hexsha
stringlengths
40
40
size
int64
7
1.04M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
247
max_stars_repo_name
stringlengths
4
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
368k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
247
max_issues_repo_name
stringlengths
4
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
247
max_forks_repo_name
stringlengths
4
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.04M
avg_line_length
float64
1.77
618k
max_line_length
int64
1
1.02M
alphanum_fraction
float64
0
1
original_content
stringlengths
7
1.04M
filtered:remove_function_no_docstring
int64
-102
942k
filtered:remove_class_no_docstring
int64
-354
977k
filtered:remove_delete_markers
int64
0
60.1k
e8a4d6853804f4590a0288c9c5eca52412b23f32
31,243
py
Python
augly/audio/transforms.py
Ierezell/AugLy
a7dca8c36bc05dbd7694373fe9b883d6ff720f56
[ "MIT" ]
1
2021-09-29T21:27:50.000Z
2021-09-29T21:27:50.000Z
augly/audio/transforms.py
Ierezell/AugLy
a7dca8c36bc05dbd7694373fe9b883d6ff720f56
[ "MIT" ]
null
null
null
augly/audio/transforms.py
Ierezell/AugLy
a7dca8c36bc05dbd7694373fe9b883d6ff720f56
[ "MIT" ]
1
2021-07-02T13:08:55.000Z
2021-07-02T13:08:55.000Z
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import random from typing import Any, Callable, Dict, List, Optional, Tuple, Union import augly.audio.functional as F import augly.utils as utils import numpy as np from augly.audio.utils import RNGSeed """ Base Classes for Transforms """ """ Non-Random Transforms These classes below are essentially class-based versions of the augmentation functions previously defined. These classes were developed such that they can be used with Composition operators (such as `torchvision`'s) and to support use cases where a specific transform with specific attributes needs to be applied multiple times. Example: >>> audio_array = np.array([...]) >>> pitch_shift_tsfm = PitchShift(n_steps=4.0, p=0.5) >>> shifted_audio = pitch_shift_tsfm(audio_array, sample_rate) """
35.223224
92
0.625964
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import random from typing import Any, Callable, Dict, List, Optional, Tuple, Union import augly.audio.functional as F import augly.utils as utils import numpy as np from augly.audio.utils import RNGSeed """ Base Classes for Transforms """ class BaseTransform(object): def __init__(self, p: float = 1.0): """ @param p: the probability of the transform being applied; default value is 1.0 """ assert 0 <= p <= 1.0, "p must be a value in the range [0, 1]" self.p = p def __call__( self, audio: np.ndarray, sample_rate: int = utils.DEFAULT_SAMPLE_RATE, metadata: Optional[List[Dict[str, Any]]] = None, force: bool = False, ) -> Tuple[np.ndarray, int]: """ @param audio: the audio array to be augmented @param sample_rate: the audio sample rate of the inputted audio @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, sample rates, etc. will be appended to the inputted list. If set to None, no metadata will be appended @param force: if set to True, the transform will be applied. otherwise, application is determined by the probability set @returns: the augmented audio array and sample rate """ assert isinstance(audio, np.ndarray), "Audio passed in must be a np.ndarray" assert type(force) == bool, "Expected type bool for variable `force`" if not force and random.random() > self.p: return audio, sample_rate return self.apply_transform(audio, sample_rate, metadata) def apply_transform( self, audio: np.ndarray, sample_rate: int, metadata: Optional[List[Dict[str, Any]]] = None, ) -> Tuple[np.ndarray, int]: """ This function is to be implemented in the child classes. From this function, call the augmentation function with the parameters specified """ raise NotImplementedError() """ Non-Random Transforms These classes below are essentially class-based versions of the augmentation functions previously defined. These classes were developed such that they can be used with Composition operators (such as `torchvision`'s) and to support use cases where a specific transform with specific attributes needs to be applied multiple times. Example: >>> audio_array = np.array([...]) >>> pitch_shift_tsfm = PitchShift(n_steps=4.0, p=0.5) >>> shifted_audio = pitch_shift_tsfm(audio_array, sample_rate) """ class AddBackgroundNoise(BaseTransform): def __init__( self, background_audio: Optional[Union[str, np.ndarray]] = None, snr_level_db: float = 10.0, seed: Optional[RNGSeed] = None, p: float = 1.0, ): """ @param background_audio: the path to the background audio or a variable of type np.ndarray containing the background audio. If set to `None`, the background audio will be white noise @param snr_level_db: signal-to-noise ratio in dB @param seed: a NumPy random generator (or seed) such that these results remain reproducible @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.background_audio = background_audio self.snr_level_db = snr_level_db self.seed = seed def apply_transform( self, audio: np.ndarray, sample_rate: int, metadata: Optional[List[Dict[str, Any]]] = None, ) -> Tuple[np.ndarray, int]: """ Mixes in a background sound into the audio @param audio: the audio array to be augmented @param sample_rate: the audio sample rate of the inputted audio @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, sample rates, etc. will be appended to the inputted list. If set to None, no metadata will be appended @returns: the augmented audio array and sample rate """ return F.add_background_noise( audio, sample_rate, self.background_audio, self.snr_level_db, self.seed, metadata=metadata, ) class ApplyLambda(BaseTransform): def __init__( self, aug_function: Callable[..., Tuple[np.ndarray, int]] = lambda x, y: (x, y), p: float = 1.0, ): """ @param aug_function: the augmentation function to be applied onto the audio (should expect the audio np.ndarray & sample rate int as input, and return the transformed audio & sample rate) @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.aug_function = aug_function def apply_transform( self, audio: np.ndarray, sample_rate: int, metadata: Optional[List[Dict[str, Any]]] = None, ) -> Tuple[np.ndarray, int]: """ Apply a user-defined lambda to the audio @param audio: the audio array to be augmented @param sample_rate: the audio sample rate of the inputted audio @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, sample rates, etc. will be appended to the inputted list. If set to None, no metadata will be appended @returns: the augmented audio array and sample rate """ return F.apply_lambda(audio, sample_rate, self.aug_function, metadata=metadata) class ChangeVolume(BaseTransform): def __init__(self, volume_db: float = 0.0, p: float = 1.0): """ @param volume_db: the decibel amount by which to either increase (positive value) or decrease (negative value) the volume of the audio @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.volume_db = volume_db def apply_transform( self, audio: np.ndarray, sample_rate: int, metadata: Optional[List[Dict[str, Any]]] = None, ) -> Tuple[np.ndarray, int]: """ Changes the volume of the audio @param audio: the audio array to be augmented @param sample_rate: the audio sample rate of the inputted audio @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, sample rates, etc. will be appended to the inputted list. If set to None, no metadata will be appended @returns: the augmented audio array and sample rate """ return F.change_volume(audio, sample_rate, self.volume_db, metadata=metadata) class Clicks(BaseTransform): def __init__(self, seconds_between_clicks: float = 0.5, p: float = 1.0): """ @param seconds_between_clicks: the amount of time between each click that will be added to the audio, in seconds @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.seconds_between_clicks = seconds_between_clicks def apply_transform( self, audio: np.ndarray, sample_rate: int, metadata: Optional[List[Dict[str, Any]]] = None, ) -> Tuple[np.ndarray, int]: """ Adds clicks to the audio at a given regular interval @param audio: the audio array to be augmented @param sample_rate: the audio sample rate of the inputted audio @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, sample rates, etc. will be appended to the inputted list. If set to None, no metadata will be appended @returns: the augmented audio array and sample rate """ return F.clicks( audio, sample_rate, self.seconds_between_clicks, metadata=metadata ) class Clip(BaseTransform): def __init__( self, offset_factor: float = 0.0, duration_factor: float = 1.0, p: float = 1.0 ): """ @param offset_factor: start point of the crop relative to the audio duration (this parameter is multiplied by the audio duration) @param duration_factor: the length of the crop relative to the audio duration (this parameter is multiplied by the audio duration) @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.offset_factor = offset_factor self.duration_factor = duration_factor def apply_transform( self, audio: np.ndarray, sample_rate: int, metadata: Optional[List[Dict[str, Any]]] = None, ) -> Tuple[np.ndarray, int]: """ Clips the audio using the specified offset and duration factors @param audio: the audio array to be augmented @param sample_rate: the audio sample rate of the inputted audio @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, sample rates, etc. will be appended to the inputted list. If set to None, no metadata will be appended @returns: the augmented audio array and sample rate """ return F.clip( audio, sample_rate, self.offset_factor, self.duration_factor, metadata=metadata, ) class Harmonic(BaseTransform): def __init__( self, kernel_size: int = 31, power: float = 2.0, margin: float = 1.0, p: float = 1.0, ): """ @param kernel_size: kernel size for the median filters @param power: exponent for the Wiener filter when constructing soft mask matrices @param margin: margin size for the masks @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.kernel_size = kernel_size self.power = power self.margin = margin def apply_transform( self, audio: np.ndarray, sample_rate: int, metadata: Optional[List[Dict[str, Any]]] = None, ) -> Tuple[np.ndarray, int]: """ Extracts the harmonic part of the audio @param audio: the audio array to be augmented @param sample_rate: the audio sample rate of the inputted audio @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, sample rates, etc. will be appended to the inputted list. If set to None, no metadata will be appended @returns: the augmented audio array and sample rate """ return F.harmonic( audio, sample_rate, self.kernel_size, self.power, self.margin, metadata=metadata, ) class HighPassFilter(BaseTransform): def __init__(self, cutoff_hz: float = 3000.0, p: float = 1.0): """ @param cutoff_hz: frequency (in Hz) where signals with lower frequencies will begin to be reduced by 6dB per octave (doubling in frequency) below this point @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.cutoff_hz = cutoff_hz def apply_transform( self, audio: np.ndarray, sample_rate: int, metadata: Optional[List[Dict[str, Any]]] = None, ) -> Tuple[np.ndarray, int]: """ Allows audio signals with a frequency higher than the given cutoff to pass through and attenuates signals with frequencies lower than the cutoff frequency @param audio: the audio array to be augmented @param sample_rate: the audio sample rate of the inputted audio @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, sample rates, etc. will be appended to the inputted list. If set to None, no metadata will be appended @returns: the augmented audio array and sample rate """ return F.high_pass_filter(audio, sample_rate, self.cutoff_hz, metadata=metadata) class InsertInBackground(BaseTransform): def __init__( self, offset_factor: float = 0.0, background_audio: Optional[Union[str, np.ndarray]] = None, seed: Optional[RNGSeed] = None, p: float = 1.0, ): """ @param offset_factor: start point of the crop relative to the background duration (this parameter is multiplied by the background duration) @param background_audio: the path to the background audio or a variable of type np.ndarray containing the background audio. If set to `None`, the background audio will be white noise @param seed: a NumPy random generator (or seed) such that these results remain reproducible @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.offset_factor = offset_factor self.background_audio = background_audio self.seed = seed def apply_transform( self, audio: np.ndarray, sample_rate: int, metadata: Optional[List[Dict[str, Any]]] = None, ) -> Tuple[np.ndarray, int]: """ Non-overlapping insert audio in a background audio. @param audio: the audio array to be augmented @param sample_rate: the audio sample rate of the inputted audio @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, sample rates, etc. will be appended to the inputted list. If set to None, no metadata will be appended @returns: the augmented audio array and sample rate """ return F.insert_in_background( audio, sample_rate, self.offset_factor, self.background_audio, self.seed, metadata=metadata, ) class InvertChannels(BaseTransform): def apply_transform( self, audio: np.ndarray, sample_rate: int, metadata: Optional[List[Dict[str, Any]]] = None, ) -> Tuple[np.ndarray, int]: """ Inverts the channels of the audio. @param audio: the audio array to be augmented @param sample_rate: the audio sample rate of the inputted audio @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, sample rates, etc. will be appended to the inputted list. If set to None, no metadata will be appended @returns: the augmented audio array and sample rate """ return F.invert_channels(audio, sample_rate, metadata=metadata) class LowPassFilter(BaseTransform): def __init__(self, cutoff_hz: float = 500.0, p: float = 1.0): """ @param cutoff_hz: frequency (in Hz) where signals with higher frequencies will begin to be reduced by 6dB per octave (doubling in frequency) above this point @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.cutoff_hz = cutoff_hz def apply_transform( self, audio: np.ndarray, sample_rate: int, metadata: Optional[List[Dict[str, Any]]] = None, ) -> Tuple[np.ndarray, int]: """ Allows audio signals with a frequency lower than the given cutoff to pass through and attenuates signals with frequencies higher than the cutoff frequency @param audio: the audio array to be augmented @param sample_rate: the audio sample rate of the inputted audio @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, sample rates, etc. will be appended to the inputted list. If set to None, no metadata will be appended @returns: the augmented audio array and sample rate """ return F.low_pass_filter(audio, sample_rate, self.cutoff_hz, metadata=metadata) class Normalize(BaseTransform): def __init__( self, norm: Optional[float] = np.inf, axis: int = 0, threshold: Optional[float] = None, fill: Optional[bool] = None, p: float = 1.0, ): """ @param norm: the type of norm to compute: - np.inf: maximum absolute value - -np.inf: minimum absolute value - 0: number of non-zeros (the support) - float: corresponding l_p norm - None: no normalization is performed @param axis: axis along which to compute the norm @param threshold: if provided, only the columns (or rows) with norm of at least `threshold` are normalized @param fill: if None, then columns (or rows) with norm below `threshold` are left as is. If False, then columns (rows) with norm below `threshold` are set to 0. If True, then columns (rows) with norm below `threshold` are filled uniformly such that the corresponding norm is 1 @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.norm, self.axis = norm, axis self.threshold, self.fill = threshold, fill def apply_transform( self, audio: np.ndarray, sample_rate: int, metadata: Optional[List[Dict[str, Any]]] = None, ) -> Tuple[np.ndarray, int]: """ Normalizes the audio array along the chosen axis (norm(audio, axis=axis) == 1) @param audio: the audio array to be augmented @param sample_rate: the audio sample rate of the inputted audio @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, sample rates, etc. will be appended to the inputted list. If set to None, no metadata will be appended @returns: the augmented audio array and sample rate """ return F.normalize( audio, sample_rate, self.norm, self.axis, self.threshold, self.fill, metadata=metadata, ) class PeakingEqualizer(BaseTransform): def __init__( self, center_hz: float = 500.0, q: float = 1.0, gain_db: float = -3.0, p: float = 1.0, ): """ @param center_hz: point in the frequency spectrum at which EQ is applied @param q: ratio of center frequency to bandwidth; bandwidth is inversely proportional to Q, meaning that as you raise Q, you narrow the bandwidth @param gain_db: amount of gain (boost) or reduction (cut) that is applied at a given frequency. Beware of clipping when using positive gain @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.center_hz = center_hz self.q = q self.gain_db = gain_db def apply_transform( self, audio: np.ndarray, sample_rate: int, metadata: Optional[List[Dict[str, Any]]] = None, ) -> Tuple[np.ndarray, int]: """ Applies a two-pole peaking equalization filter. The signal-level at and around `center_hz` can be increased or decreased, while all other frequencies are unchanged @param audio: the audio array to be augmented @param sample_rate: the audio sample rate of the inputted audio @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, sample rates, etc. will be appended to the inputted list. If set to None, no metadata will be appended @returns: the augmented audio array and sample rate """ return F.peaking_equalizer( audio, sample_rate, self.center_hz, self.q, self.gain_db, metadata=metadata ) class Percussive(BaseTransform): def __init__( self, kernel_size: int = 31, power: float = 2.0, margin: float = 1.0, p: float = 1.0, ): """ @param kernel_size: kernel size for the median filters @param power: exponent for the Wiener filter when constructing soft mask matrices @param margin: margin size for the masks @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.kernel_size = kernel_size self.power = power self.margin = margin def apply_transform( self, audio: np.ndarray, sample_rate: int, metadata: Optional[List[Dict[str, Any]]] = None, ) -> Tuple[np.ndarray, int]: """ Extracts the percussive part of the audio @param audio: the audio array to be augmented @param sample_rate: the audio sample rate of the inputted audio @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, sample rates, etc. will be appended to the inputted list. If set to None, no metadata will be appended @returns: the augmented audio array and sample rate """ return F.percussive( audio, sample_rate, self.kernel_size, self.power, self.margin, metadata=metadata, ) class PitchShift(BaseTransform): def __init__(self, n_steps: float = 1.0, p: float = 1.0): """ @param n_steps: each step is equal to one semitone @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.n_steps = n_steps def apply_transform( self, audio: np.ndarray, sample_rate: int, metadata: Optional[List[Dict[str, Any]]] = None, ) -> Tuple[np.ndarray, int]: """ Shifts the pitch of the audio by `n_steps` @param audio: the audio array to be augmented @param sample_rate: the audio sample rate of the inputted audio @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, sample rates, etc. will be appended to the inputted list. If set to None, no metadata will be appended @returns: the augmented audio array and sample rate """ return F.pitch_shift(audio, sample_rate, self.n_steps, metadata=metadata) class Reverb(BaseTransform): def __init__( self, reverberance: float = 50.0, hf_damping: float = 50.0, room_scale: float = 100.0, stereo_depth: float = 100.0, pre_delay: float = 0.0, wet_gain: float = 0.0, wet_only: bool = False, p: float = 1.0, ): """ @param reverberance: (%) sets the length of the reverberation tail. This determines how long the reverberation continues for after the original sound being reverbed comes to an end, and so simulates the "liveliness" of the room acoustics @param hf_damping: (%) increasing the damping produces a more "muted" effect. The reverberation does not build up as much, and the high frequencies decay faster than the low frequencies @param room_scale: (%) sets the size of the simulated room. A high value will simulate the reverberation effect of a large room and a low value will simulate the effect of a small room @param stereo_depth: (%) sets the apparent "width" of the reverb effect for stereo tracks only. Increasing this value applies more variation between left and right channels, creating a more "spacious" effect. When set at zero, the effect is applied independently to left and right channels @param pre_delay: (ms) delays the onset of the reverberation for the set time after the start of the original input. This also delays the onset of the reverb tail @param wet_gain: (db) applies volume adjustment to the reverberation ("wet") component in the mix @param wet_only: only the wet signal (added reverberation) will be in the resulting output, and the original audio will be removed @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.reverberance = reverberance self.hf_damping = hf_damping self.room_scale = room_scale self.stereo_depth = stereo_depth self.pre_delay = pre_delay self.wet_gain = wet_gain self.wet_only = wet_only def apply_transform( self, audio: np.ndarray, sample_rate: int, metadata: Optional[List[Dict[str, Any]]] = None, ) -> Tuple[np.ndarray, int]: """ Adds reverberation to the audio @param audio: the audio array to be augmented @param sample_rate: the audio sample rate of the inputted audio @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, sample rates, etc. will be appended to the inputted list. If set to None, no metadata will be appended @returns: the augmented audio array and sample rate """ return F.reverb( audio, sample_rate, self.reverberance, self.hf_damping, self.room_scale, self.stereo_depth, self.pre_delay, self.wet_gain, self.wet_only, metadata=metadata, ) class Speed(BaseTransform): def __init__(self, factor: float = 2.0, p: float = 1.0): """ @param factor: the speed factor. If rate > 1 the audio will be sped up by that factor; if rate < 1 the audio will be slowed down by that factor @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.factor = factor def apply_transform( self, audio: np.ndarray, sample_rate: int, metadata: Optional[List[Dict[str, Any]]] = None, ) -> Tuple[np.ndarray, int]: """ Changes the speed of the audio, affecting pitch as well @param audio: the audio array to be augmented @param sample_rate: the audio sample rate of the inputted audio @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, sample rates, etc. will be appended to the inputted list. If set to None, no metadata will be appended @returns: the augmented audio array and sample rate """ return F.speed(audio, sample_rate, self.factor, metadata=metadata) class Tempo(BaseTransform): def __init__(self, factor: float = 2.0, p: float = 1.0): """ @param factor: the tempo factor. If rate > 1 the audio will be sped up by that factor; if rate < 1 the audio will be slowed down by that factor, without affecting the pitch @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.factor = factor def apply_transform( self, audio: np.ndarray, sample_rate: int, metadata: Optional[List[Dict[str, Any]]] = None, ) -> Tuple[np.ndarray, int]: """ Adjusts the tempo of the audio by a given factor @param audio: the audio array to be augmented @param sample_rate: the audio sample rate of the inputted audio @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, sample rates, etc. will be appended to the inputted list. If set to None, no metadata will be appended @returns: the augmented audio array and sample rate """ return F.tempo(audio, sample_rate, self.factor, metadata=metadata) class TimeStretch(BaseTransform): def __init__(self, rate: float = 1.5, p: float = 1.0): """ @param rate: the time stretch factor @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.rate = rate def apply_transform( self, audio: np.ndarray, sample_rate: int, metadata: Optional[List[Dict[str, Any]]] = None, ) -> Tuple[np.ndarray, int]: """ Time-stretches the audio by a fixed rate @param audio: the audio array to be augmented @param sample_rate: the audio sample rate of the inputted audio @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, sample rates, etc. will be appended to the inputted list. If set to None, no metadata will be appended @returns: the augmented audio array and sample rate """ return F.time_stretch(audio, sample_rate, self.rate, metadata=metadata) class ToMono(BaseTransform): def apply_transform( self, audio: np.ndarray, sample_rate: int, metadata: Optional[List[Dict[str, Any]]] = None, ) -> Tuple[np.ndarray, int]: """ Converts the audio from stereo to mono by averaging samples across channels @param audio: the audio array to be augmented @param sample_rate: the audio sample rate of the inputted audio @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, sample rates, etc. will be appended to the inputted list. If set to None, no metadata will be appended @returns: the augmented audio array and sample rate """ return F.to_mono(audio, sample_rate, metadata=metadata)
0
29,920
460
e0ef9bce5e87aa31386e4253a0d246ce6c621dd9
2,663
py
Python
python_code/easy/412_Fizz_Buzz_easy/solution.py
timshenkao/interview_coding_exercises
c531fa5e0c09faef976539275589e957fcb88393
[ "Apache-2.0" ]
null
null
null
python_code/easy/412_Fizz_Buzz_easy/solution.py
timshenkao/interview_coding_exercises
c531fa5e0c09faef976539275589e957fcb88393
[ "Apache-2.0" ]
null
null
null
python_code/easy/412_Fizz_Buzz_easy/solution.py
timshenkao/interview_coding_exercises
c531fa5e0c09faef976539275589e957fcb88393
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2021 - present, Timur Shenkao # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## from collections import OrderedDict from typing import List # 412. Fizz Buzz https://leetcode.com/problems/fizz-buzz/ # Given an integer n, return a string array resultwer (1-indexed) where: # resultwer[i] == "FizzBuzz" if i is divisible by 3 and 5. # resultwer[i] == "Fizz" if i is divisible by 3. # resultwer[i] == "Buzz" if i is divisible by 5. # resultwer[i] == i (as a string) if none of the above conditions are true. # 1 <= n <= 104
37.507042
117
0.579046
# Copyright (c) 2021 - present, Timur Shenkao # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## from collections import OrderedDict from typing import List # 412. Fizz Buzz https://leetcode.com/problems/fizz-buzz/ # Given an integer n, return a string array resultwer (1-indexed) where: # resultwer[i] == "FizzBuzz" if i is divisible by 3 and 5. # resultwer[i] == "Fizz" if i is divisible by 3. # resultwer[i] == "Buzz" if i is divisible by 5. # resultwer[i] == i (as a string) if none of the above conditions are true. # 1 <= n <= 104 class Solution: def fizz_buzz(self, n: int) -> List[str]: """ Time complexity: O(n). We iterate from 1 to n. Space complexity: O(n). We create output list of strings. """ fizz = 'Fizz' buzz = 'Buzz' fizz_buzz = 'FizzBuzz' result = list() for i in range(1, n + 1): if (i % 3 == 0) and (i % 5 == 0): result.append(fizz_buzz) elif i % 3 == 0: result.append(fizz) elif i % 5 == 0: result.append(buzz) else: result.append(str(i)) return result def fizz_buzz_lookup(self, n: int) -> List[str]: """ Time complexity: O(n). We iterate from 1 to n. We perform fixed amount of computations on each iteration. Space complexity: O(n). We create output list of strings. """ # Lookup for all fizzbuzz mappings fizz_buzz_dict = OrderedDict({3 : "Fizz", 5 : "Buzz"}) result = list() i_result = list() for i in range(1, n + 1): i_result.clear() for key in fizz_buzz_dict.keys(): # If the number is divisible by key, # then add the corresponding string mapping to current i_result if i % key == 0: i_result.append(fizz_buzz_dict[key]) if not i_result: i_result.append(str(i)) result.append(''.join(i_result)) return result
0
1,490
23
aa8755d6383871ea335e941c7857fa0ecccd50d3
1,458
py
Python
heltour/tournament/migrations/0110_scheduledevent.py
lenguyenthanh/heltour
13018b1905539de0b273370a76f6aa1d1ebbb01a
[ "MIT" ]
null
null
null
heltour/tournament/migrations/0110_scheduledevent.py
lenguyenthanh/heltour
13018b1905539de0b273370a76f6aa1d1ebbb01a
[ "MIT" ]
null
null
null
heltour/tournament/migrations/0110_scheduledevent.py
lenguyenthanh/heltour
13018b1905539de0b273370a76f6aa1d1ebbb01a
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2016-11-08 18:16 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion
42.882353
138
0.613855
# -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2016-11-08 18:16 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('tournament', '0109_auto_20161108_0128'), ] operations = [ migrations.CreateModel( name='ScheduledEvent', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('date_created', models.DateTimeField(auto_now_add=True)), ('date_modified', models.DateTimeField(auto_now=True)), ('type', models.CharField(choices=[('notify_mods_unscheduled', 'Notify mods of unscheduled games')], max_length=255)), ('offset', models.DurationField()), ('relative_to', models.CharField(choices=[('round_start', 'Round start'), ('round_end', 'Round end')], max_length=255)), ('last_run', models.DateTimeField(blank=True, null=True)), ('league', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='tournament.League')), ('season', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='tournament.Season')), ], options={ 'abstract': False, }, ), ]
0
1,247
23
09cf4e8dc61f85f2ebaa498eb81cabb195f04722
3,358
py
Python
Sketches/MH/Layout/Visualisation/Graph/RenderingParticle.py
sparkslabs/kamaelia_orig
24b5f855a63421a1f7c6c7a35a7f4629ed955316
[ "Apache-2.0" ]
12
2015-10-20T10:22:01.000Z
2021-07-19T10:09:44.000Z
Sketches/MH/Layout/Visualisation/Graph/RenderingParticle.py
sparkslabs/kamaelia_orig
24b5f855a63421a1f7c6c7a35a7f4629ed955316
[ "Apache-2.0" ]
2
2015-10-20T10:22:55.000Z
2017-02-13T11:05:25.000Z
Sketches/MH/Layout/Visualisation/Graph/RenderingParticle.py
sparkslabs/kamaelia_orig
24b5f855a63421a1f7c6c7a35a7f4629ed955316
[ "Apache-2.0" ]
6
2015-03-09T12:51:59.000Z
2020-03-01T13:06:21.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2010 British Broadcasting Corporation and Kamaelia Contributors(1) # # (1) Kamaelia Contributors are listed in the AUTHORS file and at # http://www.kamaelia.org/AUTHORS - please extend this file, # not this notice. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------------- # Simple topography viewer server - takes textual commands from a single socket # and renders the appropriate graph import pygame from Physics import Particle as BaseParticle class RenderingParticle(BaseParticle): """Version of Physics.Particle with added rendering functions. """ def render(self, surface): """Rendering passes. A generator method that renders in multiple passes. Use yields to specify a wait until the pass the next stage of rendering should take place at. Example, that renders bonds 'behind' the blobs. def render(self, surface): yield 1 self.renderBonds(surface) # render bonds on pass 1 yield 5 self.renderSelf(surface) # render 'blob' on pass 5 If another particle type rendered, for example, on pass 3, then it would be rendered on top of the bonds, but behind the blobs. Use this mechanism to order rendering into layers. """ x = int(self.pos[0]) - self.left y = int(self.pos[1]) - self.top yield 1 for p in self.bondedTo: pygame.draw.line(surface, (128,128,255), (x,y), (int(p.pos[0] -self.left),int(p.pos[1] - self.top)) ) yield 2 pygame.draw.circle(surface, (255,128,128), (x,y), self.radius) if self.selected: pygame.draw.circle(surface, (0,0,0), (x,y), self.radius, 2) surface.blit(self.label, (x - self.label.get_width()/2, y - self.label.get_height()/2)) def setOffset( self, (left,top) ): """Inform of a change to the coords of the top left of the drawing surface, so that this entity can render, as if the top left had moved """ self.left = left self.top = top def select( self ): """Tell this particle it is selected""" self.selected = True def deselect( self ): """Tell this particle it is selected""" self.selected = False
37.730337
114
0.611674
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2010 British Broadcasting Corporation and Kamaelia Contributors(1) # # (1) Kamaelia Contributors are listed in the AUTHORS file and at # http://www.kamaelia.org/AUTHORS - please extend this file, # not this notice. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------------- # Simple topography viewer server - takes textual commands from a single socket # and renders the appropriate graph import pygame from Physics import Particle as BaseParticle class RenderingParticle(BaseParticle): """Version of Physics.Particle with added rendering functions. """ def __init__(self, ID, position, name): super(RenderingParticle,self).__init__(position=position, ID = ID ) self.radius = 20 self.labelText = name font = pygame.font.Font(None, 24) self.label = font.render(self.labelText, False, (0,0,0)) self.left = 0 self.top = 0 self.selected = False def render(self, surface): """Rendering passes. A generator method that renders in multiple passes. Use yields to specify a wait until the pass the next stage of rendering should take place at. Example, that renders bonds 'behind' the blobs. def render(self, surface): yield 1 self.renderBonds(surface) # render bonds on pass 1 yield 5 self.renderSelf(surface) # render 'blob' on pass 5 If another particle type rendered, for example, on pass 3, then it would be rendered on top of the bonds, but behind the blobs. Use this mechanism to order rendering into layers. """ x = int(self.pos[0]) - self.left y = int(self.pos[1]) - self.top yield 1 for p in self.bondedTo: pygame.draw.line(surface, (128,128,255), (x,y), (int(p.pos[0] -self.left),int(p.pos[1] - self.top)) ) yield 2 pygame.draw.circle(surface, (255,128,128), (x,y), self.radius) if self.selected: pygame.draw.circle(surface, (0,0,0), (x,y), self.radius, 2) surface.blit(self.label, (x - self.label.get_width()/2, y - self.label.get_height()/2)) def setOffset( self, (left,top) ): """Inform of a change to the coords of the top left of the drawing surface, so that this entity can render, as if the top left had moved """ self.left = left self.top = top def select( self ): """Tell this particle it is selected""" self.selected = True def deselect( self ): """Tell this particle it is selected""" self.selected = False
339
0
27
3ccdf549310d1c10291d371e3807c060ab2fe1c2
2,130
py
Python
bindings/python/benchmark.py
wangjia3015/marisa-trie
da2924831c1e8f90dae7223cfe7a2bc1bd8b5132
[ "BSD-2-Clause" ]
388
2016-01-28T15:16:43.000Z
2022-03-28T08:18:07.000Z
bindings/python/benchmark.py
wangjia3015/marisa-trie
da2924831c1e8f90dae7223cfe7a2bc1bd8b5132
[ "BSD-2-Clause" ]
38
2016-02-12T14:51:12.000Z
2022-02-12T09:10:25.000Z
bindings/python/benchmark.py
wangjia3015/marisa-trie
da2924831c1e8f90dae7223cfe7a2bc1bd8b5132
[ "BSD-2-Clause" ]
79
2016-03-16T15:47:50.000Z
2022-03-15T22:21:08.000Z
import datetime import marisa import sys time_begin = datetime.datetime.now() keys = [] for line in sys.stdin: keys.append(line.rstrip()) time_end = datetime.datetime.now() print "input:", time_end - time_begin time_begin = datetime.datetime.now() dic = dict() for i in range(len(keys)): dic[keys[i]] = i time_end = datetime.datetime.now() print "dict_build:", time_end - time_begin time_begin = datetime.datetime.now() for key in keys: dic.get(key) time_end = datetime.datetime.now() print "dict_lookup:", time_end - time_begin time_begin = datetime.datetime.now() keyset = marisa.Keyset() for key in keys: keyset.push_back(key) time_end = datetime.datetime.now() print "keyset_build:", time_end - time_begin time_begin = datetime.datetime.now() trie = marisa.Trie() trie.build(keyset) time_end = datetime.datetime.now() print "trie_build:", time_end - time_begin time_begin = datetime.datetime.now() agent = marisa.Agent() for key in keys: agent.set_query(key) trie.lookup(agent) agent.key_id() time_end = datetime.datetime.now() print "trie_agent_lookup:", time_end - time_begin time_begin = datetime.datetime.now() for key in keys: trie.lookup(key) time_end = datetime.datetime.now() print "trie_lookup:", time_end - time_begin time_begin = datetime.datetime.now() for i in range(len(keys)): agent.set_query(i) trie.reverse_lookup(agent) agent.key_str() time_end = datetime.datetime.now() print "trie_agent_reverse_lookup:", time_end - time_begin time_begin = datetime.datetime.now() for i in range(len(keys)): trie.reverse_lookup(i) time_end = datetime.datetime.now() print "trie_reverse_lookup:", time_end - time_begin time_begin = datetime.datetime.now() for key in keys: agent.set_query(key) while trie.common_prefix_search(agent): agent.key_str() time_end = datetime.datetime.now() print "trie_agent_common_prefix_search:", time_end - time_begin time_begin = datetime.datetime.now() for key in keys: agent.set_query(key) while trie.predictive_search(agent): agent.key_str() time_end = datetime.datetime.now() print "trie_agent_predictive_search:", time_end - time_begin
25.97561
63
0.753052
import datetime import marisa import sys time_begin = datetime.datetime.now() keys = [] for line in sys.stdin: keys.append(line.rstrip()) time_end = datetime.datetime.now() print "input:", time_end - time_begin time_begin = datetime.datetime.now() dic = dict() for i in range(len(keys)): dic[keys[i]] = i time_end = datetime.datetime.now() print "dict_build:", time_end - time_begin time_begin = datetime.datetime.now() for key in keys: dic.get(key) time_end = datetime.datetime.now() print "dict_lookup:", time_end - time_begin time_begin = datetime.datetime.now() keyset = marisa.Keyset() for key in keys: keyset.push_back(key) time_end = datetime.datetime.now() print "keyset_build:", time_end - time_begin time_begin = datetime.datetime.now() trie = marisa.Trie() trie.build(keyset) time_end = datetime.datetime.now() print "trie_build:", time_end - time_begin time_begin = datetime.datetime.now() agent = marisa.Agent() for key in keys: agent.set_query(key) trie.lookup(agent) agent.key_id() time_end = datetime.datetime.now() print "trie_agent_lookup:", time_end - time_begin time_begin = datetime.datetime.now() for key in keys: trie.lookup(key) time_end = datetime.datetime.now() print "trie_lookup:", time_end - time_begin time_begin = datetime.datetime.now() for i in range(len(keys)): agent.set_query(i) trie.reverse_lookup(agent) agent.key_str() time_end = datetime.datetime.now() print "trie_agent_reverse_lookup:", time_end - time_begin time_begin = datetime.datetime.now() for i in range(len(keys)): trie.reverse_lookup(i) time_end = datetime.datetime.now() print "trie_reverse_lookup:", time_end - time_begin time_begin = datetime.datetime.now() for key in keys: agent.set_query(key) while trie.common_prefix_search(agent): agent.key_str() time_end = datetime.datetime.now() print "trie_agent_common_prefix_search:", time_end - time_begin time_begin = datetime.datetime.now() for key in keys: agent.set_query(key) while trie.predictive_search(agent): agent.key_str() time_end = datetime.datetime.now() print "trie_agent_predictive_search:", time_end - time_begin
0
0
0
7f9c95359486993b762a90f03b356fc2e537a3c5
5,868
py
Python
SPACE/random_concept_building.py
lkreiskoether/SPACE
ba7e697bd10c5881cd6a87f9f877664978436597
[ "Apache-2.0" ]
null
null
null
SPACE/random_concept_building.py
lkreiskoether/SPACE
ba7e697bd10c5881cd6a87f9f877664978436597
[ "Apache-2.0" ]
null
null
null
SPACE/random_concept_building.py
lkreiskoether/SPACE
ba7e697bd10c5881cd6a87f9f877664978436597
[ "Apache-2.0" ]
1
2021-10-05T09:07:36.000Z
2021-10-05T09:07:36.000Z
""" Copyright 2021 Lukas Kreisköther Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import absolute_import, division, print_function, unicode_literals import tensorflow as tf import PIL.Image import numpy as np import os import random class RandomConceptBuilder: """RandomConceptBuilder objects capsule the functionality for building random concept images necessary for using the TCAV framework in industrial usecases. For that random crops from defined sets of images (e.g. from good class when testing the bad class) with size crop_size are build. The random concept images are stored in folders with name prefix 'random500_' so that they can be used for the TCAV framework. """ def __init__(self, path, folders_for_building, store_fmt, image_shape, crop_size, num_fold=30, num_imgs_per_fold=100): """Initializes a RandomConceptBuilder object. Args: path (str): path which leads to the directory in which the folders are laying based upon which the random concept images should be build (e.g. '/home/lukas/Documents/02_Data/FGUSS_subsets_grey/'). folders_for_building (list of str): list of strings for all folders in the directory from which the algorithm should choose images to build the random concept images (e.g. ['good'] or ['one', 'two', 'three']) image_shape (list of int): list with len=2 which defines the shape the produced images should have (normally equals the input size of the model to investigate). crop_size (list of int): list with len=3 defining the size of the random crops (e.g. [56, 56, 3]). num_fold (int): number of folders of random concept images the algorithm should build. num_imgs_per_fold (int): number of images per folder for the folders of random concept images. store_fmt (str): store format of produced images. """ self.path = path self.folders_for_building = folders_for_building self.name_prefix = 'random500_' self.store_fmt = store_fmt self.image_shape = image_shape self.crop_size = crop_size self.num_fold = num_fold self.num_imgs_per_fold = num_imgs_per_fold if len(self.folders_for_building) == 1: self.X_names = [str(self.folders_for_building[0] + '/' + name) for name in os.listdir(self.path + self.folders_for_building[0]) if not os.path.isdir(self.path + self.folders_for_building[0] + '/' + name)] else: X_temp = [] for folder_name in self.folders_for_building: X_temp = X_temp + ([str(folder_name + '/' + name) for name in os.listdir(self.path + folder_name) if not os.path.isdir(self.path + self.folders_for_building[0] + '/' + name)]) self.X_names = X_temp np.random.shuffle(self.X_names) self.img_tensor = tf.placeholder(tf.float32, shape=(self.image_shape[0], self.image_shape[1], 3)) self.out = tf.image.random_crop(value=self.img_tensor, size=self.crop_size) def build_random_concept_image(self, img): """Method for building the random concept image from an input image. Args: img (numpy.ndarray[float]): image to build a random concept image from. Returns: PIL.Image: Random concept image as PIL.Image. """ img = np.array(img, dtype=np.float32) with tf.Session(): i = self.out.eval(feed_dict={self.img_tensor: img}) i = np.tile(i, (int(img.shape[0] / i.shape[0]), int(img.shape[1] / i.shape[1]), 1)) img = np.pad(array=i, pad_width=((0, img.shape[0] % i.shape[0]), (0, img.shape[1] % i.shape[1]), (0, 0)), mode='wrap') return PIL.Image.fromarray(img.astype(np.uint8)) def build(self): """Method to call to start building the concept images. Function looks how many images are already in the folders and fills the folders respectively. """ for i in range(self.num_fold): sub_fold = self.name_prefix + str(i) if not os.path.isdir(self.path + sub_fold): try: os.mkdir(self.path + sub_fold + '/') except Exception as e: print("Creation of the directory %s failed" % sub_fold) print(e) else: print("Successfully created the directory %s " % sub_fold) num_files = len([name for name in os.listdir(self.path + sub_fold) if os.path.isfile(os.path.join(self.path + sub_fold, name))]) if not (num_files == self.num_imgs_per_fold): for j in range(self.num_imgs_per_fold - num_files): img = random.choice(self.X_names) img = np.array(PIL.Image.open(tf.gfile.Open(self.path + '/' + img, 'rb')).convert('RGB'), dtype=np.float32) # todo: resize (right now, we don't do it since images have to be in right size for TCAV anyway) img_ran = self.build_random_concept_image(img) img_ran.save(self.path + sub_fold + '/' + str(num_files + j) + '.' + self.store_fmt)
54.333333
128
0.63514
""" Copyright 2021 Lukas Kreisköther Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import absolute_import, division, print_function, unicode_literals import tensorflow as tf import PIL.Image import numpy as np import os import random class RandomConceptBuilder: """RandomConceptBuilder objects capsule the functionality for building random concept images necessary for using the TCAV framework in industrial usecases. For that random crops from defined sets of images (e.g. from good class when testing the bad class) with size crop_size are build. The random concept images are stored in folders with name prefix 'random500_' so that they can be used for the TCAV framework. """ def __init__(self, path, folders_for_building, store_fmt, image_shape, crop_size, num_fold=30, num_imgs_per_fold=100): """Initializes a RandomConceptBuilder object. Args: path (str): path which leads to the directory in which the folders are laying based upon which the random concept images should be build (e.g. '/home/lukas/Documents/02_Data/FGUSS_subsets_grey/'). folders_for_building (list of str): list of strings for all folders in the directory from which the algorithm should choose images to build the random concept images (e.g. ['good'] or ['one', 'two', 'three']) image_shape (list of int): list with len=2 which defines the shape the produced images should have (normally equals the input size of the model to investigate). crop_size (list of int): list with len=3 defining the size of the random crops (e.g. [56, 56, 3]). num_fold (int): number of folders of random concept images the algorithm should build. num_imgs_per_fold (int): number of images per folder for the folders of random concept images. store_fmt (str): store format of produced images. """ self.path = path self.folders_for_building = folders_for_building self.name_prefix = 'random500_' self.store_fmt = store_fmt self.image_shape = image_shape self.crop_size = crop_size self.num_fold = num_fold self.num_imgs_per_fold = num_imgs_per_fold if len(self.folders_for_building) == 1: self.X_names = [str(self.folders_for_building[0] + '/' + name) for name in os.listdir(self.path + self.folders_for_building[0]) if not os.path.isdir(self.path + self.folders_for_building[0] + '/' + name)] else: X_temp = [] for folder_name in self.folders_for_building: X_temp = X_temp + ([str(folder_name + '/' + name) for name in os.listdir(self.path + folder_name) if not os.path.isdir(self.path + self.folders_for_building[0] + '/' + name)]) self.X_names = X_temp np.random.shuffle(self.X_names) self.img_tensor = tf.placeholder(tf.float32, shape=(self.image_shape[0], self.image_shape[1], 3)) self.out = tf.image.random_crop(value=self.img_tensor, size=self.crop_size) def build_random_concept_image(self, img): """Method for building the random concept image from an input image. Args: img (numpy.ndarray[float]): image to build a random concept image from. Returns: PIL.Image: Random concept image as PIL.Image. """ img = np.array(img, dtype=np.float32) with tf.Session(): i = self.out.eval(feed_dict={self.img_tensor: img}) i = np.tile(i, (int(img.shape[0] / i.shape[0]), int(img.shape[1] / i.shape[1]), 1)) img = np.pad(array=i, pad_width=((0, img.shape[0] % i.shape[0]), (0, img.shape[1] % i.shape[1]), (0, 0)), mode='wrap') return PIL.Image.fromarray(img.astype(np.uint8)) def build(self): """Method to call to start building the concept images. Function looks how many images are already in the folders and fills the folders respectively. """ for i in range(self.num_fold): sub_fold = self.name_prefix + str(i) if not os.path.isdir(self.path + sub_fold): try: os.mkdir(self.path + sub_fold + '/') except Exception as e: print("Creation of the directory %s failed" % sub_fold) print(e) else: print("Successfully created the directory %s " % sub_fold) num_files = len([name for name in os.listdir(self.path + sub_fold) if os.path.isfile(os.path.join(self.path + sub_fold, name))]) if not (num_files == self.num_imgs_per_fold): for j in range(self.num_imgs_per_fold - num_files): img = random.choice(self.X_names) img = np.array(PIL.Image.open(tf.gfile.Open(self.path + '/' + img, 'rb')).convert('RGB'), dtype=np.float32) # todo: resize (right now, we don't do it since images have to be in right size for TCAV anyway) img_ran = self.build_random_concept_image(img) img_ran.save(self.path + sub_fold + '/' + str(num_files + j) + '.' + self.store_fmt)
0
0
0
3178a9110e2900570b8a0543edc4ea7b69019a8e
13,724
py
Python
examples/model_compression/distill_lstm/data.py
wzzju/PaddleNLP
1757a4fc2a3cd5a45f75c6482746777752b414d8
[ "Apache-2.0" ]
1
2021-07-13T02:21:15.000Z
2021-07-13T02:21:15.000Z
examples/model_compression/distill_lstm/data.py
wzzju/PaddleNLP
1757a4fc2a3cd5a45f75c6482746777752b414d8
[ "Apache-2.0" ]
null
null
null
examples/model_compression/distill_lstm/data.py
wzzju/PaddleNLP
1757a4fc2a3cd5a45f75c6482746777752b414d8
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import io from functools import partial import numpy as np import jieba import paddle from paddlenlp.data import Stack, Tuple, Pad, Vocab from paddlenlp.transformers import BertTokenizer from paddlenlp.datasets import load_dataset from utils import convert_example_for_lstm, convert_example_for_distill, convert_pair_example def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = {} with open(vocab_file, "r", encoding="utf-8") as reader: tokens = reader.readlines() for index, token in enumerate(tokens): token = token.rstrip("\n").split("\t")[0] vocab[token] = index return vocab def apply_data_augmentation(data, task_name, tokenizer, n_iter=20, p_mask=0.1, p_ng=0.25, ngram_range=(2, 6), whole_word_mask=False, seed=0): """ Data Augmentation contains Masking and n-gram sampling. Tokenization and Masking are performed at the same time, so that the masked token can be directly replaced by `mask_token`, after what sampling is performed. """ np.random.seed(seed) new_data = [] for example in data: if task_name == 'qqp': data_list = tokenizer.tokenize(example['sentence1']) data_list_2 = tokenizer.tokenize(example['sentence2']) new_data.append({ "sentence1": data_list, "sentence2": data_list_2, "labels": example['labels'] }) else: data_list = tokenizer.tokenize(example['sentence']) new_data.append({ "sentence": data_list, "labels": example['labels'] }) for example in data: for _ in range(n_iter): if task_name == 'qqp': words = _data_augmentation(example['sentence1'], data_list) words_2 = _data_augmentation(example['sentence2'], data_list_2) new_data.append({ "sentence1": words, "sentence2": words_2, "labels": example['labels'] }) else: words = _data_augmentation(example['sentence'], data_list) new_data.append({ "sentence": words, "labels": example['labels'] }) return new_data def apply_data_augmentation_for_cn(data, tokenizer, vocab, n_iter=20, p_mask=0.1, p_ng=0.25, ngram_range=(2, 10), seed=0): """ Because BERT and jieba have different `tokenize` function, it returns jieba_tokenizer(example['text'], bert_tokenizer(example['text']) and example['label]) for each example in data. jieba tokenization and Masking are performed at the same time, so that the masked token can be directly replaced by `mask_token`, and other tokens could be tokenized by BERT's tokenizer, from which tokenized example for student model and teacher model would get at the same time. """ np.random.seed(seed) new_data = [] for example in data: text_tokenized = list(jieba.cut(example['text'])) lstm_tokens = text_tokenized bert_tokens = tokenizer.tokenize(example['text']) new_data.append({ "lstm_tokens": lstm_tokens, "bert_tokens": bert_tokens, "label": example['label'] }) for _ in range(n_iter): # 1. Masking lstm_tokens, bert_tokens = [], [] for word in text_tokenized: if np.random.rand() < p_mask: lstm_tokens.append([vocab.unk_token]) bert_tokens.append([tokenizer.unk_token]) else: lstm_tokens.append([word]) bert_tokens.append(tokenizer.tokenize(word)) # 2. N-gram sampling lstm_tokens, bert_tokens = ngram_sampling(lstm_tokens, bert_tokens, p_ng, ngram_range) lstm_tokens, bert_tokens = flatten(lstm_tokens), flatten( bert_tokens) new_data.append({ "lstm_tokens": lstm_tokens, "bert_tokens": bert_tokens, "label": example['label'] }) return new_data def create_data_loader_for_small_model(task_name, vocab_path, model_name=None, batch_size=64, max_seq_length=128, shuffle=True): """Data loader for bi-lstm, not bert.""" if task_name == 'chnsenticorp': train_ds, dev_ds = load_dataset(task_name, splits=["train", "dev"]) else: train_ds, dev_ds = load_dataset( 'glue', task_name, splits=["train", "dev"]) if task_name == 'chnsenticorp': vocab = Vocab.load_vocabulary( vocab_path, unk_token='[UNK]', pad_token='[PAD]', bos_token=None, eos_token=None, ) pad_val = vocab['[PAD]'] else: vocab = BertTokenizer.from_pretrained(model_name) pad_val = vocab.pad_token_id trans_fn = partial( convert_example_for_lstm, task_name=task_name, vocab=vocab, max_seq_length=max_seq_length, is_test=False) batchify_fn = lambda samples, fn=Tuple( Pad(axis=0, pad_val=pad_val), # input_ids Stack(dtype="int64"), # seq len Stack(dtype="int64") # label ): fn(samples) train_ds = train_ds.map(trans_fn, lazy=True) dev_ds = dev_ds.map(trans_fn, lazy=True) train_data_loader, dev_data_loader = create_dataloader( train_ds, dev_ds, batch_size, batchify_fn, shuffle) return train_data_loader, dev_data_loader def create_distill_loader(task_name, model_name, vocab_path, batch_size=64, max_seq_length=128, shuffle=True, n_iter=20, whole_word_mask=False, seed=0): """ Returns batch data for bert and small model. Bert and small model have different input representations. """ tokenizer = BertTokenizer.from_pretrained(model_name) if task_name == 'chnsenticorp': train_ds, dev_ds = load_dataset(task_name, splits=["train", "dev"]) vocab = Vocab.load_vocabulary( vocab_path, unk_token='[UNK]', pad_token='[PAD]', bos_token=None, eos_token=None, ) pad_val = vocab['[PAD]'] data_aug_fn = partial( apply_data_augmentation_for_cn, tokenizer=tokenizer, vocab=vocab, n_iter=n_iter, seed=seed) else: train_ds, dev_ds = load_dataset( 'glue', task_name, splits=["train", "dev"]) vocab = tokenizer pad_val = tokenizer.pad_token_id data_aug_fn = partial( apply_data_augmentation, task_name=task_name, tokenizer=tokenizer, n_iter=n_iter, whole_word_mask=whole_word_mask, seed=seed) train_ds = train_ds.map(data_aug_fn, batched=True) print("Data augmentation has been applied.") trans_fn = partial( convert_example_for_distill, task_name=task_name, tokenizer=tokenizer, label_list=train_ds.label_list, max_seq_length=max_seq_length, vocab=vocab) trans_fn_dev = partial( convert_example_for_distill, task_name=task_name, tokenizer=tokenizer, label_list=train_ds.label_list, max_seq_length=max_seq_length, vocab=vocab, is_tokenized=False) if task_name == 'qqp': batchify_fn = lambda samples, fn=Tuple( Pad(axis=0, pad_val=tokenizer.pad_token_id), # bert input Pad(axis=0, pad_val=tokenizer.pad_token_type_id), # bert segment Pad(axis=0, pad_val=pad_val), # small input_ids Stack(dtype="int64"), # small seq len Pad(axis=0, pad_val=pad_val), # small input_ids Stack(dtype="int64"), # small seq len Stack(dtype="int64") # small label ): fn(samples) else: batchify_fn = lambda samples, fn=Tuple( Pad(axis=0, pad_val=tokenizer.pad_token_id), # bert input Pad(axis=0, pad_val=tokenizer.pad_token_type_id), # bert segment Pad(axis=0, pad_val=pad_val), # small input_ids Stack(dtype="int64"), # small seq len Stack(dtype="int64") # small label ): fn(samples) train_ds = train_ds.map(trans_fn, lazy=True) dev_ds = dev_ds.map(trans_fn_dev, lazy=True) train_data_loader, dev_data_loader = create_dataloader( train_ds, dev_ds, batch_size, batchify_fn, shuffle) return train_data_loader, dev_data_loader def create_pair_loader_for_small_model(task_name, model_name, vocab_path, batch_size=64, max_seq_length=128, shuffle=True, is_test=False): """Only support QQP now.""" tokenizer = BertTokenizer.from_pretrained(model_name) train_ds, dev_ds = load_dataset('glue', task_name, splits=["train", "dev"]) vocab = Vocab.load_vocabulary( vocab_path, unk_token='[UNK]', pad_token='[PAD]', bos_token=None, eos_token=None, ) trans_func = partial( convert_pair_example, task_name=task_name, vocab=tokenizer, is_tokenized=False, max_seq_length=max_seq_length, is_test=is_test) train_ds = train_ds.map(trans_func, lazy=True) dev_ds = dev_ds.map(trans_func, lazy=True) batchify_fn = lambda samples, fn=Tuple( Pad(axis=0, pad_val=vocab['[PAD]']), # input Stack(), # length Pad(axis=0, pad_val=vocab['[PAD]']), # input Stack(), # length Stack(dtype="int64" if train_ds.label_list else "float32") # label ): fn(samples) train_data_loader, dev_data_loader = create_dataloader( train_ds, dev_ds, batch_size, batchify_fn, shuffle) return train_data_loader, dev_data_loader
36.403183
93
0.573302
