hexsha
stringlengths
40
40
size
int64
7
1.04M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
247
max_stars_repo_name
stringlengths
4
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
368k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
247
max_issues_repo_name
stringlengths
4
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
247
max_forks_repo_name
stringlengths
4
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.04M
avg_line_length
float64
1.77
618k
max_line_length
int64
1
1.02M
alphanum_fraction
float64
0
1
original_content
stringlengths
7
1.04M
filtered:remove_function_no_docstring
int64
-102
942k
filtered:remove_class_no_docstring
int64
-354
977k
filtered:remove_delete_markers
int64
0
60.1k
f77ea59bf822539953a84da90bca3bded5b1d71d
4,051
py
Python
spider/wenkubaidu/wenku.py
JackyYuanjie/python-scripts
490eb9668bda6db004ae87d204588fb6ffe56051
[ "Apache-2.0" ]
1
2021-07-08T05:09:38.000Z
2021-07-08T05:09:38.000Z
spider/wenkubaidu/wenku.py
JackyYuanjie/python-scripts
490eb9668bda6db004ae87d204588fb6ffe56051
[ "Apache-2.0" ]
null
null
null
spider/wenkubaidu/wenku.py
JackyYuanjie/python-scripts
490eb9668bda6db004ae87d204588fb6ffe56051
[ "Apache-2.0" ]
1
2020-01-09T07:29:17.000Z
2020-01-09T07:29:17.000Z
#!/usr/bin/env python # -*- coding:utf-8 -*- import urllib import requests from bs4 import BeautifulSoup """ https://wenku.baidu.com/browse/getrequest?doc_id=a1eec6289b6648d7c1c7468f&pn=22&rn=1&type=ppt&callback=bd__cbs__s5lw72 https://wenku.baidu.com/browse/getrequest?doc_id=a1eec6289b6648d7c1c7468f&pn=23&rn=1&type=ppt&callback=bd__cbs__coo5j5 https://wenku.baidu.com/browse/getrequest?doc_id=a1eec6289b6648d7c1c7468f&pn=21&rn=1&type=ppt&callback=bd__cbs__2hc9ds https://wenku.baidu.com/browse/getrequest?doc_id=a1eec6289b6648d7c1c7468f&pn=5&rn=1&type=ppt&callback=bd__cbs__nh2gao """ linkfiles = "F:\\PythonProject\\python-scripts\\spider\\wenkubaidu\\odnimages\\" class WK(): ''' 百度文库 ''' if __name__=="__main__": wk = WK() for pn in range(1,26): url = 'https://wenku.baidu.com/browse/getrequest?doc_id=a1eec6289b6648d7c1c7468f&pn={}&rn=1&type=ppt&callback=bd__cbs__nh2gao'.format(pn) print(url,"下载完成") wk.spyder(url) """ with open(linkfiles + "wenkulink.txt",'a+') as fw: # fw.write(url) # 是统计的页数连接,可以从中获取到图片的链接 # fw.write("\n") """ # wk.spyder(wk.baseUrl) """ 注意该网址粘贴到浏览器上访问是可以的,但是在代码中若不替换\该字符,会导致报错. https:\/\/wkretype.bdimg.com\/retype\/zoom\/6a30bde2f8c75fbfc77db23c?pn=4&raww=1080&rawh=810&o=jpg_6&md5sum=f9ace759cd13bfd0f9ad186d77af05fa&sign=0756077547&png=41164-280359&jpg=227559-365825 """
44.032609
883
0.689459
#!/usr/bin/env python # -*- coding:utf-8 -*- import urllib import requests from bs4 import BeautifulSoup """ https://wenku.baidu.com/browse/getrequest?doc_id=a1eec6289b6648d7c1c7468f&pn=22&rn=1&type=ppt&callback=bd__cbs__s5lw72 https://wenku.baidu.com/browse/getrequest?doc_id=a1eec6289b6648d7c1c7468f&pn=23&rn=1&type=ppt&callback=bd__cbs__coo5j5 https://wenku.baidu.com/browse/getrequest?doc_id=a1eec6289b6648d7c1c7468f&pn=21&rn=1&type=ppt&callback=bd__cbs__2hc9ds https://wenku.baidu.com/browse/getrequest?doc_id=a1eec6289b6648d7c1c7468f&pn=5&rn=1&type=ppt&callback=bd__cbs__nh2gao """ linkfiles = "F:\\PythonProject\\python-scripts\\spider\\wenkubaidu\\odnimages\\" class WK(): ''' 百度文库 ''' def __init__(self): self.baseUrl = "https://wenku.baidu.com/view/564fc70a77a20029bd64783e0912a21615797ff7.html" self.header = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) \ AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'} def getResponse(self,url): try: req = urllib.request.Request(url,headers = self.header) response = urllib.request.urlopen(req,timeout = 10) except: print("页面请求失败") else: return response.read().decode('gb2312') def spyder(self,url): html = self.getResponse(url) # print(html) start_index = html.find("https:") # print(start_index) print('-'*30) end_index = html.find('","') # print(end_index) print(html[start_index:end_index]) """ with open(linkfiles + "wenkucontent.txt",'a+') as fa: fa.write(html) fa.write("\n") """ header = self.header header['Cookie'] = 'BAIDUID=2CC737B4D3E3D51EA7529F8065A8B708:FG=1; PSTM=1553749648; BIDUPSID=36D49C7DE8F84F920A6D6ADE0E719043; _click_param_pc_rec_doc_2017_testid=4; ZD_ENTRY=bing; cflag=13%3A3; session_name=cn.bing.com; isJiaoyuVip=1; wk_shifen_pop_window=7765_1_1567070315751; Hm_lvt_d8bfb560f8d03bbefc9bdecafc4a4bf6=1566318226,1566571568,1567070267,1567070708; session_id=1567070708094; BCLID=11327784929476180808; BDSFRCVID=aD0OJeC624LjSNrwjvtqhFVMiLK2tRQTH6055tzl7cu_UIsP_XwLEG0PDM8g0Ku-5SOpogKK0mOTHv-F_2uxOjjg8UtVJeC6EG0P3J; H_BDCLCKID_SF=JJ-qVCPbtDvbfP0kb-r_bPk0hNLHJK62aKDs3l-MBhcqEIL4jMv80UCX5U6q-no33HcuBlRcttbCVfbSj60hjJ0hhaJ2-lRPW67TMMn5Bp5nhMJeXj7JDMP0qHogWbOy523ion6vQpn-KqQ3DRoWXPIqbN7P-p5Z5mAqKl0MLIOkbRO4-TFaejOQDfK; userFirstTime=true; ___wk_scode_token=XdTTTDexiuWKJhoY9dcpx3hQOGs%2Bniyz9YrLayUnQsQ%3D; Hm_lpvt_d8bfb560f8d03bbefc9bdecafc4a4bf6=1567072063' # print(header) urlrep = html[start_index:end_index].replace('\\','') # print(urlrep) # req = requests.get('https://wkretype.bdimg.com//retype//zoom//6a30bde2f8c75fbfc77db23c?pn=4&raww=1080&rawh=810&o=jpg_6&md5sum=f9ace759cd13bfd0f9ad186d77af05fa&sign=0756077547&png=41164-280359&jpg=227559-365825') req = requests.get(urlrep,headers = header) """ with open(linkfiles + "b.png",'wb') as fb: fb.write(req.content) """ p_index = html.find('"page":') p_end = html.find('}]') pag = html[p_index+7:p_end] with open(linkfiles + pag + ".png",'wb') as fb: fb.write(req.content) if __name__=="__main__": wk = WK() for pn in range(1,26): url = 'https://wenku.baidu.com/browse/getrequest?doc_id=a1eec6289b6648d7c1c7468f&pn={}&rn=1&type=ppt&callback=bd__cbs__nh2gao'.format(pn) print(url,"下载完成") wk.spyder(url) """ with open(linkfiles + "wenkulink.txt",'a+') as fw: # fw.write(url) # 是统计的页数连接,可以从中获取到图片的链接 # fw.write("\n") """ # wk.spyder(wk.baseUrl) """ 注意该网址粘贴到浏览器上访问是可以的,但是在代码中若不替换\该字符,会导致报错. https:\/\/wkretype.bdimg.com\/retype\/zoom\/6a30bde2f8c75fbfc77db23c?pn=4&raww=1080&rawh=810&o=jpg_6&md5sum=f9ace759cd13bfd0f9ad186d77af05fa&sign=0756077547&png=41164-280359&jpg=227559-365825 """
2,563
0
80
dc824dbc29f0b42ffaa3b7d3fe8147c1f7a32031
18,983
py
Python
source/xgm_mod_options.py
Omni-9/warband_mod_source
c9737d7793ccdb185d8d3caedda0da915104e405
[ "BSD-Source-Code" ]
14
2018-09-20T23:01:27.000Z
2021-05-25T11:05:09.000Z
source/xgm_mod_options.py
Omni-9/warband_mod_source
c9737d7793ccdb185d8d3caedda0da915104e405
[ "BSD-Source-Code" ]
44
2018-09-15T03:05:50.000Z
2022-03-22T02:46:24.000Z
source/xgm_mod_options.py
Omni-9/warband_mod_source
c9737d7793ccdb185d8d3caedda0da915104e405
[ "BSD-Source-Code" ]
13
2018-10-02T11:45:24.000Z
2021-08-22T18:41:44.000Z
from header_common import * from header_presentations import * from header_mission_templates import * from ID_meshes import * from header_operations import * from header_triggers import * from module_constants import * #import string from xgm_mod_options_header import * ############################################################################ ## 0) overlay id (not used atm, but can allow searches in future. just put something unique) ## 1) overlay type (defined in xgm_mod_options_header) ## 2) overlay type specific parameters (e.g. for number box, it can be lower/upper range, for cbobox, it would be the cbo items etc) ## a) xgm_ov_numberbox : lower_bound(inclusive), upper_bound(exclusive). e.g. [0,101] for range of values from 0-100 ## b) xgm_ov_combolabel/xgm_ov_combobutton : list of combo items. e.g. ["option1", "option2", "option3"] ## c) xgm_ov_slider : lower_bound(inclusive), upper_bound(exclusive). e.g. [0,101] for range of values from 0-100 ## d) xgm_ov_checkbox : not used fttb. just leave empty. e.g. [] ## 3) text label ## 4) reserved for text label flags ## 5) description (unused for now. may be used for stuff like tooltip in future) ## 6) reserved for description flags ## 7) initialization op block. Used for updating the overlay values from game values. Must assign the desired value to reg1. ## 8) update op block. Used for updating game values from overlay values. The overlay value is in reg1. ## 9) optional. reserved for option page id. unused for now. leave out for options using general page. ############################################################################ mod_options = [ ("camp_fuck_setting", xgm_ov_combolabel, ["Disabled", "Consensual Only", "All Enabled"], "Sexual Content:", 0, "Settings for sexual content in game.", 0, [(try_begin), (eq, "$g_sexual_content", 0), (assign, reg1, 0), (else_try), (eq, "$g_sexual_content", 1), (assign, reg1, 1), (else_try), (eq, "$g_sexual_content", 2), (assign, reg1, 2), (try_end),], [(try_begin), (eq, reg1, 0), (assign, "$g_sexual_content", 0), (else_try), (eq, reg1, 1), (assign, "$g_sexual_content", 1), (else_try), (eq, reg1, 2), (assign, "$g_sexual_content", 2), (try_end), ], ), ("dplmc_woman_prejudice", xgm_ov_combolabel, ["Historical", "Tolerant", "Utopian"], "Diplomacy - Prejudice:", 0, "Setting for Diplomacy's prejudice changes.", 0, [ (assign, reg1, "$g_disable_condescending_comments"), ], [ (assign, "$g_disable_condescending_comments", reg1), ], ), ("camp_polygamy", xgm_ov_checkbox, [], "Polygamy:", 0, "Toggles polygamy settings", 0, [(try_begin), (eq, "$g_polygamy", 0), (assign, reg1, 0), (else_try), (eq, "$g_polygamy", 1), (assign, reg1, 1), (try_end), ], [ (try_begin), (eq, reg1, 0), (assign, "$g_polygamy", 0), (else_try), (eq, reg1, 1), (assign, "$g_polygamy", 1), (try_end), ], ), ( "camp_nohomobro", xgm_ov_checkbox , [], "Disable Gay:", 0, "Disables gay scenes.", 0, [ # initialization block (set value in reg1) (assign, reg1, "$g_nohomo"), ], [ # update block (value is in reg1) (assign, "$g_nohomo", reg1), ], ), ( "camp_no_dancers", xgm_ov_checkbox , [], "Feast Dancers:", 0, "Toggles dancers during feasts.", 0, [ # initialization block (set value in reg1) (assign, reg1, "$g_feast_dancers"), ], [ # update block (value is in reg1) (assign, "$g_feast_dancers", reg1), ], ), ("camp_dark_hunters", xgm_ov_checkbox, [], "Black Khergits and Dark Hunters:", 0, "Settings for Dark Hunters and Black Khergits.", 0, [ (try_begin), (eq, "$g_dark_hunters_enabled", 0), (assign, reg1, 0), (else_try), (eq, "$g_dark_hunters_enabled", 1), (assign, reg1, 1), (try_end), ], [ (try_begin), (eq, reg1, 0), (assign, "$g_dark_hunters_enabled", 0), (assign, ":removed", 0), (try_for_parties, ":party_no"), (party_get_template_id, ":ptid", ":party_no"), (this_or_next|eq, ":ptid", "pt_dark_hunters"), (eq, ":ptid", "pt_black_khergit_raiders"), (remove_party, ":party_no"), (val_add, ":removed", 1), (try_end), (assign, reg0, ":removed"), (display_message, "@{reg0} parties removed from the map."), (else_try), (eq, reg1, 1), (assign, "$g_dark_hunters_enabled", 1), (try_end), ], ), ( "keep_companions", xgm_ov_checkbox , [], "Keep Companions:", 0, "Setting for keeping companions after defeat", 0, [ # initialization block (set value in reg1) (assign, reg1, "$g_keep_companions"), ], [ # update block (value is in reg1) (assign, "$g_keep_companions", reg1), ], ), ( "disable_complaints", xgm_ov_checkbox , [], "Disable Complaints:", 0, "Setting for disabling companion complaints", 0, [ # initialization block (set value in reg1) (assign, reg1, "$disable_npc_complaints"), ], [ # update block (value is in reg1) (assign, "$disable_npc_complaints", reg1), ], ), ( "disable_bodyguard", xgm_ov_checkbox , [], "Disable Bodyguards:", 0, "Setting for disabling companions as bodyguards", 0, [ # initialization block (set value in reg1) (assign, reg1, "$disable_bodyguards"), ], [ # update block (value is in reg1) (assign, "$disable_bodyguards", reg1), ], ), ("camp_realistic_wounding", xgm_ov_checkbox, [], "Realistic Casualties:", 0, "Toggles realistic wounding for other damage types", 0, [(try_begin), (eq, "$g_realistic_wounding", 0), (assign, reg1, 0), (else_try), (eq, "$g_realistic_wounding", 1), (assign, reg1, 1), (try_end), ], [ (try_begin), (eq, reg1, 0), (assign, "$g_realistic_wounding", 0), (else_try), (eq, reg1, 1), (assign, "$g_realistic_wounding", 1), (try_end), ], ), ("enable_shield_bash", xgm_ov_combolabel, ["Disabled", "Player Only", "All Combatants"], "Shield Bash:", 0, "Setting for Diplomacy's prejudice changes.", 0, [ (assign, reg1, "$g_enable_shield_bash"), ], [ (assign, "$g_enable_shield_bash", reg1), ], ), ("horizontal_divide", xgm_ov_line, [], "", 0,"", 0,[],[],), ( "dplmc_horsespeed", xgm_ov_checkbox , [], "Diplomacy - Horse Speed:", 0, "Setting for Diplomacy's horse speed changes", 0, [ # initialization block (set value in reg1) (store_sub,reg1,1,"$g_dplmc_horse_speed"), ], [ # update block (value is in reg1) (store_sub,"$g_dplmc_horse_speed",1,reg1), ], ), ( "dplmc_battlecontinue", xgm_ov_checkbox , [], "Diplomacy - Battle Continuation:", 0, "Setting for Diplomacy's battle continuation", 0, [ # initialization block (set value in reg1) (store_sub,reg1,1,"$g_dplmc_battle_continuation"), ], [ # update block (value is in reg1) (store_sub,"$g_dplmc_battle_continuation",1,reg1), ], ), ( "dplmc_disguise", xgm_ov_checkbox , [], "Diplomacy - Disguise System:", 0, "Setting for Diplomacy's disguise system", 0, [ # initialization block (set value in reg1) (assign, reg1, "$g_dplmc_player_disguise"), ], [ # update block (value is in reg1) (assign, "$g_dplmc_player_disguise", reg1), ], ), ( "dplmc_terrain_advantage", xgm_ov_checkbox , [], "Diplomacy - Autocalc Terrain Advantage:", 0, "Setting for Diplomacy's terrain advantage.", 0, [ # initialization block (set value in reg1) (try_begin), (eq, "$g_dplmc_terrain_advantage", DPLMC_TERRAIN_ADVANTAGE_DISABLE), (assign, reg1, 0), (else_try), (eq, "$g_dplmc_terrain_advantage", DPLMC_TERRAIN_ADVANTAGE_ENABLE), (assign, reg1, 1), (try_end), ], [ # update block (value is in reg1) (try_begin), (eq, reg1, 0), (assign, "$g_dplmc_terrain_advantage", DPLMC_TERRAIN_ADVANTAGE_DISABLE), (else_try), (eq, reg1, 1), (assign, "$g_dplmc_terrain_advantage", DPLMC_TERRAIN_ADVANTAGE_ENABLE), (try_end), ], ), ( "dplmc_lord_recycling", xgm_ov_checkbox , [], "Diplomacy - Returning From Exile:", 0, "Setting for Diplomacy's terrain advantage.", 0, [ # initialization block (set value in reg1) (try_begin), (eq, "$g_dplmc_lord_recycling", DPLMC_LORD_RECYCLING_DISABLE), (assign, reg1, 0), (else_try), (eq, "$g_dplmc_lord_recycling", DPLMC_LORD_RECYCLING_ENABLE), (assign, reg1, 1), (try_end), ], [ # update block (value is in reg1) (try_begin), (eq, reg1, 0), (assign, "$g_dplmc_lord_recycling", DPLMC_LORD_RECYCLING_DISABLE), (else_try), (eq, reg1, 1), (assign, "$g_dplmc_lord_recycling", DPLMC_LORD_RECYCLING_ENABLE), (try_end), ], ), ("dplmc_ai_changes_a", xgm_ov_combolabel, ["Disabled", "Low", "Medium", "High"], "Diplomacy - AI Changes:", 0, "Setting for Diplomacy's AI changes.", 0, [ (try_begin), (eq, "$g_dplmc_ai_changes", DPLMC_AI_CHANGES_DISABLE), (assign, reg1, 0), (else_try), (eq, "$g_dplmc_ai_changes", DPLMC_AI_CHANGES_LOW), (assign, reg1, 1), (else_try), (eq, "$g_dplmc_ai_changes", DPLMC_AI_CHANGES_MEDIUM), (assign, reg1, 2), (else_try), (eq, "$g_dplmc_ai_changes", DPLMC_AI_CHANGES_HIGH), (assign, reg1, 3), (try_end), ], [ (try_begin), (eq, reg1, 0), (assign, "$g_dplmc_ai_changes", DPLMC_AI_CHANGES_DISABLE), (else_try), (eq, reg1, 1), (assign, "$g_dplmc_ai_changes", DPLMC_AI_CHANGES_LOW), (else_try), (eq, reg1, 2), (assign, "$g_dplmc_ai_changes", DPLMC_AI_CHANGES_MEDIUM), (else_try), (eq, reg1, 3), (assign, "$g_dplmc_ai_changes", DPLMC_AI_CHANGES_HIGH), (try_end), ], ), ("dplmc_gold_changes", xgm_ov_combolabel, ["Disabled", "Low", "Medium", "High"], "Diplomacy - Economy Changes:", 0, "Setting for Diplomacy's economy changes.", 0, [ (try_begin), (eq, "$g_dplmc_gold_changes", DPLMC_GOLD_CHANGES_DISABLE), (assign, reg1, 0), (else_try), (eq, "$g_dplmc_gold_changes", DPLMC_GOLD_CHANGES_LOW), (assign, reg1, 1), (else_try), (eq, "$g_dplmc_gold_changes", DPLMC_GOLD_CHANGES_MEDIUM), (assign, reg1, 2), (else_try), (eq, "$g_dplmc_gold_changes", DPLMC_GOLD_CHANGES_HIGH), (assign, reg1, 3), (try_end), ], [ (try_begin), (eq, reg1, 0), (assign, "$g_dplmc_gold_changes", DPLMC_GOLD_CHANGES_DISABLE), (else_try), (eq, reg1, 1), (assign, "$g_dplmc_gold_changes", DPLMC_GOLD_CHANGES_LOW), (else_try), (eq, reg1, 2), (assign, "$g_dplmc_gold_changes", DPLMC_GOLD_CHANGES_MEDIUM), (else_try), (eq, reg1, 3), (assign, "$g_dplmc_gold_changes", DPLMC_GOLD_CHANGES_HIGH), (try_end), ], ), ("horizontal_divide", xgm_ov_line, [], "", 0,"", 0,[],[],), ("minimap_setting", xgm_ov_combolabel, ["Compass Style", "Small Minimap", "Medium Minimap", "Large Minimap", "Disabled"], "Battle Minimap Overlay:", 0, "Setting for the minimap.", 0, [ (try_begin), (eq, "$g_minimap_style", -1), (assign, reg1, 4), (else_try), (assign, reg1, "$g_minimap_style"), (try_end), ], [ (try_begin), (eq, reg1, 4), (assign, "$g_minimap_style", -1), (else_try), (assign, "$g_minimap_style", reg1), (try_end), ], ), ("minimap_setting", xgm_ov_combolabel, ["Disabled", "Only Allies", "Only Enemies", "All Troops"], "Troop HP Bars:", 0, "Setting for troop HP bars.", 0, [ (try_begin), # Ally (eq, "$g_hp_bar_enemy", 0), (eq, "$g_hp_bar_ally", 1), (assign, reg1, 1), (else_try), # Enemy (eq, "$g_hp_bar_enemy", 1), (eq, "$g_hp_bar_ally", 0), (assign, reg1, 2), (else_try), # Both (eq, "$g_hp_bar_enemy", 1), (eq, "$g_hp_bar_ally", 1), (assign, reg1, 3), (else_try), # None (assign, reg1, 0), (try_end), ], [ (try_begin), # Ally (eq, reg1, 1), (assign, "$g_hp_bar_enemy", 0), (assign, "$g_hp_bar_ally", 1), (else_try), # Enemy (eq, reg1, 2), (assign, "$g_hp_bar_enemy", 1), (assign, "$g_hp_bar_ally", 0), (else_try), # Both (eq, reg1, 3), (assign, "$g_hp_bar_enemy", 1), (assign, "$g_hp_bar_ally", 1), (else_try), # None (assign, "$g_hp_bar_enemy", 0), (assign, "$g_hp_bar_ally", 0), (try_end), ], ), ("minimap_setting", xgm_ov_numberbox, [3,81], "HP Bar Distance Limit:", 0, "Setting for the HP Bars.", 0, [ (assign, reg1, "$g_hp_bar_dis_limit"), ], [ (assign, "$g_hp_bar_dis_limit", reg1), ], ), ("camp_troop_ratio_bar", xgm_ov_checkbox, [], "Troop ratio bar:", 0, "Toggles troop ratio bar", 0, [(try_begin), (eq, "$g_troop_ratio_bar", 0), (assign, reg1, 0), (else_try), (eq, "$g_troop_ratio_bar", 1), (assign, reg1, 1), (try_end), ], [ (try_begin), (eq, reg1, 0), (assign, "$g_troop_ratio_bar", 0), (else_try), (eq, reg1, 1), (assign, "$g_troop_ratio_bar", 1), (try_end), ], ), ("camp_decapitation", xgm_ov_checkbox, [], "Decapitation:", 0, "Toggles Decapitation", 0, [(try_begin), (eq, "$g_decapitation_enabled", 0), (assign, reg1, 0), (else_try), (eq, "$g_decapitation_enabled", 1), (assign, reg1, 1), (try_end), ], [ (try_begin), (eq, reg1, 0), (assign, "$g_decapitation_enabled", 0), (else_try), (eq, reg1, 1), (assign, "$g_decapitation_enabled", 1), (try_end), ], ), ("horizontal_divide", xgm_ov_line, [], "", 0,"", 0,[],[],), ( "op_cheatmode", xgm_ov_checkbox , [], "Cheat mode:", 0, "This sets the in-game cheat mode", 0, [ # initialization block (set value in reg1) (assign, reg1, "$cheat_mode"), ], [ # update block (value is in reg1) (assign, "$cheat_mode", reg1), ], ), ] # mod_options # TODO: add option pages here # collation of all *_mod_options.py from active mods # import and merge related variables from all {active_mod}_mod_options.py for all active mods #try: # from modmerger_options import options, mods_active # from modmerger import mod_get_process_order, mod_is_active # from util_common import add_objects # modcomp_name = "mod_options" # var_list = ["mod_options",] #from modmerger import modmerge #modmerge(var_set) # mod_process_order = mod_get_process_order(modcomp_name) # vars_to_import= ["mod_options"] # for x in mod_process_order: # if(mod_is_active(x) and x <> "xgm_mod_options"): # must exclude this file since we are using this file as base # try: #mergefn_name = "modmerge_%s"%(modcomp_name) # target_module_name = "%s_%s"%(x,modcomp_name) # _temp = __import__( target_module_name , globals(), locals(), vars_to_import,-1) # logger.info("Merging objects for component \"%s\" from mod \"%s\"..."%(modcomp_name,x)) # # add_objects(mod_options, _temp.mod_options) # import from target module. # # # TODO: collect option pages # except ImportError: # errstring = "Failed importing for component \"%s\" for mod \"%s\"." % (modcomp_name, x) # logger.debug(errstring) # else: # errstring = "Mod \"%s\" not active for Component \"%s\"." % (x, modcomp_name) # logger.debug(errstring) #except: # raise # collation end # At this point, mod_options will contain the list of all mod_options specified. ## utility functions from util_wrappers import * # helper wrapper to access mod_options ## class ModOptionWrapper # this function will compute the total height required for a list of mod_options. ## mod_options_get_total_height
30.716828
155
0.566928
from header_common import * from header_presentations import * from header_mission_templates import * from ID_meshes import * from header_operations import * from header_triggers import * from module_constants import * #import string from xgm_mod_options_header import * ############################################################################ ## 0) overlay id (not used atm, but can allow searches in future. just put something unique) ## 1) overlay type (defined in xgm_mod_options_header) ## 2) overlay type specific parameters (e.g. for number box, it can be lower/upper range, for cbobox, it would be the cbo items etc) ## a) xgm_ov_numberbox : lower_bound(inclusive), upper_bound(exclusive). e.g. [0,101] for range of values from 0-100 ## b) xgm_ov_combolabel/xgm_ov_combobutton : list of combo items. e.g. ["option1", "option2", "option3"] ## c) xgm_ov_slider : lower_bound(inclusive), upper_bound(exclusive). e.g. [0,101] for range of values from 0-100 ## d) xgm_ov_checkbox : not used fttb. just leave empty. e.g. [] ## 3) text label ## 4) reserved for text label flags ## 5) description (unused for now. may be used for stuff like tooltip in future) ## 6) reserved for description flags ## 7) initialization op block. Used for updating the overlay values from game values. Must assign the desired value to reg1. ## 8) update op block. Used for updating game values from overlay values. The overlay value is in reg1. ## 9) optional. reserved for option page id. unused for now. leave out for options using general page. ############################################################################ mod_options = [ ("camp_fuck_setting", xgm_ov_combolabel, ["Disabled", "Consensual Only", "All Enabled"], "Sexual Content:", 0, "Settings for sexual content in game.", 0, [(try_begin), (eq, "$g_sexual_content", 0), (assign, reg1, 0), (else_try), (eq, "$g_sexual_content", 1), (assign, reg1, 1), (else_try), (eq, "$g_sexual_content", 2), (assign, reg1, 2), (try_end),], [(try_begin), (eq, reg1, 0), (assign, "$g_sexual_content", 0), (else_try), (eq, reg1, 1), (assign, "$g_sexual_content", 1), (else_try), (eq, reg1, 2), (assign, "$g_sexual_content", 2), (try_end), ], ), ("dplmc_woman_prejudice", xgm_ov_combolabel, ["Historical", "Tolerant", "Utopian"], "Diplomacy - Prejudice:", 0, "Setting for Diplomacy's prejudice changes.", 0, [ (assign, reg1, "$g_disable_condescending_comments"), ], [ (assign, "$g_disable_condescending_comments", reg1), ], ), ("camp_polygamy", xgm_ov_checkbox, [], "Polygamy:", 0, "Toggles polygamy settings", 0, [(try_begin), (eq, "$g_polygamy", 0), (assign, reg1, 0), (else_try), (eq, "$g_polygamy", 1), (assign, reg1, 1), (try_end), ], [ (try_begin), (eq, reg1, 0), (assign, "$g_polygamy", 0), (else_try), (eq, reg1, 1), (assign, "$g_polygamy", 1), (try_end), ], ), ( "camp_nohomobro", xgm_ov_checkbox , [], "Disable Gay:", 0, "Disables gay scenes.", 0, [ # initialization block (set value in reg1) (assign, reg1, "$g_nohomo"), ], [ # update block (value is in reg1) (assign, "$g_nohomo", reg1), ], ), ( "camp_no_dancers", xgm_ov_checkbox , [], "Feast Dancers:", 0, "Toggles dancers during feasts.", 0, [ # initialization block (set value in reg1) (assign, reg1, "$g_feast_dancers"), ], [ # update block (value is in reg1) (assign, "$g_feast_dancers", reg1), ], ), ("camp_dark_hunters", xgm_ov_checkbox, [], "Black Khergits and Dark Hunters:", 0, "Settings for Dark Hunters and Black Khergits.", 0, [ (try_begin), (eq, "$g_dark_hunters_enabled", 0), (assign, reg1, 0), (else_try), (eq, "$g_dark_hunters_enabled", 1), (assign, reg1, 1), (try_end), ], [ (try_begin), (eq, reg1, 0), (assign, "$g_dark_hunters_enabled", 0), (assign, ":removed", 0), (try_for_parties, ":party_no"), (party_get_template_id, ":ptid", ":party_no"), (this_or_next|eq, ":ptid", "pt_dark_hunters"), (eq, ":ptid", "pt_black_khergit_raiders"), (remove_party, ":party_no"), (val_add, ":removed", 1), (try_end), (assign, reg0, ":removed"), (display_message, "@{reg0} parties removed from the map."), (else_try), (eq, reg1, 1), (assign, "$g_dark_hunters_enabled", 1), (try_end), ], ), ( "keep_companions", xgm_ov_checkbox , [], "Keep Companions:", 0, "Setting for keeping companions after defeat", 0, [ # initialization block (set value in reg1) (assign, reg1, "$g_keep_companions"), ], [ # update block (value is in reg1) (assign, "$g_keep_companions", reg1), ], ), ( "disable_complaints", xgm_ov_checkbox , [], "Disable Complaints:", 0, "Setting for disabling companion complaints", 0, [ # initialization block (set value in reg1) (assign, reg1, "$disable_npc_complaints"), ], [ # update block (value is in reg1) (assign, "$disable_npc_complaints", reg1), ], ), ( "disable_bodyguard", xgm_ov_checkbox , [], "Disable Bodyguards:", 0, "Setting for disabling companions as bodyguards", 0, [ # initialization block (set value in reg1) (assign, reg1, "$disable_bodyguards"), ], [ # update block (value is in reg1) (assign, "$disable_bodyguards", reg1), ], ), ("camp_realistic_wounding", xgm_ov_checkbox, [], "Realistic Casualties:", 0, "Toggles realistic wounding for other damage types", 0, [(try_begin), (eq, "$g_realistic_wounding", 0), (assign, reg1, 0), (else_try), (eq, "$g_realistic_wounding", 1), (assign, reg1, 1), (try_end), ], [ (try_begin), (eq, reg1, 0), (assign, "$g_realistic_wounding", 0), (else_try), (eq, reg1, 1), (assign, "$g_realistic_wounding", 1), (try_end), ], ), ("enable_shield_bash", xgm_ov_combolabel, ["Disabled", "Player Only", "All Combatants"], "Shield Bash:", 0, "Setting for Diplomacy's prejudice changes.", 0, [ (assign, reg1, "$g_enable_shield_bash"), ], [ (assign, "$g_enable_shield_bash", reg1), ], ), ("horizontal_divide", xgm_ov_line, [], "", 0,"", 0,[],[],), ( "dplmc_horsespeed", xgm_ov_checkbox , [], "Diplomacy - Horse Speed:", 0, "Setting for Diplomacy's horse speed changes", 0, [ # initialization block (set value in reg1) (store_sub,reg1,1,"$g_dplmc_horse_speed"), ], [ # update block (value is in reg1) (store_sub,"$g_dplmc_horse_speed",1,reg1), ], ), ( "dplmc_battlecontinue", xgm_ov_checkbox , [], "Diplomacy - Battle Continuation:", 0, "Setting for Diplomacy's battle continuation", 0, [ # initialization block (set value in reg1) (store_sub,reg1,1,"$g_dplmc_battle_continuation"), ], [ # update block (value is in reg1) (store_sub,"$g_dplmc_battle_continuation",1,reg1), ], ), ( "dplmc_disguise", xgm_ov_checkbox , [], "Diplomacy - Disguise System:", 0, "Setting for Diplomacy's disguise system", 0, [ # initialization block (set value in reg1) (assign, reg1, "$g_dplmc_player_disguise"), ], [ # update block (value is in reg1) (assign, "$g_dplmc_player_disguise", reg1), ], ), ( "dplmc_terrain_advantage", xgm_ov_checkbox , [], "Diplomacy - Autocalc Terrain Advantage:", 0, "Setting for Diplomacy's terrain advantage.", 0, [ # initialization block (set value in reg1) (try_begin), (eq, "$g_dplmc_terrain_advantage", DPLMC_TERRAIN_ADVANTAGE_DISABLE), (assign, reg1, 0), (else_try), (eq, "$g_dplmc_terrain_advantage", DPLMC_TERRAIN_ADVANTAGE_ENABLE), (assign, reg1, 1), (try_end), ], [ # update block (value is in reg1) (try_begin), (eq, reg1, 0), (assign, "$g_dplmc_terrain_advantage", DPLMC_TERRAIN_ADVANTAGE_DISABLE), (else_try), (eq, reg1, 1), (assign, "$g_dplmc_terrain_advantage", DPLMC_TERRAIN_ADVANTAGE_ENABLE), (try_end), ], ), ( "dplmc_lord_recycling", xgm_ov_checkbox , [], "Diplomacy - Returning From Exile:", 0, "Setting for Diplomacy's terrain advantage.", 0, [ # initialization block (set value in reg1) (try_begin), (eq, "$g_dplmc_lord_recycling", DPLMC_LORD_RECYCLING_DISABLE), (assign, reg1, 0), (else_try), (eq, "$g_dplmc_lord_recycling", DPLMC_LORD_RECYCLING_ENABLE), (assign, reg1, 1), (try_end), ], [ # update block (value is in reg1) (try_begin), (eq, reg1, 0), (assign, "$g_dplmc_lord_recycling", DPLMC_LORD_RECYCLING_DISABLE), (else_try), (eq, reg1, 1), (assign, "$g_dplmc_lord_recycling", DPLMC_LORD_RECYCLING_ENABLE), (try_end), ], ), ("dplmc_ai_changes_a", xgm_ov_combolabel, ["Disabled", "Low", "Medium", "High"], "Diplomacy - AI Changes:", 0, "Setting for Diplomacy's AI changes.", 0, [ (try_begin), (eq, "$g_dplmc_ai_changes", DPLMC_AI_CHANGES_DISABLE), (assign, reg1, 0), (else_try), (eq, "$g_dplmc_ai_changes", DPLMC_AI_CHANGES_LOW), (assign, reg1, 1), (else_try), (eq, "$g_dplmc_ai_changes", DPLMC_AI_CHANGES_MEDIUM), (assign, reg1, 2), (else_try), (eq, "$g_dplmc_ai_changes", DPLMC_AI_CHANGES_HIGH), (assign, reg1, 3), (try_end), ], [ (try_begin), (eq, reg1, 0), (assign, "$g_dplmc_ai_changes", DPLMC_AI_CHANGES_DISABLE), (else_try), (eq, reg1, 1), (assign, "$g_dplmc_ai_changes", DPLMC_AI_CHANGES_LOW), (else_try), (eq, reg1, 2), (assign, "$g_dplmc_ai_changes", DPLMC_AI_CHANGES_MEDIUM), (else_try), (eq, reg1, 3), (assign, "$g_dplmc_ai_changes", DPLMC_AI_CHANGES_HIGH), (try_end), ], ), ("dplmc_gold_changes", xgm_ov_combolabel, ["Disabled", "Low", "Medium", "High"], "Diplomacy - Economy Changes:", 0, "Setting for Diplomacy's economy changes.", 0, [ (try_begin), (eq, "$g_dplmc_gold_changes", DPLMC_GOLD_CHANGES_DISABLE), (assign, reg1, 0), (else_try), (eq, "$g_dplmc_gold_changes", DPLMC_GOLD_CHANGES_LOW), (assign, reg1, 1), (else_try), (eq, "$g_dplmc_gold_changes", DPLMC_GOLD_CHANGES_MEDIUM), (assign, reg1, 2), (else_try), (eq, "$g_dplmc_gold_changes", DPLMC_GOLD_CHANGES_HIGH), (assign, reg1, 3), (try_end), ], [ (try_begin), (eq, reg1, 0), (assign, "$g_dplmc_gold_changes", DPLMC_GOLD_CHANGES_DISABLE), (else_try), (eq, reg1, 1), (assign, "$g_dplmc_gold_changes", DPLMC_GOLD_CHANGES_LOW), (else_try), (eq, reg1, 2), (assign, "$g_dplmc_gold_changes", DPLMC_GOLD_CHANGES_MEDIUM), (else_try), (eq, reg1, 3), (assign, "$g_dplmc_gold_changes", DPLMC_GOLD_CHANGES_HIGH), (try_end), ], ), ("horizontal_divide", xgm_ov_line, [], "", 0,"", 0,[],[],), ("minimap_setting", xgm_ov_combolabel, ["Compass Style", "Small Minimap", "Medium Minimap", "Large Minimap", "Disabled"], "Battle Minimap Overlay:", 0, "Setting for the minimap.", 0, [ (try_begin), (eq, "$g_minimap_style", -1), (assign, reg1, 4), (else_try), (assign, reg1, "$g_minimap_style"), (try_end), ], [ (try_begin), (eq, reg1, 4), (assign, "$g_minimap_style", -1), (else_try), (assign, "$g_minimap_style", reg1), (try_end), ], ), ("minimap_setting", xgm_ov_combolabel, ["Disabled", "Only Allies", "Only Enemies", "All Troops"], "Troop HP Bars:", 0, "Setting for troop HP bars.", 0, [ (try_begin), # Ally (eq, "$g_hp_bar_enemy", 0), (eq, "$g_hp_bar_ally", 1), (assign, reg1, 1), (else_try), # Enemy (eq, "$g_hp_bar_enemy", 1), (eq, "$g_hp_bar_ally", 0), (assign, reg1, 2), (else_try), # Both (eq, "$g_hp_bar_enemy", 1), (eq, "$g_hp_bar_ally", 1), (assign, reg1, 3), (else_try), # None (assign, reg1, 0), (try_end), ], [ (try_begin), # Ally (eq, reg1, 1), (assign, "$g_hp_bar_enemy", 0), (assign, "$g_hp_bar_ally", 1), (else_try), # Enemy (eq, reg1, 2), (assign, "$g_hp_bar_enemy", 1), (assign, "$g_hp_bar_ally", 0), (else_try), # Both (eq, reg1, 3), (assign, "$g_hp_bar_enemy", 1), (assign, "$g_hp_bar_ally", 1), (else_try), # None (assign, "$g_hp_bar_enemy", 0), (assign, "$g_hp_bar_ally", 0), (try_end), ], ), ("minimap_setting", xgm_ov_numberbox, [3,81], "HP Bar Distance Limit:", 0, "Setting for the HP Bars.", 0, [ (assign, reg1, "$g_hp_bar_dis_limit"), ], [ (assign, "$g_hp_bar_dis_limit", reg1), ], ), ("camp_troop_ratio_bar", xgm_ov_checkbox, [], "Troop ratio bar:", 0, "Toggles troop ratio bar", 0, [(try_begin), (eq, "$g_troop_ratio_bar", 0), (assign, reg1, 0), (else_try), (eq, "$g_troop_ratio_bar", 1), (assign, reg1, 1), (try_end), ], [ (try_begin), (eq, reg1, 0), (assign, "$g_troop_ratio_bar", 0), (else_try), (eq, reg1, 1), (assign, "$g_troop_ratio_bar", 1), (try_end), ], ), ("camp_decapitation", xgm_ov_checkbox, [], "Decapitation:", 0, "Toggles Decapitation", 0, [(try_begin), (eq, "$g_decapitation_enabled", 0), (assign, reg1, 0), (else_try), (eq, "$g_decapitation_enabled", 1), (assign, reg1, 1), (try_end), ], [ (try_begin), (eq, reg1, 0), (assign, "$g_decapitation_enabled", 0), (else_try), (eq, reg1, 1), (assign, "$g_decapitation_enabled", 1), (try_end), ], ), ("horizontal_divide", xgm_ov_line, [], "", 0,"", 0,[],[],), ( "op_cheatmode", xgm_ov_checkbox , [], "Cheat mode:", 0, "This sets the in-game cheat mode", 0, [ # initialization block (set value in reg1) (assign, reg1, "$cheat_mode"), ], [ # update block (value is in reg1) (assign, "$cheat_mode", reg1), ], ), ] # mod_options # TODO: add option pages here # collation of all *_mod_options.py from active mods # import and merge related variables from all {active_mod}_mod_options.py for all active mods #try: # from modmerger_options import options, mods_active # from modmerger import mod_get_process_order, mod_is_active # from util_common import add_objects # modcomp_name = "mod_options" # var_list = ["mod_options",] #from modmerger import modmerge #modmerge(var_set) # mod_process_order = mod_get_process_order(modcomp_name) # vars_to_import= ["mod_options"] # for x in mod_process_order: # if(mod_is_active(x) and x <> "xgm_mod_options"): # must exclude this file since we are using this file as base # try: #mergefn_name = "modmerge_%s"%(modcomp_name) # target_module_name = "%s_%s"%(x,modcomp_name) # _temp = __import__( target_module_name , globals(), locals(), vars_to_import,-1) # logger.info("Merging objects for component \"%s\" from mod \"%s\"..."%(modcomp_name,x)) # # add_objects(mod_options, _temp.mod_options) # import from target module. # # # TODO: collect option pages # except ImportError: # errstring = "Failed importing for component \"%s\" for mod \"%s\"." % (modcomp_name, x) # logger.debug(errstring) # else: # errstring = "Mod \"%s\" not active for Component \"%s\"." % (x, modcomp_name) # logger.debug(errstring) #except: # raise # collation end # At this point, mod_options will contain the list of all mod_options specified. ## utility functions from util_wrappers import * # helper wrapper to access mod_options class ModOptionWrapper(BaseWrapper): def __init__(self, _data): # verify _data if( not isinstance(_data,TupleType) or (len(_data)<2)): raise ValueError("ItemSetWrapper: Wrapped must be a tuple.") BaseWrapper.__init__(self,_data) def GetId(self): return self.data[0] def GetType(self): return self.data[1] def GetParameters(self): if len(self.data) >2: return self.data[2] return None def GetParameter(self, i): if len(self.data) >2: return self.data[2][i] return None def GetTextLabel(self): if len(self.data) >3: return self.data[3] return None def GetTextLabelFlags(self): if len(self.data) >4: return self.data[4] return None def GetDescription(self): if len(self.data) >5: return self.data[5] return None def GetDescriptionFlags(self): if len(self.data) >6: return self.data[6] return None def GetInitializeBlock(self): if len(self.data) >7: return OpBlockWrapper(self.data[7]) return None def GetUpdateBlock(self): if len(self.data) >8: return OpBlockWrapper(self.data[8]) return None def GetHeight(self): if self.GetType() == xgm_ov_line: return xgm_mod_options_line_height elif self.GetType() in [xgm_ov_checkbox, xgm_ov_numberbox, xgm_ov_combolabel]: return xgm_mod_options_property_height return 0 # no other types supported ## class ModOptionWrapper # this function will compute the total height required for a list of mod_options. def mod_options_get_total_height(_mod_options = mod_options): height = 0 for x in _mod_options: aModOption = ModOptionWrapper(x) height += aModOption.GetHeight() # for x in _mod_options: return height; ## mod_options_get_total_height
1,469
15
368
8abd70df157d14db679e659f636c0cd688861cb3
6,182
py
Python
examples/pde/utilities3.py
mkhodak/relax
f6b5a318d74fc1209ba67ec95d2118698194f9c5
[ "MIT" ]
11
2021-10-01T17:23:18.000Z
2022-03-31T22:10:36.000Z
examples/pde/utilities3.py
mkhodak/relax
f6b5a318d74fc1209ba67ec95d2118698194f9c5
[ "MIT" ]
null
null
null
examples/pde/utilities3.py
mkhodak/relax
f6b5a318d74fc1209ba67ec95d2118698194f9c5
[ "MIT" ]
null
null
null
import torch import numpy as np import scipy.io import h5py import torch.nn as nn ################################################# # # Utilities # ################################################# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # reading data # normalization, pointwise gaussian # normalization, Gaussian # normalization, scaling by range #loss function with rel/abs Lp loss # A simple feedforward neural network
26.761905
113
0.550793
import torch import numpy as np import scipy.io import h5py import torch.nn as nn ################################################# # # Utilities # ################################################# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # reading data class MatReader(object): def __init__(self, file_path, to_torch=True, to_cuda=False, to_float=True): super(MatReader, self).__init__() self.to_torch = to_torch self.to_cuda = to_cuda self.to_float = to_float self.file_path = file_path self.data = None self.old_mat = None self._load_file() def _load_file(self): try: self.data = scipy.io.loadmat(self.file_path) self.old_mat = True except ValueError: self.data = h5py.File(self.file_path) self.old_mat = False def load_file(self, file_path): self.file_path = file_path self._load_file() def read_field(self, field): x = self.data[field] if not self.old_mat: x = x[()] x = np.transpose(x, axes=range(len(x.shape) - 1, -1, -1)) if self.to_float: x = x.astype(np.float32) if self.to_torch: x = torch.from_numpy(x) if self.to_cuda: x = x.cuda() return x def set_cuda(self, to_cuda): self.to_cuda = to_cuda def set_torch(self, to_torch): self.to_torch = to_torch def set_float(self, to_float): self.to_float = to_float # normalization, pointwise gaussian class UnitGaussianNormalizer(object): def __init__(self, x, eps=0.00001): super(UnitGaussianNormalizer, self).__init__() # x could be in shape of ntrain*n or ntrain*T*n or ntrain*n*T self.mean = torch.mean(x, 0) self.std = torch.std(x, 0) self.eps = eps def encode(self, x): x = (x - self.mean) / (self.std + self.eps) return x def decode(self, x, sample_idx=None): if sample_idx is None: std = self.std + self.eps # n mean = self.mean else: if len(self.mean.shape) == len(sample_idx[0].shape): std = self.std[sample_idx] + self.eps # batch*n mean = self.mean[sample_idx] if len(self.mean.shape) > len(sample_idx[0].shape): std = self.std[:,sample_idx]+ self.eps # T*batch*n mean = self.mean[:,sample_idx] # x is in shape of batch*n or T*batch*n x = (x * std) + mean return x def cuda(self): self.mean = self.mean.cuda() self.std = self.std.cuda() def cpu(self): self.mean = self.mean.cpu() self.std = self.std.cpu() # normalization, Gaussian class GaussianNormalizer(object): def __init__(self, x, eps=0.00001): super(GaussianNormalizer, self).__init__() self.mean = torch.mean(x) self.std = torch.std(x) self.eps = eps def encode(self, x): x = (x - self.mean) / (self.std + self.eps) return x def decode(self, x, sample_idx=None): x = (x * (self.std + self.eps)) + self.mean return x def cuda(self): self.mean = self.mean.cuda() self.std = self.std.cuda() def cpu(self): self.mean = self.mean.cpu() self.std = self.std.cpu() # normalization, scaling by range class RangeNormalizer(object): def __init__(self, x, low=0.0, high=1.0): super(RangeNormalizer, self).__init__() mymin = torch.min(x, 0)[0].view(-1) mymax = torch.max(x, 0)[0].view(-1) self.a = (high - low)/(mymax - mymin) self.b = -self.a*mymax + high def encode(self, x): s = x.size() x = x.view(s[0], -1) x = self.a*x + self.b x = x.view(s) return x def decode(self, x): s = x.size() x = x.view(s[0], -1) x = (x - self.b)/self.a x = x.view(s) return x #loss function with rel/abs Lp loss class LpLoss(object): def __init__(self, d=2, p=2, size_average=True, reduction=True): super(LpLoss, self).__init__() #Dimension and Lp-norm type are postive assert d > 0 and p > 0 self.d = d self.p = p self.reduction = reduction self.size_average = size_average def abs(self, x, y): num_examples = x.size()[0] #Assume uniform mesh h = 1.0 / (x.size()[1] - 1.0) all_norms = (h**(self.d/self.p))*torch.norm(x.view(num_examples,-1) - y.view(num_examples,-1), self.p, 1) if self.reduction: if self.size_average: return torch.mean(all_norms) else: return torch.sum(all_norms) return all_norms def rel(self, x, y): num_examples = x.size()[0] diff_norms = torch.norm(x.reshape(num_examples,-1) - y.reshape(num_examples,-1), self.p, 1) y_norms = torch.norm(y.reshape(num_examples,-1), self.p, 1) if self.reduction: if self.size_average: return torch.mean(diff_norms/y_norms) else: return torch.sum(diff_norms/y_norms) return diff_norms/y_norms def __call__(self, x, y): return self.rel(x, y) # A simple feedforward neural network class DenseNet(torch.nn.Module): def __init__(self, layers, nonlinearity, out_nonlinearity=None, normalize=False): super(DenseNet, self).__init__() self.n_layers = len(layers) - 1 assert self.n_layers >= 1 self.layers = nn.ModuleList() for j in range(self.n_layers): self.layers.append(nn.Linear(layers[j], layers[j+1])) if j != self.n_layers - 1: if normalize: self.layers.append(nn.BatchNorm1d(layers[j+1])) self.layers.append(nonlinearity()) if out_nonlinearity is not None: self.layers.append(out_nonlinearity()) def forward(self, x): for _, l in enumerate(self.layers): x = l(x) return x
4,841
51
828
15b531407df3e093f666b046edd03aed1f14e76a
4,874
py
Python
book_search/models.py
drogers141/book-search
0745eb3b25023a44da4c6e7fc4d96de086549f04
[ "MIT" ]
null
null
null
book_search/models.py
drogers141/book-search
0745eb3b25023a44da4c6e7fc4d96de086549f04
[ "MIT" ]
null
null
null
book_search/models.py
drogers141/book-search
0745eb3b25023a44da4c6e7fc4d96de086549f04
[ "MIT" ]
null
null
null
from io import StringIO import re from pathlib import Path import logging from django.db import models from django.conf import settings from bs4 import BeautifulSoup from tika import parser logger = logging.getLogger(__name__) class TikaParseError(RuntimeError): """Raised when the conversion of a document into html by Tika fails.""" def extract_author_and_title(metadata: dict) -> (str, str): """Try to get the author and title from the metadata. Return empty strings if not found.""" author, title = '', '' for key in ('Author', 'author', 'dc:creator', 'creator', 'meta:author'): if key in metadata: author = metadata[key] break for key in ('Title', 'title', 'dc:title', 'meta:title'): if key in metadata: title = metadata[key] break return author, title class ParentDocument(models.Model): """Each book/file is represented here. """ # source document's full path filepath = models.CharField(unique=True, max_length=1024) # try to get the author and title from the document metadata # but it's not always there author = models.CharField(max_length=512, blank=True, default='') title = models.CharField(max_length=512, blank=True, default='') def convert_to_html_child_pages(self, clean=True): """Convert book/file at filepath to html pages. This constructs a ChildPage object for each page of the document. Pages are determined by Tika's parsing. Populates author and title if available in the metadata. :param clean - if True clean non-ascii whitespace """ try_count, successful_parse = 0, False while try_count < settings.TIKA_PARSE_MAX_RETRY: if settings.TIKA_CONFIG_FILE: data = parser.from_file(str(self.filepath), xmlContent=True, config_path=settings.TIKA_CONFIG_FILE) else: data = parser.from_file(str(self.filepath), xmlContent=True) if data['status'] == 200: successful_parse = True break if not successful_parse: logger.error('Failed to parse file: %s', self.filepath) author, title = extract_author_and_title(data['metadata']) self.author, self.title = author, title self.save() soup = BeautifulSoup(data['content'], features='lxml') # convert all pages successfully before creating children pages = [] for i, content in enumerate(soup.find_all('div', attrs={'class': 'page'})): _buffer = StringIO() _buffer.write(str(content)) parsed_content = parser.from_buffer(_buffer.getvalue(), xmlContent=True) text = parsed_content['content'].strip() if clean: text = re.sub(r' +\n', '\n', parsed_content['content'].strip().replace('\xa0', ' ')) # remove the html head from the doc so it doesn't cause any garbage in ES highlights page_soup = BeautifulSoup(text, features='lxml') page_soup.head.extract() pages.append(page_soup.prettify()) for i, html in enumerate(pages): child = ChildPage(parent=self, page_number=i+1, html_content=html, author=self.author, title=self.title, parent_doc_id=self.id) if i == len(pages) - 1: child.is_last_page = True child.save() class ChildPage(models.Model): """Each page of a book/file is represented by a ChildPage. With the initial implementation, this model will also have the html_content field filled with the full text of the page. This is very inefficient space-wise as you are storing the full text in the database as well as in Elasticsearch. But it allows reading the text online and being able to navigate directly from the search to the location in the text. The reason that it is mandatory now is due to using django-elasticsearch-dsl. In the future, we can get rid of django-es-dsl and then allow an option to not store the full text to save space. """ parent = models.ForeignKey(ParentDocument, on_delete=models.CASCADE) page_number = models.IntegerField() html_content = models.TextField() is_last_page = models.BooleanField(default=False) # need to duplicate keys from parent so django-elasticsearch-dsl can access them author = models.CharField(max_length=512) title = models.CharField(max_length=512) parent_doc_id = models.IntegerField()
38.078125
115
0.649569
from io import StringIO import re from pathlib import Path import logging from django.db import models from django.conf import settings from bs4 import BeautifulSoup from tika import parser logger = logging.getLogger(__name__) class TikaParseError(RuntimeError): """Raised when the conversion of a document into html by Tika fails.""" def extract_author_and_title(metadata: dict) -> (str, str): """Try to get the author and title from the metadata. Return empty strings if not found.""" author, title = '', '' for key in ('Author', 'author', 'dc:creator', 'creator', 'meta:author'): if key in metadata: author = metadata[key] break for key in ('Title', 'title', 'dc:title', 'meta:title'): if key in metadata: title = metadata[key] break return author, title class ParentDocument(models.Model): """Each book/file is represented here. """ # source document's full path filepath = models.CharField(unique=True, max_length=1024) # try to get the author and title from the document metadata # but it's not always there author = models.CharField(max_length=512, blank=True, default='') title = models.CharField(max_length=512, blank=True, default='') def __str__(self): return f"id: {self.id} {Path(self.filepath).name}" def convert_to_html_child_pages(self, clean=True): """Convert book/file at filepath to html pages. This constructs a ChildPage object for each page of the document. Pages are determined by Tika's parsing. Populates author and title if available in the metadata. :param clean - if True clean non-ascii whitespace """ try_count, successful_parse = 0, False while try_count < settings.TIKA_PARSE_MAX_RETRY: if settings.TIKA_CONFIG_FILE: data = parser.from_file(str(self.filepath), xmlContent=True, config_path=settings.TIKA_CONFIG_FILE) else: data = parser.from_file(str(self.filepath), xmlContent=True) if data['status'] == 200: successful_parse = True break if not successful_parse: logger.error('Failed to parse file: %s', self.filepath) author, title = extract_author_and_title(data['metadata']) self.author, self.title = author, title self.save() soup = BeautifulSoup(data['content'], features='lxml') # convert all pages successfully before creating children pages = [] for i, content in enumerate(soup.find_all('div', attrs={'class': 'page'})): _buffer = StringIO() _buffer.write(str(content)) parsed_content = parser.from_buffer(_buffer.getvalue(), xmlContent=True) text = parsed_content['content'].strip() if clean: text = re.sub(r' +\n', '\n', parsed_content['content'].strip().replace('\xa0', ' ')) # remove the html head from the doc so it doesn't cause any garbage in ES highlights page_soup = BeautifulSoup(text, features='lxml') page_soup.head.extract() pages.append(page_soup.prettify()) for i, html in enumerate(pages): child = ChildPage(parent=self, page_number=i+1, html_content=html, author=self.author, title=self.title, parent_doc_id=self.id) if i == len(pages) - 1: child.is_last_page = True child.save() class ChildPage(models.Model): """Each page of a book/file is represented by a ChildPage. With the initial implementation, this model will also have the html_content field filled with the full text of the page. This is very inefficient space-wise as you are storing the full text in the database as well as in Elasticsearch. But it allows reading the text online and being able to navigate directly from the search to the location in the text. The reason that it is mandatory now is due to using django-elasticsearch-dsl. In the future, we can get rid of django-es-dsl and then allow an option to not store the full text to save space. """ parent = models.ForeignKey(ParentDocument, on_delete=models.CASCADE) page_number = models.IntegerField() html_content = models.TextField() is_last_page = models.BooleanField(default=False) # need to duplicate keys from parent so django-elasticsearch-dsl can access them author = models.CharField(max_length=512) title = models.CharField(max_length=512) parent_doc_id = models.IntegerField() def url(self): return f"/{self.parent_doc_id}/{self.page_number}/" def __str__(self): return (f"{self.author} - {self.title} - page {self.page_number}")
182
0
81
7b9c55eaa5d05bc09b14fe1a2ce8e97213b9c0ef
2,284
py
Python
bminf/core/context.py
AdamBear/BMInf
8e650dc30e3ed9d7d628153b0a4dbd76d97ea948
[ "Apache-2.0" ]
206
2021-09-23T08:55:29.000Z
2022-03-26T13:15:41.000Z
bminf/core/context.py
AdamBear/BMInf
8e650dc30e3ed9d7d628153b0a4dbd76d97ea948
[ "Apache-2.0" ]
24
2021-09-24T05:54:39.000Z
2022-03-25T01:44:49.000Z
bminf/core/context.py
AdamBear/BMInf
8e650dc30e3ed9d7d628153b0a4dbd76d97ea948
[ "Apache-2.0" ]
34
2021-09-26T02:17:29.000Z
2022-03-28T07:01:54.000Z
from typing import List, Tuple, Type from .tensor import Tensor from .device import Device from .allocator import Allocator from cpm_kernels.library import cudart import numpy as np import logging logger = logging.getLogger(__name__)
30.453333
91
0.612522
from typing import List, Tuple, Type from .tensor import Tensor from .device import Device from .allocator import Allocator from cpm_kernels.library import cudart import numpy as np import logging logger = logging.getLogger(__name__) class Context: def __init__(self, device_idx : List[int], allocators : List[Allocator] ) -> None: assert len(device_idx) > 0, "device_idx must be a non-empty list" assert len(device_idx) == len(allocators) self.__devices = [ Device(idx) for idx in device_idx ] self.__calc_streams = {} for d in self.__devices: with d: self.__calc_streams[d.idx] = cudart.cudaStreamCreate().value self.__allocators = { device_idx : allocator for device_idx, allocator in zip(device_idx, allocators) } def allocate(self, shape : int, dtype : np.dtype) -> Tensor: device = Device(cudart.cudaGetDevice()) allocator = self.__allocators[device.idx] dtype = np.dtype(dtype) itemsize = dtype.itemsize nbytes = int(np.prod(shape) * itemsize) mem = allocator.allocate(nbytes, self.__calc_streams[device.idx]) return Tensor(mem, shape, dtype) def free(self, tensor : Tensor): allocator = self.__allocators[tensor.device_id] tensor._released = True allocator.free(tensor._memory) def device(self, device_idx : int) -> Device: return self.__devices[device_idx] @property def current_stream(self): device_idx = cudart.cudaGetDevice() return self.__calc_streams[device_idx] def memory_stats(self): ret = {} for device_idx, allocator in self.__allocators.items(): ret[device_idx] = allocator.memory_stats() return ret def free_all(self): for _, allocator in self.__allocators.items(): allocator.free_all() def __del__(self): try: self.free_all() for stream in self.__calc_streams.values(): cudart.cudaStreamDestroy(stream) except Exception: # logger.exception("Exception in Context.__del__") pass
1,785
243
23
d79f6521598d0b35ad0abac23c970dfac3a65db6
3,999
py
Python
code/python_scripts/dlinked_list.py
lukaschoebel/LUMOS
5d084e487d937957896a58ef3ab719f86074fa9a
[ "MIT" ]
null
null
null
code/python_scripts/dlinked_list.py
lukaschoebel/LUMOS
5d084e487d937957896a58ef3ab719f86074fa9a
[ "MIT" ]
null
null
null
code/python_scripts/dlinked_list.py
lukaschoebel/LUMOS
5d084e487d937957896a58ef3ab719f86074fa9a
[ "MIT" ]
null
null
null
if __name__ == "__main__": dlinkedList = DoublyLinkedList(10) dlinkedList.append(20) dlinkedList.append(30) dlinkedList.prepend(-5) dlinkedList.prepend(-8) dlinkedList.insert(value=12, index=2) dlinkedList.print_list() dlinkedList.remove(index=5) dlinkedList.insert(value=30, index=4) dlinkedList.append(55) dlinkedList.print_list() dlinkedList.print_head() dlinkedList.print_tail()
26.483444
85
0.523631
class Node: def __init__(self, value): self.value = value self.prev = None self.next = None class DoublyLinkedList: def __init__(self, value): self.head = Node(value) self.tail = self.head self.length = 1 def append(self, value): ''' Adds a value to the end of a doubly linked list type: value ''' self.length += 1 postNode = Node(value) # Wire the postNode self.tail.next = postNode postNode.prev = self.tail # Sets new tail node self.tail = postNode def prepend(self, value): ''' Adds a value to the beginning of a doubly linked list type: value ''' self.length += 1 preNode = Node(value) # Wire the preNode preNode.next = self.head self.head.prev = preNode # Sets new head node self.head = preNode def insert(self, value, index): ''' Inserts a value in the DLL at a provided index position type: value type: index: str ''' if not index in range(self.length): print("ERROR! This index does not exist!") return elif index == 0: self.prepend(value) else: self.length += 1 insertNode = Node(value) currentNode = self.head for position in range(self.length - 1): if position == index - 1: insertNode.next = currentNode.next currentNode.next.prev = insertNode insertNode.prev = currentNode currentNode.next = insertNode break currentNode = currentNode.next def remove(self, index): ''' Removes a node from a given index type: index: int ''' if not index in range(self.length + 1): print("ERROR! This index does not exist!") return if index == 0: # Remove head of the DLL self.head = self.head.next self.head.prev = None elif index == self.length - 1: # Remove tail of the DLL self.tail = self.tail.prev self.tail.next = None else: # Introduce a temporary node for # traversing through the list currentNode = self.head for position in range(self.length - 1): if position == index: currentNode.prev.next = currentNode.next currentNode.next.prev = currentNode.prev break currentNode = currentNode.next # Decrease length of the list self.length -= 1 def print_list(self): ''' Print the linked list ''' currentNode = self.head print(f"<<<<<<< {self.length} >>>>>>>") for index in range(self.length): nextValue = currentNode.next.value if currentNode.next else 'None' print(f"{index}: {currentNode.value} <-> {nextValue}") currentNode = currentNode.next print(f"<<<<<<<<.>>>>>>>>") def print_head(self): print(f">> head: {self.head.value}") if self.head else print(">> head: None") def print_tail(self): print(f">> tail: {self.tail.value}") if self.tail else print(">> tail: None") if __name__ == "__main__": dlinkedList = DoublyLinkedList(10) dlinkedList.append(20) dlinkedList.append(30) dlinkedList.prepend(-5) dlinkedList.prepend(-8) dlinkedList.insert(value=12, index=2) dlinkedList.print_list() dlinkedList.remove(index=5) dlinkedList.insert(value=30, index=4) dlinkedList.append(55) dlinkedList.print_list() dlinkedList.print_head() dlinkedList.print_tail()
345
3,131
71
7893b475e4bb1bb6f28c83e8b1af171635285c0f
843
py
Python
setup.py
BOLD-lab/abbreviator
aca379362f04033c7cd1c62ca50b68280f3799c7
[ "MIT" ]
null
null
null
setup.py
BOLD-lab/abbreviator
aca379362f04033c7cd1c62ca50b68280f3799c7
[ "MIT" ]
null
null
null
setup.py
BOLD-lab/abbreviator
aca379362f04033c7cd1c62ca50b68280f3799c7
[ "MIT" ]
null
null
null
import setuptools import os with open("README.md", "r") as fh: long_description = fh.read() if os.environ.get('CI_COMMIT_TAG'): version = os.environ['CI_COMMIT_TAG'] else: version = "0.0.4" setuptools.setup( name="abbreviator", version=version, author="Stephanie Wagenaar", author_email="stephanie.wagenaar@boldcm.eu", description="Abbreviate Long Sentences/Names based on hyphenation", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/BOLD-lab/abbreviator", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3.6', install_requires=['pyphen>=0.11.0'] )
28.1
71
0.679715
import setuptools import os with open("README.md", "r") as fh: long_description = fh.read() if os.environ.get('CI_COMMIT_TAG'): version = os.environ['CI_COMMIT_TAG'] else: version = "0.0.4" setuptools.setup( name="abbreviator", version=version, author="Stephanie Wagenaar", author_email="stephanie.wagenaar@boldcm.eu", description="Abbreviate Long Sentences/Names based on hyphenation", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/BOLD-lab/abbreviator", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3.6', install_requires=['pyphen>=0.11.0'] )
0
0
0
9c86682e5fb8a773190f40daabb31d80b79ab5ec
750
py
Python
week3/array_partition1.py
ravichalla/wallbreaker
0d587f12c60df5e4bca47f9183484a69d284d1f5
[ "MIT" ]
null
null
null
week3/array_partition1.py
ravichalla/wallbreaker
0d587f12c60df5e4bca47f9183484a69d284d1f5
[ "MIT" ]
null
null
null
week3/array_partition1.py
ravichalla/wallbreaker
0d587f12c60df5e4bca47f9183484a69d284d1f5
[ "MIT" ]
null
null
null
''' QUESTION: 561. Array Partition I Given an array of 2n integers, your task is to group these integers into n pairs of integer, say (a1, b1), (a2, b2), ..., (an, bn) which makes sum of min(ai, bi) for all i from 1 to n as large as possible. Example 1: Input: [1,4,3,2] Output: 4 Explanation: n is 2, and the maximum sum of pairs is 4 = min(1, 2) + min(3, 4). Note: n is a positive integer, which is in the range of [1, 10000]. All the integers in the array will be in the range of [-10000, 10000]. ''' ''' Ideas/thoughts: sort and return even nums '''
25.862069
205
0.64
''' QUESTION: 561. Array Partition I Given an array of 2n integers, your task is to group these integers into n pairs of integer, say (a1, b1), (a2, b2), ..., (an, bn) which makes sum of min(ai, bi) for all i from 1 to n as large as possible. Example 1: Input: [1,4,3,2] Output: 4 Explanation: n is 2, and the maximum sum of pairs is 4 = min(1, 2) + min(3, 4). Note: n is a positive integer, which is in the range of [1, 10000]. All the integers in the array will be in the range of [-10000, 10000]. ''' class Solution(object): def arrayPairSum(self, nums): total=0 nums= sorted(nums) for i in range (0,len(nums),2): total+= nums[i] return total ''' Ideas/thoughts: sort and return even nums '''
141
2
49
ab350b87bb10980d6dc5033bd97c6e224e09e86b
30
py
Python
account_payment_fix/models/__init__.py
odoo-mastercore/odoo-argentina
58cdfe8610bae42f69ddb9d652a28eb3245f6a04
[ "MIT" ]
1
2021-01-25T15:57:58.000Z
2021-01-25T15:57:58.000Z
account_payment_fix/models/__init__.py
odoo-mastercore/odoo-argentina
58cdfe8610bae42f69ddb9d652a28eb3245f6a04
[ "MIT" ]
null
null
null
account_payment_fix/models/__init__.py
odoo-mastercore/odoo-argentina
58cdfe8610bae42f69ddb9d652a28eb3245f6a04
[ "MIT" ]
2
2020-10-17T16:36:02.000Z
2021-01-24T10:20:05.000Z
from . import account_payment
15
29
0.833333
from . import account_payment
0
0
0
96c66bbd32ce6b5cd183eb7717b9022db143812a
4,881
py
Python
cisco_dnac_mac_lookup_runner.py
sarar0sa/Cisco_Mac_Lookup
b657b9ed0ecc60df008e02b6e008b09914cf07bf
[ "Apache-2.0" ]
null
null
null
cisco_dnac_mac_lookup_runner.py
sarar0sa/Cisco_Mac_Lookup
b657b9ed0ecc60df008e02b6e008b09914cf07bf
[ "Apache-2.0" ]
null
null
null
cisco_dnac_mac_lookup_runner.py
sarar0sa/Cisco_Mac_Lookup
b657b9ed0ecc60df008e02b6e008b09914cf07bf
[ "Apache-2.0" ]
null
null
null
from time import sleep import csv from datetime import datetime import mac_vendor_lookup import cisco_service if __name__ == "__main__": # Cool banner ofc print(""" ╔═╗╦╔═╗╔═╗╔═╗ ╔╦╗╔╗╔╔═╗╔═╗ ╔╦╗╔═╗╔═╗ ╦ ╔═╗╔═╗╦╔═╦ ╦╔═╗ ║ ║╚═╗║ ║ ║ ║║║║║╠═╣║ ║║║╠═╣║ ║ ║ ║║ ║╠╩╗║ ║╠═╝ ╚═╝╩╚═╝╚═╝╚═╝ ═╩╝╝╚╝╩ ╩╚═╝ ╩ ╩╩ ╩╚═╝ ╩═╝╚═╝╚═╝╩ ╩╚═╝╩ MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMWMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMWKKNMMMMMMMMMMMMMMMMMMMMWWWMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMXl,co0NWMMMMMMMMMMMMMMXxc:xWMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMNd''',;cdkKNNNNNNWNKko,...oWMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMO;''.....';ccllc:,. ...'kMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMWXOxdllllldxOXWMMMMMMMWNd'........ .... ..lNMMMMMMMMMMMMMMMMMMM MMMMMMMMMN0o:,;;:clllc:;,';oONMMMMMWd'',,,'. ..... .dWMMMMMMMMMMMMMMMMMMM MMMMMWWWO:,cdOO0K0O0K0K0klc:';dXMMMXl,'',;;. .'''''.lXMMMMMMMMMMMMMMMMMMM MMMMMMXo;oKWM0dkkdddoo0xddkW0o',kWM0c...,lol;. . .ccoc..;cdXMMMMMMMMMMMMMMMMMMM MMMMMXo:0MMMMWK0KXXKKKKX00NMMWK:'dWO,....';;' .. .;::,'',,lKMMMMMMMMMMMMMMMMMMM MMMMWxc0MMMMWW0kOxxkKkk0OXWWWMMNl'kO:'........,:'........,,cKMMMMMMMMMMMMMMMMMMM MMMMNdxWMMMMMWOxkdddxxdxkKNWWWWMK;cXd'........,,'''.....',,:kXMMMMMMMMMMMMMMMMMM MMMMXokMMMMMMMNXXXNNXNX0KXWWWWWWNlcXXd,.'......'..'.','.'',;:oKWMMMMMMMMMMMMMMMM MMMMXoxWMMMMMMM0olxkoxxkXWMMMMMMNloNWNd... ..................:0WMMMMMMMMMMMMMMM MMMMNxcOWMMMMMMKkkkOOkOOXWMMMMMMO:kMMNl.. .. .l0WMMMMMMMMMMMMMM MMMMM0:;kNWXXNKO0K0000KKXK0OONWKlcOWNd' .,oKWMMMMMMMMMMMMM MMMMMWO;'lOxxOddooddlcdxxxlox0Oolo0W0,. .,;oKMMMMMMMMMMMMM MMMMMMWKc..';dkOKX0KXXXK00Oxdl:;,,oOo. .'',oKWMMMMMMMMMMM MMMMMMMMWOl,..';coddxxdol:,..,;:;..':;.. .. ..''';dKWWMMMMMMMM MMMMMMMMMMMN0dl:;''.'',:cokO0KNWW0l..''. ... ..,,'':xXWMMMMMMM MMMMMMMMMMMMMMMWWNXKKXXWMMMMMMMMMMNl... . ..,'',,:xNWMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM0;.. .. .,;::,'cKMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMWx' .,;'. ....... ..','.lXMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMK:. . .',. .. .. ....dWMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMk. .. ...cXMMM """) print("Starting script..") CiscoDnacMacLookupRunner().main()
59.52439
110
0.562795
