), str(frequency)]) print('tone_button', duration, frequency) def handle_speak_button(text,mqtt_sender): mqtt_sender.send_message('speak_button', [text]) print('speak_button', text) def get_Katana_frame(window, mqtt_sender): """ Constructs and returns a frame on the given window, where the frame has Beeper objects that control the EV3 robot's motion by passing messages using the given MQTT Sender. :type window: ttk.Frame | ttk.Toplevel :type mqtt_sender: com.MqttClient """ # Construct the frame to return: frame = ttk.Frame(window, padding=10, borderwidth=5, relief="ridge") frame.grid() # Construct the widgets on the frame: frame_label = ttk.Label(frame, text="Katana's System") obtain_with_sensor_label = ttk.Label(frame, text="Get Object with Proximity") obtain_with_sensor_button = ttk.Button(frame, text="Get") wheel_speed_label = ttk.Label(frame, text="Move Speed") rate_of_frequency_label = ttk.Label(frame, text="Frequency Rate (Increasing)") rate_of_frequency = ttk.Entry(frame, width=8, justify=tkinter.LEFT) rate_of_frequency.insert(0, "10") initial_frequency_label = ttk.Label(frame, text="Initial Frequency") initial_frequency = ttk.Entry(frame, width=8, justify=tkinter.LEFT) initial_frequency.insert(0, "5") obtain_with_camera_label = ttk.Label(frame, text="Get Object with Camera") obtain_with_camera_button = ttk.Button(frame, text="Get") wheel_speed_entry = ttk.Entry(frame, width=8) wheel_speed_entry.insert(0, "100") spin_speed_label = ttk.Label(frame, text="Spinning Speed") spin_speed = ttk.Entry(frame, width=8, justify=tkinter.LEFT) spin_speed.insert(0, "10") spin_direction_label = ttk.Label(frame, text="Spinning Direction") spin_direction = ttk.Entry(frame, width=8, justify=tkinter.LEFT) spin_direction.insert(0, "Counter Clockwise") # Grid the widgets: frame_label.grid(row=0, column=2) obtain_with_sensor_label.grid(row=1, column=1) obtain_with_sensor_button.grid(row=2, column=1) rate_of_frequency_label.grid(row=1,column=2) rate_of_frequency.grid(row=2, column=2) initial_frequency_label.grid(row=1, column=3) initial_frequency.grid(row=2, column=3) wheel_speed_label.grid(row=3, column=2) wheel_speed_entry.grid(row=4, column=2) obtain_with_camera_label.grid(row=5, column=1) obtain_with_camera_button.grid(row=6, column=1) spin_speed_label.grid(row=5, column=2) spin_speed.grid(row=6, column=2) spin_direction_label.grid(row=5, column=3) spin_direction.grid(row=6, column=3) # Set the button callbacks: obtain_with_sensor_button["command"] = lambda: handle_obtain_with_sensor_button(wheel_speed_entry.get(),rate_of_frequency.get(), initial_frequency.get(), mqtt_sender) obtain_with_camera_button["command"] = lambda: handle_obtain_with_camera_button(wheel_speed_entry.get(), spin_speed.get(), spin_direction.get(), rate_of_frequency.get(), initial_frequency.get(),mqtt_sender) return frame def handle_obtain_with_sensor_button(wheel_speed,rate_of_frequency, initial_frequency, mqtt_sender): print('handler') mqtt_sender.send_message('obtain_with_sensor_button', [str(wheel_speed),str(rate_of_frequency),str(initial_frequency)]) print('obtain_with_sensor',wheel_speed, rate_of_frequency, initial_frequency) def handle_obtain_with_camera_button(wheel_speed, spin_speed, spin_direction, rate_of_frequency, initial_frequency, mqtt_sender): mqtt_sender.send_message('obtain_with_camera_button', [str(wheel_speed),str(spin_speed), str(spin_direction),str(rate_of_frequency),str(initial_frequency)]) print('obtain_with_camera', wheel_speed, spin_speed, spin_direction, rate_of_frequency, initial_frequency) def get_Nick_frame(window, mqtt_sender): """ Constructs and returns a frame on the given window, where the frame has Beeper objects that control the EV3 robot's motion by passing messages using the given MQTT Sender. :type window: ttk.Frame | ttk.Toplevel :type mqtt_sender: com.MqttClient """ # Construct the frame to return: frame = ttk.Frame(window, padding=10, borderwidth=5, relief="ridge") frame.grid() # Construct the widgets on the frame: frame_label = ttk.Label(frame, text="Nick's Sprint 2 System") proximity_label = ttk.Label(frame, text="Go to and Pick up Object (Proximity)") proximity_button = ttk.Button(frame, text="Run Proximity Grab") camera_label = ttk.Label(frame, text="Go to and Pick up Object (Camera)") camera_button = ttk.Button(frame, text="Run Camera Grab") line_follower_label = ttk.Label(frame, text="Line Follower (Bang Bang Method)") line_button = ttk.Button(frame, text="Follow Line") rate_of_beeps_label = ttk.Label(frame, text="Beep Rate Increase") rate_of_beeps= ttk.Entry(frame, width=8, justify=tkinter.LEFT) rate_of_beeps.insert(0, "10") initial_beeps_label = ttk.Label(frame, text="Initial Beep Rate") initial_beeps = ttk.Entry(frame, width=8, justify=tkinter.LEFT) initial_beeps.insert(0, "5") speed_label = ttk.Label(frame, text="Turning Speed") speed = ttk.Entry(frame, width=8, justify=tkinter.LEFT) speed.insert(0, "100") direction_label = ttk.Label(frame, text="Turning Direction, Clockwise or Counter-Clockwise") direction = ttk.Entry(frame, width=8, justify=tkinter.LEFT) direction.insert(0, "Clockwise") starting_side_label = ttk.Label(frame, text="Turning Direction, Right or Left") starting_side = ttk.Entry(frame, width=8, justify=tkinter.LEFT) starting_side.insert(0, "Right") # Grid the widgets: frame_label.grid(row=0, column=1) proximity_label.grid(row=1, column=0) proximity_button.grid(row=1, column=1) rate_of_beeps_label.grid(row=2, column=0) rate_of_beeps.grid(row=2, column=1) initial_beeps_label.grid(row=3, column=0) initial_beeps.grid(row=3, column=1) camera_label.grid(row=4, column=0) camera_button.grid(row=4, column=1) speed_label.grid(row=5, column=0) speed.grid(row=5, column=1) direction_label.grid(row=6, column=0) direction.grid(row=6, column=1) line_follower_label.grid(row=7, column=0) line_button.grid(row=7, column=1) starting_side_label.grid(row=8, column=0) starting_side.grid(row=8, column=1) # Set the button callbacks: proximity_button["command"] = lambda: handle_proximity_button(rate_of_beeps.get(), initial_beeps.get(), mqtt_sender) camera_button["command"] = lambda: handle_camera_button(speed.get(),direction.get(),rate_of_beeps.get(), initial_beeps.get(), mqtt_sender) line_button["command"] = lambda: handle_line_button(starting_side.get(), mqtt_sender) return frame def handle_proximity_button(rate_of_beeps, initial_beeps, mqtt_sender): mqtt_sender.send_message('m1proximity_button', [str(rate_of_beeps),str(initial_beeps)]) print('proximity',rate_of_beeps, initial_beeps) def handle_camera_button(speed,direction,rate_of_beeps, initial_beeps, mqtt_sender): mqtt_sender.send_message('m1camera_button', [str(speed), str(direction),str(rate_of_beeps),str(initial_beeps)]) print('camera', speed, direction, rate_of_beeps, initial_beeps) def handle_line_button(starting_side, mqtt_sender): mqtt_sender.send_message('m1line_button', [str(starting_side)]) print('line', starting_side) ##COLOR FRAMING def get_Sprint_2_Color_frame(window, mqtt_sender): """ Constructs and returns a frame on the given window, where the frame has Beeper objects that control the EV3 robot's motion by passing messages using the given MQTT Sender. :type window: ttk.Frame | ttk.Toplevel :type mqtt_sender: com.MqttClient """ # Construct the frame to return: frame = ttk.Frame(window, padding=10, borderwidth=5, relief="ridge") frame.grid() # Construct the widgets on the frame: frame_label = ttk.Label(frame, text="Color Sensor") intensity_less_label = ttk.Label(frame, text="Go Until Intensity is Less Than") intensity_less_button = ttk.Button(frame, text="Run Less than Intensity") intensity_greater_label = ttk.Label(frame, text="Go Until Intensity is Greater Than") intensity_greater_button = ttk.Button(frame, text="Run Greater than Intensity") until_color_label = ttk.Label(frame, text="Go Until Color") until_color_button = ttk.Button(frame, text="Run Go Until Color") until_not_color_label = ttk.Label(frame, text="Go Until Not Color") until_not_color_button = ttk.Button(frame, text="Run Go Until Not Color") color_label = ttk.Label(frame, text="Color") color= ttk.Entry(frame, width=8, justify=tkinter.LEFT) color.insert(0, "Red") speed_label = ttk.Label(frame, text="Speed") speed = ttk.Entry(frame, width=8, justify=tkinter.LEFT) speed.insert(0, "50") intensity_label = ttk.Label(frame, text="Light Intensity") intensity = ttk.Entry(frame, width=8, justify=tkinter.LEFT) intensity.insert(0, "50") # Grid the widgets: frame_label.grid(row=0, column=1) color_label.grid(row=1, column=0) color.grid(row=2, column=0) speed_label.grid(row=1, column=1) speed.grid(row=2, column=1) intensity_label.grid(row=1, column=2) intensity.grid(row=2, column=2) intensity_less_label.grid(row=3, column=0) intensity_less_button.grid(row=4, column=0) intensity_greater_label.grid(row=5, column=0) intensity_greater_button.grid(row=6, column=0) until_color_label.grid(row=3, column=2) until_color_button.grid(row=4, column=2) until_not_color_label.grid(row=5, column=2) until_not_color_button.grid(row=6, column=2) # Set the button callbacks: intensity_less_button["command"] = lambda: handle_intensity_less_button(speed.get(), intensity.get(), mqtt_sender) intensity_greater_button["command"] = lambda: handle_intensity_greater_button(speed.get(),intensity.get(), mqtt_sender) until_color_button["command"] = lambda: handle_until_color_button(speed.get(),color.get(), mqtt_sender) until_not_color_button["command"] = lambda: handle_until_not_color_button(speed.get(),color.get(), mqtt_sender) return frame def handle_intensity_less_button(speed, intensity, mqtt_sender): mqtt_sender.send_message('intensity_less_button', [str(speed),str(intensity)]) print('intensity_less_button',speed, intensity) def handle_intensity_greater_button(speed, intensity, mqtt_sender): mqtt_sender.send_message('intensity_greater_button', [str(speed), str(intensity)]) print('intensity_greater_button', speed, intensity) def handle_until_color_button(speed,color, mqtt_sender): mqtt_sender.send_message('until_color_button', [str(speed),str(color)]) print('until_color_button', speed,color) def handle_until_not_color_button(speed,color, mqtt_sender): mqtt_sender.send_message('until_not_color_button', [str(speed),str(color)]) print('until_not_color_button', speed,color) ##PROXIMITY SENSOR def get_Sprint_2_Proximity_frame(window, mqtt_sender): """ Constructs and returns a frame on the given window, where the frame has Beeper objects that control the EV3 robot's motion by passing messages using the given MQTT Sender. :type window: ttk.Frame | ttk.Toplevel :type mqtt_sender: com.MqttClient """ # Construct the frame to return: frame = ttk.Frame(window, padding=10, borderwidth=5, relief="ridge") frame.grid() # Construct the widgets on the frame: frame_label = ttk.Label(frame, text="Proximity Sensor") distance_less_label = ttk.Label(frame, text="Go Until Distance is Less Than") distance_less_button = ttk.Button(frame, text="Run Less than Distance") distance_greater_label = ttk.Label(frame, text="Go Until Distance is Greater Than") distance_greater_button = ttk.Button(frame, text="Run Greater than Distance") until_distance_label = ttk.Label(frame, text="Go Until Distance Within") until_distance_button = ttk.Button(frame, text="Run Go Until Distance Within") inches_label = ttk.Label(frame, text="Inches") inches = ttk.Entry(frame, width=8, justify=tkinter.LEFT) inches.insert(0, "10") speed_label = ttk.Label(frame, text="Speed") speed = ttk.Entry(frame, width=8, justify=tkinter.LEFT) speed.insert(0, "100") delta_label = ttk.Label(frame, text="Delta Distance") delta = ttk.Entry(frame, width=8, justify=tkinter.LEFT) delta.insert(0, "50") # Grid the widgets: frame_label.grid(row=0, column=1) distance_less_label.grid(row=3, column=0) distance_less_button.grid(row=4, column=0) distance_greater_label.grid(row=3, column=1) distance_greater_button.grid(row=4, column=1) until_distance_label.grid(row=3, column=2) until_distance_button.grid(row=4, column=2) delta_label.grid(row=1, column=0) delta.grid(row=2, column=0) speed_label.grid(row=1, column=1) speed.grid(row=2, column=1) inches_label.grid(row=1, column=2) inches.grid(row=2, column=2) # Set the button callbacks: distance_greater_button["command"] = lambda: handle_distance_greater_button(speed.get(), inches.get(), mqtt_sender) distance_less_button["command"] = lambda: handle_distance_less_button(speed.get(), inches.get(),mqtt_sender) until_distance_button["command"] = lambda: handle_until_distance_button(speed.get(), inches.get(), delta.get(), mqtt_sender) return frame def handle_distance_greater_button(speed, inches, mqtt_sender): mqtt_sender.send_message('distance_greater_button', [str(speed), str(inches)]) print('distance_greater_button', speed, inches) def handle_distance_less_button(speed, inches,mqtt_sender): mqtt_sender.send_message('distance_less_button', [str(speed), str(inches)]) print('distance_less_button', speed, inches) def handle_until_distance_button(speed, inches, delta, mqtt_sender): mqtt_sender.send_message('until_distance_button', [str(speed), str(inches),str(delta)]) print('until_distance_button', speed, inches, delta) ##Camera SENSOR def get_Sprint_2_Camera_frame(window, mqtt_sender): """ Constructs and returns a frame on the given window, where the frame has Beeper objects that control the EV3 robot's motion by passing messages using the given MQTT Sender. :type window: ttk.Frame | ttk.Toplevel :type mqtt_sender: com.MqttClient """ # Construct the frame to return: frame = ttk.Frame(window, padding=10, borderwidth=5, relief="ridge") frame.grid() # Construct the widgets on the frame: frame_label = ttk.Label(frame, text="Camera Sensor") counter_clockwise_label = ttk.Label(frame, text="Search Counterclockwise") counter_clockwise_button = ttk.Button(frame, text="Run CCW Search") clockwise_label = ttk.Label(frame, text="Search Counterclockwise") clockwise_button = ttk.Button(frame, text="Run CW Search") speed_label = ttk.Label(frame, text="Speed") speed = ttk.Entry(frame, width=8, justify=tkinter.LEFT) speed.insert(0, "100") area_label = ttk.Label(frame, text="Area Size") area = ttk.Entry(frame, width=8, justify=tkinter.LEFT) area.insert(0, "10") # Grid the widgets: frame_label.grid(row=0, column=1) counter_clockwise_label.grid(row=1, column=0) counter_clockwise_button.grid(row=2, column=0) clockwise_label.grid(row=1, column=2) clockwise_button.grid(row=2, column=2) area_label.grid(row=1, column=1) area.grid(row=2, column=1) speed_label.grid(row=3, column=1) speed.grid(row=4, column=1) # Set the button callbacks: counter_clockwise_button["command"] = lambda: handle_counter_clockwise_button(speed.get(), area.get(), mqtt_sender) clockwise_button["command"] = lambda: handle_clockwise_button(speed.get(), area.get(), mqtt_sender) return frame def handle_counter_clockwise_button(speed, area, mqtt_sender): mqtt_sender.send_message('camera_counter_clockwise_button', [str(speed), str(area)]) print('camera_counter_clockwise_button', speed, area) def handle_clockwise_button(speed, area, mqtt_sender): mqtt_sender.send_message('camera_clockwise_button', [str(speed), str(area)]) print('camera_clockwise_button', speed, area)