# -*- coding: utf-8 -*- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import io from functools import partial import numpy as np import jieba import paddle from paddlenlp.data import Stack, Tuple, Pad, Vocab from paddlenlp.transformers import BertTokenizer from paddlenlp.datasets import load_dataset from utils import convert_example_for_lstm, convert_example_for_distill, convert_pair_example def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = {} with open(vocab_file, "r", encoding="utf-8") as reader: tokens = reader.readlines() for index, token in enumerate(tokens): token = token.rstrip("\n").split("\t")[0] vocab[token] = index return vocab def ngram_sampling(words, words_2=None, p_ng=0.25, ngram_range=(2, 6)): if np.random.rand() < p_ng: ngram_len = np.random.randint(ngram_range[0], ngram_range[1] + 1) ngram_len = min(ngram_len, len(words)) start = np.random.randint(0, len(words) - ngram_len + 1) words = words[start:start + ngram_len] if words_2: words_2 = words_2[start:start + ngram_len] return words if not words_2 else (words, words_2) def flatten(list_of_list): final_list = [] for each_list in list_of_list: final_list += each_list return final_list def apply_data_augmentation(data, task_name, tokenizer, n_iter=20, p_mask=0.1, p_ng=0.25, ngram_range=(2, 6), whole_word_mask=False, seed=0): """ Data Augmentation contains Masking and n-gram sampling. Tokenization and Masking are performed at the same time, so that the masked token can be directly replaced by `mask_token`, after what sampling is performed. """ def _data_augmentation(data, tokenized_list, whole_word_mask=whole_word_mask): # 1. Masking words = [] if not whole_word_mask: words = [ tokenizer.mask_token if np.random.rand() < p_mask else word for word in tokenized_list ] else: for word in data.split(): words += [[tokenizer.mask_token]] if np.random.rand( ) < p_mask else [tokenizer.tokenize(word)] # 2. N-gram sampling words = ngram_sampling(words, p_ng=p_ng, ngram_range=ngram_range) words = flatten(words) if isinstance(words[0], list) else words return words np.random.seed(seed) new_data = [] for example in data: if task_name == 'qqp': data_list = tokenizer.tokenize(example['sentence1']) data_list_2 = tokenizer.tokenize(example['sentence2']) new_data.append({ "sentence1": data_list, "sentence2": data_list_2, "labels": example['labels'] }) else: data_list = tokenizer.tokenize(example['sentence']) new_data.append({ "sentence": data_list, "labels": example['labels'] }) for example in data: for _ in range(n_iter): if task_name == 'qqp': words = _data_augmentation(example['sentence1'], data_list) words_2 = _data_augmentation(example['sentence2'], data_list_2) new_data.append({ "sentence1": words, "sentence2": words_2, "labels": example['labels'] }) else: words = _data_augmentation(example['sentence'], data_list) new_data.append({ "sentence": words, "labels": example['labels'] }) return new_data def apply_data_augmentation_for_cn(data, tokenizer, vocab, n_iter=20, p_mask=0.1, p_ng=0.25, ngram_range=(2, 10), seed=0): """ Because BERT and jieba have different `tokenize` function, it returns jieba_tokenizer(example['text'], bert_tokenizer(example['text']) and example['label]) for each example in data. jieba tokenization and Masking are performed at the same time, so that the masked token can be directly replaced by `mask_token`, and other tokens could be tokenized by BERT's tokenizer, from which tokenized example for student model and teacher model would get at the same time. """ np.random.seed(seed) new_data = [] for example in data: text_tokenized = list(jieba.cut(example['text'])) lstm_tokens = text_tokenized bert_tokens = tokenizer.tokenize(example['text']) new_data.append({ "lstm_tokens": lstm_tokens, "bert_tokens": bert_tokens, "label": example['label'] }) for _ in range(n_iter): # 1. Masking lstm_tokens, bert_tokens = [], [] for word in text_tokenized: if np.random.rand() < p_mask: lstm_tokens.append([vocab.unk_token]) bert_tokens.append([tokenizer.unk_token]) else: lstm_tokens.append([word]) bert_tokens.append(tokenizer.tokenize(word)) # 2. N-gram sampling lstm_tokens, bert_tokens = ngram_sampling(lstm_tokens, bert_tokens, p_ng, ngram_range) lstm_tokens, bert_tokens = flatten(lstm_tokens), flatten( bert_tokens) new_data.append({ "lstm_tokens": lstm_tokens, "bert_tokens": bert_tokens, "label": example['label'] }) return new_data def create_data_loader_for_small_model(task_name, vocab_path, model_name=None, batch_size=64, max_seq_length=128, shuffle=True): """Data loader for bi-lstm, not bert.""" if task_name == 'chnsenticorp': train_ds, dev_ds = load_dataset(task_name, splits=["train", "dev"]) else: train_ds, dev_ds = load_dataset( 'glue', task_name, splits=["train", "dev"]) if task_name == 'chnsenticorp': vocab = Vocab.load_vocabulary( vocab_path, unk_token='[UNK]', pad_token='[PAD]', bos_token=None, eos_token=None, ) pad_val = vocab['[PAD]'] else: vocab = BertTokenizer.from_pretrained(model_name) pad_val = vocab.pad_token_id trans_fn = partial( convert_example_for_lstm, task_name=task_name, vocab=vocab, max_seq_length=max_seq_length, is_test=False) batchify_fn = lambda samples, fn=Tuple( Pad(axis=0, pad_val=pad_val), # input_ids Stack(dtype="int64"), # seq len Stack(dtype="int64") # label ): fn(samples) train_ds = train_ds.map(trans_fn, lazy=True) dev_ds = dev_ds.map(trans_fn, lazy=True) train_data_loader, dev_data_loader = create_dataloader( train_ds, dev_ds, batch_size, batchify_fn, shuffle) return train_data_loader, dev_data_loader def create_distill_loader(task_name, model_name, vocab_path, batch_size=64, max_seq_length=128, shuffle=True, n_iter=20, whole_word_mask=False, seed=0): """ Returns batch data for bert and small model. Bert and small model have different input representations. """ tokenizer = BertTokenizer.from_pretrained(model_name) if task_name == 'chnsenticorp': train_ds, dev_ds = load_dataset(task_name, splits=["train", "dev"]) vocab = Vocab.load_vocabulary( vocab_path, unk_token='[UNK]', pad_token='[PAD]', bos_token=None, eos_token=None, ) pad_val = vocab['[PAD]'] data_aug_fn = partial( apply_data_augmentation_for_cn, tokenizer=tokenizer, vocab=vocab, n_iter=n_iter, seed=seed) else: train_ds, dev_ds = load_dataset( 'glue', task_name, splits=["train", "dev"]) vocab = tokenizer pad_val = tokenizer.pad_token_id data_aug_fn = partial( apply_data_augmentation, task_name=task_name, tokenizer=tokenizer, n_iter=n_iter, whole_word_mask=whole_word_mask, seed=seed) train_ds = train_ds.map(data_aug_fn, batched=True) print("Data augmentation has been applied.") trans_fn = partial( convert_example_for_distill, task_name=task_name, tokenizer=tokenizer, label_list=train_ds.label_list, max_seq_length=max_seq_length, vocab=vocab) trans_fn_dev = partial( convert_example_for_distill, task_name=task_name, tokenizer=tokenizer, label_list=train_ds.label_list, max_seq_length=max_seq_length, vocab=vocab, is_tokenized=False) if task_name == 'qqp': batchify_fn = lambda samples, fn=Tuple( Pad(axis=0, pad_val=tokenizer.pad_token_id), # bert input Pad(axis=0, pad_val=tokenizer.pad_token_type_id), # bert segment Pad(axis=0, pad_val=pad_val), # small input_ids Stack(dtype="int64"), # small seq len Pad(axis=0, pad_val=pad_val), # small input_ids Stack(dtype="int64"), # small seq len Stack(dtype="int64") # small label ): fn(samples) else: batchify_fn = lambda samples, fn=Tuple( Pad(axis=0, pad_val=tokenizer.pad_token_id), # bert input Pad(axis=0, pad_val=tokenizer.pad_token_type_id), # bert segment Pad(axis=0, pad_val=pad_val), # small input_ids Stack(dtype="int64"), # small seq len Stack(dtype="int64") # small label ): fn(samples) train_ds = train_ds.map(trans_fn, lazy=True) dev_ds = dev_ds.map(trans_fn_dev, lazy=True) train_data_loader, dev_data_loader = create_dataloader( train_ds, dev_ds, batch_size, batchify_fn, shuffle) return train_data_loader, dev_data_loader def create_pair_loader_for_small_model(task_name, model_name, vocab_path, batch_size=64, max_seq_length=128, shuffle=True, is_test=False): """Only support QQP now.""" tokenizer = BertTokenizer.from_pretrained(model_name) train_ds, dev_ds = load_dataset('glue', task_name, splits=["train", "dev"]) vocab = Vocab.load_vocabulary( vocab_path, unk_token='[UNK]', pad_token='[PAD]', bos_token=None, eos_token=None, ) trans_func = partial( convert_pair_example, task_name=task_name, vocab=tokenizer, is_tokenized=False, max_seq_length=max_seq_length, is_test=is_test) train_ds = train_ds.map(trans_func, lazy=True) dev_ds = dev_ds.map(trans_func, lazy=True) batchify_fn = lambda samples, fn=Tuple( Pad(axis=0, pad_val=vocab['[PAD]']), # input Stack(), # length Pad(axis=0, pad_val=vocab['[PAD]']), # input Stack(), # length Stack(dtype="int64" if train_ds.label_list else "float32") # label ): fn(samples) train_data_loader, dev_data_loader = create_dataloader( train_ds, dev_ds, batch_size, batchify_fn, shuffle) return train_data_loader, dev_data_loader def create_dataloader(train_ds, dev_ds, batch_size, batchify_fn, shuffle=True): train_batch_sampler = paddle.io.DistributedBatchSampler( train_ds, batch_size=batch_size, shuffle=shuffle) dev_batch_sampler = paddle.io.BatchSampler( dev_ds, batch_size=batch_size, shuffle=False) train_data_loader = paddle.io.DataLoader( dataset=train_ds, batch_sampler=train_batch_sampler, collate_fn=batchify_fn, num_workers=0, return_list=True) dev_data_loader = paddle.io.DataLoader( dataset=dev_ds, batch_sampler=dev_batch_sampler, collate_fn=batchify_fn, num_workers=0, return_list=True) return train_data_loader, dev_data_loader
1,987
0
96
b3cfc2a4680ba5fb688c8c605dffbd3378abcff5
472
py
Python
pametis/__init__.py
avnr/pametis
1037c7b50e5825770f2296761f3a0ad3cb37eae4
[ "MIT" ]
null
null
null
pametis/__init__.py
avnr/pametis
1037c7b50e5825770f2296761f3a0ad3cb37eae4
[ "MIT" ]
null
null
null
pametis/__init__.py
avnr/pametis
1037c7b50e5825770f2296761f3a0ad3cb37eae4
[ "MIT" ]
null
null
null
from .pametis import * __all__ = [ 'OPT', 'configure', 'reset', 'sitemap', 'PametisException', 'AmbiguousOptions', 'BadParam', 'PametisCacheError', 'BadDomain', 'CantRemove', 'Pametis_cache', 'Sql_cache', 'postgres', 'sqlite', 'Pametis_spider', 'file_spider', 'sitemap_spider', ] __version__ = "0.4" __version_info__ = ( 0, 4, 0 )
19.666667
30
0.489407
from .pametis import * __all__ = [ 'OPT', 'configure', 'reset', 'sitemap', 'PametisException', 'AmbiguousOptions', 'BadParam', 'PametisCacheError', 'BadDomain', 'CantRemove', 'Pametis_cache', 'Sql_cache', 'postgres', 'sqlite', 'Pametis_spider', 'file_spider', 'sitemap_spider', ] __version__ = "0.4" __version_info__ = ( 0, 4, 0 )
0
0
0
727b56502133746fee15b7edcec9513b698ea9ac
513
py
Python
proxy/parser.py
GavinHan/sina_weibo_crawler
5fcbd4007fb8d2fad1aa3ad68b73aec6b7669b49
[ "BSD-2-Clause" ]
1
2016-03-15T16:21:28.000Z
2016-03-15T16:21:28.000Z
proxy/parser.py
GavinHan/sina_weibo_crawler
5fcbd4007fb8d2fad1aa3ad68b73aec6b7669b49
[ "BSD-2-Clause" ]
null
null
null
proxy/parser.py
GavinHan/sina_weibo_crawler
5fcbd4007fb8d2fad1aa3ad68b73aec6b7669b49
[ "BSD-2-Clause" ]
null
null
null
#coding: utf-8 import re from pyquery import PyQuery as pq from lxml import etree page = ''' ''' doc = pq(page) div = doc('div').find('.proxylistitem') div.each(perser) #print d('p') #返回<p>test 1</p><p>test 2</p> #print d('p').html() #返回test 1 #print d('p').eq(1).html() #返回test 2
19.730769
65
0.608187
#coding: utf-8 import re from pyquery import PyQuery as pq from lxml import etree page = ''' ''' def perser(i): node = pq(this) #import pdb; pdb.set_trace() ip = node.find('.tbBottomLine:first').html().strip() port = node.find('.tbBottomLine:first').next().html().strip() print ('%s:%s %s')%(ip, port) doc = pq(page) div = doc('div').find('.proxylistitem') div.each(perser) #print d('p') #返回<p>test 1</p><p>test 2</p> #print d('p').html() #返回test 1 #print d('p').eq(1).html() #返回test 2
203
0
23
a1b30ecc1b479a04796b2d974aafc93c7541b6f8
2,964
py
Python
picoCTF-web/api/common.py
minhnq1618/picoCTF
f634f0e55be6b1a8552a33e4f94e7487142e8bce
[ "MIT" ]
280
2016-03-23T05:16:07.000Z
2022-03-25T10:45:33.000Z
picoCTF-web/api/common.py
minhnq1618/picoCTF
f634f0e55be6b1a8552a33e4f94e7487142e8bce
[ "MIT" ]
384
2016-03-22T05:14:47.000Z
2021-09-13T23:46:14.000Z
picoCTF-web/api/common.py
minhnq1618/picoCTF
f634f0e55be6b1a8552a33e4f94e7487142e8bce
[ "MIT" ]
142
2016-03-15T16:27:21.000Z
2022-02-23T23:41:28.000Z
"""Classes and functions used by multiple modules in the system.""" import uuid from hashlib import md5 import bcrypt from voluptuous import Invalid, MultipleInvalid def token(): """ Generate a random but insecure token. Returns: The randomly generated token """ return str(uuid.uuid4().hex) def hash(string): """ Hash a string. Args: string: string to be hashed. Returns: The hex digest of the string. """ return md5(string.encode("utf-8")).hexdigest() class PicoException(Exception): """ General class for exceptions in the picoCTF API. Allows specification of a message and response code to display to the client, as well as an optional field for arbitrary data. The 'data' field will not be displayed to clients but will be stored in the database, making it ideal for storing stack traces, etc. """ def __init__(self, message, status_code=500, data=None): """Initialize a new PicoException.""" Exception.__init__(self) self.message = message self.status_code = status_code self.data = data def to_dict(self): """Convert a PicoException to a dict for serialization.""" rv = dict() rv["message"] = self.message return rv def check(*callback_tuples): """ Voluptuous wrapper function to raise our PicoException. Args: callback_tuples: a callback_tuple should contain (status, msg, callbacks) Returns: Returns a function callback for the Schema """ def v(value): """ Try to validate the value with the given callbacks. Args: value: the item to validate Raises: PicoException with 400 status code and error msg. Returns: The value if the validation callbacks are satisfied. """ for msg, callbacks in callback_tuples: for callback in callbacks: try: result = callback(value) if not result and type(result) == bool: raise Invalid() except Exception: raise PicoException(msg, 400) return value return v def validate(schema, data): """ Wrap the call to voluptuous schema to raise the proper exception. Args: schema: The voluptuous Schema object data: The validation data for the schema object Raises: PicoException with 400 status code and the voluptuous error message """ try: schema(data) except MultipleInvalid as error: raise PicoException(error.msg, 400) def hash_password(password): """ Hash plaintext password. Args: password: plaintext password Returns: Secure hash of password. """ return bcrypt.hashpw(password.encode("utf-8"), bcrypt.gensalt(8))
23.903226
75
0.612686
"""Classes and functions used by multiple modules in the system.""" import uuid from hashlib import md5 import bcrypt from voluptuous import Invalid, MultipleInvalid def token(): """ Generate a random but insecure token. Returns: The randomly generated token """ return str(uuid.uuid4().hex) def hash(string): """ Hash a string. Args: string: string to be hashed. Returns: The hex digest of the string. """ return md5(string.encode("utf-8")).hexdigest() class PicoException(Exception): """ General class for exceptions in the picoCTF API. Allows specification of a message and response code to display to the client, as well as an optional field for arbitrary data. The 'data' field will not be displayed to clients but will be stored in the database, making it ideal for storing stack traces, etc. """ def __init__(self, message, status_code=500, data=None): """Initialize a new PicoException.""" Exception.__init__(self) self.message = message self.status_code = status_code self.data = data def to_dict(self): """Convert a PicoException to a dict for serialization.""" rv = dict() rv["message"] = self.message return rv def check(*callback_tuples): """ Voluptuous wrapper function to raise our PicoException. Args: callback_tuples: a callback_tuple should contain (status, msg, callbacks) Returns: Returns a function callback for the Schema """ def v(value): """ Try to validate the value with the given callbacks. Args: value: the item to validate Raises: PicoException with 400 status code and error msg. Returns: The value if the validation callbacks are satisfied. """ for msg, callbacks in callback_tuples: for callback in callbacks: try: result = callback(value) if not result and type(result) == bool: raise Invalid() except Exception: raise PicoException(msg, 400) return value return v def validate(schema, data): """ Wrap the call to voluptuous schema to raise the proper exception. Args: schema: The voluptuous Schema object data: The validation data for the schema object Raises: PicoException with 400 status code and the voluptuous error message """ try: schema(data) except MultipleInvalid as error: raise PicoException(error.msg, 400) def hash_password(password): """ Hash plaintext password. Args: password: plaintext password Returns: Secure hash of password. """ return bcrypt.hashpw(password.encode("utf-8"), bcrypt.gensalt(8))
0
0
0
83823ad614f73f1c0d4cb2b4bbf506ba88b266f8
573
py
Python
src/active_learner.py
shenw33/ML_DLD
e83b5237a6f8dce6f9b347258f04b59345c59678
[ "BSD-3-Clause" ]
null
null
null
src/active_learner.py
shenw33/ML_DLD
e83b5237a6f8dce6f9b347258f04b59345c59678
[ "BSD-3-Clause" ]
null
null
null
src/active_learner.py
shenw33/ML_DLD
e83b5237a6f8dce6f9b347258f04b59345c59678
[ "BSD-3-Clause" ]
null
null
null
import numpy as np import matplotlib.pyplot as plt import os from keras import layers, optimizers from keras.models import Model, Sequential from keras.layers import Dense, LSTM, Dropout from keras import optimizers, regularizers from tensorflow import keras from tensorflow.keras import layers from train_model import * if __name__ == "__main__": learning_cycle = 0 for _ in range(learning_cycle): mymodel = train() multi_step_inference() new_exp() query_new_data()
20.464286
45
0.710297
import numpy as np import matplotlib.pyplot as plt import os from keras import layers, optimizers from keras.models import Model, Sequential from keras.layers import Dense, LSTM, Dropout from keras import optimizers, regularizers from tensorflow import keras from tensorflow.keras import layers from train_model import * def new_exp(): get_model() load_data() if __name__ == "__main__": learning_cycle = 0 for _ in range(learning_cycle): mymodel = train() multi_step_inference() new_exp() query_new_data()
25
0
23
db1ede0805cc9287d3f9c347c54ac16a2d07b94d
374
py
Python
server/src/api/usecases/firebase.py
Mokumoku-Rin/client
7352c651edff79a28a0056d60d483a1753a7354d
[ "Apache-2.0" ]
null
null
null
server/src/api/usecases/firebase.py
Mokumoku-Rin/client
7352c651edff79a28a0056d60d483a1753a7354d
[ "Apache-2.0" ]
109
2020-03-02T08:44:44.000Z
2022-02-27T00:32:30.000Z
server/src/api/usecases/firebase.py
Mokumoku-Rin/client
7352c651edff79a28a0056d60d483a1753a7354d
[ "Apache-2.0" ]
1
2020-03-19T06:13:33.000Z
2020-03-19T06:13:33.000Z
from firebase_admin import storage
31.166667
62
0.756684
from firebase_admin import storage def fetch_landmark_image(filename: str) -> bytes: bucket = storage.bucket() blob = bucket.blob(filename) b = blob.download_as_string(raw_download=True) return b def upload_landmark_image(filename: str, data: bytes) -> bool: blob = storage.bucket().blob() blob.upload_from_string(data, content_type="image/jpeg") return True
294
0
46
6bbbf7ab3429580d63cba356479214e356e08185
16
py
Python
shapelet_features/shapelets/__init__.py
ratschlab/circEWS
b2b1f00dac4f5d46856a2c7abe2ca4f12d4c612d
[ "MIT" ]
34
2020-03-17T16:42:00.000Z
2022-03-29T15:53:24.000Z
shapelet_features/utils/__init__.py
ranxiao/circEWS
1e52880c268f8f763bbc16763131634ffc217153
[ "MIT" ]
3
2020-07-30T22:37:10.000Z
2021-08-10T00:02:30.000Z
shapelet_features/utils/__init__.py
ranxiao/circEWS
1e52880c268f8f763bbc16763131634ffc217153
[ "MIT" ]
14
2020-04-22T01:13:54.000Z
2021-11-27T20:23:41.000Z
# Do not REMOVE
8
15
0.6875
# Do not REMOVE
0
0
0
f706c175ce9374eac08af908306915c436098b21
239
py
Python
gym_simpleflappy/__init__.py
jmathison/gym-simpleflappy
54acd54346f0ba4a611120a9ebba69acf0bae8b5
[ "MIT" ]
null
null
null
gym_simpleflappy/__init__.py
jmathison/gym-simpleflappy
54acd54346f0ba4a611120a9ebba69acf0bae8b5
[ "MIT" ]
null
null
null
gym_simpleflappy/__init__.py
jmathison/gym-simpleflappy
54acd54346f0ba4a611120a9ebba69acf0bae8b5
[ "MIT" ]
1
2019-09-19T05:26:02.000Z
2019-09-19T05:26:02.000Z
from gym.envs.registration import register register( id='SimpleFlappy-v0', entry_point='gym_simpleflappy.envs:FlappyEnv', ) register( id='SimpleFlappyDistance-v0', entry_point='gym_simpleflappy.envs:FlappyEnvDistance', )
19.916667
58
0.757322
from gym.envs.registration import register register( id='SimpleFlappy-v0', entry_point='gym_simpleflappy.envs:FlappyEnv', ) register( id='SimpleFlappyDistance-v0', entry_point='gym_simpleflappy.envs:FlappyEnvDistance', )
0
0
0
96c6bc44c1be86be9f511ff65006a4d582768b84
10,154
py
Python
gym_bandits/scoreboard.py
ThomasLecat/gym-bandits-environments
adafed5952e00f1601e8a5294078cf7a2e83c836
[ "MIT" ]
11
2018-06-10T18:20:26.000Z
2021-09-02T03:25:29.000Z
gym_bandits/scoreboard.py
ThomasLecat/gym-bandits-environments
adafed5952e00f1601e8a5294078cf7a2e83c836
[ "MIT" ]
null
null
null
gym_bandits/scoreboard.py
ThomasLecat/gym-bandits-environments
adafed5952e00f1601e8a5294078cf7a2e83c836
[ "MIT" ]
4
2019-05-07T17:41:26.000Z
2020-10-08T21:02:40.000Z
from gym.scoreboard.registration import add_task, add_group add_group( id='bandits', name='Bandits', description='Various N-Armed Bandit environments' ) add_task( id='BanditTwoArmedDeterministicFixed-v0', group='bandits', experimental=True, contributor='jkcooper2', summary="Simplest bandit where one action always pays, and the other never does.", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p_dist = [1, 0] r_dist = [1, 1] """, background="" ) add_task( id='BanditTwoArmedHighHighFixed-v0', group='bandits', experimental=True, contributor='jkcooper2', summary="Stochastic version with a small difference between which bandit pays where both are likely", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p_dist = [0.8, 0.9] r_dist = [1, 1] """, background="Bandit B Figure 2.3 from Reinforcement Learning: An Introduction (Sutton & Barto) [link](https://webdocs.cs.ualberta.ca/~sutton/book/ebook/node18.html)" ) add_task( id='BanditTwoArmedLowLowFixed-v0', group='bandits', experimental=True, contributor='jkcooper2', summary="Stochastic version with a small difference between which bandit pays where both are unlikley", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p_dist = [0.1, 0.2] r_dist = [1, 1] """, background="Bandit A Figure 2.3 from Reinforcement Learning: An Introduction (Sutton & Barto) [link](https://webdocs.cs.ualberta.ca/~sutton/book/ebook/node18.html)" ) add_task( id='BanditTwoArmedHighLowFixed-v0', group='bandits', experimental=True, contributor='jkcooper2', summary="Stochastic version with a large difference between which bandit pays out of two choices", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p_dist = [0.8, 0.2] r_dist = [1, 1] """, background="" ) add_task( id='BanditTenArmedGaussian-v0', group='bandits', experimental=True, contributor='jkcooper2', summary="10 armed bandit mentioned with reward based on a Gaussian distribution", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p_dist = [1] (* 10) r_dist = [numpy.random.normal(0, 1), 1] (* 10) Every bandit always pays out Each action has a reward mean (selected from a normal distribution with mean 0 and std 1), and the actual reward returns is selected with a std of 1 around the selected mean """, background="Described on page 30 of Sutton and Barto's [Reinforcement Learning: An Introduction](https://www.dropbox.com/s/b3psxv2r0ccmf80/book2015oct.pdf?dl=0)" ) add_task( id='BanditTenArmedRandomRandom-v0', group='bandits', experimental=True, contributor='jkcooper2', summary="10 armed bandit with random probabilities assigned to both payouts and rewards", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p_dist = numpy.random.uniform(size=10) r_dist = numpy.random.uniform(size=10) Bandits have uniform probability of paying out and payout a reward of uniform probability """, background="" ) add_task( id='BanditTenArmedRandomFixed-v0', group='bandits', experimental=True, contributor='jkcooper2', summary="10 armed bandit with random probabilities assigned to how often the action will provide a reward", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p_dist = numpy.random.uniform(size=10) r_dist = numpy.full(bandits, 1) Bandits have a uniform probability of rewarding and always reward 1 """, background="" ) add_task( id='BanditTenArmedUniformDistributedReward-v0', group='bandits', experimental=True, contributor='jkcooper2', summary="10 armed bandit with that always pays out with a reward selected from a uniform distribution", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p_dist = numpy.full(bandits, 1) r_dist = numpy.random.uniform(size=10) Bandits always pay out. Reward is selected from uniform distribution """, background="Based on comparisons from http://sudeepraja.github.io/Bandits/" ) add_task( id='BanditTwoArmedIndependentUniform-v0', group='bandits', experimental=True, contributor='Thomas_Lecat', summary="Simple two independent armed bandit giving a reward of one with probabilities p_1 and p_2", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p_dist = np.random.uniform(2) r_dist = [1, 1] """, background="For the first experience, called 'Bandit with independent arms' of https://arxiv.org/abs/1611.05763" add_task( id='BanditTwoArmedDependentUniform-v0', group='bandits', experimental=True, contributor='Thomas_Lecat', summary="Two armed bandit giving a reward of one with probabilities p_1 ~ U[0,1] and p_2 = 1 - p_1", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p = np.random.uniform() p_dist = [p, 1-p] r_dist = [1, 1] """, background="For the experience called 'Bandits with dependent arms (I)' of https://arxiv.org/abs/1611.05763" add_task( id='BanditTwoArmedDependentEasy-v0', group='bandits', experimental=True, contributor='Thomas_Lecat', summary="Two armed bandit giving a reward of one with probabilities p_1 ~ U[0.1,0.9] and p_2 = 1 - p_1", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p = [0.1,0,9][np.random.randint(0,2)] p_dist = [p, 1-p] r_dist = [1, 1] """, background="For the experience called 'Bandits with dependent arms (I)' of https://arxiv.org/abs/1611.05763" add_task( id='BanditTwoArmedDependentMedium-v0', group='bandits', experimental=True, contributor='Thomas_Lecat', summary="Two armed bandit giving a reward of one with probabilities p_1 ~ U[0.25,0.75] and p_2 = 1 - p_1", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p = [0.25,0,75][np.random.randint(0,2)] p_dist = [p, 1-p] r_dist = [1, 1] """, background="For the experience called 'Bandits with dependent arms (I)' of https://arxiv.org/abs/1611.05763" add_task( id='BanditTwoArmedDependentHard-v0', group='bandits', experimental=True, contributor='Thomas_Lecat', summary="Two armed bandit giving a reward of one with probabilities p_1 ~ U[0.4,0.6] and p_2 = 1 - p_1", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p = [0.4,0,6][np.random.randint(0,2)] p_dist = [p, 1-p] r_dist = [1, 1] """, background="For the experience called 'Bandits with dependent arms (I)' of https://arxiv.org/abs/1611.05763" add_task( id='BanditEleveArmedWithIndex-v0', group='bandits', experimental=True, contributor='Thomas_Lecat', summary="11 armed bandit with deterministic payouts. \ Nine 'non-target' return a reward of 1.1, \ one 'target' returns a reward of 5, \ the 11th arm has reward = 0.1 * index of the target arm (ranging from 0.1 to 1.0)", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. index = np.random.randint(0,10) p_dist = np.full(11,1) r_dist = np.full(11,1.1) r_dist[index] = 5 r_dist[-1] = 0.1*index BanditEnv.__init__(self, p_dist = p_dist, r_dist = r_dist) """, background="For the experience called 'Bandits with dependent arms (II)' of https://arxiv.org/abs/1611.05763"
38.755725
168
0.701792
from gym.scoreboard.registration import add_task, add_group add_group( id='bandits', name='Bandits', description='Various N-Armed Bandit environments' ) add_task( id='BanditTwoArmedDeterministicFixed-v0', group='bandits', experimental=True, contributor='jkcooper2', summary="Simplest bandit where one action always pays, and the other never does.", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p_dist = [1, 0] r_dist = [1, 1] """, background="" ) add_task( id='BanditTwoArmedHighHighFixed-v0', group='bandits', experimental=True, contributor='jkcooper2', summary="Stochastic version with a small difference between which bandit pays where both are likely", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p_dist = [0.8, 0.9] r_dist = [1, 1] """, background="Bandit B Figure 2.3 from Reinforcement Learning: An Introduction (Sutton & Barto) [link](https://webdocs.cs.ualberta.ca/~sutton/book/ebook/node18.html)" ) add_task( id='BanditTwoArmedLowLowFixed-v0', group='bandits', experimental=True, contributor='jkcooper2', summary="Stochastic version with a small difference between which bandit pays where both are unlikley", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p_dist = [0.1, 0.2] r_dist = [1, 1] """, background="Bandit A Figure 2.3 from Reinforcement Learning: An Introduction (Sutton & Barto) [link](https://webdocs.cs.ualberta.ca/~sutton/book/ebook/node18.html)" ) add_task( id='BanditTwoArmedHighLowFixed-v0', group='bandits', experimental=True, contributor='jkcooper2', summary="Stochastic version with a large difference between which bandit pays out of two choices", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p_dist = [0.8, 0.2] r_dist = [1, 1] """, background="" ) add_task( id='BanditTenArmedGaussian-v0', group='bandits', experimental=True, contributor='jkcooper2', summary="10 armed bandit mentioned with reward based on a Gaussian distribution", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p_dist = [1] (* 10) r_dist = [numpy.random.normal(0, 1), 1] (* 10) Every bandit always pays out Each action has a reward mean (selected from a normal distribution with mean 0 and std 1), and the actual reward returns is selected with a std of 1 around the selected mean """, background="Described on page 30 of Sutton and Barto's [Reinforcement Learning: An Introduction](https://www.dropbox.com/s/b3psxv2r0ccmf80/book2015oct.pdf?dl=0)" ) add_task( id='BanditTenArmedRandomRandom-v0', group='bandits', experimental=True, contributor='jkcooper2', summary="10 armed bandit with random probabilities assigned to both payouts and rewards", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p_dist = numpy.random.uniform(size=10) r_dist = numpy.random.uniform(size=10) Bandits have uniform probability of paying out and payout a reward of uniform probability """, background="" ) add_task( id='BanditTenArmedRandomFixed-v0', group='bandits', experimental=True, contributor='jkcooper2', summary="10 armed bandit with random probabilities assigned to how often the action will provide a reward", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p_dist = numpy.random.uniform(size=10) r_dist = numpy.full(bandits, 1) Bandits have a uniform probability of rewarding and always reward 1 """, background="" ) add_task( id='BanditTenArmedUniformDistributedReward-v0', group='bandits', experimental=True, contributor='jkcooper2', summary="10 armed bandit with that always pays out with a reward selected from a uniform distribution", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p_dist = numpy.full(bandits, 1) r_dist = numpy.random.uniform(size=10) Bandits always pay out. Reward is selected from uniform distribution """, background="Based on comparisons from http://sudeepraja.github.io/Bandits/" ) add_task( id='BanditTwoArmedIndependentUniform-v0', group='bandits', experimental=True, contributor='Thomas_Lecat', summary="Simple two independent armed bandit giving a reward of one with probabilities p_1 and p_2", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p_dist = np.random.uniform(2) r_dist = [1, 1] """, background="For the first experience, called 'Bandit with independent arms' of https://arxiv.org/abs/1611.05763" add_task( id='BanditTwoArmedDependentUniform-v0', group='bandits', experimental=True, contributor='Thomas_Lecat', summary="Two armed bandit giving a reward of one with probabilities p_1 ~ U[0,1] and p_2 = 1 - p_1", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p = np.random.uniform() p_dist = [p, 1-p] r_dist = [1, 1] """, background="For the experience called 'Bandits with dependent arms (I)' of https://arxiv.org/abs/1611.05763" add_task( id='BanditTwoArmedDependentEasy-v0', group='bandits', experimental=True, contributor='Thomas_Lecat', summary="Two armed bandit giving a reward of one with probabilities p_1 ~ U[0.1,0.9] and p_2 = 1 - p_1", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p = [0.1,0,9][np.random.randint(0,2)] p_dist = [p, 1-p] r_dist = [1, 1] """, background="For the experience called 'Bandits with dependent arms (I)' of https://arxiv.org/abs/1611.05763" add_task( id='BanditTwoArmedDependentMedium-v0', group='bandits', experimental=True, contributor='Thomas_Lecat', summary="Two armed bandit giving a reward of one with probabilities p_1 ~ U[0.25,0.75] and p_2 = 1 - p_1", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p = [0.25,0,75][np.random.randint(0,2)] p_dist = [p, 1-p] r_dist = [1, 1] """, background="For the experience called 'Bandits with dependent arms (I)' of https://arxiv.org/abs/1611.05763" add_task( id='BanditTwoArmedDependentHard-v0', group='bandits', experimental=True, contributor='Thomas_Lecat', summary="Two armed bandit giving a reward of one with probabilities p_1 ~ U[0.4,0.6] and p_2 = 1 - p_1", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p = [0.4,0,6][np.random.randint(0,2)] p_dist = [p, 1-p] r_dist = [1, 1] """, background="For the experience called 'Bandits with dependent arms (I)' of https://arxiv.org/abs/1611.05763" add_task( id='BanditEleveArmedWithIndex-v0', group='bandits', experimental=True, contributor='Thomas_Lecat', summary="11 armed bandit with deterministic payouts. \ Nine 'non-target' return a reward of 1.1, \ one 'target' returns a reward of 5, \ the 11th arm has reward = 0.1 * index of the target arm (ranging from 0.1 to 1.0)", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. index = np.random.randint(0,10) p_dist = np.full(11,1) r_dist = np.full(11,1.1) r_dist[index] = 5 r_dist[-1] = 0.1*index BanditEnv.__init__(self, p_dist = p_dist, r_dist = r_dist) """, background="For the experience called 'Bandits with dependent arms (II)' of https://arxiv.org/abs/1611.05763"
0
0
0
dbe5e2a057d822c9b7627e69b232caa21bca193c
5,368
py
Python
books/forms.py
burhan/hellowebbooks-website
96ca56f6d32716e5ce694664c760aa6a7bfce419
[ "MIT" ]
null
null
null
books/forms.py
burhan/hellowebbooks-website
96ca56f6d32716e5ce694664c760aa6a7bfce419
[ "MIT" ]
null
null
null
books/forms.py
burhan/hellowebbooks-website
96ca56f6d32716e5ce694664c760aa6a7bfce419
[ "MIT" ]
null
null
null
from django import forms from django.contrib.auth import forms as auth_forms from django.contrib.auth.models import User from books.widgets import NoNameTextInput # TODO: Might be good to update this later to update the username too so we aren't doing two database saves PRODUCTS = [ ('ebook', 'eBook Only'), ('paperback', 'Paperback'), ('video', 'Video'), ]
47.087719
126
0.698398
from django import forms from django.contrib.auth import forms as auth_forms from django.contrib.auth.models import User from books.widgets import NoNameTextInput # TODO: Might be good to update this later to update the username too so we aren't doing two database saves class EditEmailForm(forms.ModelForm): class Meta: model = User fields = ('email',) def __init__(self, *args, **kwargs): super(EditEmailForm, self).__init__(*args, **kwargs) self.fields['email'].label = "Update your email address" class AddEmailForm(forms.Form): email = forms.EmailField() password = forms.CharField(widget=forms.PasswordInput) def __init__(self, *args, **kwargs): super(AddEmailForm, self).__init__(*args, **kwargs) self.fields['email'].widget.attrs['class'] = 'form-control' self.fields['email'].widget.attrs['placeholder'] = 'buttercup@florin.com' self.fields['password'].widget.attrs['class'] = 'form-control' def clean_email(self): email = self.data['email'] if "@" not in email: raise forms.ValidationError("Please enter a valid email address.") return email class CardForm(forms.Form): last_4_digits = forms.CharField(required=True, min_length=4, max_length=4, widget=forms.HiddenInput()) stripe_token = forms.CharField(required=True, widget=forms.HiddenInput()) coupon = forms.CharField(required=False, widget=forms.HiddenInput()) def addError(self, message): self._errors[NON_FIELD_ERRORS] = self.error_class([message]) class StripePaymentForm(CardForm): card_number = forms.CharField(required=False, max_length=20, widget=NoNameTextInput()) card_cvc = forms.CharField(required=False, max_length=4, widget=NoNameTextInput()) card_expiry_month = forms.CharField(required=False, max_length=2, widget=NoNameTextInput()) card_expiry_year = forms.CharField(required=False, max_length=4, widget=NoNameTextInput()) #card_address_zip = forms.CharField(required=False, max_length=10, widget=NoNameTextInput(attrs={'style':'width:100px'})) coupon_code = forms.CharField(required=False, max_length=20, widget=NoNameTextInput()) def __init__(self, *args, **kwargs): super(StripePaymentForm, self).__init__(*args, **kwargs) self.fields['card_number'].label = "Credit card number:" self.fields['card_number'].widget.attrs['autocompletetype'] = 'cc-number' self.fields['card_number'].widget.attrs['class'] = 'form-control card-number' self.fields['card_cvc'].label = "Credit card CVC:" self.fields['card_cvc'].widget.attrs['autocomplete'] = 'off' self.fields['card_cvc'].widget.attrs['autocompletetype'] = 'cc-csc' self.fields['card_cvc'].widget.attrs['pattern'] = '\d*' self.fields['card_cvc'].widget.attrs['class'] = 'form-control card-cvc' self.fields['card_cvc'].widget.attrs['style'] = 'display:inline-block;width:80px' self.fields['card_expiry_month'].widget.attrs['placeholder'] = 'MM' self.fields['card_expiry_month'].widget.attrs['pattern'] = '\d*' self.fields['card_expiry_month'].widget.attrs['class'] = 'form-control card-expiry-month' self.fields['card_expiry_month'].widget.attrs['style'] = 'display:inline-block;width:63px' self.fields['card_expiry_year'].widget.attrs['placeholder'] = 'YYYY' self.fields['card_expiry_year'].widget.attrs['pattern'] = '\d*' self.fields['card_expiry_year'].widget.attrs['class'] = 'form-control card-expiry-year' self.fields['card_expiry_year'].widget.attrs['style'] = 'display:inline-block;width:76px' self.fields['coupon_code'].label = "Coupon code (optional):" self.fields['coupon_code'].widget.attrs['class'] = 'form-control coupon-code' def clean_card_number(self): card_number = self.cleaned_data['card_number'].replace("-","").replace(" ","") return card_number class MyAuthenticationForm(auth_forms.AuthenticationForm): def __init__(self, request=None, *args, **kwargs): super(MyAuthenticationForm, self).__init__(*args, **kwargs) self.fields['username'].label = "Email" def clean_username(self): # use the email address to get the username for the account email = self.cleaned_data.get('username') username = email.replace("@", "").replace(".", "") return username PRODUCTS = [ ('ebook', 'eBook Only'), ('paperback', 'Paperback'), ('video', 'Video'), ] class AdminAddCustomerForm(forms.Form): email = forms.EmailField() hello_web_app = forms.MultipleChoiceField(choices=PRODUCTS, widget=forms.CheckboxSelectMultiple(), required=False) hello_web_design = forms.MultipleChoiceField(choices=PRODUCTS, widget=forms.CheckboxSelectMultiple(), required=False) class AdminAddCustomerBulkForm(forms.Form): emails = forms.CharField(widget=forms.Textarea) hello_web_app = forms.MultipleChoiceField(choices=PRODUCTS, widget=forms.CheckboxSelectMultiple(), required=False) hello_web_design = forms.MultipleChoiceField(choices=PRODUCTS, widget=forms.CheckboxSelectMultiple(), required=False) def __init__(self, *args, **kwargs): super(AdminAddCustomerBulkForm, self).__init__(*args, **kwargs) self.fields['emails'].label = "Comma delimited emails"
2,895
1,879
213
9cfd1b79359a086dbd7fc0769ab8bcefa649fbcf
5,944
py
Python
test_discretization/test_reduction_diff_by_class.py
wsgan001/AnomalyDetection
397673dc6ce978361a3fc6f2fd34879f69bc962a
[ "MIT" ]
null
null
null
test_discretization/test_reduction_diff_by_class.py
wsgan001/AnomalyDetection
397673dc6ce978361a3fc6f2fd34879f69bc962a
[ "MIT" ]
null
null
null
test_discretization/test_reduction_diff_by_class.py
wsgan001/AnomalyDetection
397673dc6ce978361a3fc6f2fd34879f69bc962a
[ "MIT" ]
1
2020-03-16T21:50:52.000Z
2020-03-16T21:50:52.000Z
# -*- coding: utf-8 -*- """ It generates plots that shows similarity for anomalies in each dataset. """ import copy import math import numpy as np import matplotlib import matplotlib.mlab import matplotlib.pyplot as plt from matplotlib import gridspec import nslkdd.preprocessing as preprocessing import nslkdd.data.model as model if __name__ == '__main__': import time start = time.time() df_training_20, df_training_full, gmms_training_20, gmms_training_full = preprocessing.get_preprocessed_training_data() df_test_plus, df_test_21, gmms_test_plus, gmms_test_21 = preprocessing.get_preprocessed_test_data() generate_plots_for_df(df_training_20, gmms_training_20, "training20") generate_plots_for_df(df_training_full, gmms_training_full, "trainingfull") generate_plots_for_df(df_test_plus, gmms_test_plus, "testplus") generate_plots_for_df(df_test_21, gmms_test_21, "test21")
33.965714
126
0.621803
# -*- coding: utf-8 -*- """ It generates plots that shows similarity for anomalies in each dataset. """ import copy import math import numpy as np import matplotlib import matplotlib.mlab import matplotlib.pyplot as plt from matplotlib import gridspec import nslkdd.preprocessing as preprocessing import nslkdd.data.model as model def get_score(gmm, value): minval = 1e+20 minidx = -1 # one of distribution # or density of distributions for mi, _ in enumerate(gmm.means_): det = abs(mi - value) m1 = gmm.means_[mi] c1 = gmm.covars_[mi] if minval > det : minval = matplotlib.mlab.normpdf(value,m1,np.sqrt(c1))[0][0] minval = minval*len(gmm.means_) sums = 0 for mi, _ in enumerate(gmm.means_) : m1 = gmm.means_[mi] c1 = gmm.covars_[mi] w1 = gmm.weights_[mi] ys = matplotlib.mlab.normpdf(value,m1,np.sqrt(c1))[0]*w1 sums = sums + ys[0] # if sums > minval : # print "=== sums ===" # else : # print "=== minval ===" # print minval # print sums score = max(sums, minval) if score == 0: score = 1e-20 # print "score : " + str(score) score = math.log(score) return score def generate_plots(df_abnormal, df_normal, headers, gmms, title, path="", protcls_name=""): proj = [] gmm_normals = gmms[0] gmm_abnormals = gmms[1] fig, ax = plt.subplots() plt.subplot(2, 1, 1) plt.title("normal scores") plt.subplot(2, 1, 2) plt.title("abnormal scores") for di, d in df_normal.iterrows() : # print str(di) + "/" + str(len(df_normal)) normal_score = 0 abnormal_score = 0 normal_scores = [] abnormal_scores = [] for hi, header in enumerate(headers) : if header in ["protocol_type", "attack", "difficulty"] : continue val = d[header] gmm_normal = gmm_normals[hi] gmm_abnormal = gmm_abnormals[hi] score = get_score(gmm_normal,val) normal_scores.append(score) score = get_score(gmm_abnormal,val) abnormal_scores.append(score) xs = range(len(headers)) plt.subplot(2, 1, 1) plt.plot(xs,normal_scores,color='y', lw=3) plt.subplot(2, 1, 2) plt.plot(xs,abnormal_scores,color='y', lw=3) for di, d in df_abnormal.iterrows() : print str(di) + "/" + str(len(df_abnormal)) normal_score = 0 abnormal_score = 0 normal_scores = [] abnormal_scores = [] for hi, header in enumerate(headers) : if header in ["protocol_type", "attack", "difficulty"] : continue val = d[header] gmm_normal = gmm_normals[hi] gmm_abnormal = gmm_abnormals[hi] score = get_score(gmm_normal,val) normal_scores.append(score) score = get_score(gmm_abnormal,val) abnormal_scores.append(score) xs = range(len(headers)) plt.subplot(2, 1, 1) plt.plot(xs,normal_scores,color='b', lw=1) plt.subplot(2, 1, 2) plt.plot(xs,abnormal_scores,color='b', lw=1) # save and close filename = "./plots/" + path + "/" + title + "_" + protcls_name + "_" + path + ".png" print filename fig.savefig(filename) plt.close() def generate_plots_for_df(df, gmms, path="") : headers, _ = preprocessing.get_header_data() headers.remove('protocol_type') headers.remove('attack') headers.remove('difficulty') # plot for classes protocol_types = model.protocol_types #["udp","tcp","icmp"] for protocol_index, protocol_type in enumerate(protocol_types): gmm_normals = gmms[0][protocol_index] gmm_abnormals = gmms[1][protocol_index] # normal data df_normal = copy.deepcopy(df) df_normal = df_normal[(df_normal["attack"] == 11)] # only select for 1 class df_normal = df_normal[(df_normal["protocol_type"] == protocol_index)] df_normal.drop('attack',1,inplace=True) # remove useless df_normal.drop('difficulty',1,inplace=True) # remove useless df_normal.drop('protocol_type',1,inplace=True) df_normal.reset_index(drop=True) df_normal = df_normal[0:10] # abnormal data for i, attack_type in enumerate(model.attack_types) : if i == 11 : continue df_abnormal = copy.deepcopy(df) df_abnormal = df_abnormal[(df_abnormal["attack"] == i)] # only select for 1 class df_abnormal = df_abnormal[(df_abnormal["protocol_type"] == protocol_index)] if 1 > len(df_abnormal) : continue df_abnormal.drop('attack',1,inplace=True) # remove useless df_abnormal.drop('difficulty',1,inplace=True) # remove useless df_abnormal.drop('protocol_type',1,inplace=True) df_abnormal.reset_index(drop=True) df_abnormal = df_abnormal[0:10] gmm_normals_protcl = gmms[0][protocol_index] gmm_abnormals_protcl = gmms[1][protocol_index] gmms_protcl = [gmm_normals_protcl, gmm_abnormals_protcl] generate_plots(df_abnormal, df_normal, headers, gmms_protcl, attack_type, path=path, protcls_name = protocol_type) if __name__ == '__main__': import time start = time.time() df_training_20, df_training_full, gmms_training_20, gmms_training_full = preprocessing.get_preprocessed_training_data() df_test_plus, df_test_21, gmms_test_plus, gmms_test_21 = preprocessing.get_preprocessed_test_data() generate_plots_for_df(df_training_20, gmms_training_20, "training20") generate_plots_for_df(df_training_full, gmms_training_full, "trainingfull") generate_plots_for_df(df_test_plus, gmms_test_plus, "testplus") generate_plots_for_df(df_test_21, gmms_test_21, "test21")
4,959
0
69
dfa8e89860cca2eb77dbf1ea4151fd82a146dc80
7,277
py
Python
src/tests/test_aligngraph.py
dthadi3/pbdagcon
c14c422e609a914f0139f7222202ac1bce7e3ef1
[ "BSD-3-Clause-Clear" ]
31
2015-02-24T19:17:22.000Z
2022-02-23T18:45:36.000Z
src/tests/test_aligngraph.py
dthadi3/pbdagcon
c14c422e609a914f0139f7222202ac1bce7e3ef1
[ "BSD-3-Clause-Clear" ]
44
2015-06-04T00:03:39.000Z
2018-04-27T05:16:59.000Z
src/tests/test_aligngraph.py
dthadi3/pbdagcon
c14c422e609a914f0139f7222202ac1bce7e3ef1
[ "BSD-3-Clause-Clear" ]
31
2015-01-26T09:59:29.000Z
2022-02-23T18:45:40.000Z
from nose.tools import assert_equal from nose import SkipTest import random from pbtools.pbdagcon.aligngraph import *
35.497561
86
0.615776
from nose.tools import assert_equal from nose import SkipTest import random from pbtools.pbdagcon.aligngraph import * def generate_simulated_reads(pi=None, pd=None, n = 4): import random random.seed(42) seq = "ATATTTGGC" seq1 = "ATAGCCGGC" seq2 = "ATACCCGGC" seq3 = "ATATCCGGC" seq4 = "ATATCGGC" if pi == None: pi = 0.03 if pd == None: pd = 0.03 out_seq = [] for i in range(n): c = 0 s = [] if i % 4 == 0: ss = seq1 elif i % 4 == 1: ss = seq2 elif i % 4 == 2: ss = seq3 else: ss = seq4 while 1: if random.uniform(0,1) < pi: s.append(random.choice( ("A","G","C","T") ) ) continue if random.uniform(0,1) < pd: c += 1 continue if c < len(ss): s.append(ss[c]) c += 1 else: break out_seq.append( "".join(s) ) return seq, out_seq class TestPhiCoeff: def test_phi_coeff(self): # assert_equal(expected, phi_coeff(xvec, yvec)) raise SkipTest # TODO: implement your test here class TestConvertMismatches: def test_convert_mismatches(self): assert_equal( ('C-AC', 'CG-C'), convert_mismatches("CAC","CGC") ) assert_equal( ('CAACAT', 'CAA--T'), convert_mismatches("CAACAT","C-A-AT" ) ) assert_equal( ('CCG--T', 'CCGACT'), convert_mismatches("-C--CGT","CCGAC-T") ) class TestAlnEdge: def test___init__(self): # aln_edge = AlnEdge(in_node, out_node) raise SkipTest # TODO: implement your test here def test___repr__(self): # aln_edge = AlnEdge(in_node, out_node) # assert_equal(expected, aln_edge.__repr__()) raise SkipTest # TODO: implement your test here def test_add_to_score(self): # aln_edge = AlnEdge(in_node, out_node) # assert_equal(expected, aln_edge.add_to_score(s)) raise SkipTest # TODO: implement your test here def test_increase_count(self): # aln_edge = AlnEdge(in_node, out_node) # assert_equal(expected, aln_edge.increase_count()) raise SkipTest # TODO: implement your test here def test_set_score(self): # aln_edge = AlnEdge(in_node, out_node) # assert_equal(expected, aln_edge.set_score(s)) raise SkipTest # TODO: implement your test here class TestAlnNode: def test___init__(self): # aln_node = AlnNode(base) raise SkipTest # TODO: implement your test here def test___repr__(self): # aln_node = AlnNode(base) # assert_equal(expected, aln_node.__repr__()) raise SkipTest # TODO: implement your test here def test_add_in_edge(self): # aln_node = AlnNode(base) # assert_equal(expected, aln_node.add_in_edge(in_edge)) raise SkipTest # TODO: implement your test here def test_addout_edge(self): # aln_node = AlnNode(base) # assert_equal(expected, aln_node.addout_edge(out_edge)) raise SkipTest # TODO: implement your test here def test_increase_weight(self): # aln_node = AlnNode(base) # assert_equal(expected, aln_node.increase_weight(w)) raise SkipTest # TODO: implement your test here class TestAlnGraph: def test___init__(self): backbone_seq, reads = generate_simulated_reads() aln_graph = AlnGraph(backbone_seq) assert len(aln_graph.nodes) == len(backbone_seq) + 2 def test_add_alignment(self): aln_graph = AlnGraph("ATATTAGGC") alns = [((0, 9, 'A-TAGCCGGC'), (2, 9, 'ATTA---GGC')), ((0, 10, 'ATA-TACCGAG-'), (0, 9, 'ATATTA--G-GC')), ((0, 10, 'ATCATCC--GGC'), (0, 9, 'AT-AT--TAGGC')), ((0, 9, 'ATA-TACGGC'), (0, 9, 'ATATTA-GGC'))] for aln in alns: aln_graph.add_alignment( aln ) assert len(aln_graph.nodes) != 0 assert len(aln_graph.edges) != 0 def test_add_edge(self): # aln_graph = AlnGraph(backbone_seq) # assert_equal(expected, aln_graph.add_edge(edge)) raise SkipTest # TODO: implement your test here def test_add_node(self): # aln_graph = AlnGraph(backbone_seq) # assert_equal(expected, aln_graph.add_node(node)) raise SkipTest # TODO: implement your test here def test_delete_edge(self): # aln_graph = AlnGraph(backbone_seq) # assert_equal(expected, aln_graph.delete_edge(edge)) raise SkipTest # TODO: implement your test here def test_delete_node(self): # aln_graph = AlnGraph(backbone_seq) # assert_equal(expected, aln_graph.delete_node(node)) raise SkipTest # TODO: implement your test here def test_find_best_path(self): # aln_graph = AlnGraph(backbone_seq) # assert_equal(expected, aln_graph.find_best_path()) raise SkipTest # TODO: implement your test here def test_generate_consensus(self): # aln_graph = AlnGraph(backbone_seq) # assert_equal(expected, aln_graph.generate_consensus()) raise SkipTest # TODO: implement your test here def test_merge_in_nodes(self): # aln_graph = AlnGraph(backbone_seq) # assert_equal(expected, aln_graph.merge_in_nodes(nodes, node)) raise SkipTest # TODO: implement your test here def test_merge_nodes(self): aln_graph = AlnGraph("ATAATTGGC") alns = [((0, 9, 'ATAG--CTGGC'), (0, 9, 'ATA-AT-TGGC')), ((0, 9, 'ATAG--CTGGC'), (0, 9, 'ATA-AT-TGGC')), ((0, 9, 'ATAG-TTGGC'), (0, 9, 'ATA-ATTGGC')), ((0, 9, 'ATAG-TTGGC'), (0, 9, 'ATA-ATTGGC')), ((0, 9, 'ATAG--CTGGC'), (0, 9, 'ATA-AT-TGGC'))] for aln in alns: aln_graph.add_alignment( aln ) aln_graph.merge_nodes() def test_merge_out_nodes(self): # aln_graph = AlnGraph(backbone_seq) # assert_equal(expected, aln_graph.merge_out_nodes(node, nodes)) raise SkipTest # TODO: implement your test here def test_output_consensus_fasta(self): # aln_graph = AlnGraph(backbone_seq) # assert_equal(expected, aln_graph.output_consensus_fasta(fn, rID)) raise SkipTest # TODO: implement your test here def test_track_path(self): # aln_graph = AlnGraph(backbone_seq) # assert_equal(expected, aln_graph.track_path(seq, node)) raise SkipTest # TODO: implement your test here class TestOutputDot: def test_output_dot(self): # assert_equal(expected, output_dot(aln_graph, fn, r)) raise SkipTest # TODO: implement your test here class TestOutputDot2: def test_output_dot_2(self): # assert_equal(expected, output_dot_2(aln_graph, fn)) raise SkipTest # TODO: implement your test here class TestGenerateSimulatedReads: def test_generate_simulated_reads(self): # assert_equal(expected, generate_simulated_reads()) raise SkipTest # TODO: implement your test here class TestSimpleTest: def test_simple_test(self): # assert_equal(expected, simple_test()) raise SkipTest # TODO: implement your test here
6,144
8
1,005
d8a9c2251631c9b59e6ef4e09bf81e4fe06fc445
2,005
py
Python
ggongsul/visitation/serializers.py
blc-cruise/ggongsul-api
0cdfc09ea75688ffc297bc0c0f08897091896f3e
[ "MIT" ]
2
2021-05-22T07:33:34.000Z
2021-09-18T04:22:25.000Z
ggongsul/visitation/serializers.py
blc-cruise/ggongsul-api
0cdfc09ea75688ffc297bc0c0f08897091896f3e
[ "MIT" ]
null
null
null
ggongsul/visitation/serializers.py
blc-cruise/ggongsul-api
0cdfc09ea75688ffc297bc0c0f08897091896f3e
[ "MIT" ]
null
null
null
from django.utils import timezone from django.utils.translation import gettext_lazy as _ from rest_framework import serializers from rest_framework.exceptions import ValidationError from ggongsul.member.models import Member from ggongsul.member.serializers import MemberSerializer from ggongsul.partner.models import Partner from ggongsul.partner.serializers import PartnerShortInfoSerializer from ggongsul.visitation.models import Visitation
33.416667
82
0.672319
from django.utils import timezone from django.utils.translation import gettext_lazy as _ from rest_framework import serializers from rest_framework.exceptions import ValidationError from ggongsul.member.models import Member from ggongsul.member.serializers import MemberSerializer from ggongsul.partner.models import Partner from ggongsul.partner.serializers import PartnerShortInfoSerializer from ggongsul.visitation.models import Visitation class VisitationSerializer(serializers.ModelSerializer): cert_num = serializers.CharField( required=True, allow_null=False, max_length=10, write_only=True ) def validate(self, attrs: dict): attrs["member"] = self.context["request"].user member: Member = attrs["member"] # partner password validation partner: Partner = attrs["partner"] if not partner.is_active: raise ValidationError(_("활성화 되지 않은 업체입니다.")) cert_num = attrs["cert_num"] if partner.cert_num != cert_num: raise ValidationError(_("인증번호가 일치하지 않습니다.")) del attrs["cert_num"] # 한 업체는 하루에 한번만 인증 할 수 있음 today_datetime = timezone.now().replace( hour=0, minute=0, second=0, microsecond=0 ) if member.visitations.filter( partner=partner, created_on__gt=today_datetime ).exists(): raise ValidationError(_("오늘 이미 방문한 업체입니다.")) return attrs class Meta: model = Visitation fields = ["id", "partner", "member", "cert_num"] extra_kwargs = { "partner": {"required": True, "allow_null": False}, "member": {"required": True, "allow_null": False, "write_only": True}, } class VisitationInfoSerializer(serializers.ModelSerializer): member = MemberSerializer(read_only=True) partner = PartnerShortInfoSerializer(read_only=True) class Meta: model = Visitation fields = ["id", "member", "partner", "is_reviewed", "created_on"]
897
721
46
84d6e4d646bae0fc1e7b329a0d2484ed91b465ac
6,596
py
Python
app/main.py
Ackaman/starter-snake-python
450d24c72b9f3af6bffaef2369913bd4d827acf2
[ "MIT" ]
null
null
null
app/main.py
Ackaman/starter-snake-python
450d24c72b9f3af6bffaef2369913bd4d827acf2
[ "MIT" ]
null
null
null
app/main.py
Ackaman/starter-snake-python
450d24c72b9f3af6bffaef2369913bd4d827acf2
[ "MIT" ]
null
null
null
import json import os import random import bottle from api import ping_response, start_response, move_response, end_response # Moving towards a tail is safe as long as that snake does not have food witihn reach. # If it is te only possible move, that move should be made anyway @bottle.route('/') @bottle.route('/static/<path:path>') def static(path): """ Given a path, return the static file located relative to the static folder. This can be used to return the snake head URL in an API response. """ return bottle.static_file(path, root='static/') @bottle.post('/ping') def ping(): """ A keep-alive endpoint used to prevent cloud application platforms, such as Heroku, from sleeping the application instance. """ return ping_response() @bottle.post('/start') @bottle.post('/move') # int x,y or tuple (NEXT STEP) ##Only looks for dead end ##def snake_head_area(snake_heads, my_head): ## avoid_heads = [] ## snake_heads1 = snake_heads ## snake_heads1.remove(my_head) ## ## for heads in snake_heads1: ## avoid_heads.append((heads[0]+1, heads[1])) ## avoid_heads.append((heads[0] - 1, heads[1])) ## avoid_heads.append((heads[0], heads[1] + 1)) ## avoid_heads.append((heads[0], heads[1] - 1)) ## ## return avoid_heads # def safetyLevel(x,y, stuffToAvoid): @bottle.post('/end') # Expose WSGI app (so gunicorn can find it) application = bottle.default_app() if __name__ == '__main__': bottle.run( application, host=os.getenv('IP', '0.0.0.0'), port=os.getenv('PORT', '8080'), debug=os.getenv('DEBUG', True) )
27.831224
111
0.626289
import json import os import random import bottle from api import ping_response, start_response, move_response, end_response # Moving towards a tail is safe as long as that snake does not have food witihn reach. # If it is te only possible move, that move should be made anyway @bottle.route('/') def index(): return ''' Battlesnake documentation can be found at <a href="https://docs.battlesnake.io">https://docs.battlesnake.io</a>. ''' @bottle.route('/static/<path:path>') def static(path): """ Given a path, return the static file located relative to the static folder. This can be used to return the snake head URL in an API response. """ return bottle.static_file(path, root='static/') @bottle.post('/ping') def ping(): """ A keep-alive endpoint used to prevent cloud application platforms, such as Heroku, from sleeping the application instance. """ return ping_response() @bottle.post('/start') def start(): data = bottle.request.json """ TODO: If you intend to have a stateful snake AI, initialize your snake state here using the request's data if necessary. """ print(json.dumps(data)) color = "#00FF00" return start_response(color) @bottle.post('/move') def move(): data = bottle.request.json foodposition = [] for food in data['food']['data']: foodposition.append((food['x'], food['y'])) my_head = (data['you']['body']['data'][0]['x'], data['you']['body']['data'][0]['y']) my_length = len((data['you']['body']['data'])) snakePositions = [] myPositions = [] for pos in data['you']['body']['data']: myPositions.append((pos['x'], pos['y'])) snake_heads = [] for snakes in data['snakes']['data']: ## alla ormar x = snakes['body']['data'][0]['x'] y = snakes['body']['data'][0]['y'] snake_heads.append((x, y)) for pos in snakes['body']['data']: ## alla ormens positioner snakePositions.append((pos['x'], pos['y'])) snake_heads.remove(my_head) snake_head_area = [] for snake_head in snake_heads: snake_head_area.append((snake_head[0]-1, snake_head[1])) snake_head_area.append((snake_head[0]+1, snake_head[1])) snake_head_area.append((snake_head[0], snake_head[1]+1)) snake_head_area.append((snake_head[0], snake_head[1]-1)) walls = [] width = data['height'] for i in range(width + 1): walls.append((0 - 1, i)) walls.append((i, 0 - 1)) walls.append((width, i)) walls.append((i, width)) stuffToAvoid = [] for position in myPositions: stuffToAvoid.append(position) for position in walls: stuffToAvoid.append(position) for position in snakePositions: stuffToAvoid.append(position) xhead = my_head[0] yhead = my_head[1] possiblemoves = [] if (xhead + 1, yhead) not in stuffToAvoid and safe_path(xhead + 1, yhead, stuffToAvoid): possiblemoves.append('right') if (xhead, yhead + 1) not in stuffToAvoid and safe_path(xhead, yhead + 1, stuffToAvoid): possiblemoves.append('down') if (xhead - 1, yhead) not in stuffToAvoid and safe_path(xhead - 1, yhead, stuffToAvoid): possiblemoves.append('left') if (xhead, yhead - 1) not in stuffToAvoid and safe_path(xhead, yhead - 1, stuffToAvoid): possiblemoves.append('up') ##Find closest food currentDist = 1000000 for i in foodposition: xfood = i[0] yfood = i[1] dist = ((abs(xhead - xfood)) + (abs(yhead - yfood))) if (dist < currentDist): closestFoodPos = (xfood, yfood) currentDist = dist xdistancetofood = abs(xhead - closestFoodPos[0]) ydistancetofood = abs(yhead - closestFoodPos[1]) # foodtotheright = ((xhead - closestFoodPos[0]) < 0) # foodtothetop = ((yhead - closestFoodPos[1]) > 0) prioritymoves = [] if (xdistancetofood >= ydistancetofood) and ((xhead - closestFoodPos[0]) < 0) and 'right' in possiblemoves: prioritymoves.append('right') if (xdistancetofood >= ydistancetofood) and ((xhead - closestFoodPos[0]) > 0) and 'left' in possiblemoves: prioritymoves.append('left') if (ydistancetofood >= xdistancetofood) and ((yhead - closestFoodPos[1]) > 0) and 'up' in possiblemoves: prioritymoves.append('up') if (ydistancetofood >= xdistancetofood) and ((yhead - closestFoodPos[1]) < 0) and 'down' in possiblemoves: prioritymoves.append('down') if (xhead + 1, yhead) in snake_head_area and 'right' in prioritymoves: prioritymoves.remove('right') # prioritymoves.append('right') if (xhead - 1, yhead) in snake_head_area and 'left' in prioritymoves: prioritymoves.remove('left') # prioritymoves.append('left') if (xhead, yhead + 1) in snake_head_area and 'down' in prioritymoves: prioritymoves.remove('down') # prioritymoves.append('down') if (xhead, yhead - 1) in snake_head_area and 'up' in prioritymoves: prioritymoves.remove('up') # prioritymoves.append('up') prioritymoves.append(random.choice(possiblemoves)) direction = prioritymoves[0] return move_response(direction) # int x,y or tuple (NEXT STEP) ##Only looks for dead end def safe_path(x, y, stuffToAvoid): right = (x + 1, y) left = (x - 1, y) down = (x, y + 1) up = (x, y - 1) if right in stuffToAvoid and left in stuffToAvoid and down in stuffToAvoid and up in stuffToAvoid: safe = False else: safe = True return safe ##def snake_head_area(snake_heads, my_head): ## avoid_heads = [] ## snake_heads1 = snake_heads ## snake_heads1.remove(my_head) ## ## for heads in snake_heads1: ## avoid_heads.append((heads[0]+1, heads[1])) ## avoid_heads.append((heads[0] - 1, heads[1])) ## avoid_heads.append((heads[0], heads[1] + 1)) ## avoid_heads.append((heads[0], heads[1] - 1)) ## ## return avoid_heads # def safetyLevel(x,y, stuffToAvoid): @bottle.post('/end') def end(): data = bottle.request.json """ TODO: If your snake AI was stateful, clean up any stateful objects here. """ print(json.dumps(data)) return end_response() # Expose WSGI app (so gunicorn can find it) application = bottle.default_app() if __name__ == '__main__': bottle.run( application, host=os.getenv('IP', '0.0.0.0'), port=os.getenv('PORT', '8080'), debug=os.getenv('DEBUG', True) )
4,830
0
110
83b39d103baf95f5e28b9da6371e0b29b75f4428
17,696
py
Python
pygsti/report/report.py
drewrisinger/pyGSTi
dd4ad669931c7f75e026456470cf33ac5b682d0d
[ "Apache-2.0" ]
1
2021-12-19T15:11:09.000Z
2021-12-19T15:11:09.000Z
pygsti/report/report.py
drewrisinger/pyGSTi
dd4ad669931c7f75e026456470cf33ac5b682d0d
[ "Apache-2.0" ]
null
null
null
pygsti/report/report.py
drewrisinger/pyGSTi
dd4ad669931c7f75e026456470cf33ac5b682d0d
[ "Apache-2.0" ]
null
null
null
