hexsha
stringlengths
40
40
size
int64
7
1.04M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
247
max_stars_repo_name
stringlengths
4
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
368k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
247
max_issues_repo_name
stringlengths
4
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
247
max_forks_repo_name
stringlengths
4
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.04M
avg_line_length
float64
1.77
618k
max_line_length
int64
1
1.02M
alphanum_fraction
float64
0
1
original_content
stringlengths
7
1.04M
filtered:remove_function_no_docstring
int64
-102
942k
filtered:remove_class_no_docstring
int64
-354
977k
filtered:remove_delete_markers
int64
0
60.1k
e1d3533156e4de3f0f953303a7aa03e8959c6889
990
py
Python
base/site-packages/jpush/push/audience.py
edisonlz/fastor
342078a18363ac41d3c6b1ab29dbdd44fdb0b7b3
[ "Apache-2.0" ]
285
2019-12-23T09:50:21.000Z
2021-12-08T09:08:49.000Z
base/site-packages/jpush/push/audience.py
jeckun/fastor
342078a18363ac41d3c6b1ab29dbdd44fdb0b7b3
[ "Apache-2.0" ]
null
null
null
base/site-packages/jpush/push/audience.py
jeckun/fastor
342078a18363ac41d3c6b1ab29dbdd44fdb0b7b3
[ "Apache-2.0" ]
9
2019-12-23T12:59:25.000Z
2022-03-15T05:12:11.000Z
import re # Value selectors; aliases, tags, etc. def tag(*tags): """Select a (list of) tag(s).""" vtag = [t for t in tags] return {"tag": vtag} def tag_and(*tag_ands): """Select a (list of) tag_and(s).""" vtag_and = [t for t in tag_ands] return {"tag_and": vtag_and} def tag_not(*tag_nots): """Select a (list of) tag_not(s).""" vtag_not = [t for t in tag_nots] return {"tag_not": vtag_not} def alias(*alias): """Select a (list of) alias(es).""" valias = [t for t in alias] return {"alias": valias} def registration_id(*reg_ids): """Select a (list of) registration_id(s).""" vregistration_id = [t for t in reg_ids] return {"registration_id": vregistration_id} def segment(*segments): """Select a (list of) segment(s).""" vsegment = [t for t in segments] return {"segment": vsegment} def abtest(*abtests): """Select a (list of) abtest(s).""" vabtest = [t for t in abtests] return {"abtest": vabtest}
25.384615
48
0.611111
import re # Value selectors; aliases, tags, etc. def tag(*tags): """Select a (list of) tag(s).""" vtag = [t for t in tags] return {"tag": vtag} def tag_and(*tag_ands): """Select a (list of) tag_and(s).""" vtag_and = [t for t in tag_ands] return {"tag_and": vtag_and} def tag_not(*tag_nots): """Select a (list of) tag_not(s).""" vtag_not = [t for t in tag_nots] return {"tag_not": vtag_not} def alias(*alias): """Select a (list of) alias(es).""" valias = [t for t in alias] return {"alias": valias} def registration_id(*reg_ids): """Select a (list of) registration_id(s).""" vregistration_id = [t for t in reg_ids] return {"registration_id": vregistration_id} def segment(*segments): """Select a (list of) segment(s).""" vsegment = [t for t in segments] return {"segment": vsegment} def abtest(*abtests): """Select a (list of) abtest(s).""" vabtest = [t for t in abtests] return {"abtest": vabtest}
0
0
0
24ae06873ec69434dce877fd511455ca4e400e69
525
py
Python
shop/migrations/0027_item_offer_price.py
Zex0n/django-simple-cms
097098dcea218697a53f9c04005c86a7680ee4e1
[ "MIT" ]
1
2021-04-03T09:29:13.000Z
2021-04-03T09:29:13.000Z
shop/migrations/0027_item_offer_price.py
Zex0n/django-simple-cms
097098dcea218697a53f9c04005c86a7680ee4e1
[ "MIT" ]
null
null
null
shop/migrations/0027_item_offer_price.py
Zex0n/django-simple-cms
097098dcea218697a53f9c04005c86a7680ee4e1
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2018-07-30 14:11 from __future__ import unicode_literals from django.db import migrations, models
25
126
0.64
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2018-07-30 14:11 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('shop', '0026_auto_20180716_1626'), ] operations = [ migrations.AddField( model_name='item', name='offer_price', field=models.DecimalField(blank=True, decimal_places=2, max_digits=10, null=True, verbose_name='Цена со скидкой'), ), ]
0
359
23
1ace981d823bbe67c690c75ab2bed1f4bfa3b8f6
1,143
py
Python
2019-10-23-ex-11.py
mpassosbr/python3
ff83f1f6f787206e49696134a99d68190606ed4f
[ "MIT" ]
null
null
null
2019-10-23-ex-11.py
mpassosbr/python3
ff83f1f6f787206e49696134a99d68190606ed4f
[ "MIT" ]
null
null
null
2019-10-23-ex-11.py
mpassosbr/python3
ff83f1f6f787206e49696134a99d68190606ed4f
[ "MIT" ]
null
null
null
num_vezes = 0 soma_total = 0 maior_numero = None menor_numero = None while True: num = input("Digite um número ou \"sair\" para encerrar o programa: ") if num == "sair": break try: numero = int(num) num_vezes += 1 soma_total += numero if maior_numero is None or numero > maior_numero: maior_numero = numero if menor_numero is None or numero < menor_numero: menor_numero = numero except: print("Digite apenas números ou a palavra \"sair\", por favor.") if maior_numero == None or menor_numero == None: print("Você não digitou nenhum número. Portanto é impossível calcular o número de vezes, o somatório, o menor e o maior.") print("Obrigado por utilizar o meu programa!") else: print("Números foram digitados " + str(num_vezes) + " vezes.") print("A soma total dos números digitados é " + str(int(soma_total)) + ".") print("O menor número digitado foi o número " + str(int(menor_numero)) + ".") print("O maior número digitado foi o número " + str(int(maior_numero)) + ".") print("Obrigado por utilizar o meu programa!")
40.821429
126
0.648294
num_vezes = 0 soma_total = 0 maior_numero = None menor_numero = None while True: num = input("Digite um número ou \"sair\" para encerrar o programa: ") if num == "sair": break try: numero = int(num) num_vezes += 1 soma_total += numero if maior_numero is None or numero > maior_numero: maior_numero = numero if menor_numero is None or numero < menor_numero: menor_numero = numero except: print("Digite apenas números ou a palavra \"sair\", por favor.") if maior_numero == None or menor_numero == None: print("Você não digitou nenhum número. Portanto é impossível calcular o número de vezes, o somatório, o menor e o maior.") print("Obrigado por utilizar o meu programa!") else: print("Números foram digitados " + str(num_vezes) + " vezes.") print("A soma total dos números digitados é " + str(int(soma_total)) + ".") print("O menor número digitado foi o número " + str(int(menor_numero)) + ".") print("O maior número digitado foi o número " + str(int(maior_numero)) + ".") print("Obrigado por utilizar o meu programa!")
0
0
0
ad9d7a94f217bd44bed61f7bae257db19128308f
1,307
py
Python
modules/WEATHER_command.py
linnil1/slack_emoji_bot
b31b465cdab5ecdcbfc987000e182724e86a83c8
[ "MIT" ]
4
2016-07-25T12:07:19.000Z
2020-11-25T15:09:16.000Z
modules/WEATHER_command.py
linnil1/slack_emoji_bot
b31b465cdab5ecdcbfc987000e182724e86a83c8
[ "MIT" ]
null
null
null
modules/WEATHER_command.py
linnil1/slack_emoji_bot
b31b465cdab5ecdcbfc987000e182724e86a83c8
[ "MIT" ]
null
null
null
from selenium import webdriver import time
37.342857
76
0.556236
from selenium import webdriver import time class WEATHER: def require(): return [{"name": "Imgur", "module": True}] def __init__(self, slack, custom): self.slack = slack self.imgur = custom['Imgur'] self.colorPrint = custom['colorPrint'] self.driver = webdriver.PhantomJS( executable_path="./common/node_modules/phantomjs/bin/phantomjs") def main(self, datadict): if not datadict['type'] == 'message' or 'subtype' in datadict: return if datadict['text'] == "weather": payload = { "username": "Weather Brocaster", "icon_emoji": ":_e6_b0_a3:", "thread_ts": datadict.get("thread_ts") or '', "channel": datadict['channel']} # set the window size that you need self.driver.set_window_size(1024, 768) self.driver.get('http://weather.ntustudents.org/') path = "data/tmp/weather_" + time.strftime("%s") self.colorPrint("Store Image", path) self.driver.save_screenshot(path) text = "<{}|{}>".format(self.imgur.pathUpload(path), time.strftime("%c")) self.slack.api_call("chat.postMessage", **payload, text=text)
1,167
-7
103
89e8813cf7f6c8a6eea7821b86c6ff1ab918f535
5,124
py
Python
cpix/filters.py
ArrisMultiTrust/pycpix
e250b113e8496c892a78d9a4a55f1c9a0886e4dd
[ "MIT" ]
15
2018-09-25T14:52:04.000Z
2022-03-01T13:37:38.000Z
cpix/filters.py
ArrisMultiTrust/pycpix
e250b113e8496c892a78d9a4a55f1c9a0886e4dd
[ "MIT" ]
null
null
null
cpix/filters.py
ArrisMultiTrust/pycpix
e250b113e8496c892a78d9a4a55f1c9a0886e4dd
[ "MIT" ]
5
2019-02-19T10:58:59.000Z
2021-02-01T03:46:56.000Z
""" Filter classes """ from . import etree from .base import CPIXComparableBase def encode_bool(value): """Encode booleans to produce valid XML""" if value: return "true" return "false" class KeyPeriodFilter(CPIXComparableBase): """ KeyPeriodFilter element Has single required attribute: periodId """ def element(self): """Returns XML element""" el = etree.Element("KeyPeriodFilter") el.set("periodId", str(self.period_id)) return el @staticmethod def parse(xml): """ Parse XML and return KeyPeriodFilter """ if isinstance(xml, (str, bytes)): xml = etree.fromstring(xml) period_id = xml.attrib["periodId"] return KeyPeriodFilter(period_id) class LabelFilter(CPIXComparableBase): """ LabelFilter element Not yet implemented """ class VideoFilter(CPIXComparableBase): """ VideoFilter element Has optional attributes: minPixels maxPixels hdr wcg minFps maxFps """ def element(self): """Returns XML element""" el = etree.Element("VideoFilter") if self.min_pixels is not None: el.set("minPixels", str(self.min_pixels)) if self.max_pixels is not None: el.set("maxPixels", str(self.max_pixels)) if self.hdr is not None: el.set("hdr", encode_bool(self.hdr)) if self.wcg is not None: el.set("wcg", encode_bool(self.wcg)) if self.min_fps is not None: el.set("minFps", str(self.min_fps)) if self.max_fps is not None: el.set("maxFps", str(self.max_fps)) return el @staticmethod def parse(xml): """ Parse XML and return VideoFilter """ if isinstance(xml, (str, bytes)): xml = etree.fromstring(xml) min_pixels = None max_pixels = None hdr = None wcg = None min_fps = None max_fps = None if "minPixels" in xml.attrib: min_pixels = xml.attrib["minPixels"] if "maxPixels" in xml.attrib: max_pixels = xml.attrib["maxPixels"] if "hdr" in xml.attrib: hdr = xml.attrib["hdr"] if "wcg" in xml.attrib: wcg = xml.attrib["wcg"] if "minFps" in xml.attrib: min_fps = xml.attrib["minFps"] if "maxFps" in xml.attrib: max_fps = xml.attrib["maxFps"] return VideoFilter(min_pixels, max_pixels, hdr, wcg, min_fps, max_fps) class AudioFilter(CPIXComparableBase): """ AudioFilter element Has optional attributes: minChannels maxChannels """ def element(self): """Returns XML element""" el = etree.Element("AudioFilter") if self.min_channels: el.set("minChannels", str(self.min_channels)) if self.max_channels: el.set("maxChannels", str(self.max_channels)) return el @staticmethod def parse(xml): """ Parse XML and return AudioFilter """ if isinstance(xml, (str, bytes)): xml = etree.fromstring(xml) min_channels = None max_channels = None if "minChannels" in xml.attrib: min_channels = xml.attrib["minChannels"] if "maxChannels" in xml.attrib: max_channels = xml.attrib["maxChannels"] return AudioFilter(min_channels, max_channels) class BitrateFilter(CPIXComparableBase): """ BitrateFilter element Has optional attributes: minBitrate maxBitrate """ def element(self): """Returns XML element""" el = etree.Element("BitrateFilter") if self.min_bitrate: el.set("minBitrate", str(self.min_bitrate)) if self.max_bitrate: el.set("maxBitrate", str(self.max_bitrate)) return el @staticmethod def parse(xml): """ Parse XML and return BitrateFilter """ if isinstance(xml, (str, bytes)): xml = etree.fromstring(xml) min_bitrate = None max_bitrate = None if "minBitrate" in xml.attrib: min_bitrate = xml.attrib["minBitrate"] if "maxBitrate" in xml.attrib: max_bitrate = xml.attrib["maxBitrate"] return BitrateFilter(min_bitrate, max_bitrate)
25.878788
78
0.583724
""" Filter classes """ from . import etree from .base import CPIXComparableBase def encode_bool(value): """Encode booleans to produce valid XML""" if value: return "true" return "false" class KeyPeriodFilter(CPIXComparableBase): """ KeyPeriodFilter element Has single required attribute: periodId """ def __init__(self, period_id): self.period_id = period_id def element(self): """Returns XML element""" el = etree.Element("KeyPeriodFilter") el.set("periodId", str(self.period_id)) return el @staticmethod def parse(xml): """ Parse XML and return KeyPeriodFilter """ if isinstance(xml, (str, bytes)): xml = etree.fromstring(xml) period_id = xml.attrib["periodId"] return KeyPeriodFilter(period_id) class LabelFilter(CPIXComparableBase): """ LabelFilter element Not yet implemented """ class VideoFilter(CPIXComparableBase): """ VideoFilter element Has optional attributes: minPixels maxPixels hdr wcg minFps maxFps """ def __init__(self, min_pixels=None, max_pixels=None, hdr=None, wcg=None, min_fps=None, max_fps=None): self.min_pixels = min_pixels self.max_pixels = max_pixels self.hdr = hdr self.wcg = wcg self.min_fps = min_fps self.max_fps = max_fps def element(self): """Returns XML element""" el = etree.Element("VideoFilter") if self.min_pixels is not None: el.set("minPixels", str(self.min_pixels)) if self.max_pixels is not None: el.set("maxPixels", str(self.max_pixels)) if self.hdr is not None: el.set("hdr", encode_bool(self.hdr)) if self.wcg is not None: el.set("wcg", encode_bool(self.wcg)) if self.min_fps is not None: el.set("minFps", str(self.min_fps)) if self.max_fps is not None: el.set("maxFps", str(self.max_fps)) return el @staticmethod def parse(xml): """ Parse XML and return VideoFilter """ if isinstance(xml, (str, bytes)): xml = etree.fromstring(xml) min_pixels = None max_pixels = None hdr = None wcg = None min_fps = None max_fps = None if "minPixels" in xml.attrib: min_pixels = xml.attrib["minPixels"] if "maxPixels" in xml.attrib: max_pixels = xml.attrib["maxPixels"] if "hdr" in xml.attrib: hdr = xml.attrib["hdr"] if "wcg" in xml.attrib: wcg = xml.attrib["wcg"] if "minFps" in xml.attrib: min_fps = xml.attrib["minFps"] if "maxFps" in xml.attrib: max_fps = xml.attrib["maxFps"] return VideoFilter(min_pixels, max_pixels, hdr, wcg, min_fps, max_fps) class AudioFilter(CPIXComparableBase): """ AudioFilter element Has optional attributes: minChannels maxChannels """ def __init__(self, min_channels=None, max_channels=None): self.min_channels = min_channels self.max_channels = max_channels def element(self): """Returns XML element""" el = etree.Element("AudioFilter") if self.min_channels: el.set("minChannels", str(self.min_channels)) if self.max_channels: el.set("maxChannels", str(self.max_channels)) return el @staticmethod def parse(xml): """ Parse XML and return AudioFilter """ if isinstance(xml, (str, bytes)): xml = etree.fromstring(xml) min_channels = None max_channels = None if "minChannels" in xml.attrib: min_channels = xml.attrib["minChannels"] if "maxChannels" in xml.attrib: max_channels = xml.attrib["maxChannels"] return AudioFilter(min_channels, max_channels) class BitrateFilter(CPIXComparableBase): """ BitrateFilter element Has optional attributes: minBitrate maxBitrate """ def __init__(self, min_bitrate=None, max_bitrate=None): self.min_bitrate = min_bitrate self.max_bitrate = max_bitrate def element(self): """Returns XML element""" el = etree.Element("BitrateFilter") if self.min_bitrate: el.set("minBitrate", str(self.min_bitrate)) if self.max_bitrate: el.set("maxBitrate", str(self.max_bitrate)) return el @staticmethod def parse(xml): """ Parse XML and return BitrateFilter """ if isinstance(xml, (str, bytes)): xml = etree.fromstring(xml) min_bitrate = None max_bitrate = None if "minBitrate" in xml.attrib: min_bitrate = xml.attrib["minBitrate"] if "maxBitrate" in xml.attrib: max_bitrate = xml.attrib["maxBitrate"] return BitrateFilter(min_bitrate, max_bitrate)
553
0
108
7ec647a60c71377740d89e88489c6c77a19977d5
1,001
py
Python
Proyecto/Obtener El calendario/Correo.py
luisgerardoperalestorres/EstanciasI
2d9add096919d9911a0d40ad8bcabce4f6a24b40
[ "MIT" ]
null
null
null
Proyecto/Obtener El calendario/Correo.py
luisgerardoperalestorres/EstanciasI
2d9add096919d9911a0d40ad8bcabce4f6a24b40
[ "MIT" ]
null
null
null
Proyecto/Obtener El calendario/Correo.py
luisgerardoperalestorres/EstanciasI
2d9add096919d9911a0d40ad8bcabce4f6a24b40
[ "MIT" ]
null
null
null
import base64 import httplib2 from email.mime.text import MIMEText from apiclient.discovery import build from oauth2client.client import flow_from_clientsecrets from oauth2client.file import Storage from oauth2client.tools import run_flow from google_auth_oauthlib.flow import InstalledAppFlow permiso = ['https://www.googleapis.com/auth/gmail.send'] memoria = Storage('gmail.storage') IDOAuth = InstalledAppFlow.from_client_secrets_file("secreto_cliente_Gmail.json", scopes=permiso) http = httplib2.Http() credentials = memoria.get() if credentials is None or credentials.invalid: credentials = run_flow(IDOAuth, memoria, http=http) Servicio=build('gmail', 'v1', credentials=credentials) http = credentials.authorize(credentials) message = MIMEText("Message") message['to'] = "correousertb@gmail.com" message['from'] = "estanciaupv@gmail.com" message['subject'] = "Subject" body = {'raw': base64.b64encode(message.as_bytes())} Servicio.users().messages().send(userId="me",body=body).execute()
34.517241
97
0.791209
import base64 import httplib2 from email.mime.text import MIMEText from apiclient.discovery import build from oauth2client.client import flow_from_clientsecrets from oauth2client.file import Storage from oauth2client.tools import run_flow from google_auth_oauthlib.flow import InstalledAppFlow permiso = ['https://www.googleapis.com/auth/gmail.send'] memoria = Storage('gmail.storage') IDOAuth = InstalledAppFlow.from_client_secrets_file("secreto_cliente_Gmail.json", scopes=permiso) http = httplib2.Http() credentials = memoria.get() if credentials is None or credentials.invalid: credentials = run_flow(IDOAuth, memoria, http=http) Servicio=build('gmail', 'v1', credentials=credentials) http = credentials.authorize(credentials) message = MIMEText("Message") message['to'] = "correousertb@gmail.com" message['from'] = "estanciaupv@gmail.com" message['subject'] = "Subject" body = {'raw': base64.b64encode(message.as_bytes())} Servicio.users().messages().send(userId="me",body=body).execute()
0
0
0
e8d66f7590965688803098f582bdd62de5164810
1,760
py
Python
zcmds/cmds/common/obs_organize.py
zackees/zcmds
7868b078bc0a3489f0de8435c19f0c3c7913f50f
[ "MIT" ]
null
null
null
zcmds/cmds/common/obs_organize.py
zackees/zcmds
7868b078bc0a3489f0de8435c19f0c3c7913f50f
[ "MIT" ]
null
null
null
zcmds/cmds/common/obs_organize.py
zackees/zcmds
7868b078bc0a3489f0de8435c19f0c3c7913f50f
[ "MIT" ]
null
null
null
import os import shutil import traceback HOME_DIR = os.path.abspath(os.path.expanduser("~")) PATH_DEFAULT_OBS = os.path.join(HOME_DIR, "videos", "obs") DRY_RUN = False def _is_video_file(file_path: str) -> bool: """Returns True if the given file is a video file.""" _, ext = os.path.splitext(file_path.lower()) return ext in [".mp4", ".mkv"] def makedirs(new_dir: str, exist_ok: bool = False) -> None: """Make the given directory.""" print(f"make_dirs: {new_dir}") if DRY_RUN: return os.makedirs(new_dir, exist_ok=exist_ok) def movefile(src: str, dst: str) -> None: """Move the given file.""" print(f"movefile: {src} -> {dst}") if DRY_RUN: return shutil.move(src, dst) def organize(path: str = PATH_DEFAULT_OBS) -> None: """Organize the given path.""" paths = [os.path.join(path, p) for p in os.listdir(path) if _is_video_file(p)] for p in paths: try: name_ext = os.path.basename(p) name = os.path.splitext(name_ext)[0] ext = os.path.splitext(name_ext)[1] date_time = name.replace(" ", "_").split("_") new_dir = os.path.join(path, date_time[0]) new_path = os.path.join(new_dir, f"{date_time[1]}{ext}") makedirs(os.path.dirname(new_path), exist_ok=True) movefile(p, new_path) except Exception as e: traceback.print_exc() print(f"Could not process {p} because of {e}") def main() -> None: """Main entry point.""" reply = input( f"WARNING! This will organize all your videos in the obs path:\n {PATH_DEFAULT_OBS}\ncontinue? [y/n]: " ) if reply.lower() != "y": organize() if __name__ == "__main__": main()
28.852459
112
0.599432
import os import shutil import traceback HOME_DIR = os.path.abspath(os.path.expanduser("~")) PATH_DEFAULT_OBS = os.path.join(HOME_DIR, "videos", "obs") DRY_RUN = False def _is_video_file(file_path: str) -> bool: """Returns True if the given file is a video file.""" _, ext = os.path.splitext(file_path.lower()) return ext in [".mp4", ".mkv"] def makedirs(new_dir: str, exist_ok: bool = False) -> None: """Make the given directory.""" print(f"make_dirs: {new_dir}") if DRY_RUN: return os.makedirs(new_dir, exist_ok=exist_ok) def movefile(src: str, dst: str) -> None: """Move the given file.""" print(f"movefile: {src} -> {dst}") if DRY_RUN: return shutil.move(src, dst) def organize(path: str = PATH_DEFAULT_OBS) -> None: """Organize the given path.""" paths = [os.path.join(path, p) for p in os.listdir(path) if _is_video_file(p)] for p in paths: try: name_ext = os.path.basename(p) name = os.path.splitext(name_ext)[0] ext = os.path.splitext(name_ext)[1] date_time = name.replace(" ", "_").split("_") new_dir = os.path.join(path, date_time[0]) new_path = os.path.join(new_dir, f"{date_time[1]}{ext}") makedirs(os.path.dirname(new_path), exist_ok=True) movefile(p, new_path) except Exception as e: traceback.print_exc() print(f"Could not process {p} because of {e}") def main() -> None: """Main entry point.""" reply = input( f"WARNING! This will organize all your videos in the obs path:\n {PATH_DEFAULT_OBS}\ncontinue? [y/n]: " ) if reply.lower() != "y": organize() if __name__ == "__main__": main()
0
0
0
a004be6db5b89fa71ce5391401e2071c48d2e7ca
276
py
Python
Mundo1/aula8C.py
OliveiraVasconcelos/Python-CursoemVideo
bcca20d24b6af7bde9ce290b011cfa5abc0c1cc3
[ "MIT" ]
null
null
null
Mundo1/aula8C.py
OliveiraVasconcelos/Python-CursoemVideo
bcca20d24b6af7bde9ce290b011cfa5abc0c1cc3
[ "MIT" ]
null
null
null
Mundo1/aula8C.py
OliveiraVasconcelos/Python-CursoemVideo
bcca20d24b6af7bde9ce290b011cfa5abc0c1cc3
[ "MIT" ]
null
null
null
import math x = float(input('Digite um ângulo: ')) tangente = math.tan(math.radians(x)) cos = math.acos(math.radians(x)) seno = math.asin(math.radians(x)) print(f'O cosseno de {x} é {cos:.2f}') print(f'O seno de {x} é {seno:.2f}') print(f'A tangente de {x} é {tangente:.2f}')
34.5
45
0.65942
import math x = float(input('Digite um ângulo: ')) tangente = math.tan(math.radians(x)) cos = math.acos(math.radians(x)) seno = math.asin(math.radians(x)) print(f'O cosseno de {x} é {cos:.2f}') print(f'O seno de {x} é {seno:.2f}') print(f'A tangente de {x} é {tangente:.2f}')
0
0
0
e2412a6280e8cd18645880fc44e80ad1de79dc52
2,482
py
Python
recipes/Python/273844_Minimal_http_upload_cgi/recipe-273844.py
tdiprima/code
61a74f5f93da087d27c70b2efe779ac6bd2a3b4f
[ "MIT" ]
2,023
2017-07-29T09:34:46.000Z
2022-03-24T08:00:45.000Z
recipes/Python/273844_Minimal_http_upload_cgi/recipe-273844.py
unhacker/code
73b09edc1b9850c557a79296655f140ce5e853db
[ "MIT" ]
32
2017-09-02T17:20:08.000Z
2022-02-11T17:49:37.000Z
recipes/Python/273844_Minimal_http_upload_cgi/recipe-273844.py
unhacker/code
73b09edc1b9850c557a79296655f140ce5e853db
[ "MIT" ]
780
2017-07-28T19:23:28.000Z
2022-03-25T20:39:41.000Z
#!/usr/local/bin/python """This demonstrates a minimal http upload cgi. This allows a user to upload up to three files at once. It is trivial to change the number of files uploaded. This script has security risks. A user could attempt to fill a disk partition with endless uploads. If you have a system open to the public you would obviously want to limit the size and number of files written to the disk. """ import cgi import cgitb; cgitb.enable() import os, sys try: # Windows needs stdio set for binary mode. import msvcrt msvcrt.setmode (0, os.O_BINARY) # stdin = 0 msvcrt.setmode (1, os.O_BINARY) # stdout = 1 except ImportError: pass UPLOAD_DIR = "/tmp" HTML_TEMPLATE = """<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html><head><title>File Upload</title> <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1"> </head><body><h1>File Upload</h1> <form action="%(SCRIPT_NAME)s" method="POST" enctype="multipart/form-data"> File name: <input name="file_1" type="file"><br> File name: <input name="file_2" type="file"><br> File name: <input name="file_3" type="file"><br> <input name="submit" type="submit"> </form> </body> </html>""" def print_html_form (): """This prints out the html form. Note that the action is set to the name of the script which makes this is a self-posting form. In other words, this cgi both displays a form and processes it. """ print "content-type: text/html\n" print HTML_TEMPLATE % {'SCRIPT_NAME':os.environ['SCRIPT_NAME']} def save_uploaded_file (form_field, upload_dir): """This saves a file uploaded by an HTML form. The form_field is the name of the file input field from the form. For example, the following form_field would be "file_1": <input name="file_1" type="file"> The upload_dir is the directory where the file will be written. If no file was uploaded or if the field does not exist then this does nothing. """ form = cgi.FieldStorage() if not form.has_key(form_field): return fileitem = form[form_field] if not fileitem.file: return fout = file (os.path.join(upload_dir, fileitem.filename), 'wb') while 1: chunk = fileitem.file.read(100000) if not chunk: break fout.write (chunk) fout.close() save_uploaded_file ("file_1", UPLOAD_DIR) save_uploaded_file ("file_2", UPLOAD_DIR) save_uploaded_file ("file_3", UPLOAD_DIR) print_html_form ()
35.971014
82
0.699436
#!/usr/local/bin/python """This demonstrates a minimal http upload cgi. This allows a user to upload up to three files at once. It is trivial to change the number of files uploaded. This script has security risks. A user could attempt to fill a disk partition with endless uploads. If you have a system open to the public you would obviously want to limit the size and number of files written to the disk. """ import cgi import cgitb; cgitb.enable() import os, sys try: # Windows needs stdio set for binary mode. import msvcrt msvcrt.setmode (0, os.O_BINARY) # stdin = 0 msvcrt.setmode (1, os.O_BINARY) # stdout = 1 except ImportError: pass UPLOAD_DIR = "/tmp" HTML_TEMPLATE = """<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html><head><title>File Upload</title> <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1"> </head><body><h1>File Upload</h1> <form action="%(SCRIPT_NAME)s" method="POST" enctype="multipart/form-data"> File name: <input name="file_1" type="file"><br> File name: <input name="file_2" type="file"><br> File name: <input name="file_3" type="file"><br> <input name="submit" type="submit"> </form> </body> </html>""" def print_html_form (): """This prints out the html form. Note that the action is set to the name of the script which makes this is a self-posting form. In other words, this cgi both displays a form and processes it. """ print "content-type: text/html\n" print HTML_TEMPLATE % {'SCRIPT_NAME':os.environ['SCRIPT_NAME']} def save_uploaded_file (form_field, upload_dir): """This saves a file uploaded by an HTML form. The form_field is the name of the file input field from the form. For example, the following form_field would be "file_1": <input name="file_1" type="file"> The upload_dir is the directory where the file will be written. If no file was uploaded or if the field does not exist then this does nothing. """ form = cgi.FieldStorage() if not form.has_key(form_field): return fileitem = form[form_field] if not fileitem.file: return fout = file (os.path.join(upload_dir, fileitem.filename), 'wb') while 1: chunk = fileitem.file.read(100000) if not chunk: break fout.write (chunk) fout.close() save_uploaded_file ("file_1", UPLOAD_DIR) save_uploaded_file ("file_2", UPLOAD_DIR) save_uploaded_file ("file_3", UPLOAD_DIR) print_html_form ()
0
0
0
86c7c2703b64373394ab93187cb0ba9fcade85a4
16,837
py
Python
tools/converter/integration.py
zypeh/utf8rewind
46dd600a4716f80debbe4bbbe4a5b19daf0e2cb2
[ "MIT" ]
5
2021-02-07T08:19:59.000Z
2021-11-18T01:17:01.000Z
tools/converter/integration.py
zypeh/utf8rewind
46dd600a4716f80debbe4bbbe4a5b19daf0e2cb2
[ "MIT" ]
1
2020-05-25T08:59:35.000Z
2020-05-25T14:59:09.000Z
tools/converter/integration.py
zypeh/utf8rewind
46dd600a4716f80debbe4bbbe4a5b19daf0e2cb2
[ "MIT" ]
1
2020-06-06T10:30:33.000Z
2020-06-06T10:30:33.000Z
import argparse import datetime import os import re import sys import unicodedata import libs.header import libs.unicode import libs.utf8 if __name__ == '__main__': parser = argparse.ArgumentParser(description='Parse Unicode codepoint database and write integration tests.') parser.add_argument( '-v', '--verbose', dest = 'verbose', action = 'store_true', help = 'verbose output') parser.add_argument( '--casemapping', dest = 'casemapping', action = 'store_true', help = 'write case mapping tests') parser.add_argument( '--normalization', dest = 'normalization', action = 'store_true', help = 'write normalization tests') parser.add_argument( '--is-normalized', dest = 'isnormalized', action = 'store_true', help = 'write is-normalized tests') parser.add_argument( '--casefolding', dest = 'casefolding', action = 'store_true', help = 'write casefolding tests') args = parser.parse_args() if not args.casemapping and not args.normalization and not args.isnormalized and not args.casefolding: all = True else: all = False db = unicodedata.Database() db.loadFromFiles(None) if all or args.casemapping: suite = CaseMappingIntegrationSuite(db) suite.execute() if all or args.normalization: suite = NormalizationIntegrationSuite(db) suite.execute() if all or args.isnormalized: suite = IsNormalizedIntegrationSuite(db) suite.execute() if all or args.casefolding: suite = CaseFoldingIntegrationSuite(db) suite.execute()
28.440878
231
0.639247
import argparse import datetime import os import re import sys import unicodedata import libs.header import libs.unicode import libs.utf8 def codepointToUnicode(codepoint): return "U+%04X" % codepoint class IntegrationSuite: def __init__(self, db): self.db = db def open(self, filepath): script_path = os.path.dirname(os.path.realpath(sys.argv[0])) self.header = libs.header.Header(script_path + filepath) self.header.generatedNotice() self.header.newLine() self.header.writeLine("#include \"tests-base.hpp\"") self.header.newLine() def close(self): self.header.close() def execute(self): pass class CaseMappingIntegrationSuite(IntegrationSuite): def execute(self): print('Executing case mapping tests...') valid_blocks = [] print('Checking for valid blocks...') for b in db.blocks: for u in range(b.start, b.end + 1): if u in db.records: r = db.records[u] if r.uppercase or r.lowercase or r.titlecase: valid_blocks.append(b) break print('Writing case mapping tests...') self.open('/../../source/tests/integration-casemapping.cpp') self.header.writeLine("#include \"../helpers/helpers-casemapping.hpp\"") self.header.write("#include \"../helpers/helpers-locale.hpp\"") for b in valid_blocks: self.writeTest(range(b.start, b.end + 1), b.name) self.close() def writeTest(self, codepointRange, name): name = re.sub('[ \-]', '', name) if len(codepointRange) > 4000: for i in range(0, len(codepointRange), 4000): chunk = codepointRange[i:i + 4000] self.writeTest(chunk, name + "Part" + str((i / 4000) + 1)) return records = [] for i in codepointRange: if i not in self.db.records: continue records.append(self.db.records[i]) if len(records) == 0: return print("Writing tests " + codepointToUnicode(codepointRange[0]) + " - " + codepointToUnicode(codepointRange[len(codepointRange) - 1]) + " \"" + name + "\"") self.header.newLine() self.header.newLine() self.header.writeLine("TEST(CaseMapping, " + name + ")") self.header.writeLine("{") self.header.indent() for r in records: converted_codepoint = "0x%08X" % r.codepoint if r.codepoint == 0: self.header.writeLine("EXPECT_CASEMAPPING_CODEPOINT_NUL_EQ(" + converted_codepoint + ", \"" + r.name + "\", UTF8_LOCALE_DEFAULT);") else: if r.lowercase: converted_lowercase = libs.utf8.unicodeToUtf8(r.lowercase) else: converted_lowercase = libs.utf8.codepointToUtf8(r.codepoint)[0] if r.uppercase: converted_uppercase = libs.utf8.unicodeToUtf8(r.uppercase) else: converted_uppercase = libs.utf8.codepointToUtf8(r.codepoint)[0] if r.titlecase: converted_titlecase = libs.utf8.unicodeToUtf8(r.titlecase) else: converted_titlecase = libs.utf8.codepointToUtf8(r.codepoint)[0] self.header.writeLine("EXPECT_CASEMAPPING_CODEPOINT_EQ(" + converted_codepoint + ", \"" + converted_lowercase + "\", \"" + converted_uppercase + "\", \"" + converted_titlecase + "\", \"" + r.name + "\", UTF8_LOCALE_DEFAULT);") self.header.outdent() self.header.write("}") class NormalizationEntry: def __init__(self): self.codepoint = 0 self.source = "" self.nfc = "" self.nfd = "" self.nfkc = "" self.nfkd = "" def __str__(self): return "{ codepoint " + hex(self.codepoint) + " source " + self.source + " nfc " + self.nfc + " nfd " + self.nfd + " nfkc " + self.nfkc + " nfkd " + self.nfkd + " }"; def parse(self, entry): if len(entry.matches[0]) == 1: self.codepoint = int(entry.matches[0][0], 16) self.source = self.matchToString(entry.matches[0]) self.nfc = self.matchToString(entry.matches[1]) self.nfd = self.matchToString(entry.matches[2]) self.nfkc = self.matchToString(entry.matches[3]) self.nfkd = self.matchToString(entry.matches[4]) def matchToString(self, match): codepoints = [] for m in match: codepoints.append(int(m, 16)) return libs.utf8.unicodeToUtf8(codepoints) class NormalizationGroup: def __init__(self, block): self.block = block self.entries = [] class NormalizationSection: def __init__(self, identifier, title): self.identifier = identifier self.title = title self.entries = [] class NormalizationIntegrationSuite(IntegrationSuite): def __init__(self, db): self.db = db self.current = None self.sections = [] self.blockGroups = dict() self.exclusions = CompositionExclusionIntegrationSuite(db) def execute(self): print('Executing normalization tests...') script_path = os.path.dirname(os.path.realpath(sys.argv[0])) document_normalization = libs.unicode.UnicodeDocument() document_normalization.parse(script_path + '/data/NormalizationTest.txt') document_normalization.accept(self) self.exclusions.execute() print('Writing normalization tests...') self.open('/../../source/tests/integration-normalization.cpp') self.header.writeLine("#include \"../helpers/helpers-normalization.hpp\"") self.header.write("#include \"../helpers/helpers-strings.hpp\"") section_mapping = { 'Part0': self.writeSpecificCasesSection, 'Part1': self.writeBlockGroupsSection, 'Part2': self.writeDefaultSection, 'Part3': self.writeDefaultSection, } for s in self.sections: print(s.title + " (" + s.identifier + "):") section_mapping[s.identifier](s) self.writeNormalizationTest(self.exclusions.entries, "Composition exclusions", 100) self.close() def writeDefaultSection(self, section): if len(section.entries) == 0: return self.writeNormalizationTest(section.entries, section.title, 100) def writeSpecificCasesSection(self, section): if len(section.entries) == 0: return normalization = [] ordering = [] for e in section.entries: if e.codepoint == 0: ordering.append(e) else: normalization.append(e) self.writeNormalizationTest(normalization, section.title + " Codepoints") self.writeNormalizationTest(ordering, section.title + " Ordering") def writeBlockGroupsSection(self, section): groups = dict() for u in section.entries: e = self.db.records[u.codepoint] if e.block.name in groups: group = groups[e.block.name] else: group = NormalizationGroup(e.block) groups[e.block.name] = group group.entries.append(u) block_groups = sorted(groups.items(), key = lambda item: item[1].block.start) for g in block_groups: if g[1].block.start == 0xAC00 and g[1].block.end == 0xD7AF: # ignore hangul syllables continue self.writeNormalizationTest(g[1].entries, "Characters " + g[0]) def writeNormalizationTest(self, entries, title, limit = 2000): if len(entries) > limit: for i in range(0, len(entries), limit): chunk = entries[i:i + limit] self.writeNormalizationTest(chunk, title + " Part" + str(int(i / limit) + 1), limit) return title = re.sub('[^\w ]', '', title.title()).replace(' ', '') print("Writing tests \"" + title + "\"") self.header.newLine() self.header.newLine() self.header.writeLine("TEST(Normalization, " + title + ")") self.header.writeLine("{") self.header.indent() for e in entries: self.header.writeIndentation() if e.codepoint == 0: self.header.write("CHECK_NORMALIZE_SEQUENCE") self.header.write("(\"" + e.source + "\", \"" + e.nfd + "\", \"" + e.nfc + "\", \"" + e.nfkd + "\", \"" + e.nfkc + "\");") else: self.header.write("CHECK_NORMALIZE_CODEPOINT") self.header.write("(0x" + format(e.codepoint, '08X') + ", \"" + e.nfd + "\", \"" + e.nfc + "\", \"" + e.nfkd + "\", \"" + e.nfkc + "\", \"" + self.db.records[e.codepoint].name + "\");") self.header.newLine() self.header.outdent() self.header.write("}") def visitDocument(self, document): print('Parsing normalization tests...') return True def visitSection(self, section): self.current = NormalizationSection(section.identifier, section.title) self.sections.append(self.current) return True def visitEntry(self, entry): normalization = NormalizationEntry() normalization.parse(entry) self.current.entries.append(normalization) return True class CompositionExclusionIntegrationSuite(IntegrationSuite): def __init__(self, db): self.db = db self.entries = [] def execute(self): print('Executing composition exclusion tests...') script_path = os.path.dirname(os.path.realpath(sys.argv[0])) document_exclusions = libs.unicode.UnicodeDocument() document_exclusions.parse(script_path + '/data/CompositionExclusions.txt') document_exclusions.accept(self) def visitDocument(self, document): return True def visitSection(self, section): return True def visitEntry(self, entry): codepoint = int(entry.matches[0][0], 16) if codepoint in self.db.records: record = db.records[codepoint] entry = NormalizationEntry() entry.codepoint = record.codepoint entry.source = libs.utf8.codepointToUtf8Hex(record.codepoint) entry.nfd = libs.utf8.unicodeToUtf8(record.decomposedNFD) entry.nfc = entry.nfd entry.nfkd = libs.utf8.unicodeToUtf8(record.decomposedNFD) entry.nfkc = entry.nfkd self.entries.append(entry) return True class QuickCheckEntry: def __init__(self, codepoint): self.codepoint = codepoint self.nfc = "YES" self.nfd = "YES" self.nfkc = "YES" self.nfkd = "YES" class QuickCheckGroup: def __init__(self, block): self.block = block self.entries = [] class IsNormalizedIntegrationSuite(IntegrationSuite): def __init__(self, db): self.db = db self.entries = dict() self.groups = dict() def execute(self): print('Parsing quickcheck records...') records_list = [ { "record": "qcNFCRecords", "target": "nfc" }, { "record": "qcNFDRecords", "target": "nfd" }, { "record": "qcNFKCRecords", "target": "nfkc" }, { "record": "qcNFKDRecords", "target": "nfkd" }, ] value_map = { 1: "MAYBE", 2: "NO" } for i in records_list: for r in db.