3,703
0
452
1825f4b23a74762f04636ac05fc56fa9252aa0dc
1,765
py
Python
segmentation_models/encoders/__init__.py
jmerkow/segmentation_models.pytorch
d33fb5ea4a66da1ed0006eaca4dbfa88aa986925
[ "MIT" ]
null
null
null
segmentation_models/encoders/__init__.py
jmerkow/segmentation_models.pytorch
d33fb5ea4a66da1ed0006eaca4dbfa88aa986925
[ "MIT" ]
null
null
null
segmentation_models/encoders/__init__.py
jmerkow/segmentation_models.pytorch
d33fb5ea4a66da1ed0006eaca4dbfa88aa986925
[ "MIT" ]
2
2019-07-25T16:52:29.000Z
2019-08-19T17:44:46.000Z
import functools import torch.utils.model_zoo as model_zoo from ._preprocessing import preprocess_input from .densenet import densenet_encoders from .dpn import dpn_encoders from .efficientnet import efficientnet_encoders from .inceptionresnetv2 import inception_encoders from .resnet import resnet_encoders from .senet import senet_encoders from .vgg import vgg_encoders from .xception import xception_encoders encoders = {} encoders.update(resnet_encoders) encoders.update(dpn_encoders) encoders.update(vgg_encoders) encoders.update(senet_encoders) encoders.update(densenet_encoders) encoders.update(inception_encoders) encoders.update(xception_encoders) encoders.update(efficientnet_encoders)
32.685185
116
0.782436
import functools import torch.utils.model_zoo as model_zoo from ._preprocessing import preprocess_input from .densenet import densenet_encoders from .dpn import dpn_encoders from .efficientnet import efficientnet_encoders from .inceptionresnetv2 import inception_encoders from .resnet import resnet_encoders from .senet import senet_encoders from .vgg import vgg_encoders from .xception import xception_encoders encoders = {} encoders.update(resnet_encoders) encoders.update(dpn_encoders) encoders.update(vgg_encoders) encoders.update(senet_encoders) encoders.update(densenet_encoders) encoders.update(inception_encoders) encoders.update(xception_encoders) encoders.update(efficientnet_encoders) def get_encoder(name, encoder_weights=None, model_dir=None): Encoder = encoders[name]['encoder'] encoder = Encoder(**encoders[name]['params']) encoder.out_shapes = encoders[name]['out_shapes'] if encoder_weights is not None: settings = encoders[name]['pretrained_settings'][encoder_weights] encoder.load_state_dict(model_zoo.load_url(settings['url'], model_dir=model_dir)) return encoder def get_encoder_names(): return list(encoders.keys()) def get_preprocessing_fn(encoder_name, pretrained='imagenet'): settings = encoders[encoder_name]['pretrained_settings'] if pretrained not in settings.keys(): raise ValueError('Avaliable pretrained options {}'.format(settings.keys())) input_space = settings[pretrained].get('input_space') input_range = settings[pretrained].get('input_range') mean = settings[pretrained].get('mean') std = settings[pretrained].get('std') return functools.partial(preprocess_input, mean=mean, std=std, input_space=input_space, input_range=input_range)
994
0
69
eebfc13ced21d7e77e7aebf9405251558b6a72e0
284
py
Python
exercicios/vestibular.py
IgoPereiraBarros/maratona-data-science-brasil
cc07476579134a2764f00d229d415657555dcdd1
[ "MIT" ]
null
null
null
exercicios/vestibular.py
IgoPereiraBarros/maratona-data-science-brasil
cc07476579134a2764f00d229d415657555dcdd1
[ "MIT" ]
null
null
null
exercicios/vestibular.py
IgoPereiraBarros/maratona-data-science-brasil
cc07476579134a2764f00d229d415657555dcdd1
[ "MIT" ]
null
null
null
N = int(input()) gabarito_prova = input().split() gabarito_aluno = input().split() list_aluno = [] list_prova = [] count = 0 for i in range(gabarito_aluno): for j in range(gabarito_prova): if gabarito_aluno[i] == gabarito_prova[j]: count += 1 print(count)
17.75
50
0.637324
N = int(input()) gabarito_prova = input().split() gabarito_aluno = input().split() list_aluno = [] list_prova = [] count = 0 for i in range(gabarito_aluno): for j in range(gabarito_prova): if gabarito_aluno[i] == gabarito_prova[j]: count += 1 print(count)
0
0
0
616305a77276e725923fc24a8acb3ff30c156348
194
py
Python
apps/contact/urls.py
Kpaubert/onlineweb4
9ac79f163bc3a816db57ffa8477ea88770d97807
[ "MIT" ]
32
2017-02-22T13:38:38.000Z
2022-03-31T23:29:54.000Z
apps/contact/urls.py
Kpaubert/onlineweb4
9ac79f163bc3a816db57ffa8477ea88770d97807
[ "MIT" ]
694
2017-02-15T23:09:52.000Z
2022-03-31T23:16:07.000Z
apps/contact/urls.py
Kpaubert/onlineweb4
9ac79f163bc3a816db57ffa8477ea88770d97807
[ "MIT" ]
35
2017-09-02T21:13:09.000Z
2022-02-21T11:30:30.000Z
from django.conf.urls import url from apps.contact import views urlpatterns = [ url(r"^$", views.index, name="contact_index"), url(r"^submit/", views.contact_submit, name="submit"), ]
21.555556
58
0.690722
from django.conf.urls import url from apps.contact import views urlpatterns = [ url(r"^$", views.index, name="contact_index"), url(r"^submit/", views.contact_submit, name="submit"), ]
0
0
0
60b9f934da6221160ed9c0661e0ab963f52e38f1
2,993
py
Python
src/plugins/nonebot_plugin_picsearcher/iqdb.py
ltyec/Kiba
1c7db0939151aaa46ef865638b8b347ceebb71a1
[ "MIT" ]
null
null
null
src/plugins/nonebot_plugin_picsearcher/iqdb.py
ltyec/Kiba
1c7db0939151aaa46ef865638b8b347ceebb71a1
[ "MIT" ]
null
null
null
src/plugins/nonebot_plugin_picsearcher/iqdb.py
ltyec/Kiba
1c7db0939151aaa46ef865638b8b347ceebb71a1
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import asyncio from typing import List, Tuple import io from urllib.parse import urljoin from lxml.html import fromstring import aiohttp from nonebot.adapters.cqhttp import MessageSegment from .formdata import FormData headers = { 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9', 'Accept-Encoding': 'gzip, deflate', 'Accept-Language': 'zh-CN,zh;q=0.9', 'Cache-Control': 'max-age=0', 'Connection': 'keep-alive', 'Content-Type': 'multipart/form-data; boundary=----WebKitFormBoundaryuwjSiBcpPag4k159', 'Cookie': 'Hm_lvt_765ecde8c11b85f1ac5f168fa6e6821f=1602471368; Hm_lpvt_765ecde8c11b85f1ac5f168fa6e6821f=1602472300', 'Host': 'iqdb.org', 'Origin': 'http://iqdb.org', 'Referer': 'http://iqdb.org/', 'Upgrade-Insecure-Requests': '1', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.105 Safari/537.36'} async def get_pic_from_url(url: str): """ 返回信息元祖 :param url: :return: """ async with aiohttp.ClientSession() as session: async with session.get(url) as resp: content = io.BytesIO(await resp.read()) data = FormData(boundary="----WebKitFormBoundaryuwjSiBcpPag4k159") data.add_field(name="MAX_FILE_SIZE", value="") for i in range(1, 7): data.add_field(name="service[]", value=str(i)) data.add_field(name="service[]", value="11") data.add_field(name="service[]", value="13") data.add_field(name="file", value=content, content_type="application/octet-stream", filename="0.jpg") data.add_field(name="url", value="") async with session.post("http://iqdb.org/", data=data, headers=headers) as res: html = await res.text() return [i for i in parse_html(html)] pass async def get_des(url: str): """ 返回详细简介 cq码转义 :param url: :return: """ image_data: List[Tuple] = await get_pic_from_url(url) if not image_data: msg: str = "找不到高相似度的" yield msg return for pic in image_data: msg = MessageSegment.image(file=pic[0]) + f"\n{pic[1]}\n" for i in pic[2]: msg = msg + f"{i}\n" yield msg
37.4125
141
0.625459
# -*- coding: utf-8 -*- import asyncio from typing import List, Tuple import io from urllib.parse import urljoin from lxml.html import fromstring import aiohttp from nonebot.adapters.cqhttp import MessageSegment from .formdata import FormData headers = { 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9', 'Accept-Encoding': 'gzip, deflate', 'Accept-Language': 'zh-CN,zh;q=0.9', 'Cache-Control': 'max-age=0', 'Connection': 'keep-alive', 'Content-Type': 'multipart/form-data; boundary=----WebKitFormBoundaryuwjSiBcpPag4k159', 'Cookie': 'Hm_lvt_765ecde8c11b85f1ac5f168fa6e6821f=1602471368; Hm_lpvt_765ecde8c11b85f1ac5f168fa6e6821f=1602472300', 'Host': 'iqdb.org', 'Origin': 'http://iqdb.org', 'Referer': 'http://iqdb.org/', 'Upgrade-Insecure-Requests': '1', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.105 Safari/537.36'} def parse_html(html: str): selector = fromstring(html) for tag in selector.xpath('//div[@id="pages"]/div[position()>1]/table'): # 第一个是bestmatch if pic_url := tag.xpath('./tr[2]/td/a/img/@src'): pic_url = urljoin("http://iqdb.org/", pic_url[0]) # 缩略图 else: pic_url = "没有最相似的" similarity = tag.xpath('./tr[last()]/td/text()')[0] # 相似度 href: List[str] = tag.xpath('./tr/td/a/@href') # 第一个href href.extend(tag.xpath('./tr/td/span/a/@href')) # 第二个 可能是空 href = list(map(lambda x: "https:" + x if not x.startswith("https") else x, href)) yield pic_url, similarity, href pass async def get_pic_from_url(url: str): """ 返回信息元祖 :param url: :return: """ async with aiohttp.ClientSession() as session: async with session.get(url) as resp: content = io.BytesIO(await resp.read()) data = FormData(boundary="----WebKitFormBoundaryuwjSiBcpPag4k159") data.add_field(name="MAX_FILE_SIZE", value="") for i in range(1, 7): data.add_field(name="service[]", value=str(i)) data.add_field(name="service[]", value="11") data.add_field(name="service[]", value="13") data.add_field(name="file", value=content, content_type="application/octet-stream", filename="0.jpg") data.add_field(name="url", value="") async with session.post("http://iqdb.org/", data=data, headers=headers) as res: html = await res.text() return [i for i in parse_html(html)] pass async def get_des(url: str): """ 返回详细简介 cq码转义 :param url: :return: """ image_data: List[Tuple] = await get_pic_from_url(url) if not image_data: msg: str = "找不到高相似度的" yield msg return for pic in image_data: msg = MessageSegment.image(file=pic[0]) + f"\n{pic[1]}\n" for i in pic[2]: msg = msg + f"{i}\n" yield msg
704
0
23
4cecb8040d2df98220d60255b7529141552cd38a
2,703
py
Python
explorer/api/inner_api.py
AthenaExplorer/xm_s_explorer_v2
203f7b5d129552f5b7c977c4247d2060956f8add
[ "MIT" ]
null
null
null
explorer/api/inner_api.py
AthenaExplorer/xm_s_explorer_v2
203f7b5d129552f5b7c977c4247d2060956f8add
[ "MIT" ]
null
null
null
explorer/api/inner_api.py
AthenaExplorer/xm_s_explorer_v2
203f7b5d129552f5b7c977c4247d2060956f8add
[ "MIT" ]
1
2022-03-02T19:20:52.000Z
2022-03-02T19:20:52.000Z
import datetime from flask import request from explorer.services.message import MessageService from explorer.services.miner import MinerService from explorer.services.wallets import WalletsService from explorer.services.blocks import BlocksService from base.utils.fil import datetime_to_height from base.response import response_json def get_message_list_by_height(): """ 获取Send消息列表根据高度 :return: """ height = request.form.get('height') result = MessageService.get_message_list_by_height(height) return response_json(result) def get_miner_info_by_miner_no(): """ 获取指定信息列表miner_no :return: """ miner_no = request.form.get('miner_no') date_str = request.form.get('date_str') result = MinerService.get_miner_info_by_miner_no(miner_no, date_str) return response_json(result) def get_wallet_address_change(): """ 获取钱包指点数据大小的变化量 :return: """ wallet_address = request.form.get('wallet_address') balance_value = request.form.get('balance_value') height = int(request.form.get('height')) result = WalletsService.get_wallet_address_change(wallet_address, balance_value, height) return response_json(result) def get_is_all_wallet(): """ 查询是否是钱包 :return: """ address = request.form.get("address") if not address: return response_json(False) result = WalletsService.get_is_all_wallet(address) if result: return response_json(result["value"]) return response_json(False) def get_miner_day_list(): """ 存储提供者每天的miner数据 :return: """ miner_no = request.form.get("miner_no") date = request.form.get("date") data = MinerService.get_miner_day_list(miner_no, date) return response_json(data) def get_init_value(): """ 存储提供者每天的miner数据 :return: """ miner_no = request.form.get("miner_no") fields = request.form.get("fields") end_time = request.form.get("end_time") data = MinerService.get_init_value(miner_no, fields, end_time) return response_json(data) def get_block_count(): """ 查询指定时间后是否还有新的区块 :return: """ date = request.form.get('date') height = datetime_to_height(date) count = BlocksService.get_tipset_block_count(start_height=height) return response_json({"count": count}) def get_miner_increment(): """ 查询指定时间后是否还有新的区块 :return: """ miner_no = request.form.get('miner_no') date = request.form.get('date') key = request.form.get('key') if not date: date = str(datetime.date.today() - datetime.timedelta(days=1)) result = MinerService.get_miner_increment(miner_no, date, key) return response_json(result)
25.027778
92
0.699593
import datetime from flask import request from explorer.services.message import MessageService from explorer.services.miner import MinerService from explorer.services.wallets import WalletsService from explorer.services.blocks import BlocksService from base.utils.fil import datetime_to_height from base.response import response_json def get_message_list_by_height(): """ 获取Send消息列表根据高度 :return: """ height = request.form.get('height') result = MessageService.get_message_list_by_height(height) return response_json(result) def get_miner_info_by_miner_no(): """ 获取指定信息列表miner_no :return: """ miner_no = request.form.get('miner_no') date_str = request.form.get('date_str') result = MinerService.get_miner_info_by_miner_no(miner_no, date_str) return response_json(result) def get_wallet_address_change(): """ 获取钱包指点数据大小的变化量 :return: """ wallet_address = request.form.get('wallet_address') balance_value = request.form.get('balance_value') height = int(request.form.get('height')) result = WalletsService.get_wallet_address_change(wallet_address, balance_value, height) return response_json(result) def get_is_all_wallet(): """ 查询是否是钱包 :return: """ address = request.form.get("address") if not address: return response_json(False) result = WalletsService.get_is_all_wallet(address) if result: return response_json(result["value"]) return response_json(False) def get_miner_day_list(): """ 存储提供者每天的miner数据 :return: """ miner_no = request.form.get("miner_no") date = request.form.get("date") data = MinerService.get_miner_day_list(miner_no, date) return response_json(data) def get_init_value(): """ 存储提供者每天的miner数据 :return: """ miner_no = request.form.get("miner_no") fields = request.form.get("fields") end_time = request.form.get("end_time") data = MinerService.get_init_value(miner_no, fields, end_time) return response_json(data) def get_block_count(): """ 查询指定时间后是否还有新的区块 :return: """ date = request.form.get('date') height = datetime_to_height(date) count = BlocksService.get_tipset_block_count(start_height=height) return response_json({"count": count}) def get_miner_increment(): """ 查询指定时间后是否还有新的区块 :return: """ miner_no = request.form.get('miner_no') date = request.form.get('date') key = request.form.get('key') if not date: date = str(datetime.date.today() - datetime.timedelta(days=1)) result = MinerService.get_miner_increment(miner_no, date, key) return response_json(result)