""" Internal model of a report during generation """ #*************************************************************************************************** # Copyright 2015, 2019 National Technology & Engineering Solutions of Sandia, LLC (NTESS). # Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights # in this software. # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 or in the LICENSE file in the root pyGSTi directory. #*************************************************************************************************** import time as _time import warnings as _warnings from pathlib import Path as _Path import shutil as _shutil from collections import defaultdict as _defaultdict, OrderedDict as _OrderedDict import pickle as _pickle from . import autotitle as _autotitle from . import merge_helpers as _merge from .. import _version, tools as _tools from ..objects import VerbosityPrinter as _VerbosityPrinter, ExplicitOpModel as _ExplicitOpModel from . import workspace as _ws from .notebook import Notebook as _Notebook # TODO this whole thing needs to be rewritten with different reports as derived classes class Report: """ The internal model of a report. This class should never be instantiated directly. Instead, users should use the appropriate factory method in `pygsti.report.factory`. """ def _build(self, build_options=None): """ Render all sections to a map of report elements for templating """ full_params = { 'results': self._results, **self._report_params } full_params.update(self._build_defaults) full_params.update(build_options or {}) qtys = self._global_qtys.copy() for section in self._sections: qtys.update(section.render(self._workspace, **full_params)) return qtys def write_html(self, path, auto_open=False, link_to=None, connected=False, build_options=None, brevity=0, precision=None, resizable=True, autosize='initial', single_file=False, verbosity=0): """ Write this report to the disk as a collection of HTML documents. Parameters ---------- path : str or path-like object The filesystem path of a directory to write the report to. If the specified directory does not exist, it will be created automatically auto_open : bool, optional Whether the output file should be automatically opened in a web browser. link_to : list, optional If not None, a list of one or more items from the set {"tex", "pdf", "pkl"} indicating whether or not to create and include links to Latex, PDF, and Python pickle files, respectively. connected : bool, optional Whether output HTML should assume an active internet connection. If True, then the resulting HTML file size will be reduced because it will link to web resources (e.g. CDN libraries) instead of embedding them. build_options : dict Dict of options for building plots. Expected values are defined during construction of this report object. brevity : int, optional Amount of detail to include in the report. Larger values mean smaller "more briefr" reports, which reduce generation time, load time, and disk space consumption. In particular: - 1: Plots showing per-sequences quantities disappear at brevity=1 - 2: Reference sections disappear at brevity=2 - 3: Germ-level estimate tables disappear at brevity=3 - 4: Everything but summary figures disappears at brevity=4 precision : int or dict, optional The amount of precision to display. A dictionary with keys "polar", "sci", and "normal" can separately specify the precision for complex angles, numbers in scientific notation, and everything else, respectively. If an integer is given, it this same value is taken for all precision types. If None, then `{'normal': 6, 'polar': 3, 'sci': 0}` is used. resizable : bool, optional Whether plots and tables are made with resize handles and can be resized within the report. autosize : {'none', 'initial', 'continual'} Whether tables and plots should be resized, either initially -- i.e. just upon first rendering (`"initial"`) -- or whenever the browser window is resized (`"continual"`). single_file : bool, optional If true, the report will be written to a single HTML document, with external dependencies baked-in. This mode is not recommended for large reports, because this file can grow large enough that major web browsers may struggle to render it. verbosity : int, optional Amount of detail to print to stdout. """ build_options = build_options or {} toggles = _defaultdict(lambda: False) toggles.update( {k: True for k in self._flags} ) for k in range(brevity, 4): toggles['BrevityLT' + str(k + 1)] = True # Render sections qtys = self._build(build_options) # TODO this really should be a parameter of this method embed_figures = self._report_params.get('embed_figures', True) if single_file: assert(embed_figures), \ "Single-file mode requires `embed_figures` to be True" _merge.merge_jinja_template( qtys, path, templateDir=self._templates['html'], auto_open=auto_open, precision=precision, link_to=link_to, connected=connected, toggles=toggles, renderMath=True, resizable=resizable, autosize=autosize, verbosity=verbosity ) else: _merge.merge_jinja_template_dir( qtys, path, templateDir=self._templates['html'], auto_open=auto_open, precision=precision, link_to=link_to, connected=connected, toggles=toggles, renderMath=True, resizable=resizable, autosize=autosize, embed_figures=embed_figures, verbosity=verbosity ) def write_notebook(self, path, auto_open=False, connected=False, verbosity=0): """ Write this report to the disk as an IPython notebook A notebook report allows the user to interact more flexibly with the data underlying the figures, and to easily generate customized variants on the figures. As such, this type of report will be most useful for experts who want to tinker with the standard analysis presented in the static HTML or LaTeX format reports. Parameters ---------- path : str or path-like object The filesystem path to write the report to. By convention, this should use the `.ipynb` file extension. auto_open : bool, optional If True, automatically open the report in a web browser after it has been generated. connected : bool, optional Whether output notebook should assume an active internet connection. If True, then the resulting file size will be reduced because it will link to web resources (e.g. CDN libraries) instead of embedding them. verbosity : int, optional How much detail to send to stdout. """ # TODO this only applies to standard reports; rewrite generally title = self._global_qtys['title'] confidenceLevel = self._report_params['confidence_level'] path = _Path(path) printer = _VerbosityPrinter.build_printer(verbosity) templatePath = _Path(__file__).parent / 'templates' / self._templates['notebook'] outputDir = path.parent #Copy offline directory into position if not connected: _merge.rsync_offline_dir(outputDir) #Save results to file # basename = _os.path.splitext(_os.path.basename(filename))[0] basename = path.stem results_file_base = basename + '_results.pkl' results_file = outputDir / results_file_base with open(str(results_file), 'wb') as f: _pickle.dump(self._results, f) nb = _Notebook() nb.add_markdown('# {title}\n(Created on {date})'.format( title=title, date=_time.strftime("%B %d, %Y"))) nb.add_code("""\ import pickle import pygsti""") dsKeys = list(self._results.keys()) results = self._results[dsKeys[0]] #Note: `results` is always a single Results obj from here down nb.add_code("""\ #Load results dictionary with open('{infile}', 'rb') as infile: results_dict = pickle.load(infile) print("Available dataset keys: ", ', '.join(results_dict.keys()))\ """.format(infile=results_file_base)) nb.add_code("""\ #Set which dataset should be used below results = results_dict['{dsKey}'] print("Available estimates: ", ', '.join(results.estimates.keys()))\ """.format(dsKey=dsKeys[0])) estLabels = list(results.estimates.keys()) estimate = results.estimates[estLabels[0]] nb.add_code("""\ #Set which estimate is to be used below estimate = results.estimates['{estLabel}'] print("Available gauge opts: ", ', '.join(estimate.goparameters.keys()))\ """.format(estLabel=estLabels[0])) goLabels = list(estimate.goparameters.keys()) nb.add_code("""\ gopt = '{goLabel}' ds = results.dataset gssFinal = results.circuit_structs['final'] Ls = results.circuit_structs['final'].Ls gssPerIter = results.circuit_structs['iteration'] #ALL_L prepStrs = results.circuit_lists['prep fiducials'] effectStrs = results.circuit_lists['meas fiducials'] germs = results.circuit_lists['germs'] strs = (prepStrs, effectStrs) params = estimate.parameters objective = estimate.parameters['objective'] if objective == "logl": mpc = estimate.parameters['minProbClip'] else: mpc = estimate.parameters['minProbClipForWeighting'] clifford_compilation = estimate.parameters.get('clifford_compilation',None) effective_ds, scale_subMxs = estimate.get_effective_dataset(True) scaledSubMxsDict = {{'scaling': scale_subMxs, 'scaling.colormap': "revseq"}} models = estimate.models mdl = models[gopt] #FINAL mdl_final = models['final iteration estimate'] #ITER target_model = models['target'] mdlPerIter = models['iteration estimates'] mdl_eigenspace_projected = pygsti.tools.project_to_target_eigenspace(mdl, target_model) goparams = estimate.goparameters[gopt] confidenceLevel = {CL} if confidenceLevel is None: cri = None else: crfactory = estimate.get_confidence_region_factory(gopt) region_type = "normal" if confidenceLevel >= 0 else "non-markovian" cri = crfactory.view(abs(confidenceLevel), region_type)\ """.format(goLabel=goLabels[0], CL=confidenceLevel)) nb.add_code("""\ from pygsti.report import Workspace ws = Workspace() ws.init_notebook_mode(connected={conn}, autodisplay=True)\ """.format(conn=str(connected))) nb.add_notebook_text_files([ templatePath / 'summary.txt', templatePath / 'goodness.txt', templatePath / 'gauge_invariant.txt', templatePath / 'gauge_variant.txt']) #Insert multi-dataset specific analysis if len(dsKeys) > 1: nb.add_markdown(('# Dataset comparisons\n' 'This report contains information for more than one data set.' 'This page shows comparisons between different data sets.')) nb.add_code("""\ dslbl1 = '{dsLbl1}' dslbl2 = '{dsLbl2}' dscmp_gss = results_dict[dslbl1].circuit_structs['final'] ds1 = results_dict[dslbl1].dataset ds2 = results_dict[dslbl2].dataset dscmp = pygsti.obj.DataComparator([ds1, ds2], DS_names=[dslbl1, dslbl2]) """.format(dsLbl1=dsKeys[0], dsLbl2=dsKeys[1])) nb.add_notebook_text_files([ templatePath / 'data_comparison.txt']) #Add reference material nb.add_notebook_text_files([ templatePath / 'input.txt', templatePath / 'meta.txt']) printer.log("Report Notebook created as %s" % path) if auto_open: port = "auto" if auto_open is True else int(auto_open) nb.launch(str(path), port=port) else: nb.save_to(str(path)) def write_pdf(self, path, latex_cmd='pdflatex', latex_flags=None, build_options=None, brevity=0, precision=None, auto_open=False, comm=None, verbosity=0): """ Write this report to the disk as a PDF document. Parameters ---------- path : str or path-like object The filesystem path to write the report to. By convention, this should use the `.pdf` file extension. latex_cmd : str, optional Shell command to run to compile a PDF document from the generated LaTeX source. latex_flags : [str], optional List of flags to pass when calling `latex_cmd`. build_options : dict Dict of options for building plots. Expected values are defined during construction of this report object. brevity : int, optional Amount of detail to include in the report. Larger values mean smaller "more briefr" reports, which reduce generation time, load time, and disk space consumption. In particular: - 1: Plots showing per-sequences quantities disappear at brevity=1 - 2: Reference sections disappear at brevity=2 - 3: Germ-level estimate tables disappear at brevity=3 - 4: Everything but summary figures disappears at brevity=4 precision : int or dict, optional The amount of precision to display. A dictionary with keys "polar", "sci", and "normal" can separately specify the precision for complex angles, numbers in scientific notation, and everything else, respectively. If an integer is given, it this same value is taken for all precision types. If None, then `{'normal': 6, 'polar': 3, 'sci': 0}` is used. auto_open : bool, optional Whether the output file should be automatically opened in a web browser. comm : mpi4py.MPI.Comm, optional When not None, an MPI communicator for distributing the computation across multiple processors. verbosity : int, optional Amount of detail to print to stdout. """ if not self._pdf_available: raise ValueError(("PDF output unavailable. (Usually this is because this report" " has multiple gauge optimizations and/or datasets.)")) toggles = _defaultdict(lambda: False) toggles.update( {k: True for k in self._flags} ) for k in range(brevity, 4): toggles['BrevityLT' + str(k + 1)] = True printer = _VerbosityPrinter.build_printer(verbosity, comm=comm) path = _Path(path) latex_flags = latex_flags or ["-interaction=nonstopmode", "-halt-on-error", "-shell-escape"] # Render sections qtys = self._build(build_options) # TODO: filter while generating plots to remove need for sanitization qtys = {k: v for k, v in qtys.items() if not(isinstance(v, _ws.Switchboard) or isinstance(v, _ws.SwitchboardView))} printer.log("Generating LaTeX source...") _merge.merge_latex_template( qtys, self._templates['pdf'], str(path.with_suffix('.tex')), toggles, precision, printer ) printer.log("Compiling with `{} {}`".format(latex_cmd, ' '.join(latex_flags))) _merge.compile_latex_report(str(path.parent / path.stem), [latex_cmd] + latex_flags, printer, auto_open)
42.640964
112
0.61415
""" Internal model of a report during generation """ #*************************************************************************************************** # Copyright 2015, 2019 National Technology & Engineering Solutions of Sandia, LLC (NTESS). # Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights # in this software. # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 or in the LICENSE file in the root pyGSTi directory. #*************************************************************************************************** import time as _time import warnings as _warnings from pathlib import Path as _Path import shutil as _shutil from collections import defaultdict as _defaultdict, OrderedDict as _OrderedDict import pickle as _pickle from . import autotitle as _autotitle from . import merge_helpers as _merge from .. import _version, tools as _tools from ..objects import VerbosityPrinter as _VerbosityPrinter, ExplicitOpModel as _ExplicitOpModel from . import workspace as _ws from .notebook import Notebook as _Notebook # TODO this whole thing needs to be rewritten with different reports as derived classes class Report: """ The internal model of a report. This class should never be instantiated directly. Instead, users should use the appropriate factory method in `pygsti.report.factory`. """ def __init__(self, templates, results, sections, flags, global_qtys, report_params, build_defaults=None, pdf_available=True, workspace=None): self._templates = templates self._results = results self._sections = sections self._flags = flags self._global_qtys = global_qtys self._report_params = report_params self._workspace = workspace or _ws.Workspace() self._build_defaults = build_defaults or {} self._pdf_available = pdf_available def _build(self, build_options=None): """ Render all sections to a map of report elements for templating """ full_params = { 'results': self._results, **self._report_params } full_params.update(self._build_defaults) full_params.update(build_options or {}) qtys = self._global_qtys.copy() for section in self._sections: qtys.update(section.render(self._workspace, **full_params)) return qtys def write_html(self, path, auto_open=False, link_to=None, connected=False, build_options=None, brevity=0, precision=None, resizable=True, autosize='initial', single_file=False, verbosity=0): """ Write this report to the disk as a collection of HTML documents. Parameters ---------- path : str or path-like object The filesystem path of a directory to write the report to. If the specified directory does not exist, it will be created automatically auto_open : bool, optional Whether the output file should be automatically opened in a web browser. link_to : list, optional If not None, a list of one or more items from the set {"tex", "pdf", "pkl"} indicating whether or not to create and include links to Latex, PDF, and Python pickle files, respectively. connected : bool, optional Whether output HTML should assume an active internet connection. If True, then the resulting HTML file size will be reduced because it will link to web resources (e.g. CDN libraries) instead of embedding them. build_options : dict Dict of options for building plots. Expected values are defined during construction of this report object. brevity : int, optional Amount of detail to include in the report. Larger values mean smaller "more briefr" reports, which reduce generation time, load time, and disk space consumption. In particular: - 1: Plots showing per-sequences quantities disappear at brevity=1 - 2: Reference sections disappear at brevity=2 - 3: Germ-level estimate tables disappear at brevity=3 - 4: Everything but summary figures disappears at brevity=4 precision : int or dict, optional The amount of precision to display. A dictionary with keys "polar", "sci", and "normal" can separately specify the precision for complex angles, numbers in scientific notation, and everything else, respectively. If an integer is given, it this same value is taken for all precision types. If None, then `{'normal': 6, 'polar': 3, 'sci': 0}` is used. resizable : bool, optional Whether plots and tables are made with resize handles and can be resized within the report. autosize : {'none', 'initial', 'continual'} Whether tables and plots should be resized, either initially -- i.e. just upon first rendering (`"initial"`) -- or whenever the browser window is resized (`"continual"`). single_file : bool, optional If true, the report will be written to a single HTML document, with external dependencies baked-in. This mode is not recommended for large reports, because this file can grow large enough that major web browsers may struggle to render it. verbosity : int, optional Amount of detail to print to stdout. """ build_options = build_options or {} toggles = _defaultdict(lambda: False) toggles.update( {k: True for k in self._flags} ) for k in range(brevity, 4): toggles['BrevityLT' + str(k + 1)] = True # Render sections qtys = self._build(build_options) # TODO this really should be a parameter of this method embed_figures = self._report_params.get('embed_figures', True) if single_file: assert(embed_figures), \ "Single-file mode requires `embed_figures` to be True" _merge.merge_jinja_template( qtys, path, templateDir=self._templates['html'], auto_open=auto_open, precision=precision, link_to=link_to, connected=connected, toggles=toggles, renderMath=True, resizable=resizable, autosize=autosize, verbosity=verbosity ) else: _merge.merge_jinja_template_dir( qtys, path, templateDir=self._templates['html'], auto_open=auto_open, precision=precision, link_to=link_to, connected=connected, toggles=toggles, renderMath=True, resizable=resizable, autosize=autosize, embed_figures=embed_figures, verbosity=verbosity ) def write_notebook(self, path, auto_open=False, connected=False, verbosity=0): """ Write this report to the disk as an IPython notebook A notebook report allows the user to interact more flexibly with the data underlying the figures, and to easily generate customized variants on the figures. As such, this type of report will be most useful for experts who want to tinker with the standard analysis presented in the static HTML or LaTeX format reports. Parameters ---------- path : str or path-like object The filesystem path to write the report to. By convention, this should use the `.ipynb` file extension. auto_open : bool, optional If True, automatically open the report in a web browser after it has been generated. connected : bool, optional Whether output notebook should assume an active internet connection. If True, then the resulting file size will be reduced because it will link to web resources (e.g. CDN libraries) instead of embedding them. verbosity : int, optional How much detail to send to stdout. """ # TODO this only applies to standard reports; rewrite generally title = self._global_qtys['title'] confidenceLevel = self._report_params['confidence_level'] path = _Path(path) printer = _VerbosityPrinter.build_printer(verbosity) templatePath = _Path(__file__).parent / 'templates' / self._templates['notebook'] outputDir = path.parent #Copy offline directory into position if not connected: _merge.rsync_offline_dir(outputDir) #Save results to file # basename = _os.path.splitext(_os.path.basename(filename))[0] basename = path.stem results_file_base = basename + '_results.pkl' results_file = outputDir / results_file_base with open(str(results_file), 'wb') as f: _pickle.dump(self._results, f) nb = _Notebook() nb.add_markdown('# {title}\n(Created on {date})'.format( title=title, date=_time.strftime("%B %d, %Y"))) nb.add_code("""\ import pickle import pygsti""") dsKeys = list(self._results.keys()) results = self._results[dsKeys[0]] #Note: `results` is always a single Results obj from here down nb.add_code("""\ #Load results dictionary with open('{infile}', 'rb') as infile: results_dict = pickle.load(infile) print("Available dataset keys: ", ', '.join(results_dict.keys()))\ """.format(infile=results_file_base)) nb.add_code("""\ #Set which dataset should be used below results = results_dict['{dsKey}'] print("Available estimates: ", ', '.join(results.estimates.keys()))\ """.format(dsKey=dsKeys[0])) estLabels = list(results.estimates.keys()) estimate = results.estimates[estLabels[0]] nb.add_code("""\ #Set which estimate is to be used below estimate = results.estimates['{estLabel}'] print("Available gauge opts: ", ', '.join(estimate.goparameters.keys()))\ """.format(estLabel=estLabels[0])) goLabels = list(estimate.goparameters.keys()) nb.add_code("""\ gopt = '{goLabel}' ds = results.dataset gssFinal = results.circuit_structs['final'] Ls = results.circuit_structs['final'].Ls gssPerIter = results.circuit_structs['iteration'] #ALL_L prepStrs = results.circuit_lists['prep fiducials'] effectStrs = results.circuit_lists['meas fiducials'] germs = results.circuit_lists['germs'] strs = (prepStrs, effectStrs) params = estimate.parameters objective = estimate.parameters['objective'] if objective == "logl": mpc = estimate.parameters['minProbClip'] else: mpc = estimate.parameters['minProbClipForWeighting'] clifford_compilation = estimate.parameters.get('clifford_compilation',None) effective_ds, scale_subMxs = estimate.get_effective_dataset(True) scaledSubMxsDict = {{'scaling': scale_subMxs, 'scaling.colormap': "revseq"}} models = estimate.models mdl = models[gopt] #FINAL mdl_final = models['final iteration estimate'] #ITER target_model = models['target'] mdlPerIter = models['iteration estimates'] mdl_eigenspace_projected = pygsti.tools.project_to_target_eigenspace(mdl, target_model) goparams = estimate.goparameters[gopt] confidenceLevel = {CL} if confidenceLevel is None: cri = None else: crfactory = estimate.get_confidence_region_factory(gopt) region_type = "normal" if confidenceLevel >= 0 else "non-markovian" cri = crfactory.view(abs(confidenceLevel), region_type)\ """.format(goLabel=goLabels[0], CL=confidenceLevel)) nb.add_code("""\ from pygsti.report import Workspace ws = Workspace() ws.init_notebook_mode(connected={conn}, autodisplay=True)\ """.format(conn=str(connected))) nb.add_notebook_text_files([ templatePath / 'summary.txt', templatePath / 'goodness.txt', templatePath / 'gauge_invariant.txt', templatePath / 'gauge_variant.txt']) #Insert multi-dataset specific analysis if len(dsKeys) > 1: nb.add_markdown(('# Dataset comparisons\n' 'This report contains information for more than one data set.' 'This page shows comparisons between different data sets.')) nb.add_code("""\ dslbl1 = '{dsLbl1}' dslbl2 = '{dsLbl2}' dscmp_gss = results_dict[dslbl1].circuit_structs['final'] ds1 = results_dict[dslbl1].dataset ds2 = results_dict[dslbl2].dataset dscmp = pygsti.obj.DataComparator([ds1, ds2], DS_names=[dslbl1, dslbl2]) """.format(dsLbl1=dsKeys[0], dsLbl2=dsKeys[1])) nb.add_notebook_text_files([ templatePath / 'data_comparison.txt']) #Add reference material nb.add_notebook_text_files([ templatePath / 'input.txt', templatePath / 'meta.txt']) printer.log("Report Notebook created as %s" % path) if auto_open: port = "auto" if auto_open is True else int(auto_open) nb.launch(str(path), port=port) else: nb.save_to(str(path)) def write_pdf(self, path, latex_cmd='pdflatex', latex_flags=None, build_options=None, brevity=0, precision=None, auto_open=False, comm=None, verbosity=0): """ Write this report to the disk as a PDF document. Parameters ---------- path : str or path-like object The filesystem path to write the report to. By convention, this should use the `.pdf` file extension. latex_cmd : str, optional Shell command to run to compile a PDF document from the generated LaTeX source. latex_flags : [str], optional List of flags to pass when calling `latex_cmd`. build_options : dict Dict of options for building plots. Expected values are defined during construction of this report object. brevity : int, optional Amount of detail to include in the report. Larger values mean smaller "more briefr" reports, which reduce generation time, load time, and disk space consumption. In particular: - 1: Plots showing per-sequences quantities disappear at brevity=1 - 2: Reference sections disappear at brevity=2 - 3: Germ-level estimate tables disappear at brevity=3 - 4: Everything but summary figures disappears at brevity=4 precision : int or dict, optional The amount of precision to display. A dictionary with keys "polar", "sci", and "normal" can separately specify the precision for complex angles, numbers in scientific notation, and everything else, respectively. If an integer is given, it this same value is taken for all precision types. If None, then `{'normal': 6, 'polar': 3, 'sci': 0}` is used. auto_open : bool, optional Whether the output file should be automatically opened in a web browser. comm : mpi4py.MPI.Comm, optional When not None, an MPI communicator for distributing the computation across multiple processors. verbosity : int, optional Amount of detail to print to stdout. """ if not self._pdf_available: raise ValueError(("PDF output unavailable. (Usually this is because this report" " has multiple gauge optimizations and/or datasets.)")) toggles = _defaultdict(lambda: False) toggles.update( {k: True for k in self._flags} ) for k in range(brevity, 4): toggles['BrevityLT' + str(k + 1)] = True printer = _VerbosityPrinter.build_printer(verbosity, comm=comm) path = _Path(path) latex_flags = latex_flags or ["-interaction=nonstopmode", "-halt-on-error", "-shell-escape"] # Render sections qtys = self._build(build_options) # TODO: filter while generating plots to remove need for sanitization qtys = {k: v for k, v in qtys.items() if not(isinstance(v, _ws.Switchboard) or isinstance(v, _ws.SwitchboardView))} printer.log("Generating LaTeX source...") _merge.merge_latex_template( qtys, self._templates['pdf'], str(path.with_suffix('.tex')), toggles, precision, printer ) printer.log("Compiling with `{} {}`".format(latex_cmd, ' '.join(latex_flags))) _merge.compile_latex_report(str(path.parent / path.stem), [latex_cmd] + latex_flags, printer, auto_open)
519
0
26
056e5bfd74cdb3c57ea5d1772797214b876ae034
6,878
py
Python
function/tests/testTask/test_update.py
kohski/serverless_todo
60e90caf86f5d921150193beac4acbd90752c814
[ "MIT" ]
null
null
null
function/tests/testTask/test_update.py
kohski/serverless_todo
60e90caf86f5d921150193beac4acbd90752c814
[ "MIT" ]
32
2021-02-25T01:18:20.000Z
2021-03-03T23:42:27.000Z
function/tests/testTask/test_update.py
kohski/serverless_todo
60e90caf86f5d921150193beac4acbd90752c814
[ "MIT" ]
null
null
null
import pytest from datetime import datetime from update import lambda_handler import boto3 import os import json dynamodb = boto3.resource('dynamodb') table = dynamodb.Table(os.environ['TABLE_NAME']) # ------------------------------------------ # valid pattern # ------------------------------------------ @pytest.mark.parametrize("word,is_done,priority", [ (word, is_done, priority) for word in [None, "", "修正後内容"] for is_done in ['true', 'false', True, False] for priority in ['high', 'medium', 'low'] ]) # ------------------------------------------ # not found pattern # ------------------------------------------ @pytest.fixture() # ------------------------------------------ # invalid pattern # ------------------------------------------ INVALID_PAYLOAD_LIST = [ { "title": "" }, { "title": None }, { "title": "a" * 101 }, { "content": "a" * 2001 }, { "priority": "invalid_priority_value" }, { "is_done": "invalid_is_done_value" }, ] @pytest.fixture(params=INVALID_PAYLOAD_LIST)
32.443396
109
0.486915
import pytest from datetime import datetime from update import lambda_handler import boto3 import os import json dynamodb = boto3.resource('dynamodb') table = dynamodb.Table(os.environ['TABLE_NAME']) # ------------------------------------------ # valid pattern # ------------------------------------------ @pytest.mark.parametrize("word,is_done,priority", [ (word, is_done, priority) for word in [None, "", "修正後内容"] for is_done in ['true', 'false', True, False] for priority in ['high', 'medium', 'low'] ]) def test_existing_task_and_requested_by_task_owner(word, is_done, priority, context, ulid_mock): event = { "resource": "/task/", "path": "/task", "httpMethod": 'POST', "headers": {}, "multiValueHeaders": {}, "queryStringParameters": None, "multiValueQueryStringParameters": None, "pathParameters": { "task_id": "ABCDEFGHIJKLMNOPQRSTUVW000" }, "stageVariables": None, "requestContext": { "authorizer": { "claims": { "sub": "68f2ed3a-3726-439d-81cb-171dab716733", "aud": "19gqr90c608tn8gp7j9nvop7h7", "event_id": "55536ceb-c042-4c18-8a25-8bd4e4c2b28d", "token_use": "id", "auth_time": str(int(datetime.now().timestamp())), "iss": "https://cognito-idp.ap-northeast-1.amazonaws.com/ap-northeast-*", "cognito:username": "existing_user_id", "exp": "Sun Feb 28 01:38:19 UTC 2021", "iat": "Sun Feb 28 00:38:20 UTC 2021", "email": "test@gmail.com" } }, "resourcePath": "/task", "httpMethod": "GET", "path": "/prod/task/123456", "requestTimeEpoch": int(datetime.now().timestamp()), "identity": {} }, "body": json.dumps({ "title": "修正後タイトル", "priority": priority, "is_done": is_done, "content": word }), "isBase64Encoded": False } response = lambda_handler(event, context) del response['body'] assert response == { 'statusCode': 201, 'isBase64Encoded': False } item = table.get_item( Key={ 'id': 'Task:ABCDEFGHIJKLMNOPQRSTUVW000', 'meta': 'latest' } ) assert item['Item']['title'] == '修正後タイトル' # ------------------------------------------ # not found pattern # ------------------------------------------ @pytest.fixture() def not_found_event(): return { "resource": "/task/", "path": "/task", "httpMethod": 'POST', "headers": {}, "multiValueHeaders": {}, "queryStringParameters": None, "multiValueQueryStringParameters": None, "pathParameters": { 'task_id': 'NOTEXISTINGTASK' }, "stageVariables": None, "requestContext": { "authorizer": { "claims": { "sub": "68f2ed3a-3726-439d-81cb-171dab716733", "aud": "19gqr90c608tn8gp7j9nvop7h7", "event_id": "55536ceb-c042-4c18-8a25-8bd4e4c2b28d", "token_use": "id", "auth_time": str(int(datetime.now().timestamp())), "iss": "https://cognito-idp.ap-northeast-1.amazonaws.com/ap-northeast-*", "cognito:username": "existing_user_id", "exp": "Sun Feb 28 01:38:19 UTC 2021", "iat": "Sun Feb 28 00:38:20 UTC 2021", "email": "test@gmail.com" } }, "resourcePath": "/task", "httpMethod": "GET", "path": "/prod/task/123456", "requestTimeEpoch": int(datetime.now().timestamp()), "identity": {} }, "body": json.dumps({ "title": "タイトル", "priority": "medium", "is_done": 'true', "content": "内容" }), "isBase64Encoded": False } def test_raise_not_found_case(not_found_event, context): response = lambda_handler(not_found_event, context) assert response == { 'statusCode': 404, 'body': 'task is not found', 'isBase64Encoded': False } # ------------------------------------------ # invalid pattern # ------------------------------------------ INVALID_PAYLOAD_LIST = [ { "title": "" }, { "title": None }, { "title": "a" * 101 }, { "content": "a" * 2001 }, { "priority": "invalid_priority_value" }, { "is_done": "invalid_is_done_value" }, ] @pytest.fixture(params=INVALID_PAYLOAD_LIST) def invalid_event(request): return { "resource": "/task/", "path": "/task", "httpMethod": 'POST', "headers": {}, "multiValueHeaders": {}, "queryStringParameters": None, "multiValueQueryStringParameters": None, "pathParameters": {}, "stageVariables": None, "requestContext": { "authorizer": { "claims": { "sub": "68f2ed3a-3726-439d-81cb-171dab716733", "aud": "19gqr90c608tn8gp7j9nvop7h7", "event_id": "55536ceb-c042-4c18-8a25-8bd4e4c2b28d", "token_use": "id", "auth_time": str(int(datetime.now().timestamp())), "iss": "https://cognito-idp.ap-northeast-1.amazonaws.com/ap-northeast-*", "cognito:username": "existing_user_id", "exp": "Sun Feb 28 01:38:19 UTC 2021", "iat": "Sun Feb 28 00:38:20 UTC 2021", "email": "test@gmail.com" } }, "resourcePath": "/task", "httpMethod": "GET", "path": "/prod/task/123456", "requestTimeEpoch": int(datetime.now().timestamp()), "identity": {} }, "body": json.dumps({ "title": request.param.get('title'), "priority": "medium" if request.param.get('priority') is None else request.param.get('priority'), "is_done": 'true' if request.param.get('is_done') is None else request.param.get('is_done'), "content": "内容" if request.param.get('content') is None else request.param.get('content') }), "isBase64Encoded": False } def test_raise_invalid_case(invalid_event, context, ulid_mock): response = lambda_handler(invalid_event, context) assert response == { 'statusCode': 400, 'body': 'invalid parameter', 'isBase64Encoded': False }
5,659
0
112
877b0945aabc974e781666ff3dc8ba39b0ce5990
3,195
py
Python
bot/helper/mirror_utils/status_utils/qbit_download_status.py
vincreator/Eunha
85a702a5b5f30ccea1798122c261d4ff07fe0c0c
[ "Apache-2.0" ]
null
null
null
bot/helper/mirror_utils/status_utils/qbit_download_status.py
vincreator/Eunha
85a702a5b5f30ccea1798122c261d4ff07fe0c0c
[ "Apache-2.0" ]
null
null
null
bot/helper/mirror_utils/status_utils/qbit_download_status.py
vincreator/Eunha
85a702a5b5f30ccea1798122c261d4ff07fe0c0c
[ "Apache-2.0" ]
null
null
null
from bot import DOWNLOAD_DIR, LOGGER from bot.helper.ext_utils.bot_utils import MirrorStatus, get_readable_file_size, get_readable_time from time import sleep
29.859813
98
0.634429
from bot import DOWNLOAD_DIR, LOGGER from bot.helper.ext_utils.bot_utils import MirrorStatus, get_readable_file_size, get_readable_time from time import sleep def get_download(client, hash_): try: return client.torrents_info(torrent_hashes=hash_)[0] except: pass class QbDownloadStatus: def __init__(self, listener, client, hash_, select): self.__gid = hash_[:12] self.__hash = hash_ self.__select = select self.__client = client self.__listener = listener self.__uid = listener.uid self.__info = get_download(client, hash_) self.message = listener.message def __update(self): self.__info = get_download(self.__client, self.__hash) def progress(self): """ Calculates the progress of the mirror (upload or download) :return: returns progress in percentage """ return f'{round(self.__info.progress*100, 2)}%' def size_raw(self): """ Gets total size of the mirror file/folder :return: total size of mirror """ if self.__select: return self.__info.size else: return self.__info.total_size def processed_bytes(self): return self.__info.downloaded def speed(self): return f"{get_readable_file_size(self.__info.dlspeed)}/s" def name(self): self.__update() return self.__info.name def path(self): return f"{DOWNLOAD_DIR}{self.__uid}" def size(self): return get_readable_file_size(self.__info.size) def eta(self): return get_readable_time(self.__info.eta) def status(self): download = self.__info.state if download in ["queuedDL", "queuedUP"]: return MirrorStatus.STATUS_WAITING elif download in ["metaDL", "checkingResumeData"]: return MirrorStatus.STATUS_DOWNLOADING + " (Metadata)" elif download in ["pausedDL", "pausedUP"]: return MirrorStatus.STATUS_PAUSE elif download in ["checkingUP", "checkingDL"]: return MirrorStatus.STATUS_CHECKING elif download in ["stalledUP", "uploading", "forcedUP"]: return MirrorStatus.STATUS_SEEDING else: return MirrorStatus.STATUS_DOWNLOADING def torrent_info(self): return self.__info def download(self): return self def uid(self): return self.__uid def gid(self): return self.__gid def client(self): return self.__client def listener(self): return self.__listener def cancel_download(self): self.__update() if self.status() == MirrorStatus.STATUS_SEEDING: LOGGER.info(f"Cancelling Seed: {self.name()}") self.__client.torrents_pause(torrent_hashes=self.__hash) else: LOGGER.info(f"Cancelling Download: {self.name()}") self.__client.torrents_pause(torrent_hashes=self.__hash) sleep(0.3) self.__listener.onDownloadError('Download stopped by user!') self.__client.torrents_delete(torrent_hashes=self.__hash, delete_files=True)
2,080
909
46
339c00d28f3cce8e0930a2efcf6717be89f5a16d
642
py
Python
micron/tests/audiodevice.test.py
zhengyang-c/photonLauncher
76215f47ccd1178f1826834533f5702c4b8f2c35
[ "Apache-2.0" ]
6
2015-11-26T15:03:38.000Z
2020-10-05T14:08:54.000Z
micron/tests/audiodevice.test.py
zhengyang-c/photonLauncher
76215f47ccd1178f1826834533f5702c4b8f2c35
[ "Apache-2.0" ]
7
2015-12-09T06:44:34.000Z
2021-12-14T15:51:28.000Z
micron/tests/audiodevice.test.py
zhengyang-c/photonLauncher
76215f47ccd1178f1826834533f5702c4b8f2c35
[ "Apache-2.0" ]
3
2016-07-25T10:43:21.000Z
2021-12-07T14:12:47.000Z
#!/usr/bin/env python3 import pyaudio import sys sys.path.insert(0, "../") from pwmaudio import noALSAerror with noALSAerror(): p = pyaudio.PyAudio() info = p.get_host_api_info_by_index(0) print(p.get_host_api_count()) print(info) numdevices = info.get('deviceCount') for i in range(0, numdevices): if (p.get_device_info_by_host_api_device_index(0, i).get('maxOutputChannels')) > 0: # print("Output Device id ", i, " - ", p.get_device_info_by_host_api_device_index(0, i).get('name')) print("Output Device id ", i, " - ", p.get_device_info_by_host_api_device_index(0, i))
33.789474
116
0.661994
#!/usr/bin/env python3 import pyaudio import sys sys.path.insert(0, "../") from pwmaudio import noALSAerror with noALSAerror(): p = pyaudio.PyAudio() info = p.get_host_api_info_by_index(0) print(p.get_host_api_count()) print(info) numdevices = info.get('deviceCount') for i in range(0, numdevices): if (p.get_device_info_by_host_api_device_index(0, i).get('maxOutputChannels')) > 0: # print("Output Device id ", i, " - ", p.get_device_info_by_host_api_device_index(0, i).get('name')) print("Output Device id ", i, " - ", p.get_device_info_by_host_api_device_index(0, i))
0
0
0
38f4cfc7cbdf2d4521cd2cce0f4533e5bc58ff43
2,384
py
Python
app/src/main/assets/code/controller/controller.py
tongjinlv/py_and
a069336c47dd233648fbbadee7275ef188696a44
[ "Apache-2.0" ]
null
null
null
app/src/main/assets/code/controller/controller.py
tongjinlv/py_and
a069336c47dd233648fbbadee7275ef188696a44
[ "Apache-2.0" ]
null
null
null
app/src/main/assets/code/controller/controller.py
tongjinlv/py_and
a069336c47dd233648fbbadee7275ef188696a44
[ "Apache-2.0" ]
null
null
null
import sys import math import random import imp from java import jclass from controller.leds import leds from controller.message import message from controller.sensor import sensor from controller.motion_sensor import motion_sensor from controller.button import button from controller.color_sensor import color_sensor from controller.infrared_sensor import infrared_sensor from controller.sound_sensor import sound_sensor from controller.timer import timer imp.load_source('controllerleds', '/data/data/com.matatalab.matatacode/run/controller/leds.py') imp.load_source('controllermessage', '/data/data/com.matatalab.matatacode/run/controller/message.py') imp.load_source('controllesensor', '/data/data/com.matatalab.matatacode/run/controller/sensor.py') imp.load_source('controllemotion_sensor', '/data/data/com.matatalab.matatacode/run/controller/motion_sensor.py') imp.load_source('controllebutton', '/data/data/com.matatalab.matatacode/run/controller/button.py') imp.load_source('controllecolor_sensor', '/data/data/com.matatalab.matatacode/run/controller/color_sensor.py') imp.load_source('controlleinfrared_sensor', '/data/data/com.matatalab.matatacode/run/controller/infrared_sensor.py') imp.load_source('controllesound_sensor', '/data/data/com.matatalab.matatacode/run/controller/sound_sensor.py') imp.load_source('controlletimer', '/data/data/com.matatalab.matatacode/run/controller/timer.py')
41.824561
116
0.75797
import sys import math import random import imp from java import jclass from controller.leds import leds from controller.message import message from controller.sensor import sensor from controller.motion_sensor import motion_sensor from controller.button import button from controller.color_sensor import color_sensor from controller.infrared_sensor import infrared_sensor from controller.sound_sensor import sound_sensor from controller.timer import timer imp.load_source('controllerleds', '/data/data/com.matatalab.matatacode/run/controller/leds.py') imp.load_source('controllermessage', '/data/data/com.matatalab.matatacode/run/controller/message.py') imp.load_source('controllesensor', '/data/data/com.matatalab.matatacode/run/controller/sensor.py') imp.load_source('controllemotion_sensor', '/data/data/com.matatalab.matatacode/run/controller/motion_sensor.py') imp.load_source('controllebutton', '/data/data/com.matatalab.matatacode/run/controller/button.py') imp.load_source('controllecolor_sensor', '/data/data/com.matatalab.matatacode/run/controller/color_sensor.py') imp.load_source('controlleinfrared_sensor', '/data/data/com.matatalab.matatacode/run/controller/infrared_sensor.py') imp.load_source('controllesound_sensor', '/data/data/com.matatalab.matatacode/run/controller/sound_sensor.py') imp.load_source('controlletimer', '/data/data/com.matatalab.matatacode/run/controller/timer.py') class controller: call=None leds=None message=None sensor=None motion_sensor=None button=None color_sensor=None infrared_sensor=None sound_sensor=None timer=None def __init__(self): Python2Java = jclass("com.matatalab.matatacode.model.Python2Java") self.call = Python2Java("python") self.leds=leds(self.call) self.message=message(self.call) self.sensor=sensor(self.call) self.motion_sensor=motion_sensor(self.call) self.button=button(self.call) self.color_sensor=color_sensor(self.call) self.infrared_sensor=infrared_sensor(self.call) self.sound_sensor=sound_sensor(self.call) self.timer=timer(self.call) #data = [0x7e,0x02,0x02,0x00,0x00] #print("控制器 设置为新协议") #self.call.blewrite(data) #self.call.blewait() def test(self): data = [0x39,0x04] self.call.blewrite(data) self.call.blewait()
744
232
23
9126ebac0a1ed3389e3b8adbc570ccd9cc668771
4,684
py
Python
crowdstrike/src/crowdstrike/actor/importer.py
galonsososa/connectors
6272128a2ca69ffca13cec63ff0f7bc55ee902a5
[ "Apache-2.0" ]
null
null
null
crowdstrike/src/crowdstrike/actor/importer.py
galonsososa/connectors
6272128a2ca69ffca13cec63ff0f7bc55ee902a5
[ "Apache-2.0" ]
2
2021-02-16T20:48:43.000Z
2021-03-03T06:20:13.000Z
crowdstrike/src/crowdstrike/actor/importer.py
galonsososa/connectors
6272128a2ca69ffca13cec63ff0f7bc55ee902a5
[ "Apache-2.0" ]
2
2021-02-16T20:45:11.000Z
2021-03-03T05:47:53.000Z
# -*- coding: utf-8 -*- """OpenCTI CrowdStrike actor importer module.""" from typing import Any, Generator, List, Mapping, Optional from crowdstrike_client.api.intel.actors import Actors from crowdstrike_client.api.models import Response from crowdstrike_client.api.models.actor import Actor from pycti.connector.opencti_connector_helper import OpenCTIConnectorHelper # type: ignore # noqa: E501 from stix2 import Bundle, Identity, MarkingDefinition # type: ignore from crowdstrike.actor.builder import ActorBundleBuilder from crowdstrike.importer import BaseImporter from crowdstrike.utils import datetime_to_timestamp, paginate, timestamp_to_datetime class ActorImporter(BaseImporter): """CrowdStrike actor importer.""" _LATEST_ACTOR_TIMESTAMP = "latest_actor_timestamp" def __init__( self, helper: OpenCTIConnectorHelper, actors_api: Actors, update_existing_data: bool, author: Identity, default_latest_timestamp: int, tlp_marking: MarkingDefinition, ) -> None: """Initialize CrowdStrike actor importer.""" super().__init__(helper, author, tlp_marking, update_existing_data) self.actors_api = actors_api self.default_latest_timestamp = default_latest_timestamp def run(self, state: Mapping[str, Any]) -> Mapping[str, Any]: """Run importer.""" self._info("Running actor importer with state: {0}...", state) fetch_timestamp = state.get( self._LATEST_ACTOR_TIMESTAMP, self.default_latest_timestamp ) latest_fetched_actor_timestamp = None for actors_batch in self._fetch_actors(fetch_timestamp): if not actors_batch: break if latest_fetched_actor_timestamp is None: first_in_batch = actors_batch[0] created_date = first_in_batch.created_date if created_date is None: self._error( "Missing created date for actor {0} ({1})", first_in_batch.name, first_in_batch.id, ) break latest_fetched_actor_timestamp = datetime_to_timestamp(created_date) self._process_actors(actors_batch) state_timestamp = latest_fetched_actor_timestamp or fetch_timestamp self._info( "Actor importer completed, latest fetch {0}.", timestamp_to_datetime(state_timestamp), ) return {self._LATEST_ACTOR_TIMESTAMP: state_timestamp}
33.219858
105
0.638343
# -*- coding: utf-8 -*- """OpenCTI CrowdStrike actor importer module.""" from typing import Any, Generator, List, Mapping, Optional from crowdstrike_client.api.intel.actors import Actors from crowdstrike_client.api.models import Response from crowdstrike_client.api.models.actor import Actor from pycti.connector.opencti_connector_helper import OpenCTIConnectorHelper # type: ignore # noqa: E501 from stix2 import Bundle, Identity, MarkingDefinition # type: ignore from crowdstrike.actor.builder import ActorBundleBuilder from crowdstrike.importer import BaseImporter from crowdstrike.utils import datetime_to_timestamp, paginate, timestamp_to_datetime class ActorImporter(BaseImporter): """CrowdStrike actor importer.""" _LATEST_ACTOR_TIMESTAMP = "latest_actor_timestamp" def __init__( self, helper: OpenCTIConnectorHelper, actors_api: Actors, update_existing_data: bool, author: Identity, default_latest_timestamp: int, tlp_marking: MarkingDefinition, ) -> None: """Initialize CrowdStrike actor importer.""" super().__init__(helper, author, tlp_marking, update_existing_data) self.actors_api = actors_api self.default_latest_timestamp = default_latest_timestamp def run(self, state: Mapping[str, Any]) -> Mapping[str, Any]: """Run importer.""" self._info("Running actor importer with state: {0}...", state) fetch_timestamp = state.get( self._LATEST_ACTOR_TIMESTAMP, self.default_latest_timestamp ) latest_fetched_actor_timestamp = None for actors_batch in self._fetch_actors(fetch_timestamp): if not actors_batch: break if latest_fetched_actor_timestamp is None: first_in_batch = actors_batch[0] created_date = first_in_batch.created_date if created_date is None: self._error( "Missing created date for actor {0} ({1})", first_in_batch.name, first_in_batch.id, ) break latest_fetched_actor_timestamp = datetime_to_timestamp(created_date) self._process_actors(actors_batch) state_timestamp = latest_fetched_actor_timestamp or fetch_timestamp self._info( "Actor importer completed, latest fetch {0}.", timestamp_to_datetime(state_timestamp), ) return {self._LATEST_ACTOR_TIMESTAMP: state_timestamp} def _fetch_actors(self, start_timestamp: int) -> Generator[List[Actor], None, None]: limit = 50 sort = "created_date|desc" fql_filter = f"created_date:>{start_timestamp}" fields = ["__full__"] paginated_query = paginate(self._query_actor_entities) return paginated_query( limit=limit, sort=sort, fql_filter=fql_filter, fields=fields ) def _query_actor_entities( self, limit: int = 50, offset: int = 0, sort: Optional[str] = None, fql_filter: Optional[str] = None, fields: Optional[List[str]] = None, ) -> Response[Actor]: self._info( "Query actors limit: {0}, offset: {1}, sort: {2}, filter: {3}, fields: {4}", limit, offset, sort, fql_filter, fields, ) return self.actors_api.query_entities( limit=limit, offset=offset, sort=sort, fql_filter=fql_filter, fields=fields ) def _process_actors(self, actors: List[Actor]) -> None: actor_count = len(actors) self._info("Processing {0} actors...", actor_count) for actor in actors: self._process_actor(actor) self._info("Processing actors completed (imported: {0})", actor_count) def _process_actor(self, actor: Actor) -> None: self._info("Processing actor {0} ({1})...", actor.name, actor.id) actor_bundle = self._create_actor_bundle(actor) # with open(f"actor_bundle_{actor.id}.json", "w") as f: # f.write(actor_bundle.serialize(pretty=True)) self._send_bundle(actor_bundle) def _create_actor_bundle(self, actor: Actor) -> Optional[Bundle]: author = self.author source_name = self._source_name() object_marking_refs = [self.tlp_marking] confidence_level = self._confidence_level() bundle_builder = ActorBundleBuilder( actor, author, source_name, object_marking_refs, confidence_level ) return bundle_builder.build()
1,953
0
135
f6bfb6ffbc2d0285ca49b8bc43649c6454ef1f28
3,024
py
Python
Sample.py
zerobounce-llc/zero-bounce-python-sdk-setup
46dcdce9ece529e23d65fa92fb81f8ac19ce5c2e
[ "MIT" ]
null
null
null
Sample.py
zerobounce-llc/zero-bounce-python-sdk-setup
46dcdce9ece529e23d65fa92fb81f8ac19ce5c2e
[ "MIT" ]
null
null
null
Sample.py
zerobounce-llc/zero-bounce-python-sdk-setup
46dcdce9ece529e23d65fa92fb81f8ac19ce5c2e
[ "MIT" ]
null
null
null
from datetime import date from zerobouncesdk import zerobouncesdk, ZBApiException, \ ZBMissingApiKeyException test()
29.076923
85
0.652116
from datetime import date from zerobouncesdk import zerobouncesdk, ZBApiException, \ ZBMissingApiKeyException def test_validate(): try: response = zerobouncesdk.validate(email="<EMAIL_TO_TEST>") print("validate success response: " + str(response)) except ZBApiException as e: print("validate error message: " + str(e)) except ZBMissingApiKeyException as e: print("get_credits error message: " + str(e)) def test_get_credits(): try: response = zerobouncesdk.get_credits() print("get_credits success response: " + str(response)) except ZBApiException as e: print("get_credits error message: " + str(e)) except ZBMissingApiKeyException as e: print("get_credits error message: " + str(e)) def test_send_file(): try: response = zerobouncesdk.send_file( file_path='./email_file.csv', email_address_column=1, return_url=None, first_name_column=2, last_name_column=3, has_header_row=True) print("sendfile success response: " + str(response)) except ZBApiException as e: print("sendfile error message: " + str(e)) except ZBMissingApiKeyException as e: print("get_credits error message: " + str(e)) def test_file_status(): try: response = zerobouncesdk.file_status("<YOUR_FILE_ID>") print("file_status success response: " + str(response)) except ZBApiException as e: print("file_status error message: " + str(e)) except ZBMissingApiKeyException as e: print("file_status error message: " + str(e)) def test_delete_file(): try: response = zerobouncesdk.delete_file("<YOUR_FILE_ID>") print("delete_file success response: " + str(response)) except ZBApiException as e: print("delete_file error message: " + str(e)) except ZBMissingApiKeyException as e: print("delete_file error message: " + str(e)) def test_get_api_usage(): try: start_date = date(2019, 7, 5) end_date = date(2019, 7, 15) response = zerobouncesdk.get_api_usage(start_date, end_date) print("get_api_usage success response: " + str(response)) except ZBApiException as e: print("get_api_usage error message: " + str(e)) except ZBMissingApiKeyException as e: print("get_api_usage error message: " + str(e)) def test_get_file(): try: response = zerobouncesdk.get_file("<YOUR_FILE_ID>", "./downloads/emails.csv") print("get_file success response: " + str(response)) except ZBApiException as e: print("get_file error message: " + str(e)) except ZBMissingApiKeyException as e: print("get_file error message: " + str(e)) def test(): zerobouncesdk.initialize("<YOUR_API_KEY>") # test_validate() # test_send_file() # test_get_credits() # test_file_status() # test_delete_file() # test_get_api_usage() test_get_file() test()
2,709
0
184
7bc2b1b8575ca1fb963e3e27a6dc57290ad35330
2,305
py
Python
Software/Sensors/IAQ_SCD30.py
xJohnnyBravo/zephyrus-iaq
31d39ae21080de55d39bc0dde6e49f5749d39477
[ "MIT" ]
2
2019-10-01T23:08:25.000Z
2019-11-05T23:37:38.000Z
Software/Sensors/IAQ_SCD30.py
aaronjense/raspberrypi-indoor-air-quality-pcb
7e1fc68b31dea88229866c8cbc6b221a4a679134
[ "MIT" ]
1
2019-11-14T02:28:30.000Z
2019-11-14T02:28:30.000Z
Software/Sensors/IAQ_SCD30.py
aaronjense/raspberrypi-indoor-air-quality-pcb
7e1fc68b31dea88229866c8cbc6b221a4a679134
[ "MIT" ]
6
2019-10-01T22:44:44.000Z
2019-11-14T20:19:46.000Z
#!/usr/bin/python ################################################################################# # MIT License # # Copyright (c) 2019 Aaron Jense, Amy Heidner, Dennis Heidner # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ################################################################################# from third_party.Adafruit_I2C import * from IAQ_Exceptions import * import struct
39.741379
82
0.6282
#!/usr/bin/python ################################################################################# # MIT License # # Copyright (c) 2019 Aaron Jense, Amy Heidner, Dennis Heidner # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ################################################################################# from third_party.Adafruit_I2C import * from IAQ_Exceptions import * import struct class IAQ_SCD30(): sid = None i2c = None I2C_ADDRESS = 0x61 def __init__(self, sensor_id=None): self.sid = sensor_id try: self.i2c = Adafruit_I2C(self.I2C_ADDRESS, debug=False) except IOError: raise SensorSetupError('Could not setup SCD30 I2C.') def getData(self): try: self.i2c.write8(0x0,0) self.i2c.write8(0x46,2) rawdata = self.i2c.readList(0x03,18) struct_co2 = struct.pack('BBBB', rawdata[0], rawdata[1], rawdata[3], rawdata[4]) float_co2 = struct.unpack('>f', struct_co2) data = "%.4f"%float_co2 except IOError: raise SensorReadError('Unable to read SCD30.') except TypeError: raise SensorReadError('Unable to read SCD30.') return data
736
112
24
64b668a6aa6c762d7927caa38bc992ca22f6db7c
3,424
py
Python
dc_gym/iroko_reward.py
matthieu637/iroko
3905caa46328a7c011762f8a96a15fbde9826899
[ "Apache-2.0" ]
56
2018-12-01T00:11:27.000Z
2022-03-08T04:10:10.000Z
dc_gym/iroko_reward.py
matthieu637/iroko
3905caa46328a7c011762f8a96a15fbde9826899
[ "Apache-2.0" ]
33
2018-12-13T20:18:07.000Z
2022-03-23T16:03:26.000Z
dc_gym/iroko_reward.py
matthieu637/iroko
3905caa46328a7c011762f8a96a15fbde9826899
[ "Apache-2.0" ]
17
2019-02-19T05:31:23.000Z
2022-03-14T15:20:00.000Z
import numpy as np import math import logging log = logging.getLogger(__name__) def fairness_reward(actions, queues=None): """Compute Jain"s fairness index for a list of values. See http://en.wikipedia.org/wiki/Fairness_measure for fairness equations. @param values: list of values @return fairness: JFI """ if len(actions) == 0: return 1.0 num = sum(actions) ** 2 denom = len(actions) * sum([i ** 2 for i in actions]) return num / float(denom) def gini_reward(actions, queues=None): """Calculate the Gini coefficient of a numpy array.""" # based on bottom eq: # http://www.statsdirect.com/help/generatedimages/equations/equation154.svg # from: # http://www.statsdirect.com/help/default.htm#nonparametric_methods/gini.htm # All values are treated equally, arrays must be 1d: # Values must be sorted: actions = np.sort(actions) # Number of array elements: n = actions.shape[0] # Index per array element: index = np.arange(1, n + 1) # Gini coefficient: return ((np.sum((2 * index - n - 1) * actions)) / (n * np.sum(actions))) # small script to visualize the reward output if __name__ == "__main__": import matplotlib.pyplot as plt queues = [i * 0.1 for i in range(0, 11)] actions = [i * .001 for i in range(0, 1000)] for queue in queues: rewards = [] queue_input = np.array([queue]) for action in actions: action_input = np.array([action]) rewards.append((joint_queue_reward(action_input, queue_input))) plt.plot(actions, rewards, label="Queue Size %f" % queue) plt.xlabel("Action Input") plt.ylabel("Reward") plt.legend() plt.show()
29.264957
80
0.651577
import numpy as np import math import logging log = logging.getLogger(__name__) def fairness_reward(actions, queues=None): """Compute Jain"s fairness index for a list of values. See http://en.wikipedia.org/wiki/Fairness_measure for fairness equations. @param values: list of values @return fairness: JFI """ if len(actions) == 0: return 1.0 num = sum(actions) ** 2 denom = len(actions) * sum([i ** 2 for i in actions]) return num / float(denom) def gini_reward(actions, queues=None): """Calculate the Gini coefficient of a numpy array.""" # based on bottom eq: # http://www.statsdirect.com/help/generatedimages/equations/equation154.svg # from: # http://www.statsdirect.com/help/default.htm#nonparametric_methods/gini.htm # All values are treated equally, arrays must be 1d: # Values must be sorted: actions = np.sort(actions) # Number of array elements: n = actions.shape[0] # Index per array element: index = np.arange(1, n + 1) # Gini coefficient: return ((np.sum((2 * index - n - 1) * actions)) / (n * np.sum(actions))) def action_reward(actions, queues=None): return np.mean(actions) def fair_queue_reward(actions, queues): queue = np.max(queues) action = np.mean(actions) fairness = fairness_reward(actions[actions < 1.0]) reward = action - queue * action + (fairness * (1 - queue)) return reward def joint_queue_reward(actions, queues): queue = np.max(queues) action = np.mean(actions) reward = action - 2 * (queue * action) return reward def step_reward(actions, queues): queue = np.max(queues) action = np.mean(actions) if queue > 0.30: return -action - queue else: return action * (1 + (1 - gini_reward(actions))) - queue def std_dev_reward(actions, queues=None): return -np.std(actions) def queue_reward(actions, queues): queue_reward = -np.sum(queues)**2 return queue_reward def selu_reward(reward): alpha = 1.6732632423543772848170429916717 scale = 1.0507009873554804934193349852946 return scale * (max(0, reward) + min(0, alpha * (math.exp(reward) - 1))) class RewardFunction: __slots__ = ["stats_dict", "reward_funs"] def __init__(self, reward_models, stats_dict): self.stats_dict = stats_dict self.reward_funs = self._set_reward(reward_models) def _set_reward(self, reward_models): reward_funs = [] for model in reward_models: reward_funs.append(globals()["%s_reward" % model]) return reward_funs def get_reward(self, stats, actions): queues = stats[self.stats_dict["backlog"]] reward = 0.0 for reward_fun in self.reward_funs: reward += reward_fun(actions, queues) return reward # small script to visualize the reward output if __name__ == "__main__": import matplotlib.pyplot as plt queues = [i * 0.1 for i in range(0, 11)] actions = [i * .001 for i in range(0, 1000)] for queue in queues: rewards = [] queue_input = np.array([queue]) for action in actions: action_input = np.array([action]) rewards.append((joint_queue_reward(action_input, queue_input))) plt.plot(actions, rewards, label="Queue Size %f" % queue) plt.xlabel("Action Input") plt.ylabel("Reward") plt.legend() plt.show()
1,379
127
184
e25ff3df493ac431d6d60b22582cb70b4670f2a3
727
py
Python
cellar/fs.py
JonathanHuot/cellarpy
74fe9f144b63b891d6cda45f10f63d310c0d0f58
[ "MIT" ]
null
null
null
cellar/fs.py
JonathanHuot/cellarpy
74fe9f144b63b891d6cda45f10f63d310c0d0f58
[ "MIT" ]
4
2018-03-03T22:08:22.000Z
2021-09-07T23:44:54.000Z
cellar/fs.py
JonathanHuot/cellarpy
74fe9f144b63b891d6cda45f10f63d310c0d0f58
[ "MIT" ]
1
2017-06-08T13:01:02.000Z
2017-06-08T13:01:02.000Z
# -*- coding: utf-8 -*- import os
25.964286
73
0.639615
# -*- coding: utf-8 -*- import os def iswritable(directory): if not os.path.exists(directory): try: os.makedirs(directory) except: return False return os.access(directory, os.W_OK | os.X_OK | os.R_OK) def static_file_path(root, filename): root = os.path.abspath(root) + os.sep return os.path.abspath(os.path.join(root, filename.strip('/\\'))) def static_file_exists(root, filename): root = os.path.abspath(root) + os.sep filename = os.path.abspath(os.path.join(root, filename.strip('/\\'))) if not filename.startswith(root): return False if not os.path.exists(filename) or not os.path.isfile(filename): return False return True
621
0
69
3c950daaa32f79dd0904fd8cf520966d77491761
371
py
Python
ex043.py
GuilhermeAntony14/Estudando-Python
b020f6d2625e7fcc42d30658bcbd881b093434dd
[ "MIT" ]
null
null
null
ex043.py
GuilhermeAntony14/Estudando-Python
b020f6d2625e7fcc42d30658bcbd881b093434dd
[ "MIT" ]
null
null
null
ex043.py
GuilhermeAntony14/Estudando-Python
b020f6d2625e7fcc42d30658bcbd881b093434dd
[ "MIT" ]
null
null
null
print('vamos calcular seu IMC') a = float(input('Sua altura: ')) p = float(input('Seu peso: ')) n = (p/(a**2)) print(f'Seu IMC e: {n:.1f}') if n < 18.5: print('Abaixo do peso.') elif n <= 25 and n > 18.5: print('Peso ideal.') elif n < 30 and n > 25: print('Sobrepeso.') elif n <= 40 and 30 < n: print('obsidade.') else: print('obsidade mórbida.')
23.1875
32
0.566038
print('vamos calcular seu IMC') a = float(input('Sua altura: ')) p = float(input('Seu peso: ')) n = (p/(a**2)) print(f'Seu IMC e: {n:.1f}') if n < 18.5: print('Abaixo do peso.') elif n <= 25 and n > 18.5: print('Peso ideal.') elif n < 30 and n > 25: print('Sobrepeso.') elif n <= 40 and 30 < n: print('obsidade.') else: print('obsidade mórbida.')