__dict__[i["record"]]: str_value = value_map[r.value] for c in range(r.start, r.start + r.count + 1): if c in self.entries: e = self.entries[c] else: e = QuickCheckEntry(c) self.entries[c] = e e.__dict__[i["target"]] = str_value for e in self.entries.values(): block = self.db.getBlockByCodepoint(e.codepoint) if block in self.groups: group = self.groups[block] else: group = QuickCheckGroup(block) self.groups[block] = group group.entries.append(e) print('Writing is-normalized tests...') self.open('/../../source/tests/integration-isnormalized.cpp') self.header.write("#include \"../helpers/helpers-normalization.hpp\"") for key, value in sorted(self.groups.items(), key = lambda block: block[0].start): if key.start == 0xAC00 and key.end == 0xD7AF: # ignore hangul syllables continue self.writeBlockSection(sorted(value.entries, key = lambda entry: entry.codepoint), key.name) def writeBlockSection(self, entries, title, limit = 2000): if len(entries) > limit: for i in range(0, len(entries), limit): chunk = entries[i:i + limit] self.writeBlockSection(chunk, title + " Part" + str((i / limit) + 1), limit) return title = re.sub('[^\w ]', '', title.title()).replace(' ', '') print("Writing tests \"" + title + "\"") self.header.newLine() self.header.newLine() self.header.writeLine("TEST(IsNormalized, " + title + ")") self.header.writeLine("{") self.header.indent() for e in entries: self.header.writeLine("CHECK_IS_NORMALIZED(0x" + format(e.codepoint, '08X') + ", " + e.nfd + ", " + e.nfc + ", " + e.nfkd + ", " + e.nfkc + ", \"" + self.db.records[e.codepoint].name + "\");") self.header.outdent() self.header.write("}") class CaseFoldingRecord(): def __init__(self): self.codePoint = 0 self.type = '' self.folded = [] def __str__(self): return '{ codePoint ' + hex(self.codePoint) + ' type ' + self.type + ' folded ' + str(self.folded) + ' }' def parse(self, entry): self.codePoint = int(entry.matches[0][0], 16) types = { 'C': 'Common', 'F': 'Full', 'S': 'Simple', 'T': 'Turkish' } self.type = types[entry.matches[1][0]] for m in entry.matches[2]: self.folded.append(int(m, 16)) class CaseFoldingIntegrationSuite(IntegrationSuite): def __init__(self, db): self.db = db self.records = [] def execute(self): print('Parsing case folding records...') script_path = os.path.dirname(os.path.realpath(sys.argv[0])) document_exclusions = libs.unicode.UnicodeDocument() document_exclusions.parse(script_path + '/data/CaseFolding.txt') document_exclusions.accept(self) self.open('/../../source/tests/integration-casefolding.cpp') self.header.writeLine("#include \"../helpers/helpers-casemapping.hpp\"") self.header.write("#include \"../helpers/helpers-locale.hpp\"") tests_turkish = [] for b in db.blocks: tests = [] for r in self.records: if r.codePoint >= b.start and r.codePoint <= b.end: if r.type in ['Common', 'Full']: tests.append(r) elif r.type == 'Turkish': tests_turkish.append(r) if len(tests) > 0: self.writeTest(tests, b.name) if len(tests_turkish) > 0: print("Writing tests to \"TurkishLocale\"") self.header.newLine() self.header.newLine() self.header.writeLine("TEST(CaseFolding, TurkishAndAzeriLatinLocale)") self.header.writeLine("{") self.header.indent() for r in tests_turkish: self.header.writeLine("EXPECT_CASEFOLDING_EQ(0x" + format(r.codePoint, '08X') + ", \"" + libs.utf8.unicodeToUtf8(r.folded) + "\", \"" + self.db.records[r.codePoint].name + "\", UTF8_LOCALE_TURKISH_AND_AZERI_LATIN);") self.header.outdent() self.header.write("}") def writeTest(self, records, name): name = re.sub('[ \-]', '', name) if len(records) > 4000: for i in range(0, len(records), 4000): chunk = records[i:i + 4000] self.writeTest(chunk, name + "Part" + str((i / 4000) + 1)) return print("Writing tests to \"" + name + "\"") self.header.newLine() self.header.newLine() self.header.writeLine("TEST(CaseFolding, " + name + ")") self.header.writeLine("{") self.header.indent() for r in records: self.header.writeLine("EXPECT_CASEFOLDING_EQ(0x" + format(r.codePoint, '08X') + ", \"" + libs.utf8.unicodeToUtf8(r.folded) + "\", \"" + self.db.records[r.codePoint].name + "\", UTF8_LOCALE_DEFAULT);") self.header.outdent() self.header.write("}") def visitDocument(self, document): return True def visitSection(self, section): return True def visitEntry(self, entry): record = CaseFoldingRecord() record.parse(entry) self.records.append(record) return True if __name__ == '__main__': parser = argparse.ArgumentParser(description='Parse Unicode codepoint database and write integration tests.') parser.add_argument( '-v', '--verbose', dest = 'verbose', action = 'store_true', help = 'verbose output') parser.add_argument( '--casemapping', dest = 'casemapping', action = 'store_true', help = 'write case mapping tests') parser.add_argument( '--normalization', dest = 'normalization', action = 'store_true', help = 'write normalization tests') parser.add_argument( '--is-normalized', dest = 'isnormalized', action = 'store_true', help = 'write is-normalized tests') parser.add_argument( '--casefolding', dest = 'casefolding', action = 'store_true', help = 'write casefolding tests') args = parser.parse_args() if not args.casemapping and not args.normalization and not args.isnormalized and not args.casefolding: all = True else: all = False db = unicodedata.Database() db.loadFromFiles(None) if all or args.casemapping: suite = CaseMappingIntegrationSuite(db) suite.execute() if all or args.normalization: suite = NormalizationIntegrationSuite(db) suite.execute() if all or args.isnormalized: suite = IsNormalizedIntegrationSuite(db) suite.execute() if all or args.casefolding: suite = CaseFoldingIntegrationSuite(db) suite.execute()
13,717
190
1,369
abefb5b34cf7c2c8dc3c3cbfe3542add3720d435
803
py
Python
notebooks/__code/__all/config_handler.py
mabrahamdevops/python_notebooks
6d5e7383b60cc7fd476f6e85ab93e239c9c32330
[ "BSD-3-Clause" ]
null
null
null
notebooks/__code/__all/config_handler.py
mabrahamdevops/python_notebooks
6d5e7383b60cc7fd476f6e85ab93e239c9c32330
[ "BSD-3-Clause" ]
null
null
null
notebooks/__code/__all/config_handler.py
mabrahamdevops/python_notebooks
6d5e7383b60cc7fd476f6e85ab93e239c9c32330
[ "BSD-3-Clause" ]
null
null
null
try: from PyQt4.QtCore import QSettings except ImportError: from PyQt5.QtCore import QSettings
24.333333
61
0.603985
try: from PyQt4.QtCore import QSettings except ImportError: from PyQt5.QtCore import QSettings def init_config(): settings = QSettings('settings.ini', QSettings.IniFormat) def save_config(key='', value='', group=''): settings = QSettings('settings.ini') if not (group == ''): settings.beginGroup(group) if value == '': value = None settings.setValue(key, value) if not (group == ''): settings.endGroup() def load_config(key='', default_value='', group=''): settings = QSettings('settings.ini') if not (group == ''): settings.beginGroup(group) value = settings.value(key) settings.endGroup() if (value is None) or (value == 'None'): return default_value else: return value
614
0
81
15e381d0418ee10c4a423de63fd47788b4712bed
245
py
Python
app/service_validators/base_validator.py
OPEN-NEXT/import-export
db3e720f29cdc30846667f7cd6ba3cc653146fc4
[ "MIT" ]
null
null
null
app/service_validators/base_validator.py
OPEN-NEXT/import-export
db3e720f29cdc30846667f7cd6ba3cc653146fc4
[ "MIT" ]
25
2021-03-09T15:27:44.000Z
2021-06-09T10:09:43.000Z
app/service_validators/base_validator.py
wikifactory/import-export
f7775d52d23b06a47cdaad13ae48e7727bb850fd
[ "MIT" ]
null
null
null
from re import search from typing import List, Optional, Pattern
27.222222
79
0.730612
from re import search from typing import List, Optional, Pattern def regex_validator( url: str, *, service_id: str, regexes: List[Pattern] ) -> Optional[str]: return service_id if any(search(regex, url) for regex in regexes) else None
156
0
23
0a8a2003d5158da4a6b7bb11a36556ab218b3b4b
1,475
py
Python
sila_library/sila2lib/fdl_parser/data_type_response.py
lemmi25/sila2lib
ac4db8ee7fe6c99bde498151a539b25be2021d2f
[ "MIT" ]
null
null
null
sila_library/sila2lib/fdl_parser/data_type_response.py
lemmi25/sila2lib
ac4db8ee7fe6c99bde498151a539b25be2021d2f
[ "MIT" ]
null
null
null
sila_library/sila2lib/fdl_parser/data_type_response.py
lemmi25/sila2lib
ac4db8ee7fe6c99bde498151a539b25be2021d2f
[ "MIT" ]
null
null
null
""" __________________________________________________________________________________________________ :project: SiLA2_python :details: Response data type in a SiLA Command, Property, Intermediate, ... :file: data_type_response.py :authors: Timm Severin :date: (creation) 20190820 :date: (last modification) 20190820 __________________________________________________________________________________________________ **Copyright**: This file is provided "AS IS" with NO WARRANTY OF ANY KIND, INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. For further Information see LICENSE file that comes with this distribution. __________________________________________________________________________________________________ """ # import library packages from .data_type_parameter import ParameterDataType class ResponseDataType(ParameterDataType): """ The class for responses. This is essentially identical to a :class:`~.ParameterDataType`, however can be handled differently in the final application and thus exists as its own class/object. .. note:: When checking whether an object is a response or a parameter, note that :func:`isinstance(obj, ParameterDataType)` will also return true if the object is a :class:`ResponseDataType`, since they are derived from each other. Use ``type(obj) is ParameterDataType`` for a precise check. """
37.820513
120
0.772203
""" __________________________________________________________________________________________________ :project: SiLA2_python :details: Response data type in a SiLA Command, Property, Intermediate, ... :file: data_type_response.py :authors: Timm Severin :date: (creation) 20190820 :date: (last modification) 20190820 __________________________________________________________________________________________________ **Copyright**: This file is provided "AS IS" with NO WARRANTY OF ANY KIND, INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. For further Information see LICENSE file that comes with this distribution. __________________________________________________________________________________________________ """ # import library packages from .data_type_parameter import ParameterDataType class ResponseDataType(ParameterDataType): """ The class for responses. This is essentially identical to a :class:`~.ParameterDataType`, however can be handled differently in the final application and thus exists as its own class/object. .. note:: When checking whether an object is a response or a parameter, note that :func:`isinstance(obj, ParameterDataType)` will also return true if the object is a :class:`ResponseDataType`, since they are derived from each other. Use ``type(obj) is ParameterDataType`` for a precise check. """
0
0
0
5c9e3dccd4c10b46579b853910c08110a0cbf6bd
1,939
py
Python
full/api_reader.py
PythonDayMX/MLaaS
3a109f1e83edabb4044c47e1cfa2a39c6227685c
[ "MIT" ]
8
2018-11-30T05:05:10.000Z
2021-04-05T07:02:53.000Z
full/api_reader.py
PythonDayMX/MLaaS
3a109f1e83edabb4044c47e1cfa2a39c6227685c
[ "MIT" ]
null
null
null
full/api_reader.py
PythonDayMX/MLaaS
3a109f1e83edabb4044c47e1cfa2a39c6227685c
[ "MIT" ]
2
2018-11-30T17:09:05.000Z
2018-11-30T19:20:05.000Z
# =============================================================== # Author: Rodolfo Ferro # Email: ferro@cimat.mx # Twitter: @FerroRodolfo # # ABOUT COPYING OR USING PARTIAL INFORMATION: # This script was originally created by Rodolfo Ferro, for # his workshop in PythonDay Mexico 2018 at CUCEA in Gdl, Mx. # Any explicit usage of this script or its contents is granted # according to the license provided and its conditions. # =============================================================== # -*- coding: utf-8 -*- import requests import pprint import json def get_json(url, filename): """ Download JSON response url for testing. """ # Get response: response = requests.get(url) # If response's status is 200: if response.status_code == requests.codes.ok: # Pretty print response: pprint.pprint(response.json()) # Save response into a JSON file: with open(filename, 'wt') as output: output.write(response.text) return def get_prediction(url, filename): """ Download JSON response url for prediction. """ # Set metadata: headers = {'Content-type': 'application/json'} input_values = {'sepal_length': 6.4, 'sepal_width': 3.2, 'petal_length': 4.5, 'petal_width': 1.5} # Get response: response = requests.post(url, json=input_values, headers=headers) # If response's status is 200: if response.status_code == requests.codes.ok: # Pretty print response: pprint.pprint(response.json()) # Save response into a JSON file: with open(filename, 'wt') as output: output.write(response.text) return if __name__ == '__main__': # Try out our JSON response downloader: get_json('http://localhost:5000/api/v0.0', 'response.json') get_prediction('http://localhost:5000/api/v0.0/predict', 'response.json')
28.101449
77
0.598762
# =============================================================== # Author: Rodolfo Ferro # Email: ferro@cimat.mx # Twitter: @FerroRodolfo # # ABOUT COPYING OR USING PARTIAL INFORMATION: # This script was originally created by Rodolfo Ferro, for # his workshop in PythonDay Mexico 2018 at CUCEA in Gdl, Mx. # Any explicit usage of this script or its contents is granted # according to the license provided and its conditions. # =============================================================== # -*- coding: utf-8 -*- import requests import pprint import json def get_json(url, filename): """ Download JSON response url for testing. """ # Get response: response = requests.get(url) # If response's status is 200: if response.status_code == requests.codes.ok: # Pretty print response: pprint.pprint(response.json()) # Save response into a JSON file: with open(filename, 'wt') as output: output.write(response.text) return def get_prediction(url, filename): """ Download JSON response url for prediction. """ # Set metadata: headers = {'Content-type': 'application/json'} input_values = {'sepal_length': 6.4, 'sepal_width': 3.2, 'petal_length': 4.5, 'petal_width': 1.5} # Get response: response = requests.post(url, json=input_values, headers=headers) # If response's status is 200: if response.status_code == requests.codes.ok: # Pretty print response: pprint.pprint(response.json()) # Save response into a JSON file: with open(filename, 'wt') as output: output.write(response.text) return if __name__ == '__main__': # Try out our JSON response downloader: get_json('http://localhost:5000/api/v0.0', 'response.json') get_prediction('http://localhost:5000/api/v0.0/predict', 'response.json')
0
0
0
1647294741a7ef54149b7e1a9153b9c05311ea75
229
py
Python
PyBullet_experiments/experiments/laber_sac_halfchee.py
AnonymousLaBER/LaBER
af9da8ffda0654e2021de20cb162ef71dc9b9d6c
[ "MIT" ]
3
2021-10-11T22:25:02.000Z
2022-03-04T20:00:56.000Z
PyBullet_experiments/experiments/laber_sac_halfchee.py
AnonymousLaBER/LaBER
af9da8ffda0654e2021de20cb162ef71dc9b9d6c
[ "MIT" ]
null
null
null
PyBullet_experiments/experiments/laber_sac_halfchee.py
AnonymousLaBER/LaBER
af9da8ffda0654e2021de20cb162ef71dc9b9d6c
[ "MIT" ]
null
null
null
import pybullet_envs from stable_baselines3 import SAC_LABER model = SAC_LABER('MlpPolicy', 'HalfCheetahBulletEnv-v0', verbose=1, tensorboard_log="results/long_SAC_LABER_HalfCheetahBullet/") model.learn(total_timesteps=3000000)
38.166667
129
0.847162
import pybullet_envs from stable_baselines3 import SAC_LABER model = SAC_LABER('MlpPolicy', 'HalfCheetahBulletEnv-v0', verbose=1, tensorboard_log="results/long_SAC_LABER_HalfCheetahBullet/") model.learn(total_timesteps=3000000)
0
0
0
f0ed52cc13fd5b72d59358509be5b900dc005beb
8,030
py
Python
testapplehealthdata.py
jclark017/applehealthdata
da825124011fa46f8309203b8a25b80ab5f062e8
[ "MIT" ]
56
2016-06-05T15:41:02.000Z
2022-03-02T21:51:50.000Z
testapplehealthdata.py
jclark017/applehealthdata
da825124011fa46f8309203b8a25b80ab5f062e8
[ "MIT" ]
1
2021-12-30T14:06:18.000Z
2021-12-30T14:06:18.000Z
testapplehealthdata.py
jclark017/applehealthdata
da825124011fa46f8309203b8a25b80ab5f062e8
[ "MIT" ]
21
2017-02-04T13:06:20.000Z
2021-12-29T18:56:42.000Z
# -*- coding: utf-8 -*- """ testapplehealthdata.py: tests for the applehealthdata.py Copyright (c) 2016 Nicholas J. Radcliffe Licence: MIT """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import os import re import shutil import sys import unittest from collections import Counter from applehealthdata import (HealthDataExtractor, format_freqs, format_value, abbreviate, encode) CLEAN_UP = True VERBOSE = False def get_base_dir(): """ Return the directory containing this test file, which will (normally) be the applyhealthdata directory also containing the testdata dir. """ return os.path.split(os.path.abspath(__file__))[0] def get_testdata_dir(): """Return the full path to the testdata directory""" return os.path.join(get_base_dir(), 'testdata') def get_tmp_dir(): """Return the full path to the tmp directory""" return os.path.join(get_base_dir(), 'tmp') def remove_any_tmp_dir(): """ Remove the temporary directory if it exists. Returns its location either way. """ tmp_dir = get_tmp_dir() if os.path.exists(tmp_dir): shutil.rmtree(tmp_dir) return tmp_dir def make_tmp_dir(): """ Remove any existing tmp directory. Create empty tmp direcory. Return the location of the tmp dir. """ tmp_dir = remove_any_tmp_dir() os.mkdir(tmp_dir) return tmp_dir def copy_test_data(): """ Copy the test data export6s3sample.xml from testdata directory to tmp directory. """ tmp_dir = make_tmp_dir() name = 'export6s3sample.xml' in_xml_file = os.path.join(get_testdata_dir(), name) out_xml_file = os.path.join(get_tmp_dir(), name) shutil.copyfile(in_xml_file, out_xml_file) return out_xml_file if __name__ == '__main__': unittest.main()
31.490196
76
0.573101
# -*- coding: utf-8 -*- """ testapplehealthdata.py: tests for the applehealthdata.py Copyright (c) 2016 Nicholas J. Radcliffe Licence: MIT """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import os import re import shutil import sys import unittest from collections import Counter from applehealthdata import (HealthDataExtractor, format_freqs, format_value, abbreviate, encode) CLEAN_UP = True VERBOSE = False def get_base_dir(): """ Return the directory containing this test file, which will (normally) be the applyhealthdata directory also containing the testdata dir. """ return os.path.split(os.path.abspath(__file__))[0] def get_testdata_dir(): """Return the full path to the testdata directory""" return os.path.join(get_base_dir(), 'testdata') def get_tmp_dir(): """Return the full path to the tmp directory""" return os.path.join(get_base_dir(), 'tmp') def remove_any_tmp_dir(): """ Remove the temporary directory if it exists. Returns its location either way. """ tmp_dir = get_tmp_dir() if os.path.exists(tmp_dir): shutil.rmtree(tmp_dir) return tmp_dir def make_tmp_dir(): """ Remove any existing tmp directory. Create empty tmp direcory. Return the location of the tmp dir. """ tmp_dir = remove_any_tmp_dir() os.mkdir(tmp_dir) return tmp_dir def copy_test_data(): """ Copy the test data export6s3sample.xml from testdata directory to tmp directory. """ tmp_dir = make_tmp_dir() name = 'export6s3sample.xml' in_xml_file = os.path.join(get_testdata_dir(), name) out_xml_file = os.path.join(get_tmp_dir(), name) shutil.copyfile(in_xml_file, out_xml_file) return out_xml_file class TestAppleHealthDataExtractor(unittest.TestCase): @classmethod def tearDownClass(cls): """Clean up by removing the tmp directory, if it exists.""" if CLEAN_UP: remove_any_tmp_dir() def check_file(self, filename): expected_output = os.path.join(get_testdata_dir(), filename) actual_output = os.path.join(get_tmp_dir(), filename) with open(expected_output) as f: expected = f.read() with open(actual_output) as f: actual = f.read() self.assertEqual((filename, expected), (filename, actual)) def test_tiny_reference_extraction(self): path = copy_test_data() data = HealthDataExtractor(path, verbose=VERBOSE) data.extract() for kind in ('StepCount', 'DistanceWalkingRunning', 'Workout', 'ActivitySummary'): self.check_file('%s.csv' % kind) def test_format_freqs(self): counts = Counter() self.assertEqual(format_freqs(counts), '') counts['one'] += 1 self.assertEqual(format_freqs(counts), 'one: 1') counts['one'] += 1 self.assertEqual(format_freqs(counts), 'one: 2') counts['two'] += 1 counts['three'] += 1 self.assertEqual(format_freqs(counts), '''one: 2 three: 1 two: 1''') def test_format_null_values(self): for dt in ('s', 'n', 'd', 'z'): # Note: even an illegal type, z, produces correct output for # null values. # Questionable, but we'll leave as a feature self.assertEqual(format_value(None, dt), '') def test_format_numeric_values(self): cases = { '0': '0', '3': '3', '-1': '-1', '2.5': '2.5', } for (k, v) in cases.items(): self.assertEqual((k, format_value(k, 'n')), (k, v)) def test_format_date_values(self): hearts = 'any string not need escaping or quoting; even this: ♥♥' cases = { '01/02/2000 12:34:56': '01/02/2000 12:34:56', hearts: hearts, } for (k, v) in cases.items(): self.assertEqual((k, format_value(k, 'd')), (k, v)) def test_format_string_values(self): cases = { 'a': '"a"', '': '""', 'one "2" three': r'"one \"2\" three"', r'1\2\3': r'"1\\2\\3"', } for (k, v) in cases.items(): self.assertEqual((k, format_value(k, 's')), (k, v)) def test_abbreviate(self): changed = { 'HKQuantityTypeIdentifierHeight': 'Height', 'HKQuantityTypeIdentifierStepCount': 'StepCount', 'HK*TypeIdentifierStepCount': 'StepCount', 'HKCharacteristicTypeIdentifierDateOfBirth': 'DateOfBirth', 'HKCharacteristicTypeIdentifierBiologicalSex': 'BiologicalSex', 'HKCharacteristicTypeIdentifierBloodType': 'BloodType', 'HKCharacteristicTypeIdentifierFitzpatrickSkinType': 'FitzpatrickSkinType', } unchanged = [ '', 'a', 'aHKQuantityTypeIdentifierHeight', 'HKQuantityTypeIdentityHeight', ] for (k, v) in changed.items(): self.assertEqual((k, abbreviate(k)), (k, v)) self.assertEqual((k, abbreviate(k, False)), (k, k)) for k in unchanged: self.assertEqual((k, abbreviate(k)), (k, k)) def test_encode(self): # This test looks strange, but because of the import statments # from __future__ import unicode_literals # in Python 2, type('a') is unicode, and the point of the encode # function is to ensure that it has been converted to a UTF-8 string # before writing to file. self.assertEqual(type(encode('a')), str) def test_extracted_reference_stats(self): path = copy_test_data() data = HealthDataExtractor(path, verbose=VERBOSE) self.assertEqual(data.n_nodes, 20) expectedRecordCounts = [ ('DistanceWalkingRunning', 5), ('StepCount', 10), ] self.assertEqual(sorted(data.record_types.items()), expectedRecordCounts) self.assertEqual(data.n_nodes, 20) expectedOtherCounts = [ ('ActivitySummary', 2), ('Workout', 1), ] self.assertEqual(sorted(data.other_types.items()), expectedOtherCounts) expectedTagCounts = [ ('ActivitySummary', 2), ('ExportDate', 1), ('Me', 1), ('Record', 15), ('Workout', 1), ] self.assertEqual(sorted(data.tags.items()), expectedTagCounts) expectedFieldCounts = [ ('HKCharacteristicTypeIdentifierBiologicalSex', 1), ('HKCharacteristicTypeIdentifierBloodType', 1), ('HKCharacteristicTypeIdentifierDateOfBirth', 1), ('HKCharacteristicTypeIdentifierFitzpatrickSkinType', 1), ('activeEnergyBurned', 2), ('activeEnergyBurnedGoal', 2), ('activeEnergyBurnedUnit', 2), ('appleExerciseTime', 2), ('appleExerciseTimeGoal', 2), ('appleStandHours', 2), ('appleStandHoursGoal', 2), ('creationDate', 16), ('dateComponents', 2), ('duration', 1), ('durationUnit', 1), ('endDate', 16), ('sourceName', 16), ('sourceVersion', 1), ('startDate', 16), ('totalDistance', 1), ('totalDistanceUnit', 1), ('totalEnergyBurned', 1), ('totalEnergyBurnedUnit', 1), ('type', 15), ('unit', 15), ('value', 16), ('workoutActivityType', 1) ] self.assertEqual(sorted(data.fields.items()), expectedFieldCounts) if __name__ == '__main__': unittest.main()
5,578
470
23
afb0bae78a861d61cb7bff15ba2ae3ac74bd95d9
4,024
py
Python
tests/test_books.py
FilippoPisello/Books-Read-DB
f68b33861dc66222d23d37b03e1abf1d9623c0ba
[ "MIT" ]
null
null
null
tests/test_books.py
FilippoPisello/Books-Read-DB
f68b33861dc66222d23d37b03e1abf1d9623c0ba
[ "MIT" ]
null
null
null
tests/test_books.py
FilippoPisello/Books-Read-DB
f68b33861dc66222d23d37b03e1abf1d9623c0ba
[ "MIT" ]
null
null
null
import unittest from datetime import date from controller.books import Book, BookRead if __name__ == "__main__": unittest.main()
33.815126
87
0.582256
import unittest from datetime import date from controller.books import Book, BookRead class TestBooks(unittest.TestCase): def setUp(self) -> None: self.book1 = Book("Title", "Lorem", "Ipsum", 120, "Genre", False, None) self.book2 = Book("title", "lorem", "ipsum", 120, "genre", True, ["Yes", "nO"]) def test_capitalization(self): self.assertEqual(self.book1.title, "Title") self.assertEqual(self.book2.title, "Title") self.assertEqual(self.book1.author_name, "Lorem") self.assertEqual(self.book2.author_name, "Lorem") self.assertEqual(self.book1.author_surname, "Ipsum") self.assertEqual(self.book2.author_surname, "Ipsum") self.assertEqual(self.book1.genre, "Genre") self.assertEqual(self.book2.genre, "Genre") self.assertIsNone(self.book1.tags) self.assertEqual(self.book2.tags, ["yes", "no"]) def test_ownedint(self): self.assertEqual(self.book1.owned, 0) self.assertEqual(self.book2.owned, 1) def test_author(self): self.assertEqual(self.book1.author, "Lorem Ipsum") self.assertEqual(self.book2.author, "Lorem Ipsum") def test_fromdict(self): """Test that Book class instance is correctly created from dict""" dict1 = { "Book title": "Lorem", "Author Name": "Ipsum", "Author Surname": "Dolor", "Pages": "1", "Genre": "Crime", "Owned": True, "Tags": None, "Starting date": "2021-10-18", "Ending date": "2021-10-20", "Score": "3", "Comment": None, } book1 = Book.from_gui_dict(dict1) self.assertEqual(book1.title, "Lorem") self.assertEqual(book1.author_name, "Ipsum") self.assertEqual(book1.author_surname, "Dolor") self.assertEqual(book1.pages, 1) self.assertEqual(book1.genre, "Crime") self.assertEqual(book1.owned, True) self.assertEqual(book1.tags, None) dict2 = { "Book title": "Lorem", "Author Name": "Ipsum", "Author Surname": "Dolor", "Pages": "1", "Genre": "Crime", "Owned": True, "Tags": "Lorem,Ipsum, Dolor ", } book2 = Book.from_gui_dict(dict2) self.assertEqual(book2.tags, ["lorem", "ipsum", "dolor"]) def test_strtags(self): self.assertEqual(self.book1.string_tags, None) self.assertEqual(self.book2.string_tags, "yes, no") class TestBookRead(unittest.TestCase): def setUp(self) -> None: date1 = date(2020, 1, 1) date2 = date(2020, 1, 30) date3 = date(2020, 2, 15) self.read1 = BookRead(1, date1, date2, 8, "Lorem") self.read2 = BookRead(2, date2, date3, 1, None) def test_bookreadid(self): self.assertEqual(self.read1.bookread_id, "1-20200101") self.assertEqual(self.read2.bookread_id, "2-20200130") def test_daystoread(self): self.assertEqual(self.read1.days_to_read, 30) self.assertEqual(self.read2.days_to_read, 17) def test_fromdict(self): """Test that Bookread class instance is correctly created from dict""" dict1 = { "Book title": "Lorem", "Author Name": "Ipsum", "Author Surname": "Dolor", "Pages": "1", "Genre": "Crime", "Owned": True, "Tags": None, "Starting date": "2021-10-18", "Ending date": "2021-10-20", "Score": "3", "Comment": None, } bookread1 = BookRead.from_gui_dict(dict1, 1) self.assertEqual(bookread1.book_id, 1) self.assertEqual(bookread1.start_date, date(2021, 10, 18)) self.assertEqual(bookread1.end_date, date(2021, 10, 20)) self.assertEqual(bookread1.out_of_ten_score, 3) self.assertEqual(bookread1.comment, None) if __name__ == "__main__": unittest.main()
1,525
2,315
46
28488c57149aff560b88dcc2034960548dbef7d0
5,430
py
Python
ixnetwork_restpy/testplatform/sessions/ixnetwork/traffic/trafficitem/configelement/stack/realTimeTransportControlProtocol1733_template.py
OpenIxia/ixnetwork_restpy
f628db450573a104f327cf3c737ca25586e067ae
[ "MIT" ]
20
2019-05-07T01:59:14.000Z
2022-02-11T05:24:47.000Z
ixnetwork_restpy/testplatform/sessions/ixnetwork/traffic/trafficitem/configelement/stack/realTimeTransportControlProtocol1733_template.py
OpenIxia/ixnetwork_restpy
f628db450573a104f327cf3c737ca25586e067ae
[ "MIT" ]
60
2019-04-03T18:59:35.000Z
2022-02-22T12:05:05.000Z
ixnetwork_restpy/testplatform/sessions/ixnetwork/traffic/trafficitem/configelement/stack/realTimeTransportControlProtocol1733_template.py
OpenIxia/ixnetwork_restpy
f628db450573a104f327cf3c737ca25586e067ae
[ "MIT" ]
13
2019-05-20T10:48:31.000Z
2021-10-06T07:45:44.000Z
from ixnetwork_restpy.base import Base from ixnetwork_restpy.files import Files
36.689189
113
0.68895
from ixnetwork_restpy.base import Base from ixnetwork_restpy.files import Files class RealTimeTransportControlProtocol1733(Base): __slots__ = () _SDM_NAME = 'realTimeTransportControlProtocol1733' _SDM_ATT_MAP = { 'RtcpHeaderVersion': 'realTimeTransportControlProtocol1733.rtcpHeader.version-1', 'RtcpHeaderPaddingBit': 'realTimeTransportControlProtocol1733.rtcpHeader.paddingBit-2', 'RtcpHeaderSubtype': 'realTimeTransportControlProtocol1733.rtcpHeader.subtype-3', 'RtcpHeaderPacketType': 'realTimeTransportControlProtocol1733.rtcpHeader.packetType-4', 'RtcpHeaderMessageLength': 'realTimeTransportControlProtocol1733.rtcpHeader.messageLength-5', 'RtcpHeaderSsrc/csrc': 'realTimeTransportControlProtocol1733.rtcpHeader.ssrc/csrc-6', 'RtcpHeaderName': 'realTimeTransportControlProtocol1733.rtcpHeader.name-7', 'RtcpHeaderGmTimeBaseIndicator': 'realTimeTransportControlProtocol1733.rtcpHeader.gmTimeBaseIndicator-8', 'RtcpHeaderGmIdentity': 'realTimeTransportControlProtocol1733.rtcpHeader.gmIdentity-9', 'RtcpHeaderStream_id': 'realTimeTransportControlProtocol1733.rtcpHeader.stream_id-10', 'RtcpHeaderAsTimestamp': 'realTimeTransportControlProtocol1733.rtcpHeader.asTimestamp-11', 'RtcpHeaderRtpTimestamp': 'realTimeTransportControlProtocol1733.rtcpHeader.rtpTimestamp-12', } def __init__(self, parent, list_op=False): super(RealTimeTransportControlProtocol1733, self).__init__(parent, list_op) @property def RtcpHeaderVersion(self): """ Display Name: Version Default Value: 0x2 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['RtcpHeaderVersion'])) @property def RtcpHeaderPaddingBit(self): """ Display Name: Padding Default Value: 0x0 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['RtcpHeaderPaddingBit'])) @property def RtcpHeaderSubtype(self): """ Display Name: Subtype Default Value: 0x0 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['RtcpHeaderSubtype'])) @property def RtcpHeaderPacketType(self): """ Display Name: Packet Type Default Value: 208 Value Format: decimal """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['RtcpHeaderPacketType'])) @property def RtcpHeaderMessageLength(self): """ Display Name: Message Length Default Value: 0x9 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['RtcpHeaderMessageLength'])) @property def RtcpHeaderSsrccsrc(self): """ Display Name: SSRC/CSRC Default Value: 0x0 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['RtcpHeaderSsrc/csrc'])) @property def RtcpHeaderName(self): """ Display Name: Name Default Value: 0x00 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['RtcpHeaderName'])) @property def RtcpHeaderGmTimeBaseIndicator(self): """ Display Name: gm Time Base Indicator Default Value: 0x00 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['RtcpHeaderGmTimeBaseIndicator'])) @property def RtcpHeaderGmIdentity(self): """ Display Name: gm Identity Default Value: 0x00 Value Format: decimal """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['RtcpHeaderGmIdentity'])) @property def RtcpHeaderStream_id(self): """ Display Name: Stream Id Default Value: 0x00 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['RtcpHeaderStream_id'])) @property def RtcpHeaderAsTimestamp(self): """ Display Name: As Timestamp Default Value: 0x00 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['RtcpHeaderAsTimestamp'])) @property def RtcpHeaderRtpTimestamp(self): """ Display Name: RTP Timestamp Default Value: 0x00 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['RtcpHeaderRtpTimestamp'])) def add(self): return self._create(self._map_locals(self._SDM_ATT_MAP, locals()))
173
5,153
23
37db3f8e0076e46058d8fe443f9070145cfe0c5a
896
py
Python
tests/resources/project/conftest.py
gitter-badger/charybdis
1505258db0a43c5cb6e64e0513c74c6651df92fd
[ "MIT" ]
null
null
null
tests/resources/project/conftest.py
gitter-badger/charybdis
1505258db0a43c5cb6e64e0513c74c6651df92fd
[ "MIT" ]
null
null
null
tests/resources/project/conftest.py
gitter-badger/charybdis
1505258db0a43c5cb6e64e0513c74c6651df92fd
[ "MIT" ]
1
2019-10-10T23:46:33.000Z
2019-10-10T23:46:33.000Z
import pytest @pytest.yield_fixture(scope="module") @pytest.yield_fixture(scope="module") @pytest.yield_fixture(scope="module")
20.363636
49
0.691964
import pytest @pytest.yield_fixture(scope="module") def test_domain_project(test_admin_client): domain = test_admin_client.Domain() domain.slug = "test-project" domain.name = "Test Domain" domain.description = "Test" * 10 domain.save() yield domain domain.destroy() @pytest.yield_fixture(scope="module") def test_domain(test_admin_client): domain = test_admin_client.Domain() domain.slug = "test" domain.name = "Test Domain" domain.description = "Test" * 10 domain.save() yield domain domain.destroy() @pytest.yield_fixture(scope="module") def test_project(test_admin_client, test_domain): project = test_admin_client.Project() project.slug = "test" project.name = "Test" project.description = project.name * 10 project.domain_id = test_domain.id project.save() yield project project.destroy()
696
0
66
ec861e6dda12fb8898b391b55324a0cbbdef264e
1,973
py
Python
ProjectDemo/scripts/test/threadScheduler.py
ryrynoryry/Immersive-Illumination
d0e28fc246850648ffc2eca81b0da3daed994d07
[ "MIT" ]
null
null
null
ProjectDemo/scripts/test/threadScheduler.py
ryrynoryry/Immersive-Illumination
d0e28fc246850648ffc2eca81b0da3daed994d07
[ "MIT" ]
null
null
null
ProjectDemo/scripts/test/threadScheduler.py
ryrynoryry/Immersive-Illumination
d0e28fc246850648ffc2eca81b0da3daed994d07
[ "MIT" ]
null
null
null
import threading import os.path import time from blueThread import MainBlue # class myThread (threading.Thread): # def __init__(self, threadID, name, counter): # threading.Thread.__init__(self) # self.threadID = threadID # self.name = name # self.counter = counter # def run(self): # print("Starting " + self.name) # print_time(self.name, 5, self.counter) # print("Exiting " + self.name) run = True foo = [False] fileName = "" def LookForFile(strToFind, path): """ function repeatedly look for a file """ while run: MainBlue(foo) time.sleep(1) print("exiting file thread!") def LookForStop(strToFind, path): """ function repeatedly look for a file """ global run count = 0 filePath = path + strToFind while run: count += 1 if os.path.exists(filePath): run = False print("{0} FOUND {1} at {2} [{3}]".format(t2.getName(), strToFind, filePath, count)) else: print("{0} not found {1} at {2} [{3}]".format(t2.getName(), strToFind, filePath, count)) time.sleep(1) print("exiting stop thread!") if __name__ == "__main__": # creating thread t1 = threading.Thread(target=LookForFile, name="THREAD_Finder", args=("rain","../"), daemon=True) # t2 = threading.Thread(name="THREAD_Stopper", target=LookForStop, args=("stop","../"), daemon=True) # starting thread 1 t1.start() # starting thread 2 # t2.start() # while run: # print("doing nothing...") # time.sleep(10) input("Press Enter to flip foo") if foo[0]: foo[0] = False else: foo[0] = True input("Press Enter to exit") run = False # wait until thread 1 is completely executed t1.join() # wait until thread 2 is completely executed # t2.join() # both threads completely executed print("Done!")
26.662162
105
0.583376
import threading import os.path import time from blueThread import MainBlue # class myThread (threading.Thread): # def __init__(self, threadID, name, counter): # threading.Thread.__init__(self) # self.threadID = threadID # self.name = name # self.counter = counter # def run(self): # print("Starting " + self.name) # print_time(self.name, 5, self.counter) # print("Exiting " + self.name) run = True foo = [False] fileName = "" def LookForFile(strToFind, path): """ function repeatedly look for a file """ while run: MainBlue(foo) time.sleep(1) print("exiting file thread!") def LookForStop(strToFind, path): """ function repeatedly look for a file """ global run count = 0 filePath = path + strToFind while run: count += 1 if os.path.exists(filePath): run = False print("{0} FOUND {1} at {2} [{3}]".format(t2.getName(), strToFind, filePath, count)) else: print("{0} not found {1} at {2} [{3}]".format(t2.getName(), strToFind, filePath, count)) time.sleep(1) print("exiting stop thread!") if __name__ == "__main__": # creating thread t1 = threading.Thread(target=LookForFile, name="THREAD_Finder", args=("rain","../"), daemon=True) # t2 = threading.Thread(name="THREAD_Stopper", target=LookForStop, args=("stop","../"), daemon=True) # starting thread 1 t1.start() # starting thread 2 # t2.start() # while run: # print("doing nothing...") # time.sleep(10) input("Press Enter to flip foo") if foo[0]: foo[0] = False else: foo[0] = True input("Press Enter to exit") run = False # wait until thread 1 is completely executed t1.join() # wait until thread 2 is completely executed # t2.join() # both threads completely executed print("Done!")