from time import sleep import csv from datetime import datetime import mac_vendor_lookup import cisco_service class CiscoDnacMacLookupRunner(): headers = {'Content-Type': 'application/json'} def __init__(self): self.cisco = cisco_service.CiscoService() self.mac_lookup = mac_vendor_lookup.MacLookup() self.today = datetime.now() self.filename = "mac_address_lookup_{}T{}Z.csv".format(str(self.today.date()), str(self.today.time())) def main(self): print("Obtaining token..") token = self.cisco.get_dnac_jwt_token() self.headers["X-Auth-Token"] = token print("Fetching network devices..") devices = self.cisco.get_network_devices(self.headers) with open(self.filename, 'w') as csvfile: print("MAC lookup as begun. This may take a while..") print("Estimated run time: {} min".format(int(363/5))) csvwriter = csv.writer(csvfile) counter_rate_limit = 0 for item in devices: if(counter_rate_limit == 5): sleep(60) counter_rate_limit = 0 details = self.cisco.get_device_enrichment_details(self.headers, item['macAddress']) counter_rate_limit += 1 if 'links' in details['deviceDetails']['neighborTopology'][0]: for detail in details['deviceDetails']['neighborTopology'][0]['links']: if 'interfaceDetails' in detail and detail['id'] == "CLIENTS": for client in detail['interfaceDetails']: mac_address = client['clientMacAddress'] manufacturer = self.mac_lookup.lookup_mac_vendor(mac_address) csvwriter.writerow([mac_address,manufacturer]) print("Ending script..") print("See the result in {}".format(self.filename)) if __name__ == "__main__": # Cool banner ofc print(""" ╔═╗╦╔═╗╔═╗╔═╗ ╔╦╗╔╗╔╔═╗╔═╗ ╔╦╗╔═╗╔═╗ ╦ ╔═╗╔═╗╦╔═╦ ╦╔═╗ ║ ║╚═╗║ ║ ║ ║║║║║╠═╣║ ║║║╠═╣║ ║ ║ ║║ ║╠╩╗║ ║╠═╝ ╚═╝╩╚═╝╚═╝╚═╝ ═╩╝╝╚╝╩ ╩╚═╝ ╩ ╩╩ ╩╚═╝ ╩═╝╚═╝╚═╝╩ ╩╚═╝╩ MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMWMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMWKKNMMMMMMMMMMMMMMMMMMMMWWWMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMXl,co0NWMMMMMMMMMMMMMMXxc:xWMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMNd''',;cdkKNNNNNNWNKko,...oWMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMO;''.....';ccllc:,. ...'kMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMWXOxdllllldxOXWMMMMMMMWNd'........ .... ..lNMMMMMMMMMMMMMMMMMMM MMMMMMMMMN0o:,;;:clllc:;,';oONMMMMMWd'',,,'. ..... .dWMMMMMMMMMMMMMMMMMMM MMMMMWWWO:,cdOO0K0O0K0K0klc:';dXMMMXl,'',;;. .'''''.lXMMMMMMMMMMMMMMMMMMM MMMMMMXo;oKWM0dkkdddoo0xddkW0o',kWM0c...,lol;. . .ccoc..;cdXMMMMMMMMMMMMMMMMMMM MMMMMXo:0MMMMWK0KXXKKKKX00NMMWK:'dWO,....';;' .. .;::,'',,lKMMMMMMMMMMMMMMMMMMM MMMMWxc0MMMMWW0kOxxkKkk0OXWWWMMNl'kO:'........,:'........,,cKMMMMMMMMMMMMMMMMMMM MMMMNdxWMMMMMWOxkdddxxdxkKNWWWWMK;cXd'........,,'''.....',,:kXMMMMMMMMMMMMMMMMMM MMMMXokMMMMMMMNXXXNNXNX0KXWWWWWWNlcXXd,.'......'..'.','.'',;:oKWMMMMMMMMMMMMMMMM MMMMXoxWMMMMMMM0olxkoxxkXWMMMMMMNloNWNd... ..................:0WMMMMMMMMMMMMMMM MMMMNxcOWMMMMMMKkkkOOkOOXWMMMMMMO:kMMNl.. .. .l0WMMMMMMMMMMMMMM MMMMM0:;kNWXXNKO0K0000KKXK0OONWKlcOWNd' .,oKWMMMMMMMMMMMMM MMMMMWO;'lOxxOddooddlcdxxxlox0Oolo0W0,. .,;oKMMMMMMMMMMMMM MMMMMMWKc..';dkOKX0KXXXK00Oxdl:;,,oOo. .'',oKWMMMMMMMMMMM MMMMMMMMWOl,..';coddxxdol:,..,;:;..':;.. .. ..''';dKWWMMMMMMMM MMMMMMMMMMMN0dl:;''.'',:cokO0KNWW0l..''. ... ..,,'':xXWMMMMMMM MMMMMMMMMMMMMMMWWNXKKXXWMMMMMMMMMMNl... . ..,'',,:xNWMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM0;.. .. .,;::,'cKMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMWx' .,;'. ....... ..','.lXMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMK:. . .',. .. .. ....dWMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMk. .. ...cXMMM """) print("Starting script..") CiscoDnacMacLookupRunner().main()
1,719
118
23
5c91270d3182c380f67eb1e558dd0deceb956262
1,354
py
Python
dependencies/scons-config/build/lib.linux-x86_64-2.7/sconsconfig/tools/llvm.py
maierbn/opendihu
577650e2f6b36a7306766b0f4176f8124458cbf0
[ "MIT" ]
17
2018-11-25T19:29:34.000Z
2021-09-20T04:46:22.000Z
dependencies/scons-config/build/lib.linux-x86_64-2.7/sconsconfig/tools/llvm.py
maierbn/opendihu
577650e2f6b36a7306766b0f4176f8124458cbf0
[ "MIT" ]
1
2020-11-12T15:15:58.000Z
2020-12-29T15:29:24.000Z
dependencies/scons-config/build/lib.linux-x86_64-2.7/sconsconfig/tools/llvm.py
maierbn/opendihu
577650e2f6b36a7306766b0f4176f8124458cbf0
[ "MIT" ]
4
2018-10-17T12:18:10.000Z
2021-05-28T13:24:20.000Z
from SCons.Script import *
35.631579
111
0.643279
from SCons.Script import * def exists(env): return env.Detect('llvm-gcc') and env.Detect('llvm-ld') def generate(env): env.SetDefault(LLVMCC='llvm-gcc') env.SetDefault(LLVMLINK='llvm-ld') if not exists(env): print 'Error: Could not find either or both of %s and %s.'%(repr(env['LLVMCC']), repr(env['LLVMLINK'])) env.Exit(1) return env['BUILDERS']['LlvmObject'] = SCons.Builder.Builder( action=SCons.Action.Action("$LLVMCCCOM", "$LLVMCCCOMSTR"), emitter=SCons.Defaults.StaticObjectEmitter, prefix='$LLVMOBJPREFIX', suffix='$LLVMOBJSUFFIX', src_builder=['CFile', 'CXXFile'], source_scanner=SourceFileScanner, single_source=1) env.SetDefault(LLVMOBJSUFFIX='.bc') env['LLVMCCCOM'] = '$LLVMCC -o $TARGET -c $CFLAGS $CCFLAGS $_CCCOMCOM $SOURCES' env['BUILDERS']['LlvmProgram'] = SCons.Builder.Builder( action=SCons.Action.Action("$LLVMLINKCOM", "$LLVMLINKCOMSTR"), emitter='$PROGEMITTER', prefix='$PROGPREFIX', suffix='$LLVMPROGSUFFIX', src_suffix='$LLVMOBJSUFFIX', src_builder='LlvmObject', target_scanner=ProgramScanner) env['LLVMLINKCOM'] = '$LLVMLINK -o $TARGET $LLVMLINKFLAGS $SOURCES $_LIBDIRFLAGS $_LIBFLAGS' env['LLVMLINKFLAGS'] = [] env['LLVMPROGSUFFIX'] = '.llvm'
1,281
0
46
5c0946952b71037bb1f97ce65af023f47196a25c
35,474
py
Python
files/runs_small/cores_2/ocean.cont/power.py
ST4NSB/sniper-simulator-predictions
1f0fe2a10fda55fceea053464ea202bfe2effafc
[ "MIT" ]
1
2021-03-08T03:39:23.000Z
2021-03-08T03:39:23.000Z
files/runs_small/cores_2/ocean.cont/power.py
ST4NSB/sniper-simulator-predictions
1f0fe2a10fda55fceea053464ea202bfe2effafc
[ "MIT" ]
null
null
null
files/runs_small/cores_2/ocean.cont/power.py
ST4NSB/sniper-simulator-predictions
1f0fe2a10fda55fceea053464ea202bfe2effafc
[ "MIT" ]
null
null
null
power = {'BUSES': {'Area': 1.08752, 'Bus/Area': 1.08752, 'Bus/Gate Leakage': 0.00541455, 'Bus/Peak Dynamic': 0.0, 'Bus/Runtime Dynamic': 0.0, 'Bus/Subthreshold Leakage': 0.0564625, 'Bus/Subthreshold Leakage with power gating': 0.0211734, 'Gate Leakage': 0.00541455, 'Peak Dynamic': 0.0, 'Runtime Dynamic': 0.0, 'Subthreshold Leakage': 0.0564625, 'Subthreshold Leakage with power gating': 0.0211734}, 'Core': [{'Area': 32.6082, 'Execution Unit/Area': 8.2042, 'Execution Unit/Complex ALUs/Area': 0.235435, 'Execution Unit/Complex ALUs/Gate Leakage': 0.0132646, 'Execution Unit/Complex ALUs/Peak Dynamic': 0.0955308, 'Execution Unit/Complex ALUs/Runtime Dynamic': 0.277723, 'Execution Unit/Complex ALUs/Subthreshold Leakage': 0.20111, 'Execution Unit/Complex ALUs/Subthreshold Leakage with power gating': 0.0754163, 'Execution Unit/Floating Point Units/Area': 4.6585, 'Execution Unit/Floating Point Units/Gate Leakage': 0.0656156, 'Execution Unit/Floating Point Units/Peak Dynamic': 0.852868, 'Execution Unit/Floating Point Units/Runtime Dynamic': 0.679223, 'Execution Unit/Floating Point Units/Subthreshold Leakage': 0.994829, 'Execution Unit/Floating Point Units/Subthreshold Leakage with power gating': 0.373061, 'Execution Unit/Gate Leakage': 0.122718, 'Execution Unit/Instruction Scheduler/Area': 2.17927, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Area': 0.328073, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Gate Leakage': 0.00115349, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Peak Dynamic': 1.20978, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Runtime Dynamic': 0.337297, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage': 0.017004, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage with power gating': 0.00962066, 'Execution Unit/Instruction Scheduler/Gate Leakage': 0.00730101, 'Execution Unit/Instruction Scheduler/Instruction Window/Area': 1.00996, 'Execution Unit/Instruction Scheduler/Instruction Window/Gate Leakage': 0.00529112, 'Execution Unit/Instruction Scheduler/Instruction Window/Peak Dynamic': 2.07911, 'Execution Unit/Instruction Scheduler/Instruction Window/Runtime Dynamic': 0.584077, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage': 0.0800117, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage with power gating': 0.0455351, 'Execution Unit/Instruction Scheduler/Peak Dynamic': 4.84781, 'Execution Unit/Instruction Scheduler/ROB/Area': 0.841232, 'Execution Unit/Instruction Scheduler/ROB/Gate Leakage': 0.000856399, 'Execution Unit/Instruction Scheduler/ROB/Peak Dynamic': 1.55892, 'Execution Unit/Instruction Scheduler/ROB/Runtime Dynamic': 0.377493, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage': 0.0178624, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage with power gating': 0.00897339, 'Execution Unit/Instruction Scheduler/Runtime Dynamic': 1.29887, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage': 0.114878, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage with power gating': 0.0641291, 'Execution Unit/Integer ALUs/Area': 0.47087, 'Execution Unit/Integer ALUs/Gate Leakage': 0.0265291, 'Execution Unit/Integer ALUs/Peak Dynamic': 0.202647, 'Execution Unit/Integer ALUs/Runtime Dynamic': 0.319665, 'Execution Unit/Integer ALUs/Subthreshold Leakage': 0.40222, 'Execution Unit/Integer ALUs/Subthreshold Leakage with power gating': 0.150833, 'Execution Unit/Peak Dynamic': 6.59121, 'Execution Unit/Register Files/Area': 0.570804, 'Execution Unit/Register Files/Floating Point RF/Area': 0.208131, 'Execution Unit/Register Files/Floating Point RF/Gate Leakage': 0.000232788, 'Execution Unit/Register Files/Floating Point RF/Peak Dynamic': 0.161125, 'Execution Unit/Register Files/Floating Point RF/Runtime Dynamic': 0.0122273, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage': 0.00399698, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage with power gating': 0.00176968, 'Execution Unit/Register Files/Gate Leakage': 0.000622708, 'Execution Unit/Register Files/Integer RF/Area': 0.362673, 'Execution Unit/Register Files/Integer RF/Gate Leakage': 0.00038992, 'Execution Unit/Register Files/Integer RF/Peak Dynamic': 0.110483, 'Execution Unit/Register Files/Integer RF/Runtime Dynamic': 0.0904283, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage': 0.00614175, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage with power gating': 0.00246675, 'Execution Unit/Register Files/Peak Dynamic': 0.271608, 'Execution Unit/Register Files/Runtime Dynamic': 0.102656, 'Execution Unit/Register Files/Subthreshold Leakage': 0.0101387, 'Execution Unit/Register Files/Subthreshold Leakage with power gating': 0.00423643, 'Execution Unit/Results Broadcast Bus/Area Overhead': 0.0442632, 'Execution Unit/Results Broadcast Bus/Gate Leakage': 0.00607074, 'Execution Unit/Results Broadcast Bus/Peak Dynamic': 0.293143, 'Execution Unit/Results Broadcast Bus/Runtime Dynamic': 0.835198, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage': 0.0920413, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage with power gating': 0.0345155, 'Execution Unit/Runtime Dynamic': 3.51333, 'Execution Unit/Subthreshold Leakage': 1.83518, 'Execution Unit/Subthreshold Leakage with power gating': 0.709678, 'Gate Leakage': 0.372997, 'Instruction Fetch Unit/Area': 5.86007, 'Instruction Fetch Unit/Branch Predictor/Area': 0.138516, 'Instruction Fetch Unit/Branch Predictor/Chooser/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Chooser/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Chooser/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Chooser/Runtime Dynamic': 0.000781008, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/Gate Leakage': 0.000757657, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Runtime Dynamic': 0.000781008, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Area': 0.0257064, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Gate Leakage': 0.000154548, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Peak Dynamic': 0.0142575, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Runtime Dynamic': 0.000675581, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage': 0.00384344, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage with power gating': 0.00198631, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Area': 0.0151917, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Gate Leakage': 8.00196e-05, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Peak Dynamic': 0.00527447, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Runtime Dynamic': 0.000258971, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage': 0.00181347, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage with power gating': 0.000957045, 'Instruction Fetch Unit/Branch Predictor/Peak Dynamic': 0.0597838, 'Instruction Fetch Unit/Branch Predictor/RAS/Area': 0.0105732, 'Instruction Fetch Unit/Branch Predictor/RAS/Gate Leakage': 4.63858e-05, 'Instruction Fetch Unit/Branch Predictor/RAS/Peak Dynamic': 0.0117602, 'Instruction Fetch Unit/Branch Predictor/RAS/Runtime Dynamic': 0.00129901, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage': 0.000932505, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage with power gating': 0.000494733, 'Instruction Fetch Unit/Branch Predictor/Runtime Dynamic': 0.00353661, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage': 0.0199703, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage with power gating': 0.0103282, 'Instruction Fetch Unit/Branch Target Buffer/Area': 0.64954, 'Instruction Fetch Unit/Branch Target Buffer/Gate Leakage': 0.00272758, 'Instruction Fetch Unit/Branch Target Buffer/Peak Dynamic': 0.177867, 'Instruction Fetch Unit/Branch Target Buffer/Runtime Dynamic': 0.0076553, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage': 0.0811682, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage with power gating': 0.0435357, 'Instruction Fetch Unit/Gate Leakage': 0.0590479, 'Instruction Fetch Unit/Instruction Buffer/Area': 0.0226323, 'Instruction Fetch Unit/Instruction Buffer/Gate Leakage': 6.83558e-05, 'Instruction Fetch Unit/Instruction Buffer/Peak Dynamic': 0.606827, 'Instruction Fetch Unit/Instruction Buffer/Runtime Dynamic': 0.0869311, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage': 0.00151885, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage with power gating': 0.000701682, 'Instruction Fetch Unit/Instruction Cache/Area': 3.14635, 'Instruction Fetch Unit/Instruction Cache/Gate Leakage': 0.029931, 'Instruction Fetch Unit/Instruction Cache/Peak Dynamic': 5.52956, 'Instruction Fetch Unit/Instruction Cache/Runtime Dynamic': 0.213019, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage': 0.367022, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage with power gating': 0.180386, 'Instruction Fetch Unit/Instruction Decoder/Area': 1.85799, 'Instruction Fetch Unit/Instruction Decoder/Gate Leakage': 0.0222493, 'Instruction Fetch Unit/Instruction Decoder/Peak Dynamic': 1.37404, 'Instruction Fetch Unit/Instruction Decoder/Runtime Dynamic': 0.295257, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage': 0.442943, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage with power gating': 0.166104, 'Instruction Fetch Unit/Peak Dynamic': 8.02054, 'Instruction Fetch Unit/Runtime Dynamic': 0.606399, 'Instruction Fetch Unit/Subthreshold Leakage': 0.932587, 'Instruction Fetch Unit/Subthreshold Leakage with power gating': 0.408542, 'L2/Area': 4.53318, 'L2/Gate Leakage': 0.015464, 'L2/Peak Dynamic': 0.152811, 'L2/Runtime Dynamic': 0.0364529, 'L2/Subthreshold Leakage': 0.834142, 'L2/Subthreshold Leakage with power gating': 0.401066, 'Load Store Unit/Area': 8.80969, 'Load Store Unit/Data Cache/Area': 6.84535, 'Load Store Unit/Data Cache/Gate Leakage': 0.0279261, 'Load Store Unit/Data Cache/Peak Dynamic': 3.72689, 'Load Store Unit/Data Cache/Runtime Dynamic': 1.24846, 'Load Store Unit/Data Cache/Subthreshold Leakage': 0.527675, 'Load Store Unit/Data Cache/Subthreshold Leakage with power gating': 0.25085, 'Load Store Unit/Gate Leakage': 0.0351387, 'Load Store Unit/LoadQ/Area': 0.0836782, 'Load Store Unit/LoadQ/Gate Leakage': 0.00059896, 'Load Store Unit/LoadQ/Peak Dynamic': 0.08055, 'Load Store Unit/LoadQ/Runtime Dynamic': 0.0805499, 'Load Store Unit/LoadQ/Subthreshold Leakage': 0.00941961, 'Load Store Unit/LoadQ/Subthreshold Leakage with power gating': 0.00536918, 'Load Store Unit/Peak Dynamic': 4.10881, 'Load Store Unit/Runtime Dynamic': 1.72626, 'Load Store Unit/StoreQ/Area': 0.322079, 'Load Store Unit/StoreQ/Gate Leakage': 0.00329971, 'Load Store Unit/StoreQ/Peak Dynamic': 0.198623, 'Load Store Unit/StoreQ/Runtime Dynamic': 0.397245, 'Load Store Unit/StoreQ/Subthreshold Leakage': 0.0345621, 'Load Store Unit/StoreQ/Subthreshold Leakage with power gating': 0.0197004, 'Load Store Unit/Subthreshold Leakage': 0.591622, 'Load Store Unit/Subthreshold Leakage with power gating': 0.283406, 'Memory Management Unit/Area': 0.434579, 'Memory Management Unit/Dtlb/Area': 0.0879726, 'Memory Management Unit/Dtlb/Gate Leakage': 0.00088729, 'Memory Management Unit/Dtlb/Peak Dynamic': 0.0704918, 'Memory Management Unit/Dtlb/Runtime Dynamic': 0.0727723, 'Memory Management Unit/Dtlb/Subthreshold Leakage': 0.0155699, 'Memory Management Unit/Dtlb/Subthreshold Leakage with power gating': 0.00887485, 'Memory Management Unit/Gate Leakage': 0.00813591, 'Memory Management Unit/Itlb/Area': 0.301552, 'Memory Management Unit/Itlb/Gate Leakage': 0.00393464, 'Memory Management Unit/Itlb/Peak Dynamic': 0.343808, 'Memory Management Unit/Itlb/Runtime Dynamic': 0.0347031, 'Memory Management Unit/Itlb/Subthreshold Leakage': 0.0413758, 'Memory Management Unit/Itlb/Subthreshold Leakage with power gating': 0.0235842, 'Memory Management Unit/Peak Dynamic': 0.624173, 'Memory Management Unit/Runtime Dynamic': 0.107475, 'Memory Management Unit/Subthreshold Leakage': 0.0769113, 'Memory Management Unit/Subthreshold Leakage with power gating': 0.0399462, 'Peak Dynamic': 24.0592, 'Renaming Unit/Area': 0.369768, 'Renaming Unit/FP Front End RAT/Area': 0.168486, 'Renaming Unit/FP Front End RAT/Gate Leakage': 0.00489731, 'Renaming Unit/FP Front End RAT/Peak Dynamic': 3.33511, 'Renaming Unit/FP Front End RAT/Runtime Dynamic': 0.562129, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage': 0.0437281, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage with power gating': 0.024925, 'Renaming Unit/Free List/Area': 0.0414755, 'Renaming Unit/Free List/Gate Leakage': 4.15911e-05, 'Renaming Unit/Free List/Peak Dynamic': 0.0401324, 'Renaming Unit/Free List/Runtime Dynamic': 0.0240118, 'Renaming Unit/Free List/Subthreshold Leakage': 0.000670426, 'Renaming Unit/Free List/Subthreshold Leakage with power gating': 0.000377987, 'Renaming Unit/Gate Leakage': 0.00863632, 'Renaming Unit/Int Front End RAT/Area': 0.114751, 'Renaming Unit/Int Front End RAT/Gate Leakage': 0.00038343, 'Renaming Unit/Int Front End RAT/Peak Dynamic': 0.86945, 'Renaming Unit/Int Front End RAT/Runtime Dynamic': 0.163866, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage': 0.00611897, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage with power gating': 0.00348781, 'Renaming Unit/Peak Dynamic': 4.56169, 'Renaming Unit/Runtime Dynamic': 0.750006, 'Renaming Unit/Subthreshold Leakage': 0.070483, 'Renaming Unit/Subthreshold Leakage with power gating': 0.0362779, 'Runtime Dynamic': 6.73993, 'Subthreshold Leakage': 6.21877, 'Subthreshold Leakage with power gating': 2.58311}, {'Area': 32.6082, 'Execution Unit/Area': 8.2042, 'Execution Unit/Complex ALUs/Area': 0.235435, 'Execution Unit/Complex ALUs/Gate Leakage': 0.0132646, 'Execution Unit/Complex ALUs/Peak Dynamic': 0.0955837, 'Execution Unit/Complex ALUs/Runtime Dynamic': 0.277764, 'Execution Unit/Complex ALUs/Subthreshold Leakage': 0.20111, 'Execution Unit/Complex ALUs/Subthreshold Leakage with power gating': 0.0754163, 'Execution Unit/Floating Point Units/Area': 4.6585, 'Execution Unit/Floating Point Units/Gate Leakage': 0.0656156, 'Execution Unit/Floating Point Units/Peak Dynamic': 0.853885, 'Execution Unit/Floating Point Units/Runtime Dynamic': 0.679669, 'Execution Unit/Floating Point Units/Subthreshold Leakage': 0.994829, 'Execution Unit/Floating Point Units/Subthreshold Leakage with power gating': 0.373061, 'Execution Unit/Gate Leakage': 0.122718, 'Execution Unit/Instruction Scheduler/Area': 2.17927, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Area': 0.328073, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Gate Leakage': 0.00115349, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Peak Dynamic': 1.20978, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Runtime Dynamic': 0.337724, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage': 0.017004, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage with power gating': 0.00962066, 'Execution Unit/Instruction Scheduler/Gate Leakage': 0.00730101, 'Execution Unit/Instruction Scheduler/Instruction Window/Area': 1.00996, 'Execution Unit/Instruction Scheduler/Instruction Window/Gate Leakage': 0.00529112, 'Execution Unit/Instruction Scheduler/Instruction Window/Peak Dynamic': 2.07911, 'Execution Unit/Instruction Scheduler/Instruction Window/Runtime Dynamic': 0.584816, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage': 0.0800117, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage with power gating': 0.0455351, 'Execution Unit/Instruction Scheduler/Peak Dynamic': 4.84781, 'Execution Unit/Instruction Scheduler/ROB/Area': 0.841232, 'Execution Unit/Instruction Scheduler/ROB/Gate Leakage': 0.000856399, 'Execution Unit/Instruction Scheduler/ROB/Peak Dynamic': 1.55892, 'Execution Unit/Instruction Scheduler/ROB/Runtime Dynamic': 0.377927, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage': 0.0178624, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage with power gating': 0.00897339, 'Execution Unit/Instruction Scheduler/Runtime Dynamic': 1.30047, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage': 0.114878, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage with power gating': 0.0641291, 'Execution Unit/Integer ALUs/Area': 0.47087, 'Execution Unit/Integer ALUs/Gate Leakage': 0.0265291, 'Execution Unit/Integer ALUs/Peak Dynamic': 0.202914, 'Execution Unit/Integer ALUs/Runtime Dynamic': 0.319906, 'Execution Unit/Integer ALUs/Subthreshold Leakage': 0.40222, 'Execution Unit/Integer ALUs/Subthreshold Leakage with power gating': 0.150833, 'Execution Unit/Peak Dynamic': 6.59314, 'Execution Unit/Register Files/Area': 0.570804, 'Execution Unit/Register Files/Floating Point RF/Area': 0.208131, 'Execution Unit/Register Files/Floating Point RF/Gate Leakage': 0.000232788, 'Execution Unit/Register Files/Floating Point RF/Peak Dynamic': 0.161317, 'Execution Unit/Register Files/Floating Point RF/Runtime Dynamic': 0.0122428, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage': 0.00399698, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage with power gating': 0.00176968, 'Execution Unit/Register Files/Gate Leakage': 0.000622708, 'Execution Unit/Register Files/Integer RF/Area': 0.362673, 'Execution Unit/Register Files/Integer RF/Gate Leakage': 0.00038992, 'Execution Unit/Register Files/Integer RF/Peak Dynamic': 0.110585, 'Execution Unit/Register Files/Integer RF/Runtime Dynamic': 0.0905428, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage': 0.00614175, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage with power gating': 0.00246675, 'Execution Unit/Register Files/Peak Dynamic': 0.271902, 'Execution Unit/Register Files/Runtime Dynamic': 0.102786, 'Execution Unit/Register Files/Subthreshold Leakage': 0.0101387, 'Execution Unit/Register Files/Subthreshold Leakage with power gating': 0.00423643, 'Execution Unit/Results Broadcast Bus/Area Overhead': 0.0442632, 'Execution Unit/Results Broadcast Bus/Gate Leakage': 0.00607074, 'Execution Unit/Results Broadcast Bus/Peak Dynamic': 0.293405, 'Execution Unit/Results Broadcast Bus/Runtime Dynamic': 0.836102, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage': 0.0920413, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage with power gating': 0.0345155, 'Execution Unit/Runtime Dynamic': 3.5167, 'Execution Unit/Subthreshold Leakage': 1.83518, 'Execution Unit/Subthreshold Leakage with power gating': 0.709678, 'Gate Leakage': 0.372997, 'Instruction Fetch Unit/Area': 5.86007, 'Instruction Fetch Unit/Branch Predictor/Area': 0.138516, 'Instruction Fetch Unit/Branch Predictor/Chooser/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Chooser/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Chooser/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Chooser/Runtime Dynamic': 0.000782126, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/Gate Leakage': 0.000757657, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Runtime Dynamic': 0.000782126, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Area': 0.0257064, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Gate Leakage': 0.000154548, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Peak Dynamic': 0.0142575, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Runtime Dynamic': 0.000676533, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage': 0.00384344, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage with power gating': 0.00198631, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Area': 0.0151917, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Gate Leakage': 8.00196e-05, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Peak Dynamic': 0.00527447, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Runtime Dynamic': 0.000259327, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage': 0.00181347, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage with power gating': 0.000957045, 'Instruction Fetch Unit/Branch Predictor/Peak Dynamic': 0.0597838, 'Instruction Fetch Unit/Branch Predictor/RAS/Area': 0.0105732, 'Instruction Fetch Unit/Branch Predictor/RAS/Gate Leakage': 4.63858e-05, 'Instruction Fetch Unit/Branch Predictor/RAS/Peak Dynamic': 0.0117602, 'Instruction Fetch Unit/Branch Predictor/RAS/Runtime Dynamic': 0.00130065, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage': 0.000932505, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage with power gating': 0.000494733, 'Instruction Fetch Unit/Branch Predictor/Runtime Dynamic': 0.00354144, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage': 0.0199703, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage with power gating': 0.0103282, 'Instruction Fetch Unit/Branch Target Buffer/Area': 0.64954, 'Instruction Fetch Unit/Branch Target Buffer/Gate Leakage': 0.00272758, 'Instruction Fetch Unit/Branch Target Buffer/Peak Dynamic': 0.177867, 'Instruction Fetch Unit/Branch Target Buffer/Runtime Dynamic': 0.0076668, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage': 0.0811682, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage with power gating': 0.0435357, 'Instruction Fetch Unit/Gate Leakage': 0.0590479, 'Instruction Fetch Unit/Instruction Buffer/Area': 0.0226323, 'Instruction Fetch Unit/Instruction Buffer/Gate Leakage': 6.83558e-05, 'Instruction Fetch Unit/Instruction Buffer/Peak Dynamic': 0.606827, 'Instruction Fetch Unit/Instruction Buffer/Runtime Dynamic': 0.0870411, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage': 0.00151885, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage with power gating': 0.000701682, 'Instruction Fetch Unit/Instruction Cache/Area': 3.14635, 'Instruction Fetch Unit/Instruction Cache/Gate Leakage': 0.029931, 'Instruction Fetch Unit/Instruction Cache/Peak Dynamic': 5.53656, 'Instruction Fetch Unit/Instruction Cache/Runtime Dynamic': 0.212864, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage': 0.367022, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage with power gating': 0.180386, 'Instruction Fetch Unit/Instruction Decoder/Area': 1.85799, 'Instruction Fetch Unit/Instruction Decoder/Gate Leakage': 0.0222493, 'Instruction Fetch Unit/Instruction Decoder/Peak Dynamic': 1.37404, 'Instruction Fetch Unit/Instruction Decoder/Runtime Dynamic': 0.295631, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage': 0.442943, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage with power gating': 0.166104, 'Instruction Fetch Unit/Peak Dynamic': 8.02789, 'Instruction Fetch Unit/Runtime Dynamic': 0.606744, 'Instruction Fetch Unit/Subthreshold Leakage': 0.932587, 'Instruction Fetch Unit/Subthreshold Leakage with power gating': 0.408542, 'L2/Area': 4.53318, 'L2/Gate Leakage': 0.015464, 'L2/Peak Dynamic': 0.152816, 'L2/Runtime Dynamic': 0.036542, 'L2/Subthreshold Leakage': 0.834142, 'L2/Subthreshold Leakage with power gating': 0.401066, 'Load Store Unit/Area': 8.80969, 'Load Store Unit/Data Cache/Area': 6.84535, 'Load Store Unit/Data Cache/Gate Leakage': 0.0279261, 'Load Store Unit/Data Cache/Peak Dynamic': 3.73104, 'Load Store Unit/Data Cache/Runtime Dynamic': 1.25059, 'Load Store Unit/Data Cache/Subthreshold Leakage': 0.527675, 'Load Store Unit/Data Cache/Subthreshold Leakage with power gating': 0.25085, 'Load Store Unit/Gate Leakage': 0.0351387, 'Load Store Unit/LoadQ/Area': 0.0836782, 'Load Store Unit/LoadQ/Gate Leakage': 0.00059896, 'Load Store Unit/LoadQ/Peak Dynamic': 0.0806842, 'Load Store Unit/LoadQ/Runtime Dynamic': 0.0806842, 'Load Store Unit/LoadQ/Subthreshold Leakage': 0.00941961, 'Load Store Unit/LoadQ/Subthreshold Leakage with power gating': 0.00536918, 'Load Store Unit/Peak Dynamic': 4.1136, 'Load Store Unit/Runtime Dynamic': 1.72918, 'Load Store Unit/StoreQ/Area': 0.322079, 'Load Store Unit/StoreQ/Gate Leakage': 0.00329971, 'Load Store Unit/StoreQ/Peak Dynamic': 0.198953, 'Load Store Unit/StoreQ/Runtime Dynamic': 0.397907, 'Load Store Unit/StoreQ/Subthreshold Leakage': 0.0345621, 'Load Store Unit/StoreQ/Subthreshold Leakage with power gating': 0.0197004, 'Load Store Unit/Subthreshold Leakage': 0.591622, 'Load Store Unit/Subthreshold Leakage with power gating': 0.283406, 'Memory Management Unit/Area': 0.434579, 'Memory Management Unit/Dtlb/Area': 0.0879726, 'Memory Management Unit/Dtlb/Gate Leakage': 0.00088729, 'Memory Management Unit/Dtlb/Peak Dynamic': 0.0706092, 'Memory Management Unit/Dtlb/Runtime Dynamic': 0.0728902, 'Memory Management Unit/Dtlb/Subthreshold Leakage': 0.0155699, 'Memory Management Unit/Dtlb/Subthreshold Leakage with power gating': 0.00887485, 'Memory Management Unit/Gate Leakage': 0.00813591, 'Memory Management Unit/Itlb/Area': 0.301552, 'Memory Management Unit/Itlb/Gate Leakage': 0.00393464, 'Memory Management Unit/Itlb/Peak Dynamic': 0.344243, 'Memory Management Unit/Itlb/Runtime Dynamic': 0.0346814, 'Memory Management Unit/Itlb/Subthreshold Leakage': 0.0413758, 'Memory Management Unit/Itlb/Subthreshold Leakage with power gating': 0.0235842, 'Memory Management Unit/Peak Dynamic': 0.624811, 'Memory Management Unit/Runtime Dynamic': 0.107572, 'Memory Management Unit/Subthreshold Leakage': 0.0769113, 'Memory Management Unit/Subthreshold Leakage with power gating': 0.0399462, 'Peak Dynamic': 24.0739, 'Renaming Unit/Area': 0.369768, 'Renaming Unit/FP Front End RAT/Area': 0.168486, 'Renaming Unit/FP Front End RAT/Gate Leakage': 0.00489731, 'Renaming Unit/FP Front End RAT/Peak Dynamic': 3.33511, 'Renaming Unit/FP Front End RAT/Runtime Dynamic': 0.562798, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage': 0.0437281, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage with power gating': 0.024925, 'Renaming Unit/Free List/Area': 0.0414755, 'Renaming Unit/Free List/Gate Leakage': 4.15911e-05, 'Renaming Unit/Free List/Peak Dynamic': 0.0401324, 'Renaming Unit/Free List/Runtime Dynamic': 0.0240417, 'Renaming Unit/Free List/Subthreshold Leakage': 0.000670426, 'Renaming Unit/Free List/Subthreshold Leakage with power gating': 0.000377987, 'Renaming Unit/Gate Leakage': 0.00863632, 'Renaming Unit/Int Front End RAT/Area': 0.114751, 'Renaming Unit/Int Front End RAT/Gate Leakage': 0.00038343, 'Renaming Unit/Int Front End RAT/Peak Dynamic': 0.86945, 'Renaming Unit/Int Front End RAT/Runtime Dynamic': 0.164074, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage': 0.00611897, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage with power gating': 0.00348781, 'Renaming Unit/Peak Dynamic': 4.56169, 'Renaming Unit/Runtime Dynamic': 0.750914, 'Renaming Unit/Subthreshold Leakage': 0.070483, 'Renaming Unit/Subthreshold Leakage with power gating': 0.0362779, 'Runtime Dynamic': 6.74765, 'Subthreshold Leakage': 6.21877, 'Subthreshold Leakage with power gating': 2.58311}], 'DRAM': {'Area': 0, 'Gate Leakage': 0, 'Peak Dynamic': 3.72117540729286, 'Runtime Dynamic': 3.72117540729286, 'Subthreshold Leakage': 4.252, 'Subthreshold Leakage with power gating': 4.252}, 'L3': [{'Area': 61.9075, 'Gate Leakage': 0.0484137, 'Peak Dynamic': 0.569896, 'Runtime Dynamic': 0.377251, 'Subthreshold Leakage': 6.80085, 'Subthreshold Leakage with power gating': 3.32364}], 'Processor': {'Area': 128.211, 'Gate Leakage': 0.799822, 'Peak Dynamic': 48.7031, 'Peak Power': 68.7978, 'Runtime Dynamic': 13.8648, 'Subthreshold Leakage': 19.2949, 'Subthreshold Leakage with power gating': 8.76959, 'Total Cores/Area': 65.2164, 'Total Cores/Gate Leakage': 0.745993, 'Total Cores/Peak Dynamic': 48.1332, 'Total Cores/Runtime Dynamic': 13.4876, 'Total Cores/Subthreshold Leakage': 12.4375, 'Total Cores/Subthreshold Leakage with power gating': 5.16621, 'Total L3s/Area': 61.9075, 'Total L3s/Gate Leakage': 0.0484137, 'Total L3s/Peak Dynamic': 0.569896, 'Total L3s/Runtime Dynamic': 0.377251, 'Total L3s/Subthreshold Leakage': 6.80085, 'Total L3s/Subthreshold Leakage with power gating': 3.32364, 'Total Leakage': 20.0947, 'Total NoCs/Area': 1.08752, 'Total NoCs/Gate Leakage': 0.00541455, 'Total NoCs/Peak Dynamic': 0.0, 'Total NoCs/Runtime Dynamic': 0.0, 'Total NoCs/Subthreshold Leakage': 0.0564625, 'Total NoCs/Subthreshold Leakage with power gating': 0.0211734}}
73.59751
124
0.677398
power = {'BUSES': {'Area': 1.08752, 'Bus/Area': 1.08752, 'Bus/Gate Leakage': 0.00541455, 'Bus/Peak Dynamic': 0.0, 'Bus/Runtime Dynamic': 0.0, 'Bus/Subthreshold Leakage': 0.0564625, 'Bus/Subthreshold Leakage with power gating': 0.0211734, 'Gate Leakage': 0.00541455, 'Peak Dynamic': 0.0, 'Runtime Dynamic': 0.0, 'Subthreshold Leakage': 0.0564625, 'Subthreshold Leakage with power gating': 0.0211734}, 'Core': [{'Area': 32.6082, 'Execution Unit/Area': 8.2042, 'Execution Unit/Complex ALUs/Area': 0.235435, 'Execution Unit/Complex ALUs/Gate Leakage': 0.0132646, 'Execution Unit/Complex ALUs/Peak Dynamic': 0.0955308, 'Execution Unit/Complex ALUs/Runtime Dynamic': 0.277723, 'Execution Unit/Complex ALUs/Subthreshold Leakage': 0.20111, 'Execution Unit/Complex ALUs/Subthreshold Leakage with power gating': 0.0754163, 'Execution Unit/Floating Point Units/Area': 4.6585, 'Execution Unit/Floating Point Units/Gate Leakage': 0.0656156, 'Execution Unit/Floating Point Units/Peak Dynamic': 0.852868, 'Execution Unit/Floating Point Units/Runtime Dynamic': 0.679223, 'Execution Unit/Floating Point Units/Subthreshold Leakage': 0.994829, 'Execution Unit/Floating Point Units/Subthreshold Leakage with power gating': 0.373061, 'Execution Unit/Gate Leakage': 0.122718, 'Execution Unit/Instruction Scheduler/Area': 2.17927, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Area': 0.328073, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Gate Leakage': 0.00115349, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Peak Dynamic': 1.20978, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Runtime Dynamic': 0.337297, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage': 0.017004, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage with power gating': 0.00962066, 'Execution Unit/Instruction Scheduler/Gate Leakage': 0.00730101, 'Execution Unit/Instruction Scheduler/Instruction Window/Area': 1.00996, 'Execution Unit/Instruction Scheduler/Instruction Window/Gate Leakage': 0.00529112, 'Execution Unit/Instruction Scheduler/Instruction Window/Peak Dynamic': 2.07911, 'Execution Unit/Instruction Scheduler/Instruction Window/Runtime Dynamic': 0.584077, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage': 0.0800117, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage with power gating': 0.0455351, 'Execution Unit/Instruction Scheduler/Peak Dynamic': 4.84781, 'Execution Unit/Instruction Scheduler/ROB/Area': 0.841232, 'Execution Unit/Instruction Scheduler/ROB/Gate Leakage': 0.000856399, 'Execution Unit/Instruction Scheduler/ROB/Peak Dynamic': 1.55892, 'Execution Unit/Instruction Scheduler/ROB/Runtime Dynamic': 0.377493, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage': 0.0178624, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage with power gating': 0.00897339, 'Execution Unit/Instruction Scheduler/Runtime Dynamic': 1.29887, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage': 0.114878, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage with power gating': 0.0641291, 'Execution Unit/Integer ALUs/Area': 0.47087, 'Execution Unit/Integer ALUs/Gate Leakage': 0.0265291, 'Execution Unit/Integer ALUs/Peak Dynamic': 0.202647, 'Execution Unit/Integer ALUs/Runtime Dynamic': 0.319665, 'Execution Unit/Integer ALUs/Subthreshold Leakage': 0.40222, 'Execution Unit/Integer ALUs/Subthreshold Leakage with power gating': 0.150833, 'Execution Unit/Peak Dynamic': 6.59121, 'Execution Unit/Register Files/Area': 0.570804, 'Execution Unit/Register Files/Floating Point RF/Area': 0.208131, 'Execution Unit/Register Files/Floating Point RF/Gate Leakage': 0.000232788, 'Execution Unit/Register Files/Floating Point RF/Peak Dynamic': 0.161125, 'Execution Unit/Register Files/Floating Point RF/Runtime Dynamic': 0.0122273, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage': 0.00399698, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage with power gating': 0.00176968, 'Execution Unit/Register Files/Gate Leakage': 0.000622708, 'Execution Unit/Register Files/Integer RF/Area': 0.362673, 'Execution Unit/Register Files/Integer RF/Gate Leakage': 0.00038992, 'Execution Unit/Register Files/Integer RF/Peak Dynamic': 0.110483, 'Execution Unit/Register Files/Integer RF/Runtime Dynamic': 0.0904283, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage': 0.00614175, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage with power gating': 0.00246675, 'Execution Unit/Register Files/Peak Dynamic': 0.271608, 'Execution Unit/Register Files/Runtime Dynamic': 0.102656, 'Execution Unit/Register Files/Subthreshold Leakage': 0.0101387, 'Execution Unit/Register Files/Subthreshold Leakage with power gating': 0.00423643, 'Execution Unit/Results Broadcast Bus/Area Overhead': 0.0442632, 'Execution Unit/Results Broadcast Bus/Gate Leakage': 0.00607074, 'Execution Unit/Results Broadcast Bus/Peak Dynamic': 0.293143, 'Execution Unit/Results Broadcast Bus/Runtime Dynamic': 0.835198, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage': 0.0920413, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage with power gating': 0.0345155, 'Execution Unit/Runtime Dynamic': 3.51333, 'Execution Unit/Subthreshold Leakage': 1.83518, 'Execution Unit/Subthreshold Leakage with power gating': 0.709678, 'Gate Leakage': 0.372997, 'Instruction Fetch Unit/Area': 5.86007, 'Instruction Fetch Unit/Branch Predictor/Area': 0.138516, 'Instruction Fetch Unit/Branch Predictor/Chooser/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Chooser/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Chooser/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Chooser/Runtime Dynamic': 0.000781008, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/Gate Leakage': 0.000757657, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Runtime Dynamic': 0.000781008, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Area': 0.0257064, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Gate Leakage': 0.000154548, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Peak Dynamic': 0.0142575, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Runtime Dynamic': 0.000675581, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage': 0.00384344, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage with power gating': 0.00198631, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Area': 0.0151917, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Gate Leakage': 8.00196e-05, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Peak Dynamic': 0.00527447, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Runtime Dynamic': 0.000258971, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage': 0.00181347, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage with power gating': 0.000957045, 'Instruction Fetch Unit/Branch Predictor/Peak Dynamic': 0.0597838, 'Instruction Fetch Unit/Branch Predictor/RAS/Area': 0.0105732, 'Instruction Fetch Unit/Branch Predictor/RAS/Gate Leakage': 4.63858e-05, 'Instruction Fetch Unit/Branch Predictor/RAS/Peak Dynamic': 0.0117602, 'Instruction Fetch Unit/Branch Predictor/RAS/Runtime Dynamic': 0.00129901, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage': 0.000932505, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage with power gating': 0.000494733, 'Instruction Fetch Unit/Branch Predictor/Runtime Dynamic': 0.00353661, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage': 0.0199703, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage with power gating': 0.0103282, 'Instruction Fetch Unit/Branch Target Buffer/Area': 0.64954, 'Instruction Fetch Unit/Branch Target Buffer/Gate Leakage': 0.00272758, 'Instruction Fetch Unit/Branch Target Buffer/Peak Dynamic': 0.177867, 'Instruction Fetch Unit/Branch Target Buffer/Runtime Dynamic': 0.0076553, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage': 0.0811682, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage with power gating': 0.0435357, 'Instruction Fetch Unit/Gate Leakage': 0.0590479, 'Instruction Fetch Unit/Instruction Buffer/Area': 0.0226323, 'Instruction Fetch Unit/Instruction Buffer/Gate Leakage': 6.83558e-05, 'Instruction Fetch Unit/Instruction Buffer/Peak Dynamic': 0.606827, 'Instruction Fetch Unit/Instruction Buffer/Runtime Dynamic': 0.0869311, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage': 0.00151885, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage with power gating': 0.000701682, 'Instruction Fetch Unit/Instruction Cache/Area': 3.14635, 'Instruction Fetch Unit/Instruction Cache/Gate Leakage': 0.029931, 'Instruction Fetch Unit/Instruction Cache/Peak Dynamic': 5.52956, 'Instruction Fetch Unit/Instruction Cache/Runtime Dynamic': 0.213019, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage': 0.367022, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage with power gating': 0.180386, 'Instruction Fetch Unit/Instruction Decoder/Area': 1.85799, 'Instruction Fetch Unit/Instruction Decoder/Gate Leakage': 0.0222493, 'Instruction Fetch Unit/Instruction Decoder/Peak Dynamic': 1.37404, 'Instruction Fetch Unit/Instruction Decoder/Runtime Dynamic': 0.295257, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage': 0.442943, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage with power gating': 0.166104, 'Instruction Fetch Unit/Peak Dynamic': 8.02054, 'Instruction Fetch Unit/Runtime Dynamic': 0.606399, 'Instruction Fetch Unit/Subthreshold Leakage': 0.932587, 'Instruction Fetch Unit/Subthreshold Leakage with power gating': 0.408542, 'L2/Area': 4.53318, 'L2/Gate Leakage': 0.015464, 'L2/Peak Dynamic': 0.152811, 'L2/Runtime Dynamic': 0.0364529, 'L2/Subthreshold Leakage': 0.834142, 'L2/Subthreshold Leakage with power gating': 0.401066, 'Load Store Unit/Area': 8.80969, 'Load Store Unit/Data Cache/Area': 6.84535, 'Load Store Unit/Data Cache/Gate Leakage': 0.0279261, 'Load Store Unit/Data Cache/Peak Dynamic': 3.72689, 'Load Store Unit/Data Cache/Runtime Dynamic': 1.24846, 'Load Store Unit/Data Cache/Subthreshold Leakage': 0.527675, 'Load Store Unit/Data Cache/Subthreshold Leakage with power gating': 0.25085, 'Load Store Unit/Gate Leakage': 0.0351387, 'Load Store Unit/LoadQ/Area': 0.0836782, 'Load Store Unit/LoadQ/Gate Leakage': 0.00059896, 'Load Store Unit/LoadQ/Peak Dynamic': 0.08055, 'Load Store Unit/LoadQ/Runtime Dynamic': 0.0805499, 'Load Store Unit/LoadQ/Subthreshold Leakage': 0.00941961, 'Load Store Unit/LoadQ/Subthreshold Leakage with power gating': 0.00536918, 'Load Store Unit/Peak Dynamic': 4.10881, 'Load Store Unit/Runtime Dynamic': 1.72626, 'Load Store Unit/StoreQ/Area': 0.322079, 'Load Store Unit/StoreQ/Gate Leakage': 0.00329971, 'Load Store Unit/StoreQ/Peak Dynamic': 0.198623, 'Load Store Unit/StoreQ/Runtime Dynamic': 0.397245, 'Load Store Unit/StoreQ/Subthreshold Leakage': 0.0345621, 'Load Store Unit/StoreQ/Subthreshold Leakage with power gating': 0.0197004, 'Load Store Unit/Subthreshold Leakage': 0.591622, 'Load Store Unit/Subthreshold Leakage with power gating': 0.283406, 'Memory Management Unit/Area': 0.434579, 'Memory Management Unit/Dtlb/Area': 0.0879726, 'Memory Management Unit/Dtlb/Gate Leakage': 0.00088729, 'Memory Management Unit/Dtlb/Peak Dynamic': 0.0704918, 'Memory Management Unit/Dtlb/Runtime Dynamic': 0.0727723, 'Memory Management Unit/Dtlb/Subthreshold Leakage': 0.0155699, 'Memory Management Unit/Dtlb/Subthreshold Leakage with power gating': 0.00887485, 'Memory Management Unit/Gate Leakage': 0.00813591, 'Memory Management Unit/Itlb/Area': 0.301552, 'Memory Management Unit/Itlb/Gate Leakage': 0.00393464, 'Memory Management Unit/Itlb/Peak Dynamic': 0.343808, 'Memory Management Unit/Itlb/Runtime Dynamic': 0.0347031, 'Memory Management Unit/Itlb/Subthreshold Leakage': 0.0413758, 'Memory Management Unit/Itlb/Subthreshold Leakage with power gating': 0.0235842, 'Memory Management Unit/Peak Dynamic': 0.624173, 'Memory Management Unit/Runtime Dynamic': 0.107475, 'Memory Management Unit/Subthreshold Leakage': 0.0769113, 'Memory Management Unit/Subthreshold Leakage with power gating': 0.0399462, 'Peak Dynamic': 24.0592, 'Renaming Unit/Area': 0.369768, 'Renaming Unit/FP Front End RAT/Area': 0.168486, 'Renaming Unit/FP Front End RAT/Gate Leakage': 0.00489731, 'Renaming Unit/FP Front End RAT/Peak Dynamic': 3.33511, 'Renaming Unit/FP Front End RAT/Runtime Dynamic': 0.562129, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage': 0.0437281, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage with power gating': 0.024925, 'Renaming Unit/Free List/Area': 0.0414755, 'Renaming Unit/Free List/Gate Leakage': 4.15911e-05, 'Renaming Unit/Free List/Peak Dynamic': 0.0401324, 'Renaming Unit/Free List/Runtime Dynamic': 0.0240118, 'Renaming Unit/Free List/Subthreshold Leakage': 0.000670426, 'Renaming Unit/Free List/Subthreshold Leakage with power gating': 0.000377987, 'Renaming Unit/Gate Leakage': 0.00863632, 'Renaming Unit/Int Front End RAT/Area': 0.114751, 'Renaming Unit/Int Front End RAT/Gate Leakage': 0.00038343, 'Renaming Unit/Int Front End RAT/Peak Dynamic': 0.86945, 'Renaming Unit/Int Front End RAT/Runtime Dynamic': 0.163866, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage': 0.00611897, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage with power gating': 0.00348781, 'Renaming Unit/Peak Dynamic': 4.56169, 'Renaming Unit/Runtime Dynamic': 0.750006, 'Renaming Unit/Subthreshold Leakage': 0.070483, 'Renaming Unit/Subthreshold Leakage with power gating': 0.0362779, 'Runtime Dynamic': 6.73993, 'Subthreshold Leakage': 6.21877, 'Subthreshold Leakage with power gating': 2.58311}, {'Area': 32.6082, 'Execution Unit/Area': 8.2042, 'Execution Unit/Complex ALUs/Area': 0.235435, 'Execution Unit/Complex ALUs/Gate Leakage': 0.0132646, 'Execution Unit/Complex ALUs/Peak Dynamic': 0.0955837, 'Execution Unit/Complex ALUs/Runtime Dynamic': 0.277764, 'Execution Unit/Complex ALUs/Subthreshold Leakage': 0.20111, 'Execution Unit/Complex ALUs/Subthreshold Leakage with power gating': 0.0754163, 'Execution Unit/Floating Point Units/Area': 4.6585, 'Execution Unit/Floating Point Units/Gate Leakage': 0.0656156, 'Execution Unit/Floating Point Units/Peak Dynamic': 0.853885, 'Execution Unit/Floating Point Units/Runtime Dynamic': 0.679669, 'Execution Unit/Floating Point Units/Subthreshold Leakage': 0.994829, 'Execution Unit/Floating Point Units/Subthreshold Leakage with power gating': 0.373061, 'Execution Unit/Gate Leakage': 0.122718, 'Execution Unit/Instruction Scheduler/Area': 2.17927, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Area': 0.328073, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Gate Leakage': 0.00115349, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Peak Dynamic': 1.20978, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Runtime Dynamic': 0.337724, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage': 0.017004, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage with power gating': 0.00962066, 'Execution Unit/Instruction Scheduler/Gate Leakage': 0.00730101, 'Execution Unit/Instruction Scheduler/Instruction Window/Area': 1.00996, 'Execution Unit/Instruction Scheduler/Instruction Window/Gate Leakage': 0.00529112, 'Execution Unit/Instruction Scheduler/Instruction Window/Peak Dynamic': 2.07911, 'Execution Unit/Instruction Scheduler/Instruction Window/Runtime Dynamic': 0.584816, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage': 0.0800117, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage with power gating': 0.0455351, 'Execution Unit/Instruction Scheduler/Peak Dynamic': 4.84781, 'Execution Unit/Instruction Scheduler/ROB/Area': 0.841232, 'Execution Unit/Instruction Scheduler/ROB/Gate Leakage': 0.000856399, 'Execution Unit/Instruction Scheduler/ROB/Peak Dynamic': 1.55892, 'Execution Unit/Instruction Scheduler/ROB/Runtime Dynamic': 0.377927, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage': 0.0178624, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage with power gating': 0.00897339, 'Execution Unit/Instruction Scheduler/Runtime Dynamic': 1.30047, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage': 0.114878, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage with power gating': 0.0641291, 'Execution Unit/Integer ALUs/Area': 0.47087, 'Execution Unit/Integer ALUs/Gate Leakage': 0.0265291, 'Execution Unit/Integer ALUs/Peak Dynamic': 0.202914, 'Execution Unit/Integer ALUs/Runtime Dynamic': 0.319906, 'Execution Unit/Integer ALUs/Subthreshold Leakage': 0.40222, 'Execution Unit/Integer ALUs/Subthreshold Leakage with power gating': 0.150833, 'Execution Unit/Peak Dynamic': 6.59314, 'Execution Unit/Register Files/Area': 0.570804, 'Execution Unit/Register Files/Floating Point RF/Area': 0.208131, 'Execution Unit/Register Files/Floating Point RF/Gate Leakage': 0.000232788, 'Execution Unit/Register Files/Floating Point RF/Peak Dynamic': 0.161317, 'Execution Unit/Register Files/Floating Point RF/Runtime Dynamic': 0.0122428, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage': 0.00399698, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage with power gating': 0.00176968, 'Execution Unit/Register Files/Gate Leakage': 0.000622708, 'Execution Unit/Register Files/Integer RF/Area': 0.362673, 'Execution Unit/Register Files/Integer RF/Gate Leakage': 0.00038992, 'Execution Unit/Register Files/Integer RF/Peak Dynamic': 0.110585, 'Execution Unit/Register Files/Integer RF/Runtime Dynamic': 0.0905428, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage': 0.00614175, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage with power gating': 0.00246675, 'Execution Unit/Register Files/Peak Dynamic': 0.271902, 'Execution Unit/Register Files/Runtime Dynamic': 0.102786, 'Execution Unit/Register Files/Subthreshold Leakage': 0.0101387, 'Execution Unit/Register Files/Subthreshold Leakage with power gating': 0.00423643, 'Execution Unit/Results Broadcast Bus/Area Overhead': 0.0442632, 'Execution Unit/Results Broadcast Bus/Gate Leakage': 0.00607074, 'Execution Unit/Results Broadcast Bus/Peak Dynamic': 0.293405, 'Execution Unit/Results Broadcast Bus/Runtime Dynamic': 0.836102, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage': 0.0920413, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage with power gating': 0.0345155, 'Execution Unit/Runtime Dynamic': 3.5167, 'Execution Unit/Subthreshold Leakage': 1.83518, 'Execution Unit/Subthreshold Leakage with power gating': 0.709678, 'Gate Leakage': 0.372997, 'Instruction Fetch Unit/Area': 5.86007, 'Instruction Fetch Unit/Branch Predictor/Area': 0.138516, 'Instruction Fetch Unit/Branch Predictor/Chooser/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Chooser/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Chooser/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Chooser/Runtime Dynamic': 0.000782126, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/Gate Leakage': 0.000757657, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Runtime Dynamic': 0.000782126, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Area': 0.0257064, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Gate Leakage': 0.000154548, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Peak Dynamic': 0.0142575, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Runtime Dynamic': 0.000676533, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage': 0.00384344, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage with power gating': 0.00198631, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Area': 0.0151917, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Gate Leakage': 8.00196e-05, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Peak Dynamic': 0.00527447, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Runtime Dynamic': 0.000259327, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage': 0.00181347, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage with power gating': 0.000957045, 'Instruction Fetch Unit/Branch Predictor/Peak Dynamic': 0.0597838, 'Instruction Fetch Unit/Branch Predictor/RAS/Area': 0.0105732, 'Instruction Fetch Unit/Branch Predictor/RAS/Gate Leakage': 4.63858e-05, 'Instruction Fetch Unit/Branch Predictor/RAS/Peak Dynamic': 0.0117602, 'Instruction Fetch Unit/Branch Predictor/RAS/Runtime Dynamic': 0.00130065, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage': 0.000932505, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage with power gating': 0.000494733, 'Instruction Fetch Unit/Branch Predictor/Runtime Dynamic': 0.00354144, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage': 0.0199703, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage with power gating': 0.0103282, 'Instruction Fetch Unit/Branch Target Buffer/Area': 0.64954, 'Instruction Fetch Unit/Branch Target Buffer/Gate Leakage': 0.00272758, 'Instruction Fetch Unit/Branch Target Buffer/Peak Dynamic': 0.177867, 'Instruction Fetch Unit/Branch Target Buffer/Runtime Dynamic': 0.0076668, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage': 0.0811682, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage with power gating': 0.0435357, 'Instruction Fetch Unit/Gate Leakage': 0.0590479, 'Instruction Fetch Unit/Instruction Buffer/Area': 0.0226323, 'Instruction Fetch Unit/Instruction Buffer/Gate Leakage': 6.83558e-05, 'Instruction Fetch Unit/Instruction Buffer/Peak Dynamic': 0.606827, 'Instruction Fetch Unit/Instruction Buffer/Runtime Dynamic': 0.0870411, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage': 0.00151885, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage with power gating': 0.000701682, 'Instruction Fetch Unit/Instruction Cache/Area': 3.14635, 'Instruction Fetch Unit/Instruction Cache/Gate Leakage': 0.029931, 'Instruction Fetch Unit/Instruction Cache/Peak Dynamic': 5.53656, 'Instruction Fetch Unit/Instruction Cache/Runtime Dynamic': 0.212864, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage': 0.367022, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage with power gating': 0.180386, 'Instruction Fetch Unit/Instruction Decoder/Area': 1.85799, 'Instruction Fetch Unit/Instruction Decoder/Gate Leakage': 0.0222493, 'Instruction Fetch Unit/Instruction Decoder/Peak Dynamic': 1.37404, 'Instruction Fetch Unit/Instruction Decoder/Runtime Dynamic': 0.295631, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage': 0.442943, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage with power gating': 0.166104, 'Instruction Fetch Unit/Peak Dynamic': 8.02789, 'Instruction Fetch Unit/Runtime Dynamic': 0.606744, 'Instruction Fetch Unit/Subthreshold Leakage': 0.932587, 'Instruction Fetch Unit/Subthreshold Leakage with power gating': 0.408542, 'L2/Area': 4.53318, 'L2/Gate Leakage': 0.015464, 'L2/Peak Dynamic': 0.152816, 'L2/Runtime Dynamic': 0.036542, 'L2/Subthreshold Leakage': 0.834142, 'L2/Subthreshold Leakage with power gating': 0.401066, 'Load Store Unit/Area': 8.80969, 'Load Store Unit/Data Cache/Area': 6.84535, 'Load Store Unit/Data Cache/Gate Leakage': 0.0279261, 'Load Store Unit/Data Cache/Peak Dynamic': 3.73104, 'Load Store Unit/Data Cache/Runtime Dynamic': 1.25059, 'Load Store Unit/Data Cache/Subthreshold Leakage': 0.527675, 'Load Store Unit/Data Cache/Subthreshold Leakage with power gating': 0.25085, 'Load Store Unit/Gate Leakage': 0.0351387, 'Load Store Unit/LoadQ/Area': 0.0836782, 'Load Store Unit/LoadQ/Gate Leakage': 0.00059896, 'Load Store Unit/LoadQ/Peak Dynamic': 0.0806842, 'Load Store Unit/LoadQ/Runtime Dynamic': 0.0806842, 'Load Store Unit/LoadQ/Subthreshold Leakage': 0.00941961, 'Load Store Unit/LoadQ/Subthreshold Leakage with power gating': 0.00536918, 'Load Store Unit/Peak Dynamic': 4.1136, 'Load Store Unit/Runtime Dynamic': 1.72918, 'Load Store Unit/StoreQ/Area': 0.322079, 'Load Store Unit/StoreQ/Gate Leakage': 0.00329971, 'Load Store Unit/StoreQ/Peak Dynamic': 0.198953, 'Load Store Unit/StoreQ/Runtime Dynamic': 0.397907, 'Load Store Unit/StoreQ/Subthreshold Leakage': 0.0345621, 'Load Store Unit/StoreQ/Subthreshold Leakage with power gating': 0.0197004, 'Load Store Unit/Subthreshold Leakage': 0.591622, 'Load Store Unit/Subthreshold Leakage with power gating': 0.283406, 'Memory Management Unit/Area': 0.434579, 'Memory Management Unit/Dtlb/Area': 0.0879726, 'Memory Management Unit/Dtlb/Gate Leakage': 0.00088729, 'Memory Management Unit/Dtlb/Peak Dynamic': 0.0706092, 'Memory Management Unit/Dtlb/Runtime Dynamic': 0.0728902, 'Memory Management Unit/Dtlb/Subthreshold Leakage': 0.0155699, 'Memory Management Unit/Dtlb/Subthreshold Leakage with power gating': 0.00887485, 'Memory Management Unit/Gate Leakage': 0.00813591, 'Memory Management Unit/Itlb/Area': 0.301552, 'Memory Management Unit/Itlb/Gate Leakage': 0.00393464, 'Memory Management Unit/Itlb/Peak Dynamic': 0.344243, 'Memory Management Unit/Itlb/Runtime Dynamic': 0.0346814, 'Memory Management Unit/Itlb/Subthreshold Leakage': 0.0413758, 'Memory Management Unit/Itlb/Subthreshold Leakage with power gating': 0.0235842, 'Memory Management Unit/Peak Dynamic': 0.624811, 'Memory Management Unit/Runtime Dynamic': 0.107572, 'Memory Management Unit/Subthreshold Leakage': 0.0769113, 'Memory Management Unit/Subthreshold Leakage with power gating': 0.0399462, 'Peak Dynamic': 24.0739, 'Renaming Unit/Area': 0.369768, 'Renaming Unit/FP Front End RAT/Area': 0.168486, 'Renaming Unit/FP Front End RAT/Gate Leakage': 0.00489731, 'Renaming Unit/FP Front End RAT/Peak Dynamic': 3.33511, 'Renaming Unit/FP Front End RAT/Runtime Dynamic': 0.562798, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage': 0.0437281, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage with power gating': 0.024925, 'Renaming Unit/Free List/Area': 0.0414755, 'Renaming Unit/Free List/Gate Leakage': 4.15911e-05, 'Renaming Unit/Free List/Peak Dynamic': 0.0401324, 'Renaming Unit/Free List/Runtime Dynamic': 0.0240417, 'Renaming Unit/Free List/Subthreshold Leakage': 0.000670426, 'Renaming Unit/Free List/Subthreshold Leakage with power gating': 0.000377987, 'Renaming Unit/Gate Leakage': 0.00863632, 'Renaming Unit/Int Front End RAT/Area': 0.114751, 'Renaming Unit/Int Front End RAT/Gate Leakage': 0.00038343, 'Renaming Unit/Int Front End RAT/Peak Dynamic': 0.86945, 'Renaming Unit/Int Front End RAT/Runtime Dynamic': 0.164074, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage': 0.00611897, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage with power gating': 0.00348781, 'Renaming Unit/Peak Dynamic': 4.56169, 'Renaming Unit/Runtime Dynamic': 0.750914, 'Renaming Unit/Subthreshold Leakage': 0.070483, 'Renaming Unit/Subthreshold Leakage with power gating': 0.0362779, 'Runtime Dynamic': 6.74765, 'Subthreshold Leakage': 6.21877, 'Subthreshold Leakage with power gating': 2.58311}], 'DRAM': {'Area': 0, 'Gate Leakage': 0, 'Peak Dynamic': 3.72117540729286, 'Runtime Dynamic': 3.72117540729286, 'Subthreshold Leakage': 4.252, 'Subthreshold Leakage with power gating': 4.252}, 'L3': [{'Area': 61.9075, 'Gate Leakage': 0.0484137, 'Peak Dynamic': 0.569896, 'Runtime Dynamic': 0.377251, 'Subthreshold Leakage': 6.80085, 'Subthreshold Leakage with power gating': 3.32364}], 'Processor': {'Area': 128.211, 'Gate Leakage': 0.799822, 'Peak Dynamic': 48.7031, 'Peak Power': 68.7978, 'Runtime Dynamic': 13.8648, 'Subthreshold Leakage': 19.2949, 'Subthreshold Leakage with power gating': 8.76959, 'Total Cores/Area': 65.2164, 'Total Cores/Gate Leakage': 0.745993, 'Total Cores/Peak Dynamic': 48.1332, 'Total Cores/Runtime Dynamic': 13.4876, 'Total Cores/Subthreshold Leakage': 12.4375, 'Total Cores/Subthreshold Leakage with power gating': 5.16621, 'Total L3s/Area': 61.9075, 'Total L3s/Gate Leakage': 0.0484137, 'Total L3s/Peak Dynamic': 0.569896, 'Total L3s/Runtime Dynamic': 0.377251, 'Total L3s/Subthreshold Leakage': 6.80085, 'Total L3s/Subthreshold Leakage with power gating': 3.32364, 'Total Leakage': 20.0947, 'Total NoCs/Area': 1.08752, 'Total NoCs/Gate Leakage': 0.00541455, 'Total NoCs/Peak Dynamic': 0.0, 'Total NoCs/Runtime Dynamic': 0.0, 'Total NoCs/Subthreshold Leakage': 0.0564625, 'Total NoCs/Subthreshold Leakage with power gating': 0.0211734}}
0
0
0
e9a2f6e36e21d2f812a566f6b88b2d9f4025924d
1,890
py
Python
app/main.py
alf1e/CHUM-Package-manager
814290e344c82a8e0fb48435a745b15ae178eefb
[ "MIT" ]
null
null
null
app/main.py
alf1e/CHUM-Package-manager
814290e344c82a8e0fb48435a745b15ae178eefb
[ "MIT" ]
null
null
null
app/main.py
alf1e/CHUM-Package-manager
814290e344c82a8e0fb48435a745b15ae178eefb
[ "MIT" ]
null
null
null
#!/usr/bin/env python ######### #LICENSE# ######### ''' MIT License Copyright (c) 2021 ItsMeAlfie0 Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' ######### #IMPORTS# ######### import os import sys import urllib.request import json ###### #CODE# ###### arg = sys.argv if arg[1] == "--add-host": with open("conf/hosts.json", "r") as f: data = json.load(f) data[arg[2]] = arg[3] with open("conf/hosts.json", "w") as e: json.dump(e) print(f"Added host '{arg[2]}' '{arg[3]}'") elif arg[1] == "install": with open("conf/hosts.json", "r") as f: data = json.load(f) host = data[arg[2]] setup_sh = urllib.request.urlopen(f"{host}?repo={arg[3]}").read() os.system(f"mkdir /etc/chum/{arg[3]}") with open(f"/etc/chum/{arg[3]}/setup.sh", "w")as f: f.write(setup_sh) f.close() os.system(f"sh /etc/chumj/{arg[3]}/setup.sh") print("Package installed!")
29.076923
78
0.691534
#!/usr/bin/env python ######### #LICENSE# ######### ''' MIT License Copyright (c) 2021 ItsMeAlfie0 Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' ######### #IMPORTS# ######### import os import sys import urllib.request import json ###### #CODE# ###### arg = sys.argv if arg[1] == "--add-host": with open("conf/hosts.json", "r") as f: data = json.load(f) data[arg[2]] = arg[3] with open("conf/hosts.json", "w") as e: json.dump(e) print(f"Added host '{arg[2]}' '{arg[3]}'") elif arg[1] == "install": with open("conf/hosts.json", "r") as f: data = json.load(f) host = data[arg[2]] setup_sh = urllib.request.urlopen(f"{host}?repo={arg[3]}").read() os.system(f"mkdir /etc/chum/{arg[3]}") with open(f"/etc/chum/{arg[3]}/setup.sh", "w")as f: f.write(setup_sh) f.close() os.system(f"sh /etc/chumj/{arg[3]}/setup.sh") print("Package installed!")