0
0
0
e5bd5f40b426cef7283c560a2796fb22b549035d
667
py
Python
tests/test_data_cleanser.py
luisccalves/supplychainpy
63a10b77ffdcc5bca71e815c70667c819d8f9af0
[ "BSD-3-Clause" ]
231
2016-05-30T02:34:45.000Z
2022-03-28T17:00:29.000Z
tests/test_data_cleanser.py
luisccalves/supplychainpy
63a10b77ffdcc5bca71e815c70667c819d8f9af0
[ "BSD-3-Clause" ]
77
2016-03-23T16:28:34.000Z
2021-09-30T22:08:03.000Z
tests/test_data_cleanser.py
luisccalves/supplychainpy
63a10b77ffdcc5bca71e815c70667c819d8f9af0
[ "BSD-3-Clause" ]
103
2016-08-10T19:53:09.000Z
2022-03-16T16:34:38.000Z
from unittest import TestCase import logging from supplychainpy._helpers import _data_cleansing from supplychainpy.sample_data.config import ABS_FILE_PATH #logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
39.235294
104
0.728636
from unittest import TestCase import logging from supplychainpy._helpers import _data_cleansing from supplychainpy.sample_data.config import ABS_FILE_PATH #logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') class TestCleanser(TestCase): def test_incorrect_row_length(self): """ Tests for incorrect specification of number of columns after initial SKU identification. """ with open(ABS_FILE_PATH['COMPLETE_CSV_XSM']) as f: for i in range(0, 11): with self.assertRaises(expected_exception=Exception): _data_cleansing.clean_orders_data_row_csv(f, length=i)
0
393
23
e738317c6f5cf90c7eb6eb5ab706d4e66f9a907d
438
py
Python
sikuli-ide/sample-scripts/mute.sikuli/mute.py
mgrundy/sikuli
4adaab7880d2f3e14702ca7287ae9c9e4f4de9ab
[ "MIT" ]
1,292
2015-01-09T17:48:46.000Z
2022-03-30T20:08:15.000Z
sikuli-ide/sample-scripts/mute.sikuli/mute.py
mgrundy/sikuli
4adaab7880d2f3e14702ca7287ae9c9e4f4de9ab
[ "MIT" ]
31
2015-01-20T15:01:24.000Z
2022-03-03T11:02:06.000Z
sikuli-ide/sample-scripts/mute.sikuli/mute.py
mgrundy/sikuli
4adaab7880d2f3e14702ca7287ae9c9e4f4de9ab
[ "MIT" ]
267
2015-02-08T19:51:25.000Z
2022-03-19T22:16:01.000Z
switchApp("System Preferences.app") click("1273526123226.png") click("1273526171905.png") thumbs = findAll("1273527194228.png") for t in list(thumbs)[:2]: # only take the first two dragLeft(t) # off #dragRight(t) # on #dragToMute(t)
23.052632
58
0.691781
def dragLeft(t): dragDrop(t, t.getCenter().left(200)) def dragRight(t): dragDrop(t, t.getCenter().right(200)) def dragToMute(t): dragDrop(t, t.nearby().left().find("1273527108356.png")) switchApp("System Preferences.app") click("1273526123226.png") click("1273526171905.png") thumbs = findAll("1273527194228.png") for t in list(thumbs)[:2]: # only take the first two dragLeft(t) # off #dragRight(t) # on #dragToMute(t)
127
0
68
5a5a83ad47518f4946babfacb96a920c30542e02
4,869
py
Python
pytest_func_cov/plugin.py
radug0314/pytest_func_cov
cc689ba68d083e69d399baad83189861a7adb199
[ "MIT" ]
4
2020-04-03T19:36:51.000Z
2021-04-11T23:41:59.000Z
pytest_func_cov/plugin.py
RaduG/pytest_func_cov
cc689ba68d083e69d399baad83189861a7adb199
[ "MIT" ]
5
2020-02-23T20:37:04.000Z
2021-07-07T07:53:39.000Z
pytest_func_cov/plugin.py
radug0314/pytest_func_cov
cc689ba68d083e69d399baad83189861a7adb199
[ "MIT" ]
1
2021-04-05T15:36:54.000Z
2021-04-05T15:36:54.000Z
import os import sys from .tracking import FunctionIndexer, get_full_function_name def pytest_addoption(parser): """ Pytest hook - register command line arguments. We want to register the --func_cov argument to explicitly pass the location of the package to discover and the ignore_func_names ini setting. Args: parser: """ group = parser.getgroup("func_cov") group.addoption( "--func_cov", dest="func_cov_source", action="append", default=[], metavar="SOURCE", nargs="?", const=True, ) group.addoption( "--func_cov_report", dest="func_cov_report", action="append", default=[], metavar="SOURCE", nargs="?", const=True, ) parser.addini("ignore_func_names", "function names to ignore", "linelist", [])
30.622642
82
0.586979
import os import sys from .tracking import FunctionIndexer, get_full_function_name def pytest_addoption(parser): """ Pytest hook - register command line arguments. We want to register the --func_cov argument to explicitly pass the location of the package to discover and the ignore_func_names ini setting. Args: parser: """ group = parser.getgroup("func_cov") group.addoption( "--func_cov", dest="func_cov_source", action="append", default=[], metavar="SOURCE", nargs="?", const=True, ) group.addoption( "--func_cov_report", dest="func_cov_report", action="append", default=[], metavar="SOURCE", nargs="?", const=True, ) parser.addini("ignore_func_names", "function names to ignore", "linelist", []) def pytest_load_initial_conftests(early_config, parser, args): if early_config.known_args_namespace.func_cov_source: plugin = FuncCovPlugin(early_config) early_config.pluginmanager.register(plugin, "_func_cov") class FuncCovPlugin: def __init__(self, args): self.args = args self.indexer = FunctionIndexer(args.getini("ignore_func_names")) def pytest_sessionstart(self, session): """ Pytest hook - called when the pytest session is created. At this point, we need to run a full module discovery and register all functions prior to initiating the collection. If the PYTEST_FUNC_COV environment variable is set, use that as the root discovery path, relative to the session fspath. Args: session: Pytest session """ # Add current folder to sys.path if it is not already in cwd = os.getcwd() if cwd not in sys.path: sys.path.append(cwd) pytest_cov_paths = self.args.known_args_namespace.func_cov_source if len(pytest_cov_paths) == 0: pytest_cov_paths = [session.fspath] else: pytest_cov_paths = [ os.path.join(session.fspath, path.rstrip("/\\")) for path in pytest_cov_paths ] for package_path in pytest_cov_paths: self.indexer.index_package(package_path) def pytest_collect_file(self, path): """ Pytest hook - called before the collection of a file. At this point we need to register the current test file as a valid function call origin. Args: path (str): Path to test file """ self.indexer.register_source_module(str(path)) def pytest_terminal_summary(self, terminalreporter): """ Pytest hook - called when the test summary is outputted. Here we output basic statistics of the number of functions registered and called, as well as a function call test coverage (in percentage). Args: terminalreporter: """ output_options = self.args.known_args_namespace.func_cov_report include_missing = "term-missing" in output_options tr = terminalreporter cwd = os.getcwd() found = self.indexer.monitor.registered_functions called = self.indexer.monitor.called_functions missed = self.indexer.monitor.missed_functions module_paths = [sys.modules[m].__file__[len(cwd) + 1 :] for m, _ in found] max_name_len = max([len(mp) for mp in module_paths] + [5]) fmt_name = "%%- %ds " % max_name_len header = (fmt_name % "Name") + " Funcs Miss" + "%*s" % (10, "Cover") if include_missing: header += "%*s" % (10, "Missing") fmt_coverage = fmt_name + "%6d %6d" + "%%%ds%%%%" % (9,) if include_missing: fmt_coverage += " %s" msg = "pytest_func_cov" tr.write("-" * 20 + msg + "-" * 20 + "\n") tr.write(header + "\n") tr.write("-" * len(header) + "\n") total_funcs = 0 total_miss = 0 for i, mp in enumerate(module_paths): funcs = len(found[i][1]) miss = len(missed[i][1]) cover = int(((funcs - miss) / funcs) * 100) total_funcs += funcs total_miss += miss args = (mp, funcs, miss, cover) if include_missing: args += (", ".join([f.__qualname__ for f in missed[i][1]]),) tr.write(fmt_coverage % args) tr.write("\n") tr.write("-" * len(header) + "\n") if total_funcs != 0: total_cover = int(((total_funcs - total_miss) / total_funcs) * 100) else: total_cover = 0 args = ("TOTAL", total_funcs, total_miss, total_cover) if include_missing: args += ("",) tr.write(fmt_coverage % args + "\n")
311
3,637
46
df932a1d318345b8235882775e0cd92939917f5c
1,968
py
Python
lib/tests/test_runner.py
xuzhiying9510/ncflow
3f6f4a5b2c13ac8f6375b097b35f6c55b18d212e
[ "Artistic-1.0-cl8" ]
10
2021-02-09T19:25:46.000Z
2022-03-29T13:49:23.000Z
lib/tests/test_runner.py
xuzhiying9510/ncflow
3f6f4a5b2c13ac8f6375b097b35f6c55b18d212e
[ "Artistic-1.0-cl8" ]
null
null
null
lib/tests/test_runner.py
xuzhiying9510/ncflow
3f6f4a5b2c13ac8f6375b097b35f6c55b18d212e
[ "Artistic-1.0-cl8" ]
5
2020-12-23T15:24:40.000Z
2022-01-06T09:42:38.000Z
#! /usr/bin/env python from .toy_problem_test import ToyProblemTest from .reconciliation_problem_test import ReconciliationProblemTest from .reconciliation_problem_2_test import ReconciliationProblem2Test from .recon3_test import Recon3Test from .optgapc1_test import OptGapC1Test from .optgapc2_test import OptGapC2Test from .optgapc3_test import OptGapC3Test from .optgap4_test import OptGap4Test from .single_edge_b import SingleEdgeBTest from .feasibility_test import FeasibilityTest from .flow_path_construction_test import FlowPathConstructionTest from .we_need_to_fix_this_test import WeNeedToFixThisTest from .abstract_test import bcolors import argparse ALL_TESTS = [ToyProblemTest(), ReconciliationProblemTest(), ReconciliationProblem2Test(), Recon3Test(), OptGapC1Test(), OptGapC2Test(), OptGapC3Test(), FeasibilityTest(), OptGap4Test(), FlowPathConstructionTest(), WeNeedToFixThisTest(), SingleEdgeBTest()] TEST_NAME_DICT = {test.name: test for test in ALL_TESTS} if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--tests', nargs='+', required=False) args = parser.parse_args() if args.tests is not None: tests_to_run = [TEST_NAME_DICT[name] for name in args.tests] else: tests_to_run = ALL_TESTS print('RUNNING THE FOLLOWING TESTS: {}'.format( [test.name for test in tests_to_run])) run_tests(tests_to_run)
33.931034
102
0.723069
#! /usr/bin/env python from .toy_problem_test import ToyProblemTest from .reconciliation_problem_test import ReconciliationProblemTest from .reconciliation_problem_2_test import ReconciliationProblem2Test from .recon3_test import Recon3Test from .optgapc1_test import OptGapC1Test from .optgapc2_test import OptGapC2Test from .optgapc3_test import OptGapC3Test from .optgap4_test import OptGap4Test from .single_edge_b import SingleEdgeBTest from .feasibility_test import FeasibilityTest from .flow_path_construction_test import FlowPathConstructionTest from .we_need_to_fix_this_test import WeNeedToFixThisTest from .abstract_test import bcolors import argparse ALL_TESTS = [ToyProblemTest(), ReconciliationProblemTest(), ReconciliationProblem2Test(), Recon3Test(), OptGapC1Test(), OptGapC2Test(), OptGapC3Test(), FeasibilityTest(), OptGap4Test(), FlowPathConstructionTest(), WeNeedToFixThisTest(), SingleEdgeBTest()] TEST_NAME_DICT = {test.name: test for test in ALL_TESTS} def run_tests(tests_to_run): tests_that_failed = [] for test in tests_to_run: print('\n\n---{} TEST---\n\n'.format(test.name.upper())) test.run() if test.has_error: tests_that_failed.append(test) for test in tests_that_failed: print() print(bcolors.ERROR + '\n\n---{} TEST failed---\n\n'.format(test.name.upper()) + bcolors.ENDC) if len(tests_that_failed) == 0: print(bcolors.OKGREEN + 'All tests passed!' + bcolors.ENDC) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--tests', nargs='+', required=False) args = parser.parse_args() if args.tests is not None: tests_to_run = [TEST_NAME_DICT[name] for name in args.tests] else: tests_to_run = ALL_TESTS print('RUNNING THE FOLLOWING TESTS: {}'.format( [test.name for test in tests_to_run])) run_tests(tests_to_run)
476
0
23
5eef5e446e1922c169ce5770f96bdb08b8933d69
17,847
py
Python
openmdao/core/tests/test_getset_vars.py
friedenhe/OpenMDAO
db1d7e22a8bf9f66afa82ec3544b7244d5545f6d
[ "Apache-2.0" ]
451
2015-07-20T11:52:35.000Z
2022-03-28T08:04:56.000Z
openmdao/core/tests/test_getset_vars.py
friedenhe/OpenMDAO
db1d7e22a8bf9f66afa82ec3544b7244d5545f6d
[ "Apache-2.0" ]
1,096
2015-07-21T03:08:26.000Z
2022-03-31T11:59:17.000Z
openmdao/core/tests/test_getset_vars.py
friedenhe/OpenMDAO
db1d7e22a8bf9f66afa82ec3544b7244d5545f6d
[ "Apache-2.0" ]
301
2015-07-16T20:02:11.000Z
2022-03-28T08:04:39.000Z
"""Test getting/setting variables and subjacs with promoted/relative/absolute names.""" import unittest import numpy as np from openmdao.api import Problem, Group, ExecComp, IndepVarComp, DirectSolver, ParallelGroup from openmdao.utils.mpi import MPI try: from openmdao.vectors.petsc_vector import PETScVector except ImportError: PETScVector = None @unittest.skipUnless(MPI and PETScVector, "MPI and PETSc are required.") if __name__ == '__main__': unittest.main()
39.837054
292
0.518462
"""Test getting/setting variables and subjacs with promoted/relative/absolute names.""" import unittest import numpy as np from openmdao.api import Problem, Group, ExecComp, IndepVarComp, DirectSolver, ParallelGroup from openmdao.utils.mpi import MPI try: from openmdao.vectors.petsc_vector import PETScVector except ImportError: PETScVector = None class TestGetSetVariables(unittest.TestCase): def test_no_promotion(self): """ Illustrative examples showing how to access variables and subjacs. """ c = ExecComp('y=2*x') g = Group() g.add_subsystem('c', c) model = Group() model.add_subsystem('g', g) p = Problem(model) p.setup() # ------------------------------------------------------------------- # inputs p['g.c.x'] = 5.0 self.assertEqual(p['g.c.x'], 5.0) # outputs p['g.c.y'] = 5.0 self.assertEqual(p['g.c.y'], 5.0) # Conclude setup but don't run model. p.final_setup() inputs, outputs, residuals = g.get_nonlinear_vectors() # inputs inputs['c.x'] = 5.0 self.assertEqual(inputs['c.x'], 5.0) # outputs outputs['c.y'] = 5.0 self.assertEqual(outputs['c.y'], 5.0) # Removed part of test where we set values into the jacobian willy-nilly. # You can only set declared values now. def test_with_promotion(self): """ Illustrative examples showing how to access variables and subjacs. """ c1 = IndepVarComp('x') c2 = ExecComp('y=2*x') c3 = ExecComp('z=3*x') g = Group() g.add_subsystem('c1', c1, promotes=['*']) g.add_subsystem('c2', c2, promotes=['*']) g.add_subsystem('c3', c3, promotes=['*']) model = Group() model.add_subsystem('g', g, promotes=['*']) p = Problem(model) p.setup() # ------------------------------------------------------------------- # inputs p['g.c2.x'] = 5.0 self.assertEqual(p['g.c2.x'], 5.0) # outputs p['g.c2.y'] = 5.0 self.assertEqual(p['g.c2.y'], 5.0) p['y'] = 5.0 self.assertEqual(p['y'], 5.0) # Conclude setup but don't run model. p.final_setup() inputs, outputs, residuals = g.get_nonlinear_vectors() # inputs inputs['c2.x'] = 5.0 self.assertEqual(inputs['c2.x'], 5.0) # outputs outputs['c2.y'] = 5.0 self.assertEqual(outputs['c2.y'], 5.0) outputs['y'] = 5.0 self.assertEqual(outputs['y'], 5.0) # Removed part of test where we set values into the jacobian willy-nilly. You can only set # declared values now. def test_no_promotion_errors(self): """ Tests for error-handling for invalid variable names and keys. """ g = Group(assembled_jac_type='dense') g.linear_solver = DirectSolver(assemble_jac=True) g.add_subsystem('c', ExecComp('y=2*x')) p = Problem() model = p.model model.add_subsystem('g', g) p.setup() # ------------------------------------------------------------------- msg = '\'<model> <class Group>: Variable "{}" not found.\'' # inputs with self.assertRaises(KeyError) as ctx: p['x'] = 5.0 self.assertEqual(str(ctx.exception), msg.format('x')) p._initial_condition_cache = {} with self.assertRaises(KeyError) as ctx: p['x'] self.assertEqual(str(ctx.exception), msg.format('x')) # outputs with self.assertRaises(KeyError) as ctx: p['y'] = 5.0 self.assertEqual(str(ctx.exception), msg.format('y')) p._initial_condition_cache = {} with self.assertRaises(KeyError) as ctx: p['y'] self.assertEqual(str(ctx.exception), msg.format('y')) p.final_setup() msg = "'g' <class Group>: Variable name '{}' not found." inputs, outputs, residuals = g.get_nonlinear_vectors() # inputs for vname in ['x', 'g.c.x']: with self.assertRaises(KeyError) as cm: inputs[vname] = 5.0 self.assertEqual(cm.exception.args[0], f"'g' <class Group>: Variable name '{vname}' not found.") with self.assertRaises(KeyError) as cm: inputs[vname] self.assertEqual(cm.exception.args[0], f"'g' <class Group>: Variable name '{vname}' not found.") # outputs for vname in ['y', 'g.c.y']: with self.assertRaises(KeyError) as cm: outputs[vname] = 5.0 self.assertEqual(cm.exception.args[0], f"'g' <class Group>: Variable name '{vname}' not found.") with self.assertRaises(KeyError) as cm: outputs[vname] self.assertEqual(cm.exception.args[0], f"'g' <class Group>: Variable name '{vname}' not found.") msg = r'Variable name pair \("{}", "{}"\) not found.' jac = g.linear_solver._assembled_jac # d(output)/d(input) with self.assertRaisesRegex(KeyError, msg.format('y', 'x')): jac['y', 'x'] = 5.0 with self.assertRaisesRegex(KeyError, msg.format('y', 'x')): jac['y', 'x'] # allow absolute keys now # with self.assertRaisesRegex(KeyError, msg.format('g.c.y', 'g.c.x')): # jac['g.c.y', 'g.c.x'] = 5.0 # with self.assertRaisesRegex(KeyError, msg.format('g.c.y', 'g.c.x')): # deriv = jac['g.c.y', 'g.c.x'] # d(output)/d(output) with self.assertRaisesRegex(KeyError, msg.format('y', 'y')): jac['y', 'y'] = 5.0 with self.assertRaisesRegex(KeyError, msg.format('y', 'y')): jac['y', 'y'] # allow absoute keys now # with self.assertRaisesRegex(KeyError, msg.format('g.c.y', 'g.c.y')): # jac['g.c.y', 'g.c.y'] = 5.0 # with self.assertRaisesRegex(KeyError, msg.format('g.c.y', 'g.c.y')): # deriv = jac['g.c.y', 'g.c.y'] def test_with_promotion_errors(self): """ Tests for error-handling for invalid variable names and keys. """ c1 = IndepVarComp('x') c2 = ExecComp('y=2*x') c3 = ExecComp('z=3*x') g = Group(assembled_jac_type='dense') g.add_subsystem('c1', c1, promotes=['*']) g.add_subsystem('c2', c2, promotes=['*']) g.add_subsystem('c3', c3, promotes=['*']) g.linear_solver = DirectSolver(assemble_jac=True) model = Group() model.add_subsystem('g', g, promotes=['*']) p = Problem(model) p.setup() # Conclude setup but don't run model. p.final_setup() # ------------------------------------------------------------------- msg1 = "'g' <class Group>: Variable name '{}' not found." msg2 = "The promoted name x is invalid because it refers to multiple inputs: " \ "[g.c2.x ,g.c3.x]. Access the value from the connected output variable x instead." inputs, outputs, residuals = g.get_nonlinear_vectors() # inputs with self.assertRaises(Exception) as context: inputs['x'] = 5.0 self.assertEqual(str(context.exception), msg2) with self.assertRaises(Exception) as context: self.assertEqual(inputs['x'], 5.0) self.assertEqual(str(context.exception), msg2) with self.assertRaises(KeyError) as cm: inputs['g.c2.x'] = 5.0 self.assertEqual(cm.exception.args[0], msg1.format('g.c2.x')) with self.assertRaises(KeyError) as cm: inputs['g.c2.x'] self.assertEqual(cm.exception.args[0], msg1.format('g.c2.x')) # outputs with self.assertRaises(KeyError) as cm: outputs['g.c2.y'] = 5.0 self.assertEqual(cm.exception.args[0], msg1.format('g.c2.y')) with self.assertRaises(KeyError) as cm: outputs['g.c2.y'] self.assertEqual(cm.exception.args[0], msg1.format('g.c2.y')) msg1 = r'Variable name pair \("{}", "{}"\) not found.' jac = g.linear_solver._assembled_jac # d(outputs)/d(inputs) with self.assertRaises(Exception) as context: jac['y', 'x'] = 5.0 self.assertEqual(str(context.exception), msg2) with self.assertRaises(Exception) as context: self.assertEqual(jac['y', 'x'], 5.0) self.assertEqual(str(context.exception), msg2) def test_serial_multi_src_inds(self): p = Problem() p.model.add_subsystem('indep', IndepVarComp('x', val=np.ones(10))) p.model.add_subsystem('C1', ExecComp('y=x*2.', x=np.zeros(7), y=np.zeros(7))) p.model.add_subsystem('C2', ExecComp('y=x*3.', x=np.zeros(3), y=np.zeros(3))) p.model.connect('indep.x', 'C1.x', src_indices=list(range(7))) p.model.connect('indep.x', 'C2.x', src_indices=list(range(7, 10))) p.setup() p['C1.x'] = (np.arange(7) + 1.) * 2. p['C2.x'] = (np.arange(7,10) + 1.) * 3. p.run_model() np.testing.assert_allclose(p['indep.x'][:7], (np.arange(7) + 1.) * 2.) np.testing.assert_allclose(p['indep.x'][7:10], (np.arange(7,10) + 1.) * 3.) np.testing.assert_allclose(p['C1.x'], (np.arange(7) + 1.) * 2.) np.testing.assert_allclose(p['C2.x'], (np.arange(7,10) + 1.) * 3.) np.testing.assert_allclose(p['C1.y'], (np.arange(7) + 1.) * 4.) np.testing.assert_allclose(p['C2.y'], (np.arange(7,10) + 1.) * 9.) def test_serial_multi_src_inds_promoted(self): p = Problem() p.model.add_subsystem('indep', IndepVarComp('x', val=np.ones(10)), promotes=['x']) p.model.add_subsystem('C1', ExecComp('y=x*2.', x={'val': np.zeros(7)}, y={'val': np.zeros(7)})) p.model.add_subsystem('C2', ExecComp('y=x*3.', x={'val': np.zeros(3)}, y={'val': np.zeros(3)})) p.model.promotes('C1', inputs=['x'], src_indices=list(range(7))) p.model.promotes('C2', inputs=['x'], src_indices=list(range(7, 10))) p.setup() p['C1.x'] = (np.arange(7) + 1.) * 2. p['C2.x'] = (np.arange(7,10) + 1.) * 3. p.run_model() np.testing.assert_allclose(p['indep.x'][:7], (np.arange(7) + 1.) * 2.) np.testing.assert_allclose(p['indep.x'][7:10], (np.arange(7,10) + 1.) * 3.) np.testing.assert_allclose(p['C1.x'], (np.arange(7) + 1.) * 2.) np.testing.assert_allclose(p['C2.x'], (np.arange(7,10) + 1.) * 3.) np.testing.assert_allclose(p['C1.y'], (np.arange(7) + 1.) * 4.) np.testing.assert_allclose(p['C2.y'], (np.arange(7,10) + 1.) * 9.) def test_serial_multi_src_inds_units_promoted(self): p = Problem() indep = p.model.add_subsystem('indep', IndepVarComp(), promotes=['x']) indep.add_output('x', units='inch', val=np.ones(10)) p.model.add_subsystem('C1', ExecComp('y=x*2.', x={'val': np.zeros(7), 'units': 'ft'}, y={'val': np.zeros(7), 'units': 'ft'})) p.model.add_subsystem('C2', ExecComp('y=x*3.', x={'val': np.zeros(3), 'units': 'inch'}, y={'val': np.zeros(3), 'units': 'inch'})) p.model.promotes('C1', inputs=['x'], src_indices=list(range(7))) p.model.promotes('C2', inputs=['x'], src_indices=list(range(7, 10))) p.setup() p['C1.x'] = np.ones(7) * 2. p['C2.x'] = np.ones(3) * 3. p.run_model() np.testing.assert_allclose(p['indep.x'][:7], np.ones(7) * 24.) np.testing.assert_allclose(p['indep.x'][7:10], np.ones(3) * 3.) np.testing.assert_allclose(p['C1.x'], np.ones(7) * 2.) np.testing.assert_allclose(p['C1.y'], np.ones(7) * 4.) np.testing.assert_allclose(p['C2.x'], np.ones(3) * 3.) np.testing.assert_allclose(p['C2.y'], np.ones(3) * 9.) def test_serial_multi_src_inds_units_promoted_no_src(self): p = Problem() p.model.add_subsystem('C1', ExecComp('y=x*2.', x={'val': np.zeros(7), 'units': 'ft'}, y={'val': np.zeros(7), 'units': 'ft'})) p.model.add_subsystem('C2', ExecComp('y=x*3.', x={'val': np.zeros(3), 'units': 'inch'}, y={'val': np.zeros(3), 'units': 'inch'})) p.model.add_subsystem('C3', ExecComp('y=x*4.', x={'val': np.zeros(10), 'units': 'mm'}, y={'val': np.zeros(10), 'units': 'mm'}), promotes=['x']) p.model.promotes('C1', inputs=['x'], src_indices=list(range(7))) p.model.promotes('C2', inputs=['x'], src_indices=list(range(7, 10))) with self.assertRaises(RuntimeError) as cm: p.setup() self.assertEqual(str(cm.exception), "<model> <class Group>: The following inputs, ['C1.x', 'C2.x', 'C3.x'], promoted to 'x', are connected but their metadata entries ['units'] differ. Call <group>.set_input_defaults('x', units=?), where <group> is the model to remove the ambiguity.") def test_serial_multi_src_inds_units_setval_promoted(self): p = Problem() indep = p.model.add_subsystem('indep', IndepVarComp(), promotes=['x']) indep.add_output('x', units='inch', val=np.ones(10)) p.model.add_subsystem('C1', ExecComp('y=x*2.', x={'val': np.zeros(7), 'units': 'ft'}, y={'val': np.zeros(7), 'units': 'ft'})) p.model.add_subsystem('C2', ExecComp('y=x*3.', x={'val': np.zeros(3), 'units': 'inch'}, y={'val': np.zeros(3), 'units': 'inch'})) p.model.promotes('C1', inputs=['x'], src_indices=list(range(7))) p.model.promotes('C2', inputs=['x'], src_indices=list(range(7, 10))) p.setup() p.set_val('C1.x', np.ones(7) * 24., units='inch') p.set_val('C2.x', np.ones(3) * 3., units='inch') p.run_model() np.testing.assert_allclose(p['indep.x'][:7], np.ones(7) * 24.) np.testing.assert_allclose(p['indep.x'][7:10], np.ones(3) * 3.) np.testing.assert_allclose(p['C1.x'], np.ones(7) * 2.) np.testing.assert_allclose(p['C1.y'], np.ones(7) * 4.) np.testing.assert_allclose(p['C2.x'], np.ones(3) * 3.) np.testing.assert_allclose(p['C2.y'], np.ones(3) * 9.) @unittest.skipUnless(MPI and PETScVector, "MPI and PETSc are required.") class ParTestCase(unittest.TestCase): N_PROCS = 2 def test_par_multi_src_inds(self): p = Problem() p.model.add_subsystem('indep', IndepVarComp('x', val=np.ones(10))) par = p.model.add_subsystem('par', ParallelGroup()) par.add_subsystem('C1', ExecComp('y=x*2.', x=np.zeros(7), y=np.zeros(7))) par.add_subsystem('C2', ExecComp('y=x*3.', x=np.zeros(3), y=np.zeros(3))) p.model.connect('indep.x', 'par.C1.x', src_indices=list(range(7))) p.model.connect('indep.x', 'par.C2.x', src_indices=list(range(7, 10))) p.setup() p['indep.x'] = np.concatenate([(np.arange(7) + 1.) * 2., (np.arange(7, 10) + 1.) * 3.]) p.run_model() np.testing.assert_allclose(p['indep.x'][:7], (np.arange(7) + 1.) * 2.) np.testing.assert_allclose(p['indep.x'][7:10], (np.arange(7,10) + 1.) * 3.) np.testing.assert_allclose(p.get_val('par.C1.x', get_remote=True), (np.arange(7) + 1.) * 2.) np.testing.assert_allclose(p.get_val('par.C2.x', get_remote=True), (np.arange(7,10) + 1.) * 3.) np.testing.assert_allclose(p.get_val('par.C1.y', get_remote=True), (np.arange(7) + 1.) * 4.) np.testing.assert_allclose(p.get_val('par.C2.y', get_remote=True), (np.arange(7,10) + 1.) * 9.) @unittest.expectedFailure def test_par_multi_src_inds_fail(self): p = Problem() p.model.add_subsystem('indep', IndepVarComp('x', val=np.ones(10))) par = p.model.add_subsystem('par', ParallelGroup()) par.add_subsystem('C1', ExecComp('y=x*2.', x=np.zeros(7), y=np.zeros(7))) par.add_subsystem('C2', ExecComp('y=x*3.', x=np.zeros(3), y=np.zeros(3))) p.model.connect('indep.x', 'par.C1.x', src_indices=list(range(7))) p.model.connect('indep.x', 'par.C2.x', src_indices=list(range(7, 10))) p.setup() p['par.C1.x'] = (np.arange(7) + 1.) * 2. p['par.C2.x'] = (np.arange(7,10) + 1.) * 3. p.run_model() np.testing.assert_allclose(p['indep.x'][:7], (np.arange(7) + 1.) * 2.) np.testing.assert_allclose(p['indep.x'][7:10], (np.arange(7,10) + 1.) * 3.) np.testing.assert_allclose(p['par.C1.x'], (np.arange(7) + 1.) * 2.) np.testing.assert_allclose(p['par.C2.x'], (np.arange(7,10) + 1.) * 3.) np.testing.assert_allclose(p['par.C1.y'], (np.arange(7) + 1.) * 4.) np.testing.assert_allclose(p['par.C2.y'], (np.arange(7,10) + 1.) * 9.) if __name__ == '__main__': unittest.main()
8,858
8,460
45
c4ac532576ad2e3296ef052f13dff92d03c958af
6,299
py
Python
heltour/tournament/tests/test_views.py
lenguyenthanh/heltour
13018b1905539de0b273370a76f6aa1d1ebbb01a
[ "MIT" ]
null
null
null
heltour/tournament/tests/test_views.py
lenguyenthanh/heltour
13018b1905539de0b273370a76f6aa1d1ebbb01a
[ "MIT" ]
null
null
null
heltour/tournament/tests/test_views.py
lenguyenthanh/heltour
13018b1905539de0b273370a76f6aa1d1ebbb01a
[ "MIT" ]
null
null
null
from django.test import TestCase from heltour.tournament.models import * from django.core.urlresolvers import reverse # For now we just have sanity checks for the templates used # This could be enhanced by verifying the context data
41.993333
123
0.699476
from django.test import TestCase from heltour.tournament.models import * from django.core.urlresolvers import reverse # For now we just have sanity checks for the templates used # This could be enhanced by verifying the context data def createCommonLeagueData(): team_count = 4 round_count = 3 board_count = 2 league = League.objects.create(name='Team League', tag='team', competitor_type='team') season = Season.objects.create(league=league, name='Team Season', tag='team', rounds=round_count, boards=board_count) league2 = League.objects.create(name='Lone League', tag='lone') season2 = Season.objects.create(league=league2, name='Lone Season', tag='lone', rounds=round_count, boards=board_count) player_num = 1 for n in range(1, team_count + 1): team = Team.objects.create(season=season, number=n, name='Team %s' % n) TeamScore.objects.create(team=team) for b in range(1, board_count + 1): player = Player.objects.create(lichess_username='Player%d' % player_num) player_num += 1 TeamMember.objects.create(team=team, player=player, board_number=b) class HomeTestCase(TestCase): def setUp(self): pass def test_template(self): response = self.client.get(reverse('home')) self.assertTemplateUsed(response, 'tournament/home.html') class LeagueHomeTestCase(TestCase): def setUp(self): createCommonLeagueData() def test_template(self): response = self.client.get(reverse('by_league:league_home', args=['team'])) self.assertTemplateUsed(response, 'tournament/team_league_home.html') response = self.client.get(reverse('by_league:league_home', args=['lone'])) self.assertTemplateUsed(response, 'tournament/lone_league_home.html') class SeasonLandingTestCase(TestCase): def setUp(self): createCommonLeagueData() def test_template(self): response = self.client.get(reverse('by_league:by_season:season_landing', args=['team', 'team'])) self.assertTemplateUsed(response, 'tournament/team_season_landing.html') response = self.client.get(reverse('by_league:by_season:season_landing', args=['lone', 'lone'])) self.assertTemplateUsed(response, 'tournament/lone_season_landing.html') for s in Season.objects.all(): s.is_completed = True s.save() response = self.client.get(reverse('by_league:by_season:season_landing', args=['team', 'team'])) self.assertTemplateUsed(response, 'tournament/team_completed_season_landing.html') response = self.client.get(reverse('by_league:by_season:season_landing', args=['lone', 'lone'])) self.assertTemplateUsed(response, 'tournament/lone_completed_season_landing.html') class RostersTestCase(TestCase): def setUp(self): createCommonLeagueData() def test_template(self): response = self.client.get(reverse('by_league:by_season:rosters', args=['team', 'team'])) self.assertTemplateUsed(response, 'tournament/team_rosters.html') response = self.client.get(reverse('by_league:by_season:rosters', args=['lone', 'lone'])) self.assertEqual(404, response.status_code) class StandingsTestCase(TestCase): def setUp(self): createCommonLeagueData() def test_template(self): response = self.client.get(reverse('by_league:by_season:standings', args=['team', 'team'])) self.assertTemplateUsed(response, 'tournament/team_standings.html') response = self.client.get(reverse('by_league:by_season:standings', args=['lone', 'lone'])) self.assertTemplateUsed(response, 'tournament/lone_standings.html') class CrosstableTestCase(TestCase): def setUp(self): createCommonLeagueData() def test_template(self): response = self.client.get(reverse('by_league:by_season:crosstable', args=['team', 'team'])) self.assertTemplateUsed(response, 'tournament/team_crosstable.html') response = self.client.get(reverse('by_league:by_season:crosstable', args=['lone', 'lone'])) self.assertEqual(404, response.status_code) class WallchartTestCase(TestCase): def setUp(self): createCommonLeagueData() def test_template(self): response = self.client.get(reverse('by_league:by_season:wallchart', args=['team', 'team'])) self.assertEqual(404, response.status_code) response = self.client.get(reverse('by_league:by_season:wallchart', args=['lone', 'lone'])) self.assertTemplateUsed(response, 'tournament/lone_wallchart.html') class PairingsTestCase(TestCase): def setUp(self): createCommonLeagueData() def test_template(self): response = self.client.get(reverse('by_league:by_season:pairings', args=['team', 'team'])) self.assertTemplateUsed(response, 'tournament/team_pairings.html') response = self.client.get(reverse('by_league:by_season:pairings', args=['lone', 'lone'])) self.assertTemplateUsed(response, 'tournament/lone_pairings.html') class StatsTestCase(TestCase): def setUp(self): createCommonLeagueData() def test_template(self): response = self.client.get(reverse('by_league:by_season:stats', args=['team', 'team'])) self.assertTemplateUsed(response, 'tournament/team_stats.html') response = self.client.get(reverse('by_league:by_season:stats', args=['lone', 'lone'])) self.assertTemplateUsed(response, 'tournament/lone_stats.html') class RegisterTestCase(TestCase): def setUp(self): createCommonLeagueData() def test_template(self): response = self.client.get(reverse('by_league:by_season:register', args=['team', 'team'])) self.assertTemplateUsed(response, 'tournament/registration_closed.html') season = Season.objects.all()[0] season.registration_open = True season.save() response = self.client.get(reverse('by_league:by_season:register', args=['team', 'team'])) self.assertTemplateUsed(response, 'tournament/register.html') response = self.client.get(reverse('by_league:by_season:registration_success', args=['team', 'team'])) self.assertTemplateUsed(response, 'tournament/registration_success.html')
5,159
123
783
f99a17b230e8119aba628bdff0bc3af92b2d5225
765
py
Python
tests/test_mass_fetch.py
dominik7680/py-skydb
ddf2c6c993cc75398bc3dfcf41954b6793bf3349
[ "MIT" ]
14
2020-11-23T17:05:27.000Z
2022-03-22T01:52:09.000Z
tests/test_mass_fetch.py
dominik7680/py-skydb
ddf2c6c993cc75398bc3dfcf41954b6793bf3349
[ "MIT" ]
2
2020-11-25T12:00:24.000Z
2020-12-09T18:10:50.000Z
tests/test_mass_fetch.py
dominik7680/py-skydb
ddf2c6c993cc75398bc3dfcf41954b6793bf3349
[ "MIT" ]
5
2020-12-09T15:57:11.000Z
2022-01-30T13:17:14.000Z
from skydb import SkydbTable from random import choice from string import ascii_letters table_name = ''.join([choice(ascii_letters) for i in range(20)]) import time print("Creating table") table = SkydbTable(table_name, columns=['c1','c2','c3'], seed="some_random", verbose=1) print("Added table successfully")
24.677419
87
0.678431
from skydb import SkydbTable from random import choice from string import ascii_letters table_name = ''.join([choice(ascii_letters) for i in range(20)]) import time print("Creating table") table = SkydbTable(table_name, columns=['c1','c2','c3'], seed="some_random", verbose=1) print("Added table successfully") def test_mass_fetch(): global table rows = [] for i in range(20): row = {} for c in ['c1', 'c2','c3']: row['c1'] = ''.join([choice(ascii_letters) for i in range(5)]) row['c2'] = ''.join([choice(ascii_letters) for i in range(5)]) row['c3'] = ''.join([choice(ascii_letters) for i in range(5)]) rows.append(row) print("Adding rows") table.add_rows(rows) print("Successfully added rows") out = table.fetch_rows(list(range(10)))
427
0
23
2fbbfb33fb8b668b247f87dcbbe55fe6c26a1b4c
545
py
Python
tests/db_engine_specs/athena_tests.py
psbsgic/rabbitai
769e120ba605d56ac076f810a549c38dac410c8e
[ "Apache-2.0" ]
null
null
null
tests/db_engine_specs/athena_tests.py
psbsgic/rabbitai
769e120ba605d56ac076f810a549c38dac410c8e
[ "Apache-2.0" ]
null
null
null
tests/db_engine_specs/athena_tests.py
psbsgic/rabbitai
769e120ba605d56ac076f810a549c38dac410c8e
[ "Apache-2.0" ]
1
2021-07-09T16:29:50.000Z
2021-07-09T16:29:50.000Z
from rabbitai.db_engine_specs.athena import AthenaEngineSpec from tests.db_engine_specs.base_tests import TestDbEngineSpec
30.277778
67
0.677064
from rabbitai.db_engine_specs.athena import AthenaEngineSpec from tests.db_engine_specs.base_tests import TestDbEngineSpec class TestAthenaDbEngineSpec(TestDbEngineSpec): def test_convert_dttm(self): dttm = self.get_dttm() self.assertEqual( AthenaEngineSpec.convert_dttm("DATE", dttm), "from_iso8601_date('2019-01-02')", ) self.assertEqual( AthenaEngineSpec.convert_dttm("TIMESTAMP", dttm), "from_iso8601_timestamp('2019-01-02T03:04:05.678900')", )
346
26
49
f47c4459ec95c272bab38550541eef155938f3cc
1,733
py
Python
api/tests/integration/tests/layout/template_layout.py
tsingdao-Tp/Indigo
b2d73faebb6a450e9b3d34fed553fad4f9d0012f
[ "Apache-2.0" ]
204
2015-11-06T21:34:34.000Z
2022-03-30T16:17:01.000Z
api/tests/integration/tests/layout/template_layout.py
tsingdao-Tp/Indigo
b2d73faebb6a450e9b3d34fed553fad4f9d0012f
[ "Apache-2.0" ]
509
2015-11-05T13:54:43.000Z
2022-03-30T22:15:30.000Z
api/tests/integration/tests/layout/template_layout.py
tsingdao-Tp/Indigo
b2d73faebb6a450e9b3d34fed553fad4f9d0012f
[ "Apache-2.0" ]
89
2015-11-17T08:22:54.000Z
2022-03-17T04:26:28.000Z
import os import sys import errno import math from math import * sys.path.append('../../common') from env_indigo import * if not os.path.exists(joinPathPy("out", __file__)): try: os.makedirs(joinPathPy("out", __file__)) except OSError as e: if e.errno != errno.EEXIST: raise indigo = Indigo() indigo.setOption("molfile-saving-skip-date", "1") indigo.setOption("treat-x-as-pseudoatom", "1") indigo.setOption("smart-layout", "1") ref_path = getRefFilepath("template_layout.sdf") ref = indigo.iterateSDFile(ref_path) print("**** Test template layout *****") saver = indigo.writeFile(joinPathPy("out/template_layout.sdf", __file__)) for idx, item in enumerate(indigo.iterateSDFile(joinPathPy("molecules/template_layout.sdf", __file__))): try: mol = item.clone() mol.layout() res = moleculeLayoutDiff(indigo, mol, ref.at(idx).rawData(), ref_is_file = False) print(" Item #{}: Result: {}".format(idx, res)) saver.sdfAppend(mol) except IndigoException as e: print("Exception for #%s: %s" % (idx, getIntemplate_layout.sdfdigoExceptionText(e))) print("**** Test rings templates layout *****") ref_path = getRefFilepath("rings_templates.sdf") ref = indigo.iterateSDFile(ref_path) saver = indigo.writeFile(joinPathPy("out/rings_templates.sdf", __file__)) for idx, item in enumerate(ref): try: mol = item.clone() mol.layout() res = moleculeLayoutDiff(indigo, mol, item.rawData(), ref_is_file = False) print(" Item #{}: Result: {}".format(idx, res)) saver.sdfAppend(mol) except IndigoException as e: print("Exception for #%s: %s" % (idx, getIntemplate_layout.sdfdigoExceptionText(e)))
31.509091
104
0.669359
import os import sys import errno import math from math import * sys.path.append('../../common') from env_indigo import * if not os.path.exists(joinPathPy("out", __file__)): try: os.makedirs(joinPathPy("out", __file__)) except OSError as e: if e.errno != errno.EEXIST: raise indigo = Indigo() indigo.setOption("molfile-saving-skip-date", "1") indigo.setOption("treat-x-as-pseudoatom", "1") indigo.setOption("smart-layout", "1") ref_path = getRefFilepath("template_layout.sdf") ref = indigo.iterateSDFile(ref_path) print("**** Test template layout *****") saver = indigo.writeFile(joinPathPy("out/template_layout.sdf", __file__)) for idx, item in enumerate(indigo.iterateSDFile(joinPathPy("molecules/template_layout.sdf", __file__))): try: mol = item.clone() mol.layout() res = moleculeLayoutDiff(indigo, mol, ref.at(idx).rawData(), ref_is_file = False) print(" Item #{}: Result: {}".format(idx, res)) saver.sdfAppend(mol) except IndigoException as e: print("Exception for #%s: %s" % (idx, getIntemplate_layout.sdfdigoExceptionText(e))) print("**** Test rings templates layout *****") ref_path = getRefFilepath("rings_templates.sdf") ref = indigo.iterateSDFile(ref_path) saver = indigo.writeFile(joinPathPy("out/rings_templates.sdf", __file__)) for idx, item in enumerate(ref): try: mol = item.clone() mol.layout() res = moleculeLayoutDiff(indigo, mol, item.rawData(), ref_is_file = False) print(" Item #{}: Result: {}".format(idx, res)) saver.sdfAppend(mol) except IndigoException as e: print("Exception for #%s: %s" % (idx, getIntemplate_layout.sdfdigoExceptionText(e)))
0
0
0
90c360f1f9de7372f63bd4be872c6b44a814289d
1,019
py
Python
versionfield/forms.py
willseward/django-versionfield3
4ae365fb42f38a02c77d317cba3fef22806f2b24
[ "Unlicense" ]
null
null
null
versionfield/forms.py
willseward/django-versionfield3
4ae365fb42f38a02c77d317cba3fef22806f2b24
[ "Unlicense" ]
null
null
null
versionfield/forms.py
willseward/django-versionfield3
4ae365fb42f38a02c77d317cba3fef22806f2b24
[ "Unlicense" ]
null
null
null
from builtins import str from django import forms from django.forms.widgets import TextInput from .version import Version from .constants import DEFAULT_NUMBER_BITS from .utils import convert_version_int_to_string
30.878788
96
0.675172
from builtins import str from django import forms from django.forms.widgets import TextInput from .version import Version from .constants import DEFAULT_NUMBER_BITS from .utils import convert_version_int_to_string class VersionField(forms.IntegerField): widget = TextInput def __init__(self, number_bits=DEFAULT_NUMBER_BITS, **kwargs): self.number_bits = number_bits return super(VersionField, self).__init__(**kwargs) def to_python(self, value): """ Verifies that value can be converted to a Version object """ if not value: return None if isinstance(value, str): return int(Version(value, self.number_bits)) return Version(convert_version_int_to_string(value, self.number_bits), self.number_bits) def widget_attrs(self, widget): attrs = super(VersionField, self).widget_attrs(widget) attrs['pattern'] = '^' + (r'(\d+\.)?' * (len(self.number_bits) - 1)) + r'(\*|\d+)$' return attrs
326
454
23
b76165b2825027823939347d4036fc0458906b68
605
py
Python
src/tblink_rpc_utils/input_reader_yaml.py
tblink-rpc/tblink-rpc-utils
48a731cb8c6201e1975ba18f43737228eb1f7dee
[ "Apache-2.0" ]
null
null
null
src/tblink_rpc_utils/input_reader_yaml.py
tblink-rpc/tblink-rpc-utils
48a731cb8c6201e1975ba18f43737228eb1f7dee
[ "Apache-2.0" ]
null
null
null
src/tblink_rpc_utils/input_reader_yaml.py
tblink-rpc/tblink-rpc-utils
48a731cb8c6201e1975ba18f43737228eb1f7dee
[ "Apache-2.0" ]
null
null
null
''' Created on Oct 20, 2021 @author: mballance ''' from tblink_rpc_utils.idl_spec import IDLSpec from tblink_rpc_utils.input_reader import InputReader from tblink_rpc_utils.input_spec import InputSpec from tblink_rpc_utils.yaml_idl_parser import YamlIDLParser
25.208333
58
0.66281
''' Created on Oct 20, 2021 @author: mballance ''' from tblink_rpc_utils.idl_spec import IDLSpec from tblink_rpc_utils.input_reader import InputReader from tblink_rpc_utils.input_spec import InputSpec from tblink_rpc_utils.yaml_idl_parser import YamlIDLParser class InputReaderYaml(InputReader): def __init__(self): super().__init__() def read(self, in_spec:InputSpec)->IDLSpec: yaml_p = YamlIDLParser() for file in in_spec.files: with open(file, "r") as fp: yaml_p.parse(fp) return yaml_p.spec
241
14
89
9734061ff8c9ce101186289f0971e8af178cbcda
518
py
Python
escola/templatetags/markdown.py
vini84200/medusa2
37cf33d05be8b0195b10845061ca893ba5e814dd
[ "MIT" ]
1
2019-03-15T18:04:24.000Z
2019-03-15T18:04:24.000Z
escola/templatetags/markdown.py
vini84200/medusa2
37cf33d05be8b0195b10845061ca893ba5e814dd
[ "MIT" ]
22
2019-03-17T21:53:50.000Z
2021-03-31T19:12:19.000Z
escola/templatetags/markdown.py
vini84200/medusa2
37cf33d05be8b0195b10845061ca893ba5e814dd
[ "MIT" ]
1
2018-11-25T03:05:23.000Z
2018-11-25T03:05:23.000Z
import misaka as m from django import template from django.template.defaultfilters import stringfilter from django.utils.safestring import mark_safe from MedusaII.settings import MARKDOWNX_MARKDOWN_EXTENSIONS register = template.Library() @register.filter(is_safe=True) @stringfilter
28.777778
78
0.702703
import misaka as m from django import template from django.template.defaultfilters import stringfilter from django.utils.safestring import mark_safe from MedusaII.settings import MARKDOWNX_MARKDOWN_EXTENSIONS register = template.Library() @register.filter(is_safe=True) @stringfilter def md(value): rendered_text = mark_safe(m.html(value, extensions=MARKDOWNX_MARKDOWN_EXTENSIONS, render_flags=('skip-html',))) return rendered_text
208
0
22
297983f1224fa368c806bb3709b78cd221f4c7f1
1,720
py
Python
targetrsqueak-embedded.py
shiplift/RSqueakOnABoat
ac449758ddb7aef1721e65a13171547761dd6e39
[ "BSD-3-Clause" ]
44
2015-02-08T09:38:46.000Z
2017-11-15T01:19:40.000Z
targetrsqueak-embedded.py
shiplift/RSqueakOnABoat
ac449758ddb7aef1721e65a13171547761dd6e39
[ "BSD-3-Clause" ]
112
2015-02-08T09:34:40.000Z
2017-04-10T19:06:30.000Z
targetrsqueak-embedded.py
shiplift/RSqueakOnABoat
ac449758ddb7aef1721e65a13171547761dd6e39
[ "BSD-3-Clause" ]
7
2015-04-08T11:49:10.000Z
2017-01-19T06:36:27.000Z
#! /usr/bin/env python import sys from rpython.jit.codewriter.policy import JitPolicy from rsqueakvm import model, objspace, interpreter, squeakimage # This loads an image file in advance and includes it in the # translation-output. At run-time, the defined selector is sent # to the defined SmallInteger. This way we get an RPython # "image" frozen into the executable, mmap'ed by the OS from # there and loaded lazily when needed :-) # Besides testing etc., this can be used to create standalone # binaries executing a smalltalk program. sys.setrecursionlimit(100000) imagefile = "images/mini.image" selector = "loopTest" receiver = 0 interp, s_frame = setup() # _____ Define and setup target ___ if __name__ == "__main__": entry_point(sys.argv)
30.714286
85
0.73314
#! /usr/bin/env python import sys from rpython.jit.codewriter.policy import JitPolicy from rsqueakvm import model, objspace, interpreter, squeakimage # This loads an image file in advance and includes it in the # translation-output. At run-time, the defined selector is sent # to the defined SmallInteger. This way we get an RPython # "image" frozen into the executable, mmap'ed by the OS from # there and loaded lazily when needed :-) # Besides testing etc., this can be used to create standalone # binaries executing a smalltalk program. sys.setrecursionlimit(100000) imagefile = "images/mini.image" selector = "loopTest" receiver = 0 def setup(): space = objspace.ObjSpace() stream = squeakimage.Stream(filename=imagefile) image = squeakimage.ImageReader(space, stream).create_image() interp = interpreter.Interpreter(space, image) w_selector = interp.perform(space.wrap_string(selector), "asSymbol") w_object = model.W_SmallInteger(receiver) s_class = w_object.class_shadow(space) w_method = s_class.lookup(w_selector) s_frame = w_method.create_frame(space, w_object) return interp, s_frame interp, s_frame = setup() def entry_point(argv): if len(argv) > 1: print "This RSqueak VM has an embedded image and ignores all cli-parameters." try: interp.loop(s_frame.w_self()) except interpreter.ReturnFromTopLevel, e: w_result = e.object print interp.space.unwrap_string(w_result) return 0 # _____ Define and setup target ___ def target(driver, *args): driver.exe_name = "rsqueak-embedded" return entry_point, None def jitpolicy(driver): return JitPolicy() if __name__ == "__main__": entry_point(sys.argv)
869
0
92
1422dc0df676bf0e1144a0249d8dca0784d485b3
32
py
Python
model/__init__.py
Khurramjaved96/Dicta
416638a3d1ad851b00394e55a7574ec978080d51
[ "Apache-2.0" ]
60
2019-05-29T17:09:15.000Z
2022-03-30T15:35:57.000Z
model/__init__.py
Khurramjaved96/Dicta
416638a3d1ad851b00394e55a7574ec978080d51
[ "Apache-2.0" ]
6
2018-06-08T14:32:34.000Z
2019-05-20T05:34:39.000Z
model/__init__.py
Khurramjaved96/Dicta
416638a3d1ad851b00394e55a7574ec978080d51
[ "Apache-2.0" ]
28
2019-06-10T04:07:24.000Z
2022-01-12T19:21:49.000Z
from model.modelfactory import *
32
32
0.84375
from model.modelfactory import *
0
0
0
3e4408ccc1944b2314adbe4828cdf345edcdd816
6,087
py
Python
doublyLinkedList.py
nemodesouza/ed-trabalho-01-1-doubly-linked-list
b86689a52837ee7d9cb7a6cde7a420ffeb809fb6
[ "CC0-1.0" ]
null
null
null
doublyLinkedList.py
nemodesouza/ed-trabalho-01-1-doubly-linked-list
b86689a52837ee7d9cb7a6cde7a420ffeb809fb6
[ "CC0-1.0" ]
null
null
null
doublyLinkedList.py
nemodesouza/ed-trabalho-01-1-doubly-linked-list
b86689a52837ee7d9cb7a6cde7a420ffeb809fb6
[ "CC0-1.0" ]
null
null
null
from cursor import Cursor from node import Node
33.629834
91
0.55676
from cursor import Cursor from node import Node class DoublyLinkedList: def __init__(self, limit=None): self.__cursor = Cursor() self.__limit = None self.__elements = 0 @property def element(self): return self.__elements def accessCurrent(self): """(elemento) acessarAtual()""" return self.__cursor.current def insertBeforeCurrent(self, data): """(void) InserirAntesDoAtual ( novo )""" new_element = Node(data) if self.isFull(): print("A lista está cheia!") elif self.isEmpty(): self.__cursor.current = new_element self.__elements += 1 elif self.__cursor.current.previous is None: self.__cursor.current.previous = new_element new_element.next = self.__cursor.current self.__elements += 1 else: self.__cursor.current.previous.next = new_element new_element.previous = self.__cursor.current.previous self.__cursor.current.previous = new_element new_element.next = self.__cursor.current self.__elements += 1 def insertAfterCurrent(self, data): """(void) InserirApósAtual ( novo )""" new_element = Node(data) if self.isFull(): print("A lista está cheia!") elif self.isEmpty(): self.__cursor.current = new_element self.__elements += 1 elif self.__cursor.current.next is None: self.__cursor.current.next = new_element new_element.previous = self.__cursor.current self.__elements += 1 def insertInTheEnd(self, data): """(void) inserirNoFim ( novo )""" if self.isEmpty(): new_element = Node(data) self.__cursor.current = new_element self.__elements += 1 else: self.__cursor.goToLast() self.insertAfterCurrent(data) def insertInFront(self, data): """(void) inserirNaFrente ( novo )""" if self.isEmpty(): new_element = Node(data) self.__cursor.current = new_element self.__elements += 1 else: self.__cursor.goToFirst() self.insertBeforeCurrent(data) def insertInPositionK(self, k, data): """(void) inserirNaPosicao ( k, novo )""" if self.isFull(): print("A lista está cheia!") elif k < 0 or k > self.__elements: print("Essa posição não existe!") else: self.__cursor.goToFirst() self.__cursor.advanceKPos(k-1) self.insertBeforeCurrent(data) def popCurrent(self): """(void) ExcluirAtual ()""" if self.isEmpty(): print("A lista está vazia!") elif self.__cursor.current.previous is None and self.__cursor.current.next is None: self.__cursor.current.next = None #verificar necessiade self.__cursor.current.previous = None #verificar necessiade self.__cursor.current = None self.__elements -= 1 elif self.__cursor.current.previous is None: self.__cursor.current.next.previous = None self.__cursor.current = self.__cursor.current.next self.__elements -= 1 elif self.__cursor.current.next is None: self.__cursor.current.previous.next = None self.__cursor.current = self.__cursor.current.previous self.__elements -= 1 else: self.__cursor.current.previous.next = self.__cursor.current.next self.__cursor.current.next.previous = self.__cursor.current.previous self.__cursor.current = self.__cursor.current.next self.__elements -= 1 def popFirst(self): """(void) ExcluirPrim ()""" self.__cursor.goToFirst() self.popCurrent() def popLast(self): """(void) ExcluirUlt ()""" self.__cursor.goToLast() self.popCurrent() def popElement(self, element): """(void) ExcluirElem ( chave )""" self.search(element) self.popCurrent() print(f"O elemento {element} foi excluído!") def excludeFromPos(self, k): """(void) ExcluirDaPos ( k )""" if self.isEmpty(): print("A lista está vazia!") elif k > self.__elements or k < 0: print("A posição não existe!") else: k-=1 self.__cursor.goToFirst() self.__cursor.advanceKPos(k) self.popCurrent() def search(self, key): """(boolean) Buscar ( chave )""" self.__cursor.goToFirst() element = self.__cursor.current while element.data != key: if self.__cursor.current.next is None: print("Print: False, elemento inexistente!") return False else: self.__cursor.advanceKPos(1) element = self.__cursor.current print("Print: True, o elemento informado existe na lista!") return True # Outras (de apoio): def isEmpty(self): """(boolean) Vazia()""" return self.__elements == 0 def isFull(self): """(boolean) Cheia()""" return self.__elements == self.__limit def positionOf(self, key): """(INT) posiçãoDe(chave)""" if self.isEmpty(): print("A lista está vazia!") else: self.__cursor.goToFirst() current = self.__cursor.current position = 1 while current.data != key: if self.__cursor.current.next is None: print("Elemento inexistente!") return None else: self.__cursor.advanceKPos(1) current = self.__cursor.current position += 1 print(f"A posição do elemento {key} é a de n. {position}!")