0
0
0
d22c2da0d5387f8d7a44708da0325afb1a53d6ac
78,592
py
Python
test/db/__init__.py
thenetcircle/dino
1047c3458e91a1b4189e9f48f1393b3a68a935b3
[ "Apache-2.0" ]
150
2016-10-05T11:09:36.000Z
2022-03-06T16:24:41.000Z
test/db/__init__.py
thenetcircle/dino
1047c3458e91a1b4189e9f48f1393b3a68a935b3
[ "Apache-2.0" ]
27
2017-03-02T03:37:02.000Z
2022-02-10T04:59:54.000Z
test/db/__init__.py
thenetcircle/dino
1047c3458e91a1b4189e9f48f1393b3a68a935b3
[ "Apache-2.0" ]
21
2016-11-11T07:51:48.000Z
2020-04-26T21:38:33.000Z
import time from datetime import datetime from datetime import timedelta from uuid import uuid4 as uuid from activitystreams import parse from dino import environ from dino.auth.redis import AuthRedis from dino.cache.redis import CacheRedis from dino.config import ApiActions, RedisKeys from dino.config import ConfigKeys from dino.config import SessionKeys from dino.config import UserKeys from dino.db.rdbms.handler import DatabaseRdbms from dino.environ import ConfigDict from dino.environ import GNEnvironment from dino.exceptions import ChannelExistsException from dino.exceptions import ChannelNameExistsException from dino.exceptions import EmptyChannelNameException from dino.exceptions import EmptyRoomNameException from dino.exceptions import InvalidAclTypeException from dino.exceptions import InvalidApiActionException from dino.exceptions import NoSuchChannelException from dino.exceptions import NoSuchRoomException from dino.exceptions import NoSuchUserException from dino.exceptions import RoomExistsException from dino.exceptions import RoomNameExistsForChannelException from dino.exceptions import UserExistsException from dino.exceptions import ValidationException from dino.validation.acl import AclDisallowValidator from dino.validation.acl import AclIsAdminValidator from dino.validation.acl import AclIsSuperUserValidator from dino.validation.acl import AclRangeValidator from dino.validation.acl import AclSameChannelValidator from dino.validation.acl import AclSameRoomValidator from dino.validation.acl import AclStrInCsvValidator from test.base import BaseTest
42.852781
143
0.693607
import time from datetime import datetime from datetime import timedelta from uuid import uuid4 as uuid from activitystreams import parse from dino import environ from dino.auth.redis import AuthRedis from dino.cache.redis import CacheRedis from dino.config import ApiActions, RedisKeys from dino.config import ConfigKeys from dino.config import SessionKeys from dino.config import UserKeys from dino.db.rdbms.handler import DatabaseRdbms from dino.environ import ConfigDict from dino.environ import GNEnvironment from dino.exceptions import ChannelExistsException from dino.exceptions import ChannelNameExistsException from dino.exceptions import EmptyChannelNameException from dino.exceptions import EmptyRoomNameException from dino.exceptions import InvalidAclTypeException from dino.exceptions import InvalidApiActionException from dino.exceptions import NoSuchChannelException from dino.exceptions import NoSuchRoomException from dino.exceptions import NoSuchUserException from dino.exceptions import RoomExistsException from dino.exceptions import RoomNameExistsForChannelException from dino.exceptions import UserExistsException from dino.exceptions import ValidationException from dino.validation.acl import AclDisallowValidator from dino.validation.acl import AclIsAdminValidator from dino.validation.acl import AclIsSuperUserValidator from dino.validation.acl import AclRangeValidator from dino.validation.acl import AclSameChannelValidator from dino.validation.acl import AclSameRoomValidator from dino.validation.acl import AclStrInCsvValidator from test.base import BaseTest class BaseDatabaseTest(BaseTest): class FakeRequest(object): def __init__(self): self.sid = str(uuid()) class FakeEnv(GNEnvironment): def __init__(self): super(BaseDatabaseTest.FakeEnv, self).__init__(None, ConfigDict(), skip_init=True) self.config = ConfigDict() self.cache = CacheRedis(self, 'mock') self.session = dict() self.node = 'test' self.auth = AuthRedis(env=self, host='mock') self.request = BaseDatabaseTest.FakeRequest() MESSAGE_ID = str(uuid()) def set_up_env(self, db): self.env = BaseDatabaseTest.FakeEnv() self.env.config.set(ConfigKeys.TESTING, False) all_acls = [ 'age', 'gender', 'membership', 'group', 'country', 'city', 'image', 'has_webcam', 'fake_checked', 'owner', 'admin', 'moderator', 'superuser', 'crossroom', 'samechannel', 'sameroom', 'disallow' ] self.env.config.set(ConfigKeys.ACL, { 'room': { 'join': { 'acls': all_acls }, 'message': { 'acls': all_acls }, 'history': { 'acls': all_acls }, 'crossroom': { 'acls': all_acls } }, 'channel': { 'message': { 'acls': all_acls }, 'list': { 'acls': all_acls }, 'crossroom': { 'acls': all_acls } }, 'available': { 'acls': all_acls }, 'validation': { 'samechannel': { 'type': 'samechannel', 'value': AclSameChannelValidator() }, 'sameroom': { 'type': 'sameroom', 'value': AclSameRoomValidator() }, 'country': { 'type': 'str_in_csv', 'value': AclStrInCsvValidator() }, 'disallow': { 'type': 'disallow', 'value': AclDisallowValidator() }, 'gender': { 'type': 'str_in_csv', 'value': AclStrInCsvValidator('m,f') }, 'membership': { 'type': 'str_in_csv', 'value': AclStrInCsvValidator() }, 'city': { 'type': 'str_in_csv', 'value': AclStrInCsvValidator() }, 'has_webcam': { 'type': 'str_in_csv', 'value': AclStrInCsvValidator('y,n') }, 'fake_checked': { 'type': 'str_in_csv', 'value': AclStrInCsvValidator('y,n') }, 'image': { 'type': 'str_in_csv', 'value': AclStrInCsvValidator('y,n') }, 'group': { 'type': 'str_in_csv', 'value': AclStrInCsvValidator('') }, 'age': { 'type': 'range', 'value': AclRangeValidator() }, 'admin': { 'type': 'is_admin', 'value': AclIsAdminValidator() }, 'superuser': { 'type': 'is_super_user', 'value': AclIsSuperUserValidator() } } } ) self.env.session[SessionKeys.user_name.value] = BaseTest.USER_NAME if db == 'postgres': self.env.config.set(ConfigKeys.DRIVER, 'postgres+psycopg2', domain=ConfigKeys.DATABASE) self.env.config.set(ConfigKeys.HOST, 'localhost', domain=ConfigKeys.DATABASE) self.env.config.set(ConfigKeys.PORT, 5432, domain=ConfigKeys.DATABASE) self.env.config.set(ConfigKeys.DB, 'dinotest', domain=ConfigKeys.DATABASE) self.env.config.set(ConfigKeys.USER, 'dinouser', domain=ConfigKeys.DATABASE) self.env.config.set(ConfigKeys.PASSWORD, 'dinopass', domain=ConfigKeys.DATABASE) self.db = DatabaseRdbms(self.env) elif db == 'sqlite': self.env.config.set(ConfigKeys.DRIVER, 'sqlite', domain=ConfigKeys.DATABASE) self.db = DatabaseRdbms(self.env) elif db == 'redis': from dino.db.redis import DatabaseRedis self.db = DatabaseRedis(self.env, 'mock', db=99) self.db.redis.flushall() else: raise ValueError('unknown type %s' % db) environ.env.config = self.env.config environ.env.db = self.db environ.env.db.create_user(BaseDatabaseTest.USER_ID, BaseDatabaseTest.USER_NAME) def act_message(self): data = self.activity_for_message() data['id'] = BaseDatabaseTest.MESSAGE_ID data['target']['objectType'] = 'room' data['published'] = datetime.fromtimestamp(time.time()).strftime('%Y-%m-%dT%H:%M:%SZ') return parse(data) def act_create(self): data = self.activity_for_create() data['target']['id'] = BaseTest.ROOM_ID data['published'] = datetime.fromtimestamp(time.time()).strftime('%Y-%m-%dT%H:%M:%SZ') return parse(data) def _test_room_exists(self): self.assertFalse(self._room_exists()) def _test_create_room_no_channel(self): self.assertRaises(NoSuchChannelException, self._create_room) def _test_create_existing_channel(self): self._create_channel() self.assertRaises(ChannelExistsException, self._create_channel) def _test_leave_room_before_create(self): self._create_channel() self.assertRaises(NoSuchRoomException, self.db.leave_room, BaseTest.USER_ID, BaseTest.ROOM_ID) def _test_leave_room_not_joined(self): self._create_channel() self._create_room() rooms = self._rooms_for_user() self.assertEqual(0, len(rooms)) self._leave() rooms = self._rooms_for_user() self.assertEqual(0, len(rooms)) def _test_leave_room_joined(self): self._create_channel() self._create_room() rooms = self._rooms_for_user() self.assertEqual(0, len(rooms)) self._join() rooms = self._rooms_for_user() self.assertEqual(1, len(rooms)) self._leave() rooms = self._rooms_for_user() self.assertEqual(0, len(rooms)) def _test_set_moderator_no_room(self): self.assertRaises(NoSuchRoomException, self._set_moderator) self.assertFalse(self._is_moderator()) def _test_set_moderator_with_room(self): self._create_channel() self._create_room() self._set_moderator() self.assertTrue(self._is_moderator()) def _test_set_room_owner_no_room(self): self.assertRaises(NoSuchRoomException, self._set_owner_room) self.assertFalse(self._is_owner_room()) def _test_set_room_owner_with_room(self): self._create_channel() self._create_room() self._set_owner_room() self.assertTrue(self._is_owner_room()) def _test_set_channel_owner_no_channel(self): self.assertRaises(NoSuchChannelException, self._set_owner_channel) self.assertFalse(self._is_owner_channel()) def _test_set_channel_owner_with_channel(self): self._create_channel() self._set_owner_channel() self.assertTrue(self._is_owner_channel()) def _test_create_room(self): self.assertFalse(self._room_exists()) self._create_channel() self._create_room() self.assertTrue(self._room_exists()) rooms = self.db.rooms_for_channel(BaseDatabaseTest.CHANNEL_ID) self.assertEqual(1, len(rooms)) def _test_create_room_blank_name(self): self._create_channel() self.assertRaises( EmptyRoomNameException, self.db.create_room, '', BaseTest.ROOM_ID, BaseTest.CHANNEL_ID, BaseTest.USER_ID, BaseTest.USER_NAME) def _test_create_existing_room(self): self._create_channel() self._create_room() self.assertRaises(RoomExistsException, self._create_room) def _test_create_existing_room_name(self): self._create_channel() self._create_room() self.assertRaises(RoomNameExistsForChannelException, self._create_room, str(uuid())) def _test_channel_exists_after_create(self): self._create_channel() self.assertTrue(self._channel_exists()) def _test_channel_exists_before_create(self): self.assertFalse(self._channel_exists()) def _test_room_name_exists_before_create(self): self.assertFalse(self._room_name_exists()) def _test_room_name_exists_after_create(self): self._create_channel() self._create_room() self.assertTrue(self._room_name_exists()) def _test_room_name_exists_from_cache_after_create(self): self._create_channel() self._create_room() self.assertTrue(self._room_name_exists()) self.assertTrue(self._room_name_exists()) def _test_get_channels_before_create(self): self.assertEqual(0, len(self._get_channels())) def _test_get_channels_after_create(self): self._create_channel() channels = self._get_channels() self.assertEqual(1, len(channels)) self.assertTrue(BaseTest.CHANNEL_ID in channels.keys()) self.assertTrue(any((BaseTest.CHANNEL_NAME == channel_info[0] for channel_info in channels.values()))) def _test_rooms_for_channel_before_create_channel(self): self.assertEqual(0, len(self._rooms_for_channel())) def _test_rooms_for_channel_after_create_channel_before_create_room(self): self._create_channel() self.assertEqual(0, len(self._rooms_for_channel())) def _test_rooms_for_channel_after_create_channel_after_create_room(self): self._create_channel() self._create_room() rooms = self._rooms_for_channel() self.assertEqual(1, len(rooms)) self.assertTrue(BaseTest.ROOM_ID in rooms.keys()) self.assertTrue(BaseTest.ROOM_NAME == list(rooms.values())[0]['name']) def _test_rooms_for_user_before_joining(self): self._create_channel() self._create_room() self.assertEqual(0, len(self.rooms_for_user())) def _test_rooms_for_user_after_joining(self): self._create_channel() self._create_room() self._join() rooms = self.rooms_for_user() self.assertEqual(1, len(rooms)) self.assertTrue(BaseTest.ROOM_ID in rooms.keys()) self.assertTrue(BaseTest.ROOM_NAME in rooms.values()) def _test_remove_current_rooms_for_user_before_joining(self): self.db.remove_current_rooms_for_user(BaseTest.USER_ID) self.assertEqual(0, len(self._rooms_for_user())) def _test_remove_current_rooms_for_user_after_joining(self): self._create_channel() self._create_room() self._join() rooms = self._rooms_for_user() self.assertEqual(1, len(rooms)) self.assertTrue(BaseTest.ROOM_ID in rooms.keys()) self.assertTrue(BaseTest.ROOM_NAME in rooms.values()) self.db.remove_sid_for_user_in_room(BaseTest.USER_ID, BaseTest.ROOM_ID, self.env.request.sid) self.db.remove_current_rooms_for_user(BaseTest.USER_ID) self.assertEqual(0, len(self._rooms_for_user())) def _test_get_user_status_before_set(self, status): self.assertEqual(status, self._user_status()) def _test_set_user_offline(self, status): self._set_offline() self.assertEqual(status, self._user_status()) def _test_room_contains_before_create_channel(self): self.assertRaises(NoSuchRoomException, self.db.room_contains, BaseTest.ROOM_ID, BaseTest.USER_ID) def _test_room_contains_before_create_room(self): self.assertRaises(NoSuchRoomException, self.db.room_contains, BaseTest.ROOM_ID, BaseTest.USER_ID) def _test_room_contains_after_create(self): self._create_channel() self._create_room() self.assertFalse(self.db.room_contains(BaseTest.ROOM_ID, BaseTest.USER_ID)) def _test_room_contains_after_join(self): self._create_channel() self._create_room() self._join() self.assertTrue(self.db.room_contains(BaseTest.ROOM_ID, BaseTest.USER_ID)) def _test_set_user_offline_after_online(self): self._set_online() self._set_offline() self.assertEqual(UserKeys.STATUS_UNAVAILABLE, self._user_status()) def _test_create_channel(self): self.assertFalse(self.db.channel_exists(BaseTest.CHANNEL_ID)) self.db.create_channel(BaseTest.CHANNEL_NAME, BaseTest.CHANNEL_ID, BaseTest.USER_ID) self.assertTrue(self.db.channel_exists(BaseTest.CHANNEL_ID)) def _test_create_channel_blank_name(self): self.assertFalse(self.db.channel_exists(BaseTest.CHANNEL_ID)) self.assertRaises(EmptyChannelNameException, self.db.create_channel, '', BaseTest.CHANNEL_ID, BaseTest.USER_ID) self.assertFalse(self.db.channel_exists(BaseTest.CHANNEL_ID)) def _test_create_channel_exists(self): self.assertFalse(self.db.channel_exists(BaseTest.CHANNEL_ID)) self.db.create_channel(BaseTest.CHANNEL_NAME, BaseTest.CHANNEL_ID, BaseTest.USER_ID) self.assertTrue(self.db.channel_exists(BaseTest.CHANNEL_ID)) self.assertRaises(ChannelExistsException, self.db.create_channel, BaseTest.CHANNEL_NAME, BaseTest.CHANNEL_ID, BaseTest.USER_ID) def _test_set_user_online(self, status): self._set_online() self.assertEqual(status, self._user_status()) def _test_set_user_invisible(self, status): self._set_invisible() self.assertEqual(status, self._user_status()) def _test_is_admin_before_create(self): self.assertFalse(self._is_admin()) def _test_is_admin_after_create(self): self._create_channel() self.assertFalse(self._is_admin()) def _test_is_admin_after_create_set_admin(self): self._create_channel() self._set_admin() self.assertTrue(self._is_admin()) def _test_is_moderator_before_create(self): self.assertFalse(self._is_moderator()) def _test_is_moderator_after_create(self): self._create_channel() self._create_room() self.assertFalse(self._is_moderator()) def _test_is_moderator_after_create_set_moderator(self): self._create_channel() self._create_room() self._set_moderator() self.assertFalse(self._is_moderator()) def _test_channel_for_room_no_channel(self): self.assertRaises(NoSuchRoomException, self._channel_for_room) def _test_channel_for_room_with_channel_without_room(self): self._create_channel() self.assertRaises(NoSuchRoomException, self._channel_for_room) def _test_channel_for_room_with_channel_with_room(self): self._create_channel() self._create_room() self._channel_for_room() def _test_channel_for_room_from_cache(self): self._create_channel() self._create_room() channel_id_1 = self._channel_for_room() channel_id_2 = self._channel_for_room() self.assertIsNotNone(channel_id_1) self.assertEqual(channel_id_1, channel_id_2) def _channel_for_room(self): return self.db.channel_for_room(BaseTest.ROOM_ID) def _set_moderator(self): self.db.set_moderator(BaseTest.ROOM_ID, BaseTest.USER_ID) def _set_admin(self): self.db.set_admin(BaseTest.CHANNEL_ID, BaseTest.USER_ID) def _is_moderator(self): return self.db.is_moderator(BaseTest.ROOM_ID, BaseTest.USER_ID) def _is_admin(self): return self.db.is_admin(BaseTest.CHANNEL_ID, BaseTest.USER_ID) def _user_status(self): return self.db.get_user_status(BaseTest.USER_ID) def _set_owner_room(self): self.db.set_owner(BaseTest.ROOM_ID, BaseTest.USER_ID) def _set_owner_channel(self): self.db.set_owner_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID) def _is_owner_room(self): return self.db.is_owner(BaseTest.ROOM_ID, BaseTest.USER_ID) def _is_owner_channel(self): return self.db.is_owner_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID) def _set_offline(self): self.db.set_user_offline(BaseTest.USER_ID) def _set_online(self): self.db.set_user_online(BaseTest.USER_ID) def _set_invisible(self): self.db.set_user_invisible(BaseTest.USER_ID) def _rooms_for_user(self): return self.db.rooms_for_user(BaseTest.USER_ID) def _get_user_name_for(self): return self.db.get_user_name_for(BaseTest.USER_ID) def _join(self): self.db.join_room(BaseTest.USER_ID, BaseTest.USER_NAME, BaseTest.ROOM_ID, BaseTest.ROOM_NAME) def _leave(self): self.db.leave_room(BaseTest.USER_ID, BaseTest.ROOM_ID) def rooms_for_user(self): return self.db.rooms_for_user(BaseTest.USER_ID) def _rooms_for_channel(self): return self.db.rooms_for_channel(BaseTest.CHANNEL_ID) def _get_channels(self): return self.db.get_channels() def _channel_exists(self): return self.db.channel_exists(BaseTest.CHANNEL_ID) def _room_exists(self): return self.db.room_exists(BaseTest.CHANNEL_ID, BaseTest.ROOM_ID) def _create_channel(self): self.db.create_channel(BaseTest.CHANNEL_NAME, BaseTest.CHANNEL_ID, BaseTest.USER_ID) def _create_room(self, room_id=BaseTest.ROOM_ID): self.db.create_room( BaseTest.ROOM_NAME, room_id, BaseTest.CHANNEL_ID, BaseTest.USER_ID, BaseTest.USER_NAME) def _room_name_exists(self): return self.db.room_name_exists(BaseTest.CHANNEL_ID, BaseTest.ROOM_NAME) def _test_delete_one_non_existing_acl(self): self._create_channel() self._create_room() acls = { 'gender': 'm,f', 'membership': '0,1,2' } self.db.add_acls_in_room_for_action(BaseTest.ROOM_ID, ApiActions.JOIN, acls) fetched = self.db.get_acls_in_room_for_action(BaseTest.ROOM_ID, ApiActions.JOIN) self.assertEqual(fetched.items(), acls.items()) self.db.delete_acl_in_room_for_action(BaseTest.ROOM_ID, 'image', ApiActions.JOIN) fetched = self.db.get_acls_in_room_for_action(BaseTest.ROOM_ID, ApiActions.JOIN) self.assertEqual(fetched.items(), acls.items()) def _test_add_one_extra_acl(self): self._create_channel() self._create_room() acls = { 'gender': 'm,f', 'membership': '0,1,2' } self.db.add_acls_in_room_for_action(BaseTest.ROOM_ID, ApiActions.JOIN, acls) fetched = self.db.get_acls_in_room_for_action(BaseTest.ROOM_ID, ApiActions.JOIN) self.assertEqual(fetched.items(), acls.items()) self.db.add_acls_in_room_for_action(BaseTest.ROOM_ID, ApiActions.JOIN, {'image': 'y'}) acls['image'] = 'y' fetched = self.db.get_acls_in_room_for_action(BaseTest.ROOM_ID, ApiActions.JOIN) self.assertEqual(fetched.items(), acls.items()) def _test_update_acl(self): self._create_channel() self._create_room() acls = { 'gender': 'm,f', 'membership': '0,1,2' } self.db.add_acls_in_room_for_action(BaseTest.ROOM_ID, ApiActions.JOIN, acls) fetched = self.db.get_acls_in_room_for_action(BaseTest.ROOM_ID, ApiActions.JOIN) self.assertEqual(fetched.items(), acls.items()) self.db.add_acls_in_room_for_action(BaseTest.ROOM_ID, ApiActions.JOIN, {'gender': 'f'}) acls['gender'] = 'f' fetched = self.db.get_acls_in_room_for_action(BaseTest.ROOM_ID, ApiActions.JOIN) self.assertEqual(fetched.items(), acls.items()) def _test_get_all_acls_channel(self): self._create_channel() self._create_room() acls = { 'gender': 'm,f', 'membership': '0,1,2' } self.db.add_acls_in_channel_for_action(BaseTest.CHANNEL_ID, ApiActions.LIST, acls) fetched = self.db.get_all_acls_channel(BaseTest.CHANNEL_ID) self.assertIn(ApiActions.LIST, fetched.keys()) self.assertEqual(1, len(list(fetched.keys()))) self.assertEqual(fetched, {ApiActions.LIST: acls}) def _test_get_all_acls_channel_before_create(self): self.assertRaises(NoSuchChannelException, self.db.get_all_acls_channel, BaseTest.CHANNEL_ID) def _test_get_all_acls_room(self): self._create_channel() self._create_room() acls = { 'gender': 'm,f', 'membership': '0,1,2' } self.db.add_acls_in_room_for_action(BaseTest.ROOM_ID, ApiActions.JOIN, acls) fetched = self.db.get_all_acls_room(BaseTest.ROOM_ID) self.assertIn(ApiActions.JOIN, fetched.keys()) self.assertEqual(1, len(list(fetched.keys()))) self.assertEqual(fetched, {ApiActions.JOIN: acls}) def _test_get_all_acls_room_before_create(self): self.assertRaises(NoSuchRoomException, self.db.get_all_acls_room, BaseTest.ROOM_ID) def _test_get_acl(self): self._create_channel() self._create_room() self.assertEqual(0, len(self.db.get_all_acls_room(BaseTest.ROOM_ID))) def _test_set_acl(self): self._create_channel() self._create_room() acls = { 'gender': 'm,f', 'membership': '0,1,2' } self.db.add_acls_in_room_for_action(BaseTest.ROOM_ID, ApiActions.JOIN, acls) fetched = self.db.get_acls_in_room_for_action(BaseTest.ROOM_ID, ApiActions.JOIN) self.assertEqual(fetched.items(), acls.items()) def _test_delete_one_acl(self): self._create_channel() self._create_room() acls = { 'gender': 'm,f', 'membership': '0,1,2' } self.db.add_acls_in_room_for_action(BaseTest.ROOM_ID, ApiActions.JOIN, acls) fetched = self.db.get_acls_in_room_for_action(BaseTest.ROOM_ID, ApiActions.JOIN) self.assertEqual(fetched.items(), acls.items()) del acls['gender'] self.db.delete_acl_in_room_for_action(BaseTest.ROOM_ID, 'gender', ApiActions.JOIN) fetched = self.db.get_acls_in_room_for_action(BaseTest.ROOM_ID, ApiActions.JOIN) self.assertEqual(fetched.items(), acls.items()) def _test_set_room_allows_cross_group_messaging(self): self._create_channel() self._create_room() self._set_allow_cross_group() def _test_get_room_allows_cross_group_messaging_no_room(self): self._create_channel() self.assertRaises(NoSuchRoomException, self._room_allows_cross_group_messaging) def _test_get_room_allows_cross_group_messaging(self): self._create_channel() self._create_room() self._set_allow_cross_group() self.assertTrue(self._room_allows_cross_group_messaging()) def _test_get_room_does_not_allow_cross_group_messaging(self): self._create_channel() self._create_room() self.assertFalse(self._room_allows_cross_group_messaging()) def _test_room_allows_cross_group_messaging_no_channel(self): self.assertRaises(NoSuchChannelException, self._room_allows_cross_group_messaging) def _test_room_allows_cross_group_messaging_no_room(self): self._create_channel() self.assertRaises(NoSuchRoomException, self._room_allows_cross_group_messaging) def _test_room_allows_cross_group_messaging(self): self._create_channel() self._create_room() self._set_allow_cross_group() self.assertTrue(self._room_allows_cross_group_messaging()) def _test_room_does_not_allow_cross_group_messaging_no_room(self): self._create_channel() self._create_room() self.assertFalse(self._room_allows_cross_group_messaging()) def _set_allow_cross_group(self): self.db.add_acls_in_channel_for_action( BaseTest.CHANNEL_ID, ApiActions.CROSSROOM, {'samechannel': ''}) self.db.add_acls_in_room_for_action( BaseTest.ROOM_ID, ApiActions.CROSSROOM, {'samechannel': ''}) def _room_allows_cross_group_messaging(self): channel_acls = self.db.get_acls_in_channel_for_action(BaseTest.CHANNEL_ID, ApiActions.CROSSROOM) if 'disallow' in channel_acls.keys(): return False room_acls = self.db.get_acls_in_room_for_action(BaseTest.ROOM_ID, ApiActions.CROSSROOM) if 'disallow' in room_acls.keys(): return False return 'samechannel' in channel_acls or 'samechannel' in room_acls def _test_create_admin_room(self): self._create_channel() self.db.create_admin_room() room_id = self.db.get_admin_room() self.assertIsNotNone(room_id) def _test_admin_room_before_exists(self): self._create_channel() room_uuid = self.db.get_admin_room() self.assertIsNone(room_uuid) def _test_admin_room_get_from_cache(self): self._create_channel() self.db.create_admin_room() room_uuid_1 = self.db.get_admin_room() self.assertIsNotNone(room_uuid_1) room_uuid_2 = self.db.get_admin_room() self.assertIsNotNone(room_uuid_2) self.assertEqual(room_uuid_1, room_uuid_2) def _test_get_user_status_after_set(self): self.assertEqual(UserKeys.STATUS_UNAVAILABLE, self.db.get_user_status(BaseTest.USER_ID)) self.db.set_user_online(BaseTest.USER_ID) self.assertEqual(UserKeys.STATUS_AVAILABLE, self.db.get_user_status(BaseTest.USER_ID)) def _test_set_user_invisible_twice_ignores_second(self): self.db.set_user_invisible(BaseTest.USER_ID) self.db.set_user_invisible(BaseTest.USER_ID) self.assertEqual(UserKeys.STATUS_INVISIBLE, self.db.get_user_status(BaseTest.USER_ID)) def _test_set_user_offline_twice_ignores_second(self): self.db.set_user_offline(BaseTest.USER_ID) self.db.set_user_offline(BaseTest.USER_ID) self.assertEqual(UserKeys.STATUS_UNAVAILABLE, self.db.get_user_status(BaseTest.USER_ID)) def _test_set_user_online_twice_ignores_second(self): self.db.set_user_online(BaseTest.USER_ID) self.db.set_user_online(BaseTest.USER_ID) self.assertEqual(UserKeys.STATUS_AVAILABLE, self.db.get_user_status(BaseTest.USER_ID)) def _test_room_exists_from_cache(self): self._create_channel() self._create_room() exists_1 = self.db.room_exists(BaseTest.CHANNEL_ID, BaseTest.ROOM_ID) exists_2 = self.db.room_exists(BaseTest.CHANNEL_ID, BaseTest.ROOM_ID) self.assertEqual(exists_1, exists_2) self.assertTrue(exists_1) self.assertFalse(self.db.room_exists(str(uuid()), str(uuid()))) def _test_get_user_status_from_cache(self): status_1 = self.db.get_user_status(BaseTest.USER_ID) status_2 = self.db.get_user_status(BaseTest.USER_ID) self.assertEqual(UserKeys.STATUS_UNAVAILABLE, status_1) self.assertEqual(status_1, status_2) def _test_is_super_user(self): self.assertFalse(self.db.is_super_user(BaseTest.USER_ID)) self.db.set_super_user(BaseTest.USER_ID) self.assertTrue(self.db.is_super_user(BaseTest.USER_ID)) def _test_get_admin_room(self): self._create_channel() room_id = self.db.create_admin_room() self.assertIsNotNone(room_id) def _test_set_owner_channel_after_removing_owner(self): self._create_channel() self._create_room() self.assertTrue(self.db.is_owner_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID)) self.db.remove_owner_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID) self.assertFalse(self.db.is_owner_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID)) self.db.set_owner_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID) self.assertTrue(self.db.is_owner_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID)) def _test_set_owner_and_moderator(self): self._create_channel() self._create_room() self.assertFalse(self.db.is_moderator(BaseTest.ROOM_ID, BaseTest.USER_ID)) self.assertTrue(self.db.is_owner(BaseTest.ROOM_ID, BaseTest.USER_ID)) self.db.remove_owner(BaseTest.ROOM_ID, BaseTest.USER_ID) self.assertFalse(self.db.is_owner(BaseTest.ROOM_ID, BaseTest.USER_ID)) self.db.set_moderator(BaseTest.ROOM_ID, BaseTest.USER_ID) self.db.set_owner(BaseTest.ROOM_ID, BaseTest.USER_ID) self.assertTrue(self.db.is_moderator(BaseTest.ROOM_ID, BaseTest.USER_ID)) self.assertTrue(self.db.is_owner(BaseTest.ROOM_ID, BaseTest.USER_ID)) def _test_remove_channel_role(self): self._create_channel() self._create_room() self.assertTrue(self.db.is_owner_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID)) self.db.remove_owner_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID) self.assertFalse(self.db.is_owner_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID)) def _test_remove_room_role(self): self._create_channel() self._create_room() self.assertTrue(self.db.is_owner(BaseTest.ROOM_ID, BaseTest.USER_ID)) self.db.remove_owner(BaseTest.ROOM_ID, BaseTest.USER_ID) self.assertFalse(self.db.is_owner(BaseTest.CHANNEL_ID, BaseTest.USER_ID)) def _test_get_super_users(self): self._create_channel() self._create_room() self.assertFalse(self.db.is_super_user(BaseTest.USER_ID)) self.db.set_super_user(BaseTest.USER_ID) self.assertTrue(self.db.is_super_user(BaseTest.USER_ID)) super_users = self.db.get_super_users() self.assertEqual(1, len(super_users)) self.assertIn(BaseTest.USER_ID, super_users.keys()) self.assertIn(BaseTest.USER_NAME, super_users.values()) def _test_remove_super_user(self): self.assertFalse(self.db.is_super_user(BaseTest.USER_ID)) self.db.set_super_user(BaseTest.USER_ID) self.assertTrue(self.db.is_super_user(BaseTest.USER_ID)) self.db.remove_super_user(BaseTest.USER_ID) self.assertFalse(self.db.is_super_user(BaseTest.USER_ID)) def _test_remove_owner(self): self._create_channel() self._create_room() self.assertTrue(self.db.is_owner(BaseTest.ROOM_ID, BaseTest.USER_ID)) self.db.remove_owner(BaseTest.ROOM_ID, BaseTest.USER_ID) self.assertFalse(self.db.is_owner(BaseTest.ROOM_ID, BaseTest.USER_ID)) def _test_remove_channel_owner(self): self._create_channel() self._create_room() self.assertTrue(self.db.is_owner_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID)) self.db.remove_owner_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID) self.assertFalse(self.db.is_owner_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID)) def _test_remove_admin(self): self._create_channel() self._create_room() self.assertFalse(self.db.is_admin(BaseTest.CHANNEL_ID, BaseTest.USER_ID)) self.db.set_admin(BaseTest.CHANNEL_ID, BaseTest.USER_ID) self.assertTrue(self.db.is_admin(BaseTest.CHANNEL_ID, BaseTest.USER_ID)) self.db.remove_admin(BaseTest.CHANNEL_ID, BaseTest.USER_ID) self.assertFalse(self.db.is_admin(BaseTest.CHANNEL_ID, BaseTest.USER_ID)) def _test_remove_moderator(self): self._create_channel() self._create_room() self.assertFalse(self.db.is_moderator(BaseTest.ROOM_ID, BaseTest.USER_ID)) self.db.set_moderator(BaseTest.ROOM_ID, BaseTest.USER_ID) self.assertTrue(self.db.is_moderator(BaseTest.ROOM_ID, BaseTest.USER_ID)) self.db.remove_moderator(BaseTest.ROOM_ID, BaseTest.USER_ID) self.assertFalse(self.db.is_moderator(BaseTest.ROOM_ID, BaseTest.USER_ID)) def _test_remove_moderator_twice(self): self._create_channel() self._create_room() self.assertFalse(self.db.is_moderator(BaseTest.ROOM_ID, BaseTest.USER_ID)) self.db.set_moderator(BaseTest.ROOM_ID, BaseTest.USER_ID) self.assertTrue(self.db.is_moderator(BaseTest.ROOM_ID, BaseTest.USER_ID)) self.db.remove_moderator(BaseTest.ROOM_ID, BaseTest.USER_ID) self.assertFalse(self.db.is_moderator(BaseTest.ROOM_ID, BaseTest.USER_ID)) self.db.remove_moderator(BaseTest.ROOM_ID, BaseTest.USER_ID) self.assertFalse(self.db.is_moderator(BaseTest.ROOM_ID, BaseTest.USER_ID)) def _test_remove_moderator_no_such_room(self): self._create_channel() self._create_room() self.assertFalse(self.db.is_moderator(BaseTest.ROOM_ID, BaseTest.USER_ID)) self.db.set_moderator(BaseTest.ROOM_ID, BaseTest.USER_ID) self.assertTrue(self.db.is_moderator(BaseTest.ROOM_ID, BaseTest.USER_ID)) self.assertRaises(NoSuchRoomException, self.db.remove_moderator, str(uuid()), BaseTest.USER_ID) self.assertTrue(self.db.is_moderator(BaseTest.ROOM_ID, BaseTest.USER_ID)) def _test_set_owner_is_unique(self): self._create_channel() self._create_room() self.assertTrue(self.db.is_owner(BaseTest.ROOM_ID, BaseTest.USER_ID)) self.db.set_owner(BaseTest.ROOM_ID, BaseTest.USER_ID) self.assertTrue(self.db.is_owner(BaseTest.ROOM_ID, BaseTest.USER_ID)) users = self.db.get_owners_room(BaseTest.ROOM_ID) self.assertEqual(1, len(users)) self.assertIn(BaseTest.USER_ID, users.keys()) self.assertIn(BaseTest.USER_NAME, users.values()) def _test_set_owner_channel_is_unique(self): self._create_channel() self._create_room() self.assertTrue(self.db.is_owner_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID)) self.db.set_owner_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID) self.assertTrue(self.db.is_owner_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID)) users = self.db.get_owners_channel(BaseTest.CHANNEL_ID) self.assertEqual(1, len(users)) self.assertIn(BaseTest.USER_ID, users.keys()) self.assertIn(BaseTest.USER_NAME, users.values()) def _test_set_moderator_is_unique(self): self._create_channel() self._create_room() self.assertFalse(self.db.is_moderator(BaseTest.ROOM_ID, BaseTest.USER_ID)) self.db.set_moderator(BaseTest.ROOM_ID, BaseTest.USER_ID) self.assertTrue(self.db.is_moderator(BaseTest.ROOM_ID, BaseTest.USER_ID)) self.db.set_moderator(BaseTest.ROOM_ID, BaseTest.USER_ID) self.assertTrue(self.db.is_moderator(BaseTest.ROOM_ID, BaseTest.USER_ID)) users = self.db.get_moderators_room(BaseTest.ROOM_ID) self.assertEqual(1, len(users)) self.assertIn(BaseTest.USER_ID, users.keys()) self.assertIn(BaseTest.USER_NAME, users.values()) def _test_set_admin_is_unique(self): self._create_channel() self._create_room() self.assertFalse(self.db.is_admin(BaseTest.CHANNEL_ID, BaseTest.USER_ID)) self.db.set_admin(BaseTest.CHANNEL_ID, BaseTest.USER_ID) self.assertTrue(self.db.is_admin(BaseTest.CHANNEL_ID, BaseTest.USER_ID)) self.db.set_admin(BaseTest.CHANNEL_ID, BaseTest.USER_ID) self.assertTrue(self.db.is_admin(BaseTest.CHANNEL_ID, BaseTest.USER_ID)) users = self.db.get_admins_channel(BaseTest.CHANNEL_ID) self.assertEqual(1, len(users)) self.assertIn(BaseTest.USER_ID, users.keys()) self.assertIn(BaseTest.USER_NAME, users.values()) def _test_set_super_user_is_unique(self): self._create_channel() self._create_room() self.assertFalse(self.db.is_super_user(BaseTest.USER_ID)) self.db.set_super_user(BaseTest.USER_ID) self.assertTrue(self.db.is_super_user(BaseTest.USER_ID)) self.db.set_super_user(BaseTest.USER_ID) self.assertTrue(self.db.is_super_user(BaseTest.USER_ID)) users = self.db.get_super_users() self.assertEqual(1, len(users)) self.assertIn(BaseTest.USER_ID, users.keys()) self.assertIn(BaseTest.USER_NAME, users.values()) def _test_remove_super_user_without_setting(self): self._create_channel() self._create_room() self.assertFalse(self.db.is_super_user(BaseTest.OTHER_USER_ID)) self.db.remove_super_user(BaseTest.OTHER_USER_ID) self.assertFalse(self.db.is_super_user(BaseTest.OTHER_USER_ID)) def _test_remove_owner_without_setting(self): self._create_channel() self._create_room() self.assertFalse(self.db.is_owner(BaseTest.ROOM_ID, BaseTest.OTHER_USER_ID)) self.db.remove_owner(BaseTest.ROOM_ID, BaseTest.OTHER_USER_ID) self.assertFalse(self.db.is_owner(BaseTest.ROOM_ID, BaseTest.OTHER_USER_ID)) def _test_remove_channel_owner_without_setting(self): self._create_channel() self._create_room() self.assertFalse(self.db.is_owner_channel(BaseTest.CHANNEL_ID, BaseTest.OTHER_USER_ID)) self.db.remove_owner_channel(BaseTest.CHANNEL_ID, BaseTest.OTHER_USER_ID) self.assertFalse(self.db.is_owner_channel(BaseTest.CHANNEL_ID, BaseTest.OTHER_USER_ID)) def _test_remove_admin_without_setting(self): self._create_channel() self._create_room() self.assertFalse(self.db.is_admin(BaseTest.CHANNEL_ID, BaseTest.OTHER_USER_ID)) self.db.remove_admin(BaseTest.CHANNEL_ID, BaseTest.OTHER_USER_ID) self.assertFalse(self.db.is_admin(BaseTest.CHANNEL_ID, BaseTest.OTHER_USER_ID)) def _test_remove_moderator_without_setting(self): self._create_channel() self._create_room() self.assertFalse(self.db.is_moderator(BaseTest.ROOM_ID, BaseTest.OTHER_USER_ID)) self.db.remove_moderator(BaseTest.ROOM_ID, BaseTest.OTHER_USER_ID) self.assertFalse(self.db.is_moderator(BaseTest.ROOM_ID, BaseTest.OTHER_USER_ID)) def _test_remove_other_role_channel(self): self._create_channel() self._create_room() self.assertTrue(self.db.is_owner_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID)) self.assertFalse(self.db.is_admin(BaseTest.CHANNEL_ID, BaseTest.USER_ID)) self.db.set_admin(BaseTest.CHANNEL_ID, BaseTest.USER_ID) self.assertTrue(self.db.is_admin(BaseTest.CHANNEL_ID, BaseTest.USER_ID)) self.db.remove_owner_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID) self.assertFalse(self.db.is_owner_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID)) self.assertTrue(self.db.is_admin(BaseTest.CHANNEL_ID, BaseTest.USER_ID)) def _test_remove_other_role_room(self): self._create_channel() self._create_room() self.assertTrue(self.db.is_owner(BaseTest.ROOM_ID, BaseTest.USER_ID)) self.assertFalse(self.db.is_moderator(BaseTest.ROOM_ID, BaseTest.USER_ID)) self.db.set_moderator(BaseTest.ROOM_ID, BaseTest.USER_ID) self.assertTrue(self.db.is_moderator(BaseTest.ROOM_ID, BaseTest.USER_ID)) self.db.remove_owner(BaseTest.ROOM_ID, BaseTest.USER_ID) self.assertFalse(self.db.is_owner(BaseTest.ROOM_ID, BaseTest.USER_ID)) self.assertTrue(self.db.is_moderator(BaseTest.ROOM_ID, BaseTest.USER_ID)) def _test_set_admin_no_such_channel(self): self.assertRaises(NoSuchChannelException, self.db.set_admin, BaseTest.CHANNEL_ID, BaseTest.USER_ID) def _test_remove_admin_no_such_room(self): self.assertRaises(NoSuchChannelException, self.db.remove_admin, BaseTest.CHANNEL_ID, BaseTest.USER_ID) def _test_channel_name_exists(self): self.assertFalse(self.db.channel_name_exists(BaseTest.CHANNEL_NAME)) self._create_channel() self.assertTrue(self.db.channel_name_exists(BaseTest.CHANNEL_NAME)) def _test_channel_exists(self): self.assertFalse(self.db.channel_exists('')) self.assertFalse(self.db.channel_exists(None)) self.assertFalse(self.db.channel_exists(BaseTest.CHANNEL_ID)) self._create_channel() self.assertTrue(self.db.channel_exists(BaseTest.CHANNEL_ID)) def _test_create_user(self): self.assertRaises(NoSuchUserException, self.db.get_user_name, BaseTest.OTHER_USER_ID) self.db.create_user(BaseTest.OTHER_USER_ID, BaseTest.OTHER_USER_NAME) self.assertEqual(BaseTest.OTHER_USER_NAME, self.db.get_user_name(BaseTest.OTHER_USER_ID)) def _test_users_in_room(self): self.assertEqual(0, len(self.db.users_in_room(BaseTest.ROOM_ID))) self._create_channel() self.assertEqual(0, len(self.db.users_in_room(BaseTest.ROOM_ID))) self._create_room() self.assertEqual(0, len(self.db.users_in_room(BaseTest.ROOM_ID))) def _test_users_in_room_after_join(self): self._create_channel() self._create_room() self._join() users = self.db.users_in_room(BaseTest.ROOM_ID) self.assertEqual(1, len(users)) self.assertIn(BaseTest.USER_NAME, users.values()) def _test_delete_acl_in_room_for_action(self): self.assertRaises(NoSuchRoomException, self.db.delete_acl_in_room_for_action, BaseTest.ROOM_ID, 'gender', ApiActions.JOIN) self._create_channel() self.assertRaises(NoSuchRoomException, self.db.delete_acl_in_room_for_action, BaseTest.ROOM_ID, 'gender', ApiActions.JOIN) self._create_room() self.db.delete_acl_in_room_for_action(BaseTest.ROOM_ID, 'gender', ApiActions.JOIN) def _test_delete_acl_in_room_for_action_invalid_action(self): self._create_channel() self._create_room() self.assertRaises(InvalidApiActionException, self.db.delete_acl_in_room_for_action, BaseTest.ROOM_ID, 'gender', 'invalid-action') def _test_delete_acl_in_room_for_action_after_create(self): self._create_channel() self._create_room() self.db.add_acls_in_room_for_action(BaseTest.ROOM_ID, ApiActions.JOIN, {'age': '25:35'}) acls = self.db.get_acls_in_room_for_action(BaseTest.ROOM_ID, ApiActions.JOIN) self.assertIn('age', acls.keys()) self.db.delete_acl_in_room_for_action(BaseTest.ROOM_ID, 'age', ApiActions.JOIN) acls = self.db.get_acls_in_room_for_action(BaseTest.ROOM_ID, ApiActions.JOIN) self.assertEqual(0, len(acls)) def _test_delete_acl_in_channel_for_action_after_create(self): self._create_channel() self._create_room() self.db.add_acls_in_channel_for_action(BaseTest.CHANNEL_ID, ApiActions.LIST, {'age': '25:35'}) acls = self.db.get_acls_in_channel_for_action(BaseTest.CHANNEL_ID, ApiActions.LIST) self.assertIn('age', acls.keys()) self.db.delete_acl_in_channel_for_action(BaseTest.CHANNEL_ID, 'age', ApiActions.LIST) acls = self.db.get_acls_in_channel_for_action(BaseTest.CHANNEL_ID, ApiActions.LIST) self.assertEqual(0, len(acls)) def _test_delete_acl_in_channel_for_action_invalid_action(self): self._create_channel() self._create_room() self.assertRaises(InvalidApiActionException, self.db.delete_acl_in_channel_for_action, BaseTest.CHANNEL_ID, 'gender', 'invalid-action') def _test_delete_acl_in_channel_for_action(self): self.assertRaises(NoSuchChannelException, self.db.delete_acl_in_channel_for_action, BaseTest.CHANNEL_ID, 'gender', ApiActions.JOIN) self._create_channel() self.db.delete_acl_in_channel_for_action(BaseTest.CHANNEL_ID, 'gender', ApiActions.LIST) def _test_remove_owner_channel_no_channel(self): self.assertRaises(NoSuchChannelException, self.db.remove_owner_channel, BaseTest.CHANNEL_ID, BaseTest.USER_ID) def _test_remove_owner_channel_not_owner(self): self._create_channel() self._create_room() self.assertTrue(self.db.is_owner_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID)) self.db.remove_owner_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID) self.assertFalse(self.db.is_owner_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID)) self.db.remove_owner_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID) self.assertFalse(self.db.is_owner_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID)) def _test_remove_owner_channel_is_owner(self): self._create_channel() self._create_room() self._set_owner_channel() self.assertTrue(self.db.is_owner_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID)) self.db.remove_owner_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID) self.assertFalse(self.db.is_owner_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID)) def _test_set_two_owners_on_room(self): self._create_channel() self._create_room() try: self.db.create_user(BaseTest.USER_ID, BaseTest.USER_NAME) except UserExistsException as e: pass try: self.db.create_user(BaseTest.OTHER_USER_ID, BaseTest.OTHER_USER_NAME) except UserExistsException as e: pass for user_id in [BaseTest.USER_ID, BaseTest.OTHER_USER_ID]: self.db.set_owner(BaseTest.ROOM_ID, user_id) for user_id in [BaseTest.USER_ID, BaseTest.OTHER_USER_ID]: self.assertTrue(self.db.is_owner(BaseTest.ROOM_ID, user_id)) owners = self.db.get_owners_room(BaseTest.ROOM_ID) self.assertTrue(2, len(owners)) self.assertIn(BaseTest.USER_ID, owners) self.assertIn(BaseTest.OTHER_USER_ID, owners) def _test_create_user_exists(self): user_id = str(uuid()) self.db.create_user(user_id, BaseTest.USER_NAME) self.assertRaises(UserExistsException, self.db.create_user, user_id, BaseTest.USER_NAME) def _test_update_acl_in_room_for_action_no_channel(self): self.assertRaises(NoSuchChannelException, self.db.update_acl_in_room_for_action, BaseTest.CHANNEL_ID, BaseTest.ROOM_ID, ApiActions.JOIN, 'age', '25:40') def _test_update_acl_in_room_for_action_no_room(self): self._create_channel() self.assertRaises(NoSuchRoomException, self.db.update_acl_in_room_for_action, BaseTest.CHANNEL_ID, BaseTest.ROOM_ID, ApiActions.JOIN, 'age', '25:40') def _test_update_acl_in_room_for_action_invalid_action(self): self._create_channel() self._create_room() self.assertRaises(InvalidApiActionException, self.db.update_acl_in_room_for_action, BaseTest.CHANNEL_ID, BaseTest.ROOM_ID, 'some-invalid-action', 'age', '25:40') def _test_update_acl_in_room_for_action_invalid_type(self): self._create_channel() self._create_room() self.assertRaises(InvalidAclTypeException, self.db.update_acl_in_room_for_action, BaseTest.CHANNEL_ID, BaseTest.ROOM_ID, ApiActions.JOIN, 'something-invalid', '25:40') def _test_update_acl_in_room_for_action_invalid_value(self): self._create_channel() self._create_room() self.assertRaises(ValidationException, self.db.update_acl_in_room_for_action, BaseTest.CHANNEL_ID, BaseTest.ROOM_ID, ApiActions.JOIN, 'age', 'something-invalid') def _test_update_acl_in_room_for_action(self): self._create_channel() self._create_room() self.assertEqual(0, len(self.db.get_acls_in_room_for_action(BaseTest.ROOM_ID, ApiActions.JOIN))) self.db.update_acl_in_room_for_action(BaseTest.CHANNEL_ID, BaseTest.ROOM_ID, ApiActions.JOIN, 'age', '25:40') self.assertIn('age', self.db.get_acls_in_room_for_action(BaseTest.ROOM_ID, ApiActions.JOIN)) def _test_update_acl_in_channel_for_action(self): self._create_channel() self.assertEqual(0, len(self.db.get_acls_in_channel_for_action(BaseTest.CHANNEL_ID, ApiActions.LIST))) self.db.update_acl_in_channel_for_action(BaseTest.CHANNEL_ID, ApiActions.LIST, 'age', '25:40') self.assertIn('age', self.db.get_acls_in_channel_for_action(BaseTest.CHANNEL_ID, ApiActions.LIST)) def _test_update_acl_in_channel_for_action_invalid_action(self): self._create_channel() self.assertRaises(InvalidApiActionException, self.db.update_acl_in_channel_for_action, BaseTest.CHANNEL_ID, 'some-invalid-action', 'age', '25:40') def _test_update_acl_in_channel_for_action_invalid_type(self): self._create_channel() self.assertRaises(InvalidAclTypeException, self.db.update_acl_in_channel_for_action, BaseTest.CHANNEL_ID, ApiActions.LIST, 'something-invalid', '25:40') def _test_update_acl_in_channel_for_action_invalid_value(self): self._create_channel() self.assertRaises(ValidationException, self.db.update_acl_in_channel_for_action, BaseTest.CHANNEL_ID, ApiActions.LIST, 'age', 'something-invalid') def _test_update_acl_in_channel_for_action_no_channel(self): self.assertRaises(NoSuchChannelException, self.db.update_acl_in_channel_for_action, BaseTest.CHANNEL_ID, ApiActions.LIST, 'age', '25:40') def _test_is_banned_from_channel(self): self._create_channel() is_banned, time_left = self.db.is_banned_from_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID) self.assertFalse(is_banned) timestamp = str(int((datetime.utcnow() + timedelta(minutes=5)).timestamp())) duration = '5m' self.db.ban_user_channel(BaseTest.USER_ID, timestamp, duration, BaseTest.CHANNEL_ID) is_banned, time_left = self.db.is_banned_from_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID) self.assertTrue(is_banned) def _test_is_banned_from_room(self): self._create_channel() self._create_room() is_banned, time_left = self.db.is_banned_from_room(BaseTest.ROOM_ID, BaseTest.USER_ID) self.assertFalse(is_banned) timestamp = str(int((datetime.utcnow() + timedelta(minutes=5)).timestamp())) duration = '5m' self.db.ban_user_room(BaseTest.USER_ID, timestamp, duration, BaseTest.ROOM_ID) is_banned, time_left = self.db.is_banned_from_room(BaseTest.ROOM_ID, BaseTest.USER_ID) self.assertTrue(is_banned) def _test_is_banned_globally(self): self._create_channel() self._create_room() is_banned, time_left = self.db.is_banned_globally(BaseTest.USER_ID) self.assertFalse(is_banned) timestamp = str(int((datetime.utcnow() + timedelta(minutes=5)).timestamp())) duration = '5m' self.db.ban_user_global(BaseTest.USER_ID, timestamp, duration) is_banned, time_left = self.db.is_banned_globally(BaseTest.USER_ID) self.assertTrue(is_banned) def _test_remove_global_ban(self): self._create_channel() self._create_room() is_banned, time_left = self.db.is_banned_globally(BaseTest.USER_ID) self.assertFalse(is_banned) timestamp = str(int((datetime.utcnow() + timedelta(minutes=5)).timestamp())) duration = '5m' self.db.ban_user_global(BaseTest.USER_ID, timestamp, duration) is_banned, time_left = self.db.is_banned_globally(BaseTest.USER_ID) self.assertTrue(is_banned) self.db.remove_global_ban(BaseTest.USER_ID) is_banned, time_left = self.db.is_banned_globally(BaseTest.USER_ID) self.assertFalse(is_banned) def _test_remove_channel_ban(self): self._create_channel() self._create_room() is_banned, time_left = self.db.is_banned_from_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID) self.assertFalse(is_banned) timestamp = str(int((datetime.utcnow() + timedelta(minutes=5)).timestamp())) duration = '5m' self.db.ban_user_channel(BaseTest.USER_ID, timestamp, duration, BaseTest.CHANNEL_ID) is_banned, time_left = self.db.is_banned_from_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID) self.assertTrue(is_banned) self.db.remove_channel_ban(BaseTest.CHANNEL_ID, BaseTest.USER_ID) is_banned, time_left = self.db.is_banned_from_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID) self.assertFalse(is_banned) def _test_remove_room_ban(self): self._create_channel() self._create_room() is_banned, time_left = self.db.is_banned_from_room(BaseTest.ROOM_ID, BaseTest.USER_ID) self.assertFalse(is_banned) timestamp = str(int((datetime.utcnow() + timedelta(minutes=5)).timestamp())) duration = '5m' self.db.ban_user_room(BaseTest.USER_ID, timestamp, duration, BaseTest.ROOM_ID) is_banned, time_left = self.db.is_banned_from_room(BaseTest.ROOM_ID, BaseTest.USER_ID) self.assertTrue(is_banned) self.db.remove_room_ban(BaseTest.ROOM_ID, BaseTest.USER_ID) is_banned, time_left = self.db.is_banned_from_room(BaseTest.ROOM_ID, BaseTest.USER_ID) self.assertFalse(is_banned) def _test_was_banned_from_channel(self): self._create_channel() self._create_room() is_banned, time_left = self.db.is_banned_from_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID) self.assertFalse(is_banned) timestamp = str(int((datetime.utcnow() + timedelta(minutes=-5)).timestamp())) duration = '5m' self.db.ban_user_channel(BaseTest.USER_ID, timestamp, duration, BaseTest.CHANNEL_ID) is_banned, time_left = self.db.is_banned_from_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID) self.assertFalse(is_banned) def _test_was_banned_from_room(self): self._create_channel() self._create_room() is_banned, time_left = self.db.is_banned_from_room(BaseTest.ROOM_ID, BaseTest.USER_ID) self.assertFalse(is_banned) timestamp = str(int((datetime.utcnow() + timedelta(minutes=-5)).timestamp())) duration = '5m' self.db.ban_user_room(BaseTest.USER_ID, timestamp, duration, BaseTest.ROOM_ID) is_banned, time_left = self.db.is_banned_from_room(BaseTest.ROOM_ID, BaseTest.USER_ID) self.assertFalse(is_banned) def _test_was_banned_globally(self): self._create_channel() self._create_room() is_banned, time_left = self.db.is_banned_globally(BaseTest.USER_ID) self.assertFalse(is_banned) timestamp = str(int((datetime.utcnow() + timedelta(minutes=-5)).timestamp())) duration = '5m' self.db.ban_user_global(BaseTest.USER_ID, timestamp, duration) is_banned, time_left = self.db.is_banned_globally(BaseTest.USER_ID) self.assertFalse(is_banned) def _test_get_user_ban_status_channel(self): self._create_channel() self._create_room() is_banned, time_left = self.db.is_banned_from_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID) self.assertFalse(is_banned) ban_status = self.db.get_user_ban_status(BaseTest.ROOM_ID, BaseTest.USER_ID) self.assertEqual('', ban_status['channel']) timestamp = str(int((datetime.utcnow() + timedelta(minutes=5)).timestamp())) duration = '5m' self.db.ban_user_channel(BaseTest.USER_ID, timestamp, duration, BaseTest.CHANNEL_ID) ban_status = self.db.get_user_ban_status(BaseTest.ROOM_ID, BaseTest.USER_ID) self.assertNotEqual('', len(ban_status['channel'])) def _test_get_user_ban_status_room(self): self._create_channel() self._create_room() is_banned, time_left = self.db.is_banned_from_room(BaseTest.ROOM_ID, BaseTest.USER_ID) self.assertFalse(is_banned) ban_status = self.db.get_user_ban_status(BaseTest.ROOM_ID, BaseTest.USER_ID) self.assertEqual('', ban_status['room']) timestamp = str(int((datetime.utcnow() + timedelta(minutes=5)).timestamp())) duration = '5m' self.db.ban_user_room(BaseTest.USER_ID, timestamp, duration, BaseTest.ROOM_ID) ban_status = self.db.get_user_ban_status(BaseTest.ROOM_ID, BaseTest.USER_ID) self.assertNotEqual('', len(ban_status['room'])) def _test_get_user_ban_status_global(self): self._create_channel() self._create_room() is_banned, time_left = self.db.is_banned_globally(BaseTest.USER_ID) self.assertFalse(is_banned) ban_status = self.db.get_user_ban_status(BaseTest.ROOM_ID, BaseTest.USER_ID) self.assertEqual('', ban_status['global']) timestamp = str(int((datetime.utcnow() + timedelta(minutes=5)).timestamp())) duration = '5m' self.db.ban_user_global(BaseTest.USER_ID, timestamp, duration) ban_status = self.db.get_user_ban_status(BaseTest.ROOM_ID, BaseTest.USER_ID) self.assertNotEqual('', len(ban_status['global'])) def _test_get_banned_users_global_is_empty(self): self._create_channel() self._create_room() self.assertEqual(0, len(self.db.get_banned_users_global())) def _test_get_banned_users_global_is_empty_if_expired(self): self._create_channel() self._create_room() timestamp = str(int((datetime.utcnow() + timedelta(minutes=-5)).timestamp())) duration = '5m' self.db.ban_user_global(BaseTest.USER_ID, timestamp, duration) self.assertEqual(0, len(self.db.get_banned_users_global())) def _test_get_banned_users_global_not_empty_after_ban(self): self._create_channel() self._create_room() timestamp = str(int((datetime.utcnow() + timedelta(minutes=5)).timestamp())) duration = '5m' self.db.ban_user_global(BaseTest.USER_ID, timestamp, duration) self.assertIn(BaseTest.USER_ID, self.db.get_banned_users_global()) def _test_get_banned_users_channel_is_empty(self): self._create_channel() self._create_room() self.assertEqual(0, len(self.db.get_banned_users_for_channel(BaseTest.CHANNEL_ID))) def _test_get_banned_users_channel_is_empty_if_expired(self): self._create_channel() self._create_room() timestamp = str(int((datetime.utcnow() + timedelta(minutes=-5)).timestamp())) duration = '5m' self.db.ban_user_channel(BaseTest.USER_ID, timestamp, duration, BaseTest.CHANNEL_ID) self.assertEqual(0, len(self.db.get_banned_users_for_channel(BaseTest.CHANNEL_ID))) def _test_get_banned_users_channel_not_empty_after_ban(self): self._create_channel() self._create_room() timestamp = str(int((datetime.utcnow() + timedelta(minutes=5)).timestamp())) duration = '5m' self.db.ban_user_channel(BaseTest.USER_ID, timestamp, duration, BaseTest.CHANNEL_ID) self.assertIn(BaseTest.USER_ID, self.db.get_banned_users_for_channel(BaseTest.CHANNEL_ID)) def _test_get_banned_users_room_is_empty(self): self._create_channel() self._create_room() self.assertEqual(0, len(self.db.get_banned_users_for_room(BaseTest.ROOM_ID))) def _test_get_banned_users_room_is_empty_if_expired(self): self._create_channel() self._create_room() timestamp = str(int((datetime.utcnow() + timedelta(minutes=-5)).timestamp())) duration = '5m' self.db.ban_user_room(BaseTest.USER_ID, timestamp, duration, BaseTest.ROOM_ID) self.assertEqual(0, len(self.db.get_banned_users_for_room(BaseTest.ROOM_ID))) def _test_get_banned_users_room_not_empty_after_ban(self): self._create_channel() self._create_room() timestamp = str(int((datetime.utcnow() + timedelta(minutes=5)).timestamp())) duration = '5m' self.db.ban_user_room(BaseTest.USER_ID, timestamp, duration, BaseTest.ROOM_ID) self.assertIn(BaseTest.USER_ID, self.db.get_banned_users_for_room(BaseTest.ROOM_ID)) def _test_get_banned_users_is_empty(self): self._create_channel() self._create_room() banned = self.db.get_banned_users() self.assertEqual(0, len(banned['global'])) self.assertEqual(0, len(banned['channels'])) self.assertEqual(0, len(banned['rooms'])) def _test_get_banned_users_for_room(self): self._create_channel() self._create_room() timestamp = str(int((datetime.utcnow() + timedelta(minutes=5)).timestamp())) duration = '5m' self.db.ban_user_room(BaseTest.USER_ID, timestamp, duration, BaseTest.ROOM_ID) banned = self.db.get_banned_users() self.assertEqual(0, len(banned['global'])) self.assertEqual(0, len(banned['channels'])) self.assertIn(BaseTest.USER_ID, banned['rooms'][BaseTest.ROOM_ID]['users']) def _test_get_banned_users_for_channel(self): self._create_channel() self._create_room() timestamp = str(int((datetime.utcnow() + timedelta(minutes=5)).timestamp())) duration = '5m' self.db.ban_user_channel(BaseTest.USER_ID, timestamp, duration, BaseTest.CHANNEL_ID) banned = self.db.get_banned_users() self.assertEqual(0, len(banned['global'])) self.assertEqual(0, len(banned['rooms'])) self.assertIn(BaseTest.USER_ID, banned['channels'][BaseTest.CHANNEL_ID]['users']) def _test_get_banned_users_globally(self): self._create_channel() self._create_room() timestamp = str(int((datetime.utcnow() + timedelta(minutes=5)).timestamp())) duration = '5m' self.db.ban_user_global(BaseTest.USER_ID, timestamp, duration) banned = self.db.get_banned_users() self.assertEqual(0, len(banned['channels'])) self.assertEqual(0, len(banned['rooms'])) self.assertIn(BaseTest.USER_ID, banned['global']) def _test_get_global_ban_timestamp_is_none(self): self._create_channel() self._create_room() ban, timestamp, name = self.db.get_global_ban_timestamp(BaseTest.USER_ID) self.assertIsNone(ban) self.assertIsNone(timestamp) self.assertIsNone(name) def _test_get_global_ban_timestamp_not_none(self): self._create_channel() self._create_room() timestamp = str(int((datetime.utcnow() + timedelta(minutes=5)).timestamp())) duration = '5m' self.db.ban_user_global(BaseTest.USER_ID, timestamp, duration) ban_duration, timestamp, name = self.db.get_global_ban_timestamp(BaseTest.USER_ID) self.assertEqual('5m', ban_duration) self.assertIsNotNone(timestamp) def _test_get_global_ban_timestamp_not_empty_if_expired(self): self._create_channel() self._create_room() timestamp = str(int((datetime.utcnow() + timedelta(minutes=-5)).timestamp())) duration = '5m' self.db.ban_user_global(BaseTest.USER_ID, timestamp, duration) ban_duration, timestamp, name = self.db.get_global_ban_timestamp(BaseTest.USER_ID) self.assertEqual('5m', ban_duration) self.assertIsNotNone(timestamp) def _test_get_channel_ban_timestamp_is_none(self): self._create_channel() self._create_room() ban, timestamp, name = self.db.get_channel_ban_timestamp(BaseTest.CHANNEL_ID, BaseTest.USER_ID) self.assertIsNone(ban) self.assertIsNone(timestamp) self.assertIsNone(name) def _test_get_channel_ban_timestamp_not_none(self): self._create_channel() self._create_room() timestamp = str(int((datetime.utcnow() + timedelta(minutes=5)).timestamp())) duration = '5m' self.db.ban_user_channel(BaseTest.USER_ID, timestamp, duration, BaseTest.CHANNEL_ID) ban_duration, timestamp, name = self.db.get_channel_ban_timestamp(BaseTest.CHANNEL_ID, BaseTest.USER_ID) self.assertEqual('5m', ban_duration) self.assertIsNotNone(timestamp) def _test_get_channel_ban_timestamp_not_empty_if_expired(self): self._create_channel() self._create_room() timestamp = str(int((datetime.utcnow() + timedelta(minutes=-5)).timestamp())) duration = '5m' self.db.ban_user_channel(BaseTest.USER_ID, timestamp, duration, BaseTest.CHANNEL_ID) ban_duration, timestamp, name = self.db.get_channel_ban_timestamp(BaseTest.CHANNEL_ID, BaseTest.USER_ID) self.assertEqual('5m', ban_duration) self.assertIsNotNone(timestamp) def _test_get_room_ban_timestamp_is_none(self): self._create_channel() self._create_room() ban_duration, timestamp, name = self.db.get_room_ban_timestamp(BaseTest.ROOM_ID, BaseTest.USER_ID) self.assertIsNone(ban_duration) self.assertIsNone(timestamp) self.assertIsNone(name) def _test_get_room_ban_timestamp_not_none(self): self._create_channel() self._create_room() timestamp = str(int((datetime.utcnow() + timedelta(minutes=5)).timestamp())) duration = '5m' self.db.ban_user_room(BaseTest.USER_ID, timestamp, duration, BaseTest.ROOM_ID) ban_duration, timestamp, name = self.db.get_room_ban_timestamp(BaseTest.ROOM_ID, BaseTest.USER_ID) self.assertEqual('5m', ban_duration) self.assertIsNotNone(timestamp) def _test_get_room_ban_timestamp_not_empty_if_expired(self): self._create_channel() self._create_room() timestamp = str(int((datetime.utcnow() + timedelta(minutes=-5)).timestamp())) duration = '5m' self.db.ban_user_room(BaseTest.USER_ID, timestamp, duration, BaseTest.ROOM_ID) ban_duration, timestamp, name = self.db.get_room_ban_timestamp(BaseTest.ROOM_ID, BaseTest.USER_ID) self.assertEqual('5m', ban_duration) self.assertIsNotNone(timestamp) def _test_get_acls_in_channel_for_action_no_channel(self): self.assertRaises( NoSuchChannelException, self.db.get_acls_in_channel_for_action, BaseTest.CHANNEL_ID, ApiActions.LIST) def _test_get_acls_in_channel_for_action_no_room(self): self._create_channel() self.assertRaises( NoSuchRoomException, self.db.get_acls_in_room_for_action, BaseTest.ROOM_ID, ApiActions.JOIN) def _test_get_all_acls_channel_is_empty(self): self._create_channel() self._create_room() acls = self.db.get_all_acls_channel(BaseTest.CHANNEL_ID) self.assertEqual(0, len(acls)) def _test_get_all_acls_channel_not_empty(self): self._create_channel() self._create_room() self.db.add_acls_in_channel_for_action(BaseTest.CHANNEL_ID, ApiActions.LIST, {'age': '25:35'}) acls = self.db.get_all_acls_channel(BaseTest.CHANNEL_ID) self.assertEqual(1, len(acls)) def _test_get_all_acls_room_is_empty(self): self._create_channel() self._create_room() acls = self.db.get_all_acls_room(BaseTest.ROOM_ID) self.assertEqual(0, len(acls)) def _test_get_all_acls_room_not_empty(self): self._create_channel() self._create_room() self.db.add_acls_in_room_for_action(BaseTest.ROOM_ID, ApiActions.JOIN, {'age': '25:35'}) acls = self.db.get_all_acls_room(BaseTest.ROOM_ID) self.assertEqual(1, len(acls)) def _test_channel_for_room_blank_room_id(self): self.assertRaises(NoSuchRoomException, self.db.channel_for_room, '') def _test_channel_for_room_before_create(self): self.assertRaises(NoSuchRoomException, self.db.channel_for_room, BaseTest.ROOM_ID) def _test_channel_for_room_after_create(self): self._create_channel() self._create_room() channel_id = self.db.channel_for_room(BaseTest.ROOM_ID) self.assertEqual(BaseTest.CHANNEL_ID, channel_id) def _test_channel_for_room_cache(self): self._create_channel() self._create_room() self.db.channel_for_room(BaseTest.ROOM_ID) channel_id = self.db.channel_for_room(BaseTest.ROOM_ID) self.assertEqual(BaseTest.CHANNEL_ID, channel_id) def _test_get_username_before_set(self): self.assertRaises(NoSuchUserException, self.db.get_user_name, str(uuid())) def _test_get_username_after_set(self): self.db.set_user_name(BaseTest.USER_ID, BaseTest.USER_NAME) username = self.db.get_user_name(BaseTest.USER_ID) self.assertEqual(BaseTest.USER_NAME, username) def _test_rename_channel(self): self._create_channel() self._create_room() self.db.rename_channel(BaseTest.CHANNEL_ID, 'new-name') self.assertEqual('new-name', self.db.get_channel_name(BaseTest.CHANNEL_ID)) def _test_rename_channel_before_create(self): self.assertRaises(NoSuchChannelException, self.db.rename_channel, BaseTest.CHANNEL_ID, BaseTest.CHANNEL_NAME) def _test_rename_channel_empty_name(self): self._create_channel() self._create_room() self.assertRaises(EmptyChannelNameException, self.db.rename_channel, BaseTest.CHANNEL_ID, '') def _test_rename_channel_exists(self): self._create_channel() self._create_room() self.assertRaises(ChannelNameExistsException, self.db.rename_channel, BaseTest.CHANNEL_ID, BaseTest.CHANNEL_NAME) def _test_rename_room(self): self._create_channel() self._create_room() self.db.rename_room(BaseTest.CHANNEL_ID, BaseTest.ROOM_ID, 'new-name') self.assertEqual('new-name', self.db.get_room_name(BaseTest.ROOM_ID)) def _test_rename_room_before_create_channel(self): self.assertRaises(NoSuchChannelException, self.db.rename_room, BaseTest.CHANNEL_ID, BaseTest.ROOM_ID, 'new-name') def _test_rename_room_before_create_room(self): self._create_channel() self.assertRaises(NoSuchRoomException, self.db.rename_room, BaseTest.CHANNEL_ID, BaseTest.ROOM_ID, 'new-name') def _test_rename_room_empty_name(self): self._create_channel() self._create_room() self.assertRaises(EmptyRoomNameException, self.db.rename_room, BaseTest.CHANNEL_ID, BaseTest.ROOM_ID, '') def _test_rename_room_already_exists(self): self._create_channel() self._create_room() self.assertRaises(RoomNameExistsForChannelException, self.db.rename_room, BaseTest.CHANNEL_ID, BaseTest.ROOM_ID, BaseTest.ROOM_NAME) def _test_remove_room(self): self._create_channel() self._create_room() self.assertTrue(self.db.room_exists(BaseTest.CHANNEL_ID, BaseTest.ROOM_ID)) self.db.remove_room(BaseTest.CHANNEL_ID, BaseTest.ROOM_ID) self.assertFalse(self.db.room_exists(BaseTest.CHANNEL_ID, BaseTest.ROOM_ID)) def _test_remove_room_before_create_room(self): self._create_channel() self.assertFalse(self.db.room_exists(BaseTest.CHANNEL_ID, BaseTest.ROOM_ID)) self.assertRaises(NoSuchRoomException, self.db.remove_room, BaseTest.CHANNEL_ID, BaseTest.ROOM_ID) def _test_remove_room_before_create_channel(self): self.assertFalse(self.db.room_exists(BaseTest.CHANNEL_ID, BaseTest.ROOM_ID)) self.assertRaises(NoSuchChannelException, self.db.remove_room, BaseTest.CHANNEL_ID, BaseTest.ROOM_ID) def _test_update_last_read_for(self): self._create_channel() self._create_room() timestamp = int(datetime.utcnow().timestamp()) self.db.update_last_read_for({BaseTest.USER_ID}, BaseTest.ROOM_ID, timestamp) timestamp_fetched = self.db.get_last_read_timestamp(BaseTest.ROOM_ID, BaseTest.USER_ID) self.assertIsNotNone(timestamp_fetched) self.assertEqual(timestamp, timestamp_fetched) def _test_get_last_read_timestamp_before_set(self): self._create_channel() self._create_room() self.assertIsNone(self.db.get_last_read_timestamp(BaseTest.ROOM_ID, BaseTest.USER_ID)) def _test_update_username(self): self._create_channel() self._create_room() self.db.set_user_name(BaseTest.USER_ID, BaseTest.USER_NAME) self.assertEqual(BaseTest.USER_NAME, self.db.get_user_name(BaseTest.USER_ID)) self.db.set_user_name(BaseTest.USER_ID, 'Batman') self.assertEqual('Batman', self.db.get_user_name(BaseTest.USER_ID)) def _test_get_room_name_from_cache(self): self._create_channel() self._create_room() room_name = self.db.get_room_name(BaseTest.ROOM_ID) self.assertEqual(BaseTest.ROOM_NAME, room_name) room_name = self.db.get_room_name(BaseTest.ROOM_ID) self.assertEqual(BaseTest.ROOM_NAME, room_name) def _test_get_channel_name_from_cache(self): self._create_channel() self._create_room() channel_name = self.db.get_channel_name(BaseTest.CHANNEL_ID) self.assertEqual(BaseTest.CHANNEL_NAME, channel_name) channel_name = self.db.get_channel_name(BaseTest.CHANNEL_ID) self.assertEqual(BaseTest.CHANNEL_NAME, channel_name) def _test_is_banned_globally_after_clearing_cache(self): self._create_channel() self._create_room() timestamp = str(int((datetime.utcnow() + timedelta(minutes=5)).timestamp())) duration = '5m' self.db.ban_user_global(BaseTest.USER_ID, timestamp, duration) self.env.cache.set_global_ban_timestamp(BaseTest.USER_ID, '', '', '') is_banned, duration = self.db.is_banned_globally(BaseTest.USER_ID) self.assertTrue(is_banned) def _test_is_banned_globally_after_clearing_cache_if_expired(self): self._create_channel() self._create_room() timestamp = str(int((datetime.utcnow() + timedelta(minutes=-5)).timestamp())) duration = '5m' self.db.ban_user_global(BaseTest.USER_ID, timestamp, duration) self.env.cache.set_global_ban_timestamp(BaseTest.USER_ID, '', '', '') is_banned, duration = self.db.is_banned_globally(BaseTest.USER_ID) self.assertFalse(is_banned) def _test_is_banned_from_channel_after_clearing_cache(self): self._create_channel() self._create_room() timestamp = str(int((datetime.utcnow() + timedelta(minutes=5)).timestamp())) duration = '5m' self.db.ban_user_channel(BaseTest.USER_ID, timestamp, duration, BaseTest.CHANNEL_ID) self.env.cache.set_channel_ban_timestamp(BaseTest.CHANNEL_ID, BaseTest.USER_ID, '', '', '') is_banned, duration = self.db.is_banned_from_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID) self.assertTrue(is_banned) def _test_is_banned_from_channel_after_clearing_cache_if_expired(self): self._create_channel() self._create_room() timestamp = str(int((datetime.utcnow() + timedelta(minutes=-5)).timestamp())) duration = '5m' self.db.ban_user_channel(BaseTest.USER_ID, timestamp, duration, BaseTest.CHANNEL_ID) self.env.cache.set_channel_ban_timestamp(BaseTest.CHANNEL_ID, BaseTest.USER_ID, '', '', '') is_banned, duration = self.db.is_banned_from_channel(BaseTest.CHANNEL_ID, BaseTest.USER_ID) self.assertFalse(is_banned) def _test_is_banned_from_room_after_clearing_cache(self): self._create_channel() self._create_room() timestamp = str(int((datetime.utcnow() + timedelta(minutes=5)).timestamp())) duration = '5m' self.db.ban_user_room(BaseTest.USER_ID, timestamp, duration, BaseTest.ROOM_ID) self.env.cache.set_room_ban_timestamp(BaseTest.ROOM_ID, BaseTest.USER_ID, '', '', '') is_banned, duration = self.db.is_banned_from_room(BaseTest.ROOM_ID, BaseTest.USER_ID) self.assertTrue(is_banned) def _test_is_banned_from_room_after_clearing_cache_if_expired(self): self._create_channel() self._create_room() timestamp = str(int((datetime.utcnow() + timedelta(minutes=-5)).timestamp())) duration = '5m' self.db.ban_user_room(BaseTest.USER_ID, timestamp, duration, BaseTest.ROOM_ID) self.env.cache.set_room_ban_timestamp(BaseTest.ROOM_ID, BaseTest.USER_ID, '', '', '') is_banned, duration = self.db.is_banned_from_room(BaseTest.ROOM_ID, BaseTest.USER_ID) self.assertFalse(is_banned)
70,519
6,459
23
7c24e0e7bd87da7dcf0d17237156e3ed8a9c914a
682
py
Python
packages/postgres-database/src/simcore_postgres_database/migration/versions/cfd1c43b5d33_migrate_workbench_state_enum.py
colinRawlings/osparc-simcore
bf2f18d5bc1e574d5f4c238d08ad15156184c310
[ "MIT" ]
25
2018-04-13T12:44:12.000Z
2022-03-12T15:01:17.000Z
packages/postgres-database/src/simcore_postgres_database/migration/versions/cfd1c43b5d33_migrate_workbench_state_enum.py
colinRawlings/osparc-simcore
bf2f18d5bc1e574d5f4c238d08ad15156184c310
[ "MIT" ]
2,553
2018-01-18T17:11:55.000Z
2022-03-31T16:26:40.000Z
packages/postgres-database/src/simcore_postgres_database/migration/versions/cfd1c43b5d33_migrate_workbench_state_enum.py
mrnicegyu11/osparc-simcore
b6fa6c245dbfbc18cc74a387111a52de9b05d1f4
[ "MIT" ]
20
2018-01-18T19:45:33.000Z
2022-03-29T07:08:47.000Z
"""migrate workbench state enum Revision ID: cfd1c43b5d33 Revises: c8a7073deebb Create Date: 2020-11-17 16:42:32.511722+00:00 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'cfd1c43b5d33' down_revision = 'c8a7073deebb' branch_labels = None depends_on = None
19.485714
84
0.653959
"""migrate workbench state enum Revision ID: cfd1c43b5d33 Revises: c8a7073deebb Create Date: 2020-11-17 16:42:32.511722+00:00 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'cfd1c43b5d33' down_revision = 'c8a7073deebb' branch_labels = None depends_on = None def upgrade(): op.execute( sa.DDL( """ UPDATE projects SET workbench = (regexp_replace(workbench::text, '"FAILURE"', '"FAILED"'))::json WHERE workbench::text LIKE '%%FAILURE%%' """ ) ) def downgrade(): # ### commands auto generated by Alembic - please adjust! ### pass # ### end Alembic commands ###
316
0
46
e0da0a1af0b2f9dd2f59c9caf104f7566ccc85e2
270
py
Python
individual_work/justin/sandbox/build_alderman.py
marquettecomputationalsocialscience/clusteredcrimemaps
4fb4ad1ad2474f854dabc1a72fbefcbb700d601a
[ "MIT" ]
2
2017-11-16T23:22:53.000Z
2018-02-05T21:04:03.000Z
individual_work/justin/sandbox/build_alderman.py
marquettecomputationalsocialscience/clusteredcrimemaps
4fb4ad1ad2474f854dabc1a72fbefcbb700d601a
[ "MIT" ]
null
null
null
individual_work/justin/sandbox/build_alderman.py
marquettecomputationalsocialscience/clusteredcrimemaps
4fb4ad1ad2474f854dabc1a72fbefcbb700d601a
[ "MIT" ]
3
2017-08-06T22:44:45.000Z
2018-10-28T02:11:56.000Z
import json fn = open('../static/alderman.js', 'w') #add alderman boundaries variable json_file = open('../maps/alderman.geojson') geo_json = json.load(json_file) fn.write('var alderman_boundaries = ') fn.write(json.dumps(geo_json)) fn.write(';\n\n') json_file.close()
24.545455
44
0.722222
import json fn = open('../static/alderman.js', 'w') #add alderman boundaries variable json_file = open('../maps/alderman.geojson') geo_json = json.load(json_file) fn.write('var alderman_boundaries = ') fn.write(json.dumps(geo_json)) fn.write(';\n\n') json_file.close()
0
0
0
1685444ea08d378d0e2dd4b7a518820677952a30
5,760
py
Python
heavymodel/tables.py
lewisfogden/heavymodel
53507be8b7ce099740126d524f84e8cf84214995
[ "MIT" ]
3
2020-05-22T22:38:56.000Z
2021-11-23T19:38:44.000Z
heavymodel/tables.py
lewisfogden/heavymodel
53507be8b7ce099740126d524f84e8cf84214995
[ "MIT" ]
2
2020-05-23T21:08:22.000Z
2020-07-10T21:35:06.000Z
heavymodel/tables.py
lewisfogden/heavymodel
53507be8b7ce099740126d524f84e8cf84214995
[ "MIT" ]
2
2021-01-31T10:37:39.000Z
2022-03-02T09:07:06.000Z
# tables.py class MortalityTable: """mortalitytable is a matrix, by age and duration.""" class MortalityImprovementTable: """MortalityImprovementTable is a matrix, by age and year.""" class RangeTable: """range table"""
36.687898
129
0.485243
# tables.py class MortalityTable: """mortalitytable is a matrix, by age and duration.""" def __init__(self, csv_filename, name, select_period, pc_of_base=1): self.filename = csv_filename self.name = name self.select_period = select_period self.pc_of_base = pc_of_base self.load_csv(self.filename, self.select_period) def load_csv(self, filename, select_period): with open(filename, 'r') as csv_file: header = None self.q = dict() for raw_line in csv_file: line_array = raw_line.strip("\n").split(",") if header is None: header = line_array if len(header) != select_period + 2: raise ValueError("csv file does not have correct number of columns for select period.") else: age = int(line_array[0]) values = line_array[1:] for duration, value in enumerate(values): if value != "": self.q[age, duration] = float(value) * self.pc_of_base def get(self, age, duration): if duration > self.select_period: return self.q[(age, self.select_period)] else: return self.q[(age, duration)] def __getitem__(self, key): age, duration = key return self.get(age, duration) class MortalityImprovementTable: """MortalityImprovementTable is a matrix, by age and year.""" def __init__(self, csv_filename): self.filename = csv_filename self.load_csv(self.filename) def load_csv(self, filename): with open(filename, 'r') as csv_file: header = None self.q = dict() for raw_line in csv_file: line_array = raw_line.strip("\n").split(",") if header is None: header = line_array years = [int(year) for year in header[1:]] else: age = int(line_array[0]) values = line_array[1:] for year, value in zip(years, values): if value != "": self.q[age, year] = float(value) def get(self, age, year): return self.q[(age, year)] def __getitem__(self, key): age, year = key return self.get(age, year) class RangeTable: """range table""" def __init__(self, filename=None): with open(filename, 'r') as csv_file: header = None self.data = dict() for raw_line in csv_file: line_array = raw_line.strip("\n").split(",") if header is None: header = line_array else: key = int(line_array[0]) value = float(line_array[1]) self.data[key] = value self.max = max(self.data) self.min = min(self.data) def __getitem__(self, key): if key > self.max: return 1 elif key < self.min: return 0 else: return self.data[key] class YieldCurve: def __init__(self, filename, key_period="annual", rate_type="spot_rate"): self.filename = filename self.key_period = key_period self.rate_type = rate_type with open(self.filename, 'r') as csv_file: header = None self.spot_annual = dict() for raw_line in csv_file: line_array = raw_line.strip("\n").split(",") if header is None: header = line_array else: key = int(line_array[0]) value = float(line_array[1]) self.spot_annual[key] = value self.max_t = key * 12 self.max_t_years = key self._build_tables() def _build_tables(self): self.v = dict() # discount factor, monthly self.s = dict() # spot rate, monthly for t in range(self.max_t): t_years = int(t/12) self.s[t] = (1 + self.spot_annual[t_years]) ** (1/12) - 1 self.v[t] = (1 + self.s[t])**(-t) def npv(self, cashflow, proj_len): pv = 0.0 for t in range(0, proj_len): pv += self.v[t] * cashflow(t) return pv class ModelPoints: header_types = {"str":str, "int":int, "float":float, "bool":bool } def __init__(self, filename): self.filename = filename self.mps = [] with open(self.filename, 'r') as csv_file: header = None for raw_line in csv_file: line_array = raw_line.strip("\n").split(",") if header is None: header = line_array self.col_names = [] self.col_types = [] for col in line_array: self.col_types.append(self.header_types[col.split(":")[0]]) self.col_names.append(col.split(":")[1]) else: mp = {col_name:col_type(col) for col, col_name, col_type in zip(line_array, self.col_names, self.col_types)} self.mps.append(mp) def __iter__(self): return iter(self.mps) def __getitem__(self, key): return self.mps[key]
4,814
237
450
9c9bdde05fd6b005c418fb0f2df26af899a1b5ee
457
py
Python
pysimgame/utils/maths.py
ScienceGamez/pysimgame
6c89280441358722efbc63b6d8aa914cbe21575e
[ "WTFPL" ]
null
null
null
pysimgame/utils/maths.py
ScienceGamez/pysimgame
6c89280441358722efbc63b6d8aa914cbe21575e
[ "WTFPL" ]
null
null
null
pysimgame/utils/maths.py
ScienceGamez/pysimgame
6c89280441358722efbc63b6d8aa914cbe21575e
[ "WTFPL" ]
null
null
null
"""Mathematical helper functions.""" def normalize(array): """Normalize the array. Set all the values betwwen 0 and 1. 0 corresponds to the min value and 1 the max. If the normalization cannot occur, will return the array. """ min_ = min(array) max_ = max(array) return ( (array - min_) / (max_ - min_) # Normalize if min_ != max_ else array / (max_ if max_ > 0 else 1) # Avoid divide by 0 )
25.388889
62
0.601751
"""Mathematical helper functions.""" def normalize(array): """Normalize the array. Set all the values betwwen 0 and 1. 0 corresponds to the min value and 1 the max. If the normalization cannot occur, will return the array. """ min_ = min(array) max_ = max(array) return ( (array - min_) / (max_ - min_) # Normalize if min_ != max_ else array / (max_ if max_ > 0 else 1) # Avoid divide by 0 )
0
0
0
1767230b91ddc9a5770836dbc0935ed70a2e4b8d
105
py
Python
files/Strings/d25.py
heltonricardo/estudo-python
e82eb8ebc15378175b03d367a6eeea66e8858cff
[ "MIT" ]
null
null
null
files/Strings/d25.py
heltonricardo/estudo-python
e82eb8ebc15378175b03d367a6eeea66e8858cff
[ "MIT" ]
null
null
null
files/Strings/d25.py
heltonricardo/estudo-python
e82eb8ebc15378175b03d367a6eeea66e8858cff
[ "MIT" ]
null
null
null
nome = input('Insira nome completo: ').strip() print('Possui "Silva"?', 'silva' in nome.lower()) input()
26.25
49
0.657143
nome = input('Insira nome completo: ').strip() print('Possui "Silva"?', 'silva' in nome.lower()) input()
0
0
0
de22e77706673d86f80049a8a5df73132c478cf4
5,266
py
Python
models/resnet.py
akanametov/classification-pytorch
1090d6e794a789150c3e8f0f68080dd208d340c1
[ "MIT" ]
null
null
null
models/resnet.py
akanametov/classification-pytorch
1090d6e794a789150c3e8f0f68080dd208d340c1
[ "MIT" ]
null
null
null
models/resnet.py
akanametov/classification-pytorch
1090d6e794a789150c3e8f0f68080dd208d340c1
[ "MIT" ]
null
null
null
import torch import torch.nn as nn __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152'] def conv3x3(in_planes, out_planes, **kwargs): """3x3 convolution with padding""" kwargs['kernel_size'] = 3 kwargs['padding'] = 1 kwargs['bias'] = False return nn.Conv2d(in_planes, out_planes, **kwargs) def conv1x1(in_planes, out_planes, **kwargs): """1x1 convolution""" kwargs['kernel_size'] = 1 kwargs['bias'] = False return nn.Conv2d(in_planes, out_planes, **kwargs) class BasicBlock(nn.Module): """BasicBlock""" expansion = 1 class Bottleneck(nn.Module): """Bottleneck""" expansion = 4 class ResNet(nn.Module): """ResNet""" def resnet18(num_classes=1000, **kwargs): """resnet18""" return ResNet([2, 2, 2, 2], num_classes, BasicBlock) def resnet34(num_classes=1000, **kwargs): """resnet34""" return ResNet([3, 4, 6, 3], num_classes, BasicBlock) def resnet50(num_classes=1000, **kwargs): """resnet50""" return ResNet([3, 4, 6, 3], num_classes, Bottleneck) def resnet101(num_classes=1000, **kwargs): """resnet101""" return ResNet([3, 4, 23, 3], num_classes, Bottleneck) def resnet152(num_classes=1000, **kwargs): """resnet152""" return ResNet([3, 8, 36, 3], num_classes, Bottleneck)
30.616279
96
0.590201
import torch import torch.nn as nn __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152'] def conv3x3(in_planes, out_planes, **kwargs): """3x3 convolution with padding""" kwargs['kernel_size'] = 3 kwargs['padding'] = 1 kwargs['bias'] = False return nn.Conv2d(in_planes, out_planes, **kwargs) def conv1x1(in_planes, out_planes, **kwargs): """1x1 convolution""" kwargs['kernel_size'] = 1 kwargs['bias'] = False return nn.Conv2d(in_planes, out_planes, **kwargs) class BasicBlock(nn.Module): """BasicBlock""" expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride=stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): fx = x fx = self.conv1(fx) fx = self.bn1(fx) fx = self.relu(fx) fx = self.conv2(fx) fx = self.bn2(fx) if self.downsample is not None: x = self.downsample(x) fx = fx + x fx = self.relu(fx) return fx class Bottleneck(nn.Module): """Bottleneck""" expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = conv1x1(inplanes, planes) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = conv3x3(planes, planes, stride=stride) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = conv1x1(planes, planes * self.expansion) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): fx = x fx = self.conv1(fx) fx = self.bn1(fx) fx = self.relu(fx) fx = self.conv2(fx) fx = self.bn2(fx) fx = self.relu(fx) fx = self.conv3(fx) fx = self.bn3(fx) if self.downsample is not None: x = self.downsample(x) fx = fx + x fx = self.relu(fx) return fx class ResNet(nn.Module): """ResNet""" def __init__(self, layers, num_classes=1000, block=BasicBlock): super(ResNet, self).__init__() self.layers=layers self.num_classes=num_classes self.inplanes=64 # input self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) # base self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) # output self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) # init weights self.initialize_weights() def initialize_weights(self,): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) return None def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride=stride), nn.BatchNorm2d(planes * block.expansion)) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) return x def resnet18(num_classes=1000, **kwargs): """resnet18""" return ResNet([2, 2, 2, 2], num_classes, BasicBlock) def resnet34(num_classes=1000, **kwargs): """resnet34""" return ResNet([3, 4, 6, 3], num_classes, BasicBlock) def resnet50(num_classes=1000, **kwargs): """resnet50""" return ResNet([3, 4, 6, 3], num_classes, Bottleneck) def resnet101(num_classes=1000, **kwargs): """resnet101""" return ResNet([3, 4, 23, 3], num_classes, Bottleneck) def resnet152(num_classes=1000, **kwargs): """resnet152""" return ResNet([3, 8, 36, 3], num_classes, Bottleneck)