0
0
0
d2832ef568cd65320be37ac0297b38c2de6deae9
3,743
py
Python
starter_code/student_utils.py
ykhiari/Patient-Selection-for-Diabetes-Drug-Testing
ce8e698bff4cbf5a9319607404edada539c5c099
[ "MIT" ]
null
null
null
starter_code/student_utils.py
ykhiari/Patient-Selection-for-Diabetes-Drug-Testing
ce8e698bff4cbf5a9319607404edada539c5c099
[ "MIT" ]
null
null
null
starter_code/student_utils.py
ykhiari/Patient-Selection-for-Diabetes-Drug-Testing
ce8e698bff4cbf5a9319607404edada539c5c099
[ "MIT" ]
null
null
null
import pandas as pd import numpy as np import os import tensorflow as tf from functools import partial ####### STUDENTS FILL THIS OUT ###### #Question 3 def reduce_dimension_ndc(df, ndc_code_df): ''' df: pandas dataframe, input dataset ndc_df: pandas dataframe, drug code dataset used for mapping in generic names return: df: pandas dataframe, output dataframe with joined generic drug name ''' mapping = dict(ndc_code_df[['NDC_Code', 'Non-proprietary Name']].values) mapping['nan'] = np.nan df['generic_drug_name'] = df['ndc_code'].astype(str).apply(lambda x : mapping[x]) return df #Question 4 def select_first_encounter(df): ''' df: pandas dataframe, dataframe with all encounters return: - first_encounter_df: pandas dataframe, dataframe with only the first encounter for a given patient ''' df.sort_values(by = 'encounter_id') first_encounters = df.groupby('patient_nbr')['encounter_id'].first().values first_encounter_df = df[df['encounter_id'].isin(first_encounters)] return first_encounter_df #Question 6 #Question 7 def create_tf_categorical_feature_cols(categorical_col_list, vocab_dir='./diabetes_vocab/'): ''' categorical_col_list: list, categorical field list that will be transformed with TF feature column vocab_dir: string, the path where the vocabulary text files are located return: output_tf_list: list of TF feature columns ''' output_tf_list = [] for c in categorical_col_list: vocab_file_path = os.path.join(vocab_dir, c + "_vocab.txt") vocab = tf.feature_column.categorical_column_with_vocabulary_file(key=c, vocabulary_file = vocab_file_path, num_oov_buckets=1) tf_categorical_feature_column = tf.feature_column.indicator_column(vocab) output_tf_list.append(tf_categorical_feature_column) return output_tf_list #Question 8 def normalize_numeric_with_zscore(col, mean, std): ''' This function can be used in conjunction with the tf feature column for normalization ''' return (col - mean)/std def create_tf_numeric_feature(col, MEAN, STD, default_value=0): ''' col: string, input numerical column name MEAN: the mean for the column in the training data STD: the standard deviation for the column in the training data default_value: the value that will be used for imputing the field return: tf_numeric_feature: tf feature column representation of the input field ''' normalizer_fn = lambda col, m, s : (col - m) / s normalizer = partial(normalizer_fn, m = MEAN, s = STD) tf_numeric_feature = tf.feature_column.numeric_column(col, normalizer_fn = normalizer, dtype = tf.float64, default_value = default_value) return tf_numeric_feature #Question 9 def get_mean_std_from_preds(diabetes_yhat): ''' diabetes_yhat: TF Probability prediction object ''' m = diabetes_yhat.mean() s = diabetes_yhat.stddev() return m, s # Question 10 def get_student_binary_prediction(df, col): ''' df: pandas dataframe prediction output dataframe col: str, probability mean prediction field return: student_binary_prediction: pandas dataframe converting input to flattened numpy array and binary labels ''' student_binary_prediction = df[col].apply(lambda x : 1 if x >= 5 else 0) return student_binary_prediction
36.339806
111
0.678333
import pandas as pd import numpy as np import os import tensorflow as tf from functools import partial ####### STUDENTS FILL THIS OUT ###### #Question 3 def reduce_dimension_ndc(df, ndc_code_df): ''' df: pandas dataframe, input dataset ndc_df: pandas dataframe, drug code dataset used for mapping in generic names return: df: pandas dataframe, output dataframe with joined generic drug name ''' mapping = dict(ndc_code_df[['NDC_Code', 'Non-proprietary Name']].values) mapping['nan'] = np.nan df['generic_drug_name'] = df['ndc_code'].astype(str).apply(lambda x : mapping[x]) return df #Question 4 def select_first_encounter(df): ''' df: pandas dataframe, dataframe with all encounters return: - first_encounter_df: pandas dataframe, dataframe with only the first encounter for a given patient ''' df.sort_values(by = 'encounter_id') first_encounters = df.groupby('patient_nbr')['encounter_id'].first().values first_encounter_df = df[df['encounter_id'].isin(first_encounters)] return first_encounter_df #Question 6 def patient_dataset_splitter(df, PREDICTOR_FIELD, patient_key='patient_nbr'): pass #Question 7 def create_tf_categorical_feature_cols(categorical_col_list, vocab_dir='./diabetes_vocab/'): ''' categorical_col_list: list, categorical field list that will be transformed with TF feature column vocab_dir: string, the path where the vocabulary text files are located return: output_tf_list: list of TF feature columns ''' output_tf_list = [] for c in categorical_col_list: vocab_file_path = os.path.join(vocab_dir, c + "_vocab.txt") vocab = tf.feature_column.categorical_column_with_vocabulary_file(key=c, vocabulary_file = vocab_file_path, num_oov_buckets=1) tf_categorical_feature_column = tf.feature_column.indicator_column(vocab) output_tf_list.append(tf_categorical_feature_column) return output_tf_list #Question 8 def normalize_numeric_with_zscore(col, mean, std): ''' This function can be used in conjunction with the tf feature column for normalization ''' return (col - mean)/std def create_tf_numeric_feature(col, MEAN, STD, default_value=0): ''' col: string, input numerical column name MEAN: the mean for the column in the training data STD: the standard deviation for the column in the training data default_value: the value that will be used for imputing the field return: tf_numeric_feature: tf feature column representation of the input field ''' normalizer_fn = lambda col, m, s : (col - m) / s normalizer = partial(normalizer_fn, m = MEAN, s = STD) tf_numeric_feature = tf.feature_column.numeric_column(col, normalizer_fn = normalizer, dtype = tf.float64, default_value = default_value) return tf_numeric_feature #Question 9 def get_mean_std_from_preds(diabetes_yhat): ''' diabetes_yhat: TF Probability prediction object ''' m = diabetes_yhat.mean() s = diabetes_yhat.stddev() return m, s # Question 10 def get_student_binary_prediction(df, col): ''' df: pandas dataframe prediction output dataframe col: str, probability mean prediction field return: student_binary_prediction: pandas dataframe converting input to flattened numpy array and binary labels ''' student_binary_prediction = df[col].apply(lambda x : 1 if x >= 5 else 0) return student_binary_prediction
65
0
22
455bb28e06d1af0c76eed9c4216798bb512e32a8
1,115
py
Python
snake.py
junio-firmino/snake_game
fd78695406a55d057c2db54a126f46d552e77865
[ "MIT" ]
null
null
null
snake.py
junio-firmino/snake_game
fd78695406a55d057c2db54a126f46d552e77865
[ "MIT" ]
null
null
null
snake.py
junio-firmino/snake_game
fd78695406a55d057c2db54a126f46d552e77865
[ "MIT" ]
null
null
null
from turtle import Screen import time from food import Food from snake_shape import Snake from snake_scoreboard import Scoreboard screen = Screen() screen.setup(width=600, height=600) screen.bgcolor('black') screen.title('My snake game for desktop.') screen.tracer(0) snake = Snake() food = Food() scoreboard = Scoreboard() screen.listen() screen.onkey(snake.up, "Up") screen.onkey(snake.down, "Down") screen.onkey(snake.left, "Left") screen.onkey(snake.right, "Right") game_is_on = True while game_is_on: screen.update() time.sleep(0.1) snake.move() if snake.segment[0].distance(food) < 15: food.refresh() snake.extend() scoreboard.increase_score() if snake.segment[0].xcor() > 280 or snake.segment[0].xcor() < -280 or snake.segment[0].ycor() > 255 or snake.segment[0].ycor() < -280: scoreboard.game_over() game_is_on = False for segment in snake.segment[1:]: if snake.segment[0].distance(segment) < 10: game_is_on = False scoreboard.game_over() screen.exitonclick()
25.340909
139
0.650224
from turtle import Screen import time from food import Food from snake_shape import Snake from snake_scoreboard import Scoreboard screen = Screen() screen.setup(width=600, height=600) screen.bgcolor('black') screen.title('My snake game for desktop.') screen.tracer(0) snake = Snake() food = Food() scoreboard = Scoreboard() screen.listen() screen.onkey(snake.up, "Up") screen.onkey(snake.down, "Down") screen.onkey(snake.left, "Left") screen.onkey(snake.right, "Right") game_is_on = True while game_is_on: screen.update() time.sleep(0.1) snake.move() if snake.segment[0].distance(food) < 15: food.refresh() snake.extend() scoreboard.increase_score() if snake.segment[0].xcor() > 280 or snake.segment[0].xcor() < -280 or snake.segment[0].ycor() > 255 or snake.segment[0].ycor() < -280: scoreboard.game_over() game_is_on = False for segment in snake.segment[1:]: if snake.segment[0].distance(segment) < 10: game_is_on = False scoreboard.game_over() screen.exitonclick()
0
0
0
ce7497caf65ff408828c9a4485a76cb9d8da0b6f
720
py
Python
tests/test_callouts.py
michalporeba/callouts
44d3e8bdbb1bc012a1a354f438f48b1d9a372c66
[ "MIT" ]
null
null
null
tests/test_callouts.py
michalporeba/callouts
44d3e8bdbb1bc012a1a354f438f48b1d9a372c66
[ "MIT" ]
null
null
null
tests/test_callouts.py
michalporeba/callouts
44d3e8bdbb1bc012a1a354f438f48b1d9a372c66
[ "MIT" ]
null
null
null
from .sample.aplugin import APlugin from .sample.apluginimpl import * from .sample.bplugin import BPlugin from .sample.bpluginimpl import *
27.692308
64
0.726389
from .sample.aplugin import APlugin from .sample.apluginimpl import * from .sample.bplugin import BPlugin from .sample.bpluginimpl import * def test_query_first_in_a(): assert 'a second' == APlugin.get_name() def test_query_first_in_b(): assert 'b first' == BPlugin.get_name() def test_return_default_value_if_not_implemented(): assert 'default value' == APlugin.get_not_once_implemented() def test_return_all_in_a(): assert [1,2,3] == APlugin.get_id() def test_return_all_in_b(): assert [None, None] == BPlugin.get_id() def test_return_many_in_a(): assert [10, 11, 12, 'and more'] == APlugin.get_many() def test_parameter_passing(): assert [9, 24] == BPlugin.do_your_maths(2,3,4)
415
0
165
8db4e0a2b4356561beec71bf632f2ecd064965c3
5,060
py
Python
tests/test_nelson_siegel_svensson.py
luphord/nelson_siegel_svensson
e2437a9bf924d6cd54181de018ed8af8214a6055
[ "MIT" ]
55
2019-02-13T21:23:43.000Z
2022-03-19T13:15:35.000Z
tests/test_nelson_siegel_svensson.py
musacan1300/nelson_siegel_svensson
b5c652f5f6d134457571467055fa12cd7df57213
[ "MIT" ]
10
2019-04-06T12:46:33.000Z
2022-03-30T13:00:27.000Z
tests/test_nelson_siegel_svensson.py
musacan1300/nelson_siegel_svensson
b5c652f5f6d134457571467055fa12cd7df57213
[ "MIT" ]
33
2019-05-20T22:42:22.000Z
2022-02-03T12:20:26.000Z
# -*- coding: utf-8 -*- import unittest import os import json from dataclasses import asdict import numpy as np import click from click.testing import CliRunner from nelson_siegel_svensson import cli, NelsonSiegelCurve, \ NelsonSiegelSvenssonCurve class TestNelson_siegel_svensson(unittest.TestCase): '''Tests for `nelson_siegel_svensson` CLI.''' def test_command_line_interface(self): '''Test the CLI.''' result = self.runner.invoke(cli.cli_main) self.assertEqual(0, result.exit_code) help_result = self.runner.invoke(cli.cli_main, ['--help']) self.assertEqual(0, help_result.exit_code) self.assertIn('--help Show this message and exit.', help_result.output) def test_cli_evaluate(self): '''Test evaluate CLI.''' param = ['evaluate', '-c', '{"beta0": 0.017, "beta1": -0.023, "beta2": 0.24, "tau": 2}', '-t', '[1,2,3]'] result = self.runner.invoke(cli.cli_main, param) self.assertEqual(0, result.exit_code) self.assertIn('0.0758359', result.output) def test_cli_calibrate(self): '''Test calibrate CLI.''' param = ['calibrate', '-t', json.dumps(self.t), '-y', json.dumps(self.y)] result = self.runner.invoke(cli.cli_main, param) self.assertEqual(0, result.exit_code) self.assertIn('0.0451', result.output) first_output = result.output result = self.runner.invoke(cli.cli_main, param + ['--nelson-siegel-svensson']) self.assertEqual(0, result.exit_code) self.assertEqual(first_output, result.output) result = self.runner.invoke(cli.cli_main, param + ['--nelson-siegel']) self.assertEqual(0, result.exit_code) self.assertIn('0.0425', result.output) result = self.runner.invoke(cli.cli_main, param + ['--nelson-siegel', '--initial-tau1', '1.234']) self.assertEqual(0, result.exit_code) self.assertIn('0.04179', result.output) def test_cli_plot(self): '''Test plot CLI.''' fname = 'output.png' param = ['plot', '-o', fname, '-c', '{"beta0": 0.017, "beta1": -0.023, "beta2": 0.24, "tau": 2}'] with self.runner.isolated_filesystem(): result = self.runner.invoke(cli.cli_main, param) self.assertEqual(0, result.exit_code) self.assertTrue(os.path.exists(fname), fname + ' missing') result = self.runner.invoke(cli.cli_main, param + ['-f', '10', '-t', '20']) self.assertEqual(0, result.exit_code) self.assertTrue(os.path.exists(fname), fname + ' missing') def test_curve_parameters(self): '''Test curve parameter.''' param = cli.Curve() self.assertRaises(click.BadParameter, param.convert, value='', param=None, ctx=None) self.assertRaises(click.BadParameter, param.convert, value='{}', param=None, ctx=None) missing_tau = '{"beta0": 0.017, "beta1": -0.023, "beta2": 0.24}' self.assertRaises(click.BadParameter, param.convert, value=missing_tau, param=None, ctx=None) self.assertEqual(self.y1, param.convert(json.dumps(asdict(self.y1)), None, None)) self.assertEqual(self.y2, param.convert(json.dumps(asdict(self.y2)), None, None)) def test_float_array_parameters(self): '''Test float array parameter.''' param = cli.FloatArray() self.assertRaises(click.BadParameter, param.convert, value='', param=None, ctx=None) self.assertRaises(click.BadParameter, param.convert, value='{"a": 1}', param=None, ctx=None) self.assertRaises(click.BadParameter, param.convert, value='["a"]', param=None, ctx=None) self.assertEqual(np.array([1.0]), param.convert('[1.0]', None, None)) self.assertEqual(np.array([1.0]), param.convert('[1]', None, None)) self.assertEqual([], param.convert('[]', None, None).tolist()) self.assertTrue((np.array([1.0, 2.0, 3.0]) == param.convert('[1, 2,3.0]', None, None)).all())
43.62069