127
5,891
23
d5764f7267401bb5f87916e35baf7cbfc9aaaca4
96
bzl
Python
tools/bzl/classpath.bzl
jinrongc1986/events-log
37371e72e9604cc637d0a96ebc91e5a53d420e2c
[ "Apache-2.0" ]
null
null
null
tools/bzl/classpath.bzl
jinrongc1986/events-log
37371e72e9604cc637d0a96ebc91e5a53d420e2c
[ "Apache-2.0" ]
null
null
null
tools/bzl/classpath.bzl
jinrongc1986/events-log
37371e72e9604cc637d0a96ebc91e5a53d420e2c
[ "Apache-2.0" ]
null
null
null
load( "@com_googlesource_gerrit_bazlets//tools:classpath.bzl", "classpath_collector", )
19.2
60
0.739583
load( "@com_googlesource_gerrit_bazlets//tools:classpath.bzl", "classpath_collector", )
0
0
0
9daee1667658b8ded3cb5aa585437a23a6547b46
9,652
py
Python
wrap/pyllbc/script/common/Stream.py
caochunxi/llbc
2ff4af937f1635be67a7e24602d0a3e87c708ba7
[ "MIT" ]
83
2015-11-10T09:52:56.000Z
2022-01-12T11:53:01.000Z
wrap/pyllbc/script/common/Stream.py
lailongwei/llbc
ec7e69bfa1f0afece8bb19dfa9a0a4578508a077
[ "MIT" ]
30
2017-09-30T07:43:20.000Z
2022-01-23T13:18:48.000Z
wrap/pyllbc/script/common/Stream.py
caochunxi/llbc
2ff4af937f1635be67a7e24602d0a3e87c708ba7
[ "MIT" ]
34
2015-11-14T12:37:44.000Z
2021-12-16T02:38:36.000Z
# -*- coding: utf-8 -*- import inspect import llbc class pyllbcStream(object): """ Stream class encapsulation, use to pack/unpack data sequence. """ @property def endian(self): """ Get stream endian setting(see llbc.Endian module). """ return llbc.inl.GetPyStreamEndian(self.__c_obj) @endian.setter def endian(self, e): """ Set stream endian(see llbc.Endian module). """ llbc.inl.SetPyStreamEndian(self.__c_obj, e) @property def pos(self): """ Get stream current reading/writing position. """ return llbc.inl.GetPyStreamPos(self.__c_obj) @pos.setter def pos(self, p): """ Set stream current reading/writing position. """ llbc.inl.SetPyStreamPos(self.__c_obj, p) @property def size(self): """ Get stream size(unsafe method, size will automatic adjust by stream). """ return llbc.inl.GetPyStreamSize(self.__c_obj) @size.setter def size(self, s): """ Set stream size(unsafe method, size will automatic adjust by stream). """ llbc.inl.SetPyStreamSize(self.__c_obj, s) @property def raw(self): """ Get stream memery view as buffer. """ return llbc.inl.PyStreamGetRaw(self.__c_obj) @raw.setter def raw(self, r): """ Set stream raw memory from str/buffer/bytearray. """ llbc.inl.PyStreamSetRaw(self.__c_obj, r) @property def cobj(self): """ Get raw pyllbc stream object(calling by c/c++ layer). """ return self.__c_obj def __str__(self): """ Get human readable stream data's string representation. """ import binascii return binascii.hexlify(self.raw) @staticmethod @staticmethod @staticmethod @staticmethod @staticmethod def unpack(self, fmt): """ Unpack data according to the given format. the result is a tuple even if it contents exactly one item. format strings: c: char value(like b). b: byte value(like c). B: boolean value. s: short value. i: integer value. q: signed long long value. f: float value. d: double value(only support Fomat method). S: string value. S#: string value, use another pack/unpack algorithm, 4 bytes length + string content(not include NULL character). S$: string value, will read stream to end as string content, write like 'S', but not append string end character '\0'. U: unicode value. A: byte array value. F: buffer value. N: None value. C: class type, will automatic call class.encode() method to decode must tell stream this class name, use C<ClassName> semantic. (): tuple type, if only has one element, it represent tuple all element type is the given type, otherwise the tuple size must equal your given element count. []: list type, the same as tuple type: (). {key:value}: dictionary type. The format examples: iiS (i) (U) [i] {i:S} {i:(C<int>)} ([SC<int>NA(i)]{int:S}B """ return self.__unpack(fmt) def pack(self, fmt, *values): """ Pack values according to the given format, the arguments must match the values required by the format exactly. format strings: c: char value(like b). b: byte value(like c). B: boolean value. s: short value. i: integer value. q: signed long long value. f: float value. d: double value(only support Fomat method). S: string value. S#: string value, use another pack/unpack algorithm, 4 bytes length + string content(not include NULL character). S$: string value, will read stream to end as string content, write like 'S', but not append string end character '\0'. U: unicode value. A: byte array value. F: buffer value. N: None value. C: class type, will automatic call class.encode() method to decode, must tell stream this class name, use C<ClassName> semantic. (): tuple type, if only has one element, it represent tuple all element type is the given type, otherwise the tuple size must equal your given element count. []: list type, the same as tuple type: (). {key:value}: dictionary type. """ caller_env = None if fmt.find('C') >= 0 and not llbc.inl.PyStreamIsExprCompiled(fmt): caller_env = inspect.stack()[1][0].f_globals return llbc.inl.PyStreamFmtWrite(self.__c_obj, fmt, values, caller_env) llbc.Stream = pyllbcStream
30.544304
129
0.623809
# -*- coding: utf-8 -*- import inspect import llbc class pyllbcStream(object): """ Stream class encapsulation, use to pack/unpack data sequence. """ def __init__(self, size=0, init_obj=None, endian=llbc.Endian.MachineEndian): self.__c_obj = llbc.inl.NewPyStream(self, size, endian) self.packobj(init_obj) def __del__(self): llbc.inl.DelPyStream(self.__c_obj) @property def endian(self): """ Get stream endian setting(see llbc.Endian module). """ return llbc.inl.GetPyStreamEndian(self.__c_obj) @endian.setter def endian(self, e): """ Set stream endian(see llbc.Endian module). """ llbc.inl.SetPyStreamEndian(self.__c_obj, e) @property def pos(self): """ Get stream current reading/writing position. """ return llbc.inl.GetPyStreamPos(self.__c_obj) @pos.setter def pos(self, p): """ Set stream current reading/writing position. """ llbc.inl.SetPyStreamPos(self.__c_obj, p) @property def size(self): """ Get stream size(unsafe method, size will automatic adjust by stream). """ return llbc.inl.GetPyStreamSize(self.__c_obj) @size.setter def size(self, s): """ Set stream size(unsafe method, size will automatic adjust by stream). """ llbc.inl.SetPyStreamSize(self.__c_obj, s) @property def raw(self): """ Get stream memery view as buffer. """ return llbc.inl.PyStreamGetRaw(self.__c_obj) @raw.setter def raw(self, r): """ Set stream raw memory from str/buffer/bytearray. """ llbc.inl.PyStreamSetRaw(self.__c_obj, r) @property def cobj(self): """ Get raw pyllbc stream object(calling by c/c++ layer). """ return self.__c_obj def __str__(self): """ Get human readable stream data's string representation. """ import binascii return binascii.hexlify(self.raw) @staticmethod def getcachedsize(): return llbc.inl.PyStreamGetCachedSize() @staticmethod def getcachelimit(): return llbc.inl.PyStreamGetCacheLimit() @staticmethod def setcachelimit(lmt): llbc.inl.PyStreamSetCacheLimit(lmt) @staticmethod def discardexpr(expr): llbc.inl.PyStreamDiscardExpr(expr) @staticmethod def discardallexprs(): llbc.inl.PyStreamDiscardAllExprs() def unpack(self, fmt): """ Unpack data according to the given format. the result is a tuple even if it contents exactly one item. format strings: c: char value(like b). b: byte value(like c). B: boolean value. s: short value. i: integer value. q: signed long long value. f: float value. d: double value(only support Fomat method). S: string value. S#: string value, use another pack/unpack algorithm, 4 bytes length + string content(not include NULL character). S$: string value, will read stream to end as string content, write like 'S', but not append string end character '\0'. U: unicode value. A: byte array value. F: buffer value. N: None value. C: class type, will automatic call class.encode() method to decode must tell stream this class name, use C<ClassName> semantic. (): tuple type, if only has one element, it represent tuple all element type is the given type, otherwise the tuple size must equal your given element count. []: list type, the same as tuple type: (). {key:value}: dictionary type. The format examples: iiS (i) (U) [i] {i:S} {i:(C<int>)} ([SC<int>NA(i)]{int:S}B """ return self.__unpack(fmt) def unpackone(self, fmt): return self.__unpack(fmt)[0] def unpackcls(self, cls): return llbc.inl.PyStreamRead(self.__c_obj, cls) def unpacknone(self): return llbc.inl.PyStreamRead_None(self.__c_obj) def unpackbyte(self): return llbc.inl.PyStreamRead_Byte(self.__c_obj) def unpackbool(self): return llbc.inl.PyStreamRead_Bool(self.__c_obj) def unpackint16(self): return llbc.inl.PyStreamRead_Int16(self.__c_obj) def unpackint32(self): return llbc.inl.PyStreamRead_Int32(self.__c_obj) def unpackint64(self): return llbc.inl.PyStreamRead_Int64(self.__c_obj) def unpackfloat(self): return llbc.inl.PyStreamRead_Float(self.__c_obj) def unpackdouble(self): return llbc.inl.PyStreamRead_Double(self.__c_obj) def unpackstr(self): return llbc.inl.PyStreamRead_Str(self.__c_obj) def unpackstr2(self): return llbc.inl.PyStreamRead_Str2(self.__c_obj) def unpackstr3(self): return llbc.inl.PyStreamRead_Str3(self.__c_obj) def unpackunicode(self): return llbc.inl.PyStreamRead_Unicode(self.__c_obj) def unpackbytearray(self): return llbc.inl.PyStreamRead_ByteArray(self.__c_obj) def unpackbuffer(self): return llbc.inl.PyStreamRead_Buffer(self.__c_obj) def unpackstream(self, begin=0, end=-1): return llbc.inl.PyStreamRead_Stream(self.__c_obj, begin, end) def pack(self, fmt, *values): """ Pack values according to the given format, the arguments must match the values required by the format exactly. format strings: c: char value(like b). b: byte value(like c). B: boolean value. s: short value. i: integer value. q: signed long long value. f: float value. d: double value(only support Fomat method). S: string value. S#: string value, use another pack/unpack algorithm, 4 bytes length + string content(not include NULL character). S$: string value, will read stream to end as string content, write like 'S', but not append string end character '\0'. U: unicode value. A: byte array value. F: buffer value. N: None value. C: class type, will automatic call class.encode() method to decode, must tell stream this class name, use C<ClassName> semantic. (): tuple type, if only has one element, it represent tuple all element type is the given type, otherwise the tuple size must equal your given element count. []: list type, the same as tuple type: (). {key:value}: dictionary type. """ caller_env = None if fmt.find('C') >= 0 and not llbc.inl.PyStreamIsExprCompiled(fmt): caller_env = inspect.stack()[1][0].f_globals return llbc.inl.PyStreamFmtWrite(self.__c_obj, fmt, values, caller_env) def packobj(self, obj): return llbc.inl.PyStreamWrite(self.__c_obj, obj) def packnone(self): return llbc.inl.PyStreamWrite_None(self.__c_obj, None) def packbyte(self, obj): return llbc.inl.PyStreamWrite_Byte(self.__c_obj, obj) def packbool(self, obj): return llbc.inl.PyStreamWrite_Bool(self.__c_obj, obj) def packint16(self, obj): return llbc.inl.PyStreamWrite_Int16(self.__c_obj, obj) def packint32(self, obj): return llbc.inl.PyStreamWrite_Int32(self.__c_obj, obj) def packint64(self, obj): return llbc.inl.PyStreamWrite_Int64(self.__c_obj, obj) def packfloat(self, obj): return llbc.inl.PyStreamWrite_Float(self.__c_obj, obj) def packdouble(self, obj): return llbc.inl.PyStreamWrite_Double(self.__c_obj, obj) def packstr(self, obj): return llbc.inl.PyStreamWrite_Str(self.__c_obj, obj) def packstr2(self, obj): return llbc.inl.PyStreamWrite_Str2(self.__c_obj, obj) def packstr3(self, obj): return llbc.inl.PyStreamWrite_Str3(self.__c_obj, obj) def packunicode(self, obj): return llbc.inl.PyStreamWrite_Unicode(self.__c_obj, obj) def packbytearray(self, obj): return llbc.inl.PyStreamWrite_ByteArray(self.__c_obj, obj) def packbuffer(self, obj): return llbc.inl.PyStreamWrite_Buffer(self.__c_obj, obj) def packtuple(self, obj): return llbc.inl.PyStreamWrite_Tuple(self.__c_obj, obj) def packlist(self, obj): return llbc.inl.PyStreamWrite_List(self.__c_obj, obj) def packsequence(self, obj): return llbc.inl.PyStreamWrite_Sequence(self.__c_obj, obj) def packdict(self, obj): return llbc.inl.PyStreamWrite_Dict(self.__c_obj, obj) def packstream(self, s, begin=0, to=-1): if not isinstance(s, pyllbcStream): raise TypeError('pack argument "s" must be stream type') return llbc.inl.PyStreamWrite_Stream(self.__c_obj, s.cobj, begin, to) def encode(self, s): if not isinstance(s, pyllbcStream): raise TypeError('encode argument not Stream type') return llbc.inl.PyStreamEncodeSelf(self.__c_obj, s.cobj) def __unpack(self, fmt, stack_idx=1): caller_env = None if fmt.find('C') >= 0 and not llbc.inl.PyStreamIsExprCompiled(fmt): caller_env = inspect.stack()[stack_idx + 1][0].f_globals return llbc.inl.PyStreamFmtRead(self.__c_obj, fmt, caller_env) llbc.Stream = pyllbcStream
3,328
0
1,236
793dabc069adbb525fbf397b7888dc9fdb942b2b
2,036
py
Python
src/BloomFilter/BloomFilter.py
shapovalovdev/AlgorythmsAndDataStructures
34d5f38c089e0ba902813607f08847fbdc7361ab
[ "Apache-2.0" ]
null
null
null
src/BloomFilter/BloomFilter.py
shapovalovdev/AlgorythmsAndDataStructures
34d5f38c089e0ba902813607f08847fbdc7361ab
[ "Apache-2.0" ]
null
null
null
src/BloomFilter/BloomFilter.py
shapovalovdev/AlgorythmsAndDataStructures
34d5f38c089e0ba902813607f08847fbdc7361ab
[ "Apache-2.0" ]
null
null
null
#import hashlib #from random import randint # # def hash2(self, str1): # # result=0 # b_str1=str.encode(str1) # h=hashlib.sha1(b_str1).hexdigest() # for c in str1: # result += ord(c) # return result % self.filter_len # if __name__ == '__main__': # dataset=["0123456789", "1234567890", "sdfsdfsdf", "sdf2143124", "hophey", "abirvaolg", "8901234567", "2356sdfqix,ed", "9012345678"] # dataset2=["012345678932", "12345623e47890", "sdfdsfq1sdfsdf", "sdf2gs2143124", "qwerhophey", "atgxcvbirvaolg", "8sdgaw901234567", "321452356sdfqix,ed", "5124e39012345678"] # BLOOM_TEST=BloomFilter(32) # for data in dataset: # BLOOM_TEST.add(data) # for data in dataset2: # if BLOOM_TEST.is_value(data): # print(f'It seems {data} is here') # else: # print(f'No {data} by the name of bloom filter ') # for data in dataset: # if BLOOM_TEST.is_value(data): # print(f'It seems {data} is here') # else: # print(f'No {data} by the name of bloom filter ') # print( BLOOM_TEST.bloom_array)
32.83871
178
0.589391
#import hashlib #from random import randint class BloomFilter: def __init__(self, f_len): self.filter_len = f_len # создаём битовый массив длиной f_len ... self.bloom_array=self.filter_len * [0] def hash1(self, str1): result=1 rand_int=17 for c in str1: result = result*rand_int + ord(c) return result % self.filter_len # # def hash2(self, str1): # # result=0 # b_str1=str.encode(str1) # h=hashlib.sha1(b_str1).hexdigest() # for c in str1: # result += ord(c) # return result % self.filter_len def hash2(self, str1): result=1 rand_int=223 for c in str1: result = result*rand_int + ord(c) return result % self.filter_len def add(self, str1): self.bloom_array[self.hash1(str1)] = 1 self.bloom_array[self.hash2(str1)] = 1 def is_value(self, str1): # проверка, имеется ли строка str1 в фильтре if not self.bloom_array[self.hash1(str1)] or not self.bloom_array[self.hash2(str1)]: return False else: return True # if __name__ == '__main__': # dataset=["0123456789", "1234567890", "sdfsdfsdf", "sdf2143124", "hophey", "abirvaolg", "8901234567", "2356sdfqix,ed", "9012345678"] # dataset2=["012345678932", "12345623e47890", "sdfdsfq1sdfsdf", "sdf2gs2143124", "qwerhophey", "atgxcvbirvaolg", "8sdgaw901234567", "321452356sdfqix,ed", "5124e39012345678"] # BLOOM_TEST=BloomFilter(32) # for data in dataset: # BLOOM_TEST.add(data) # for data in dataset2: # if BLOOM_TEST.is_value(data): # print(f'It seems {data} is here') # else: # print(f'No {data} by the name of bloom filter ') # for data in dataset: # if BLOOM_TEST.is_value(data): # print(f'It seems {data} is here') # else: # print(f'No {data} by the name of bloom filter ') # print( BLOOM_TEST.bloom_array)
793
-3
157
a5c93ce3ff85b6ac11e58c307fe15570a8d84a8e
2,659
py
Python
target.py
anarthal/omnibuild
466ce4391d016b0890894b984fa1da57edd8f136
[ "MIT" ]
null
null
null
target.py
anarthal/omnibuild
466ce4391d016b0890894b984fa1da57edd8f136
[ "MIT" ]
null
null
null
target.py
anarthal/omnibuild
466ce4391d016b0890894b984fa1da57edd8f136
[ "MIT" ]
null
null
null
import os.path
35.453333
92
0.649116
import os.path class Target(object): def __init__(self, name): self.name = name self.depends = [] def __str__(self): return '<Target {}>'.format(self.name) def is_up_to_date(self, cache): raise NotImplementedError() def build(self): raise NotImplementedError() def update_cache(self, cache): pass class ObjectFile(Target): def __init__(self, src, output, compiler): Target.__init__(self, output) self.src = src self.output = output self.compiler = compiler if not os.path.isfile(src): raise FileNotFoundError('Source file {} does not exist'.format(src)) self.includes = self.compiler.get_includes(self.src) def is_up_to_date(self, cache): if cache.file_has_changed(self.src): return False for inc in self.includes: if cache.file_has_changed(inc): return False return not cache.file_has_changed(self.output) def build(self): self.compiler.compile(self.src, self.output) def update_cache(self, cache): to_store = [self.src] + self.includes + [self.output] for fname in to_store: cache.file_store(fname) class CppTarget(Target): def __init__(self, name, sources, output_dir, compiler): Target.__init__(self, os.path.join(output_dir, 'targets', name)) self.sources = sources self.output_dir = output_dir self.compiler = compiler self.objects = [self.make_object_file(src, output_dir, compiler) for src in sources] self.libs = [] self.depends = list(self.objects) def get_path(self): return self.name def is_up_to_date(self, cache): return not cache.file_has_changed(self.get_path()) def update_cache(self, cache): cache.file_store(self.get_path()) def link_libraries(self, libs): self.libs += libs self.depends += libs def _get_link_inputs(self): return [obj.output for obj in self.objects] + [lib.name for lib in self.libs] @staticmethod def make_object_file(src, output_dir, compiler): return ObjectFile(src, os.path.join(output_dir, src + '.o'), compiler) class Executable(CppTarget): def build(self): self.compiler.link_executable(self._get_link_inputs(), self.get_path()) class DynamicLibrary(CppTarget): def __init__(self, name, sources, output_dir, compiler): CppTarget.__init__(self, name + '.so', sources, output_dir, compiler) def build(self): self.compiler.link_dynamic_library(self._get_link_inputs(), self.get_path())
1,989
227
427
6f4a2eae77a08e70580164954af371a9d61703ba
5,170
py
Python
ivolution/FacemovieThread.py
jlengrand/Ivolution
2753d7120b11fb94a5ce84bfe4a134b5a437a5c7
[ "BSD-3-Clause" ]
4
2015-01-22T06:32:15.000Z
2020-01-30T05:53:48.000Z
ivolution/FacemovieThread.py
jlengrand/Ivolution
2753d7120b11fb94a5ce84bfe4a134b5a437a5c7
[ "BSD-3-Clause" ]
null
null
null
ivolution/FacemovieThread.py
jlengrand/Ivolution
2753d7120b11fb94a5ce84bfe4a134b5a437a5c7
[ "BSD-3-Clause" ]
7
2015-04-23T12:34:19.000Z
2021-08-01T05:58:56.000Z
""" .. module:: Facemovie :platform: Unix, Windows :synopsis: Main class of the application. Contains the core image processing functions.Plays the role of a controller for the application, as it supports the communication layer. .. moduleauthor:: Julien Lengrand-Lambert <jlengrand@gmail.com> """ import threading import logging import Facemovie_lib from util.Notifier import Observer from util.Notifier import Observable class FacemovieThread(threading.Thread, Observable, Observer): ''' Creates a Thread version of Facemovie using the facemovie_lib. This class can then be run anywhere, from a GUI, script, ... ''' def __init__(self, face_params): """ Initializes all parameters of the application. Input and output folders are defined, together with the classifier profile. :param face_params: A faceparams object that contains all needed information to run the Facemovie. :type face_params: FaceParams """ threading.Thread.__init__(self) Observable.__init__(self) Observer.__init__(self, "Application") self.stop_process = False self.face_params = face_params self.facemovie = Facemovie_lib.FaceMovie(self.face_params) self.facemovie.subscribe(self) # Subscribing to facemovie reports self.subscribe(self.facemovie) # Used to send request to stop self.my_logger = logging.getLogger('IvolutionFile.Thread') #self.console_logger = logging.getLogger('ConsoleLog') def update(self, message): """ Trigerred by IvolutionWindow. Uses the Observer pattern to inform the user about the progress of the GUI. """ if len(message) == 1: # system commands if message[0] == "STOP": #self.console_logger.debug("Facemovie is going to stop") self.my_logger.debug("Facemovie is going to stop") self.stop_process = True self.notify(["Lib", ["STOP"]]) else: #self.console_logger.debug("Unrecognized system command") self.my_logger.debug("Unrecognized system command") ##self.console_logger.debug(message) self.my_logger.debug(message) elif len(message) == 2: # notifications ##self.console_logger.debug(message) self.my_logger.debug(message) if message[0] == "FILEADD": self.notify(["Interface", [message[0], message[1], 0]]) else: # notify gui about small updates self.notify(["Interface", ["STATUS", message[0], message[1]]]) # checking for fatal error if message[0] == "Error": #self.console_logger.debug("Fatal Error detected") self.my_logger.debug("Fatal Error detected") self.stop_process = True self.notify(["Lib", ["STOP"]]) elif len(message) == 3: # notifications if message[0] == "FILEDONE": self.notify(["Interface", message]) else: #self.console_logger.debug("Unrecognized command") self.my_logger.debug("Unrecognized command") #self.console_logger.debug(message) self.my_logger.debug(message)
40.077519
181
0.609284
""" .. module:: Facemovie :platform: Unix, Windows :synopsis: Main class of the application. Contains the core image processing functions.Plays the role of a controller for the application, as it supports the communication layer. .. moduleauthor:: Julien Lengrand-Lambert <jlengrand@gmail.com> """ import threading import logging import Facemovie_lib from util.Notifier import Observer from util.Notifier import Observable class FacemovieThread(threading.Thread, Observable, Observer): ''' Creates a Thread version of Facemovie using the facemovie_lib. This class can then be run anywhere, from a GUI, script, ... ''' def __init__(self, face_params): """ Initializes all parameters of the application. Input and output folders are defined, together with the classifier profile. :param face_params: A faceparams object that contains all needed information to run the Facemovie. :type face_params: FaceParams """ threading.Thread.__init__(self) Observable.__init__(self) Observer.__init__(self, "Application") self.stop_process = False self.face_params = face_params self.facemovie = Facemovie_lib.FaceMovie(self.face_params) self.facemovie.subscribe(self) # Subscribing to facemovie reports self.subscribe(self.facemovie) # Used to send request to stop self.my_logger = logging.getLogger('IvolutionFile.Thread') #self.console_logger = logging.getLogger('ConsoleLog') def update(self, message): """ Trigerred by IvolutionWindow. Uses the Observer pattern to inform the user about the progress of the GUI. """ if len(message) == 1: # system commands if message[0] == "STOP": #self.console_logger.debug("Facemovie is going to stop") self.my_logger.debug("Facemovie is going to stop") self.stop_process = True self.notify(["Lib", ["STOP"]]) else: #self.console_logger.debug("Unrecognized system command") self.my_logger.debug("Unrecognized system command") ##self.console_logger.debug(message) self.my_logger.debug(message) elif len(message) == 2: # notifications ##self.console_logger.debug(message) self.my_logger.debug(message) if message[0] == "FILEADD": self.notify(["Interface", [message[0], message[1], 0]]) else: # notify gui about small updates self.notify(["Interface", ["STATUS", message[0], message[1]]]) # checking for fatal error if message[0] == "Error": #self.console_logger.debug("Fatal Error detected") self.my_logger.debug("Fatal Error detected") self.stop_process = True self.notify(["Lib", ["STOP"]]) elif len(message) == 3: # notifications if message[0] == "FILEDONE": self.notify(["Interface", message]) else: #self.console_logger.debug("Unrecognized command") self.my_logger.debug("Unrecognized command") #self.console_logger.debug(message) self.my_logger.debug(message) def run(self): if not self.stop_process: self.my_logger.debug("Listing pictures") self.notify(["Interface", ["PROGRESS", "Listing pictures", 0.0]]) num_guys = self.facemovie.list_guys() # FIXME: Later to be done in Lib if num_guys < 0: self.notify(["Interface", ["STATUS", "Source folder not found", 0.0]]) self.stop_process = True elif num_guys == 0: self.notify(["Interface", ["STATUS", "No image found in source folder", 0.0]]) self.stop_process = True if not self.stop_process: self.my_logger.debug("Detecting Faces") self.notify(["Interface", ["PROGRESS", "Detecting Faces", 0.2]]) self.facemovie.prepare_faces() # I want to search for the faces, and characteristics of the images if not self.stop_process: self.my_logger.debug("Calculating video requirements") self.notify(["Interface", ["PROGRESS", "Calculating video requirements", 0.6]]) self.facemovie.find_final_dimensions() # finds output size for desired mode. if not self.stop_process: self.my_logger.debug("Generating movie") self.notify(["Interface", ["PROGRESS", "Generating movie", 0.8]]) self.facemovie.save_movie() self.my_logger.debug("Movie saved") self.notify(["Interface", ["PROGRESS", "Movie saved, Finished!", 1.0]]) # updating status to avoid remanent messages self.notify(["Interface", ["STATUS", " ", 1.0]]) if not self.stop_process: self.my_logger.debug("Thread terminated") if self.stop_process: self.notify(["Interface", ["PROGRESS", "Process cancelled!", 1.0]])
1,796
0
27
0c88166c936c8776b4331a148fd68ba27d214ba1
1,395
py
Python
Q024_implement_queue_class_in_python.py
latika18/learning
a57c9aacc0157bf7c318f46c1e7c4971d1d55aea
[ "Unlicense" ]
null
null
null
Q024_implement_queue_class_in_python.py
latika18/learning
a57c9aacc0157bf7c318f46c1e7c4971d1d55aea
[ "Unlicense" ]
null
null
null
Q024_implement_queue_class_in_python.py
latika18/learning
a57c9aacc0157bf7c318f46c1e7c4971d1d55aea
[ "Unlicense" ]
null
null
null
#Question 24 #Implement a queue class in Python: It should support 3 APIs: #queue.top(): prints current element at front of queue #queue.pop(): takes out an element from front of queue #queue.add(): adds a new element at end of stack queue_1 = Queue() queue_1.add(12) queue_1.add(11) queue_1.add(55) queue_1.add(66) queue_1.add(56) queue_1.add(43) queue_1.add(33) queue_1.add(88) queue_1.add(56) queue_1.add(34) print queue_1 print queue_1.top() queue_1.pop() print queue_1.top() queue_1.pop() print queue_1.top() queue_1.pop() print queue_1.top() queue_1.pop() print queue_1.top() queue_1.pop() print queue_1.top() queue_1.pop() print queue_1.top() queue_1.pop() print queue_1.top() queue_1.pop() print queue_1.top() queue_1.pop() print queue_1.top() queue_1.pop() print queue_1.top() queue_1.pop()
21.136364
61
0.653047
#Question 24 #Implement a queue class in Python: It should support 3 APIs: #queue.top(): prints current element at front of queue #queue.pop(): takes out an element from front of queue #queue.add(): adds a new element at end of stack class Queue: def __init__(self): """initialise a Queue class""" self.items = [] def top(self): """returns the current element at front of queue""" if self.items: return self.items[0] else: raise Exception("Empty Queue") def pop(self): """takes out an element from front of queue""" if self.items: self.items.pop(0) else : raise Exception("Empty Queue") def add(self , item): """adds a new element at the end of queue""" self.items.append(item) queue_1 = Queue() queue_1.add(12) queue_1.add(11) queue_1.add(55) queue_1.add(66) queue_1.add(56) queue_1.add(43) queue_1.add(33) queue_1.add(88) queue_1.add(56) queue_1.add(34) print queue_1 print queue_1.top() queue_1.pop() print queue_1.top() queue_1.pop() print queue_1.top() queue_1.pop() print queue_1.top() queue_1.pop() print queue_1.top() queue_1.pop() print queue_1.top() queue_1.pop() print queue_1.top() queue_1.pop() print queue_1.top() queue_1.pop() print queue_1.top() queue_1.pop() print queue_1.top() queue_1.pop() print queue_1.top() queue_1.pop()
0
571
22
9961f18b23d3984a91e993cdbb9cc0a5a87b1478
1,860
py
Python
app/services/searchers/rule.py
ninoseki/uzen
93726f22f43902e17b22dd36142dac05171d0d84
[ "MIT" ]
76
2020-02-27T06:36:27.000Z
2022-03-10T20:18:03.000Z
app/services/searchers/rule.py
ninoseki/uzen
93726f22f43902e17b22dd36142dac05171d0d84
[ "MIT" ]
33
2020-03-13T02:04:14.000Z
2022-03-04T02:06:11.000Z
app/services/searchers/rule.py
ninoseki/uzen
93726f22f43902e17b22dd36142dac05171d0d84
[ "MIT" ]
6
2020-03-17T16:42:25.000Z
2021-04-27T06:35:46.000Z
from typing import Any, Dict, List, Optional, cast from uuid import UUID from tortoise.query_utils import Q from app import models, schemas from app.services.searchers import AbstractSearcher
31
89
0.612366
from typing import Any, Dict, List, Optional, cast from uuid import UUID from tortoise.query_utils import Q from app import models, schemas from app.services.searchers import AbstractSearcher class RuleSearcher(AbstractSearcher): @classmethod async def search( cls, filters: Dict[str, Any], size: Optional[int] = None, offset: Optional[int] = None, id_only: bool = False, ) -> schemas.RulesSearchResults: """Search rules. Arguments: filters {dict} -- Filters for rule search Keyword Arguments: size {[int]} -- Number of results returned (default: {None}) offset {[int]} -- Offset of the first result for pagination (default: {None}) id_only {bool} -- Whether to return only a list of ids (default: {False}) Returns: SearchResults -- A list of rules and total count """ # build queirs from filters queries = [] name = filters.get("name") if name is not None: queries.append(Q(name__contains=name)) target = filters.get("target") if target is not None: queries.append(Q(target=target)) source = filters.get("source") if source is not None: queries.append(Q(source__contains=source)) query = Q(*queries) # Run search instance = cls(model=models.Rule, query=query) results = await instance._search(size=size, offset=offset, id_only=id_only) if id_only: return schemas.RulesSearchResults( results=cast(List[UUID], results.results), total=results.total ) rules = [rule.to_model() for rule in cast(List[models.Rule], results.results)] return schemas.RulesSearchResults(results=rules, total=results.total)
0
1,642
23
7a93655ebac4268d033069e0c8e6ff264d96d3fb
45
py
Python
src/widget/user1/__init__.py
megemini/DataCastle2017
261134f760d8c1bbfc3e65e1362b7710e601947d
[ "MIT" ]
null
null
null
src/widget/user1/__init__.py
megemini/DataCastle2017
261134f760d8c1bbfc3e65e1362b7710e601947d
[ "MIT" ]
null
null
null
src/widget/user1/__init__.py
megemini/DataCastle2017
261134f760d8c1bbfc3e65e1362b7710e601947d
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Just for test """
11.25
23
0.466667
# -*- coding: utf-8 -*- """ Just for test """
0
0
0
2366a81d98fc425ba641105e960fcc11a70e1e25
993
py
Python
plot/Plot_thermal_conductiviy_V1.py
eastsheng/Thermal-conductivity
8a26be22c58b3b3b6723c57c65f4bba93556f9e8
[ "MIT" ]
7
2020-06-10T05:38:17.000Z
2022-03-11T10:33:57.000Z
plot/Plot_thermal_conductiviy_V1.py
eastsheng/Thermal-conductivity
8a26be22c58b3b3b6723c57c65f4bba93556f9e8
[ "MIT" ]
null
null
null
plot/Plot_thermal_conductiviy_V1.py
eastsheng/Thermal-conductivity
8a26be22c58b3b3b6723c57c65f4bba93556f9e8
[ "MIT" ]
2
2020-04-24T09:36:25.000Z
2022-03-11T10:33:58.000Z
import numpy as np import matplotlib.pyplot as plt if __name__ == '__main__': # tcfile = './Thermal_conductivity_Se.txt' tcfile = './Thermal_conductivity_S.txt' plt_tc(tcfile)
24.825
96
0.678751
import numpy as np import matplotlib.pyplot as plt def plt_tc(tcfile): tc = np.loadtxt(tcfile) # print(tc) x = tc[:,0]/32.06 y = tc[:,1:4] y_mean = np.mean(y,axis=1) y_std = np.std(y,axis=1) # print(y_mean,y_std) plt.rc('font',family='Times New Roman',size=26) fig, ax = plt.subplots(figsize=(8,6)) fig.subplots_adjust(bottom=0.2,left=0.2) s1 = ax.errorbar(x,y_mean,yerr=y_std,capsize=10,capthick=4, fmt='bo:',mfc='w',mec='b',markersize=16,mew=2) ax.legend(handles=[s1],labels=['$\mathregular{MoS_2}$/$\mathregular{MoS^{m}}_\mathregular{2}$'] ,loc='best', fontsize=26) ax.set_xlabel('Mass ratio (R)',fontsize=26,fontweight='bold') ax.set_ylabel('Thermal conductivity (W/m-K)',fontsize=26,fontweight='bold') ax.set_xticks([0,1,2,3,4,5,6]) ax.set_yticks([0,5,10,15,20,25,30]) plt.savefig(tcfile+'_.tiff',dpi=300) plt.show() return if __name__ == '__main__': # tcfile = './Thermal_conductivity_Se.txt' tcfile = './Thermal_conductivity_S.txt' plt_tc(tcfile)
785
0
23
68a08329945e4e078a86db5c9188a879ac68c385
4,743
py
Python
scripts/scatter_plots.py
tupleblog/bkkdreams-datathon
54214356d42cecdc758803d958375bd7ee7dc169
[ "MIT" ]
1
2020-09-13T16:52:03.000Z
2020-09-13T16:52:03.000Z
scripts/scatter_plots.py
tupleblog/bkkdreams-datathon
54214356d42cecdc758803d958375bd7ee7dc169
[ "MIT" ]
null
null
null
scripts/scatter_plots.py
tupleblog/bkkdreams-datathon
54214356d42cecdc758803d958375bd7ee7dc169
[ "MIT" ]
null
null
null
""" Scatter plot between """ import pandas as pd import numpy as np from numpy.random import random from math import pi from bokeh.io import output_notebook output_notebook() from bokeh.io import show, output_file from bokeh.palettes import RdYlGn6 from bokeh.models import ( BasicTicker, ColorBar, LinearColorMapper, PrintfTickFormatter, ColumnDataSource, HoverTool, Span, ) from bokeh.plotting import figure, save, show, output_file from bokeh.palettes import BuGn, Blues8, Oranges256 def plot_vs_population(districts_budget_df): """ From district budget to scatter plots vs total population """ for q in districts_budget_df.budget_type.unique(): df = districts_budget_df.query("budget_type == '{}'".format(q)) df["num_total"] = df["num_male"] + df["num_female"] df = df.groupby(["dname", "num_total"])["budget"].sum().reset_index() source = ColumnDataSource( data=dict( x=df["num_total"] / 10000, y=df["budget"] / 1000000, desc=df["dname"] ) ) p = figure(title="", tools="hover,box_zoom,reset") vline = Span( location=df.num_total.mean() / 10000, dimension="height", line_color="gold", line_width=1.5, ) hline = Span( location=df["budget"].mean() / 1000000, dimension="width", line_color="gold", line_width=1.5, ) p.circle( "x", "y", source=source, fill_alpha=0.2, size=10, ) p.xaxis.axis_label = "จำนวนผู้อยู่อาศัย (หมื่นคน)" p.yaxis.axis_label = f"งบประมาณ{q} (ล้านบาท)" p.xaxis.axis_label_text_font_size = "15pt" p.yaxis.axis_label_text_font_size = "15pt" p.xaxis.major_label_text_font_size = "12pt" p.yaxis.major_label_text_font_size = "12pt" hover = HoverTool( tooltips=[ ("เขต", "@desc"), (f"งบ{q}", "@y ล้านบาท"), ("จำนวนผู้อาศัย", "@x หมื่นคน"), ] ) p.add_tools(hover) p.renderers.extend([vline, hline]) output_file(f"plots/scatter-{q_map[q]}-budget.html", mode="inline") save(p) def plot_vs_area(districts_budget_df): """ From district budget to scatter plots vs area size """ for q in districts_budget_df.budget_type.unique(): df = districts_budget_df.query("budget_type == '{}'".format(q)) df = df.groupby(["dname", "AREA"])["budget"].sum().reset_index() source = ColumnDataSource( data=dict( x=df["AREA"] / 1000000, y=df["budget"] / 1000000, desc=df["dname"] ) ) p = figure(title="", tools="hover,box_zoom,reset") vline = Span( location=df.AREA.mean() / 1000000, dimension="height", line_color="gold", line_width=1.5, ) hline = Span( location=df["budget"].mean() / 1000000, dimension="width", line_color="gold", line_width=1.5, ) p.circle( "x", "y", source=source, fill_alpha=0.2, size=10, ) p.xaxis.axis_label = "ขนาดพื้นที่ (ตร.กม.)" p.yaxis.axis_label = f"งบประมาณ{q} (ล้านบาท)" p.xaxis.axis_label_text_font_size = "15pt" p.yaxis.axis_label_text_font_size = "15pt" p.xaxis.major_label_text_font_size = "12pt" p.yaxis.major_label_text_font_size = "12pt" hover = HoverTool( tooltips=[ ("เขต", "@desc"), (f"งบ{q}", "@y ล้านบาท"), ("ขนาดพื้นที่", "@x ตร.กม."), ] ) p.add_tools(hover) p.renderers.extend([vline, hline]) output_file(f"plots/scatter-{q_map[q]}-budget-area.html", mode="inline") save(p) if __name__ == "__main__": districts_budget_df = pd.read_csv("data/districts_budget.csv")[ ["dname", "ประเภทแผนงาน", "งบแผนงาน", "AREA", "num_male", "num_female"] ] districts_budget_df["num_total"] = ( districts_budget_df.num_male + districts_budget_df.num_female ) districts_budget_df.rename( columns={"ประเภทแผนงาน": "budget_type", "งบแผนงาน": "budget"}, inplace=True ) q_map = { "ทั่วไป/บริหาร/อื่นๆ": "gen", "การคลัง": "treasury", "เทศกิจ/รักษาความสะอาด": "clean", "โยธา/ก่อสร้าง/จราจร": "civil", "น้ำท่วม/ทางเท้า": "pedes", "สิ่งแวดล้อม": "env", "พัฒนาชุมชน/อาชีพ": "enh", "อนามัย/สาธารณะสุข": "health", "การศึกษา": "edu", } plot_vs_population(districts_budget_df) plot_vs_area(districts_budget_df)
31.62
85
0.560826
""" Scatter plot between """ import pandas as pd import numpy as np from numpy.random import random from math import pi from bokeh.io import output_notebook output_notebook() from bokeh.io import show, output_file from bokeh.palettes import RdYlGn6 from bokeh.models import ( BasicTicker, ColorBar, LinearColorMapper, PrintfTickFormatter, ColumnDataSource, HoverTool, Span, ) from bokeh.plotting import figure, save, show, output_file from bokeh.palettes import BuGn, Blues8, Oranges256 def plot_vs_population(districts_budget_df): """ From district budget to scatter plots vs total population """ for q in districts_budget_df.budget_type.unique(): df = districts_budget_df.query("budget_type == '{}'".format(q)) df["num_total"] = df["num_male"] + df["num_female"] df = df.groupby(["dname", "num_total"])["budget"].sum().reset_index() source = ColumnDataSource( data=dict( x=df["num_total"] / 10000, y=df["budget"] / 1000000, desc=df["dname"] ) ) p = figure(title="", tools="hover,box_zoom,reset") vline = Span( location=df.num_total.mean() / 10000, dimension="height", line_color="gold", line_width=1.5, ) hline = Span( location=df["budget"].mean() / 1000000, dimension="width", line_color="gold", line_width=1.5, ) p.circle( "x", "y", source=source, fill_alpha=0.2, size=10, ) p.xaxis.axis_label = "จำนวนผู้อยู่อาศัย (หมื่นคน)" p.yaxis.axis_label = f"งบประมาณ{q} (ล้านบาท)" p.xaxis.axis_label_text_font_size = "15pt" p.yaxis.axis_label_text_font_size = "15pt" p.xaxis.major_label_text_font_size = "12pt" p.yaxis.major_label_text_font_size = "12pt" hover = HoverTool( tooltips=[ ("เขต", "@desc"), (f"งบ{q}", "@y ล้านบาท"), ("จำนวนผู้อาศัย", "@x หมื่นคน"), ] ) p.add_tools(hover) p.renderers.extend([vline, hline]) output_file(f"plots/scatter-{q_map[q]}-budget.html", mode="inline") save(p) def plot_vs_area(districts_budget_df): """ From district budget to scatter plots vs area size """ for q in districts_budget_df.budget_type.unique(): df = districts_budget_df.query("budget_type == '{}'".format(q)) df = df.groupby(["dname", "AREA"])["budget"].sum().reset_index() source = ColumnDataSource( data=dict( x=df["AREA"] / 1000000, y=df["budget"] / 1000000, desc=df["dname"] ) ) p = figure(title="", tools="hover,box_zoom,reset") vline = Span( location=df.AREA.mean() / 1000000, dimension="height", line_color="gold", line_width=1.5, ) hline = Span( location=df["budget"].mean() / 1000000, dimension="width", line_color="gold", line_width=1.5, ) p.circle( "x", "y", source=source, fill_alpha=0.2, size=10, ) p.xaxis.axis_label = "ขนาดพื้นที่ (ตร.กม.)" p.yaxis.axis_label = f"งบประมาณ{q} (ล้านบาท)" p.xaxis.axis_label_text_font_size = "15pt" p.yaxis.axis_label_text_font_size = "15pt" p.xaxis.major_label_text_font_size = "12pt" p.yaxis.major_label_text_font_size = "12pt" hover = HoverTool( tooltips=[ ("เขต", "@desc"), (f"งบ{q}", "@y ล้านบาท"), ("ขนาดพื้นที่", "@x ตร.กม."), ] ) p.add_tools(hover) p.renderers.extend([vline, hline]) output_file(f"plots/scatter-{q_map[q]}-budget-area.html", mode="inline") save(p) if __name__ == "__main__": districts_budget_df = pd.read_csv("data/districts_budget.csv")[ ["dname", "ประเภทแผนงาน", "งบแผนงาน", "AREA", "num_male", "num_female"] ] districts_budget_df["num_total"] = ( districts_budget_df.num_male + districts_budget_df.num_female ) districts_budget_df.rename( columns={"ประเภทแผนงาน": "budget_type", "งบแผนงาน": "budget"}, inplace=True ) q_map = { "ทั่วไป/บริหาร/อื่นๆ": "gen", "การคลัง": "treasury", "เทศกิจ/รักษาความสะอาด": "clean", "โยธา/ก่อสร้าง/จราจร": "civil", "น้ำท่วม/ทางเท้า": "pedes", "สิ่งแวดล้อม": "env", "พัฒนาชุมชน/อาชีพ": "enh", "อนามัย/สาธารณะสุข": "health", "การศึกษา": "edu", } plot_vs_population(districts_budget_df) plot_vs_area(districts_budget_df)
0
0
0
c175aa18424a015e81f4404dc8122dd28b20d6bf
302
py
Python
QISKIT/TDA/Qconfig_20_qubit.py
rsarkar-github/Quantum-Computing-Projects
966c0465f98dca0091f09826e12eb57277faf3c0
[ "MIT" ]
null
null
null
QISKIT/TDA/Qconfig_20_qubit.py
rsarkar-github/Quantum-Computing-Projects
966c0465f98dca0091f09826e12eb57277faf3c0
[ "MIT" ]
null
null
null
QISKIT/TDA/Qconfig_20_qubit.py
rsarkar-github/Quantum-Computing-Projects
966c0465f98dca0091f09826e12eb57277faf3c0
[ "MIT" ]
null
null
null
APItoken = 'ffb1bf6df27099919ca9ab63da88b1929016a7f7468d477f65241f61e1f457ab4' \ 'f53c50ead0371ce632b283b5dc803fae33b34b3601053d2bde24f4ebc921b1b' config = { 'url': 'https://q-console-api.mybluemix.net/api', 'hub': 'ibmq', 'group': 'qc-ware', 'project': 'default' }
30.2
80
0.688742
APItoken = 'ffb1bf6df27099919ca9ab63da88b1929016a7f7468d477f65241f61e1f457ab4' \ 'f53c50ead0371ce632b283b5dc803fae33b34b3601053d2bde24f4ebc921b1b' config = { 'url': 'https://q-console-api.mybluemix.net/api', 'hub': 'ibmq', 'group': 'qc-ware', 'project': 'default' }
0
0
0
de5c1f120fe34ee35b979c4f5b009fc460b748c4
1,906
py
Python
os_faults/ansible/modules/iptables.py
Marie-Donnie/os-faults
2f9eb760d240b9a03b7df5682b5b24cf35daacd0
[ "Apache-2.0" ]
null
null
null
os_faults/ansible/modules/iptables.py
Marie-Donnie/os-faults
2f9eb760d240b9a03b7df5682b5b24cf35daacd0
[ "Apache-2.0" ]
null
null
null
os_faults/ansible/modules/iptables.py
Marie-Donnie/os-faults
2f9eb760d240b9a03b7df5682b5b24cf35daacd0
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from ansible.module_utils.basic import * # noqa if __name__ == '__main__': main()
38.897959
75
0.629066
#!/usr/bin/python # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from ansible.module_utils.basic import * # noqa def main(): module = AnsibleModule( argument_spec=dict( service=dict(required=True, type='str'), action=dict(required=True, choices=['block', 'unblock']), port=dict(required=True, type='int'), protocol=dict(required=True, choices=['tcp', 'udp']), )) service = module.params['service'] action = module.params['action'] port = module.params['port'] protocol = module.params['protocol'] comment = '{}_temporary_DROP'.format(service) if action == 'block': cmd = ('bash -c "iptables -I INPUT 1 -p {protocol} --dport {port} ' '-j DROP -m comment --comment "{comment}""'.format( comment=comment, port=port, protocol=protocol)) else: cmd = ('bash -c "rule=`iptables -L INPUT -n --line-numbers | ' 'grep "{comment}" | cut -d \' \' -f1`; for arg in $rule;' ' do iptables -D INPUT -p {protocol} --dport {port} ' '-j DROP -m comment --comment "{comment}"; done"'.format( comment=comment, port=port, protocol=protocol)) rc, stdout, stderr = module.run_command(cmd, check_rc=True) module.exit_json(cmd=cmd, rc=rc, stderr=stderr, stdout=stdout) if __name__ == '__main__': main()
1,228
0
23
91aa923768fc23db2b0a5d788c50eb978a3701bc
15,766
py
Python
python/pyspark/sql/tests/test_session.py
wangyeweikuer/spark
731aa2cdf8a78835621fbf3de2d3492b27711d1a
[ "BSD-2-Clause", "Apache-2.0", "CC0-1.0", "MIT", "MIT-0", "ECL-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
1
2022-03-25T06:40:43.000Z
2022-03-25T06:40:43.000Z
python/pyspark/sql/tests/test_session.py
nyingping/spark
ca7200b0008dc6101a252020e6c34ef7b72d81d6
[ "Apache-2.0" ]
6
2018-06-14T11:15:27.000Z
2019-01-27T12:11:23.000Z
python/pyspark/sql/tests/test_session.py
nyingping/spark
ca7200b0008dc6101a252020e6c34ef7b72d81d6
[ "Apache-2.0" ]
1
2022-03-09T08:50:07.000Z
2022-03-09T08:50:07.000Z
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import unittest from pyspark import SparkConf, SparkContext from pyspark.sql import SparkSession, SQLContext, Row from pyspark.sql.functions import col from pyspark.testing.sqlutils import ReusedSQLTestCase from pyspark.testing.utils import PySparkTestCase # We can't include this test into SQLTests because we will stop class's SparkContext and cause # other tests failed. # This test is separate because it's closely related with session's start and stop. # See SPARK-23228. if __name__ == "__main__": from pyspark.sql.tests.test_session import * # noqa: F401 try: import xmlrunner # type: ignore[import] testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
40.425641
99
0.639921
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import unittest from pyspark import SparkConf, SparkContext from pyspark.sql import SparkSession, SQLContext, Row from pyspark.sql.functions import col from pyspark.testing.sqlutils import ReusedSQLTestCase from pyspark.testing.utils import PySparkTestCase class SparkSessionTests(ReusedSQLTestCase): def test_sqlcontext_reuses_sparksession(self): sqlContext1 = SQLContext(self.sc) sqlContext2 = SQLContext(self.sc) self.assertTrue(sqlContext1.sparkSession is sqlContext2.sparkSession) class SparkSessionTests1(ReusedSQLTestCase): # We can't include this test into SQLTests because we will stop class's SparkContext and cause # other tests failed. def test_sparksession_with_stopped_sparkcontext(self): self.sc.stop() sc = SparkContext("local[4]", self.sc.appName) spark = SparkSession.builder.getOrCreate() try: df = spark.createDataFrame([(1, 2)], ["c", "c"]) df.collect() finally: spark.stop() sc.stop() class SparkSessionTests2(PySparkTestCase): # This test is separate because it's closely related with session's start and stop. # See SPARK-23228. def test_set_jvm_default_session(self): spark = SparkSession.builder.getOrCreate() try: self.assertTrue(spark._jvm.SparkSession.getDefaultSession().isDefined()) finally: spark.stop() self.assertTrue(spark._jvm.SparkSession.getDefaultSession().isEmpty()) def test_jvm_default_session_already_set(self): # Here, we assume there is the default session already set in JVM. jsession = self.sc._jvm.SparkSession(self.sc._jsc.sc()) self.sc._jvm.SparkSession.setDefaultSession(jsession) spark = SparkSession.builder.getOrCreate() try: self.assertTrue(spark._jvm.SparkSession.getDefaultSession().isDefined()) # The session should be the same with the exiting one. self.assertTrue(jsession.equals(spark._jvm.SparkSession.getDefaultSession().get())) finally: spark.stop() class SparkSessionTests3(unittest.TestCase): def test_active_session(self): spark = SparkSession.builder.master("local").getOrCreate() try: activeSession = SparkSession.getActiveSession() df = activeSession.createDataFrame([(1, "Alice")], ["age", "name"]) self.assertEqual(df.collect(), [Row(age=1, name="Alice")]) finally: spark.stop() def test_get_active_session_when_no_active_session(self): active = SparkSession.getActiveSession() self.assertEqual(active, None) spark = SparkSession.builder.master("local").getOrCreate() active = SparkSession.getActiveSession() self.assertEqual(active, spark) spark.stop() active = SparkSession.getActiveSession() self.assertEqual(active, None) def test_spark_session(self): spark = SparkSession.builder.master("local").config("some-config", "v2").getOrCreate() try: self.assertEqual(spark.conf.get("some-config"), "v2") self.assertEqual(spark.sparkContext._conf.get("some-config"), "v2") self.assertEqual(spark.version, spark.sparkContext.version) spark.sql("CREATE DATABASE test_db") spark.catalog.setCurrentDatabase("test_db") self.assertEqual(spark.catalog.currentDatabase(), "test_db") spark.sql("CREATE TABLE table1 (name STRING, age INT) USING parquet") self.assertEqual(spark.table("table1").columns, ["name", "age"]) self.assertEqual(spark.range(3).count(), 3) # SPARK-37516: Only plain column references work as variable in SQL. self.assertEqual( spark.sql("select {c} from range(1)", c=col("id")).first(), spark.range(1).first() ) with self.assertRaisesRegex(ValueError, "Column"): spark.sql("select {c} from range(10)", c=col("id") + 1) finally: spark.sql("DROP DATABASE test_db CASCADE") spark.stop() def test_global_default_session(self): spark = SparkSession.builder.master("local").getOrCreate() try: self.assertEqual(SparkSession.builder.getOrCreate(), spark) finally: spark.stop() def test_default_and_active_session(self): spark = SparkSession.builder.master("local").getOrCreate() activeSession = spark._jvm.SparkSession.getActiveSession() defaultSession = spark._jvm.SparkSession.getDefaultSession() try: self.assertEqual(activeSession, defaultSession) finally: spark.stop() def test_config_option_propagated_to_existing_session(self): session1 = SparkSession.builder.master("local").config("spark-config1", "a").getOrCreate() self.assertEqual(session1.conf.get("spark-config1"), "a") session2 = SparkSession.builder.config("spark-config1", "b").getOrCreate() try: self.assertEqual(session1, session2) self.assertEqual(session1.conf.get("spark-config1"), "b") finally: session1.stop() def test_new_session(self): session = SparkSession.builder.master("local").getOrCreate() newSession = session.newSession() try: self.assertNotEqual(session, newSession) finally: session.stop() newSession.stop() def test_create_new_session_if_old_session_stopped(self): session = SparkSession.builder.master("local").getOrCreate() session.stop() newSession = SparkSession.builder.master("local").getOrCreate() try: self.assertNotEqual(session, newSession) finally: newSession.stop() def test_active_session_with_None_and_not_None_context(self): from pyspark.context import SparkContext from pyspark.conf import SparkConf sc = None session = None try: sc = SparkContext._active_spark_context self.assertEqual(sc, None) activeSession = SparkSession.getActiveSession() self.assertEqual(activeSession, None) sparkConf = SparkConf() sc = SparkContext.getOrCreate(sparkConf) activeSession = sc._jvm.SparkSession.getActiveSession() self.assertFalse(activeSession.isDefined()) session = SparkSession(sc) activeSession = sc._jvm.SparkSession.getActiveSession() self.assertTrue(activeSession.isDefined()) activeSession2 = SparkSession.getActiveSession() self.assertNotEqual(activeSession2, None) finally: if session is not None: session.stop() if sc is not None: sc.stop() class SparkSessionTests4(ReusedSQLTestCase): def test_get_active_session_after_create_dataframe(self): session2 = None try: activeSession1 = SparkSession.getActiveSession() session1 = self.spark self.assertEqual(session1, activeSession1) session2 = self.spark.newSession() activeSession2 = SparkSession.getActiveSession() self.assertEqual(session1, activeSession2) self.assertNotEqual(session2, activeSession2) session2.createDataFrame([(1, "Alice")], ["age", "name"]) activeSession3 = SparkSession.getActiveSession() self.assertEqual(session2, activeSession3) session1.createDataFrame([(1, "Alice")], ["age", "name"]) activeSession4 = SparkSession.getActiveSession() self.assertEqual(session1, activeSession4) finally: if session2 is not None: session2.stop() class SparkSessionTests5(unittest.TestCase): def setUp(self): # These tests require restarting the Spark context so we set up a new one for each test # rather than at the class level. self.sc = SparkContext("local[4]", self.__class__.__name__, conf=SparkConf()) self.spark = SparkSession(self.sc) def tearDown(self): self.sc.stop() self.spark.stop() def test_sqlcontext_with_stopped_sparksession(self): # SPARK-30856: test that SQLContext.getOrCreate() returns a usable instance after # the SparkSession is restarted. sql_context = SQLContext.getOrCreate(self.spark.sparkContext) self.spark.stop() spark = SparkSession.builder.master("local[4]").appName(self.sc.appName).getOrCreate() new_sql_context = SQLContext.getOrCreate(spark.sparkContext) self.assertIsNot(new_sql_context, sql_context) self.assertIs(SQLContext.getOrCreate(spark.sparkContext).sparkSession, spark) try: df = spark.createDataFrame([(1, 2)], ["c", "c"]) df.collect() finally: spark.stop() self.assertIsNone(SQLContext._instantiatedContext) def test_sqlcontext_with_stopped_sparkcontext(self): # SPARK-30856: test initialization via SparkSession when only the SparkContext is stopped self.sc.stop() spark = SparkSession.builder.master("local[4]").appName(self.sc.appName).getOrCreate() self.sc = spark.sparkContext self.assertIs(SQLContext.getOrCreate(self.sc).sparkSession, spark) def test_get_sqlcontext_with_stopped_sparkcontext(self): # SPARK-30856: test initialization via SQLContext.getOrCreate() when only the SparkContext # is stopped self.sc.stop() self.sc = SparkContext("local[4]", self.sc.appName) self.assertIs(SQLContext.getOrCreate(self.sc)._sc, self.sc) class SparkSessionBuilderTests(unittest.TestCase): def test_create_spark_context_first_then_spark_session(self): sc = None session = None try: conf = SparkConf().set("key1", "value1") sc = SparkContext("local[4]", "SessionBuilderTests", conf=conf) session = SparkSession.builder.config("key2", "value2").getOrCreate() self.assertEqual(session.conf.get("key1"), "value1") self.assertEqual(session.conf.get("key2"), "value2") self.assertEqual(session.sparkContext, sc) self.assertFalse(sc.getConf().contains("key2")) self.assertEqual(sc.getConf().get("key1"), "value1") finally: if session is not None: session.stop() if sc is not None: sc.stop() def test_another_spark_session(self): session1 = None session2 = None try: session1 = SparkSession.builder.config("key1", "value1").getOrCreate() session2 = SparkSession.builder.config( "spark.sql.codegen.comments", "true" ).getOrCreate() self.assertEqual(session1.conf.get("key1"), "value1") self.assertEqual(session2.conf.get("key1"), "value1") self.assertEqual(session1.conf.get("spark.sql.codegen.comments"), "false") self.assertEqual(session2.conf.get("spark.sql.codegen.comments"), "false") self.assertEqual(session1.sparkContext, session2.sparkContext) self.assertEqual(session1.sparkContext.getConf().get("key1"), "value1") self.assertFalse(session1.sparkContext.getConf().contains("key2")) finally: if session1 is not None: session1.stop() if session2 is not None: session2.stop() def test_create_spark_context_with_initial_session_options(self): sc = None session = None try: conf = SparkConf().set("key1", "value1") sc = SparkContext("local[4]", "SessionBuilderTests", conf=conf) session = ( SparkSession.builder.config("spark.sql.codegen.comments", "true") .enableHiveSupport() .getOrCreate() ) self.assertEqual(session._jsparkSession.sharedState().conf().get("key1"), "value1") self.assertEqual( session._jsparkSession.sharedState().conf().get("spark.sql.codegen.comments"), "true", ) self.assertEqual( session._jsparkSession.sharedState().conf().get("spark.sql.catalogImplementation"), "hive", ) self.assertEqual(session.sparkContext, sc) finally: if session is not None: session.stop() if sc is not None: sc.stop() class SparkExtensionsTest(unittest.TestCase): # These tests are separate because it uses 'spark.sql.extensions' which is # static and immutable. This can't be set or unset, for example, via `spark.conf`. @classmethod def setUpClass(cls): import glob from pyspark.find_spark_home import _find_spark_home SPARK_HOME = _find_spark_home() filename_pattern = ( "sql/core/target/scala-*/test-classes/org/apache/spark/sql/" "SparkSessionExtensionSuite.class" ) if not glob.glob(os.path.join(SPARK_HOME, filename_pattern)): raise unittest.SkipTest( "'org.apache.spark.sql.SparkSessionExtensionSuite' is not " "available. Will skip the related tests." ) # Note that 'spark.sql.extensions' is a static immutable configuration. cls.spark = ( SparkSession.builder.master("local[4]") .appName(cls.__name__) .config("spark.sql.extensions", "org.apache.spark.sql.MyExtensions") .getOrCreate() ) @classmethod def tearDownClass(cls): cls.spark.stop() def test_use_custom_class_for_extensions(self): self.assertTrue( self.spark._jsparkSession.sessionState() .planner() .strategies() .contains( self.spark._jvm.org.apache.spark.sql.MySparkStrategy(self.spark._jsparkSession) ), "MySparkStrategy not found in active planner strategies", ) self.assertTrue( self.spark._jsparkSession.sessionState() .analyzer() .extendedResolutionRules() .contains(self.spark._jvm.org.apache.spark.sql.MyRule(self.spark._jsparkSession)), "MyRule not found in extended resolution rules", ) if __name__ == "__main__": from pyspark.sql.tests.test_session import * # noqa: F401 try: import xmlrunner # type: ignore[import] testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
12,883
469
771
f10f0867880f642b6d0b6d7c51bd8255be411723
14,187
py
Python
model/run_experiments.py
irenetrampoline/clustering-interval-censored