3,726
0
221
41d120032ce70ba4e8b62faacb4efbcdbe973dd7
12,787
py
Python
tests/impact/client/test_experiment_definition.py
iakov-test/impact-client-python
c1f0f91fc15c3b8c80408cd0c0c1afc5dc67e827
[ "BSD-3-Clause" ]
3
2020-09-30T12:08:58.000Z
2021-09-22T08:42:14.000Z
tests/impact/client/test_experiment_definition.py
iakov-test/impact-client-python
c1f0f91fc15c3b8c80408cd0c0c1afc5dc67e827
[ "BSD-3-Clause" ]
11
2020-09-24T14:25:41.000Z
2022-02-17T03:48:26.000Z
tests/impact/client/test_experiment_definition.py
iakov-test/impact-client-python
c1f0f91fc15c3b8c80408cd0c0c1afc5dc67e827
[ "BSD-3-Clause" ]
1
2022-01-10T13:50:51.000Z
2022-01-10T13:50:51.000Z
from modelon.impact.client import ( SimpleFMUExperimentDefinition, SimpleModelicaExperimentDefinition, Range, Choices, SimpleExperimentExtension, ) import pytest from modelon.impact.client import exceptions from tests.impact.client.fixtures import *
37.498534
93
0.574255
from modelon.impact.client import ( SimpleFMUExperimentDefinition, SimpleModelicaExperimentDefinition, Range, Choices, SimpleExperimentExtension, ) import pytest from modelon.impact.client import exceptions from tests.impact.client.fixtures import * class TestSimpleFMUExperimentDefinition: def test_experiment_definition_default_options(self, fmu, custom_function_no_param): definition = SimpleFMUExperimentDefinition( fmu, custom_function=custom_function_no_param ) config = definition.to_dict() assert config == { "experiment": { "version": 2, "base": { "model": {"fmu": {"id": "Test"}}, "modifiers": {'variables': {}}, "analysis": { "type": "dynamic", "parameters": {}, "simulationOptions": {"ncp": 500}, "solverOptions": {}, "simulationLogLevel": "WARNING", }, }, "extensions": [], } } def test_experiment_definition_with_options(self, fmu, custom_function_no_param): definition = SimpleFMUExperimentDefinition( fmu, custom_function=custom_function_no_param, simulation_options=custom_function_no_param.get_simulation_options().with_values( ncp=2000, rtol=0.0001 ), solver_options={'a': 1}, ) config = definition.to_dict() assert config["experiment"]["base"]["analysis"]["simulationOptions"] == { "ncp": 2000, "rtol": 0.0001, } assert config["experiment"]["base"]["analysis"]["solverOptions"] == {"a": 1} def test_experiment_definition_with_modifier(self, fmu, custom_function_no_param): definition = SimpleFMUExperimentDefinition( fmu, custom_function=custom_function_no_param, ).with_modifiers({'h0': Range(0.1, 0.5, 3)}, v=Choices(0.1, 0.5, 3)) config = definition.to_dict() assert config["experiment"]["base"]["modifiers"]["variables"] == { 'h0': 'range(0.1,0.5,3)', 'v': 'choices(0.1, 0.5, 3)', } def test_experiment_definition_with_choices_1_input_modifier( self, fmu, custom_function_no_param ): definition = SimpleFMUExperimentDefinition( fmu, custom_function=custom_function_no_param, ).with_modifiers(v=Choices(0.1)) config = definition.to_dict() assert config["experiment"]["base"]["modifiers"]["variables"] == { 'v': 'choices(0.1)', } def test_experiment_definition_with_fmu_modifiers( self, fmu_with_modifiers, custom_function_no_param ): definition = SimpleFMUExperimentDefinition( fmu_with_modifiers, custom_function=custom_function_no_param, ) config = definition.to_dict() assert config["experiment"]["base"]["modifiers"]["variables"] == {'PI.K': 20} def test_experiment_definition_with_extensions(self, fmu, custom_function_no_param): ext1 = SimpleExperimentExtension().with_modifiers(p=2) ext2 = SimpleExperimentExtension({'final_time': 10}).with_modifiers(p=3) definition = SimpleFMUExperimentDefinition( fmu, custom_function=custom_function_no_param, ).with_extensions([ext1, ext2]) config = definition.to_dict() assert config["experiment"]["extensions"] == [ {"modifiers": {"variables": {"p": 2}}}, { "modifiers": {"variables": {"p": 3}}, "analysis": {"parameters": {'final_time': 10}}, }, ] def test_experiment_definition_with_cases(self, fmu, custom_function_no_param): definition = SimpleFMUExperimentDefinition( fmu, custom_function=custom_function_no_param, ).with_cases([{'p': 2}, {'p': 3}]) config = definition.to_dict() assert config["experiment"]["extensions"] == [ {"modifiers": {"variables": {"p": 2}}}, {"modifiers": {"variables": {"p": 3}}}, ] def test_failed_compile_exp_def( self, fmu_compile_failed, custom_function_no_param, solver_options, simulation_options, ): pytest.raises( exceptions.OperationFailureError, SimpleFMUExperimentDefinition, fmu_compile_failed, custom_function_no_param, solver_options, simulation_options, ) def test_cancelled_compile_exp_def( self, fmu_compile_cancelled, custom_function_no_param, solver_options, simulation_options, ): pytest.raises( exceptions.OperationFailureError, SimpleFMUExperimentDefinition, fmu_compile_cancelled, custom_function_no_param, solver_options, simulation_options, ) def test_invalid_option_input(self, custom_function, custom_function_no_param): pytest.raises( TypeError, SimpleFMUExperimentDefinition, custom_function, custom_function_no_param, {}, ) def test_invalid_fmu_input(self, fmu, custom_function_no_param): pytest.raises( TypeError, SimpleFMUExperimentDefinition, fmu, custom_function_no_param, "", "", ) class TestSimpleExperimentExtension: def test_experiment_extension_default_options(self): ext = SimpleExperimentExtension() config = ext.to_dict() assert config == {} def test_experiment_extension_with_options(self, custom_function_no_param): ext = SimpleExperimentExtension( {'stop_time': 5}, {'a': 1}, custom_function_no_param.get_simulation_options().with_values( ncp=2000, rtol=0.0001 ), ) config = ext.to_dict() assert config == { "analysis": { "parameters": {'stop_time': 5}, "simulationOptions": {'ncp': 2000, 'rtol': 0.0001}, "solverOptions": {'a': 1}, }, } def test_experiment_extension_with_modifiers(self): ext = SimpleExperimentExtension().with_modifiers({'PI.k': 10}, P=5, d=15) config = ext.to_dict() assert config == { "modifiers": {"variables": {'PI.k': 10, 'P': 5, 'd': 15}}, } def test_experiment_extension_with_range_modifier(self): ext = SimpleExperimentExtension() pytest.raises(ValueError, ext.with_modifiers, {'h0': Range(0.1, 0.5, 3)}) def test_experiment_extension_with_choices_modifier(self): ext = SimpleExperimentExtension() pytest.raises(ValueError, ext.with_modifiers, {'h0': Choices(0.1, 0.5, 3)}) def test_invalid_with_extensions_input(self, fmu, custom_function_no_param): definition = SimpleFMUExperimentDefinition( fmu, custom_function=custom_function_no_param, ) pytest.raises(TypeError, definition.with_extensions, {}) def test_invalid_with_extensions_list_input(self, fmu, custom_function_no_param): definition = SimpleFMUExperimentDefinition( fmu, custom_function=custom_function_no_param, ) pytest.raises(TypeError, definition.with_extensions, [{}]) def test_invalid_with_cases_input(self, fmu, custom_function_no_param): definition = SimpleFMUExperimentDefinition( fmu, custom_function=custom_function_no_param, ) pytest.raises(TypeError, definition.with_cases, {}) def test_invalid_with_cases_list_input(self, fmu, custom_function_no_param): definition = SimpleFMUExperimentDefinition( fmu, custom_function=custom_function_no_param, ) pytest.raises(TypeError, definition.with_cases, [[]]) class TestSimpleModelicaExperimentDefinition: def test_experiment_definition_default_options( self, model, custom_function_no_param ): definition = SimpleModelicaExperimentDefinition( model, custom_function=custom_function_no_param ) config = definition.to_dict() assert config == { "experiment": { "version": 2, "base": { "model": { "modelica": { "className": "Test.PID", "compilerOptions": {"c_compiler": "gcc"}, "runtimeOptions": {}, "compilerLogLevel": 'warning', "fmiTarget": 'me', "fmiVersion": '2.0', "platform": 'auto', } }, "modifiers": {'variables': {}}, "analysis": { "type": "dynamic", "parameters": {}, "simulationOptions": {"ncp": 500}, "solverOptions": {}, "simulationLogLevel": "WARNING", }, }, "extensions": [], } } def test_experiment_definition_with_options(self, model, custom_function_no_param): definition = SimpleModelicaExperimentDefinition( model, custom_function=custom_function_no_param, compiler_options=custom_function_no_param.get_compiler_options().with_values( a=2, b=1 ), runtime_options={'d': 1}, simulation_options=custom_function_no_param.get_simulation_options().with_values( ncp=2000, rtol=0.0001 ), solver_options={'a': 1}, ) config = definition.to_dict() assert config["experiment"]["base"]["model"]["modelica"]["compilerOptions"] == { "a": 2, "b": 1, 'c_compiler': 'gcc', } assert config["experiment"]["base"]["model"]["modelica"]["runtimeOptions"] == { "d": 1, } assert config["experiment"]["base"]["analysis"]["simulationOptions"] == { "ncp": 2000, "rtol": 0.0001, } assert config["experiment"]["base"]["analysis"]["solverOptions"] == {"a": 1} def test_experiment_definition_with_modifier(self, model, custom_function_no_param): definition = SimpleModelicaExperimentDefinition( model, custom_function=custom_function_no_param, ).with_modifiers({'h0': Range(0.1, 0.5, 3), 'v': Choices(0.1, 0.5, 3)}) config = definition.to_dict() assert config["experiment"]["base"]["modifiers"]["variables"] == { 'h0': 'range(0.1,0.5,3)', 'v': 'choices(0.1, 0.5, 3)', } def test_experiment_definition_with_extensions( self, model, custom_function_no_param ): ext1 = SimpleExperimentExtension().with_modifiers(p=2) ext2 = SimpleExperimentExtension({'final_time': 10}).with_modifiers(p=3) definition = SimpleModelicaExperimentDefinition( model, custom_function=custom_function_no_param, ).with_extensions([ext1, ext2]) config = definition.to_dict() assert config["experiment"]["extensions"] == [ {"modifiers": {"variables": {"p": 2}}}, { "modifiers": {"variables": {"p": 3}}, "analysis": {"parameters": {'final_time': 10}}, }, ] def test_experiment_definition_with_cases(self, model, custom_function_no_param): definition = SimpleModelicaExperimentDefinition( model, custom_function=custom_function_no_param, ).with_cases([{'p': 2}, {'p': 3}]) config = definition.to_dict() assert config["experiment"]["extensions"] == [ {"modifiers": {"variables": {"p": 2}}}, {"modifiers": {"variables": {"p": 3}}}, ] def test_invalid_option_input(self, custom_function, custom_function_no_param): pytest.raises( TypeError, SimpleModelicaExperimentDefinition, custom_function, custom_function_no_param, {}, ) def test_invalid_model_input(self, fmu, model, custom_function_no_param): pytest.raises( TypeError, SimpleModelicaExperimentDefinition, fmu, custom_function_no_param, )
11,660
58
795
b9fcee270a8071595b5e1f5162f790c169294d8f
3,537
py
Python
database.py
shikanon/sota-website
3a49fe5e91de72a5d7c7a07ce8b76637953c8194
[ "MIT" ]
null
null
null
database.py
shikanon/sota-website
3a49fe5e91de72a5d7c7a07ce8b76637953c8194
[ "MIT" ]
null
null
null
database.py
shikanon/sota-website
3a49fe5e91de72a5d7c7a07ce8b76637953c8194
[ "MIT" ]
null
null
null
#coding:utf-8 import pymongo import records
34.009615
125
0.615493
#coding:utf-8 import pymongo import records class DB: def __init__(self): ''' 初始化数据库 ''' self.init_mongo() self.init_record() def init_mongo(self): # mongodb客户端 mongo_client = pymongo.MongoClient('mongodb://10.10.6.85:27017/') api_db = mongo_client["sotaapi"] self.api_col = api_db["apiGroup"] self.api_col.create_index([('name', pymongo.ASCENDING)], unique=True) def init_record(self): # 关系型数据库 self.record_db = records.Database('mysql+pymysql://root:shikanon@10.10.6.85:3306/sota', encoding='utf-8', echo=True) def create_relation_table(self): '''创建数据库''' create_index_table = '''CREATE TABLE IF NOT EXISTS sotaindex( id int(4) NOT NULL AUTO_INCREMENT, name varchar(64) NOT NULL comment '搜索大厅呈现类别', TypeID int(4) NOT NULL comment '0代表模型接口, 1代表行业解决方案模型, 2 代表数据集接口', APIType varchar(16) NOT NULL comment '类型名称', Image TEXT comment '图片路径', PRIMARY KEY ( `id` ) )DEFAULT CHARSET=utf8 ; ''' create_api_table = '''CREATE TABLE IF NOT EXISTS api( id int AUTO_INCREMENT, name varchar(255) NOT NULL comment 'API名称', APIGroup varchar(32) NOT NULL comment 'API组,属于API种类下的子类,表示一组API的集合', APIGroupDescription TEXT, DeploymentTime TIMESTAMP comment '部署时间' NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP, Description TEXT comment '接口描述', APIClass varchar(32) NOT NULL comment 'API种类,如图像生成、人脸识别', APIClassDescription TEXT, `index_id` int(4) NOT NULL, PRIMARY KEY ( `id` ), INDEX groupname (APIGroup), INDEX classname (APIClass), FOREIGN KEY (`index_id`) REFERENCES `sotaindex` (`id`) )DEFAULT CHARSET=utf8 ; ''' self.record_db.query(create_index_table) self.record_db.query(create_api_table) def reset(self): # 删除关系表 delete_table = '''DROP TABLE IF EXISTS api''' self.record_db.query(delete_table) delete_table = '''DROP TABLE IF EXISTS sotaindex''' self.record_db.query(delete_table) # 删除mongo collections self.api_col.remove() # 创建表 self.create_relation_table() def insert_sotaindex(self, records): insert_sql = '''insert ignore into sotaindex(name, APIType, TypeID, Image) values(:name, :APIType, :TypeID, :Image) ''' self.record_db.bulk_query(insert_sql, *records) def get_sotaindex(self): search_sql = "select * from sotaindex;" return self.record_db.query(search_sql) def insert_api(self, records): insert_sql = ''' insert ignore into api ( name, index_id, APIGroup, APIGroupDescription, APIClass, DeploymentTime, APIClassDescription, Description ) values ( :name, :index_id, :APIGroup, :APIGroupDescription, :APIClass, :DeploymentTime, :APIClassDescription, :Description ) ''' self.record_db.bulk_query(insert_sql, *records) def search_api_from_sotaindex(self, index_id): search_sql = "select * from api where index_id=:index_id" return self.record_db.query(search_sql,index_id=index_id) # def insert_or_update_sdk(self, sdk): # self.api_col.insert_one(sdk) # def get_sdk(self, name): # self.api_col.find_one(name)
1,646
2,043
23
36557163a13310fca57cbdee6a3ecf79cac43fbc
27,785
py
Python
tm351_nb_utils.py
innovationOUtside/notebook_processing
7444235112c2c0677f0873db54f080138c78ad95
[ "MIT" ]
2
2020-02-12T06:34:03.000Z
2021-09-30T04:55:10.000Z
tm351_nb_utils.py
innovationOUtside/notebook_processing
7444235112c2c0677f0873db54f080138c78ad95
[ "MIT" ]
8
2020-07-04T21:35:31.000Z
2022-01-10T17:13:40.000Z
tm351_nb_utils.py
innovationOUtside/notebook_processing
7444235112c2c0677f0873db54f080138c78ad95
[ "MIT" ]
null
null
null
# ou-tm351 - `nb_pub_utils` #GOTCHA - Python on Mac logging in to Github: https://stackoverflow.com/a/42098127/454773 import click import os import shutil import zipfile import humanize import datetime import github from tabulate import tabulate from shlex import quote import subprocess def listify(item): ''' If presented with a string and a list is required, make a list... ''' item = [] if item is None else item #We may be passed a tuple - in which case, listify... item = list(item) if isinstance(item,(list,tuple)) else [item] return item def exclude_hidden_items(itemlist, exclude_hidden=True): ''' Exclude hidden items from ziplist ''' if exclude_hidden: rmlist=[] for x in itemlist: if x.startswith('.'): rmlist.append(x) for x in rmlist: itemlist.remove(x) def exclude_items(itemlist, excludes, exclude_hidden=True, ipynb_only=False): ''' Exclude items from ziplist ''' for xd in set(itemlist).intersection(excludes): itemlist.remove(xd) if ipynb_only: for i in [_i for _i in itemlist if not _i.endswith("ipynb")]: itemlist.remove(i) if exclude_hidden: exclude_hidden_items(itemlist) def notebookTest(path=None, filename=None, dir_excludes=None, file_excludes=None): ''' Run notebook tests over explicitly named files and directories. ''' #Could probably define this recursively to handle mulitple paths/filenames... sanitiser = """[regex1] regex: <graphviz.files.Source at [^>]*> replace: <graphviz.files.Source> [regex2] regex: CPU times: .* replace: CPU times: CPUTIME [regex3] regex: Wall time: .* replace: Wall time: WALLTIME [regex4] regex: .* per loop \(mean ± std. dev. of .* runs, .* loops each\) replace: TIMEIT_REPORT """ #tmp_fn = "_sanitise_cfg.cfg" #with open(tmp_fn, "w") as f: # f.write(sanitiser) #cmd=f'py.test --nbval-sanitize-with {tmp_fn} ' cmd=f'py.test ' file_excludes = listify(file_excludes) for d in listify(dir_excludes): cmd = cmd + ' --ignore={} '.format(quote(d)) print("*Not testing in directory: {}*".format(d)) cmd = cmd+' --nbval ' ## WARNING - TO DO - if we are running this from a notebook, also exclude path=='.' if path is None and filename is None: #Process current directory return cli_command(cmd) elif filename: #Process file(s) in directory if isinstance(filename, list): for _filename in filename: cmd = '{cmd} {filename}'.format(cmd=cmd, filename=pathmaker(path, quote(_filename))) resp=cli_command(cmd) else: cmd = '{cmd} {filename}'.format(cmd=cmd, filename=pathmaker(path, quote(filename))) resp=cli_command(cmd) return resp else: #Process files in path #If we pass a directory name in then the test will be run over all files in the directory #py.test accumulates the test responses resps = [] for singlepath in listify(path): for dirname, subdirs, files in os.walk(singlepath): exclude_items(subdirs, dir_excludes) exclude_items(files, file_excludes, ipynb_only=True) print('Processing directory: {}'.format(dirname)) with click.progressbar(files) as bar: for filename in bar: filepathname=os.path.join(dirname, filename) cmd = '{cmd} {path}'.format(cmd=cmd, path=quote(filepathname)) resps.append( cli_command(cmd) ) #for singlepath in listify(path): # print("\nTesting in directory: {}".format(singlepath)) # if singlepath=='.': # print('**DO NOT test in current directory from a notebook**') # cmd = '{cmd} {path}'.format(cmd=cmd, path=quote(singlepath)) # resps.append( cli_command(cmd) ) os.unlink(tmp_fn) return resps def notebookProcessor(notebook, mode=None, outpath=None, outfile=None, inplace=True): ''' Clear notebook output cells. Process a single notebook, clearing cell outputs running cells until a warning, or running all cells despite warnings. Processed notebooks can be written to a specified directory or rendered inplace. ''' if mode is None: return (-1, 'Mode not specified.') if outpath is not None and not os.path.exists(outpath): os.makedirs(outpath) if outfile is not None: outpath = '/'.join([outpath,outfile]) if outpath is not None else outfile cmd='jupyter nbconvert --to notebook' if mode in ['clearOutput', 'clearOutputTest' ]: cmd = '{cmd} --ClearOutputPreprocessor.enabled=True'.format(cmd=cmd) elif mode == 'run': cmd = '{cmd} --execute'.format(cmd=cmd) elif mode == 'runWithErrors': cmd = '{cmd} --ExecutePreprocessor.allow_errors=True --execute'.format(cmd=cmd) else: return (-1, 'Mode not specified correctly.') if outpath is None and inplace: cmd='{cmd} --inplace'.format(cmd=cmd) #Select file cmd='{cmd} {notebook}'.format(cmd=cmd,notebook=quote(notebook)) #If output path not set, and --inplace is not set, # nbformat will create a new file with same name ending: .nbformat.ipynb if outpath is not None: cmd ='{cmd} --output-dir {outpath}'.format(cmd=cmd, outpath=quote(outpath)) return cli_command(cmd) def directoryProcessor(path, mode=None, outpath=None, inplace=True, include_hidden=False, dir_excludes=None, file_excludes=None, rmdir=False, currdir=False, subdirs=True, reportlevel=1, logfile=None): ''' Process all the notebooks in one or more directories and (optionally) in associated subdirectories. Processed notebooks can be written to a specified directory or rendered inplace. Path hierarchies to notebooks in multiple directories or subdirectories are respected when writing to a specified output directory. ''' def _process(outpath): ''' Process files associated with a particular directory ''' processfiles=[f for f in files if f.endswith('.ipynb')] if subdirs: print(dirname) if outpath is not None: outpath='/'.join([outpath, dirname]) if not os.path.exists(outpath): os.makedirs(outpath) if not mode == 'tests': #print('About to process {}'.format(processfiles)) with click.progressbar(processfiles) as bar: for filename in bar: if not currdir and dirname=='.': continue if reportlevel>1: print("Processing >{}<".format('/'.join([dirname,filename]))) resp = notebookProcessor('/'.join([dirname,filename]), mode=mode, outpath=outpath, inplace=inplace ) if reportlevel>0 and resp and resp[0]!=0: print("Error with {}".format('/'.join([dirname,filename]))) if logfile: with open(logfile, "a") as out: out.write(resp[1]) #if mode in ['tests', 'clearOutputTest']: # #Tests need to run in original dir in case of file dependencies # testreport = notebookTest(path=dirname,dir_excludes=dir_excludes) # print('tested:',dirname) # print(testreport[1]) #if mode == 'clearOutputTest': # #If we are testing for warnings, need to test in original directory # # in case there are file dependencies # outpath=None # inplace=True if mode is None: return if isinstance(path, list): if rmdir: shutil.rmtree(outpath, ignore_errors=True) #Make sure we only delete the directory on the way in... rmdir=False for _path in path: #When provided with multiple directories, process each one separately #Note that subdirs for each directory can be handled automatically directoryProcessor(_path, mode, '/'.join([outpath, _path]), inplace, include_hidden, dir_excludes, file_excludes, rmdir, currdir, subdirs, reportlevel, logfile) return #TO DO - simplify this so we just pass one exclusion type then detect if file or dir? file_excludes = listify(file_excludes) dir_excludes = listify(dir_excludes) if outpath is not None and os.path.exists(outpath): if rmdir: print('\n***Deleting directory `{}` and all its contents....***\n\n'.format(outpath)) shutil.rmtree(outpath, ignore_errors=True) else: print('\nOutput directory `{}` already exists. Remove it first by setting: rmdir=True\n'.format(outpath)) #dir_excludes = [] if dir_excludes is None else dir_excludes #file_excludes = [] if file_excludes is None else file_excludes if os.path.isfile(path): notebookProcessor(path, mode=mode, outpath=outpath, inplace=inplace ) elif subdirs: for dirname, subdirs, files in os.walk(path): exclude_items(subdirs, dir_excludes, not include_hidden) exclude_items(files, file_excludes, not include_hidden) _process(outpath) # if passed a single file rather than directory path else: files=os.listdir(path) exclude_items(files, file_excludes, not include_hidden) dirname=path _process(outpath) #Running zipper with a file_processor will change the cell state in current dir #That is, notebooks are processed in place then zipped #The notebooks as seen in the dir will reflect those in the zipfile #We could modify this behaviour so it does not affect original notebooks? def zipper(dirtozip, zipfilename, include_hidden=False, dir_excludes=None, file_excludes=None, file_processor=None, reportlevel=1, rmdir=False, zip_append=False): ''' Zip the contents of a directory and its subdirectories ''' file_excludes = listify(file_excludes) dir_excludes = listify(dir_excludes) zip_permission = "a" if zip_append else "w" #Create a new/replacement zip file, rather than append if zipfile already exists zf = zipfile.ZipFile(zipfilename, zip_permission, compression=zipfile.ZIP_DEFLATED) #Don't zip files of same name as the zip file we are creating file_excludes.append(zipfilename) # if we have just a single file to zip and not a dir, zip that if os.path.isfile(dirtozip): zf.write(dirtozip) elif os.path.isdir(dirtozip): #https://stackoverflow.com/a/31779538/454773 for dirname, subdirs, files in os.walk(dirtozip): exclude_items(subdirs, dir_excludes, not include_hidden) exclude_items(files, file_excludes, not include_hidden) print('Processing directory: {}'.format(dirname)) zf.write(dirname) with click.progressbar(files) as bar: for filename in bar: if reportlevel>1:print(filename) filepathname=os.path.join(dirname, filename) #There is no point using 'run': if there is an error, nbconvert will fail if file_processor in ['clearOutput', 'runWithErrors'] and filename.endswith('.ipynb'): #This introduces side effects - notebooks are processed in current path #Should we do this in a tmpfile? notebookProcessor(filepathname, mode=file_processor, inplace=True) zf.write(filepathname) zf.close() #Is this too risky?! #if rmdir: shutil.rmtree(dirtozip, ignore_errors=True) return zipfilename def insideZip(zfn, report=True): ''' Look inside a zip file. The report contains four columns: file_size, file compressed size, datetime and filename. Setting report=True returns a pretty printed report. ''' if not os.path.isfile(zfn): print("\nHmm... {} doesn't seem to be a file?\n".format(zfn)) return print('\nLooking inside zipfile: {}\n'.format(zfn)) fz=zipfile.ZipFile(zfn) txt=[] for fn in fz.infolist(): txt.append( [fn.file_size, fn.compress_size, datetime.datetime(*fn.date_time).isoformat(), fn.filename] ) print('{}, {}, {}, {}'.format(fn.file_size, fn.compress_size, datetime.datetime(*fn.date_time).isoformat(), fn.filename)) tabulate(txt, headers=['Full','Zip','Datetime','Path'],tablefmt="simple") return txt @click.command() @click.option('--file-processor','-r', type=click.Choice(['clearOutput', 'runWithErrors'])) @click.option('--include-hiddenfiles', '-H', is_flag=True, help='Include hidden files') @click.option('--exclude-dir', '-X', multiple=True, type=click.Path(resolve_path=False), help='Exclude specified directory') @click.option('--exclude-file','-x', multiple=True,type=click.Path(resolve_path=False), help='Exclude specified file') @click.option('--zip_append','-a', is_flag=True, help='Add to existing zip file') @click.argument('path', type=click.Path(resolve_path=False)) #@click.argument('zipfile', type=click.File('wb')) @click.argument('zipfile', type=click.Path()) def cli_zip(file_processor, include_hiddenfiles, exclude_dir, exclude_file, zip_append, path, zipfile): """Create a zip file from the contents of a specified directory. The zipper can optionally run a notebook processor on notebooks before zipping them to check that all cells are run or all cells are cleared. """ print('You must be crazy using this...') if not zip_append: print(f"\nOverwriting any previous {zipfile} file\n") else: print(f"\nAppending zipped files to: {zipfile}\n") fn = zipper(path, zipfile, include_hidden=include_hiddenfiles, dir_excludes=exclude_dir, file_excludes=exclude_file, file_processor=file_processor, zip_append=zip_append) print(f"\nZip file: {fn}\n") @click.command() @click.option('--quiet', '-q', is_flag=True, help='Suppress the report.') @click.option('--warnings', '-w', is_flag=True, help='Display warnings') @click.argument('filename', type=click.Path(resolve_path=True),nargs=-1) def cli_zipview(filename, warnings, quiet): """List the contents of one or more specified zipfiles. """ zip_contents = [] for f in listify(filename): zip_contents.append((f, insideZip(f))) if warnings and zip_contents: for (zn, item) in zip_contents: print(f"\n\n====== Zip file quality report: {zn} ======\n") for record in item: if record[1] > 1e6: print(f"WARNING: \"{record[3]}\" looks quite large file ({humanize.naturalsize(record[0])} unzipped, {humanize.naturalsize(record[1])} compressed)") for _path in record[3].split('/'): if len(_path) > 50: print(f"ERROR: the filepath element \"{_path}\" in \"{record[3]}\" is too long (max. 50 chars)") if _path.startswith("."): print(f"WARNING: \"{record[3]}\" is a hidden file/directory (do you really need it in the zip file?)") print("\n===========================\n\n") @click.command() @click.option('--exclude-dir','-X', multiple=True,type=click.Path(resolve_path=False), help='Do not recurse through specified directory when assembling tests.') @click.option('--exclude-file','-x', multiple=True,type=click.Path(resolve_path=False), help='Exclude specified file') @click.option('--outfile','-o', type=click.Path(resolve_path=False), help='Output report file. Leave this blank to display report on command line.') @click.argument('testitems', type=click.Path(resolve_path=False),nargs=-1) def cli_nbtest( exclude_dir, exclude_file, outfile, testitems): """Test specified notebooks and/or the notebooks in a specified directory or directories (`TESTITEMS`) using the `nbdime` plugin for `py.test`. Running `tm351nbtest` without any specified directory or file will assemble tests recursively from the current directory down.""" testitems = testitems or '.' _notebookTest(testitems, outfile, exclude_dir, exclude_file) @click.command() @click.option('--file-processor','-r', type=click.Choice(['clearOutput', 'runWithErrors']), help='File processor actions that can be applied to notebooks using `nbconvert`') @click.option('--outpath', '-O', type=click.Path(resolve_path=False), help='path to output directory') @click.option('--inplace/--no-inplace',default=True, help='Run processors on notebooks inplace') @click.option('--exclude-dir', '-X', multiple=True, type=click.Path(resolve_path=False), help='Exclude specified directory') @click.option('--exclude-file','-x', multiple=True,type=click.Path(resolve_path=False), help='Exclude specified file') @click.option('--include-hidden/--no-include-hidden',default=False, help='Include hidden files') @click.option('--rmdir/--no-rmdir',default=False, help='Check the output directory is empty before we use it') @click.option('--currdir/--no-currdir',default=False, help='Process files in current directory') @click.option('--subdirs/--no-subdirs',default=True, help='Process files in subdirectories') @click.option('--reportlevel', default=1, help='Reporting level') @click.argument('path',type=click.Path(resolve_path=False)) def cli_nbrun(file_processor, outpath, inplace, exclude_dir, exclude_file, include_hidden, rmdir, currdir, subdirs, reportlevel, path): """Directory processor for notebooks - allows the user to run nbconvert operations on notebooks, such as running all cells or clearing all cells. To run tests, use: tm351nbtest To zip folders (with the option or running notebook processors on zipped files), use: tm351zip """ directoryProcessor(path, mode=file_processor, outpath=outpath, inplace=inplace, include_hidden=include_hidden, dir_excludes=exclude_dir, file_excludes=exclude_file, rmdir=rmdir, currdir=currdir, subdirs=subdirs,reportlevel=reportlevel) from github import Github import getpass import base64 import logging from github.GithubException import GithubException def get_sha_for_tag(repository, tag): """ Returns a commit PyGithub object for the specified repository and tag. """ branches = repository.get_branches() matched_branches = [match for match in branches if match.name == tag] if matched_branches: return matched_branches[0].commit.sha tags = repository.get_tags() matched_tags = [match for match in tags if match.name == tag] if not matched_tags: raise ValueError('No Tag or Branch exists with that name') return matched_tags[0].commit.sha def download_directory(repository, sha, server_path, outpath='gh_downloads', file_processor=None): """ Download all contents at server_path with commit tag sha in the repository. """ contents = repository.get_dir_contents(server_path, ref=sha) if not os.path.exists(outpath): os.makedirs(outpath) for content in contents: print("Downloading: %s" % content.path) if content.type == 'dir': download_directory(repository, sha, content.path, '/'.join([outpath,content.name])) else: try: path = content.path file_content = repository.get_contents(path, ref=sha) file_data = base64.b64decode(file_content.content) outpathfile='/'.join([outpath,content.name]) file_out = open(outpathfile, "wb") file_out.write(file_data) file_out.close() except (IOError, github.GithubException) as exc: #If we fail over because of a large blog, use the data api for the download ret,error=exc.args if 'message' in error and error['message']=='Not Found': print('Hmm... file not found? {}'.format(path)) elif 'errors' in error and error['errors'][0]['code']=='too_large': #print('...large file, trying blob download instead...') file_content = repository.get_git_blob(content.sha) file_data = base64.b64decode(file_content.content) file_out = open('/'.join([outpath,content.name]), "wb") file_out.write(file_data) file_out.close() #logging.error('Error processing %s: %s', content.path, exc) #if content.name.endswith('.ipynb') and file_processor in ['clearOutput', 'clearOutputTest','runWithErrors' ]: # notebookProcessor(outpathfile, file_processor) DEFAULT_REPO='undercertainty/tm351' @click.command() @click.option('--github-user', '-u', help="Your Github username.") @click.option('--password', hide_input=True, confirmation_prompt=False) @click.option('--repo','-r', prompt='Repository ({})'.format(DEFAULT_REPO), help='Repository name') @click.option('--branch','-b',help='Branch or tag to download') @click.option('--directory', help='Directory to download (or: all)') @click.option('--savedir',type=click.Path(resolve_path=False), help='Directory to download repo / repo dir into; default is dir name') @click.option('--file-processor', type=click.Choice(['clearOutput', 'runWithErrors']), help='Optionally specify a file processor to be run against downloaded notebooks.') @click.option('--zip/--no-zip', default=False, help='Optionally create a zip file of the downloaded repository/directory with the same name as the repository/directory.') @click.option('--auth/--no-auth', default=True, help="By default, run with auth (prompt for credentials)") @click.option('--with-tests','-t',is_flag=True, help="Run tests on notebooks after download") @click.option('--logfile',type=click.Path(resolve_path=False), help='Path to logfile') def cli_gitrepos(github_user, password, repo, branch, directory, savedir, file_processor, zip, auth, with_tests, logfile): """Download files from a specified branch in a particular git repository. The download can also be limited to just the contents of a specified directory. Don't worry that there look to be a lot of arguments - you will be prompted for them if you just run: tm351gitrepos """ if auth or github_user: if not github_user: github_user = click.prompt('\nGithub username') if not password: password = click.prompt('\nGithub password', hide_input=True) github = Github(github_user, password) #Show we're keeping no password... password = None auth = True else: github = Github() if auth: user = github.get_user() #organisations = github.get_user().get_orgs() print('Logging into git as {} ({})'.format(github_user, user.name)) repo = repo or DEFAULT_REPO repository = github.get_repo(repo) if not branch: print('\nBranches available:\n\t{}'.format('\n\t'.join(github_repo_branches(repository)) )) branch = click.prompt('\nWhich branch? (master)') branch_or_tag_to_download = branch or 'master' sha = get_sha_for_tag(repository, branch_or_tag_to_download) another = '' while another!='-': if not directory: if branch!='master': contents = repository.get_dir_contents('.', ref=sha) else: contents = repository.get_dir_contents('.') print('\nYou can download all directories from this repo (all) or select one:\n\t{}'.format('\n\t'.join(github_repo_topdirs(contents)))) directory = click.prompt('Which directory? (all)') directory_to_download = '.' if (not directory or directory=='all') else directory outpath = savedir or directory_to_download if outpath == '.' and savedir !='.': outpath=repo.replace('/','_')+'_files' msg='\nOkay... downloading {}/{}'.format(repo,directory_to_download ) if file_processor is not None: msg = msg + ' using notebook processor: {}'.format(file_processor) else: msg = msg + ' with no notebook processing' print(msg) download_directory(repository, sha, directory_to_download, outpath,file_processor ) if file_processor in ['clearOutput', 'clearOutputTest','runWithErrors' ]: click.echo('\nRunning notebook processor: {}'.format(file_processor)) directoryProcessor(outpath, mode=file_processor, subdirs=True, reportlevel=1, logfile=logfile) if logfile: click.echo('\nLog written to {}'.format(logfile)) if with_tests: click.echo('\nRunning notebook tests over: {}'.format(outpath)) if not logfile: logfile = 'tests.log' _notebookTest(outpath, logfile ) click.echo('\nLog written to {}'.format(logfile)) if zip: print('\nZipping into: {}/nYou may also want to delete the working directory ({}).'.format(repository, outpath) ) zipper(outpath,repository) else: print('\n\nTo zip the downloaded directory, run something like: {}'.format('tm351zip {o} {z}\n\nTo run a notebook processor (OPTIONS: runWithErrors, clearOutput) while zipping: tm351zip "{o}" {z} --file-processor OPTION\n'.format(o=outpath,z=repository.name))) directory='' another = click.prompt('\Download another directory from this branch? (To quit: -)') #TODO #print('\n\nTo run this command again: {}'.format())
44.670418
272
0.633831