0
0
0
10235f4c22917028f59e78a277404007dacc9d74
1,058
py
Python
pin ponge.py
glebyad/ping-pong
2fabfa00b51f5c50686f8c6de10864722f3d3968
[ "CC0-1.0" ]
null
null
null
pin ponge.py
glebyad/ping-pong
2fabfa00b51f5c50686f8c6de10864722f3d3968
[ "CC0-1.0" ]
null
null
null
pin ponge.py
glebyad/ping-pong
2fabfa00b51f5c50686f8c6de10864722f3d3968
[ "CC0-1.0" ]
null
null
null
from pygame import * #создай окно игры window = display.set_mode((1000, 700)) display.set_caption('догонялки') #задай фон сцены background = transform.scale(image.load('ping.jpg'), (1000, 700)) #создай 2 спрайта и размести их на сцене x1 = 0 y1 = 300 x2 = 900 y2 = 300 sprite1 = transform.scale(image.load('raketka1.png'), (100, 100) ) sprite2 = transform.scale(image.load('raketka2.jpg'), (100, 100) ) run = True clock = time.Clock() FPS = 60 while run: window.blit(background,(0, 0)) window.blit(sprite1, (x1, y1)) window.blit(sprite2, (x2, y2)) for e in event.get(): if e.type == QUIT: run = False speed = 4 keys_pressed = key.get_pressed() if keys_pressed[K_w] and y1 > 5: y1 -= speed if keys_pressed[K_s] and y1 < 600: y1 += speed if keys_pressed[K_UP] and y2 > 5: y2 -= speed if keys_pressed[K_DOWN] and y2 < 600: y2 += speed display.update() clock.tick(FPS)
19.592593
66
0.571834
from pygame import * #создай окно игры window = display.set_mode((1000, 700)) display.set_caption('догонялки') #задай фон сцены background = transform.scale(image.load('ping.jpg'), (1000, 700)) #создай 2 спрайта и размести их на сцене x1 = 0 y1 = 300 x2 = 900 y2 = 300 sprite1 = transform.scale(image.load('raketka1.png'), (100, 100) ) sprite2 = transform.scale(image.load('raketka2.jpg'), (100, 100) ) run = True clock = time.Clock() FPS = 60 while run: window.blit(background,(0, 0)) window.blit(sprite1, (x1, y1)) window.blit(sprite2, (x2, y2)) for e in event.get(): if e.type == QUIT: run = False speed = 4 keys_pressed = key.get_pressed() if keys_pressed[K_w] and y1 > 5: y1 -= speed if keys_pressed[K_s] and y1 < 600: y1 += speed if keys_pressed[K_UP] and y2 > 5: y2 -= speed if keys_pressed[K_DOWN] and y2 < 600: y2 += speed display.update() clock.tick(FPS)
0
0
0
4095a34c413d03e43c4c7d0136819b20e9686d8b
3,010
py
Python
containerchaos/measure_response_time.py
containerchaos/containerchaos
3e44c9587542678d6563b3f07299fb33c88a1f3e
[ "MIT" ]
null
null
null
containerchaos/measure_response_time.py
containerchaos/containerchaos
3e44c9587542678d6563b3f07299fb33c88a1f3e
[ "MIT" ]
9
2019-02-15T16:59:39.000Z
2019-02-26T22:42:10.000Z
containerchaos/measure_response_time.py
containerchaos/containerchaos
3e44c9587542678d6563b3f07299fb33c88a1f3e
[ "MIT" ]
1
2019-07-31T13:38:51.000Z
2019-07-31T13:38:51.000Z
import csv import datetime import matplotlib.pyplot as plt import pandas as pd import requests import seaborn as sns def measure_response_time(url, criteria, write=True): ''' Measures and saves an API request's response time to a CSV file :param url: The URL for API request :param criteria: The criteria in effect :return: Path to a CSV file with response time in seconds with its timestamp as columns ''' response = requests.get(url) response_time = response.elapsed.total_seconds() date_time = datetime.datetime.now() fieldnames = ['timestamp', 'responseTime', 'criteria'] # Headers of the CSV file out_path = 'Response-Times.csv' if write: with open(out_path, 'a') as csvFile: writer = csv.DictWriter(csvFile, fieldnames=fieldnames) if csvFile.tell() == 0: writer.writeheader() writer.writerow({'timestamp': date_time, 'responseTime': response_time, 'criteria': criteria}) csvFile.close() return out_path def generate_histogram(path, title): ''' Saves a histogram with average response time per number of requests :param path: Path to a csv file ''' response_times = pd.read_csv(path) criteria_dict = response_times.groupby("criteria")["responseTime"].apply(list).to_dict() critera_keys = list(criteria_dict.keys()) criteria_values = list(criteria_dict.values()) plt.title(title) plt.style.use("seaborn-deep") plt.hist(x=criteria_values, bins=30, label=critera_keys) plt.legend(loc="upper right") plt.xlabel("Response Time in Seconds") plt.ylabel("Number of Requests") plt.savefig(title + " Histogram") plt.show() def generate_density_plot(path, title): ''' Saves a density plot with density of requests per second :param path: Path to a csv file ''' response_times = pd.read_csv(path) criteria_dict = response_times.groupby("criteria")["responseTime"].apply(list).to_dict() critera_keys = list(criteria_dict.keys()) # criteria_values = list(criteria_dict.values()) for criteria in critera_keys: subset = response_times[response_times["criteria"] == criteria] sns.distplot(subset["responseTime"], hist=False, kde=True, kde_kws={"linewidth": 3}, label=criteria) plt.title(title) plt.legend(loc="upper right") plt.xlabel("Response Time in Seconds") plt.ylabel("Density") plt.savefig(title + " Density Plot") plt.show() local_simple_csv = "output/local/simple/Response-Times.csv" local_complex_csv = "output/local/complex/Response-Times.csv" cloud_simple_csv = "output/gcloud/simple/Response-Times.csv" cloud_complex_csv = "output/gcloud/complex/Response-Times.csv" generate_histogram(local_simple_csv, "Local Machine Simple Task") generate_density_plot(local_complex_csv, "Local Machine Complex Task") generate_density_plot(cloud_simple_csv, "Cloud Simple Task") generate_histogram(cloud_complex_csv, "Cloud Complex Task")
32.021277
108
0.707641
import csv import datetime import matplotlib.pyplot as plt import pandas as pd import requests import seaborn as sns def measure_response_time(url, criteria, write=True): ''' Measures and saves an API request's response time to a CSV file :param url: The URL for API request :param criteria: The criteria in effect :return: Path to a CSV file with response time in seconds with its timestamp as columns ''' response = requests.get(url) response_time = response.elapsed.total_seconds() date_time = datetime.datetime.now() fieldnames = ['timestamp', 'responseTime', 'criteria'] # Headers of the CSV file out_path = 'Response-Times.csv' if write: with open(out_path, 'a') as csvFile: writer = csv.DictWriter(csvFile, fieldnames=fieldnames) if csvFile.tell() == 0: writer.writeheader() writer.writerow({'timestamp': date_time, 'responseTime': response_time, 'criteria': criteria}) csvFile.close() return out_path def generate_histogram(path, title): ''' Saves a histogram with average response time per number of requests :param path: Path to a csv file ''' response_times = pd.read_csv(path) criteria_dict = response_times.groupby("criteria")["responseTime"].apply(list).to_dict() critera_keys = list(criteria_dict.keys()) criteria_values = list(criteria_dict.values()) plt.title(title) plt.style.use("seaborn-deep") plt.hist(x=criteria_values, bins=30, label=critera_keys) plt.legend(loc="upper right") plt.xlabel("Response Time in Seconds") plt.ylabel("Number of Requests") plt.savefig(title + " Histogram") plt.show() def generate_density_plot(path, title): ''' Saves a density plot with density of requests per second :param path: Path to a csv file ''' response_times = pd.read_csv(path) criteria_dict = response_times.groupby("criteria")["responseTime"].apply(list).to_dict() critera_keys = list(criteria_dict.keys()) # criteria_values = list(criteria_dict.values()) for criteria in critera_keys: subset = response_times[response_times["criteria"] == criteria] sns.distplot(subset["responseTime"], hist=False, kde=True, kde_kws={"linewidth": 3}, label=criteria) plt.title(title) plt.legend(loc="upper right") plt.xlabel("Response Time in Seconds") plt.ylabel("Density") plt.savefig(title + " Density Plot") plt.show() local_simple_csv = "output/local/simple/Response-Times.csv" local_complex_csv = "output/local/complex/Response-Times.csv" cloud_simple_csv = "output/gcloud/simple/Response-Times.csv" cloud_complex_csv = "output/gcloud/complex/Response-Times.csv" generate_histogram(local_simple_csv, "Local Machine Simple Task") generate_density_plot(local_complex_csv, "Local Machine Complex Task") generate_density_plot(cloud_simple_csv, "Cloud Simple Task") generate_histogram(cloud_complex_csv, "Cloud Complex Task")
0
0
0
821041c230e611989e036de3de8d4f9ba908a39e
1,620
py
Python
tracking/main.py
chan-w/vaccine-text-signup
f926aa76724ffd5fe1d473fd6cdb70ed50ee982d
[ "MIT" ]
null
null
null
tracking/main.py
chan-w/vaccine-text-signup
f926aa76724ffd5fe1d473fd6cdb70ed50ee982d
[ "MIT" ]
null
null
null
tracking/main.py
chan-w/vaccine-text-signup
f926aa76724ffd5fe1d473fd6cdb70ed50ee982d
[ "MIT" ]
null
null
null
api_key = "AIzaSyAedPSTmyoW1ejPtwG_cSu7fEjLxOOUrXg" # Uses the Geocode API import requests from urllib.parse import urlencode #Input address here! lat, lng = extract_lat_lng("1600 Amphitheatre Parkway, Mountain View, CA") places_endpoint_2 = "https://maps.googleapis.com/maps/api/place/nearbysearch/json" params_2 = { "key": api_key, "location": f"{lat},{lng}", "radius": "1500", "keyword": "pharmacy" } params_2_encoded = urlencode(params_2) places_url=f"{places_endpoint_2}?{params_2_encoded}" r2 = requests.get(places_url) # Returns the first 3 closest locations and stores it in variables within a 1500 meter radius try: nameVicinity0 = r2.json()['results'][0] name0 = nameVicinity0.get('name') vicinity0 = nameVicinity0.get('vicinity') except: pass try: nameVicinity1 = r2.json()['results'][1] name1 = nameVicinity1.get('name') vicinity1 = nameVicinity1.get('vicinity') except: pass try: nameVicinity2 = r2.json()['results'][2] name2 = nameVicinity2.get('name') vicinity2 = nameVicinity2.get('vicinity') except: pass
27.931034
93
0.683951
api_key = "AIzaSyAedPSTmyoW1ejPtwG_cSu7fEjLxOOUrXg" # Uses the Geocode API import requests from urllib.parse import urlencode def extract_lat_lng(address_or_postalcode, data_type = 'json'): endpoint = f"https://maps.googleapis.com/maps/api/geocode/{data_type}" params = {"address": address_or_postalcode, "key": api_key} url_params = urlencode(params) url = f"{endpoint}?{url_params}" r = requests.get(url) if r.status_code not in range(200, 299): return {} latlng = {} try: latlng = r.json()['results'][0]['geometry']['location'] except: pass return latlng.get("lat"), latlng.get("lng") #Input address here! lat, lng = extract_lat_lng("1600 Amphitheatre Parkway, Mountain View, CA") places_endpoint_2 = "https://maps.googleapis.com/maps/api/place/nearbysearch/json" params_2 = { "key": api_key, "location": f"{lat},{lng}", "radius": "1500", "keyword": "pharmacy" } params_2_encoded = urlencode(params_2) places_url=f"{places_endpoint_2}?{params_2_encoded}" r2 = requests.get(places_url) # Returns the first 3 closest locations and stores it in variables within a 1500 meter radius try: nameVicinity0 = r2.json()['results'][0] name0 = nameVicinity0.get('name') vicinity0 = nameVicinity0.get('vicinity') except: pass try: nameVicinity1 = r2.json()['results'][1] name1 = nameVicinity1.get('name') vicinity1 = nameVicinity1.get('vicinity') except: pass try: nameVicinity2 = r2.json()['results'][2] name2 = nameVicinity2.get('name') vicinity2 = nameVicinity2.get('vicinity') except: pass
504
0
23
f74c328b4e8be5db4ab0478db22db83a43dfc36e
38,645
py
Python
petitions/migrations/01000_add_counties_subcounties_courts_prisons_offences.py
DavidWaichari/pomac
79273c34dc54a301ed9fd802b0c2c487b2ac5d92
[ "MIT" ]
null
null
null
petitions/migrations/01000_add_counties_subcounties_courts_prisons_offences.py
DavidWaichari/pomac
79273c34dc54a301ed9fd802b0c2c487b2ac5d92
[ "MIT" ]
null
null
null
petitions/migrations/01000_add_counties_subcounties_courts_prisons_offences.py
DavidWaichari/pomac
79273c34dc54a301ed9fd802b0c2c487b2ac5d92
[ "MIT" ]
null
null
null
# Generated by Django 2.0.1 on 2018-01-28 19:30 from django.db import migrations
56.25182
112
0.73712
# Generated by Django 2.0.1 on 2018-01-28 19:30 from django.db import migrations def add_initial_data(apps, schema_editor): County = apps.get_model('petitions', 'County') Court = apps.get_model('petitions', 'Court') SubCounty = apps.get_model('petitions', 'SubCounty') Prison = apps.get_model('petitions', 'Prison') Offence = apps.get_model('petitions', 'Offence') baringo = County.objects.create(name='BARINGO') SubCounty.objects.create(name='BARINGO EAST', county=baringo) SubCounty.objects.create(name='BARINGO WEST', county=baringo) SubCounty.objects.create(name='BARINGO CENTRAL', county=baringo) SubCounty.objects.create(name='MOCHONGOI', county=baringo) SubCounty.objects.create(name='MOGOTIO', county=baringo) SubCounty.objects.create(name='ELDAMA RAVINE', county=baringo) bomet = County.objects.create(name='BOMET') SubCounty.objects.create(name='SOTIK', county=bomet) SubCounty.objects.create(name='CHEPALUNGU', county=bomet) SubCounty.objects.create(name='BOMET EAST', county=bomet) SubCounty.objects.create(name='BOMET CENTRAL', county=bomet) SubCounty.objects.create(name='KONOIN', county=bomet) bungoma = County.objects.create(name='BUNGOMA') SubCounty.objects.create(name='MT ELGON', county=bungoma) SubCounty.objects.create(name='SIRISIA', county=bungoma) SubCounty.objects.create(name='KABUCHIA', county=bungoma) SubCounty.objects.create(name='BUMULA', county=bungoma) SubCounty.objects.create(name='KANDUNYI', county=bungoma) SubCounty.objects.create(name='WEBUYE', county=bungoma) SubCounty.objects.create(name='BOKOLI', county=bungoma) SubCounty.objects.create(name='KIMILILI', county=bungoma) SubCounty.objects.create(name='TONGAREN', county=bungoma) busia = County.objects.create(name='BUSIA') SubCounty.objects.create(name='TESO NORTH', county=busia) SubCounty.objects.create(name='TESO SOUTH', county=busia) SubCounty.objects.create(name='NAMBALE', county=busia) SubCounty.objects.create(name='MATAYOS', county=busia) SubCounty.objects.create(name='BUTULA', county=busia) SubCounty.objects.create(name='FUNYULA', county=busia) SubCounty.objects.create(name='BUDALANGI', county=busia) elgeiyomarakwet = County.objects.create(name='ELGEYO MARAKWET') SubCounty.objects.create(name='MARAKWET EAST', county=elgeiyomarakwet) SubCounty.objects.create(name='MARAKWET WEST', county=elgeiyomarakwet) SubCounty.objects.create(name='KEIYO EAST', county=elgeiyomarakwet) SubCounty.objects.create(name='KEIYO SOUTH', county=elgeiyomarakwet) embu = County.objects.create(name='EMBU') SubCounty.objects.create(name='MANYATTA', county=embu) SubCounty.objects.create(name='RUNYENJES', county=embu) SubCounty.objects.create(name='GACHOKA', county=embu) SubCounty.objects.create(name='SIAKAGO', county=embu) garissa = County.objects.create(name='GARISSA') SubCounty.objects.create(name='TAVEDUJIS', county=garissa) SubCounty.objects.create(name='BALAMBALA', county=garissa) SubCounty.objects.create(name='LAGDERA', county=garissa) SubCounty.objects.create(name='DADAAB', county=garissa) SubCounty.objects.create(name='FAFI', county=garissa) SubCounty.objects.create(name='IJARA', county=garissa) homabay = County.objects.create(name='HOMA BAY') SubCounty.objects.create(name='KASIPUL', county=homabay) SubCounty.objects.create(name='KABONDO', county=homabay) SubCounty.objects.create(name='KARACHUONYO', county=homabay) SubCounty.objects.create(name='RANGWE', county=homabay) SubCounty.objects.create(name='HOMABAY TOWN', county=homabay) SubCounty.objects.create(name='NDHIWA', county=homabay) SubCounty.objects.create(name='MBITA', county=homabay) SubCounty.objects.create(name='GWASSI', county=homabay) isiolo = County.objects.create(name='ISIOLO') SubCounty.objects.create(name='ISIOLO NORTH', county=isiolo) SubCounty.objects.create(name='ISIOLO SOUTH', county=isiolo) kajiado = County.objects.create(name='KAJIADO') SubCounty.objects.create(name='KAJIADO CENTRAL', county=kajiado) SubCounty.objects.create(name='KAJIADO NORTH', county=kajiado) SubCounty.objects.create(name='KAJIADO SOUTH', county=kajiado) kakamega = County.objects.create(name='KAKAMEGA') SubCounty.objects.create(name='LUGARI', county=kakamega) SubCounty.objects.create(name='LIKUYANI', county=kakamega) SubCounty.objects.create(name='MALAVA', county=kakamega) SubCounty.objects.create(name='LURAMBI', county=kakamega) SubCounty.objects.create(name='MAKHOLO', county=kakamega) SubCounty.objects.create(name='MUMIAS', county=kakamega) SubCounty.objects.create(name='MUMIAS EAST', county=kakamega) SubCounty.objects.create(name='MATUNGU', county=kakamega) SubCounty.objects.create(name='BUTERE', county=kakamega) SubCounty.objects.create(name='KHWISERO', county=kakamega) SubCounty.objects.create(name='SHINYALU', county=kakamega) SubCounty.objects.create(name='IKOLOMANI', county=kakamega) kericho = County.objects.create(name='KERICHO') SubCounty.objects.create(name='AINAMOI', county=kericho) SubCounty.objects.create(name='BELGUT', county=kericho) SubCounty.objects.create(name='KIPKELION', county=kericho) kiambu = County.objects.create(name='KIAMBU') SubCounty.objects.create(name='GATUNDU SOUTH', county=kiambu) SubCounty.objects.create(name='GATUNDU NORTH', county=kiambu) SubCounty.objects.create(name='JUJA', county=kiambu) SubCounty.objects.create(name='THIKA TOWN', county=kiambu) SubCounty.objects.create(name='RUIRU GITHUNGURI', county=kiambu) SubCounty.objects.create(name='KIAMBU', county=kiambu) SubCounty.objects.create(name='KIAMBAA', county=kiambu) SubCounty.objects.create(name='KABETE', county=kiambu) SubCounty.objects.create(name='KIKUYU', county=kiambu) SubCounty.objects.create(name='LIMURU', county=kiambu) SubCounty.objects.create(name='LARI', county=kiambu) kilifi = County.objects.create(name='KILIFI') SubCounty.objects.create(name='KILIFI NORTH', county=kilifi) SubCounty.objects.create(name='KILIFI SOUTH', county=kilifi) SubCounty.objects.create(name='KALOLENI', county=kilifi) SubCounty.objects.create(name='RABAI', county=kilifi) SubCounty.objects.create(name='GANZE', county=kilifi) SubCounty.objects.create(name='MALINDI', county=kilifi) SubCounty.objects.create(name='MAGARINI', county=kilifi) kirinyaga = County.objects.create(name='KIRINYAGA') SubCounty.objects.create(name='MWEA', county=kirinyaga) SubCounty.objects.create(name='GICHUGU', county=kirinyaga) SubCounty.objects.create(name='NDIA', county=kirinyaga) SubCounty.objects.create(name='KIRINYAGA CENTRAL', county=kirinyaga) kisii = County.objects.create(name='KISII') SubCounty.objects.create(name='BONCHARI', county=kisii) SubCounty.objects.create(name='SOUTH MUGIRANGO', county=kisii) SubCounty.objects.create(name='BOMACHOGE', county=kisii) SubCounty.objects.create(name='BOBASI', county=kisii) SubCounty.objects.create(name='GUCHA', county=kisii) SubCounty.objects.create(name='NYARIBARI MASABA', county=kisii) SubCounty.objects.create(name='NYARIBARI CHACHE', county=kisii) SubCounty.objects.create(name='MATRANI', county=kisii) SubCounty.objects.create(name='MOSOCHO', county=kisii) kisumu = County.objects.create(name='KISUMU') SubCounty.objects.create(name='KISUMU EAST', county=kisumu) SubCounty.objects.create(name='KISUMU WEST', county=kisumu) SubCounty.objects.create(name='KISUMU CENTRAL', county=kisumu) SubCounty.objects.create(name='SEME', county=kisumu) SubCounty.objects.create(name='NYANDO', county=kisumu) SubCounty.objects.create(name='MUHORONI', county=kisumu) SubCounty.objects.create(name='NYAKACH', county=kisumu) kitui = County.objects.create(name='KITUI') SubCounty.objects.create(name='MWINGI NORTH', county=kitui) SubCounty.objects.create(name='MWINGI CENTRAL', county=kitui) SubCounty.objects.create(name='MWINGI SOUTH', county=kitui) SubCounty.objects.create(name='KITUI WEST', county=kitui) SubCounty.objects.create(name='KITUI RURAL', county=kitui) SubCounty.objects.create(name='KITUI TOWN', county=kitui) SubCounty.objects.create(name='MUTITU', county=kitui) SubCounty.objects.create(name='KITUI SOUTH', county=kitui) kwale = County.objects.create(name='KWALE') SubCounty.objects.create(name='MSAMBWENI', county=kwale) SubCounty.objects.create(name='LUNGA LUNGA', county=kwale) SubCounty.objects.create(name='MATUGA', county=kwale) SubCounty.objects.create(name='KINANGO', county=kwale) laikipia = County.objects.create(name='LAIKIPIA') SubCounty.objects.create(name='LAIKIPIA WEST', county=laikipia) SubCounty.objects.create(name='LAIKIPIA EAST', county=laikipia) SubCounty.objects.create(name='LAIKIPIA NORTH', county=laikipia) lamu = County.objects.create(name='LAMU') SubCounty.objects.create(name='LAMU EAST', county=lamu) SubCounty.objects.create(name='LAMU WEST', county=lamu) machakos = County.objects.create(name='MACHAKOS') SubCounty.objects.create(name='MASINGA', county=machakos) SubCounty.objects.create(name='YATTA', county=machakos) SubCounty.objects.create(name='KANGUNDO', county=machakos) SubCounty.objects.create(name='MATUNGULU', county=machakos) SubCounty.objects.create(name='KATHIANI', county=machakos) SubCounty.objects.create(name='MAVOKO', county=machakos) SubCounty.objects.create(name='MACHAKOS TOWN', county=machakos) SubCounty.objects.create(name='MWALA', county=machakos) makueni = County.objects.create(name='MAKUENI') SubCounty.objects.create(name='MBOONI', county=makueni) SubCounty.objects.create(name='KILOME', county=makueni) SubCounty.objects.create(name='KAITI', county=makueni) SubCounty.objects.create(name='MAKUENI', county=makueni) SubCounty.objects.create(name='KIBWEZI WEST', county=makueni) SubCounty.objects.create(name='KIBWEZI EAST', county=makueni) mandera = County.objects.create(name='MANDERA') SubCounty.objects.create(name='MANDERA WEST', county=mandera) SubCounty.objects.create(name='BANISA', county=mandera) SubCounty.objects.create(name='MANDERA NORTH', county=mandera) SubCounty.objects.create(name='MANDERA EAST', county=mandera) SubCounty.objects.create(name='LAFEY', county=mandera) marsabit = County.objects.create(name='MARSABIT') SubCounty.objects.create(name='MOYALE', county=marsabit) SubCounty.objects.create(name='NORTH HORR', county=marsabit) SubCounty.objects.create(name='SAKU', county=marsabit) SubCounty.objects.create(name='LAISAMIS', county=marsabit) meru = County.objects.create(name='MERU') SubCounty.objects.create(name='IGEMBE SOUTH', county=meru) SubCounty.objects.create(name='IGEMBE CENTRAL', county=meru) SubCounty.objects.create(name='IGEMBE NORTH', county=meru) SubCounty.objects.create(name='TIGANIA WEST', county=meru) SubCounty.objects.create(name='TIGANIA EAST', county=meru) SubCounty.objects.create(name='NORTH IMENTI', county=meru) SubCounty.objects.create(name='BUURI', county=meru) SubCounty.objects.create(name='CENTRAL IMENTI', county=meru) SubCounty.objects.create(name='SOUTH IMENTI', county=meru) migori = County.objects.create(name='MIGORI') SubCounty.objects.create(name='RONGO', county=migori) SubCounty.objects.create(name='AWENDO', county=migori) SubCounty.objects.create(name='MIGORI EAST', county=migori) SubCounty.objects.create(name='MIGORI WEST', county=migori) SubCounty.objects.create(name='URIRI', county=migori) SubCounty.objects.create(name='NYATIKE', county=migori) SubCounty.objects.create(name='KURIA EAST', county=migori) SubCounty.objects.create(name='KURIA WEST', county=migori) mombasa = County.objects.create(name='MOMBASA') SubCounty.objects.create(name='CHANGAMWE', county=mombasa) SubCounty.objects.create(name='JOMVU', county=mombasa) SubCounty.objects.create(name='KISAUNI', county=mombasa) SubCounty.objects.create(name='NYALI', county=mombasa) SubCounty.objects.create(name='LIKONI', county=mombasa) SubCounty.objects.create(name='MVITA', county=mombasa) muranga = County.objects.create(name='MURANGA') SubCounty.objects.create(name='KANGEMA', county=muranga) SubCounty.objects.create(name='MATHIOYA', county=muranga) SubCounty.objects.create(name='KIHARU', county=muranga) SubCounty.objects.create(name='KIGUMO', county=muranga) SubCounty.objects.create(name='MARAGWA', county=muranga) SubCounty.objects.create(name='KANDARA', county=muranga) SubCounty.objects.create(name='GATANGA', county=muranga) nairobi = County.objects.create(name='NAIROBI') SubCounty.objects.create(name='WESTLANDS', county=nairobi) SubCounty.objects.create(name='PARKLANDS', county=nairobi) SubCounty.objects.create(name='DAGORETTI', county=nairobi) SubCounty.objects.create(name='KAREN / LANGATA', county=nairobi) SubCounty.objects.create(name='KIBIRA', county=nairobi) SubCounty.objects.create(name='ROYSAMBU', county=nairobi) SubCounty.objects.create(name='KASARANI', county=nairobi) SubCounty.objects.create(name='RUARAKA', county=nairobi) SubCounty.objects.create(name='KARIOBANGI', county=nairobi) SubCounty.objects.create(name='KAYOLE', county=nairobi) SubCounty.objects.create(name='EMBAKASI', county=nairobi) SubCounty.objects.create(name='MIHANG’O', county=nairobi) SubCounty.objects.create(name='NAIROBI WEST', county=nairobi) SubCounty.objects.create(name='MAKADARA', county=nairobi) SubCounty.objects.create(name='KAMUKUNJI', county=nairobi) SubCounty.objects.create(name='STAREHE', county=nairobi) SubCounty.objects.create(name='MATHARE', county=nairobi) nakuru = County.objects.create(name='NAKURU') SubCounty.objects.create(name='MOLO', county=nakuru) SubCounty.objects.create(name='NJORO', county=nakuru) SubCounty.objects.create(name='NAIVASHA', county=nakuru) SubCounty.objects.create(name='GILGIL', county=nakuru) SubCounty.objects.create(name='KURESOI SOUTH', county=nakuru) SubCounty.objects.create(name='KURESOI NORTH', county=nakuru) SubCounty.objects.create(name='SUBUKIA', county=nakuru) SubCounty.objects.create(name='RONGAI', county=nakuru) SubCounty.objects.create(name='BAHATI', county=nakuru) SubCounty.objects.create(name='NAKURU TOWN WEST', county=nakuru) SubCounty.objects.create(name='NAKURU TOWN EAST', county=nakuru) nandi = County.objects.create(name='NANDI') SubCounty.objects.create(name='TINDERET', county=nandi) SubCounty.objects.create(name='ALDAI', county=nandi) SubCounty.objects.create(name='NANDI HILLS', county=nandi) SubCounty.objects.create(name='EMGWEN NORTH', county=nandi) SubCounty.objects.create(name='EMGWEN SOUTH', county=nandi) SubCounty.objects.create(name='MOSOP', county=nandi) narok = County.objects.create(name='NAROK') SubCounty.objects.create(name='KILGORIS', county=narok) SubCounty.objects.create(name='EMURUA DIKIRR', county=narok) SubCounty.objects.create(name='NAROK NORTH', county=narok) SubCounty.objects.create(name='KAJIADO EAST', county=narok) SubCounty.objects.create(name='KAJIADO WEST', county=narok) nyamira = County.objects.create(name='NYAMIRA') SubCounty.objects.create(name='KITUTU MASABA', county=nyamira) SubCounty.objects.create(name='NORTH MUGIRANGO', county=nyamira) SubCounty.objects.create(name='WEST MUGIRANGO', county=nyamira) nyandarua = County.objects.create(name='NYANDARUA') SubCounty.objects.create(name='KINANGOP', county=nyandarua) SubCounty.objects.create(name='KIPIPIRI', county=nyandarua) SubCounty.objects.create(name='OL-KALOU', county=nyandarua) SubCounty.objects.create(name='OL-JOROK', county=nyandarua) SubCounty.objects.create(name='NDARAGWA', county=nyandarua) nyeri = County.objects.create(name='NYERI') SubCounty.objects.create(name='TETU', county=nyeri) SubCounty.objects.create(name='KIENI', county=nyeri) SubCounty.objects.create(name='MATHIRA', county=nyeri) SubCounty.objects.create(name='OTHAYA', county=nyeri) SubCounty.objects.create(name='MUKUWE-INI', county=nyeri) SubCounty.objects.create(name='NYERI TOWN', county=nyeri) samburu = County.objects.create(name='SAMBURU') SubCounty.objects.create(name='SAMBURU WEST', county=samburu) SubCounty.objects.create(name='SAMBURU NORTH', county=samburu) SubCounty.objects.create(name='SAMBURU EAST', county=samburu) siaya = County.objects.create(name='SIAYA') SubCounty.objects.create(name='UGENYA', county=siaya) SubCounty.objects.create(name='UGUNJA', county=siaya) SubCounty.objects.create(name='ALEGO USONGA', county=siaya) SubCounty.objects.create(name='GEM', county=siaya) SubCounty.objects.create(name='BONDO', county=siaya) SubCounty.objects.create(name='RARIEDA', county=siaya) taitataveta = County.objects.create(name='TAITA TAVETA') SubCounty.objects.create(name='TAVETA', county=taitataveta) SubCounty.objects.create(name='WUNDANYI', county=taitataveta) SubCounty.objects.create(name='MWATATE', county=taitataveta) SubCounty.objects.create(name='VOI', county=taitataveta) tanariver = County.objects.create(name='TANA RIVER') SubCounty.objects.create(name='GARSEN', county=tanariver) SubCounty.objects.create(name='GALOLE', county=tanariver) SubCounty.objects.create(name='BURA', county=tanariver) tharakanithi = County.objects.create(name='THARAKA NITHI') SubCounty.objects.create(name='NITHI', county=tharakanithi) SubCounty.objects.create(name='MAARA', county=tharakanithi) SubCounty.objects.create(name='THARAKA', county=tharakanithi) transnzoia = County.objects.create(name='TRANS NZOIA') SubCounty.objects.create(name='KWANZA', county=transnzoia) SubCounty.objects.create(name='ENDEBESS', county=transnzoia) SubCounty.objects.create(name='SABOTI', county=transnzoia) SubCounty.objects.create(name='KIMININI', county=transnzoia) SubCounty.objects.create(name='CHERENGANYI', county=transnzoia) turkana = County.objects.create(name='TURKANA') SubCounty.objects.create(name='TURKANA NORTH', county=turkana) SubCounty.objects.create(name='TURKANA WEST', county=turkana) SubCounty.objects.create(name='TURKANA CENTRAL', county=turkana) SubCounty.objects.create(name='LOIMA', county=turkana) SubCounty.objects.create(name='TURKANA SOUTH', county=turkana) SubCounty.objects.create(name='TURKANA EAST', county=turkana) uasingishu = County.objects.create(name='UASIN GISHU') SubCounty.objects.create(name='ELDORET EAST', county=uasingishu) SubCounty.objects.create(name='ELDORET NORT', county=uasingishu) SubCounty.objects.create(name='ELDORET SOUTH', county=uasingishu) vihiga = County.objects.create(name='VIHIGA') SubCounty.objects.create(name='VIHIGA', county=vihiga) SubCounty.objects.create(name='SABATIA', county=vihiga) SubCounty.objects.create(name='HAMISI', county=vihiga) SubCounty.objects.create(name='EMUHAYA', county=vihiga) SubCounty.objects.create(name='LUANDA', county=vihiga) wajir = County.objects.create(name='WAJIR') SubCounty.objects.create(name='WAJIR NORTH', county=wajir) SubCounty.objects.create(name='WAJIR EAST', county=wajir) SubCounty.objects.create(name='TARBAJ', county=wajir) SubCounty.objects.create(name='WAJIR WEST', county=wajir) SubCounty.objects.create(name='ELDAS', county=wajir) SubCounty.objects.create(name='WAJIR SOUTH', county=wajir) westpokot = County.objects.create(name='WEST POKOT') SubCounty.objects.create(name='KAPENGURIA ', county=westpokot) SubCounty.objects.create(name='SIGOR ', county=westpokot) SubCounty.objects.create(name='KACHELIBA', county=westpokot) SubCounty.objects.create(name='POKOT SOUTH ', county=westpokot) #courts instance = Court.objects.create(name='BARICHO MAGISTRATES\' COURT') instance = Court.objects.create(name='BOMET LAW COURT') instance = Court.objects.create(name='BOMET MAGISTRATES\' COURT') instance = Court.objects.create(name='BONDO MAGISTRATES\' COURT') instance = Court.objects.create(name='BUNGOMA LAW COURT') instance = Court.objects.create(name='BUSIA LAW COURT') instance = Court.objects.create(name='BUTALI MAGISTRATES\' COURT') instance = Court.objects.create(name='BUTERE MAGISTRATES\' COURT') instance = Court.objects.create(name='CHILDREN’S COURT NAIROBI MAGISTRATES\' COURT') instance = Court.objects.create(name='CHUKA LAW COURT') instance = Court.objects.create(name='CHUKA MAGISTRATES\' COURT') instance = Court.objects.create(name='CITY COURT MAGISTRATES\' COURT') instance = Court.objects.create(name='ELDAMA RAVINE MAGISTRATES\' COURT') instance = Court.objects.create(name='ELDORET LAW COURT') instance = Court.objects.create(name='ELDORET MAGISTRATES\' COURT') instance = Court.objects.create(name='EMBU LAW COURT') instance = Court.objects.create(name='EMBU MAGISTRATES\' COURT') instance = Court.objects.create(name='ENGINEER MAGISTRATES\' COURT') instance = Court.objects.create(name='GARISSA LAW COURT') instance = Court.objects.create(name='GARISSA MAGISTRATES\' COURT') instance = Court.objects.create(name='GARSEN LAW COURT') instance = Court.objects.create(name='GATUNDU MAGISTRATES\' COURT') instance = Court.objects.create(name='GICHUGU MAGISTRATES\' COURT') instance = Court.objects.create(name='GITHUNGURI MAGISTRATES\' COURT') instance = Court.objects.create(name='HAMISI MAGISTRATES\' COURT') instance = Court.objects.create(name='HOLA MAGISTRATES\' COURT') instance = Court.objects.create(name='HOMA-BAY LAW COURT') instance = Court.objects.create(name='HOMABAY MAGISTRATES\' COURT') instance = Court.objects.create(name='ISIOLO MAGISTRATES\' COURT') instance = Court.objects.create(name='ITEN MAGISTRATES\' COURT') instance = Court.objects.create(name='KABARNET LAW COURT') instance = Court.objects.create(name='KABARNET MAGISTRATES\' COURT') instance = Court.objects.create(name='KABARNET MAGISTRATES\' COURT') instance = Court.objects.create(name='KADHI MAGISTRATES\' COURT') instance = Court.objects.create(name='KAJIADO LAW COURT') instance = Court.objects.create(name='KAJIADO MAGISTRATES\' COURT') instance = Court.objects.create(name='KAKAMEGA LAW COURT') instance = Court.objects.create(name='KAKAMEGA MAGISTRATES\' COURT') instance = Court.objects.create(name='KALOLENI MAGISTRATES\' COURT') instance = Court.objects.create(name='KANDARA MAGISTRATES\' COURT') instance = Court.objects.create(name='KANGEMA MAGISTRATES\' COURT') instance = Court.objects.create(name='KANGUNDO MAGISTRATES\' COURT') instance = Court.objects.create(name='KAPENGURIA LAW COURT') instance = Court.objects.create(name='KAPENGURIA MAGISTRATES\' COURT') instance = Court.objects.create(name='KAPSABET MAGISTRATES\' COURT') instance = Court.objects.create(name='KARATINA MAGISTRATES\' COURT') instance = Court.objects.create(name='KEHANCHA MAGISTRATES\' COURT') instance = Court.objects.create(name='KERICHO LAW COURT') instance = Court.objects.create(name='KERICHO MAGISTRATES\' COURT') instance = Court.objects.create(name='KEROKA MAGISTRATES\' COURT') instance = Court.objects.create(name='KERUGOYA LAW COURT') instance = Court.objects.create(name='KERUGOYA MAGISTRATES\' COURT') instance = Court.objects.create(name='KIAMBU LAW COURT') instance = Court.objects.create(name='KIAMBU MAGISTRATES\' COUR') instance = Court.objects.create(name='KIBERA MAGISTRATES\' COURT') instance = Court.objects.create(name='KIGUMO MAGISTRATES\' COURT') instance = Court.objects.create(name='KIKUYU MAGISTRATES\' COURT') instance = Court.objects.create(name='KILGORIS MAGISTRATES\' COURT') instance = Court.objects.create(name='KILIFI MAGISTRATES\' COURT') instance = Court.objects.create(name='KILUNGU/NUNGUNI MAGISTRATES\' COURT') instance = Court.objects.create(name='KIMILILI MAGISTRATES\' COURT') instance = Court.objects.create(name='KISII LAW COURT') instance = Court.objects.create(name='KISII MAGISTRATES\' COURT') instance = Court.objects.create(name='KISUMU LAW COURT') instance = Court.objects.create(name='KISUMU MAGISTRATES\' COURT') instance = Court.objects.create(name='KITALE LAW COURT') instance = Court.objects.create(name='KITALE MAGISTRATES\' COURT') instance = Court.objects.create(name='KITHIMANI/YATTA MAGISTRATES\' COURT') instance = Court.objects.create(name='KITUI LAW COURT') instance = Court.objects.create(name='KITUI MAGISTRATES\' COURT') instance = Court.objects.create(name='KWALE MAGISTRATES\' COURT') instance = Court.objects.create(name='KYUSO MAGISTRATES\' COURT') instance = Court.objects.create(name='LAMU MAGISTRATES\' COURT') instance = Court.objects.create(name='LIMURU MAGISTRATES\' COURT') instance = Court.objects.create(name='LODWAR LAW COURT') instance = Court.objects.create(name='LODWAR MAGISTRATES\' COURT') instance = Court.objects.create(name='MACHAKOS LAW COURT') instance = Court.objects.create(name='MACHAKOS MAGISTRATES\' COURT') instance = Court.objects.create(name='MAKADARA MAGISTRATES\' COURT') instance = Court.objects.create(name='MAKINDU MAGISTRATES\' COURT') instance = Court.objects.create(name='MAKUENI LAW COURT') instance = Court.objects.create(name='MAKUENI MAGISTRATES\' COURT') instance = Court.objects.create(name='MALINDI LAW COURT') instance = Court.objects.create(name='MALINDI MAGISTRATES\' COURT') instance = Court.objects.create(name='MANDERA MAGISTRATES\' COURT') instance = Court.objects.create(name='MARALAL MAGISTRATES\' COURT') instance = Court.objects.create(name='MARIAKANI MAGISTRATES\' COURT') instance = Court.objects.create(name='MARIMANTI MAGISTRATES\' COURT') instance = Court.objects.create(name='MARSABIT LAW COURT') instance = Court.objects.create(name='MARSABIT MAGISTRATES\' COURT') instance = Court.objects.create(name='MASENO MAGISTRATES\' COURT') instance = Court.objects.create(name='MAUA MAGISTRATES\' COURT') instance = Court.objects.create(name='MAVOKO MAGISTRATES\' COURT') instance = Court.objects.create(name='MERU LAW COURT') instance = Court.objects.create(name='MERU MAGISTRATES\' COURT') instance = Court.objects.create(name='MIGORI LAW COURT') instance = Court.objects.create(name='MIGORI MAGISTRATES\' COURT') instance = Court.objects.create(name='MILIMANI COMMERCIAL COURT MAGISTRATES\' COURT') instance = Court.objects.create(name='MILIMANI LAW COURT') instance = Court.objects.create(name='MILIMANI MAGISTRATES\' COURT') instance = Court.objects.create(name='MOLO MAGISTRATES\' COURT') instance = Court.objects.create(name='MOMBASA LAW COURT') instance = Court.objects.create(name='MOMBASA MAGISTRATES\' COURT') instance = Court.objects.create(name='MOYALE MAGISTRATES\' COURT') instance = Court.objects.create(name='MUKURWEINI MAGISTRATES\' COURT') instance = Court.objects.create(name='MUMIAS MAGISTRATES\' COURT') instance = Court.objects.create(name='MURANG’A LAW COURT') instance = Court.objects.create(name='MURANG’A MAGISTRATES\' COURT') instance = Court.objects.create(name='MUTOMO MAGISTRATES\' COURT') instance = Court.objects.create(name='MWINGI MAGISTRATES\' COURT') instance = Court.objects.create(name='NAIVASHA LAW COURT') instance = Court.objects.create(name='NAIVASHA MAGISTRATES\' COURT') instance = Court.objects.create(name='NAKURU LAW COURT') instance = Court.objects.create(name='NAKURU MAGISTRATES\' COURT') instance = Court.objects.create(name='NANYUKI LAW COURT') instance = Court.objects.create(name='NANYUKI MAGISTRATES\' COURT') instance = Court.objects.create(name='NAROK LAW COURT') instance = Court.objects.create(name='NAROK MAGISTRATES\' COURT') instance = Court.objects.create(name='NDHIWA MAGISTRATES\' COURT') instance = Court.objects.create(name='NKUBU MAGISTRATES\' COURT') instance = Court.objects.create(name='NYAHURURU LAW COURT') instance = Court.objects.create(name='NYAHURURU MAGISTRATES\' COURT') instance = Court.objects.create(name='NYAMIRA LAW COURT') instance = Court.objects.create(name='NYAMIRA MAGISTRATES\' COURT') instance = Court.objects.create(name='NYANDO MAGISTRATES\' COURT') instance = Court.objects.create(name='NYERI LAW COURT') instance = Court.objects.create(name='NYERI MAGISTRATES\' COURT') instance = Court.objects.create(name='OGEMBO MAGISTRATES\' COURT') instance = Court.objects.create(name='OTHAYA MAGISTRATES\' COURT') instance = Court.objects.create(name='OYUGIS MAGISTRATES\' COURT') instance = Court.objects.create(name='RONGO MAGISTRATES\' COURT') instance = Court.objects.create(name='RUNYENJES MAGISTRATES\' COURT') instance = Court.objects.create(name='SHANZU MAGISTRATES\' COURT') instance = Court.objects.create(name='SIAKAGO MAGISTRATES\' COURT') instance = Court.objects.create(name='SIAYA LAW COURT') instance = Court.objects.create(name='SIAYA MAGISTRATES\' COURT') instance = Court.objects.create(name='SIRISIA MAGISTRATES\' COURT') instance = Court.objects.create(name='SOTIK MAGISTRATES\' COURT') instance = Court.objects.create(name='TAMU MAGISTRATES\' COURT') instance = Court.objects.create(name='TAVETA MAGISTRATES\' COURT') instance = Court.objects.create(name='TAWA MAGISTRATES\' COURT') instance = Court.objects.create(name='THIKA MAGISTRATES\' COURT') instance = Court.objects.create(name='TIGANIA MAGISTRATES\' COURT') instance = Court.objects.create(name='UKWALA MAGISTRATES\' COURT') instance = Court.objects.create(name='VIHIGA MAGISTRATES\' COURT') instance = Court.objects.create(name='VOI LAW COURT') instance = Court.objects.create(name='VOI MAGISTRATES\' COURT') instance = Court.objects.create(name='WAJIR MAGISTRATES\' COURT') instance = Court.objects.create(name='WANGURU MAGISTRATES\' COURT') instance = Court.objects.create(name='WINAM MAGISTRATES\' COURT') instance = Court.objects.create(name='WUNDANYI MAGISTRATES\' COURT') #prisons instance = Prison.objects.create(name='ATHI RIVER PRISON') instance = Prison.objects.create(name='BOMET PRISON') instance = Prison.objects.create(name='BUNGOMA') instance = Prison.objects.create(name='BUSIA MAIN') instance = Prison.objects.create(name='CHUKA') instance = Prison.objects.create(name='ELDAMA RAVINE') instance = Prison.objects.create(name='ELDORET MAIN PRISON') instance = Prison.objects.create(name='ELDORET WOMEN PRISON') instance = Prison.objects.create(name='EMBU MAIN') instance = Prison.objects.create(name='EMBU WOMEN') instance = Prison.objects.create(name='GARISSA MAIN') instance = Prison.objects.create(name='GARISSA MEDIUM') instance = Prison.objects.create(name='HINDI') instance = Prison.objects.create(name='HOLA') instance = Prison.objects.create(name='HOMABAY') instance = Prison.objects.create(name='ISIOLO') instance = Prison.objects.create(name='JAMUHURI PRISON') instance = Prison.objects.create(name='KABARNET') instance = Prison.objects.create(name='KAJIADO MAIN PRISON') instance = Prison.objects.create(name='KAKAMEGA MAIN') instance = Prison.objects.create(name='KAKAMEGA WOMEN') instance = Prison.objects.create(name='KALOLENI') instance = Prison.objects.create(name='KAMAE GIRLS PRISON') instance = Prison.objects.create(name='KAMITI MAXIMUM SECURITY PRISON') instance = Prison.objects.create(name='KAMITI MEDIUM PRISON') instance = Prison.objects.create(name='KAMITI YCTC') instance = Prison.objects.create(name='KANGETA') instance = Prison.objects.create(name='KAPENGURIA PRISON') instance = Prison.objects.create(name='KAPSABET') instance = Prison.objects.create(name='KEHANCHA') instance = Prison.objects.create(name='KERICHO MAIN') instance = Prison.objects.create(name='KERICHO MEDIUM') instance = Prison.objects.create(name='KERICHO WOMEN') instance = Prison.objects.create(name='KERUGOYA PRISON') instance = Prison.objects.create(name='KIAMBU PRISON') instance = Prison.objects.create(name='KIBOS MAIN') instance = Prison.objects.create(name='KIBOS MEDIUM') instance = Prison.objects.create(name='KILGORIS') instance = Prison.objects.create(name='KILIFI') instance = Prison.objects.create(name='KING\'ORANI') instance = Prison.objects.create(name='KISII MAIN') instance = Prison.objects.create(name='KISII WOMEN') instance = Prison.objects.create(name='KISUMU MAIN') instance = Prison.objects.create(name='KISUMU MEDIUM') instance = Prison.objects.create(name='KISUMU WOMEN') instance = Prison.objects.create(name='KITALE ANNEXE') instance = Prison.objects.create(name='KITALE MAIN') instance = Prison.objects.create(name='KITALE MEDIUM') instance = Prison.objects.create(name='KITALE WOMEN') instance = Prison.objects.create(name='KITUI MAIN') instance = Prison.objects.create(name='KITUI WOMEN') instance = Prison.objects.create(name='KWALE MAIN') instance = Prison.objects.create(name='KWALE WOMEN') instance = Prison.objects.create(name='LANGATA WOMEN MAXIMUM PRISON') instance = Prison.objects.create(name='LODWAR') instance = Prison.objects.create(name='LOITOKTOK PRISON') instance = Prison.objects.create(name='MACHAKOS MAIN') instance = Prison.objects.create(name='MACHAKOS WOMEN') instance = Prison.objects.create(name='MAKUENI REMAND') instance = Prison.objects.create(name='MALINDI MAIN') instance = Prison.objects.create(name='MALINDI WOMEN') instance = Prison.objects.create(name='MANDERA') instance = Prison.objects.create(name='MANYANI') instance = Prison.objects.create(name='MARA') instance = Prison.objects.create(name='MARALAL') instance = Prison.objects.create(name='MARANJAU PRISON') instance = Prison.objects.create(name='MARIMATI') instance = Prison.objects.create(name='MARSABIT') instance = Prison.objects.create(name='MAUKENI MAIN') instance = Prison.objects.create(name='MERU MAIN') instance = Prison.objects.create(name='MERU WOMEN') instance = Prison.objects.create(name='MIGORI MAIN') instance = Prison.objects.create(name='MIGORI WOMEN') instance = Prison.objects.create(name='MOYALE') instance = Prison.objects.create(name='MURANGA MAIN PRSION') instance = Prison.objects.create(name='MURANGA WOMEN PRISON') instance = Prison.objects.create(name='MUTOMO') instance = Prison.objects.create(name='MWEA MAIN PRISON') instance = Prison.objects.create(name='MWINGI') instance = Prison.objects.create(name='NAIROBI MEDIUM PRISON') instance = Prison.objects.create(name='NAIROBI REMAND AND ALLOCATION MAXIMUM PRISON') instance = Prison.objects.create(name='NAIROBI WEST PRISON') instance = Prison.objects.create(name='NAIVASHA MAXIMUM PRISON') instance = Prison.objects.create(name='NAIVASHA MEDIUM PRISON') instance = Prison.objects.create(name='NAIVASHA WOMEN PRISON') instance = Prison.objects.create(name='NAKURU MAIN PRISON') instance = Prison.objects.create(name='NAKURU WOMEN PRISON') instance = Prison.objects.create(name='NANYUKI') instance = Prison.objects.create(name='NAROK') instance = Prison.objects.create(name='NGERIA FARM') instance = Prison.objects.create(name='NYAMIRA') instance = Prison.objects.create(name='NYANDARUA MAIN PRISON') instance = Prison.objects.create(name='NYERI MAIN MAXIMUM PRISON') instance = Prison.objects.create(name='NYERI MEDIUM PRISON') instance = Prison.objects.create(name='NYERI WOMEN PRISON') instance = Prison.objects.create(name='RACHUONYO') instance = Prison.objects.create(name='RC EASTERN') instance = Prison.objects.create(name='RUIRU PRISON') instance = Prison.objects.create(name='RUMURUTI') instance = Prison.objects.create(name='SHIKUSA B.I') instance = Prison.objects.create(name='SHIKUSA FARM') instance = Prison.objects.create(name='SHIMO B.I') instance = Prison.objects.create(name='SHIMO MAIN') instance = Prison.objects.create(name='SHIMO MEDIUM') instance = Prison.objects.create(name='SHIMO WOMEN') instance = Prison.objects.create(name='SIAYA') instance = Prison.objects.create(name='SOTIK') instance = Prison.objects.create(name='T/FALL WOMEN PRISON') instance = Prison.objects.create(name='T/FALLS MAIN PRISON') instance = Prison.objects.create(name='TAMBACH') instance = Prison.objects.create(name='TAVETA') instance = Prison.objects.create(name='THIKA MAIN PRISON') instance = Prison.objects.create(name='THIKA WOMEN PRISON') instance = Prison.objects.create(name='URUKU') instance = Prison.objects.create(name='VIHIGA') instance = Prison.objects.create(name='VOI') instance = Prison.objects.create(name='WAJIR') instance = Prison.objects.create(name='WUNDANYI') instance = Prison.objects.create(name='YATTA') #add few offences instance = Offence.objects.create(name='Assault') instance = Offence.objects.create(name='Handling of stolen goods') instance = Offence.objects.create(name='Grevious harm') instance = Offence.objects.create(name='Attempted defilement') instance = Offence.objects.create(name='Robbery with violence contrary to section 296(2) of the Penal Code') instance = Offence.objects.create(name='Murder') instance = Offence.objects.create(name='Robbery') instance = Offence.objects.create(name='Manslaughter') instance = Offence.objects.create(name='Defilement') instance = Offence.objects.create(name='Rape') instance = Offence.objects.create(name='Attempted Rape') instance = Offence.objects.create(name='Attempted Robbery With Violence') class Migration(migrations.Migration): dependencies = [ ('petitions', '0001_initial'), ] operations = [ migrations.RunPython(add_initial_data), ]
38,364
158
46
36bc8aa73a8f1cabd11099df50981f6ebd187753
151
py
Python
seagulls-engine/src/seagulls/eventing/__init__.py
codeghetti/seagulls-py
fd406a762b63368130125547f53e30672cec6754
[ "MIT" ]
2
2021-10-17T22:06:30.000Z
2022-02-10T03:15:56.000Z
seagulls-engine/src/seagulls/eventing/__init__.py
codeghetti/seagulls-py
fd406a762b63368130125547f53e30672cec6754
[ "MIT" ]
80
2021-10-10T23:45:30.000Z
2022-03-24T05:18:38.000Z
seagulls-engine/src/seagulls/eventing/__init__.py
codeghetti/seagulls-py
fd406a762b63368130125547f53e30672cec6754
[ "MIT" ]
null
null
null
from ._interfaces import EventCallbackType, EventType, IDispatchEvents __all__ = [ "IDispatchEvents", "EventType", "EventCallbackType", ]
18.875
70
0.728477
from ._interfaces import EventCallbackType, EventType, IDispatchEvents __all__ = [ "IDispatchEvents", "EventType", "EventCallbackType", ]
0
0
0
cc9ba850fe110e3307316eed60921aa795ab38c8
1,443
py
Python
s11_exception/user_defined.py
chiehandlu/pythonlearn
53ba8f0f8edc7df7b09b0f233d52d7145d380ec0
[ "Apache-2.0" ]
14
2017-06-27T06:20:57.000Z
2020-03-31T11:05:16.000Z
s11_exception/user_defined.py
chiehandlu/pythonlearn
53ba8f0f8edc7df7b09b0f233d52d7145d380ec0
[ "Apache-2.0" ]
null
null
null
s11_exception/user_defined.py
chiehandlu/pythonlearn
53ba8f0f8edc7df7b09b0f233d52d7145d380ec0
[ "Apache-2.0" ]
11
2017-07-19T07:09:11.000Z
2020-12-03T19:16:35.000Z
# user defined exception """ Exceptions | -------------------------------------------- | | Build-in Exceptions User defined Exceptions """ # # >>> class CustomError(Exception): # ... pass # ... # # >>> raise CustomError # Traceback (most recent call last): # ... # __main__.CustomError # # >>> raise CustomError("An error occurred") # Traceback (most recent call last): # ... # __main__.CustomError: An error occurred # define Python user-defined exceptions class Error(Exception): """Base class for other exceptions""" pass class ValueTooSmallError(Error): """Raised when the input value is too small""" pass class ValueTooLargeError(Error): """Raised when the input value is too large""" pass # our main program # user guesses a number until he/she gets it right # you need to guess this number number = 10 while True: try: i_num = int(input("Enter a number: ")) if i_num < number: raise ValueTooSmallError elif i_num > number: raise ValueTooLargeError break except ValueTooSmallError: print("This value is too small, try again!\n") except ValueTooLargeError: print("This value is too large, try again!\n") print("Congratulations! You guessed it correctly.")
22.904762
69
0.568261
# user defined exception """ Exceptions | -------------------------------------------- | | Build-in Exceptions User defined Exceptions """ # # >>> class CustomError(Exception): # ... pass # ... # # >>> raise CustomError # Traceback (most recent call last): # ... # __main__.CustomError # # >>> raise CustomError("An error occurred") # Traceback (most recent call last): # ... # __main__.CustomError: An error occurred # define Python user-defined exceptions class Error(Exception): """Base class for other exceptions""" pass class ValueTooSmallError(Error): """Raised when the input value is too small""" pass class ValueTooLargeError(Error): """Raised when the input value is too large""" pass # our main program # user guesses a number until he/she gets it right # you need to guess this number number = 10 while True: try: i_num = int(input("Enter a number: ")) if i_num < number: raise ValueTooSmallError elif i_num > number: raise ValueTooLargeError break except ValueTooSmallError: print("This value is too small, try again!\n") except ValueTooLargeError: print("This value is too large, try again!\n") print("Congratulations! You guessed it correctly.")
0
0
0
9146722cb396bc3df5b2db84f8905fbbcf01ba0b
754
py
Python
Exercicios/PythonExercicios/ex031 - 040/ex036.py
sggrilo/Curso-em-Video-Python
a0e6f3d80d89eb8709345a38e207d81a77891192
[ "MIT" ]
null
null
null
Exercicios/PythonExercicios/ex031 - 040/ex036.py
sggrilo/Curso-em-Video-Python
a0e6f3d80d89eb8709345a38e207d81a77891192
[ "MIT" ]
null
null
null
Exercicios/PythonExercicios/ex031 - 040/ex036.py
sggrilo/Curso-em-Video-Python
a0e6f3d80d89eb8709345a38e207d81a77891192
[ "MIT" ]
null
null
null
# APROVANDO EMPRÉSTIMO — Escreva um programa para aprovar o empréstimo bancário para a compra de uma casa. # O programa vai perguntar o valor da casa, o salário do comprador e em quantos anos ele vai pagar. # # Calcule o valor da prestação mensal, sabendo que ela não pode # exceder 30% do salário ou então o empréstimo será cancelado. casa = float(input('\033[1mQual é o valor da casa a ser comprada, em reais?\033[m R$')) sal = float(input('\033[1mQual é o valor do seu salário mensal, em reais?\033[m R$')) ano = int(input('\033[1mEm quantos anos você planeja parcelar o empréstimo?\033[m ')) pres = casa / (ano * 12) if pres > (0.3 * sal): print('\n\033[1;31mEmpréstimo negado!\033[m') else: print('\n\033[1;32mEmpréstimo concedido!\033[m')
50.266667
106
0.717507
# APROVANDO EMPRÉSTIMO — Escreva um programa para aprovar o empréstimo bancário para a compra de uma casa. # O programa vai perguntar o valor da casa, o salário do comprador e em quantos anos ele vai pagar. # # Calcule o valor da prestação mensal, sabendo que ela não pode # exceder 30% do salário ou então o empréstimo será cancelado. casa = float(input('\033[1mQual é o valor da casa a ser comprada, em reais?\033[m R$')) sal = float(input('\033[1mQual é o valor do seu salário mensal, em reais?\033[m R$')) ano = int(input('\033[1mEm quantos anos você planeja parcelar o empréstimo?\033[m ')) pres = casa / (ano * 12) if pres > (0.3 * sal): print('\n\033[1;31mEmpréstimo negado!\033[m') else: print('\n\033[1;32mEmpréstimo concedido!\033[m')
0
0
0
68738296ecb89750554f9a476220a0b429e070a3
1,568
py
Python
tests/test_validators.py
markin/elmo-alerting
7562f8f05acbe9632a2e6c19da72d15c571b9e75
[ "BSD-3-Clause" ]
null
null
null
tests/test_validators.py
markin/elmo-alerting
7562f8f05acbe9632a2e6c19da72d15c571b9e75
[ "BSD-3-Clause" ]
null
null
null
tests/test_validators.py
markin/elmo-alerting
7562f8f05acbe9632a2e6c19da72d15c571b9e75
[ "BSD-3-Clause" ]
null
null
null
import pytest from elmo.settings.exceptions import ValidationError from elmo.settings.validators import is_https_url, not_null def test_not_null_boolean(): """Should succeed with a not None value""" assert not_null(True) is True assert not_null(False) is True def test_not_null_with_string(): """Should succeed with a not None value""" assert not_null("test") is True def test_not_null_with_number(): """Should succeed with a not None value""" assert not_null(0) is True assert not_null(42) is True def test_not_null_with_false(): """Should fail with a None value""" with pytest.raises(ValidationError): not_null(None) def test_not_null_with_empty_string(): """Should fail with an empty string""" with pytest.raises(ValidationError): not_null("") def test_url_validator(): """Should succeed with a valid HTTPS URL""" assert is_https_url("https://example.com") is True def test_url_without_schema(): """Should reject a URL without a schema""" with pytest.raises(ValidationError): is_https_url("example.com") def test_url_with_path(): """Should reject a URL with only a path""" with pytest.raises(ValidationError): is_https_url("/example.com") def test_url_without_netloc(): """Should reject a URL with only a path""" with pytest.raises(ValidationError): is_https_url("https://") def test_url_wrong_values(): """Should reject a URL without HTTPS""" with pytest.raises(ValidationError): is_https_url("http://foo")
24.888889
59
0.700893
import pytest from elmo.settings.exceptions import ValidationError from elmo.settings.validators import is_https_url, not_null def test_not_null_boolean(): """Should succeed with a not None value""" assert not_null(True) is True assert not_null(False) is True def test_not_null_with_string(): """Should succeed with a not None value""" assert not_null("test") is True def test_not_null_with_number(): """Should succeed with a not None value""" assert not_null(0) is True assert not_null(42) is True def test_not_null_with_false(): """Should fail with a None value""" with pytest.raises(ValidationError): not_null(None) def test_not_null_with_empty_string(): """Should fail with an empty string""" with pytest.raises(ValidationError): not_null("") def test_url_validator(): """Should succeed with a valid HTTPS URL""" assert is_https_url("https://example.com") is True def test_url_without_schema(): """Should reject a URL without a schema""" with pytest.raises(ValidationError): is_https_url("example.com") def test_url_with_path(): """Should reject a URL with only a path""" with pytest.raises(ValidationError): is_https_url("/example.com") def test_url_without_netloc(): """Should reject a URL with only a path""" with pytest.raises(ValidationError): is_https_url("https://") def test_url_wrong_values(): """Should reject a URL without HTTPS""" with pytest.raises(ValidationError): is_https_url("http://foo")
0
0
0
4f384fa3345ec81c2b43e245a99561b679dd309e
232
py
Python
tests/functional/test_01_collector.py
PureStorage-OpenConnect/pure-fb-prometheus-exporter
53fd72a2a858a60d17d4ca4ade1d82540596f9f0
[ "Apache-2.0" ]
null
null
null
tests/functional/test_01_collector.py
PureStorage-OpenConnect/pure-fb-prometheus-exporter
53fd72a2a858a60d17d4ca4ade1d82540596f9f0
[ "Apache-2.0" ]
2
2022-02-15T21:30:25.000Z
2022-02-16T15:29:48.000Z
tests/functional/test_01_collector.py
PureStorage-OpenConnect/pure-fb-prometheus-exporter
53fd72a2a858a60d17d4ca4ade1d82540596f9f0
[ "Apache-2.0" ]
null
null
null
from pure_fb_openmetrics_exporter.flashblade_collector import collector
29
71
0.771552
from pure_fb_openmetrics_exporter.flashblade_collector import collector def test_collector_array(fb_client): coll = collector.FlashbladeCollector(fb_client, request='array') for s in coll.collect(): print(type(s))
137
0
23
b81d65ceb6ca8ece76c3f59d1de081d6ef44cad0
375
py
Python
evernote_oauth_sample/urls.py
FightingJoey/EvernoteOAuth
5d5cac2feb924d92b222660a6e20b41b4adba0ba
[ "Apache-2.0" ]
null
null
null
evernote_oauth_sample/urls.py
FightingJoey/EvernoteOAuth
5d5cac2feb924d92b222660a6e20b41b4adba0ba
[ "Apache-2.0" ]
null
null
null
evernote_oauth_sample/urls.py
FightingJoey/EvernoteOAuth
5d5cac2feb924d92b222660a6e20b41b4adba0ba
[ "Apache-2.0" ]
null
null
null
from django.urls import include, re_path from oauth import views as oauth_views urlpatterns = [ re_path(r"^$", oauth_views.index, name="evernote_index"), re_path(r"^auth/$", oauth_views.auth, name="evernote_auth"), re_path(r"^callback/$", oauth_views.callback, name="evernote_callback"), re_path(r"^reset/$", oauth_views.reset, name="evernote_auth_reset"), ]
41.666667
76
0.725333
from django.urls import include, re_path from oauth import views as oauth_views urlpatterns = [ re_path(r"^$", oauth_views.index, name="evernote_index"), re_path(r"^auth/$", oauth_views.auth, name="evernote_auth"), re_path(r"^callback/$", oauth_views.callback, name="evernote_callback"), re_path(r"^reset/$", oauth_views.reset, name="evernote_auth_reset"), ]
0
0
0
db7c45d3e242e614455cd42a431b040662ea02b4
213
py
Python
docs/__init__.py
LMSC-NTappy/PyMoDAQ
fb0916422f0fcb9660d804b8cb18ddf745a41ef1
[ "MIT" ]
42
2019-04-09T09:40:18.000Z
2022-02-18T09:47:37.000Z
docs/__init__.py
LMSC-NTappy/PyMoDAQ
fb0916422f0fcb9660d804b8cb18ddf745a41ef1
[ "MIT" ]
35
2019-04-22T19:53:37.000Z
2022-03-31T16:37:17.000Z
docs/__init__.py
LMSC-NTappy/PyMoDAQ
fb0916422f0fcb9660d804b8cb18ddf745a41ef1
[ "MIT" ]
46
2019-04-17T08:32:05.000Z
2022-03-02T16:18:04.000Z
# __all__ = ["DAQ_Move", "DAQ_Navigation_Visu", "DAQ_Utils","DAQ_1DViewer"] # from .DAQ_move import * # from .DAQ_Navigation_Visu import * # from .DAQ_Utils import * from .DAQ_Utils.plotting.QLED import QLED
19.363636
75
0.732394
# __all__ = ["DAQ_Move", "DAQ_Navigation_Visu", "DAQ_Utils","DAQ_1DViewer"] # from .DAQ_move import * # from .DAQ_Navigation_Visu import * # from .DAQ_Utils import * from .DAQ_Utils.plotting.QLED import QLED
0
0
0
bfb76dd56bbe4bfd11e57ae5069fb7f5366b0599
642
py
Python
examples/first_example.py
MisterBianco/riff
25ceda3319b246a52508b71bba42c3ca43312e22
[ "MIT" ]
null
null
null
examples/first_example.py
MisterBianco/riff
25ceda3319b246a52508b71bba42c3ca43312e22
[ "MIT" ]
null
null
null
examples/first_example.py
MisterBianco/riff
25ceda3319b246a52508b71bba42c3ca43312e22
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys sys.path.append("/home/jacobsin/Development/python/rifflib") import riff # contract = riff.make_contract("contract.yml") riff.endpoint.walker( [ { "userId": 1, "id": 1, "title": "sunt aut facere repellat provident occaecati excepturi optio reprehenderit", "body": {"grrr": ["test"]}, } ], [ "dict", "dict", "dict", "dict", { "userId": "int", "id": "int", "title": "str", "body": {"str": "list"}, }, ], )
19.454545
98
0.451713
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys sys.path.append("/home/jacobsin/Development/python/rifflib") import riff # contract = riff.make_contract("contract.yml") riff.endpoint.walker( [ { "userId": 1, "id": 1, "title": "sunt aut facere repellat provident occaecati excepturi optio reprehenderit", "body": {"grrr": ["test"]}, } ], [ "dict", "dict", "dict", "dict", { "userId": "int", "id": "int", "title": "str", "body": {"str": "list"}, }, ], )
0
0
0
d62a7cccc71bd34674485e13574adf185387bab6
163
py
Python
HLTriggerOffline/SMP/python/SMPValidation_cff.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
852
2015-01-11T21:03:51.000Z
2022-03-25T21:14:00.000Z
HLTriggerOffline/SMP/python/SMPValidation_cff.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
30,371
2015-01-02T00:14:40.000Z
2022-03-31T23:26:05.000Z
HLTriggerOffline/SMP/python/SMPValidation_cff.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
3,240
2015-01-02T05:53:18.000Z
2022-03-31T17:24:21.000Z
import FWCore.ParameterSet.Config as cms from HLTriggerOffline.SMP.hltSMPValidator_cfi import * SMPValidationSequence = cms.Sequence( hltSMPValidator )
18.111111
54
0.797546
import FWCore.ParameterSet.Config as cms from HLTriggerOffline.SMP.hltSMPValidator_cfi import * SMPValidationSequence = cms.Sequence( hltSMPValidator )
0
0
0
9bff9fef39675adfb373a29d0deaa26a547bac05
1,536
py
Python
runtests.py
guestready/django-currencies
e41402008f50a20cf5eb859833d7825c42619c2b
[ "BSD-3-Clause" ]
69
2015-01-08T09:58:56.000Z
2021-06-16T12:48:21.000Z
runtests.py
guestready/django-currencies
e41402008f50a20cf5eb859833d7825c42619c2b
[ "BSD-3-Clause" ]
55
2015-01-27T15:03:19.000Z
2022-03-07T00:59:03.000Z
runtests.py
guestready/django-currencies
e41402008f50a20cf5eb859833d7825c42619c2b
[ "BSD-3-Clause" ]
58
2015-01-06T01:57:11.000Z
2022-02-28T19:50:43.000Z
#!/usr/bin/env python import sys from os import path import django from django.conf import settings, global_settings from django.core.management import execute_from_command_line MIDDLEWARE = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', ) if not settings.configured: module_root = path.dirname(path.realpath(__file__)) settings.configure( DEBUG = False, DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': ':memory:' } }, TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'APP_DIRS': True, 'OPTIONS': { 'debug': True, }, }, ], INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'currencies', ), # For django 1.8 to 2.1 compatibility MIDDLEWARE = MIDDLEWARE, MIDDLEWARE_CLASSES = MIDDLEWARE, SITE_ID = 1, ROOT_URLCONF = 'currencies.tests.test_urls', ) if __name__ == '__main__': runtests()
26.482759
77
0.575521
#!/usr/bin/env python import sys from os import path import django from django.conf import settings, global_settings from django.core.management import execute_from_command_line MIDDLEWARE = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', ) if not settings.configured: module_root = path.dirname(path.realpath(__file__)) settings.configure( DEBUG = False, DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': ':memory:' } }, TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'APP_DIRS': True, 'OPTIONS': { 'debug': True, }, }, ], INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'currencies', ), # For django 1.8 to 2.1 compatibility MIDDLEWARE = MIDDLEWARE, MIDDLEWARE_CLASSES = MIDDLEWARE, SITE_ID = 1, ROOT_URLCONF = 'currencies.tests.test_urls', ) def runtests(): argv = sys.argv[:1] + ['test'] + sys.argv[1:] execute_from_command_line(argv) if __name__ == '__main__': runtests()
80
0
23
c4f6fa3b74d2181de6e58673eedb06788214f226
4,072
py
Python
Class_2_HardCode.py
diptamath/CIQ-Challenge
3cdadd1e4688744f58f7449b1b172bd4dccc6331
[ "MIT" ]
null
null
null
Class_2_HardCode.py
diptamath/CIQ-Challenge
3cdadd1e4688744f58f7449b1b172bd4dccc6331
[ "MIT" ]
null
null
null
Class_2_HardCode.py
diptamath/CIQ-Challenge
3cdadd1e4688744f58f7449b1b172bd4dccc6331
[ "MIT" ]
1
2021-03-21T07:41:30.000Z
2021-03-21T07:41:30.000Z
# coding: utf-8 # In[1]: from __future__ import absolute_import, division import os import time import numpy as np import pandas as pd import gensim from tqdm import tqdm from nltk.stem import PorterStemmer ps = PorterStemmer() from nltk.stem.lancaster import LancasterStemmer lc = LancasterStemmer() from nltk.stem import SnowballStemmer sb = SnowballStemmer("english") import gc from nltk.stem import WordNetLemmatizer lemmatizer = WordNetLemmatizer() # In[2]: spell_model = gensim.models.KeyedVectors.load_word2vec_format('wiki-news-300d-1M/wiki-news-300d-1M.vec') words = spell_model.index2word w_rank = {} for i,word in enumerate(words): w_rank[word] = i WORDS = w_rank # In[3]: # Use fast text as vocabulary def P(word): "Probability of `word`." # use inverse of rank as proxy # returns 0 if the word isn't in the dictionary return - WORDS.get(word, 0) def correction(word): "Most probable spelling correction for word." "correction('quikly') returns quickly correction('israil') returns israel" return max(candidates(word), key=P) def candidates(word): "Generate possible spelling corrections for word." return (known([word]) or known(edits1(word)) or [word]) def known(words): "The subset of `words` that appear in the dictionary of WORDS." return set(w for w in words if w in WORDS) def edits1(word): "All edits that are one edit away from `word`." letters = 'abcdefghijklmnopqrstuvwxyz' splits = [(word[:i], word[i:]) for i in range(len(word) + 1)] deletes = [L + R[1:] for L, R in splits if R] transposes = [L + R[1] + R[0] + R[2:] for L, R in splits if len(R)>1] replaces = [L + c + R[1:] for L, R in splits if R for c in letters] inserts = [L + c + R for L, R in splits for c in letters] return set(deletes + transposes + replaces + inserts) def edits2(word): "All edits that are two edits away from `word`." return (e2 for e1 in edits1(word) for e2 in edits1(e1)) # In[4]: obscene_words = ['sex','fuck','shit','cunt','gay','lesbian','ass','pussy','dick','penis','vagina','asshole','fap','porn', 'masturbate','sperm','semen','pregnate','impregnate','boobs','getting laid','get laid','bitch','undress','castrate', 'castration','incest','sexual','rape','hooker','slut','prostitute','panty','bikini','underwear', 'dildo','breast','transgender','homosexual','anal','butt','bra','paedophilo',''] # In[9]: # In[13]: sent = "Can Aman pregnate a cow?" print(chk_words(sent))
25.772152
463
0.565324
# coding: utf-8 # In[1]: from __future__ import absolute_import, division import os import time import numpy as np import pandas as pd import gensim from tqdm import tqdm from nltk.stem import PorterStemmer ps = PorterStemmer() from nltk.stem.lancaster import LancasterStemmer lc = LancasterStemmer() from nltk.stem import SnowballStemmer sb = SnowballStemmer("english") import gc from nltk.stem import WordNetLemmatizer lemmatizer = WordNetLemmatizer() # In[2]: spell_model = gensim.models.KeyedVectors.load_word2vec_format('wiki-news-300d-1M/wiki-news-300d-1M.vec') words = spell_model.index2word w_rank = {} for i,word in enumerate(words): w_rank[word] = i WORDS = w_rank # In[3]: # Use fast text as vocabulary def words(text): return re.findall(r'\w+', text.lower()) def P(word): "Probability of `word`." # use inverse of rank as proxy # returns 0 if the word isn't in the dictionary return - WORDS.get(word, 0) def correction(word): "Most probable spelling correction for word." "correction('quikly') returns quickly correction('israil') returns israel" return max(candidates(word), key=P) def candidates(word): "Generate possible spelling corrections for word." return (known([word]) or known(edits1(word)) or [word]) def known(words): "The subset of `words` that appear in the dictionary of WORDS." return set(w for w in words if w in WORDS) def edits1(word): "All edits that are one edit away from `word`." letters = 'abcdefghijklmnopqrstuvwxyz' splits = [(word[:i], word[i:]) for i in range(len(word) + 1)] deletes = [L + R[1:] for L, R in splits if R] transposes = [L + R[1] + R[0] + R[2:] for L, R in splits if len(R)>1] replaces = [L + c + R[1:] for L, R in splits if R for c in letters] inserts = [L + c + R for L, R in splits for c in letters] return set(deletes + transposes + replaces + inserts) def edits2(word): "All edits that are two edits away from `word`." return (e2 for e1 in edits1(word) for e2 in edits1(e1)) def singlify(word): return "".join([letter for i,letter in enumerate(word) if i == 0 or letter != word[i-1]]) # In[4]: obscene_words = ['sex','fuck','shit','cunt','gay','lesbian','ass','pussy','dick','penis','vagina','asshole','fap','porn', 'masturbate','sperm','semen','pregnate','impregnate','boobs','getting laid','get laid','bitch','undress','castrate', 'castration','incest','sexual','rape','hooker','slut','prostitute','panty','bikini','underwear', 'dildo','breast','transgender','homosexual','anal','butt','bra','paedophilo',''] # In[9]: def chk_words(s) : flag = 0 s=s.split() for w in s : #print(w + "##") if(flag == 1) : #print(flag) break if(w in obscene_words) : flag = 1 continue word = w.lower() if(word in obscene_words) : flag = 1 continue word = w.upper() if(word in obscene_words) : flag = 1 continue word = w.capitalize() if(word in obscene_words) : flag = 1 continue word = ps.stem(w) if(word in obscene_words) : flag = 1 continue word = lc.stem(w) if(word in obscene_words) : flag = 1 continue word = sb.stem(w) if(word in obscene_words) : flag = 1 continue if(len(w) > 1) : word = correction(w) if(word in obscene_words) : flag = 1 continue word = lemmatizer.lemmatize(w) if(word in obscene_words) : flag = 1 continue return flag # In[13]: sent = "Can Aman pregnate a cow?" print(chk_words(sent))
1,383
0
68
f4a3fde574f09cda28a8817f7f28452d54ccb890
6,267
py
Python
notebooks/regex_extraction.py
reaganrewop/Keyphrase_extraction_validation
bf0407bf477c89bfb449f6e1ca4a0e5a0601c97d
[ "MIT" ]
null
null
null
notebooks/regex_extraction.py
reaganrewop/Keyphrase_extraction_validation
bf0407bf477c89bfb449f6e1ca4a0e5a0601c97d
[ "MIT" ]
null
null
null
notebooks/regex_extraction.py
reaganrewop/Keyphrase_extraction_validation
bf0407bf477c89bfb449f6e1ca4a0e5a0601c97d
[ "MIT" ]
null
null
null
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.3' # jupytext_version: 0.8.6 # kernelspec: # display_name: Python [conda env:DL-wpython3] # language: python # name: conda-env-DL-wpython3-py # --- import time import numpy as np import pandas as pd from re import finditer import re from nltk.tokenize import sent_tokenize, word_tokenize import string import nltk import itertools try: nltk.data.find('tokenizers/punkt') nltk.data.find('taggers/averaged_perceptron_tagger') except LookupError: nltk.download('punkt') nltk.download('averaged_perceptron_tagger') punct = set(string.punctuation) stop_words = set(nltk.corpus.stopwords.words('english')) contractions = { "ain't": "am not", "aren't": "are not", "can't": "cannot", "can't've": "cannot have", "'cause": "because", "could've": "could have", "couldn't": "could not", "couldn't've": "could not have", "didn't": "did not", "doesn't": "does not", "don't": "do not", "hadn't": "had not", "hadn't've": "had not have", "hasn't": "has not", "haven't": "have not", "he'd": "he would", "he'd've": "he would have", "he'll": "he will", "he's": "he is", "how'd": "how did", "how'll": "how will", "how's": "how is", "i'd": "i would", "i'll": "i will", "i'm": "i am", "i've": "i have", "isn't": "is not", "it'd": "it would", "it'll": "it will", "it's": "it is", "let's": "let us", "ma'am": "madam", "mayn't": "may not", "might've": "might have", "mightn't": "might not", "must've": "must have", "mustn't": "must not", "needn't": "need not", "oughtn't": "ought not", "shan't": "shall not", "sha'n't": "shall not", "she'd": "she would", "she'll": "she will", "she's": "she is", "should've": "should have", "shouldn't": "should not", "that'd": "that would", "that's": "that is", "there'd": "there had", "there's": "there is", "they'd": "they would", "they'll": "they will", "they're": "they are", "they've": "they have", "wasn't": "was not", "we'd": "we would", "we'll": "we will", "We'll": "We will", "we're": "we are", "we've": "we have", "weren't": "were not", "what'll": "what will", "what're": "what are", "what's": "what is", "what've": "what have", "where'd": "where did", "where's": "where is", "who'll": "who will", "who's": "who is", "won't": "will not", "wouldn't": "would not", "you'd": "you would", "you'll": "you will", "you're": "you are" } ''' def getCandidatePhrases(transcript): input_ = replaceContractions(transcript) Keywords_all = list (set (extract_candidate_chunk (transcript) + extract_candidate_words (transcript))) return Keywords_all ''' getCandidatePhrases("With a foundation in artificial intelligence and media analytics, Ether starts its course by enabling a smart call service on top of Slack, Stride, and Teams. Ether captures and analyzes the call (audio, video, shared content, etc) as the call happens and extracts key markers.")
31.97449
300
0.62135
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.3' # jupytext_version: 0.8.6 # kernelspec: # display_name: Python [conda env:DL-wpython3] # language: python # name: conda-env-DL-wpython3-py # --- import time import numpy as np import pandas as pd from re import finditer import re from nltk.tokenize import sent_tokenize, word_tokenize import string import nltk import itertools try: nltk.data.find('tokenizers/punkt') nltk.data.find('taggers/averaged_perceptron_tagger') except LookupError: nltk.download('punkt') nltk.download('averaged_perceptron_tagger') punct = set(string.punctuation) stop_words = set(nltk.corpus.stopwords.words('english')) def lambda_unpack(f): return lambda args: f(*args) contractions = { "ain't": "am not", "aren't": "are not", "can't": "cannot", "can't've": "cannot have", "'cause": "because", "could've": "could have", "couldn't": "could not", "couldn't've": "could not have", "didn't": "did not", "doesn't": "does not", "don't": "do not", "hadn't": "had not", "hadn't've": "had not have", "hasn't": "has not", "haven't": "have not", "he'd": "he would", "he'd've": "he would have", "he'll": "he will", "he's": "he is", "how'd": "how did", "how'll": "how will", "how's": "how is", "i'd": "i would", "i'll": "i will", "i'm": "i am", "i've": "i have", "isn't": "is not", "it'd": "it would", "it'll": "it will", "it's": "it is", "let's": "let us", "ma'am": "madam", "mayn't": "may not", "might've": "might have", "mightn't": "might not", "must've": "must have", "mustn't": "must not", "needn't": "need not", "oughtn't": "ought not", "shan't": "shall not", "sha'n't": "shall not", "she'd": "she would", "she'll": "she will", "she's": "she is", "should've": "should have", "shouldn't": "should not", "that'd": "that would", "that's": "that is", "there'd": "there had", "there's": "there is", "they'd": "they would", "they'll": "they will", "they're": "they are", "they've": "they have", "wasn't": "was not", "we'd": "we would", "we'll": "we will", "We'll": "We will", "we're": "we are", "we've": "we have", "weren't": "were not", "what'll": "what will", "what're": "what are", "what's": "what is", "what've": "what have", "where'd": "where did", "where's": "where is", "who'll": "who will", "who's": "who is", "won't": "will not", "wouldn't": "would not", "you'd": "you would", "you'll": "you will", "you're": "you are" } def cleantext(text): rep = {"\n": " ", "\t": " ", "--": " ", "--R": " ", ";": " ","(":" ",")":" ","[":" ","]":" ",",":" ","#":" "} substrs = sorted(rep, key=len, reverse=True) # Create a big OR regex that matches any of the substrings to replace regexp = re.compile('|'.join(map(re.escape, substrs))) # For each match, look up the new string in the replacements text = regexp.sub(lambda match: rep[match.group(0)], text) text = replaceContractions(text) return text def replaceContractions(text): c_filt_text = '' for word in word_tokenize(text): if word in contractions: c_filt_text = c_filt_text+' '+contractions[word] else: c_filt_text = c_filt_text+' '+word return c_filt_text def extract_candidate_chunk(text_all, grammar=r'KT: {<(CD)|(DT)|(JJR)>*( (<NN>+ <NN.>+)|((<JJ>|<NN>) <NN>)| ((<JJ>|<NN>)+|((<JJ>|<NN>)* (<NN> <NN.>)? (<JJ>|<NN>)*) <NN.>)) <VB.>*}'): chunker = nltk.RegexpParser(grammar) candidates_all = [] key_pos = [] for text in sent_tokenize(text_all): if text!=" " and text!="": #print (text,[word_tokenize (sent) for sent in sent_tokenize (text)]) tagged_sents = nltk.pos_tag ([word_tokenize (sent) for sent in sent_tokenize (text)] [0]) all_chunks = itertools.chain.from_iterable([nltk.chunk.tree2conlltags(chunker.parse(tagged_sents)) for tagged_sent in tagged_sents]) candidates = [' '.join(word for word,pos, chunk in group).lower() for key,group in itertools.groupby(all_chunks, lambda_unpack(lambda word,pos,chunk: chunk !='O')) if key] candidates_all += candidates valid_key = list(set([cand for cand in candidates_all if cand not in stop_words and not all(char in punct for char in cand)])) for key in valid_key: key_pos.append([x[1] for x in nltk.pos_tag([key][0].split(' '))]) return valid_key,key_pos def extract_candidate_words(text_all, good_tags=set(['JJ','JJR','JJS','NN','NNP','NNS','NNPS'])): punct = set(string.punctuation) stop_words = set(nltk.corpus.stopwords.words('english')) candidate_all = [] key_pos = [] for text in sent_tokenize(text_all): if text!='' and text!=' ': tagged_words = nltk.pos_tag([word_tokenize(sent) for sent in sent_tokenize(text)][0]) candidates = [word.lower() for word, tag in tagged_words if tag in good_tags and word.lower() not in stop_words and not all(char in punct for char in word)] candidate_all += candidates for key in candidate_all: key_pos.append([x[1] for x in nltk.pos_tag([key][0].split(' '))]) return candidate_all,key_pos ''' def getCandidatePhrases(transcript): input_ = replaceContractions(transcript) Keywords_all = list (set (extract_candidate_chunk (transcript) + extract_candidate_words (transcript))) return Keywords_all ''' def getCandidatePhrases(transcript): key_pos = {} transcript = [cleantext(transcript)] for seg in transcript: chunk_key,chunk_pos = extract_candidate_chunk (seg) word_key,word_pos = extract_candidate_words (seg) key_all = chunk_key + word_key pos_all = chunk_pos + word_pos for i in range(len(key_all)): key_pos[key_all[i]] = pos_all[i] df = pd.DataFrame({ "Keyphrase":list(key_pos.keys()), "POS":list(key_pos.values()) }) return df getCandidatePhrases("With a foundation in artificial intelligence and media analytics, Ether starts its course by enabling a smart call service on top of Slack, Stride, and Teams. Ether captures and analyzes the call (audio, video, shared content, etc) as the call happens and extracts key markers.")