79
0.538933
# -*- coding: utf-8 -*- import unittest import os import json from dataclasses import asdict import numpy as np import click from click.testing import CliRunner from nelson_siegel_svensson import cli, NelsonSiegelCurve, \ NelsonSiegelSvenssonCurve class TestNelson_siegel_svensson(unittest.TestCase): '''Tests for `nelson_siegel_svensson` CLI.''' def setUp(self): self.y1 = NelsonSiegelCurve(0.017, -0.023, 0.24, 2.2) self.y2 = NelsonSiegelSvenssonCurve(0.017, -0.023, 0.24, 0.1, 2.2, 3.1) self.t = [0.0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0] self.y = [0.01, 0.011, 0.013, 0.016, 0.019, 0.021, 0.026, 0.03, 0.035, 0.037, 0.038, 0.04] self.runner = CliRunner() def test_command_line_interface(self): '''Test the CLI.''' result = self.runner.invoke(cli.cli_main) self.assertEqual(0, result.exit_code) help_result = self.runner.invoke(cli.cli_main, ['--help']) self.assertEqual(0, help_result.exit_code) self.assertIn('--help Show this message and exit.', help_result.output) def test_cli_evaluate(self): '''Test evaluate CLI.''' param = ['evaluate', '-c', '{"beta0": 0.017, "beta1": -0.023, "beta2": 0.24, "tau": 2}', '-t', '[1,2,3]'] result = self.runner.invoke(cli.cli_main, param) self.assertEqual(0, result.exit_code) self.assertIn('0.0758359', result.output) def test_cli_calibrate(self): '''Test calibrate CLI.''' param = ['calibrate', '-t', json.dumps(self.t), '-y', json.dumps(self.y)] result = self.runner.invoke(cli.cli_main, param) self.assertEqual(0, result.exit_code) self.assertIn('0.0451', result.output) first_output = result.output result = self.runner.invoke(cli.cli_main, param + ['--nelson-siegel-svensson']) self.assertEqual(0, result.exit_code) self.assertEqual(first_output, result.output) result = self.runner.invoke(cli.cli_main, param + ['--nelson-siegel']) self.assertEqual(0, result.exit_code) self.assertIn('0.0425', result.output) result = self.runner.invoke(cli.cli_main, param + ['--nelson-siegel', '--initial-tau1', '1.234']) self.assertEqual(0, result.exit_code) self.assertIn('0.04179', result.output) def test_cli_plot(self): '''Test plot CLI.''' fname = 'output.png' param = ['plot', '-o', fname, '-c', '{"beta0": 0.017, "beta1": -0.023, "beta2": 0.24, "tau": 2}'] with self.runner.isolated_filesystem(): result = self.runner.invoke(cli.cli_main, param) self.assertEqual(0, result.exit_code) self.assertTrue(os.path.exists(fname), fname + ' missing') result = self.runner.invoke(cli.cli_main, param + ['-f', '10', '-t', '20']) self.assertEqual(0, result.exit_code) self.assertTrue(os.path.exists(fname), fname + ' missing') def test_curve_parameters(self): '''Test curve parameter.''' param = cli.Curve() self.assertRaises(click.BadParameter, param.convert, value='', param=None, ctx=None) self.assertRaises(click.BadParameter, param.convert, value='{}', param=None, ctx=None) missing_tau = '{"beta0": 0.017, "beta1": -0.023, "beta2": 0.24}' self.assertRaises(click.BadParameter, param.convert, value=missing_tau, param=None, ctx=None) self.assertEqual(self.y1, param.convert(json.dumps(asdict(self.y1)), None, None)) self.assertEqual(self.y2, param.convert(json.dumps(asdict(self.y2)), None, None)) def test_float_array_parameters(self): '''Test float array parameter.''' param = cli.FloatArray() self.assertRaises(click.BadParameter, param.convert, value='', param=None, ctx=None) self.assertRaises(click.BadParameter, param.convert, value='{"a": 1}', param=None, ctx=None) self.assertRaises(click.BadParameter, param.convert, value='["a"]', param=None, ctx=None) self.assertEqual(np.array([1.0]), param.convert('[1.0]', None, None)) self.assertEqual(np.array([1.0]), param.convert('[1]', None, None)) self.assertEqual([], param.convert('[]', None, None).tolist()) self.assertTrue((np.array([1.0, 2.0, 3.0]) == param.convert('[1, 2,3.0]', None, None)).all())
389
0
27
05b83b0f032b96f78decc11085191dfb8bd3a7f2
2,114
py
Python
Data Management Tools/reproject_shp.py
MBoustani/Geothon
07a499d4ac0bb767677cd59b301022ad2ab16136
[ "Apache-2.0" ]
60
2015-01-12T08:36:19.000Z
2021-12-20T11:06:25.000Z
Data Management Tools/reproject_shp.py
MBoustani/Geothon
07a499d4ac0bb767677cd59b301022ad2ab16136
[ "Apache-2.0" ]
null
null
null
Data Management Tools/reproject_shp.py
MBoustani/Geothon
07a499d4ac0bb767677cd59b301022ad2ab16136
[ "Apache-2.0" ]
20
2015-02-20T03:05:17.000Z
2021-12-27T16:18:45.000Z
#!/usr/bin/env python ''' Project: Geothon (https://github.com/MBoustani/Geothon) File: Vector/reproject_shp.py Description: This code reprojects Shapefile. Author: Maziyar Boustani (github.com/MBoustani) ''' import os try: import ogr except ImportError: from osgeo import ogr try: import osr except ImportError: from osgeo import osr #an example input shapefile file. in_shp_file = '../static_files/shapefile/rivers_lake_centerlines/ne_50m_rivers_lake_centerlines.shp' #set the driver to ESRI Shapefile driver = ogr.GetDriverByName('ESRI Shapefile') #open input shapefile in_shp_datasource = driver.Open(in_shp_file) #get input shapefile layer in_layer = in_shp_datasource.GetLayerByIndex(0) #get input shapefile geometry in_geom_type = in_layer.GetGeomType() #get input shapefile spatial reference source = in_layer.GetSpatialRef() #create spatial reference for output shapefile target = osr.SpatialReference() #in this case NAD83(HARN) / California zone 4 target.ImportFromEPSG(2873) #create a trasnform from source to target transform = osr.CoordinateTransformation(source, target) #output shapefile name out_shp = 'reprojected.shp' #output shapefile layer name out_layer_name = 'shp_layer' #create output shapefile data_source(file) if os.path.exists(out_shp): driver.DeleteDataSource(out_shp) data_source = driver.CreateDataSource(out_shp) #define output shapefile layer out_layer = data_source.CreateLayer(out_layer_name, target, in_geom_type) #get input shapefile layer definition in_layer_defn = in_layer.GetLayerDefn() num_field_col = in_layer_defn.GetFieldCount() for each in range(num_field_col): field = in_layer_defn.GetFieldDefn(each) out_layer.CreateField(field) #get input shapefile number of features in_num_feature = in_layer.GetFeatureCount() for feature in range(in_num_feature): in_feature = in_layer.GetFeature(feature) in_geom = in_feature.GetGeometryRef() in_geom.Transform(transform) feature = ogr.Feature(out_layer.GetLayerDefn()) feature.SetGeometry(in_geom) out_layer.CreateFeature(feature)
27.102564
100
0.784295
#!/usr/bin/env python ''' Project: Geothon (https://github.com/MBoustani/Geothon) File: Vector/reproject_shp.py Description: This code reprojects Shapefile. Author: Maziyar Boustani (github.com/MBoustani) ''' import os try: import ogr except ImportError: from osgeo import ogr try: import osr except ImportError: from osgeo import osr #an example input shapefile file. in_shp_file = '../static_files/shapefile/rivers_lake_centerlines/ne_50m_rivers_lake_centerlines.shp' #set the driver to ESRI Shapefile driver = ogr.GetDriverByName('ESRI Shapefile') #open input shapefile in_shp_datasource = driver.Open(in_shp_file) #get input shapefile layer in_layer = in_shp_datasource.GetLayerByIndex(0) #get input shapefile geometry in_geom_type = in_layer.GetGeomType() #get input shapefile spatial reference source = in_layer.GetSpatialRef() #create spatial reference for output shapefile target = osr.SpatialReference() #in this case NAD83(HARN) / California zone 4 target.ImportFromEPSG(2873) #create a trasnform from source to target transform = osr.CoordinateTransformation(source, target) #output shapefile name out_shp = 'reprojected.shp' #output shapefile layer name out_layer_name = 'shp_layer' #create output shapefile data_source(file) if os.path.exists(out_shp): driver.DeleteDataSource(out_shp) data_source = driver.CreateDataSource(out_shp) #define output shapefile layer out_layer = data_source.CreateLayer(out_layer_name, target, in_geom_type) #get input shapefile layer definition in_layer_defn = in_layer.GetLayerDefn() num_field_col = in_layer_defn.GetFieldCount() for each in range(num_field_col): field = in_layer_defn.GetFieldDefn(each) out_layer.CreateField(field) #get input shapefile number of features in_num_feature = in_layer.GetFeatureCount() for feature in range(in_num_feature): in_feature = in_layer.GetFeature(feature) in_geom = in_feature.GetGeometryRef() in_geom.Transform(transform) feature = ogr.Feature(out_layer.GetLayerDefn()) feature.SetGeometry(in_geom) out_layer.CreateFeature(feature)
0
0
0
7f9859507d041ae77a30f1cf80437265e112aec8
23,500
py
Python
environmentalSoundClassification/audioProcessingUtil.py
amogh3892/Environmental-sound-recognition-using-combination-of-spectrogram-and-acoustic-features
448efaa2e1954e0f74602dc5c5aba95ba69ecfcd
[ "Apache-2.0" ]
21
2017-06-21T01:28:04.000Z
2022-03-24T03:23:01.000Z
environmentalSoundClassification/audioProcessingUtil.py
amogh3892/Environmental-sound-recognition-using-combination-of-spectrogram-and-acoustic-features
448efaa2e1954e0f74602dc5c5aba95ba69ecfcd
[ "Apache-2.0" ]
1
2018-03-20T20:02:45.000Z
2018-03-20T20:02:45.000Z
environmentalSoundClassification/audioProcessingUtil.py
amogh3892/Environmental-sound-recognition-using-combination-of-spectrogram-and-acoustic-features
448efaa2e1954e0f74602dc5c5aba95ba69ecfcd
[ "Apache-2.0" ]
3
2019-06-25T17:41:11.000Z
2021-05-06T01:04:26.000Z
import numpy as np import librosa from scipy import interpolate import pywt from matplotlib.image import imsave from scipy.signal import butter, lfilter, freqz from matplotlib import pyplot as plt from imageProcessingUtil import ImageProcessing import SimpleITK as sitk
30.961792
180
0.567787
import numpy as np import librosa from scipy import interpolate import pywt from matplotlib.image import imsave from scipy.signal import butter, lfilter, freqz from matplotlib import pyplot as plt from imageProcessingUtil import ImageProcessing import SimpleITK as sitk class AudioProcessing(object): def __init__(self): pass @staticmethod def read(absFilePath,sr=None): """ Reading audio :param absFilePath: Absolute File Path :param sr: Sampling rate of audio to be read (If None, original sampling rate is considered) :return: audio samples, """ data,fs = librosa.load(absFilePath,sr=sr) return data,fs @staticmethod def writeAsWav(data,sr,filename): """ Write .wav files :param data: audio data :param sr: sampling rate :param filename: filename to be saved :return: None """ if filename is None or sr is None or data is None : return "Please provid arguements as writeAsWav(data,sr,filename)" if "wav" not in filename: return "Only wav files!" filename_split = filename.rsplit(".",1) filename = filename_split[0] filetype = filename_split[1].lower() data = AudioProcessing.rescaleAmplitude(data) librosa.output.write_wav("{}.{}".format(filename,filetype),data,sr) @staticmethod def generateSineWave(amp,f,phi,fs): """ Generating a simple sine wave :param amp: Amplitude :param f: Frequency :param phi: Phase :param fs: Frequency sampling rate :return: Sine wave signal """ # considering 5 time periodics t = np.arange(0,10.0/f,1.0/fs) x = amp*np.cos(2*np.pi*f*t + phi) return(t,x) @staticmethod def convert_to_mono(x): """ Convert multi channel sounds to mono channel :param x: audio data :return: mono channel (audio data) """ if x.ndim > 1: return librosa.to_mono(x) return x @staticmethod def DFT(data,N,fs,start_time = 0.0): """ calculating N point DFT :param data: audio data :param N: N point DFT :param fs: sampling frequency :return: """ data = AudioProcessing.convert_to_mono(data) size = data.size new_data = np.zeros(N) if size < N: diff = N - size new_data[:size] = data else: new_data = data[start_time*fs:start_time*fs+N] hanning = np.hanning(N) new_data = new_data*hanning print("Calculating DFT for {} ms window with start time {} sec".format(N*1000/float(fs),start_time)) nv = np.arange(N) kv = np.arange(N) nv = np.arange(-N/2.0,N/2.0) kv = np.arange(-N/2.0,N/2.0) X = np.array([]) # Calculating the DFT of the cropped signal for k in kv: s = np.exp(1j*2*np.pi*k/N*nv) X = np.append(X,sum(new_data*np.conjugate(s))) X = np.abs(X) frequency_axis = kv*fs/N return (frequency_axis,X) @staticmethod def resampleAudio(data,fs,new_fs): """ Resampling audio to a different sampling rate :param data: audio data :param fs: old sampling rate :param new_fs: new sampling rate :return: resampled audio """ print("Resampling from {} to {} hz".format(fs,new_fs)) fs = float(fs) new_fs = float(new_fs) data = AudioProcessing.convert_to_mono(data) size = data.size old_time_axis = np.arange(size)/fs total_time = old_time_axis[-1] total_samples = round(total_time*new_fs) new_time_axis = np.arange(total_samples)/new_fs f = interpolate.interp1d(old_time_axis,data) new_data = f(new_time_axis) return new_data @staticmethod def rescaleAmplitude(data,scale_range = (-1,1)): """ rescaling an array to a particlar range :param data: Any array :param scale_range: The range to which rescaling has to be done :return: rescaled array """ mini = np.min(data) maxi = np.max(data) new_min = scale_range[0] new_max = scale_range[1] new_data = ((new_max - new_min)*(data - mini)/(maxi - mini)) + new_min return new_data @staticmethod def get_entropy(X): """ :param X: Input array :return: Entropy of the input array """ probs = [np.mean(X == c) for c in set(X)] return np.sum(-p * np.log2(p) for p in probs) @staticmethod def denoise_by_wavelets(audio,wavelet = 'dmey',threshold = 9): """ Audio denoising by using wavelet packet decomposition Steps 1) Wavelet Packet decomposition 2) Thresholding 3) Reconstruction of wavelet packet decomposition. :param audio: :param wavelet: :param threshold: Threshold used to remove noise (Actual threshold = threshold*std of lowest level detail coefficients of the tree of wavelet packet decomposition) :return: Denoised audio """ wp = pywt.WaveletPacket(data=audio, wavelet=wavelet, mode='symmetric') new_wp = pywt.WaveletPacket(data=None, wavelet=wavelet, mode='symmetric') ld = wp['d'].data threshold = threshold*np.std(ld) print("Denoising using wavelets for {} levels ... This may take a while".format(wp.maxlevel)) for i in