# ou-tm351 - `nb_pub_utils` #GOTCHA - Python on Mac logging in to Github: https://stackoverflow.com/a/42098127/454773 import click import os import shutil import zipfile import humanize import datetime import github from tabulate import tabulate from shlex import quote import subprocess def cli_command(cmd): try: out = subprocess.check_output(cmd, shell=True, stderr=subprocess.STDOUT).decode('utf-8') except subprocess.CalledProcessError as error: return (error.returncode, error.output.decode('utf-8')) if out!='': return (0, out) def listify(item): ''' If presented with a string and a list is required, make a list... ''' item = [] if item is None else item #We may be passed a tuple - in which case, listify... item = list(item) if isinstance(item,(list,tuple)) else [item] return item def exclude_hidden_items(itemlist, exclude_hidden=True): ''' Exclude hidden items from ziplist ''' if exclude_hidden: rmlist=[] for x in itemlist: if x.startswith('.'): rmlist.append(x) for x in rmlist: itemlist.remove(x) def exclude_items(itemlist, excludes, exclude_hidden=True, ipynb_only=False): ''' Exclude items from ziplist ''' for xd in set(itemlist).intersection(excludes): itemlist.remove(xd) if ipynb_only: for i in [_i for _i in itemlist if not _i.endswith("ipynb")]: itemlist.remove(i) if exclude_hidden: exclude_hidden_items(itemlist) def notebookTest(path=None, filename=None, dir_excludes=None, file_excludes=None): ''' Run notebook tests over explicitly named files and directories. ''' #Could probably define this recursively to handle mulitple paths/filenames... def pathmaker(path,filename): if not path or path in ['.']: return filename if not isinstance(path,list): return '/'.join([path,filename]) sanitiser = """[regex1] regex: <graphviz.files.Source at [^>]*> replace: <graphviz.files.Source> [regex2] regex: CPU times: .* replace: CPU times: CPUTIME [regex3] regex: Wall time: .* replace: Wall time: WALLTIME [regex4] regex: .* per loop \(mean ± std. dev. of .* runs, .* loops each\) replace: TIMEIT_REPORT """ #tmp_fn = "_sanitise_cfg.cfg" #with open(tmp_fn, "w") as f: # f.write(sanitiser) #cmd=f'py.test --nbval-sanitize-with {tmp_fn} ' cmd=f'py.test ' file_excludes = listify(file_excludes) for d in listify(dir_excludes): cmd = cmd + ' --ignore={} '.format(quote(d)) print("*Not testing in directory: {}*".format(d)) cmd = cmd+' --nbval ' ## WARNING - TO DO - if we are running this from a notebook, also exclude path=='.' if path is None and filename is None: #Process current directory return cli_command(cmd) elif filename: #Process file(s) in directory if isinstance(filename, list): for _filename in filename: cmd = '{cmd} {filename}'.format(cmd=cmd, filename=pathmaker(path, quote(_filename))) resp=cli_command(cmd) else: cmd = '{cmd} {filename}'.format(cmd=cmd, filename=pathmaker(path, quote(filename))) resp=cli_command(cmd) return resp else: #Process files in path #If we pass a directory name in then the test will be run over all files in the directory #py.test accumulates the test responses resps = [] for singlepath in listify(path): for dirname, subdirs, files in os.walk(singlepath): exclude_items(subdirs, dir_excludes) exclude_items(files, file_excludes, ipynb_only=True) print('Processing directory: {}'.format(dirname)) with click.progressbar(files) as bar: for filename in bar: filepathname=os.path.join(dirname, filename) cmd = '{cmd} {path}'.format(cmd=cmd, path=quote(filepathname)) resps.append( cli_command(cmd) ) #for singlepath in listify(path): # print("\nTesting in directory: {}".format(singlepath)) # if singlepath=='.': # print('**DO NOT test in current directory from a notebook**') # cmd = '{cmd} {path}'.format(cmd=cmd, path=quote(singlepath)) # resps.append( cli_command(cmd) ) os.unlink(tmp_fn) return resps def notebookProcessor(notebook, mode=None, outpath=None, outfile=None, inplace=True): ''' Clear notebook output cells. Process a single notebook, clearing cell outputs running cells until a warning, or running all cells despite warnings. Processed notebooks can be written to a specified directory or rendered inplace. ''' if mode is None: return (-1, 'Mode not specified.') if outpath is not None and not os.path.exists(outpath): os.makedirs(outpath) if outfile is not None: outpath = '/'.join([outpath,outfile]) if outpath is not None else outfile cmd='jupyter nbconvert --to notebook' if mode in ['clearOutput', 'clearOutputTest' ]: cmd = '{cmd} --ClearOutputPreprocessor.enabled=True'.format(cmd=cmd) elif mode == 'run': cmd = '{cmd} --execute'.format(cmd=cmd) elif mode == 'runWithErrors': cmd = '{cmd} --ExecutePreprocessor.allow_errors=True --execute'.format(cmd=cmd) else: return (-1, 'Mode not specified correctly.') if outpath is None and inplace: cmd='{cmd} --inplace'.format(cmd=cmd) #Select file cmd='{cmd} {notebook}'.format(cmd=cmd,notebook=quote(notebook)) #If output path not set, and --inplace is not set, # nbformat will create a new file with same name ending: .nbformat.ipynb if outpath is not None: cmd ='{cmd} --output-dir {outpath}'.format(cmd=cmd, outpath=quote(outpath)) return cli_command(cmd) def directoryProcessor(path, mode=None, outpath=None, inplace=True, include_hidden=False, dir_excludes=None, file_excludes=None, rmdir=False, currdir=False, subdirs=True, reportlevel=1, logfile=None): ''' Process all the notebooks in one or more directories and (optionally) in associated subdirectories. Processed notebooks can be written to a specified directory or rendered inplace. Path hierarchies to notebooks in multiple directories or subdirectories are respected when writing to a specified output directory. ''' def _process(outpath): ''' Process files associated with a particular directory ''' processfiles=[f for f in files if f.endswith('.ipynb')] if subdirs: print(dirname) if outpath is not None: outpath='/'.join([outpath, dirname]) if not os.path.exists(outpath): os.makedirs(outpath) if not mode == 'tests': #print('About to process {}'.format(processfiles)) with click.progressbar(processfiles) as bar: for filename in bar: if not currdir and dirname=='.': continue if reportlevel>1: print("Processing >{}<".format('/'.join([dirname,filename]))) resp = notebookProcessor('/'.join([dirname,filename]), mode=mode, outpath=outpath, inplace=inplace ) if reportlevel>0 and resp and resp[0]!=0: print("Error with {}".format('/'.join([dirname,filename]))) if logfile: with open(logfile, "a") as out: out.write(resp[1]) #if mode in ['tests', 'clearOutputTest']: # #Tests need to run in original dir in case of file dependencies # testreport = notebookTest(path=dirname,dir_excludes=dir_excludes) # print('tested:',dirname) # print(testreport[1]) #if mode == 'clearOutputTest': # #If we are testing for warnings, need to test in original directory # # in case there are file dependencies # outpath=None # inplace=True if mode is None: return if isinstance(path, list): if rmdir: shutil.rmtree(outpath, ignore_errors=True) #Make sure we only delete the directory on the way in... rmdir=False for _path in path: #When provided with multiple directories, process each one separately #Note that subdirs for each directory can be handled automatically directoryProcessor(_path, mode, '/'.join([outpath, _path]), inplace, include_hidden, dir_excludes, file_excludes, rmdir, currdir, subdirs, reportlevel, logfile) return #TO DO - simplify this so we just pass one exclusion type then detect if file or dir? file_excludes = listify(file_excludes) dir_excludes = listify(dir_excludes) if outpath is not None and os.path.exists(outpath): if rmdir: print('\n***Deleting directory `{}` and all its contents....***\n\n'.format(outpath)) shutil.rmtree(outpath, ignore_errors=True) else: print('\nOutput directory `{}` already exists. Remove it first by setting: rmdir=True\n'.format(outpath)) #dir_excludes = [] if dir_excludes is None else dir_excludes #file_excludes = [] if file_excludes is None else file_excludes if os.path.isfile(path): notebookProcessor(path, mode=mode, outpath=outpath, inplace=inplace ) elif subdirs: for dirname, subdirs, files in os.walk(path): exclude_items(subdirs, dir_excludes, not include_hidden) exclude_items(files, file_excludes, not include_hidden) _process(outpath) # if passed a single file rather than directory path else: files=os.listdir(path) exclude_items(files, file_excludes, not include_hidden) dirname=path _process(outpath) #Running zipper with a file_processor will change the cell state in current dir #That is, notebooks are processed in place then zipped #The notebooks as seen in the dir will reflect those in the zipfile #We could modify this behaviour so it does not affect original notebooks? def zipper(dirtozip, zipfilename, include_hidden=False, dir_excludes=None, file_excludes=None, file_processor=None, reportlevel=1, rmdir=False, zip_append=False): ''' Zip the contents of a directory and its subdirectories ''' file_excludes = listify(file_excludes) dir_excludes = listify(dir_excludes) zip_permission = "a" if zip_append else "w" #Create a new/replacement zip file, rather than append if zipfile already exists zf = zipfile.ZipFile(zipfilename, zip_permission, compression=zipfile.ZIP_DEFLATED) #Don't zip files of same name as the zip file we are creating file_excludes.append(zipfilename) # if we have just a single file to zip and not a dir, zip that if os.path.isfile(dirtozip): zf.write(dirtozip) elif os.path.isdir(dirtozip): #https://stackoverflow.com/a/31779538/454773 for dirname, subdirs, files in os.walk(dirtozip): exclude_items(subdirs, dir_excludes, not include_hidden) exclude_items(files, file_excludes, not include_hidden) print('Processing directory: {}'.format(dirname)) zf.write(dirname) with click.progressbar(files) as bar: for filename in bar: if reportlevel>1:print(filename) filepathname=os.path.join(dirname, filename) #There is no point using 'run': if there is an error, nbconvert will fail if file_processor in ['clearOutput', 'runWithErrors'] and filename.endswith('.ipynb'): #This introduces side effects - notebooks are processed in current path #Should we do this in a tmpfile? notebookProcessor(filepathname, mode=file_processor, inplace=True) zf.write(filepathname) zf.close() #Is this too risky?! #if rmdir: shutil.rmtree(dirtozip, ignore_errors=True) return zipfilename def insideZip(zfn, report=True): ''' Look inside a zip file. The report contains four columns: file_size, file compressed size, datetime and filename. Setting report=True returns a pretty printed report. ''' if not os.path.isfile(zfn): print("\nHmm... {} doesn't seem to be a file?\n".format(zfn)) return print('\nLooking inside zipfile: {}\n'.format(zfn)) fz=zipfile.ZipFile(zfn) txt=[] for fn in fz.infolist(): txt.append( [fn.file_size, fn.compress_size, datetime.datetime(*fn.date_time).isoformat(), fn.filename] ) print('{}, {}, {}, {}'.format(fn.file_size, fn.compress_size, datetime.datetime(*fn.date_time).isoformat(), fn.filename)) tabulate(txt, headers=['Full','Zip','Datetime','Path'],tablefmt="simple") return txt @click.command() @click.option('--file-processor','-r', type=click.Choice(['clearOutput', 'runWithErrors'])) @click.option('--include-hiddenfiles', '-H', is_flag=True, help='Include hidden files') @click.option('--exclude-dir', '-X', multiple=True, type=click.Path(resolve_path=False), help='Exclude specified directory') @click.option('--exclude-file','-x', multiple=True,type=click.Path(resolve_path=False), help='Exclude specified file') @click.option('--zip_append','-a', is_flag=True, help='Add to existing zip file') @click.argument('path', type=click.Path(resolve_path=False)) #@click.argument('zipfile', type=click.File('wb')) @click.argument('zipfile', type=click.Path()) def cli_zip(file_processor, include_hiddenfiles, exclude_dir, exclude_file, zip_append, path, zipfile): """Create a zip file from the contents of a specified directory. The zipper can optionally run a notebook processor on notebooks before zipping them to check that all cells are run or all cells are cleared. """ print('You must be crazy using this...') if not zip_append: print(f"\nOverwriting any previous {zipfile} file\n") else: print(f"\nAppending zipped files to: {zipfile}\n") fn = zipper(path, zipfile, include_hidden=include_hiddenfiles, dir_excludes=exclude_dir, file_excludes=exclude_file, file_processor=file_processor, zip_append=zip_append) print(f"\nZip file: {fn}\n") @click.command() @click.option('--quiet', '-q', is_flag=True, help='Suppress the report.') @click.option('--warnings', '-w', is_flag=True, help='Display warnings') @click.argument('filename', type=click.Path(resolve_path=True),nargs=-1) def cli_zipview(filename, warnings, quiet): """List the contents of one or more specified zipfiles. """ zip_contents = [] for f in listify(filename): zip_contents.append((f, insideZip(f))) if warnings and zip_contents: for (zn, item) in zip_contents: print(f"\n\n====== Zip file quality report: {zn} ======\n") for record in item: if record[1] > 1e6: print(f"WARNING: \"{record[3]}\" looks quite large file ({humanize.naturalsize(record[0])} unzipped, {humanize.naturalsize(record[1])} compressed)") for _path in record[3].split('/'): if len(_path) > 50: print(f"ERROR: the filepath element \"{_path}\" in \"{record[3]}\" is too long (max. 50 chars)") if _path.startswith("."): print(f"WARNING: \"{record[3]}\" is a hidden file/directory (do you really need it in the zip file?)") print("\n===========================\n\n") def _notebookTest(testitems, outfile=None, dir_excludes=None, file_excludes=None): path=[] filename=[] for i in listify(testitems): if os.path.isdir(i): path.append(i) else: filename.append(i) resps = notebookTest(path=path, filename=filename, dir_excludes=dir_excludes, file_excludes=file_excludes) if isinstance(resps, tuple): resps = [resps] for resp in resps: if outfile: with open(outfile, "a") as out: out.write(resp[1]) print('\nTest report written to {}'.format(outfile)) else: print(resp[1]) @click.command() @click.option('--exclude-dir','-X', multiple=True,type=click.Path(resolve_path=False), help='Do not recurse through specified directory when assembling tests.') @click.option('--exclude-file','-x', multiple=True,type=click.Path(resolve_path=False), help='Exclude specified file') @click.option('--outfile','-o', type=click.Path(resolve_path=False), help='Output report file. Leave this blank to display report on command line.') @click.argument('testitems', type=click.Path(resolve_path=False),nargs=-1) def cli_nbtest( exclude_dir, exclude_file, outfile, testitems): """Test specified notebooks and/or the notebooks in a specified directory or directories (`TESTITEMS`) using the `nbdime` plugin for `py.test`. Running `tm351nbtest` without any specified directory or file will assemble tests recursively from the current directory down.""" testitems = testitems or '.' _notebookTest(testitems, outfile, exclude_dir, exclude_file) @click.command() @click.option('--file-processor','-r', type=click.Choice(['clearOutput', 'runWithErrors']), help='File processor actions that can be applied to notebooks using `nbconvert`') @click.option('--outpath', '-O', type=click.Path(resolve_path=False), help='path to output directory') @click.option('--inplace/--no-inplace',default=True, help='Run processors on notebooks inplace') @click.option('--exclude-dir', '-X', multiple=True, type=click.Path(resolve_path=False), help='Exclude specified directory') @click.option('--exclude-file','-x', multiple=True,type=click.Path(resolve_path=False), help='Exclude specified file') @click.option('--include-hidden/--no-include-hidden',default=False, help='Include hidden files') @click.option('--rmdir/--no-rmdir',default=False, help='Check the output directory is empty before we use it') @click.option('--currdir/--no-currdir',default=False, help='Process files in current directory') @click.option('--subdirs/--no-subdirs',default=True, help='Process files in subdirectories') @click.option('--reportlevel', default=1, help='Reporting level') @click.argument('path',type=click.Path(resolve_path=False)) def cli_nbrun(file_processor, outpath, inplace, exclude_dir, exclude_file, include_hidden, rmdir, currdir, subdirs, reportlevel, path): """Directory processor for notebooks - allows the user to run nbconvert operations on notebooks, such as running all cells or clearing all cells. To run tests, use: tm351nbtest To zip folders (with the option or running notebook processors on zipped files), use: tm351zip """ directoryProcessor(path, mode=file_processor, outpath=outpath, inplace=inplace, include_hidden=include_hidden, dir_excludes=exclude_dir, file_excludes=exclude_file, rmdir=rmdir, currdir=currdir, subdirs=subdirs,reportlevel=reportlevel) from github import Github import getpass import base64 import logging from github.GithubException import GithubException def get_sha_for_tag(repository, tag): """ Returns a commit PyGithub object for the specified repository and tag. """ branches = repository.get_branches() matched_branches = [match for match in branches if match.name == tag] if matched_branches: return matched_branches[0].commit.sha tags = repository.get_tags() matched_tags = [match for match in tags if match.name == tag] if not matched_tags: raise ValueError('No Tag or Branch exists with that name') return matched_tags[0].commit.sha def download_directory(repository, sha, server_path, outpath='gh_downloads', file_processor=None): """ Download all contents at server_path with commit tag sha in the repository. """ contents = repository.get_dir_contents(server_path, ref=sha) if not os.path.exists(outpath): os.makedirs(outpath) for content in contents: print("Downloading: %s" % content.path) if content.type == 'dir': download_directory(repository, sha, content.path, '/'.join([outpath,content.name])) else: try: path = content.path file_content = repository.get_contents(path, ref=sha) file_data = base64.b64decode(file_content.content) outpathfile='/'.join([outpath,content.name]) file_out = open(outpathfile, "wb") file_out.write(file_data) file_out.close() except (IOError, github.GithubException) as exc: #If we fail over because of a large blog, use the data api for the download ret,error=exc.args if 'message' in error and error['message']=='Not Found': print('Hmm... file not found? {}'.format(path)) elif 'errors' in error and error['errors'][0]['code']=='too_large': #print('...large file, trying blob download instead...') file_content = repository.get_git_blob(content.sha) file_data = base64.b64decode(file_content.content) file_out = open('/'.join([outpath,content.name]), "wb") file_out.write(file_data) file_out.close() #logging.error('Error processing %s: %s', content.path, exc) #if content.name.endswith('.ipynb') and file_processor in ['clearOutput', 'clearOutputTest','runWithErrors' ]: # notebookProcessor(outpathfile, file_processor) def github_repo_branches(repository): return [br.name for br in repository.get_branches()] def github_repo_topdirs(contents): return [i.name for i in contents if i.type=='dir'] DEFAULT_REPO='undercertainty/tm351' @click.command() @click.option('--github-user', '-u', help="Your Github username.") @click.option('--password', hide_input=True, confirmation_prompt=False) @click.option('--repo','-r', prompt='Repository ({})'.format(DEFAULT_REPO), help='Repository name') @click.option('--branch','-b',help='Branch or tag to download') @click.option('--directory', help='Directory to download (or: all)') @click.option('--savedir',type=click.Path(resolve_path=False), help='Directory to download repo / repo dir into; default is dir name') @click.option('--file-processor', type=click.Choice(['clearOutput', 'runWithErrors']), help='Optionally specify a file processor to be run against downloaded notebooks.') @click.option('--zip/--no-zip', default=False, help='Optionally create a zip file of the downloaded repository/directory with the same name as the repository/directory.') @click.option('--auth/--no-auth', default=True, help="By default, run with auth (prompt for credentials)") @click.option('--with-tests','-t',is_flag=True, help="Run tests on notebooks after download") @click.option('--logfile',type=click.Path(resolve_path=False), help='Path to logfile') def cli_gitrepos(github_user, password, repo, branch, directory, savedir, file_processor, zip, auth, with_tests, logfile): """Download files from a specified branch in a particular git repository. The download can also be limited to just the contents of a specified directory. Don't worry that there look to be a lot of arguments - you will be prompted for them if you just run: tm351gitrepos """ if auth or github_user: if not github_user: github_user = click.prompt('\nGithub username') if not password: password = click.prompt('\nGithub password', hide_input=True) github = Github(github_user, password) #Show we're keeping no password... password = None auth = True else: github = Github() if auth: user = github.get_user() #organisations = github.get_user().get_orgs() print('Logging into git as {} ({})'.format(github_user, user.name)) repo = repo or DEFAULT_REPO repository = github.get_repo(repo) if not branch: print('\nBranches available:\n\t{}'.format('\n\t'.join(github_repo_branches(repository)) )) branch = click.prompt('\nWhich branch? (master)') branch_or_tag_to_download = branch or 'master' sha = get_sha_for_tag(repository, branch_or_tag_to_download) another = '' while another!='-': if not directory: if branch!='master': contents = repository.get_dir_contents('.', ref=sha) else: contents = repository.get_dir_contents('.') print('\nYou can download all directories from this repo (all) or select one:\n\t{}'.format('\n\t'.join(github_repo_topdirs(contents)))) directory = click.prompt('Which directory? (all)') directory_to_download = '.' if (not directory or directory=='all') else directory outpath = savedir or directory_to_download if outpath == '.' and savedir !='.': outpath=repo.replace('/','_')+'_files' msg='\nOkay... downloading {}/{}'.format(repo,directory_to_download ) if file_processor is not None: msg = msg + ' using notebook processor: {}'.format(file_processor) else: msg = msg + ' with no notebook processing' print(msg) download_directory(repository, sha, directory_to_download, outpath,file_processor ) if file_processor in ['clearOutput', 'clearOutputTest','runWithErrors' ]: click.echo('\nRunning notebook processor: {}'.format(file_processor)) directoryProcessor(outpath, mode=file_processor, subdirs=True, reportlevel=1, logfile=logfile) if logfile: click.echo('\nLog written to {}'.format(logfile)) if with_tests: click.echo('\nRunning notebook tests over: {}'.format(outpath)) if not logfile: logfile = 'tests.log' _notebookTest(outpath, logfile ) click.echo('\nLog written to {}'.format(logfile)) if zip: print('\nZipping into: {}/nYou may also want to delete the working directory ({}).'.format(repository, outpath) ) zipper(outpath,repository) else: print('\n\nTo zip the downloaded directory, run something like: {}'.format('tm351zip {o} {z}\n\nTo run a notebook processor (OPTIONS: runWithErrors, clearOutput) while zipping: tm351zip "{o}" {z} --file-processor OPTION\n'.format(o=outpath,z=repository.name))) directory='' another = click.prompt('\Download another directory from this branch? (To quit: -)') #TODO #print('\n\nTo run this command again: {}'.format())
1,166
0
122
9753d7bfd9a6580628e5db08bdd5fcda2b36ed62
42,974
py
Python
plots/instrument_plot.py
shaunwbell/EcoFOCI_MooringAnalysis
369617cac20b41c1606aeac83fbd9131b77e1c15
[ "MIT" ]
3
2017-03-23T16:52:44.000Z
2022-03-08T16:53:29.000Z
plots/instrument_plot.py
shaunwbell/EcoFOCI_MooringAnalysis
369617cac20b41c1606aeac83fbd9131b77e1c15
[ "MIT" ]
43
2017-04-03T23:12:52.000Z
2022-01-28T16:04:34.000Z
plots/instrument_plot.py
shaunwbell/EcoFOCI_MooringAnalysis
369617cac20b41c1606aeac83fbd9131b77e1c15
[ "MIT" ]
2
2017-03-30T22:01:25.000Z
2019-10-17T17:30:29.000Z
#!/usr/bin/env """ class definitions for standard 1 variable plots class definitions for standard 2 variable plots class definitions for standard 3 variable plots History: -------- 2019-05-21: error in calculation used corrected udata to correct vdata """ # System Stack import datetime # science stack import numpy as np # Visual Stack import matplotlib as mpl mpl.use("Agg") import matplotlib.pyplot as plt from matplotlib.dates import ( YearLocator, WeekdayLocator, MonthLocator, DayLocator, HourLocator, DateFormatter, ) import matplotlib.ticker as ticker class TimeseriesPorpertyPropertyPlot(object): """ class to plot property vs property plots with density iso-contours""" mpl.rcParams["svg.fonttype"] = "none" mpl.rcParams["ps.fonttype"] = 42 mpl.rcParams["pdf.fonttype"] = 42 def __init__( self, fontsize=10, labelsize=10, plotstyle="k-.", stylesheet="seaborn-whitegrid" ): """Initialize the timeseries with items that do not change. This sets up the axes and station locations. The `fontsize` and `spacing` are also specified here to ensure that they are consistent between individual station elements. Parameters ---------- fontsize : int The fontsize to use for drawing text labelsize : int The fontsize to use for labels stylesheet : str Choose a mpl stylesheet [u'seaborn-darkgrid', u'seaborn-notebook', u'classic', u'seaborn-ticks', u'grayscale', u'bmh', u'seaborn-talk', u'dark_background', u'ggplot', u'fivethirtyeight', u'seaborn-colorblind', u'seaborn-deep', u'seaborn-whitegrid', u'seaborn-bright', u'seaborn-poster', u'seaborn-muted', u'seaborn-paper', u'seaborn-white', u'seaborn-pastel', u'seaborn-dark', u'seaborn-dark-palette'] """ self.fontsize = fontsize self.labelsize = labelsize self.plotstyle = plotstyle plt.style.use(stylesheet) @staticmethod def add_title(mooringid="", lat=-99.9, lon=-99.9, depth=9999, instrument=""): """Pass parameters to annotate the title of the plot This sets the standard plot title using common meta information from PMEL/EPIC style netcdf files Parameters ---------- mooringid : str Mooring Identifier lat : float The latitude of the mooring lon : float The longitude of the mooring depth : int Nominal depth of the instrument instrument : str Name/identifier of the instrument plotted """ ptitle = ( "Plotted on: {time:%Y/%m/%d %H:%M} \n from {mooringid} Lat: {latitude:3.3f} Lon: {longitude:3.3f}" " Depth: {depth}\n : {instrument}" ).format( time=datetime.datetime.now(), mooringid=mooringid, latitude=lat, longitude=lon, depth=depth, instrument=instrument, ) return ptitle @staticmethod
36.635976
119
0.588472
#!/usr/bin/env """ class definitions for standard 1 variable plots class definitions for standard 2 variable plots class definitions for standard 3 variable plots History: -------- 2019-05-21: error in calculation used corrected udata to correct vdata """ # System Stack import datetime # science stack import numpy as np # Visual Stack import matplotlib as mpl mpl.use("Agg") import matplotlib.pyplot as plt from matplotlib.dates import ( YearLocator, WeekdayLocator, MonthLocator, DayLocator, HourLocator, DateFormatter, ) import matplotlib.ticker as ticker class Timeseries1varPlot(object): mpl.rcParams["svg.fonttype"] = "none" mpl.rcParams["ps.fonttype"] = 42 mpl.rcParams["pdf.fonttype"] = 42 def __init__(self, fontsize=10, labelsize=10, plotstyle="k-.", stylesheet="bmh"): """Initialize the timeseries with items that do not change. This sets up the axes and station locations. The `fontsize` and `spacing` are also specified here to ensure that they are consistent between individual station elements. Parameters ---------- fontsize : int The fontsize to use for drawing text labelsize : int The fontsize to use for labels stylesheet : str Choose a mpl stylesheet [u'seaborn-darkgrid', u'seaborn-notebook', u'classic', u'seaborn-ticks', u'grayscale', u'bmh', u'seaborn-talk', u'dark_background', u'ggplot', u'fivethirtyeight', u'seaborn-colorblind', u'seaborn-deep', u'seaborn-whitegrid', u'seaborn-bright', u'seaborn-poster', u'seaborn-muted', u'seaborn-paper', u'seaborn-white', u'seaborn-pastel', u'seaborn-dark', u'seaborn-dark-palette'] """ self.fontsize = fontsize self.labelsize = labelsize self.plotstyle = plotstyle plt.style.use(stylesheet) @staticmethod def add_title(mooringid="", lat=-99.9, lon=-99.9, depth=9999, instrument=""): """Pass parameters to annotate the title of the plot This sets the standard plot title using common meta information from PMEL/EPIC style netcdf files Parameters ---------- mooringid : str Mooring Identifier lat : float The latitude of the mooring lon : float The longitude of the mooring depth : int Nominal depth of the instrument instrument : str Name/identifier of the instrument plotted """ ptitle = ( "Plotted on: {time:%Y/%m/%d %H:%M} \n from {mooringid} Lat: {latitude:3.3f} Lon: {longitude:3.3f}" " Depth: {depth}\n : {instrument}" ).format( time=datetime.datetime.now(), mooringid=mooringid, latitude=lat, longitude=lon, depth=depth, instrument=instrument, ) return ptitle def plot(self, xdata=None, ydata=None, ylabel=None, **kwargs): fig = plt.figure(1) ax1 = plt.subplot2grid((1, 1), (0, 0), colspan=1, rowspan=1) p1 = ax1.plot(xdata, ydata, self.plotstyle, markersize=2) ax1.set_ylim([np.nanmin(ydata), np.nanmax(ydata)]) ax1.set_xlim([np.nanmin(xdata), np.nanmax(xdata)]) plt.ylabel(ylabel) ax1.xaxis.set_major_locator(MonthLocator()) ax1.xaxis.set_minor_locator(MonthLocator(bymonthday=15)) ax1.xaxis.set_major_formatter(ticker.NullFormatter()) ax1.xaxis.set_minor_formatter(DateFormatter("%b %y")) ax1.tick_params(axis="both", which="minor", labelsize=self.labelsize) return plt, fig class Timeseries2varPlot(object): mpl.rcParams["svg.fonttype"] = "none" mpl.rcParams["ps.fonttype"] = 42 mpl.rcParams["pdf.fonttype"] = 42 def __init__(self, fontsize=10, labelsize=10, plotstyle="k-.", stylesheet="bmh"): """Initialize the timeseries with items that do not change. This sets up the axes and station locations. The `fontsize` and `spacing` are also specified here to ensure that they are consistent between individual station elements. Parameters ---------- fontsize : int The fontsize to use for drawing text labelsize : int The fontsize to use for labels stylesheet : str Choose a mpl stylesheet [u'seaborn-darkgrid', u'seaborn-notebook', u'classic', u'seaborn-ticks', u'grayscale', u'bmh', u'seaborn-talk', u'dark_background', u'ggplot', u'fivethirtyeight', u'seaborn-colorblind', u'seaborn-deep', u'seaborn-whitegrid', u'seaborn-bright', u'seaborn-poster', u'seaborn-muted', u'seaborn-paper', u'seaborn-white', u'seaborn-pastel', u'seaborn-dark', u'seaborn-dark-palette'] """ self.fontsize = fontsize self.labelsize = labelsize self.plotstyle = plotstyle plt.style.use(stylesheet) @staticmethod def add_title(mooringid="", lat=-99.9, lon=-99.9, depth=9999, instrument=""): """Pass parameters to annotate the title of the plot This sets the standard plot title using common meta information from PMEL/EPIC style netcdf files Parameters ---------- mooringid : str Mooring Identifier lat : float The latitude of the mooring lon : float The longitude of the mooring depth : int Nominal depth of the instrument instrument : str Name/identifier of the instrument plotted """ ptitle = ( "Plotted on: {time:%Y/%m/%d %H:%M} \n from {mooringid} Lat: {latitude:3.3f} Lon: {longitude:3.3f}" " Depth: {depth}\n : {instrument}" ).format( time=datetime.datetime.now(), mooringid=mooringid, latitude=lat, longitude=lon, depth=depth, instrument=instrument, ) return ptitle def plot( self, xdata=None, ydata=None, ydata2=None, ylabel=None, ylabel2=None, **kwargs ): fig = plt.figure(1) ax1 = plt.subplot2grid((2, 1), (0, 0), colspan=1, rowspan=1) p1 = ax1.plot(xdata, ydata, self.plotstyle, markersize=2) ax1.set_ylim([np.nanmin(ydata), np.nanmax(ydata)]) ax1.set_xlim([np.nanmin(xdata), np.nanmax(xdata)]) plt.ylabel(ylabel) ax1.xaxis.set_major_locator(MonthLocator()) ax1.xaxis.set_minor_locator(MonthLocator(bymonthday=15)) ax1.xaxis.set_major_formatter(ticker.NullFormatter()) ax1.xaxis.set_minor_formatter(DateFormatter("%b %y")) ax1.tick_params(axis="both", which="minor", labelsize=self.labelsize) ax1.tick_params(axis="x", which="both", bottom="off", labelbottom="off") ax1.spines["bottom"].set_visible(False) ax2 = plt.subplot2grid((2, 1), (1, 0), colspan=1, rowspan=1) p2 = ax2.plot(xdata, ydata2, self.plotstyle, markersize=2) ax2.set_ylim([np.nanmin(ydata2), np.nanmax(ydata2)]) ax2.set_xlim([np.nanmin(xdata), np.nanmax(xdata)]) plt.ylabel(ylabel2) ax2.xaxis.set_major_locator(MonthLocator()) ax2.xaxis.set_minor_locator(MonthLocator(bymonthday=15)) ax2.xaxis.set_major_formatter(ticker.NullFormatter()) ax2.xaxis.set_minor_formatter(DateFormatter("%b %y")) ax2.tick_params(axis="both", which="minor", labelsize=self.labelsize) ax2.tick_params(axis="x", which="both", top="off") ax2.spines["top"].set_visible(False) return plt, fig class Timeseries3varPlot(object): mpl.rcParams["svg.fonttype"] = "none" mpl.rcParams["ps.fonttype"] = 42 mpl.rcParams["pdf.fonttype"] = 42 def __init__(self, fontsize=10, labelsize=10, plotstyle="k-.", stylesheet="bmh"): """Initialize the timeseries with items that do not change. This sets up the axes and station locations. The `fontsize` and `spacing` are also specified here to ensure that they are consistent between individual station elements. Parameters ---------- fontsize : int The fontsize to use for drawing text labelsize : int The fontsize to use for labels stylesheet : str Choose a mpl stylesheet [u'seaborn-darkgrid', u'seaborn-notebook', u'classic', u'seaborn-ticks', u'grayscale', u'bmh', u'seaborn-talk', u'dark_background', u'ggplot', u'fivethirtyeight', u'seaborn-colorblind', u'seaborn-deep', u'seaborn-whitegrid', u'seaborn-bright', u'seaborn-poster', u'seaborn-muted', u'seaborn-paper', u'seaborn-white', u'seaborn-pastel', u'seaborn-dark', u'seaborn-dark-palette'] """ self.fontsize = fontsize self.labelsize = labelsize self.plotstyle = plotstyle plt.style.use(stylesheet) @staticmethod def add_title(mooringid="", lat=-99.9, lon=-99.9, depth=9999, instrument=""): """Pass parameters to annotate the title of the plot This sets the standard plot title using common meta information from PMEL/EPIC style netcdf files Parameters ---------- mooringid : str Mooring Identifier lat : float The latitude of the mooring lon : float The longitude of the mooring depth : int Nominal depth of the instrument instrument : str Name/identifier of the instrument plotted """ ptitle = ( "Plotted on: {time:%Y/%m/%d %H:%M} \n from {mooringid} Lat: {latitude:3.3f} Lon: {longitude:3.3f}" " Depth: {depth}\n : {instrument}" ).format( time=datetime.datetime.now(), mooringid=mooringid, latitude=lat, longitude=lon, depth=depth, instrument=instrument, ) return ptitle def plot( self, xdata=None, ydata=None, ydata2=None, ydata3=None, ylabel=None, ylabel2=None, ylabel3=None, **kwargs ): fig = plt.figure(1) ax1 = plt.subplot2grid((3, 1), (0, 0), colspan=1, rowspan=1) p1 = ax1.plot(xdata, ydata, self.plotstyle, markersize=2) ax1.set_ylim([np.nanmin(ydata), np.nanmax(ydata)]) ax1.set_xlim([np.nanmin(xdata), np.nanmax(xdata)]) plt.ylabel(ylabel) ax1.xaxis.set_major_locator(MonthLocator()) ax1.xaxis.set_minor_locator(MonthLocator(bymonthday=15)) ax1.xaxis.set_major_formatter(ticker.NullFormatter()) ax1.xaxis.set_minor_formatter(DateFormatter("%b %y")) ax1.tick_params(axis="both", which="minor", labelsize=self.labelsize) ax1.tick_params(axis="x", which="both", bottom="off", labelbottom="off") ax1.spines["bottom"].set_visible(False) ax2 = plt.subplot2grid((3, 1), (1, 0), colspan=1, rowspan=1) p2 = ax2.plot(xdata, ydata2, self.plotstyle, markersize=2) ax2.set_ylim([np.nanmin(ydata2), np.nanmax(ydata2)]) ax2.set_xlim([np.nanmin(xdata), np.nanmax(xdata)]) plt.ylabel(ylabel2) ax2.xaxis.set_major_locator(MonthLocator()) ax2.xaxis.set_minor_locator(MonthLocator(bymonthday=15)) ax2.xaxis.set_major_formatter(ticker.NullFormatter()) ax2.xaxis.set_minor_formatter(DateFormatter("%b %y")) ax2.tick_params(axis="both", which="minor", labelsize=self.labelsize) ax2.tick_params( axis="x", which="both", top="off", bottom="off", labelbottom="off" ) ax2.spines["top"].set_visible(False) ax2.spines["bottom"].set_visible(False) ax3 = plt.subplot2grid((3, 1), (2, 0), colspan=1, rowspan=1) p2 = ax3.plot(xdata, ydata3, self.plotstyle, markersize=2) ax3.set_ylim([np.nanmin(ydata3), np.nanmax(ydata3)]) ax3.set_xlim([np.nanmin(xdata), np.nanmax(xdata)]) plt.ylabel(ylabel3) ax3.xaxis.set_major_locator(MonthLocator()) ax3.xaxis.set_minor_locator(MonthLocator(bymonthday=15)) ax3.xaxis.set_major_formatter(ticker.NullFormatter()) ax3.xaxis.set_minor_formatter(DateFormatter("%b %y")) ax3.tick_params(axis="both", which="minor", labelsize=self.labelsize) ax3.tick_params(axis="x", which="both", top="off") ax3.spines["top"].set_visible(False) return plt, fig class Timeseries1dStickPlot(object): mpl.rcParams["svg.fonttype"] = "none" mpl.rcParams["ps.fonttype"] = 42 mpl.rcParams["pdf.fonttype"] = 42 def __init__(self, fontsize=10, labelsize=10, plotstyle="k-.", stylesheet="bmh"): """Initialize the timeseries with items that do not change. This sets up the axes and station locations. The `fontsize` and `spacing` are also specified here to ensure that they are consistent between individual station elements. Parameters ---------- fontsize : int The fontsize to use for drawing text labelsize : int The fontsize to use for labels stylesheet : str Choose a mpl stylesheet [u'seaborn-darkgrid', u'seaborn-notebook', u'classic', u'seaborn-ticks', u'grayscale', u'bmh', u'seaborn-talk', u'dark_background', u'ggplot', u'fivethirtyeight', u'seaborn-colorblind', u'seaborn-deep', u'seaborn-whitegrid', u'seaborn-bright', u'seaborn-poster', u'seaborn-muted', u'seaborn-paper', u'seaborn-white', u'seaborn-pastel', u'seaborn-dark', u'seaborn-dark-palette'] """ self.fontsize = fontsize self.labelsize = labelsize self.plotstyle = plotstyle plt.style.use(stylesheet) @staticmethod def add_title(mooringid="", lat=-99.9, lon=-99.9, depth=9999, instrument=""): """Pass parameters to annotate the title of the plot This sets the standard plot title using common meta information from PMEL/EPIC style netcdf files Parameters ---------- mooringid : str Mooring Identifier lat : float The latitude of the mooring lon : float The longitude of the mooring depth : int Nominal depth of the instrument instrument : str Name/identifier of the instrument plotted """ ptitle = ( "Plotted on: {time:%Y/%m/%d %H:%M} \n from {mooringid} Lat: {latitude:3.3f} Lon: {longitude:3.3f}" " Depth: {depth}\n : {instrument}" ).format( time=datetime.datetime.now(), mooringid=mooringid, latitude=lat, longitude=lon, depth=depth, instrument=instrument, ) return ptitle def plot(self, timedata=None, udata=None, vdata=None, ylabel=None, **kwargs): if kwargs["rotate"] != 0.0: # when rotating vectors - positive(+) rotation is equal to ccw of the axis (cw of vector) # - negative(-) rotation is equal to cw of the axis (ccw of the vector) print("rotating vectors {} degrees".format(kwargs["rotate"])) angle_offset_rad = np.deg2rad(kwargs["rotate"]) # error in calculation used corrected udata to correct vdata 2019/05 uprime = udata * np.cos(angle_offset_rad) + vdata * np.sin(angle_offset_rad) vprime = -1.0 * udata * np.sin(angle_offset_rad) + vdata * np.cos( angle_offset_rad ) udata = uprime vdata = vprime magnitude = np.sqrt(udata ** 2 + vdata ** 2) fig = plt.figure(1) ax1 = plt.subplot2grid((2, 1), (0, 0), colspan=1, rowspan=1) ax2 = plt.subplot2grid((2, 1), (1, 0), colspan=1, rowspan=1) # Plot u and v components # Plot quiver ax1.set_ylim(-1 * np.nanmax(magnitude), np.nanmax(magnitude)) fill1 = ax1.fill_between(timedata, magnitude, 0, color="k", alpha=0.1) # Fake 'box' to be able to insert a legend for 'Magnitude' p = ax1.add_patch(plt.Rectangle((1, 1), 1, 1, fc="k", alpha=0.1)) leg1 = ax1.legend([p], ["Current magnitude [cm/s]"], loc="lower right") leg1._drawFrame = False # 1D Quiver plot q = ax1.quiver( timedata, 0, udata, vdata, color="r", units="y", scale_units="y", scale=1, headlength=1, headaxislength=1, width=0.04, alpha=0.95, ) qk = plt.quiverkey( q, 0.2, 0.05, 5, r"$5 \frac{cm}{s}$", labelpos="W", fontproperties={"weight": "bold"}, ) # Plot u and v components ax1.set_xticklabels(ax1.get_xticklabels(), visible=False) ax2.set_xticklabels(ax2.get_xticklabels(), visible=True) ax1.axes.get_xaxis().set_visible(False) ax1.set_xlim(timedata.min() - 0.5, timedata.max() + 0.5) ax1.set_ylabel("Velocity (cm/s)") ax2.plot(timedata, vdata, "b-", linewidth=0.25) ax2.plot(timedata, udata, "g-", linewidth=0.25) ax2.set_xlim(timedata.min() - 0.5, timedata.max() + 0.5) ax2.set_xlabel("Date (UTC)") ax2.set_ylabel("Velocity (cm/s)") ax2.xaxis.set_major_locator(MonthLocator()) ax2.xaxis.set_minor_locator(MonthLocator(bymonth=range(1, 13), bymonthday=15)) ax2.xaxis.set_major_formatter(ticker.NullFormatter()) ax2.xaxis.set_minor_formatter(DateFormatter("%b %y")) ax1.spines["bottom"].set_visible(False) ax2.spines["top"].set_visible(False) ax1.xaxis.set_ticks_position("top") ax2.xaxis.set_ticks_position("bottom") ax2.yaxis.set_ticks_position("both") ax2.tick_params(axis="both", which="minor", labelsize=self.labelsize) ax1.tick_params(axis="both", which="minor", labelsize=self.labelsize) # manual time limit sets # ax1.set_xlim([datetime.datetime(2016,2,1),datetime.datetime(2016,9,15)]) # ax2.set_xlim([datetime.datetime(2016,2,1),datetime.datetime(2016,9,15)]) # Set legend location - See: http://matplotlib.org/Volumes/WDC_internal/users/legend_guide.html#legend-location leg2 = plt.legend(["v", "u"], loc="upper left") leg2._drawFrame = False return plt, fig class Timeseries1dStickPlot_2params(object): mpl.rcParams["svg.fonttype"] = "none" mpl.rcParams["ps.fonttype"] = 42 mpl.rcParams["pdf.fonttype"] = 42 def __init__(self, fontsize=10, labelsize=10, plotstyle="k-.", stylesheet="bmh"): """Initialize the timeseries with items that do not change. This sets up the axes and station locations. The `fontsize` and `spacing` are also specified here to ensure that they are consistent between individual station elements. Parameters ---------- fontsize : int The fontsize to use for drawing text labelsize : int The fontsize to use for labels stylesheet : str Choose a mpl stylesheet [u'seaborn-darkgrid', u'seaborn-notebook', u'classic', u'seaborn-ticks', u'grayscale', u'bmh', u'seaborn-talk', u'dark_background', u'ggplot', u'fivethirtyeight', u'seaborn-colorblind', u'seaborn-deep', u'seaborn-whitegrid', u'seaborn-bright', u'seaborn-poster', u'seaborn-muted', u'seaborn-paper', u'seaborn-white', u'seaborn-pastel', u'seaborn-dark', u'seaborn-dark-palette'] """ self.fontsize = fontsize self.labelsize = labelsize self.plotstyle = plotstyle plt.style.use(stylesheet) @staticmethod def add_title(mooringid="", lat=-99.9, lon=-99.9, depth=9999, instrument=""): """Pass parameters to annotate the title of the plot This sets the standard plot title using common meta information from PMEL/EPIC style netcdf files Parameters ---------- mooringid : str Mooring Identifier lat : float The latitude of the mooring lon : float The longitude of the mooring depth : int Nominal depth of the instrument instrument : str Name/identifier of the instrument plotted """ ptitle = ( "Plotted on: {time:%Y/%m/%d %H:%M} \n from {mooringid} Lat: {latitude:3.3f} Lon: {longitude:3.3f}" " Depth: {depth}\n : {instrument}" ).format( time=datetime.datetime.now(), mooringid=mooringid, latitude=lat, longitude=lon, depth=depth, instrument=instrument, ) return ptitle def plot(self, timedata=None, udata=None, vdata=None, ylabel=None, **kwargs): if kwargs["rotate"] != 0.0: print("rotating vectors") angle_offset_rad = np.deg2rad(kwargs["rotate"]) udata = udata * np.cos(angle_offset_rad) + vdata * np.sin(angle_offset_rad) vdata = -1 * udata * np.sin(angle_offset_rad) + vdata * np.cos( angle_offset_rad ) magnitude = np.sqrt(udata ** 2 + vdata ** 2) fig = plt.figure(1) ax2 = plt.subplot2grid((2, 1), (0, 0), colspan=1, rowspan=1) ax1 = plt.subplot2grid((2, 1), (1, 0), colspan=1, rowspan=1) # Plot u and v components # Plot quiver ax1.set_ylim(-1 * np.nanmax(magnitude), np.nanmax(magnitude)) fill1 = ax1.fill_between(timedata, magnitude, 0, color="k", alpha=0.1) # Fake 'box' to be able to insert a legend for 'Magnitude' p = ax1.add_patch(plt.Rectangle((1, 1), 1, 1, fc="k", alpha=0.1)) leg1 = ax1.legend([p], ["Current magnitude [cm/s]"], loc="lower