f6ab06a6cf3098ffe006d1b95d1b4f1d158b0bc4
[ "MIT" ]
1
2022-02-03T08:47:45.000Z
2022-02-03T08:47:45.000Z
model/run_experiments.py
irenetrampoline/clustering-interval-censored
f6ab06a6cf3098ffe006d1b95d1b4f1d158b0bc4
[ "MIT" ]
null
null
null
model/run_experiments.py
irenetrampoline/clustering-interval-censored
f6ab06a6cf3098ffe006d1b95d1b4f1d158b0bc4
[ "MIT" ]
null
null
null
import argparse import numpy as np import os import sys sys.path.append('../data') sys.path.append('../plot') import torch from load import sigmoid, quadratic, chf, parkinsons, load_data_format from data_utils import parse_data, change_missing from plot_utils import plot_subtypes, plot_latent from models import Sublign if __name__=='__main__': main()
48.585616
229
0.584408
import argparse import numpy as np import os import sys sys.path.append('../data') sys.path.append('../plot') import torch from load import sigmoid, quadratic, chf, parkinsons, load_data_format from data_utils import parse_data, change_missing from plot_utils import plot_subtypes, plot_latent from models import Sublign def get_hyperparameters(data_format_num): # if data_format_num < 3: # anneal, b_vae, C, ds, dh, drnn, reg_type, lr = False, 0.001, 0., 10, 20, 50, 'l1', 0.01 if data_format_num == 3: # failing on hpsearch anneal, C, b_vae, dh, ds, drnn, reg_type, lr = False, 0.01, 0.0, 100, 20, 200, 'l2', 0.001 # if data_format_num == 5 or data_format_num == 3: # anneal, b_vae, C, ds, dh, drnn, reg_type, lr = False, 0.001, 0.01, 20, 20, 100, 'l2', 0.01 if data_format_num == 1: # best by hpsearch: (True, 0.001, 0.0, 200, 5, 200, 'l2', 0.001) anneal, b_vae, C, ds, dh, drnn, reg_type, lr = True, 0.001, 0.0, 5, 200, 200, 'l2', 0.001 if data_format_num == 3: # anneal, b_vae, C, ds, dh, drnn, reg_type, lr = True, 0.0, 0.0, 100, 20, 200, 'l2', 0.01 anneal, b_vae, C, ds, dh, drnn, reg_type, lr = True, 1.0, 0.01, 100, 5, 200, 'l2', 0.01 # cheat anneal, b_vae, C, ds, dh, drnn, reg_type, lr = False, 0.01, 0.0, 100, 20, 200, 'l2', 0.001 # cheat 2 if data_format_num == 4: # anneal, b_vae, C, ds, dh, drnn, reg_type, lr = False, 0.01, 0.0, 100, 20, 200, 'l2', 0.01 # cheat anneal, b_vae, C, ds, dh, drnn, reg_type, lr = False, 1.0, 0.01, 200, 20, 200, 'l2', 0.1 if data_format_num == 5: anneal, b_vae, C, ds, dh, drnn, reg_type, lr = False, 0.01, 0.0, 200, 20, 200, 'l2', 0.01 if data_format_num == 6: anneal, b_vae, C, ds, dh, drnn, reg_type, lr = True, 0.01, 0.0, 200, 20, 200, 'l2', 0.01 if data_format_num == 7: anneal, b_vae, C, ds, dh, drnn, reg_type, lr = False, 0.01, 0.0, 100, 20, 200, 'l2', 0.001 if data_format_num == 8: anneal, b_vae, C, ds, dh, drnn, reg_type, lr = True, 0.01, 0.01, 100, 20, 200, 'l2', 0.01 anneal, b_vae, C, ds, dh, drnn, reg_type, lr = False, 1., 0., 10, 20, 50, 'l1', 1e-2 # best from prev : False, 0.001, 0.0, 10, 20, 50, 'l1', 0.1 # anneal, b_vae, C, ds, dh, drnn, reg_type, lr = False, 0.001, 0.0, 10, 20, 50, 'l1', 0.1 return anneal, b_vae, C, ds, dh, drnn, reg_type, lr def get_hyperparameters_ppmi(): b_vae, C, ds, dh, drnn, reg_type, lr = 0.01, 0., 10, 10, 20, 'l1', 0.1 return b_vae, C, ds, dh, drnn, reg_type, lr def get_hyperparameters_chf(version=0): # original, results in paper are from this version if version == 0: ds, dh, drnn, reg_type, C, b_vae, lr, epochs, learn_time = 10, 20, 50,'l1', 0.0, 0.001, 0.01, 1000, False elif version == 1: ds, dh, drnn, reg_type, C, b_vae, lr, epochs, learn_time = 10,200,200,'l1', 0.0, 0.001, 0.01, 1000, True elif version == 2: ds, dh, drnn, reg_type, C, b_vae, lr, epochs, learn_time = 10,200,200,'l1', 0.1, 0.001, 0.01, 1000, True elif version == 3: ds, dh, drnn, reg_type, C, b_vae, lr, epochs, learn_time = 10,200,200,'l1', 0.0, 0.001, 0.1, 1000, True elif version == 4: ds, dh, drnn, reg_type, C, b_vae, lr, epochs, learn_time = 10,200,200,'l1', 0.0, 0.01, 0.1, 1000, True return ds, dh, drnn, reg_type, C, b_vae, lr, epochs, learn_time def main(): parser = argparse.ArgumentParser() parser.add_argument('--epochs', action='store', type=int, default=800, help="Number of epochs") parser.add_argument('--trials', action='store', type=int, default=1, help="Number of trials") parser.add_argument('--model_name', action='store', type=str, default='SubLign', help="Model name for Latex table making") parser.add_argument('--lr', action='store', type=float, default=None, help="Learning rate manual override") parser.add_argument('--b_vae', action='store', type=float, default=None, help="b-VAE val override") parser.add_argument('--C', action='store', type=float, default=None, help="C override") # datasets parser.add_argument('--data_num', action='store', type=int, help="Data Format Number") parser.add_argument('--chf', action='store_true', help="Use CHF dataset") parser.add_argument('--ppmi', action='store_true', help="Use PPMI dataset") # delta setup parser.add_argument('--max_delta', action='store', type=float, default=5., help="Maximum possible delta") parser.add_argument('--no_time', action='store_true', help="Learn time at all") # debugging parser.add_argument('--verbose', action='store_true', help="Plot everything") parser.add_argument('--cuda', action='store_true', help="Use GPU") parser.add_argument('--missing', action='store', type=float, default=0., help="What percent of data to make missing") parser.add_argument('--plot_debug', action='store_true', help="Make animated gif about alignment / clusterings over epochs") parser.add_argument('--epoch_debug', action='store_true', help="Save pickle about epoch differences over training") parser.add_argument('--aggressive', action='store', type=int, help="Learn time at all") parser.add_argument('--version', action='store', type=int, help="Choose hyp settings", default=0) # other experiments args = parser.parse_args() trial_results = np.zeros((args.trials, 4)) data_format_num = args.data_num if args.cuda: device = 'cuda' else: device = 'cpu' print('device', device) print('data %d' % data_format_num) for trial_num in range(args.trials): # datasets if data_format_num is not None: max_visits = 4 num_output_dims = 3 if data_format_num < 3 else 1 use_sigmoid = data_format_num < 3 anneal, b_vae, C, d_s, d_h, d_rnn, reg_type, lr = get_hyperparameters(data_format_num) if args.lr is not None: print('Running with lr=%.3f' % args.lr) lr = args.lr if args.C is not None: print('Running with C=%.3f' % args.C) C = args.C if args.b_vae is not None: print('Running with b_vae=%.3f' % args.b_vae) b_vae = args.b_vae data = load_data_format(data_format_num, trial_num, cache=True) shuffle = False elif args.chf: ds, dh, drnn, reg_type, C, b_vae, lr, epochs, learn_time = get_hyperparameters_chf(version=args.version) data = chf() max_visits = 38 shuffle = True num_output_dims = data.shape[1] - 4 elif args.ppmi: b_vae, C, d_s, d_h, d_rnn, reg_type, lr = get_hyperparameters_ppmi() if args.lr is not None: print('Running with lr=%.3f' % args.lr) lr = args.lr if args.C is not None: print('Running with C=%.3f' % args.C) C = args.C if args.b_vae is not None: print('Running with b_vae=%.3f' % args.b_vae) b_vae = args.b_vae data = parkinsons() max_visits = 17 shuffle = True num_output_dims = data.shape[1] - 4 train_data_loader, train_data_dict, _, _, test_data_loader, test_data_dict, valid_pid, test_pid, unique_pid = parse_data(data.values, max_visits=max_visits, test_per=0.2, valid_per=0.2, shuffle=shuffle, device=device) if args.missing > 0.: train_data_loader, train_data_dict = change_missing(train_data_dict, args.missing) data_loader, collect_dict, unique_pid = parse_data(data.values, max_visits=max_visits, device=device) """ best parmas found through hypertuning (cross_validation/hpsearch.py) # sigmoid: C (0.01), dim_h (20), ds (10 mid), dim_rnn (50 mid), reg_type (l1), lr (0.1) # quad: C (0.1), dim_h (50), ds (10), dim_rnn (100), reg_type (l1), lr (0.1) ppmi: (0.0, 10, 10, 50, 'l1', 0.1) """ # dim_stochastic, dim_hidden, dim_rnn, C, dim_biomarkers=3, reg_type = 'l2', if data_format_num is not None: model = Sublign(d_s, d_h, d_rnn, b_vae=b_vae, dim_biomarkers=num_output_dims, sigmoid=use_sigmoid, reg_type=reg_type, auto_delta=False, max_delta=args.max_delta, learn_time=(not args.no_time), device=device) if device == 'cuda': device_torch = torch.device('cuda') model.to(device_torch) model.fit(train_data_loader, test_data_loader, args.epochs, lr, verbose=args.verbose, fname='runs/data%d_trial%d.pt' % (data_format_num, trial_num), eval_freq=25, anneal=anneal) elif args.chf: args.verbose = False model = Sublign(ds, dh, drnn, dim_biomarkers=num_output_dims, sigmoid=True, reg_type=reg_type, C=C, auto_delta=False, max_delta=args.max_delta, learn_time=(not args.no_time and learn_time), device=device, b_vae=b_vae) if device == 'cuda': device_torch = torch.device('cuda') model.to(device_torch) model.fit(data_loader, data_loader, args.epochs, lr, verbose=args.verbose,fname='runs/chf_v%d_%d.pt' % (args.version, args.epochs),eval_freq=25) X = torch.tensor(collect_dict['Y_collect']).to(model.device) Y = torch.tensor(collect_dict['obs_t_collect']).to(model.device) M = torch.tensor(collect_dict['mask_collect']).to(model.device) (nelbo, nll, kl), norm_reg = model.forward(Y, None, X, M, None) nelbo, nll, kl, norm_reg = nelbo.item(), nll.item(), kl.item(), norm_reg.item() subtypes = model.get_subtypes_datadict(collect_dict, K=3) labels = model.get_labels(collect_dict) deltas = model.get_deltas(collect_dict) if args.cuda: deltas = deltas.cpu().detach().numpy() else: deltas = deltas.detach().numpy() import pickle results = { 'labels':labels, 'deltas': deltas, 'subtypes': subtypes, 'nelbo': nelbo, 'nll': nll, 'kl': kl, 'norm_reg': norm_reg } pickle.dump(results, open('../clinical_runs/chf_v%d_%d.pk' % (args.version, args.epochs), 'wb')) return elif args.ppmi: model = Sublign(d_s, d_h, d_rnn, b_vae=b_vae, C=C, dim_biomarkers=num_output_dims, sigmoid=True, reg_type=reg_type, auto_delta=True, max_delta=args.max_delta, learn_time=(not args.no_time)) model.fit(train_data_loader, test_data_loader, args.epochs, lr=lr, verbose=args.verbose, fname='runs/ppmi.pt', eval_freq=25) results = model.score(train_data_dict, test_data_dict, K=2) test_ari = results['ari'] print('PPMI Test ARI: %.3f' % test_ari) # results = model.score(train_data_dict, test_data_dict, K=2) # test_ari = results['ari'] # print('PPMI Test ARI: %.3f' % test_ari) subtypes = model.get_subtypes_datadict(collect_dict) labels = model.get_labels(collect_dict) deltas = model.get_deltas(collect_dict) import pickle if args.cuda: subtypes = subtypes.cpu().detach().numpy() labels = labels.cpu().detach().numpy() deltas = deltas.cpu().detach().numpy() else: subtypes = subtypes.cpu().detach().numpy() labels = labels.cpu().detach().numpy() deltas = deltas.cpu().detach().numpy() pickle.dump((labels, deltas, subtypes), open('../clinical_runs/ppmi_icml.pk', 'wb')) return # subtypes = model.get_subtypes(train_data_dict['obs_t_collect'], train_data_dict['Y_collect'], K=2) train_results = model.score(train_data_dict, train_data_dict) test_results = model.score(train_data_dict, test_data_dict) train_mse = train_results['mse'] train_ari = train_results['ari'] train_swaps = train_results['swaps'] train_pear = train_results['pear'] mse = test_results['mse'] ari = test_results['ari'] swaps = test_results['swaps'] pear = test_results['pear'] # nelbo, nll, kl = model.get_loss(Y, S, X, M, anneal=1.) # nelbo, nll, kl = nelbo.mean().detach().numpy(), nll.mean().detach().numpy(), kl.mean().detach().numpy() # if args.verbose: # plot_subtypes(subtypes, args.sigmoid, train_data_dict) # plot_latent(model, test_data_dict) trial_results[trial_num] = [mse, ari, swaps, pear] if args.no_time: args.model_name = 'SubNoLign' if args.trials == 1: print('Train: %.3f, %.3f, %.3f, %.3f' % (train_mse, train_ari, train_swaps, train_pear)) print('Test : %.3f, %.3f, %.3f, %.3f' % (mse, ari, swaps, pear)) # print('NELBO: %.3f, NLL: %.3f, KL: %.3f' % (nelbo, nll, kl)) else: line_str = list() for i,j in zip(trial_results.mean(axis=0), trial_results.std(axis=0)): line_str.append('%.3f $\\pm$ %.3f' % (i,j)) print(' & '.join([args.model_name] + line_str) + '\\\\') if args.data_num: trials_fname = '%s_data%d_trials%d.txt' % (args.model_name, args.data_num, args.trials) else: trials_fname = '%s_ppmi_trials%d.txt' % (args.model_name, args.trials) if not os.path.exists(trials_fname): f = open(trials_fname, 'w') else: f = open(trials_fname, 'a') f.write(' & '.join([args.model_name] + line_str) + '\\\\' + '\n') f.close() if __name__=='__main__': main()
13,728
0
99
a53c8a2a5ad5aded053ad7c5fd27b412fc60a466
2,573
py
Python
parsers/pdbparser.py
rigdenlab/conkit-web
bf50d28a73f43b9eb0e0c397ec1d0fd32547fdf1
[ "BSD-3-Clause" ]
1
2020-04-16T16:52:53.000Z
2020-04-16T16:52:53.000Z
parsers/pdbparser.py
rigdenlab/conplot
9b3129d9e1b7ed93da63c6fd31f9b50e63f2d4d9
[ "BSD-3-Clause" ]
47
2020-05-11T13:59:11.000Z
2022-01-21T09:37:18.000Z
parsers/pdbparser.py
rigdenlab/conkit-web
bf50d28a73f43b9eb0e0c397ec1d0fd32547fdf1
[ "BSD-3-Clause" ]
5
2020-04-24T11:19:21.000Z
2020-05-06T08:01:36.000Z
from Bio.PDB import PDBParser as BioPDBParser import io import itertools from operator import itemgetter from utils.exceptions import InvalidFormat VALID_AMINOACIDS = {"A", "R", "N", "D", "C", "C", "Q", "E", "G", "H", "I", "L", "K", "M", "M", "F", "P", "O", "S", "U", "T", "W", "Y", "V", "B", "Z", "X", "X", "J"} def get_chain_contacts(chain): """Credits to Felix Simkovic; code taken from GitHub rigdenlab/conkit/conkit/io/pdb.py""" contacts = [] residue_range = list(range(1, len(chain) + 1)) assert len(residue_range) == len(chain) iterator = itertools.product(list(zip(residue_range, chain)), list(zip(residue_range, chain))) for (resseq1_alt, residue1), (resseq2_alt, residue2) in iterator: seq_distance = int(residue1.id[1]) - int(residue2.id[1]) if seq_distance <= 4: continue for atom1, atom2 in itertools.product(residue1, residue2): xyz_distance = atom1 - atom2 if xyz_distance > 20: d_bin = 9 elif xyz_distance <= 4: d_bin = 0 else: d_bin = int(round((xyz_distance - 4) / 2, 0)) if xyz_distance < 8: contact = (int(residue1.id[1]), int(residue2.id[1]), round(1.0 - (xyz_distance / 100), 6), d_bin, 1) else: contact = (int(residue1.id[1]), int(residue2.id[1]), 0, d_bin, 1) contacts.append(contact) return contacts def remove_atoms(chain): """Credits to Felix Simkovic; code taken from GitHub rigdenlab/conkit/conkit/io/pdb.py""" for residue in chain.copy(): if residue.id[0].strip() and residue.resname not in VALID_AMINOACIDS: chain.detach_child(residue.id) continue for atom in residue.copy(): # if atom.is_disordered(): # chain[residue.id].detach_child(atom.id) if residue.resname == "GLY" and atom.id == "CA": continue elif atom.id != "CB": chain[residue.id].detach_child(atom.id)
38.402985
119
0.585309
from Bio.PDB import PDBParser as BioPDBParser import io import itertools from operator import itemgetter from utils.exceptions import InvalidFormat VALID_AMINOACIDS = {"A", "R", "N", "D", "C", "C", "Q", "E", "G", "H", "I", "L", "K", "M", "M", "F", "P", "O", "S", "U", "T", "W", "Y", "V", "B", "Z", "X", "X", "J"} def get_chain_contacts(chain): """Credits to Felix Simkovic; code taken from GitHub rigdenlab/conkit/conkit/io/pdb.py""" contacts = [] residue_range = list(range(1, len(chain) + 1)) assert len(residue_range) == len(chain) iterator = itertools.product(list(zip(residue_range, chain)), list(zip(residue_range, chain))) for (resseq1_alt, residue1), (resseq2_alt, residue2) in iterator: seq_distance = int(residue1.id[1]) - int(residue2.id[1]) if seq_distance <= 4: continue for atom1, atom2 in itertools.product(residue1, residue2): xyz_distance = atom1 - atom2 if xyz_distance > 20: d_bin = 9 elif xyz_distance <= 4: d_bin = 0 else: d_bin = int(round((xyz_distance - 4) / 2, 0)) if xyz_distance < 8: contact = (int(residue1.id[1]), int(residue2.id[1]), round(1.0 - (xyz_distance / 100), 6), d_bin, 1) else: contact = (int(residue1.id[1]), int(residue2.id[1]), 0, d_bin, 1) contacts.append(contact) return contacts def remove_atoms(chain): """Credits to Felix Simkovic; code taken from GitHub rigdenlab/conkit/conkit/io/pdb.py""" for residue in chain.copy(): if residue.id[0].strip() and residue.resname not in VALID_AMINOACIDS: chain.detach_child(residue.id) continue for atom in residue.copy(): # if atom.is_disordered(): # chain[residue.id].detach_child(atom.id) if residue.resname == "GLY" and atom.id == "CA": continue elif atom.id != "CB": chain[residue.id].detach_child(atom.id) def PDBParser(input, input_format=None): try: parser = BioPDBParser().get_structure('pdb', io.StringIO(input)) chain = list(parser.get_chains())[0] remove_atoms(chain) contacts = get_chain_contacts(chain) except: raise InvalidFormat('Unable to parse contacts') if not contacts: raise InvalidFormat('Unable to parse contacts') output = ["PDB"] output += sorted(contacts, key=itemgetter(2), reverse=True) return output
469
0
23
415c056f05afba92871ed1b11cf1af7a2b45bdd6
1,753
py
Python
salmon/search/discogs.py
Junkbite/smoked-salmon
c7ee36dc9bba00707d8529af34b69e8c529d3615
[ "Apache-2.0" ]
42
2020-03-02T11:42:17.000Z
2022-03-02T13:51:05.000Z
salmon/search/discogs.py
Junkbite/smoked-salmon
c7ee36dc9bba00707d8529af34b69e8c529d3615
[ "Apache-2.0" ]
20
2020-03-02T11:46:43.000Z
2022-01-26T23:33:37.000Z
salmon/search/discogs.py
Junkbite/smoked-salmon
c7ee36dc9bba00707d8529af34b69e8c529d3615
[ "Apache-2.0" ]
16
2020-03-01T11:29:55.000Z
2022-01-24T18:10:35.000Z
import re from salmon.search.base import IdentData, SearchMixin from salmon.sources import DiscogsBase SOURCES = { "Vinyl": "Vinyl", "File": "WEB", "CD": "CD", } def sanitize_artist_name(name): """ Remove parenthentical number disambiguation bullshit from artist names, as well as the asterisk stuff. """ name = re.sub(r" \(\d+\)$", "", name) return re.sub(r"\*+$", "", name) def parse_source(formats): """ Take the list of format strings provided by Discogs and iterate over them to find a possible source for the release. """ for format_s, source in SOURCES.items(): if any(format_s in f for f in formats): return source
30.224138
79
0.553908
import re from salmon.search.base import IdentData, SearchMixin from salmon.sources import DiscogsBase SOURCES = { "Vinyl": "Vinyl", "File": "WEB", "CD": "CD", } class Searcher(DiscogsBase, SearchMixin): async def search_releases(self, searchstr, limit): releases = {} resp = await self.get_json( "/database/search", params={"q": searchstr, "type": "release", "perpage": 50}, ) for rls in resp["results"]: artists, title = rls["title"].split(" - ", 1) year = rls["year"] if "year" in rls else None source = parse_source(rls["format"]) ed_title = ", ".join(set(rls["format"])) edition = f"{year} {source}" if rls["label"] and rls["label"][0] != "Not On Label": edition += f" {rls['label'][0]} {rls['catno']}" else: edition += " Not On Label" releases[rls["id"]] = ( IdentData(artists, title, year, None, source), self.format_result(artists, title, edition, ed_title=ed_title), ) if len(releases) == limit: break return "Discogs", releases def sanitize_artist_name(name): """ Remove parenthentical number disambiguation bullshit from artist names, as well as the asterisk stuff. """ name = re.sub(r" \(\d+\)$", "", name) return re.sub(r"\*+$", "", name) def parse_source(formats): """ Take the list of format strings provided by Discogs and iterate over them to find a possible source for the release. """ for format_s, source in SOURCES.items(): if any(format_s in f for f in formats): return source
978
20
49
8e0d50b482773beb3ff48ba3c18ff76723f48d7c
590
py
Python
scripts/relay.py
MDooley47/jam-house
f67c98e2dc3edd32fa26f7f95df03a27b5e0b3ff
[ "Apache-2.0" ]
null
null
null
scripts/relay.py
MDooley47/jam-house
f67c98e2dc3edd32fa26f7f95df03a27b5e0b3ff
[ "Apache-2.0" ]
null
null
null
scripts/relay.py
MDooley47/jam-house
f67c98e2dc3edd32fa26f7f95df03a27b5e0b3ff
[ "Apache-2.0" ]
null
null
null
import RPi.GPIO as GPIO
16.857143
37
0.625424
import RPi.GPIO as GPIO class Relay: def __init__(self, pin): self.pin = int(pin) GPIO.setup(self.pin, GPIO.OUT) def close(self): GPIO.output(self.pin, GPIO.LOW) return def open(self): GPIO.output(self.pin, GPIO.HIGH) return def status(self): return bool(GPIO.input(self.pin)) def isClose(self): return not self.status() def isOpen(self): return self.status() def toggle(self): if self.isOpen(): self.close() elif self.isClose(): self.open() return def cleanup(self): GPIO.cleanup(self.pin) return
353
-9
222
d4a0efc7601cb3d5e6ec66f5f5af3b78a9158768
1,309
py
Python
threaded_messages/listeners.py
MattBlack85/django-threaded-messages
da86dea6dd854f9ab37201d3953f9d028faa85e9
[ "MIT" ]
null
null
null
threaded_messages/listeners.py
MattBlack85/django-threaded-messages
da86dea6dd854f9ab37201d3953f9d028faa85e9
[ "MIT" ]
null
null
null
threaded_messages/listeners.py
MattBlack85/django-threaded-messages
da86dea6dd854f9ab37201d3953f9d028faa85e9
[ "MIT" ]
1
2021-01-06T14:41:13.000Z
2021-01-06T14:41:13.000Z
import logging from django.utils.html import strip_tags from . import settings as sendgrid_settings from .signals import message_composed logger = logging.getLogger('threaded_messages') if sendgrid_settings.THREADED_MESSAGES_USE_SENDGRID: from sendgrid_parse_api.signals import email_received else: email_received = None
30.44186
98
0.663102
import logging from django.utils.html import strip_tags from . import settings as sendgrid_settings from .signals import message_composed logger = logging.getLogger('threaded_messages') if sendgrid_settings.THREADED_MESSAGES_USE_SENDGRID: from sendgrid_parse_api.signals import email_received else: email_received = None def signal_received_email(sender, sma, app_id, html, text, from_field, **kwargs): from .utils import reply_to_thread, strip_mail logger.debug("Sendgrid signal receive: %s, %s, %s, %s, %s, %s" % (sender, sma, app_id, html, repr(text), from_field)) if app_id == sendgrid_settings.THREADED_MESSAGES_ID: body = '' if text: body = text if not body: body = html if body: body = strip_tags(body) body = strip_mail(body) thread = sma.content_object reply_to_thread(thread, sma.user, body) def start_listening(): if email_received: logger.debug("Sendgrid start listening") email_received.connect(signal_received_email, dispatch_uid="thm_reply") from .utils import invalidate_count_cache message_composed.connect(invalidate_count_cache, dispatch_uid="thm_composed")
928
0
46
4e5e61e419f37f8dd598086847f0c15a320b4ff7
15,814
py
Python
fzutils/free_api_utils.py
superonesfazai/fzutils
a8aafaacd94af0001af2ab139f0aa8cbcb8b5eda
[ "MIT" ]
11
2018-08-04T08:14:27.000Z
2021-09-03T09:00:33.000Z
fzutils/free_api_utils.py
superonesfazai/fzutils
a8aafaacd94af0001af2ab139f0aa8cbcb8b5eda
[ "MIT" ]
null
null
null
fzutils/free_api_utils.py
superonesfazai/fzutils
a8aafaacd94af0001af2ab139f0aa8cbcb8b5eda
[ "MIT" ]
8
2018-08-04T08:16:17.000Z
2019-05-05T09:17:35.000Z
# coding:utf-8 ''' @author = super_fazai @File : free_api_utils.py @connect : superonesfazai@gmail.com ''' """ 一些免费api 接口的封装 """ from pprint import pprint import re # from fzutils.ip_pools import tri_ip_pool # from fzutils.spider.fz_requests import Requests # from fzutils.common_utils import json_2_dict # from fzutils.internet_utils import ( # get_base_headers,) from .ip_pools import tri_ip_pool from .spider.fz_requests import Requests from .common_utils import json_2_dict from .internet_utils import ( get_base_headers,) __all__ = [ 'get_jd_one_goods_price_info', # 获取京东单个商品价格 'get_express_info', # 获取快递信息 'get_phone_num_info', # 获取手机号信息 'get_baidu_baike_info', # 获取某关键字的百度百科信息 # map 'get_bd_map_shop_info_list_by_keyword_and_area_name', # 根据关键字和区域检索店铺信息(百度api 关键字搜索服务)[测试最多前400个] 'get_gd_map_shop_info_list_by_keyword_and_area_name', # 根据关键字和区域检索店铺信息(高德api 关键字搜索服务) 'get_gd_input_prompt_info', # 根据关键字和城市名获取输入提示(高德api) 'get_gd_reverse_geocode_info', # 根据地址str获取逆向地理编码(高德api) 'get_gd_map_shop_info_list_by_lng_and_lat_and_keyword', # 根据经纬度(主要根据), 关键字(附加条件)等条件检索附近店铺信息(高德api 关键字搜索服务) 'get_gd_map_shop_info_list_by_gd_id', # 根据gd_id来得到指定的shop info list(一般为第一个)[测试发现不准确, 根据id, 常返回不相干商家] ] def get_jd_one_goods_price_info(goods_id) -> list: ''' 获取京东单个商品价格 :param goods_id: 商品id :return: ''' base_url = 'http://p.3.cn/prices/mgets' params = ( ('skuIds', 'J_' + goods_id), ) body = Requests.get_url_body( url=base_url, use_proxy=False, params=params) return json_2_dict(body, default_res=[]) def get_express_info(express_type, express_id) -> dict: ''' 获取快递信息 express_type: ps: 传字典对应的value { '申通': 'shentong', 'ems': 'ems', '顺丰': 'shunfeng', '圆通': 'yuantong', '中通': 'zhongtong', '韵达': 'yunda', '天天': 'tiantian', '汇通': 'huitongkuaidi', '全峰': 'quanfengkuaidi', '德邦': 'debangwuliu', '宅急送': 'zhaijisong', ... } :param express_type: 快递公司名 :param express_id: 快递号 :return: ''' base_url = 'http://www.kuaidi100.com/query' params = ( ('type', express_type), ('postid', express_id), ) body = Requests.get_url_body( url=base_url, use_proxy=False, params=params,) return json_2_dict(body) def get_phone_num_info(phone_num) -> dict: ''' 获取手机号信息 :param phone_num: 手机号 :return: ''' url = 'https://tcc.taobao.com/cc/json/mobile_tel_segment.htm' params = ( ('tel', str(phone_num)), ) body = Requests.get_url_body( url=url, params=params, use_proxy=False) try: res = re.compile('__GetZoneResult_ = (.*)').findall(body)[0] return json_2_dict(res) except IndexError: return {} def get_baidu_baike_info(keyword, bk_length=1000) -> dict: ''' 获取某关键字的百度百科信息 :param keyword: :return: ''' url = 'http://baike.baidu.com/api/openapi/BaikeLemmaCardApi' params = ( ('scope', '103'), ('format', 'json'), ('appid', '379020'), ('bk_key', str(keyword)), ('bk_length', str(bk_length)), ) body = Requests.get_url_body( url=url, params=params, use_proxy=False) return json_2_dict(body) def get_bd_map_shop_info_list_by_keyword_and_area_name(ak:str, keyword:str, area_name:str, page_num:int, page_size:int=20, use_proxy=True, ip_pool_type=tri_ip_pool, num_retries=6, timeout=20, logger=None,) -> list: """ 根据关键字和区域检索店铺信息(百度api 关键字搜索服务)[测试最多前400个] :param ak: 百度地图申请的ak :param keyword: eg: '鞋子' :param area_name: eg: '杭州' 待搜索的区域, 多为省份, 城市, 具体区域 :param page_num: start 1, 最大20 :param page_size: 固定 :param ip_pool_type: :param num_retries: :return: """ headers = get_base_headers() headers.update({ 'Connection': 'keep-alive', 'Cache-Control': 'max-age=0', 'Upgrade-Insecure-Requests': '1', 'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3', 'accept-language': 'zh-CN,zh;q=0.9,en;q=0.8', }) params = ( ('query', str(keyword)), ('region', str(area_name)), ('output', 'json'), ('ak', str(ak)), ('page_num', str(page_num)), ('page_size', str(page_size)), ) url = 'http://api.map.baidu.com/place/v2/search' body = Requests.get_url_body( url=url, headers=headers, params=params, use_proxy=use_proxy, ip_pool_type=ip_pool_type, num_retries=num_retries, timeout=timeout,) # print(body) data = json_2_dict( json_str=body, default_res={}, logger=logger,).get('results', []) # pprint(data) return data def get_gd_map_shop_info_list_by_keyword_and_area_name(gd_key:str, keyword:str, area_name:str, page_num: int, page_size: int=20, use_proxy=True, ip_pool_type=tri_ip_pool, num_retries=6, timeout=20, children=0, extensions='all', poi_type='', logger=None,) -> list: """ 根据关键字和区域检索店铺信息(高德api 关键字搜索服务) :param gd_key: 申请的key :param keyword: 关键字 eg: '鞋子' :param area_name: eg: '杭州' 待搜索的区域, 城市名 :param page_num: 最大翻页数100 :param page_size: 默认值'20' :param use_proxy: :param ip_pool_type: :param num_retries: :param timeout: :param children: 按照层级展示子POI数据, 取值0 or 1 :param extensions: 返回结果控制 :param poi_type: 查询POI类型, eg: '061205', 可默认为空值! :return: """ headers = get_base_headers() headers.update({ 'Connection': 'keep-alive', 'Cache-Control': 'max-age=0', 'Upgrade-Insecure-Requests': '1', 'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3', 'accept-language': 'zh-CN,zh;q=0.9,en;q=0.8', }) params = ( ('key', str(gd_key)), ('keywords', str(keyword)), ('types', str(poi_type)), ('city', str(area_name)), ('citylimit', 'true'), ('children', str(children)), ('offset', str(page_size)), ('page', str(page_num)), ('extensions', str(extensions)), ) url = 'http://restapi.amap.com/v3/place/text' body = Requests.get_url_body( use_proxy=use_proxy, url=url, headers=headers, params=params, ip_pool_type=ip_pool_type, timeout=timeout, num_retries=num_retries,) # print(body) data = json_2_dict( json_str=body, default_res={}, logger=logger,).get('pois', []) # pprint(data) return data def get_gd_input_prompt_info(gd_key:str, keyword, city_name:str, poi_type='', lng:float=0., lat:float=0., ip_pool_type=tri_ip_pool, num_retries=6, timeout=20, use_proxy=True, logger=None,) -> list: """ 根据关键字和城市名获取输入提示(高德api) :param gd_key: 申请的key :param keyword: eg: '美食' :param city_name: eg: '杭州' :param poi_type: eg: '050301' :param lng: :param lat: :return: """ headers = get_base_headers() headers.update({ 'Connection': 'keep-alive', 'Cache-Control': 'max-age=0', 'Upgrade-Insecure-Requests': '1', 'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3', 'accept-language': 'zh-CN,zh;q=0.9,en;q=0.8', }) # eg: '116.481488,39.990464' 经纬度 location = ','.join([str(lng), str(lat)]) if lng != 0. or lat != 0. else '' params = ( ('key', str(gd_key)), ('keywords', str(keyword)), ('type', poi_type), ('location', location), ('city', str(city_name)), ('datatype', 'all'), ) url= 'https://restapi.amap.com/v3/assistant/inputtips' body = Requests.get_url_body( use_proxy=use_proxy, url=url, headers=headers, params=params, ip_pool_type=ip_pool_type, timeout=timeout, num_retries=num_retries,) # print(body) data = json_2_dict( json_str=body, logger=logger,).get('tips', []) # pprint(data) return data def get_gd_reverse_geocode_info(gd_key:str, address:str, city_name:str, ip_pool_type=tri_ip_pool, num_retries=6, timeout=20, use_proxy=True, logger=None,) -> list: """ 根据地址str获取逆向地理编码(高德api) :param gd_key: :param address: eg: '方恒国际中心A座' :param city_name: eg: '北京' :param ip_pool_type: :param num_retries: :param timeout: :param use_proxy: :param logger: :return: """ headers = get_base_headers() headers.update({ 'Connection': 'keep-alive', 'Cache-Control': 'max-age=0', 'Upgrade-Insecure-Requests': '1', 'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3', 'accept-language': 'zh-CN,zh;q=0.9,en;q=0.8', }) params = ( ('key', str(gd_key)), ('address', str(address)), ('city', str(city_name)), ) url= 'https://restapi.amap.com/v3/geocode/geo' body = Requests.get_url_body( use_proxy=use_proxy, url=url, headers=headers, params=params, ip_pool_type=ip_pool_type, timeout=timeout, num_retries=num_retries,) # print(body) data = json_2_dict( json_str=body, logger=logger,).get('geocodes', []) # pprint(data) return data def get_gd_map_shop_info_list_by_lng_and_lat_and_keyword(gd_key:str, lng:float, lat:float, keyword:str='', radius:int=1000, page_num:int=1, page_size:int=20, poi_type='', extensions='all', use_proxy=True, ip_pool_type=tri_ip_pool, num_retries=6, timeout=20, logger=None,) -> list: """ 根据经纬度(主要根据), 关键字(附加条件)等条件检索附近店铺信息(高德api 关键字搜索服务) :param gd_key: 申请的key :param lng: 经度 :param lat: 纬度 :param keyword: 关键字 eg: '鞋子', 默认空值! :param radius: 半径 (如果已知的经纬度能准确定位到某家店铺, 可将radius=100, 来提高定位返回信息精确度!!) :param page_num: 最大翻页数100 :param page_size: 默认值'20' :param poi_type: 查询POI类型, eg: '061205', 可默认为空值! :param extensions: 返回结果控制 :param use_proxy: :param ip_pool_type: :param num_retries: :param timeout: :param logger: :return: """ headers = get_base_headers() headers.update({ 'Connection': 'keep-alive', 'Cache-Control': 'max-age=0', 'Upgrade-Insecure-Requests': '1', 'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3', 'accept-language': 'zh-CN,zh;q=0.9,en;q=0.8', }) params = ( ('key', str(gd_key)), ('location', ','.join([str(lng), str(lat)])), ('keywords', str(keyword)), ('types', str(poi_type)), ('radius', str(radius)), ('offset', str(page_size)), ('page', str(page_num)), ('extensions', str(extensions)), ) url = 'https://restapi.amap.com/v3/place/around' body = Requests.get_url_body( use_proxy=use_proxy, url=url, headers=headers, params=params, ip_pool_type=ip_pool_type, timeout=timeout, num_retries=num_retries,) # print(body) data = json_2_dict( json_str=body, default_res={}, logger=logger,).get('pois', []) # pprint(data) return data def get_gd_map_shop_info_list_by_gd_id(gd_key:str, gd_id:str, use_proxy=True, ip_pool_type=tri_ip_pool, num_retries=6, timeout=20, logger=None,) -> list: """ 根据gd_id来得到指定的shop info list(一般为第一个)[测试发现不准确, 根据id, 常返回不相干商家] :param gd_key: 申请的key :param gd_id: eg: 'B0FFIR6P0B' :param use_proxy: :param ip_pool_type: :param num_retries: :param timeout: :param logger: :return: """ headers = get_base_headers() headers.update({ 'Connection': 'keep-alive', 'Cache-Control': 'max-age=0', 'Upgrade-Insecure-Requests': '1', 'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3', 'accept-language': 'zh-CN,zh;q=0.9,en;q=0.8', }) params = ( ('id', gd_id), ('output', ''), ('key', gd_key), ) url = 'https://restapi.amap.com/v3/place/detail' body = Requests.get_url_body( use_proxy=use_proxy, url=url, headers=headers, params=params, ip_pool_type=ip_pool_type, timeout=timeout, num_retries=num_retries,) # print(body) data = json_2_dict( json_str=body, default_res={}, logger=logger,).get('pois', []) # pprint(data) return data
33.014614
139
0.496775
# coding:utf-8 ''' @author = super_fazai @File : free_api_utils.py @connect : superonesfazai@gmail.com ''' """ 一些免费api 接口的封装 """ from pprint import pprint import re # from fzutils.ip_pools import tri_ip_pool # from fzutils.spider.fz_requests import Requests # from fzutils.common_utils import json_2_dict # from fzutils.internet_utils import ( # get_base_headers,) from .ip_pools import tri_ip_pool from .spider.fz_requests import Requests from .common_utils import json_2_dict from .internet_utils import ( get_base_headers,) __all__ = [ 'get_jd_one_goods_price_info', # 获取京东单个商品价格 'get_express_info', # 获取快递信息 'get_phone_num_info', # 获取手机号信息 'get_baidu_baike_info', # 获取某关键字的百度百科信息 # map 'get_bd_map_shop_info_list_by_keyword_and_area_name', # 根据关键字和区域检索店铺信息(百度api 关键字搜索服务)[测试最多前400个] 'get_gd_map_shop_info_list_by_keyword_and_area_name', # 根据关键字和区域检索店铺信息(高德api 关键字搜索服务) 'get_gd_input_prompt_info', # 根据关键字和城市名获取输入提示(高德api) 'get_gd_reverse_geocode_info', # 根据地址str获取逆向地理编码(高德api) 'get_gd_map_shop_info_list_by_lng_and_lat_and_keyword', # 根据经纬度(主要根据), 关键字(附加条件)等条件检索附近店铺信息(高德api 关键字搜索服务) 'get_gd_map_shop_info_list_by_gd_id', # 根据gd_id来得到指定的shop info list(一般为第一个)[测试发现不准确, 根据id, 常返回不相干商家] ] def get_jd_one_goods_price_info(goods_id) -> list: ''' 获取京东单个商品价格 :param goods_id: 商品id :return: ''' base_url = 'http://p.3.cn/prices/mgets' params = ( ('skuIds', 'J_' + goods_id), ) body = Requests.get_url_body( url=base_url, use_proxy=False, params=params) return json_2_dict(body, default_res=[]) def get_express_info(express_type, express_id) -> dict: ''' 获取快递信息 express_type: ps: 传字典对应的value { '申通': 'shentong', 'ems': 'ems', '顺丰': 'shunfeng', '圆通': 'yuantong', '中通': 'zhongtong', '韵达': 'yunda', '天天': 'tiantian', '汇通': 'huitongkuaidi', '全峰': 'quanfengkuaidi', '德邦': 'debangwuliu', '宅急送': 'zhaijisong', ... } :param express_type: 快递公司名 :param express_id: 快递号 :return: ''' base_url = 'http://www.kuaidi100.com/query' params = ( ('type', express_type), ('postid', express_id), ) body = Requests.get_url_body( url=base_url, use_proxy=False, params=params,) return json_2_dict(body) def get_phone_num_info(phone_num) -> dict: ''' 获取手机号信息 :param phone_num: 手机号 :return: ''' url = 'https://tcc.taobao.com/cc/json/mobile_tel_segment.htm' params = ( ('tel', str(phone_num)), ) body = Requests.get_url_body( url=url, params=params, use_proxy=False) try: res = re.compile('__GetZoneResult_ = (.*)').findall(body)[0] return json_2_dict(res) except IndexError: return {} def get_baidu_baike_info(keyword, bk_length=1000) -> dict: ''' 获取某关键字的百度百科信息 :param keyword: :return: ''' url = 'http://baike.baidu.com/api/openapi/BaikeLemmaCardApi' params = ( ('scope', '103'), ('format', 'json'), ('appid', '379020'), ('bk_key', str(keyword)), ('bk_length', str(bk_length)), ) body = Requests.get_url_body( url=url, params=params, use_proxy=False) return json_2_dict(body) def get_bd_map_shop_info_list_by_keyword_and_area_name(ak:str, keyword:str, area_name:str, page_num:int, page_size:int=20, use_proxy=True, ip_pool_type=tri_ip_pool, num_retries=6, timeout=20, logger=None,) -> list: """ 根据关键字和区域检索店铺信息(百度api 关键字搜索服务)[测试最多前400个] :param ak: 百度地图申请的ak :param keyword: eg: '鞋子' :param area_name: eg: '杭州' 待搜索的区域, 多为省份, 城市, 具体区域 :param page_num: start 1, 最大20 :param page_size: 固定 :param ip_pool_type: :param num_retries: :return: """ headers = get_base_headers() headers.update({ 'Connection': 'keep-alive', 'Cache-Control': 'max-age=0', 'Upgrade-Insecure-Requests': '1', 'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3', 'accept-language': 'zh-CN,zh;q=0.9,en;q=0.8', }) params = ( ('query', str(keyword)), ('region', str(area_name)), ('output', 'json'), ('ak', str(ak)), ('page_num', str(page_num)), ('page_size', str(page_size)), ) url = 'http://api.map.baidu.com/place/v2/search' body = Requests.get_url_body( url=url, headers=headers, params=params, use_proxy=use_proxy, ip_pool_type=ip_pool_type, num_retries=num_retries, timeout=timeout,) # print(body) data = json_2_dict( json_str=body, default_res={}, logger=logger,).get('results', []) # pprint(data) return data def get_gd_map_shop_info_list_by_keyword_and_area_name(gd_key:str, keyword:str, area_name:str, page_num: int, page_size: int=20, use_proxy=True, ip_pool_type=tri_ip_pool, num_retries=6, timeout=20, children=0, extensions='all', poi_type='', logger=None,) -> list: """ 根据关键字和区域检索店铺信息(高德api 关键字搜索服务) :param gd_key: 申请的key :param keyword: 关键字 eg: '鞋子' :param area_name: eg: '杭州' 待搜索的区域, 城市名 :param page_num: 最大翻页数100 :param page_size: 默认值'20' :param use_proxy: :param ip_pool_type: :param num_retries: :param timeout: :param children: 按照层级展示子POI数据, 取值0 or 1 :param extensions: 返回结果控制 :param poi_type: 查询POI类型, eg: '061205', 可默认为空值! :return: """ headers = get_base_headers() headers.update({ 'Connection': 'keep-alive', 'Cache-Control': 'max-age=0', 'Upgrade-Insecure-Requests': '1', 'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3', 'accept-language': 'zh-CN,zh;q=0.9,en;q=0.8', }) params = ( ('key', str(gd_key)), ('keywords', str(keyword)), ('types', str(poi_type)), ('city', str(area_name)), ('citylimit', 'true'), ('children', str(children)), ('offset', str(page_size)), ('page', str(page_num)), ('extensions', str(extensions)), ) url = 'http://restapi.amap.com/v3/place/text' body = Requests.get_url_body( use_proxy=use_proxy, url=url, headers=headers, params=params, ip_pool_type=ip_pool_type, timeout=timeout, num_retries=num_retries,) # print(body) data = json_2_dict( json_str=body, default_res={}, logger=logger,).get('pois', []) # pprint(data) return data def get_gd_input_prompt_info(gd_key:str, keyword, city_name:str, poi_type='', lng:float=0., lat:float=0., ip_pool_type=tri_ip_pool, num_retries=6, timeout=20, use_proxy=True, logger=None,) -> list: """ 根据关键字和城市名获取输入提示(高德api) :param gd_key: 申请的key :param keyword: eg: '美食' :param city_name: eg: '杭州' :param poi_type: eg: '050301' :param lng: :param lat: :return: """ headers = get_base_headers() headers.update({ 'Connection': 'keep-alive', 'Cache-Control': 'max-age=0', 'Upgrade-Insecure-Requests': '1', 'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3', 'accept-language': 'zh-CN,zh;q=0.9,en;q=0.8', }) # eg: '116.481488,39.990464' 经纬度 location = ','.join([str(lng), str(lat)]) if lng != 0. or lat != 0. else '' params = ( ('key', str(gd_key)), ('keywords', str(keyword)), ('type', poi_type), ('location', location), ('city', str(city_name)), ('datatype', 'all'), ) url= 'https://restapi.amap.com/v3/assistant/inputtips' body = Requests.get_url_body( use_proxy=use_proxy, url=url, headers=headers, params=params, ip_pool_type=ip_pool_type, timeout=timeout, num_retries=num_retries,) # print(body) data = json_2_dict( json_str=body, logger=logger,).get('tips', []) # pprint(data) return data def get_gd_reverse_geocode_info(gd_key:str, address:str, city_name:str, ip_pool_type=tri_ip_pool, num_retries=6, timeout=20, use_proxy=True, logger=None,) -> list: """ 根据地址str获取逆向地理编码(高德api) :param gd_key: :param address: eg: '方恒国际中心A座' :param city_name: eg: '北京' :param ip_pool_type: :param num_retries: :param timeout: :param use_proxy: :param logger: :return: """ headers = get_base_headers() headers.update({ 'Connection': 'keep-alive', 'Cache-Control': 'max-age=0', 'Upgrade-Insecure-Requests': '1', 'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3', 'accept-language': 'zh-CN,zh;q=0.9,en;q=0.8', }) params = ( ('key', str(gd_key)), ('address', str(address)), ('city', str(city_name)), ) url= 'https://restapi.amap.com/v3/geocode/geo' body = Requests.get_url_body( use_proxy=use_proxy, url=url, headers=headers, params=params, ip_pool_type=ip_pool_type, timeout=timeout, num_retries=num_retries,) # print(body) data = json_2_dict( json_str=body, logger=logger,).get('geocodes', []) # pprint(data) return data def get_gd_map_shop_info_list_by_lng_and_lat_and_keyword(gd_key:str, lng:float, lat:float, keyword:str='', radius:int=1000, page_num:int=1, page_size:int=20, poi_type='', extensions='all', use_proxy=True, ip_pool_type=tri_ip_pool, num_retries=6, timeout=20, logger=None,) -> list: """ 根据经纬度(主要根据), 关键字(附加条件)等条件检索附近店铺信息(高德api 关键字搜索服务) :param gd_key: 申请的key :param lng: 经度 :param lat: 纬度 :param keyword: 关键字 eg: '鞋子', 默认空值! :param radius: 半径 (如果已知的经纬度能准确定位到某家店铺, 可将radius=100, 来提高定位返回信息精确度!!) :param page_num: 最大翻页数100 :param page_size: 默认值'20' :param poi_type: 查询POI类型, eg: '061205', 可默认为空值! :param extensions: 返回结果控制 :param use_proxy: :param ip_pool_type: :param num_retries: :param timeout: :param logger: :return: """ headers = get_base_headers() headers.update({ 'Connection': 'keep-alive', 'Cache-Control': 'max-age=0', 'Upgrade-Insecure-Requests': '1', 'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3', 'accept-language': 'zh-CN,zh;q=0.9,en;q=0.8', }) params = ( ('key', str(gd_key)), ('location', ','.join([str(lng), str(lat)])), ('keywords', str(keyword)), ('types', str(poi_type)), ('radius', str(radius)), ('offset', str(page_size)), ('page', str(page_num)), ('extensions', str(extensions)), ) url = 'https://restapi.amap.com/v3/place/around' body = Requests.get_url_body( use_proxy=use_proxy, url=url, headers=headers, params=params, ip_pool_type=ip_pool_type, timeout=timeout, num_retries=num_retries,) # print(body) data = json_2_dict( json_str=body, default_res={}, logger=logger,).get('pois', []) # pprint(data) return data def get_gd_map_shop_info_list_by_gd_id(gd_key:str, gd_id:str, use_proxy=True, ip_pool_type=tri_ip_pool, num_retries=6, timeout=20, logger=None,) -> list: """ 根据gd_id来得到指定的shop info list(一般为第一个)[测试发现不准确, 根据id, 常返回不相干商家] :param gd_key: 申请的key :param gd_id: eg: 'B0FFIR6P0B' :param use_proxy: :param ip_pool_type: :param num_retries: :param timeout: :param logger: :return: """ headers = get_base_headers() headers.update({ 'Connection': 'keep-alive', 'Cache-Control': 'max-age=0', 'Upgrade-Insecure-Requests': '1', 'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3', 'accept-language': 'zh-CN,zh;q=0.9,en;q=0.8', }) params = ( ('id', gd_id), ('output', ''), ('key', gd_key), ) url = 'https://restapi.amap.com/v3/place/detail' body = Requests.get_url_body( use_proxy=use_proxy, url=url, headers=headers, params=params, ip_pool_type=ip_pool_type, timeout=timeout, num_retries=num_retries,) # print(body) data = json_2_dict( json_str=body, default_res={}, logger=logger,).get('pois', []) # pprint(data) return data
0
0
0
b24c57ae9801978655a2dd8c90c7f52a6c81983c
377
py
Python
tests/test_axpy_weather.py
AxxAxx/axpy_weather
2714397968b55b63b784ce08a2df0ade08aa2008
[ "MIT" ]
null
null
null
tests/test_axpy_weather.py
AxxAxx/axpy_weather
2714397968b55b63b784ce08a2df0ade08aa2008
[ "MIT" ]
null
null
null
tests/test_axpy_weather.py
AxxAxx/axpy_weather
2714397968b55b63b784ce08a2df0ade08aa2008
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ test_axpy_weather ---------------------------------- Tests for `axpy_weather` module. """ import sys import unittest from axpy_weather import axpy_weather
13
42
0.599469
#!/usr/bin/env python # -*- coding: utf-8 -*- """ test_axpy_weather ---------------------------------- Tests for `axpy_weather` module. """ import sys import unittest from axpy_weather import axpy_weather class TestAxpy_weather(unittest.TestCase): def setUp(self): pass def tearDown(self): pass def test_000_something(self): pass
40
21
104
dad37465db8abb220a6642fa8e0c3fe096021b1a
446
py
Python
setup.py
GeorgianaElena/jupyterhub-configurator
f356175732d487c520415b84368b3368397d8b60
[ "BSD-3-Clause" ]
null
null
null
setup.py
GeorgianaElena/jupyterhub-configurator
f356175732d487c520415b84368b3368397d8b60
[ "BSD-3-Clause" ]
null
null
null
setup.py
GeorgianaElena/jupyterhub-configurator
f356175732d487c520415b84368b3368397d8b60
[ "BSD-3-Clause" ]
null
null
null
from setuptools import setup, find_packages setup( name="jupyterhub-configurator", version="1.0", packages=find_packages(), license="3-BSD", author="yuvipanda", author_email="yuvipanda@gmail.com", install_requires=["tornado", "aiohttp", "jupyterhub", "deepmerge", "pluggy"], include_package_data=True, entry_points={ "jupyterhub_configurator": ["z2jh = jupyterhub_configurator.schemas.z2jh"] }, )
27.875
82
0.686099
from setuptools import setup, find_packages setup( name="jupyterhub-configurator", version="1.0", packages=find_packages(), license="3-BSD", author="yuvipanda", author_email="yuvipanda@gmail.com", install_requires=["tornado", "aiohttp", "jupyterhub", "deepmerge", "pluggy"], include_package_data=True, entry_points={ "jupyterhub_configurator": ["z2jh = jupyterhub_configurator.schemas.z2jh"] }, )
0
0
0
85bc4000ac9a7feae9aa1e58301dae7af7b354a8
2,767
py
Python
src/austin_heller_repo/component_manager.py
AustinHellerRepo/ComponentManager
bd347d87cb0c19acf07419ba8e8c30d4fa6f6027
[ "MIT" ]
null
null
null
src/austin_heller_repo/component_manager.py
AustinHellerRepo/ComponentManager
bd347d87cb0c19acf07419ba8e8c30d4fa6f6027
[ "MIT" ]
null
null
null
src/austin_heller_repo/component_manager.py
AustinHellerRepo/ComponentManager
bd347d87cb0c19acf07419ba8e8c30d4fa6f6027
[ "MIT" ]
null
null
null
from __future__ import annotations from typing import List, Tuple, Dict try: import urequests as requests except ImportError: import requests try: import ujson as json except ImportError: import json
28.234694
152
0.729671
from __future__ import annotations from typing import List, Tuple, Dict try: import urequests as requests except ImportError: import requests try: import ujson as json except ImportError: import json class MethodTypeEnum(): Get = 0 Post = 1 class ApiInterface(): def __init__(self, *, api_base_url: str): self.__api_base_url = api_base_url def _get_json_result_from_url(self, *, method_type, url: str, arguments_json_object: dict) -> dict: print("Trying to " + str(method_type) + " to \"" + url + "\"...") if method_type == MethodTypeEnum.Get: _response = requests.get(url, json=arguments_json_object) elif method_type == MethodTypeEnum.Post: _response = requests.post(url, json=arguments_json_object) else: raise NotImplementedError() if _response.status_code != 200: raise Exception("Unexpected status code: " + str(_response.status_code) + ": " + str(_response.reason) + ". Error: \"" + str(_response.text) + "\".") else: _json_response = _response.json() if "is_successful" not in _json_response: raise Exception("Unexpected missing key \"is_successful\": " + str(_json_response)) elif "response" not in _json_response: raise Exception("Unexpected missing key \"response\": " + str(_json_response)) elif "error" not in _json_response: raise Exception("Unexpected missing key \"error\": " + str(_json_response)) else: _is_successful = _json_response["is_successful"] _response_value = _json_response["response"] _error = _json_response["error"] if not _is_successful: raise Exception("Error from messaging system: \"" + str(_error) + "\".") else: return _response_value def _get_formatted_url(self, *, url_part: str) -> str: return self.__api_base_url + url_part class ComponentManagerApiInterface(ApiInterface): def __init__(self, *, component_manager_api_base_url: str): super().__init__( api_base_url=component_manager_api_base_url ) def get_health(self) -> Dict: return self._get_json_result_from_url( method_type=MethodTypeEnum.Get, url=self._get_formatted_url( url_part="/v1/test/health" ), arguments_json_object={} ) def get_docker_api_specification(self) -> Dict: return self._get_json_result_from_url( method_type=MethodTypeEnum.Post, url=self._get_formatted_url( url_part="/v1/api/get_docker_api_specification" ), arguments_json_object={} ) def get_component_specification_by_component_uuid(self, *, component_uuid: str) -> Dict: return self._get_json_result_from_url( method_type=MethodTypeEnum.Post, url=self._get_formatted_url( url_part="/v1/api/get_component_specification_by_component_uuid" ), arguments_json_object={ "component_uuid": component_uuid } )
2,272
49
237
067659e95365ddba0dd9591d5eb66a3a527b4438
100
py
Python
python/hackerrank/conditional code/which one is greater/task.py
3keepmovingforward3/ENGR1102
b4f38a70560fc695d70706279047b1dec9f5c7f4
[ "MIT" ]
null
null
null
python/hackerrank/conditional code/which one is greater/task.py
3keepmovingforward3/ENGR1102
b4f38a70560fc695d70706279047b1dec9f5c7f4
[ "MIT" ]
null
null
null
python/hackerrank/conditional code/which one is greater/task.py
3keepmovingforward3/ENGR1102
b4f38a70560fc695d70706279047b1dec9f5c7f4
[ "MIT" ]
null
null
null
# Start your code below (tip: Make sure to indent your code)
20
64
0.71
def greater_if_else(num1, num2): # Start your code below (tip: Make sure to indent your code)
11
0
23
ca8820199ef0c7948e24a842fd58013d23375baa
2,451
py
Python
pmst/tests/test_component.py
talonchandler/pmst
c7d4d00a9a377726f8996cb416970037af92c40a
[ "MIT" ]
null
null
null
pmst/tests/test_component.py
talonchandler/pmst
c7d4d00a9a377726f8996cb416970037af92c40a
[ "MIT" ]
null
null
null
pmst/tests/test_component.py
talonchandler/pmst
c7d4d00a9a377726f8996cb416970037af92c40a
[ "MIT" ]
null
null
null
import sys sys.path.append("../../") from unittest import TestCase from pmst.geometry import Point, Ray from pmst.component import Lens from pmst.microscope import Microscope import pmst.source import numpy as np # self.assertTrue(self.s.ray_list.get_ray(1) == Ray(Point(0, .5, 1), Point(0, .5, 2))) # self.assertTrue(self.s.ray_list.get_ray(2) == Ray(Point(.1, .1, 1), Point(.1, .1, 2))) # Plane source converges
35.014286
95
0.571195
import sys sys.path.append("../../") from unittest import TestCase from pmst.geometry import Point, Ray from pmst.component import Lens from pmst.microscope import Microscope import pmst.source import numpy as np class TestPixel(TestCase): def setUp(self): origin = np.array((0, 0, 0)) normal = np.array((0, 0)) dimensions = np.array((.1, .2)) class TestLensIsoSourceAtFocal(TestCase): def setUp(self): self.r0 = Ray(Point(0, 0, 0), Point(0, 0, 1)) self.r1 = Ray(Point(0, 0, 0), Point(0, 0.1, 1)) self.r1 = Ray(Point(0, 0, 0), Point(0, 0.5, 1)) # numerical error here self.r2 = Ray(Point(0, 0, 0), Point(0.1, 0.1, 1)) self.ray_list = [self.r0, self.r1, self.r2] self.s = pmst.source.RayListSource(self.ray_list) self.s.generate_rays() self.m = Microscope(source=self.s) self.l = Lens(Point(0, 0, 1), n=1.5, normal=Point(0, 0, 2), f=1, radius=1.0) self.m.add_component(self.l) self.m.simulate() def test_Lens(self): print('Focal', self.s.ray_list) self.assertTrue(self.s.n_rays == 3) self.assertTrue(self.s.ray_list.get_ray(0) == self.r0) # self.assertTrue(self.s.ray_list.get_ray(1) == Ray(Point(0, .5, 1), Point(0, .5, 2))) # self.assertTrue(self.s.ray_list.get_ray(2) == Ray(Point(.1, .1, 1), Point(.1, .1, 2))) # Plane source converges class TestLensPlaneSourceAtFocal(TestCase): def setUp(self): self.r0 = Ray(Point(0, 0, 0), Point(0, 0, 1)) self.r1 = Ray(Point(0, .5, 0), Point(0, .5, 1)) self.r2 = Ray(Point(.1, .1, 0), Point(.1, .1, 1)) self.ray_list = [self.r0, self.r1, self.r2] self.s = pmst.source.RayListSource(self.ray_list) self.s.generate_rays() self.m = Microscope(source=self.s) self.l = Lens(Point(0, 0, 1), n=1.5, normal=Point(0, 0, 2), f=1, radius=1.0) self.m.add_component(self.l) self.m.simulate() def test_Lens(self): print('Plane', self.s.ray_list) self.assertTrue(self.s.n_rays == 3) self.assertTrue(self.s.ray_list.get_ray(0) == Ray(Point(0, 0, 1), Point(0, 0, 2))) self.assertTrue(self.s.ray_list.get_ray(1) == Ray(Point(0, .5, 1), Point(0, 0, 2))) self.assertTrue(self.s.ray_list.get_ray(2) == Ray(Point(.1, .1, 1), Point(0, 0, 2)))
1,759
47
203
19c0a3b65b67a59f869878709be52202016b86ff
3,021
py
Python
src/bmeg/utils.py
bmeg/bmeg-etl
3efa28a7775d6defd77457838e92817a2fbc9e99
[ "MIT" ]
1
2022-03-08T22:06:35.000Z
2022-03-08T22:06:35.000Z
src/bmeg/utils.py
bmeg/bmeg-etl
3efa28a7775d6defd77457838e92817a2fbc9e99
[ "MIT" ]
191
2018-07-09T20:49:34.000Z
2021-02-09T18:44:28.000Z
src/bmeg/utils.py
bmeg/bmeg-etl
3efa28a7775d6defd77457838e92817a2fbc9e99
[ "MIT" ]
null
null
null
import os import inspect import typing import threading from contextlib import suppress from functools import wraps def enforce_types(callable): """ From: https://stackoverflow.com/questions/50563546/validating-detailed-types-in-python-dataclasses """ spec = inspect.getfullargspec(callable) if inspect.isclass(callable): callable.__init__ = decorate(callable.__init__) return callable return decorate(callable)
27.216216
96
0.586892
import os import inspect import typing import threading from contextlib import suppress from functools import wraps def ensure_directory(*args): path = os.path.join(*args) if os.path.isfile(path): raise Exception( "Emitter output directory %s is a regular file", path) if not os.path.exists(path): os.makedirs(path) def enforce_types(callable): """ From: https://stackoverflow.com/questions/50563546/validating-detailed-types-in-python-dataclasses """ spec = inspect.getfullargspec(callable) def check_types(*args, **kwargs): parameters = dict(zip(spec.args, args)) parameters.update(kwargs) # allow thread to control if check skipped try: if threading.local().skip_check_types: return except AttributeError: pass for name, value in parameters.items(): # Assume un-annotated parameters can be any type with suppress(KeyError): type_hint = spec.annotations[name] if isinstance(type_hint, typing._SpecialForm): # No check for typing.Any, typing.Union, typing.ClassVar # (without parameters) continue try: actual_type = type_hint.__origin__ except AttributeError: actual_type = type_hint if isinstance(actual_type, typing._SpecialForm): # case of typing.Union[…] or typing.ClassVar[…] actual_type = type_hint.__args__ if not isinstance(value, actual_type): raise TypeError( "Unexpected type for '{}' (expected {} but found {})". format(name, type_hint, type(value)) ) def decorate(func): @wraps(func) def wrapper(*args, **kwargs): check_types(*args, **kwargs) return func(*args, **kwargs) return wrapper if inspect.isclass(callable): callable.__init__ = decorate(callable.__init__) return callable return decorate(callable) def set_gid(obj, gid): object.__setattr__(obj, "gid", gid) def get_tcga_individual_barcode(id): parts = id.split("-") return "-".join(parts[0:3]) def get_tcga_sample_barcode(id): parts = id.split("-") return "-".join(parts[0:4]) def get_tcga_portion_barcode(id): parts = id.split("-") parts[5] = parts[5][:-1] return "-".join(parts[0:5]) def get_tcga_analyte_barcode(id): parts = id.split("-") return "-".join(parts[0:5]) def get_tcga_aliquot_barcode(id): parts = id.split("-") return "-".join(parts[0:7]) def tcga_barcode_is_tumor(id): parts = id.split("-") sample_number = parts[4][:-1] return sample_number < 10 def tcga_barcode_is_normal(id): parts = id.split("-") sample_number = parts[4][:-1] return sample_number >= 10
2,295
0
261
35a9845cf13f68f6956c51a6bcfbdd68d916ace4
568
py
Python
voting/apps/survey/signals.py
nurikou/voting_back
de54218f01095f5090d490cabf32a86b1e608925
[ "MIT" ]
null
null
null
voting/apps/survey/signals.py
nurikou/voting_back
de54218f01095f5090d490cabf32a86b1e608925
[ "MIT" ]
null
null
null
voting/apps/survey/signals.py
nurikou/voting_back
de54218f01095f5090d490cabf32a86b1e608925
[ "MIT" ]
null
null
null
from django.db.models.signals import post_save from django.dispatch import receiver from .models import Vote from .serializers import VoteSerializer from asgiref.sync import async_to_sync import channels.layers @receiver(post_save, sender=Vote)
31.555556
78
0.741197
from django.db.models.signals import post_save from django.dispatch import receiver from .models import Vote from .serializers import VoteSerializer from asgiref.sync import async_to_sync import channels.layers @receiver(post_save, sender=Vote) def send_notification(sender, instance, created, **kwargs): if created: notification = VoteSerializer(instance=instance).data layer = channels.layers.get_channel_layer() async_to_sync(layer.group_send)( "notification", {"type": "notification", "message": notification}, )
298
0
22
aadac3c14b4d6bf52fd38741ccf5cbd8ff170fdc
5,352
py
Python
check_mariadb_slaves.py
flickerfly/check_mariadb_slaves
b9917c5a097a9806d19caee83c5644afab924366
[ "MIT" ]
null
null
null
check_mariadb_slaves.py