range(wp.maxlevel): paths = [node.path for node in wp.get_level(i+1, 'natural')] for path in paths: new_wp[path] = pywt.threshold(wp[path].data,threshold) new_wp.reconstruct(update=True) return new_wp.data @staticmethod def get_stft(data,n_fft,win_length,hop_length): """ Compute Short Time Fourier Transform of the audio :param data: audio data :param n_fft: FFT length :param win_length: Time frame or the window length :param hop_length: Hop length between the time frames. (Determines overlapping between frames) :return: STFT of the audio signal """ stft = librosa.stft(y = data,n_fft=n_fft,hop_length=hop_length,win_length=win_length) return stft @staticmethod def get_energy(data,frame_length,hop_length): """ Compute the Root mean square energy of the signal :param data: audio data :param frame_length: window or frame legth :param hop_length: overlapping factor :return: Energy of the audio signal. """ energy = librosa.feature.rmse(y=data,n_fft=frame_length,hop_length=hop_length) energy = energy[0,:] return energy @staticmethod def get_spectrogram(data,n_fft = 512,win_length = 480,hop_length = 120,range = (0,255),pixel_type = np.uint8,log_amplitude = True): """ return spectorgram in log scale recaled to given range :param log_amplitude: if True, returns spectrogram in logamplitude, or returns linear amplitude. :return: Spectrogram image """ # calculating stft for window length = 480 and overlap = 360 samples stft = AudioProcessing.get_stft(data,n_fft,win_length,hop_length) db = np.absolute(stft) if log_amplitude: db = librosa.logamplitude(db) # converting to log amplitude and rescaling it between the given range db = AudioProcessing.rescaleAmplitude(db,range) db = db.astype(pixel_type) return db @staticmethod def get_spectrogram_label(data,n_fft = 512,win_length = 480,hop_length = 120, range = (0,255),pixel_type = np.uint8,log_amplitude = True, initial_labels = [25,50,75,100,125,150,175,200,225,250], no_labels = 2 ): """ Performs preprocessing and clustering on the spectrogram to retrieve the most prominent parts as labels. :param data: audio data :param n_fft: FFT length :param win_length: Window length :param hop_length: Hop length (overlapping factor) :param range: range of the intensity values of spectrogram :param pixel_type: Pixel type for intensity values of spectrogram :param log_amplitude: Whether to consider log amplitude of spectrogram or not :param initial_labels: Initial Labels for clustering the spectrogram using Kmeans :param no_labels: Maximum number of labels to be retained. :return: Labels extracted from spectrogram. """ # obtaining the spectrogram of the audio spectrogram = AudioProcessing.get_spectrogram(data,n_fft=n_fft,win_length=win_length,hop_length=hop_length,range=range,pixel_type=pixel_type,log_amplitude = log_amplitude) # converting to sitk image db_sitk = sitk.GetImageFromArray(spectrogram) db_sitk = sitk.GetImageFromArray(ImageProcessing.median_image_filter(db_sitk,radius=(3,3,3))) # kmeans clustering the image acoording to the intial labels labels = sitk.ScalarImageKmeans(db_sitk,initial_labels,True) # considering only last n labels given byu no_labels lables_arr = sitk.GetArrayFromImage(labels) max_label = np.max(lables_arr) lables_arr[lables_arr < (max_label-(no_labels - 1))] = 0 lables_arr[lables_arr >= (max_label-(no_labels - 1))] = 1 labels = sitk.GetImageFromArray(lables_arr) # performing binary closing and dilating with certain parameters closed = sitk.BinaryMorphologicalClosing(labels,1,sitk.sitkBall) dilated = sitk.BinaryDilate(closed,3,sitk.sitkBall) # filling holes holesfilled = sitk.BinaryFillhole(dilated,fullyConnected=True) # getting the connected components and relabelling it according to size connected = sitk.ConnectedComponent(holesfilled,fullyConnected=True) relabelled = sitk.RelabelComponent(connected,minimumObjectSize=200) relabelled_arr = sitk.GetArrayFromImage(relabelled) # returning the spectrogram and the label return relabelled_arr @staticmethod def segmentAudioByEnergyApproximation(data,fs,threshold = 5 ,short_energy_time = 64,max_segments = 5): """ Segmenting the audio based on approximation using signal energy. Modelling the noise by considering certain amount of low energy level frames. :param data: :param fs: :param threshold: :param short_energy_time: :param max_segments: :return: """ total_samples = 0.2*fs min_energy_samples = np.sort(abs(data))[:int(total_samples)] min_energy_samples = np.array(min_energy_samples) mean = np.mean(abs(min_energy_samples)) std = np.std(abs(min_energy_samples)) if std == 0.0: std = 0.01 # Approximating a frame with the maximum value of the frame to eliminate the high frequency content approximate = np.copy(abs(data)) i = 0 hop_size = 2048 while(i < data.size): if(i+hop_size < data.size): # approximate my maximum approximate[i:i+hop_size] = np.max(approximate[i:i+hop_size]) else: approximate[i:] = np.max(approximate[i:]) i = i+hop_size check_array = (abs(approximate) - mean)/float(std) if 0: import pdb pdb.set_trace() plt.plot(check_array) plt.show() if np.min(check_array )> threshold: threshold = np.min(check_array) + 3 ind_p = np.where(check_array > threshold) ind_n = np.where(check_array <= threshold) check_array[ind_p] = 1 check_array[ind_n] = 0 diff = np.ediff1d(check_array) ones = np.where(diff == 1)[0] minus_ones = np.where(diff == -1)[0] if ones.size == 0: ones = np.array([0]) if minus_ones.size == 0: minus_ones = np.array([check_array.size - 1]) if ones[0] >= minus_ones[0]: ones = np.append(0,ones) if ones[-1] >= minus_ones[-1]: minus_ones = np.append(minus_ones,[check_array.size - 1]) segments = [] if 0: import pdb pdb.set_trace() for i in range(ones.size): if(minus_ones[i] - ones[i] >= 6144): # print(minus_ones[i] - ones[i],i) segments.append((ones[i],minus_ones[i],minus_ones[i]-ones[i])) def seg_size(x): return (x[2]) segments = sorted(segments,key=seg_size,reverse=True) if len(segments) > max_segments : segments =segments[:5] return segments @staticmethod def segmentAudioBySpectrograms(data,spec_label,win_len,hop_len,max_segments = 5): """ Segmentation audio by using labels generated by spectrogram. First compute spectrogram labels using get_spectrogram_label method and :param data: audio data to be segmented :param spec_label: Spectrogram labels :param win_len: Window length :param hop_len: Hop Length :param max_segments: Maximum number of segments to be retained :return: Segments by removing unwanted part of the signal. """ shape = spec_label.shape time_range = shape[1] check_array = np.zeros(data.size) for i in range(time_range): col_value = np.sum(spec_label[:,i]) if col_value > 0 : check_array[i*hop_len : (i*hop_len + win_len)] = 1 diff = np.ediff1d(check_array) ones = np.where(diff == 1)[0] minus_ones = np.where(diff == -1)[0] if ones.size == 0: ones = np.array([0]) if minus_ones.size == 0: minus_ones = np.array([check_array.size - 1]) if ones[0] >= minus_ones[0]: ones = np.append(0,ones) if ones[-1] >= minus_ones[-1]: minus_ones = np.append(minus_ones,[check_array.size - 1]) segments = [] for i in range(ones.size): # print(minus_ones[i] - ones[i],i) segments.append((ones[i],minus_ones[i],minus_ones[i]-ones[i])) def seg_size(x): return (x[2]) segments = sorted(segments,key=seg_size,reverse=True) if len(segments) > max_segments : segments =segments[:max_segments] if 0: ch = np.zeros(data.size) ch[segments[0][0]:segments[0][1]] = 1 import matplotlib.pyplot as plt plt.plot(data) plt.plot(ch) plt.show() return segments @staticmethod def butter_lowpass_filter(data, cutoff, fs, order=5): """ Low pass filter using butterworth coefficients """ nyq = 0.5 * fs normal_cutoff = cutoff / nyq b,a = butter(order, normal_cutoff, btype='low', analog=False) y = lfilter(b, a, data) return y @staticmethod def butter_highpass_filter(data, cutoff, fs, order=5): """ High pass filter using butterworth coefficients """ nyq = 0.5 * fs normal_cutoff = cutoff / nyq b,a = butter(order, normal_cutoff, btype='high', analog=False) y = lfilter(b, a, data) return y @staticmethod def meanImage(image_arr,radius): """ Blur image with MeanImageFilter :param image_arr: Image array :param radius: radius of the kernel :return: Mean Image """ meanImageFilter = sitk.MeanImageFilter() meanImageFilter.SetRadius(radius) return sitk.GetArrayFromImage(meanImageFilter.Execute(sitk.GetImageFromArray(image_arr))) @staticmethod def segmentationByIterativeTimeDomain(data,fs): data_copy = np.copy(data) energy = AudioProcessing.get_energy(data_copy,frame_length=64,hop_length=64) pre_threshold = None annotation = np.ones(energy.size) while 1: check_indices = np.where(annotation == 1) db = 10*np.log10(energy[check_indices]) # db[np.isneginf(db)] = 0 # nonzero = db[np.nonzero(db)] min_energy_sample = sorted(db)[0] print(min_energy_sample) threshold = 0.5*(10**((min_energy_sample)/10.0)) if pre_threshold is not None: print(pre_threshold - threshold) pre_threshold = threshold data_copy[abs(data_copy) < threshold] = 0 plt.plot(data) plt.plot(data_copy) plt.show() import pdb pdb.set_trace() @staticmethod def get_hilbert_transform(data): from scipy.signal import hilbert return hilbert(data) @staticmethod def get_audio_features(y,sr,n_fft,hop_length,n_mfcc): """ Compute acoustic features of the audio :param y: audio data :param sr: Sampling rate :param n_fft: FFT length :param hop_length: Hop length :param n_mfcc: Number of MFCC coefficients. :return: Audio feature matrix """ features = None #MFCCS mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc = n_mfcc , n_fft = n_fft, hop_length = hop_length) features = mfccs #Delta mfccs delta_mfccs = librosa.feature.delta(mfccs) features = np.concatenate((features,delta_mfccs)) #rmse rmse = librosa.feature.rmse(y=y , n_fft = n_fft , hop_length = hop_length) features = np.concatenate((features,rmse)) #spectral centroid spectral_centroid = librosa.feature.spectral_centroid(y=y, sr=sr, n_fft = n_fft, hop_length = hop_length ) features = np.concatenate((features,spectral_centroid)) #spectral bandwidth spectral_bandwidth = librosa.feature.spectral_bandwidth(y=y, sr=sr, n_fft = n_fft, hop_length = hop_length) features = np.concatenate((features,spectral_bandwidth)) #spectral contrast spectral_contrast = librosa.feature.spectral_contrast(y=y, sr=sr, n_fft = n_fft, hop_length = hop_length) features = np.concatenate((features,spectral_contrast)) #spectral rolloff spectral_rolloff = librosa.feature.spectral_rolloff(y=y, sr=sr, n_fft = n_fft, hop_length = hop_length) features = np.concatenate((features,spectral_rolloff)) #zero crossing rate zero_crossing_rate = librosa.feature.zero_crossing_rate(y=y, frame_length = n_fft, hop_length = hop_length) features = np.concatenate((features,zero_crossing_rate)) return np.transpose(features) @staticmethod def levinson_1d(r, order): try: nonzero = np.nonzero(r)[0][0] except: import pdb pdb.set_trace() r = r[nonzero:] r = np.atleast_1d(r) if r.ndim > 1: raise ValueError("Only rank 1 are supported for now.") n = r.size if order > n - 1: raise ValueError("Order should be <= size-1") elif n < 1: raise ValueError("Cannot operate on empty array !") if not np.isreal(r[0]): raise ValueError("First item of input must be real.") elif not np.isfinite(1/r[0]): raise ValueError("First item should be != 0") # Estimated coefficients a = np.empty(order+1, r.dtype) # temporary array t = np.empty(order+1, r.dtype) # Reflection coefficients k = np.empty(order, r.dtype) a[0] = 1. e = r[0] for i in xrange(1, order+1): acc = r[i] for j in range(1, i): acc += a[j] * r[i-j] k[i-1] = -acc / e a[i] = k[i-1] for j in range(order): t[j] = a[j] for j in range(1, i): a[j] += k[i-1] * np.conj(t[i-j]) e *= 1 - k[i-1] * np.conj(k[i-1]) return a, e, k @staticmethod def get_lpc_coefficients_feature_vector(y,order,n_fft,hop_length): window = np.hanning(n_fft) i = 0 lpc_coefficients = [] while i <= y.shape[0]: window_end = i + n_fft audio_end = y.shape[0] if audio_end - i < n_fft: d = y[i:] d_len = len(d) diff = n_fft - d_len d = list(d) for j in range(diff): d.append(0) d = np.array(d) d = d*window else: d = y[i:window_end] d = np.array(d) d = d*window if not np.all(d == 0): a,e,k = AudioProcessing.levinson_1d(d,order) a = a[1:] if np.nan not in a and np.nan not in k: lpcs = [] lpcs.extend(a) lpcs.extend(k) lpc_coefficients.append(lpcs) i = i + hop_length lpc_coefficients = np.array(lpc_coefficients) return lpc_coefficients @staticmethod def get_lpc_column_names(order): a = [] k = [] for i in range(order): a.append("LPC_A_{}".format(i+1)) k.append("LPC_K_{}".format(i+1)) lpc_columns = [] lpc_columns.extend(a) lpc_columns.extend(k) return lpc_columns @staticmethod def get_audio_feature_columns(n_mfcc,append = None): cols = [] mfccs = [] delta_mfccs = [] constrasts = [] for i in range(n_mfcc): mfccs.append('MFCC_{}'.format(i+1)) delta_mfccs.append('DELTA_MFCC_{}'.format(i+1)) for i in range(7): constrasts.append('SpectralContrast_{}'.format(i+1)) cols.extend(mfccs) cols.extend(delta_mfccs) cols.extend(['RMSE','SpectralCentroid','SpectralBandwidth']) cols.extend(constrasts) cols.extend(['SpectralRollOff','ZeroCrossingRate']) new_cols = [] if append is not None: for col in cols: new_cols.append("Audio_" + col + append) return new_cols return cols
4,622
18,571
24
13e23dc0a6662a0f1c60b6e0b4542b80784914e5
275
py
Python
proj02/proj02_01.py
scienceman44/SAVY
5a9781a9d08288c40f883602dc3b6bab4d6c63c1
[ "MIT" ]
null
null
null
proj02/proj02_01.py
scienceman44/SAVY
5a9781a9d08288c40f883602dc3b6bab4d6c63c1
[ "MIT" ]
null
null
null
proj02/proj02_01.py
scienceman44/SAVY
5a9781a9d08288c40f883602dc3b6bab4d6c63c1
[ "MIT" ]
null
null
null
# Name: # Date: result = 0 loop_control = True while loop_control == True: b = int(raw_input('Enter a number to add, or 0 to indicate you are finished:')) if b == 0: loop_control = False result = result + b print 'your result is:' print result
18.333333
83
0.621818
# Name: # Date: result = 0 loop_control = True while loop_control == True: b = int(raw_input('Enter a number to add, or 0 to indicate you are finished:')) if b == 0: loop_control = False result = result + b print 'your result is:' print result
0
0
0
04b3ca56fafcb17962d19c797e31c3700c6e41b8
9,753
py
Python
generate_qumulo_cloudformation_template_test.py
Qumulo/Cloud-Deployment-Samples
a1ed1850b80ec14ea7520c5829421209efce8382
[ "MIT" ]
4
2019-12-25T22:09:37.000Z
2022-02-07T19:46:03.000Z
generate_qumulo_cloudformation_template_test.py
Qumulo/Cloud-Deployment-Samples
a1ed1850b80ec14ea7520c5829421209efce8382
[ "MIT" ]
1
2020-07-10T22:24:53.000Z
2020-07-10T22:24:53.000Z
generate_qumulo_cloudformation_template_test.py
Qumulo/cloud-samples
a1ed1850b80ec14ea7520c5829421209efce8382
[ "MIT" ]
3
2020-07-10T22:05:14.000Z