right") leg1._drawFrame = False # 1D Quiver plot q = ax1.quiver( timedata, 0, udata, vdata, color="r", units="y", scale_units="y", scale=1, headlength=1, headaxislength=1, width=0.04, alpha=0.95, ) qk = plt.quiverkey( q, 0.2, 0.05, 25, r"$25 \frac{cm}{s}$", labelpos="W", fontproperties={"weight": "bold"}, ) # Plot u and v components ax1.set_xticklabels(ax1.get_xticklabels(), visible=True) ax2.set_xticklabels(ax2.get_xticklabels(), visible=True) ax1.axes.get_xaxis().set_visible(True) ax1.set_xlim(timedata.min() - 0.5, timedata.max() + 0.5) ax1.set_ylabel("Velocity (cm/s)") ax2.plot(kwargs["timedata2"], kwargs["data2"][:, 0, 0, 0], "k-", linewidth=1) ax2.set_xlim(timedata.min() - 0.5, timedata.max() + 0.5) ax2.set_xlabel("Date (UTC)") ax2.set_ylabel("Salinity (PSU)") ax2.xaxis.set_major_locator(MonthLocator()) ax2.xaxis.set_minor_locator(MonthLocator(bymonth=range(1, 13), bymonthday=15)) ax2.xaxis.set_major_formatter(ticker.NullFormatter()) ax2.xaxis.set_minor_formatter(ticker.NullFormatter()) ax1.xaxis.set_major_locator(MonthLocator()) ax1.xaxis.set_minor_locator(MonthLocator(bymonth=range(1, 13), bymonthday=15)) ax1.xaxis.set_major_formatter(ticker.NullFormatter()) ax1.xaxis.set_minor_formatter(DateFormatter("%b %y")) ax2.spines["bottom"].set_visible(False) ax1.spines["top"].set_visible(False) ax1.xaxis.set_ticks_position("top") ax2.xaxis.set_ticks_position("bottom") ax2.yaxis.set_ticks_position("both") ax1.tick_params(axis="both", which="minor", labelsize=self.labelsize) ax2.tick_params(axis="both", which="minor", labelsize=self.labelsize) return plt, fig class Timeseries2dStickPlot(object): # TODO pass class TimeseriesImagePlot(object): pass class TimeseriesWPAK(object): mpl.rcParams["svg.fonttype"] = "none" mpl.rcParams["ps.fonttype"] = 42 mpl.rcParams["pdf.fonttype"] = 42 def __init__(self, fontsize=10, labelsize=10, plotstyle="k-.", stylesheet="bmh"): """Initialize the timeseries with items that do not change. This sets up the axes and station locations. The `fontsize` and `spacing` are also specified here to ensure that they are consistent between individual station elements. Parameters ---------- fontsize : int The fontsize to use for drawing text labelsize : int The fontsize to use for labels stylesheet : str Choose a mpl stylesheet [u'seaborn-darkgrid', u'seaborn-notebook', u'classic', u'seaborn-ticks', u'grayscale', u'bmh', u'seaborn-talk', u'dark_background', u'ggplot', u'fivethirtyeight', u'seaborn-colorblind', u'seaborn-deep', u'seaborn-whitegrid', u'seaborn-bright', u'seaborn-poster', u'seaborn-muted', u'seaborn-paper', u'seaborn-white', u'seaborn-pastel', u'seaborn-dark', u'seaborn-dark-palette'] """ self.fontsize = fontsize self.labelsize = labelsize self.plotstyle = plotstyle plt.style.use(stylesheet) @staticmethod def add_title(mooringid="", lat=-99.9, lon=-99.9, depth=9999, instrument=""): """Pass parameters to annotate the title of the plot This sets the standard plot title using common meta information from PMEL/EPIC style netcdf files Parameters ---------- mooringid : str Mooring Identifier lat : float The latitude of the mooring lon : float The longitude of the mooring depth : int Nominal depth of the instrument instrument : str Name/identifier of the instrument plotted """ ptitle = ( "Plotted on: {time:%Y/%m/%d %H:%M} \n from {mooringid} Lat: {latitude:3.3f} Lon: {longitude:3.3f}" " Depth: {depth}\n : {instrument}" ).format( time=datetime.datetime.now(), mooringid=mooringid, latitude=lat, longitude=lon, depth=depth, instrument=instrument, ) return ptitle def plot(self, xdata=None, ydata=None, **kwargs): """ Purpose -------- Plot all sfc met observations as one image """ TC = ydata["AT_21"][:, 0, 0, 0] TD = ydata["RH_910"][:, 0, 0, 0] Press = ydata["BP_915"][:, 0, 0, 0] WindU = ydata["WU_422"][:, 0, 0, 0] WindV = ydata["WV_423"][:, 0, 0, 0] Rad = ydata["Qs_133"][:, 0, 0, 0] Teq = ydata["Teq_1800"][:, 0, 0, 0] bat = ydata["BAT_106"][:, 0, 0, 0] comp = ydata["comp_1404"][:, 0, 0, 0] fig = plt.figure() # text locations right = 0.05 top = 0.95 # TC, TD ax = fig.add_subplot(911) tplot = ax.plot(xdata, TC) ax.set_xlim(min(xdata), max(xdata)) plt.setp(tplot, "color", "r", "linestyle", "-", "linewidth", 0.5) ax.text( right, top, "Air Temperature ", horizontalalignment="left", verticalalignment="top", transform=ax.transAxes, ) plt.ylabel("(Deg C)") ax.xaxis.set_major_locator(MonthLocator()) ax.xaxis.set_minor_locator(MonthLocator(bymonthday=15)) ax.xaxis.set_major_formatter(ticker.NullFormatter()) ax.xaxis.set_minor_formatter(ticker.NullFormatter()) ax.tick_params(axis="x", which="both", bottom="off", labelbottom="off") ax.spines["bottom"].set_visible(False) ax.yaxis.set_ticks_position("both") # RH ax = fig.add_subplot(912) tplot = ax.plot(xdata, TD) ax.set_xlim(min(xdata), max(xdata)) plt.setp(tplot, "color", "g", "linestyle", "-", "linewidth", 0.5) ax.text( right, top, "Relative Humidity ", horizontalalignment="left", verticalalignment="top", transform=ax.transAxes, ) plt.ylabel("%") ax.xaxis.set_major_locator(MonthLocator()) ax.xaxis.set_minor_locator(MonthLocator(bymonthday=15)) ax.xaxis.set_major_formatter(ticker.NullFormatter()) ax.xaxis.set_minor_formatter(ticker.NullFormatter()) ax.tick_params(axis="x", which="both", bottom="off", labelbottom="off") ax.spines["bottom"].set_visible(False) ax.spines["top"].set_visible(False) ax.yaxis.set_ticks_position("both") # Press ax = fig.add_subplot(913) tplot = ax.plot(xdata, Press) ax.set_xlim(min(xdata), max(xdata)) plt.setp(tplot, "color", "k", "linestyle", "-", "linewidth", 0.5) ax.text( right, top, "Pressure ", horizontalalignment="left", verticalalignment="top", transform=ax.transAxes, ) plt.ylabel("(mb)") ax.xaxis.set_major_locator(MonthLocator()) ax.xaxis.set_minor_locator(MonthLocator(bymonthday=15)) ax.xaxis.set_major_formatter(ticker.NullFormatter()) ax.xaxis.set_minor_formatter(ticker.NullFormatter()) ax.tick_params(axis="x", which="both", bottom="off", labelbottom="off") ax.spines["bottom"].set_visible(False) ax.spines["top"].set_visible(False) ax.yaxis.set_ticks_position("both") # Plot quiver # WindU[WindU == np.nan] = 0 # WindV[WindV == np.nan] = 0 ax1 = fig.add_subplot(914) ax2 = fig.add_subplot(915) magnitude = (WindU ** 2 + WindV ** 2) ** 0.5 ax1.set_ylim(-1 * np.nanmax(magnitude), np.nanmax(magnitude)) ax1.set_xlim(min(xdata), max(xdata)) fill1 = ax1.fill_between(xdata, magnitude, 0, color="k", alpha=0.1) # Fake 'box' to be able to insert a legend for 'Magnitude' p = ax1.add_patch(plt.Rectangle((1, 1), 1, 1, fc="k", alpha=0.5)) leg1 = ax1.legend([p], ["Wind magnitude [m/s]"], loc="lower right") leg1._drawFrame = False # 1D Quiver plot q = ax1.quiver( xdata, 0, WindU, WindV, color="r", units="y", scale_units="y", scale=1, headlength=1, headaxislength=1, width=0.04, alpha=0.75, ) qk = plt.quiverkey( q, 0.2, 0.05, 2, r"$2 \frac{m}{s}$", labelpos="W", fontproperties={"weight": "bold"}, ) # Plot u and v components ax1.set_ylabel("Velocity (m/s)") ax2.plot(xdata, WindV, "b-") ax2.plot(xdata, WindU, "g-") ax2.set_xlim(min(xdata), max(xdata)) ax2.set_ylabel("Velocity (m/s)") ax2.yaxis.set_ticks_position("both") ax2.xaxis.set_major_locator(MonthLocator()) ax2.xaxis.set_minor_locator(MonthLocator(bymonthday=15)) ax2.xaxis.set_major_formatter(ticker.NullFormatter()) ax2.xaxis.set_minor_formatter(ticker.NullFormatter()) ax2.tick_params(axis="both", which="minor", labelsize=self.labelsize) ax2.tick_params(axis="x", which="both", bottom="off", labelbottom="off") ax1.set_ylabel("Velocity (m/s)") ax1.yaxis.set_ticks_position("both") ax1.xaxis.set_major_locator(MonthLocator()) ax1.xaxis.set_minor_locator(MonthLocator(bymonthday=15)) ax1.xaxis.set_major_formatter(ticker.NullFormatter()) ax1.xaxis.set_minor_formatter(ticker.NullFormatter()) ax1.tick_params(axis="both", which="minor", labelsize=self.labelsize) ax1.tick_params(axis="x", which="both", bottom="off", labelbottom="off") ax1.axes.get_xaxis().set_visible(False) ax1.spines["top"].set_visible(False) ax1.spines["bottom"].set_visible(False) ax2.axes.get_xaxis().set_visible(False) ax2.spines["top"].set_visible(False) ax2.spines["bottom"].set_visible(False) # Set legend location - See: http://matplotlib.org/users/legend_guide.html#legend-location leg2 = plt.legend(["v", "u"], loc="upper left") leg2._drawFrame = False # Rad ax = fig.add_subplot(916) tplot = ax.plot(xdata, Rad) ax.set_xlim(min(xdata), max(xdata)) plt.setp(tplot, "color", "k", "linestyle", "-", "linewidth", 0.5) ax.fill_between(xdata, 0, Rad, facecolor="yellow") ax.text( right, top, "Shortwave Radiation ", horizontalalignment="left", verticalalignment="top", transform=ax.transAxes, ) plt.ylabel("(W*m^-2)") ax.xaxis.set_major_locator(MonthLocator()) ax.xaxis.set_minor_locator(MonthLocator(bymonthday=15)) ax.xaxis.set_major_formatter(ticker.NullFormatter()) ax.xaxis.set_minor_formatter(ticker.NullFormatter()) ax.tick_params(axis="x", which="both", bottom="off", labelbottom="off") ax.spines["bottom"].set_visible(False) ax.spines["top"].set_visible(False) ax.yaxis.set_ticks_position("both") # system vars - equil temp, battery, compass ax = fig.add_subplot(917) tplot = ax.plot(xdata, Teq) ax.set_xlim(min(xdata), max(xdata)) plt.setp(tplot, "color", "k", "linestyle", "-", "linewidth", 0.5) ax.text( right, top, "Teq ", horizontalalignment="left", verticalalignment="top", transform=ax.transAxes, ) ax.xaxis.set_major_locator(MonthLocator()) ax.xaxis.set_minor_locator(MonthLocator(bymonthday=15)) ax.xaxis.set_major_formatter(ticker.NullFormatter()) ax.xaxis.set_minor_formatter(ticker.NullFormatter()) ax.tick_params(axis="x", which="both", bottom="off", labelbottom="off") ax.spines["bottom"].set_visible(False) ax.spines["top"].set_visible(False) ax.yaxis.set_ticks_position("both") ax = fig.add_subplot(918) tplot = ax.plot(xdata, bat) ax.set_xlim(min(xdata), max(xdata)) plt.setp(tplot, "color", "k", "linestyle", "-", "linewidth", 0.5) ax.text( right, top, "battery ", horizontalalignment="left", verticalalignment="top", transform=ax.transAxes, ) plt.ylabel("volts") ax.xaxis.set_major_locator(MonthLocator()) ax.xaxis.set_minor_locator(MonthLocator(bymonthday=15)) ax.xaxis.set_major_formatter(ticker.NullFormatter()) ax.xaxis.set_minor_formatter(ticker.NullFormatter()) ax.tick_params(axis="x", which="both", bottom="off", labelbottom="off") ax.spines["bottom"].set_visible(False) ax.spines["top"].set_visible(False) ax.yaxis.set_ticks_position("both") ax = fig.add_subplot(919) tplot = ax.plot(xdata, comp) ax.set_xlim(min(xdata), max(xdata)) plt.setp( tplot, "color", "k", "linestyle", "None", "marker", ".", "markersize", 2.5 ) ax.text( right, top, "compass ", horizontalalignment="left", verticalalignment="top", transform=ax.transAxes, ) plt.ylabel("degrees") ax.xaxis.set_major_locator(MonthLocator()) ax.xaxis.set_minor_locator(MonthLocator(bymonthday=15)) ax.xaxis.set_major_formatter(ticker.NullFormatter()) ax.xaxis.set_minor_formatter(DateFormatter("%b %y")) ax.tick_params(axis="both", which="minor", labelsize=self.labelsize) ax.tick_params(axis="y", which="major", labelsize=self.labelsize) ax.tick_params(axis="x", which="both", top="off") ax.spines["top"].set_visible(False) ax.set_xlabel("Date (UTC)") return (plt, fig) def plot_rad( self, xdata=None, ydata=None, ydata2=None, ylabel=None, textlabel=None, textlabel2=None, **kwargs ): # Shortwave Radiation fig = plt.figure(1) ax1 = plt.subplot2grid((2, 1), (0, 0), colspan=1, rowspan=1) p1 = ax1.plot(xdata, ydata, "k", linewidth=0.25) ax1.fill_between(xdata, 0, ydata, facecolor="yellow") ax1.set_ylim([np.nanmin(ydata), np.nanmax(ydata)]) ax1.set_xlim([np.nanmin(xdata), np.nanmax(xdata)]) plt.ylabel(ylabel) ax1.xaxis.set_major_locator(MonthLocator()) ax1.xaxis.set_minor_locator(MonthLocator(bymonthday=15)) ax1.xaxis.set_major_formatter(ticker.NullFormatter()) ax1.xaxis.set_minor_formatter(DateFormatter("%b %y")) ax1.tick_params(axis="both", which="minor", labelsize=self.labelsize) ax1.tick_params(axis="x", which="both", bottom="off", labelbottom="off") ax1.spines["bottom"].set_visible(False) ax1.text( 0.05, 0.95, textlabel, horizontalalignment="left", verticalalignment="top", transform=ax1.transAxes, ) # Shortwave Radiation Estimated (1000Wm^-2 incident) ax2 = plt.subplot2grid((2, 1), (1, 0), colspan=1, rowspan=1) p2 = ax2.plot(xdata, ydata2, "k", linewidth=0.25) ax2.fill_between(xdata, 0, ydata, facecolor="yellow") ax2.set_ylim([np.nanmin(ydata2), np.nanmax(ydata2)]) ax2.set_xlim([np.nanmin(xdata), np.nanmax(xdata)]) plt.ylabel(ylabel) ax2.xaxis.set_major_locator(MonthLocator()) ax2.xaxis.set_minor_locator(MonthLocator(bymonthday=15)) ax2.xaxis.set_major_formatter(ticker.NullFormatter()) ax2.xaxis.set_minor_formatter(DateFormatter("%b %y")) ax2.tick_params(axis="both", which="minor", labelsize=self.labelsize) ax2.tick_params(axis="x", which="both", top="off") ax2.spines["top"].set_visible(False) ax2.text( 0.05, 0.95, textlabel2, horizontalalignment="left", verticalalignment="top", transform=ax2.transAxes, ) ax2.set_xlabel("Date (UTC)") return (plt, fig) class TimeseriesPorpertyPropertyPlot(object): """ class to plot property vs property plots with density iso-contours""" mpl.rcParams["svg.fonttype"] = "none" mpl.rcParams["ps.fonttype"] = 42 mpl.rcParams["pdf.fonttype"] = 42 def __init__( self, fontsize=10, labelsize=10, plotstyle="k-.", stylesheet="seaborn-whitegrid" ): """Initialize the timeseries with items that do not change. This sets up the axes and station locations. The `fontsize` and `spacing` are also specified here to ensure that they are consistent between individual station elements. Parameters ---------- fontsize : int The fontsize to use for drawing text labelsize : int The fontsize to use for labels stylesheet : str Choose a mpl stylesheet [u'seaborn-darkgrid', u'seaborn-notebook', u'classic', u'seaborn-ticks', u'grayscale', u'bmh', u'seaborn-talk', u'dark_background', u'ggplot', u'fivethirtyeight', u'seaborn-colorblind', u'seaborn-deep', u'seaborn-whitegrid', u'seaborn-bright', u'seaborn-poster', u'seaborn-muted', u'seaborn-paper', u'seaborn-white', u'seaborn-pastel', u'seaborn-dark', u'seaborn-dark-palette'] """ self.fontsize = fontsize self.labelsize = labelsize self.plotstyle = plotstyle plt.style.use(stylesheet) @staticmethod def add_title(mooringid="", lat=-99.9, lon=-99.9, depth=9999, instrument=""): """Pass parameters to annotate the title of the plot This sets the standard plot title using common meta information from PMEL/EPIC style netcdf files Parameters ---------- mooringid : str Mooring Identifier lat : float The latitude of the mooring lon : float The longitude of the mooring depth : int Nominal depth of the instrument instrument : str Name/identifier of the instrument plotted """ ptitle = ( "Plotted on: {time:%Y/%m/%d %H:%M} \n from {mooringid} Lat: {latitude:3.3f} Lon: {longitude:3.3f}" " Depth: {depth}\n : {instrument}" ).format( time=datetime.datetime.now(), mooringid=mooringid, latitude=lat, longitude=lon, depth=depth, instrument=instrument, ) return ptitle @staticmethod def plot( self, var1, var2, var3=None, var1range=[0, 1], var2range=[0, 10], ptitle="" ): # Calculate how many gridcells we need in the x and y dimensions xdim = round((var1range[1] - var1range[0]) / 0.1 + 1, 0) ydim = round((var2range[1] - var2range[0]) + 2, 0) # print 'ydim: ' + str(ydim) + ' xdim: ' + str(xdim) + ' \n' if (xdim > 10000) or (ydim > 10000): print( "To many dimensions for grid in " + cruise + cast + " file. Likely missing data \n" ) return # Create empty grid of zeros dens = np.zeros((int(ydim), int(xdim))) # Create temp and salt vectors of appropiate dimensions ti = np.linspace(0, ydim - 1, ydim) + var2range[0] si = np.linspace(0, xdim - 1, xdim) * 0.1 + var1range[0] # Loop to fill in grid with densities for j in range(0, int(ydim)): for i in range(0, int(xdim)): dens[j, i] = sw.dens0(si[i], ti[j]) # Substract 1000 to convert to sigma-t dens = dens - 1000 # Plot data *********************************************** fig = plt.figure(1) ax1 = plt.subplot2grid((1, 1), (0, 0), colspan=1, rowspan=1) CS = plt.contour(si, ti, dens, linestyles="dashed", colors="k") plt.clabel(CS, fontsize=12, inline=1, fmt="%1.1f") # Label every second level ts = ax1.scatter(var1, var2, s=25, c=var3, marker=".", cmap="Blues") plt.colorbar(ts, label="DOY") plt.ylim(var2range[0], var2range[1]) plt.xlim(var1range[0], var1range[1]) ax1.set_xlabel("Salinity (PSU)") ax1.set_ylabel("Temperature (C)") return plt, fig
15,568
24,092
210
1e8a2fa776f5bd96393450257a891c27824bdb82
14,904
py
Python
tests/test_interactions/test_omit_interactions.py
radifar/PyPLIF-HIPPOS
95fc5dd81b900e84ae6f3368c4b70a08d17257dd
[ "HPND" ]
13
2020-07-29T12:19:56.000Z
2022-02-07T04:48:19.000Z
tests/test_interactions/test_omit_interactions.py
radifar/PyPLIF-HIPPOS
95fc5dd81b900e84ae6f3368c4b70a08d17257dd
[ "HPND" ]
5
2021-03-30T01:11:49.000Z
2021-09-13T11:49:35.000Z
tests/test_interactions/test_omit_interactions.py
radifar/PyPLIF-HIPPOS
95fc5dd81b900e84ae6f3368c4b70a08d17257dd
[ "HPND" ]
5
2020-08-06T07:26:06.000Z
2021-10-30T17:16:39.000Z
""" The tests for omit interaction feature """ import os import sys from collections import namedtuple from pyplif_hippos import ParseConfig, hippos, similarity def test_configuration_single_omit_interaction(tmpdir): """Test configuration for omitting specific interaction""" # Arrange config_file = tmpdir.mkdir("sub").join("config.txt") config_file.write( """ docking_method plants # plants or vina docking_conf plants-003.conf similarity_coef tanimoto mcconnaughey full_ref 00000100000000000000000000000000000100000000000001000000000000010000001000000000000000000001000000000000000000000000000000101000000000000000000101000000000010000 00010101000000000000000000000000000100000000000001010000000000010000001000000000000010000000000000000000000001011000001000001000000000000000000101000000000000000 00010101000000100000000000000000000100000000000001010100100000010000001000000000000010000001000000000000010000000000100000101010000000000000000001000000000000000 residue_name ARG116 GLU117 LEU132 LYS148 ASP149 ARG150 ARG154 TRP177 SER178 ILE221 ARG223 THR224 GLU226 ALA245 HIS273 GLU275 GLU276 ARG292 ASP294 GLY347 ARG374 TRP408 TYR409 residue_number 40 41 56 72 73 74 78 101 102 145 147 148 150 169 197 199 200 216 218 271 298 332 333 omit_interaction hydrophobic ARG223 full_outfile plants_full_ifp.csv sim_outfile plants_similarity.csv logfile plants.log """ ) arg = os.path.join(config_file.dirname, config_file.basename) if len(sys.argv) > 1: sys.argv[1] = arg else: sys.argv.append(arg) # Act hippos_config = ParseConfig() hippos_config.parse_config() omit_interaction = hippos_config.omit_interaction[0] # Assert assert omit_interaction.interaction_type == "hydrophobic" assert omit_interaction.res_name == ["ARG223"] def test_configuration_omit_multiple_residue_interaction(tmpdir): """Test configuration for omitting multiple residue interaction""" # Arrange config_file = tmpdir.mkdir("sub").join("config.txt") config_file.write( """ docking_method plants # plants or vina docking_conf plants-003.conf similarity_coef tanimoto mcconnaughey full_ref 00000100000000000000000000000000000100000000000001000000000000010000001000000000000000000001000000000000000000000000000000101000000000000000000101000000000010000 00010101000000000000000000000000000100000000000001010000000000010000001000000000000010000000000000000000000001011000001000001000000000000000000101000000000000000 00010101000000100000000000000000000100000000000001010100100000010000001000000000000010000001000000000000010000000000100000101010000000000000000001000000000000000 residue_name ARG116 GLU117 LEU132 LYS148 ASP149 ARG150 ARG154 TRP177 SER178 ILE221 ARG223 THR224 GLU226 ALA245 HIS273 GLU275 GLU276 ARG292 ASP294 GLY347 ARG374 TRP408 TYR409 residue_number 40 41 56 72 73 74 78 101 102 145 147 148 150 169 197 199 200 216 218 271 298 332 333 omit_interaction hydrophobic ARG150 TRP177 ARG223 full_outfile plants_full_ifp.csv sim_outfile plants_similarity.csv logfile plants.log """ ) arg = os.path.join(config_file.dirname, config_file.basename) if len(sys.argv) > 1: sys.argv[1] = arg else: sys.argv.append(arg) # Act hippos_config = ParseConfig() hippos_config.parse_config() omit_interaction = hippos_config.omit_interaction[0] # Assert assert omit_interaction.interaction_type == "hydrophobic" assert omit_interaction.res_name == ["ARG150", "TRP177", "ARG223"] def test_configuration_omit_multiple_interaction_type(tmpdir): """Test configuration for omitting multiple interaction type""" # Arrange config_file = tmpdir.mkdir("sub").join("config.txt") config_file.write( """ docking_method plants # plants or vina docking_conf plants-003.conf similarity_coef tanimoto mcconnaughey full_ref 00000100000000000000000000000000000100000000000001000000000000010000001000000000000000000001000000000000000000000000000000101000000000000000000101000000000010000 00010101000000000000000000000000000100000000000001010000000000010000001000000000000010000000000000000000000001011000001000001000000000000000000101000000000000000 00010101000000100000000000000000000100000000000001010100100000010000001000000000000010000001000000000000010000000000100000101010000000000000000001000000000000000 residue_name ARG116 GLU117 LEU132 LYS148 ASP149 ARG150 ARG154 TRP177 SER178 ILE221 ARG223 THR224 GLU226 ALA245 HIS273 GLU275 GLU276 ARG292 ASP294 GLY347 ARG374 TRP408 TYR409 residue_number 40 41 56 72 73 74 78 101 102 145 147 148 150 169 197 199 200 216 218 271 298 332 333 omit_interaction hydrophobic ARG223 omit_interaction h_bond ARG292 full_outfile plants_full_ifp.csv sim_outfile plants_similarity.csv logfile plants.log """ ) arg = os.path.join(config_file.dirname, config_file.basename) if len(sys.argv) > 1: sys.argv[1] = arg else: sys.argv.append(arg) # Act hippos_config = ParseConfig() hippos_config.parse_config() omit_interaction_1 = hippos_config.omit_interaction[0] omit_interaction_2 = hippos_config.omit_interaction[1] # Assert assert omit_interaction_1.interaction_type == "hydrophobic" assert omit_interaction_1.res_name == ["ARG223"] assert omit_interaction_2.interaction_type == "h_bond" assert omit_interaction_2.res_name == ["ARG292"] def test_configuration_long_interaction_type(tmpdir): """Test configuration checking all long interaction_type""" # Arrange config_file = tmpdir.mkdir("sub").join("config.txt") config_file.write( """ docking_method plants # plants or vina docking_conf plants-003.conf similarity_coef tanimoto mcconnaughey full_ref 00000100000000000000000000000000000100000000000001000000000000010000001000000000000000000001000000000000000000000000000000101000000000000000000101000000000010000 00010101000000000000000000000000000100000000000001010000000000010000001000000000000010000000000000000000000001011000001000001000000000000000000101000000000000000 00010101000000100000000000000000000100000000000001010100100000010000001000000000000010000001000000000000010000000000100000101010000000000000000001000000000000000 residue_name ARG116 GLU117 LEU132 LYS148 ASP149 ARG150 ARG154 TRP177 SER178 ILE221 ARG223 THR224 GLU226 ALA245 HIS273 GLU275 GLU276 ARG292 ASP294 GLY347 ARG374 TRP408 TYR409 residue_number 40 41 56 72 73 74 78 101 102 145 147 148 150 169 197 199 200 216 218 271 298 332 333 omit_interaction hydrophobic ARG116 omit_interaction aromatic GLU117 omit_interaction h_bond LEU132 omit_interaction electrostatic LYS148 omit_interaction h_bond_donor ASP149 omit_interaction h_bond_acceptor ARG150 omit_interaction electrostatic_positive ARG154 omit_interaction electrostatic_negative TRP177 omit_interaction aromatic_facetoface SER178 omit_interaction aromatic_edgetoface ILE221 full_outfile plants_full_ifp.csv sim_outfile plants_similarity.csv logfile plants.log """ ) arg = os.path.join(config_file.dirname, config_file.basename) if len(sys.argv) > 1: sys.argv[1] = arg else: sys.argv.append(arg) # Act hippos_config = ParseConfig() hippos_config.parse_config() omit_interaction_1 = hippos_config.omit_interaction[0] omit_interaction_2 = hippos_config.omit_interaction[1] omit_interaction_3 = hippos_config.omit_interaction[2] omit_interaction_4 = hippos_config.omit_interaction[3] omit_interaction_5 = hippos_config.omit_interaction[4] omit_interaction_6 = hippos_config.omit_interaction[5] omit_interaction_7 = hippos_config.omit_interaction[6] omit_interaction_8 = hippos_config.omit_interaction[7] omit_interaction_9 = hippos_config.omit_interaction[8] omit_interaction_10 = hippos_config.omit_interaction[9] # Assert assert omit_interaction_1.interaction_type == "hydrophobic" assert omit_interaction_1.res_name == ["ARG116"] assert omit_interaction_2.interaction_type == "aromatic" assert omit_interaction_2.res_name == ["GLU117"] assert omit_interaction_3.interaction_type == "h_bond" assert omit_interaction_3.res_name == ["LEU132"] assert omit_interaction_4.interaction_type == "electrostatic" assert omit_interaction_4.res_name == ["LYS148"] assert omit_interaction_5.interaction_type == "h_bond_donor" assert omit_interaction_5.res_name == ["ASP149"] assert omit_interaction_6.interaction_type == "h_bond_acceptor" assert omit_interaction_6.res_name == ["ARG150"] assert omit_interaction_7.interaction_type == "electrostatic_positive" assert omit_interaction_7.res_name == ["ARG154"] assert omit_interaction_8.interaction_type == "electrostatic_negative" assert omit_interaction_8.res_name == ["TRP177"] assert omit_interaction_9.interaction_type == "aromatic_facetoface" assert omit_interaction_9.res_name == ["SER178"] assert omit_interaction_10.interaction_type == "aromatic_edgetoface" assert omit_interaction_10.res_name == ["ILE221"] def test_configuration_short_interaction_type(tmpdir): """Test configuration checking all short interaction_type""" # Arrange config_file = tmpdir.mkdir("sub").join("config.txt") config_file.write( """ docking_method plants # plants or vina docking_conf plants-003.conf similarity_coef tanimoto mcconnaughey full_ref 00000100000000000000000000000000000100000000000001000000000000010000001000000000000000000001000000000000000000000000000000101000000000000000000101000000000010000 00010101000000000000000000000000000100000000000001010000000000010000001000000000000010000000000000000000000001011000001000001000000000000000000101000000000000000 00010101000000100000000000000000000100000000000001010100100000010000001000000000000010000001000000000000010000000000100000101010000000000000000001000000000000000 residue_name ARG116 GLU117 LEU132 LYS148 ASP149 ARG150 ARG154 TRP177 SER178 ILE221 ARG223 THR224 GLU226 ALA245 HIS273 GLU275 GLU276 ARG292 ASP294 GLY347 ARG374 TRP408 TYR409 residue_number 40 41 56 72 73 74 78 101 102 145 147 148 150 169 197 199 200 216 218 271 298 332 333 omit_interaction HPB ARG116 omit_interaction ARM GLU117 omit_interaction HBD LEU132 omit_interaction ELE LYS148 omit_interaction HBD_DON ASP149 omit_interaction HBD_ACC ARG150 omit_interaction ELE_POS ARG154 omit_interaction ELE_NEG TRP177 omit_interaction ARM_F2F SER178 omit_interaction ARM_E2F ILE221 full_outfile plants_full_ifp.csv sim_outfile plants_similarity.csv logfile plants.log """ ) arg = os.path.join(config_file.dirname, config_file.basename) if len(sys.argv) > 1: sys.argv[1] = arg else: sys.argv.append(arg) # Act hippos_config = ParseConfig() hippos_config.parse_config() omit_interaction_1 = hippos_config.omit_interaction[0] omit_interaction_2 = hippos_config.omit_interaction[1] omit_interaction_3 = hippos_config.omit_interaction[2] omit_interaction_4 = hippos_config.omit_interaction[3] omit_interaction_5 = hippos_config.omit_interaction[4] omit_interaction_6 = hippos_config.omit_interaction[5] omit_interaction_7 = hippos_config.omit_interaction[6] omit_interaction_8 = hippos_config.omit_interaction[7] omit_interaction_9 = hippos_config.omit_interaction[8] omit_interaction_10 = hippos_config.omit_interaction[9] # Assert assert omit_interaction_1.interaction_type == "hydrophobic" assert omit_interaction_1.res_name == ["ARG116"] assert omit_interaction_2.interaction_type == "aromatic" assert omit_interaction_2.res_name == ["GLU117"] assert omit_interaction_3.interaction_type == "h_bond" assert omit_interaction_3.res_name == ["LEU132"] assert omit_interaction_4.interaction_type == "electrostatic" assert omit_interaction_4.res_name == ["LYS148"] assert omit_interaction_5.interaction_type == "h_bond_donor" assert omit_interaction_5.res_name == ["ASP149"] assert omit_interaction_6.interaction_type == "h_bond_acceptor" assert omit_interaction_6.res_name == ["ARG150"] assert omit_interaction_7.interaction_type == "electrostatic_positive" assert omit_interaction_7.res_name == ["ARG154"] assert omit_interaction_8.interaction_type == "electrostatic_negative" assert omit_interaction_8.res_name == ["TRP177"] assert omit_interaction_9.interaction_type == "aromatic_facetoface" assert omit_interaction_9.res_name == ["SER178"] assert omit_interaction_10.interaction_type == "aromatic_edgetoface" assert omit_interaction_10.res_name == ["ILE221"] def test_replace_bit_char(): """Test bit replacement function for omitted residue""" # Arrange bitstring = "1000001" omit_hydrophobic = [1, 0, 0, 0, 0, 0, 0] omit_aromatic = [0, 1, 1, 0, 0, 0, 0] omit_h_bond = [0, 0, 0, 1, 1, 0, 0] omit_electrostatic = [0, 0, 0, 0, 0, 1, 1] omit_h_bond_donor = [0, 0, 0, 1, 0, 0, 0] omit_h_bond_acceptor = [0, 0, 0, 0, 1, 0, 0] omit_electrostatic_positive = [0, 0, 0, 0, 0, 1, 0] omit_electrostatic_negative = [0, 0, 0, 0, 0, 0, 1] omit_aromatic_facetoface = [0, 1, 0, 0, 0, 0, 0] omit_aromatic_edgetoface = [0, 0, 1, 0, 0, 0, 0] # Act bitstring_1 = hippos.replace_bit_char(bitstring, omit_hydrophobic) bitstring_2 = hippos.replace_bit_char(bitstring, omit_aromatic) bitstring_3 = hippos.replace_bit_char(bitstring, omit_h_bond) bitstring_4 = hippos.replace_bit_char(bitstring, omit_electrostatic) bitstring_5 = hippos.replace_bit_char(bitstring, omit_h_bond_donor) bitstring_6 = hippos.replace_bit_char(bitstring, omit_h_bond_acceptor) bitstring_7 = hippos.replace_bit_char(bitstring, omit_electrostatic_positive) bitstring_8 = hippos.replace_bit_char(bitstring, omit_electrostatic_negative) bitstring_9 = hippos.replace_bit_char(bitstring, omit_aromatic_facetoface) bitstring_10 = hippos.replace_bit_char(bitstring, omit_aromatic_edgetoface) # Assert assert bitstring_1 == "n000001" assert bitstring_2 == "1nn0001" assert bitstring_3 == "100nn01" assert bitstring_4 == "10000nn" assert bitstring_5 == "100n001" assert bitstring_6 == "1000n01" assert bitstring_7 == "10000n1" assert bitstring_8 == "100000n" assert bitstring_9 == "1n00001" assert bitstring_10 == "10n0001" def test_cleanup_omitted_interaction(): """Test for bitstring preparation prior to similarity calculation""" # Arrange refbit = "000001000101" tgtbit = "11n00n000011" # Act clean_refbit, clean_tgtbit = similarity.clean_omitted_interactions(refbit, tgtbit) # Assert assert clean_refbit == "0000000101" assert clean_tgtbit == "1100000011"
39.638298
495
0.790526
""" The tests for omit interaction feature """ import os import sys from collections import namedtuple from pyplif_hippos import ParseConfig, hippos, similarity def test_configuration_single_omit_interaction(tmpdir): """Test configuration for omitting specific interaction""" # Arrange config_file = tmpdir.mkdir("sub").join("config.txt") config_file.write( """ docking_method plants # plants or vina docking_conf plants-003.conf similarity_coef tanimoto mcconnaughey full_ref 00000100000000000000000000000000000100000000000001000000000000010000001000000000000000000001000000000000000000000000000000101000000000000000000101000000000010000 00010101000000000000000000000000000100000000000001010000000000010000001000000000000010000000000000000000000001011000001000001000000000000000000101000000000000000 00010101000000100000000000000000000100000000000001010100100000010000001000000000000010000001000000000000010000000000100000101010000000000000000001000000000000000 residue_name ARG116 GLU117 LEU132 LYS148 ASP149 ARG150 ARG154 TRP177 SER178 ILE221 ARG223 THR224 GLU226 ALA245 HIS273 GLU275 GLU276 ARG292 ASP294 GLY347 ARG374 TRP408 TYR409 residue_number 40 41 56 72 73 74 78 101 102 145 147 148 150 169 197 199 200 216 218 271 298 332 333 omit_interaction hydrophobic ARG223 full_outfile plants_full_ifp.csv sim_outfile plants_similarity.csv logfile plants.log """ ) arg = os.path.join(config_file.dirname, config_file.basename) if len(sys.argv) > 1: sys.argv[1] = arg else: sys.argv.append(arg) # Act hippos_config = ParseConfig() hippos_config.parse_config() omit_interaction = hippos_config.omit_interaction[0] # Assert assert omit_interaction.interaction_type == "hydrophobic" assert omit_interaction.res_name == ["ARG223"] def test_configuration_omit_multiple_residue_interaction(tmpdir): """Test configuration for omitting multiple residue interaction""" # Arrange config_file = tmpdir.mkdir("sub").join("config.txt") config_file.write( """ docking_method plants # plants or vina docking_conf plants-003.conf similarity_coef tanimoto mcconnaughey full_ref 00000100000000000000000000000000000100000000000001000000000000010000001000000000000000000001000000000000000000000000000000101000000000000000000101000000000010000 00010101000000000000000000000000000100000000000001010000000000010000001000000000000010000000000000000000000001011000001000001000000000000000000101000000000000000 00010101000000100000000000000000000100000000000001010100100000010000001000000000000010000001000000000000010000000000100000101010000000000000000001000000000000000 residue_name ARG116 GLU117 LEU132 LYS148 ASP149 ARG150 ARG154 TRP177 SER178 ILE221 ARG223 THR224 GLU226 ALA245 HIS273 GLU275 GLU276 ARG292 ASP294 GLY347 ARG374 TRP408 TYR409 residue_number 40 41 56 72 73 74 78 101 102 145 147 148 150 169 197 199 200 216 218 271 298 332 333 omit_interaction hydrophobic ARG150 TRP177 ARG223 full_outfile plants_full_ifp.csv sim_outfile plants_similarity.csv logfile plants.log """ ) arg = os.path.join(config_file.dirname, config_file.basename) if len(sys.argv) > 1: sys.argv[1] = arg else: sys.argv.append(arg) # Act hippos_config = ParseConfig() hippos_config.parse_config() omit_interaction = hippos_config.omit_interaction[0] # Assert assert omit_interaction.interaction_type == "hydrophobic" assert omit_interaction.res_name == ["ARG150", "TRP177", "ARG223"] def test_configuration_omit_multiple_interaction_type(tmpdir): """Test configuration for omitting multiple interaction type""" # Arrange config_file = tmpdir.mkdir("sub").join("config.txt") config_file.write( """ docking_method plants # plants or vina docking_conf plants-003.conf similarity_coef tanimoto mcconnaughey full_ref 00000100000000000000000000000000000100000000000001000000000000010000001000000000000000000001000000000000000000000000000000101000000000000000000101000000000010000 00010101000000000000000000000000000100000000000001010000000000010000001000000000000010000000000000000000000001011000001000001000000000000000000101000000000000000 00010101000000100000000000000000000100000000000001010100100000010000001000000000000010000001000000000000010000000000100000101010000000000000000001000000000000000 residue_name ARG116 GLU117 LEU132 LYS148 ASP149 ARG150 ARG154 TRP177 SER178 ILE221 ARG223 THR224 GLU226 ALA245 HIS273 GLU275 GLU276 ARG292 ASP294 GLY347 ARG374 TRP408 TYR409 residue_number 40 41 56 72 73 74 78 101 102 145 147 148 150 169 197 199 200 216 218 271 298 332 333 omit_interaction hydrophobic ARG223 omit_interaction h_bond ARG292 full_outfile plants_full_ifp.csv sim_outfile plants_similarity.csv logfile plants.log """ ) arg = os.path.join(config_file.dirname, config_file.basename) if len(sys.argv) > 1: sys.argv[1] = arg else: sys.argv.append(arg) # Act hippos_config = ParseConfig() hippos_config.parse_config() omit_interaction_1 = hippos_config.omit_interaction[0] omit_interaction_2 = hippos_config.omit_interaction[1] # Assert assert omit_interaction_1.interaction_type == "hydrophobic" assert omit_interaction_1.res_name == ["ARG223"] assert omit_interaction_2.interaction_type == "h_bond" assert omit_interaction_2.res_name == ["ARG292"] def test_configuration_long_interaction_type(tmpdir): """Test configuration checking all long interaction_type""" # Arrange config_file = tmpdir.mkdir("sub").join("config.txt") config_file.write( """ docking_method plants # plants or vina docking_conf plants-003.conf similarity_coef tanimoto mcconnaughey full_ref 00000100000000000000000000000000000100000000000001000000000000010000001000000000000000000001000000000000000000000000000000101000000000000000000101000000000010000 00010101000000000000000000000000000100000000000001010000000000010000001000000000000010000000000000000000000001011000001000001000000000000000000101000000000000000 00010101000000100000000000000000000100000000000001010100100000010000001000000000000010000001000000000000010000000000100000101010000000000000000001000000000000000 residue_name ARG116 GLU117 LEU132 LYS148 ASP149 ARG150 ARG154 TRP177 SER178 ILE221 ARG223 THR224 GLU226 ALA245 HIS273 GLU275 GLU276 ARG292 ASP294 GLY347 ARG374 TRP408 TYR409 residue_number 40 41 56 72 73 74 78 101 102 145 147 148 150 169 197 199 200 216 218 271 298 332 333 omit_interaction hydrophobic ARG116 omit_interaction aromatic GLU117 omit_interaction h_bond LEU132 omit_interaction electrostatic LYS148 omit_interaction h_bond_donor ASP149 omit_interaction h_bond_acceptor ARG150 omit_interaction electrostatic_positive ARG154 omit_interaction electrostatic_negative TRP177 omit_interaction aromatic_facetoface SER178 omit_interaction aromatic_edgetoface ILE221 full_outfile plants_full_ifp.csv sim_outfile plants_similarity.csv logfile plants.log """ ) arg = os.path.join(config_file.dirname, config_file.basename) if len(sys.argv) > 1: sys.argv[1] = arg else: sys.argv.append(arg) # Act hippos_config = ParseConfig() hippos_config.parse_config() omit_interaction_1 = hippos_config.omit_interaction[0] omit_interaction_2 = hippos_config.omit_interaction[1] omit_interaction_3 = hippos_config.omit_interaction[2] omit_interaction_4 = hippos_config.omit_interaction[3] omit_interaction_5 = hippos_config.omit_interaction[4] omit_interaction_6 = hippos_config.omit_interaction[5] omit_interaction_7 = hippos_config.omit_interaction[6] omit_interaction_8 = hippos_config.omit_interaction[7] omit_interaction_9 = hippos_config.omit_interaction[8] omit_interaction_10 = hippos_config.omit_interaction[9] # Assert assert omit_interaction_1.interaction_type == "hydrophobic" assert omit_interaction_1.res_name == ["ARG116"] assert omit_interaction_2.interaction_type == "aromatic" assert omit_interaction_2.res_name == ["GLU117"] assert omit_interaction_3.interaction_type == "h_bond" assert omit_interaction_3.res_name == ["LEU132"] assert omit_interaction_4.interaction_type == "electrostatic" assert omit_interaction_4.res_name == ["LYS148"] assert omit_interaction_5.interaction_type == "h_bond_donor" assert omit_interaction_5.res_name == ["ASP149"] assert omit_interaction_6.interaction_type == "h_bond_acceptor" assert omit_interaction_6.res_name == ["ARG150"] assert omit_interaction_7.interaction_type == "electrostatic_positive" assert omit_interaction_7.res_name == ["ARG154"] assert omit_interaction_8.interaction_type == "electrostatic_negative" assert omit_interaction_8.res_name == ["TRP177"] assert omit_interaction_9.interaction_type == "aromatic_facetoface" assert omit_interaction_9.res_name == ["SER178"] assert omit_interaction_10.interaction_type == "aromatic_edgetoface" assert omit_interaction_10.res_name == ["ILE221"] def test_configuration_short_interaction_type(tmpdir): """Test configuration checking all short interaction_type""" # Arrange config_file = tmpdir.mkdir("sub").join("config.txt") config_file.write( """ docking_method plants # plants or vina docking_conf plants-003.conf similarity_coef tanimoto mcconnaughey full_ref 00000100000000000000000000000000000100000000000001000000000000010000001000000000000000000001000000000000000000000000000000101000000000000000000101000000000010000 00010101000000000000000000000000000100000000000001010000000000010000001000000000000010000000000000000000000001011000001000001000000000000000000101000000000000000 00010101000000100000000000000000000100000000000001010100100000010000001000000000000010000001000000000000010000000000100000101010000000000000000001000000000000000 residue_name ARG116 GLU117 LEU132 LYS148 ASP149 ARG150 ARG154 TRP177 SER178 ILE221 ARG223 THR224 GLU226 ALA245 HIS273 GLU275 GLU276 ARG292 ASP294 GLY347 ARG374 TRP408 TYR409 residue_number 40 41 56 72 73 74 78 101 102 145 147 148 150 169 197 199 200 216 218 271 298 332 333 omit_interaction HPB ARG116 omit_interaction ARM GLU117 omit_interaction HBD LEU132 omit_interaction ELE LYS148 omit_interaction HBD_DON ASP149 omit_interaction HBD_ACC ARG150 omit_interaction ELE_POS ARG154 omit_interaction ELE_NEG TRP177 omit_interaction ARM_F2F SER178 omit_interaction ARM_E2F ILE221 full_outfile plants_full_ifp.csv sim_outfile plants_similarity.csv logfile plants.log """ ) arg = os.path.join(config_file.dirname, config_file.basename) if len(sys.argv) > 1: sys.argv[1] = arg else: sys.argv.append(arg) # Act hippos_config = ParseConfig() hippos_config.parse_config() omit_interaction_1 = hippos_config.omit_interaction[0] omit_interaction_2 = hippos_config.omit_interaction[1] omit_interaction_3 = hippos_config.omit_interaction[2] omit_interaction_4 = hippos_config.omit_interaction[3] omit_interaction_5 = hippos_config.omit_interaction[4] omit_interaction_6 = hippos_config.omit_interaction[5] omit_interaction_7 = hippos_config.omit_interaction[6] omit_interaction_8 = hippos_config.omit_interaction[7] omit_interaction_9 = hippos_config.omit_interaction[8] omit_interaction_10 = hippos_config.omit_interaction[9] # Assert assert omit_interaction_1.interaction_type == "hydrophobic" assert omit_interaction_1.res_name == ["ARG116"] assert omit_interaction_2.interaction_type == "aromatic" assert omit_interaction_2.res_name == ["GLU117"] assert omit_interaction_3.interaction_type == "h_bond" assert omit_interaction_3.res_name == ["LEU132"] assert omit_interaction_4.interaction_type == "electrostatic" assert omit_interaction_4.res_name == ["LYS148"] assert omit_interaction_5.interaction_type == "h_bond_donor" assert omit_interaction_5.res_name == ["ASP149"] assert omit_interaction_6.interaction_type == "h_bond_acceptor" assert omit_interaction_6.res_name == ["ARG150"] assert omit_interaction_7.interaction_type == "electrostatic_positive" assert omit_interaction_7.res_name == ["ARG154"] assert omit_interaction_8.interaction_type == "electrostatic_negative" assert omit_interaction_8.res_name == ["TRP177"] assert omit_interaction_9.interaction_type == "aromatic_facetoface" assert omit_interaction_9.res_name == ["SER178"] assert omit_interaction_10.interaction_type == "aromatic_edgetoface" assert omit_interaction_10.res_name == ["ILE221"] def test_replace_bit_char(): """Test bit replacement function for omitted residue""" # Arrange bitstring = "1000001" omit_hydrophobic = [1, 0, 0, 0, 0, 0, 0] omit_aromatic = [0, 1, 1, 0, 0, 0, 0] omit_h_bond = [0, 0, 0, 1, 1, 0, 0] omit_electrostatic = [0, 0, 0, 0, 0, 1, 1] omit_h_bond_donor = [0, 0, 0, 1, 0, 0, 0] omit_h_bond_acceptor = [0, 0, 0, 0, 1, 0, 0] omit_electrostatic_positive = [0, 0, 0, 0, 0, 1, 0] omit_electrostatic_negative = [0, 0, 0, 0, 0, 0, 1] omit_aromatic_facetoface = [0, 1, 0, 0, 0, 0, 0] omit_aromatic_edgetoface = [0, 0, 1, 0, 0, 0, 0] # Act bitstring_1 = hippos.replace_bit_char(bitstring, omit_hydrophobic) bitstring_2 = hippos.replace_bit_char(bitstring, omit_aromatic) bitstring_3 = hippos.replace_bit_char(bitstring, omit_h_bond) bitstring_4 = hippos.replace_bit_char(bitstring, omit_electrostatic) bitstring_5 = hippos.replace_bit_char(bitstring, omit_h_bond_donor) bitstring_6 = hippos.replace_bit_char(bitstring, omit_h_bond_acceptor) bitstring_7 = hippos.replace_bit_char(bitstring, omit_electrostatic_positive) bitstring_8 = hippos.replace_bit_char(bitstring, omit_electrostatic_negative) bitstring_9 = hippos.replace_bit_char(bitstring, omit_aromatic_facetoface) bitstring_10 = hippos.replace_bit_char(bitstring, omit_aromatic_edgetoface) # Assert assert bitstring_1 == "n000001" assert bitstring_2 == "1nn0001" assert bitstring_3 == "100nn01" assert bitstring_4 == "10000nn" assert bitstring_5 == "100n001" assert bitstring_6 == "1000n01" assert bitstring_7 == "10000n1" assert bitstring_8 == "100000n" assert bitstring_9 == "1n00001" assert bitstring_10 == "10n0001" def test_cleanup_omitted_interaction(): """Test for bitstring preparation prior to similarity calculation""" # Arrange refbit = "000001000101" tgtbit = "11n00n000011" # Act clean_refbit, clean_tgtbit = similarity.clean_omitted_interactions(refbit, tgtbit) # Assert assert clean_refbit == "0000000101" assert clean_tgtbit == "1100000011"