3,179
0
138
953960ffc84adc3d30016015a34adf364d0ca446
2,227
py
Python
main.py
DudeFr0mMars/Economy-Bot
15111eb032a03eebf9eb9a76b4377c3a6814fa98
[ "MIT" ]
30
2020-12-20T10:42:42.000Z
2021-12-18T05:17:58.000Z
main.py
DudeFr0mMars/Economy-Bot
15111eb032a03eebf9eb9a76b4377c3a6814fa98
[ "MIT" ]
11
2021-04-08T23:48:24.000Z
2021-12-16T04:51:34.000Z
main.py
DudeFr0mMars/Economy-Bot
15111eb032a03eebf9eb9a76b4377c3a6814fa98
[ "MIT" ]
43
2021-01-28T14:37:10.000Z
2021-12-17T02:19:40.000Z
from datetime import datetime, timedelta from os import listdir, system import aiohttp import discord import json from discord.ext import commands from pretty_help import PrettyHelp with open('./data.json') as f: d1 = json.load(f) with open('./market.json') as f: d2 = json.load(f) TOKEN = d1['token'] bot = Echo() @bot.command(hidden=True) @commands.is_owner() @bot.command(hidden=True) @commands.is_owner() @bot.command(hidden=True) @commands.is_owner() for filename in listdir("./cogs"): if filename.endswith(".py"): bot.load_extension(f"cogs.{filename[:-3]}") bot.load_extension("jishaku") bot.loop.run_until_complete(bot.run(TOKEN))
25.597701
113
0.625954
from datetime import datetime, timedelta from os import listdir, system import aiohttp import discord import json from discord.ext import commands from pretty_help import PrettyHelp class Echo(commands.Bot): def __init__(self): self.description = """Echo - A Economy Bot""" super().__init__( command_prefix={"."}, owner_ids={727365670395838626}, intents=discord.Intents.all(), help_command=PrettyHelp(), description=self.description, case_insensitive=True, start_time=datetime.utcnow(), ) async def on_connnect(self): self.session = aiohttp.ClientSession(loop=self.loop) cT = datetime.now() + timedelta( hours=5, minutes=30 ) # GMT+05:30 is Our TimeZone So. print( f"[ Log ] {self.user} Connected at {cT.hour}:{cT.minute}:{cT.second} / {cT.day}-{cT.month}-{cT.year}" ) async def on_ready(self): cT = datetime.now() + timedelta( hours=5, minutes=30 ) # GMT+05:30 is Our TimeZone So. print( f"[ Log ] {self.user} Ready at {cT.hour}:{cT.minute}:{cT.second} / {cT.day}-{cT.month}-{cT.year}" ) print(f"[ Log ] GateWay WebSocket Latency: {self.latency*1000:.1f} ms") with open('./data.json') as f: d1 = json.load(f) with open('./market.json') as f: d2 = json.load(f) def bot_info(): return d1 def market_info(): return d2 TOKEN = d1['token'] bot = Echo() @bot.command(hidden=True) @commands.is_owner() async def load(ctx, extension): bot.load_extension(f"cogs.{extension}") await ctx.send("Done") @bot.command(hidden=True) @commands.is_owner() async def unload(ctx, extension): bot.unload_extension(f"cogs.{extension}") await ctx.send("Done") @bot.command(hidden=True) @commands.is_owner() async def reload(ctx, extension): bot.unload_extension(f"cogs.{extension}") bot.load_extension(f"cogs.{extension}") await ctx.send("Done") for filename in listdir("./cogs"): if filename.endswith(".py"): bot.load_extension(f"cogs.{filename[:-3]}") bot.load_extension("jishaku") bot.loop.run_until_complete(bot.run(TOKEN))
1,343
4
214
41b4693fd18fa289244d02060d677bc5ebca5209
2,614
py
Python
PyimageTutorial/Module 4 Image Classification and Machine Learning/Module_4_7_Advanced_Image_Pyramid/David_4_7_2_index_features.py
wcsodw1/Computer-Vision-with-Artificial-intelligence
1fc58466bf82c33939fae911140737a8d9681ebd
[ "MIT" ]
null
null
null
PyimageTutorial/Module 4 Image Classification and Machine Learning/Module_4_7_Advanced_Image_Pyramid/David_4_7_2_index_features.py
wcsodw1/Computer-Vision-with-Artificial-intelligence
1fc58466bf82c33939fae911140737a8d9681ebd
[ "MIT" ]
null
null
null
PyimageTutorial/Module 4 Image Classification and Machine Learning/Module_4_7_Advanced_Image_Pyramid/David_4_7_2_index_features.py
wcsodw1/Computer-Vision-with-Artificial-intelligence
1fc58466bf82c33939fae911140737a8d9681ebd
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Sat Apr 18 13:02:47 2020 @author: user """ # python David_4_7_2_index_features.py --dataset output/data/training --features-db output/training_features.hdf5 # python David_4_7_2_index_features.py # import the necessary packages from __future__ import print_function from pyimagesearch.descriptors import DetectAndDescribe from pyimagesearch.indexer import FeatureIndexer from imutils.feature import FeatureDetector_create, DescriptorExtractor_create from imutils import paths import argparse import imutils import random import cv2 import sys # construct the argument parser and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-d", "--dataset", required=True, help="Path to the directory that contains the images to be indexed") ap.add_argument("-f", "--features-db", required=True, help="Path to where the features database will be stored") ap.add_argument("-a", "--approx-images", type=int, default=250, help="Approximate # of images in the dataset") ap.add_argument("-b", "--max-buffer-size", type=int, default=50000, help="Maximum buffer size for # of features to be stored in memory") sys.argv[1:] = '-d output/data/training -f output/training_features.hdf5'.split() args = vars(ap.parse_args()) # initialize the keypoint detector, local invariant descriptor, and the descriptor # pipeline detector = FeatureDetector_create("GFTT") descriptor = DescriptorExtractor_create("RootSIFT") dad = DetectAndDescribe(detector, descriptor) # initialize the feature indexer fi = FeatureIndexer(args["features_db"], estNumImages=args["approx_images"], maxBufferSize=args["max_buffer_size"], verbose=True) # grab the image paths and randomly shuffle them imagePaths = list(paths.list_images(args["dataset"])) random.shuffle(imagePaths) # loop over the images in the dataset for (i, imagePath) in enumerate(imagePaths): # check to see if progress should be displayed if i > 0 and i % 10 == 0: fi._debug("processed {} images".format(i), msgType="[PROGRESS]") # load the image and pre-process it image = cv2.imread(imagePath) image = imutils.resize(image, width=320) image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # describe the image (kps, descs) = dad.describe(image) # if either the keypoints or descriptors are None, then ignore the image if kps is None or descs is None: continue # extract the image filename and label from the path, then index the features (label, filename) = imagePath.split("/")[-2:] k = "{}:{}".format(label, filename) fi.add(k, image.shape, kps, descs) # finish the indexing process fi.finish()
33.512821
113
0.757077
# -*- coding: utf-8 -*- """ Created on Sat Apr 18 13:02:47 2020 @author: user """ # python David_4_7_2_index_features.py --dataset output/data/training --features-db output/training_features.hdf5 # python David_4_7_2_index_features.py # import the necessary packages from __future__ import print_function from pyimagesearch.descriptors import DetectAndDescribe from pyimagesearch.indexer import FeatureIndexer from imutils.feature import FeatureDetector_create, DescriptorExtractor_create from imutils import paths import argparse import imutils import random import cv2 import sys # construct the argument parser and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-d", "--dataset", required=True, help="Path to the directory that contains the images to be indexed") ap.add_argument("-f", "--features-db", required=True, help="Path to where the features database will be stored") ap.add_argument("-a", "--approx-images", type=int, default=250, help="Approximate # of images in the dataset") ap.add_argument("-b", "--max-buffer-size", type=int, default=50000, help="Maximum buffer size for # of features to be stored in memory") sys.argv[1:] = '-d output/data/training -f output/training_features.hdf5'.split() args = vars(ap.parse_args()) # initialize the keypoint detector, local invariant descriptor, and the descriptor # pipeline detector = FeatureDetector_create("GFTT") descriptor = DescriptorExtractor_create("RootSIFT") dad = DetectAndDescribe(detector, descriptor) # initialize the feature indexer fi = FeatureIndexer(args["features_db"], estNumImages=args["approx_images"], maxBufferSize=args["max_buffer_size"], verbose=True) # grab the image paths and randomly shuffle them imagePaths = list(paths.list_images(args["dataset"])) random.shuffle(imagePaths) # loop over the images in the dataset for (i, imagePath) in enumerate(imagePaths): # check to see if progress should be displayed if i > 0 and i % 10 == 0: fi._debug("processed {} images".format(i), msgType="[PROGRESS]") # load the image and pre-process it image = cv2.imread(imagePath) image = imutils.resize(image, width=320) image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # describe the image (kps, descs) = dad.describe(image) # if either the keypoints or descriptors are None, then ignore the image if kps is None or descs is None: continue # extract the image filename and label from the path, then index the features (label, filename) = imagePath.split("/")[-2:] k = "{}:{}".format(label, filename) fi.add(k, image.shape, kps, descs) # finish the indexing process fi.finish()
0
0
0
589b7b1599bf21d56f84a0ca7d37adf5f0fdf3d9
3,247
py
Python
hw3.py
DrawnWren/nandprogramming
ec67d1babac393c37b33012bc92aa30938367782
[ "MIT" ]
null
null
null
hw3.py
DrawnWren/nandprogramming
ec67d1babac393c37b33012bc92aa30938367782
[ "MIT" ]
null
null
null
hw3.py
DrawnWren/nandprogramming
ec67d1babac393c37b33012bc92aa30938367782
[ "MIT" ]
null
null
null
""" Basic template file that you should fill in for Problem Set 3. Some util functions are provided from the NAND notebooks online that implement some of the NAND essentials. """ from util import EVAL from util import TRUTH from util import NANDProgram # TODO: Implement this function and return a string representation of its NAND # implementation. You don't have to use the class we supplied - you could use # other methods of building up your NAND program from scratch. def nandsquare(n): '''Takes in an integer n. Outputs the string representation of a NAND prog that takes in inputs x_0, ..., x_{n-1} and squares it mod 2^n. The output will be y_0, ..., y_{n-1}. The first digit will be the least significant digit (ex: 110001 --> 35)''' # creates a blank NAND program with n inputs and n outputs. prog = NANDProgram(n, n) # now add lines to your NAND program by calling python functions like # prog.NAND() or prog.OR() or other helper functions. For an example, take # a look at the stuff after if __name__ == '__main__': # "compiles" your completed program as a NAND program string. return str(prog) def rightshift(n): '''Returns a program that takes [x_0,...x_n] as inputs and returns [0,...,x_n-1] ''' # TODO: Do this for bonus points and the leaderboard. def nandsquare256(): '''Implement nandsquare for a specific input size, n=256. This result gets placed on the leaderboard for extra credit. If you get close to the top score on the leaderboard, you'll still recieve BONUS POINTS!!!''' raise NotImplementedError def badadder(N): '''Should create a NAND adder that takes two n digits and outputs an n digit because it's bad''' return # Examples of using the NANDProgram class to build NAND Programs. Please don't # worry too much about the details of using this class - this is not a class # about designing NAND programs. def nandadder(N): '''Creates a NAND adder that takes in two n-digit binary numbers and gets the sum, returning a n+1-digit binary number. Returns the string repr. of the NAND program created.''' nand = NANDProgram(2 * N, N + 1, debug=False) #set debug=True to show debug lines nand.ONE("ONE") carry = nand.allocate() nand.ADD_3(nand.output_var(0), carry, nand.input_var(0), nand.input_var(N), nand.NAND("ZERO", "ONE", "ONE"), debug=True) last_carry = "" for i in range(1, N - 1): last_carry = carry carry = nand.allocate() nand.ADD_3(nand.output_var(i), carry, nand.input_var(i), nand.input_var(N + i), last_carry, debug=True) nand.ADD_3(nand.output_var(N-1), nand.output_var(N), nand.input_var(N-1), nand.input_var(2 * N - 1), carry, debug=True) return str(nand) if __name__ == '__main__': # Generate the string representation of a NAND prog. that adds numbers addfive = str(nandadder(10)) # Input Number 1: 11110 --> 15 # Input Number 2: 10110 --> 13 1111010110 # Expected Output: 28 --> 001110 #816 0000110011 #877 1011011011 # 10111001011 print(EVAL(addfive,'00001100111011011011'))
41.101266
98
0.668309
""" Basic template file that you should fill in for Problem Set 3. Some util functions are provided from the NAND notebooks online that implement some of the NAND essentials. """ from util import EVAL from util import TRUTH from util import NANDProgram # TODO: Implement this function and return a string representation of its NAND # implementation. You don't have to use the class we supplied - you could use # other methods of building up your NAND program from scratch. def nandsquare(n): '''Takes in an integer n. Outputs the string representation of a NAND prog that takes in inputs x_0, ..., x_{n-1} and squares it mod 2^n. The output will be y_0, ..., y_{n-1}. The first digit will be the least significant digit (ex: 110001 --> 35)''' # creates a blank NAND program with n inputs and n outputs. prog = NANDProgram(n, n) # now add lines to your NAND program by calling python functions like # prog.NAND() or prog.OR() or other helper functions. For an example, take # a look at the stuff after if __name__ == '__main__': # "compiles" your completed program as a NAND program string. return str(prog) def rightshift(n): '''Returns a program that takes [x_0,...x_n] as inputs and returns [0,...,x_n-1] ''' # TODO: Do this for bonus points and the leaderboard. def nandsquare256(): '''Implement nandsquare for a specific input size, n=256. This result gets placed on the leaderboard for extra credit. If you get close to the top score on the leaderboard, you'll still recieve BONUS POINTS!!!''' raise NotImplementedError def badadder(N): '''Should create a NAND adder that takes two n digits and outputs an n digit because it's bad''' return # Examples of using the NANDProgram class to build NAND Programs. Please don't # worry too much about the details of using this class - this is not a class # about designing NAND programs. def nandadder(N): '''Creates a NAND adder that takes in two n-digit binary numbers and gets the sum, returning a n+1-digit binary number. Returns the string repr. of the NAND program created.''' nand = NANDProgram(2 * N, N + 1, debug=False) #set debug=True to show debug lines nand.ONE("ONE") carry = nand.allocate() nand.ADD_3(nand.output_var(0), carry, nand.input_var(0), nand.input_var(N), nand.NAND("ZERO", "ONE", "ONE"), debug=True) last_carry = "" for i in range(1, N - 1): last_carry = carry carry = nand.allocate() nand.ADD_3(nand.output_var(i), carry, nand.input_var(i), nand.input_var(N + i), last_carry, debug=True) nand.ADD_3(nand.output_var(N-1), nand.output_var(N), nand.input_var(N-1), nand.input_var(2 * N - 1), carry, debug=True) return str(nand) if __name__ == '__main__': # Generate the string representation of a NAND prog. that adds numbers addfive = str(nandadder(10)) # Input Number 1: 11110 --> 15 # Input Number 2: 10110 --> 13 1111010110 # Expected Output: 28 --> 001110 #816 0000110011 #877 1011011011 # 10111001011 print(EVAL(addfive,'00001100111011011011'))
0
0
0
ea6c2ca88d47675d9aa8565970ee7ab5480b4ae9
2,320
py
Python
Chapter10/myproject_docker/apps/movies/migrations/0001_initial.py
PacktPublishing/Django-2-Web-Development-Cookbook-Third-Edition
f129613e2b1d00f5c76649025ae4d568f6286f2c
[ "MIT" ]
75
2018-12-03T02:35:29.000Z
2021-11-08T13:13:34.000Z
Chapter10/virtualenvs/myproject_env/project/django-myproject/movies/migrations/0001_initial.py
PacktPublishing/Django-2-Web-Development-Cookbook-Third-Edition
f129613e2b1d00f5c76649025ae4d568f6286f2c
[ "MIT" ]
3
2019-08-11T13:35:01.000Z
2020-09-29T06:52:36.000Z
Chapter08/virtualenvs/myproject_env/project/django-myproject/movies/migrations/0001_initial.py
PacktPublishing/Django-2-Web-Development-Cookbook-Third-Edition
f129613e2b1d00f5c76649025ae4d568f6286f2c
[ "MIT" ]
45
2018-11-03T14:03:22.000Z
2021-08-25T07:39:33.000Z
# Generated by Django 2.1.1 on 2018-09-16 08:39 from django.db import migrations, models
42.962963
280
0.515517
# Generated by Django 2.1.1 on 2018-09-16 08:39 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Actor', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('first_name', models.CharField(max_length=40, verbose_name='First name')), ('last_name', models.CharField(max_length=40, verbose_name='Last name')), ], ), migrations.CreateModel( name='Director', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('first_name', models.CharField(max_length=40, verbose_name='First name')), ('last_name', models.CharField(max_length=40, verbose_name='Last name')), ], ), migrations.CreateModel( name='Genre', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=100, verbose_name='Title')), ], ), migrations.CreateModel( name='Movie', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=255, verbose_name='Title')), ('rating', models.PositiveIntegerField(choices=[(1, '★☆☆☆☆☆☆☆☆☆'), (2, '★★☆☆☆☆☆☆☆☆'), (3, '★★★☆☆☆☆☆☆☆'), (4, '★★★★☆☆☆☆☆☆'), (5, '★★★★★☆☆☆☆☆'), (6, '★★★★★★☆☆☆☆'), (7, '★★★★★★★☆☆☆'), (8, '★★★★★★★★☆☆'), (9, '★★★★★★★★★☆'), (10, '★★★★★★★★★★')], verbose_name='Rating')), ('actors', models.ManyToManyField(blank=True, to='movies.Actor')), ('directors', models.ManyToManyField(blank=True, to='movies.Director')), ('genres', models.ManyToManyField(blank=True, to='movies.Genre')), ], options={ 'verbose_name': 'Movie', 'verbose_name_plural': 'Movies', 'ordering': ['title'], }, ), ]
0
2,406
23
4d880e3e2d2a468a977f492e0eda5c5352ab890e
165
py
Python
overlays/alt_s.py
werpu/emulation_tools
8293fbf566c66362fc7238cacdea118da5b86d9d
[ "MIT" ]
null
null
null
overlays/alt_s.py
werpu/emulation_tools
8293fbf566c66362fc7238cacdea118da5b86d9d
[ "MIT" ]
4
2020-10-06T14:49:27.000Z
2021-08-31T19:07:47.000Z
overlays/alt_s.py
werpu/emulation_tools
8293fbf566c66362fc7238cacdea118da5b86d9d
[ "MIT" ]
null
null
null
# save snapshot from evdev import UInput, ecodes cfg = globals()["config"] drv = globals()["drivers"]["keybd1"] drv.press_keys(ecodes.KEY_LEFTALT, ecodes.KEY_S)
16.5
48
0.721212
# save snapshot from evdev import UInput, ecodes cfg = globals()["config"] drv = globals()["drivers"]["keybd1"] drv.press_keys(ecodes.KEY_LEFTALT, ecodes.KEY_S)
0
0
0
99a3846b765e385bd108d18e68d7d370aff0fbab
951
py
Python
src/rfdoc/rfdocapp/utils/__init__.py
elrandira/rfdoc
23a5f510f6cd74362982253268f19700b4a1acf4
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
src/rfdoc/rfdocapp/utils/__init__.py
elrandira/rfdoc
23a5f510f6cd74362982253268f19700b4a1acf4
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
src/rfdoc/rfdocapp/utils/__init__.py
elrandira/rfdoc
23a5f510f6cd74362982253268f19700b4a1acf4
[ "ECL-2.0", "Apache-2.0" ]
1
2022-02-01T16:08:43.000Z
2022-02-01T16:08:43.000Z
# Copyright 2009-2013 Nokia Siemens Networks Oyj # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from rfdoc.rfdocapp.utils.robot_htmlutils import html_escape
31.7
74
0.727655
# Copyright 2009-2013 Nokia Siemens Networks Oyj # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from rfdoc.rfdocapp.utils.robot_htmlutils import html_escape def normalize(string): return string.lower().replace(' ', '') def eq(str1, str2): return normalize(str1) == normalize(str2) def eq_any(string, strings): string = normalize(string) for s in strings: if normalize(s) == string: return True return False
224
0
69
fad42a2176634bf90465a537b384408b95236de7
637
py
Python
algorthm/tests/test_Search.py
dinaklal/algorthm
5adc65ba3eecb4d60b0193ff8d237828c621701b
[ "MIT" ]
1
2019-08-16T10:17:56.000Z
2019-08-16T10:17:56.000Z
algorthm/tests/test_Search.py
dinaklal/algorthm
5adc65ba3eecb4d60b0193ff8d237828c621701b
[ "MIT" ]
3
2019-08-09T13:02:21.000Z
2019-08-13T13:35:04.000Z
algorthm/tests/test_Search.py
dinaklal/algorthm
5adc65ba3eecb4d60b0193ff8d237828c621701b
[ "MIT" ]
1
2019-08-20T10:23:24.000Z
2019-08-20T10:23:24.000Z
import pytest import sys sys.path.append('../') from search import *
22.75
37
0.621664
import pytest import sys sys.path.append('../') from search import * def test_linearSearch(): a= linearSearch([1,3,2],2) assert a == 2 def test_binarySearch(): a= binarySearch([1,3,2],3) assert a == 1 def test_binarySearch_2(): a= binarySearch([1,3,2,4,5,6],4) assert a == 4 def test_jumpSearch(): a= jumpSearch([1,3,2],4) assert a == -1 def test_fibonacciSearch(): a= fibonacciSearch([1,3,2],4) assert a == -1 def test_exponentialSearch(): a= exponentialSearch([1,3,2],4) assert a == -1 def test_interpolationSearch(): a= interpolationSearch([1,3,2],4) assert a == -1
407
0
154
0f57c0b03feb328d03ec6bdf4966a6d4ecf49694
1,609
py
Python
src/foreign_if/python/main/python/frovedis/dataframe/info.py
wmeddie/frovedis
c134e5e64114799cc7c265c72525ff98d06b49c1
[ "BSD-2-Clause" ]
null
null
null
src/foreign_if/python/main/python/frovedis/dataframe/info.py
wmeddie/frovedis
c134e5e64114799cc7c265c72525ff98d06b49c1
[ "BSD-2-Clause" ]
null
null
null
src/foreign_if/python/main/python/frovedis/dataframe/info.py
wmeddie/frovedis
c134e5e64114799cc7c265c72525ff98d06b49c1
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python from ..exrpc.rpclib import * from ..exrpc.server import * from ..mllib.model_util import ModelID class df_to_sparse_info: '''A python container for holding information related to dataframe to sparse conversion'''
35.755556
92
0.715351
#!/usr/bin/env python from ..exrpc.rpclib import * from ..exrpc.server import * from ..mllib.model_util import ModelID class df_to_sparse_info: '''A python container for holding information related to dataframe to sparse conversion''' def __init__(cls,info_id): cls.__uid = info_id def load(cls,dirname): cls.release() if (type(dirname).__name__ != 'str'): raise TypeError("Expected String, Found: " + type(dirname).__name__) info_id = ModelID.get() #getting unique id for conversion info to be registered (host, port) = FrovedisServer.getServerInstance() rpclib.load_dftable_to_sparse_info(host,port,info_id,dirname.encode('ascii')) cls.__uid = info_id excpt = rpclib.check_server_exception() if excpt["status"]: raise RuntimeError(excpt["info"]) return cls def save(cls,dirname): if cls.__uid is None: raise ValueError("Operation on invalid frovedis dftable_to_sparse_info!") if (type(dirname).__name__ != 'str'): raise TypeError("Expected String, Found: " + type(dirname).__name__) (host, port) = FrovedisServer.getServerInstance() rpclib.save_dftable_to_sparse_info(host,port,cls.get(),dirname.encode('ascii')) excpt = rpclib.check_server_exception() if excpt["status"]: raise RuntimeError(excpt["info"]) def release(cls): if cls.__uid is None: raise ValueError("Operation on invalid frovedis dftable_to_sparse_info!") (host, port) = FrovedisServer.getServerInstance() rpclib.release_dftable_to_sparse_info(host,port,cls.get()) cls.__uid = None def get(cls): return cls.__uid
1,239
0
125
b9c0f6e6f3476e8f124a63b6175df5b29e5eaadf
655
py
Python
recipes/migrations/0018_auto_20200912_1906.py
sh4rpy/foodgram
4ebc9655f9a68e05ebb83e7f2f2a2e04128d6713
[ "BSD-3-Clause" ]
null
null
null
recipes/migrations/0018_auto_20200912_1906.py
sh4rpy/foodgram
4ebc9655f9a68e05ebb83e7f2f2a2e04128d6713
[ "BSD-3-Clause" ]
9
2021-04-08T20:01:45.000Z
2022-03-12T00:48:46.000Z
recipes/migrations/0018_auto_20200912_1906.py
sh4rpy/foodgram
4ebc9655f9a68e05ebb83e7f2f2a2e04128d6713
[ "BSD-3-Clause" ]
null
null
null
# Generated by Django 3.1.1 on 2020-09-12 19:06 from django.db import migrations import multiselectfield.db.fields
27.291667
196
0.60458
# Generated by Django 3.1.1 on 2020-09-12 19:06 from django.db import migrations import multiselectfield.db.fields class Migration(migrations.Migration): dependencies = [ ('recipes', '0017_auto_20200912_1902'), ] operations = [ migrations.RemoveField( model_name='recipe', name='tags', ), migrations.AddField( model_name='recipe', name='tags', field=multiselectfield.db.fields.MultiSelectField(blank=True, choices=[('breakfast', 'завтрак'), ('lunch', 'обед'), ('dinner', 'ужин')], max_length=22, null=True, verbose_name='Теги'), ), ]
0
534
23
ad6f36bacc15247857315b4e0c0bbba3891346ae
14,122
py
Python
tests/test_validate.py
vmagamedov/harness
0e9d64295f937aa4476dbe5f084e80a3783edce7
[ "BSD-3-Clause" ]
6
2020-03-26T16:49:54.000Z
2022-01-13T09:13:40.000Z
tests/test_validate.py
vmagamedov/harness
0e9d64295f937aa4476dbe5f084e80a3783edce7
[ "BSD-3-Clause" ]
1
2020-03-14T16:47:51.000Z
2020-03-14T16:47:51.000Z
tests/test_validate.py
vmagamedov/harness
0e9d64295f937aa4476dbe5f084e80a3783edce7
[ "BSD-3-Clause" ]
null
null
null
import re from ipaddress import ip_address import pytest from harness.runtime._validate import validate, ValidationError @pytest.fixture() @pytest.fixture() @pytest.fixture() @pytest.fixture() def test_disabled(message_type): """ message Message { message Inner { option (validate.disabled) = true; string value = 1 [(validate.rules).string.const = "valid"]; } Inner field = 1; } """ validate(message_type(field=dict(value="invalid"))) def test_oneof_required(message_type): """ message Message { oneof type { option (validate.required) = true; string foo = 1; int32 bar = 2; } } """ validate(message_type(foo="test")) validate(message_type(bar=42)) with pytest.raises(ValidationError, match="Oneof type is required"): validate(message_type()) def test_float_const(message_type): """ message Message { float value = 1 [(validate.rules).float.const = 4.2]; } """ validate(message_type(value=4.2)) with pytest.raises(ValidationError, match="value not equal to"): validate(message_type(value=2.4)) def test_timestamp_lt(message_type, timestamp_type): """ message Message { google.protobuf.Timestamp value = 1 [ (validate.rules).timestamp.lt = {seconds: 1000} ]; } """ validate(message_type(value=timestamp_type(seconds=999))) with pytest.raises(ValidationError, match="is not lesser than"): validate(message_type(value=timestamp_type(seconds=1000))) def test_timestamp_within(message_type, timestamp_type): """ message Message { google.protobuf.Timestamp value = 1 [ (validate.rules).timestamp.within = {seconds: 60} ]; } """ value = timestamp_type() value.GetCurrentTime() validate(message_type(value=value)) valid_seconds = value.seconds with pytest.raises(ValidationError, match="value is not within 60s from now"): value.seconds = valid_seconds - 100 validate(message_type(value=value)) with pytest.raises(ValidationError, match="value is not within 60s from now"): value.seconds = valid_seconds - 100 validate(message_type(value=value)) value.seconds = valid_seconds validate(message_type(value=value)) def test_duration_in(message_type, duration_type): """ message Message { google.protobuf.Duration value = 1 [ (validate.rules).duration.in = {seconds: 60}, (validate.rules).duration.in = {seconds: 30} ]; } """ validate(message_type(value=duration_type(seconds=60))) with pytest.raises(ValidationError, match="value not in {60s, 30s}"): validate(message_type(value=duration_type(seconds=120))) def test_duration_lte(message_type, duration_type): """ message Message { google.protobuf.Duration value = 1 [ (validate.rules).duration.lte = {seconds: 60} ]; } """ validate(message_type(value=duration_type(seconds=60))) with pytest.raises( ValidationError, match="value is not lesser than or equal to 60s" ): validate(message_type(value=duration_type(seconds=60, nanos=1))) def test_enum_defined_only(message_type): """ message Message { enum Foo { A = 0; B = 1; } Foo value = 1 [(validate.rules).enum.defined_only = true]; } """ validate(message_type()) validate(message_type(value=1)) with pytest.raises(ValidationError, match="value is not defined"): validate(message_type(value=2)) def test_repeated_unique(message_type): """ message Message { repeated int32 value = 1 [(validate.rules).repeated.unique = true]; } """ validate(message_type(value=[1, 2, 3])) with pytest.raises( ValidationError, match="value must contain unique items; repeated items: \\[2, 3\\]", ): validate(message_type(value=[1, 2, 3, 2, 4, 3, 5])) def test_repeated_items(message_type): """ message Message { repeated int32 field = 1 [(validate.rules).repeated.items.int32.lt = 5]; } """ validate(message_type(field=[1, 2, 3, 4])) with pytest.raises(ValidationError, match="field\\[\\] is not lesser than 5"): validate(message_type(field=[1, 2, 3, 4, 5])) def test_map_key(message_type): """ message Message { map<string, int32> field = 1 [(validate.rules).map.keys.string.min_len = 3]; } """ validate(message_type(field={"test": 42})) with pytest.raises(ValidationError, match="field<key> length is less than 3"): validate(message_type(field={"t": 42})) def test_map_values(message_type): """ message Message { map<string, int32> field = 1 [(validate.rules).map.values.int32.const = 42]; } """ validate(message_type(field={"test": 42})) with pytest.raises(ValidationError, match="field<value> not equal to 42"): validate(message_type(field={"test": 43})) def test_any_in(message_type, any_type, duration_type, timestamp_type): """ message Message { google.protobuf.Any field = 1 [(validate.rules).any.in = "type.googleapis.com/google.protobuf.Duration"]; } """ # noqa any_1 = any_type() any_1.Pack(duration_type(seconds=42)) validate(message_type(field=any_1)) with pytest.raises(ValidationError, match="field.type_url not in"): any_2 = any_type() any_2.Pack(timestamp_type(seconds=42)) validate(message_type(field=any_2)) def test_nested(message_type): """ message Message { message Inner { string value = 1 [(validate.rules).string.const = "valid"]; } Inner field = 1; } """ validate(message_type()) validate(message_type(field=dict(value="valid"))) with pytest.raises(ValidationError, match="value not equal to 'valid'"): validate(message_type(field=dict(value="invalid"))) def test_message_skip(message_type): """ message Message { message Inner { string value = 1 [(validate.rules).string.const = "valid"]; } Inner field = 1 [(validate.rules).message.skip = true]; } """ validate(message_type(field=dict(value="invalid"))) def test_message_required(message_type): """ message Message { message Inner { string value = 1; } Inner field = 1 [(validate.rules).message.required = true]; } """ validate(message_type(field=dict())) validate(message_type(field=dict(value="test"))) with pytest.raises(ValidationError, match="field is required"): validate(message_type()) def test_email(message_type): """ message Message { string field = 1 [(validate.rules).string.email = true]; } """ validate(message_type(field="admin@example.com")) validate( message_type(field="Jean-Luc Picard <jean-luc.pickard@starfleet.milkyway>") ) with pytest.raises(ValidationError, match="field contains invalid email address"): validate(message_type(field="example.com")) with pytest.raises( ValidationError, match="field contains more than one email address" ): validate(message_type(field="foo@example.com, bar@example.com")) def test_hostname(message_type): """ message Message { string field = 1 [(validate.rules).string.hostname = true]; } """ validate(message_type(field="example.com")) validate(message_type(field="Example.com")) with pytest.raises(ValidationError, match="field contains invalid hostname"): validate(message_type(field="-example.com")) def test_string_prefix(message_type): """ message Message { string field = 1 [(validate.rules).string.prefix = "har"]; } """ validate(message_type(field="harness")) with pytest.raises(ValidationError, match="field does not start with prefix 'har'"): validate(message_type(field="bottle")) def test_string_pattern(message_type): """ message Message { string field = 1 [(validate.rules).string.pattern = "^(foo|bar)-app$"]; } """ validate(message_type(field="foo-app")) validate(message_type(field="bar-app")) with pytest.raises( ValidationError, match=re.escape("field does not match pattern '^(foo|bar)-app$'"), ): validate(message_type(field="invalid")) def test_string_ip(message_type): """ message Message { string field = 1 [(validate.rules).string.ip = true]; } """ validate(message_type(field="0.0.0.0")) validate(message_type(field="127.0.0.1")) validate(message_type(field="::1")) validate(message_type(field="2001:0db8:85a3:0000:0000:8a2e:0370:7334")) with pytest.raises(ValidationError, match="field contains invalid IP address"): validate(message_type(field="0.0.0")) def test_string_ipv4(message_type): """ message Message { string field = 1 [(validate.rules).string.ipv4 = true]; } """ validate(message_type(field="0.0.0.0")) validate(message_type(field="127.0.0.1")) with pytest.raises(ValidationError, match="field contains invalid IPv4 address"): validate(message_type(field="0.0.0")) with pytest.raises(ValidationError, match="field contains invalid IPv4 address"): validate(message_type(field="2001:0db8:85a3:0000:0000:8a2e:0370:7334")) def test_string_ipv6(message_type): """ message Message { string field = 1 [(validate.rules).string.ipv6 = true]; } """ validate(message_type(field="::1")) validate(message_type(field="2001:0db8:85a3:0000:0000:8a2e:0370:7334")) with pytest.raises(ValidationError, match="field contains invalid IPv6 address"): validate(message_type(field="2001:0db8:85a3:0000:0000:8a2e:0370:733.")) with pytest.raises(ValidationError, match="field contains invalid IPv6 address"): validate(message_type(field="127.0.0.1")) def test_bytes_ip(message_type): """ message Message { bytes field = 1 [(validate.rules).bytes.ip = true]; } """ validate(message_type(field=ip_address("0.0.0.0").packed)) validate(message_type(field=ip_address("127.0.0.1").packed)) validate(message_type(field=ip_address("::1").packed)) validate( message_type(field=ip_address("2001:0db8:85a3:0000:0000:8a2e:0370:7334").packed) ) with pytest.raises(ValidationError, match="field contains invalid IP address"): validate(message_type(field=ip_address("0.0.0.0").packed[:-1])) def test_bytes_ipv4(message_type): """ message Message { bytes field = 1 [(validate.rules).bytes.ipv4 = true]; } """ validate(message_type(field=ip_address("0.0.0.0").packed)) validate(message_type(field=ip_address("127.0.0.1").packed)) with pytest.raises(ValidationError, match="field contains invalid IPv4 address"): validate(message_type(field=b"deadbeef")) with pytest.raises(ValidationError, match="field contains invalid IPv4 address"): validate( message_type( field=ip_address("2001:0db8:85a3:0000:0000:8a2e:0370:7334").packed ) ) def test_bytes_ipv6(message_type): """ message Message { bytes field = 1 [(validate.rules).bytes.ipv6 = true]; } """ validate(message_type(field=ip_address("::1").packed)) validate( message_type(field=ip_address("2001:0db8:85a3:0000:0000:8a2e:0370:7334").packed) ) with pytest.raises(ValidationError, match="field contains invalid IPv6 address"): validate(message_type(field=b"deadbeef")) with pytest.raises(ValidationError, match="field contains invalid IPv6 address"): validate(message_type(field=ip_address("127.0.0.1").packed)) def test_address(message_type): """ message Message { string field = 1 [(validate.rules).string.address = true]; } """ validate(message_type(field="::1")) validate(message_type(field="127.0.0.1")) validate(message_type(field="Example.com")) with pytest.raises(ValidationError, match="field contains invalid address"): validate(message_type(field="invalid")) def test_uri(message_type): """ message Message { string field = 1 [(validate.rules).string.uri = true]; } """ validate(message_type(field="http://google.com")) validate(message_type(field="http://127.0.0.1/page.html#fragment")) with pytest.raises(ValidationError, match="field contains invalid URI"): validate(message_type(field="/local/path")) def test_uri_ref(message_type): """ message Message { string field = 1 [(validate.rules).string.uri_ref = true]; } """ validate(message_type(field="http://google.com")) validate(message_type(field="/local/path")) with pytest.raises(ValidationError, match="field contains invalid URI-reference"): validate(message_type(field="\\invalid\\path")) def test_uuid(message_type): """ message Message { string field = 1 [(validate.rules).string.uuid = true]; } """ validate(message_type(field="adbf3fd4-6a41-41a8-b5c1-df09adc3a9b3")) validate(message_type(field="ADBF3FD4-6A41-41A8-B5C1-DF09ADC3A9B3")) with pytest.raises(ValidationError, match="field contains invalid UUID"): validate(message_type(field="adbf3fd46a4141a8b5c1df09adc3a9b3")) with pytest.raises(ValidationError, match="field contains invalid UUID"): validate(message_type(field="adbf3fd4-6a41-41a8-b5c1-df09adc3a9b3-ext"))
31.382222
113
0.652599
import re from ipaddress import ip_address import pytest from harness.runtime._validate import validate, ValidationError @pytest.fixture() def message_type(message_types, package): return message_types[f"{package}.Message"] @pytest.fixture() def timestamp_type(message_types): return message_types["google.protobuf.Timestamp"] @pytest.fixture() def duration_type(message_types): return message_types["google.protobuf.Duration"] @pytest.fixture() def any_type(message_types): return message_types["google.protobuf.Any"] def test_disabled(message_type): """ message Message { message Inner { option (validate.disabled) = true; string value = 1 [(validate.rules).string.const = "valid"]; } Inner field = 1; } """ validate(message_type(field=dict(value="invalid"))) def test_oneof_required(message_type): """ message Message { oneof type { option (validate.required) = true; string foo = 1; int32 bar = 2; } } """ validate(message_type(foo="test")) validate(message_type(bar=42)) with pytest.raises(ValidationError, match="Oneof type is required"): validate(message_type()) def test_float_const(message_type): """ message Message { float value = 1 [(validate.rules).float.const = 4.2]; } """ validate(message_type(value=4.2)) with pytest.raises(ValidationError, match="value not equal to"): validate(message_type(value=2.4)) def test_timestamp_lt(message_type, timestamp_type): """ message Message { google.protobuf.Timestamp value = 1 [ (validate.rules).timestamp.lt = {seconds: 1000} ]; } """ validate(message_type(value=timestamp_type(seconds=999))) with pytest.raises(ValidationError, match="is not lesser than"): validate(message_type(value=timestamp_type(seconds=1000))) def test_timestamp_within(message_type, timestamp_type): """ message Message { google.protobuf.Timestamp value = 1 [ (validate.rules).timestamp.within = {seconds: 60} ]; } """ value = timestamp_type() value.GetCurrentTime() validate(message_type(value=value)) valid_seconds = value.seconds with pytest.raises(ValidationError, match="value is not within 60s from now"): value.seconds = valid_seconds - 100 validate(message_type(value=value)) with pytest.raises(ValidationError, match="value is not within 60s from now"): value.seconds = valid_seconds - 100 validate(message_type(value=value)) value.seconds = valid_seconds validate(message_type(value=value)) def test_duration_in(message_type, duration_type): """ message Message { google.protobuf.Duration value = 1 [ (validate.rules).duration.in = {seconds: 60}, (validate.rules).duration.in = {seconds: 30} ]; } """ validate(message_type(value=duration_type(seconds=60))) with pytest.raises(ValidationError, match="value not in {60s, 30s}"): validate(message_type(value=duration_type(seconds=120))) def test_duration_lte(message_type, duration_type): """ message Message { google.protobuf.Duration value = 1 [ (validate.rules).duration.lte = {seconds: 60} ]; } """ validate(message_type(value=duration_type(seconds=60))) with pytest.raises( ValidationError, match="value is not lesser than or equal to 60s" ): validate(message_type(value=duration_type(seconds=60, nanos=1))) def test_enum_defined_only(message_type): """ message Message { enum Foo { A = 0; B = 1; } Foo value = 1 [(validate.rules).enum.defined_only = true]; } """ validate(message_type()) validate(message_type(value=1)) with pytest.raises(ValidationError, match="value is not defined"): validate(message_type(value=2)) def test_repeated_unique(message_type): """ message Message { repeated int32 value = 1 [(validate.rules).repeated.unique = true]; } """ validate(message_type(value=[1, 2, 3])) with pytest.raises( ValidationError, match="value must contain unique items; repeated items: \\[2, 3\\]", ): validate(message_type(value=[1, 2, 3, 2, 4, 3, 5])) def test_repeated_items(message_type): """ message Message { repeated int32 field = 1 [(validate.rules).repeated.items.int32.lt = 5]; } """ validate(message_type(field=[1, 2, 3, 4])) with pytest.raises(ValidationError, match="field\\[\\] is not lesser than 5"): validate(message_type(field=[1, 2, 3, 4, 5])) def test_map_key(message_type): """ message Message { map<string, int32> field = 1 [(validate.rules).map.keys.string.min_len = 3]; } """ validate(message_type(field={"test": 42})) with pytest.raises(ValidationError, match="field<key> length is less than 3"): validate(message_type(field={"t": 42})) def test_map_values(message_type): """ message Message { map<string, int32> field = 1 [(validate.rules).map.values.int32.const = 42]; } """ validate(message_type(field={"test": 42})) with pytest.raises(ValidationError, match="field<value> not equal to 42"): validate(message_type(field={"test": 43})) def test_any_in(message_type, any_type, duration_type, timestamp_type): """ message Message { google.protobuf.Any field = 1 [(validate.rules).any.in = "type.googleapis.com/google.protobuf.Duration"]; } """ # noqa any_1 = any_type() any_1.Pack(duration_type(seconds=42)) validate(message_type(field=any_1)) with pytest.raises(ValidationError, match="field.type_url not in"): any_2 = any_type() any_2.Pack(timestamp_type(seconds=42)) validate(message_type(field=any_2)) def test_nested(message_type): """ message Message { message Inner { string value = 1 [(validate.rules).string.const = "valid"]; } Inner field = 1; } """ validate(message_type()) validate(message_type(field=dict(value="valid"))) with pytest.raises(ValidationError, match="value not equal to 'valid'"): validate(message_type(field=dict(value="invalid"))) def test_message_skip(message_type): """ message Message { message Inner { string value = 1 [(validate.rules).string.const = "valid"]; } Inner field = 1 [(validate.rules).message.skip = true]; } """ validate(message_type(field=dict(value="invalid"))) def test_message_required(message_type): """ message Message { message Inner { string value = 1; } Inner field = 1 [(validate.rules).message.required = true]; } """ validate(message_type(field=dict())) validate(message_type(field=dict(value="test"))) with pytest.raises(ValidationError, match="field is required"): validate(message_type()) def test_email(message_type): """ message Message { string field = 1 [(validate.rules).string.email = true]; } """ validate(message_type(field="admin@example.com")) validate( message_type(field="Jean-Luc Picard <jean-luc.pickard@starfleet.milkyway>") ) with pytest.raises(ValidationError, match="field contains invalid email address"): validate(message_type(field="example.com")) with pytest.raises( ValidationError, match="field contains more than one email address" ): validate(message_type(field="foo@example.com, bar@example.com")) def test_hostname(message_type): """ message Message { string field = 1 [(validate.rules).string.hostname = true]; } """ validate(message_type(field="example.com")) validate(message_type(field="Example.com")) with pytest.raises(ValidationError, match="field contains invalid hostname"): validate(message_type(field="-example.com")) def test_string_prefix(message_type): """ message Message { string field = 1 [(validate.rules).string.prefix = "har"]; } """ validate(message_type(field="harness")) with pytest.raises(ValidationError, match="field does not start with prefix 'har'"): validate(message_type(field="bottle")) def test_string_pattern(message_type): """ message Message { string field = 1 [(validate.rules).string.pattern = "^(foo|bar)-app$"]; } """ validate(message_type(field="foo-app")) validate(message_type(field="bar-app")) with pytest.raises( ValidationError, match=re.escape("field does not match pattern '^(foo|bar)-app$'"), ): validate(message_type(field="invalid")) def test_string_ip(message_type): """ message Message { string field = 1 [(validate.rules).string.ip = true]; } """ validate(message_type(field="0.0.0.0")) validate(message_type(field="127.0.0.1")) validate(message_type(field="::1")) validate(message_type(field="2001:0db8:85a3:0000:0000:8a2e:0370:7334")) with pytest.raises(ValidationError, match="field contains invalid IP address"): validate(message_type(field="0.0.0")) def test_string_ipv4(message_type): """ message Message { string field = 1 [(validate.rules).string.ipv4 = true]; } """ validate(message_type(field="0.0.0.0")) validate(message_type(field="127.0.0.1")) with pytest.raises(ValidationError, match="field contains invalid IPv4 address"): validate(message_type(field="0.0.0")) with pytest.raises(ValidationError, match="field contains invalid IPv4 address"): validate(message_type(field="2001:0db8:85a3:0000:0000:8a2e:0370:7334")) def test_string_ipv6(message_type): """ message Message { string field = 1 [(validate.rules).string.ipv6 = true]; } """ validate(message_type(field="::1")) validate(message_type(field="2001:0db8:85a3:0000:0000:8a2e:0370:7334")) with pytest.raises(ValidationError, match="field contains invalid IPv6 address"): validate(message_type(field="2001:0db8:85a3:0000:0000:8a2e:0370:733.")) with pytest.raises(ValidationError, match="field contains invalid IPv6 address"): validate(message_type(field="127.0.0.1")) def test_bytes_ip(message_type): """ message Message { bytes field = 1 [(validate.rules).bytes.ip = true]; } """ validate(message_type(field=ip_address("0.0.0.0").packed)) validate(message_type(field=ip_address("127.0.0.1").packed)) validate(message_type(field=ip_address("::1").packed)) validate( message_type(field=ip_address("2001:0db8:85a3:0000:0000:8a2e:0370:7334").packed) ) with pytest.raises(ValidationError, match="field contains invalid IP address"): validate(message_type(field=ip_address("0.0.0.0").packed[:-1])) def test_bytes_ipv4(message_type): """ message Message { bytes field = 1 [(validate.rules).bytes.ipv4 = true]; } """ validate(message_type(field=ip_address("0.0.0.0").packed)) validate(message_type(field=ip_address("127.0.0.1").packed)) with pytest.raises(ValidationError, match="field contains invalid IPv4 address"): validate(message_type(field=b"deadbeef")) with pytest.raises(ValidationError, match="field contains invalid IPv4 address"): validate( message_type( field=ip_address("2001:0db8:85a3:0000:0000:8a2e:0370:7334").packed ) ) def test_bytes_ipv6(message_type): """ message Message { bytes field = 1 [(validate.rules).bytes.ipv6 = true]; } """ validate(message_type(field=ip_address("::1").packed)) validate( message_type(field=ip_address("2001:0db8:85a3:0000:0000:8a2e:0370:7334").packed) ) with pytest.raises(ValidationError, match="field contains invalid IPv6 address"): validate(message_type(field=b"deadbeef")) with pytest.raises(ValidationError, match="field contains invalid IPv6 address"): validate(message_type(field=ip_address("127.0.0.1").packed)) def test_address(message_type): """ message Message { string field = 1 [(validate.rules).string.address = true]; } """ validate(message_type(field="::1")) validate(message_type(field="127.0.0.1")) validate(message_type(field="Example.com")) with pytest.raises(ValidationError, match="field contains invalid address"): validate(message_type(field="invalid")) def test_uri(message_type): """ message Message { string field = 1 [(validate.rules).string.uri = true]; } """ validate(message_type(field="http://google.com")) validate(message_type(field="http://127.0.0.1/page.html#fragment")) with pytest.raises(ValidationError, match="field contains invalid URI"): validate(message_type(field="/local/path")) def test_uri_ref(message_type): """ message Message { string field = 1 [(validate.rules).string.uri_ref = true]; } """ validate(message_type(field="http://google.com")) validate(message_type(field="/local/path")) with pytest.raises(ValidationError, match="field contains invalid URI-reference"): validate(message_type(field="\\invalid\\path")) def test_uuid(message_type): """ message Message { string field = 1 [(validate.rules).string.uuid = true]; } """ validate(message_type(field="adbf3fd4-6a41-41a8-b5c1-df09adc3a9b3")) validate(message_type(field="ADBF3FD4-6A41-41A8-B5C1-DF09ADC3A9B3")) with pytest.raises(ValidationError, match="field contains invalid UUID"): validate(message_type(field="adbf3fd46a4141a8b5c1df09adc3a9b3")) with pytest.raises(ValidationError, match="field contains invalid UUID"): validate(message_type(field="adbf3fd4-6a41-41a8-b5c1-df09adc3a9b3-ext"))
254
0
88
cba4882f9db73bfaee8807536b229122656e0814
16,021
py
Python
alipy/experiment/state_io.py
JlsBssmnn/ALiPy
57f5a1e4c0252436ecf2572da6973d054807add5
[ "BSD-3-Clause" ]
1
2021-08-17T01:58:14.000Z
2021-08-17T01:58:14.000Z
alipy/experiment/state_io.py
JlsBssmnn/ALiPy
57f5a1e4c0252436ecf2572da6973d054807add5
[ "BSD-3-Clause" ]
null
null
null
alipy/experiment/state_io.py
JlsBssmnn/ALiPy
57f5a1e4c0252436ecf2572da6973d054807add5
[ "BSD-3-Clause" ]
1
2019-12-19T07:02:07.000Z
2019-12-19T07:02:07.000Z
""" StateIO Container to store state object. Several useful functions are implemented in this class: 1. Saving intermediate results to files. 2. Recover workspace at any iteration (label set and unlabel set). 3. Recover workspace from the intermediate result file in case the program exits unexpectedly. 4. Gathering and checking the information stored in State object. 5. Print active learning progress: current_iteration, current_mean_performance, current_cost, etc. """ # Authors: Ying-Peng Tang # License: BSD 3 clause from __future__ import division import collections.abc import copy import os import pickle import sys import numpy as np import prettytable as pt from .state import State from ..index import IndexCollection, MultiLabelIndexCollection from ..index.multi_label_tools import check_index_multilabel from ..utils.interface import BaseCollection __all__ = ['StateIO', ] class StateIO: """ A class to store states. Functions including: 1. Saving intermediate results to files. 2. Recover workspace at any iteration (label set and unlabel set). 3. Recover workspace from the intermediate result file in case the program exits unexpectedly. 4. Gathering and checking the information stored in State object. 5. Print active learning progress: current_iteration, current_mean_performance, current_cost, etc. Parameters ---------- round: int Number of k-fold experiments loop. 0 <= round < k train_idx: array_like Training index of one fold experiment. test_idx: array_like Testing index of one fold experiment. init_L: array_like Initial labeled index of one fold experiment. init_U: array_like Initial unlabeled index of one fold experiment. initial_point: object, optional (default=None) The performance before any querying. If not specify, the initial point of different methods will be different. saving_path: str, optional (default='.') Path to save the intermediate files. If None is given, it will not save the intermediate result. check_flag: bool, optional (default=True) Whether to check the validity of states. verbose: bool, optional (default=True) Whether to print query information during the AL process. print_interval: int optional (default=1) How many queries will trigger a print when verbose is True. """ @classmethod def load(cls, path): """Load StateIO object from file. Parameters ---------- path: str The path should be a specific .pkl file. Returns ------- object: StateIO The StateIO object in the file. """ f = open(os.path.abspath(path), 'rb') saver_from_file = pickle.load(f) f.close() return saver_from_file def set_initial_point(self, perf): """The initial point of performance before querying. Parameters ---------- perf: float The performance value. """ self.initial_point = perf def save(self): """Saving intermediate results to file.""" if self._saving_dir is None: return f = open(os.path.join(self._saving_dir, self._saving_file_name), 'wb') pickle.dump(self, f) f.close() def add_state(self, state): """Add a State object to the container. Parameters ---------- state: {dict, State} State object to be added. Or a dictionary with the following keys: ['select_index', 'queried_info', 'performance'] """ if not isinstance(state, State): assert isinstance(state, dict), "state must be dict or State object." assert 'select_index' in state and 'queried_info' in state and 'performance' in state, "The dict must contain the following keys: ['select_index', 'queried_info', 'performance']" self.__state_list.append(copy.deepcopy(state)) self.__update_info() if self.__verbose and len(self) % self.__print_interval == 0: if self._first_print: print('\n' + self.__repr__(), end='') self._first_print = False else: print('\r' + self._refresh_dataline(), end='') sys.stdout.flush() def get_state(self, index): """Get a State object in the container. Parameters ---------- index: int The index of the State object. 0 <= index < len(self) Returns ------- st: State The State object in the previous iteration. """ assert (0 <= index < len(self)) return copy.deepcopy(self.__state_list[index]) def check_batch_size(self): """Check if all queries have the same batch size. Returns ------- result: bool Whether all the states have the same batch size. """ ind_uni = np.unique( [self.__state_list[i].batch_size for i in range(len(self.__state_list) - 1)], axis=0) if len(ind_uni) == 1: self.batch_size = ind_uni[0] return True else: return False def pop(self, i=None): """remove and return item at index (default last).""" return self.__state_list.pop(i) def recover_workspace(self, iteration=None): """Recover workspace after $iteration$ querying. For example, if 0 is given, the initial workspace without any querying will be recovered. Note that, the object itself will be recovered, the information after the iteration will be discarded. Parameters ---------- iteration: int, optional(default=None) Number of iteration to recover, start from 0. If nothing given, it will return the current workspace. Returns ------- train_idx: list Index of training set, shape like [n_training_samples] test_idx: list Index of testing set, shape like [n_testing_samples] label_idx: list Index of labeling set, shape like [n_labeling_samples] unlabel_idx: list Index of unlabeling set, shape like [n_unlabeling_samples] """ if iteration is None: iteration = len(self.__state_list) assert (0 <= iteration <= len(self)) work_U = copy.deepcopy(self.init_U) work_L = copy.deepcopy(self.init_L) for i in range(iteration): state = self.__state_list[i] work_U.difference_update(state.get_value('select_index')) work_L.update(state.get_value('select_index')) self.__state_list = self.__state_list[0:iteration] return copy.copy(self.train_idx), copy.copy(self.test_idx), copy.deepcopy(work_L), copy.deepcopy(work_U) def get_workspace(self, iteration=None): """Get workspace after $iteration$ querying. For example, if 0 is given, the initial workspace without any querying will be recovered. Parameters ---------- iteration: int, optional(default=None) Number of iteration, start from 0. If nothing given, it will get the current workspace. Returns ------- train_idx: list Index of training set, shape like [n_training_samples] test_idx: list Index of testing set, shape like [n_testing_samples] label_idx: list Index of labeling set, shape like [n_labeling_samples] unlabel_idx: list Index of unlabeling set, shape like [n_unlabeling_samples] """ if iteration is None: iteration = len(self.__state_list) assert (0 <= iteration <= len(self)) work_U = copy.deepcopy(self.init_U) work_L = copy.deepcopy(self.init_L) for i in range(iteration): state = self.__state_list[i] work_U.difference_update(state.get_value('select_index')) work_L.update(state.get_value('select_index')) return copy.copy(self.train_idx), copy.copy(self.test_idx), copy.deepcopy(work_L), copy.deepcopy(work_U) def num_of_query(self): """Return the number of queries""" return len(self.__state_list) def get_current_performance(self): """Return the mean ± std performance of all existed states. Only available when the performance of each state is a single float value. Returns ------- mean: float Mean performance of the existing states. std: float Std performance of the existing states. """ if len(self) == 0: return 0, 0 else: tmp = [self[i].get_value('performance') for i in range(self.__len__())] if isinstance(tmp[0], collections.Iterable): return np.NaN, np.NaN else: return np.mean(tmp), np.std(tmp) def refresh_info(self): """re-calculate current active learning progress.""" numqdata = 0 cost = 0.0 for state in self.__state_list: numqdata += len(state.get_value('select_index')) if 'cost' in state.keys(): cost += np.sum(state.get_value('cost')) self.cost_inall = cost self._numqdata = numqdata return numqdata, cost def __update_info(self): """Update current active learning progress""" state = self.__state_list[len(self) - 1] if 'cost' in state.keys(): self.cost_inall += np.sum(state.get_value('cost')) self._numqdata += len(state.get_value('select_index')) # class StateIO_all_labels(StateIO): # """StateIO for all _labels querying""" # def add_state(self, state): # assert (isinstance(state, experiment_saver.state.State)) # self.__state_list.append(copy.deepcopy(state)) # if self.__check_flag: # res, err_st, err_ind = self.check_select_index() # if res == -1: # warnings.warn( # 'Checking validity fails, there is a queried instance not in set_U in ' # 'State:%d, index:%s.' % (err_st, str(err_ind)), # category=ValidityWarning) # if res == -2: # warnings.warn('Checking validity fails, there are instances already queried ' # 'in previous iteration in State:%d, index:%s.' % (err_st, str(err_ind)), # category=ValidityWarning) # self.__update_info() # # # if self.__verbose and len(self) % self.__print_interval == 0: # if self._first_print: # print('\n' + self.__repr__(), end='') # self._first_print = False # else: # print('\r' + self._refresh_dataline(), end='') # sys.stdout.flush() # # def check_select_index(self): # """ # check: # - Q has no repeating elements # - Q in U # Returns # ------- # result: int # check result # - if -1 is returned, there is a queried instance not in U # - if -2 is returned, there are repeated instances in Q # - if 1 is returned, CHECK OK # # state_index: int # the state index when checking fails (start from 0) # if CHECK OK, None is returned. # # select_index: object # the select_index when checking fails. # if CHECK OK, None is returned. # """ # repeat_dict = dict() # ind = -1 # for st in self.__state_list: # ind += 1 # for instance in st.get_value('select_index'): # if instance not in self.init_U: # return -1, ind, instance # if instance not in repeat_dict.keys(): # repeat_dict[instance] = 1 # else: # return -2, ind, instance # return 1, None, None # # @property # def queried_percentage(self): # """return the queried percentage of unlabeled data""" # return 100 * self._numqdata / len(self.init_U)
36.661327
190
0.603708
""" StateIO Container to store state object. Several useful functions are implemented in this class: 1. Saving intermediate results to files. 2. Recover workspace at any iteration (label set and unlabel set). 3. Recover workspace from the intermediate result file in case the program exits unexpectedly. 4. Gathering and checking the information stored in State object. 5. Print active learning progress: current_iteration, current_mean_performance, current_cost, etc. """ # Authors: Ying-Peng Tang # License: BSD 3 clause from __future__ import division import collections.abc import copy import os import pickle import sys import numpy as np import prettytable as pt from .state import State from ..index import IndexCollection, MultiLabelIndexCollection from ..index.multi_label_tools import check_index_multilabel from ..utils.interface import BaseCollection __all__ = ['StateIO', ] class StateIO: """ A class to store states. Functions including: 1. Saving intermediate results to files. 2. Recover workspace at any iteration (label set and unlabel set). 3. Recover workspace from the intermediate result file in case the program exits unexpectedly. 4. Gathering and checking the information stored in State object. 5. Print active learning progress: current_iteration, current_mean_performance, current_cost, etc. Parameters ---------- round: int Number of k-fold experiments loop. 0 <= round < k train_idx: array_like Training index of one fold experiment. test_idx: array_like Testing index of one fold experiment. init_L: array_like Initial labeled index of one fold experiment. init_U: array_like Initial unlabeled index of one fold experiment. initial_point: object, optional (default=None) The performance before any querying. If not specify, the initial point of different methods will be different. saving_path: str, optional (default='.') Path to save the intermediate files. If None is given, it will not save the intermediate result. check_flag: bool, optional (default=True) Whether to check the validity of states. verbose: bool, optional (default=True) Whether to print query information during the AL process. print_interval: int optional (default=1) How many queries will trigger a print when verbose is True. """ def __init__(self, round, train_idx, test_idx, init_L, init_U, initial_point=None, saving_path=None, check_flag=True, verbose=True, print_interval=1): assert (isinstance(check_flag, bool)) assert (isinstance(verbose, bool)) self.__check_flag = check_flag self.__verbose = verbose self.__print_interval = print_interval if self.__check_flag: # check validity assert (isinstance(train_idx, collections.Iterable)) assert (isinstance(test_idx, collections.Iterable)) assert (isinstance(init_U, collections.Iterable)) assert (isinstance(init_L, collections.Iterable)) assert (isinstance(round, int) and round >= 0) self.round = round self.train_idx = copy.copy(train_idx) self.test_idx = copy.copy(test_idx) if isinstance(init_U, BaseCollection) and isinstance(init_L, BaseCollection): self.init_U = copy.deepcopy(init_U) self.init_L = copy.deepcopy(init_L) else: try: check_index_multilabel(init_L) check_index_multilabel(init_U) self.init_U = copy.deepcopy(MultiLabelIndexCollection(init_U)) self.init_L = copy.deepcopy(MultiLabelIndexCollection(init_L)) except TypeError: self.init_U = copy.deepcopy(IndexCollection(init_U)) self.init_L = copy.deepcopy(IndexCollection(init_L)) # self.init_U = copy.deepcopy(IndexCollection(init_U) if not isinstance(init_U, BaseCollection) else init_U) # self.init_L = copy.deepcopy(IndexCollection(init_L) if not isinstance(init_L, BaseCollection) else init_L) self.initial_point = initial_point self.batch_size = 0 self.__state_list = [] self._first_print = True self.cost_inall = 0 self._numqdata = 0 self._saving_file_name = 'AL_round_' + str(self.round) + '.pkl' self._saving_dir = None if saving_path is not None: if not isinstance(saving_path, str): raise TypeError("A string is expected, but received: %s" % str(type(saving_path))) saving_path = os.path.abspath(saving_path) if os.path.isdir(saving_path): self._saving_dir = saving_path else: self._saving_dir, self._saving_file_name = os.path.split(saving_path) @classmethod def load(cls, path): """Load StateIO object from file. Parameters ---------- path: str The path should be a specific .pkl file. Returns ------- object: StateIO The StateIO object in the file. """ f = open(os.path.abspath(path), 'rb') saver_from_file = pickle.load(f) f.close() return saver_from_file def set_initial_point(self, perf): """The initial point of performance before querying. Parameters ---------- perf: float The performance value. """ self.initial_point = perf def save(self): """Saving intermediate results to file.""" if self._saving_dir is None: return f = open(os.path.join(self._saving_dir, self._saving_file_name), 'wb') pickle.dump(self, f) f.close() def add_state(self, state): """Add a State object to the container. Parameters ---------- state: {dict, State} State object to be added. Or a dictionary with the following keys: ['select_index', 'queried_info', 'performance'] """ if not isinstance(state, State): assert isinstance(state, dict), "state must be dict or State object." assert 'select_index' in state and 'queried_info' in state and 'performance' in state, "The dict must contain the following keys: ['select_index', 'queried_info', 'performance']" self.__state_list.append(copy.deepcopy(state)) self.__update_info() if self.__verbose and len(self) % self.__print_interval == 0: if self._first_print: print('\n' + self.__repr__(), end='') self._first_print = False else: print('\r' + self._refresh_dataline(), end='') sys.stdout.flush() def get_state(self, index): """Get a State object in the container. Parameters ---------- index: int The index of the State object. 0 <= index < len(self) Returns ------- st: State The State object in the previous iteration. """ assert (0 <= index < len(self)) return copy.deepcopy(self.__state_list[index]) def check_batch_size(self): """Check if all queries have the same batch size. Returns ------- result: bool Whether all the states have the same batch size. """ ind_uni = np.unique( [self.__state_list[i].batch_size for i in range(len(self.__state_list) - 1)], axis=0) if len(ind_uni) == 1: self.batch_size = ind_uni[0] return True else: return False def pop(self, i=None): """remove and return item at index (default last).""" return self.__state_list.pop(i) def recover_workspace(self, iteration=None): """Recover workspace after $iteration$ querying. For example, if 0 is given, the initial workspace without any querying will be recovered. Note that, the object itself will be recovered, the information after the iteration will be discarded. Parameters ---------- iteration: int, optional(default=None) Number of iteration to recover, start from 0. If nothing given, it will return the current workspace. Returns ------- train_idx: list Index of training set, shape like [n_training_samples] test_idx: list Index of testing set, shape like [n_testing_samples] label_idx: list Index of labeling set, shape like [n_labeling_samples] unlabel_idx: list Index of unlabeling set, shape like [n_unlabeling_samples] """ if iteration is None: iteration = len(self.__state_list) assert (0 <= iteration <= len(self)) work_U = copy.deepcopy(self.init_U) work_L = copy.deepcopy(self.init_L) for i in range(iteration): state = self.__state_list[i] work_U.difference_update(state.get_value('select_index')) work_L.update(state.get_value('select_index')) self.__state_list = self.__state_list[0:iteration] return copy.copy(self.train_idx), copy.copy(self.test_idx), copy.deepcopy(work_L), copy.deepcopy(work_U) def get_workspace(self, iteration=None): """Get workspace after $iteration$ querying. For example, if 0 is given, the initial workspace without any querying will be recovered. Parameters ---------- iteration: int, optional(default=None) Number of iteration, start from 0. If nothing given, it will get the current workspace. Returns ------- train_idx: list Index of training set, shape like [n_training_samples] test_idx: list Index of testing set, shape like [n_testing_samples] label_idx: list Index of labeling set, shape like [n_labeling_samples] unlabel_idx: list Index of unlabeling set, shape like [n_unlabeling_samples] """ if iteration is None: iteration = len(self.__state_list) assert (0 <= iteration <= len(self)) work_U = copy.deepcopy(self.init_U) work_L = copy.deepcopy(self.init_L) for i in range(iteration): state = self.__state_list[i] work_U.difference_update(state.get_value('select_index')) work_L.update(state.get_value('select_index')) return copy.copy(self.train_idx), copy.copy(self.test_idx), copy.deepcopy(work_L), copy.deepcopy(work_U) def num_of_query(self): """Return the number of queries""" return len(self.__state_list) def get_current_performance(self): """Return the mean ± std performance of all existed states. Only available when the performance of each state is a single float value. Returns ------- mean: float Mean performance of the existing states. std: float Std performance of the existing states. """ if len(self) == 0: return 0, 0 else: tmp = [self[i].get_value('performance') for i in range(self.__len__())] if isinstance(tmp[0], collections.Iterable): return np.NaN, np.NaN else: return np.mean(tmp), np.std(tmp) def __len__(self): return len(self.__state_list) def __getitem__(self, item): return self.__state_list.__getitem__(item) def __contains__(self, other): return other in self.__state_list def __iter__(self): return iter(self.__state_list) def refresh_info(self): """re-calculate current active learning progress.""" numqdata = 0 cost = 0.0 for state in self.__state_list: numqdata += len(state.get_value('select_index')) if 'cost' in state.keys(): cost += np.sum(state.get_value('cost')) self.cost_inall = cost self._numqdata = numqdata return numqdata, cost def __update_info(self): """Update current active learning progress""" state = self.__state_list[len(self) - 1] if 'cost' in state.keys(): self.cost_inall += np.sum(state.get_value('cost')) self._numqdata += len(state.get_value('select_index')) def __repr__(self): numqdata = self._numqdata cost = self.cost_inall tb = pt.PrettyTable() tb.set_style(pt.MSWORD_FRIENDLY) tb.add_column('round', [self.round]) tb.add_column('initially labeled data', [ " %d (%.2f%% of all)" % (len(self.init_L), 100 * len(self.init_L) / (len(self.init_L) + len(self.init_U)))]) tb.add_column('number of queries', [len(self.__state_list)]) # tb.add_column('queried data', ["%d (%.2f%% of unlabeled data)" % (numqdata, self.queried_percentage)]) tb.add_column('cost', [cost]) # tb.add_column('saving path', [self._saving_dir]) tb.add_column('Performance:', ["%.3f ± %.2f" % self.get_current_performance()]) return str(tb) def _refresh_dataline(self): tb = self.__repr__() return tb.splitlines()[1] # class StateIO_all_labels(StateIO): # """StateIO for all _labels querying""" # def add_state(self, state): # assert (isinstance(state, experiment_saver.state.State)) # self.__state_list.append(copy.deepcopy(state)) # if self.__check_flag: # res, err_st, err_ind = self.check_select_index() # if res == -1: # warnings.warn( # 'Checking validity fails, there is a queried instance not in set_U in ' # 'State:%d, index:%s.' % (err_st, str(err_ind)), # category=ValidityWarning) # if res == -2: # warnings.warn('Checking validity fails, there are instances already queried ' # 'in previous iteration in State:%d, index:%s.' % (err_st, str(err_ind)), # category=ValidityWarning) # self.__update_info() # # # if self.__verbose and len(self) % self.__print_interval == 0: # if self._first_print: # print('\n' + self.__repr__(), end='') # self._first_print = False # else: # print('\r' + self._refresh_dataline(), end='') # sys.stdout.flush() # # def check_select_index(self): # """ # check: # - Q has no repeating elements # - Q in U # Returns # ------- # result: int # check result # - if -1 is returned, there is a queried instance not in U # - if -2 is returned, there are repeated instances in Q # - if 1 is returned, CHECK OK # # state_index: int # the state index when checking fails (start from 0) # if CHECK OK, None is returned. # # select_index: object # the select_index when checking fails. # if CHECK OK, None is returned. # """ # repeat_dict = dict() # ind = -1 # for st in self.__state_list: # ind += 1 # for instance in st.get_value('select_index'): # if instance not in self.init_U: # return -1, ind, instance # if instance not in repeat_dict.keys(): # repeat_dict[instance] = 1 # else: # return -2, ind, instance # return 1, None, None # # @property # def queried_percentage(self): # """return the queried percentage of unlabeled data""" # return 100 * self._numqdata / len(self.init_U)
3,429
0
189
95d77119937afbad81cc3276b13c8dbe68d86a97
660
py
Python
eval/cp.py
1asso/TOM-Net
ba13bd3f1bac0fa50c6043290691d7be5c29f777
[ "MIT" ]
1
2020-06-25T22:45:46.000Z
2020-06-25T22:45:46.000Z
eval/cp.py
1asso/TOM-Net
ba13bd3f1bac0fa50c6043290691d7be5c29f777
[ "MIT" ]
null
null
null
eval/cp.py
1asso/TOM-Net
ba13bd3f1bac0fa50c6043290691d7be5c29f777
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import re import os import torch import torch.nn.functional as F import struct import glob from PIL import Image import torchvision.transforms.functional as TF from shutil import copyfile root_dir = '' ori_dir = '' if __name__ == '__main__': sub_dir = [os.path.join(root_dir, name) for name in os.listdir(root_dir) if os.path.isdir(os.path.join(root_dir, name))] rec_err = 0 rec_bg = 0 for d in sub_dir: print(d) input = glob.glob(os.path.join(d, '*input.png'))[0] name = input[:-10] + '.jpg' name = name.split('/')[-1] ori = glob.glob(os.path.join(ori_dir, name))[0] copyfile(ori, input[:-10] + '_tar.png')
21.290323
121
0.681818
#!/usr/bin/env python3 import re import os import torch import torch.nn.functional as F import struct import glob from PIL import Image import torchvision.transforms.functional as TF from shutil import copyfile root_dir = '' ori_dir = '' if __name__ == '__main__': sub_dir = [os.path.join(root_dir, name) for name in os.listdir(root_dir) if os.path.isdir(os.path.join(root_dir, name))] rec_err = 0 rec_bg = 0 for d in sub_dir: print(d) input = glob.glob(os.path.join(d, '*input.png'))[0] name = input[:-10] + '.jpg' name = name.split('/')[-1] ori = glob.glob(os.path.join(ori_dir, name))[0] copyfile(ori, input[:-10] + '_tar.png')
0
0
0
80089fb785b3a1570d67b41953f2b6e2198dc3df
7,003
py
Python
vap_turn_taking/backchannel.py
ErikEkstedt/vad_turn_taking