flickerfly/check_mariadb_slaves
b9917c5a097a9806d19caee83c5644afab924366
[ "MIT" ]
null
null
null
check_mariadb_slaves.py
flickerfly/check_mariadb_slaves
b9917c5a097a9806d19caee83c5644afab924366
[ "MIT" ]
null
null
null
#!/usr/bin/env python """MariaDB slave status checker""" import sys import argparse import MySQLdb class NagiosPlugin(object): """Nagios Plugin base class""" class SlaveStatusCheck(NagiosPlugin): """Class to help us run slave status queries against MariaDB""" REPLICATION_LAG_MODE = 'replication_lag' SLAVESQL_MODE = 'slave_sql' SLAVEIO_MODE = 'slave_io' MODES = (REPLICATION_LAG_MODE, SLAVESQL_MODE, SLAVEIO_MODE) def run_check(self): """Execute the check against the given mode""" check_fn = getattr(self, self.mode) check_fn() def replication_lag(self): """Check replication lag thresholds""" lag = self._slave_status.get('Seconds_Behind_Master') if lag is None: self.unknown_state("No replication lag reported") if not self.warning or not self.critical: self.unknown_state("Warning and critical thresholds undefined") lag = int(lag) warning = int(self.warning) critical = int(self.critical) lag_performance_msg = "log={0}s;{1};{2};0".format(lag,warning,critical) lag_display_msg = "Slave is {0} seconds behinds master".format(lag) lag_msg = "{0} | {1}".format(lag_display_msg,lag_performance_msg) if lag >= warning and lag < critical: self.warning_state(lag_msg) elif lag >= critical: self.critical_state(lag_msg) self.ok_state(lag_msg) def slave_sql(self): """Check that Slave_SQL_Running = Yes""" if self._slave_status.get('Slave_SQL_Running') == "No": msg = "Slave sql is not running. Last error: {0}".format( self._slave_status.get('Last_SQL_Error')) self.critical_state(msg) self.ok_state("Slave sql is running") def slave_io(self): """Check that Slave_IO_Running = Yes""" if self._slave_status.get('Slave_IO_Running') == "No": msg = "Slave io is not running. Last error: {0}".format( self._slave_status.get('Last_IO_Error')) self.critical_state(msg) self.ok_state("Slave io is running") def get_slave_status(self): """Run the query!""" try: sql = 'SHOW SLAVE "{0}" STATUS'.format(self.connection_name) conn = None conn = MySQLdb.Connection( self.hostname, self.username, self.password) curs = conn.cursor(MySQLdb.cursors.DictCursor) curs.execute(sql) conn.commit() self._slave_status = curs.fetchall()[0] if self.verbose: print self._slave_status except MySQLdb.Error, exc: msg = "{0}: {1}".format(exc.args[0], exc.args[1]) self.unknown_state(msg) finally: if conn: conn.close() def main(args=None): """starter method""" if args is None: args = sys.argv[1:] parser = argparse.ArgumentParser(description='MariaDB slave status checker') parser.add_argument('--hostname', default='localhost', type=str, help="MariaDB hostname") parser.add_argument('--username', type=str, help="MariaDB username") parser.add_argument('--password', type=str, help="MariaDB password") parser.add_argument('--connection', required=True, type=str, help="MariaDB slave connection name") parser.add_argument('--mode', type=str, required=True, choices=SlaveStatusCheck.MODES, help="slave state to check") parser.add_argument('-w', '--warning', type=int, default=None, help="warning limit") parser.add_argument('-c', '--critical', type=int, default=None, help="critical limit") parser.add_argument('--verbose', action='store_true', default=False, help="enable verbose mode") args = parser.parse_args(args) ssc = SlaveStatusCheck(args.hostname, args.username, args.password, args.connection, args.mode, args.verbose, args.warning, args.critical) ssc.get_slave_status() ssc.run_check() if __name__ == '__main__': main() # pragma: no cover
33.873418
80
0.596599
#!/usr/bin/env python """MariaDB slave status checker""" import sys import argparse import MySQLdb class NagiosPlugin(object): """Nagios Plugin base class""" def __init__(self, warning, critical, *args, **kwargs): self.warning = warning self.critical = critical def run_check(self): raise NotImplementedError def ok_state(self, msg): print "OK - {0}".format(msg) sys.exit(0) def warning_state(self, msg): print "WARNING - {0}".format(msg) sys.exit(1) def critical_state(self, msg): print "CRITICAL - {0}".format(msg) sys.exit(2) def unknown_state(self, msg): print "UNNKNOWN - {0}".format(msg) sys.exit(3) class SlaveStatusCheck(NagiosPlugin): """Class to help us run slave status queries against MariaDB""" REPLICATION_LAG_MODE = 'replication_lag' SLAVESQL_MODE = 'slave_sql' SLAVEIO_MODE = 'slave_io' MODES = (REPLICATION_LAG_MODE, SLAVESQL_MODE, SLAVEIO_MODE) def __init__(self, hostname, username, password, connection_name, mode, verbose=False, warning=None, critical=None): super(SlaveStatusCheck, self).__init__(warning, critical) self.hostname = hostname self.username = username self.password = password self.connection_name = connection_name self.verbose = verbose self.mode = mode self._slave_status = {} def run_check(self): """Execute the check against the given mode""" check_fn = getattr(self, self.mode) check_fn() def replication_lag(self): """Check replication lag thresholds""" lag = self._slave_status.get('Seconds_Behind_Master') if lag is None: self.unknown_state("No replication lag reported") if not self.warning or not self.critical: self.unknown_state("Warning and critical thresholds undefined") lag = int(lag) warning = int(self.warning) critical = int(self.critical) lag_performance_msg = "log={0}s;{1};{2};0".format(lag,warning,critical) lag_display_msg = "Slave is {0} seconds behinds master".format(lag) lag_msg = "{0} | {1}".format(lag_display_msg,lag_performance_msg) if lag >= warning and lag < critical: self.warning_state(lag_msg) elif lag >= critical: self.critical_state(lag_msg) self.ok_state(lag_msg) def slave_sql(self): """Check that Slave_SQL_Running = Yes""" if self._slave_status.get('Slave_SQL_Running') == "No": msg = "Slave sql is not running. Last error: {0}".format( self._slave_status.get('Last_SQL_Error')) self.critical_state(msg) self.ok_state("Slave sql is running") def slave_io(self): """Check that Slave_IO_Running = Yes""" if self._slave_status.get('Slave_IO_Running') == "No": msg = "Slave io is not running. Last error: {0}".format( self._slave_status.get('Last_IO_Error')) self.critical_state(msg) self.ok_state("Slave io is running") def get_slave_status(self): """Run the query!""" try: sql = 'SHOW SLAVE "{0}" STATUS'.format(self.connection_name) conn = None conn = MySQLdb.Connection( self.hostname, self.username, self.password) curs = conn.cursor(MySQLdb.cursors.DictCursor) curs.execute(sql) conn.commit() self._slave_status = curs.fetchall()[0] if self.verbose: print self._slave_status except MySQLdb.Error, exc: msg = "{0}: {1}".format(exc.args[0], exc.args[1]) self.unknown_state(msg) finally: if conn: conn.close() def main(args=None): """starter method""" if args is None: args = sys.argv[1:] parser = argparse.ArgumentParser(description='MariaDB slave status checker') parser.add_argument('--hostname', default='localhost', type=str, help="MariaDB hostname") parser.add_argument('--username', type=str, help="MariaDB username") parser.add_argument('--password', type=str, help="MariaDB password") parser.add_argument('--connection', required=True, type=str, help="MariaDB slave connection name") parser.add_argument('--mode', type=str, required=True, choices=SlaveStatusCheck.MODES, help="slave state to check") parser.add_argument('-w', '--warning', type=int, default=None, help="warning limit") parser.add_argument('-c', '--critical', type=int, default=None, help="critical limit") parser.add_argument('--verbose', action='store_true', default=False, help="enable verbose mode") args = parser.parse_args(args) ssc = SlaveStatusCheck(args.hostname, args.username, args.password, args.connection, args.mode, args.verbose, args.warning, args.critical) ssc.get_slave_status() ssc.run_check() if __name__ == '__main__': main() # pragma: no cover
817
0
189
10099580e70302fbeaf41e9a358a3baf413b5d47
6,025
py
Python
src/prg_state_ctrl.py
ccarr66/handwriting_gui
c5d8a8925ee37d874ee794a241e50974a7b9d921
[ "MIT" ]
null
null
null
src/prg_state_ctrl.py
ccarr66/handwriting_gui
c5d8a8925ee37d874ee794a241e50974a7b9d921
[ "MIT" ]
null
null
null
src/prg_state_ctrl.py
ccarr66/handwriting_gui
c5d8a8925ee37d874ee794a241e50974a7b9d921
[ "MIT" ]
1
2020-11-17T21:31:55.000Z
2020-11-17T21:31:55.000Z
import sys, os, platform import ocr_image_analyzer as OCR try: import PIL.Image import PIL.ImageTk except ModuleNotFoundError: print('Required libraries not found, please install PIL') if __name__ == "__main__": raise Exception('Cannot be called as main script') debug = True #******************************************** Program state independent logic filepathSlash = '\\' if isWindowsOS() else '/' #******************************************** Object that contains program state
33.848315
137
0.601494
import sys, os, platform import ocr_image_analyzer as OCR try: import PIL.Image import PIL.ImageTk except ModuleNotFoundError: print('Required libraries not found, please install PIL') if __name__ == "__main__": raise Exception('Cannot be called as main script') debug = True #******************************************** Program state independent logic def isWindowsOS(): return platform.system == "Windows" filepathSlash = '\\' if isWindowsOS() else '/' def scaleImage(imgObj, width, height): imgWidth, imgHeight = imgObj.size smallestOutDim = min(width, height) largestInDim = max(imgObj.size) imageScale = smallestOutDim/largestInDim newWidth = (int)(imageScale * imgWidth) newHeight = (int)(imageScale * imgHeight) imgObj = imgObj.resize((newWidth,newHeight), PIL.Image.ANTIALIAS) offsetX = (int)(abs(width - newWidth)/2) offsetY = (int)(abs(height - newHeight)/2) background = PIL.Image.new('RGBA', (width, height), (255, 0, 0, 0)) foreground = imgObj.convert('RGBA') background.paste(foreground, (offsetX, offsetY), foreground) return background #******************************************** Object that contains program state class PrgStateCtrl: _execPath = os.path.dirname(os.path.realpath(__file__)) _resSubFolderPath = "\\res" if isWindowsOS() else "/res" _imgSubFolderPath = "\\images" if isWindowsOS() else "/images" _modelName = "" _modelPath = _execPath + _resSubFolderPath + filepathSlash _imgName = "" _imgPath = _execPath + _resSubFolderPath + _imgSubFolderPath _outputFileName = "results" _outputFilePath = _execPath _cachedImage = PIL.Image.new('RGBA', (400, 550), (0,0,0,0)) _modelSet = False _imageLoaded = False _outputIsValid = False _currentOutputImageIdx = 0 _currentOutputImages = [] _currentOutputImageLabels = [] _currentOutputText = "" def __init__(self): if(debug): self._imgName = "perry3.png" self._modelName = "handwriting_v1.model" self.SetModel(self._modelName) self.LoadImage(self._imgName) def GetImagePath(self): return self._execPath + self._resSubFolderPath + self._imgSubFolderPath + filepathSlash def GetImageFullPath(self): return self._execPath + self._resSubFolderPath + self._imgSubFolderPath + filepathSlash + self._imgName def GetModelPath(self): return self._modelPath def GetModelFullPath(self): return self._modelPath + self._modelName def GetCachedImage(self): return (self._cachedImage, "Cached Image") def GetOutputPath(self): return self._outputFilePath def GetOutputName(self): return self._outputFileName def isValidImg(self, name): try: PIL.Image.open(self.GetImagePath() + name) return True except: return False def SetModel(self, modelName): if OCR.modelIsValid(self.GetModelPath() + modelName): self._modelName = modelName self._modelSet = True return True else: return False def LoadImage(self, imageName): if self.isValidImg(imageName): self._imgName = imageName self._cachedImage = scaleImage(PIL.Image.open(self.GetImagePath() + self._imgName), 400, 550) self._imageLoaded = True self._outputIsValid = False; self._currentOutputImages.clear() self._currentOutputImageLabels.clear() self._currentOutputImageIdx = 0 return True else: return False def PerformOCR(self): self._currentOutputImages.clear() self._currentOutputImageLabels.clear() if self._modelSet and self._imageLoaded: try: self._currentOutputImageIdx = 0 self._currentOutputImages.append(self._cachedImage) self._currentOutputImageLabels.append("Original") text, images, imageLabels = OCR.analyzeImage(self.GetImageFullPath()) self._currentOutputText = "" for c in text: self._currentOutputText += c for img in images: img_pil = PIL.Image.fromarray(img) scaledImg = scaleImage(img_pil,400,550) self._currentOutputImages.append(scaledImg) for label in imageLabels: self._currentOutputImageLabels.append(label) self._outputIsValid = True except: self._outputIsValid = False def GetOutputText(self): if self._outputIsValid: return self._currentOutputText else: return "" def GetNextOutputImage(self): if self._outputIsValid: if self._currentOutputImageIdx == len(self._currentOutputImages) - 1: self._currentOutputImageIdx = 0 else: self._currentOutputImageIdx += 1 return (self._currentOutputImages[self._currentOutputImageIdx], self._currentOutputImageLabels[self._currentOutputImageIdx]) else: return (self._cachedImage, "Cached Image") def GetPrevOutputImage(self): if self._outputIsValid: if self._currentOutputImageIdx == 0: self._currentOutputImageIdx = len(self._currentOutputImages) - 1 else: self._currentOutputImageIdx -= 1 return (self._currentOutputImages[self._currentOutputImageIdx], self._currentOutputImageLabels[self._currentOutputImageIdx]) else: return (self._cachedImage, "Cached Image")
4,261
1,155
74
54692a530049e8154ae7b77f87421496fbec60bd
1,013
py
Python
02_assignment/toolbox/Toolbox_Python02450/Scripts/ex10_2_1.py
LukaAvbreht/ML_projects
8b36acdeb017ce8a57959c609b96111968852d5f
[ "MIT" ]
null
null
null
02_assignment/toolbox/Toolbox_Python02450/Scripts/ex10_2_1.py
LukaAvbreht/ML_projects
8b36acdeb017ce8a57959c609b96111968852d5f
[ "MIT" ]
null
null
null
02_assignment/toolbox/Toolbox_Python02450/Scripts/ex10_2_1.py
LukaAvbreht/ML_projects
8b36acdeb017ce8a57959c609b96111968852d5f
[ "MIT" ]
null
null
null
# exercise 10.2.1 from matplotlib.pyplot import figure, show from scipy.io import loadmat from toolbox_02450 import clusterplot from scipy.cluster.hierarchy import linkage, fcluster, dendrogram # Load Matlab data file and extract variables of interest mat_data = loadmat('../Data/synth1.mat') X = mat_data['X'] y = mat_data['y'].squeeze() attributeNames = [name[0] for name in mat_data['attributeNames'].squeeze()] classNames = [name[0][0] for name in mat_data['classNames']] N, M = X.shape C = len(classNames) # Perform hierarchical/agglomerative clustering on data matrix Method = 'single' Metric = 'euclidean' Z = linkage(X, method=Method, metric=Metric) # Compute and display clusters by thresholding the dendrogram Maxclust = 4 cls = fcluster(Z, criterion='maxclust', t=Maxclust) figure(1) clusterplot(X, cls.reshape(cls.shape[0],1), y=y) # Display dendrogram max_display_levels=6 figure(2,figsize=(10,4)) dendrogram(Z, truncate_mode='level', p=max_display_levels) show() print('Ran Exercise 10.2.1')
28.138889
75
0.755183
# exercise 10.2.1 from matplotlib.pyplot import figure, show from scipy.io import loadmat from toolbox_02450 import clusterplot from scipy.cluster.hierarchy import linkage, fcluster, dendrogram # Load Matlab data file and extract variables of interest mat_data = loadmat('../Data/synth1.mat') X = mat_data['X'] y = mat_data['y'].squeeze() attributeNames = [name[0] for name in mat_data['attributeNames'].squeeze()] classNames = [name[0][0] for name in mat_data['classNames']] N, M = X.shape C = len(classNames) # Perform hierarchical/agglomerative clustering on data matrix Method = 'single' Metric = 'euclidean' Z = linkage(X, method=Method, metric=Metric) # Compute and display clusters by thresholding the dendrogram Maxclust = 4 cls = fcluster(Z, criterion='maxclust', t=Maxclust) figure(1) clusterplot(X, cls.reshape(cls.shape[0],1), y=y) # Display dendrogram max_display_levels=6 figure(2,figsize=(10,4)) dendrogram(Z, truncate_mode='level', p=max_display_levels) show() print('Ran Exercise 10.2.1')
0
0
0
67bd1f4cc17ab520aed02257323fdafae66bc88e
2,002
py
Python
modules/network/PrefabGateOne.py
Jumpscale/rsal9
e7ff7638ca53dafe872ce3030a379e8b65cb4831
[ "Apache-2.0" ]
1
2017-06-07T08:11:57.000Z
2017-06-07T08:11:57.000Z
modules/network/PrefabGateOne.py
Jumpscale/rsal9
e7ff7638ca53dafe872ce3030a379e8b65cb4831
[ "Apache-2.0" ]
106
2017-05-10T18:16:31.000Z
2019-09-18T15:09:07.000Z
modules/network/PrefabGateOne.py
Jumpscale/rsal9
e7ff7638ca53dafe872ce3030a379e8b65cb4831
[ "Apache-2.0" ]
5
2018-01-26T16:11:52.000Z
2018-08-22T15:12:52.000Z
from js9 import j app = j.tools.prefab._getBaseAppClass()
26
131
0.584915
from js9 import j app = j.tools.prefab._getBaseAppClass() class PrefabGateOne(app): NAME = "gateone" def build(self, reset=False): """ Build Gateone :param reset: reset build if already built before :return: """ if self.doneCheck("build", reset): return self.prefab.tools.git.pullRepo("https://github.com/liftoff/GateOne", branch="master") self.doneSet('build') def install(self, reset=False): """ Installs gateone @param reset: boolean: forces the install operation. """ if reset is False and self.isInstalled(): return cmd = """ cd /opt/code/github/liftoff/GateOne apt-get install build-essential python3-dev python3-setuptools python3-pip -y pip3 install tornado==4.5.3 python3 setup.py install cp /usr/local/bin/gateone $BINDIR/gateone ln -s /usr/bin/python3 /usr/bin/python """ self.prefab.core.run(cmd) self.prefab.system.ssh.keygen(name="id_rsa") self.doneSet('install') def start(self, name="main", address="localhost", port=10443): """ Starts gateone. @param name: str: instance name. @param address: str: bind address. @param port: int: port number. """ cmd = "eval `ssh-agent -s` ssh-add /root/.ssh/id_rsa && gateone --address={} --port={} --disable_ssl".format(address, port) pm = self.prefab.system.processmanager.get() pm.ensure(name='gateone_{}'.format(name), cmd=cmd) def stop(self, name='main'): """ Stops gateone """ pm = self.prefab.system.processmanager.get() pm.stop(name='gateone_{}'.format(name)) def restart(self, name="main"): """ Restart GateOne instance by name. """ self.stop(name) self.start(name) def reset(self): """ helper method to clean what this module generates. """ pass
0
1,919
23
d6055403ada75fdb58112230e49db04f73faeaa8
7,213
py
Python
scripts/slave/recipe_modules/skia/resources/trigger_wait_ct_task.py
bopopescu/build
4e95fd33456e552bfaf7d94f7d04b19273d1c534
[ "BSD-3-Clause" ]
null
null
null
scripts/slave/recipe_modules/skia/resources/trigger_wait_ct_task.py
bopopescu/build
4e95fd33456e552bfaf7d94f7d04b19273d1c534
[ "BSD-3-Clause" ]
null
null
null
scripts/slave/recipe_modules/skia/resources/trigger_wait_ct_task.py
bopopescu/build
4e95fd33456e552bfaf7d94f7d04b19273d1c534
[ "BSD-3-Clause" ]
1
2020-07-23T11:05:06.000Z
2020-07-23T11:05:06.000Z
#!/usr/bin/env python # Copyright (c) 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Python utility that triggers and waits for tasks to complete on CTFE.""" import base64 import hashlib import json import math import optparse import requests import sys import time CTFE_HOST = "https://ct.skia.org" CTFE_QUEUE = CTFE_HOST + '/queue/' CHROMIUM_PERF_TASK_POST_URI = CTFE_HOST + "/_/webhook_add_chromium_perf_task" GET_CHROMIUM_PERF_RUN_STATUS_URI = CTFE_HOST + "/get_chromium_perf_run_status" CHROMIUM_PERF_RUNS_HISTORY = CTFE_HOST + "/chromium_perf_runs/" GCE_WEBHOOK_SALT_METADATA_URI = ( "http://metadata/computeMetadata/v1/project/attributes/" "webhook_request_salt") CTFE_CONNECTION_RETRIES = 5 CONNECTION_WAIT_BASE = 5 POLLING_FREQUENCY_SECS = 30 # 30 seconds. TRYBOT_DEADLINE_SECS = 24 * 60 * 60 # 24 hours. def retry(): """A retry decorator with exponential backoff.""" return decorator @retry() @retry() def _CreateTaskJSON(options): """Creates a JSON representation of the requested task.""" task_params = {} task_params["username"] = options.requester task_params["benchmark"] = options.benchmark task_params["platform"] = "Linux" task_params["page_sets"] = "10k" task_params["repeat_runs"] = "3" task_params["run_in_parallel"] = str(options.parallel) task_params["benchmark_args"] = "--output-format=csv-pivot-table" task_params["browser_args_nopatch"] = ( "--disable-setuid-sandbox --enable-threaded-compositing " "--enable-impl-side-painting") task_params["browser_args_withpatch"] = ( "--disable-setuid-sandbox --enable-threaded-compositing " "--enable-impl-side-painting") trybot_params = {} trybot_params["issue"] = options.issue trybot_params["patchset"] = options.patchset trybot_params["task"] = task_params return json.dumps(trybot_params) def _GetWebhookSaltFromMetadata(): """Gets webhook_request_salt from GCE's metadata server.""" headers = {"Metadata-Flavor": "Google"} resp = requests.get(GCE_WEBHOOK_SALT_METADATA_URI, headers=headers) if resp.status_code != 200: raise CtTrybotException( 'Return code from %s was %s' % (GCE_WEBHOOK_SALT_METADATA_URI, resp.status_code)) return base64.standard_b64decode(resp.text) def _TriggerTask(options): """Triggers the requested task on CTFE and returns the new task's ID.""" task = _CreateTaskJSON(options) m = hashlib.sha512() m.update(task) m.update('notverysecret' if options.local else _GetWebhookSaltFromMetadata()) encoded = base64.standard_b64encode(m.digest()) headers = { "Content-type": "application/x-www-form-urlencoded", "Accept": "application/json", "X-Webhook-Auth-Hash": encoded} resp = _AddTaskToCTFE(task, headers) if resp.status_code != 200: raise CtTrybotException( 'Return code from %s was %s' % (CHROMIUM_PERF_TASK_POST_URI, resp.status_code)) try: ret = json.loads(resp.text) except ValueError, e: raise CtTrybotException( 'Did not get a JSON response from %s: %s' % ( CHROMIUM_PERF_TASK_POST_URI, e)) return ret["taskID"] if '__main__' == __name__: option_parser = optparse.OptionParser() option_parser.add_option( '', '--issue', help='The Rietveld CL number to get the patch from.') option_parser.add_option( '', '--patchset', help='The Rietveld CL patchset to use.') option_parser.add_option( '', '--requester', help='Email address of the user who requested this run.') option_parser.add_option( '', '--benchmark', help='The CT benchmark to run on the patch.') option_parser.add_option( '', '--parallel', default=False, action='store_true', help='Whether to run this benchmark in parallel.') option_parser.add_option( '', '--local', default=False, action='store_true', help='Uses a dummy metadata salt if this flag is true else it tries to ' 'get the salt from GCE metadata.') options, unused_args = option_parser.parse_args() if (not options.issue or not options.patchset or not options.requester or not options.benchmark): option_parser.error('Must specify issue, patchset, requester and benchmark') sys.exit(TriggerAndWait(options))
33.087156
80
0.674338
#!/usr/bin/env python # Copyright (c) 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Python utility that triggers and waits for tasks to complete on CTFE.""" import base64 import hashlib import json import math import optparse import requests import sys import time CTFE_HOST = "https://ct.skia.org" CTFE_QUEUE = CTFE_HOST + '/queue/' CHROMIUM_PERF_TASK_POST_URI = CTFE_HOST + "/_/webhook_add_chromium_perf_task" GET_CHROMIUM_PERF_RUN_STATUS_URI = CTFE_HOST + "/get_chromium_perf_run_status" CHROMIUM_PERF_RUNS_HISTORY = CTFE_HOST + "/chromium_perf_runs/" GCE_WEBHOOK_SALT_METADATA_URI = ( "http://metadata/computeMetadata/v1/project/attributes/" "webhook_request_salt") CTFE_CONNECTION_RETRIES = 5 CONNECTION_WAIT_BASE = 5 POLLING_FREQUENCY_SECS = 30 # 30 seconds. TRYBOT_DEADLINE_SECS = 24 * 60 * 60 # 24 hours. class CtTrybotException(Exception): pass def retry(): """A retry decorator with exponential backoff.""" def decorator(func): def wrapper(*args, **kwargs): tries = CTFE_CONNECTION_RETRIES delay = CONNECTION_WAIT_BASE while tries > 0: try: ret = func(*args, **kwargs) return ret except: print >> sys.stderr, 'Failed to connect to CTFE.' tries -= 1 if tries == 0: raise print 'Retry in %d seconds.' % delay time.sleep(delay) delay *= 2 return wrapper return decorator @retry() def _AddTaskToCTFE(task, headers): return requests.post(CHROMIUM_PERF_TASK_POST_URI, task, headers=headers) @retry() def _GetTaskStatusFromCTFE(get_url): return requests.get(get_url) def _CreateTaskJSON(options): """Creates a JSON representation of the requested task.""" task_params = {} task_params["username"] = options.requester task_params["benchmark"] = options.benchmark task_params["platform"] = "Linux" task_params["page_sets"] = "10k" task_params["repeat_runs"] = "3" task_params["run_in_parallel"] = str(options.parallel) task_params["benchmark_args"] = "--output-format=csv-pivot-table" task_params["browser_args_nopatch"] = ( "--disable-setuid-sandbox --enable-threaded-compositing " "--enable-impl-side-painting") task_params["browser_args_withpatch"] = ( "--disable-setuid-sandbox --enable-threaded-compositing " "--enable-impl-side-painting") trybot_params = {} trybot_params["issue"] = options.issue trybot_params["patchset"] = options.patchset trybot_params["task"] = task_params return json.dumps(trybot_params) def _GetWebhookSaltFromMetadata(): """Gets webhook_request_salt from GCE's metadata server.""" headers = {"Metadata-Flavor": "Google"} resp = requests.get(GCE_WEBHOOK_SALT_METADATA_URI, headers=headers) if resp.status_code != 200: raise CtTrybotException( 'Return code from %s was %s' % (GCE_WEBHOOK_SALT_METADATA_URI, resp.status_code)) return base64.standard_b64decode(resp.text) def _TriggerTask(options): """Triggers the requested task on CTFE and returns the new task's ID.""" task = _CreateTaskJSON(options) m = hashlib.sha512() m.update(task) m.update('notverysecret' if options.local else _GetWebhookSaltFromMetadata()) encoded = base64.standard_b64encode(m.digest()) headers = { "Content-type": "application/x-www-form-urlencoded", "Accept": "application/json", "X-Webhook-Auth-Hash": encoded} resp = _AddTaskToCTFE(task, headers) if resp.status_code != 200: raise CtTrybotException( 'Return code from %s was %s' % (CHROMIUM_PERF_TASK_POST_URI, resp.status_code)) try: ret = json.loads(resp.text) except ValueError, e: raise CtTrybotException( 'Did not get a JSON response from %s: %s' % ( CHROMIUM_PERF_TASK_POST_URI, e)) return ret["taskID"] def TriggerAndWait(options): task_id = _TriggerTask(options) print print 'Task %s has been successfull scheduled on CTFE (%s).' % ( task_id, CHROMIUM_PERF_RUNS_HISTORY) print 'You will get an email once the task has been picked up by the server.' print print # Now poll CTFE till the task completes or till deadline is hit. time_started_polling = time.time() while True: if (time.time() - time_started_polling) > TRYBOT_DEADLINE_SECS: raise CtTrybotException( 'Task did not complete in the deadline of %s seconds.' % ( TRYBOT_DEADLINE_SECS)) # Get the status of the task the trybot added. get_url = '%s?task_id=%s' % (GET_CHROMIUM_PERF_RUN_STATUS_URI, task_id) resp = _GetTaskStatusFromCTFE(get_url) if resp.status_code != 200: raise CtTrybotException( 'Return code from %s was %s' % (GET_CHROMIUM_PERF_RUN_STATUS_URI, resp.status_code)) try: ret = json.loads(resp.text) except ValueError, e: raise CtTrybotException( 'Did not get a JSON response from %s: %s' % (get_url, e)) # Assert that the status is for the task we asked for. assert int(ret["taskID"]) == int(task_id) status = ret["status"] if status == "Completed": results = ret["resultsLink"] print print 'Your run was successfully completed.' if results: print 'The output of your run is available here: %s' % results print print '@@@STEP_LINK@%s@%s@@@' % ('CT Perf Results', results) print return 0 elif status == "Completed with failures": print raise CtTrybotException( 'Your run was completed with failures. Please check your email for ' 'links to logs of the run.') print ('The current status of the task %s is "%s". You can view the size ' 'of the queue here: %s' % (task_id, status, CTFE_QUEUE)) print 'Checking again after %s seconds' % POLLING_FREQUENCY_SECS print time.sleep(POLLING_FREQUENCY_SECS) if '__main__' == __name__: option_parser = optparse.OptionParser() option_parser.add_option( '', '--issue', help='The Rietveld CL number to get the patch from.') option_parser.add_option( '', '--patchset', help='The Rietveld CL patchset to use.') option_parser.add_option( '', '--requester', help='Email address of the user who requested this run.') option_parser.add_option( '', '--benchmark', help='The CT benchmark to run on the patch.') option_parser.add_option( '', '--parallel', default=False, action='store_true', help='Whether to run this benchmark in parallel.') option_parser.add_option( '', '--local', default=False, action='store_true', help='Uses a dummy metadata salt if this flag is true else it tries to ' 'get the salt from GCE metadata.') options, unused_args = option_parser.parse_args() if (not options.issue or not options.patchset or not options.requester or not options.benchmark): option_parser.error('Must specify issue, patchset, requester and benchmark') sys.exit(TriggerAndWait(options))
2,643
21
114
98cde3ab65273da077819776204d130012f60c8c
189
py
Python
qvapay/v1/errors.py
jorgeajimenezl/qvapay-python
e3fa24ae1be858c65f6816af3d74dabba572e7f0
[ "MIT" ]
15
2021-08-28T12:45:30.000Z
2022-02-09T23:41:43.000Z
qvapay/v1/errors.py
jorgeajimenezl/qvapay-python
e3fa24ae1be858c65f6816af3d74dabba572e7f0
[ "MIT" ]
11
2021-08-30T20:30:37.000Z
2021-10-31T18:05:41.000Z
qvapay/v1/errors.py
jorgeajimenezl/qvapay-python
e3fa24ae1be858c65f6816af3d74dabba572e7f0
[ "MIT" ]
6
2021-08-28T22:22:08.000Z
2022-03-07T19:53:09.000Z
from dataclasses import dataclass, field from typing import Optional @dataclass
21
55
0.783069
from dataclasses import dataclass, field from typing import Optional @dataclass class QvaPayError(Exception): status_code: int status_message: Optional[str] = field(default=None)
0
85
22
3da55060c919b50297a4552fec6032bcf0f5ca39
1,605
py
Python
flask_appify/ext/appengine.py
RealKinetic/flask-appify
3bfc649ab96fca92abeb03bd37b976f3de7dbbc3
[ "Apache-2.0" ]
null
null
null
flask_appify/ext/appengine.py
RealKinetic/flask-appify
3bfc649ab96fca92abeb03bd37b976f3de7dbbc3
[ "Apache-2.0" ]
null
null
null
flask_appify/ext/appengine.py
RealKinetic/flask-appify
3bfc649ab96fca92abeb03bd37b976f3de7dbbc3
[ "Apache-2.0" ]
null
null
null
import functools from flask_appify.util import request_wants_json try: from google.appengine.api import datastore_errors except ImportError: # not on the AppEngine platform datastore_errors = None __all__ = [ 'init_app', ] html_response = { 503: """<!doctype html><html><head><title>503 Service Unavailable</title></head><body><h1>Service Unavailable</h1><p>Service is temporarily unavailable. Please try again later.</p></body></html>""" } json_response = { 503: """{"status":"error","code":503,"message":"Service is temporarily unavailable. Please try again later."}""" } def handle_temp_error(app, err): """ This is a Flask `errorhandler` handling `datastore_errors.InternalError`. According to `https://cloud.google.com/appengine/docs/standard/python/ datastore/exceptions` this exception does not necessarily mean that the underlying operation failed. :param app: The flask app that received the error. :param err: The exception that was raised. """ response = app.make_response( json_response[503] if request_wants_json() else html_response[503] ) response.status_code = 503 return response
26.75
77
0.699688
import functools from flask_appify.util import request_wants_json try: from google.appengine.api import datastore_errors except ImportError: # not on the AppEngine platform datastore_errors = None __all__ = [ 'init_app', ] html_response = { 503: """<!doctype html><html><head><title>503 Service Unavailable</title></head><body><h1>Service Unavailable</h1><p>Service is temporarily unavailable. Please try again later.</p></body></html>""" } json_response = { 503: """{"status":"error","code":503,"message":"Service is temporarily unavailable. Please try again later."}""" } def handle_temp_error(app, err): """ This is a Flask `errorhandler` handling `datastore_errors.InternalError`. According to `https://cloud.google.com/appengine/docs/standard/python/ datastore/exceptions` this exception does not necessarily mean that the underlying operation failed. :param app: The flask app that received the error. :param err: The exception that was raised. """ response = app.make_response( json_response[503] if request_wants_json() else html_response[503] ) response.status_code = 503 return response def init_app(app): if datastore_errors: app.errorhandler(datastore_errors.InternalError)( functools.partial(handle_temp_error, app) ) app.errorhandler(datastore_errors.Timeout)( functools.partial(handle_temp_error, app) ) app.errorhandler(datastore_errors.TransactionFailedError)( functools.partial(handle_temp_error, app) )
391
0
23
e70169b20bf89f034aa2f15f946cacbc5c045ef2
1,146
py
Python
my_receipts/apps/receipts/tests/test_parsers.py
Tvrsch/my_receipts
0a905d2366cee3b62f2dd083af1622afeb648bef
[ "MIT" ]
null
null
null
my_receipts/apps/receipts/tests/test_parsers.py
Tvrsch/my_receipts
0a905d2366cee3b62f2dd083af1622afeb648bef
[ "MIT" ]
11
2021-05-10T15:40:38.000Z
2022-02-28T21:09:37.000Z
my_receipts/apps/receipts/tests/test_parsers.py
Tvrsch/my_receipts
0a905d2366cee3b62f2dd083af1622afeb648bef
[ "MIT" ]
2
2021-09-18T18:49:58.000Z
2021-11-17T12:29:13.000Z
from datetime import datetime from pathlib import Path import pytest from my_receipts.apps.receipts.parsers import TaxcomParser CURRENT_DIR = Path(__file__).resolve(strict=True).parent pytestmark = pytest.mark.django_db
30.157895
82
0.711169
from datetime import datetime from pathlib import Path import pytest from my_receipts.apps.receipts.parsers import TaxcomParser CURRENT_DIR = Path(__file__).resolve(strict=True).parent pytestmark = pytest.mark.django_db def test_taxcom(requests_mock): with open(CURRENT_DIR / "taxcom_page.html", encoding="utf8") as fp: html = fp.read() requests_mock.get(TaxcomParser.base_url, text=html) parser = TaxcomParser("00000000-0000-0000-0000-000000000000") assert parser.get_html() == html assert parser.shop_name == 'ООО "Лента"' assert parser.shop_itn == 7814148471 assert parser.shop_address == "630083, Новосибирск, ул.Большевистская, д.52/1" assert parser.terminal_number == 29 assert parser.shift == 204 assert parser.cashier == "Оператор" assert parser.receipt_number == 59 assert parser.receipt_created_dt == datetime(2021, 2, 17, 12, 13) assert parser.receipt_sum == 1196.00 assert len(parser.items) == 16 item = parser.items[2] assert item.name == "Пакет ЛЕНТА майка 9кг" assert item.price == 3.49 assert item.amount == 1.0 assert item.sum == 3.49
959
0
23
3f3179753f11234dd6a4245ab4afb96624ed7961
341
py
Python
django_fastapi/api/migrations/0005_rename_id_login_id2.py
ehddn5252/FastAPI_Django
a179aedb62c28d1700578882e681002a61576060
[ "MIT" ]
null
null
null
django_fastapi/api/migrations/0005_rename_id_login_id2.py
ehddn5252/FastAPI_Django
a179aedb62c28d1700578882e681002a61576060
[ "MIT" ]
null
null
null
django_fastapi/api/migrations/0005_rename_id_login_id2.py
ehddn5252/FastAPI_Django
a179aedb62c28d1700578882e681002a61576060
[ "MIT" ]
1
2021-11-26T08:22:57.000Z
2021-11-26T08:22:57.000Z
# Generated by Django 3.2.9 on 2021-11-18 17:50 from django.db import migrations
17.947368
47
0.557185
# Generated by Django 3.2.9 on 2021-11-18 17:50 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('api', '0004_login_id'), ] operations = [ migrations.RenameField( model_name='login', old_name='id', new_name='id2', ), ]
0
235
23
0d241de29929eca30aa84aa2c82ddd0f71d7d6f2
1,049
py
Python
projects/ide/sublime/src/Bolt/api/command/bolt_listener.py
boltjs/bolt
c2666c876b34b1a61486a432eef3141ca8d1e411
[ "BSD-3-Clause" ]
11
2015-09-29T19:19:34.000Z
2020-11-20T09:14:46.000Z
projects/ide/sublime/src/Bolt/api/command/bolt_listener.py
boltjs/bolt
c2666c876b34b1a61486a432eef3141ca8d1e411
[ "BSD-3-Clause" ]
null
null
null
projects/ide/sublime/src/Bolt/api/command/bolt_listener.py
boltjs/bolt
c2666c876b34b1a61486a432eef3141ca8d1e411
[ "BSD-3-Clause" ]
null
null
null
import sublime import sublime_plugin from structs.thread_handler import * from api.inspect import highlighting from lookup import file_type as lookup_file_type
26.225
83
0.633937
import sublime import sublime_plugin from structs.thread_handler import * from api.inspect import highlighting from lookup import file_type as lookup_file_type class BoltListener(sublime_plugin.EventListener): def __init__(self): self.thread = None def init(t): self.thread = t def failure(exc): self.thread = None def success(result): self.thread = None self.handler = ThreadHandler(init, success, failure) def _update_highlight(self, view): def run(): if lookup_file_type.is_bolt_module(view) and highlighting.is_enabled(): if (self.thread == None): highlighting.run(view, self.handler) else: highlighting.clear(view) return run def on_modified(self, view): rate = highlighting.get_rate() sublime.set_timeout(self._update_highlight(view), rate) def on_activated(self, view): sublime.set_timeout(self._update_highlight(view), 0)
728
28
131
d9a539681a7a683b2742f4354908b361aaacc82b
18
py
Python
tmc-langs/tests/data/some_course/PythonExercise/src/__init__.py
Robustic/tmc-langs-rust
fd7d689a5f898a728787123966b8a5d8eb0f0c5b
[ "Apache-2.0", "MIT" ]
7
2021-11-16T06:01:41.000Z
2022-03-30T21:09:14.000Z
tmc-langs/tests/data/some_course/PythonExercise/src/__init__.py
Robustic/tmc-langs-rust
fd7d689a5f898a728787123966b8a5d8eb0f0c5b
[ "Apache-2.0", "MIT" ]
110
2020-05-04T13:44:28.000Z
2022-03-09T12:21:40.000Z
tmc-langs/tests/data/some_course/PythonExercise/src/__init__.py
Robustic/tmc-langs-rust
fd7d689a5f898a728787123966b8a5d8eb0f0c5b
[ "Apache-2.0", "MIT" ]
9
2020-05-05T03:05:53.000Z
2021-04-29T13:13:52.000Z
from src import *
9
17
0.722222
from src import *
0
0
0
70cb51c5cefbf126f84ed0c92fb87ae557ed0c84
2,072
py
Python
grocery_store/grocery_store/grocery_auth/views.py
DeanDupalov/my_project
3346f940a246441c46188c20d1ddfbd13a883928
[ "MIT" ]
null
null
null
grocery_store/grocery_store/grocery_auth/views.py
DeanDupalov/my_project
3346f940a246441c46188c20d1ddfbd13a883928
[ "MIT" ]
null
null
null
grocery_store/grocery_store/grocery_auth/views.py
DeanDupalov/my_project
3346f940a246441c46188c20d1ddfbd13a883928
[ "MIT" ]
null
null
null
from django.contrib.auth import login, logout from django.contrib.auth.decorators import login_required from django.db import transaction from django.shortcuts import render, redirect from django.views.generic import TemplateView from grocery_store.grocery_auth.forms import SignInForm, SignUpForm from grocery_store.product.models import Category from grocery_store.profiles.forms import ProfileForm, ProfileAddressForm @login_required
28
72
0.644305
from django.contrib.auth import login, logout from django.contrib.auth.decorators import login_required from django.db import transaction from django.shortcuts import render, redirect from django.views.generic import TemplateView from grocery_store.grocery_auth.forms import SignInForm, SignUpForm from grocery_store.product.models import Category from grocery_store.profiles.forms import ProfileForm, ProfileAddressForm class RegisterView(TemplateView): template_name = 'grocery/auth/sign_up.html' def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['form'] = SignUpForm() context['profile_form'] = ProfileForm() context['categories'] = Category.objects.all() return context @transaction.atomic def post(self, request): form = SignUpForm(request.POST) profile_form = ProfileForm(request.POST) if form.is_valid() and profile_form.is_valid(): user = form.save() profile = profile_form.save(commit=False) profile.user = user profile.save() address = ProfileAddressForm().save(commit=False) address.profile = profile address.save() login(request, user) return redirect('landing page') context = { 'categories': Category.objects.all(), 'form': SignUpForm(), 'profile_form': ProfileForm() } return render(request, 'grocery/auth/sign_up.html', context) def sign_in(request): if request.method == 'POST': form = SignInForm(request.POST) if form.is_valid(): user = form.save() login(request, user) return redirect('landing page') else: form = SignInForm() context = { 'categories': Category.objects.all(), 'form': form, } return render(request, 'grocery/auth/sign_in.html', context) @login_required def sign_out(request): logout(request) return redirect('landing page')
1,422
138
68
037795ac1abedf72121969ab98a1ef082062b78c
6,589
py
Python
data/Luminometrics/htbayes.py
ericmjl/protein-systematic-characterization
3ac44d672380490d8e602aa024e40009fdf306b0
[ "MIT" ]
null
null
null
data/Luminometrics/htbayes.py
ericmjl/protein-systematic-characterization
3ac44d672380490d8e602aa024e40009fdf306b0
[ "MIT" ]
44
2016-08-31T14:58:13.000Z
2017-04-07T19:01:56.000Z
data/Luminometrics/htbayes.py
ericmjl/protein-systematic-characterization
3ac44d672380490d8e602aa024e40009fdf306b0
[ "MIT" ]
1
2016-08-31T14:33:35.000Z
2016-08-31T14:33:35.000Z
# -*- coding: utf-8 -*- """ Created on Wed Nov 30 17:56:58 2016 @author: Vivian Zhong """ import click import pymc3 as pm import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import logging @click.command() @click.option('--filename', default='data.csv', help='File name of the data in CSV format.') @click.option('--output_col', default='output', help='Name of column that contains data.') @click.option('--sample_col', default='sample_name', help='Name of column that contains sample names.') @click.option('--baseline_name', default='control', help='Name of positive control in sample names column.') @click.option('--n_steps', default=300000, help='Number of iterations for ADVI.') class BEST(object): """BEST Model, based on Kruschke (2013). Parameters ---------- data : pandas DataFrame A pandas dataframe which has the following data: - Each row is one replicate measurement. - There is a column that records the treatment name. - There is a column that records the measured value for that replicate. sample_col : str The name of the column containing sample names. output_col : str The name of the column containing values to estimate. baseline_name : str The name of the "control" or "baseline". Output ------ model : PyMC3 model Returns the BEST model containing """ def _convert_to_indices(self): """ Adds the "indices" column to self.data (DataFrame). This is necessary for the simplified model specification in the "fit" function below. """ sample_names = dict() for i, name in enumerate( list(np.unique(self.data[self.sample_col].values))): logging.info('Sample name {0} has the index {1}'.format(name, i)) sample_names[name] = i self.data['indices'] = self.data[self.sample_col].apply( lambda x: sample_names[x]) def fit(self, n_steps=50000): """ Creates a Bayesian Estimation model for replicate measurements of treatment(s) vs. control. Parameters ---------- n_steps : int The number of steps to run ADVI. """ sample_names = set(self.data[self.sample_col].values) # mean_test = self.data.groupby('indices').mean()[self.output_col].values # sd_test = self.data.groupby('indices').std()[self.output_col].values # print(mean_test, sd_test) with pm.Model() as model: # Hyperpriors # upper = pm.Exponential('upper', lam=0.05) nu = pm.Exponential('nu_minus_one', 1/29.) + 1 # "fold", which is the estimated fold change. fold = pm.Flat('fold', shape=len(sample_names)) # Assume that data have heteroskedastic (i.e. variable) error but # are drawn from the same HalfCauchy distribution. sigma = pm.HalfCauchy('sigma', beta=1, shape=len(sample_names)) # Model prediction mu = fold[self.data['indices']] sig = sigma[self.data['indices']] # Data likelihood like = pm.StudentT('like', nu=nu, mu=mu, sd=sig**-2, observed=self.data[self.output_col]) # Sample from posterior v_params = pm.variational.advi(n=n_steps) start = pm.variational.sample_vp(v_params, 1)[0] cov = np.power(model.dict_to_array(v_params.stds), 2) step = pm.NUTS(scaling=cov, is_cov=True) logging.info('Starting MCMC sampling') trace = pm.sample(step=step, start=start, draws=2000) self.trace = trace self.model = model def plot_posterior(self, rotate_xticks=False): """ Plots a swarm plot of the data overlaid on top of the 95% HPD and IQR of the posterior distribution. """ # Make summary plot # fig = plt.figure() ax = fig.add_subplot(111) # 1. Get the lower error and upper errorbars for 95% HPD and IQR. lower, lower_q, upper_q, upper = np.percentile(self.trace['fold'][500:], [2.5, 25, 75, 97.5], axis=0) summary_stats = pd.DataFrame() summary_stats['mean'] = self.trace['fold'].mean(axis=0) err_low = summary_stats['mean'] - lower err_high = upper - summary_stats['mean'] iqr_low = summary_stats['mean'] - lower_q iqr_high = upper_q - summary_stats['mean'] # 2. Plot the swarmplot and errorbars. summary_stats['mean'].plot(ls='', ax=ax, yerr=[err_low, err_high]) summary_stats['mean'].plot(ls='', ax=ax, yerr=[iqr_low, iqr_high], elinewidth=4, color='red') sns.swarmplot(data=self.data, x=self.sample_col, y=self.output_col, ax=ax, alpha=0.5) if rotate_xticks: logging.info('rotating xticks') plt.xticks(rotation='vertical') plt.ylabel(self.output_col) return fig, ax def plot_elbo(self): """ Plots the ELBO values to help check for convergence. """ fig = plt.figure() plt.plot(-np.log10(-self.params.elbo_vals)) return fig if __name__ == '__main__': main()
35.616216
81
0.591137
# -*- coding: utf-8 -*- """ Created on Wed Nov 30 17:56:58 2016 @author: Vivian Zhong """ import click import pymc3 as pm import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import logging @click.command() @click.option('--filename', default='data.csv', help='File name of the data in CSV format.') @click.option('--output_col', default='output', help='Name of column that contains data.') @click.option('--sample_col', default='sample_name', help='Name of column that contains sample names.') @click.option('--baseline_name', default='control', help='Name of positive control in sample names column.') @click.option('--n_steps', default=300000, help='Number of iterations for ADVI.') def main(filename, sample_col, baseline_name, n_steps, output_col): data = load_data(filename) # data, sample_names = convert_to_indices(data, sample_col) # data = data.sort_values(by='indices') # model = build_model(sample_names, data, baseline_name, output_col) # trace = run_model(model, n_steps) # plot_diagrams(trace, filename, baseline_name, output_col, # data, sample_col) b = BEST(data, sample_col, output_col, baseline_name) b.fit() b.plot_posterior() def load_data(filename): data = pd.read_csv(filename) return data class BEST(object): """BEST Model, based on Kruschke (2013). Parameters ---------- data : pandas DataFrame A pandas dataframe which has the following data: - Each row is one replicate measurement. - There is a column that records the treatment name. - There is a column that records the measured value for that replicate. sample_col : str The name of the column containing sample names. output_col : str The name of the column containing values to estimate. baseline_name : str The name of the "control" or "baseline". Output ------ model : PyMC3 model Returns the BEST model containing """ def __init__(self, data, sample_col, output_col, baseline_name): super(BEST, self).__init__() self.data = data.sort_values(by=sample_col) self.sample_col = sample_col self.output_col = output_col self.baseline_name = baseline_name self.trace = None self._convert_to_indices() def _convert_to_indices(self): """ Adds the "indices" column to self.data (DataFrame). This is necessary for the simplified model specification in the "fit" function below. """ sample_names = dict() for i, name in enumerate( list(np.unique(self.data[self.sample_col].values))): logging.info('Sample name {0} has the index {1}'.format(name, i)) sample_names[name] = i self.data['indices'] = self.data[self.sample_col].apply( lambda x: sample_names[x]) def fit(self, n_steps=50000): """ Creates a Bayesian Estimation model for replicate measurements of treatment(s) vs. control. Parameters ---------- n_steps : int The number of steps to run ADVI. """ sample_names = set(self.data[self.sample_col].values) # mean_test = self.data.groupby('indices').mean()[self.output_col].values # sd_test = self.data.groupby('indices').std()[self.output_col].values # print(mean_test, sd_test) with pm.Model() as model: # Hyperpriors # upper = pm.Exponential('upper', lam=0.05) nu = pm.Exponential('nu_minus_one', 1/29.) + 1 # "fold", which is the estimated fold change. fold = pm.Flat('fold', shape=len(sample_names)) # Assume that data have heteroskedastic (i.e. variable) error but # are drawn from the same HalfCauchy distribution. sigma = pm.HalfCauchy('sigma', beta=1, shape=len(sample_names)) # Model prediction mu = fold[self.data['indices']] sig = sigma[self.data['indices']] # Data likelihood like = pm.StudentT('like', nu=nu, mu=mu, sd=sig**-2, observed=self.data[self.output_col]) # Sample from posterior v_params = pm.variational.advi(n=n_steps) start = pm.variational.sample_vp(v_params, 1)[0] cov = np.power(model.dict_to_array(v_params.stds), 2) step = pm.NUTS(scaling=cov, is_cov=True) logging.info('Starting MCMC sampling') trace = pm.sample(step=step, start=start, draws=2000) self.trace = trace self.model = model def plot_posterior(self, rotate_xticks=False): """ Plots a swarm plot of the data overlaid on top of the 95% HPD and IQR of the posterior distribution. """ # Make summary plot # fig = plt.figure() ax = fig.add_subplot(111) # 1. Get the lower error and upper errorbars for 95% HPD and IQR. lower, lower_q, upper_q, upper = np.percentile(self.trace['fold'][500:], [2.5, 25, 75, 97.5], axis=0) summary_stats = pd.DataFrame() summary_stats['mean'] = self.trace['fold'].mean(axis=0) err_low = summary_stats['mean'] - lower err_high = upper - summary_stats['mean'] iqr_low = summary_stats['mean'] - lower_q iqr_high = upper_q - summary_stats['mean'] # 2. Plot the swarmplot and errorbars. summary_stats['mean'].plot(ls='', ax=ax, yerr=[err_low, err_high]) summary_stats['mean'].plot(ls='', ax=ax, yerr=[iqr_low, iqr_high], elinewidth=4, color='red') sns.swarmplot(data=self.data, x=self.sample_col, y=self.output_col, ax=ax, alpha=0.5) if rotate_xticks: logging.info('rotating xticks') plt.xticks(rotation='vertical') plt.ylabel(self.output_col) return fig, ax def plot_elbo(self): """ Plots the ELBO values to help check for convergence. """ fig = plt.figure() plt.plot(-np.log10(-self.params.elbo_vals)) return fig def summary_stats(self): return pm.summary_df(self.trace) if __name__ == '__main__': main()
900
0
98
6192fb7a57daf01ebdb8110a9977c021054793ab
150
py
Python
python/armstrong.py
lukasjoc/random
5be080b424f02491fb219634902fc0cc192aff6c
[ "0BSD" ]
1
2020-11-09T19:32:43.000Z
2020-11-09T19:32:43.000Z
python/armstrong.py
lukasjoc/random
5be080b424f02491fb219634902fc0cc192aff6c
[ "0BSD" ]
null
null
null
python/armstrong.py
lukasjoc/random
5be080b424f02491fb219634902fc0cc192aff6c
[ "0BSD" ]
null
null
null
#!/usr/local/bin/python3 if __name__ == "__main__": arm(2)
13.636364
28
0.586667
#!/usr/local/bin/python3 def arm(number int) -> bool: for d in number: print(d) return False if __name__ == "__main__": arm(2)
62
0
23
1772f57bf5430988d5b8a92657ecfe7e16777a86
4,324
py
Python
main_2.py
NathanMaton/stargan_single_image
b46837d1dd618bdd68ea4813d2a051df736e7399
[ "MIT" ]
null
null
null
main_2.py
NathanMaton/stargan_single_image
b46837d1dd618bdd68ea4813d2a051df736e7399
[ "MIT" ]
8
2020-11-13T18:52:25.000Z
2022-02-10T01:59:43.000Z
main_2.py
NathanMaton/stargan_single_image
b46837d1dd618bdd68ea4813d2a051df736e7399
[ "MIT" ]
null
null
null
''' TO-DO: GET BETTER RESULTS CLEAN UP THIS CODE TO GET THE SINGLE PROCESSING EASIER TO USE REDO AS A PR TO ORIGINAL REPO ''' import os import argparse from solver import Solver from data_loader import get_loader from torch.backends import cudnn # celeba_loader = get_loader(config.celeba_image_dir, config.attr_path, config.selected_attrs, # config.celeba_crop_size, config.image_size, config.batch_size, # 'CelebA', config.mode, config.num_workers) if __name__ == '__main__': config = Alt_config() celeba_loader = get_loader(config.celeba_image_dir, config.attr_path, config.selected_attrs, config.celeba_crop_size, config.image_size, config.batch_size, 'CelebA', config.mode, config.num_workers) solver = Solver(celeba_loader, None, config) solver.test_single() main(config)
30.027778
100
0.624191
''' TO-DO: GET BETTER RESULTS CLEAN UP THIS CODE TO GET THE SINGLE PROCESSING EASIER TO USE REDO AS A PR TO ORIGINAL REPO ''' import os import argparse from solver import Solver from data_loader import get_loader from torch.backends import cudnn # celeba_loader = get_loader(config.celeba_image_dir, config.attr_path, config.selected_attrs, # config.celeba_crop_size, config.image_size, config.batch_size, # 'CelebA', config.mode, config.num_workers) class Alt_config(): def __init__(self): # self.dataset = 'CelebA' # self.celeba_image_dir # self.attr_path # self.selected_attrs # self.celeba_crop_size # self.image_size # self.batch_size # self.mode # self.num_workers # Model configuration. self.c_dim=5 self.c2_dim=8 self.celeba_crop_size=178 self.rafd_crop_size=256 self.image_size=128 self.g_conv_dim=64 self.d_conv_dim=64 self.g_repeat_num=6 self.d_repeat_num=6 self.lambda_cls=1 self.lambda_rec=10 self.lambda_gp=10 # Training configuration. self.dataset='CelebA' self.batch_size=16 self.num_iters=200000 self.num_iters_decay=100000 self.g_lr=0.0001 self.d_lr=0.0001 self.n_critic=5 self.beta1=0.5 self.beta2=0.999 self.resume_iters=None self.selected_attrs=['Black_Hair', 'Blond_Hair', 'Brown_Hair', 'Male', 'Young'] # Test configuration. self.test_iters=200000 # Miscellaneous. self.num_workers=1 self.mode='test' self.use_tensorboard=True # Directories. self.celeba_image_dir='data/celeb_test_custom/images' self.attr_path='data/celeb_test_custom/list_attr_celeba.txt' self.rafd_image_dir='data/RaFD/train' self.log_dir='stargan/logs' self.model_save_dir='stargan_celeba_256/models' self.sample_dir='stargan/samples' self.result_dir='stargan/test_results' # Step size. self.log_step=10 self.sample_step=1000 self.model_save_step=10000 self.lr_update_step=1000 def str2bool(v): return v.lower() in ('true') def main(config): # For fast training. cudnn.benchmark = True # Create directories if not exist. if not os.path.exists(config.log_dir): os.makedirs(config.log_dir) if not os.path.exists(config.model_save_dir): os.makedirs(config.model_save_dir) if not os.path.exists(config.sample_dir): os.makedirs(config.sample_dir) if not os.path.exists(config.result_dir): os.makedirs(config.result_dir) # Data loader. celeba_loader = None rafd_loader = None if config.dataset in ['CelebA', 'Both']: celeba_loader = get_loader(config.celeba_image_dir, config.attr_path, config.selected_attrs, config.celeba_crop_size, config.image_size, config.batch_size, 'CelebA', config.mode, config.num_workers) if config.dataset in ['RaFD', 'Both']: rafd_loader = get_loader(config.rafd_image_dir, None, None, config.rafd_crop_size, config.image_size, config.batch_size, 'RaFD', config.mode, config.num_workers) # Solver for training and testing StarGAN. solver = Solver(celeba_loader, rafd_loader, config) if config.mode == 'train': if config.dataset in ['CelebA', 'RaFD']: solver.train() elif config.dataset in ['Both']: solver.train_multi() elif config.mode == 'test': if config.dataset in ['CelebA', 'RaFD']: solver.test() elif config.dataset in ['Both']: solver.test_multi() if __name__ == '__main__': config = Alt_config() celeba_loader = get_loader(config.celeba_image_dir, config.attr_path, config.selected_attrs, config.celeba_crop_size, config.image_size, config.batch_size, 'CelebA', config.mode, config.num_workers) solver = Solver(celeba_loader, None, config) solver.test_single() main(config)
3,304
-2
95
1ef202fcfbe1e539d7edcd862acda06dba044d6d
1,600
py
Python
openchem/layers/gcn.py
jmhayesesq/Open-Chem
e612d5cd471079c64e61ceda946c3dc7cf095bd8
[ "MIT" ]
466
2018-08-10T04:58:42.000Z
2022-03-29T07:04:39.000Z
openchem/layers/gcn.py
jmhayesesq/Open-Chem
e612d5cd471079c64e61ceda946c3dc7cf095bd8
[ "MIT" ]
15
2019-08-06T08:23:11.000Z
2022-01-23T22:39:52.000Z
openchem/layers/gcn.py
jmhayesesq/Open-Chem
e612d5cd471079c64e61ceda946c3dc7cf095bd8
[ "MIT" ]
91
2018-08-19T00:37:50.000Z
2022-02-27T11:15:31.000Z
# modified from https://github.com/tkipf/pygcn/blob/master/pygcn/layers.py import math import torch import torch.nn as nn from torch.nn.parameter import Parameter class GraphConvolution(nn.Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """
33.333333
77
0.625625