2022-02-07T19:46:04.000Z
import os import json import unittest from troposphere import ec2, Template from generate_qumulo_cloudformation_template import * if __name__ == '__main__': unittest.main()
34.708185
86
0.58177
import os import json import unittest from troposphere import ec2, Template from generate_qumulo_cloudformation_template import * class ChassisSpecTest(unittest.TestCase): def test_init(self) -> None: spec = ChassisSpec( volume_count=20, pairing_ratio=4, working_spec={'VolumeSize': 1}, backing_spec={'VolumeSize': 5}, ) self.assertEqual(spec.working_volume_count, 4) self.assertEqual(spec.backing_volume_count, 16) def test_init_no_backing_spec(self) -> None: spec = ChassisSpec( volume_count=5, pairing_ratio=0, working_spec={'VolumeSize': 1}, backing_spec=None, ) self.assertEqual(spec.working_volume_count, 5) self.assertEqual(spec.backing_volume_count, 0) def test_init_too_many_volumes(self) -> None: with self.assertRaisesRegex(AssertionError, 'Too many volumes specified'): ChassisSpec( volume_count=26, pairing_ratio=0, working_spec={'VolumeSize': 1}, backing_spec={'VolumeSize': 5}, ) def test_init_bad_pairing_ratio(self) -> None: with self.assertRaisesRegex(AssertionError, 'Not all volumes can be used'): ChassisSpec( volume_count=10, pairing_ratio=3, working_spec={'VolumeSize': 1}, backing_spec={'VolumeSize': 3}, ) def test_init_need_backing_spec(self) -> None: with self.assertRaisesRegex(AssertionError, 'Backing volumes require'): ChassisSpec( volume_count=10, pairing_ratio=1, working_spec={'VolumeSize': 1}, backing_spec=None, ) def test_from_json(self) -> None: json_spec = { 'slot_count': 12, 'pairing_ratio': 2, 'working_spec': {'VolumeSize': 1}, 'backing_spec': {'VolumeSize': 5} } spec = ChassisSpec.from_json(json_spec) self.assertEqual(spec.working_volume_count, 4) self.assertEqual(spec.backing_volume_count, 8) def test_get_block_device_mappings(self) -> None: spec = ChassisSpec( volume_count=2, pairing_ratio=1, working_spec={'VolumeSize': 1}, backing_spec={'VolumeSize': 5}, ) mappings = spec.get_block_device_mappings() self.assertEqual(len(mappings), 3) devices = [mapping.to_dict()['DeviceName'] for mapping in mappings] self.assertEqual(devices, ['/dev/sda1', '/dev/xvdb', '/dev/xvdc']) def test_get_slot_specs(self) -> None: spec = ChassisSpec( volume_count=2, pairing_ratio=1, working_spec={'VolumeSize': 1}, backing_spec={'VolumeSize': 5}, ) slot_specs = spec.get_slot_specs() expected_specs = [ { 'drive_bay': '/dev/xvdb', 'disk_role': 'working', 'disk_size': 1073741824, }, { 'drive_bay': '/dev/xvdc', 'disk_role': 'backing', 'disk_size': 5368709120, } ] self.assertEqual(slot_specs['slot_specs'], expected_specs) class TemplateTest(unittest.TestCase): def test_add_conditions(self) -> None: template = Template() add_conditions(template) self.assertEqual( list(template.conditions.keys()), ['HasEncryptionKey', 'HasIamInstanceProfile', 'HasInstanceRecoveryTopic'] ) def test_add_params_with_ingress_cidr_param(self) -> None: template = Template() add_params(template, True) expected_parameters = [ 'ClusterName', 'KeyName', 'InstanceType', 'VpcId', 'SubnetId', 'SgCidr', 'VolumesEncryptionKey', 'IamInstanceProfile', 'InstanceRecoveryTopic' ] self.assertEqual(list(template.parameters.keys()), expected_parameters) def test_add_params_without_ingress_cidr_param(self) -> None: template = Template() add_params(template, False) expected_parameters = [ 'ClusterName', 'KeyName', 'InstanceType', 'VpcId', 'SubnetId', 'VolumesEncryptionKey', 'IamInstanceProfile', 'InstanceRecoveryTopic' ] self.assertEqual(list(template.parameters.keys()), expected_parameters) def test_add_ami_map(self) -> None: template = Template() add_ami_map(template, 'ami-1234') expected_mapping = { 'us-east-1': {'AMI': 'ami-1234'}, 'us-east-2': {'AMI': 'ami-1234'}, 'us-west-1': {'AMI': 'ami-1234'}, 'us-west-2': {'AMI': 'ami-1234'}, 'ca-central-1': {'AMI': 'ami-1234'}, 'eu-central-1': {'AMI': 'ami-1234'}, 'eu-west-1': {'AMI': 'ami-1234'}, 'eu-west-2': {'AMI': 'ami-1234'}, 'eu-west-3': {'AMI': 'ami-1234'}, } self.assertEqual(template.mappings['RegionMap'], expected_mapping) def test_add_security_group(self) -> None: template = Template() add_security_group(template) self.assertEqual( list(template.resources.keys()), ['QumuloSecurityGroup', 'QumuloSecurityGroupNodeRule'] ) class GenerateUserDataTest(unittest.TestCase): def test_generate_node1_user_data(self) -> None: instances = [ec2.Instance('t1'), ec2.Instance('t2')] spec = ChassisSpec( volume_count=2, pairing_ratio=1, working_spec={'VolumeSize': 1}, backing_spec={'VolumeSize': 5}, ) user_data = generate_node1_user_data( instances, spec, get_ip_ref=lambda x: x, cluster_name_ref='nameref' ) self.assertIn('t2', user_data) self.assertIn('nameref', user_data) self.assertIn('"spec_info": ', user_data) self.assertIn(' "slot_specs": [', user_data) def test_generate_other_nodes_user_data(self) -> None: spec = ChassisSpec( volume_count=2, pairing_ratio=1, working_spec={'VolumeSize': 1}, backing_spec={'VolumeSize': 5}, ) user_data = generate_other_nodes_user_data(spec) self.assertIn('"spec_info": ', user_data) self.assertIn(' "slot_specs": [', user_data) class AddNodesTest(unittest.TestCase): def setUp(self) -> None: self.spec = ChassisSpec( volume_count=2, pairing_ratio=1, working_spec={'VolumeSize': 1}, backing_spec={'VolumeSize': 5}, ) self.expected_resources = [ 'testEni1', 'testEni2', 'testNode1', 'testNode2', 'CWRecoveryAlarmtestNode1', 'CWRecoveryAlarmtestNode2' ] self.expected_outputs = [ 'ClusterInstanceIDs', 'ClusterPrivateIPs', 'SecurityGroup', 'TemporaryPassword', 'LinkToManagement', 'QumuloKnowledgeBase' ] def test_nodes_no_secondary_ips(self) -> None: template = Template() add_nodes(template, 2, 'test', self.spec, 0, 'sg-9') self.assertEqual(list(template.resources.keys()), self.expected_resources) self.assertEqual(list(template.outputs.keys()), self.expected_outputs) def test_nodes_has_secondary_ips(self) -> None: template = Template() add_nodes(template, 2, 'test', self.spec, 1, 'sg-9') self.assertEqual(list(template.resources.keys()), self.expected_resources) self.expected_outputs.insert(2, 'ClusterSecondaryPrivateIPs') self.assertEqual(list(template.outputs.keys()), self.expected_outputs) class GenerateQumuloCloudformationTemplateTest(unittest.TestCase): def setUp(self) -> None: self.file_path = os.path.join(os.getcwd(), 'config_file.json') def tearDown(self) -> None: if os.path.exists(self.file_path): os.remove(self.file_path) def test_generate_qcft_with_override(self) -> None: config = { 'slot_count': 12, 'pairing_ratio': 2, 'working_spec': {'VolumeSize': 1}, 'backing_spec': {'VolumeSize': 5} } json_config = json.dumps(config, indent = 4) with open(self.file_path, 'w+') as config_file: config_file.write(json_config) template = generate_qcft(2, self.file_path, 'st1', 'ami-123') self.assertIsNotNone(template) def test_generate_qcft_no_override(self) -> None: config = { 'slot_count': 12, 'pairing_ratio': 2, 'working_spec': {'VolumeSize': 1}, 'backing_spec': {'VolumeSize': 5} } json_config = json.dumps(config, indent = 4) with open(self.file_path, 'w+') as config_file: config_file.write(json_config) template = generate_qcft(2, self.file_path, None, 'ami-123') self.assertIsNotNone(template) def test_generate_qcft_bad_override(self) -> None: config = { 'slot_count': 12, 'pairing_ratio': 2, 'working_spec': {'VolumeSize': 1}, } json_config = json.dumps(config, indent = 4) with open(self.file_path, 'w+') as config_file: config_file.write(json_config) with self.assertRaisesRegex(NoBackingVolumesException, 'The backing volumes'): generate_qcft(2, self.file_path, 'st1', 'ami-123') if __name__ == '__main__': unittest.main()
8,703
124
739
86d20c2cd0960aaa6593f882e80973ad808bffa1
23,886
py
Python
sdk/python/pulumi_azure_native/notificationhubs/v20160301/notification_hub.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/notificationhubs/v20160301/notification_hub.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/notificationhubs/v20160301/notification_hub.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs from ._enums import * from ._inputs import * __all__ = ['NotificationHubArgs', 'NotificationHub'] @pulumi.input_type
46.111969
590
0.668174
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs from ._enums import * from ._inputs import * __all__ = ['NotificationHubArgs', 'NotificationHub'] @pulumi.input_type class NotificationHubArgs: def __init__(__self__, *, namespace_name: pulumi.Input[str], resource_group_name: pulumi.Input[str], adm_credential: Optional[pulumi.Input['AdmCredentialArgs']] = None, apns_credential: Optional[pulumi.Input['ApnsCredentialArgs']] = None, authorization_rules: Optional[pulumi.Input[Sequence[pulumi.Input['SharedAccessAuthorizationRulePropertiesArgs']]]] = None, baidu_credential: Optional[pulumi.Input['BaiduCredentialArgs']] = None, gcm_credential: Optional[pulumi.Input['GcmCredentialArgs']] = None, location: Optional[pulumi.Input[str]] = None, mpns_credential: Optional[pulumi.Input['MpnsCredentialArgs']] = None, name: Optional[pulumi.Input[str]] = None, notification_hub_name: Optional[pulumi.Input[str]] = None, registration_ttl: Optional[pulumi.Input[str]] = None, sku: Optional[pulumi.Input['SkuArgs']] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, wns_credential: Optional[pulumi.Input['WnsCredentialArgs']] = None): """ The set of arguments for constructing a NotificationHub resource. :param pulumi.Input[str] namespace_name: The namespace name. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input['AdmCredentialArgs'] adm_credential: The AdmCredential of the created NotificationHub :param pulumi.Input['ApnsCredentialArgs'] apns_credential: The ApnsCredential of the created NotificationHub :param pulumi.Input[Sequence[pulumi.Input['SharedAccessAuthorizationRulePropertiesArgs']]] authorization_rules: The AuthorizationRules of the created NotificationHub :param pulumi.Input['BaiduCredentialArgs'] baidu_credential: The BaiduCredential of the created NotificationHub :param pulumi.Input['GcmCredentialArgs'] gcm_credential: The GcmCredential of the created NotificationHub :param pulumi.Input[str] location: Resource location :param pulumi.Input['MpnsCredentialArgs'] mpns_credential: The MpnsCredential of the created NotificationHub :param pulumi.Input[str] name: The NotificationHub name. :param pulumi.Input[str] notification_hub_name: The notification hub name. :param pulumi.Input[str] registration_ttl: The RegistrationTtl of the created NotificationHub :param pulumi.Input['SkuArgs'] sku: The sku of the created namespace :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags :param pulumi.Input['WnsCredentialArgs'] wns_credential: The WnsCredential of the created NotificationHub """ pulumi.set(__self__, "namespace_name", namespace_name) pulumi.set(__self__, "resource_group_name", resource_group_name) if adm_credential is not None: pulumi.set(__self__, "adm_credential", adm_credential) if apns_credential is not None: pulumi.set(__self__, "apns_credential", apns_credential) if authorization_rules is not None: pulumi.set(__self__, "authorization_rules", authorization_rules) if baidu_credential is not None: pulumi.set(__self__, "baidu_credential", baidu_credential) if gcm_credential is not None: pulumi.set(__self__, "gcm_credential", gcm_credential) if location is not None: pulumi.set(__self__, "location", location) if mpns_credential is not None: pulumi.set(__self__, "mpns_credential", mpns_credential) if name is not None: pulumi.set(__self__, "name", name) if notification_hub_name is not None: pulumi.set(__self__, "notification_hub_name", notification_hub_name) if registration_ttl is not None: pulumi.set(__self__, "registration_ttl", registration_ttl) if sku is not None: pulumi.set(__self__, "sku", sku) if tags is not None: pulumi.set(__self__, "tags", tags) if wns_credential is not None: pulumi.set(__self__, "wns_credential", wns_credential) @property @pulumi.getter(name="namespaceName") def namespace_name(self) -> pulumi.Input[str]: """ The namespace name. """ return pulumi.get(self, "namespace_name") @namespace_name.setter def namespace_name(self, value: pulumi.Input[str]): pulumi.set(self, "namespace_name", value) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ The name of the resource group. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="admCredential") def adm_credential(self) -> Optional[pulumi.Input['AdmCredentialArgs']]: """ The AdmCredential of the created NotificationHub """ return pulumi.get(self, "adm_credential") @adm_credential.setter def adm_credential(self, value: Optional[pulumi.Input['AdmCredentialArgs']]): pulumi.set(self, "adm_credential", value) @property @pulumi.getter(name="apnsCredential") def apns_credential(self) -> Optional[pulumi.Input['ApnsCredentialArgs']]: """ The ApnsCredential of the created NotificationHub """ return pulumi.get(self, "apns_credential") @apns_credential.setter def apns_credential(self, value: Optional[pulumi.Input['ApnsCredentialArgs']]): pulumi.set(self, "apns_credential", value) @property @pulumi.getter(name="authorizationRules") def authorization_rules(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['SharedAccessAuthorizationRulePropertiesArgs']]]]: """ The AuthorizationRules of the created NotificationHub """ return pulumi.get(self, "authorization_rules") @authorization_rules.setter def authorization_rules(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['SharedAccessAuthorizationRulePropertiesArgs']]]]): pulumi.set(self, "authorization_rules", value) @property @pulumi.getter(name="baiduCredential") def baidu_credential(self) -> Optional[pulumi.Input['BaiduCredentialArgs']]: """ The BaiduCredential of the created NotificationHub """ return pulumi.get(self, "baidu_credential") @baidu_credential.setter def baidu_credential(self, value: Optional[pulumi.Input['BaiduCredentialArgs']]): pulumi.set(self, "baidu_credential", value) @property @pulumi.getter(name="gcmCredential") def gcm_credential(self) -> Optional[pulumi.Input['GcmCredentialArgs']]: """ The GcmCredential of the created NotificationHub """ return pulumi.get(self, "gcm_credential") @gcm_credential.setter def gcm_credential(self, value: Optional[pulumi.Input['GcmCredentialArgs']]): pulumi.set(self, "gcm_credential", value) @property @pulumi.getter def location(self) -> Optional[pulumi.Input[str]]: """ Resource location """ return pulumi.get(self, "location") @location.setter def location(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "location", value) @property @pulumi.getter(name="mpnsCredential") def mpns_credential(self) -> Optional[pulumi.Input['MpnsCredentialArgs']]: """ The MpnsCredential of the created NotificationHub """ return pulumi.get(self, "mpns_credential") @mpns_credential.setter def mpns_credential(self, value: Optional[pulumi.Input['MpnsCredentialArgs']]): pulumi.set(self, "mpns_credential", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ The NotificationHub name. """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter(name="notificationHubName") def notification_hub_name(self) -> Optional[pulumi.Input[str]]: """ The notification hub name. """ return pulumi.get(self, "notification_hub_name") @notification_hub_name.setter def notification_hub_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "notification_hub_name", value) @property @pulumi.getter(name="registrationTtl") def registration_ttl(self) -> Optional[pulumi.Input[str]]: """ The RegistrationTtl of the created NotificationHub """ return pulumi.get(self, "registration_ttl") @registration_ttl.setter def registration_ttl(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "registration_ttl", value) @property @pulumi.getter def sku(self) -> Optional[pulumi.Input['SkuArgs']]: """ The sku of the created namespace """ return pulumi.get(self, "sku") @sku.setter def sku(self, value: Optional[pulumi.Input['SkuArgs']]): pulumi.set(self, "sku", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ Resource tags """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) @property @pulumi.getter(name="wnsCredential") def wns_credential(self) -> Optional[pulumi.Input['WnsCredentialArgs']]: """ The WnsCredential of the created NotificationHub """ return pulumi.get(self, "wns_credential") @wns_credential.setter def wns_credential(self, value: Optional[pulumi.Input['WnsCredentialArgs']]): pulumi.set(self, "wns_credential", value) class NotificationHub(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, adm_credential: Optional[pulumi.Input[pulumi.InputType['AdmCredentialArgs']]] = None, apns_credential: Optional[pulumi.Input[pulumi.InputType['ApnsCredentialArgs']]] = None, authorization_rules: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['SharedAccessAuthorizationRulePropertiesArgs']]]]] = None, baidu_credential: Optional[pulumi.Input[pulumi.InputType['BaiduCredentialArgs']]] = None, gcm_credential: Optional[pulumi.Input[pulumi.InputType['GcmCredentialArgs']]] = None, location: Optional[pulumi.Input[str]] = None, mpns_credential: Optional[pulumi.Input[pulumi.InputType['MpnsCredentialArgs']]] = None, name: Optional[pulumi.Input[str]] = None, namespace_name: Optional[pulumi.Input[str]] = None, notification_hub_name: Optional[pulumi.Input[str]] = None, registration_ttl: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, sku: Optional[pulumi.Input[pulumi.InputType['SkuArgs']]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, wns_credential: Optional[pulumi.Input[pulumi.InputType['WnsCredentialArgs']]] = None, __props__=None): """ Description of a NotificationHub Resource. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[pulumi.InputType['AdmCredentialArgs']] adm_credential: The AdmCredential of the created NotificationHub :param pulumi.Input[pulumi.InputType['ApnsCredentialArgs']] apns_credential: The ApnsCredential of the created NotificationHub :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['SharedAccessAuthorizationRulePropertiesArgs']]]] authorization_rules: The AuthorizationRules of the created NotificationHub :param pulumi.Input[pulumi.InputType['BaiduCredentialArgs']] baidu_credential: The BaiduCredential of the created NotificationHub :param pulumi.Input[pulumi.InputType['GcmCredentialArgs']] gcm_credential: The GcmCredential of the created NotificationHub :param pulumi.Input[str] location: Resource location :param pulumi.Input[pulumi.InputType['MpnsCredentialArgs']] mpns_credential: The MpnsCredential of the created NotificationHub :param pulumi.Input[str] name: The NotificationHub name. :param pulumi.Input[str] namespace_name: The namespace name. :param pulumi.Input[str] notification_hub_name: The notification hub name. :param pulumi.Input[str] registration_ttl: The RegistrationTtl of the created NotificationHub :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[pulumi.InputType['SkuArgs']] sku: The sku of the created namespace :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags :param pulumi.Input[pulumi.InputType['WnsCredentialArgs']] wns_credential: The WnsCredential of the created NotificationHub """ ... @overload def __init__(__self__, resource_name: str, args: NotificationHubArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Description of a NotificationHub Resource. :param str resource_name: The name of the resource. :param NotificationHubArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(NotificationHubArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, adm_credential: Optional[pulumi.Input[pulumi.InputType['AdmCredentialArgs']]] = None, apns_credential: Optional[pulumi.Input[pulumi.InputType['ApnsCredentialArgs']]] = None, authorization_rules: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['SharedAccessAuthorizationRulePropertiesArgs']]]]] = None, baidu_credential: Optional[pulumi.Input[pulumi.InputType['BaiduCredentialArgs']]] = None, gcm_credential: Optional[pulumi.Input[pulumi.InputType['GcmCredentialArgs']]] = None, location: Optional[pulumi.Input[str]] = None, mpns_credential: Optional[pulumi.Input[pulumi.InputType['MpnsCredentialArgs']]] = None, name: Optional[pulumi.Input[str]] = None, namespace_name: Optional[pulumi.Input[str]] = None, notification_hub_name: Optional[pulumi.Input[str]] = None, registration_ttl: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, sku: Optional[pulumi.Input[pulumi.InputType['SkuArgs']]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, wns_credential: Optional[pulumi.Input[pulumi.InputType['WnsCredentialArgs']]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = NotificationHubArgs.__new__(NotificationHubArgs) __props__.__dict__["adm_credential"] = adm_credential __props__.__dict__["apns_credential"] = apns_credential __props__.__dict__["authorization_rules"] = authorization_rules __props__.__dict__["baidu_credential"] = baidu_credential __props__.__dict__["gcm_credential"] = gcm_credential __props__.__dict__["location"] = location __props__.__dict__["mpns_credential"] = mpns_credential __props__.__dict__["name"] = name if namespace_name is None and not opts.urn: raise TypeError("Missing required property 'namespace_name'") __props__.__dict__["namespace_name"] = namespace_name __props__.__dict__["notification_hub_name"] = notification_hub_name __props__.__dict__["registration_ttl"] = registration_ttl if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["sku"] = sku __props__.__dict__["tags"] = tags __props__.__dict__["wns_credential"] = wns_credential __props__.__dict__["type"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:notificationhubs/v20160301:NotificationHub"), pulumi.Alias(type_="azure-native:notificationhubs:NotificationHub"), pulumi.Alias(type_="azure-nextgen:notificationhubs:NotificationHub"), pulumi.Alias(type_="azure-native:notificationhubs/v20140901:NotificationHub"), pulumi.Alias(type_="azure-nextgen:notificationhubs/v20140901:NotificationHub"), pulumi.Alias(type_="azure-native:notificationhubs/v20170401:NotificationHub"), pulumi.Alias(type_="azure-nextgen:notificationhubs/v20170401:NotificationHub")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(NotificationHub, __self__).__init__( 'azure-native:notificationhubs/v20160301:NotificationHub', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'NotificationHub': """ Get an existing NotificationHub resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = NotificationHubArgs.__new__(NotificationHubArgs) __props__.__dict__["adm_credential"] = None __props__.__dict__["apns_credential"] = None __props__.__dict__["authorization_rules"] = None __props__.__dict__["baidu_credential"] = None __props__.__dict__["gcm_credential"] = None __props__.__dict__["location"] = None __props__.__dict__["mpns_credential"] = None __props__.__dict__["name"] = None __props__.__dict__["registration_ttl"] = None __props__.__dict__["sku"] = None __props__.__dict__["tags"] = None __props__.__dict__["type"] = None __props__.__dict__["wns_credential"] = None return NotificationHub(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="admCredential") def adm_credential(self) -> pulumi.Output[Optional['outputs.AdmCredentialResponse']]: """ The AdmCredential of the created NotificationHub """ return pulumi.get(self, "adm_credential") @property @pulumi.getter(name="apnsCredential") def apns_credential(self) -> pulumi.Output[Optional['outputs.ApnsCredentialResponse']]: """ The ApnsCredential of the created NotificationHub """ return pulumi.get(self, "apns_credential") @property @pulumi.getter(name="authorizationRules") def authorization_rules(self) -> pulumi.Output[Optional[Sequence['outputs.SharedAccessAuthorizationRulePropertiesResponse']]]: """ The AuthorizationRules of the created NotificationHub """ return pulumi.get(self, "authorization_rules") @property @pulumi.getter(name="baiduCredential") def baidu_credential(self) -> pulumi.Output[Optional['outputs.BaiduCredentialResponse']]: """ The BaiduCredential of the created NotificationHub """ return pulumi.get(self, "baidu_credential") @property @pulumi.getter(name="gcmCredential") def gcm_credential(self) -> pulumi.Output[Optional['outputs.GcmCredentialResponse']]: """ The GcmCredential of the created NotificationHub """ return pulumi.get(self, "gcm_credential") @property @pulumi.getter def location(self) -> pulumi.Output[str]: """ Resource location """ return pulumi.get(self, "location") @property @pulumi.getter(name="mpnsCredential") def mpns_credential(self) -> pulumi.Output[Optional['outputs.MpnsCredentialResponse']]: """ The MpnsCredential of the created NotificationHub """ return pulumi.get(self, "mpns_credential") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource name """ return pulumi.get(self, "name") @property @pulumi.getter(name="registrationTtl") def registration_ttl(self) -> pulumi.Output[Optional[str]]: """ The RegistrationTtl of the created NotificationHub """ return pulumi.get(self, "registration_ttl") @property @pulumi.getter def sku(self) -> pulumi.Output[Optional['outputs.SkuResponse']]: """ The sku of the created namespace """ return pulumi.get(self, "sku") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Resource tags """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type """ return pulumi.get(self, "type") @property @pulumi.getter(name="wnsCredential") def wns_credential(self) -> pulumi.Output[Optional['outputs.WnsCredentialResponse']]: """ The WnsCredential of the created NotificationHub """ return pulumi.get(self, "wns_credential")
6,082
17,299
45
ff0414b799e8f6504673a326a43404552c0e74fc
12,480
py
Python
sts_auth/stsauth.py
cshamrick/stsauth
f30cc37ed1d5e18cb47a250bf4c67a5d6332478e
[ "MIT" ]
20
2018-05-21T21:21:47.000Z
2022-02-09T04:11:06.000Z
sts_auth/stsauth.py
cshamrick/stsauth
f30cc37ed1d5e18cb47a250bf4c67a5d6332478e
[ "MIT" ]
15
2018-07-04T02:57:14.000Z
2021-08-09T18:03:12.000Z
sts_auth/stsauth.py
cshamrick/stsauth
f30cc37ed1d5e18cb47a250bf4c67a5d6332478e
[ "MIT" ]
6
2018-09-04T05:07:09.000Z
2021-06-30T19:49:21.000Z
import os import re import sys from datetime import datetime from typing import Optional, Mapping from urllib.parse import urlparse, urlunparse import boto3 # type: ignore[import] import click # type: ignore[import] import requests from requests_ntlm import HttpNtlmAuth # type: ignore[import] from bs4 import BeautifulSoup # type: ignore[import] from botocore.exceptions import ProfileNotFound, ClientError # type: ignore[import] from sts_auth import utils from sts_auth.okta import Okta from sts_auth.config import Config from sts_auth.utils import logger class STSAuth(object): """Initializes an STS Authenticator. :param username: Username to authenticate with (required). :param password: Password to authenticate with (required). :param credentialsfile: A path to an AWS Credentials file (required). See https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html for more details. :param idpentryurl: URL to the IDP Entrypoint. :param profile: Name of an AWS Profile to automatically fetch credentials for. :param okta_org: Name of the Okta organization, ex: `my-company`. :param domain: Domain which your username resides if required. :param region: Region for AWS to authenticate in. :param output: Output format, one of: `json`, `text`, `table`. """ def fetch_aws_account_names(self, response: requests.Response) -> Optional[requests.Response]: """Posts ADFS form to get account list response""" hiddenform = response.soup.find("form", {"name": "hiddenform"}) # type: ignore[attr-defined] headers = { "Referer": response.url, "Content-Type": "application/x-www-form-urlencoded", } selectors = ",".join("{}[name]".format(i) for i in ("input", "button", "textarea", "select")) data = [(tag.get("name"), tag.get("value")) for tag in hiddenform.select(selectors)] url = hiddenform.attrs.get("action") try: adfs_response = self.session.post(url, data=data, headers=headers, timeout=5) except requests.exceptions.ConnectionError as e: msg_fmt = "Could not fetch account aliases from {} due to an exception. Using cached values!\n {}" click.secho(msg_fmt.format(url, str(e)), fg="red") return None adfs_response.soup = BeautifulSoup(adfs_response.text, "lxml") # type: ignore[attr-defined] return adfs_response def fetch_aws_sts_token( role_arn: str, principal_arn: str, assertion: str, duration_seconds: Optional[int] = 3600, aws_profile: Optional[str] = None, ) -> Mapping[str, str]: """Use the assertion to get an AWS STS token using `assume_role_with_saml`""" sts = sts_client(aws_profile) token = sts.assume_role_with_saml( RoleArn=role_arn, PrincipalArn=principal_arn, SAMLAssertion=assertion, DurationSeconds=duration_seconds, ) return token def fetch_aws_sts_token_assume_role( role_arn: str, role_session_name: str, aws_profile: str, duration_seconds: Optional[int] = 3600, ) -> Mapping[str, str]: """Use the assertion to get an AWS STS token using `assume_role_with_saml`""" sts = sts_client(aws_profile) try: token = sts.assume_role( RoleArn=role_arn, RoleSessionName=role_session_name, DurationSeconds=duration_seconds, ) except ClientError as e: click.secho(str(e), fg="red") sys.exit(1) return token def sts_client(aws_profile: Optional[str]) -> boto3.Session.client: """Generate a boto3 sts client.""" try: session = boto3.Session(profile_name=aws_profile) sts = session.client("sts") except ProfileNotFound as e: click.secho(str(e), fg="red") sys.exit(1) except Exception as e: # TODO: Proper exception and message raise e return sts