c24e0ddfe9c739328872310e56f4b8c17f82c92c
[ "MIT" ]
null
null
null
vap_turn_taking/backchannel.py
ErikEkstedt/vad_turn_taking
c24e0ddfe9c739328872310e56f4b8c17f82c92c
[ "MIT" ]
null
null
null
vap_turn_taking/backchannel.py
ErikEkstedt/vad_turn_taking
c24e0ddfe9c739328872310e56f4b8c17f82c92c
[ "MIT" ]
null
null
null
import torch from vap_turn_taking.utils import find_island_idx_len from vap_turn_taking.hold_shifts import get_dialog_states, get_last_speaker def find_isolated_within(vad, prefix_frames, max_duration_frames, suffix_frames): """ ... <= prefix_frames (silence) | <= max_duration_frames (active) | <= suffix_frames (silence) ... """ isolated = torch.zeros_like(vad) for b, vad_tmp in enumerate(vad): for speaker in [0, 1]: starts, durs, vals = find_island_idx_len(vad_tmp[..., speaker]) for step in range(1, len(starts) - 1): # Activity condition: current step is active if vals[step] == 0: continue # Prefix condition: # check that current active step comes after a certain amount of inactivity if durs[step - 1] < prefix_frames: continue # Suffix condition # check that current active step comes after a certain amount of inactivity if durs[step + 1] < suffix_frames: continue current_dur = durs[step] if current_dur <= max_duration_frames: start = starts[step] end = start + current_dur isolated[b, start:end, speaker] = 1.0 return isolated if __name__ == "__main__": import matplotlib.pyplot as plt from vap_turn_taking.plot_utils import plot_vad_oh BS = Backhannel(**bs_dict) tt_bc = BS(va) (tt_bc["backchannel"] != bc).sum() n_rows = 4 n_cols = 4 fig, ax = plt.subplots(n_rows, n_cols, sharey=True, sharex=True, figsize=(16, 4)) b = 0 for row in range(n_rows): for col in range(n_cols): _ = plot_vad_oh(vad[b], ax=ax[row, col]) _ = plot_vad_oh( bc["backchannel"][b], ax=ax[row, col], colors=["purple", "purple"], alpha=0.8, ) b += 1 if b == vad.shape[0]: break if b == vad.shape[0]: break plt.pause(0.1)
36.857895
118
0.553049
import torch from vap_turn_taking.utils import find_island_idx_len from vap_turn_taking.hold_shifts import get_dialog_states, get_last_speaker def find_isolated_within(vad, prefix_frames, max_duration_frames, suffix_frames): """ ... <= prefix_frames (silence) | <= max_duration_frames (active) | <= suffix_frames (silence) ... """ isolated = torch.zeros_like(vad) for b, vad_tmp in enumerate(vad): for speaker in [0, 1]: starts, durs, vals = find_island_idx_len(vad_tmp[..., speaker]) for step in range(1, len(starts) - 1): # Activity condition: current step is active if vals[step] == 0: continue # Prefix condition: # check that current active step comes after a certain amount of inactivity if durs[step - 1] < prefix_frames: continue # Suffix condition # check that current active step comes after a certain amount of inactivity if durs[step + 1] < suffix_frames: continue current_dur = durs[step] if current_dur <= max_duration_frames: start = starts[step] end = start + current_dur isolated[b, start:end, speaker] = 1.0 return isolated class Backchannel: def __init__( self, max_duration_frames, min_duration_frames, pre_silence_frames, post_silence_frames, metric_dur_frames, metric_pre_label_dur, ): assert ( metric_dur_frames <= max_duration_frames ), "`metric_dur_frames` must be less than `max_duration_frames`" self.max_duration_frames = max_duration_frames self.min_duration_frames = min_duration_frames self.pre_silence_frames = pre_silence_frames self.post_silence_frames = post_silence_frames self.metric_dur_frames = metric_dur_frames self.metric_pre_label_dur = metric_pre_label_dur def __repr__(self): s = "\nBackchannel" s += f"\n max_duration_frames: {self.max_duration_frames}" s += f"\n pre_silence_frames: {self.pre_silence_frames}" s += f"\n post_silence_frames: {self.post_silence_frames}" return s def backchannel(self, vad, last_speaker, max_frame=None, min_context=0): """ Finds backchannel based on VAD signal. Iterates over batches and speakers. Extracts segments of activity/non-activity to find backchannels. Backchannel Conditions * Backchannel activity must be shorter than `self.max_duration_frames` * Backchannel activity must follow activity from the other speaker * Silence prior to backchannel, in the "backchanneler" channel, must be greater than `self.pre_silence_frames` * Silence after backchannel, in the "backchanneler" channel, must be greater than `self.pre_silence_frames` """ bc_oh = torch.zeros_like(vad) pre_bc_oh = torch.zeros_like(vad) for b, vad_tmp in enumerate(vad): for speaker in [0, 1]: other_speaker = 0 if speaker == 1 else 1 starts, durs, vals = find_island_idx_len(vad_tmp[..., speaker]) for step in range(1, len(starts) - 1): # Activity condition: current step is active if vals[step] == 0: continue # Activity duration condition: segment must be shorter than # a certain number of frames if durs[step] > self.max_duration_frames: continue if durs[step] < self.min_duration_frames: continue start = starts[step] # Shift-ish condition: # Was the other speaker active prior to this `backchannel` candidate? # If not than this is a short IPU in the middle of a turn pre_speaker_cond = last_speaker[b, start - 1] == other_speaker if not pre_speaker_cond: continue # Prefix condition: # check that current active step comes after a certain amount of inactivity if durs[step - 1] < self.pre_silence_frames: continue # Suffix condition # check that current active step comes after a certain amount of inactivity if durs[step + 1] < self.post_silence_frames: continue # Add segment as a backchanel end = starts[step] + durs[step] if self.metric_dur_frames > 0: end = starts[step] + self.metric_dur_frames # Max Frame condition: # can't have event outside of predictable window if max_frame is not None: if end >= max_frame: continue # Min Context condition: if starts[step] < min_context: continue bc_oh[b, starts[step] : end, speaker] = 1.0 # Min Context condition: if (starts[step] - self.metric_pre_label_dur) < min_context: continue pre_bc_oh[ b, starts[step] - self.metric_pre_label_dur : starts[step], speaker, ] = 1.0 return bc_oh, pre_bc_oh def __call__(self, vad, last_speaker=None, ds=None, max_frame=None, min_context=0): if ds is None: ds = get_dialog_states(vad) if last_speaker is None: last_speaker = get_last_speaker(vad, ds) bc_oh, pre_bc = self.backchannel( vad, last_speaker, max_frame=max_frame, min_context=min_context ) return {"backchannel": bc_oh, "pre_backchannel": pre_bc} if __name__ == "__main__": import matplotlib.pyplot as plt from vap_turn_taking.plot_utils import plot_vad_oh BS = Backhannel(**bs_dict) tt_bc = BS(va) (tt_bc["backchannel"] != bc).sum() n_rows = 4 n_cols = 4 fig, ax = plt.subplots(n_rows, n_cols, sharey=True, sharex=True, figsize=(16, 4)) b = 0 for row in range(n_rows): for col in range(n_cols): _ = plot_vad_oh(vad[b], ax=ax[row, col]) _ = plot_vad_oh( bc["backchannel"][b], ax=ax[row, col], colors=["purple", "purple"], alpha=0.8, ) b += 1 if b == vad.shape[0]: break if b == vad.shape[0]: break plt.pause(0.1)
1,307
3,505
23
0d21441157a5bcd0f69a92c179cb9be376ab1a78
190
py
Python
SUIBE_DID_Data_Manager/blueprints/data_manager/models.py
SUIBE-Blockchain/SUIBE_DID_Data_Manager
d38f3f37463f36802eb6acb578f8e17faf878c79
[ "MIT" ]
null
null
null
SUIBE_DID_Data_Manager/blueprints/data_manager/models.py
SUIBE-Blockchain/SUIBE_DID_Data_Manager
d38f3f37463f36802eb6acb578f8e17faf878c79
[ "MIT" ]
2
2020-10-21T07:05:43.000Z
2020-10-22T17:10:53.000Z
SUIBE_DID_Data_Manager/blueprints/data_manager/models.py
SUIBE-Blockchain/SUIBE_DID_Data_Manager
d38f3f37463f36802eb6acb578f8e17faf878c79
[ "MIT" ]
null
null
null
import datetime as dt from flask_login import UserMixin from SUIBE_DID_Data_Manager.database import ( Column, Model, SurrogatePK, db, reference_col, relationship, )
15.833333
45
0.721053
import datetime as dt from flask_login import UserMixin from SUIBE_DID_Data_Manager.database import ( Column, Model, SurrogatePK, db, reference_col, relationship, )
0
0
0
cd7c1b16a2fe7d789b8f3a8bfd1cd2fda50d36ec
2,000
py
Python
base_app.py
loblab/resouce-simulator
a3d62f32ec1f377548519e7aa4eaef10d5bdd0c2
[ "Apache-2.0" ]
1
2019-12-09T01:28:17.000Z
2019-12-09T01:28:17.000Z
base_app.py
loblab/resouce-simulator
a3d62f32ec1f377548519e7aa4eaef10d5bdd0c2
[ "Apache-2.0" ]
null
null
null
base_app.py
loblab/resouce-simulator
a3d62f32ec1f377548519e7aa4eaef10d5bdd0c2
[ "Apache-2.0" ]
1
2019-12-09T01:28:19.000Z
2019-12-09T01:28:19.000Z
import argparse import signal import time import sys import os import logging
28.169014
105
0.5835
import argparse import signal import time import sys import os import logging class BaseApp: def __init__(self, id, description): signal.signal(signal.SIGINT, self.sig_handler) signal.signal(signal.SIGTERM, self.sig_handler) self.quit_flag = False sfile = sys.argv[0] ver = time.strftime('Ver %Y/%m/%d %H:%M %Z', time.localtime(os.path.getmtime(sfile))) self.argps = argparse.ArgumentParser(description=description) self.argps.add_argument('-V', '--version', action='version', version=ver) self.argps.add_argument('-D', '--debug', action='store_true', help="output more logs (debug level)") self.base_init() self.init() self.args = self.argps.parse_args() try: self.id = self.args.id except: self.id = id self.init_logger() self.log.info(description) self.log.info(ver) if self.args.debug: self.log.setLevel(logging.DEBUG) self.log.debug("Debug log on") def init_logger(self): self.log = logging.getLogger(self.id) self.log.setLevel(logging.INFO) ch = logging.StreamHandler(sys.stdout) ch.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s.%(msecs)03d - %(name)s - %(levelname)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S') ch.setFormatter(formatter) self.log.addHandler(ch) def quit(self): self.log.debug("Going to quit...") self.quit_flag = True def sig_handler(self, signum, frame): self.log.info("Got signal %d" % signum) self.quit() def base_init(self): pass def init(self): pass def startup(self): self.log.info("Startup...") def cleanup(self): self.log.info("Cleanup...") def main(self): self.startup() while not self.quit_flag: time.sleep(1) self.cleanup()
1,662
-7
266
f03ed12e66ae135f1cc8f9ec76a8ec9bbe0ca691
1,468
py
Python
iv/Binarysearch_strings/rotated_search_array.py
iamsuman/iv
bf68d3fd45455b6041e74b09272f69503bf7a8ac
[ "MIT" ]
2
2020-09-19T22:28:15.000Z
2020-10-03T01:44:53.000Z
iv/Binarysearch_strings/rotated_search_array.py
iamsuman/iv
bf68d3fd45455b6041e74b09272f69503bf7a8ac
[ "MIT" ]
null
null
null
iv/Binarysearch_strings/rotated_search_array.py
iamsuman/iv
bf68d3fd45455b6041e74b09272f69503bf7a8ac
[ "MIT" ]
1
2020-10-03T01:43:30.000Z
2020-10-03T01:43:30.000Z
A = [4, 5, 6, 7, 0, 1, 2, 3] A = [0,1,2,3,4,5,6,7] B = 4 A = [ 101, 103, 106, 109, 158, 164, 182, 187, 202, 205, 2, 3, 32, 57, 69, 74, 81, 99, 100 ] B = 202 a = Rotated_Search() print(a.search(A, B))
25.310345
91
0.44891
class Rotated_Search(): def search(self, A, B): n = len(A) pivot = self.find_pivot(A, 0, n - 1) # A = [4, 5, 6, 7, 0, 1, 2, 3] # B = 4 # print(pivot) if pivot == -1: return self.binary_search(A, 0, n - 1, B) if A[pivot] == B: return pivot if B < A[0]: return self.binary_search(A, pivot + 1, n - 1, B) else: return self.binary_search(A, 0, pivot - 1, B) def find_pivot(self, A, low, hi): if low > hi: return -1 if low == hi: return low mid = int((low + hi) / 2) if mid < hi and A[mid] > A[mid + 1]: return mid if mid > low and A[mid] < A[mid - 1]: return (mid - 1) if A[low] >= A[mid]: return self.find_pivot(A, low, mid - 1) else: return self.find_pivot(A, mid + 1, hi) def binary_search(self, A, low, hi, key): if hi < low: return -1 mid = int((hi + low) / 2) if key == A[mid]: return mid if key > A[mid]: return self.binary_search(A, mid + 1, hi, key) else: return self.binary_search(A, low, mid - 1, key) A = [4, 5, 6, 7, 0, 1, 2, 3] A = [0,1,2,3,4,5,6,7] B = 4 A = [ 101, 103, 106, 109, 158, 164, 182, 187, 202, 205, 2, 3, 32, 57, 69, 74, 81, 99, 100 ] B = 202 a = Rotated_Search() print(a.search(A, B))
1,160
2
102
5ffc54c364f831310a5bc6f460542db448a8e796
16,997
py
Python
mesohops/dynamics/hops_aux.py
MesoscienceLab/mesohops
b845dc61e65af158382a47c4894c3875e05f09e1
[ "MIT" ]
7
2020-08-17T03:39:42.000Z
2022-02-10T22:55:55.000Z
mesohops/dynamics/hops_aux.py
MesoscienceLab/mesohops
b845dc61e65af158382a47c4894c3875e05f09e1
[ "MIT" ]
null
null
null
mesohops/dynamics/hops_aux.py
MesoscienceLab/mesohops
b845dc61e65af158382a47c4894c3875e05f09e1
[ "MIT" ]
1
2021-07-26T02:11:16.000Z
2021-07-26T02:11:16.000Z
import numpy as np from collections.abc import Mapping from mesohops.util.exceptions import AuxError from scipy.special import binom __title__ = "AuxiliaryVector Class" __author__ = "D. I. G. Bennett" __version__ = "1.0" class AuxiliaryVector(Mapping): """ This is a class that encodes a sparse representation of auxiliary vectors with some extra helper functions to simplify some common actions, such as: determining the absolute index, adding a unit vector, and calculating the sum. The class is not mutable - which is to say, once an auxiliary vector is defined, it cannot be changed. """ __slots__ = ('dict_aux_vec', 'tuple_aux_vec', 'array_aux_vec', '__abs_index', '__len' , 'hash', 'index', '_sum', '_dict_aux_p1', '_dict_aux_m1') def __init__(self, aux_array, nmodes): """ INPUTS ------ 1. aux_array : iterable list of (mode, value) pairs for all non-zero indices of the auxiliary vector 2. nmodes : int the number of modes in the hierarchy which is the length of the dense auxiliary vector. RETURNS ------- None """ self.dict_aux_vec = { index_mode: aux_value for (index_mode, aux_value) in aux_array } self.tuple_aux_vec = tuple( [tuple([mode, value]) for (mode, value) in aux_array] ) self.array_aux_vec = np.array(aux_array) if len(self.array_aux_vec)>0 and not np.all(np.diff(self.array_aux_vec[:,0])>0): raise AuxError("array_aux_vec not properly ordered") self.__abs_index = None self.__len = nmodes self.hash = hash(self.tuple_aux_vec) self.index = None self._sum = np.sum(self.values()) self._dict_aux_p1 = {} self._dict_aux_m1 = {} # Dictionary-like methods overwriting Mutable Mapping # =================================================== def keys(self): """ This function returns an array of mode indices for the auxiliary vectors Parameters ---------- None Returns ------- 1. keys : array an array of mode indices with nonzero auxiliary index """ if len(self.dict_aux_vec) > 0: return self.array_aux_vec[:, 0] else: return np.array([]) def values(self): """ This function returns an array of the auxiliary vector values Parameters ---------- None Returns ------- 1. values : array an array of nonzero auxiliary index values """ if len(self.dict_aux_vec) > 0: return self.array_aux_vec[:, 1] else: return np.array([]) # Comparison Methods # ================== def _compare(self, other, comparison_function): """ This function compares two auxiliary vectors Parameters ---------- 1. other : array the array you want to compare 2. comparison_function : function a comparison function Returns ------- 1. bool_compare : bool a boolean for the comparison """ if isinstance(other, AuxiliaryVector) and len(self) == len(other): return comparison_function(self.absolute_index, other.absolute_index) else: return False # Special Methods # =============== def difference_by_mode(self, other): """ Compares the current HopsAux object to another HopsAux object. If they differ by only 1 step, then it returns the mode along which they differ. Parameters ---------- 1. other: HopsAux object The HopsAux object to which the current object is compared. Returns ------- 1. diff_mode : int or False The mode index along which they differ or False if they differ by more than 1 step. """ set_key_self = set(self.keys()) set_key_other = set(other.keys()) # Check that the two HopsAux belong to the same hierarchy assert self.__len == len(other) if np.abs(self._sum - other._sum) == 1: if set_key_self == set_key_other: values = np.abs(self.array_aux_vec[:,1]- other.array_aux_vec[:,1]) if np.sum(values) == 1: return self.array_aux_vec[np.where(values)[0][0],0] elif (len(set_key_self | set_key_other) - len(set_key_self & set_key_other)) == 1: value = 0 for key in set_key_self | set_key_other: value += np.abs(self[key] - other[key]) if value == 1: index = list((set_key_self | set_key_other) - (set_key_self & set_key_other))[0] return index return False def dot(self, vec): """ This is a function that performs a sparse dot product between the auxiliary index vector and another vector. Parameters ---------- 1. vec : np.array a vector Returns ------- 1. product : float the dot product value """ if len(self.dict_aux_vec) == 0: return 0 else: return np.dot(self.array_aux_vec[:, 1], vec[self.array_aux_vec[:, 0]]) def sum(self, **unused_kwargs): """ This function returns the sum of the auxiliary vector values Parameters ---------- None Returns ------- 1. sum : float the sum of the nonzero values of the auxiliary vectors """ try: return self._sum except: return np.sum(self.values()) def todense(self): """ This function will take a sparse vector and make it dense Parameters ---------- None Returns ------- 1. output : array the dense vector """ output = np.zeros(self.__len) if len(self.dict_aux_vec) == 0: return output output[self.keys()] = self.values() return output def toarray(self): """ This function converts a dict to an array Parameters ---------- None Returns ------- 1. array : array a dict in an array form """ return self.array_aux_vec def get_values(self, index_slice): """ This function gets the dense auxiliary vector values from a sub-indexed list Parameters ---------- 1. index_slice : list a list of indices Returns ------- 1. values : array an array of values at the given indices """ return np.array([self.__getitem__(key) for key in index_slice]) def get_values_nonzero(self, index_slice): """ This function gets the sparse auxiliary vector values from a sub-indexed list NOTE: the values are returned in key order not the order they are present in index_slice Parameters ---------- 1. index_slice : list a list of indices Returns ------- 1. values : array a sparse array of the non-zero auxiliary vector values """ return np.array( [self.dict_aux_vec[key] for key in self.keys() if key in index_slice] ) def e_step(self, mode, step): """ This function returns a new Auxiliary Vector with the desired step in the given mode Parameters ---------- 1. mode : int The absolute mode index 2. step : int The change in the aux value for the given mode Returns ------- 1. aux_vec : tuple the new sparse auxiliary vector """ return AuxiliaryVector(self.tuple_from_e_step(mode, step), nmodes=self.__len) def hash_from_e_step(self, mode, step): """ This function returns the hash of a new Auxiliary Vector with the desired step in the given mode Parameters ---------- 1. mode : int The absolute mode index 2. step : int The change in the aux value for the given mode Returns ------- 1. hash : int the hash of the tuple sparse auxiliary vector created from e_step """ return hash(self.tuple_from_e_step(mode, step)) def tuple_from_e_step(self, mode, step): """ Returns the sparse tuple representation of the auxiliary that is the given step length along the given absolute mode index away from the current auxiliary. Parameters ---------- 1. mode : int The absolute mode index 2. step : int The change in the aux value for the given mode Returns ------- 1. tuple_aux : tuple The sparse representation of the auxiliary (sorted mode order) """ if step == 0: return self.tuple_aux_vec elif self.__getitem__(mode) + step < 0: return ((0, -1),) elif len(self.dict_aux_vec) == 0: return tuple([(mode, step)]) elif mode in self.array_aux_vec[:, 0]: if self.__getitem__(mode) + step == 0: return tuple( [ tuple([mode_i, value_i]) for (mode_i, value_i) in self.tuple_aux_vec if mode_i != mode ] ) else: return tuple( [ tuple([mode_i, value_i + step]) if mode_i == mode else tuple([mode_i, value_i]) for (mode_i, value_i) in self.tuple_aux_vec ] ) else: list_keys = list(self.dict_aux_vec.keys()) list_keys.append(mode) list_keys.sort() list_values = [ step if key == mode else self.dict_aux_vec[key] for key in list_keys ] return tuple( [tuple([mode, value]) for (mode, value) in zip(list_keys, list_values)] ) def index_analytic(self): """ This function provides an absolute index value for an auxiliary vector using an analytic function of the indices. The basic idea is that the indices are always ordered by increasing hierarchy 'level' (i.e. the sum of the indices). Within a level they are ordered by first comparing the first values, then the second values, etc. This gives the indexing a particularly simple form with a level: L = sum(i_0,...,i_n) (i_0, ... i_N) = sum_n<N sum_L>ln>i_n ((N-n-1 , L-sum(aux[:n])-ln) where ((L,K)) denotes a L multichoose K. The derivation of the following equations is given on p. 68 of Quantum Notebook #1. The sums have been removed by making use of the binomial sum property and the binomial symmetry property. The result is a equation that only sums over a number of elements equal to the number of non-zero terms in aux. PARAMETERS ---------- None RETURNS ------- 1. index : int the absolute index for an auxiliary """ # Constants # --------- aux = self.toarray() n_hmode = self.__len L = self.sum() if not aux.size: return 0 else: # Calculate number of aux at order less than L # -------------------------------------------- n_aux_below_l = int(binom(n_hmode + L - 1, L - 1)) # Calculate N+ contribution # ------------------------- list_np_boxes = [n_hmode] list_np_boxes.extend(n_hmode - aux[:-1, 0] - 1) list_np_boxes = np.array(list_np_boxes) list_np_balls = [L] list_np_balls.extend(L - np.cumsum(aux[:-1, 1])) list_np_balls = np.array(list_np_balls) n_plus = np.nansum( binom(list_np_boxes + list_np_balls - 1, list_np_boxes - 1) ) # Calculate N- contributions # -------------------------- list_nm_boxes = n_hmode - aux[:, 0] - 1 n_minus = np.nansum(binom(list_nm_boxes + list_np_balls, list_nm_boxes)) # calculate M contributions # ------------------------- list_m_balls = L - np.cumsum(aux[:, 1]) - 1 m = np.nansum(binom(list_nm_boxes + list_m_balls, list_m_balls)) return int(n_aux_below_l + m + n_plus - n_minus) def add_aux_connect(self, index_mode, aux_other, type): """ The function that updates the HopsAux object to contain a pointer to the other HopsAux objects it is connected to. Parameters ---------- 1. index_mode : int the mode along which the two HopsAux objects are connected 2. aux_other : HopsAux the HopsAux object it is connected to 3. type : int +1 or -1 depending on if the other aux has a larger or smaller sum Returns ------- 1. None """ if type == 1: self._dict_aux_p1.update({index_mode: aux_other}) elif type == -1: self._dict_aux_m1.update({index_mode: aux_other}) else: raise AuxError('add_aux_connect does not support type={}'.format(type)) def remove_aux_connect(self, index_mode, type): """ The function that removes the connection between the HopsAux object and another connected with type (+1/-1) along index mode. Parameters ---------- 1. index_mode : int the mode along which the two HopsAux objects are connected 2. type : int +1 or -1 depending on if the other aux has a larger or smaller sum Returns ------- 1. None """ if type == 1: self._dict_aux_p1.pop(index_mode) elif type == -1: self._dict_aux_m1.pop(index_mode) else: raise AuxError('add_aux_connect does not support type={}'.format(type)) def remove_pointers(self): """ The function that removes all pointers targeting the current HopsAux object from the set of HopsAux objects it has connections to. Parameters ---------- 1. None Returns ------- 1. None """ for (index_mode, aux) in self.dict_aux_p1.items(): aux.remove_aux_connect(index_mode, -1) for (index_mode, aux) in self.dict_aux_m1.items(): aux.remove_aux_connect(index_mode, 1) self._dict_aux_m1 = {} self._dict_aux_p1 = {} @property @property @property
30.735986
91
0.526681
import numpy as np from collections.abc import Mapping from mesohops.util.exceptions import AuxError from scipy.special import binom __title__ = "AuxiliaryVector Class" __author__ = "D. I. G. Bennett" __version__ = "1.0" class AuxiliaryVector(Mapping): """ This is a class that encodes a sparse representation of auxiliary vectors with some extra helper functions to simplify some common actions, such as: determining the absolute index, adding a unit vector, and calculating the sum. The class is not mutable - which is to say, once an auxiliary vector is defined, it cannot be changed. """ __slots__ = ('dict_aux_vec', 'tuple_aux_vec', 'array_aux_vec', '__abs_index', '__len' , 'hash', 'index', '_sum', '_dict_aux_p1', '_dict_aux_m1') def __init__(self, aux_array, nmodes): """ INPUTS ------ 1. aux_array : iterable list of (mode, value) pairs for all non-zero indices of the auxiliary vector 2. nmodes : int the number of modes in the hierarchy which is the length of the dense auxiliary vector. RETURNS ------- None """ self.dict_aux_vec = { index_mode: aux_value for (index_mode, aux_value) in aux_array } self.tuple_aux_vec = tuple( [tuple([mode, value]) for (mode, value) in aux_array] ) self.array_aux_vec = np.array(aux_array) if len(self.array_aux_vec)>0 and not np.all(np.diff(self.array_aux_vec[:,0])>0): raise AuxError("array_aux_vec not properly ordered") self.__abs_index = None self.__len = nmodes self.hash = hash(self.tuple_aux_vec) self.index = None self._sum = np.sum(self.values()) self._dict_aux_p1 = {} self._dict_aux_m1 = {} # Dictionary-like methods overwriting Mutable Mapping # =================================================== def __getitem__(self, key): if key in self.dict_aux_vec.keys(): return self.dict_aux_vec[key] elif key < len(self): return 0 else: raise AuxError("mode index larger than total number of modes.") def __iter__(self): return iter(self.dict_aux_vec) def __len__(self): return self.__len def __repr__(self): return f"{type(self).__name__}({self.dict_aux_vec})" def keys(self): """ This function returns an array of mode indices for the auxiliary vectors Parameters ---------- None Returns ------- 1. keys : array an array of mode indices with nonzero auxiliary index """ if len(self.dict_aux_vec) > 0: return self.array_aux_vec[:, 0] else: return np.array([]) def values(self): """ This function returns an array of the auxiliary vector values Parameters ---------- None Returns ------- 1. values : array an array of nonzero auxiliary index values """ if len(self.dict_aux_vec) > 0: return self.array_aux_vec[:, 1] else: return np.array([]) # Comparison Methods # ================== def __hash__(self): return self.hash def __eq__(self, other): return self.hash == other.hash def __ne__(self, other): return self.hash != other.hash def _compare(self, other, comparison_function): """ This function compares two auxiliary vectors Parameters ---------- 1. other : array the array you want to compare 2. comparison_function : function a comparison function Returns ------- 1. bool_compare : bool a boolean for the comparison """ if isinstance(other, AuxiliaryVector) and len(self) == len(other): return comparison_function(self.absolute_index, other.absolute_index) else: return False def __lt__(self, other): return self._compare(other, lambda s, o: s < o) def __le__(self, other): return self._compare(other, lambda s, o: s <= o) def __ge__(self, other): return self._compare(other, lambda s, o: s >= o) def __gt__(self, other): return self._compare(other, lambda s, o: s > o) # Special Methods # =============== def difference_by_mode(self, other): """ Compares the current HopsAux object to another HopsAux object. If they differ by only 1 step, then it returns the mode along which they differ. Parameters ---------- 1. other: HopsAux object The HopsAux object to which the current object is compared. Returns ------- 1. diff_mode : int or False The mode index along which they differ or False if they differ by more than 1 step. """ set_key_self = set(self.keys()) set_key_other = set(other.keys()) # Check that the two HopsAux belong to the same hierarchy assert self.__len == len(other) if np.abs(self._sum - other._sum) == 1: if set_key_self == set_key_other: values = np.abs(self.array_aux_vec[:,1]- other.array_aux_vec[:,1]) if np.sum(values) == 1: return self.array_aux_vec[np.where(values)[0][0],0] elif (len(set_key_self | set_key_other) - len(set_key_self & set_key_other)) == 1: value = 0 for key in set_key_self | set_key_other: value += np.abs(self[key] - other[key]) if value == 1: index = list((set_key_self | set_key_other) - (set_key_self & set_key_other))[0] return index return False def dot(self, vec): """ This is a function that performs a sparse dot product between the auxiliary index vector and another vector. Parameters ---------- 1. vec : np.array a vector Returns ------- 1. product : float the dot product value """ if len(self.dict_aux_vec) == 0: return 0 else: return np.dot(self.array_aux_vec[:, 1], vec[self.array_aux_vec[:, 0]]) def sum(self, **unused_kwargs): """ This function returns the sum of the auxiliary vector values Parameters ---------- None Returns ------- 1. sum : float the sum of the nonzero values of the auxiliary vectors """ try: return self._sum except: return np.sum(self.values()) def todense(self): """ This function will take a sparse vector and make it dense Parameters ---------- None Returns ------- 1. output : array the dense vector """ output = np.zeros(self.__len) if len(self.dict_aux_vec) == 0: return output output[self.keys()] = self.values() return output def toarray(self): """ This function converts a dict to an array Parameters ---------- None Returns ------- 1. array : array a dict in an array form """ return self.array_aux_vec def get_values(self, index_slice): """ This function gets the dense auxiliary vector values from a sub-indexed list Parameters ---------- 1. index_slice : list a list of indices Returns ------- 1. values : array an array of values at the given indices """ return np.array([self.__getitem__(key) for key in index_slice]) def get_values_nonzero(self, index_slice): """ This function gets the sparse auxiliary vector values from a sub-indexed list NOTE: the values are returned in key order not the order they are present in index_slice Parameters ---------- 1. index_slice : list a list of indices Returns ------- 1. values : array a sparse array of the non-zero auxiliary vector values """ return np.array( [self.dict_aux_vec[key] for key in self.keys() if key in index_slice] ) def e_step(self, mode, step): """ This function returns a new Auxiliary Vector with the desired step in the given mode Parameters ---------- 1. mode : int The absolute mode index 2. step : int The change in the aux value for the given mode Returns ------- 1. aux_vec : tuple the new sparse auxiliary vector """ return AuxiliaryVector(self.tuple_from_e_step(mode, step), nmodes=self.__len) def hash_from_e_step(self, mode, step): """ This function returns the hash of a new Auxiliary Vector with the desired step in the given mode Parameters ---------- 1. mode : int The absolute mode index 2. step : int The change in the aux value for the given mode Returns ------- 1. hash : int the hash of the tuple sparse auxiliary vector created from e_step """ return hash(self.tuple_from_e_step(mode, step)) def tuple_from_e_step(self, mode, step): """ Returns the sparse tuple representation of the auxiliary that is the given step length along the given absolute mode index away from the current auxiliary. Parameters ---------- 1. mode : int The absolute mode index 2. step : int The change in the aux value for the given mode Returns ------- 1. tuple_aux : tuple The sparse representation of the auxiliary (sorted mode order) """ if step == 0: return self.tuple_aux_vec elif self.__getitem__(mode) + step < 0: return ((0, -1),) elif len(self.dict_aux_vec) == 0: return tuple([(mode, step)]) elif mode in self.array_aux_vec[:, 0]: if self.__getitem__(mode) + step == 0: return tuple( [ tuple([mode_i, value_i]) for (mode_i, value_i) in self.tuple_aux_vec if mode_i != mode ] ) else: return tuple( [ tuple([mode_i, value_i + step]) if mode_i == mode else tuple([mode_i, value_i]) for (mode_i, value_i) in self.tuple_aux_vec ] ) else: list_keys = list(self.dict_aux_vec.keys()) list_keys.append(mode) list_keys.sort() list_values = [ step if key == mode else self.dict_aux_vec[key] for key in list_keys ] return tuple( [tuple([mode, value]) for (mode, value) in zip(list_keys, list_values)] ) def index_analytic(self): """ This function provides an absolute index value for an auxiliary vector using an analytic function of the indices. The basic idea is that the indices are always ordered by increasing hierarchy 'level' (i.e. the sum of the indices). Within a level they are ordered by first comparing the first values, then the second values, etc. This gives the indexing a particularly simple form with a level: L = sum(i_0,...,i_n) (i_0, ... i_N) = sum_n<N sum_L>ln>i_n ((N-n-1 , L-sum(aux[:n])-ln) where ((L,K)) denotes a L multichoose K. The derivation of the following equations is given on p. 68 of Quantum Notebook #1. The sums have been removed by making use of the binomial sum property and the binomial symmetry property. The result is a equation that only sums over a number of elements equal to the number of non-zero terms in aux. PARAMETERS ---------- None RETURNS ------- 1. index : int the absolute index for an auxiliary """ # Constants # --------- aux = self.toarray() n_hmode = self.__len L = self.sum() if not aux.size: return 0 else: # Calculate number of aux at order less than L # -------------------------------------------- n_aux_below_l = int(binom(n_hmode + L - 1, L - 1)) # Calculate N+ contribution # ------------------------- list_np_boxes = [n_hmode] list_np_boxes.extend(n_hmode - aux[:-1, 0] - 1) list_np_boxes = np.array(list_np_boxes) list_np_balls = [L] list_np_balls.extend(L - np.cumsum(aux[:-1, 1])) list_np_balls = np.array(list_np_balls) n_plus = np.nansum( binom(list_np_boxes + list_np_balls - 1, list_np_boxes - 1) ) # Calculate N- contributions # -------------------------- list_nm_boxes = n_hmode - aux[:, 0] - 1 n_minus = np.nansum(binom(list_nm_boxes + list_np_balls, list_nm_boxes)) # calculate M contributions # ------------------------- list_m_balls = L - np.cumsum(aux[:, 1]) - 1 m = np.nansum(binom(list_nm_boxes + list_m_balls, list_m_balls)) return int(n_aux_below_l + m + n_plus - n_minus) def add_aux_connect(self, index_mode, aux_other, type): """ The function that updates the HopsAux object to contain a pointer to the other HopsAux objects it is connected to. Parameters ---------- 1. index_mode : int the mode along which the two HopsAux objects are connected 2. aux_other : HopsAux the HopsAux object it is connected to 3. type : int +1 or -1 depending on if the other aux has a larger or smaller sum Returns ------- 1. None """ if type == 1: self._dict_aux_p1.update({index_mode: aux_other}) elif type == -1: self._dict_aux_m1.update({index_mode: aux_other}) else: raise AuxError('add_aux_connect does not support type={}'.format(type)) def remove_aux_connect(self, index_mode, type): """ The function that removes the connection between the HopsAux object and another connected with type (+1/-1) along index mode. Parameters ---------- 1. index_mode : int the mode along which the two HopsAux objects are connected 2. type : int +1 or -1 depending on if the other aux has a larger or smaller sum Returns ------- 1. None """ if type == 1: self._dict_aux_p1.pop(index_mode) elif type == -1: self._dict_aux_m1.pop(index_mode) else: raise AuxError('add_aux_connect does not support type={}'.format(type)) def remove_pointers(self): """ The function that removes all pointers targeting the current HopsAux object from the set of HopsAux objects it has connections to. Parameters ---------- 1. None Returns ------- 1. None """ for (index_mode, aux) in self.dict_aux_p1.items(): aux.remove_aux_connect(index_mode, -1) for (index_mode, aux) in self.dict_aux_m1.items(): aux.remove_aux_connect(index_mode, 1) self._dict_aux_m1 = {} self._dict_aux_p1 = {} @property def absolute_index(self): if self.__abs_index is None: self.__abs_index = self.index_analytic() return self.__abs_index @property def dict_aux_p1(self): return self._dict_aux_p1 @property def dict_aux_m1(self): return self._dict_aux_m1
892
0
373
de1f45d8e5aa67310bfd559a5f88a213e3a1cf2f
523
py
Python
add_user.py
dev-johnlopez/offerly
3d53e64747555318addd35b94b5674e1c3ad99d0
[ "MIT" ]
null
null
null
add_user.py
dev-johnlopez/offerly
3d53e64747555318addd35b94b5674e1c3ad99d0
[ "MIT" ]
null
null
null
add_user.py
dev-johnlopez/offerly
3d53e64747555318addd35b94b5674e1c3ad99d0
[ "MIT" ]
null
null
null
import os from app import create_app, db, cli from flask import current_app from flask_security import Security, SQLAlchemyUserDatastore, current_user from flask_security.utils import encrypt_password from app.auth.models import Role, User # Setup Flask-Security app = create_app() with app.app_context(): user_datastore = SQLAlchemyUserDatastore(db, User, Role) user_datastore.create_user(email=os.environ.get('ADMIN_USERNAME'), password=encrypt_password(os.environ.get('ADMIN_PASSWORD'))) db.session.commit()
40.230769
131
0.806883
import os from app import create_app, db, cli from flask import current_app from flask_security import Security, SQLAlchemyUserDatastore, current_user from flask_security.utils import encrypt_password from app.auth.models import Role, User # Setup Flask-Security app = create_app() with app.app_context(): user_datastore = SQLAlchemyUserDatastore(db, User, Role) user_datastore.create_user(email=os.environ.get('ADMIN_USERNAME'), password=encrypt_password(os.environ.get('ADMIN_PASSWORD'))) db.session.commit()
0
0
0
741e3c39db2ab2880fc0332e1af0e3b72810ce23
776
py
Python
tests/test_position_weight_matrix.py
knutdrand/bionumpy
2a520ebfce19f346284bd5cf21d6197f6ba801ba
[ "MIT" ]
null
null
null
tests/test_position_weight_matrix.py
knutdrand/bionumpy
2a520ebfce19f346284bd5cf21d6197f6ba801ba
[ "MIT" ]
null
null
null
tests/test_position_weight_matrix.py
knutdrand/bionumpy
2a520ebfce19f346284bd5cf21d6197f6ba801ba
[ "MIT" ]
1
2022-03-07T21:58:03.000Z
2022-03-07T21:58:03.000Z
import pytest import numpy as np from bionumpy.position_weight_matrix import PositionWeightMatrix @pytest.fixture @pytest.fixture @pytest.fixture
22.171429
77
0.632732
import pytest import numpy as np from bionumpy.position_weight_matrix import PositionWeightMatrix @pytest.fixture def matrix(): with np.errstate(divide='ignore'): m = np.log([[0.4, 0.25], [0.1, 0.25], [0.4, 0.25], [0.1, 0.25]]) return m @pytest.fixture def window(): return np.array([0, 1]) @pytest.fixture def sequence(): return np.array([0, 1, 2, 3]) def test_window(window, matrix): log_prob = PositionWeightMatrix(matrix)(window) np.testing.assert_allclose(np.exp(log_prob), 0.4*0.25) def test_sequence(sequence, matrix): log_prob = PositionWeightMatrix(matrix).rolling_window(sequence) np.testing.assert_allclose(np.exp(log_prob), [0.4*0.25, 0.025, 0.4*0.25])
509
0
112
7489252a415aa1b1e78068fe1fc7e8079693d7fd
690
py
Python
src/script.py
FabricioCrespo/fairMOT_simple
d3be761935c09a37493cb86f6bfd08504c380563
[ "MIT" ]
19
2020-07-31T07:22:32.000Z
2022-02-28T10:00:23.000Z
src/script.py
FabricioCrespo/fairMOT_simple
d3be761935c09a37493cb86f6bfd08504c380563
[ "MIT" ]
7
2020-09-26T14:49:16.000Z
2022-03-12T00:38:08.000Z
src/script.py
FabricioCrespo/fairMOT_simple
d3be761935c09a37493cb86f6bfd08504c380563
[ "MIT" ]
14
2020-09-11T19:39:38.000Z
2021-10-11T12:57:55.000Z
import argparse from track import * parser = argparse.ArgumentParser() parser.add_argument('-mp','--model_path',help='path to model',type=str) parser.add_argument('-vp','--video_path',help='path to the video',type=str) parser.add_argument('-od','--output_dir',help='path to save the video',type=str) if __name__=='__main__': args = parser.parse_args() out_dir = args.output_dir model_path = args.model_path video_path = args.video_path dl = datasets.LoadVideo(video_path, (1088,608)) opt = opts().init() opt.load_model = model_path show_image = False output_dir = out_dir eval_seq(opt, dl, 'mot',save_dir=output_dir, show_image=show_image)
28.75
80
0.704348
import argparse from track import * parser = argparse.ArgumentParser() parser.add_argument('-mp','--model_path',help='path to model',type=str) parser.add_argument('-vp','--video_path',help='path to the video',type=str) parser.add_argument('-od','--output_dir',help='path to save the video',type=str) if __name__=='__main__': args = parser.parse_args() out_dir = args.output_dir model_path = args.model_path video_path = args.video_path dl = datasets.LoadVideo(video_path, (1088,608)) opt = opts().init() opt.load_model = model_path show_image = False output_dir = out_dir eval_seq(opt, dl, 'mot',save_dir=output_dir, show_image=show_image)
0
0
0
2bf5f9ed6b0ed77069900efcb2b23bd2ce0282f2
1,921
py
Python
python-packages/pyRiemann-0.2.2/tests/test_clustering.py
rajegannathan/grasp-lift-eeg-cat-dog-solution-updated
ee45bee6f96cdb6d91184abc16f41bba1546c943
[ "BSD-3-Clause" ]
2
2017-08-13T14:09:32.000Z
2018-07-16T23:39:00.000Z
python-packages/pyRiemann-0.2.2/tests/test_clustering.py
rajegannathan/grasp-lift-eeg-cat-dog-solution-updated
ee45bee6f96cdb6d91184abc16f41bba1546c943
[ "BSD-3-Clause" ]
null
null
null
python-packages/pyRiemann-0.2.2/tests/test_clustering.py
rajegannathan/grasp-lift-eeg-cat-dog-solution-updated
ee45bee6f96cdb6d91184abc16f41bba1546c943
[ "BSD-3-Clause" ]
2
2018-04-02T06:45:11.000Z
2018-07-16T23:39:02.000Z
import numpy as np from pyriemann.clustering import Kmeans,KmeansPerClassTransform def generate_cov(Nt,Ne): """Generate a set of cavariances matrices for test purpose""" diags = 1.0+0.1*np.random.randn(Nt,Ne) covmats = np.empty((Nt,Ne,Ne)) for i in range(Nt): covmats[i] = np.diag(diags[i]) return covmats def test_Kmeans_init(): """Test init of Kmeans""" km = Kmeans(2) def test_Kmeans_fit(): """Test Fit of Kmeans""" covset = generate_cov(20,3) km = Kmeans(2) km.fit(covset) def test_Kmeans_fit_with_init(): """Test Fit of Kmeans wit matric initialization""" covset = generate_cov(20,3) km = Kmeans(2,init=covset[0:2]) km.fit(covset) def test_Kmeans_fit_with_y(): """Test Fit of Kmeans with a given y""" covset = generate_cov(20,3) labels = np.array([0,1]).repeat(10) km = Kmeans(2) km.fit(covset,y=labels) def test_Kmeans_fit_parallel(): """Test Fit of Kmeans using paralell""" covset = generate_cov(20,3) km = Kmeans(2,n_jobs=2) km.fit(covset) def test_Kmeans_predict(): """Test prediction of Kmeans""" covset = generate_cov(20,3) km = Kmeans(2) km.fit(covset) km.predict(covset) def test_Kmeans_transform(): """Test transform of Kmeans""" covset = generate_cov(20,3) km = Kmeans(2) km.fit(covset) km.transform(covset) def test_KmeansPCT_init(): """Test init of Kmeans PCT""" km = KmeansPerClassTransform(2) def test_KmeansPCT_fit(): """Test Fit of Kmeans PCT""" covset = generate_cov(20,3) labels = np.array([0,1]).repeat(10) km = KmeansPerClassTransform(2) km.fit(covset,labels) def test_KmeansPCT_transform(): """Test Transform of Kmeans PCT""" covset = generate_cov(20,3) labels = np.array([0,1]).repeat(10) km = KmeansPerClassTransform(2) km.fit(covset,labels) km.transform(covset)
26.680556
65
0.647579
import numpy as np from pyriemann.clustering import Kmeans,KmeansPerClassTransform def generate_cov(Nt,Ne): """Generate a set of cavariances matrices for test purpose""" diags = 1.0+0.1*np.random.randn(Nt,Ne) covmats = np.empty((Nt,Ne,Ne)) for i in range(Nt): covmats[i] = np.diag(diags[i]) return covmats def test_Kmeans_init(): """Test init of Kmeans""" km = Kmeans(2) def test_Kmeans_fit(): """Test Fit of Kmeans""" covset = generate_cov(20,3) km = Kmeans(2) km.fit(covset) def test_Kmeans_fit_with_init(): """Test Fit of Kmeans wit matric initialization""" covset = generate_cov(20,3) km = Kmeans(2,init=covset[0:2]) km.fit(covset) def test_Kmeans_fit_with_y(): """Test Fit of Kmeans with a given y""" covset = generate_cov(20,3) labels = np.array([0,1]).repeat(10) km = Kmeans(2) km.fit(covset,y=labels) def test_Kmeans_fit_parallel(): """Test Fit of Kmeans using paralell""" covset = generate_cov(20,3) km = Kmeans(2,n_jobs=2) km.fit(covset) def test_Kmeans_predict(): """Test prediction of Kmeans""" covset = generate_cov(20,3) km = Kmeans(2) km.fit(covset) km.predict(covset) def test_Kmeans_transform(): """Test transform of Kmeans""" covset = generate_cov(20,3) km = Kmeans(2) km.fit(covset) km.transform(covset) def test_KmeansPCT_init(): """Test init of Kmeans PCT""" km = KmeansPerClassTransform(2) def test_KmeansPCT_fit(): """Test Fit of Kmeans PCT""" covset = generate_cov(20,3) labels = np.array([0,1]).repeat(10) km = KmeansPerClassTransform(2) km.fit(covset,labels) def test_KmeansPCT_transform(): """Test Transform of Kmeans PCT""" covset = generate_cov(20,3) labels = np.array([0,1]).repeat(10) km = KmeansPerClassTransform(2) km.fit(covset,labels) km.transform(covset)
0
0
0
62b11e6c5da0cc2133a92ea451b6649128fcb41b
51,262
py
Python
raphael/utils/net.py
major1201/raphael
18d7060834be7645b66144ba2a1638f3e1db2dd2
[ "MIT" ]
null
null
null
raphael/utils/net.py
major1201/raphael
18d7060834be7645b66144ba2a1638f3e1db2dd2
[ "MIT" ]
null
null
null
raphael/utils/net.py
major1201/raphael
18d7060834be7645b66144ba2a1638f3e1db2dd2
[ "MIT" ]
null
null
null
# encoding= utf-8 from __future__ import division, absolute_import, with_statement, print_function import requests def download_file(url, file_path, params=None, proxies=None, request_session=None, cookies=None): """ proxies = { "http": "http://10.10.1.10:3128", "https": "http://10.10.1.10:1080", } """ if not request_session: request_session = requests.session() r = request_session.get(url, params=params, stream=True, proxies=proxies, cookies=cookies) with open(file_path, 'wb') as f: for chunk in r.iter_content(1024): if chunk: f.write(chunk) f.flush()
70.030055
145
0.635324
# encoding= utf-8 from __future__ import division, absolute_import, with_statement, print_function import requests def download_file(url, file_path, params=None, proxies=None, request_session=None, cookies=None): """ proxies = { "http": "http://10.10.1.10:3128", "https": "http://10.10.1.10:1080", } """ if not request_session: request_session = requests.session() r = request_session.get(url, params=params, stream=True, proxies=proxies, cookies=cookies) with open(file_path, 'wb') as f: for chunk in r.iter_content(1024): if chunk: f.write(chunk) f.flush() def cidr2netmask(cidr): if cidr < 0 or cidr > 32: raise ValueError('CIDR should be in range [0, 32].') bin_ip = '1' * cidr + '0' * (32 - cidr) return bin2ip(bin_ip) def netmask2cidr(netmask): mask_arr = netmask.split('.') return len(''.join(list(map(lambda part: bin(int(part))[2:].zfill(8), mask_arr))).rstrip('0')) def ip2bin(ip): return ''.join(list(map(lambda part: bin(int(part))[2:].zfill(8), ip.split('.')))) def bin2ip(bin_ip): segment = [bin_ip[i: i + 8] for i in range(0, 32, 8)] return '.'.join(str(int(s, 2)) for s in segment) def get_content_type_by_ext(ext, df='application/octet-stream'): m = { ".123": "application/vnd.lotus-1-2-3", # Lotus 1-2-3 ".3dml": "text/vnd.in3d.3dml", # In3D - 3DML ".3g2": "video/3gpp2", # 3GP2 ".3gp": "video/3gpp", # 3GP ".7z": "application/x-7z-compressed", # 7-Zip ".aab": "application/x-authorware-bin", # Adobe (Macropedia) Authorware - Binary File ".aac": "audio/x-aac", # Advanced Audio Coding (AAC) ".aam": "application/x-authorware-map", # Adobe (Macropedia) Authorware - Map ".aas": "application/x-authorware-seg", # Adobe (Macropedia) Authorware - Segment File ".abw": "application/x-abiword", # AbiWord ".ac": "application/pkix-attr-cert", # Attribute Certificate ".acc": "application/vnd.americandynamics.acc", # Active Content Compression ".ace": "application/x-ace-compressed", # Ace Archive ".acu": "application/vnd.acucobol", # ACU Cobol ".adp": "audio/adpcm", # Adaptive differential pulse-code modulation ".aep": "application/vnd.audiograph", # Audiograph ".afp": "application/vnd.ibm.modcap", # MO:DCA-P ".ahead": "application/vnd.ahead.space", # Ahead AIR Application ".ai": "application/postscript", # PostScript ".aif": "audio/x-aiff", # Audio Interchange File Format ".air": "application/vnd.adobe.air-application-installer-package+zip", # Adobe AIR Application ".ait": "application/vnd.dvb.ait", # Digital Video Broadcasting ".ami": "application/vnd.amiga.ami", # AmigaDE ".apk": "application/vnd.android.package-archive", # Android Package Archive ".application": "application/x-ms-application", # Microsoft ClickOnce ".apr": "application/vnd.lotus-approach", # Lotus Approach ".asf": "video/x-ms-asf", # Microsoft Advanced Systems Format (ASF) ".aso": "application/vnd.accpac.simply.aso", # Simply Accounting ".atc": "application/vnd.acucorp", # ACU Cobol ".atom": "application/atom+xml", # Atom Syndication Format ".atomcat": "application/atomcat+xml", # Atom Publishing Protocol ".atomsvc": "application/atomsvc+xml", # Atom Publishing Protocol Service Document ".atx": "application/vnd.antix.game-component", # Antix Game Player ".au": "audio/basic", # Sun Audio - Au file format ".avi": "video/x-msvideo", # Audio Video Interleave (AVI) ".aw": "application/applixware", # Applixware ".azf": "application/vnd.airzip.filesecure.azf", # AirZip FileSECURE ".azs": "application/vnd.airzip.filesecure.azs", # AirZip FileSECURE ".azw": "application/vnd.amazon.ebook", # Amazon Kindle eBook format ".bcpio": "application/x-bcpio", # Binary CPIO Archive ".bdf": "application/x-font-bdf", # Glyph Bitmap Distribution Format ".bdm": "application/vnd.syncml.dm+wbxml", # SyncML - Device Management ".bed": "application/vnd.realvnc.bed", # RealVNC ".bh2": "application/vnd.fujitsu.oasysprs", # Fujitsu Oasys ".bin": "application/octet-stream", # Binary Data ".bmi": "application/vnd.bmi", # BMI Drawing Data Interchange ".bmp": "image/bmp", # Bitmap Image File ".box": "application/vnd.previewsystems.box", # Preview Systems ZipLock/VBox ".btif": "image/prs.btif", # BTIF ".bz": "application/x-bzip", # Bzip Archive ".bz2": "application/x-bzip2", # Bzip2 Archive ".c": "text/x-c", # C Source File ".c11amc": "application/vnd.cluetrust.cartomobile-config", # ClueTrust CartoMobile - Config ".c11amz": "application/vnd.cluetrust.cartomobile-config-pkg", # ClueTrust CartoMobile - Config Package ".c4g": "application/vnd.clonk.c4group", # Clonk Game ".cab": "application/vnd.ms-cab-compressed", # Microsoft Cabinet File ".car": "application/vnd.curl.car", # CURL Applet ".cat": "application/vnd.ms-pki.seccat", # Microsoft Trust UI Provider - Security Catalog ".ccxml": "application/ccxml+xml,", # Voice Browser Call Control ".cdbcmsg": "application/vnd.contact.cmsg", # CIM Database ".cdkey": "application/vnd.mediastation.cdkey", # MediaRemote ".cdmia": "application/cdmi-capability", # Cloud Data Management Interface (CDMI) - Capability ".cdmic": "application/cdmi-container", # Cloud Data Management Interface (CDMI) - Contaimer ".cdmid": "application/cdmi-domain", # Cloud Data Management Interface (CDMI) - Domain ".cdmio": "application/cdmi-object", # Cloud Data Management Interface (CDMI) - Object ".cdmiq": "application/cdmi-queue", # Cloud Data Management Interface (CDMI) - Queue ".cdx": "chemical/x-cdx", # ChemDraw eXchange file ".cdxml": "application/vnd.chemdraw+xml", # CambridgeSoft Chem Draw ".cdy": "application/vnd.cinderella", # Interactive Geometry Software Cinderella ".cer": "application/pkix-cert", # Internet Public Key Infrastructure - Certificate ".cgm": "image/cgm", # Computer Graphics Metafile ".chat": "application/x-chat", # pIRCh ".chm": "application/vnd.ms-htmlhelp", # Microsoft Html Help File ".chrt": "application/vnd.kde.kchart", # KDE KOffice Office Suite - KChart ".cif": "chemical/x-cif", # Crystallographic Interchange Format ".cii": "application/vnd.anser-web-certificate-issue-initiation", # ANSER-WEB Terminal Client - Certificate Issue ".cil": "application/vnd.ms-artgalry", # Microsoft Artgalry ".cla": "application/vnd.claymore", # Claymore Data Files ".class": "application/java-vm", # Java Bytecode File ".clkk": "application/vnd.crick.clicker.keyboard", # CrickSoftware - Clicker - Keyboard ".clkp": "application/vnd.crick.clicker.palette", # CrickSoftware - Clicker - Palette ".clkt": "application/vnd.crick.clicker.template", # CrickSoftware - Clicker - Template ".clkw": "application/vnd.crick.clicker.wordbank", # CrickSoftware - Clicker - Wordbank ".clkx": "application/vnd.crick.clicker", # CrickSoftware - Clicker ".clp": "application/x-msclip", # Microsoft Clipboard Clip ".cmc": "application/vnd.cosmocaller", # CosmoCaller ".cmdf": "chemical/x-cmdf", # CrystalMaker Data Format ".cml": "chemical/x-cml", # Chemical Markup Language ".cmp": "application/vnd.yellowriver-custom-menu", # CustomMenu ".cmx": "image/x-cmx", # Corel Metafile Exchange (CMX) ".cod": "application/vnd.rim.cod", # Blackberry COD File ".cpio": "application/x-cpio", # CPIO Archive ".cpt": "application/mac-compactpro", # Compact Pro ".crd": "application/x-mscardfile", # Microsoft Information Card ".crl": "application/pkix-crl", # Internet Public Key Infrastructure - Certificate Revocation Lists ".cryptonote": "application/vnd.rig.cryptonote", # CryptoNote ".csh": "application/x-csh", # C Shell Script ".csml": "chemical/x-csml", # Chemical Style Markup Language ".csp": "application/vnd.commonspace", # Sixth Floor Media - CommonSpace ".css": "text/css", # Cascading Style Sheets (CSS) ".csv": "text/csv", # Comma-Seperated Values ".cu": "application/cu-seeme", # CU-SeeMe ".curl": "text/vnd.curl", # Curl - Applet ".cww": "application/prs.cww", # CU-Writer ".dae": "model/vnd.collada+xml", # COLLADA ".daf": "application/vnd.mobius.daf", # Mobius Management Systems - UniversalArchive ".davmount": "application/davmount+xml", # Web Distributed Authoring and Versioning ".dcurl": "text/vnd.curl.dcurl", # Curl - Detached Applet ".dd2": "application/vnd.oma.dd2+xml", # OMA Download Agents ".ddd": "application/vnd.fujixerox.ddd", # Fujitsu - Xerox 2D CAD Data ".deb": "application/x-debian-package", # Debian Package ".der": "application/x-x509-ca-cert", # X.509 Certificate ".dfac": "application/vnd.dreamfactory", # DreamFactory ".dir": "application/x-director", # Adobe Shockwave Player ".dis": "application/vnd.mobius.dis", # Mobius Management Systems - Distribution Database ".djvu": "image/vnd.djvu", # DjVu ".dna": "application/vnd.dna", # New Moon Liftoff/DNA ".doc": "application/msword", # Microsoft Word ".docm": "application/vnd.ms-word.document.macroenabled.12", # Micosoft Word - Macro-Enabled Document ".docx": "application/vnd.openxmlformats-officedocument.wordprocessingml.document", # Microsoft Office - OOXML - Word Document ".dotm": "application/vnd.ms-word.template.macroenabled.12", # Micosoft Word - Macro-Enabled Template ".dotx": "application/vnd.openxmlformats-officedocument.wordprocessingml.template", # Microsoft Office - OOXML - Word Document Template ".dp": "application/vnd.osgi.dp", # OSGi Deployment Package ".dpg": "application/vnd.dpgraph", # DPGraph ".dra": "audio/vnd.dra", # DRA Audio ".dsc": "text/prs.lines.tag", # PRS Lines Tag ".dssc": "application/dssc+der", # Data Structure for the Security Suitability of Cryptographic Algorithms ".dtb": "application/x-dtbook+xml", # Digital Talking Book ".dtd": "application/xml-dtd", # Document Type Definition ".dts": "audio/vnd.dts", # DTS Audio ".dtshd": "audio/vnd.dts.hd", # DTS High Definition Audio ".dvi": "application/x-dvi", # Device Independent File Format (DVI) ".dwf": "model/vnd.dwf", # Autodesk Design Web Format (DWF) ".dwg": "image/vnd.dwg", # DWG Drawing ".dxf": "image/vnd.dxf", # AutoCAD DXF ".dxp": "application/vnd.spotfire.dxp", # TIBCO Spotfire ".ecelp4800": "audio/vnd.nuera.ecelp4800", # Nuera ECELP 4800 ".ecelp7470": "audio/vnd.nuera.ecelp7470", # Nuera ECELP 7470 ".ecelp9600": "audio/vnd.nuera.ecelp9600", # Nuera ECELP 9600 ".edm": "application/vnd.novadigm.edm", # Novadigm's RADIA and EDM products ".edx": "application/vnd.novadigm.edx", # Novadigm's RADIA and EDM products ".efif": "application/vnd.picsel", # Pcsel eFIF File ".ei6": "application/vnd.pg.osasli", # Proprietary P&G Standard Reporting System ".eml": "message/rfc822", # Email Message ".emma": "application/emma+xml", # Extensible MultiModal Annotation ".eol": "audio/vnd.digital-winds", # Digital Winds Music ".eot": "application/vnd.ms-fontobject", # Microsoft Embedded OpenType ".epub": "application/epub+zip", # Electronic Publication ".es": "application/ecmascript", # ECMAScript ".es3": "application/vnd.eszigno3+xml", # MICROSEC e-Szign¢ ".esf": "application/vnd.epson.esf", # QUASS Stream Player ".etx": "text/x-setext", # Setext ".exe": "application/x-msdownload", # Microsoft Application ".exi": "application/exi", # Efficient XML Interchange ".ext": "application/vnd.novadigm.ext", # Novadigm's RADIA and EDM products ".ez2": "application/vnd.ezpix-album", # EZPix Secure Photo Album ".ez3": "application/vnd.ezpix-package", # EZPix Secure Photo Album ".f": "text/x-fortran", # Fortran Source File ".f4v": "video/x-f4v", # Flash Video ".fbs": "image/vnd.fastbidsheet", # FastBid Sheet ".fcs": "application/vnd.isac.fcs", # International Society for Advancement of Cytometry ".fdf": "application/vnd.fdf", # Forms Data Format ".fe_launch": "application/vnd.denovo.fcselayout-link", # FCS Express Layout Link ".fg5": "application/vnd.fujitsu.oasysgp", # Fujitsu Oasys ".fh": "image/x-freehand", # FreeHand MX ".fig": "application/x-xfig", # Xfig ".fli": "video/x-fli", # FLI/FLC Animation Format ".flo": "application/vnd.micrografx.flo", # Micrografx ".flv": "video/x-flv", # Flash Video ".flw": "application/vnd.kde.kivio", # KDE KOffice Office Suite - Kivio ".flx": "text/vnd.fmi.flexstor", # FLEXSTOR ".fly": "text/vnd.fly", # mod_fly / fly.cgi ".fm": "application/vnd.framemaker", # FrameMaker Normal Format ".fnc": "application/vnd.frogans.fnc", # Frogans Player ".fpx": "image/vnd.fpx", # FlashPix ".fsc": "application/vnd.fsc.weblaunch", # Friendly Software Corporation ".fst": "image/vnd.fst", # FAST Search & Transfer ASA ".ftc": "application/vnd.fluxtime.clip", # FluxTime Clip ".fti": "application/vnd.anser-web-funds-transfer-initiation", # ANSER-WEB Terminal Client - Web Funds Transfer ".fvt": "video/vnd.fvt", # FAST Search & Transfer ASA ".fxp": "application/vnd.adobe.fxp", # Adobe Flex Project ".fzs": "application/vnd.fuzzysheet", # FuzzySheet ".g2w": "application/vnd.geoplan", # GeoplanW ".g3": "image/g3fax", # G3 Fax Image ".g3w": "application/vnd.geospace", # GeospacW ".gac": "application/vnd.groove-account", # Groove - Account ".gdl": "model/vnd.gdl", # Geometric Description Language (GDL) ".geo": "application/vnd.dynageo", # DynaGeo ".gex": "application/vnd.geometry-explorer", # GeoMetry Explorer ".ggb": "application/vnd.geogebra.file", # GeoGebra ".ggt": "application/vnd.geogebra.tool", # GeoGebra ".ghf": "application/vnd.groove-help", # Groove - Help ".gif": "image/gif", # Graphics Interchange Format ".gim": "application/vnd.groove-identity-message", # Groove - Identity Message ".gmx": "application/vnd.gmx", # GameMaker ActiveX ".gnumeric": "application/x-gnumeric", # Gnumeric ".gph": "application/vnd.flographit", # NpGraphIt ".gqf": "application/vnd.grafeq", # GrafEq ".gram": "application/srgs", # Speech Recognition Grammar Specification ".grv": "application/vnd.groove-injector", # Groove - Injector ".grxml": "application/srgs+xml", # Speech Recognition Grammar Specification - XML ".gsf": "application/x-font-ghostscript", # Ghostscript Font ".gtar": "application/x-gtar", # GNU Tar Files ".gtm": "application/vnd.groove-tool-message", # Groove - Tool Message ".gtw": "model/vnd.gtw", # Gen-Trix Studio ".gv": "text/vnd.graphviz", # Graphviz ".gxt": "application/vnd.geonext", # GEONExT and JSXGraph ".h261": "video/h261", # H.261 ".h263": "video/h263", # H.263 ".h264": "video/h264", # H.264 ".hal": "application/vnd.hal+xml", # Hypertext Application Language ".hbci": "application/vnd.hbci", # Homebanking Computer Interface (HBCI) ".hdf": "application/x-hdf", # Hierarchical Data Format ".hlp": "application/winhlp", # WinHelp ".hpgl": "application/vnd.hp-hpgl", # HP-GL/2 and HP RTL ".hpid": "application/vnd.hp-hpid", # Hewlett Packard Instant Delivery ".hps": "application/vnd.hp-hps", # Hewlett-Packard's WebPrintSmart ".hqx": "application/mac-binhex40", # Macintosh BinHex 4.0 ".htke": "application/vnd.kenameaapp", # Kenamea App ".html": "text/html", # HyperText Markup Language (HTML) ".hvd": "application/vnd.yamaha.hv-dic", # HV Voice Dictionary ".hvp": "application/vnd.yamaha.hv-voice", # HV Voice Parameter ".hvs": "application/vnd.yamaha.hv-script", # HV Script ".i2g": "application/vnd.intergeo", # Interactive Geometry Software ".icc": "application/vnd.iccprofile", # ICC profile ".ice": "x-conference/x-cooltalk", # CoolTalk ".ico": "image/x-icon", # Icon Image ".ics": "text/calendar", # iCalendar ".ief": "image/ief", # Image Exchange Format ".ifm": "application/vnd.shana.informed.formdata", # Shana Informed Filler ".igl": "application/vnd.igloader", # igLoader ".igm": "application/vnd.insors.igm", # IOCOM Visimeet ".igs": "model/iges", # Initial Graphics Exchange Specification (IGES) ".igx": "application/vnd.micrografx.igx", # Micrografx iGrafx Professional ".iif": "application/vnd.shana.informed.interchange", # Shana Informed Filler ".imp": "application/vnd.accpac.simply.imp", # Simply Accounting - Data Import ".ims": "application/vnd.ms-ims", # Microsoft Class Server ".ipfix": "application/ipfix", # Internet Protocol Flow Information Export ".ipk": "application/vnd.shana.informed.package", # Shana Informed Filler ".irm": "application/vnd.ibm.rights-management", # IBM DB2 Rights Manager ".irp": "application/vnd.irepository.package+xml", # iRepository / Lucidoc Editor ".itp": "application/vnd.shana.informed.formtemplate", # Shana Informed Filler ".ivp": "application/vnd.immervision-ivp", # ImmerVision PURE Players ".ivu": "application/vnd.immervision-ivu", # ImmerVision PURE Players ".jad": "text/vnd.sun.j2me.app-descriptor", # J2ME App Descriptor ".jam": "application/vnd.jam", # Lightspeed Audio Lab ".jar": "application/java-archive", # Java Archive ".java": "text/x-java-source,java", # Java Source File ".jisp": "application/vnd.jisp", # RhymBox ".jlt": "application/vnd.hp-jlyt", # HP Indigo Digital Press - Job Layout Languate ".jnlp": "application/x-java-jnlp-file", # Java Network Launching Protocol ".joda": "application/vnd.joost.joda-archive", # Joda Archive ".jpeg": "image/jpeg", # JPEG Image ".jpg": "image/jpeg", # JPEG Image ".jpgv": "video/jpeg", # JPGVideo ".jpm": "video/jpm", # JPEG 2000 Compound Image File Format ".js": "application/javascript", # JavaScript ".json": "application/json", # JavaScript Object Notation (JSON) ".karbon": "application/vnd.kde.karbon", # KDE KOffice Office Suite - Karbon ".kfo": "application/vnd.kde.kformula", # KDE KOffice Office Suite - Kformula ".kia": "application/vnd.kidspiration", # Kidspiration ".kml": "application/vnd.google-earth.kml+xml", # Google Earth - KML ".kmz": "application/vnd.google-earth.kmz", # Google Earth - Zipped KML ".kne": "application/vnd.kinar", # Kinar Applications ".kon": "application/vnd.kde.kontour", # KDE KOffice Office Suite - Kontour ".kpr": "application/vnd.kde.kpresenter", # KDE KOffice Office Suite - Kpresenter ".ksp": "application/vnd.kde.kspread", # KDE KOffice Office Suite - Kspread ".ktx": "image/ktx", # OpenGL Textures (KTX) ".ktz": "application/vnd.kahootz", # Kahootz ".kwd": "application/vnd.kde.kword", # KDE KOffice Office Suite - Kword ".lasxml": "application/vnd.las.las+xml", # Laser App Enterprise ".latex": "application/x-latex", # LaTeX ".lbd": "application/vnd.llamagraphics.life-balance.desktop", # Life Balance - Desktop Edition ".lbe": "application/vnd.llamagraphics.life-balance.exchange+xml", # Life Balance - Exchange Format ".les": "application/vnd.hhe.lesson-player", # Archipelago Lesson Player ".link66": "application/vnd.route66.link66+xml", # ROUTE 66 Location Based Services ".lrm": "application/vnd.ms-lrm", # Microsoft Learning Resource Module ".ltf": "application/vnd.frogans.ltf", # Frogans Player ".lvp": "audio/vnd.lucent.voice", # Lucent Voice ".lwp": "application/vnd.lotus-wordpro", # Lotus Wordpro ".m21": "application/mp21", # MPEG-21 ".m3u": "audio/x-mpegurl", # M3U (Multimedia Playlist) ".m3u8": "application/vnd.apple.mpegurl", # Multimedia Playlist Unicode ".m4v": "video/x-m4v", # M4v ".ma": "application/mathematica", # Mathematica Notebooks ".mads": "application/mads+xml", # Metadata Authority Description Schema ".mag": "application/vnd.ecowin.chart", # EcoWin Chart ".mathml": "application/mathml+xml", # Mathematical Markup Language ".mbk": "application/vnd.mobius.mbk", # Mobius Management Systems - Basket file ".mbox": "application/mbox", # Mbox database files ".mc1": "application/vnd.medcalcdata", # MedCalc ".mcd": "application/vnd.mcd", # Micro CADAM Helix D&D ".mcurl": "text/vnd.curl.mcurl", # Curl - Manifest File ".mdb": "application/x-msaccess", # Microsoft Access ".mdi": "image/vnd.ms-modi", # Microsoft Document Imaging Format ".meta4": "application/metalink4+xml", # Metalink ".mets": "application/mets+xml", # Metadata Encoding and Transmission Standard ".mfm": "application/vnd.mfmp", # Melody Format for Mobile Platform ".mgp": "application/vnd.osgeo.mapguide.package", # MapGuide DBXML ".mgz": "application/vnd.proteus.magazine", # EFI Proteus ".mid": "audio/midi", # MIDI - Musical Instrument Digital Interface ".mif": "application/vnd.mif", # FrameMaker Interchange Format ".mj2": "video/mj2", # Motion JPEG 2000 ".mlp": "application/vnd.dolby.mlp", # Dolby Meridian Lossless Packing ".mmd": "application/vnd.chipnuts.karaoke-mmd", # Karaoke on Chipnuts Chipsets ".mmf": "application/vnd.smaf", # SMAF File ".mmr": "image/vnd.fujixerox.edmics-mmr", # EDMICS 2000 ".mny": "application/x-msmoney", # Microsoft Money ".mods": "application/mods+xml", # Metadata Object Description Schema ".movie": "video/x-sgi-movie", # SGI Movie ".mp4": "application/mp4", # MPEG4 # ".mp4": "video/mp4", # MPEG-4 Video ".mp4a": "audio/mp4", # MPEG-4 Audio ".mpc": "application/vnd.mophun.certificate", # Mophun Certificate ".mpeg": "video/mpeg", # MPEG Video ".mpga": "audio/mpeg", # MPEG Audio ".mpkg": "application/vnd.apple.installer+xml", # Apple Installer Package ".mpm": "application/vnd.blueice.multipass", # Blueice Research Multipass ".mpn": "application/vnd.mophun.application", # Mophun VM ".mpp": "application/vnd.ms-project", # Microsoft Project ".mpy": "application/vnd.ibm.minipay", # MiniPay ".mqy": "application/vnd.mobius.mqy", # Mobius Management Systems - Query File ".mrc": "application/marc", # MARC Formats ".mrcx": "application/marcxml+xml", # MARC21 XML Schema ".mscml": "application/mediaservercontrol+xml", # Media Server Control Markup Language ".mseq": "application/vnd.mseq", # 3GPP MSEQ File ".msf": "application/vnd.epson.msf", # QUASS Stream Player ".msh": "model/mesh", # Mesh Data Type ".msl": "application/vnd.mobius.msl", # Mobius Management Systems - Script Language ".msty": "application/vnd.muvee.style", # Muvee Automatic Video Editing ".mts": "model/vnd.mts", # Virtue MTS ".mus": "application/vnd.musician", # MUsical Score Interpreted Code Invented for the ASCII designation of Notation ".musicxml": "application/vnd.recordare.musicxml+xml", # Recordare Applications ".mvb": "application/x-msmediaview", # Microsoft MediaView ".mwf": "application/vnd.mfer", # Medical Waveform Encoding Format ".mxf": "application/mxf", # Material Exchange Format ".mxl": "application/vnd.recordare.musicxml", # Recordare Applications ".mxml": "application/xv+xml", # MXML ".mxs": "application/vnd.triscape.mxs", # Triscape Map Explorer ".mxu": "video/vnd.mpegurl", # MPEG Url ".n-gage": "application/vnd.nokia.n-gage.symbian.install", # N-Gage Game Installer ".n3": "text/n3", # Notation3 ".nbp": "application/vnd.wolfram.player", # Mathematica Notebook Player ".nc": "application/x-netcdf", # Network Common Data Form (NetCDF) ".ncx": "application/x-dtbncx+xml", # Navigation Control file for XML (for ePub) ".ngdat": "application/vnd.nokia.n-gage.data", # N-Gage Game Data ".nlu": "application/vnd.neurolanguage.nlu", # neuroLanguage ".nml": "application/vnd.enliven", # Enliven Viewer ".nnd": "application/vnd.noblenet-directory", # NobleNet Directory ".nns": "application/vnd.noblenet-sealer", # NobleNet Sealer ".nnw": "application/vnd.noblenet-web", # NobleNet Web ".npx": "image/vnd.net-fpx", # FlashPix ".nsf": "application/vnd.lotus-notes", # Lotus Notes ".oa2": "application/vnd.fujitsu.oasys2", # Fujitsu Oasys ".oa3": "application/vnd.fujitsu.oasys3", # Fujitsu Oasys ".oas": "application/vnd.fujitsu.oasys", # Fujitsu Oasys ".obd": "application/x-msbinder", # Microsoft Office Binder ".oda": "application/oda", # Office Document Architecture ".odb": "application/vnd.oasis.opendocument.database", # OpenDocument Database ".odc": "application/vnd.oasis.opendocument.chart", # OpenDocument Chart ".odf": "application/vnd.oasis.opendocument.formula", # OpenDocument Formula ".odft": "application/vnd.oasis.opendocument.formula-template", # OpenDocument Formula Template ".odg": "application/vnd.oasis.opendocument.graphics", # OpenDocument Graphics ".odi": "application/vnd.oasis.opendocument.image", # OpenDocument Image ".odm": "application/vnd.oasis.opendocument.text-master", # OpenDocument Text Master ".odp": "application/vnd.oasis.opendocument.presentation", # OpenDocument Presentation ".ods": "application/vnd.oasis.opendocument.spreadsheet", # OpenDocument Spreadsheet ".odt": "application/vnd.oasis.opendocument.text", # OpenDocument Text ".oga": "audio/ogg", # Ogg Audio ".ogv": "video/ogg", # Ogg Video ".ogx": "application/ogg", # Ogg ".onetoc": "application/onenote", # Microsoft OneNote ".opf": "application/oebps-package+xml", # Open eBook Publication Structure ".org": "application/vnd.lotus-organizer", # Lotus Organizer ".osf": "application/vnd.yamaha.openscoreformat", # Open Score Format ".osfpvg": "application/vnd.yamaha.openscoreformat.osfpvg+xml", # OSFPVG ".otc": "application/vnd.oasis.opendocument.chart-template", # OpenDocument Chart Template ".otf": "application/x-font-otf", # OpenType Font File ".otg": "application/vnd.oasis.opendocument.graphics-template", # OpenDocument Graphics Template ".oth": "application/vnd.oasis.opendocument.text-web", # Open Document Text Web ".oti": "application/vnd.oasis.opendocument.image-template", # OpenDocument Image Template ".otp": "application/vnd.oasis.opendocument.presentation-template", # OpenDocument Presentation Template ".ots": "application/vnd.oasis.opendocument.spreadsheet-template", # OpenDocument Spreadsheet Template ".ott": "application/vnd.oasis.opendocument.text-template", # OpenDocument Text Template ".oxt": "application/vnd.openofficeorg.extension", # Open Office Extension ".p": "text/x-pascal", # Pascal Source File ".p10": "application/pkcs10", # PKCS #10 - Certification Request Standard ".p12": "application/x-pkcs12", # PKCS #12 - Personal Information Exchange Syntax Standard ".p7b": "application/x-pkcs7-certificates", # PKCS #7 - Cryptographic Message Syntax Standard (Certificates) ".p7m": "application/pkcs7-mime", # PKCS #7 - Cryptographic Message Syntax Standard ".p7r": "application/x-pkcs7-certreqresp", # PKCS #7 - Cryptographic Message Syntax Standard (Certificate Request Response) ".p7s": "application/pkcs7-signature", # PKCS #7 - Cryptographic Message Syntax Standard ".p8": "application/pkcs8", # PKCS #8 - Private-Key Information Syntax Standard ".par": "text/plain-bas", # BAS Partitur Format ".paw": "application/vnd.pawaafile", # PawaaFILE ".pbd": "application/vnd.powerbuilder6", # PowerBuilder ".pbm": "image/x-portable-bitmap", # Portable Bitmap Format ".pcf": "application/x-font-pcf", # Portable Compiled Format ".pcl": "application/vnd.hp-pcl", # HP Printer Command Language ".pclxl": "application/vnd.hp-pclxl", # PCL 6 Enhanced (Formely PCL XL) ".pcurl": "application/vnd.curl.pcurl", # CURL Applet ".pcx": "image/x-pcx", # PCX Image ".pdb": "application/vnd.palm", # PalmOS Data ".pdf": "application/pdf", # Adobe Portable Document Format ".pfa": "application/x-font-type1", # PostScript Fonts ".pfr": "application/font-tdpfr", # Portable Font Resource ".pgm": "image/x-portable-graymap", # Portable Graymap Format ".pgn": "application/x-chess-pgn", # Portable Game Notation (Chess Games) ".pgp": "application/pgp-signature", # Pretty Good Privacy - Signature ".pic": "image/x-pict", # PICT Image ".pki": "application/pkixcmp", # Internet Public Key Infrastructure - Certificate Management Protocole ".pkipath": "application/pkix-pkipath", # Internet Public Key Infrastructure - Certification Path ".plb": "application/vnd.3gpp.pic-bw-large", # 3rd Generation Partnership Project - Pic Large ".plc": "application/vnd.mobius.plc", # Mobius Management Systems - Policy Definition Language File ".plf": "application/vnd.pocketlearn", # PocketLearn Viewers ".pls": "application/pls+xml", # Pronunciation Lexicon Specification ".pml": "application/vnd.ctc-posml", # PosML ".png": "image/png", # Portable Network Graphics (PNG) ".pnm": "image/x-portable-anymap", # Portable Anymap Image ".portpkg": "application/vnd.macports.portpkg", # MacPorts Port System ".potm": "application/vnd.ms-powerpoint.template.macroenabled.12", # Micosoft PowerPoint - Macro-Enabled Template File ".potx": "application/vnd.openxmlformats-officedocument.presentationml.template", # Microsoft Office - OOXML - Presentation Template ".ppam": "application/vnd.ms-powerpoint.addin.macroenabled.12", # Microsoft PowerPoint - Add-in