# modified from https://github.com/tkipf/pygcn/blob/master/pygcn/layers.py import math import torch import torch.nn as nn from torch.nn.parameter import Parameter class GraphConvolution(nn.Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """ def __init__(self, in_features, out_features, bias=True): super(GraphConvolution, self).__init__() self.in_features = in_features self.out_features = out_features self.weight = Parameter(torch.FloatTensor(in_features, out_features)) if bias: self.bias = Parameter(torch.FloatTensor(out_features)) else: self.register_parameter('bias', None) self.reset_parameters() self.bn = nn.BatchNorm1d(out_features) def reset_parameters(self): stdv = 1. / math.sqrt(self.weight.size(1)) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) def forward(self, x, adj): support = torch.bmm(adj, x) result = torch.mm(support.view(-1, self.in_features), self.weight) output = result.view(-1, adj.data.shape[1], self.out_features) if self.bias is not None: output = output + self.bias output = output.transpose(1, 2).contiguous() output = self.bn(output) output = output.transpose(1, 2) return output def __repr__(self): return self.__class__.__name__ + ' (' \ + str(self.in_features) + ' -> ' \ + str(self.out_features) + ')'
1,208
0
107
f4ff0fcd3bec384fcf5b2cfb85a770e9589fe089
80
py
Python
py/authdata-example.py
flopp/safari
d7c8fca838cecbba738a547a8852bf40abed0409
[ "MIT" ]
1
2018-12-09T19:37:05.000Z
2018-12-09T19:37:05.000Z
py/authdata-example.py
flopp/safari
d7c8fca838cecbba738a547a8852bf40abed0409
[ "MIT" ]
9
2015-02-14T20:41:08.000Z
2015-07-25T10:32:35.000Z
py/authdata-example.py
flopp/safari
d7c8fca838cecbba738a547a8852bf40abed0409
[ "MIT" ]
null
null
null
OC_OKAPI_KEY = "xxx" OC_USERNAME = "xxx" OC_PASSWORD = "xxx" OC_QUERYID = "xxx"
16
20
0.7
OC_OKAPI_KEY = "xxx" OC_USERNAME = "xxx" OC_PASSWORD = "xxx" OC_QUERYID = "xxx"
0
0
0
2bcd8e707519ec5796351e2ec38632750a8b4827
2,164
py
Python
tests/system/data_sources/test_teradata.py
ajw0100/professional-services-data-validator
b1dc82adf92adf19702f5ef41590c62c7c128c74
[ "Apache-2.0" ]
167
2021-05-27T19:43:43.000Z
2022-03-16T02:42:30.000Z
tests/system/data_sources/test_teradata.py
ajw0100/professional-services-data-validator
b1dc82adf92adf19702f5ef41590c62c7c128c74
[ "Apache-2.0" ]
110
2021-05-27T14:49:09.000Z
2022-03-31T11:10:41.000Z
tests/system/data_sources/test_teradata.py
ajw0100/professional-services-data-validator
b1dc82adf92adf19702f5ef41590c62c7c128c74
[ "Apache-2.0" ]
32
2021-06-23T22:00:59.000Z
2022-03-30T03:32:20.000Z
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from data_validation import data_validation, consts TERADATA_PASSWORD = os.getenv("TERADATA_PASSWORD") TERADATA_HOST = os.getenv("TERADATA_HOST") PROJECT_ID = os.getenv("PROJECT_ID") conn = { "source_type": "Teradata", "host": TERADATA_HOST, "user_name": "udf", "password": TERADATA_PASSWORD, "port": 1025, } TERADATA_CONFIG = { # Specific Connection Config consts.CONFIG_SOURCE_CONN: conn, consts.CONFIG_TARGET_CONN: conn, # Validation Type consts.CONFIG_TYPE: "Column", # Configuration Required Depending on Validator Type consts.CONFIG_SCHEMA_NAME: "Sys_Calendar", consts.CONFIG_TABLE_NAME: "CALENDAR", consts.CONFIG_AGGREGATES: [ { consts.CONFIG_TYPE: "count", consts.CONFIG_SOURCE_COLUMN: "year_of_calendar", consts.CONFIG_TARGET_COLUMN: "year_of_calendar", consts.CONFIG_FIELD_ALIAS: "count", }, ], consts.CONFIG_FORMAT: "table", consts.CONFIG_FILTERS: [ { consts.CONFIG_TYPE: consts.FILTER_TYPE_EQUALS, consts.CONFIG_FILTER_SOURCE_COLUMN: "year_of_calendar", consts.CONFIG_FILTER_SOURCE_VALUE: 2010, consts.CONFIG_FILTER_TARGET_COLUMN: "year_of_calendar", consts.CONFIG_FILTER_TARGET_VALUE: 2010, }, ], }
32.298507
77
0.700555
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from data_validation import data_validation, consts TERADATA_PASSWORD = os.getenv("TERADATA_PASSWORD") TERADATA_HOST = os.getenv("TERADATA_HOST") PROJECT_ID = os.getenv("PROJECT_ID") conn = { "source_type": "Teradata", "host": TERADATA_HOST, "user_name": "udf", "password": TERADATA_PASSWORD, "port": 1025, } TERADATA_CONFIG = { # Specific Connection Config consts.CONFIG_SOURCE_CONN: conn, consts.CONFIG_TARGET_CONN: conn, # Validation Type consts.CONFIG_TYPE: "Column", # Configuration Required Depending on Validator Type consts.CONFIG_SCHEMA_NAME: "Sys_Calendar", consts.CONFIG_TABLE_NAME: "CALENDAR", consts.CONFIG_AGGREGATES: [ { consts.CONFIG_TYPE: "count", consts.CONFIG_SOURCE_COLUMN: "year_of_calendar", consts.CONFIG_TARGET_COLUMN: "year_of_calendar", consts.CONFIG_FIELD_ALIAS: "count", }, ], consts.CONFIG_FORMAT: "table", consts.CONFIG_FILTERS: [ { consts.CONFIG_TYPE: consts.FILTER_TYPE_EQUALS, consts.CONFIG_FILTER_SOURCE_COLUMN: "year_of_calendar", consts.CONFIG_FILTER_SOURCE_VALUE: 2010, consts.CONFIG_FILTER_TARGET_COLUMN: "year_of_calendar", consts.CONFIG_FILTER_TARGET_VALUE: 2010, }, ], } def test_count_validator(): validator = data_validation.DataValidation(TERADATA_CONFIG, verbose=True) df = validator.execute() assert int(df["source_agg_value"][0]) > 0 assert df["source_agg_value"][0] == df["target_agg_value"][0]
225
0
23
b770869444f6fb03f601c5c9ff6f8b90df966db3
2,065
py
Python
tf/mnist_test.py
skolchin/gbr
3ec4b72e0352d36f38f5cd5815b69fac0b7a3e9c
[ "MIT" ]
29
2019-10-10T22:51:55.000Z
2022-03-09T05:57:59.000Z
tf/mnist_test.py
skolchin/gbr
3ec4b72e0352d36f38f5cd5815b69fac0b7a3e9c
[ "MIT" ]
1
2020-12-07T06:51:50.000Z
2020-12-08T16:59:20.000Z
tf/mnist_test.py
skolchin/gbr
3ec4b72e0352d36f38f5cd5815b69fac0b7a3e9c
[ "MIT" ]
11
2020-12-09T01:44:38.000Z
2022-03-20T17:40:02.000Z
#------------------------------------------------------------------------------- # Name: MNIST TensorFlow example # Purpose: Experiments with TensorFlow # # Author: kol # # Created: 09.01.2020 # Copyright: (c) kol 2020 #------------------------------------------------------------------------------- import tensorflow as tf import matplotlib.pyplot as plt from pathlib import Path import numpy as np from random import randrange mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 if Path('./mnist.m').exists(): print("Loading pre-trained model") model = tf.keras.models.load_model('mnist.m') else: print("Training the model") model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation='softmax') ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=5) model.save('./mnist.m') model.evaluate(x_test, y_test, verbose=2) predictions = model.predict(x_test) max_count = 10 num_rows = 5 fig = plt.figure(figsize=(8,4)) for i in range(max_count): n = randrange(0, predictions.shape[0]-1) fig.add_subplot(num_rows, max_count / num_rows, i+1) plot_image(predictions[n], y_test[n], x_test[n]) if i >= max_count-1: break plt.tight_layout() plt.show()
27.533333
80
0.582567
#------------------------------------------------------------------------------- # Name: MNIST TensorFlow example # Purpose: Experiments with TensorFlow # # Author: kol # # Created: 09.01.2020 # Copyright: (c) kol 2020 #------------------------------------------------------------------------------- import tensorflow as tf import matplotlib.pyplot as plt from pathlib import Path import numpy as np from random import randrange def plot_image(predictions, true_label, img): plt.grid(False) plt.xticks([]) plt.yticks([]) plt.imshow(img, cmap=plt.cm.binary) predicted_label = np.argmax(predictions) if predicted_label == true_label: color = 'blue' else: color = 'red' plt.xlabel("{} {:2.0f}% ({})".format(predicted_label, 100*np.max(predictions), true_label), color = color) mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 if Path('./mnist.m').exists(): print("Loading pre-trained model") model = tf.keras.models.load_model('mnist.m') else: print("Training the model") model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation='softmax') ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=5) model.save('./mnist.m') model.evaluate(x_test, y_test, verbose=2) predictions = model.predict(x_test) max_count = 10 num_rows = 5 fig = plt.figure(figsize=(8,4)) for i in range(max_count): n = randrange(0, predictions.shape[0]-1) fig.add_subplot(num_rows, max_count / num_rows, i+1) plot_image(predictions[n], y_test[n], x_test[n]) if i >= max_count-1: break plt.tight_layout() plt.show()
446
0
23
e40e9d7f20ea238e67e6d5c2573d672e7aa05b32
3,321
py
Python
ivy_mech_tests/test_orientation/orientation_data.py
unifyai/mech
d678c8732ee5aba4a92fb37b96519cd06553c0c6
[ "Apache-2.0" ]
1
2021-10-11T17:58:41.000Z
2021-10-11T17:58:41.000Z
ivy_mech_tests/test_orientation/orientation_data.py
ivy-dl/mech
f3ce5f7b38fe2c453a066f58019ff84dcee517a6
[ "Apache-2.0" ]
null
null
null
ivy_mech_tests/test_orientation/orientation_data.py
ivy-dl/mech
f3ce5f7b38fe2c453a066f58019ff84dcee517a6
[ "Apache-2.0" ]
null
null
null
""" test data for orientation functions """ # global import numpy as np
40.5
109
0.563686
""" test data for orientation functions """ # global import numpy as np class OrientationTestData: def __init__(self): # axis axis = np.array([[1., 2., 3.]]) self.axis = axis / np.linalg.norm(axis) self.batched_axis = np.expand_dims(self.axis, 0) # angle self.angle = np.array([[np.pi / 3]]) self.batched_angle = np.expand_dims(self.angle, 0) # rotation vector self.rotation_vector = self.axis * self.angle self.batched_rotation_vector = np.expand_dims(self.rotation_vector, 0) # axis angle self.axis_angle = np.concatenate((self.axis, self.angle), -1) self.batched_axis_angle = np.expand_dims(self.axis_angle, 0) # polar axis angle theta = np.arccos(self.axis[:, 2:3]) phi = np.arctan2(self.axis[:, 1:2], self.axis[:, 0:1]) self.polar_axis_angle = np.concatenate((theta, phi, self.angle), -1) self.batched_polar_axis_angle = np.expand_dims(self.polar_axis_angle, 0) # quaternion n = np.cos(self.angle / 2) e1 = np.sin(self.angle / 2) * self.axis[:, 0:1] e2 = np.sin(self.angle / 2) * self.axis[:, 1:2] e3 = np.sin(self.angle / 2) * self.axis[:, 2:3] self.quaternion = np.concatenate((e1, e2, e3, n), -1) self.batched_quaternion = np.expand_dims(self.quaternion, 0) # rotation matrix a = np.expand_dims(self.quaternion[:, 3:4], -1) b = np.expand_dims(self.quaternion[:, 0:1], -1) c = np.expand_dims(self.quaternion[:, 1:2], -1) d = np.expand_dims(self.quaternion[:, 2:3], -1) top_left = a ** 2 + b ** 2 - c ** 2 - d ** 2 top_middle = 2 * b * c - 2 * a * d top_right = 2 * b * d + 2 * a * c middle_left = 2 * b * c + 2 * a * d middle_middle = a ** 2 - b ** 2 + c ** 2 - d ** 2 middle_right = 2 * c * d - 2 * a * b bottom_left = 2 * b * d - 2 * a * c bottom_middle = 2 * c * d + 2 * a * b bottom_right = a ** 2 - b ** 2 - c ** 2 + d ** 2 top_row = np.concatenate((top_left, top_middle, top_right), -1) middle_row = np.concatenate((middle_left, middle_middle, middle_right), -1) bottom_row = np.concatenate((bottom_left, bottom_middle, bottom_right), -1) self.rotation_matrix = np.concatenate((top_row, middle_row, bottom_row), -2) self.batched_rotation_matrix = np.expand_dims(self.rotation_matrix, 0) # euler x_angle = np.arctan2(self.rotation_matrix[:, 1:2, 2:3], self.rotation_matrix[:, 2:3, 2:3]) c2 = np.sqrt(self.rotation_matrix[:, 0:1, 0:1] ** 2 + self.rotation_matrix[:, 0:1, 1:2] ** 2) y_angle = np.arctan2(-self.rotation_matrix[:, 0:1, 2:3], c2) s1 = np.sin(x_angle) c1 = np.cos(x_angle) z_angle = np.arctan2(s1 * self.rotation_matrix[:, 2:3, 0:1] - c1 * self.rotation_matrix[:, 1:2, 0:1], c1 * self.rotation_matrix[:, 1:2, 1:2] - s1 * self.rotation_matrix[:, 2:3, 1:2]) x_angle = -x_angle[:, :, 0] y_angle = -y_angle[:, :, 0] z_angle = -z_angle[:, :, 0] self.euler_angles = np.concatenate((z_angle, y_angle, x_angle), 1) self.batched_euler_angles = np.expand_dims(self.euler_angles, 0)
3,192
5
50
4ac0c80fe1d17851b9d6ffc3e6a8d25148170948
137
py
Python
titan/api_pkg/formtype/resources.py
mnieber/gen
65f8aa4fb671c4f90d5cbcb1a0e10290647a31d9
[ "MIT" ]
null
null
null
titan/api_pkg/formtype/resources.py
mnieber/gen
65f8aa4fb671c4f90d5cbcb1a0e10290647a31d9
[ "MIT" ]
null
null
null
titan/api_pkg/formtype/resources.py
mnieber/gen
65f8aa4fb671c4f90d5cbcb1a0e10290647a31d9
[ "MIT" ]
null
null
null
from dataclasses import dataclass from moonleap import Resource @dataclass
13.7
33
0.766423
from dataclasses import dataclass from moonleap import Resource @dataclass class FormType(Resource): name: str type_name: str
0
37
22
3374968f5ffa11f472f968bd304b1ae949911373
1,805
py
Python
drf_integrations/utils.py
yoyowallet/drf-integrations-framework
7cf5cd28e5aff80c9b1a34b461294f4bd3108fa9
[ "MIT" ]
1
2020-07-09T11:39:19.000Z
2020-07-09T11:39:19.000Z
drf_integrations/utils.py
yoyowallet/drf-integrations-framework
7cf5cd28e5aff80c9b1a34b461294f4bd3108fa9
[ "MIT" ]
5
2020-07-08T11:00:26.000Z
2021-01-13T09:33:09.000Z
drf_integrations/utils.py
yoyowallet/drf-integrations-framework
7cf5cd28e5aff80c9b1a34b461294f4bd3108fa9
[ "MIT" ]
2
2021-08-12T12:23:54.000Z
2021-09-20T06:45:38.000Z
from typing import Any, Iterable, Iterator, List, Optional, Union AnyString = Union[str, Iterable[Any]] def split_string(string: Optional[AnyString], separator: str = ",") -> List[str]: """ Breaks given *string* by the specified *separator*. If *string* is a non-``str`` iterable, then return a list if it is not already. >>> split_string('A, B, C') # Str ['A', 'B', 'C'] >>> split_string(['A', 'B', 'C']) # List, a non-str iterable ['A', 'B', 'C'] >>> split_string(('A', 'B', 'C')) # Tuple, a non-str iterable ['A', 'B', 'C'] """ return list(iter_split_string(string=string, separator=separator)) def iter_split_string(string: Optional[AnyString], separator: str = ",") -> Iterator[str]: """Generator version of :func:`split_string`.""" if string is None: return elif isinstance(string, str): parts = str(string).split(separator) for part in parts: part = part.strip() if part: yield part elif isinstance(string, Iterable): # NOTE: Text is also an Iterable, so this should always be after the Text check. for part in string: part = str(part).strip() if part: yield part else: raise TypeError("Cannot split string of {!r}".format(type(string))) def is_instance_of_all(obj, classes: Iterable[type]) -> bool: """ Returns ``True`` if the ``obj`` argument is an instance of all of the classes in the ``classes`` argument. :raises TypeError: If any element of classes is not a type. """ if any(not isinstance(classinfo, type) for classinfo in classes): raise TypeError("classes must contain types") return all(isinstance(obj, classinfo) for classinfo in classes)
31.12069
90
0.60831
from typing import Any, Iterable, Iterator, List, Optional, Union AnyString = Union[str, Iterable[Any]] def split_string(string: Optional[AnyString], separator: str = ",") -> List[str]: """ Breaks given *string* by the specified *separator*. If *string* is a non-``str`` iterable, then return a list if it is not already. >>> split_string('A, B, C') # Str ['A', 'B', 'C'] >>> split_string(['A', 'B', 'C']) # List, a non-str iterable ['A', 'B', 'C'] >>> split_string(('A', 'B', 'C')) # Tuple, a non-str iterable ['A', 'B', 'C'] """ return list(iter_split_string(string=string, separator=separator)) def iter_split_string(string: Optional[AnyString], separator: str = ",") -> Iterator[str]: """Generator version of :func:`split_string`.""" if string is None: return elif isinstance(string, str): parts = str(string).split(separator) for part in parts: part = part.strip() if part: yield part elif isinstance(string, Iterable): # NOTE: Text is also an Iterable, so this should always be after the Text check. for part in string: part = str(part).strip() if part: yield part else: raise TypeError("Cannot split string of {!r}".format(type(string))) def is_instance_of_all(obj, classes: Iterable[type]) -> bool: """ Returns ``True`` if the ``obj`` argument is an instance of all of the classes in the ``classes`` argument. :raises TypeError: If any element of classes is not a type. """ if any(not isinstance(classinfo, type) for classinfo in classes): raise TypeError("classes must contain types") return all(isinstance(obj, classinfo) for classinfo in classes)
0
0
0
861242ea84f9b5b122ec9897c57092bfc93096a8
22,227
py
Python
pymtl/tools/translation/verilator_cffi.py
belang/pymtl
4a96738724b007cbd684753aed0ac3de5b5dbebb
[ "BSD-3-Clause" ]
206
2015-01-05T21:53:56.000Z
2022-03-14T08:04:49.000Z
pymtl/tools/translation/verilator_cffi.py
belang/pymtl
4a96738724b007cbd684753aed0ac3de5b5dbebb
[ "BSD-3-Clause" ]
84
2015-01-25T19:57:33.000Z
2021-05-11T15:46:56.000Z
pymtl/tools/translation/verilator_cffi.py
belang/pymtl
4a96738724b007cbd684753aed0ac3de5b5dbebb
[ "BSD-3-Clause" ]
99
2015-02-17T17:43:44.000Z
2022-02-14T17:58:18.000Z
#======================================================================= # verilator_cffi.py #======================================================================= from __future__ import print_function import os import shutil import verilog_structural from ...tools.simulation.vcd import get_vcd_timescale from subprocess import check_output, STDOUT, CalledProcessError from ...model.signals import InPort, OutPort from ...model.PortBundle import PortBundle from exceptions import VerilatorCompileError #----------------------------------------------------------------------- # verilog_to_pymtl #----------------------------------------------------------------------- # Create a PyMTL compatible interface for Verilog HDL. #----------------------------------------------------------------------- # verilate_model #----------------------------------------------------------------------- # Convert Verilog HDL into a C++ simulator using Verilator. # http://www.veripool.org/wiki/verilator #----------------------------------------------------------------------- # create_c_wrapper #----------------------------------------------------------------------- # Generate a C wrapper file for Verilated C++. #----------------------------------------------------------------------- # create_shared_lib #----------------------------------------------------------------------- # Compile the cpp wrapper into a shared library. # # Verilator suggests: # # For best performance, run Verilator with the "-O3 --x-assign=fast # --noassert" flags. The -O3 flag will require longer compile times, and # --x-assign=fast may increase the risk of reset bugs in trade for # performance; see the above documentation for these flags. # # Minor Verilog code changes can also give big wins. You should not have # any UNOPTFLAT warnings from Verilator. Fixing these warnings can # result in huge improvements; one user fixed their one UNOPTFLAT # warning by making a simple change to a clock latch used to gate clocks # and gained a 60% performance improvement. # # Beyond that, the performance of a Verilated model depends mostly on # your C++ compiler and size of your CPU's caches. # # By default, the lib/verilated.mk file has optimization # turned off. This is for the benefit of new users, as it improves # compile times at the cost of runtimes. To add optimization as the # default, set one of three variables, OPT, OPT_FAST, or OPT_SLOW # lib/verilated.mk. Or, use the -CFLAGS and/or -LDFLAGS option on the # verilator command line to pass the flags directly to the compiler or # linker. Or, just for one run, pass them on the command line to make: # # make OPT_FAST="-O2" -f Vour.mk Vour__ALL.a # OPT_FAST specifies optimizations for those programs that are part of # the fast path, mostly code that is executed every cycle. OPT_SLOW # specifies optimizations for slow-path files (plus tracing), which # execute only rarely, yet take a long time to compile with optimization # on. OPT specifies overall optimization and affects all compiles, # including those OPT_FAST and OPT_SLOW affect. For best results, use # OPT="-O2", and link with "-static". Nearly the same results can be had # with much better compile times with OPT_FAST="-O1 -fstrict-aliasing". # Higher optimization such as "-O3" may help, but gcc compile times may # be excessive under O3 on even medium sized designs. Alternatively, # some larger designs report better performance using "-Os". # # http://www.veripool.org/projects/verilator/wiki/Manual-verilator # I have added a new feature which compiles all of the standard Verilator # code into a static library and then simply links this in. This reduces # compile times. #----------------------------------------------------------------------- # create_verilator_py_wrapper #----------------------------------------------------------------------- #----------------------------------------------------------------------- # get_indices #----------------------------------------------------------------------- # Utility function for determining assignment of wide ports #----------------------------------------------------------------------- # set_input_stmt #----------------------------------------------------------------------- #----------------------------------------------------------------------- # set_output_stmt #----------------------------------------------------------------------- # TODO: no way to distinguish between combinational and sequential # outputs, so we set outputs both ways... # This seems broken, but I can't think of a better way. #----------------------------------------------------------------------- # verilator_mangle #----------------------------------------------------------------------- #----------------------------------------------------------------------- # pymtl_wrapper_from_ports #-----------------------------------------------------------------------
33.728376
88
0.587394
#======================================================================= # verilator_cffi.py #======================================================================= from __future__ import print_function import os import shutil import verilog_structural from ...tools.simulation.vcd import get_vcd_timescale from subprocess import check_output, STDOUT, CalledProcessError from ...model.signals import InPort, OutPort from ...model.PortBundle import PortBundle from exceptions import VerilatorCompileError #----------------------------------------------------------------------- # verilog_to_pymtl #----------------------------------------------------------------------- # Create a PyMTL compatible interface for Verilog HDL. def verilog_to_pymtl( model, verilog_file, c_wrapper_file, lib_file, py_wrapper_file, vcd_en, lint, verilator_xinit ): model_name = model.class_name try: vlinetrace = model.vlinetrace except AttributeError: vlinetrace = False # Verilate the model # TODO: clean this up verilate_model( verilog_file, model_name, vcd_en, lint ) # Add names to ports of module for port in model.get_ports(): port.verilog_name = verilog_structural.mangle_name( port.name ) port.verilator_name = verilator_mangle( port.verilog_name ) # Create C++ Wrapper cdefs = create_c_wrapper( model, c_wrapper_file, vcd_en, vlinetrace, verilator_xinit ) # Create Shared C Library create_shared_lib( model_name, c_wrapper_file, lib_file, vcd_en, vlinetrace ) # Create PyMTL wrapper for CFFI interface to Verilated model create_verilator_py_wrapper( model, py_wrapper_file, lib_file, cdefs, vlinetrace ) #----------------------------------------------------------------------- # verilate_model #----------------------------------------------------------------------- # Convert Verilog HDL into a C++ simulator using Verilator. # http://www.veripool.org/wiki/verilator def verilate_model( filename, model_name, vcd_en, lint ): # verilator commandline template compile_cmd = ( 'verilator -cc {source} -top-module {model_name} ' '--Mdir {obj_dir} -O3 {flags}' ) # verilator commandline options source = filename obj_dir = 'obj_dir_' + model_name flags = ' '.join([ '-Wno-lint' if not lint else '', '-Wno-UNOPTFLAT', '--unroll-count 1000000', '--unroll-stmts 1000000', '--assert', '--trace' if vcd_en else '', ]) # remove the obj_dir because issues with staleness if os.path.exists( obj_dir ): shutil.rmtree( obj_dir ) # create the verilator compile command compile_cmd = compile_cmd.format( **vars() ) # try compilation try: # print( compile_cmd ) result = check_output( compile_cmd, stderr=STDOUT, shell=True ) # print( result ) # handle verilator failure except CalledProcessError as e: # error_msg = """ # Module did not Verilate! # # Command: # {command} # # Error: # {error} # """ # We remove the final "Error: Command Failed" line to make the output # more succinct. split_output = e.output.splitlines() error = '\n'.join(split_output[:-1]) if not split_output[-1].startswith("%Error: Command Failed"): error += "\n"+split_output[-1] error_msg = """ See "Errors and Warnings" section in the manual located here http://www.veripool.org/projects/verilator/wiki/Manual-verilator for more details on various Verilator warnings and error messages. {error}""" raise VerilatorCompileError( error_msg.format( command = e.cmd, error = error )) #----------------------------------------------------------------------- # create_c_wrapper #----------------------------------------------------------------------- # Generate a C wrapper file for Verilated C++. def create_c_wrapper( model, c_wrapper_file, vcd_en, vlinetrace, verilator_xinit ): template_dir = os.path.dirname( os.path.abspath( __file__ ) ) template_filename = template_dir + os.path.sep + 'verilator_wrapper.templ.c' ports = model.get_ports() # Utility function for creating port declarations def port_to_decl( port ): code = '{data_type} * {verilator_name};' verilator_name = port.verilator_name bitwidth = port.nbits if bitwidth <= 8: data_type = 'unsigned char' elif bitwidth <= 16: data_type = 'unsigned short' elif bitwidth <= 32: data_type = 'unsigned int' elif bitwidth <= 64: data_type = 'unsigned long' else: data_type = 'unsigned int' return code.format( **locals() ) # Utility function for creating port initializations def port_to_init( port ): code = 'm->{verilator_name} = {dereference}model->{verilator_name};' verilator_name = port.verilator_name bitwidth = port.nbits dereference = '&' if bitwidth <= 64 else '' return code.format( **locals() ) # Create port declaration, initialization, and extern statements indent_zero = '\n' indent_two = '\n ' indent_four = '\n ' indent_six = '\n ' port_externs = indent_two .join( [ port_to_decl( x ) for x in ports ] ) port_decls = indent_zero.join( [ port_to_decl( x ) for x in ports ] ) port_inits = indent_two .join( [ port_to_init( x ) for x in ports ] ) # Convert verilator_xinit to number if ( verilator_xinit == "zeros" ) : verilator_xinit_num = 0 elif ( verilator_xinit == "ones" ) : verilator_xinit_num = 1 elif ( verilator_xinit == "rand" ) : verilator_xinit_num = 2 else : print( "Not valid choice" ) # Generate the source code using the template with open( template_filename , 'r' ) as template, \ open( c_wrapper_file, 'w' ) as output: c_src = template.read() c_src = c_src.format( model_name = model.class_name, port_externs = port_externs, port_decls = port_decls, port_inits = port_inits, # What was this for? -cbatten # vcd_prefix = vcd_file[:-4], vcd_timescale = get_vcd_timescale( model ), dump_vcd = '1' if vcd_en else '0', vlinetrace = '1' if vlinetrace else '0', verilator_xinit_num = verilator_xinit_num, ) output.write( c_src ) return port_decls.replace( indent_zero, indent_six ) #----------------------------------------------------------------------- # create_shared_lib #----------------------------------------------------------------------- # Compile the cpp wrapper into a shared library. # # Verilator suggests: # # For best performance, run Verilator with the "-O3 --x-assign=fast # --noassert" flags. The -O3 flag will require longer compile times, and # --x-assign=fast may increase the risk of reset bugs in trade for # performance; see the above documentation for these flags. # # Minor Verilog code changes can also give big wins. You should not have # any UNOPTFLAT warnings from Verilator. Fixing these warnings can # result in huge improvements; one user fixed their one UNOPTFLAT # warning by making a simple change to a clock latch used to gate clocks # and gained a 60% performance improvement. # # Beyond that, the performance of a Verilated model depends mostly on # your C++ compiler and size of your CPU's caches. # # By default, the lib/verilated.mk file has optimization # turned off. This is for the benefit of new users, as it improves # compile times at the cost of runtimes. To add optimization as the # default, set one of three variables, OPT, OPT_FAST, or OPT_SLOW # lib/verilated.mk. Or, use the -CFLAGS and/or -LDFLAGS option on the # verilator command line to pass the flags directly to the compiler or # linker. Or, just for one run, pass them on the command line to make: # # make OPT_FAST="-O2" -f Vour.mk Vour__ALL.a # OPT_FAST specifies optimizations for those programs that are part of # the fast path, mostly code that is executed every cycle. OPT_SLOW # specifies optimizations for slow-path files (plus tracing), which # execute only rarely, yet take a long time to compile with optimization # on. OPT specifies overall optimization and affects all compiles, # including those OPT_FAST and OPT_SLOW affect. For best results, use # OPT="-O2", and link with "-static". Nearly the same results can be had # with much better compile times with OPT_FAST="-O1 -fstrict-aliasing". # Higher optimization such as "-O3" may help, but gcc compile times may # be excessive under O3 on even medium sized designs. Alternatively, # some larger designs report better performance using "-Os". # # http://www.veripool.org/projects/verilator/wiki/Manual-verilator # I have added a new feature which compiles all of the standard Verilator # code into a static library and then simply links this in. This reduces # compile times. def try_cmd( name, cmd ): # print( "cmd: ", cmd ) try: result = check_output( cmd.split() , stderr=STDOUT ) # handle gcc/llvm failure except CalledProcessError as e: error_msg = """ {name} error! Command: {command} Error: {error} """ raise Exception( error_msg.format( name = name, command = ' '.join( e.cmd ), error = e.output )) def compile( flags, include_dirs, output_file, input_files ): compile_cmd = 'g++ {flags} {idirs} -o {ofile} {ifiles}' compile_cmd = compile_cmd.format( flags = flags, idirs = ' '.join( [ '-I'+s for s in include_dirs ] ), ofile = output_file, ifiles = ' '.join( input_files ), ) try_cmd( "Compilation", compile_cmd ) def make_lib( output_file, input_files ): # First run ar command ar_cmd = 'ar rcv {ofile} {ifiles}' ar_cmd = ar_cmd.format( ofile = output_file, ifiles = ' '.join( input_files ), ) try_cmd( "Make library", ar_cmd ) # Then run ranlib command ranlib_cmd = 'ranlib {lib}' ranlib_cmd = ranlib_cmd.format( lib = output_file, ) try_cmd( "Make library", ranlib_cmd ) def create_shared_lib( model_name, c_wrapper_file, lib_file, vcd_en, vlinetrace ): # We need to find out where the verilator include directories are # globally installed. We first check the PYMTL_VERILATOR_INCLUDE_DIR # environment variable, and if that does not exist then we fall back on # using pkg-config. verilator_include_dir = os.environ.get('PYMTL_VERILATOR_INCLUDE_DIR') if verilator_include_dir is None: cmd = ['pkg-config', '--variable=includedir', 'verilator'] try: verilator_include_dir = check_output( cmd, stderr=STDOUT ).strip() except OSError as e: error_msg = """ Error trying to find verilator include directories. The PYMTL_VERILATOR_INCLUDE_DIR environment variable was not set, so we attempted to use pkg-config to find where verilator was installed, but it looks like we had trouble finding or executing pkg-config itself. Try running the following command on your own to debug the issue. Command: {command} Error: [Errno {errno}] {strerror} """ raise VerilatorCompileError( error_msg.format( command = ' '.join( cmd ), errno = e.errno, strerror = e.strerror, )) except CalledProcessError as e: error_msg = """ Error trying to find verilator include directories. The PYMTL_VERILATOR_INCLUDE_DIR environment variable was not set, so we attempted to use pkg-config to find where verilator was installed, but it looks like pkg-config had trouble finding the verilator.pc file installed by verilator. Is a recent version of verilator installed? Older versions of verilator did not have pkg-config support. Try running the following command on your own to debug the issue. Command: {command} Error: {error} """ raise VerilatorCompileError( error_msg.format( command = ' '.join( e.cmd ), error = e.output, )) include_dirs = [ verilator_include_dir, verilator_include_dir+"/vltstd", ] # Compile standard Verilator code if libverilator.a does not exist. # Originally, I was also including verilated_dpi.cpp in this library, # but for some reason that screws up line tracing. Somehow there is # some kind of global state or something that is shared across the # shared libraries or something. I was able to fix it by recompiling # verilated_dpi if linetracing is enabled. Actually, the line tracing # doesn't work -- if you use this line tracing approach, so we are back # to always recomping everyting every time for now. # if not os.path.exists( "libverilator.a" ): # # compile( # flags = "-O3 -c", # include_dirs = include_dirs, # output_file = "verilator.o", # input_files = [ verilator_include_dir+"/verilated.cpp" ] # ) # # compile( # flags = "-O3 -c", # include_dirs = include_dirs, # output_file = "verilator_vcd_c.o", # input_files = [ verilator_include_dir+"/verilated_vcd_c.cpp" ] # ) # # # compile( # # flags = "-O3 -c", # # include_dirs = include_dirs, # # output_file = "verilator_dpi.o", # # input_files = [ verilator_include_dir+"/verilated_dpi.cpp" ] # # ) # # make_lib( # output_file = "libverilator.a", # # input_files = [ "verilator.o", "verilator_vcd_c.o", "verilator_dpi.o" ] # input_files = [ "verilator.o", "verilator_vcd_c.o" ] # ) obj_dir_prefix = "obj_dir_{m}/V{m}".format( m=model_name ) # We need to find a list of all the generated classes. We look in the # Verilator makefile for that. cpp_sources_list = [] with open( obj_dir_prefix+"_classes.mk" ) as mkfile: found = False for line in mkfile: if line.startswith("VM_CLASSES_FAST += "): found = True elif found: if line.strip() == "": found = False else: filename = line.strip()[:-2] cpp_file = "obj_dir_{m}/{f}.cpp".format( m=model_name, f=filename ) cpp_sources_list.append( cpp_file ) # Compile this module cpp_sources_list += [ obj_dir_prefix+"__Syms.cpp", verilator_include_dir+"/verilated.cpp", verilator_include_dir+"/verilated_dpi.cpp", c_wrapper_file, ] if vcd_en: cpp_sources_list += [ verilator_include_dir+"/verilated_vcd_c.cpp", obj_dir_prefix+"__Trace.cpp", obj_dir_prefix+"__Trace__Slow.cpp", ] compile( # flags = "-O1 -fstrict-aliasing -fPIC -shared -L. -lverilator", flags = "-O0 -fPIC -shared", include_dirs = include_dirs, output_file = lib_file, input_files = cpp_sources_list, ) #----------------------------------------------------------------------- # create_verilator_py_wrapper #----------------------------------------------------------------------- def create_verilator_py_wrapper( model, wrapper_filename, lib_file, cdefs, vlinetrace ): template_dir = os.path.dirname( os.path.abspath( __file__ ) ) template_filename = template_dir + os.path.sep + 'verilator_wrapper.templ.py' port_defs = [] set_inputs = [] set_comb = [] set_next = [] from cpp_helpers import recurse_port_hierarchy for x in model.get_ports( preserve_hierarchy=True ): recurse_port_hierarchy( x, port_defs ) for port in model.get_inports(): if port.name == 'clk': continue input_ = set_input_stmt( port ) set_inputs.extend( input_ ) for port in model.get_outports(): comb, next_ = set_output_stmt( port ) set_comb.extend( comb ) set_next.extend( next_ ) # pretty printing indent_four = '\n ' indent_six = '\n ' # create source with open( template_filename , 'r' ) as template, \ open( wrapper_filename, 'w' ) as output: py_src = template.read() py_src = py_src.format( model_name = model.class_name, port_decls = cdefs, lib_file = lib_file, port_defs = indent_four.join( port_defs ), set_inputs = indent_six .join( set_inputs ), set_comb = indent_six .join( set_comb ), set_next = indent_six .join( set_next ), vlinetrace = '1' if vlinetrace else '0', ) #py_src += 'XTraceEverOn()' # TODO: add for tracing? output.write( py_src ) #print( py_src ) #----------------------------------------------------------------------- # get_indices #----------------------------------------------------------------------- # Utility function for determining assignment of wide ports def get_indices( port ): num_assigns = 1 if port.nbits <= 64 else (port.nbits-1)/32 + 1 if num_assigns == 1: return [(0, "")] return [ ( i, '[{}:{}]'.format( i*32, min( i*32+32, port.nbits) ) ) for i in range(num_assigns) ] #----------------------------------------------------------------------- # set_input_stmt #----------------------------------------------------------------------- def set_input_stmt( port ): inputs = [] for idx, offset in get_indices( port ): inputs.append( 's._m.{v_name}[{idx}] = s.{py_name}{offset}' \ .format( v_name = port.verilator_name, py_name = port.name, idx = idx, offset = offset ) ) return inputs #----------------------------------------------------------------------- # set_output_stmt #----------------------------------------------------------------------- # TODO: no way to distinguish between combinational and sequential # outputs, so we set outputs both ways... # This seems broken, but I can't think of a better way. def set_output_stmt( port ): comb, next_ = [], [] for idx, offset in get_indices( port ): assign = 's.{py_name}{offset}.{sigtype} = s._m.{v_name}[{idx}]' \ .format( v_name = port.verilator_name, py_name = port.name, idx = idx, offset = offset, sigtype = '{sigtype}' ) comb .append( assign.format( sigtype = 'value' ) ) next_.append( assign.format( sigtype = 'next' ) ) return comb, next_ #----------------------------------------------------------------------- # verilator_mangle #----------------------------------------------------------------------- def verilator_mangle( signal_name ): return signal_name.replace( '__', '___05F' ).replace( '$', '__024' ) #----------------------------------------------------------------------- # pymtl_wrapper_from_ports #----------------------------------------------------------------------- def pymtl_wrapper_from_ports( in_ports, out_ports, model_name, filename_w, vobj_name, xobj_name, cdefs ): # Declare the interface ports for the wrapper class. port_defs = [] for ports, port_type in [( in_ports, 'InPort' ), ( out_ports, 'OutPort' )]: # Replace all references to _M_ with . ports = [ ( name.replace('_M_', '.'), nbits ) for name, nbits in ports ] lists = [] for port_name, bitwidth in ports: # Port List if '$' in port_name: pfx = port_name.split('$')[0] if pfx not in lists: lists.append(pfx) port_defs.append( 's.{} = []'.format( pfx ) ) port_defs.append( 's.{port_list}.append( {port_type}( {bitwidth} ) )' \ .format( port_list = pfx, port_type = port_type, bitwidth = bitwidth ) ) else: port_defs.append( 's.{port_name} = {port_type}( {bitwidth} )' \ .format( port_name = port_name, port_type = port_type, bitwidth = bitwidth ) ) # Assigning input ports set_inputs = [] for v_name, bitwidth in in_ports: py_name = v_name.replace('_M_', '.') if '$' in py_name: name, idx = py_name.split('$') py_name = '{name}[{idx}]'.format( name = name, idx = int(idx) ) v_name = verilator_mangle( v_name ) set_inputs.append( 's._model.{v_name}[0] = s.{py_name}' \ .format( v_name = v_name, py_name = py_name ) ) # Assigning combinational output ports set_comb = [] for v_name, bitwidth in out_ports: py_name = v_name.replace('_M_', '.') if '$' in py_name: name, idx = py_name.split('$') py_name = '{name}[{idx}]'.format( name = name, idx = int(idx) ) v_name = verilator_mangle( v_name ) set_comb.append( 's.{py_name}.value = s._model.{v_name}[0]' \ .format( v_name = v_name, py_name = py_name ) ) # TODO: no way to distinguish between combinational and sequential # outputs, so we set outputs both ways... # This seems broken, but I can't think of a better way. # Assigning sequential output ports set_next = [] for v_name, bitwidth in out_ports: py_name = v_name.replace('_M_', '.') if '$' in py_name: name, idx = py_name.split('$') py_name = '{name}[{idx}]'.format( name = name, idx = int(idx) ) v_name = verilator_mangle( v_name ) set_next.append( 's.{py_name}.next = s._model.{v_name}[0]' \ .format( v_name = v_name, py_name = py_name ) ) with open( template_filename , 'r' ) as template, \ open( wrapper_filename, 'w' ) as output: py_src = template.read() py_src = py_src.format( model_name = model_name, port_decls = cdefs, port_defs = '\n ' .join( port_defs ), set_inputs = '\n '.join( set_inputs ), set_comb = '\n '.join( set_comb ), set_next = '\n '.join( set_next ), ) # TODO: needed for tracing? #w += 'XTraceEverOn()' output.write( py_src ) #print( py_src )
16,982
0
294
ecf2ad1014ba580179cdf2f557a5ed584afa8446
3,595
py
Python
vmaig_blog/urls.py
wangsure/czxs
e45e2ffde1597cb5a41d5fb46818805a1fa0d848
[ "BSD-3-Clause" ]
null
null
null
vmaig_blog/urls.py
wangsure/czxs
e45e2ffde1597cb5a41d5fb46818805a1fa0d848
[ "BSD-3-Clause" ]
null
null
null
vmaig_blog/urls.py
wangsure/czxs
e45e2ffde1597cb5a41d5fb46818805a1fa0d848
[ "BSD-3-Clause" ]
null
null
null
from django.conf.urls import include, url from django.contrib.sitemaps.views import sitemap from django.contrib.sitemaps import FlatPageSitemap, GenericSitemap, Sitemap from django.core.urlresolvers import reverse from django.contrib import admin from blog.models import Article, News, Category, Column from demoproject import views import suit; import xadmin; xadmin.autodiscover(); from xadmin.plugins import xversion xversion.register_models() sitemaps = { 'article-is-top': GenericSitemap( { 'queryset': Article.objects.filter( status=0, is_top=True ).all(), 'date_field': 'pub_time' }, priority=1.0, changefreq='daily' ), 'article-is-not-top': GenericSitemap( { 'queryset': Article.objects.filter(status=0).all(), 'date_field': 'pub_time' }, priority=0.8, changefreq='daily' ), 'news': GenericSitemap( { 'queryset': News.objects.all(), 'data_field': 'pub_time' }, priority=0.6, changefreq='daily' ), 'category': GenericSitemap( { 'queryset': Category.objects.all() }, priority=0.9, changefreq='daily' ), 'column': GenericSitemap( { 'queryset': Column.objects.all() }, priority=0.9, changefreq='daily' ), 'static': StaticViewSitemap } urlpatterns = [ url(r'^admin/', include(admin.site.urls)), url(r'', include('blog.urls')), url(r'', include('vmaig_comments.urls')), url(r'', include('vmaig_auth.urls')), url(r'^sitemap\.xml$', sitemap, {'sitemaps': sitemaps}, name='django.contrib.sitemaps.views.sitemap'), url(r'^piechart/', views.demo_piechart, name='demo_piechart'), url(r'^linechart/', views.demo_linechart, name='demo_linechart'), url(r'^linechart_without_date/', views.demo_linechart_without_date, name='demo_linechart_without_date'), url(r'^linewithfocuschart/', views.demo_linewithfocuschart, name='demo_linewithfocuschart'), url(r'^multibarchart/', views.demo_multibarchart, name='demo_multibarchart'), url(r'^stackedareachart/', views.demo_stackedareachart, name='demo_stackedareachart'), url(r'^multibarhorizontalchart/', views.demo_multibarhorizontalchart, name='demo_multibarhorizontalchart'), url(r'^lineplusbarchart/', views.demo_lineplusbarchart, name='demo_lineplusbarchart'), url(r'^cumulativelinechart/', views.demo_cumulativelinechart, name='demo_cumulativelinechart'), url(r'^discretebarchart/', views.demo_discretebarchart, name='demo_discretebarchart'), url(r'^discretebarchart_with_date/', views.demo_discretebarchart_with_date, name='demo_discretebarchart_date'), url(r'^scatterchart/', views.demo_scatterchart, name='demo_scatterchart'), url(r'^linechart_with_ampm/', views.demo_linechart_with_ampm, name='demo_linechart_with_ampm'), url(r'^charthome$', views.home, name='charthome'), url(r'^xadmin/', include(xadmin.site.urls)), ]
37.447917
115
0.606954
from django.conf.urls import include, url from django.contrib.sitemaps.views import sitemap from django.contrib.sitemaps import FlatPageSitemap, GenericSitemap, Sitemap from django.core.urlresolvers import reverse from django.contrib import admin from blog.models import Article, News, Category, Column from demoproject import views import suit; import xadmin; xadmin.autodiscover(); from xadmin.plugins import xversion xversion.register_models() class StaticViewSitemap(Sitemap): priority = 1.0 changefreq = 'daily' def items(self): return ['index-view', 'news-view'] def location(self, item): return reverse(item) sitemaps = { 'article-is-top': GenericSitemap( { 'queryset': Article.objects.filter( status=0, is_top=True ).all(), 'date_field': 'pub_time' }, priority=1.0, changefreq='daily' ), 'article-is-not-top': GenericSitemap( { 'queryset': Article.objects.filter(status=0).all(), 'date_field': 'pub_time' }, priority=0.8, changefreq='daily' ), 'news': GenericSitemap( { 'queryset': News.objects.all(), 'data_field': 'pub_time' }, priority=0.6, changefreq='daily' ), 'category': GenericSitemap( { 'queryset': Category.objects.all() }, priority=0.9, changefreq='daily' ), 'column': GenericSitemap( { 'queryset': Column.objects.all() }, priority=0.9, changefreq='daily' ), 'static': StaticViewSitemap } urlpatterns = [ url(r'^admin/', include(admin.site.urls)), url(r'', include('blog.urls')), url(r'', include('vmaig_comments.urls')), url(r'', include('vmaig_auth.urls')), url(r'^sitemap\.xml$', sitemap, {'sitemaps': sitemaps}, name='django.contrib.sitemaps.views.sitemap'), url(r'^piechart/', views.demo_piechart, name='demo_piechart'), url(r'^linechart/', views.demo_linechart, name='demo_linechart'), url(r'^linechart_without_date/', views.demo_linechart_without_date, name='demo_linechart_without_date'), url(r'^linewithfocuschart/', views.demo_linewithfocuschart, name='demo_linewithfocuschart'), url(r'^multibarchart/', views.demo_multibarchart, name='demo_multibarchart'), url(r'^stackedareachart/', views.demo_stackedareachart, name='demo_stackedareachart'), url(r'^multibarhorizontalchart/', views.demo_multibarhorizontalchart, name='demo_multibarhorizontalchart'), url(r'^lineplusbarchart/', views.demo_lineplusbarchart, name='demo_lineplusbarchart'), url(r'^cumulativelinechart/', views.demo_cumulativelinechart, name='demo_cumulativelinechart'), url(r'^discretebarchart/', views.demo_discretebarchart, name='demo_discretebarchart'), url(r'^discretebarchart_with_date/', views.demo_discretebarchart_with_date, name='demo_discretebarchart_date'), url(r'^scatterchart/', views.demo_scatterchart, name='demo_scatterchart'), url(r'^linechart_with_ampm/', views.demo_linechart_with_ampm, name='demo_linechart_with_ampm'), url(r'^charthome$', views.home, name='charthome'), url(r'^xadmin/', include(xadmin.site.urls)), ]
71
110
22
63789201d86443209329b9776585583fa421912b
2,010
py
Python
luigi/contrib/sparkey.py
shouldsee/luigi
54a347361ae1031f06105eaf30ff88f5ef65b00c
[ "Apache-2.0" ]
5
2015-02-26T18:52:56.000Z
2017-07-07T05:47:18.000Z
luigi/contrib/sparkey.py
shouldsee/luigi
54a347361ae1031f06105eaf30ff88f5ef65b00c
[ "Apache-2.0" ]
9
2017-03-22T23:38:48.000Z
2019-01-28T21:13:06.000Z
luigi/contrib/sparkey.py
shouldsee/luigi
54a347361ae1031f06105eaf30ff88f5ef65b00c
[ "Apache-2.0" ]
9
2015-01-26T14:47:57.000Z
2020-07-07T17:01:25.000Z
# -*- coding: utf-8 -*- # # Copyright 2012-2015 Spotify AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import absolute_import import luigi class SparkeyExportTask(luigi.Task): """ A luigi task that writes to a local sparkey log file. Subclasses should implement the requires and output methods. The output must be a luigi.LocalTarget. The resulting sparkey log file will contain one entry for every line in the input, mapping from the first value to a tab-separated list of the rest of the line. To generate a simple key-value index, yield "key", "value" pairs from the input(s) to this task. """ # the separator used to split input lines separator = '\t'
31.40625
100
0.685075
# -*- coding: utf-8 -*- # # Copyright 2012-2015 Spotify AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import absolute_import import luigi class SparkeyExportTask(luigi.Task): """ A luigi task that writes to a local sparkey log file. Subclasses should implement the requires and output methods. The output must be a luigi.LocalTarget. The resulting sparkey log file will contain one entry for every line in the input, mapping from the first value to a tab-separated list of the rest of the line. To generate a simple key-value index, yield "key", "value" pairs from the input(s) to this task. """ # the separator used to split input lines separator = '\t' def __init__(self, *args, **kwargs): super(SparkeyExportTask, self).__init__(*args, **kwargs) def run(self): self._write_sparkey_file() def _write_sparkey_file(self): import sparkey infile = self.input() outfile = self.output() if not isinstance(outfile, luigi.LocalTarget): raise TypeError("output must be a LocalTarget") # write job output to temporary sparkey file temp_output = luigi.LocalTarget(is_tmp=True) w = sparkey.LogWriter(temp_output.path) for line in infile.open('r'): k, v = line.strip().split(self.separator, 1) w[k] = v w.close() # move finished sparkey file to final destination temp_output.move(outfile.path)
705
0
81
ff451b4287664bcebaa07ec7328aecbf9cc1c8c2
2,639
py
Python
epytope/Data/pssms/smm/mat/A_23_01_11.py
christopher-mohr/epytope
8ac9fe52c0b263bdb03235a5a6dffcb72012a4fd
[ "BSD-3-Clause" ]
7
2021-02-01T18:11:28.000Z
2022-01-31T19:14:07.000Z
epytope/Data/pssms/smm/mat/A_23_01_11.py
christopher-mohr/epytope
8ac9fe52c0b263bdb03235a5a6dffcb72012a4fd
[ "BSD-3-Clause" ]
22
2021-01-02T15:25:23.000Z
2022-03-14T11:32:53.000Z
epytope/Data/pssms/smm/mat/A_23_01_11.py
christopher-mohr/epytope
8ac9fe52c0b263bdb03235a5a6dffcb72012a4fd
[ "BSD-3-Clause" ]
4
2021-05-28T08:50:38.000Z
2022-03-14T11:45:32.000Z
A_23_01_11 = {0: {'A': 0.076, 'C': 0.036, 'E': 0.046, 'D': -0.002, 'G': 0.043, 'F': -0.067, 'I': 0.002, 'H': 0.011, 'K': 0.104, 'M': -0.205, 'L': -0.209, 'N': -0.039, 'Q': 0.186, 'P': 0.065, 'S': 0.074, 'R': -0.03, 'T': 0.087, 'W': 0.0, 'V': -0.11, 'Y': -0.068}, 1: {'A': 0.014, 'C': 0.002, 'E': 0.031, 'D': -0.004, 'G': 0.0, 'F': -0.074, 'I': 0.001, 'H': 0.0, 'K': 0.0, 'M': -0.014, 'L': 0.07, 'N': 0.0, 'Q': 0.0, 'P': -0.078, 'S': -0.005, 'R': 0.016, 'T': 0.007, 'W': 0.0, 'V': 0.059, 'Y': -0.025}, 2: {'A': -0.338, 'C': 0.178, 'E': 0.018, 'D': 0.311, 'G': 0.124, 'F': -0.229, 'I': 0.137, 'H': -0.023, 'K': 0.196, 'M': 0.154, 'L': -0.043, 'N': -0.241, 'Q': 0.259, 'P': 0.392, 'S': -0.575, 'R': 0.058, 'T': -0.008, 'W': -0.276, 'V': 0.025, 'Y': -0.12}, 3: {'A': 0.0, 'C': 0.0, 'E': 0.0, 'D': 0.0, 'G': 0.0, 'F': -0.0, 'I': 0.0, 'H': -0.0, 'K': -0.0, 'M': 0.0, 'L': -0.0, 'N': 0.0, 'Q': -0.0, 'P': -0.0, 'S': 0.0, 'R': -0.0, 'T': -0.0, 'W': -0.0, 'V': 0.0, 'Y': 0.0}, 4: {'A': 0.082, 'C': 0.0, 'E': 0.032, 'D': -0.128, 'G': -0.03, 'F': -0.132, 'I': -0.005, 'H': 0.036, 'K': -0.01, 'M': 0.131, 'L': -0.311, 'N': 0.064, 'Q': 0.008, 'P': 0.114, 'S': 0.029, 'R': -0.046, 'T': 0.06, 'W': 0.0, 'V': 0.106, 'Y': 0.0}, 5: {'A': -0.124, 'C': 0.112, 'E': 0.071, 'D': -0.001, 'G': 0.024, 'F': -0.01, 'I': 0.127, 'H': 0.05, 'K': -0.081, 'M': 0.0, 'L': -0.126, 'N': -0.003, 'Q': 0.065, 'P': 0.128, 'S': -0.208, 'R': 0.061, 'T': -0.106, 'W': 0.107, 'V': -0.134, 'Y': 0.046}, 6: {'A': 0.127, 'C': 0.032, 'E': 0.007, 'D': 0.097, 'G': 0.051, 'F': 0.015, 'I': 0.058, 'H': -0.182, 'K': -0.08, 'M': 0.0, 'L': -0.126, 'N': 0.0, 'Q': -0.066, 'P': 0.081, 'S': -0.056, 'R': -0.078, 'T': 0.082, 'W': 0.0, 'V': 0.088, 'Y': -0.051}, 7: {'A': -0.0, 'C': 0.0, 'E': -0.0, 'D': 0.0, 'G': 0.0, 'F': -0.0, 'I': -0.0, 'H': 0.0, 'K': -0.0, 'M': -0.0, 'L': -0.0, 'N': 0.0, 'Q': 0.0, 'P': -0.0, 'S': 0.0, 'R': 0.0, 'T': -0.0, 'W': 0.0, 'V': 0.0, 'Y': 0.0}, 8: {'A': -0.0, 'C': 0.0, 'E': -0.0, 'D': 0.0, 'G': -0.0, 'F': -0.0, 'I': -0.0, 'H': 0.0, 'K': -0.0, 'M': -0.0, 'L': 0.0, 'N': 0.0, 'Q': -0.0, 'P': -0.0, 'S': -0.0, 'R': 0.0, 'T': 0.0, 'W': 0.0, 'V': -0.0, 'Y': 0.0}, 9: {'A': 0.014, 'C': 0.0, 'E': 0.02, 'D': -0.027, 'G': 0.038, 'F': 0.013, 'I': 0.018, 'H': 0.0, 'K': 0.021, 'M': 0.027, 'L': -0.029, 'N': 0.027, 'Q': -0.022, 'P': -0.062, 'S': 0.003, 'R': -0.035, 'T': 0.004, 'W': 0.0, 'V': 0.014, 'Y': -0.025}, 10: {'A': 0.184, 'C': 0.0, 'E': 0.0, 'D': 0.0, 'G': 0.0, 'F': -0.852, 'I': -0.072, 'H': 0.0, 'K': 0.274, 'M': -0.026, 'L': -0.286, 'N': 0.0, 'Q': 0.179, 'P': -0.188, 'S': 0.149, 'R': 0.541, 'T': 0.0, 'W': -0.056, 'V': 0.16, 'Y': -0.007}, -1: {'con': 4.16437}}
2,639
2,639
0.360743
A_23_01_11 = {0: {'A': 0.076, 'C': 0.036, 'E': 0.046, 'D': -0.002, 'G': 0.043, 'F': -0.067, 'I': 0.002, 'H': 0.011, 'K': 0.104, 'M': -0.205, 'L': -0.209, 'N': -0.039, 'Q': 0.186, 'P': 0.065, 'S': 0.074, 'R': -0.03, 'T': 0.087, 'W': 0.0, 'V': -0.11, 'Y': -0.068}, 1: {'A': 0.014, 'C': 0.002, 'E': 0.031, 'D': -0.004, 'G': 0.0, 'F': -0.074, 'I': 0.001, 'H': 0.0, 'K': 0.0, 'M': -0.014, 'L': 0.07, 'N': 0.0, 'Q': 0.0, 'P': -0.078, 'S': -0.005, 'R': 0.016, 'T': 0.007, 'W': 0.0, 'V': 0.059, 'Y': -0.025}, 2: {'A': -0.338, 'C': 0.178, 'E': 0.018, 'D': 0.311, 'G': 0.124, 'F': -0.229, 'I': 0.137, 'H': -0.023, 'K': 0.196, 'M': 0.154, 'L': -0.043, 'N': -0.241, 'Q': 0.259, 'P': 0.392, 'S': -0.575, 'R': 0.058, 'T': -0.008, 'W': -0.276, 'V': 0.025, 'Y': -0.12}, 3: {'A': 0.0, 'C': 0.0, 'E': 0.0, 'D': 0.0, 'G': 0.0, 'F': -0.0, 'I': 0.0, 'H': -0.0, 'K': -0.0, 'M': 0.0, 'L': -0.0, 'N': 0.0, 'Q': -0.0, 'P': -0.0, 'S': 0.0, 'R': -0.0, 'T': -0.0, 'W': -0.0, 'V': 0.0, 'Y': 0.0}, 4: {'A': 0.082, 'C': 0.0, 'E': 0.032, 'D': -0.128, 'G': -0.03, 'F': -0.132, 'I': -0.005, 'H': 0.036, 'K': -0.01, 'M': 0.131, 'L': -0.311, 'N': 0.064, 'Q': 0.008, 'P': 0.114, 'S': 0.029, 'R': -0.046, 'T': 0.06, 'W': 0.0, 'V': 0.106, 'Y': 0.0}, 5: {'A': -0.124, 'C': 0.112, 'E': 0.071, 'D': -0.001, 'G': 0.024, 'F': -0.01, 'I': 0.127, 'H': 0.05, 'K': -0.081, 'M': 0.0, 'L': -0.126, 'N': -0.003, 'Q': 0.065, 'P': 0.128, 'S': -0.208, 'R': 0.061, 'T': -0.106, 'W': 0.107, 'V': -0.134, 'Y': 0.046}, 6: {'A': 0.127, 'C': 0.032, 'E': 0.007, 'D': 0.097, 'G': 0.051, 'F': 0.015, 'I': 0.058, 'H': -0.182, 'K': -0.08, 'M': 0.0, 'L': -0.126, 'N': 0.0, 'Q': -0.066, 'P': 0.081, 'S': -0.056, 'R': -0.078, 'T': 0.082, 'W': 0.0, 'V': 0.088, 'Y': -0.051}, 7: {'A': -0.0, 'C': 0.0, 'E': -0.0, 'D': 0.0, 'G': 0.0, 'F': -0.0, 'I': -0.0, 'H': 0.0, 'K': -0.0, 'M': -0.0, 'L': -0.0, 'N': 0.0, 'Q': 0.0, 'P': -0.0, 'S': 0.0, 'R': 0.0, 'T': -0.0, 'W': 0.0, 'V': 0.0, 'Y': 0.0}, 8: {'A': -0.0, 'C': 0.0, 'E': -0.0, 'D': 0.0, 'G': -0.0, 'F': -0.0, 'I': -0.0, 'H': 0.0, 'K': -0.0, 'M': -0.0, 'L': 0.0, 'N': 0.0, 'Q': -0.0, 'P': -0.0, 'S': -0.0, 'R': 0.0, 'T': 0.0, 'W': 0.0, 'V': -0.0, 'Y': 0.0}, 9: {'A': 0.014, 'C': 0.0, 'E': 0.02, 'D': -0.027, 'G': 0.038, 'F': 0.013, 'I': 0.018, 'H': 0.0, 'K': 0.021, 'M': 0.027, 'L': -0.029, 'N': 0.027, 'Q': -0.022, 'P': -0.062, 'S': 0.003, 'R': -0.035, 'T': 0.004, 'W': 0.0, 'V': 0.014, 'Y': -0.025}, 10: {'A': 0.184, 'C': 0.0, 'E': 0.0, 'D': 0.0, 'G': 0.0, 'F': -0.852, 'I': -0.072, 'H': 0.0, 'K': 0.274, 'M': -0.026, 'L': -0.286, 'N': 0.0, 'Q': 0.179, 'P': -0.188, 'S': 0.149, 'R': 0.541, 'T': 0.0, 'W': -0.056, 'V': 0.16, 'Y': -0.007}, -1: {'con': 4.16437}}
0
0
0
8805847efb84b9182830f2db109cdf8df06405a3
727
py
Python
echome/identity.py
mgtrrz/echome-python-sdk
c169510cb801ff3144cc746b96726cb2b535f9fd
[ "MIT" ]
1
2022-01-31T19:35:14.000Z
2022-01-31T19:35:14.000Z
echome/identity.py
mgtrrz/echome-python-sdk
c169510cb801ff3144cc746b96726cb2b535f9fd
[ "MIT" ]
1
2021-09-26T01:40:30.000Z
2021-09-26T01:40:30.000Z
echome/identity.py
mgtrrz/echome-python-sdk
c169510cb801ff3144cc746b96726cb2b535f9fd
[ "MIT" ]
null
null
null
import logging from .resource import BaseResource logger = logging.getLogger(__name__)
29.08
61
0.661623
import logging from .resource import BaseResource logger = logging.getLogger(__name__) class Identity(BaseResource): namespace = "identity/user" def describe_all_users(self): return self.request_url("/describe/all") def describe_user(self, user_id:str): return self.request_url(f"/describe/{user_id}") def describe_caller(self): return self.request_url(f"/describe/caller") def create_user(self, **kwargs): if "Tags" in kwargs: kwargs.update(self.unpack_tags(kwargs["Tags"])) return self.request_url(f"/create", "post", **kwargs) def delete_user(self, user_id:str): return self.request_url(f"/delete/{user_id}", "post")
425
191
23
c5ef3ffd9fd787999fffa6497ba9c887822e5121
949
py
Python
core/forms.py
programecompedro/django-testes
12af91a8d175779be86c87fd12d07df0e2de214c
[ "Unlicense" ]
null
null
null
core/forms.py
programecompedro/django-testes
12af91a8d175779be86c87fd12d07df0e2de214c
[ "Unlicense" ]
null
null
null
core/forms.py
programecompedro/django-testes
12af91a8d175779be86c87fd12d07df0e2de214c
[ "Unlicense" ]
null
null
null
from django import forms from django.core.mail.message import EmailMessage from django.forms.widgets import Textarea
36.5
90
0.646997
from django import forms from django.core.mail.message import EmailMessage from django.forms.widgets import Textarea class ContatoForm(forms.Form): nome = forms.CharField(label="Nome", max_length=100) email = forms.CharField(label="E-mail", max_length=100) assunto = forms.CharField(label="Assunto", max_length=100) mensagem = forms.CharField(label="Mensagem", widget=forms.Textarea()) def send_email(self): nome = self.cleaned_data['nome'] email = self.cleaned_data['email'] assunto = self.cleaned_data['assunto'] mensagem = self.cleaned_data['mensagem'] conteudo = f'Nome:{nome}\nEmail:{email}\nAssunto:{assunto}\nMensagem:{mensagem}\n' mail = EmailMessage( subject=assunto, body=conteudo, from_email='contato@fusion.com.br', to=['contato@fusion.com.br',], headers={'Reply-To': email} ) mail.send()
520
290
23