43.034483
110
0.634936
import os import re import sys from datetime import datetime from typing import Optional, Mapping from urllib.parse import urlparse, urlunparse import boto3 # type: ignore[import] import click # type: ignore[import] import requests from requests_ntlm import HttpNtlmAuth # type: ignore[import] from bs4 import BeautifulSoup # type: ignore[import] from botocore.exceptions import ProfileNotFound, ClientError # type: ignore[import] from sts_auth import utils from sts_auth.okta import Okta from sts_auth.config import Config from sts_auth.utils import logger class STSAuth(object): """Initializes an STS Authenticator. :param username: Username to authenticate with (required). :param password: Password to authenticate with (required). :param credentialsfile: A path to an AWS Credentials file (required). See https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html for more details. :param idpentryurl: URL to the IDP Entrypoint. :param profile: Name of an AWS Profile to automatically fetch credentials for. :param okta_org: Name of the Okta organization, ex: `my-company`. :param domain: Domain which your username resides if required. :param region: Region for AWS to authenticate in. :param output: Output format, one of: `json`, `text`, `table`. """ def __init__( self, username: str, password: str, credentialsfile: str, idpentryurl: Optional[str] = None, profile: Optional[str] = None, okta_org: Optional[str] = None, okta_shared_secret: Optional[str] = None, domain: Optional[str] = None, region: Optional[str] = None, output: Optional[str] = None, vip_access_security_code: Optional[str] = None, force: Optional[bool] = False, ): self.credentialsfile = os.path.expanduser(credentialsfile) self.vip_access_security_code = vip_access_security_code self.config = Config( self.credentialsfile, username=username, # type: ignore[arg-type] password=password, # type: ignore[arg-type] domain=domain, # type: ignore[arg-type] idpentryurl=idpentryurl, # type: ignore[arg-type] region=region, # type: ignore[arg-type] output=output, # type: ignore[arg-type] okta_org=okta_org, # type: ignore[arg-type] okta_shared_secret=okta_shared_secret, # type: ignore[arg-type] profile=profile, # type: ignore[arg-type] ) self.config.load() self.profile = self.config.profile self.session = requests.Session() self.session.headers.update({"content-type": "application/json"}) self.session.auth = HttpNtlmAuth(self.config.domain_user, self.config.password) def get_saml_response(self, response: Optional[requests.Response] = None) -> requests.Response: if not response: logger.debug("No response provided. Fetching IDP Entry URL...") response = self.session.get(self.config.idpentryurl) response.soup = BeautifulSoup(response.text, "lxml") # type: ignore[attr-defined] assertion_pattern = re.compile(r"name=\"SAMLResponse\" value=\"(.*)\"\s*/><noscript>") assertion = re.search(assertion_pattern, response.text) if assertion: # If there is already an assertion in the response body, # we can attach the parsed assertion to the response object and # return the whole response for use later. # return account_map, assertion.group(1) response.assertion = assertion.group(1) # type: ignore[attr-defined] return response logger.debug("No SAML assertion found in response. Attempting to log in...") login_form = response.soup.find(id="loginForm") # type: ignore[attr-defined] okta_login = response.soup.find(id="okta-login-container") # type: ignore[attr-defined] if okta_login: state_token = utils.get_state_token_from_response(response.text) if state_token is None: click.secho("No State Token found in response. Exiting...", fg="red") sys.exit(1) okta_client = Okta( session=self.session, state_token=state_token, okta_org=self.config.okta_org, okta_shared_secret=self.config.okta_shared_secret, ) okta_response = okta_client.handle_okta_verification(response) return self.get_saml_response(response=okta_response) if login_form: # If there is no assertion, it is possible the user is attempting # to authenticate from outside the network, so we check for a login # form in their response. form_response = self.authenticate_to_adfs_portal(response) return self.get_saml_response(response=form_response) else: msg = "Response did not contain a valid SAML assertion, a valid login form, or request MFA." click.secho(msg, fg="red") sys.exit(1) def generate_payload_from_login_page(self, response: requests.Response) -> Mapping[str, str]: login_page = BeautifulSoup(response.text, "html.parser") payload = {} for input_tag in login_page.find_all(re.compile("(INPUT|input)")): name = input_tag.get("name", "") value = input_tag.get("value", "") logger.debug("Adding value for {!r} to Login Form payload.".format(name)) if "user" in name.lower(): payload[name] = self.config.domain_user elif "email" in name.lower(): payload[name] = self.config.domain_user elif "pass" in name.lower(): payload[name] = self.config.password elif "security_code" in name.lower(): payload[name] = self.vip_access_security_code # type: ignore[assignment] else: payload[name] = value return payload def build_idp_auth_url(self, response: requests.Response) -> str: idp_auth_form_submit_url = response.url login_page = BeautifulSoup(response.text, "html.parser") for form in login_page.find_all(re.compile("(FORM|form)")): action = form.get("action") if action: parsed_action = urlparse(action) parsed_idp_url = urlparse(self.config.idpentryurl) # Fallback to the IDP Entry URL from the config file if the # form action does not contain a fully defined URL. # i.e. action='/path/to/something' vs action='http://test.com/path/to/something' scheme = parsed_action.scheme if parsed_action.scheme else parsed_idp_url.scheme netloc = parsed_action.netloc if parsed_action.netloc else parsed_idp_url.netloc url_parts = ( scheme, netloc, parsed_action.path, None, parsed_action.query, None, ) idp_auth_form_submit_url = urlunparse(url_parts) return idp_auth_form_submit_url def authenticate_to_adfs_portal(self, response: requests.Response) -> requests.Response: payload = self.generate_payload_from_login_page(response) idp_auth_form_submit_url = self.build_idp_auth_url(response) logger.debug("Posting login data to URL: {}".format(idp_auth_form_submit_url)) login_response = self.session.post(idp_auth_form_submit_url, data=payload, verify=True) login_response_page = BeautifulSoup(login_response.text, "html.parser") # Checks for errorText id on page to indicate any errors login_error_message = login_response_page.find(id="errorText") # Checks for specific text in a paragraph element to indicate any errors vip_login_error_message = login_response_page.find( lambda tag: tag.name == "p" and "Authentication failed" in tag.text ) if (login_error_message and len(login_error_message.string) > 0) or ( vip_login_error_message and len(vip_login_error_message) > 0 ): msg = "Login page returned the following message. Please resolve this issue before continuing:" click.secho(msg, fg="red") error_msg = login_error_message if login_error_message else vip_login_error_message click.secho(error_msg.string, fg="red") sys.exit(1) return login_response def fetch_aws_account_names(self, response: requests.Response) -> Optional[requests.Response]: """Posts ADFS form to get account list response""" hiddenform = response.soup.find("form", {"name": "hiddenform"}) # type: ignore[attr-defined] headers = { "Referer": response.url, "Content-Type": "application/x-www-form-urlencoded", } selectors = ",".join("{}[name]".format(i) for i in ("input", "button", "textarea", "select")) data = [(tag.get("name"), tag.get("value")) for tag in hiddenform.select(selectors)] url = hiddenform.attrs.get("action") try: adfs_response = self.session.post(url, data=data, headers=headers, timeout=5) except requests.exceptions.ConnectionError as e: msg_fmt = "Could not fetch account aliases from {} due to an exception. Using cached values!\n {}" click.secho(msg_fmt.format(url, str(e)), fg="red") return None adfs_response.soup = BeautifulSoup(adfs_response.text, "lxml") # type: ignore[attr-defined] return adfs_response def generate_login_url(self, token: Mapping[str, Mapping[str, str]]) -> str: federation_base_url = "https://signin.aws.amazon.com/federation" request_params = { "Action": "getSigninToken", "SessionDuration": "43200", "Session": str( { "sessionId": token["Credentials"]["AccessKeyId"], "sessionKey": token["Credentials"]["SecretAccessKey"], "sessionToken": token["Credentials"]["SessionToken"], } ), } r = self.session.get(federation_base_url, params=request_params) signin_token = r.json() login_params = { "Action": "login", "Destination": "https://console.aws.amazon.com/", "SigninToken": signin_token["SigninToken"], } request_parameters = requests.compat.urlencode(login_params) # type: ignore[attr-defined] request_url = "{base_url}?{request_parameters}".format( base_url=federation_base_url, request_parameters=request_parameters ) return request_url def fetch_aws_sts_token( role_arn: str, principal_arn: str, assertion: str, duration_seconds: Optional[int] = 3600, aws_profile: Optional[str] = None, ) -> Mapping[str, str]: """Use the assertion to get an AWS STS token using `assume_role_with_saml`""" sts = sts_client(aws_profile) token = sts.assume_role_with_saml( RoleArn=role_arn, PrincipalArn=principal_arn, SAMLAssertion=assertion, DurationSeconds=duration_seconds, ) return token def fetch_aws_sts_token_assume_role( role_arn: str, role_session_name: str, aws_profile: str, duration_seconds: Optional[int] = 3600, ) -> Mapping[str, str]: """Use the assertion to get an AWS STS token using `assume_role_with_saml`""" sts = sts_client(aws_profile) try: token = sts.assume_role( RoleArn=role_arn, RoleSessionName=role_session_name, DurationSeconds=duration_seconds, ) except ClientError as e: click.secho(str(e), fg="red") sys.exit(1) return token def sts_client(aws_profile: Optional[str]) -> boto3.Session.client: """Generate a boto3 sts client.""" try: session = boto3.Session(profile_name=aws_profile) sts = session.client("sts") except ProfileNotFound as e: click.secho(str(e), fg="red") sys.exit(1) except Exception as e: # TODO: Proper exception and message raise e return sts
8,351
0
162
f8b6c498aceb5c6cd20a8bd5c69808fe4c7a6870
561
py
Python
src/unittest/python/rds_utils_tests.py
ImmobilienScout24/rds_log_dog
f8df42b78f24856358db15b20675f0a155a02f19
[ "MIT" ]
1
2018-01-11T18:36:28.000Z
2018-01-11T18:36:28.000Z
src/unittest/python/rds_utils_tests.py
ImmobilienScout24/rds_log_dog
f8df42b78f24856358db15b20675f0a155a02f19
[ "MIT" ]
2
2017-01-05T15:45:47.000Z
2018-04-16T11:12:01.000Z
src/unittest/python/rds_utils_tests.py
ImmobilienScout24/rds_log_dog
f8df42b78f24856358db15b20675f0a155a02f19
[ "MIT" ]
5
2017-01-05T15:39:02.000Z
2018-04-16T10:37:44.000Z
from __future__ import print_function, absolute_import, division import unittest2 as unittest from mock import patch from rds_log_dog.rds_utils import get_size
33
65
0.741533
from __future__ import print_function, absolute_import, division import unittest2 as unittest from mock import patch from rds_log_dog.rds_utils import get_size class Test(unittest.TestCase): @patch('rds_log_dog.rds_utils.describe_logfiles_of_instance') def test_get_size(self, describe_logfiles_of_instance): describe_logfiles_of_instance.return_value = [ dict(LogFileName='foo', LastWritten='bar', Size=42), dict(LogFileName='foo2', LastWritten='bar', Size=23)] self.assertEqual(42, get_size('foo', 'foo'))
273
102
23
e7671c5cc516f190fa1376f587270c007db5334e
2,747
py
Python
cytopy/tests/test_project.py
JANHMS/CytoPy
8537d707fa25645b55b4ec1e25fff9f19847fb1b
[ "MIT" ]
41
2020-04-08T11:01:28.000Z
2022-03-11T17:17:18.000Z
cytopy/tests/test_project.py
JANHMS/CytoPy
8537d707fa25645b55b4ec1e25fff9f19847fb1b
[ "MIT" ]
27
2020-04-07T14:59:24.000Z
2022-03-01T20:43:34.000Z
cytopy/tests/test_project.py
JANHMS/CytoPy
8537d707fa25645b55b4ec1e25fff9f19847fb1b
[ "MIT" ]
8
2020-04-28T15:16:24.000Z
2022-03-02T19:02:14.000Z
from cytopy.data.project import Project from cytopy.data.errors import * from cytopy.tests import assets import pytest import os @pytest.fixture()
34.772152
104
0.697124
from cytopy.data.project import Project from cytopy.data.errors import * from cytopy.tests import assets import pytest import os @pytest.fixture() def create_project(): os.mkdir(f"{os.getcwd()}/test_data2") p = Project(project_id="test", data_directory=f"{os.getcwd()}/test_data2") p.save() yield p p.delete() def test_create_project_warn_directory(): x = f"{os.getcwd()}/test_data2" with pytest.warns(UserWarning) as warn_: Project(project_id="test", data_directory=x) warning = f"Could not locate data directory at path {x}, all further operations " \ f"will likely resolve in errors as single cell data will not be attainable. Update the " \ f"data directory before continuing using the 'update_data_directory' method." assert str(warn_.list[0].message) == warning def test_add_experiment(create_project): p = create_project p.add_experiment(experiment_id="test1", panel_definition=f"{assets.__path__._path[0]}/test_panel.xlsx") assert len(p.experiments) == 1 p.add_experiment(experiment_id="test2", panel_definition=f"{assets.__path__._path[0]}/test_panel.xlsx") assert len(p.experiments) == 2 def test_add_experiment_duplicate_err(create_project): p = create_project p.add_experiment(experiment_id="test1", panel_definition=f"{assets.__path__._path[0]}/test_panel.xlsx") with pytest.raises(DuplicateExperimentError) as err: p.add_experiment(experiment_id="test1", panel_definition=f"{assets.__path__._path[0]}/test_panel.xlsx") assert str(err.value) == 'Experiment with id test1 already exists!' def test_list_experiments(create_project): p = create_project p.add_experiment(experiment_id="test1", panel_definition=f"{assets.__path__._path[0]}/test_panel.xlsx") assert list(p.list_experiments()) == ["test1"] def test_load_experiment(create_project): p = create_project p.add_experiment(experiment_id="test1", panel_definition=f"{assets.__path__._path[0]}/test_panel.xlsx") e = p.get_experiment(experiment_id="test1") assert e.experiment_id == "test1" def test_add_subject(create_project): p = create_project p.add_subject(subject_id="test_subject") assert len(p.subjects) == 1 def test_list_subjects(create_project): p = create_project p.add_subject(subject_id="test_subject") assert list(p.list_subjects()) == ["test_subject"] def test_get_subject(create_project): p = create_project p.add_subject(subject_id="test_subject") s = p.get_subject(subject_id="test_subject") assert s.subject_id == "test_subject"
2,384
0
206