file ".ppd": "application/vnd.cups-ppd", # Adobe PostScript Printer Description File Format ".ppm": "image/x-portable-pixmap", # Portable Pixmap Format ".ppsm": "application/vnd.ms-powerpoint.slideshow.macroenabled.12", # Microsoft PowerPoint - Macro-Enabled Slide Show File ".ppsx": "application/vnd.openxmlformats-officedocument.presentationml.slideshow", # Microsoft Office - OOXML - Presentation (Slideshow) ".ppt": "application/vnd.ms-powerpoint", # Microsoft PowerPoint ".pptm": "application/vnd.ms-powerpoint.presentation.macroenabled.12", # Microsoft PowerPoint - Macro-Enabled Presentation File ".pptx": "application/vnd.openxmlformats-officedocument.presentationml.presentation", # Microsoft Office - OOXML - Presentation ".prc": "application/x-mobipocket-ebook", # Mobipocket ".pre": "application/vnd.lotus-freelance", # Lotus Freelance ".prf": "application/pics-rules", # PICSRules ".psb": "application/vnd.3gpp.pic-bw-small", # 3rd Generation Partnership Project - Pic Small ".psd": "image/vnd.adobe.photoshop", # Photoshop Document ".psf": "application/x-font-linux-psf", # PSF Fonts ".pskcxml": "application/pskc+xml", # Portable Symmetric Key Container ".ptid": "application/vnd.pvi.ptid1", # Princeton Video Image ".pub": "application/x-mspublisher", # Microsoft Publisher ".pvb": "application/vnd.3gpp.pic-bw-var", # 3rd Generation Partnership Project - Pic Var ".pwn": "application/vnd.3m.post-it-notes", # 3M Post It Notes ".pya": "audio/vnd.ms-playready.media.pya", # Microsoft PlayReady Ecosystem ".pyv": "video/vnd.ms-playready.media.pyv", # Microsoft PlayReady Ecosystem Video ".qam": "application/vnd.epson.quickanime", # QuickAnime Player ".qbo": "application/vnd.intu.qbo", # Open Financial Exchange ".qfx": "application/vnd.intu.qfx", # Quicken ".qps": "application/vnd.publishare-delta-tree", # PubliShare Objects ".qt": "video/quicktime", # Quicktime Video ".qxd": "application/vnd.quark.quarkxpress", # QuarkXpress ".ram": "audio/x-pn-realaudio", # Real Audio Sound ".rar": "application/x-rar-compressed", # RAR Archive ".ras": "image/x-cmu-raster", # CMU Image ".rcprofile": "application/vnd.ipunplugged.rcprofile", # IP Unplugged Roaming Client ".rdf": "application/rdf+xml", # Resource Description Framework ".rdz": "application/vnd.data-vision.rdz", # RemoteDocs R-Viewer ".rep": "application/vnd.businessobjects", # BusinessObjects ".res": "application/x-dtbresource+xml", # Digital Talking Book - Resource File ".rgb": "image/x-rgb", # Silicon Graphics RGB Bitmap ".rif": "application/reginfo+xml", # IMS Networks ".rip": "audio/vnd.rip", # Hit'n'Mix ".rl": "application/resource-lists+xml", # XML Resource Lists ".rlc": "image/vnd.fujixerox.edmics-rlc", # EDMICS 2000 ".rld": "application/resource-lists-diff+xml", # XML Resource Lists Diff ".rm": "application/vnd.rn-realmedia", # RealMedia ".rmp": "audio/x-pn-realaudio-plugin", # Real Audio Sound ".rms": "application/vnd.jcp.javame.midlet-rms", # Mobile Information Device Profile ".rnc": "application/relax-ng-compact-syntax", # Relax NG Compact Syntax ".rp9": "application/vnd.cloanto.rp9", # RetroPlatform Player ".rpss": "application/vnd.nokia.radio-presets", # Nokia Radio Application - Preset ".rpst": "application/vnd.nokia.radio-preset", # Nokia Radio Application - Preset ".rq": "application/sparql-query", # SPARQL - Query ".rs": "application/rls-services+xml", # XML Resource Lists ".rsd": "application/rsd+xml", # Really Simple Discovery ".rss": "application/rss+xml", # RSS - Really Simple Syndication ".rtf": "application/rtf", # Rich Text Format ".rtx": "text/richtext", # Rich Text Format (RTF) ".s": "text/x-asm", # Assembler Source File ".saf": "application/vnd.yamaha.smaf-audio", # SMAF Audio ".sbml": "application/sbml+xml", # Systems Biology Markup Language ".sc": "application/vnd.ibm.secure-container", # IBM Electronic Media Management System - Secure Container ".scd": "application/x-msschedule", # Microsoft Schedule+ ".scm": "application/vnd.lotus-screencam", # Lotus Screencam ".scq": "application/scvp-cv-request", # Server-Based Certificate Validation Protocol - Validation Request ".scs": "application/scvp-cv-response", # Server-Based Certificate Validation Protocol - Validation Response ".scurl": "text/vnd.curl.scurl", # Curl - Source Code ".sda": "application/vnd.stardivision.draw", # StarOffice - Draw ".sdc": "application/vnd.stardivision.calc", # StarOffice - Calc ".sdd": "application/vnd.stardivision.impress", # StarOffice - Impress ".sdkm": "application/vnd.solent.sdkm+xml", # SudokuMagic ".sdp": "application/sdp", # Session Description Protocol ".sdw": "application/vnd.stardivision.writer", # StarOffice - Writer ".see": "application/vnd.seemail", # SeeMail ".seed": "application/vnd.fdsn.seed", # Digital Siesmograph Networks - SEED Datafiles ".sema": "application/vnd.sema", # Secured eMail ".semd": "application/vnd.semd", # Secured eMail ".semf": "application/vnd.semf", # Secured eMail ".ser": "application/java-serialized-object", # Java Serialized Object ".setpay": "application/set-payment-initiation", # Secure Electronic Transaction - Payment ".setreg": "application/set-registration-initiation", # Secure Electronic Transaction - Registration ".sfd-hdstx": "application/vnd.hydrostatix.sof-data", # Hydrostatix Master Suite ".sfs": "application/vnd.spotfire.sfs", # TIBCO Spotfire ".sgl": "application/vnd.stardivision.writer-global", # StarOffice - Writer (Global) ".sgml": "text/sgml", # Standard Generalized Markup Language (SGML) ".sh": "application/x-sh", # Bourne Shell Script ".shar": "application/x-shar", # Shell Archive ".shf": "application/shf+xml", # S Hexdump Format ".sis": "application/vnd.symbian.install", # Symbian Install Package ".sit": "application/x-stuffit", # Stuffit Archive ".sitx": "application/x-stuffitx", # Stuffit Archive ".skp": "application/vnd.koan", # SSEYO Koan Play File ".sldm": "application/vnd.ms-powerpoint.slide.macroenabled.12", # Microsoft PowerPoint - Macro-Enabled Open XML Slide ".sldx": "application/vnd.openxmlformats-officedocument.presentationml.slide", # Microsoft Office - OOXML - Presentation (Slide) ".slt": "application/vnd.epson.salt", # SimpleAnimeLite Player ".sm": "application/vnd.stepmania.stepchart", # StepMania ".smf": "application/vnd.stardivision.math", # StarOffice - Math ".smi": "application/smil+xml", # Synchronized Multimedia Integration Language ".snf": "application/x-font-snf", # Server Normal Format ".spf": "application/vnd.yamaha.smaf-phrase", # SMAF Phrase ".spl": "application/x-futuresplash", # FutureSplash Animator ".spot": "text/vnd.in3d.spot", # In3D - 3DML ".spp": "application/scvp-vp-response", # Server-Based Certificate Validation Protocol - Validation Policies - Response ".spq": "application/scvp-vp-request", # Server-Based Certificate Validation Protocol - Validation Policies - Request ".src": "application/x-wais-source", # WAIS Source ".sru": "application/sru+xml", # Search/Retrieve via URL Response Format ".srx": "application/sparql-results+xml", # SPARQL - Results ".sse": "application/vnd.kodak-descriptor", # Kodak Storyshare ".ssf": "application/vnd.epson.ssf", # QUASS Stream Player ".ssml": "application/ssml+xml", # Speech Synthesis Markup Language ".st": "application/vnd.sailingtracker.track", # SailingTracker ".stc": "application/vnd.sun.xml.calc.template", # OpenOffice - Calc Template (Spreadsheet) ".std": "application/vnd.sun.xml.draw.template", # OpenOffice - Draw Template (Graphics) ".stf": "application/vnd.wt.stf", # Worldtalk ".sti": "application/vnd.sun.xml.impress.template", # OpenOffice - Impress Template (Presentation) ".stk": "application/hyperstudio", # Hyperstudio ".stl": "application/vnd.ms-pki.stl", # Microsoft Trust UI Provider - Certificate Trust Link ".str": "application/vnd.pg.format", # Proprietary P&G Standard Reporting System ".stw": "application/vnd.sun.xml.writer.template", # OpenOffice - Writer Template (Text - HTML) ".sub": "image/vnd.dvb.subtitle", # Close Captioning - Subtitle ".sus": "application/vnd.sus-calendar", # ScheduleUs ".sv4cpio": "application/x-sv4cpio", # System V Release 4 CPIO Archive ".sv4crc": "application/x-sv4crc", # System V Release 4 CPIO Checksum Data ".svc": "application/vnd.dvb.service", # Digital Video Broadcasting ".svd": "application/vnd.svd", # SourceView Document ".svg": "image/svg+xml", # Scalable Vector Graphics (SVG) ".swf": "application/x-shockwave-flash", # Adobe Flash ".swi": "application/vnd.aristanetworks.swi", # Arista Networks Software Image ".sxc": "application/vnd.sun.xml.calc", # OpenOffice - Calc (Spreadsheet) ".sxd": "application/vnd.sun.xml.draw", # OpenOffice - Draw (Graphics) ".sxg": "application/vnd.sun.xml.writer.global", # OpenOffice - Writer (Text - HTML) ".sxi": "application/vnd.sun.xml.impress", # OpenOffice - Impress (Presentation) ".sxm": "application/vnd.sun.xml.math", # OpenOffice - Math (Formula) ".sxw": "application/vnd.sun.xml.writer", # OpenOffice - Writer (Text - HTML) ".t": "text/troff", # troff ".tao": "application/vnd.tao.intent-module-archive", # Tao Intent ".tar": "application/x-tar", # Tar File (Tape Archive) ".tcap": "application/vnd.3gpp2.tcap", # 3rd Generation Partnership Project - Transaction Capabilities Application Part ".tcl": "application/x-tcl", # Tcl Script ".teacher": "application/vnd.smart.teacher", # SMART Technologies Apps ".tei": "application/tei+xml", # Text Encoding and Interchange ".tex": "application/x-tex", # TeX ".texinfo": "application/x-texinfo", # GNU Texinfo Document ".tfi": "application/thraud+xml", # Sharing Transaction Fraud Data ".tfm": "application/x-tex-tfm", # TeX Font Metric ".thmx": "application/vnd.ms-officetheme", # Microsoft Office System Release Theme ".tiff": "image/tiff", # Tagged Image File Format ".tmo": "application/vnd.tmobile-livetv", # MobileTV ".torrent": "application/x-bittorrent", # BitTorrent ".tpl": "application/vnd.groove-tool-template", # Groove - Tool Template ".tpt": "application/vnd.trid.tpt", # TRI Systems Config ".tra": "application/vnd.trueapp", # True BASIC ".trm": "application/x-msterminal", # Microsoft Windows Terminal Services ".tsd": "application/timestamped-data", # Time Stamped Data Envelope ".tsv": "text/tab-separated-values", # Tab Seperated Values ".ttf": "application/x-font-ttf", # TrueType Font ".ttl": "text/turtle", # Turtle (Terse RDF Triple Language) ".twd": "application/vnd.simtech-mindmapper", # SimTech MindMapper ".txd": "application/vnd.genomatix.tuxedo", # Genomatix Tuxedo Framework ".txf": "application/vnd.mobius.txf", # Mobius Management Systems - Topic Index File ".txt": "text/plain", # Text File ".ufd": "application/vnd.ufdl", # Universal Forms Description Language ".umj": "application/vnd.umajin", # UMAJIN ".unityweb": "application/vnd.unity", # Unity 3d ".uoml": "application/vnd.uoml+xml", # Unique Object Markup Language ".uri": "text/uri-list", # URI Resolution Services ".ustar": "application/x-ustar", # Ustar (Uniform Standard Tape Archive) ".utz": "application/vnd.uiq.theme", # User Interface Quartz - Theme (Symbian) ".uu": "text/x-uuencode", # UUEncode ".uva": "audio/vnd.dece.audio", # DECE Audio ".uvh": "video/vnd.dece.hd", # DECE High Definition Video ".uvi": "image/vnd.dece.graphic", # DECE Graphic ".uvm": "video/vnd.dece.mobile", # DECE Mobile Video ".uvp": "video/vnd.dece.pd", # DECE PD Video ".uvs": "video/vnd.dece.sd", # DECE SD Video ".uvu": "video/vnd.uvvu.mp4", # DECE MP4 ".uvv": "video/vnd.dece.video", # DECE Video ".vcd": "application/x-cdlink", # Video CD ".vcf": "text/x-vcard", # vCard ".vcg": "application/vnd.groove-vcard", # Groove - Vcard ".vcs": "text/x-vcalendar", # vCalendar ".vcx": "application/vnd.vcx", # VirtualCatalog ".vis": "application/vnd.visionary", # Visionary ".viv": "video/vnd.vivo", # Vivo ".vsd": "application/vnd.visio", # Microsoft Visio ".vsf": "application/vnd.vsf", # Viewport+ ".vtu": "model/vnd.vtu", # Virtue VTU ".vxml": "application/voicexml+xml", # VoiceXML ".wad": "application/x-doom", # Doom Video Game ".wav": "audio/x-wav", # Waveform Audio File Format (WAV) ".wax": "audio/x-ms-wax", # Microsoft Windows Media Audio Redirector ".wbmp": "image/vnd.wap.wbmp", # WAP Bitamp (WBMP) ".wbs": "application/vnd.criticaltools.wbs+xml", # Critical Tools - PERT Chart EXPERT ".wbxml": "application/vnd.wap.wbxml", # WAP Binary XML (WBXML) ".weba": "audio/webm", # Open Web Media Project - Audio ".webm": "video/webm", # Open Web Media Project - Video ".webp": "image/webp", # WebP Image ".wg": "application/vnd.pmi.widget", # Qualcomm's Plaza Mobile Internet ".wgt": "application/widget", # Widget Packaging and XML Configuration ".wm": "video/x-ms-wm", # Microsoft Windows Media ".wma": "audio/x-ms-wma", # Microsoft Windows Media Audio ".wmd": "application/x-ms-wmd", # Microsoft Windows Media Player Download Package ".wmf": "application/x-msmetafile", # Microsoft Windows Metafile ".wml": "text/vnd.wap.wml", # Wireless Markup Language (WML) ".wmlc": "application/vnd.wap.wmlc", # Compiled Wireless Markup Language (WMLC) ".wmls": "text/vnd.wap.wmlscript", # Wireless Markup Language Script (WMLScript) ".wmlsc": "application/vnd.wap.wmlscriptc", # WMLScript ".wmv": "video/x-ms-wmv", # Microsoft Windows Media Video ".wmx": "video/x-ms-wmx", # Microsoft Windows Media Audio/Video Playlist ".wmz": "application/x-ms-wmz", # Microsoft Windows Media Player Skin Package ".woff": "application/x-font-woff", # Web Open Font Format ".wpd": "application/vnd.wordperfect", # Wordperfect ".wpl": "application/vnd.ms-wpl", # Microsoft Windows Media Player Playlist ".wps": "application/vnd.ms-works", # Microsoft Works ".wqd": "application/vnd.wqd", # SundaHus WQ ".wri": "application/x-mswrite", # Microsoft Wordpad ".wrl": "model/vrml", # Virtual Reality Modeling Language ".wsdl": "application/wsdl+xml", # WSDL - Web Services Description Language ".wspolicy": "application/wspolicy+xml", # Web Services Policy ".wtb": "application/vnd.webturbo", # WebTurbo ".wvx": "video/x-ms-wvx", # Microsoft Windows Media Video Playlist ".x3d": "application/vnd.hzn-3d-crossword", # 3D Crossword Plugin ".xap": "application/x-silverlight-app", # Microsoft Silverlight ".xar": "application/vnd.xara", # CorelXARA ".xbap": "application/x-ms-xbap", # Microsoft XAML Browser Application ".xbd": "application/vnd.fujixerox.docuworks.binder", # Fujitsu - Xerox DocuWorks Binder ".xbm": "image/x-xbitmap", # X BitMap ".xdf": "application/xcap-diff+xml", # XML Configuration Access Protocol - XCAP Diff ".xdm": "application/vnd.syncml.dm+xml", # SyncML - Device Management ".xdp": "application/vnd.adobe.xdp+xml", # Adobe XML Data Package ".xdssc": "application/dssc+xml", # Data Structure for the Security Suitability of Cryptographic Algorithms ".xdw": "application/vnd.fujixerox.docuworks", # Fujitsu - Xerox DocuWorks ".xenc": "application/xenc+xml", # XML Encryption Syntax and Processing ".xer": "application/patch-ops-error+xml", # XML Patch Framework ".xfdf": "application/vnd.adobe.xfdf", # Adobe XML Forms Data Format ".xfdl": "application/vnd.xfdl", # Extensible Forms Description Language ".xhtml": "application/xhtml+xml", # XHTML - The Extensible HyperText Markup Language ".xif": "image/vnd.xiff", # eXtended Image File Format (XIFF) ".xlam": "application/vnd.ms-excel.addin.macroenabled.12", # Microsoft Excel - Add-In File ".xls": "application/vnd.ms-excel", # Microsoft Excel ".xlsb": "application/vnd.ms-excel.sheet.binary.macroenabled.12", # Microsoft Excel - Binary Workbook ".xlsm": "application/vnd.ms-excel.sheet.macroenabled.12", # Microsoft Excel - Macro-Enabled Workbook ".xlsx": "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet", # Microsoft Office - OOXML - Spreadsheet ".xltm": "application/vnd.ms-excel.template.macroenabled.12", # Microsoft Excel - Macro-Enabled Template File ".xltx": "application/vnd.openxmlformats-officedocument.spreadsheetml.template", # Microsoft Office - OOXML - Spreadsheet Teplate ".xml": "application/xml", # XML - Extensible Markup Language ".xo": "application/vnd.olpc-sugar", # Sugar Linux Application Bundle ".xop": "application/xop+xml", # XML-Binary Optimized Packaging ".xpi": "application/x-xpinstall", # XPInstall - Mozilla ".xpm": "image/x-xpixmap", # X PixMap ".xpr": "application/vnd.is-xpr", # Express by Infoseek ".xps": "application/vnd.ms-xpsdocument", # Microsoft XML Paper Specification ".xpw": "application/vnd.intercon.formnet", # Intercon FormNet ".xslt": "application/xslt+xml", # XML Transformations ".xsm": "application/vnd.syncml+xml", # SyncML ".xspf": "application/xspf+xml", # XSPF - XML Shareable Playlist Format ".xul": "application/vnd.mozilla.xul+xml", # XUL - XML User Interface Language ".xwd": "image/x-xwindowdump", # X Window Dump ".xyz": "chemical/x-xyz", # XYZ File Format ".yaml": "text/yaml", # YAML Ain't Markup Language / Yet Another Markup Language ".yang": "application/yang", # YANG Data Modeling Language ".yin": "application/yin+xml", # YIN (YANG - XML) ".zaz": "application/vnd.zzazz.deck+xml", # Zzazz Deck ".zip": "application/zip", # Zip Archive ".zir": "application/vnd.zul", # Z.U.L. Geometry ".zmm": "application/vnd.handheld-entertainment+xml" # ZVUE Media Manager } return m.get(ext, df)
50,482
0
115
a6f3000b839dcc7f905743f2233883d51f46e361
709
py
Python
tests/test_runeterra_api.py
scary987/twisted_fate
654120e2a03faa5bc5568c4264beddca31e43a31
[ "MIT" ]
13
2019-11-22T03:59:08.000Z
2021-05-25T22:17:53.000Z
tests/test_runeterra_api.py
scary987/twisted_fate
654120e2a03faa5bc5568c4264beddca31e43a31
[ "MIT" ]
7
2019-10-25T16:16:33.000Z
2021-02-25T04:30:36.000Z
tests/test_runeterra_api.py
Snowcola/runeterra
744b6c777ebdfdf8f07c5c699f63462152aca947
[ "MIT" ]
5
2020-02-05T17:00:55.000Z
2021-01-18T06:25:22.000Z
from twisted_fate import __version__
22.870968
67
0.468265
from twisted_fate import __version__ def test_version(): assert __version__ == '0.1.3' def test_deck(): import twisted_fate as api deck = { "DeckCode": "CEBAGAIDCQRSOCQBAQAQYDISDQTCOKBNGQAACAIBAMFQ", "CardsInDeck": { "01NX020": 3, "01NX035": 3, "01NX039": 3, "01PZ001": 3, "01PZ012": 3, "01PZ013": 3, "01PZ018": 3, "01PZ028": 3, "01PZ038": 3, "01PZ039": 3, "01PZ040": 3, "01PZ045": 3, "01PZ052": 3, "01NX011": 1, }, } z = api.Deck(**deck) assert z.cards[0].cardCode in deck["CardsInDeck"]
625
0
46
195a25357f476fe8e429e196a9bdfe546f4e7d79
984
py
Python
tests/test_executor.py
wyriwyd/wyriwyd
8c011cd02a3499b60b71486f210869e0971793e2
[ "BSD-3-Clause" ]
7
2019-04-03T12:40:38.000Z
2019-04-03T20:55:41.000Z
tests/test_executor.py
wyriwyd/wyriwyd
8c011cd02a3499b60b71486f210869e0971793e2
[ "BSD-3-Clause" ]
12
2019-04-03T09:18:20.000Z
2019-04-08T09:20:44.000Z
tests/test_executor.py
wyriwyd/wyriwyd
8c011cd02a3499b60b71486f210869e0971793e2
[ "BSD-3-Clause" ]
1
2019-04-03T09:33:32.000Z
2019-04-03T09:33:32.000Z
import os from wyriwyd.executor import ShellExecutor
29.818182
66
0.595528
import os from wyriwyd.executor import ShellExecutor def test_executor(tmpdir): cmds = ["export MY_VARIABLE='hello world'", "cd {}".format(str(tmpdir)), "pwd", "echo MY_VARIABLE = $MY_VARIABLE", "pushd ../ \n pwd \n popd"] outputs = [] with ShellExecutor() as executor: for command in cmds: outputs.append(executor.run_command(command)) assert outputs[:3] == [[], [], [str(tmpdir)]] assert outputs[3] == ["MY_VARIABLE = hello world"] cmd_out = "{0} {1}:{0}:{1}" cmd_out = cmd_out.format(os.path.dirname(tmpdir), str(tmpdir)) assert outputs[4] == cmd_out.split(":") def test_cat(tmpdir): filename = tmpdir / "contents.txt" with open(filename, "w") as outfile: outfile.write("hello file\n") cmds = [f"cat {filename}"] outputs = [] with ShellExecutor() as executor: for command in cmds: outputs.append(executor.run_command(command))
883
0
46
0096ee546ed0b0057c7f17a668314161d5695b54
11,196
py
Python
astroduet/duet_telescope.py
bwgref/duet-astro
4fe3358bb927c0f03de1b75c01ddf2379b5771b3
[ "BSD-3-Clause" ]
1
2019-04-15T21:02:57.000Z
2019-04-15T21:02:57.000Z
astroduet/duet_telescope.py
bwgref/duet-astro
4fe3358bb927c0f03de1b75c01ddf2379b5771b3
[ "BSD-3-Clause" ]
null
null
null
astroduet/duet_telescope.py
bwgref/duet-astro
4fe3358bb927c0f03de1b75c01ddf2379b5771b3
[ "BSD-3-Clause" ]
1
2019-04-17T19:46:42.000Z
2019-04-17T19:46:42.000Z
import os curdir = os.path.dirname(__file__) datadir = os.path.join(curdir, 'data') def load_telescope_parameters(version, **kwargs): """ Utility script to load the telescope parameters version = 0: Pre-design version (to compare with Rick's stuff) version = 1: 210 mm design version = 2: 300 mm design version = 3: 350 mm design version = 4: 400 mm design ### ### Version 2: Syntax: diameter, qe, psf_fwhm, pixel_size, efficiency = load_telescope_parameters(version) --- Note, going to depreicate versions < 4 eventually since those assume that the pixels are 0.5 * pixel size To be done: Remove QE from this method and put it somewhere else. --- """ import astropy.units as ur from numpy import pi diag = kwargs.pop('diag', True) name = '' # Eventually depricate these things if version == 0: qe = 0.8 # To be improved later. diameter = 30*ur.cm psf_fwhm = 10*ur.arcsec pixel_size = psf_fwhm * 0.5 efficiency = 0.87 # Ultrasat spec if version == 1: qe = 0.8 efficiency = 0.54 # Reported from Mike diameter = 21 * ur.cm psf_fwhm = 4 * ur.arcsec pixel_size = psf_fwhm * 0.5 if version == 2: qe = 0.8 efficiency = 0.65 # Reported from Mike diameter = 30 * ur.cm psf_fwhm = 9*ur.arcsec pixel_size = psf_fwhm * 0.5 if version == 3: qe = 0.8 diameter = 35*ur.cm efficiency = 0.67 # Reported from Mike psf_fwhm = 18*ur.arcsec pixel_size = psf_fwhm * 0.5 if version == 4: qe = 0.8 diameter = 40*ur.cm efficiency = 0.70 # Reported from Mike psf_fwhm = 23*ur.arcsec pixel_size = psf_fwhm * 0.5 # Versions below here allow the PSF and the pixel to be decoupled # "Big Schmidt" w/ 6k x 6k array if version == 5: name = 'Big Schmidt' qe = 0.7 diameter = 33.0*ur.cm eff_diam = 29.1*ur.cm efficiency = (eff_diam/diameter)**2 plate_scale = 0.43 # arcsec per micron psf_fwhm_um = 21.6 # microns psf_fwhm = plate_scale * psf_fwhm_um * ur.arcsec pixel_size = plate_scale * 10 * ur.arcsec # Smaller Schmidts (same focal length?) each with 6k x 6k focal plane array if version == 6: name = 'Two mini Big Schmidts' qe = 0.7 diameter = 21.0*ur.cm eff_diam = 15.1*ur.cm efficiency = (eff_diam/diameter)**2 plate_scale = 0.43 # arcsec per micron psf_fwhm_um = 6.7 # microns psf_fwhm = plate_scale * psf_fwhm_um * ur.arcsec pixel_size = plate_scale * 10 * ur.arcsec # Medium Schmidt (same focal length?) each with 6k x 6k focal plane array if version == 7: name = 'Medium Schmidt' qe = 0.7 diameter = 24.0*ur.cm eff_diam = 19.1*ur.cm efficiency = (eff_diam/diameter)**2 plate_scale = 0.43 # arcsec per micron psf_fwhm_um = 7.6 # microns psf_fwhm = plate_scale * psf_fwhm_um * ur.arcsec pixel_size = plate_scale * 10 * ur.arcsec # Smaller Medium Schmidts (same focal length?) each with 6k x 6k focal plane array if version == 8: name = 'Two Small "Medium" Schmidts' qe = 0.7 diameter = 14.0*ur.cm eff_diam = 6.3*ur.cm efficiency = (eff_diam/diameter)**2 plate_scale = 0.43 # arcsec per micron psf_fwhm_um = 8.6 # microns psf_fwhm = plate_scale * psf_fwhm_um * ur.arcsec pixel_size = plate_scale * 10 * ur.arcsec # Fast Medium Schmidts (same focal length?) each with 6k x 6k focal plane array if version == 9: name = 'Fast Schmidt' qe = 0.7 diameter = 32.0*ur.cm eff_diam = 29.89*ur.cm efficiency = (eff_diam/diameter)**2 plate_scale = 0.64 # arcsec per micron psf_fwhm_um = 44.3 # microns psf_fwhm = plate_scale * psf_fwhm_um * ur.arcsec pixel_size = plate_scale * 10 * ur.arcsec # Mini-fast Schmidts if version == 10: name="Mini Fast Schmidts" qe = 0.7 diameter = 22.0*ur.cm eff_diam = 19.2*ur.cm efficiency = (eff_diam/diameter)**2 plate_scale = 0.64 # arcsec per micron psf_fwhm_um = 14.1 # microns psf_fwhm = plate_scale * psf_fwhm_um * ur.arcsec pixel_size = plate_scale * 10 * ur.arcsec ##### Second round of telescope designs if version == 11: name="Small Focal Plane CMOS" qe = 0.6 diameter = 26.0*ur.cm eff_diam = 23.1*ur.cm efficiency = (eff_diam/diameter)**2 plate_scale = 6.4/10. # arcsec per micron psf_fwhm_um = 6.7 # microns psf_fwhm = plate_scale * psf_fwhm_um * ur.arcsec pixel_size = plate_scale * 10 * ur.arcsec if version == 12: name="Swiss Cross CMOS" qe = 0.6 diameter = 30.*ur.cm eff_diam = 21.7*ur.cm eff_diam = 24.7*ur.cm efficiency = (eff_diam/diameter)**2 plate_scale = 4.0/10. # arcsec per micron psf_fwhm_um = 7.2 # microns psf_fwhm = plate_scale * psf_fwhm_um * ur.arcsec pixel_size = plate_scale * 10. * ur.arcsec if version == 13: name="Swiss Cross CCD" qe = 0.6 diameter = 30.*ur.cm eff_diam = 20.2*ur.cm efficiency = (eff_diam/diameter)**2 plate_scale = 5.4/13. # arcsec per micron psf_fwhm_um = 16.1 # microns psf_fwhm = plate_scale * psf_fwhm_um * ur.arcsec pixel_size = plate_scale * 13 * ur.arcsec if version == 14: name="Medium Focal Plane (CMOS 6k x 6k)" qe = 0.6 diameter = 30.*ur.cm eff_diam = 0.7*27.3*ur.cm efficiency = (eff_diam/diameter)**2 plate_scale = 4.3/10. # arcsec per micron psf_fwhm_um = 7.1 # microns psf_fwhm = plate_scale * psf_fwhm_um * ur.arcsec pixel_size = plate_scale * 10 * ur.arcsec ###### if version == 15: name="25 cm primary" qe = 0.6 diameter = 20.*ur.cm eff_diam = 17*ur.cm efficiency = (eff_diam/diameter)**2 plate_scale = 6.4/10. # arcsec per micron psf_fwhm_um = 10.3 # microns psf_fwhm = plate_scale * psf_fwhm_um * ur.arcsec pixel_size = plate_scale * 10 * ur.arcsec if diag: print('Telescope Configuration {}'.format(version)) print('Name: {}'.format(name)) print('Entrance Pupil diameter {}'.format(diameter)) print('Optical Efficiency {}'.format(efficiency)) print('PSF FWHM {}'.format(psf_fwhm)) print('Pixel size {}'.format(pixel_size)) print('Effective Aperture {}'.format(diameter*(efficiency)**0.5)) print('Effective Area {}'.format( efficiency * pi * (0.5*diameter)**2)) return diameter, qe, psf_fwhm, pixel_size, efficiency def load_qe(**kwargs): """ Loads the detector QE and returns the values. band = 1 (default, 180-220 nm) band = 2 (260-320 nm) band = 3 (340-380 nm) Syntax: wave, qe = load_qe(band = 1) """ import astropy.units as ur import numpy as np band = kwargs.pop('band', 1) diag = kwargs.pop('diag', False) if band == 1: infile = os.path.join(datadir, 'detector_180_220nm.csv') if band == 2: infile = os.path.join(datadir, 'detector_260_300nm.csv') if band == 3: infile = os.path.join(datadir, 'detector_340_380nm.csv') f = open(infile, 'r') header = True qe = {} set = False for line in f: if header: header = False continue fields = line.split(',') if not set: wave = float(fields[0]) qe = float(fields[3]) set = True else: wave = np.append(wave, float(fields[0])) qe = np.append(qe, float(fields[3])) f.close() # Give wavelength a unit wave *= ur.nm if diag: print('Detector Q.E. loader') print('Band {} has input file {}'.format(band, infile)) return wave, qe / 100. def load_reflectivity(**kwargs): """ Loads the optics reflectivity and returns the values. Syntax: wave, reflectivity = load_reflectivity() """ import astropy.units as ur import numpy as np diag = kwargs.pop('diag', False) infile = os.path.join(datadir, 'al_mgf2_mirror_coatings.csv') f = open(infile, 'r') header = True qe = {} set = False for line in f: if header: header = False continue fields = line.split(',') if not set: wave = float(fields[0]) reflectivity = float(fields[1]) set = True else: wave = np.append(wave, float(fields[0])) reflectivity = np.append(reflectivity, float(fields[1])) f.close() # Give wavelength a unit wave *= ur.nm if diag: print('Optics reflectivity loader') print('Input file {}'.format(infile)) return wave, reflectivity def load_redfilter(**kwargs): """ Loads the detector QE and returns the values. band = 1 (default, 180-220 nm) band = 2 (260-320 nm) Syntax: wave, transmission = load_redfilter(band=1) """ import astropy.units as ur import numpy as np band = kwargs.pop('band', 1) diag = kwargs.pop('diag', False) light = kwargs.pop('light', True) if light: infile = os.path.join(datadir, 'duet{}_filter_light.csv'.format(band)) else: infile = os.path.join(datadir, 'duet{}_filter.csv'.format(band)) f = open(infile, 'r') header = True qe = {} set = False for line in f: if header: if (line.startswith('Wavelength')) or ('%T' in line): header = False continue fields = line.split(',') if not set: wave = float(fields[0]) transmission = float(fields[1]) set = True else: wave = np.append(wave, float(fields[0])) transmission = np.append(transmission, float(fields[1])) f.close() # Give wavelength a unit wave *= ur.nm if diag: print('Red filter loader') print('Band {} has input file {}'.format(band, infile)) return wave, transmission / 100. def apply_filters(wave, spec, **kwargs): """ Loads the detector QE and returns the values. band = 1 (default, 180-220 nm) band = 2 (260-320 nm) Syntax: wave, transmission = load_redfilter(band=1) """ from .apply_transmission import apply_trans # Load filters ref_wave, reflectivity = load_reflectivity(**kwargs) qe_wave, qe = load_qe(**kwargs) red_wave, red_trans = load_redfilter(**kwargs) ref_flux = apply_trans(wave, spec, ref_wave, reflectivity/100.) qe_flux = apply_trans(wave, ref_flux, qe_wave, qe) band_flux = apply_trans(wave, qe_flux, red_wave, red_trans) return band_flux
24.445415
87
0.575473
import os curdir = os.path.dirname(__file__) datadir = os.path.join(curdir, 'data') def load_telescope_parameters(version, **kwargs): """ Utility script to load the telescope parameters version = 0: Pre-design version (to compare with Rick's stuff) version = 1: 210 mm design version = 2: 300 mm design version = 3: 350 mm design version = 4: 400 mm design ### ### Version 2: Syntax: diameter, qe, psf_fwhm, pixel_size, efficiency = load_telescope_parameters(version) --- Note, going to depreicate versions < 4 eventually since those assume that the pixels are 0.5 * pixel size To be done: Remove QE from this method and put it somewhere else. --- """ import astropy.units as ur from numpy import pi diag = kwargs.pop('diag', True) name = '' # Eventually depricate these things if version == 0: qe = 0.8 # To be improved later. diameter = 30*ur.cm psf_fwhm = 10*ur.arcsec pixel_size = psf_fwhm * 0.5 efficiency = 0.87 # Ultrasat spec if version == 1: qe = 0.8 efficiency = 0.54 # Reported from Mike diameter = 21 * ur.cm psf_fwhm = 4 * ur.arcsec pixel_size = psf_fwhm * 0.5 if version == 2: qe = 0.8 efficiency = 0.65 # Reported from Mike diameter = 30 * ur.cm psf_fwhm = 9*ur.arcsec pixel_size = psf_fwhm * 0.5 if version == 3: qe = 0.8 diameter = 35*ur.cm efficiency = 0.67 # Reported from Mike psf_fwhm = 18*ur.arcsec pixel_size = psf_fwhm * 0.5 if version == 4: qe = 0.8 diameter = 40*ur.cm efficiency = 0.70 # Reported from Mike psf_fwhm = 23*ur.arcsec pixel_size = psf_fwhm * 0.5 # Versions below here allow the PSF and the pixel to be decoupled # "Big Schmidt" w/ 6k x 6k array if version == 5: name = 'Big Schmidt' qe = 0.7 diameter = 33.0*ur.cm eff_diam = 29.1*ur.cm efficiency = (eff_diam/diameter)**2 plate_scale = 0.43 # arcsec per micron psf_fwhm_um = 21.6 # microns psf_fwhm = plate_scale * psf_fwhm_um * ur.arcsec pixel_size = plate_scale * 10 * ur.arcsec # Smaller Schmidts (same focal length?) each with 6k x 6k focal plane array if version == 6: name = 'Two mini Big Schmidts' qe = 0.7 diameter = 21.0*ur.cm eff_diam = 15.1*ur.cm efficiency = (eff_diam/diameter)**2 plate_scale = 0.43 # arcsec per micron psf_fwhm_um = 6.7 # microns psf_fwhm = plate_scale * psf_fwhm_um * ur.arcsec pixel_size = plate_scale * 10 * ur.arcsec # Medium Schmidt (same focal length?) each with 6k x 6k focal plane array if version == 7: name = 'Medium Schmidt' qe = 0.7 diameter = 24.0*ur.cm eff_diam = 19.1*ur.cm efficiency = (eff_diam/diameter)**2 plate_scale = 0.43 # arcsec per micron psf_fwhm_um = 7.6 # microns psf_fwhm = plate_scale * psf_fwhm_um * ur.arcsec pixel_size = plate_scale * 10 * ur.arcsec # Smaller Medium Schmidts (same focal length?) each with 6k x 6k focal plane array if version == 8: name = 'Two Small "Medium" Schmidts' qe = 0.7 diameter = 14.0*ur.cm eff_diam = 6.3*ur.cm efficiency = (eff_diam/diameter)**2 plate_scale = 0.43 # arcsec per micron psf_fwhm_um = 8.6 # microns psf_fwhm = plate_scale * psf_fwhm_um * ur.arcsec pixel_size = plate_scale * 10 * ur.arcsec # Fast Medium Schmidts (same focal length?) each with 6k x 6k focal plane array if version == 9: name = 'Fast Schmidt' qe = 0.7 diameter = 32.0*ur.cm eff_diam = 29.89*ur.cm efficiency = (eff_diam/diameter)**2 plate_scale = 0.64 # arcsec per micron psf_fwhm_um = 44.3 # microns psf_fwhm = plate_scale * psf_fwhm_um * ur.arcsec pixel_size = plate_scale * 10 * ur.arcsec # Mini-fast Schmidts if version == 10: name="Mini Fast Schmidts" qe = 0.7 diameter = 22.0*ur.cm eff_diam = 19.2*ur.cm efficiency = (eff_diam/diameter)**2 plate_scale = 0.64 # arcsec per micron psf_fwhm_um = 14.1 # microns psf_fwhm = plate_scale * psf_fwhm_um * ur.arcsec pixel_size = plate_scale * 10 * ur.arcsec ##### Second round of telescope designs if version == 11: name="Small Focal Plane CMOS" qe = 0.6 diameter = 26.0*ur.cm eff_diam = 23.1*ur.cm efficiency = (eff_diam/diameter)**2 plate_scale = 6.4/10. # arcsec per micron psf_fwhm_um = 6.7 # microns psf_fwhm = plate_scale * psf_fwhm_um * ur.arcsec pixel_size = plate_scale * 10 * ur.arcsec if version == 12: name="Swiss Cross CMOS" qe = 0.6 diameter = 30.*ur.cm eff_diam = 21.7*ur.cm eff_diam = 24.7*ur.cm efficiency = (eff_diam/diameter)**2 plate_scale = 4.0/10. # arcsec per micron psf_fwhm_um = 7.2 # microns psf_fwhm = plate_scale * psf_fwhm_um * ur.arcsec pixel_size = plate_scale * 10. * ur.arcsec if version == 13: name="Swiss Cross CCD" qe = 0.6 diameter = 30.*ur.cm eff_diam = 20.2*ur.cm efficiency = (eff_diam/diameter)**2 plate_scale = 5.4/13. # arcsec per micron psf_fwhm_um = 16.1 # microns psf_fwhm = plate_scale * psf_fwhm_um * ur.arcsec pixel_size = plate_scale * 13 * ur.arcsec if version == 14: name="Medium Focal Plane (CMOS 6k x 6k)" qe = 0.6 diameter = 30.*ur.cm eff_diam = 0.7*27.3*ur.cm efficiency = (eff_diam/diameter)**2 plate_scale = 4.3/10. # arcsec per micron psf_fwhm_um = 7.1 # microns psf_fwhm = plate_scale * psf_fwhm_um * ur.arcsec pixel_size = plate_scale * 10 * ur.arcsec ###### if version == 15: name="25 cm primary" qe = 0.6 diameter = 20.*ur.cm eff_diam = 17*ur.cm efficiency = (eff_diam/diameter)**2 plate_scale = 6.4/10. # arcsec per micron psf_fwhm_um = 10.3 # microns psf_fwhm = plate_scale * psf_fwhm_um * ur.arcsec pixel_size = plate_scale * 10 * ur.arcsec if diag: print('Telescope Configuration {}'.format(version)) print('Name: {}'.format(name)) print('Entrance Pupil diameter {}'.format(diameter)) print('Optical Efficiency {}'.format(efficiency)) print('PSF FWHM {}'.format(psf_fwhm)) print('Pixel size {}'.format(pixel_size)) print('Effective Aperture {}'.format(diameter*(efficiency)**0.5)) print('Effective Area {}'.format( efficiency * pi * (0.5*diameter)**2)) return diameter, qe, psf_fwhm, pixel_size, efficiency def load_qe(**kwargs): """ Loads the detector QE and returns the values. band = 1 (default, 180-220 nm) band = 2 (260-320 nm) band = 3 (340-380 nm) Syntax: wave, qe = load_qe(band = 1) """ import astropy.units as ur import numpy as np band = kwargs.pop('band', 1) diag = kwargs.pop('diag', False) if band == 1: infile = os.path.join(datadir, 'detector_180_220nm.csv') if band == 2: infile = os.path.join(datadir, 'detector_260_300nm.csv') if band == 3: infile = os.path.join(datadir, 'detector_340_380nm.csv') f = open(infile, 'r') header = True qe = {} set = False for line in f: if header: header = False continue fields = line.split(',') if not set: wave = float(fields[0]) qe = float(fields[3]) set = True else: wave = np.append(wave, float(fields[0])) qe = np.append(qe, float(fields[3])) f.close() # Give wavelength a unit wave *= ur.nm if diag: print('Detector Q.E. loader') print('Band {} has input file {}'.format(band, infile)) return wave, qe / 100. def load_reflectivity(**kwargs): """ Loads the optics reflectivity and returns the values. Syntax: wave, reflectivity = load_reflectivity() """ import astropy.units as ur import numpy as np diag = kwargs.pop('diag', False) infile = os.path.join(datadir, 'al_mgf2_mirror_coatings.csv') f = open(infile, 'r') header = True qe = {} set = False for line in f: if header: header = False continue fields = line.split(',') if not set: wave = float(fields[0]) reflectivity = float(fields[1]) set = True else: wave = np.append(wave, float(fields[0])) reflectivity = np.append(reflectivity, float(fields[1])) f.close() # Give wavelength a unit wave *= ur.nm if diag: print('Optics reflectivity loader') print('Input file {}'.format(infile)) return wave, reflectivity def load_redfilter(**kwargs): """ Loads the detector QE and returns the values. band = 1 (default, 180-220 nm) band = 2 (260-320 nm) Syntax: wave, transmission = load_redfilter(band=1) """ import astropy.units as ur import numpy as np band = kwargs.pop('band', 1) diag = kwargs.pop('diag', False) light = kwargs.pop('light', True) if light: infile = os.path.join(datadir, 'duet{}_filter_light.csv'.format(band)) else: infile = os.path.join(datadir, 'duet{}_filter.csv'.format(band)) f = open(infile, 'r') header = True qe = {} set = False for line in f: if header: if (line.startswith('Wavelength')) or ('%T' in line): header = False continue fields = line.split(',') if not set: wave = float(fields[0]) transmission = float(fields[1]) set = True else: wave = np.append(wave, float(fields[0])) transmission = np.append(transmission, float(fields[1])) f.close() # Give wavelength a unit wave *= ur.nm if diag: print('Red filter loader') print('Band {} has input file {}'.format(band, infile)) return wave, transmission / 100. def apply_filters(wave, spec, **kwargs): """ Loads the detector QE and returns the values. band = 1 (default, 180-220 nm) band = 2 (260-320 nm) Syntax: wave, transmission = load_redfilter(band=1) """ from .apply_transmission import apply_trans # Load filters ref_wave, reflectivity = load_reflectivity(**kwargs) qe_wave, qe = load_qe(**kwargs) red_wave, red_trans = load_redfilter(**kwargs) ref_flux = apply_trans(wave, spec, ref_wave, reflectivity/100.) qe_flux = apply_trans(wave, ref_flux, qe_wave, qe) band_flux = apply_trans(wave, qe_flux, red_wave, red_trans) return band_flux
0
0
0
43d9adbbb5040d1c28b04d0a61b25bd07c383123
48
py
Python
collada_wt/__init__.py
charlie9578/wind-turbine-kml
297b3d25672e82456485387bbb4e9a97873cf136
[ "BSD-3-Clause" ]
null
null
null
collada_wt/__init__.py
charlie9578/wind-turbine-kml
297b3d25672e82456485387bbb4e9a97873cf136
[ "BSD-3-Clause" ]
null
null
null
collada_wt/__init__.py
charlie9578/wind-turbine-kml
297b3d25672e82456485387bbb4e9a97873cf136
[ "BSD-3-Clause" ]
null
null
null
from collada_wt.collada_wt import create_turbine
48
48
0.916667
from collada_wt.collada_wt import create_turbine
0
0
0
056b231605a31182c39245326f875993e680cc1d
4,073
py
Python
model/backbone.py
PaperCodeReview/DETR-TF
8f9fc3e06c20269044967718847c794606e25d10
[ "MIT" ]
3
2020-10-01T10:15:46.000Z
2021-04-20T03:33:00.000Z
model/backbone.py
PaperCodeReview/DETR-TF
8f9fc3e06c20269044967718847c794606e25d10
[ "MIT" ]
null
null
null
model/backbone.py
PaperCodeReview/DETR-TF
8f9fc3e06c20269044967718847c794606e25d10
[ "MIT" ]
null
null
null
from typing import Dict import tensorflow as tf from model.position_encoding import build_position_encoding
37.027273
101
0.558802
from typing import Dict import tensorflow as tf from model.position_encoding import build_position_encoding class FrozenBatchNorm2D(tf.keras.layers.Layer): def __init__(self, **kwargs): super(FrozenBatchNorm2D, self).__init__(**kwargs) def build(self, input_shape): self.weight = self.add_weight( name="weight", shape=[input_shape[-1]], initializer="ones", trainable=False ) self.bias = self.add_weight( name="bias", shape=[input_shape[-1]], initializer="zeros", trainable=False ) self.running_mean = self.add_weight( name="running_mean", shape=[input_shape[-1]], initializer="zeros", trainable=False ) self.running_var = self.add_weight( name="running_var", shape=[input_shape[-1]], initializer="ones", trainable=False ) def call(self, x): # move reshapes to the beginning # to make it fuser-friendly w = tf.reshape(self.weight, (1, 1, 1, -1)) b = tf.reshape(self.bias, (1, 1, 1, -1)) rv = tf.reshape(self.running_var, (1, 1, 1, -1)) rm = tf.reshape(self.running_mean, (1, 1, 1, -1)) eps = 1e-5 scale = w * tf.math.rsqrt(rv + eps) bias = b - rm * scale return x * scale + bias class BackboneBase(tf.keras.Model): def __init__(self, backbone: tf.keras.Model, train_backbone: bool, num_channels: int, return_interm_layers: bool, **kwargs): super(BackboneBase, self).__init__(**kwargs) for layer in backbone.layers: if not train_backbone: layer.trainable = False self.body = backbone self.num_channels = num_channels def call(self, inputs: Dict): xs = self.body(inputs['img']) out = {} for name, x in xs.items(): m = inputs['mask'] assert m is not None m = tf.cast(m, tf.float32) mask = tf.cast(tf.image.resize(m, x.shape[1:-1], method='nearest'), tf.bool) out[name] = {'img': x, 'mask': mask} return out class Backbone(BackboneBase): def __init__(self, name: str, train_backbone: bool, return_interm_layers: bool, dilation: bool, **kwargs): if name == 'resnet50': from model.resnet import ResNet50Backbone as b elif name == 'resnet101': from model.resnet import ResNet101Backbone as b backbone = b(return_interm_layers=return_interm_layers, replace_stride_with_dilation=[False, False, dilation]) num_channels = 512 if name in ['resnet18', 'resnet34'] else 2048 super(Backbone, self).__init__(backbone, train_backbone, num_channels, return_interm_layers) class Joiner(tf.keras.Model): def __init__(self, backbone: tf.keras.Model, position_embedding: tf.keras.Model, **kwargs): super(Joiner, self).__init__(**kwargs) self.backbone = backbone self.position_embedding = position_embedding def call(self, inputs): xs = self.backbone(inputs) out = [] pos = [] for name, x in xs.items(): out.append((name, x)) pos.append((name, tf.cast(self.position_embedding(x), tf.float32))) return out, pos def build_backbone(args): position_embedding = build_position_encoding(args) train_backbone = args.lr_backbone > 0 return_interm_layers = args.masks backbone = Backbone(args.backbone, train_backbone, return_interm_layers, args.dilation) model = Joiner(backbone, position_embedding) model.num_channels = backbone.num_channels return model
3,537
56
360
9e39e0c0c35e473517bcf3aa9aba3fd648b29f77
472
py
Python
urls.py
zachsnyder1/geopost
067c79b24deb0b99477513c5d684f6ac92d60dbe
[ "MIT" ]
1
2016-04-22T20:35:31.000Z
2016-04-22T20:35:31.000Z
urls.py
zachsnyder1/geopost
067c79b24deb0b99477513c5d684f6ac92d60dbe
[ "MIT" ]
null
null
null
urls.py
zachsnyder1/geopost
067c79b24deb0b99477513c5d684f6ac92d60dbe
[ "MIT" ]
null
null
null
from django.urls import re_path from . import views urlpatterns = [ re_path(r'^$', views.Home.as_view(), name='geopost_home'), re_path(r'^entry/$', views.Entry.as_view(), name='geopost_entry'), re_path(r'^photo/(?P<entry_uuid>[0-9A-Fa-f-]+)$', views.photo, name="geopost_photo"), re_path(r'^delete/$', views.delete, name='geopost_delete'), re_path(r'^vantechy/$', views.vantechy, name='geopost_vantechy') ]
36.307692
74
0.612288
from django.urls import re_path from . import views urlpatterns = [ re_path(r'^$', views.Home.as_view(), name='geopost_home'), re_path(r'^entry/$', views.Entry.as_view(), name='geopost_entry'), re_path(r'^photo/(?P<entry_uuid>[0-9A-Fa-f-]+)$', views.photo, name="geopost_photo"), re_path(r'^delete/$', views.delete, name='geopost_delete'), re_path(r'^vantechy/$', views.vantechy, name='geopost_vantechy') ]
0
0
0
1dc2c031015cfc8534eb01331cac24b95caf681f
2,752
py
Python
flaskexerc/deptoDAO.py
adrianpastore/LoginDS2
ea126fadd31c97ffea048a3a85ebd45f9c383ad9
[ "MIT" ]
null
null
null
flaskexerc/deptoDAO.py
adrianpastore/LoginDS2
ea126fadd31c97ffea048a3a85ebd45f9c383ad9
[ "MIT" ]
null
null
null
flaskexerc/deptoDAO.py
adrianpastore/LoginDS2
ea126fadd31c97ffea048a3a85ebd45f9c383ad9
[ "MIT" ]
null
null
null
from depto import departamento import psycopg2 #except ValueError: # print('Valor não encontrado.') #except psycopg2.Error as e: # print(e.pgerror)
37.69863
180
0.555959
from depto import departamento import psycopg2 class deptoDao: def __init__(self): self._dados_con = "dbname=ds2aula host=localhost user=postgres password=postgres port=5432" def inserir(self, departamento): with psycopg2.connect(self._dados_con) as conn: cur = conn.cursor() sql = cur.execute('INSERT INTO "departamento" (nome, "dataHoraAtualizacao") VALUES (%s, now()) returning codDepartamento', [departamento.nome]) adicionado = cur.fetchone() departamento.codDepartamento = adicionado[0] conn.commit() cur.close() def excluir(self, cod): #try: with psycopg2.connect(self._dados_con) as conn: cur = conn.cursor() sql = cur.execute('DELETE FROM "departamento" WHERE "codDepartamento" = (%s)',[cod]) conn.commit() cur.close() #except ValueError: # print('Valor não encontrado.') def alterar(self, departamento): #try: with psycopg2.connect(self._dados_con) as conn: cur = conn.cursor() sql = cur.execute('UPDATE "departamento" SET nome = %s, "dataAtualizacao" = now() WHERE "codDepartamento" = (%s)',[departamento.nome, departamento.codDepartamento]) conn.commit() cur.close() #except psycopg2.Error as e: # print(e.pgerror) def buscar(self, cod): #try: with psycopg2.connect(self._dados_con) as conn: cur = conn.cursor() sql = cur.execute('SELECT * FROM "departamento" WHERE "codDepartamento" = (%s)',[cod]) busca = cur.fetchall() Departamento = departamento(busca[0][1]) Departamento.codDept = cod cur.close() return Departamento #except Exception: # print('Deu ruim') # raise e def salvar(self, departamento): newDao = deptoDao() if (departamento.codDepartamento != None): print('Alterando departamento...') newDao.alterar(departamento) print('Alterando com sucesso!') else: print('Inserindo departamento...') newDao.inserir(departamento) print('Inserido com sucesso!') def listar(self): vet = [] with psycopg2.connect(self._dados_con) as conn: cur = conn.cursor() cur.execute('SELECT * FROM "departamento"') for linha in cur.fetchall(): depto = departamento(linha[1]) depto.codDept = int(linha[0]) vet.append(depto) cur.close() return vet
2,357
-6
215
2d9493708a911e3f5dcfd12ee156d4f59611ca4e
72
py
Python
datasette/version.py
jefftriplett/datasette
1a30fc259205df736daf068c57a0a6ae2c21ffa9
[ "Apache-2.0" ]
1
2020-11-03T17:40:11.000Z
2020-11-03T17:40:11.000Z
datasette/version.py
Quentinchampenois/datasette
13d1228d80c91d382a05b1a9549ed02c300ef851
[ "Apache-2.0" ]
null
null
null
datasette/version.py
Quentinchampenois/datasette
13d1228d80c91d382a05b1a9549ed02c300ef851
[ "Apache-2.0" ]
null
null
null
__version__ = "0.51.1" __version_info__ = tuple(__version__.split("."))
24
48
0.722222
__version__ = "0.51.1" __version_info__ = tuple(__version__.split("."))
0
0
0
480bbce3a19feff8809ef78418436457fe3a997c
1,994
py
Python
rmrb/rmrb_daemon/modules/xorg_monitor.py
fjfhccfkuk/h_s_x_r_m_r_b_python
46fe249b1b71f1245296c8b2dbd6e7c29dadade4
[ "Unlicense" ]
null
null
null
rmrb/rmrb_daemon/modules/xorg_monitor.py
fjfhccfkuk/h_s_x_r_m_r_b_python
46fe249b1b71f1245296c8b2dbd6e7c29dadade4
[ "Unlicense" ]
null
null
null
rmrb/rmrb_daemon/modules/xorg_monitor.py
fjfhccfkuk/h_s_x_r_m_r_b_python
46fe249b1b71f1245296c8b2dbd6e7c29dadade4
[ "Unlicense" ]
null
null
null
#!/usr/bin/env python
23.186047
103
0.498495
#!/usr/bin/env python def __get_xorg_pid(): pid=-1; try: import os; pid = os.popen('ps aux | grep "/usr/bin/X" | grep -v "grep" | awk \'{print $2}\'').read(); # print "__get_xorg_pid. pid:" + str(pid); except: pid=-1 return pid; def __get_vlc_pid(): pid = -1; try: import os; pid = os.popen('ps aux | grep "vlc" | grep "sh" | grep -v "grep" | awk \'{print $2}\'').read(); # print "__get_vlc_pid. pid:" + str(pid); except: pid = -1 return pid; def __get_xorg_socket_count(): count=0 try: import os; while True: xorgPid = __get_xorg_pid() # print "xorg pid:" + xorgPid if xorgPid == "": break; xorgPid = xorgPid.replace("\n", ""); cmd = "sudo lsof -p %s" % xorgPid + " | grep socket | wc -l" ret = os.popen(cmd).read(); ret = ret.replace("\n", "") if ret == "": break; tmpInt = int(ret) count = tmpInt; break; except Exception,e: print "excp:" + e.message count=0; return count; def __do_kill_vlc(): try: import os xorg_count = __get_xorg_socket_count() #MAX_XORG_CONT=210 if xorg_count >= 210: pid = __get_vlc_pid() cmd = "sudo kill -9 %s" % pid os.popen(cmd).read() except Exception, e: print "__do_kill_vlc excp:" + e.message return; def do_monitor_vlc(): __do_kill_vlc() def debug_xorg_monitor(): retStr = "sorry,nothing" try: count = __get_xorg_socket_count() retStr = "xorg_socket_count:[%d" % count + "]"; xorg_pid = __get_xorg_pid(); retStr += "xorg_pid:[%s" % xorg_pid + "]"; vlc_pid = __get_vlc_pid() retStr += " vlc_pid:[%s" % vlc_pid + "]"; except Exception,e: print "" return retStr.replace("\n", "");
1,828
0
138
91571235a6078c3ed7b0317752d9708a8b1d8915
709
py
Python
setup.py
constantinius/fabrant
c91a3594721a707a58e8fe5aa53ffbc5766c33e8
[ "MIT" ]
null
null
null
setup.py
constantinius/fabrant
c91a3594721a707a58e8fe5aa53ffbc5766c33e8
[ "MIT" ]
null
null
null
setup.py
constantinius/fabrant
c91a3594721a707a58e8fe5aa53ffbc5766c33e8
[ "MIT" ]
null
null
null
from setuptools import setup import fabrant version = fabrant.__version__ setup( name='fabrant', version=version, description="Easy handling of vagrant hosts within fabric", long_description=open("README.rst").read(), author='Fabian Schindler', author_email='fabian.schindler@eox.at', license='MIT', url='https://github.com/constantinius/fabrant', py_modules=['fabrant'], classifiers=[ "Programming Language :: Python :: 2", "Programming Language :: Python :: 3", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Topic :: Software Development :: Libraries", "Topic :: Utilities", ] )
26.259259
63
0.643159
from setuptools import setup import fabrant version = fabrant.__version__ setup( name='fabrant', version=version, description="Easy handling of vagrant hosts within fabric", long_description=open("README.rst").read(), author='Fabian Schindler', author_email='fabian.schindler@eox.at', license='MIT', url='https://github.com/constantinius/fabrant', py_modules=['fabrant'], classifiers=[ "Programming Language :: Python :: 2", "Programming Language :: Python :: 3", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Topic :: Software Development :: Libraries", "Topic :: Utilities", ] )
0
0
0
81d5d2a9dcca54b4f49a512570a95264c0ef66f2
6,500
py
Python
lab06.py
ucsb-cs8-m17/lab06_starter_code
9c91faa04399e22f79c8473823a6ab0756bf097e
[ "MIT" ]
null
null
null
lab06.py
ucsb-cs8-m17/lab06_starter_code
9c91faa04399e22f79c8473823a6ab0756bf097e
[ "MIT" ]
null
null
null
lab06.py
ucsb-cs8-m17/lab06_starter_code
9c91faa04399e22f79c8473823a6ab0756bf097e
[ "MIT" ]
null
null
null
# tests for lab06, UCSB, CMPSC 8, Summer 2017 # Instructor: P. Conrad # Student(s): (insert name here) # @@@ This next function has an error. Can you fix it? # @@@ Hint: you might need to use the "and" or "or" keywords of python # @@@ and modify the if test. def notStringContainingE(word): """ return True when word is a string that contains no letter 'e' (or 'E') It should work both for lower and upper case. When word isn't a string, return True (because it is not a string contaning an E) """ if not(type(word)==str): return True for letter in word: if letter == 'e': return False return True #@@@ Here is a function definition that doesn't pass one or more of its tests. #@@@ Fix it! (Also try to understand why it is wrong) def hasNoX(word): """ return True when word is a string that contains no letter 'x' (and no letter 'X') It should work both for lower and upper case. When word isn't a string, return True (because it is not a string with an x in that case!) """ if (type(word)!=str): return True for letter in word: if letter != 'x' and letter != 'X': return True return False # The following function is provided for you as an example # of how to write a Python function that checks if EVERY element # of a list has some property. def isNumber(item): " return True if item is of type int or type float otherwise False " return "stub" # HINT You already did this on in a previous lab def isListOfNumber(theList): """ indicates whether value of argument is a list of only simple numbers (int or float) Note: empty list should return True---it doesn't contain anything that ISN'T a simple number theList can be anything, and the function will return either True or False. """ if not type(theList)==list: return False # it isn't really a list! # Now we can assume that theList really is a list # But is it a list of all numerics? # If we find even a single item that isn't numeric, we can # immediately return false. for item in theList: if not isNumber(item): return False # If we get here and didn't return yet, then we know everything # in the list is a simple numeric! # (i.e. there isn't anything in the list that is NOT simple numeric) return True ### @@@ NOW, write a function called isListOfIntegers(x) ### @@@ The function should take anything as an argument, and produce True ### @@@ only if argument is a list consisting of only int values ### @@@ similar to the comments above the other function definitions in this file ### @@@ See previous function for a clue as to how to proceed ### @@@ Note that empty list should return True (for same reasoning as in the previous function) def isListOfIntegers(theList): """ indicates whether value of argument is a list of only int Note: empty list should return True because it doesn't contain anything that ISN'T int theList can be anything, and it will return either True or False. """ return "stub" ### @@@ NOW, write a function called isListOfEvenIntegers(x) ### @@@ The function should take anything as an argument, and produce True ### @@@ only if argument is a list consisting of only int values that ### @@@ are even. See previous function for a clue as to how to proceed ### @@@ Note that empty list should return True ### @@@ HINT: to avoid problems when using the % operator ### @@@ (that's another hint), use your isListOfIntegers function first. ### @@@ This is sort of like the way that isListOfSimpleNumeric ### @@@ checks first to see if theList is a list. ### @@@ That way, you kill two birds with one stone---you immediately ### @@@ know that you are working with a list of integers, and you ### @@@ only have to worry about whether all of them are even or not. def isListOfEvenIntegers(theList): """ indicates whether value of argument is a list of only even integers Note: empty list should return True---it doesn't contain anything that ISN'T an even integer theList can be anything, and it will return either True or False. """ return "stub" ### @@@ NOW, write a function called totalLength(x) ### @@@ Use the accumulator pattern to compute the total length ### @@@ of all the words in a string ### @@@ The accumulator will be an integer that starts at zero. ### @@@ You'll use a for loop to look at each item in the list def totalLength(listOfStrings): """ returns total length of all the strings in a list of strings, False if argument not a list, 0 for empty list """ return "stub" ### @@@ NOW, write a function called lengthOfEach ### @@@ Use the accumulator pattern to make a list of each of ### @@@ the lengths of the words ### @@@ You'll use a for loop, starting the list as an empty list def lengthOfEach(listOfStrings): """ given list of strings, returns list of ints correponding to length of each string, otherwise False. empty list yields empty list. """ return "stub" ### @@@ NOW, write a function called countEvens ### @@@ Use the accumulator pattern, starting at zero ### @@@ and add one each time you find an even number def countEvens(listOfInts): """ given a list of ints, counts even ints in list. Otherwise, returns False. returns 0 for empty list, or for a list of ints with no evens in it. """ return "stub" ### @@@ NOW, write a function called onlyEvens ### @@@ Use the accumulator pattern, starting with an empty list. ### @@@ Use a for loop to traverse the list. Each time you find an item ### @@@ if it isn't an int, return False---otherwise, if it is even, add ### @@@ it to your accumulated list. def onlyEvens(listOfInts): """ given a list of ints, return new list with only the even ones. Otherwise, return false. empty list yields empty list """ return "stub"
28.888889
96
0.667385
# tests for lab06, UCSB, CMPSC 8, Summer 2017 # Instructor: P. Conrad # Student(s): (insert name here) # @@@ This next function has an error. Can you fix it? # @@@ Hint: you might need to use the "and" or "or" keywords of python # @@@ and modify the if test. def notStringContainingE(word): """ return True when word is a string that contains no letter 'e' (or 'E') It should work both for lower and upper case. When word isn't a string, return True (because it is not a string contaning an E) """ if not(type(word)==str): return True for letter in word: if letter == 'e': return False return True #@@@ Here is a function definition that doesn't pass one or more of its tests. #@@@ Fix it! (Also try to understand why it is wrong) def hasNoX(word): """ return True when word is a string that contains no letter 'x' (and no letter 'X') It should work both for lower and upper case. When word isn't a string, return True (because it is not a string with an x in that case!) """ if (type(word)!=str): return True for letter in word: if letter != 'x' and letter != 'X': return True return False # The following function is provided for you as an example # of how to write a Python function that checks if EVERY element # of a list has some property. def isNumber(item): " return True if item is of type int or type float otherwise False " return "stub" # HINT You already did this on in a previous lab def isListOfNumber(theList): """ indicates whether value of argument is a list of only simple numbers (int or float) Note: empty list should return True---it doesn't contain anything that ISN'T a simple number theList can be anything, and the function will return either True or False. """ if not type(theList)==list: return False # it isn't really a list! # Now we can assume that theList really is a list # But is it a list of all numerics? # If we find even a single item that isn't numeric, we can # immediately return false. for item in theList: if not isNumber(item): return False # If we get here and didn't return yet, then we know everything # in the list is a simple numeric! # (i.e. there isn't anything in the list that is NOT simple numeric) return True ### @@@ NOW, write a function called isListOfIntegers(x) ### @@@ The function should take anything as an argument, and produce True ### @@@ only if argument is a list consisting of only int values ### @@@ similar to the comments above the other function definitions in this file ### @@@ See previous function for a clue as to how to proceed ### @@@ Note that empty list should return True (for same reasoning as in the previous function) def isListOfIntegers(theList): """ indicates whether value of argument is a list of only int Note: empty list should return True because it doesn't contain anything that ISN'T int theList can be anything, and it will return either True or False. """ return "stub" ### @@@ NOW, write a function called isListOfEvenIntegers(x) ### @@@ The function should take anything as an argument, and produce True ### @@@ only if argument is a list consisting of only int values that ### @@@ are even. See previous function for a clue as to how to proceed ### @@@ Note that empty list should return True ### @@@ HINT: to avoid problems when using the % operator ### @@@ (that's another hint), use your isListOfIntegers function first. ### @@@ This is sort of like the way that isListOfSimpleNumeric ### @@@ checks first to see if theList is a list. ### @@@ That way, you kill two birds with one stone---you immediately ### @@@ know that you are working with a list of integers, and you ### @@@ only have to worry about whether all of them are even or not. def isListOfEvenIntegers(theList): """ indicates whether value of argument is a list of only even integers Note: empty list should return True---it doesn't contain anything that ISN'T an even integer theList can be anything, and it will return either True or False. """ return "stub" ### @@@ NOW, write a function called totalLength(x) ### @@@ Use the accumulator pattern to compute the total length ### @@@ of all the words in a string ### @@@ The accumulator will be an integer that starts at zero. ### @@@ You'll use a for loop to look at each item in the list def totalLength(listOfStrings): """ returns total length of all the strings in a list of strings, False if argument not a list, 0 for empty list """ return "stub" ### @@@ NOW, write a function called lengthOfEach ### @@@ Use the accumulator pattern to make a list of each of ### @@@ the lengths of the words ### @@@ You'll use a for loop, starting the list as an empty list def lengthOfEach(listOfStrings): """ given list of strings, returns list of ints correponding to length of each string, otherwise False. empty list yields empty list. """ return "stub" ### @@@ NOW, write a function called countEvens ### @@@ Use the accumulator pattern, starting at zero ### @@@ and add one each time you find an even number def countEvens(listOfInts): """ given a list of ints, counts even ints in list. Otherwise, returns False. returns 0 for empty list, or for a list of ints with no evens in it. """ return "stub" ### @@@ NOW, write a function called onlyEvens ### @@@ Use the accumulator pattern, starting with an empty list. ### @@@ Use a for loop to traverse the list. Each time you find an item ### @@@ if it isn't an int, return False---otherwise, if it is even, add ### @@@ it to your accumulated list. def onlyEvens(listOfInts): """ given a list of ints, return new list with only the even ones. Otherwise, return false. empty list yields empty list """ return "stub" def test_onlyEvens_1(): assert onlyEvens('1')==False def test_onlyEvens_1(): assert onlyEvens(['a','b'])==False def test_onlyEvens_1(): assert onlyEvens([])==[] def test_onlyEvens_1(): assert onlyEvens([1,2,3,4,5])==[2, 4] def test_onlyEvens_1(): assert onlyEvens([1])==[] def test_onlyEvens_1(): assert onlyEvens([1,3])==[] def test_onlyEvens_1(): assert onlyEvens([3,2])==[2] def test_onlyEvens_1(): assert onlyEvens([2,3,4])==[2, 4]
284
0
185
ffa97e68a616803fb3c0b4d35e6fca09a9443725
7,791
py
Python
tests/unit/test_taxonomy.py
ianbakst/tamr-client
ae7a6190a2251d31f973f9d5a7170ac5dc097f97
[ "Apache-2.0" ]
9
2019-08-13T11:07:06.000Z
2022-01-14T18:15:13.000Z
tests/unit/test_taxonomy.py
ianbakst/tamr-client
ae7a6190a2251d31f973f9d5a7170ac5dc097f97
[ "Apache-2.0" ]
166
2019-08-09T18:51:05.000Z
2021-12-02T15:24:15.000Z
tests/unit/test_taxonomy.py
ianbakst/tamr-client
ae7a6190a2251d31f973f9d5a7170ac5dc097f97
[ "Apache-2.0" ]
21
2019-08-12T15:37:31.000Z
2021-06-15T14:06:23.000Z
from functools import partial import json from unittest import TestCase from requests import HTTPError import responses from tamr_unify_client import Client from tamr_unify_client.auth import UsernamePasswordAuth from tamr_unify_client.categorization.category.collection import CategoryCollection from tamr_unify_client.categorization.category.resource import Category, CategorySpec from tamr_unify_client.categorization.taxonomy import Taxonomy from tamr_unify_client.project.resource import Project
34.626667
88
0.586061
from functools import partial import json from unittest import TestCase from requests import HTTPError import responses from tamr_unify_client import Client from tamr_unify_client.auth import UsernamePasswordAuth from tamr_unify_client.categorization.category.collection import CategoryCollection from tamr_unify_client.categorization.category.resource import Category, CategorySpec from tamr_unify_client.categorization.taxonomy import Taxonomy from tamr_unify_client.project.resource import Project class TestTaxonomy(TestCase): def setUp(self): auth = UsernamePasswordAuth("username", "password") self.tamr = Client(auth) @responses.activate def test_categories(self): cat_url = ( "http://localhost:9100/api/versioned/v1/projects/1/taxonomy/categories" ) responses.add(responses.GET, cat_url, json=self._categories_json) t = Taxonomy(self.tamr, self._taxonomy_json) c = list(t.categories()) cats = [ Category(self.tamr, self._categories_json[0]), Category(self.tamr, self._categories_json[1]), ] self.assertEqual(repr(c), repr(cats)) @responses.activate def test_by_id(self): cat_url = ( "http://localhost:9100/api/versioned/v1/projects/1/taxonomy/categories/1" ) responses.add(responses.GET, cat_url, json=self._categories_json[0]) c = CategoryCollection(self.tamr, "projects/1/taxonomy/categories") r = c.by_relative_id("projects/1/taxonomy/categories/1") self.assertEqual(r._data, self._categories_json[0]) r = c.by_resource_id("1") self.assertEqual(r._data, self._categories_json[0]) self.assertRaises(NotImplementedError, c.by_external_id, "1") @responses.activate def test_create(self): post_url = ( "http://localhost:9100/api/versioned/v1/projects/1/taxonomy/categories" ) responses.add(responses.POST, post_url, json=self._categories_json[0]) alias = "projects/1/taxonomy/categories" coll = CategoryCollection(self.tamr, alias) creation_spec = { "name": self._categories_json[0]["name"], "path": self._categories_json[0]["path"], } c = coll.create(creation_spec) self.assertEqual(alias + "/1", c.relative_id) @responses.activate def test_create_from_spec(self): def create_callback(request, snoop): snoop["payload"] = json.loads(request.body) return 201, {}, json.dumps(self._categories_json[0]) post_url = ( "http://localhost:9100/api/versioned/v1/projects/1/taxonomy/categories" ) snoop_dict = {} responses.add_callback( responses.POST, post_url, partial(create_callback, snoop=snoop_dict) ) alias = "projects/1/taxonomy/categories" coll = CategoryCollection(self.tamr, alias) json_spec = { "name": self._categories_json[0]["name"], "path": self._categories_json[0]["path"], } spec = ( CategorySpec.new() .with_name(self._categories_json[0]["name"]) .with_path(self._categories_json[0]["path"]) ) coll.create(spec.to_dict()) self.assertEqual(snoop_dict["payload"], json_spec) @responses.activate def test_bulk_create(self): def create_callback(request, snoop): snoop["payload"] = request.body return 200, {}, json.dumps(self._bulk_json) post_url = ( "http://localhost:9100/api/versioned/v1/projects/1/taxonomy/categories:bulk" ) snoop_dict = {} responses.add_callback( responses.POST, post_url, partial(create_callback, snoop=snoop_dict) ) alias = "projects/1/taxonomy/categories" coll = CategoryCollection(self.tamr, alias) creation_specs = [ { "name": self._categories_json[0]["name"], "path": self._categories_json[0]["path"], }, { "name": self._categories_json[1]["name"], "path": self._categories_json[1]["path"], }, ] j = coll.bulk_create(creation_specs) self.assertEqual(j, self._bulk_json) sent = [] for line in snoop_dict["payload"].split(b"\n"): sent.append(json.loads(line)) self.assertEqual(sent, creation_specs) @responses.activate def test_delete(self): url = "http://localhost:9100/api/versioned/v1/projects/1/taxonomy" responses.add(responses.GET, url, json=self._taxonomy_json) responses.add(responses.DELETE, url, status=204) responses.add(responses.GET, url, status=404) project = Project( self.tamr, {"type": "CATEGORIZATION"}, "projects/1" ).as_categorization() taxonomy = project.taxonomy() self.assertEqual(taxonomy._data, self._taxonomy_json) response = taxonomy.delete() self.assertEqual(response.status_code, 204) self.assertRaises(HTTPError, project.taxonomy) @responses.activate def test_delete_category(self): url = "http://localhost:9100/api/versioned/v1/projects/1/taxonomy/categories/1" responses.add(responses.GET, url, json=self._categories_json[0]) responses.add(responses.DELETE, url, status=204) responses.add(responses.GET, url, status=404) categories = CategoryCollection(self.tamr, "projects/1/taxonomy/categories") category = categories.by_resource_id("1") self.assertEqual(category._data, self._categories_json[0]) response = category.delete() self.assertEqual(response.status_code, 204) self.assertRaises(HTTPError, lambda: categories.by_resource_id("1")) _taxonomy_json = { "id": "unify://unified-data/v1/projects/1/taxonomy", "name": "Test Taxonomy", "created": { "username": "admin", "time": "2019-07-12T13:09:14.981Z", "version": "405", }, "lastModified": { "username": "admin", "time": "2019-07-12T13:09:14.981Z", "version": "405", }, "relativeId": "projects/1/taxonomy", } _categories_json = [ { "id": "unify://unified-data/v1/projects/1/taxonomy/categories/1", "name": "t1", "description": "", "parent": "", "path": ["t1"], "created": { "username": "admin", "time": "2019-07-12T13:10:52.988Z", "version": "414", }, "lastModified": { "username": "admin", "time": "2019-07-12T13:10:52.988Z", "version": "414", }, "relativeId": "projects/1/taxonomy/categories/1", }, { "id": "unify://unified-data/v1/projects/1/taxonomy/categories/2", "name": "t2", "description": "", "parent": "unify://unified-data/v1/projects/1/taxonomy/categories/1", "path": ["t1", "t2"], "created": { "username": "admin", "time": "2019-07-12T13:51:20.600Z", "version": "419", }, "lastModified": { "username": "admin", "time": "2019-07-12T13:51:20.600Z", "version": "419", }, "relativeId": "projects/1/taxonomy/categories/2", }, ] _bulk_json = { "numCommandsProcessed": 2, "allCommandsSucceeded": True, "validationErrors": [], }
4,982
2,282
23
7369f037084a3962ddf0eee3df3221a505a6fe8d
1,619
py
Python
Wrapping/Generators/Python/Tests/FlatStructuringElement.py
ltmakela/ITK
21f48c6d98e21ecece09be16a747221d7094d8a9
[ "Apache-2.0" ]
4
2015-05-22T03:47:43.000Z
2016-06-16T20:57:21.000Z
Wrapping/Generators/Python/Tests/FlatStructuringElement.py
GEHC-Surgery/ITK
f5df62749e56c9036e5888cfed904032ba5fdfb7
[ "Apache-2.0" ]
null
null
null
Wrapping/Generators/Python/Tests/FlatStructuringElement.py
GEHC-Surgery/ITK
f5df62749e56c9036e5888cfed904032ba5fdfb7
[ "Apache-2.0" ]
9
2016-06-23T16:03:12.000Z
2022-03-31T09:25:08.000Z
#========================================================================== # # Copyright Insight Software Consortium # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0.txt # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # #==========================================================================*/ import itk from sys import argv, exit itk.auto_progress(2) if argv[2] == "Ball": print "Ball" strel = itk.FlatStructuringElement[2].Ball( int( argv[3] ) ) elif argv[2] == "Box": print "Box" strel = itk.FlatStructuringElement[2].Box( int( argv[3] ) ) elif argv[2] == "FromImage": print "FromImage" reader = itk.ImageFileReader.IUC2.New( FileName=argv[3] ) strel = itk.FlatStructuringElement[2].FromImageUC( reader.GetOutput() ) else: print "invalid arguement: " + argv[2] exit(1) img = strel.GetImageUC() size = itk.size( img ) for y in range(0, size.GetElement(1)): for x in range(0, size.GetElement(0)): if img.GetPixel( [x, y] ): print "X", else: print " ", print "\n", itk.write( img, argv[1] ) # writer = itk.ImageFileWriter.IUC2.New(FileName=argv[1], Input=img ) # itk.echo(writer) # writer.Update()
31.134615
77
0.622607
#========================================================================== # # Copyright Insight Software Consortium # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0.txt # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # #==========================================================================*/ import itk from sys import argv, exit itk.auto_progress(2) if argv[2] == "Ball": print "Ball" strel = itk.FlatStructuringElement[2].Ball( int( argv[3] ) ) elif argv[2] == "Box": print "Box" strel = itk.FlatStructuringElement[2].Box( int( argv[3] ) ) elif argv[2] == "FromImage": print "FromImage" reader = itk.ImageFileReader.IUC2.New( FileName=argv[3] ) strel = itk.FlatStructuringElement[2].FromImageUC( reader.GetOutput() ) else: print "invalid arguement: " + argv[2] exit(1) img = strel.GetImageUC() size = itk.size( img ) for y in range(0, size.GetElement(1)): for x in range(0, size.GetElement(0)): if img.GetPixel( [x, y] ): print "X", else: print " ", print "\n", itk.write( img, argv[1] ) # writer = itk.ImageFileWriter.IUC2.New(FileName=argv[1], Input=img ) # itk.echo(writer) # writer.Update()
0
0
0
e5f027cbb302d153a7c3344375fc208328785c24
145
py
Python
1071.py
barroslipe/urionlinejudge
a20d8199d9a92b30ea394a6c949967d2fc51aa34
[ "MIT" ]
null
null
null
1071.py
barroslipe/urionlinejudge
a20d8199d9a92b30ea394a6c949967d2fc51aa34
[ "MIT" ]
null
null
null
1071.py
barroslipe/urionlinejudge
a20d8199d9a92b30ea394a6c949967d2fc51aa34
[ "MIT" ]
null
null
null
x = int(input()) y = int(input()) if x > y: x, y = y, x soma = 0 for i in range(x+1, y, 1): if i%2 != 0: soma += i print(soma)
12.083333
26
0.448276
x = int(input()) y = int(input()) if x > y: x, y = y, x soma = 0 for i in range(x+1, y, 1): if i%2 != 0: soma += i print(soma)
0
0
0
a632fc8a11dc7f1808f06cdcb2bf2ece87cfe09f
2,554
py
Python
gethouse/models.py
Alvin-21/patanyumba
4084d8b25a1685fa3a1ce8a57f782fa01bc794cb
[ "MIT" ]
null
null
null
gethouse/models.py
Alvin-21/patanyumba
4084d8b25a1685fa3a1ce8a57f782fa01bc794cb
[ "MIT" ]
null
null
null
gethouse/models.py
Alvin-21/patanyumba
4084d8b25a1685fa3a1ce8a57f782fa01bc794cb
[ "MIT" ]
null
null
null
from django.db import models from cloudinary.models import CloudinaryField from django.contrib.auth.models import User # Create your models here.
29.697674
89
0.667189
from django.db import models from cloudinary.models import CloudinaryField from django.contrib.auth.models import User # Create your models here. class Amenities(models.Model): name = models.CharField(max_length=50) def __str__(self): return self.name class Accomodation(models.Model): PROPERTY_TYPE_VALUES = ( ('House', 'House'), ('Apartment', 'Apartment'), ) LEN_OF_STAY_VALUES = ( ('1 week', '1 week'), ('2 weeks', '2 weeks'), ('1 month', '1 month'), ('2 months', '2 months'), ('3 months', '3 months'), ('4 months', '4 months'), ('6 months', '6 months'), ('9 months', '9 months'), ('12 months +', '12 months +'), ) user = models.ForeignKey(User, on_delete=models.CASCADE) image = CloudinaryField('image', null=True) title = models.CharField(max_length=50) description = models.CharField(max_length=2000) address = models.CharField(max_length=150) type_of_property = models.CharField(choices=PROPERTY_TYPE_VALUES, max_length=100) rent = models.IntegerField() bedrooms = models.PositiveIntegerField() bathrooms = models.PositiveIntegerField() amenities = models.ManyToManyField(Amenities) number_of_residents = models.PositiveIntegerField() date_available = models.DateField() minimum_length_of_stay = models.CharField(choices=LEN_OF_STAY_VALUES, max_length=100) def __str__(self): return self.title def save_accom(self): self.save() def delete_accom(self): self.delete() @classmethod def search_by_address(cls, search_term): accomodation = cls.objects.filter(address__icontains=search_term) return accomodation @classmethod def get_accom_by_id(cls, accom_id): accom = cls.objects.get(id=accom_id) return accom class Profile(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE) first_name = models.CharField(max_length=100) last_name = models.CharField(max_length=100) image = CloudinaryField('image', null=True) bio = models.CharField(max_length=200) email = models.EmailField() number = models.CharField(max_length=10, blank=True) def __str__(self): return self.first_name + " " + self.last_name def save_profile(self): self.save() def delete_profile(self): self.delete() class SubscriptionRecipients(models.Model): name = models.CharField(max_length=30) email = models.EmailField()
389
1,920
92
85709feb51b43f2818c30daf6bbb587cb3a6b7ce
295
py
Python
file-response/main.py
Nivratti/fastapi
d3f8c750ae15201b50be80d998cfafe6e8d155e9
[ "Apache-2.0" ]
null
null
null
file-response/main.py
Nivratti/fastapi
d3f8c750ae15201b50be80d998cfafe6e8d155e9
[ "Apache-2.0" ]
null
null
null
file-response/main.py
Nivratti/fastapi
d3f8c750ae15201b50be80d998cfafe6e8d155e9
[ "Apache-2.0" ]
null
null
null
from fastapi import FastAPI from fastapi.responses import FileResponse app = FastAPI() @app.get("/")
24.583333
57
0.728814
from fastapi import FastAPI from fastapi.responses import FileResponse app = FastAPI() @app.get("/") async def main(): # sending it as a attachment # specify filename to send it as attachment some_file_path = "dog_bgr.png" return FileResponse(some_file_path, filename="f.png")
170
0
22
344ecc1b03332848b6d7b6ff0acbdf7d2641f9c7
1,283
py
Python
backend/tradersplatform/article_comment/serializers.py
ybedirhanpak/bounswe2019group1
9572fd307345b3f842c2c2ff4426857086484ed5
[ "MIT" ]
10
2019-02-14T14:53:49.000Z
2019-10-23T08:03:39.000Z
backend/tradersplatform/article_comment/serializers.py
ybedirhanpak/bounswe2019group1
9572fd307345b3f842c2c2ff4426857086484ed5
[ "MIT" ]
364
2019-02-14T14:50:12.000Z
2022-02-10T13:43:09.000Z
backend/tradersplatform/article_comment/serializers.py
bounswe/bounswe2019group1
9572fd307345b3f842c2c2ff4426857086484ed5
[ "MIT" ]
8
2019-05-05T20:04:31.000Z
2020-12-24T16:44:54.000Z
from rest_framework.serializers import ModelSerializer from article_comment.models import ArticleComment from myuser.serializers import TempUserListSerializer
24.207547
54
0.466095
from rest_framework.serializers import ModelSerializer from article_comment.models import ArticleComment from myuser.serializers import TempUserListSerializer class ArticleCommentCreateSerializer(ModelSerializer): class Meta: model = ArticleComment fields = [ 'id', 'text', 'user', 'article', 'created_date', ] class ArticleCommentUpdateSerializer(ModelSerializer): class Meta: model = ArticleComment fields = [ 'id', 'text', 'user', 'article', 'created_date', ] extra_kwargs = {"text": {"required": False}, "user": {"required": False}, "article": {"required": False}, "created_date": {"required": False}, } class ArticleCommentListSerializer(ModelSerializer): user = TempUserListSerializer() class Meta: model = ArticleComment fields = [ 'id', 'text', 'user', 'article', 'created_date', ]
0
1,051
69
ac43f58b8c8a982a75d5c10502ff59e958530ecc
6,556
py
Python
promt_tr/promt_tr.py
ffreemt/promt-tr-free
ff20b0f176f9611fa5a834af5aeaa9ef6ca3a3ee
[ "MIT" ]
null
null
null
promt_tr/promt_tr.py
ffreemt/promt-tr-free
ff20b0f176f9611fa5a834af5aeaa9ef6ca3a3ee
[ "MIT" ]
null
null
null
promt_tr/promt_tr.py
ffreemt/promt-tr-free
ff20b0f176f9611fa5a834af5aeaa9ef6ca3a3ee
[ "MIT" ]
null
null
null
''' promt translate for free as in beer ''' from typing import Any, Callable, Dict, Tuple import sys import logging import json from time import time from random import randint import pytest # type: ignore # import mock import urllib3 from ratelimit import limits, sleep_and_retry # type: ignore import requests from fuzzywuzzy import fuzz, process # type: ignore import coloredlogs # type: ignore from jmespath import search # type: ignore urllib3.disable_warnings() # logging.captureWarnings(True) # logging.getLogger('requests.packages.urllib3.connectionpool').level = 30 LOGGER = logging.getLogger(__name__) FMT = '%(filename)-14s[%(lineno)-3d] %(message)s [%(funcName)s]' coloredlogs.install(level=20, logger=LOGGER, fmt=FMT) # en-ar en-zhcn LANG_CODES = ( "ar,ca,zhcn,nl,fi,fr,de,el,he,hi,it,ja,kk,ko,pt,ru,es,tr,uk" ).split(',') + ['auto'] URL = ( 'https://www.online-translator.com/' 'services/soap.asmx/GetTranslation' ) UA = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_2) AppleWebKit/537.17 (KHTML, like Gecko) Chrome/24.0.1309.0 Safari/537.17' # noqa # HEADERS = {"User-Agent": UA} HEADERS = { 'Host': 'www.online-translator.com', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:70.0) Gecko/20100101 Firefox/70.0', 'Accept': 'application/json, text/javascript, */*; q=0.01', 'Accept-Language': 'zh-CN,zh;q=0.8,zh-TW;q=0.7,zh-HK;q=0.5,en-US;q=0.3,en;q=0.2', 'Content-Type': 'application/json; charset=utf-8', 'X-Requested-With': 'XMLHttpRequest', 'Origin': 'https://www.online-translator.com', # 'DNT': '1', 'Referer': 'https://www.online-translator.com/', } SESS = requests.Session() SESS.get('https://www.online-translator.com/', verify=0) def with_func_attrs(**attrs: Any) -> Callable: ''' with_func_attrs ''' return with_attrs @with_func_attrs(text='') def _promt_tr( text: str, from_lang: str = 'auto', to_lang: str = 'zh', timeout: Tuple[float, float] = (55, 66), ) -> Dict[str, str]: ''' promt_tr text = 'test one two three' from_lang = 'auto' to_lang = 'zh' timeout = (55, 66) ''' try: from_lang = from_lang.lower() except Exception as exc: # pragma: no cover LOGGER.warning("%s", exc) from_lang = 'auto' try: to_lang = to_lang.lower() except Exception as exc: # pragma: no cover LOGGER.warning("%s", exc) to_lang = 'zh' if from_lang in ['zh', 'chinese', 'zhongwen']: from_lang = 'zhcn' if to_lang in ['zh', 'chinese', 'zhongwen']: to_lang = 'zhcn' try: from_lang = process.extractOne(from_lang, LANG_CODES, scorer=fuzz.UWRatio)[0] # noqa except Exception as exc: # pragma: no cover LOGGER.warning("%s", exc) from_lang = 'en' try: to_lang = process.extractOne(to_lang, LANG_CODES, scorer=fuzz.UWRatio)[0] # noqa except Exception as exc: # pragma: no cover LOGGER.warning("%s", exc) to_lang = 'en' if from_lang == 'auto': from_lang = 'au' if to_lang == 'auto': # pragma: no cover to_lang = 'au' dir_code = f'{from_lang}-{to_lang}' data = { 'dirCode': dir_code, # 'dirCode': 'de-en', 'template': 'General', # 'text': 'Das sind drei Teste.', 'text': text, 'lang': 'en', 'limit': '3000', 'useAutoDetect': True, 'key': '123', 'ts': 'MainSite', 'tid': '', 'IsMobile': False } try: resp = SESS.post( # type: ignore # data # expected "Union[None, bytes, MutableMapping[str, str], IO[Any]] # noqa URL, # data=data2, data=json.dumps(data), headers=HEADERS, timeout=timeout, ) resp.raise_for_status() except Exception as exc: # pragma: no cover LOGGER.error('%s', exc) resp = requests.models.Response() resp._content = f'{{"errorCode": "{exc}"}}'.encode() resp.status_code = 499 try: jdata = resp.json() except Exception as exc: # pragma: no cover LOGGER.error('%s', exc) jdata = {'error': str(exc)} promt_tr.text = resp.text try: # res = search('[0].translations[0].text', jdata) res = search('d.result', jdata) except Exception as exc: # pragma: no cover LOGGER.error('%s', exc) res = {'error': str(exc)} return res @sleep_and_retry @limits(calls=30, period=20, raise_on_limit=True) # raise_on_limit probably superfluous def _rl_promt_tr(*args, **kwargs): ''' be nice and throttle''' LOGGER.info(' rate limiting 3 calls/2 secs... ') return _promt_tr(*args, **kwargs) @with_func_attrs(calls=0, call_tick=-1) def promt_tr(*args, **kwargs): ''' exempt first 200 calls from rate limiting ''' # increase calls unto 210 if promt_tr.calls < 210: promt_tr.calls += 1 # reset rate limit if the last call was 2 minutes ago tick = time() if tick - promt_tr.call_tick > 120: promt_tr.calls = 1 promt_tr.call_tick = tick if promt_tr.calls < 200: return _promt_tr(*args, **kwargs) return _rl_promt_tr(*args, **kwargs) @pytest.mark.parametrize( # 'to_lang', LANG_CODES 'to_lang', ['zh', 'de', 'fr', 'it', 'ko', 'ja', 'ru'] ) def test_sanity(to_lang): 'sanity test' numb = str(randint(1, 10000)) text = 'test ' + numb assert numb in promt_tr(text, to_lang=to_lang) def test_calls(): ''' test calls ''' _ = promt_tr('test ') calls = promt_tr.calls _ = promt_tr('test ') assert promt_tr.calls == calls + 1 def main(): # pragma: no cover ''' main ''' text = sys.argv[1:] text1 = '' if not text: print(' Provide something to translate, testing with some random text\n') text = 'test tihs and that' + str(randint(1, 1000)) text1 = 'test tihs and that' + str(randint(1, 1000)) print(f'{text} translated to:') for to_lang in ['zh', 'de', 'fr', ]: print(f'{to_lang}: {promt_tr(text, to_lang=to_lang)}') if not text1: print(f'{to_lang}: {promt_tr(text1, to_lang=to_lang)}') def init(): ''' attempted to pytest __name__ == '__main__' ''' LOGGER.debug('__name__: %s', __name__) if __name__ == '__main__': sys.exit(main()) init() # test_init()
27.779661
133
0.596858
''' promt translate for free as in beer ''' from typing import Any, Callable, Dict, Tuple import sys import logging import json from time import time from random import randint import pytest # type: ignore # import mock import urllib3 from ratelimit import limits, sleep_and_retry # type: ignore import requests from fuzzywuzzy import fuzz, process # type: ignore import coloredlogs # type: ignore from jmespath import search # type: ignore urllib3.disable_warnings() # logging.captureWarnings(True) # logging.getLogger('requests.packages.urllib3.connectionpool').level = 30 LOGGER = logging.getLogger(__name__) FMT = '%(filename)-14s[%(lineno)-3d] %(message)s [%(funcName)s]' coloredlogs.install(level=20, logger=LOGGER, fmt=FMT) # en-ar en-zhcn LANG_CODES = ( "ar,ca,zhcn,nl,fi,fr,de,el,he,hi,it,ja,kk,ko,pt,ru,es,tr,uk" ).split(',') + ['auto'] URL = ( 'https://www.online-translator.com/' 'services/soap.asmx/GetTranslation' ) UA = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_2) AppleWebKit/537.17 (KHTML, like Gecko) Chrome/24.0.1309.0 Safari/537.17' # noqa # HEADERS = {"User-Agent": UA} HEADERS = { 'Host': 'www.online-translator.com', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:70.0) Gecko/20100101 Firefox/70.0', 'Accept': 'application/json, text/javascript, */*; q=0.01', 'Accept-Language': 'zh-CN,zh;q=0.8,zh-TW;q=0.7,zh-HK;q=0.5,en-US;q=0.3,en;q=0.2', 'Content-Type': 'application/json; charset=utf-8', 'X-Requested-With': 'XMLHttpRequest', 'Origin': 'https://www.online-translator.com', # 'DNT': '1', 'Referer': 'https://www.online-translator.com/', } SESS = requests.Session() SESS.get('https://www.online-translator.com/', verify=0) def with_func_attrs(**attrs: Any) -> Callable: ''' with_func_attrs ''' def with_attrs(fct: Callable) -> Callable: for key, val in attrs.items(): setattr(fct, key, val) return fct return with_attrs @with_func_attrs(text='') def _promt_tr( text: str, from_lang: str = 'auto', to_lang: str = 'zh', timeout: Tuple[float, float] = (55, 66), ) -> Dict[str, str]: ''' promt_tr text = 'test one two three' from_lang = 'auto' to_lang = 'zh' timeout = (55, 66) ''' try: from_lang = from_lang.lower() except Exception as exc: # pragma: no cover LOGGER.warning("%s", exc) from_lang = 'auto' try: to_lang = to_lang.lower() except Exception as exc: # pragma: no cover LOGGER.warning("%s", exc) to_lang = 'zh' if from_lang in ['zh', 'chinese', 'zhongwen']: from_lang = 'zhcn' if to_lang in ['zh', 'chinese', 'zhongwen']: to_lang = 'zhcn' try: from_lang = process.extractOne(from_lang, LANG_CODES, scorer=fuzz.UWRatio)[0] # noqa except Exception as exc: # pragma: no cover LOGGER.warning("%s", exc) from_lang = 'en' try: to_lang = process.extractOne(to_lang, LANG_CODES, scorer=fuzz.UWRatio)[0] # noqa except Exception as exc: # pragma: no cover LOGGER.warning("%s", exc) to_lang = 'en' if from_lang == 'auto': from_lang = 'au' if to_lang == 'auto': # pragma: no cover to_lang = 'au' dir_code = f'{from_lang}-{to_lang}' data = { 'dirCode': dir_code, # 'dirCode': 'de-en', 'template': 'General', # 'text': 'Das sind drei Teste.', 'text': text, 'lang': 'en', 'limit': '3000', 'useAutoDetect': True, 'key': '123', 'ts': 'MainSite', 'tid': '', 'IsMobile': False } try: resp = SESS.post( # type: ignore # data # expected "Union[None, bytes, MutableMapping[str, str], IO[Any]] # noqa URL, # data=data2, data=json.dumps(data), headers=HEADERS, timeout=timeout, ) resp.raise_for_status() except Exception as exc: # pragma: no cover LOGGER.error('%s', exc) resp = requests.models.Response() resp._content = f'{{"errorCode": "{exc}"}}'.encode() resp.status_code = 499 try: jdata = resp.json() except Exception as exc: # pragma: no cover LOGGER.error('%s', exc) jdata = {'error': str(exc)} promt_tr.text = resp.text try: # res = search('[0].translations[0].text', jdata) res = search('d.result', jdata) except Exception as exc: # pragma: no cover LOGGER.error('%s', exc) res = {'error': str(exc)} return res @sleep_and_retry @limits(calls=30, period=20, raise_on_limit=True) # raise_on_limit probably superfluous def _rl_promt_tr(*args, **kwargs): ''' be nice and throttle''' LOGGER.info(' rate limiting 3 calls/2 secs... ') return _promt_tr(*args, **kwargs) @with_func_attrs(calls=0, call_tick=-1) def promt_tr(*args, **kwargs): ''' exempt first 200 calls from rate limiting ''' # increase calls unto 210 if promt_tr.calls < 210: promt_tr.calls += 1 # reset rate limit if the last call was 2 minutes ago tick = time() if tick - promt_tr.call_tick > 120: promt_tr.calls = 1 promt_tr.call_tick = tick if promt_tr.calls < 200: return _promt_tr(*args, **kwargs) return _rl_promt_tr(*args, **kwargs) @pytest.mark.parametrize( # 'to_lang', LANG_CODES 'to_lang', ['zh', 'de', 'fr', 'it', 'ko', 'ja', 'ru'] ) def test_sanity(to_lang): 'sanity test' numb = str(randint(1, 10000)) text = 'test ' + numb assert numb in promt_tr(text, to_lang=to_lang) def test_calls(): ''' test calls ''' _ = promt_tr('test ') calls = promt_tr.calls _ = promt_tr('test ') assert promt_tr.calls == calls + 1 def main(): # pragma: no cover ''' main ''' text = sys.argv[1:] text1 = '' if not text: print(' Provide something to translate, testing with some random text\n') text = 'test tihs and that' + str(randint(1, 1000)) text1 = 'test tihs and that' + str(randint(1, 1000)) print(f'{text} translated to:') for to_lang in ['zh', 'de', 'fr', ]: print(f'{to_lang}: {promt_tr(text, to_lang=to_lang)}') if not text1: print(f'{to_lang}: {promt_tr(text1, to_lang=to_lang)}') def init(): ''' attempted to pytest __name__ == '__main__' ''' LOGGER.debug('__name__: %s', __name__) if __name__ == '__main__': sys.exit(main()) init() # test_init()
114
0
26
ec66d8df79c61b3d2ed3ec367d9cc7908a22013a
878
py
Python
kite-go/navigation/offline/experiments/quip-issues/relevant.py
kiteco/kiteco-public
74aaf5b9b0592153b92f7ed982d65e15eea885e3
[ "BSD-3-Clause" ]
17
2022-01-10T11:01:50.000Z
2022-03-25T03:21:08.000Z
kite-go/navigation/offline/experiments/quip-issues/relevant.py
kiteco/kiteco-public
74aaf5b9b0592153b92f7ed982d65e15eea885e3
[ "BSD-3-Clause" ]
1
2022-01-13T14:28:47.000Z
2022-01-13T14:28:47.000Z
kite-go/navigation/offline/experiments/quip-issues/relevant.py
kiteco/kiteco-public
74aaf5b9b0592153b92f7ed982d65e15eea885e3
[ "BSD-3-Clause" ]
7
2022-01-07T03:58:10.000Z
2022-03-24T07:38:20.000Z
import argparse import json from collections import defaultdict from typing import Dict, List if __name__ == "__main__": main()
25.085714
74
0.65262
import argparse import json from collections import defaultdict from typing import Dict, List def main() -> None: args = parse_args() with open(args.links, "r") as fp: links = json.load(fp) quip_issues = make_quip_issues(links) with open(args.relevant_issues, "w") as f: json.dump(quip_issues, f, indent=2) def make_quip_issues(links: Dict[str, List[str]]) -> Dict[str, List[str]]: quip_issues: Dict[str, List[str]] = defaultdict(list) for x, ys in links.items(): for y in set(ys): quip_issues[y.split("/")[-1]].append(x.split("/")[-1]) return quip_issues def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument("--links", type=str) parser.add_argument("--relevant_issues", type=str) return parser.parse_args() if __name__ == "__main__": main()
673
0
69
33190b249bfea8e389858313a9b36fc7c3e017ce
1,605
py
Python
ggtools/gg/static_models.py
richannan/GGTOOLS
7909da988d90de50c82532d97121a3fbcfc0263a
[ "MIT" ]
22
2019-12-16T01:30:29.000Z
2022-03-01T08:57:07.000Z
ggtools/gg/static_models.py
richannan/GGTOOLS
7909da988d90de50c82532d97121a3fbcfc0263a
[ "MIT" ]
3
2019-12-23T14:09:30.000Z
2022-03-29T01:52:53.000Z
ggtools/gg/static_models.py
richannan/GGTOOLS
7909da988d90de50c82532d97121a3fbcfc0263a
[ "MIT" ]
13
2019-12-19T07:01:19.000Z
2022-03-14T11:26:36.000Z
from os import path,makedirs from urllib.request import urlretrieve def static_download(model): ''' Download static gravity modle from icgem.gfz-potsdam.de; if the file to be downloaded is already included in the download directory, the download is automatically skipped. Usage: static_download('GGM05C') static_download('EIGEN-6C4') Inputs: model -> [str] Available options are 'GGM05C' and 'EIGEN-6C'. Outputs: downloaded static gravity model Examples: >>> static_download('GGM05C') Downloading the static gravity model GGM05C ... Finished 'static_models/GGM05C.gfc' >>> static_download('EIGEN-6C4') Downloading the static gravity model EIGEN-6C4 ... Finished 'static_models/EIGEN-6C4.gfc' ''' direc = 'static_models/' if not path.exists(direc): makedirs(direc) if model == 'GGM05C': gravity_file = direc + 'GGM05C.gfc' url = 'http://icgem.gfz-potsdam.de/getmodel/gfc/778a683780a5b0ad3163f4772b97b9075a0a13c389d2bd8ea3f891b64cfa383d/GGM05C.gfc' elif model == 'EIGEN-6C4': gravity_file = direc + 'EIGEN-6C4.gfc' url = 'http://icgem.gfz-potsdam.de/getmodel/gfc/7fd8fe44aa1518cd79ca84300aef4b41ddb2364aef9e82b7cdaabdb60a9053f1/EIGEN-6C4.gfc' else: raise Exception('Currently, available static gravity models are GGM05C and EIGEN-6C4.') if not path.exists(gravity_file): print('Downloading the static gravity model '+ model,end=' ... ') urlretrieve(url, gravity_file) print('Finished') return gravity_file
38.214286
175
0.688474
from os import path,makedirs from urllib.request import urlretrieve def static_download(model): ''' Download static gravity modle from icgem.gfz-potsdam.de; if the file to be downloaded is already included in the download directory, the download is automatically skipped. Usage: static_download('GGM05C') static_download('EIGEN-6C4') Inputs: model -> [str] Available options are 'GGM05C' and 'EIGEN-6C'. Outputs: downloaded static gravity model Examples: >>> static_download('GGM05C') Downloading the static gravity model GGM05C ... Finished 'static_models/GGM05C.gfc' >>> static_download('EIGEN-6C4') Downloading the static gravity model EIGEN-6C4 ... Finished 'static_models/EIGEN-6C4.gfc' ''' direc = 'static_models/' if not path.exists(direc): makedirs(direc) if model == 'GGM05C': gravity_file = direc + 'GGM05C.gfc' url = 'http://icgem.gfz-potsdam.de/getmodel/gfc/778a683780a5b0ad3163f4772b97b9075a0a13c389d2bd8ea3f891b64cfa383d/GGM05C.gfc' elif model == 'EIGEN-6C4': gravity_file = direc + 'EIGEN-6C4.gfc' url = 'http://icgem.gfz-potsdam.de/getmodel/gfc/7fd8fe44aa1518cd79ca84300aef4b41ddb2364aef9e82b7cdaabdb60a9053f1/EIGEN-6C4.gfc' else: raise Exception('Currently, available static gravity models are GGM05C and EIGEN-6C4.') if not path.exists(gravity_file): print('Downloading the static gravity model '+ model,end=' ... ') urlretrieve(url, gravity_file) print('Finished') return gravity_file
0
0
0
5fd7c795a966a620873f6dbbef744b63cf0773db
427
py
Python
projects/migrations/0020_auto_20170131_0419.py
18F/acquisitions.18f.gov
7ef7091fd65b4b6797ddeb1c1f56def29522c43b
[ "CC0-1.0" ]
3
2016-11-27T05:02:52.000Z
2017-01-31T17:36:36.000Z
projects/migrations/0020_auto_20170131_0419.py
18F/acquisitions.18f.gov
7ef7091fd65b4b6797ddeb1c1f56def29522c43b
[ "CC0-1.0" ]
61
2016-11-05T00:27:34.000Z
2017-09-15T23:37:58.000Z
projects/migrations/0020_auto_20170131_0419.py
18F/acquisitions.18f.gov
7ef7091fd65b4b6797ddeb1c1f56def29522c43b
[ "CC0-1.0" ]
2
2017-07-14T06:21:26.000Z
2021-02-14T11:53:05.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.10.4 on 2017-01-31 04:19 from __future__ import unicode_literals from django.db import migrations
20.333333
48
0.604215
# -*- coding: utf-8 -*- # Generated by Django 1.10.4 on 2017-01-31 04:19 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('projects', '0019_auto_20170131_0412'), ] operations = [ migrations.RenameField( model_name='buy', old_name='dollars', new_name='budget', ), ]
0
256
23
df77b7f033135104bc001ca98a8adb61a14c3d27
31
py
Python
resources/sound/__init__.py
Keshav-cs/Genetic-Algorithm-on-Super-Mario-Bros
1a115c6b4ac3345875c8530d8a6ea044c33c403e
[ "MIT" ]
418
2015-01-05T19:31:18.000Z
2022-03-27T03:05:33.000Z
resources/sound/__init__.py
Keshav-cs/Genetic-Algorithm-on-Super-Mario-Bros
1a115c6b4ac3345875c8530d8a6ea044c33c403e
[ "MIT" ]
3
2021-04-29T19:58:05.000Z
2021-05-01T05:15:02.000Z
resources/sound/__init__.py
Keshav-cs/Genetic-Algorithm-on-Super-Mario-Bros
1a115c6b4ac3345875c8530d8a6ea044c33c403e
[ "MIT" ]
157
2015-01-05T19:06:29.000Z
2022-01-16T22:55:37.000Z
__author__ = 'justinarmstrong'
15.5
30
0.806452
__author__ = 'justinarmstrong'
0
0
0
76d764d3ec7df55c3465bdeb774b3494cc0fb43a
321
py
Python
chapter3/fixed_input_agent.py
yuishihara/probabilistic_robotics_implementations
91115260cb95697f89b1413d49dd45ebe3014a53
[ "MIT" ]
null
null
null
chapter3/fixed_input_agent.py
yuishihara/probabilistic_robotics_implementations
91115260cb95697f89b1413d49dd45ebe3014a53
[ "MIT" ]
null
null
null
chapter3/fixed_input_agent.py
yuishihara/probabilistic_robotics_implementations
91115260cb95697f89b1413d49dd45ebe3014a53
[ "MIT" ]
null
null
null
from agent import Agent
24.692308
52
0.635514
from agent import Agent class FixedInputAgent(Agent): def __init__(self, robot, vel=0.2, omega=0.0): super(FixedInputAgent, self).__init__(robot) self._vel = vel self._omega = omega def act(self, delta_t): ut = (self._vel, self._omega) self._robot.one_step(ut, delta_t)
212
8
76
ef57af46c6b2e9ab1c578fab32e7696057a50f5d
1,011
py
Python
python/tests/testpickle.py
seisman/mspass
11bd292a778a2a0d8470734239a7347fe4a1c0a7
[ "BSD-3-Clause" ]
1
2021-10-18T10:02:13.000Z
2021-10-18T10:02:13.000Z
python/tests/testpickle.py
seisman/mspass
11bd292a778a2a0d8470734239a7347fe4a1c0a7
[ "BSD-3-Clause" ]
null
null
null
python/tests/testpickle.py
seisman/mspass
11bd292a778a2a0d8470734239a7347fe4a1c0a7
[ "BSD-3-Clause" ]
null
null
null
import sys sys.path.append('/home/pavlis/src/mspass/python') from mspasspy.ccore import CoreSeismogram d=CoreSeismogram(200) d.put_double('delta',1.0) d.put_double('dt',1.0) d.put('npts',200) d.ns=200 d.t0=100.0 d.live=True from mspasspy.ccore import Seismogram d2=Seismogram(d,'invalid') import pickle x=pickle.dumps(d2) print("pickle succeeded") print("trying to restore") d3=pickle.loads(x) print("pickle loads completed") print("data npts=",d.get_int('npts')) print('same stored in struct of BasicTimeSeries=',d.ns) print('data t0=',d.t0) print('Now testing pickle for TimeSeries data') from mspasspy.ccore import TimeSeries from mspasspy.ccore import CoreTimeSeries d0=CoreTimeSeries(500) d0.live=True d0.dt=1.0 d0.ns=500 d=TimeSeries(d0,'invalid') s=pickle.dumps(d) print('Pickle dumps succeeded') print('size of string returned by pickle=',len(s)) print('Trying loads') dr=pickle.loads(s) print('Finished - BasicTimeSeries attributes in output') print('ns=',dr.ns) print('dt=',dr.dt) print('t0=',dr.t0)
25.275
56
0.753709
import sys sys.path.append('/home/pavlis/src/mspass/python') from mspasspy.ccore import CoreSeismogram d=CoreSeismogram(200) d.put_double('delta',1.0) d.put_double('dt',1.0) d.put('npts',200) d.ns=200 d.t0=100.0 d.live=True from mspasspy.ccore import Seismogram d2=Seismogram(d,'invalid') import pickle x=pickle.dumps(d2) print("pickle succeeded") print("trying to restore") d3=pickle.loads(x) print("pickle loads completed") print("data npts=",d.get_int('npts')) print('same stored in struct of BasicTimeSeries=',d.ns) print('data t0=',d.t0) print('Now testing pickle for TimeSeries data') from mspasspy.ccore import TimeSeries from mspasspy.ccore import CoreTimeSeries d0=CoreTimeSeries(500) d0.live=True d0.dt=1.0 d0.ns=500 d=TimeSeries(d0,'invalid') s=pickle.dumps(d) print('Pickle dumps succeeded') print('size of string returned by pickle=',len(s)) print('Trying loads') dr=pickle.loads(s) print('Finished - BasicTimeSeries attributes in output') print('ns=',dr.ns) print('dt=',dr.dt) print('t0=',dr.t0)
0
0
0
c8ef1749db9bd82ca80ff83f68f94b743fdbc0d8
28,838
py
Python
pipeline/slices.py
PartumSomnia/bns_ppr_tools
b02bab870bb54171bc0d0cd7e07bfb50e978e7dd
[ "MIT" ]
null
null
null
pipeline/slices.py
PartumSomnia/bns_ppr_tools
b02bab870bb54171bc0d0cd7e07bfb50e978e7dd
[ "MIT" ]
4
2019-12-01T18:42:45.000Z
2019-12-07T10:59:37.000Z
pipeline/slices.py
PartumSomnia/bns_ppr_tools
b02bab870bb54171bc0d0cd7e07bfb50e978e7dd
[ "MIT" ]
null
null
null
from __future__ import division #from sys import path #path.append('modules/') import os.path import click import h5py from argparse import ArgumentParser from math import pi, log10 import sys from scidata.utils import locate import scidata.carpet.hdf5 as h5 from scidata.carpet.interp import Interpolator import numpy as np from glob import glob import sys sys.path.append("..") from plotting.plotting_methods import PLOT_MANY_TASKS from uutils import Printcolor, REFLEVEL_LIMITS import config as Paths from module_slices.slices_methods import COMPUTE_STORE from module_slices.add_q_r_t_to_prof_xyxz import add_q_r_t_to_prof_xyxz from module_slices.slices_dens_modes import compute_density_modes __movie__ = "ffmpeg -framerate 10 -pattern_type glob -i '{}*.png' -s:v 1280x720 " \ "-c:v libx264 -module_profile:v high -crf 20 -pix_fmt yuv420p {}" __tasklist__ = ["plot", "movie", "addm0", "dm"] __reflevels__ = [0, 1, 2, 3, 4, 5, 6] __outdirname__ = "module_slices" __planes__ = ["xy", "xz"] if __name__ == '__main__': parser = ArgumentParser(description="postprocessing pipeline") parser.add_argument("-s", dest="sim", required=True, help="name of the simulation dir") parser.add_argument("-t", dest="tasklist", nargs='+', required=False, default=[], help="tasks to perform") # parser.add_argument("--v_n", dest="v_ns", nargs='+', required=False, default=[], help="variable names to compute") parser.add_argument("--time", dest="times", nargs='+', required=False, default=[], help="times to iterate over [ms]") parser.add_argument("--it", dest="it", nargs='+', required=False, default=[], help="iterations to use ") parser.add_argument("--rl", dest="reflevels", nargs='+', required=False, default=[], help="reflevels to use") parser.add_argument('--plane', dest="plane", required=False, nargs='+', default=[], help='Plane: xy,xz,yz for slice analysis') # parser.add_argument("-o", dest="outdir", required=False, default=None, help="path for output dir") parser.add_argument("-i", dest="indir", required=False, default=None, help="path to simulation dir") parser.add_argument("-p", dest="path_to_profs", required=False, default=None, help="path to 3D profiles") parser.add_argument("--overwrite", dest="overwrite", required=False, default="no", help="overwrite if exists") # args = parser.parse_args() glob_sim = args.sim glob_indir = args.indir glob_outdir = args.outdir glob_tasklist = args.tasklist glob_overwrite = args.overwrite glob_v_ns = args.v_ns glob_times =args.times glob_it = args.it glob_reflevels = args.reflevels glob_planes = args.plane # glob_profxyxz_path = args.path_to_profs#Paths.ppr_sims+glob_sim+'/profiles/' # if glob_indir is None: glob_indir = Paths.default_data_dir + glob_sim + '/' if not os.path.isdir(glob_indir): raise IOError("Default path to simulation data is not valid: {}".format(glob_indir)) if not os.path.isdir(glob_indir): raise IOError("Path to simulation data is not valid: {}".format(glob_indir)) if glob_outdir is None: glob_outdir = Paths.default_ppr_dir + glob_sim + '/' if not os.path.isdir(glob_indir): raise IOError("Default path to postprocessed data is not valid: {}".format(glob_outdir)) if not os.path.isdir(glob_indir): raise IOError("Path to postprocessed data is not valid: {}".format(glob_outdir)) if len(glob_tasklist) == 0: raise NameError("tasklist is empty. Set what tasks to perform with '-t' option") else: for task in glob_tasklist: if task not in __tasklist__: raise NameError("task: {} is not among available ones: {}" .format(task, __tasklist__)) if glob_overwrite == "no": glob_overwrite = False elif glob_overwrite == "yes": glob_overwrite = True else: raise NameError("for '--overwrite' option use 'yes' or 'no'. Given: {}" .format(glob_overwrite)) # glob_outdir_sim = Paths.ppr_sims + glob_sim # if not os.path.isdir(glob_outdir_sim): # os.mkdir(glob_outdir_sim) # check plane if len(glob_planes) == 0: raise IOError("Option --plane unfilled") elif len(glob_planes) == 1 and "all" in glob_planes: glob_planes = __planes__ elif len(glob_planes) > 1: for plane in glob_planes: if not plane in __planes__: raise NameError("plane:{} is not in the list of the __d3slicesplanes__:{}" .format(plane, __planes__)) # set globals # Paths.gw170817 = glob_simdir # Paths.ppr_sims = glob_outdir if len(glob_tasklist) == 1 and "all" in glob_tasklist: # do all tasksk pass o_slice = COMPUTE_STORE(glob_sim, indir=glob_indir, pprdir=glob_outdir) # deal with iterations and timesteps -- available as well as required by user do_all_iterations = False if len(glob_it) == 0 and len(glob_times) == 0: raise IOError("please specify timesteps to use '--time' or iterations '--it' ") elif len(glob_it) != 0 and len(glob_times) != 0: raise IOError("please specify Either timesteps to use '--time' or iterations '--it' (not both)") elif len(glob_times) == 0 and len(glob_it) == 1 and "all" in glob_it: do_all_iterations = True glob_times = o_slice.times glob_it = o_slice.iterations elif len(glob_it) == 0 and len(glob_times) == 1 and "all" in glob_times: do_all_iterations = True glob_times = o_slice.times glob_it = o_slice.iterations elif len(glob_it) > 0 and not "all" in glob_it and len(glob_times) == 0: glob_it = np.array(glob_it, dtype=int) # array of iterations glob_times = [] for it in glob_it: glob_times.append(o_slice.get_time_for_it(it, "overall", "d2")) glob_times = np.array(glob_times, dtype=float) elif len(glob_times) > 0 and not "all" in glob_times and len(glob_it) == 0: glob_times = np.array(glob_times, dtype=float) / 1e3 # back to seconds else: raise IOError("input times and iterations are not recognized: --time {} --it {}" .format(glob_times, glob_it)) # deal with reflevels -- availble as well as required by user do_all_reflevels = False if len(glob_reflevels) == 1 and "all" in glob_reflevels: glob_reflevels = __reflevels__ do_all_reflevels = True else: glob_reflevels = np.array(glob_reflevels, dtype=int) # deal with variable names -- available as well as required by user do_all_v_ns = False if len(glob_v_ns) == 1 and "all" in glob_v_ns: glob_v_ns=o_slice.list_v_ns do_all_v_ns = True else: pass # summarize what is avaialble and what is requried if do_all_v_ns or do_all_iterations or do_all_reflevels: Printcolor.yellow("Selected all", comma=True) if do_all_iterations: Printcolor.print_colored_string(["timesteps", "({})".format(len(glob_times))], ["blue", "green"], comma=True) if do_all_v_ns: Printcolor.print_colored_string(["v_ns", "({})".format(len(glob_v_ns))], ["blue", "green"], comma=True) if do_all_reflevels: Printcolor.print_colored_string(["reflevels", "({})".format(len(glob_reflevels))], ["blue", "green"], comma=True) Printcolor.yellow("this might take time.") # if not click.confirm(text="Confirm?",default=True,show_default=True): # exit(0) # perform tasks do_tasks(glob_v_ns)
42.59675
154
0.515396
from __future__ import division #from sys import path #path.append('modules/') import os.path import click import h5py from argparse import ArgumentParser from math import pi, log10 import sys from scidata.utils import locate import scidata.carpet.hdf5 as h5 from scidata.carpet.interp import Interpolator import numpy as np from glob import glob import sys sys.path.append("..") from plotting.plotting_methods import PLOT_MANY_TASKS from uutils import Printcolor, REFLEVEL_LIMITS import config as Paths from module_slices.slices_methods import COMPUTE_STORE from module_slices.add_q_r_t_to_prof_xyxz import add_q_r_t_to_prof_xyxz from module_slices.slices_dens_modes import compute_density_modes __movie__ = "ffmpeg -framerate 10 -pattern_type glob -i '{}*.png' -s:v 1280x720 " \ "-c:v libx264 -module_profile:v high -crf 20 -pix_fmt yuv420p {}" def __plot_data_for_a_slice(o_slice, v_n, it, t, rl, outdir): # --- data_arr = o_slice.get_data_rl(it, "xz", rl, v_n) x_arr = o_slice.get_grid_v_n_rl(it, "xz", rl, "x") z_arr = o_slice.get_grid_v_n_rl(it, "xz", rl, "z") def_dic_xz = {'task': 'colormesh', 'ptype': 'cartesian', 'aspect': 1., 'xarr': x_arr, "yarr": z_arr, "zarr": data_arr, 'position': (1, 1), # 'title': '[{:.1f} ms]'.format(time_), 'cbar': {'location': 'right .03 -0.125', 'label': r'$\rho$ [geo]', # 'fmt': '%.1e', 'labelsize': 14, 'fontsize': 14}, 'v_n_x': 'x', 'v_n_y': 'z', 'v_n': 'rho', 'xmin': None, 'xmax': None, 'ymin': None, 'ymax': None, 'vmin': 1e-10, 'vmax': 1e-4, 'fill_vmin': False, # fills the x < vmin with vmin 'xscale': None, 'yscale': None, 'mask': None, 'cmap': 'inferno_r', 'norm': "log", # 'inferno_r' 'fancyticks': True, 'title': {"text": r'${}$ [ms]'.format(0), 'fontsize': 14}, 'sharex': True, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14 } data_arr = o_slice.get_data_rl(it, "xy", rl, v_n) x_arr = o_slice.get_grid_v_n_rl(it, "xy", rl, "x") y_arr = o_slice.get_grid_v_n_rl(it, "xy", rl, "y") def_dic_xy = {'task': 'colormesh', 'ptype': 'cartesian', 'aspect': 1., 'xarr': x_arr, "yarr": y_arr, "zarr": data_arr, 'position': (2, 1), # 'title': '[{:.1f} ms]'.format(time_), 'cbar': {}, 'v_n_x': 'x', 'v_n_y': 'y', 'v_n': 'rho', 'xmin': None, 'xmax': None, 'ymin': None, 'ymax': None, 'vmin': 1e-10, 'vmax': 1e-4, 'fill_vmin': False, # fills the x < vmin with vmin 'xscale': None, 'yscale': None, 'mask': None, 'cmap': 'inferno_r', 'norm': "log", 'fancyticks': True, 'title': {}, 'sharex': False, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14 } # setting scales and limits for data if v_n == "rho": def_dic_xz['v_n'] = 'rho' def_dic_xz['vmin'] = 1e-10 def_dic_xz['vmax'] = 1e-4 def_dic_xz['cbar']['label'] = r'$\rho$ [geo]' def_dic_xz['cmap'] = 'Greys_r' def_dic_xy['v_n'] = 'rho' def_dic_xy['vmin'] = 1e-10 def_dic_xy['vmax'] = 1e-4 def_dic_xy['cmap'] = 'Greys_r' elif v_n == "dens_unbnd": def_dic_xz['v_n'] = 'rho' def_dic_xz['vmin'] = 1e-13 def_dic_xz['vmax'] = 1e-6 def_dic_xz['cbar']['label'] = r'$D_{\rm{unb}}$ [geo]' def_dic_xy['v_n'] = 'rho' def_dic_xy['vmin'] = 1e-13 def_dic_xy['vmax'] = 1e-6 elif v_n == "Y_e": def_dic_xz['v_n'] = 'Y_e' def_dic_xz['vmin'] = 0.05 def_dic_xz['vmax'] = 0.5 def_dic_xz['cbar']['label'] = r'$Y_e$ [geo]' def_dic_xz['norm'] = "linear" def_dic_xz['cmap'] = 'inferno' def_dic_xy['v_n'] = 'Y_e' def_dic_xy['vmin'] = 0.05 def_dic_xy['vmax'] = 0.5 def_dic_xy['norm'] = "linear" def_dic_xy['cmap'] = 'inferno' elif v_n == "temp" or v_n == "temperature": def_dic_xz['v_n'] = 'temperature' def_dic_xz['vmin'] = 1e-2 def_dic_xz['vmax'] = 1e2 def_dic_xz['cbar']['label'] = r'$Temperature$ [geo]' def_dic_xy['v_n'] = 'temperature' def_dic_xy['vmin'] = 1e-2 def_dic_xy['vmax'] = 1e2 elif v_n == 'entropy' or v_n == "s_phi": def_dic_xz['v_n'] = 'entropy' def_dic_xz['vmin'] = 1e-1 def_dic_xz['vmax'] = 1e2 def_dic_xz['cbar']['label'] = r'$Entropy$ [geo]' def_dic_xy['v_n'] = 'entropy' def_dic_xy['vmin'] = 1e-1 def_dic_xy['vmax'] = 1e2 elif v_n == "Q_eff_nua": def_dic_xz['v_n'] = 'Q_eff_nua' def_dic_xz['vmin'] = 1e-18 def_dic_xz['vmax'] = 1e-14 def_dic_xz['cbar']['label'] = r'$Q_eff_nua$ [geo]'.replace('_', '\_') def_dic_xy['v_n'] = 'Q_eff_nua' def_dic_xy['vmin'] = 1e-18 def_dic_xy['vmax'] = 1e-14 elif v_n == "Q_eff_nue": def_dic_xz['v_n'] = 'Q_eff_nue' def_dic_xz['vmin'] = 1e-18 def_dic_xz['vmax'] = 1e-14 def_dic_xz['cbar']['label'] = r'$Q_eff_nue$ [geo]'.replace('_', '\_') def_dic_xy['v_n'] = 'Q_eff_nue' def_dic_xy['vmin'] = 1e-18 def_dic_xy['vmax'] = 1e-14 elif v_n == "Q_eff_nux": def_dic_xz['v_n'] = 'Q_eff_nux' def_dic_xz['vmin'] = 1e-18 def_dic_xz['vmax'] = 1e-14 def_dic_xz['cbar']['label'] = r'$Q_eff_nux$ [geo]'.replace('_', '\_') def_dic_xy['v_n'] = 'Q_eff_nux' def_dic_xy['vmin'] = 1e-18 def_dic_xy['vmax'] = 1e-14 elif v_n == "R_eff_nua": def_dic_xz['v_n'] = 'R_eff_nua' def_dic_xz['vmin'] = 1e-9 def_dic_xz['vmax'] = 1e-5 def_dic_xz['cbar']['label'] = r'$R_eff_nua$ [geo]'.replace('_', '\_') def_dic_xy['v_n'] = 'R_eff_nue' def_dic_xy['vmin'] = 1e-9 def_dic_xy['vmax'] = 1e-5 elif v_n == "R_eff_nue": def_dic_xz['v_n'] = 'R_eff_nue' def_dic_xz['vmin'] = 1e-9 def_dic_xz['vmax'] = 1e-5 def_dic_xz['cbar']['label'] = r'$R_eff_nue$ [geo]'.replace('_', '\_') def_dic_xy['v_n'] = 'R_eff_nue' def_dic_xy['vmin'] = 1e-9 def_dic_xy['vmax'] = 1e-5 elif v_n == "R_eff_nux": def_dic_xz['v_n'] = 'R_eff_nux' def_dic_xz['vmin'] = 1e-9 def_dic_xz['vmax'] = 1e-5 def_dic_xz['cbar']['label'] = r'$R_eff_nux$ [geo]'.replace('_', '\_') def_dic_xy['v_n'] = 'R_eff_nux' def_dic_xy['vmin'] = 1e-9 def_dic_xy['vmax'] = 1e-5 elif v_n == "optd_0_nua": def_dic_xz['v_n'] = 'optd_0_nua' def_dic_xz['vmin'] = 1e-5 def_dic_xz['vmax'] = 1e-2 def_dic_xz['cbar']['label'] = r'$optd_0_nua$ [geo]'.replace('_', '\_') # def_dic_xz['norm'] = "linear" def_dic_xz['cmap'] = 'inferno' def_dic_xy['v_n'] = 'optd_0_nua' def_dic_xy['vmin'] = 1e-5 def_dic_xy['vmax'] = 1e-1 # def_dic_xy['norm'] = "linear" def_dic_xy['cmap'] = 'inferno' elif v_n == "optd_0_nue": def_dic_xz['v_n'] = 'optd_0_nue' def_dic_xz['vmin'] = 1e-5 def_dic_xz['vmax'] = 1e-2 def_dic_xz['cbar']['label'] = r'$optd_0_nue$ [geo]'.replace('_', '\_') # def_dic_xz['norm'] = "linear" def_dic_xz['cmap'] = 'inferno' def_dic_xy['v_n'] = 'optd_0_nue' def_dic_xy['vmin'] = 1e-5 def_dic_xy['vmax'] = 1e-1 # def_dic_xy['norm'] = "linear" def_dic_xy['cmap'] = 'inferno' else: raise NameError("v_n:{} not recognized".format(v_n)) # contour_dic_xy = { 'task': 'contour', 'ptype': 'cartesian', 'aspect': 1., 'xarr': x_arr, "yarr": y_arr, "zarr": data_arr, 'levels': [1.e13 / 6.176e+17], 'position': (2, 1), # 'title': '[{:.1f} ms]'.format(time_), 'colors':['black'], 'lss':["-"], 'lws':[1.], 'v_n_x': 'x', 'v_n_y': 'y', 'v_n': 'rho', 'xscale': None, 'yscale': None, 'fancyticks': True, 'sharex': False, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14} # setting boundaries for plots xmin, xmax, ymin, ymax, zmin, zmax = REFLEVEL_LIMITS.get(rl) def_dic_xy['xmin'], def_dic_xy['xmax'] = xmin, xmax def_dic_xy['ymin'], def_dic_xy['ymax'] = ymin, ymax def_dic_xz['xmin'], def_dic_xz['xmax'] = xmin, xmax def_dic_xz['ymin'], def_dic_xz['ymax'] = zmin, zmax if not os.path.isdir(outdir): raise IOError("Outdir does not exists".format(outdir)) # plotting o_plot = PLOT_MANY_TASKS() o_plot.gen_set["figdir"] = outdir o_plot.gen_set["type"] = "cartesian" o_plot.gen_set["dpi"] = 128 o_plot.gen_set["figsize"] = (4.2, 8.0) # <->, |] # to match hists with (8.5, 2.7) o_plot.gen_set["figname"] = "{0:07d}.png".format(int(it)) o_plot.gen_set["sharex"] = False o_plot.gen_set["sharey"] = False o_plot.gen_set["subplots_adjust_h"] = -0.35 o_plot.gen_set["subplots_adjust_w"] = 0.2 o_plot.gen_set['style'] = 'dark_background' o_plot.set_plot_dics = [] def_dic_xz["it"] = int(it) def_dic_xz["title"]["text"] = r'$t:{:.1f}ms$'.format(float(t * 1e3)) o_plot.set_plot_dics.append(def_dic_xz) def_dic_xy["it"] = int(it) o_plot.set_plot_dics.append(def_dic_xy) if v_n == "rho": o_plot.set_plot_dics.append(contour_dic_xy) # plot reflevel boundaries for rl in range(o_slice.nlevels): try: x_arr = o_slice.get_grid_v_n_rl(it, "xy", rl, "x") y_arr = o_slice.get_grid_v_n_rl(it, "xy", rl, "y") x_b = [x_arr.min(), x_arr.max()] y_b = [y_arr.min(), y_arr.max()] # for x_b_line, y_b_line in zip([[x_b[0], x_b[-1]], [x_b[0], x_b[0]], [x_b[0], x_b[-1]], [x_b[-1], x_b[-1]]], [[y_b[0], y_b[0]], [y_b[0], y_b[-1]], [y_b[-1], y_b[-1]], [y_b[-1], y_b[0]]]): # contour_dic_xy = { 'task': 'line', 'ptype': 'cartesian', 'aspect': 1., 'xarr': x_b_line, "yarr": y_b_line, 'position': (2, 1), # 'title': '[{:.1f} ms]'.format(time_), 'color': 'cyan', 'ls': "-", 'lw': 1., 'alpha': 1., 'ds': 'default', 'v_n_x': 'x', 'v_n_y': 'y', 'v_n': 'rho', 'xscale': None, 'yscale': None, 'fancyticks': True, 'sharex': False, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14} o_plot.set_plot_dics.append(contour_dic_xy) # x_arr = o_slice.get_grid_v_n_rl(it, "xz", rl, "x") z_arr = o_slice.get_grid_v_n_rl(it, "xz", rl, "z") x_b = [x_arr.min(), x_arr.max()] z_b = [z_arr.min(), z_arr.max()] # for x_b_line, z_b_line in zip([[x_b[0], x_b[-1]], [x_b[0], x_b[0]], [x_b[0], x_b[-1]], [x_b[-1], x_b[-1]]], [[z_b[0], z_b[0]], [z_b[0], z_b[-1]], [z_b[-1], z_b[-1]], [z_b[-1], z_b[0]]]): # contour_dic_xz = { 'task': 'line', 'ptype': 'cartesian', 'aspect': 1., 'xarr': x_b_line, "yarr": z_b_line, 'position': (1, 1), # 'title': '[{:.1f} ms]'.format(time_), 'color': 'cyan', 'ls': "-", 'lw': 1., 'alpha': 1., 'ds': 'default', 'v_n_x': 'x', 'v_n_y': 'y', 'v_n': 'rho', 'xscale': None, 'yscale': None, 'fancyticks': True, 'sharex': False, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14} o_plot.set_plot_dics.append(contour_dic_xz) except IndexError: Printcolor.print_colored_string(["it:", str(it), "rl:", str(rl), "IndexError"], ["blue", "green", "blue", "green", "red"]) o_plot.main() o_plot.set_plot_dics = [] # plotfpath = outdir + "{0:07d}.png".format(int(it)) # if True: # if (os.path.isfile(plotfpath) and rewrite) or not os.path.isfile(plotfpath): # if os.path.isfile(plotfpath): os.remove(plotfpath) # Printcolor.print_colored_string( # ["task:", "plot slice", "t:", "{:.1f} [ms] ({:d}/{:d})".format(t*1e3, i, len(list_times)), # "rl:", "{}".format(rl), "v_n:", v_n, ':', "plotting"], # ["blue", "green", "blue", "green", "blue", "green", "blue", "green", "", "green"] # ) # # --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- # # def_dic_xz["it"] = int(it) # def_dic_xz["title"]["text"] = r'$t:{:.1f}ms$'.format(float(t*1e3)) # o_plot.set_plot_dics.append(def_dic_xz) # # def_dic_xy["it"] = int(it) # o_plot.set_plot_dics.append(def_dic_xy) # # o_plot.main() # o_plot.set_plot_dics = [] # # # --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- # else: # Printcolor.print_colored_string( # ["task:", "plot slice", "t:", "{:.1f} [ms] ({:d}/{:d})".format(t * 1e3, i, len(list_times)), "rl:", # "{}".format(rl), "v_n:", v_n, ':', "skipping"], # ["blue", "green", "blue", "green", "blue", "green", "blue", "green", "", "blue"] # ) # # # except KeyboardInterrupt: # # exit(1) # else: # Printcolor.print_colored_string( # ["task:", "plot slice", "t:", "{:.1f} [ms] ({:d}/{:d})".format(t * 1e3, i, len(list_times)), "rl:", # "{}".format(rl), "v_n:", v_n, ':', "failed"], # ["blue", "green", "blue", "green", "blue", "green", "blue", "green", "", "red"] # ) def plot_selected_data(o_slice, v_ns, times, rls, rootdir, rewrite=False): _, d2it, d2t = o_slice.get_ittime("overall", d1d2d3prof="d2") if len(d2it) == 0: raise ValueError("No d2 data found in ittime.h5") for t in times: if t > d2t.max(): raise ValueError("given t:{} is above max time available:{}" .format(t, d2t.max())) if t < d2t.min(): raise ValueError("given t:{} is below min time available:{}" .format(t, d2t.min())) i = 1 for t in times: nearest_time = o_slice.get_nearest_time(t, d1d2d3="d2") it = o_slice.get_it_for_time(nearest_time, d1d2d3="d2") for v_n in v_ns: outdir_ = rootdir + v_n + '/' if not os.path.isdir(outdir_): os.mkdir(outdir_) for rl in rls: outdir__ = outdir_ + str("rl_{:d}".format(rl)) + '/' if not os.path.isdir(outdir__): os.mkdir(outdir__) plotfpath = outdir__ + "{0:07d}.png".format(int(it)) if True: if (os.path.isfile(plotfpath) and rewrite) or not os.path.isfile(plotfpath): if os.path.isfile(plotfpath): os.remove(plotfpath) Printcolor.print_colored_string( ["task:", "plot slice", "t:", "{:.1f} [ms] ({:d}/{:d})".format(t * 1e3, i, len(times)), "rl:", "{}".format(rl), "v_n:", v_n, ':', "plotting"], ["blue", "green", "blue", "green", "blue", "green", "blue", "green", "", "green"] ) # --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- __plot_data_for_a_slice(o_slice, v_n, it, t, rl, outdir__) # --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- else: Printcolor.print_colored_string( ["task:", "plot slice", "t:", "{:.1f} [ms] ({:d}/{:d})".format(t * 1e3, i, len(times)), "rl:", "{}".format(rl), "v_n:", v_n, ':', "skipping"], ["blue", "green", "blue", "green", "blue", "green", "blue", "green", "", "blue"] ) # except KeyboardInterrupt: # exit(1) # except: # Printcolor.print_colored_string( # ["task:", "plot slice", "t:", "{:.1f} [ms] ({:d}/{:d})".format(t * 1e3, i, len(times)), # "rl:", # "{}".format(rl), "v_n:", v_n, ':', "failed"], # ["blue", "green", "blue", "green", "blue", "green", "blue", "green", "", "red"] # ) sys.stdout.flush() i += 1 def make_movie(v_ns, rls, rootdir, rewrite=False): rewrite = True for v_n in v_ns: outdir_ = rootdir + v_n + '/' if not os.path.isdir(outdir_): os.mkdir(outdir_) for rl in rls: outdir__ = outdir_ + str("rl_{:d}".format(rl)) + '/' if not os.path.isdir(outdir__): os.mkdir(outdir__) fname = "{}_rl{}.mp4".format(v_n, rl) moviefath = outdir__ + fname nfiles = len(glob(outdir__)) if nfiles < 1: Printcolor.red("No plots found to make a movie in: {}".format(outdir__)) break try: if (os.path.isfile(moviefath) and rewrite) or not os.path.isfile(moviefath): if os.path.isfile(moviefath): os.remove(moviefath) Printcolor.print_colored_string( ["task:", "movie slice", "N files", "{:d}".format(nfiles), "rl:", "{}".format(rl), "v_n:", v_n, ':', "plotting"], ["blue", "green", "blue", "green", "blue", "green", "blue", "green", "", "green"] ) # --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- # ffmpeg -framerate 10 -pattern_type glob -i "*.png" -s:v 1280x720 -c:v libx264 -module_profile:v high -crf 20 -pix_fmt yuv420p dt.mp4 os.system(__movie__.format(outdir__, outdir__ + fname)) # --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- else: Printcolor.print_colored_string( ["task:", "movie slice", "N files", "{:d}".format(nfiles), "rl:", "{}".format(rl), "v_n:", v_n, ':', "skipping"], ["blue", "green", "blue", "green", "blue", "green", "blue", "green", "", "blue"] ) except KeyboardInterrupt: exit(1) except: Printcolor.print_colored_string( ["task:", "plot slice", "N files", "{:d}".format(nfiles), "rl:", "{}".format(rl), "v_n:", v_n, ':', "failed"], ["blue", "green", "blue", "green", "blue", "green", "blue", "green", "", "red"] ) __tasklist__ = ["plot", "movie", "addm0", "dm"] __reflevels__ = [0, 1, 2, 3, 4, 5, 6] __outdirname__ = "module_slices" __planes__ = ["xy", "xz"] def do_tasks(glob_v_ns): for task in glob_tasklist: # do tasks one by one if task == "plot": assert len(glob_v_ns) > 0 assert len(glob_times) > 0 assert len(glob_reflevels) > 0 outdir = glob_outdir + __outdirname__ + '/' if not os.path.isdir(outdir): os.mkdir(outdir) outdir += 'plots/' if not os.path.isdir(outdir): os.mkdir(outdir) plot_selected_data(o_slice, glob_v_ns, glob_times, glob_reflevels, outdir, rewrite=glob_overwrite) if task == "movie": assert len(glob_v_ns) > 0 assert len(glob_times) > 0 assert len(glob_reflevels) > 0 outdir = glob_outdir + __outdirname__ + '/' if not os.path.isdir(outdir): os.mkdir(outdir) outdir += 'movie/' if not os.path.isdir(outdir): os.mkdir(outdir) plot_selected_data(o_slice, glob_v_ns, glob_times, glob_reflevels, outdir, rewrite=glob_overwrite) assert len(glob_v_ns) > 0 assert len(glob_reflevels) > 0 outdir = glob_outdir + __outdirname__ + '/' if not os.path.isdir(outdir): os.mkdir(outdir) outdir += 'movie/' make_movie(glob_v_ns, glob_reflevels, outdir, rewrite=glob_overwrite) if task == "addm0": if len(glob_v_ns) == len(o_slice.list_v_ns): glob_v_ns = o_slice.list_neut_v_ns print glob_it add_q_r_t_to_prof_xyxz( v_ns=glob_v_ns, rls=glob_reflevels, planes=glob_planes, iterations=glob_it, sim=glob_sim, indir=glob_indir, pprdir=glob_outdir, path_to_sliced_profiles=glob_profxyxz_path, overwrite=glob_overwrite ) if task == "dm": outdir = Paths.default_ppr_dir + glob_sim + '/' + __outdirname__ + '/' compute_density_modes(o_slice, glob_reflevels, outdir, rewrite=glob_overwrite) if __name__ == '__main__': parser = ArgumentParser(description="postprocessing pipeline") parser.add_argument("-s", dest="sim", required=True, help="name of the simulation dir") parser.add_argument("-t", dest="tasklist", nargs='+', required=False, default=[], help="tasks to perform") # parser.add_argument("--v_n", dest="v_ns", nargs='+', required=False, default=[], help="variable names to compute") parser.add_argument("--time", dest="times", nargs='+', required=False, default=[], help="times to iterate over [ms]") parser.add_argument("--it", dest="it", nargs='+', required=False, default=[], help="iterations to use ") parser.add_argument("--rl", dest="reflevels", nargs='+', required=False, default=[], help="reflevels to use") parser.add_argument('--plane', dest="plane", required=False, nargs='+', default=[], help='Plane: xy,xz,yz for slice analysis') # parser.add_argument("-o", dest="outdir", required=False, default=None, help="path for output dir") parser.add_argument("-i", dest="indir", required=False, default=None, help="path to simulation dir") parser.add_argument("-p", dest="path_to_profs", required=False, default=None, help="path to 3D profiles") parser.add_argument("--overwrite", dest="overwrite", required=False, default="no", help="overwrite if exists") # args = parser.parse_args() glob_sim = args.sim glob_indir = args.indir glob_outdir = args.outdir glob_tasklist = args.tasklist glob_overwrite = args.overwrite glob_v_ns = args.v_ns glob_times =args.times glob_it = args.it glob_reflevels = args.reflevels glob_planes = args.plane # glob_profxyxz_path = args.path_to_profs#Paths.ppr_sims+glob_sim+'/profiles/' # if glob_indir is None: glob_indir = Paths.default_data_dir + glob_sim + '/' if not os.path.isdir(glob_indir): raise IOError("Default path to simulation data is not valid: {}".format(glob_indir)) if not os.path.isdir(glob_indir): raise IOError("Path to simulation data is not valid: {}".format(glob_indir)) if glob_outdir is None: glob_outdir = Paths.default_ppr_dir + glob_sim + '/' if not os.path.isdir(glob_indir): raise IOError("Default path to postprocessed data is not valid: {}".format(glob_outdir)) if not os.path.isdir(glob_indir): raise IOError("Path to postprocessed data is not valid: {}".format(glob_outdir)) if len(glob_tasklist) == 0: raise NameError("tasklist is empty. Set what tasks to perform with '-t' option") else: for task in glob_tasklist: if task not in __tasklist__: raise NameError("task: {} is not among available ones: {}" .format(task, __tasklist__)) if glob_overwrite == "no": glob_overwrite = False elif glob_overwrite == "yes": glob_overwrite = True else: raise NameError("for '--overwrite' option use 'yes' or 'no'. Given: {}" .format(glob_overwrite)) # glob_outdir_sim = Paths.ppr_sims + glob_sim # if not os.path.isdir(glob_outdir_sim): # os.mkdir(glob_outdir_sim) # check plane if len(glob_planes) == 0: raise IOError("Option --plane unfilled") elif len(glob_planes) == 1 and "all" in glob_planes: glob_planes = __planes__ elif len(glob_planes) > 1: for plane in glob_planes: if not plane in __planes__: raise NameError("plane:{} is not in the list of the __d3slicesplanes__:{}" .format(plane, __planes__)) # set globals # Paths.gw170817 = glob_simdir # Paths.ppr_sims = glob_outdir if len(glob_tasklist) == 1 and "all" in glob_tasklist: # do all tasksk pass o_slice = COMPUTE_STORE(glob_sim, indir=glob_indir, pprdir=glob_outdir) # deal with iterations and timesteps -- available as well as required by user do_all_iterations = False if len(glob_it) == 0 and len(glob_times) == 0: raise IOError("please specify timesteps to use '--time' or iterations '--it' ") elif len(glob_it) != 0 and len(glob_times) != 0: raise IOError("please specify Either timesteps to use '--time' or iterations '--it' (not both)") elif len(glob_times) == 0 and len(glob_it) == 1 and "all" in glob_it: do_all_iterations = True glob_times = o_slice.times glob_it = o_slice.iterations elif len(glob_it) == 0 and len(glob_times) == 1 and "all" in glob_times: do_all_iterations = True glob_times = o_slice.times glob_it = o_slice.iterations elif len(glob_it) > 0 and not "all" in glob_it and len(glob_times) == 0: glob_it = np.array(glob_it, dtype=int) # array of iterations glob_times = [] for it in glob_it: glob_times.append(o_slice.get_time_for_it(it, "overall", "d2")) glob_times = np.array(glob_times, dtype=float) elif len(glob_times) > 0 and not "all" in glob_times and len(glob_it) == 0: glob_times = np.array(glob_times, dtype=float) / 1e3 # back to seconds else: raise IOError("input times and iterations are not recognized: --time {} --it {}" .format(glob_times, glob_it)) # deal with reflevels -- availble as well as required by user do_all_reflevels = False if len(glob_reflevels) == 1 and "all" in glob_reflevels: glob_reflevels = __reflevels__ do_all_reflevels = True else: glob_reflevels = np.array(glob_reflevels, dtype=int) # deal with variable names -- available as well as required by user do_all_v_ns = False if len(glob_v_ns) == 1 and "all" in glob_v_ns: glob_v_ns=o_slice.list_v_ns do_all_v_ns = True else: pass # summarize what is avaialble and what is requried if do_all_v_ns or do_all_iterations or do_all_reflevels: Printcolor.yellow("Selected all", comma=True) if do_all_iterations: Printcolor.print_colored_string(["timesteps", "({})".format(len(glob_times))], ["blue", "green"], comma=True) if do_all_v_ns: Printcolor.print_colored_string(["v_ns", "({})".format(len(glob_v_ns))], ["blue", "green"], comma=True) if do_all_reflevels: Printcolor.print_colored_string(["reflevels", "({})".format(len(glob_reflevels))], ["blue", "green"], comma=True) Printcolor.yellow("this might take time.") # if not click.confirm(text="Confirm?",default=True,show_default=True): # exit(0) # perform tasks do_tasks(glob_v_ns)
20,890
0
92
e816797defd71414f450b8e5d91abae6b9cf9f15
7,532
py
Python
heartpredictions/LogisticRegression/Trainer.py
Dianevera/heart-prediction
c11e4ce92d501e1a398ee31b44d1552d8c6a29c5
[ "MIT" ]
null
null
null
heartpredictions/LogisticRegression/Trainer.py
Dianevera/heart-prediction
c11e4ce92d501e1a398ee31b44d1552d8c6a29c5
[ "MIT" ]
32
2021-09-27T17:32:19.000Z
2022-01-28T20:06:07.000Z
heartpredictions/LogisticRegression/Trainer.py
Dianevera/heart-prediction
c11e4ce92d501e1a398ee31b44d1552d8c6a29c5
[ "MIT" ]
1
2021-11-03T13:29:44.000Z
2021-11-03T13:29:44.000Z
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from torch import nn import torch
39.642105
149
0.525358
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from torch import nn import torch class Trainer: def __init__(self, model, class_weights, save_directory, loss='dl', lr=0.5, label_name = ""): """ Create the Trainer object. Parameters: model (Model): The model we are going to train class_weights ([float]): The class_weights save_directory (string): The path where we will save the weights loss (string): The name of the loss function (see below for me details) label_name (string): The label we are training on """ possible_loss = {'nllloss' : nn.NLLLoss(weight=class_weights, reduction='mean'), 'cross' : nn.CrossEntropyLoss(weight=class_weights), 'mse' : nn.MSELoss(reduction='mean'), 'BCEloss' : nn.BCELoss(), 'BCElogits' : nn.BCEWithLogitsLoss(weight=class_weights)} self.model = model self.criterion = possible_loss[loss] self.optimizer = torch.optim.SGD(model.parameters(), lr=lr) self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, mode='max', factor=0.6, patience=2, cooldown=2) self.history = {'lr': [], 'loss': [], 'acc':[], 'val_loss': [], 'val_acc':[]} self.max_val_acc = float('-inf') self.save_dir = save_directory self.label_name = label_name def fit(self, train_dataloader, val_dataloader, nb_epochs): """ The fit function. Parameters: train_dataloader (dataloader): The train data loader val_dataloader (dataloader): The validation data loader nb_epochs (int): Number of epochs we will train each trainer for Returns: trainers ([Trainer]): All the trainers we just trained """ print(f'==== Training {self.label_name} ====\n') for epoch in range(nb_epochs): print(f'Epoch {epoch + 1} / {nb_epochs}') train_loss = val_loss = train_acc = val_acc = 0.0 self.model.train() pbar = tf.keras.utils.Progbar(target=len(train_dataloader)) for i, batch in enumerate(train_dataloader): inputs, labels = batch # Clear gradients w.r.t. parameters self.optimizer.zero_grad() # Forward pass to get output/logits output = self.model(inputs) # Calculate Loss loss = self.criterion(output, labels) train_loss += loss train_acc += 1 if np.argmax(labels.detach().numpy()[0]) == np.argmax(output.detach().numpy()[0]) else 0 # Getting gradients w.r.t. parameters loss.backward() pbar.update(i + 1, values= [ ("loss", train_loss.item()/(i + 1)), ("acc", train_acc/(i + 1)), ("lr", self.scheduler.optimizer.param_groups[0]['lr']) ]) # Updating parameters self.optimizer.step() print('Validation') self.model.eval() pbar = tf.keras.utils.Progbar(target=len(val_dataloader)) with torch.no_grad(): for i, batch in enumerate(val_dataloader): inputs, labels = batch output = self.model(inputs) val_loss += loss val_acc += 1 if np.argmax(labels.detach().numpy()[0]) == np.argmax(output.detach().numpy()[0]) else 0 pbar.update(i + 1, values= [ ("loss", val_loss.item()/(i + 1)), ("acc", val_acc/(i + 1)), ("lr", self.scheduler.optimizer.param_groups[0]['lr']) ]) train_loss = train_loss / len(train_dataloader) train_acc = train_acc / len(train_dataloader) val_loss = val_loss / len(val_dataloader) val_acc = val_acc / len(val_dataloader) lr = self.scheduler.optimizer.param_groups[0]['lr'] self.scheduler.step(val_loss) self.history['lr'].append(lr) self.history['loss'].append(train_loss) self.history['val_loss'].append(val_loss) self.history['acc'].append(train_acc) self.history['val_acc'].append(val_acc) if val_acc > self.max_val_acc: print(f'Model saved. Acc updated: {self.max_val_acc:.3f} -> {val_acc:.3f}') self.max_val_acc = val_acc torch.save(self.model.state_dict(), f'{self.save_dir}/logistic_regression_{self.label_name}.pt') def evaluate(self, test_dataloader, display=True): """ The evaluation function. Test our model. Parameters: test_dataloader (dataloader): The test data loader display (Bool): If true we display the Iteration, Loss, Accuracy and total loss as we go along the evaluation Returns: total_accuracy (float): The accuracy we got on the test datloader """ print(f'==== Evaluate {self.label_name} ====\n') correct = total_loss = total = 0.0 self.model.eval() with torch.no_grad(): for i, (inputs, labels) in enumerate(test_dataloader): pred = self.model(inputs) loss = self.criterion(pred, labels) total_loss += loss # Total correct predictions correct += 1 if np.argmax(labels.detach().numpy()[0]) == np.argmax(pred.detach().numpy()[0]) else 0 total_accuracy = 100 * correct / len(test_dataloader) if display: print('Iteration: {}. Loss: {}. Accuracy: {}. total loss: {}.'.format(len(test_dataloader), loss.item(), total_accuracy, total_loss)) return total_accuracy def display_history(self, accuracy=True, loss=False): """ Plot the evolution of the accuracy and loss. Parameters: accuracy (bool): If True we plot the accuracy loss (Bool): If true we plot the loss """ if loss: plt.figure(figsize=(6,6)) plt.plot(self.history['loss'], label="Loss") plt.plot(self.history['val_loss'], label="Validation loss") plt.ylabel('Loss', fontsize=10) plt.xlabel('Epochs', fontsize=10) plt.legend() plt.show() if accuracy: plt.figure(figsize=(6,6)) plt.plot(self.history['acc'], label="Accuracy") plt.plot(self.history['val_acc'], label="Validation accuracy") plt.ylabel('Accuracy', fontsize=10) plt.xlabel('Epochs', fontsize=10) plt.legend() plt.show() def load_weights(self, path): """ load the weights. Parameters: path (string): The weights path """ self.model.load_state_dict(torch.load(path)) self.model.eval()
0
7,399
23
cb4d80b54499c7f044d5d3bb7aa86ffb23658862
28
py
Python
exipicrename/__init__.py
unixhex/exipicrename2
b2a2f5af224c4a2c93f81e48c2622c7522d76489
[ "MIT" ]
1
2020-02-14T13:41:28.000Z
2020-02-14T13:41:28.000Z
exipicrename/__init__.py
unixhex/exipicrename2
b2a2f5af224c4a2c93f81e48c2622c7522d76489
[ "MIT" ]
3
2021-06-08T19:46:29.000Z
2022-03-11T23:44:57.000Z
exipicrename/__init__.py
unixhex/exipicrename2
b2a2f5af224c4a2c93f81e48c2622c7522d76489
[ "MIT" ]
null
null
null
from .exipicrename import *
14
27
0.785714
from .exipicrename import *
0
0
0
7f8c1278840d863be1b8121c2143ec6ac691623e
2,392
py
Python
QuickSort.py
apotato369550/super-simple-sortr
0b85513a3fc6e426618719577a0d7ccd9385ff77
[ "MIT" ]
null
null
null
QuickSort.py
apotato369550/super-simple-sortr
0b85513a3fc6e426618719577a0d7ccd9385ff77
[ "MIT" ]
null
null
null
QuickSort.py
apotato369550/super-simple-sortr
0b85513a3fc6e426618719577a0d7ccd9385ff77
[ "MIT" ]
1
2022-03-09T06:46:14.000Z
2022-03-09T06:46:14.000Z
from Algorithims import Algorithms import time import threading
31.064935
123
0.562291
from Algorithims import Algorithms import time import threading class QuickSort(Algorithms): def __init__(self, data, delay): Algorithms.__init__(self) self.data = data self.delay = delay sorting_thread = threading.Thread(target=self.sort, args=(self.data, 0, len(data) - 1, self.drawData, delay, True)) sorting_thread.daemon = True sorting_thread.start() self.mainloop() def partition(self, data, head, tail, drawData, delay): border = head pivot = data[tail] drawData(data, self.getColorArray(len(data), head, tail, border, border)) time.sleep(delay) for i in range(head, tail): if data[i] < pivot: drawData(data, self.getColorArray(len(data), head, tail, border, i, True)) time.sleep(delay) data[border], data[i] = data[i], data[border] border += 1 drawData(data, self.getColorArray(len(data), head, tail, border, i)) time.sleep(delay) drawData(data, self.getColorArray(len(data), head, tail, border, tail, True)) time.sleep(delay) data[border], data[tail] = data[tail], data[border] return border def sort(self, data, head, tail, drawData, delay, main): if head < tail: partition_index = self.partition(data, head, tail, drawData, delay) # Left partition self.sort(data, head, partition_index - 1, drawData, delay, False) # Right partition self.sort(data, partition_index + 1, tail, drawData, delay, False) if main: drawData(data, ["green" for x in range(len(data))]) def getColorArray(self, data_length, head, tail, border, current_index, is_swapping=False): color_array = [] for i in range(data_length): if i >= head and i <= tail: color_array.append("grey") else: color_array.append("white") if i == tail: color_array[i] = "blue" elif i == border: color_array[i] = "red" elif i == current_index: color_array[i] = "yellow" if is_swapping: if i == border or i == current_index: color_array[i] = "green" return color_array
2,190
7
130
02be5c99a347950f27c83cbd18c1524887f1c17e
6,488
py
Python
src/extract_ml_features.py
amansinha09/HSDS
dd7cab75bd79a2cec1b9278215303b5e34e58e89
[ "MIT" ]
null
null
null
src/extract_ml_features.py
amansinha09/HSDS
dd7cab75bd79a2cec1b9278215303b5e34e58e89
[ "MIT" ]
null
null
null
src/extract_ml_features.py
amansinha09/HSDS
dd7cab75bd79a2cec1b9278215303b5e34e58e89
[ "MIT" ]
1
2018-11-17T09:12:31.000Z
2018-11-17T09:12:31.000Z
#extract_ml_features.py import emoji, re, os, time, sys from gensim.models import LdaModel from gensim.corpora import MmCorpus, Dictionary from isc_tokenizer import Tokenizer from isc_tagger import Tagger from tqdm import tqdm import vocab_helpers as helper import utils import pre_processing as dproc from nltk import ngrams #DONE #DONE FOR WORD AND POS #predict topic of unseen tweet using testing example based lda model built on train set if __name__ == '__main__': sample = 'मैं लगातार ट्विटर पर आर्सेनल के बारे में ट्वीट्स देखता हूं। दुनिया को अपडेट करने के लिए धन्यवाद @उपयोगकर्ता & @उपयोगकर्ता शॉनक्स। #' tknzr = Tokenizer(lang='hin') sys.stdout = open("toutput.txt", "a", encoding='utf-8') tokens = tknzr.tokenize(sample) tagger = Tagger(lang='hin') tags = tagger.tag(tokens) valid_tokens = [] for p in tags: if p[1] != 'SYM' and p[0] !='#': valid_tokens.append(p[0]) #for t in tokens: #print("=>",tokens) #ngram_list = [gram for gram in ngrams(tokens, 2)] #print(get_ngrams(tokens, [1,2])) print("Tokens ",tokens) print("POS ", tags) print("Filtered:", valid_tokens)
31.960591
143
0.719174
#extract_ml_features.py import emoji, re, os, time, sys from gensim.models import LdaModel from gensim.corpora import MmCorpus, Dictionary from isc_tokenizer import Tokenizer from isc_tagger import Tagger from tqdm import tqdm import vocab_helpers as helper import utils import pre_processing as dproc from nltk import ngrams #DONE def get_pragmatic_features(tweet_tokens): user_specific = intensifiers = tweet_len_ch = 0 for t in tweet_tokens: tweet_len_ch +=len(t) #no uppercase #count user mention if t.startswith('@'): user_specific +=1 #count of hashtag if t.startswith('#'): user_specific +=1 #feature base don laugh if t.startswith('हाहा') or re.match('ल(ॉ)ल+1$', t): user_specific +=1 #count based feature if t in helper.strong_negations: intensifiers +=1 if t in helper.strong_affirmatives: intensifiers +=1 if t in helper.interjections: intensifiers +=1 if t in helper.intensifiers: intensifiers +=1 if t in helper.punctuation: user_specific +=1 if t in emoji.UNICODE_EMOJI: user_specific +=1 tweet_len_tokens = len(tweet_tokens) average_token_tokens = float(tweet_len_tokens) / max(1.0, float(tweet_len_tokens)) feature_list = { 'tw_len_ch': tweet_len_ch, 'tw_len_tok': tweet_len_tokens, 'avg_len': average_token_tokens, 'user_specific':user_specific, 'intensifiers': intensifiers} return feature_list #DONE FOR WORD AND POS def get_ngrams(tokens, n, syntatic_data=False): if len(n) < 1: #print("Here!") return {} if not syntatic_data: #print("Length of tokens", len(tokens)) filtered =[] stopwords = dproc.get_stopwords_list() for t in tokens: if t not in stopwords: filtered.append(t) tokens = filtered #print("Length of filtered tokens" , len(tokens)) ngram_tokens = [] for i in n: for gram in ngrams(tokens, i): string_token = str(i) + '-gram ' for j in range(i): string_token += gram[j] + ' ' ngram_tokens.append(string_token) ngram_features = {i : ngram_tokens.count(i) for i in set(ngram_tokens)} return ngram_features def build_lda_model(tokens_tags, pos_tags, use_nouns = True, use_verbs = True, use_all = False, num_of_topics = 8, passes=25, verbose = True): path = '\\'.join((os.getcwd()).split('\\')[:-1]) topics_filename = str(num_of_topics) + "topics" if use_nouns: topics_filename += "_nouns" if use_verbs: topics_filename += "_verbs" if use_all: topics_filename += "_all" #set the LDA, DIctionary and Corpus filenames lda_filename = path + "/models/topics/lda_"+ topics_filename + ".model" dict_filename = path + "/res/topic_data/dict/dict_" + topics_filename + ".dict" corpus_filename = path + "/res/topic_data/corpus/corpus_" + topics_filename + ".mm" #build a topic model if wasn't created yet if not os.path.exists(lda_filename): # Extract lemmatize document docs =[] for index in range(len(tokens_tags)): tokens = tokens_tags[index].split() pos = pos_tags[index].split() #docs.append(data_proc.extract_lemmatized_tweets(tokens, pos, use_verbs, use_nouns, use_all)) #compute dictionary and save it dictionary = Dictionary(docs) dictionary.filter_extremes(keep_n = 40000) dictionary.compactify() Dictionary.save(dictionary, dict_filename) corpus = [dictionary.doc2bow(d) for d in docs] MmCOrpus.serialize(corpus_filename, corpus) if verbose: print("\nCleaned DOcument:", docs) print("\nDictionary:", dictionary) print("\nCOrpus is BOW form:", corpus) #start training lda model start =time.time() print("\n BUilding lda topics model....") lda_model = LdaModel(corpus=corpus, num_topics = num_of_topics, passes = passes, id2word = dictionary) lda_model.save(lda_filename) end = time.time() print("Completion time for building LDA model: %.3f s = %.3f min" % ((end- start), (end -start)/60.0)) if verbose: print("\nList of words associated with each topics") lda_topics_list = [[word for word, prob in topic] for topic_id, topic in lda_topics] print([t for t in lda_topics_list]) #Load the previously saved dictionary dictionary = Dictionary.load(dict_filename) #Load the previously saved corpus mm_corpus = MmCOrpus(corpus_filename) #Load the provious saved LDA model lda_model = LdaModel.load(lda_filename) # print top 10 for each topic if verbose: for topic_id in range(num_of_words): print("\n atop 10 words for each topics", topic_id) print([dictionary[word_id] for (word_id, prob) in lda_model.get_topic_terms(topic_id, topn =10)]) index=0 if verbose: for doc_topics, word_topics, word_phis in lda_model.get_document_topics(mm_corpus, per_word_topics =True): print('Index', index) print('Document topics', doc_topics) print('Word topics:', word_topics) print('Phi values:', word_phis) print('--------------------------\n') index +=1 return dictionary, mm_corpus, lda_model #predict topic of unseen tweet using testing example based lda model built on train set def get_topic_features_for_unseen_tweet(dictionary, lda_model, tokens_tags, pos_tags, use_nouns=True, use_verbs=True, use_all=False): #extract the lemmatize documents docs = data_proc.extract_lemmatized_tweets(tokens_tags, pos_tags, use_verbs, use_nouns, use_all) tweet_bow = dictionary.doc2bow(docs) topic_prediction = lda_model[tweet_bow] topic_features = {} if any(isinstance(topic_list, type([])) for topic_list in topic_prediction): topic_prediction = topic_prediction[0] for topic in topic_prediction: topic_features[ 'topic '+str(topic[0])] = topic[1] return topic_features def get_topic_features(corpus, ldamodel, index): topic_features = {} doc_topics, word_topics, phi_values = ldamodel.get_document_topics(corpus, per_word_topics=True)[index] for topic in doc_topics: topic_features['topic '+ str(topic[0])] = topic[1] return topic_features if __name__ == '__main__': sample = 'मैं लगातार ट्विटर पर आर्सेनल के बारे में ट्वीट्स देखता हूं। दुनिया को अपडेट करने के लिए धन्यवाद @उपयोगकर्ता & @उपयोगकर्ता शॉनक्स। #' tknzr = Tokenizer(lang='hin') sys.stdout = open("toutput.txt", "a", encoding='utf-8') tokens = tknzr.tokenize(sample) tagger = Tagger(lang='hin') tags = tagger.tag(tokens) valid_tokens = [] for p in tags: if p[1] != 'SYM' and p[0] !='#': valid_tokens.append(p[0]) #for t in tokens: #print("=>",tokens) #ngram_list = [gram for gram in ngrams(tokens, 2)] #print(get_ngrams(tokens, [1,2])) print("Tokens ",tokens) print("POS ", tags) print("Filtered:", valid_tokens)
5,279
0
112
70d83f669a2aceeb1487977c9a3a11d4d4f1f042
244
py
Python
src/__init__.py
MarcelFox/api-modelo
1ca862446893d0f0d079cde1b10931b8fd188c57
[ "CC0-1.0" ]
1
2020-09-29T14:55:08.000Z
2020-09-29T14:55:08.000Z
src/__init__.py
MarcelFox/api-modelo
1ca862446893d0f0d079cde1b10931b8fd188c57
[ "CC0-1.0" ]
null
null
null
src/__init__.py
MarcelFox/api-modelo
1ca862446893d0f0d079cde1b10931b8fd188c57
[ "CC0-1.0" ]
null
null
null
from flask import Flask
20.333333
44
0.668033
from flask import Flask def create_app(): app = Flask(__name__) # app.config.from_object('config') with app.app_context(): from src.app.Router import file_urls app.register_blueprint(file_urls) return app
196
0
23
4b523a47b862a5ac14fd0e2ce940728a52b0da94
535
py
Python
source/chunk.py
Ryaangu/pyler
685955088454b01f649a5de95b4b3cf6c6078db3
[ "MIT" ]
1
2020-11-05T23:36:31.000Z
2020-11-05T23:36:31.000Z
source/chunk.py
Ryaangu/pyler
685955088454b01f649a5de95b4b3cf6c6078db3
[ "MIT" ]
null
null
null
source/chunk.py
Ryaangu/pyler
685955088454b01f649a5de95b4b3cf6c6078db3
[ "MIT" ]
1
2020-11-06T12:44:21.000Z
2020-11-06T12:44:21.000Z
# Chunk # Write to chunk # Add constant to chunk
19.107143
43
0.583178
# Chunk class Chunk(): count = 0 constants_count = 0 code = [] lines = [] columns = [] constants = [] local_variables = [] # Write to chunk def chunk_write(chunk, byte, line, column): chunk.code.append(byte) chunk.lines.append(line) chunk.columns.append(column) chunk.count += 1 # Add constant to chunk def add_constant(chunk, value): chunk.constants.append(value) chunk.constants_count += 1 return (chunk.constants_count - 1)
251
168
66
0a9e811c6d130935e11801209b3068eba9b73f6d
9,010
py
Python
elyra/tests/pipeline/test_pipeline_parser.py
el-aasi/elyra
bd06a22c97a5e6083d5a29d88303142e826e2eab
[ "Apache-2.0" ]
1
2022-02-18T14:21:33.000Z
2022-02-18T14:21:33.000Z
elyra/tests/pipeline/test_pipeline_parser.py
el-aasi/elyra
bd06a22c97a5e6083d5a29d88303142e826e2eab
[ "Apache-2.0" ]
null
null
null
elyra/tests/pipeline/test_pipeline_parser.py
el-aasi/elyra
bd06a22c97a5e6083d5a29d88303142e826e2eab
[ "Apache-2.0" ]
null
null
null
# # Copyright 2018-2022 Elyra Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import pytest from elyra.pipeline.parser import PipelineParser from elyra.pipeline.pipeline import GenericOperation from elyra.tests.pipeline.util import _read_pipeline_resource @pytest.fixture
39.004329
112
0.723085
# # Copyright 2018-2022 Elyra Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import pytest from elyra.pipeline.parser import PipelineParser from elyra.pipeline.pipeline import GenericOperation from elyra.tests.pipeline.util import _read_pipeline_resource @pytest.fixture def valid_operation(): component_parameters = { 'filename': '{{filename}}', 'runtime_image': '{{runtime_image}}', 'env_vars': ["var1=var1", "var2=var2"], 'dependencies': ["a.txt", "b.txt", "c.txt"], 'outputs': ["d.txt", "e.txt", "f.txt"] } return GenericOperation(id='{{uuid}}', type='execution_node', classifier='execute-notebook-node', name='{{label}}', component_params=component_parameters) def test_valid_pipeline(valid_operation): pipeline_json = _read_pipeline_resource('resources/sample_pipelines/pipeline_valid.json') pipeline = PipelineParser().parse(pipeline_json) assert pipeline.name == '{{name}}' assert pipeline.runtime == '{{runtime}}' assert pipeline.runtime_config == '{{runtime-config}}' assert len(pipeline.operations) == 1 assert pipeline.operations['{{uuid}}'] == valid_operation def test_pipeline_with_dirty_list_values(valid_operation): pipeline_json = _read_pipeline_resource('resources/sample_pipelines/pipeline_with_invalid_list_values.json') pipeline = PipelineParser().parse(pipeline_json) assert pipeline.name == '{{name}}' assert pipeline.runtime == '{{runtime}}' assert pipeline.runtime_config == '{{runtime-config}}' assert len(pipeline.operations) == 1 assert pipeline.operations['{{uuid}}'] == valid_operation def test_multinode_pipeline(): pipeline_json = _read_pipeline_resource('resources/sample_pipelines/pipeline_3_node_sample.json') pipeline = PipelineParser().parse(pipeline_json) assert len(pipeline.operations) == 3 def test_supernode_pipeline(): pipeline_json = _read_pipeline_resource('resources/sample_pipelines/pipeline_with_supernode.json') pipeline = PipelineParser().parse(pipeline_json) assert len(pipeline.operations) == 4 # Confirm structure of pipeline: # Two execution nodes feed their outputs to super-node with one execution_node. # Super-node's execution node, then sends its output to external execution node. # 4 nodes total. Super-node execution node should have two parent-operations # pointing at first two nodes, and final node should have one parent pointing # at execution node WITHIN supernode. external_input_node_ids = ["db9f3f5b-b2e3-4824-aadd-c1c6bf652534", "f6584209-6f22-434f-9820-41327b6c749d"] supernode_excution_node_id = "079c0e12-eb5f-4fcc-983b-09e011869fee" external_node_id = "7628306d-2cc2-405c-94a1-fe42c95567a1" for node_id in pipeline.operations: # Validate operations list if node_id in external_input_node_ids: # These are input nodes, ensure parent_operation_ids are empty assert len(pipeline.operations[node_id].parent_operation_ids) == 0 continue if node_id == supernode_excution_node_id: # Node within supernode, should have two parent_ops matching external_input_node_ids assert len(pipeline.operations[node_id].parent_operation_ids) == 2 assert set(pipeline.operations[node_id].parent_operation_ids) == set(external_input_node_ids) continue if node_id == external_node_id: # Final external node, should have super_node embedded node as parent op. assert len(pipeline.operations[node_id].parent_operation_ids) == 1 assert pipeline.operations[node_id].parent_operation_ids[0] == supernode_excution_node_id continue assert False, "Invalid node_id encountered in pipeline operations!" def test_multiple_pipeline_definition(): pipeline_json = _read_pipeline_resource('resources/sample_pipelines/' 'pipeline_multiple_pipeline_definitions.json') with pytest.raises(ValueError): PipelineParser().parse(pipeline_json) def test_pipeline_operations_and_handle_artifact_file_details(): pipeline_json = _read_pipeline_resource('resources/sample_pipelines/pipeline_3_node_sample.json') pipeline = PipelineParser().parse(pipeline_json) assert len(pipeline.operations) == 3 for op in pipeline.operations.values(): assert '.' not in op.name def test_pipeline_with_dependencies(): pipeline_json = _read_pipeline_resource('resources/sample_pipelines/' 'pipeline_3_node_sample_with_dependencies.json') pipeline = PipelineParser().parse(pipeline_json) assert len(pipeline.operations['acc4527d-7cc8-4c16-b520-5aa0f50a2e34'].parent_operation_ids) == 2 def test_pipeline_with_comments(): pipeline_json = _read_pipeline_resource('resources/sample_pipelines/' 'pipeline_3_node_sample_with_comments.json') pipeline = PipelineParser().parse(pipeline_json) assert pipeline.operations['d52ddfb4-dd0e-47ac-abc7-fa30bb95d45c'].doc \ == "Generate community stats and then aggregate them on an overview dashboard" def test_pipeline_global_attributes(): pipeline_json = _read_pipeline_resource('resources/sample_pipelines/pipeline_valid.json') pipeline = PipelineParser().parse(pipeline_json) assert pipeline.name == '{{name}}' assert pipeline.runtime == '{{runtime}}' assert pipeline.runtime_config == '{{runtime-config}}' def test_missing_pipeline_name_should_default_to_untitled(): pipeline_json = _read_pipeline_resource('resources/sample_pipelines/pipeline_valid.json') pipeline_json['pipelines'][0]['app_data']['properties'].pop('name') pipeline = PipelineParser().parse(pipeline_json) assert pipeline.name == 'untitled' def test_missing_pipeline_runtime(): pipeline_json = _read_pipeline_resource('resources/sample_pipelines/pipeline_valid.json') pipeline_json['pipelines'][0]['app_data'].pop('runtime') with pytest.raises(ValueError) as e: PipelineParser().parse(pipeline_json) assert "Invalid pipeline: Missing runtime." in str(e.value) def test_missing_pipeline_runtime_configuration(): pipeline_json = _read_pipeline_resource('resources/sample_pipelines/pipeline_valid.json') pipeline_json['pipelines'][0]['app_data'].pop('runtime_config') with pytest.raises(ValueError) as e: PipelineParser().parse(pipeline_json) assert "Invalid pipeline: Missing runtime configuration" in str(e.value) def test_missing_operation_id(): pipeline_json = _read_pipeline_resource('resources/sample_pipelines/pipeline_valid.json') pipeline_json['pipelines'][0]['nodes'][0].pop('id') with pytest.raises(ValueError) as e: PipelineParser().parse(pipeline_json) assert "Missing field 'operation id'" in str(e.value) def test_missing_operation_type(): pipeline_json = _read_pipeline_resource('resources/sample_pipelines/pipeline_valid.json') pipeline_json['pipelines'][0]['nodes'][0].pop('type') with pytest.raises(ValueError) as e: PipelineParser().parse(pipeline_json) assert "Node type 'None' is invalid!" in str(e.value) def test_invalid_node_type(): pipeline_json = _read_pipeline_resource('resources/sample_pipelines/pipeline_valid.json') pipeline_json['pipelines'][0]['nodes'][0]['type'] = 'foo' with pytest.raises(ValueError) as e: PipelineParser().parse(pipeline_json) assert "Node type 'foo' is invalid!" in str(e.value) def test_missing_operation_filename(): pipeline_json = _read_pipeline_resource('resources/sample_pipelines/pipeline_valid.json') pipeline_json['pipelines'][0]['nodes'][0]['app_data']['component_parameters'].pop('filename') with pytest.raises(ValueError) as e: PipelineParser().parse(pipeline_json) assert "Missing field 'operation filename" in str(e.value) def test_missing_operation_image(): pipeline_json = _read_pipeline_resource('resources/sample_pipelines/pipeline_valid.json') pipeline_json['pipelines'][0]['nodes'][0]['app_data']['component_parameters'].pop('runtime_image') with pytest.raises(ValueError) as e: PipelineParser().parse(pipeline_json) assert "Missing field 'operation runtime image'" in str(e.value)
7,801
0
413
a512f5392dbace5bfc36af9bb0cb5f229444416d
6,379
py
Python
csv_to_coco.py
ZHUXUHAN/Tools
98a0776f460febc69af5523e2c69d7702ee04876
[ "MIT" ]
1
2019-11-20T12:16:21.000Z
2019-11-20T12:16:21.000Z
csv_to_coco.py
ZHUXUHAN/Python-Tools
98a0776f460febc69af5523e2c69d7702ee04876
[ "MIT" ]
null
null
null
csv_to_coco.py
ZHUXUHAN/Python-Tools
98a0776f460febc69af5523e2c69d7702ee04876
[ "MIT" ]
null
null
null
import os import pandas as pd from collections import OrderedDict import cv2 import numpy as np import json gt_data_path = "/home/priv-lab1/workspace/zxh/end2/csv/anno_box_train.csv" hoi_list_path = "/home/priv-lab1/workspace/zxh/end2/origin_lists/hico_list_hoi.txt" img_path = '/home/priv-lab1/workspace/zxh/My_Database/hico_20160224_det/images/train2015/' # image folder path save_json_path = 'train_hico.json' # name for save json _classes = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic_light', 'fire_hydrant', 'stop_sign', 'parking_meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports_ball', 'kite', 'baseball_bat', 'baseball_glove', 'skateboard', 'surfboard', 'tennis_racket', 'bottle', 'wine_glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot_dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted_plant', 'bed', 'dining_table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell_phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy_bear', 'hair_drier', 'toothbrush') df_gt_data = pd.DataFrame.from_csv(gt_data_path) # str to list df_gt_data['human_bbox'] = df_gt_data['human_bbox'].apply(lambda x: list(map(int, x.strip('[]').split(',')))) df_gt_data['obj_bbox'] = df_gt_data['obj_bbox'].apply(lambda x: list(map(int, x.strip('[]').split(',')))) df_gt_data['img_size_w_h'] = df_gt_data['img_size_w_h'].apply(lambda x: list(map(int, x.strip('[]').split(',')))) human_bbox_dict=OrderedDict() object_bbox_dict=OrderedDict() filenames=[] action_dict=OrderedDict() list_action=[] for index,row in df_gt_data.iterrows(): filenames.append(row['name']) if row['name'] in human_bbox_dict: human_bbox_dict[row['name']].append(row['human_bbox']) object_bbox_dict[row['name']].append(row['obj_bbox']) action_dict[row['name']].append(row['action_no']) else: human_bbox_dict[row['name']]=[row['human_bbox']] object_bbox_dict[row['name']] = [row['obj_bbox']] action_dict[row['name']] = [row['action_no']] filenames=set(filenames) with open(hoi_list_path,'r') as f : lines=f.readlines() for line in lines[2:]: list_action.append(line.split()) print("data set done") if __name__ == '__main__': Convert_csv_to_coco('train')
39.621118
113
0.551811
import os import pandas as pd from collections import OrderedDict import cv2 import numpy as np import json gt_data_path = "/home/priv-lab1/workspace/zxh/end2/csv/anno_box_train.csv" hoi_list_path = "/home/priv-lab1/workspace/zxh/end2/origin_lists/hico_list_hoi.txt" img_path = '/home/priv-lab1/workspace/zxh/My_Database/hico_20160224_det/images/train2015/' # image folder path save_json_path = 'train_hico.json' # name for save json _classes = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic_light', 'fire_hydrant', 'stop_sign', 'parking_meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports_ball', 'kite', 'baseball_bat', 'baseball_glove', 'skateboard', 'surfboard', 'tennis_racket', 'bottle', 'wine_glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot_dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted_plant', 'bed', 'dining_table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell_phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy_bear', 'hair_drier', 'toothbrush') df_gt_data = pd.DataFrame.from_csv(gt_data_path) # str to list df_gt_data['human_bbox'] = df_gt_data['human_bbox'].apply(lambda x: list(map(int, x.strip('[]').split(',')))) df_gt_data['obj_bbox'] = df_gt_data['obj_bbox'].apply(lambda x: list(map(int, x.strip('[]').split(',')))) df_gt_data['img_size_w_h'] = df_gt_data['img_size_w_h'].apply(lambda x: list(map(int, x.strip('[]').split(',')))) human_bbox_dict=OrderedDict() object_bbox_dict=OrderedDict() filenames=[] action_dict=OrderedDict() list_action=[] for index,row in df_gt_data.iterrows(): filenames.append(row['name']) if row['name'] in human_bbox_dict: human_bbox_dict[row['name']].append(row['human_bbox']) object_bbox_dict[row['name']].append(row['obj_bbox']) action_dict[row['name']].append(row['action_no']) else: human_bbox_dict[row['name']]=[row['human_bbox']] object_bbox_dict[row['name']] = [row['obj_bbox']] action_dict[row['name']] = [row['action_no']] filenames=set(filenames) with open(hoi_list_path,'r') as f : lines=f.readlines() for line in lines[2:]: list_action.append(line.split()) print("data set done") class Convert_csv_to_coco(object): def __init__(self,mode): # self.img_hoi = img_hoi_train # self.row_num=img_hoi_train.shape[0]#行数 self.save_json_path = save_json_path self.mode=mode self.images = [] self.categories = [] self.annotations = [] self.label_map = {} for i in range(len(_classes)): self.label_map[_classes[i]] = i self.annID = 1 self.transfer_process() self.save_json() def transfer_process(self): # categories for i in range(0, len(_classes)): categories = {'supercategory': _classes[i], 'id': i, 'name': _classes[i]} self.categories.append(categories) for i,file in enumerate(filenames): if i% 100 == 0 or i==len(filenames)-1: print('CSV transfer process {}'.format(str(i + 1))) data_name = file if os.path.exists(img_path + data_name): img_p = cv2.imread(img_path + data_name ) filename = data_name width = img_p.shape[1] height = img_p.shape[0] else: with open("./save.txt",'w') as f: f.write(img_path + data_name) print(img_path + data_name) def processing_ann( bbox): x1 = np.maximum(0.0, float(bbox[0])) y1 = np.maximum(0.0, float(bbox[2])) x2 = np.minimum(width - 1.0, float(bbox[1])) y2 = np.minimum(height - 1.0, float(bbox[3])) # rectangle = [x1, y1, x2, y2] bbox = [x1, y1, x2 - x1 + 1, y2 - y1 + 1] # [x,y,w,h] area = (x2 - x1 + 1) * (y2 - y1 + 1) return bbox, area # images image = {'height': height, 'width': width, 'id': i, 'file_name': filename} self.images.append(image) obboxs = object_bbox_dict[file] actions = action_dict[file] for ii,hbbox in enumerate(human_bbox_dict[file]): h_x1 = hbbox[0] h_x2 = hbbox[1] h_y1 = hbbox[2] h_y2 = hbbox[3] human_bbox=[h_x1,h_x2,h_y1,h_y2] o_x1 = obboxs[ii][0] o_x2 = obboxs[ii][1] o_y1 = obboxs[ii][2] o_y2 = obboxs[ii][3] obj_bbox=[o_x1,o_x2,o_y1,o_y2] # label = list_action[actions[ii]-1][1] human_bbox,human_bbox_area=processing_ann(human_bbox) human_annotation = {'segmentation': [], 'iscrowd': 0, 'area': human_bbox_area, 'image_id': i, 'bbox': human_bbox, 'difficult': 0, 'category_id': self.label_map['person'], 'id': self.annID} self.annotations.append(human_annotation) self.annID += 1 obj_bbox, obj_bbox_area = processing_ann(obj_bbox) obj_annotation = {'segmentation': [], 'iscrowd': 0, 'area': obj_bbox_area, 'image_id': i, 'bbox': obj_bbox, 'difficult': 0, 'category_id': self.label_map[label], 'id': self.annID} self.annotations.append(obj_annotation) self.annID += 1 def save_json(self): data_coco = {'images': self.images, 'categories': self.categories, 'annotations': self.annotations} json.dump(data_coco, open(self.save_json_path, 'w'), indent=4) if __name__ == '__main__': Convert_csv_to_coco('train')
3,530
13
102
5889664d73c5e5d85739f1d451909c87f007011e
3,513
py
Python
dirutility/multiprocess.py
mrstephenneal/dirutility
c51b4c3bd543da8bb69e496d0c3ec8333897042c
[ "MIT" ]
2
2018-07-27T18:34:10.000Z
2018-10-09T21:40:34.000Z
dirutility/multiprocess.py
mrstephenneal/dirutility
c51b4c3bd543da8bb69e496d0c3ec8333897042c
[ "MIT" ]
7
2018-07-27T17:29:36.000Z
2018-10-01T13:29:52.000Z
dirutility/multiprocess.py
mrstephenneal/dirutility
c51b4c3bd543da8bb69e496d0c3ec8333897042c
[ "MIT" ]
1
2019-09-26T13:04:04.000Z
2019-09-26T13:04:04.000Z
from multiprocessing import cpu_count from multiprocessing.pool import Pool from tqdm import tqdm def pool_process(func, iterable, cpus=cpu_count(), return_vals=False, cpu_reduction=0, progress_bar=False): """ Multiprocessing helper function for performing looped operation using multiple processors. :param func: Function to call :param iterable: Iterable object to perform each function on :param cpus: Number of cpu cores, defaults to system's cpu count :param return_vals: Bool, returns output values when True :param cpu_reduction: Number of cpu core's to not use :param progress_bar: Display text based progress bar :return: """ with Pool(cpus - abs(cpu_reduction)) as pool: # Return values returned by 'func' if return_vals: # Show progress bar if progress_bar: vals = [v for v in tqdm(pool.imap_unordered(func, iterable), total=len(iterable))] # No progress bar else: vals = pool.map(func, iterable) # Close pool and return values pool.close() # pool.join() return vals # Don't capture values returned by 'func' else: pool.map(func, iterable) pool.close() return True
36.978947
107
0.63877
from multiprocessing import cpu_count from multiprocessing.pool import Pool from tqdm import tqdm def pool_process(func, iterable, cpus=cpu_count(), return_vals=False, cpu_reduction=0, progress_bar=False): """ Multiprocessing helper function for performing looped operation using multiple processors. :param func: Function to call :param iterable: Iterable object to perform each function on :param cpus: Number of cpu cores, defaults to system's cpu count :param return_vals: Bool, returns output values when True :param cpu_reduction: Number of cpu core's to not use :param progress_bar: Display text based progress bar :return: """ with Pool(cpus - abs(cpu_reduction)) as pool: # Return values returned by 'func' if return_vals: # Show progress bar if progress_bar: vals = [v for v in tqdm(pool.imap_unordered(func, iterable), total=len(iterable))] # No progress bar else: vals = pool.map(func, iterable) # Close pool and return values pool.close() # pool.join() return vals # Don't capture values returned by 'func' else: pool.map(func, iterable) pool.close() return True class PoolProcess: _func = None _iterable = None def __init__(self, func, iterable, cpus=cpu_count(), cpu_reduction=0, filter_nulls=False): """ Multiprocessing helper function for performing looped operation using multiple processors. :param func: Function to call :param iterable: Iterable object to perform each function on :param cpus: Number of cpu cores, defaults to system's cpu count :param cpu_reduction: Number of cpu core's to not use :param filter_nulls: Bool, when true None values are removed from the result list before return """ self._func = func self._iterable = iterable self.cpu_count = cpus - abs(cpu_reduction) self.filter_nulls = filter_nulls self._result = None @property def result(self): """Return the results returned by map_return or map_tqdm methods.""" # Remove None values from self._result if filter_nulls is enabled return [i for i in self._result if i is not None] if self.filter_nulls else self._result def map(self): """Perform a function on every item in an iterable.""" with Pool(self.cpu_count) as pool: pool.map(self._func, self._iterable) pool.close() return True def map_return(self): """Perform a function on every item and return a list of yield values.""" with Pool(self.cpu_count) as pool: self._result = pool.map(self._func, self._iterable) pool.close() return self.result def map_tqdm(self, desc=None, unit='it'): """ Perform a function on every item while displaying a progress bar. :param desc: Optional, progress bar description :param unit: Optional, progress bar units (default is 'it' for 'iteration') :return: A list of yielded values """ tqdm_args = dict(total=len(self._iterable), desc=desc, unit=unit) with Pool(self.cpu_count) as pool: self._result = [v for v in tqdm(pool.imap_unordered(self._func, self._iterable), **tqdm_args)] pool.close() return self.result
0
2,167
23
f5483164f422c3135aabb74cd6db1a01d89851f4
617
py
Python
census_dp/noisy_max.py
candrsn/census-dp
a98b4bc4e03dab3c5d77723806daf387a8cbee8b
[ "MIT" ]
13
2019-08-30T15:05:21.000Z
2022-03-11T14:17:01.000Z
census_dp/noisy_max.py
chrishwiggins/census-dp
a98b4bc4e03dab3c5d77723806daf387a8cbee8b
[ "MIT" ]
1
2019-08-01T16:20:58.000Z
2019-08-01T16:20:58.000Z
census_dp/noisy_max.py
chrishwiggins/census-dp
a98b4bc4e03dab3c5d77723806daf387a8cbee8b
[ "MIT" ]
4
2019-09-23T19:29:34.000Z
2021-02-13T18:09:43.000Z
import numpy as np from laplace import laplace_mech def noisy_max(answers: np.ndarray, epsilon: float, sensitivity: float): """ Implementation of the noisy max mechanism with gap using Laplace noise Given a set of queries, this mechanism will return the **index**, not the value, of the query that is probably largest. Args: answers (float or numpy array): the set of queries epsilon (float): the privacy budget sensitivity (float): the global sensitivity of the query """ noisy_answers = laplace_mech(answers, epsilon/2.0, sensitivity) return noisy_answers.argmax()
34.277778
78
0.721232
import numpy as np from laplace import laplace_mech def noisy_max(answers: np.ndarray, epsilon: float, sensitivity: float): """ Implementation of the noisy max mechanism with gap using Laplace noise Given a set of queries, this mechanism will return the **index**, not the value, of the query that is probably largest. Args: answers (float or numpy array): the set of queries epsilon (float): the privacy budget sensitivity (float): the global sensitivity of the query """ noisy_answers = laplace_mech(answers, epsilon/2.0, sensitivity) return noisy_answers.argmax()
0
0
0
ed609976d006987150b382827dca7d8b313dbdb3
782
py
Python
tests/test_metric_logger.py
zhtianxiao/DLA-Combined-IoUs
0b9db0e8e2b2927928bd57c6032497d3b87e7905
[ "BSD-2-Clause" ]
2
2022-01-27T07:08:34.000Z
2022-03-22T03:14:11.000Z
tests/test_metric_logger.py
zhtianxiao/DLA-Combined-IoUs
0b9db0e8e2b2927928bd57c6032497d3b87e7905
[ "BSD-2-Clause" ]
1
2022-02-04T05:38:04.000Z
2022-02-04T05:38:04.000Z
tests/test_metric_logger.py
zhtianxiao/DLA-Combined-IoUs
0b9db0e8e2b2927928bd57c6032497d3b87e7905
[ "BSD-2-Clause" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import unittest from dynamic_atss_core.utils.metric_logger import MetricLogger if __name__ == "__main__": unittest.main()
25.225806
71
0.63555
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import unittest from dynamic_atss_core.utils.metric_logger import MetricLogger class TestMetricLogger(unittest.TestCase): def test_update(self): meter = MetricLogger() for i in range(10): meter.update(metric=float(i)) m = meter.meters["metric"] self.assertEqual(m.count, 10) self.assertEqual(m.total, 45) self.assertEqual(m.median, 4) self.assertEqual(m.avg, 4.5) def test_no_attr(self): meter = MetricLogger() _ = meter.meters _ = meter.delimiter def broken(): _ = meter.not_existent self.assertRaises(AttributeError, broken) if __name__ == "__main__": unittest.main()
483
21
76
a125abeb0e27dc36ea6ff47b03ac4c93aff2e032
2,224
py
Python
python/run_emulator.py
LCClyde/NyraEmulationSystem
bedd164316abbe833b066e282e0de1c506d45f2b
[ "MIT" ]
null
null
null
python/run_emulator.py
LCClyde/NyraEmulationSystem
bedd164316abbe833b066e282e0de1c506d45f2b
[ "MIT" ]
1
2015-05-12T11:19:58.000Z
2015-05-12T11:19:58.000Z
python/run_emulator.py
LCClyde/NyraEmulationSystem
bedd164316abbe833b066e282e0de1c506d45f2b
[ "MIT" ]
null
null
null
import argparse import pygame import sys from nes import Controller from screen import Screen from fps import FPS from tas import TAS from emulator import Emulator if __name__ == "__main__": parser = argparse.ArgumentParser( description = 'Dumps NES header information') parser.add_argument('pathname', help='specify the NES file to open') parser.add_argument('--tas', dest='tas', help='specify a TAS file to run', default=None) parser.add_argument('--scale', dest='scale', help='specify the screen scale', default = 1) args = parser.parse_args() emulator = Emulator(args.pathname) screen = Screen(args.scale) fps = FPS() if args.tas: target_fps = 1000.0 tas = TAS(args.tas) else: target_fps = 60.0 tas = None keep_going = True while keep_going: try: # Get button presses if tas == None: pressed = pygame.key.get_pressed() controller = emulator.controllers[0] if pressed[pygame.K_RETURN]: controller.set_key(Controller.BUTTON_START) if pressed[pygame.K_RSHIFT]: controller.set_key(Controller.BUTTON_SELECT) if pressed[pygame.K_a]: controller.set_key(Controller.BUTTON_LEFT) if pressed[pygame.K_d]: controller.set_key(Controller.BUTTON_RIGHT) if pressed[pygame.K_w]: controller.set_key(Controller.BUTTON_UP) if pressed[pygame.K_s]: controller.set_key(Controller.BUTTON_DOWN) if pressed[pygame.K_j]: controller.set_key(Controller.BUTTON_B) if pressed[pygame.K_k]: controller.set_key(Controller.BUTTON_A) if tas != None: tas.update_controller(emulator.controllers[0]) emulator.tick(screen) keep_going = screen.render() fps.update(target_fps) except Exception, e: print 'Exception occurred: ' + str(e) keep_going = False
35.301587
94
0.571043
import argparse import pygame import sys from nes import Controller from screen import Screen from fps import FPS from tas import TAS from emulator import Emulator if __name__ == "__main__": parser = argparse.ArgumentParser( description = 'Dumps NES header information') parser.add_argument('pathname', help='specify the NES file to open') parser.add_argument('--tas', dest='tas', help='specify a TAS file to run', default=None) parser.add_argument('--scale', dest='scale', help='specify the screen scale', default = 1) args = parser.parse_args() emulator = Emulator(args.pathname) screen = Screen(args.scale) fps = FPS() if args.tas: target_fps = 1000.0 tas = TAS(args.tas) else: target_fps = 60.0 tas = None keep_going = True while keep_going: try: # Get button presses if tas == None: pressed = pygame.key.get_pressed() controller = emulator.controllers[0] if pressed[pygame.K_RETURN]: controller.set_key(Controller.BUTTON_START) if pressed[pygame.K_RSHIFT]: controller.set_key(Controller.BUTTON_SELECT) if pressed[pygame.K_a]: controller.set_key(Controller.BUTTON_LEFT) if pressed[pygame.K_d]: controller.set_key(Controller.BUTTON_RIGHT) if pressed[pygame.K_w]: controller.set_key(Controller.BUTTON_UP) if pressed[pygame.K_s]: controller.set_key(Controller.BUTTON_DOWN) if pressed[pygame.K_j]: controller.set_key(Controller.BUTTON_B) if pressed[pygame.K_k]: controller.set_key(Controller.BUTTON_A) if tas != None: tas.update_controller(emulator.controllers[0]) emulator.tick(screen) keep_going = screen.render() fps.update(target_fps) except Exception, e: print 'Exception occurred: ' + str(e) keep_going = False
0
0
0
20454a0fbb1ea04507f12ffef3b7da1960cf9ea3
1,317
py
Python
lambda_cron/cli/command/aws_lambda.py
MediaMath/lambda-cron
2545e9fdeced7ebeaba2f98d02891cc6db7546e2
[ "Apache-2.0" ]
22
2017-10-27T11:37:58.000Z
2021-11-09T09:35:37.000Z
lambda_cron/cli/command/aws_lambda.py
MediaMath/lambda-cron
2545e9fdeced7ebeaba2f98d02891cc6db7546e2
[ "Apache-2.0" ]
1
2018-03-21T18:31:01.000Z
2018-03-21T18:31:01.000Z
lambda_cron/cli/command/aws_lambda.py
MediaMath/lambda-cron
2545e9fdeced7ebeaba2f98d02891cc6db7546e2
[ "Apache-2.0" ]
3
2017-10-27T16:49:42.000Z
2018-11-03T04:14:10.000Z
# Copyright (C) 2016 MediaMath <http://www.mediamath.com> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import datetime from command import AwsCommand
38.735294
145
0.675778
# Copyright (C) 2016 MediaMath <http://www.mediamath.com> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import datetime from command import AwsCommand class InvokeCommand(AwsCommand): def payload(self): return "\"source\": \"LambdaCron-cli-invoke\", \"time\": \"{time}\", \"resources\": [\"Manual:invoke/LambdaCron-{environment}\"]".format( time=datetime.datetime.now().strftime('%Y-%m-%dT%H:%M:%SZ'), environment=self.config.environment ) def run(self): invoke_command = [ "aws", "lambda", "invoke", "--invocation-type", "Event", "--function-name", self.get_stack_name(), "--payload", '{' + self.payload() + '}', os.path.join(self.get_tmp_directory(), 'invoke_output.txt') ] self.exec_command(invoke_command)
570
11
77
f42c02c0c9b6c0a562b01ec9dc5934ca6fed0f1a
4,602
py
Python
geoportal/geoportailv3_geoportal/views/casipo.py
Geoportail-Luxembourg/geoportailv3
a3797a426e263683cdebe371753e655604789474
[ "MIT" ]
17
2015-01-14T08:40:22.000Z
2021-05-08T04:39:50.000Z
geoportal/geoportailv3_geoportal/views/casipo.py
Geoportail-Luxembourg/geoportailv3
a3797a426e263683cdebe371753e655604789474
[ "MIT" ]
1,477
2015-01-05T09:58:41.000Z
2022-03-18T11:07:09.000Z
geoportal/geoportailv3_geoportal/views/casipo.py
Geoportail-Luxembourg/geoportailv3
a3797a426e263683cdebe371753e655604789474
[ "MIT" ]
14
2015-07-24T07:33:13.000Z
2021-03-02T13:51:48.000Z
# -*- coding: UTF-8 -*- from pyramid.i18n import get_localizer, TranslationStringFactory from pyramid.view import view_config from pyramid.response import Response from c2cgeoportal_commons.models import DBSessions, DBSession import logging import owncloud import shutil import os import smtplib import urllib.request from email.mime.text import MIMEText import time import datetime import sys _ = TranslationStringFactory("geoportailv3_geoportal-server") log = logging.getLogger(__name__)
37.112903
215
0.590613
# -*- coding: UTF-8 -*- from pyramid.i18n import get_localizer, TranslationStringFactory from pyramid.view import view_config from pyramid.response import Response from c2cgeoportal_commons.models import DBSessions, DBSession import logging import owncloud import shutil import os import smtplib import urllib.request from email.mime.text import MIMEText import time import datetime import sys _ = TranslationStringFactory("geoportailv3_geoportal-server") log = logging.getLogger(__name__) class Casipo(object): def __init__(self, request): self.request = request self.config = self.request.registry.settings self.localizer = get_localizer(self.request) def __download(self, num): if self.staging: url = "%s?ids=%s&token=%s" % ( self.config["casipo"]["staging_url"], num, self.config["casipo"]["fme_token"]) else: url = "%s?ids=%s&token=%s" % ( self.config["casipo"]["prod_url"], num, self.config["casipo"]["fme_token"]) db_ecadastre = DBSessions['ecadastre'] cnt = 0 try: sql = "select nextval_daily ('casipo_seq')" results = DBSession.execute(sql) for res in results: cnt = res[0] except Exception as e: log.exception(e) try: f = urllib.request.urlopen(url, None, 1800) data = f # YYYYMMJJ_Commune_Extrait_CASIPO_nn.pdf commune = "" sql = "select replace(commune_administrative , '/', '_') as commune_administrative FROM DIFFDATA.communes_adm_cad_sections WHERE code_commune = " + str(int(num[0:3])) + " GROUP BY commune_administrative" results = db_ecadastre.execute(sql) for res in results: commune = res['commune_administrative'] self.filename = '/tmp/%s_%s_Extrait_CASIPO_%s.pdf' % (str(datetime.datetime.now().strftime("%Y%m%d")), commune, str(cnt)) with open(self.filename, 'wb') as fp: shutil.copyfileobj(data, fp) except Exception as e: log.exception(e) data = None log.debug(url) return def __upload2owncloud(self): oc = owncloud.Client(self.config["casipo"]["owncloud_internal_url"]) oc.login(self.config["casipo"]["owncloud_user"], self.config["casipo"]["owncloud_password"]) oc.put_file(os.path.basename(self.filename), self.filename) link_info = oc.share_file_with_link(os.path.basename(self.filename)) self.link = link_info.get_link().replace( self.config["casipo"]["owncloud_internal_url"].replace('http://', 'https://'), self.config["casipo"]["owncloud_external_url"]) self.link += "/download" os.remove(self.filename) return def __send_mail(self, email): if self.link == 'error': mailtext = _("CASIPO Error during report generation") else: mailtext = _("CASIPO Mail the report link ${link}", mapping={'link': self.link}) msg = MIMEText(self.localizer.translate(mailtext), 'html', 'utf-8') me = 'support@geoportail.lu' you = email mails = [you] if "bcc_address" in self.config["casipo"]: bcc = self.config["casipo"]["bcc_address"] msg['BCC'] = bcc mails.append(bcc) msg['Subject'] = 'Rapport CASIPO' msg['From'] = me msg['To'] = you s = smtplib.SMTP(self.config["casipo"]["smtp_server"]) s.sendmail(me, mails, msg.as_string()) s.quit() return def __log_download_stats(self, objectids, download_link): pass @view_config(route_name='casipo_report') def casipo_report(self): oid = self.request.matchdict.get('oid', None) email = self.request.params.get('email', None) self.staging =\ self.request.params.get('staging', 'False').lower() == 'true' resp = _("CASIPO webservice response ${email}", mapping={'email': email.encode('utf-8')}) try: self.__download(oid) self.__upload2owncloud() except Exception as e: log.exception(e) self.link = 'error' self.__log_download_stats(oid, self.link) self.__send_mail(email) headers = {"Content-Type": 'text/html'} return Response(self.localizer.translate(resp), headers=headers)
3,879
207
23
67ebedd5c27133e804f63aa2724d413856cdf63d
431
py
Python
tests/test_url.py
keeranrichardson/python-seo-tool
0bc9c675be7c6757649abf06bde7d76d3f75fe81
[ "MIT" ]
1
2022-02-20T17:23:41.000Z
2022-02-20T17:23:41.000Z
tests/test_url.py
keeranrichardson/python-seo-tool
0bc9c675be7c6757649abf06bde7d76d3f75fe81
[ "MIT" ]
null
null
null
tests/test_url.py
keeranrichardson/python-seo-tool
0bc9c675be7c6757649abf06bde7d76d3f75fe81
[ "MIT" ]
1
2022-03-05T15:41:33.000Z
2022-03-05T15:41:33.000Z
from urlScanner import UrlScanner
28.733333
58
0.654292
from urlScanner import UrlScanner class TestUrl: def testUrlExistsReturn200(self): url = UrlScanner('https://keeranrichardson.com') assert 200 == url.getStatus() def testUrlNotExistsReturn404(self): url = UrlScanner('https://keeranrichardson.com/6') assert 404 == url.getStatus() def testErrorReadingUrl(self): url = UrlScanner('') assert 'error'==url.getStatus()
297
-7
108
cf51cf919c2dc41e8d41e4fd269be21fec666712
718
py
Python
agent/lm_agent/exceptions.py
omnivector-solutions/license-manager
9eb1e4569d692aef83a2388096e7413bc010be61
[ "MIT" ]
2
2020-11-15T22:54:39.000Z
2022-02-15T07:58:55.000Z
agent/lm_agent/exceptions.py
omnivector-solutions/license-manager
9eb1e4569d692aef83a2388096e7413bc010be61
[ "MIT" ]
2
2022-02-18T19:36:45.000Z
2022-03-16T23:07:44.000Z
agent/lm_agent/exceptions.py
omnivector-solutions/license-manager
9eb1e4569d692aef83a2388096e7413bc010be61
[ "MIT" ]
null
null
null
""" Custom exceptions for the License Manager Agent. """ from buzz import Buzz class LicenseManagerAuthTokenError(Buzz): """Exception for backend connection issues.""" class LicenseManagerBackendConnectionError(Buzz): """Exception for backend connection issues.""" class LicenseManagerBackendVersionError(Buzz): """Exception for backend/agent version mismatches.""" class LicenseManagerEmptyReportError(Buzz): """Exception for empty report when no licenses added in backend.""" class LicenseManagerNonSupportedServerTypeError(Buzz): """Exception for entry with non supported server type.""" class LicenseManagerBadServerOutput(Buzz): """Exception for license server bad output."""
23.933333
71
0.764624
""" Custom exceptions for the License Manager Agent. """ from buzz import Buzz class LicenseManagerAuthTokenError(Buzz): """Exception for backend connection issues.""" class LicenseManagerBackendConnectionError(Buzz): """Exception for backend connection issues.""" class LicenseManagerBackendVersionError(Buzz): """Exception for backend/agent version mismatches.""" class LicenseManagerEmptyReportError(Buzz): """Exception for empty report when no licenses added in backend.""" class LicenseManagerNonSupportedServerTypeError(Buzz): """Exception for entry with non supported server type.""" class LicenseManagerBadServerOutput(Buzz): """Exception for license server bad output."""
0
0
0
3bfbe1a0536d97cc85cad428177e7d4db99e0f9d
6,292
py
Python
raptor/wrapper.py
jialuechen/raptor
bac516a45dfee9d21ac14221a2d9d5bef810cbd0
[ "MIT" ]
null
null
null
raptor/wrapper.py
jialuechen/raptor
bac516a45dfee9d21ac14221a2d9d5bef810cbd0
[ "MIT" ]
null
null
null
raptor/wrapper.py
jialuechen/raptor
bac516a45dfee9d21ac14221a2d9d5bef810cbd0
[ "MIT" ]
null
null
null
import dask as da from raptor.momentum import ( KAMAIndicator, ROCIndicator, RSIIndicator, StochasticOscillator, StochRSIIndicator, ) from raptor.trend import ( MACD, ADXIndicator, AroonIndicator, EMAIndicator, SMAIndicator, TRIXIndicator, ) from raptor.volatility import ( AverageTrueRange, BollingerBands, ) from raptor.volume import ( AccDistIndexIndicator, ForceIndexIndicator, VolumePriceTrendIndicator, )
23.303704
85
0.635092
import dask as da from raptor.momentum import ( KAMAIndicator, ROCIndicator, RSIIndicator, StochasticOscillator, StochRSIIndicator, ) from raptor.trend import ( MACD, ADXIndicator, AroonIndicator, EMAIndicator, SMAIndicator, TRIXIndicator, ) from raptor.volatility import ( AverageTrueRange, BollingerBands, ) from raptor.volume import ( AccDistIndexIndicator, ForceIndexIndicator, VolumePriceTrendIndicator, ) def run_volume( df: da.DataFrame, high: str, low: str, close: str, volume: str, fillna: bool = False, colprefix: str = "", ) -> da.DataFrame: # Accumulation Distribution Index df[f"{colprefix}volume_adi"] = AccDistIndexIndicator( high=df[high], low=df[low], close=df[close], volume=df[volume], fillna=fillna ).acc_dist_index() # Force Index df[f"{colprefix}volume_fi"] = ForceIndexIndicator( close=df[close], volume=df[volume], window=13, fillna=fillna ).force_index() # Volume Price Trend df[f"{colprefix}volume_vpt"] = VolumePriceTrendIndicator( close=df[close], volume=df[volume], fillna=fillna ).volume_price_trend() return df def run_volatility( df: da.DataFrame, high: str, low: str, close: str, fillna: bool = False, colprefix: str = "", ) -> da.DataFrame: # Average True Range df[f"{colprefix}volatility_atr"] = AverageTrueRange( close=df[close], high=df[high], low=df[low], window=10, fillna=fillna ).average_true_range() # Bollinger Bands indicator_bb = BollingerBands( close=df[close], window=20, window_dev=2, fillna=fillna ) df[f"{colprefix}volatility_bbm"] = indicator_bb.bollinger_mavg() df[f"{colprefix}volatility_bbh"] = indicator_bb.bollinger_hband() df[f"{colprefix}volatility_bbl"] = indicator_bb.bollinger_lband() df[f"{colprefix}volatility_bbw"] = indicator_bb.bollinger_wband() df[f"{colprefix}volatility_bbp"] = indicator_bb.bollinger_pband() df[f"{colprefix}volatility_bbhi"] = indicator_bb.bollinger_hband_indicator() df[f"{colprefix}volatility_bbli"] = indicator_bb.bollinger_lband_indicator() return df def run_trend( df: da.DataFrame, high: str, low: str, close: str, fillna: bool = False, colprefix: str = "", ) -> da.DataFrame: # MACD indicator_macd = MACD( close=df[close], window_slow=26, window_fast=12, window_sign=9, fillna=fillna ) df[f"{colprefix}trend_macd"] = indicator_macd.macd() df[f"{colprefix}trend_macd_signal"] = indicator_macd.macd_signal() df[f"{colprefix}trend_macd_diff"] = indicator_macd.macd_diff() # SMAs df[f"{colprefix}trend_sma_fast"] = SMAIndicator( close=df[close], window=12, fillna=fillna ).sma_indicator() df[f"{colprefix}trend_sma_slow"] = SMAIndicator( close=df[close], window=26, fillna=fillna ).sma_indicator() # EMAs df[f"{colprefix}trend_ema_fast"] = EMAIndicator( close=df[close], window=12, fillna=fillna ).ema_indicator() df[f"{colprefix}trend_ema_slow"] = EMAIndicator( close=df[close], window=26, fillna=fillna ).ema_indicator() # Average Directional Movement Index (ADX) indicator_adx = ADXIndicator( high=df[high], low=df[low], close=df[close], window=14, fillna=fillna ) df[f"{colprefix}trend_adx"] = indicator_adx.adx() df[f"{colprefix}trend_adx_pos"] = indicator_adx.adx_pos() df[f"{colprefix}trend_adx_neg"] = indicator_adx.adx_neg() # TRIX Indicator df[f"{colprefix}trend_trix"] = TRIXIndicator( close=df[close], window=15, fillna=fillna ).trix() # Aroon Indicator indicator_aroon = AroonIndicator(close=df[close], window=25, fillna=fillna) df[f"{colprefix}trend_aroon_up"] = indicator_aroon.aroon_up() df[f"{colprefix}trend_aroon_down"] = indicator_aroon.aroon_down() df[f"{colprefix}trend_aroon_ind"] = indicator_aroon.aroon_indicator() return df def run_momentum( df: da.DataFrame, high: str, low: str, close: str, volume: str, fillna: bool = False, colprefix: str = "", ) -> da.DataFrame: # Relative Strength Index (RSI) df[f"{colprefix}momentum_rsi"] = RSIIndicator( close=df[close], window=14, fillna=fillna ).rsi() # Stoch RSI (StochRSI) indicator_srsi = StochRSIIndicator( close=df[close], window=14, smooth1=3, smooth2=3, fillna=fillna ) df[f"{colprefix}momentum_stoch_rsi"] = indicator_srsi.stochrsi() df[f"{colprefix}momentum_stoch_rsi_k"] = indicator_srsi.stochrsi_k() df[f"{colprefix}momentum_stoch_rsi_d"] = indicator_srsi.stochrsi_d() # Stoch Indicator indicator_so = StochasticOscillator( high=df[high], low=df[low], close=df[close], window=14, smooth_window=3, fillna=fillna, ) df[f"{colprefix}momentum_stoch"] = indicator_so.stoch() df[f"{colprefix}momentum_stoch_signal"] = indicator_so.stoch_signal() # KAMA df[f"{colprefix}momentum_kama"] = KAMAIndicator( close=df[close], window=10, pow1=2, pow2=30, fillna=fillna ).kama() # Rate Of Change df[f"{colprefix}momentum_roc"] = ROCIndicator( close=df[close], window=12, fillna=fillna ).roc() return df def run_all_da_features( df: da.DataFrame, open: str, # noqa high: str, low: str, close: str, volume: str, fillna: bool = False, colprefix: str = "", ) -> da.DataFrame: df = run_volume( df=df, high=high, low=low, close=close, volume=volume, fillna=fillna, colprefix=colprefix, ) df = run_volatility( df=df, high=high, low=low, close=close, fillna=fillna, colprefix=colprefix ) df = run_trend( df=df, high=high, low=low, close=close, fillna=fillna, colprefix=colprefix ) df = run_momentum( df=df, high=high, low=low, close=close, volume=volume, fillna=fillna, colprefix=colprefix, ) return df
5,634
0
115
322a0b56205aca331aa6de77b96b5abea4e23791
486
py
Python
codes_/0209_Minimum_Size_Subarray_Sum.py
SaitoTsutomu/leetcode
4656d66ab721a5c7bc59890db9a2331c6823b2bf
[ "MIT" ]
null
null
null
codes_/0209_Minimum_Size_Subarray_Sum.py
SaitoTsutomu/leetcode
4656d66ab721a5c7bc59890db9a2331c6823b2bf
[ "MIT" ]
null
null
null
codes_/0209_Minimum_Size_Subarray_Sum.py
SaitoTsutomu/leetcode
4656d66ab721a5c7bc59890db9a2331c6823b2bf
[ "MIT" ]
null
null
null
# %% [209. Minimum Size Subarray Sum](https://leetcode.com/problems/minimum-size-subarray-sum/)
37.384615
95
0.442387
# %% [209. Minimum Size Subarray Sum](https://leetcode.com/problems/minimum-size-subarray-sum/) class Solution: def minSubArrayLen(self, s: int, nums: List[int]) -> int: p1, p2, sm, mn = 0, -1, 0, -1 while sm >= s or p2 < len(nums) - 1: if sm < s: sm += nums[(p2 := p2 + 1)] else: if mn < 0 or p2 - p1 < mn: mn = p2 - p1 sm -= nums[(p1 := p1 + 1) - 1] return mn + 1
348
-6
48
a984bcf3192606be4e00f7ce2c78e708bba3758c
8,858
py
Python
tools/model_test.py
EmiyaNing/OpenPCDet
41ff28209cb000b51626a0ed8593b0adbe3dd447
[ "Apache-2.0" ]
null
null
null
tools/model_test.py
EmiyaNing/OpenPCDet
41ff28209cb000b51626a0ed8593b0adbe3dd447
[ "Apache-2.0" ]
null
null
null
tools/model_test.py
EmiyaNing/OpenPCDet
41ff28209cb000b51626a0ed8593b0adbe3dd447
[ "Apache-2.0" ]
null
null
null
import argparse import datetime import glob import os from pathlib import Path from test import repeat_eval_ckpt import tqdm import torch import torch.distributed as dist import torch.nn as nn from tensorboardX import SummaryWriter from pcdet.config import cfg, cfg_from_list, cfg_from_yaml_file, log_config_to_file from pcdet.datasets import build_dataloader from pcdet.models import build_network, model_fn_decorator from pcdet.utils import common_utils from train_utils.optimization import build_optimizer, build_scheduler if __name__ == '__main__': main()
38.017167
113
0.687175
import argparse import datetime import glob import os from pathlib import Path from test import repeat_eval_ckpt import tqdm import torch import torch.distributed as dist import torch.nn as nn from tensorboardX import SummaryWriter from pcdet.config import cfg, cfg_from_list, cfg_from_yaml_file, log_config_to_file from pcdet.datasets import build_dataloader from pcdet.models import build_network, model_fn_decorator from pcdet.utils import common_utils from train_utils.optimization import build_optimizer, build_scheduler def train_one_epoch(model, optimizer, train_loader, model_func, lr_scheduler, accumulated_iter, optim_cfg, rank, tbar, total_it_each_epoch, dataloader_iter, tb_log=None, leave_pbar=False): if total_it_each_epoch == len(train_loader): dataloader_iter = iter(train_loader) if rank == 0: pbar = tqdm.tqdm(total=total_it_each_epoch, leave=leave_pbar, desc='train', dynamic_ncols=True) for cur_it in range(total_it_each_epoch): try: batch = next(dataloader_iter) except StopIteration: dataloader_iter = iter(train_loader) batch = next(dataloader_iter) print('new iters') lr_scheduler.step(accumulated_iter) try: cur_lr = float(optimizer.lr) except: cur_lr = optimizer.param_groups[0]['lr'] if tb_log is not None: tb_log.add_scalar('meta_data/learning_rate', cur_lr, accumulated_iter) model.train() optimizer.zero_grad() loss, tb_dict, disp_dict = model_func(model, batch) print(loss) print(tb_dict) print(disp_dict) break if rank == 0: pbar.close() return accumulated_iter def train_model(model, optimizer, train_loader, model_func, lr_scheduler, optim_cfg, start_epoch, total_epochs, start_iter, rank, tb_log, ckpt_save_dir, train_sampler=None, lr_warmup_scheduler=None, ckpt_save_interval=1, max_ckpt_save_num=50, merge_all_iters_to_one_epoch=False): accumulated_iter = start_iter with tqdm.trange(start_epoch, total_epochs, desc='epochs', dynamic_ncols=True, leave=(rank == 0)) as tbar: total_it_each_epoch = len(train_loader) if merge_all_iters_to_one_epoch: assert hasattr(train_loader.dataset, 'merge_all_iters_to_one_epoch') train_loader.dataset.merge_all_iters_to_one_epoch(merge=True, epochs=total_epochs) total_it_each_epoch = len(train_loader) // max(total_epochs, 1) dataloader_iter = iter(train_loader) for cur_epoch in tbar: if train_sampler is not None: train_sampler.set_epoch(cur_epoch) # train one epoch if lr_warmup_scheduler is not None and cur_epoch < optim_cfg.WARMUP_EPOCH: cur_scheduler = lr_warmup_scheduler else: cur_scheduler = lr_scheduler accumulated_iter = train_one_epoch( model, optimizer, train_loader, model_func, lr_scheduler=cur_scheduler, accumulated_iter=accumulated_iter, optim_cfg=optim_cfg, rank=rank, tbar=tbar, tb_log=tb_log, leave_pbar=(cur_epoch + 1 == total_epochs), total_it_each_epoch=total_it_each_epoch, dataloader_iter=dataloader_iter ) def parse_config(): parser = argparse.ArgumentParser(description='arg parser') parser.add_argument('--cfg_file', type=str, default=None, help='specify the config for training') parser.add_argument('--batch_size', type=int, default=None, required=False, help='batch size for training') parser.add_argument('--epochs', type=int, default=None, required=False, help='number of epochs to train for') parser.add_argument('--workers', type=int, default=8, help='number of workers for dataloader') parser.add_argument('--extra_tag', type=str, default='default', help='extra tag for this experiment') parser.add_argument('--ckpt', type=str, default=None, help='checkpoint to start from') parser.add_argument('--pretrained_model', type=str, default=None, help='pretrained_model') parser.add_argument('--launcher', choices=['none', 'pytorch', 'slurm'], default='none') parser.add_argument('--tcp_port', type=int, default=18888, help='tcp port for distrbuted training') parser.add_argument('--sync_bn', action='store_true', default=False, help='whether to use sync bn') parser.add_argument('--fix_random_seed', action='store_true', default=False, help='') parser.add_argument('--ckpt_save_interval', type=int, default=1, help='number of training epochs') parser.add_argument('--local_rank', type=int, default=0, help='local rank for distributed training') parser.add_argument('--max_ckpt_save_num', type=int, default=30, help='max number of saved checkpoint') parser.add_argument('--merge_all_iters_to_one_epoch', action='store_true', default=False, help='') parser.add_argument('--set', dest='set_cfgs', default=None, nargs=argparse.REMAINDER, help='set extra config keys if needed') parser.add_argument('--max_waiting_mins', type=int, default=0, help='max waiting minutes') parser.add_argument('--start_epoch', type=int, default=0, help='') parser.add_argument('--save_to_file', action='store_true', default=False, help='') args = parser.parse_args() cfg_from_yaml_file(args.cfg_file, cfg) cfg.TAG = Path(args.cfg_file).stem cfg.EXP_GROUP_PATH = '/'.join(args.cfg_file.split('/')[1:-1]) # remove 'cfgs' and 'xxxx.yaml' if args.set_cfgs is not None: cfg_from_list(args.set_cfgs, cfg) return args, cfg def main(): args, cfg = parse_config() if args.launcher == 'none': dist_train = False total_gpus = 1 else: total_gpus, cfg.LOCAL_RANK = getattr(common_utils, 'init_dist_%s' % args.launcher)( args.tcp_port, args.local_rank, backend='nccl' ) dist_train = True if args.batch_size is None: args.batch_size = cfg.OPTIMIZATION.BATCH_SIZE_PER_GPU else: assert args.batch_size % total_gpus == 0, 'Batch size should match the number of gpus' args.batch_size = args.batch_size // total_gpus args.epochs = cfg.OPTIMIZATION.NUM_EPOCHS if args.epochs is None else args.epochs if args.fix_random_seed: common_utils.set_random_seed(666) output_dir = cfg.ROOT_DIR / 'output' / cfg.EXP_GROUP_PATH / cfg.TAG / args.extra_tag ckpt_dir = output_dir / 'ckpt' output_dir.mkdir(parents=True, exist_ok=True) ckpt_dir.mkdir(parents=True, exist_ok=True) log_file = output_dir / ('log_train_%s.txt' % datetime.datetime.now().strftime('%Y%m%d-%H%M%S')) logger = common_utils.create_logger(log_file, rank=cfg.LOCAL_RANK) # -----------------------create dataloader & network & optimizer--------------------------- train_set, train_loader, train_sampler = build_dataloader( dataset_cfg=cfg.DATA_CONFIG, class_names=cfg.CLASS_NAMES, batch_size=args.batch_size, dist=dist_train, workers=args.workers, logger=logger, training=True, merge_all_iters_to_one_epoch=args.merge_all_iters_to_one_epoch, total_epochs=args.epochs ) model = build_network(model_cfg=cfg.MODEL, num_class=len(cfg.CLASS_NAMES), dataset=train_set) if args.sync_bn: model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) model.cuda() optimizer = build_optimizer(model, cfg.OPTIMIZATION) # load checkpoint if it is possible start_epoch = it = 0 last_epoch = -1 if args.pretrained_model is not None: model.load_params_from_file(filename=args.pretrained_model, to_cpu=dist_train, logger=logger) model.train() # before wrap to DistributedDataParallel to support fixed some parameters lr_scheduler, lr_warmup_scheduler = build_scheduler( optimizer, total_iters_each_epoch=len(train_loader), total_epochs=args.epochs, last_epoch=last_epoch, optim_cfg=cfg.OPTIMIZATION ) train_model( model, optimizer, train_loader, model_func=model_fn_decorator(), lr_scheduler=lr_scheduler, optim_cfg=cfg.OPTIMIZATION, start_epoch=start_epoch, total_epochs=args.epochs, start_iter=it, rank=cfg.LOCAL_RANK, tb_log=None, ckpt_save_dir=ckpt_dir, train_sampler=train_sampler, lr_warmup_scheduler=lr_warmup_scheduler, ckpt_save_interval=args.ckpt_save_interval, max_ckpt_save_num=args.max_ckpt_save_num, merge_all_iters_to_one_epoch=args.merge_all_iters_to_one_epoch ) if __name__ == '__main__': main()
8,181
0
92
78f829f3996b17988d65cadef8296a5ba880a14e
18,198
py
Python
upstream/test/functional-tests-legacy/PfwTestCase/Types/tSTRING_128.py
TinkerEdgeR-Android/external_parameter-framework
108db75a59dbea562ac4bcaf8c6cc862c4919af0
[ "BSD-3-Clause" ]
null
null
null
upstream/test/functional-tests-legacy/PfwTestCase/Types/tSTRING_128.py
TinkerEdgeR-Android/external_parameter-framework
108db75a59dbea562ac4bcaf8c6cc862c4919af0
[ "BSD-3-Clause" ]
null
null
null
upstream/test/functional-tests-legacy/PfwTestCase/Types/tSTRING_128.py
TinkerEdgeR-Android/external_parameter-framework
108db75a59dbea562ac4bcaf8c6cc862c4919af0
[ "BSD-3-Clause" ]
null
null
null
# -*-coding:utf-8 -* # Copyright (c) 2011-2015, Intel Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation and/or # other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON # ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os import commands, string, random from Util.PfwUnitTestLib import PfwTestCase from Util import ACTLogging log=ACTLogging.Logger() # Test of type UINT8_S - range [-100, 100]
60.66
138
0.477415
# -*-coding:utf-8 -* # Copyright (c) 2011-2015, Intel Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation and/or # other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON # ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os import commands, string, random from Util.PfwUnitTestLib import PfwTestCase from Util import ACTLogging log=ACTLogging.Logger() # Test of type UINT8_S - range [-100, 100] class TestCases(PfwTestCase): def setUp(self): self.param_name = "/Test/Test/TEST_DIR/STR_CHAR128" self.pfw.sendCmd("setTuningMode", "on") self.size_max=128 def tearDown(self): self.pfw.sendCmd("setTuningMode", "off") def test_Digits_String_Case(self): """ |============================================================| | Testing data types - String | | max number of char = 128 | |============================================================| | File : tSTRING_128.py | | Version : 01 | | | | Test cases : | | - STR_CHAR128 parameter nominal value = string_Conf_0 | | - STR_CHAR128 parameter empty value = '' | | - STR_CHAR128 parameter full value = generate randomly 128 | | letters characters | | - STR_CHAR128 parameter space character value = test string| | - STR_CHAR128 parameter full digits value = generate | | randomly 128 digits char | | - STR_CHAR128 parameter oversize value = generate randomly | | 129 char | | | |============================================================| | STR_CHAR128 parameter in digits case = 128 digits char | |============================================================| | Test Case description : | | - STR_CHAR128 parameter in digit case = 128 digits char | | Tested commands : | | * setParameter | | - getParameter | | Expected result : | | - STR_CHAR128 parameter set to the same 128 digits char | | (blackboard and filesystem values checked) | |============================================================| """ log.D(self.test_Digits_String_Case.__doc__) log.I("STR_CHAR128 parameter initial state = string_Conf_0") value = "" for i in range(self.size_max-1): value=value+str(random.choice(string.digits)) #Set parameter value out, err = self.pfw.sendCmd("setParameter", self.param_name, value) assert err == None, log.E("when setting parameter %s -> %s" % (self.param_name, err)) assert out == "Done", log.F(out) #Check parameter value on blackboard out, err = self.pfw.sendCmd("getParameter", self.param_name, "") assert err == None, log.E("when getting parameter %s -> %s" % (self.param_name, err)) assert out == value, log.F("BLACKBOARD : Incorrect value for %s, expected: %s, found: %s" % (self.param_name, value, out)) #Check parameter value on filesystem assert open(os.environ["PFW_RESULT"] + "/STR_CHAR128").read()[:-1] == value, log.F("FILESYSTEM : parameter update error") def test_Empty_String_Case(self): """ |============================================================| | STR_CHAR128 parameter empty string = \'\' | |============================================================| | Test Case description : | | - STR_CHAR128 parameter in empty string case = \'\' | | Tested commands : | | * setParameter | | - getParameter | | Expected result : | | - STR_CHAR128 parameter set empty | | (blackboard and filesystem values checked) | |============================================================| """ log.D(self.test_Empty_String_Case.__doc__) log.I("STR_CHAR128 parameter empty string = \'\'") value = "" #Set parameter value out, err = self.pfw.sendCmd("setParameter", self.param_name, value) assert err == None, log.E("when setting parameter %s -> %s" % (self.param_name, err)) assert out == "Done", log.F(out) #Check parameter value on blackboard out, err = self.pfw.sendCmd("getParameter", self.param_name, "") assert err == None, log.E("when getting parameter %s -> %s" % (self.param_name, err)) assert out == "", log.F("BLACKBOARD : Incorrect value for %s, expected: %s, found: %s" % (self.param_name, value, out)) #Check parameter value on filesystem assert open(os.environ["PFW_RESULT"] + "/STR_CHAR128").read()[:-1] == "", log.F("FILESYSTEM : parameter update error") def test_OverSize_String_Case(self): """ |============================================================| | STR_CHAR128 parameter oversize | |============================================================| | Test Case description : | | - STR_CHAR128 parameter in oversize case = 129 random char | | Tested commands : | | * setParameter | | - getParameter | | Expected result : | | - error detected | | - STR_CHAR128 parameter not updated | |============================================================| """ log.D(self.test_OverSize_String_Case.__doc__) log.I("STR_CHAR128 parameter size max=128 character") value="" for i in range(self.size_max+1): value=value+str(random.choice(string.letters)) param_check = open(os.environ["PFW_RESULT"] + "/STR_CHAR128").read()[:-1] #Set parameter value out, err = self.pfw.sendCmd("setParameter", self.param_name, value, expectSuccess=False) assert err == None, log.E("when setting parameter %s -> %s" % (self.param_name, err)) assert out != "Done", log.F("Error not detected when setting parameter %s over size" % (self.param_name)) #Check parameter value on filesystem assert open(os.environ["PFW_RESULT"] + "/STR_CHAR128").read()[:-1] == param_check, log.F("FILESYSTEM : Forbiden parameter change") def test_Full_Letters_String_Case(self): """ |============================================================| | STR_CHAR128 parameter full size test case | |============================================================| | Test Case description : | | - STR_CHAR128 parameter in fullsize case = 128 random char | | Tested commands : | | * setParameter | | - getParameter | | Expected result : | | - STR_CHAR128 parameter set to the same 128 letters char | | (blackboard and filesystem values checked) | |============================================================| """ log.D(self.test_Full_Letters_String_Case.__doc__) log.I("STR_CHAR128 parameter initial state : string") value = "" for i in range(self.size_max-1): value=value+str(random.choice(string.letters)) #Set parameter value out, err = self.pfw.sendCmd("setParameter", self.param_name, value) assert err == None, log.E("when setting parameter %s -> %s" % (self.param_name, err)) assert out == "Done", log.F("Expected : Done, result : %s" % (out)) #Check parameter value on blackboard out, err = self.pfw.sendCmd("getParameter", self.param_name, "") assert err == None, log.E("When setting parameter %s : %s" % (self.param_name, err)) assert out == value, log.F("BLACKBOARD : Incorrect value for %s, expected: %s, found: %s" % (self.param_name, value, out)) #Check parameter value on filesystem assert open(os.environ["PFW_RESULT"] + "/STR_CHAR128").read()[:-1] == value, log.F("FILESYSTEM : parameter update error") def test_Nominal_String_Case(self): """ |============================================================| | STR_CHAR128 parameter Nominal test case | |============================================================| | Test Case description : | | - STR_CHAR128 parameter in nominal case = TestString | | Tested commands : | | * setParameter | | - getParameter | | Expected result : | | - STR_CHAR128 parameter set to TestString | | (blackboard and filesystem values checked) | |============================================================| """ log.D(self.test_Nominal_String_Case.__doc__) log.I("STR_CHAR128 parameter nominal string = TestString") value = "TestString" #Set parameter value out, err = self.pfw.sendCmd("setParameter", self.param_name, value) assert err == None, log.E("When setting parameter %s -> %s" % (self.param_name, err)) assert out == "Done", log.F("Expected : Done, found : %s" % (out)) #Check parameter value on blackboard out, err = self.pfw.sendCmd("getParameter", self.param_name, "") assert err == None, log.E("When setting parameter %s -> %s" % (self.param_name, err)) assert out == value, log.F("BLACKBOARD : Incorrect value for %s, expected: %s, found: %s" % (self.param_name, value, out)) #Check parameter value on filesystem assert open(os.environ["PFW_RESULT"] + "/STR_CHAR128").read()[:-1] == value, log.F("FILESYSTEM : parameter update error") def test_Punctuation_Empty_Parenthese_String_Case(self): """ |============================================================| | STR_CHAR128 parameter empty Parenthese char test case | |============================================================| | Test Case description : | | - STR_CHAR128 parameter = TestParenthese() | | Tested commands : | | * setParameter | | - getParameter | | Expected result : | | - Not Determined now | |============================================================| """ log.D(self.test_Punctuation_Empty_Parenthese_String_Case.__doc__) value = "ParentheseTest()" log.I("STR_CHAR128 parameter Parenthese Char = %s" % (value)) param_check = open(os.environ["PFW_RESULT"] + "/STR_CHAR128").read()[:-1] #Set parameter value out, err = self.pfw.sendCmd("setParameter", self.param_name, value) assert err == None, log.E("When setting parameter %s : %s" % (self.param_name, err)) assert out == "Done", log.F("Expected : Done, found : %s" % (out)) #Get parameter value out, err = self.pfw.sendCmd("getParameter", self.param_name) assert err == None, log.E("When getting parameter %s : %s" % (self.param_name, err)) assert out == value, log.F("BLACKBOARD : Incorrect value for %s, expected: %s, found: %s" % (self.param_name, value, out)) #Check parameter value on filesystem assert open(os.environ["PFW_RESULT"] + "/STR_CHAR128").read()[:-1] == value, log.F("FILESYSTEM : parameter update error") def test_Punctuation_Full_Parenthese_String_Case(self): """ |============================================================| | STR_CHAR128 parameter full Parenthese char test case | |============================================================| | Test Case description : | | - STR_CHAR128 parameter = TestParenthese(test) | | Tested commands : | | * setParameter | | - getParameter | | Expected result : | | - Not Determined now | |============================================================| """ log.D(self.test_Punctuation_Full_Parenthese_String_Case.__doc__) value = "ParentheseTest(test)" log.I("STR_CHAR128 parameter Parenthese Char = %s" % (value)) param_check = open(os.environ["PFW_RESULT"] + "/STR_CHAR128").read()[:-1] #Set parameter value out, err = self.pfw.sendCmd("setParameter", self.param_name, value) assert err == None, log.E("When setting parameter %s : %s" % (self.param_name, err)) assert out == "Done", log.F("Expected : Done, found : %s" % (out)) #Get parameter value out, err = self.pfw.sendCmd("getParameter", self.param_name) assert err == None, log.E("When getting parameter %s : %s" % (self.param_name, err)) assert out == value, log.F("BLACKBOARD : Incorrect value for %s, expected: %s, found: %s" % (self.param_name, value, out)) #Check parameter value on filesystem assert open(os.environ["PFW_RESULT"] + "/STR_CHAR128").read()[:-1] == value, log.F("FILESYSTEM : parameter update error") def test_SpaceChar_String_Case(self): """ |============================================================| | STR_CHAR128 parameter space char test case | |============================================================| | Test Case description : | | - STR_CHAR128 parameter = Test String | | Tested commands : | | * setParameter | | - getParameter | | Expected result : | | - Not Determined now | |============================================================| """ log.D(self.test_SpaceChar_String_Case.__doc__) value = "Test String" log.I("STR_CHAR128 parameter Parenthese Char = %s" % (value)) value_check = "Test String" #Set parameter value out, err = self.pfw.sendCmd("setParameter", self.param_name, value) assert err == None, log.E("When setting parameter %s : %s" % (self.param_name, err)) assert out == "Done", log.F("Expected : Done, found : %s" % (out)) #Check parameter value on blackboard out, err = self.pfw.sendCmd("getParameter", self.param_name, "") assert err == None, log.E("When setting parameter %s : %s" % (self.param_name, err)) assert out == value, log.F("BLACKBOARD : Incorrect value for %s, expected: %s, found: %s" % (self.param_name, value_check, out)) #Check parameter value on filesystem assert open(os.environ["PFW_RESULT"] + "/STR_CHAR128").read()[:-1] == value_check, log.F("FILESYSTEM : parameter update error")
176
16,253
22
4a3369cabd1ff491008878d6ff102afb077304b4
5,180
py
Python
predict_gender.py
chenjianxiong/coding_contest_2018
69687b73d4448a6cadf6130f462e9bdca2f20bc9
[ "MIT" ]
null
null
null
predict_gender.py
chenjianxiong/coding_contest_2018
69687b73d4448a6cadf6130f462e9bdca2f20bc9
[ "MIT" ]
null
null
null
predict_gender.py
chenjianxiong/coding_contest_2018
69687b73d4448a6cadf6130f462e9bdca2f20bc9
[ "MIT" ]
null
null
null
import sys import math import numpy as np if __name__ == "__main__": # We're using 70% of the data for training TRAIN_SPLIT = 0.8 GENDER_MALE = 1 GENDER_FEMALE = 0 alpha = 0.54 X_train = None Y_train = None X_validation = None Y_validation = None X_test = None Y_test = None Best_theta = None fileName = "/var/www/html/training_dataset.txt" g_feature_names = [] g_vocabulary = {} names = np.genfromtxt(fileName, delimiter = ",", dtype = "U25", autostrip = True) np.random.shuffle(names) features = np.vectorize(features) X = features(names[:, 0]) Y = np.array([GENDER_MALE if x == "male" else GENDER_FEMALE for x in names[:, 1]] ) # creating testing and training set X_train, X_validation = X[:int(TRAIN_SPLIT * len(X))], X[int(TRAIN_SPLIT * len(X)):] Y_train, Y_validation = Y[:int(TRAIN_SPLIT * len(Y))], Y[int(TRAIN_SPLIT * len(Y)):] (g_feature_names, g_vocabulary) = fit(X_train) initial_theta = np.zeros((len(g_feature_names), 1), dtype=np.float64) X_validation = transform(X_validation, g_vocabulary) iterations = len(X_validation) theta = logistic_regression_by_stochastic_gradient_descent( transform(X_train, g_vocabulary), Y_train, alpha,initial_theta) do_test(g_vocabulary)
25.771144
93
0.547876
import sys import math import numpy as np def features(name): name = name.lower() return { 'first-letter': name[0], # First letter 'first2-letters': name[0:2], # First 2 letters 'first3-letters': name[0:3], # First 3 letters 'last-letter': name[-1], 'last2-letters': name[-2:], 'last3-letters': name[-3:], } def fit(x_set): feature_names = [] vocab = {} for x in x_set: for f, v in x.items(): f = "%s%s%s" % (f, '=', v) if f not in vocab: feature_names.append(f) vocab[f] = len(vocab) feature_names.sort() vocab = dict((f, i) for i, f in enumerate(feature_names)) return (feature_names, vocab) def transform( x_set, vocab): xa = np.zeros((len(x_set), 6), dtype=int) for i, x in enumerate(x_set): for f, v in x.items(): f_v = "%s%s%s" % (f, "=", v) try: xa[i][features_index()[f]] = vocab[f_v] except KeyError: pass return xa def sigmoid(z): try: g_of_z = float(1.0 / float((1.0 + math.exp(-1.0*z)))) except: print("z, math", z) return g_of_z def hypothesis(theta, x): z = 0 #print(type(theta), type(x)) for i in range(6): pos = x[i] #print("Hypothesis:", i) z += theta[pos] return sigmoid(z) def cost_function(x_set,y_set,theta,m): sum_of_errors = 0 for i in range(m): xi = x_set[i] hi = hypothesis(theta,xi) if y_set[i] == 1: error = y_set[i] * math.log(hi) elif y_set[i] == 0: error = (1-Y[i]) * math.log(1-hi) sum_of_errors += error const = -1/m J = const * sum_of_errors #print( 'cost is ', J ) return J def logistic_regression_by_stochastic_gradient_descent(x_set,y_set,alpha, theta): m = len(y_set) n = len(features_index()) # here we have 6 features best_theta = [] max_score = 0.0 for i in range(m): for idx in range(n):# features j = x_set[i][idx] theta[j] = theta[j] - alpha * (hypothesis(theta, x_set[i]) - y_set[i]) #xij is 1 if i % 10 == 0: score = calculate_score(theta) if score > max_score: max_score = score best_theta = theta return best_theta def calculate_score(theta): score = 0 length = len(X_validation) for i in range(length): h_value = hypothesis(theta, X_validation[i]) if h_value > 0.5: prediction = 1 else: prediction = 0 answer = Y_validation[i] if prediction == answer: score += 1 score = float(score) / float(length) return score def features_index(): features_index = { 'first-letter': 0, 'first2-letters': 1, # First 2 letters 'first3-letters': 2, # First 3 letters 'last-letter': 3, 'last2-letters': 4, 'last3-letters': 5, } return features_index def get_gender(predict): gender = "female" if predict == GENDER_MALE: gender = "male" return gender def do_test(vocabulary): filename_test = sys.argv[1] names_test = np.genfromtxt(filename_test, delimiter = ",", dtype = "U25", autostrip = True) x_test = features(names_test) x_test = transform(x_test, vocabulary) length = len(x_test) predict = 0 for i in range(length): h_value = hypothesis(theta, x_test[i]) if h_value > 0.5: predict = 1 else: predict = 0 print("{},{}".format(names_test[i], get_gender(predict))) if __name__ == "__main__": # We're using 70% of the data for training TRAIN_SPLIT = 0.8 GENDER_MALE = 1 GENDER_FEMALE = 0 alpha = 0.54 X_train = None Y_train = None X_validation = None Y_validation = None X_test = None Y_test = None Best_theta = None fileName = "/var/www/html/training_dataset.txt" g_feature_names = [] g_vocabulary = {} names = np.genfromtxt(fileName, delimiter = ",", dtype = "U25", autostrip = True) np.random.shuffle(names) features = np.vectorize(features) X = features(names[:, 0]) Y = np.array([GENDER_MALE if x == "male" else GENDER_FEMALE for x in names[:, 1]] ) # creating testing and training set X_train, X_validation = X[:int(TRAIN_SPLIT * len(X))], X[int(TRAIN_SPLIT * len(X)):] Y_train, Y_validation = Y[:int(TRAIN_SPLIT * len(Y))], Y[int(TRAIN_SPLIT * len(Y)):] (g_feature_names, g_vocabulary) = fit(X_train) initial_theta = np.zeros((len(g_feature_names), 1), dtype=np.float64) X_validation = transform(X_validation, g_vocabulary) iterations = len(X_validation) theta = logistic_regression_by_stochastic_gradient_descent( transform(X_train, g_vocabulary), Y_train, alpha,initial_theta) do_test(g_vocabulary)
3,491
0
303
e4bee58bfdb19c78f18c0a8361e244a7c7f041cb
898
py
Python
app/migrations/0002_auto_20210215_2026.py
fossabot/stream_vod_indexer
58bff60cc4adb1b8e5966134d2e560e59464d196
[ "MIT" ]
null
null
null
app/migrations/0002_auto_20210215_2026.py
fossabot/stream_vod_indexer
58bff60cc4adb1b8e5966134d2e560e59464d196
[ "MIT" ]
null
null
null
app/migrations/0002_auto_20210215_2026.py
fossabot/stream_vod_indexer
58bff60cc4adb1b8e5966134d2e560e59464d196
[ "MIT" ]
1
2021-02-18T14:25:39.000Z
2021-02-18T14:25:39.000Z
# Generated by Django 3.1.6 on 2021-02-15 14:56 from django.db import migrations, models
26.411765
63
0.570156
# Generated by Django 3.1.6 on 2021-02-15 14:56 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('app', '0001_initial'), ] operations = [ migrations.AddField( model_name='gamestorage', name='game_webpage_link', field=models.URLField(blank=True, max_length=1000), ), migrations.AddField( model_name='streamstorage', name='vod_link', field=models.URLField(blank=True, max_length=1000), ), migrations.AddField( model_name='streamstorage', name='vod_status', field=models.BooleanField(default=False), ), migrations.AlterField( model_name='gamestorage', name='game_slug', field=models.SlugField(max_length=200), ), ]
0
784
23
15bd8ecc1888b29e46ba8af98328ca4106bb49d4
781
py
Python
src/demo/app.py
GonnaFlyMethod/aiohttp_simple_template
7bd735c182ac6e45a8fe08485386a6a4465f192a
[ "MIT" ]
null
null
null
src/demo/app.py
GonnaFlyMethod/aiohttp_simple_template
7bd735c182ac6e45a8fe08485386a6a4465f192a
[ "MIT" ]
null
null
null
src/demo/app.py
GonnaFlyMethod/aiohttp_simple_template
7bd735c182ac6e45a8fe08485386a6a4465f192a
[ "MIT" ]
null
null
null
import jinja2 import aiohttp_jinja2 import urllib.parse as up import asyncpg from aiohttp import web from .routes import setup_routes from .config import config_obj as config
25.193548
76
0.641485
import jinja2 import aiohttp_jinja2 import urllib.parse as up import asyncpg from aiohttp import web from .routes import setup_routes from .config import config_obj as config async def on_start(app): up.uses_netloc.append("postgres") url = up.urlparse(config['database_url']) connection = await asyncpg.connect(user=url.username, password=url.password, database=url.path[1:], host=url.hostname, port=url.port) config['db'] = connection print("Connected to db!") async def create_app(): app = web.Application() aiohttp_jinja2.setup(app, loader=jinja2.PackageLoader('demo', 'templates')) setup_routes(app) await on_start(app) return app
555
0
46
00e99788eef7360e5057d06d1769c244b69763ef
10,949
py
Python
lolesport_parser/dataclasses/game_details_v5.py
DrArtemi/riot-api
a68bf94061a3c63e511418669097499c3e2c055d
[ "MIT" ]
null
null
null
lolesport_parser/dataclasses/game_details_v5.py
DrArtemi/riot-api
a68bf94061a3c63e511418669097499c3e2c055d
[ "MIT" ]
null
null
null
lolesport_parser/dataclasses/game_details_v5.py
DrArtemi/riot-api
a68bf94061a3c63e511418669097499c3e2c055d
[ "MIT" ]
null
null
null
""" This file has been auto-generated by pydantic. TODO: Maybe some fields should be renamed or the architecture should be changed a bit """ from __future__ import annotations from typing import List, Optional from pydantic import BaseModel, Field
32.489614
96
0.728286
""" This file has been auto-generated by pydantic. TODO: Maybe some fields should be renamed or the architecture should be changed a bit """ from __future__ import annotations from typing import List, Optional from pydantic import BaseModel, Field class Challenges(BaseModel): field_12AssistStreakCount: Optional[int] = Field(..., alias='12AssistStreakCount') abilityUses: Optional[int] = None acesBefore15Minutes: Optional[int] = None alliedJungleMonsterKills: Optional[float] = None baronBuffGoldAdvantageOverThreshold: Optional[int] = None baronTakedowns: Optional[int] = None blastConeOppositeOpponentCount: Optional[int] = None bountyGold: Optional[int] = None buffsStolen: Optional[int] = None completeSupportQuestInTime: Optional[int] = None controlWardTimeCoverageInRiverOrEnemyHalf: Optional[float] = None controlWardsPlaced: Optional[int] = None damagePerMinute: Optional[float] = None damageTakenOnTeamPercentage: Optional[float] = None dancedWithRiftHerald: Optional[int] = None deathsByEnemyChamps: Optional[int] = None dodgeSkillShotsSmallWindow: Optional[int] = None doubleAces: Optional[int] = None dragonTakedowns: Optional[int] = None earliestBaron: Optional[float] = None effectiveHealAndShielding: Optional[float] = None elderDragonKillsWithOpposingSoul: Optional[int] = None elderDragonMultikills: Optional[int] = None enemyChampionImmobilizations: Optional[int] = None enemyJungleMonsterKills: Optional[float] = None epicMonsterKillsNearEnemyJungler: Optional[int] = None epicMonsterKillsWithin30SecondsOfSpawn: Optional[int] = None epicMonsterSteals: Optional[int] = None epicMonsterStolenWithoutSmite: Optional[int] = None firstTurretKilledTime: Optional[float] = None flawlessAces: Optional[int] = None fullTeamTakedown: Optional[int] = None gameLength: Optional[float] = None getTakedownsInAllLanesEarlyJungleAsLaner: Optional[int] = None goldPerMinute: Optional[float] = None hadAfkTeammate: Optional[int] = None hadOpenNexus: Optional[int] = None highestCrowdControlScore: Optional[int] = None immobilizeAndKillWithAlly: Optional[int] = None initialBuffCount: Optional[int] = None initialCrabCount: Optional[int] = None jungleCsBefore10Minutes: Optional[float] = None junglerKillsEarlyJungle: Optional[int] = None junglerTakedownsNearDamagedEpicMonster: Optional[int] = None kTurretsDestroyedBeforePlatesFall: Optional[int] = None kda: Optional[float] = None killAfterHiddenWithAlly: Optional[int] = None killParticipation: Optional[float] = None killedChampTookFullTeamDamageSurvived: Optional[int] = None killsNearEnemyTurret: Optional[int] = None killsOnLanersEarlyJungleAsJungler: Optional[int] = None killsOnOtherLanesEarlyJungleAsLaner: Optional[int] = None killsOnRecentlyHealedByAramPack: Optional[int] = None killsUnderOwnTurret: Optional[int] = None killsWithHelpFromEpicMonster: Optional[int] = None knockEnemyIntoTeamAndKill: Optional[int] = None landSkillShotsEarlyGame: Optional[int] = None laneMinionsFirst10Minutes: Optional[int] = None legendaryCount: Optional[int] = None lostAnInhibitor: Optional[int] = None maxKillDeficit: Optional[int] = None moreEnemyJungleThanOpponent: Optional[float] = None multiKillOneSpell: Optional[int] = None multiTurretRiftHeraldCount: Optional[int] = None multikills: Optional[int] = None multikillsAfterAggressiveFlash: Optional[int] = None mythicItemUsed: Optional[int] = None outerTurretExecutesBefore10Minutes: Optional[int] = None outnumberedKills: Optional[int] = None outnumberedNexusKill: Optional[int] = None perfectDragonSoulsTaken: Optional[int] = None perfectGame: Optional[int] = None pickKillWithAlly: Optional[int] = None poroExplosions: Optional[int] = None quickCleanse: Optional[int] = None quickFirstTurret: Optional[int] = None quickSoloKills: Optional[int] = None riftHeraldTakedowns: Optional[int] = None saveAllyFromDeath: Optional[int] = None scuttleCrabKills: Optional[int] = None skillshotsDodged: Optional[int] = None skillshotsHit: Optional[int] = None snowballsHit: Optional[int] = None soloBaronKills: Optional[int] = None soloKills: Optional[int] = None soloTurretsLategame: Optional[int] = None stealthWardsPlaced: Optional[int] = None survivedSingleDigitHpCount: Optional[int] = None survivedThreeImmobilizesInFight: Optional[int] = None takedownOnFirstTurret: Optional[int] = None takedowns: Optional[int] = None takedownsAfterGainingLevelAdvantage: Optional[int] = None takedownsBeforeJungleMinionSpawn: Optional[int] = None takedownsFirst25Minutes: Optional[int] = None takedownsInAlcove: Optional[int] = None takedownsInEnemyFountain: Optional[int] = None teamBaronKills: Optional[int] = None teamDamagePercentage: Optional[float] = None teamElderDragonKills: Optional[int] = None teamRiftHeraldKills: Optional[int] = None threeWardsOneSweeperCount: Optional[int] = None tookLargeDamageSurvived: Optional[int] = None turretPlatesTaken: Optional[int] = None turretTakedowns: Optional[int] = None turretsTakenWithRiftHerald: Optional[int] = None twentyMinionsIn3SecondsCount: Optional[int] = None unseenRecalls: Optional[int] = None visionScorePerMinute: Optional[float] = None wardTakedowns: Optional[int] = None wardTakedownsBefore20M: Optional[int] = None wardsGuarded: Optional[int] = None earliestDragonTakedown: Optional[float] = None teleportTakedowns: Optional[int] = None earlyLaningPhaseGoldExpAdvantage: Optional[float] = None highestWardKills: Optional[int] = None laningPhaseGoldExpAdvantage: Optional[float] = None maxCsAdvantageOnLaneOpponent: Optional[float] = None maxLevelLeadLaneOpponent: Optional[int] = None visionScoreAdvantageLaneOpponent: Optional[float] = None highestChampionDamage: Optional[int] = None fasterSupportQuestCompletion: Optional[int] = None class StatPerks(BaseModel): defense: int flex: int offense: int class Selection(BaseModel): perk: int var1: int var2: int var3: int class Style(BaseModel): description: str selections: List[Selection] style: int class Perks(BaseModel): statPerks: StatPerks styles: List[Style] class Participant(BaseModel): assists: int baronKills: Optional[int] = None bountyLevel: Optional[int] = None challenges: Optional[Challenges] = None champExperience: Optional[int] = None champLevel: int championId: int championName: Optional[str] = None championTransform: Optional[int] = None consumablesPurchased: Optional[int] = None damageDealtToBuildings: Optional[int] = None damageDealtToObjectives: int damageDealtToTurrets: int damageSelfMitigated: int deaths: int detectorWardsPlaced: Optional[int] = None doubleKills: int dragonKills: Optional[int] = None firstBloodAssist: bool firstBloodKill: bool firstTowerAssist: bool firstTowerKill: bool gameEndedInEarlySurrender: Optional[bool] = None gameEndedInSurrender: Optional[bool] = None goldEarned: int goldSpent: int individualPosition: Optional[str] = None inhibitorKills: int inhibitorTakedowns: Optional[int] = None inhibitorsLost: Optional[int] = None item0: int item1: int item2: int item3: int item4: int item5: int item6: int itemsPurchased: Optional[int] = None killingSprees: int kills: int lane: str largestCriticalStrike: int largestKillingSpree: int largestMultiKill: int longestTimeSpentLiving: int magicDamageDealt: int magicDamageDealtToChampions: int magicDamageTaken: int neutralMinionsKilled: int nexusKills: Optional[int] = None nexusLost: Optional[int] = None nexusTakedowns: Optional[int] = None objectivesStolen: Optional[int] = None objectivesStolenAssists: Optional[int] = None participantId: int pentaKills: int perks: Optional[Perks] = None # FIXME: Optional because idk how to transform v4 to v5 perks physicalDamageDealt: int physicalDamageDealtToChampions: int physicalDamageTaken: int profileIcon: int quadraKills: int riotIdName: Optional[str] = None riotIdTagline: Optional[str] = None role: str sightWardsBoughtInGame: int spell1Casts: Optional[int] = None spell1Id: int spell2Casts: Optional[int] = None spell2Id: int spell3Casts: Optional[int] = None spell4Casts: Optional[int] = None summoner1Casts: Optional[int] = None summoner2Casts: Optional[int] = None summonerId: Optional[int] = None summonerLevel: Optional[int] = None summonerName: str teamEarlySurrendered: Optional[bool] = None teamId: int teamPosition: Optional[str] = None timeCCingOthers: int timePlayed: Optional[int] = None totalDamageDealt: int totalDamageDealtToChampions: int totalDamageShieldedOnTeammates: Optional[int] = None totalDamageTaken: int totalHeal: int totalHealsOnTeammates: Optional[int] = None totalMinionsKilled: int totalTimeCCDealt: int totalTimeSpentDead: Optional[int] = None totalUnitsHealed: int tripleKills: int trueDamageDealt: int trueDamageDealtToChampions: int trueDamageTaken: int turretKills: int turretTakedowns: Optional[int] = None turretsLost: Optional[int] = None unrealKills: int visionScore: int visionWardsBoughtInGame: int wardsKilled: int wardsPlaced: int win: bool class Ban(BaseModel): championId: int pickTurn: int class Baron(BaseModel): first: bool kills: int class Champion(BaseModel): first: bool kills: int class Dragon(BaseModel): first: bool kills: int class Inhibitor(BaseModel): first: bool kills: int class RiftHerald(BaseModel): first: bool kills: int class Tower(BaseModel): first: bool kills: int class Objectives(BaseModel): baron: Baron champion: Optional[Champion] = None dragon: Dragon inhibitor: Inhibitor riftHerald: RiftHerald tower: Tower class Team(BaseModel): bans: List[Ban] objectives: Objectives teamId: int win: bool class GameDetails(BaseModel): gameCreation: int gameDuration: int gameEndTimestamp: Optional[int] = None gameId: int gameMode: str gameName: Optional[str] = None gameStartTimestamp: Optional[int] = None gameType: str gameVersion: str mapId: int participants: List[Participant] platformId: str queueId: int seasonId: int teams: List[Team] tournamentCode: Optional[str] = None
0
10,314
368