0
0
0
18b43d93d77ebe67e06100b1f3fc186f79af79fd
3,413
py
Python
lib/demucs_service.py
avillalobos/demucs_service
0ef2c45983620cd9522a5953387ec19662283456
[ "MIT" ]
2
2021-03-05T11:25:23.000Z
2022-01-03T19:42:28.000Z
lib/demucs_service.py
avillalobos/demucs_service
0ef2c45983620cd9522a5953387ec19662283456
[ "MIT" ]
null
null
null
lib/demucs_service.py
avillalobos/demucs_service
0ef2c45983620cd9522a5953387ec19662283456
[ "MIT" ]
null
null
null
#!/usr/bin/python3 import sys from lib.demucs import demucs from lib.demucs.demucs import model from lib.demucs.demucs.audio import AudioFile from lib.demucs.demucs.utils import apply_model, load_model from pathlib import Path from scipy.io import wavfile # within the demucs directory sys.modules['demucs.model'] = model sys.modules['demucs'] = demucs class DemucsService(): """ def encode_mp3(wav, path, bitrate=320, verbose=False): try: import lameenc except ImportError: print("Failed to call lame encoder. Maybe it is not installed? " "On windows, run `python.exe -m pip install -U lameenc`, " "on OSX/Linux, run `python3 -m pip install -U lameenc`, " "then try again.", file=sys.stderr) sys.exit(1) encoder = lameenc.Encoder() encoder.set_bit_rate(bitrate) encoder.set_in_sample_rate(44100) encoder.set_channels(2) encoder.set_quality(2) # 2-highest, 7-fastest if not verbose: encoder.silence() mp3_data = encoder.encode(wav.tostring()) mp3_data += encoder.flush() with open(path, "wb") as f: f.write(mp3_data) """
36.698925
79
0.612364
#!/usr/bin/python3 import sys from lib.demucs import demucs from lib.demucs.demucs import model from lib.demucs.demucs.audio import AudioFile from lib.demucs.demucs.utils import apply_model, load_model from pathlib import Path from scipy.io import wavfile # within the demucs directory sys.modules['demucs.model'] = model sys.modules['demucs'] = demucs class DemucsService(): def __init__(self, model, device): # This will require all the parameters to build and split the song. # Get from the arguments the model that we want to use, # by default demucs self.model_path = f"lib/demucs/models/{model}.th" # Get the device that we want to use to split the song, by default cpu self.device = device # it can be cuda if NVIDIA available # Number of random shifts for equivariant stabilization. # Increase separation time but improves quality for Demucs. 10 was used self.shifts = 0 # Apply the model to the entire input at once rather than # first splitting it in chunks of 10 seconds self.split = True # This hack is to be able to load a pickled class from self.model = load_model(self.model_path) # default location for the service self.out = Path(f'separated/{model}') self.out.mkdir(parents=True, exist_ok=True) # default tracks: self.source_names = ["drums", "bass", "other", "vocals"] self.mp3_bitrate = 320 """ def encode_mp3(wav, path, bitrate=320, verbose=False): try: import lameenc except ImportError: print("Failed to call lame encoder. Maybe it is not installed? " "On windows, run `python.exe -m pip install -U lameenc`, " "on OSX/Linux, run `python3 -m pip install -U lameenc`, " "then try again.", file=sys.stderr) sys.exit(1) encoder = lameenc.Encoder() encoder.set_bit_rate(bitrate) encoder.set_in_sample_rate(44100) encoder.set_channels(2) encoder.set_quality(2) # 2-highest, 7-fastest if not verbose: encoder.silence() mp3_data = encoder.encode(wav.tostring()) mp3_data += encoder.flush() with open(path, "wb") as f: f.write(mp3_data) """ def split_song(self, track_path): track = Path(track_path) wav = AudioFile(track).read( streams=0, samplerate=44100, channels=2).to(self.device) wav = (wav * 2**15).round() / 2**15 ref = wav.mean(0) wav = (wav - ref.mean()) / ref.std() sources = apply_model(self.model, wav, shifts=self.shifts, split=self.split, progress=True) sources = sources * ref.std() + ref.mean() track_folder = self.out / track.name.replace(track.suffix, '') track_folder.mkdir(exist_ok=True) for source, name in zip(sources, self.source_names): source = (source * 2**15).clamp_(-2**15, 2**15 - 1).short() source = source.cpu().transpose(0, 1).numpy() # I can't install lameenc so I'm skipping mp3 for now # stem = str(track_folder / name) # self.encode_mp3(source, stem + ".mp3", self.mp3_bitrate) wavname = str(track_folder / f"{name}.wav") wavfile.write(wavname, 44100, source)
2,122
0
54
781b2eb6394e77875786319670d0805d9e8efe89
596
py
Python
100days/day80/query_demo.py
chainren/python-learn
5e48e96c4bb212806b9ae0954fdb368abdcf9ba3
[ "Apache-2.0" ]
null
null
null
100days/day80/query_demo.py
chainren/python-learn
5e48e96c4bb212806b9ae0954fdb368abdcf9ba3
[ "Apache-2.0" ]
16
2020-02-12T03:09:30.000Z
2022-03-12T00:08:59.000Z
100days/day80/query_demo.py
chainren/python-learn
5e48e96c4bb212806b9ae0954fdb368abdcf9ba3
[ "Apache-2.0" ]
null
null
null
import pymysql conn = pymysql.Connection( host = '192.168.160.33', port = 3306, user = 'develop', password='xs_dev', database='test', charset='utf8' ) cursor = conn.cursor() sql = """ select * from user1 """ try: cursor.execute(sql) res = cursor.fetchall() for row in res: id = row[0] fname=row[1] lname=row[2] age =row[3] sex=row[4] income=row[5] print("id=%s,fname=%s,lname=%s,age=%s,sex=%s,income=%s" % (id, fname, lname, age, sex, income)) except Exception as e: print(e) # 关闭连接 conn.close()
18.060606
103
0.553691
import pymysql conn = pymysql.Connection( host = '192.168.160.33', port = 3306, user = 'develop', password='xs_dev', database='test', charset='utf8' ) cursor = conn.cursor() sql = """ select * from user1 """ try: cursor.execute(sql) res = cursor.fetchall() for row in res: id = row[0] fname=row[1] lname=row[2] age =row[3] sex=row[4] income=row[5] print("id=%s,fname=%s,lname=%s,age=%s,sex=%s,income=%s" % (id, fname, lname, age, sex, income)) except Exception as e: print(e) # 关闭连接 conn.close()
0
0
0
22bac7328f5707f686d5d1081d9a304673121b3f
2,245
py
Python
nfmanagementapi/resources/ServiceObjectCollectionResource.py
nfirewall/nfmapi
7232975711ad01b031ed50d7f26936afcfe5312a
[ "MIT" ]
null
null
null
nfmanagementapi/resources/ServiceObjectCollectionResource.py
nfirewall/nfmapi
7232975711ad01b031ed50d7f26936afcfe5312a
[ "MIT" ]
null
null
null
nfmanagementapi/resources/ServiceObjectCollectionResource.py
nfirewall/nfmapi
7232975711ad01b031ed50d7f26936afcfe5312a
[ "MIT" ]
null
null
null
from nfmanagementapi.models import ServiceObject from nfmanagementapi.schemata import ServiceObjectSchema from marshmallow.exceptions import ValidationError from .BaseResource import BaseResource from flask import request from app import db from uuid import uuid4 path = 'service_objects' endpoint = 'service_objects'
29.155844
72
0.561247
from nfmanagementapi.models import ServiceObject from nfmanagementapi.schemata import ServiceObjectSchema from marshmallow.exceptions import ValidationError from .BaseResource import BaseResource from flask import request from app import db from uuid import uuid4 path = 'service_objects' endpoint = 'service_objects' class ServiceObjectCollectionResource(BaseResource): def get(self): """List Service Objects --- description: List all service objects tags: - Service Objects responses: 200: content: application/json: schema: type: array items: ServiceObjectSchema """ objects = ServiceObject.query.all() schema = ServiceObjectSchema(many = True) return schema.dump(objects) def post(self): """Create service object --- description: Create a service object tags: - Service Objects requestBody: content: application/json: schema: ServiceObjectSchema responses: 201: description: Created content: application/json: schema: ServiceObjectSchema 422: description: Unprocessable Entity content: application/json: schema: MessageSchema """ messages = [] json_data = request.get_json() try: data = ServiceObjectSchema().load(json_data) except ValidationError as err: for msg in err.messages: messages.append("{}: {}".format(msg, err.messages[msg])) return {"messages": messages}, 422 object = ServiceObject() error = False for key in data: try: setattr(object, key, data[key]) except ValueError as e: error = True messages.append(e.args[0]) if error: return {"messages": messages}, 422 db.session.add(object) db.session.commit() db.session.refresh(object) return ServiceObjectSchema().dump(object)
0
1,903
23
0e99d00e9c38f4e19afb900ddb0a47445848a8c2
3,824
py
Python
code/EthicAssessmentSoftware/migrations/0001_initial.py
FelixOliverLange/ethikbackend
3fd2ad6c2953966254841fb770b482c7f7741791
[ "BSD-3-Clause" ]
null
null
null
code/EthicAssessmentSoftware/migrations/0001_initial.py
FelixOliverLange/ethikbackend
3fd2ad6c2953966254841fb770b482c7f7741791
[ "BSD-3-Clause" ]
2
2021-06-10T20:36:01.000Z
2021-09-22T19:44:05.000Z
code/EthicAssessmentSoftware/migrations/0001_initial.py
FelixOliverLange/ethikbackend
3fd2ad6c2953966254841fb770b482c7f7741791
[ "BSD-3-Clause" ]
null
null
null
# Generated by Django 3.1.6 on 2021-02-12 00:15 from django.db import migrations, models import django.db.models.deletion
50.986667
138
0.599895
# Generated by Django 3.1.6 on 2021-02-12 00:15 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Anwendung', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(default='', max_length=70, unique=True)), ], ), migrations.CreateModel( name='Stakeholder', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(default='', max_length=70, unique=True)), ('beschreibung', models.CharField(blank=True, default='', max_length=200)), ('anwendung', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='EthicAssessmentSoftware.anwendung')), ], ), migrations.CreateModel( name='Motivation', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(default='', max_length=70, unique=True)), ('beschreibung', models.CharField(blank=True, default='', max_length=200)), ('schutzklasse', models.CharField(default='', max_length=25)), ('prioritaet', models.IntegerField(default=1)), ('ist_recht', models.BooleanField(default=False)), ('anwendung', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='EthicAssessmentSoftware.anwendung')), ], ), migrations.CreateModel( name='Konsequenz', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(default='', max_length=70, unique=True)), ('beschreibung', models.CharField(blank=True, default='', max_length=200)), ('bewertung', models.IntegerField()), ('betroffener', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='EthicAssessmentSoftware.stakeholder')), ('motivation', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='EthicAssessmentSoftware.motivation')), ], ), migrations.CreateModel( name='Ansatz', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(default='', max_length=70, unique=True)), ('beschreibung', models.CharField(blank=True, default='', max_length=200)), ('auswirkung', models.IntegerField(default=0)), ('adressiert', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='EthicAssessmentSoftware.konsequenz')), ('anwendung', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='EthicAssessmentSoftware.anwendung')), ], ), migrations.CreateModel( name='Anforderung', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(default='', max_length=70, unique=True)), ('beschreibung', models.CharField(blank=True, default='', max_length=200)), ('ansatz', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='EthicAssessmentSoftware.ansatz')), ], ), ]
0
3,677
23
b0c7f1929a58731db1dd66c0222e1c9b375dbf86
1,339
py
Python
old/v1/config_v1.py
apollo-heidal/Sound-Synth
c392291ee83d391333acaaff7ff3448da758bdbb
[ "MIT" ]
null
null
null
old/v1/config_v1.py
apollo-heidal/Sound-Synth
c392291ee83d391333acaaff7ff3448da758bdbb
[ "MIT" ]
null
null
null
old/v1/config_v1.py
apollo-heidal/Sound-Synth
c392291ee83d391333acaaff7ff3448da758bdbb
[ "MIT" ]
null
null
null
config = { "frequency": 440.0, "duration": 20.0, "sampling_rate": 44100, "filename": "test_v1.wav", "overtones": [ [ 440.0, 1.0 ], [ 12447.350408741928, 0.1098108639573242 ], [ 12465.3571923053, 0.843727285302496 ], [ 21539.57505590213, 0.17496422223017305 ], [ 14675.669378957353, 0.013028474684831037 ], [ 20577.216573422433, 0.23529784971612777 ], [ 21425.497754119715, 0.6436550795219932 ], [ 11410.89145988607, 0.011826877382886125 ] ], "amp_ctrl_points": [ [ 0.0, 0.0 ], [ 20.0, 100.0 ], [ 33.0, 20.0 ], [ 47.0, 88.0 ], [ 56.0, 45.0 ], [ 76.0, 80.0 ], [ 90.0, 5.0 ], [ 100.0, 20.0 ] ] }
17.853333
33
0.285288
config = { "frequency": 440.0, "duration": 20.0, "sampling_rate": 44100, "filename": "test_v1.wav", "overtones": [ [ 440.0, 1.0 ], [ 12447.350408741928, 0.1098108639573242 ], [ 12465.3571923053, 0.843727285302496 ], [ 21539.57505590213, 0.17496422223017305 ], [ 14675.669378957353, 0.013028474684831037 ], [ 20577.216573422433, 0.23529784971612777 ], [ 21425.497754119715, 0.6436550795219932 ], [ 11410.89145988607, 0.011826877382886125 ] ], "amp_ctrl_points": [ [ 0.0, 0.0 ], [ 20.0, 100.0 ], [ 33.0, 20.0 ], [ 47.0, 88.0 ], [ 56.0, 45.0 ], [ 76.0, 80.0 ], [ 90.0, 5.0 ], [ 100.0, 20.0 ] ] }
0
0
0
66cc98c8d9319502ca072034ba7112b3f7e1b2f6
67,679
py
Python
pyspectools/ftmw_analysis.py
aowen-uwmad/PySpecTools
3fd0b68352910df1e653370797a8edd46d92fa1c
[ "MIT" ]
22
2018-03-14T10:44:17.000Z
2022-01-10T15:02:37.000Z
pyspectools/ftmw_analysis.py
aowen-uwmad/PySpecTools
3fd0b68352910df1e653370797a8edd46d92fa1c
[ "MIT" ]
21
2019-07-27T01:43:50.000Z
2021-11-15T14:57:15.000Z
pyspectools/ftmw_analysis.py
aowen-uwmad/PySpecTools
3fd0b68352910df1e653370797a8edd46d92fa1c
[ "MIT" ]
3
2020-08-03T16:22:00.000Z
2021-11-01T15:31:55.000Z
import datetime import re import os import struct from dataclasses import dataclass, field from itertools import combinations, product from typing import List, Dict import pandas as pd import numpy as np import peakutils from matplotlib import pyplot as plt from scipy import signal as spsig import plotly.graph_objs as go from tqdm.autonotebook import tqdm import networkx as nx from ipywidgets import interactive, VBox, HBox from lmfit.models import LinearModel from pyspectools import routines from pyspectools import figurefactory as ff from pyspectools import fitting from pyspectools.spectra import analysis from pyspectools import parsers def parse_spectrum(filename, threshold=20.0): """ Function to read in a blackchirp or QtFTM spectrum from file """ dataframe = pd.read_csv( filename, delimiter="\t", names=["Frequency", "Intensity"], skiprows=1 ) return dataframe[dataframe["Intensity"] <= threshold] def center_cavity(dataframe, thres=0.3, verbose=True): """ Finds the center frequency of a Doppler pair in cavity FTM measurements and provides a column of offset frequencies. Sometimes the peak finding threshold has to be tweaked to get the center frequency correctly. """ # Find the peak intensities center_indexes = peakutils.indexes(dataframe["Intensity"], thres=thres) peak_frequencies = dataframe.iloc[center_indexes]["Frequency"] # Calculate the center frequency as the average center = np.average(peak_frequencies) if verbose is True: print("Center frequency at " + str(center)) dataframe["Offset Frequency"] = dataframe["Frequency"] - center @dataclass @dataclass class Scan: """ DataClass for a Scan. Holds all of the relevant information that describes a FT scan, such as the ID, what machine it was collected on, and the experimental settings. Has a few class methods that will make look ups easily such as the date the scan was collected and the gases used. """ id: int machine: str fid: np.array date: datetime.datetime shots: int = 0 cavity_voltage: int = 0 cavity_atten: int = 0 cavity_frequency: float = 0.0 dr_frequency: float = 0.0 dr_power: int = 0 fid_points: int = 0 fid_spacing: float = 0.0 discharge: bool = False magnet: bool = False gases: Dict = field(default_factory=dict) filter: List = field(default_factory=list) exp: float = 0.0 zeropad: bool = False window: str = "" def __post_init__(self): """ Functions called after __init__ is called. """ # Perform FFT self.process_fid() def __deepcopy__(self): """ Dunder method to produce a deep copy - this will be used when manipulating multiple Scan objects. :return: A deep copy of the current Scan object """ new_scan = Empty() new_scan.__class__ = self.__class__ new_scan.__dict__.update(self.__dict__) return new_scan def average(self, others): """ Dunder method to co-average two or more Scans in the time domain. :param other: Scan object, or tuple/list :return: A new Scan object with the co-added FID """ new_scan = self.__deepcopy__() try: new_scan.fid = np.average(others.extend(new_scan.fid), axis=0) new_scan.average_ids = [scan.id for scan in others] # If there is no extend method, then assume we're working with a # single Scan except AttributeError: new_scan.fid = np.average([new_scan.fid, others.fid], axis=0) new_scan.average_ids = [others.id] new_scan.process_fid() return new_scan def __add__(self, other): """ Dunder method to co-add two or more Scans in the time domain. :param other: Scan object, or tuple/list :return: A new Scan object with the co-added FID """ new_scan = self.__deepcopy__() new_scan.fid = np.sum([new_scan.fid, other.fid], axis=0) new_scan.process_fid() return new_scan def __sub__(self, other): """ Dunder method to subtract another Scan from the current Scan in the time domain. i.e. this scan - other scan :param other: Scan object, or tuple/list :return: A new Scan object with the subtracted FID """ new_scan = self.__deepcopy__() new_scan.fid = np.subtract(new_scan.fid, other.fid) new_scan.process_fid() return new_scan def subtract_frequency(self, other): """ Method to subtract another Scan from the current in the frequency domain. :param other: Scan object to subtract with :return: A new Scan object with the subtracted spectrum """ new_scan = self.__deepcopy__() new_scan.spectrum["Intensity"] = ( new_scan.spectrum["Intensity"] - other.spectrum["Intensity"] ) new_scan.subtracted = other.id return new_scan def add_frequency(self, other): """ Method to add another Scan from the current in the frequency domain. :param other: Scan object to add with :return: A new Scan object with the co-added spectrum """ new_scan = self.__deepcopy__() new_scan.spectrum["Intensity"] = ( new_scan.spectrum["Intensity"] + other.spectrum["Intensity"] ) new_scan.subtracted = other.id return new_scan @classmethod def from_dict(cls, data_dict): """ Function to initialize a Scan object from a dictionary of FT scan data collected from `parse_scan`. :param data_dict: dict containing parsed data from FT :return: Scan object """ scan_obj = cls(**data_dict) return scan_obj @classmethod def from_qtftm(cls, filepath): """ Method to initialize a Scan object from a FT scan file. Will load the lines into memory and parse the data into a dictionary, which then gets passed into a Scan object. :param filepath: str path to FID file :return: Scan object """ with open(filepath) as read_file: data_dict = parse_scan(read_file.readlines()) scan_obj = cls(**data_dict) return scan_obj @classmethod def from_pickle(cls, filepath): """ Method to create a Scan object from a previously pickled Scan. :param filepath: path to the Scan pickle :return: instance of the Scan object """ scan_obj = routines.read_obj(filepath) if isinstance(scan_obj, Scan) is False: raise Exception("File is not a Scan object; {}".format(type(scan_obj))) else: return scan_obj @classmethod def from_remote(cls, remote_path, ssh_obj=None): """ Method to initialize a Scan object from a remote server. Has the option to pass an instance of a paramiko SSHClient, which would be useful in a Batch. If none is supplied, an instance will be created. :param remote_path: str remote path to the file :param ssh_obj: optional argument to supply a paramiko SSHClient object :return: Scan object from remote QtFTM file """ if ssh_obj is None: default_keypath = os.path.join(os.path.expanduser("~"), ".ssh/id_rsa.pub") hostname = input("Please provide remote hostname: ") username = input("Please provide login: ") ssh_settings = {"hostname": hostname, "username": username} if os.path.isfile(default_keypath) is True: ssh_settings["key_filename"] = default_keypath else: password = input("Please provide password: ") ssh_settings["password"] = password ssh_obj = routines.RemoteClient(**ssh_settings) # Parse the scan data from remote file data_dict = parse_scan(ssh_obj.open_remote(remote_path)) scan_obj = cls(**data_dict) return scan_obj def to_file(self, filepath, format="yaml"): """ Method to dump data to YAML format. Extensions are automatically decided, but can also be supplied. parameters: -------------------- :param filepath - str path to yaml file :param format - str denoting the syntax used for dumping. Defaults to YAML. """ if "." not in filepath: if format == "json": filepath += ".json" else: filepath += ".yml" if format == "json": writer = routines.dump_json else: writer = routines.dump_yaml writer(filepath, self.__dict__) def to_pickle(self, filepath=None, **kwargs): """ Pickles the Scan object with the joblib wrapper implemented in routines. :param filepath: optional argument to pickle to. Defaults to the id.pkl :param kwargs: additional settings for the pickle operation """ if filepath is None: filepath = "{}.pkl".format(self.id) routines.save_obj(self, filepath, **kwargs) def process_fid(self, **kwargs): """ Perform an FFT on the FID to yield the frequency domain spectrum. Kwargs are passed into the FID processing, which will override the Scan attributes. :param kwargs: Optional keyword arguments for processing the FID """ # Calculate the frequency bins frequencies = np.linspace( self.cavity_frequency, self.cavity_frequency + 1.0, len(self.fid) ) # Calculate the time bins time = np.linspace(0.0, self.fid_spacing * self.fid_points, self.fid_points) process_list = ["window", "filter", "exp", "zeropad"] process_dict = { key: value for key, value in self.__dict__.items() if key in process_list } # Override with user settings process_dict.update(**kwargs) temp_fid = np.copy(self.fid) self.spectrum = fid2fft( temp_fid, 1.0 / self.fid_spacing, frequencies, **process_dict ) self.fid_df = pd.DataFrame({"Time (us)": time * 1e6, "FID": temp_fid}) def within_time(self, date_range): """ Function for determining of the scan was taken between a specified date range in month/day/year, in the format 04/09/08 for April 9th, 2008. :param date_range: list containing the beginning and end date strings :return: bool - True if within range, False otherwise """ try: early = datetime.datetime.strptime(date_range[0], "%m/%d/%y") except: early = datetime.datetime(1, 1, 1) try: late = datetime.datetime.strptime(date_range[1], "%m/%d/%y") except: late = datetime.datetime(9999, 1, 1) return early <= self.date <= late def is_depleted(self, ref, roi=None, depletion=None): """ Function for determining if the signal in this Scan is less than that of another scan. This is done by a simple comparison of the average of 10 largest intensities in the two spectra. If the current scan is less intense than the reference by the expected depletion percentage, then it is "depleted". This function can be used to determine if a scan if depleted in DR/magnet/discharge assays. TODO - implement a chi squared test of sorts to determine if a depletion is statistically significant :param ref: second Scan object for comparison :param depletion: percentage of depletion expected of the reference :return: bool - True if signal in this Scan is less intense than the reference """ y_ref = ref.spectrum["Intensity"].values y_obs = self.spectrum["Intensity"].values self.ref_freq = ref.fit.frequency self.ref_id = ref.id if roi: y_ref = y_ref[roi] y_obs = y_obs[roi] # This doesn't work, or is not particularly discriminating. # chisq, p_value = chisquare( # y_obs, y_ref # ) if depletion is None: sigma = np.std(y_obs, axis=0) * 16.0 else: sigma = depletion expected = np.sum(y_ref, axis=0) - sigma return np.sum(y_obs, axis=0) <= expected def scatter_trace(self): """ Create a Plotly Scattergl trace. Called by the Batch function, although performance-wise it takes forever to plot up ~3000 scans. :return trace: Scattergl object """ text = "Scan ID: {}<br>Cavity: {}<br>DR: {}<br>Magnet: {}<br>Attn: {}".format( self.id, self.cavity_frequency, self.dr_frequency, self.magnet, self.cavity_atten, ) trace = go.Scattergl( x=np.linspace(self.id, self.id + 1, len(self.spectrum["Intensity"])), y=self.spectrum["Intensity"], text=text, marker={"color": "rgb(43,140,190)"}, hoverinfo="text", ) return trace def fit_cavity(self, plot=True, verbose=False): """ Perform a fit to the cavity spectrum. Uses a paired Gaussian model that minimizes the number of fitting parameters. :param plot: bool specify whether a Plotly figure is made :return: Model Fit result """ y = self.spectrum["Intensity"].dropna().values x = self.spectrum["Frequency (MHz)"].dropna().values model = fitting.PairGaussianModel() result = model.fit_pair(x, y, verbose=verbose) self.spectrum["Fit"] = result.best_fit self.fit = result self.fit.frequency = self.fit.best_values["x0"] if plot is True: fig = go.FigureWidget() fig.layout["xaxis"]["title"] = "Frequency (MHz)" fig.layout["xaxis"]["tickformat"] = ".2f" fig.add_scatter(x=x, y=y, name="Observed") fig.add_scatter(x=x, y=result.best_fit, name="Fit") return result, fig else: return result def parse_scan(filecontents): """ Function for extracting the FID data from an FT scan. The data is returned as a dictionary, which can be used to initialize a Scan object. :param filecontents: list of lines from an FID file :return: dict containing parsed data from FID """ data = {"gases": dict()} # FID regex fid_regex = re.compile(r"^fid\d*", re.M) # Regex to find gas channels gas_regex = re.compile(r"^#Gas \d name", re.M) flow_regex = re.compile(r"^#Gas \d flow", re.M) # Regex to detect which channel is set to the discharge dc_regex = re.compile(r"^#Pulse ch \d name\s*DC", re.M) dc_channel = None for index, line in enumerate(filecontents): if "#Scan" in line: split_line = line.split() data["id"] = int(split_line[1]) try: data["machine"] = split_line[2] except IndexError: data["machine"] = "FT1" if "#Probe freq" in line: data["cavity_frequency"] = float(line.split()[2]) if "#Shots" in line: data["shots"] = int(line.split()[-1]) if "#Date" in line: strip_targets = ["#Date", "\t", "\n"] data["date"] = datetime.datetime.strptime( re.sub("|".join(strip_targets), "", line), "%a %b %d %H:%M:%S %Y" ) if "#Cavity Voltage" in line: data["cavity_voltage"] = int(line.split()[2]) if "#Attenuation" in line: data["cavity_atten"] = int(line.split()[1]) if "#DR freq" in line: data["dr_frequency"] = float(line.split()[2]) if "#DR power" in line: data["dr_power"] = int(line.split()[2]) if "#FID spacing" in line: data["fid_spacing"] = float(re.findall(r"\de[+-]?\d\d", line)[0]) if "#FID points" in line: data["fid_points"] = int(line.split()[-1]) # Get the name of the gas if gas_regex.match(line): split_line = line.split() # Only bother parsing if the channel is used gas_index = int(split_line[1]) try: data["gases"][gas_index] = {"gas": " ".join(split_line[3:])} except IndexError: data["gases"][gas_index] = {"gas": ""} # Get the flow rate for channel if flow_regex.match(line): split_line = line.split() gas_index = int(split_line[1]) data["gases"][gas_index]["flow"] = float(split_line[3]) if "#Magnet enabled" in line: data["magnet"] = bool(int(line.split()[2])) # Find the channel the discharge is set to and compile a regex # to look for the channel if dc_regex.match(line): dc_index = line.split()[2] dc_channel = re.compile(r"^#Pulse ch {} enabled".format(dc_index), re.M) # Once the discharge channel index is known, start searching for it if dc_channel: if dc_channel.match(line): data["discharge"] = bool(int(line.split()[-1])) # Find when the FID lines start popping up if fid_regex.match(line): fid = filecontents[index + 1 :] fid = [float(value) for value in fid] data["fid"] = np.array(fid) return data def perform_fft(fid, spacing, start=0, stop=-1, window="boxcar"): """ Perform an FFT on an FID to get the frequency domain spectrum. All of the arguments are optional, and provide control over how the FFT is performed, as well as post-processing parameters like window functions and zero-padding. This is based on the FFT code by Kyle Crabtree, with modifications to fit this dataclass. Parameters ---------- fid - Numpy 1D array Array holding the values of the FID spacing - float Time spacing between FID points in microseconds start - int, optional Starting index for the FID array to perform the FFT stop - int, optional End index for the FID array to perform the FFT zpf - int, optional Pad the FID with zeros to nth nearest power of 2 window - str Specify the window function used to process the FID. Defaults to boxcar, which is effectively no filtering. The names of the window functions available can be found at: https://docs.scipy.org/doc/scipy/reference/signal.windows.html Returns ------- """ fid = np.copy(fid) if window is not None and window in spsig.windows.__all__: window_f = spsig.windows.get_window(window, fid.size) fid *= window_f else: raise Exception("Specified window function is not implemented in SciPy!") # Set values to zero up to starting index fid[:start] = 0.0 if stop < 0: # If we're using negative indexes fid[fid.size + stop :] = 0.0 else: # Otherwise, index with a positive number fid[stop:] = 0.0 # Perform the FFT fft = np.fft.rfft(fid) read_length = len(fid) // 2 + 1 df = 1.0 / fid.size / spacing # Generate the frequency array frequency = np.linspace(0.0, self.header["sideband"] * df, read_length) frequency += self.header["probe_freq"] fft[(frequency >= f_max) & (frequency <= f_min)] = 0.0 fft *= 1000.0 return frequency, fft def fid2fft(fid, rate, frequencies, **kwargs): """ Process an FID by performing an FFT to yield the frequency domain information. Kwargs are passed as additional processing options, and are implemented as some case statements to ensure the settings are valid (e.g. conforms to sampling rate, etc.) :param fid: np.array corresponding to the FID intensity :param rate: sampling rate in Hz :param frequencies: np.array corresponding to the frequency bins :param kwargs: signal processing options: delay - delays the FID processing by setting the start of the FID to zero zeropad - Toggles whether or not the number of sampled points is doubled to get artificially higher resolution in the FFT window - Various window functions provided by `scipy.signal` exp - Specifies an exponential filter filter - 2-tuple specifying the frequency cutoffs for a band pass filter :return: freq_df - pandas dataframe with the FFT spectrum """ # Remove DC new_fid = fid - np.average(fid) if "delay" in kwargs: delay = int(kwargs["delay"] / (1.0 / rate) / 1e6) new_fid[:delay] = 0.0 # Zero-pad the FID if "zeropad" in kwargs: if kwargs["zeropad"] is True: # Pad the FID with zeros to get higher resolution fid = np.append(new_fid, np.zeros(len(new_fid))) # Since we've padded with zeros, we'll have to update the # frequency array frequencies = spsig.resample(frequencies, len(frequencies) * 2) # Apply a window function to the FID if "window" in kwargs: if kwargs["window"] in spsig.windows.__all__: new_fid *= spsig.get_window(kwargs["window"], new_fid.size) # Apply an exponential filter on the FID if "exp" in kwargs: if kwargs["exp"] > 0.0: new_fid *= spsig.exponential(len(new_fid), tau=kwargs["exp"]) # Apply a bandpass filter on the FID if ("filter" in kwargs) and (len(kwargs["filter"]) == 2): low, high = sorted(kwargs["filter"]) if low < high: new_fid = apply_butter_filter(new_fid, low, high, rate) # Perform the FFT fft = np.fft.rfft(new_fid) # Get the real part of the FFT, and only the non-duplicated side real_fft = np.abs(fft[: int(len(new_fid) / 2)]) / len(new_fid) * 1e3 frequencies = spsig.resample(frequencies, real_fft.size) # For some reason, resampling screws up the frequency ordering... real_fft = real_fft[np.argsort(frequencies)] frequencies = np.sort(frequencies) # Package into a pandas dataframe freq_df = pd.DataFrame({"Frequency (MHz)": frequencies, "Intensity": real_fft}) return freq_df def butter_bandpass(low, high, rate, order=1): """ A modified version of the Butterworth bandpass filter described here, adapted for use with the FID signal. http://scipy-cookbook.readthedocs.io/items/ButterworthBandpass.html The arguments are: :param low The low frequency cut-off, given in kHz. :param high The high frequency cut-off, given in kHz. :param rate The sampling rate, given in Hz. From the FIDs, this means that the inverse of the FID spacing is used. :return bandpass window """ # Calculate the Nyquist frequency nyq = 0.5 * (rate / (2.0 * np.pi)) low = (low * 1e3) / nyq high = (high * 1e3) / nyq if high > 1.0: raise Exception("High frequency cut-off exceeds the Nyquist frequency.") b, a = spsig.butter(order, [low, high], btype="band", analog=False) return b, a def apply_butter_filter(data, low, high, rate, order=1): """ A modified Butterworth bandpass filter, adapted from the Scipy cookbook. The argument data supplies the FID, which then uses the scipy signal processing function to apply the digital filter, and returns the filtered FID. See the `butter_bandpass` function for additional arguments. """ b, a = butter_bandpass(low, high, rate, order=order) y = spsig.lfilter(b, a, data) return y def generate_ftb_line(frequency, shots, **kwargs): """ Function that generates an FTB file for a list of frequencies, plus categorization tests. kwargs are passed as additional options for the ftb batch. Keywords are: magnet: bool dipole: float atten: int skiptune: bool drfreq: float drpower: int cal parameters: --------------- :param frequency: float for frequency in MHz :param shots: int number of shots to integrate for returns: --------------- :return ftbline: str """ line = "ftm:{:.4f} shots:{}".format(frequency, shots) for key, value in kwargs.items(): line += " {}:{}".format(key, value) line += "\n" return line def neu_categorize_frequencies(frequencies, intensities=None, nshots=50, **kwargs): """ Routine to generate an FTB batch file for performing a series of tests on frequencies. """ ftb_string = "" if intensities: norm_int = intensities / np.max(intensities) shotcounts = np.round(nshots / norm_int).astype(int) else: shotcounts = np.full(len(frequencies), nshots, dtype=int) # default settings for all stuff param_dict = { "dipole": 1.0, "magnet": "false", "drpower": "10", "skiptune": "false", } param_dict.update(kwargs) for freq, shot in zip(frequencies, shotcounts): ftb_string += generate_ftb_str(freq, shot, **param_dict) if "magnet" in kwargs: param_dict["magnet"] = "true" ftb_string += generate_ftb_str(freq, shot, **param_dict) def categorize_frequencies( frequencies, nshots=50, intensities=None, power=None, attn_list=None, dipole=None, attn=None, magnet=False, dr=False, discharge=False, ): """ Function that will format an FT batch file to perform categorization tests, with some flexibility on how certain tests are performed. """ ftb_str = "" if intensities is None: shots = np.full(len(frequencies), nshots, dtype=int) else: shots = np.sqrt(nshots / intensities).astype(int) if dipole: if attn is None: # If dipole test requested, but no attenuation # supplied do the default sweep dipole_test = [0.01, 0.1, 1.0, 3.0, 5.0] dipole_flag = "dipole" else: # Otherwise run specific attenuations dipole_test = attn_list dipole_flag = "atten" if dr is True: freq_list = combinations(frequencies, 2) print(list(freq_list)) else: freq_list = frequencies # loop over each frequency and number of shots for value, shotcount in zip(freq_list, shots): if dr is True: freq, dr_freq = value else: freq = value # Generate normal observation try: freq = float(freq) shotcount = int(shotcount) if dr is True: dr_freq = float(dr_freq) ftb_str += generate_ftb_line(freq, shotcount, **{"skiptune": "false"}) if dr is True: ftb_str += generate_ftb_line( freq, shotcount, **{"skiptune": "true", "drfreq": dr_freq} ) if dipole is True: for dipole_value in dipole_test: ftb_str += generate_ftb_line( freq, shotcount, **{dipole_flag: dipole_value} ) if magnet is True: ftb_str += generate_ftb_line(freq, shotcount, **{"magnet": "true"}) if discharge is True: # Toggle the discharge stack on and off ftb_str += generate_ftb_line( freq, shotcount, **{"pulse,1,enabled": "false"} ) ftb_str += generate_ftb_line( freq, shotcount, **{"pulse,1,enabled": "true"} ) except ValueError: print("Error with " + str(value)) return ftb_str def calculate_integration_times(intensity, nshots=50): """ Method for calculating the expected integration time in shot counts based on the intensity; either theoretical line strengths or SNR. parameters: --------------- intensity - array of intensity metric; e.g. SNR nshots - optional int number of shots used for the strongest line returns: --------------- shot_counts - array of shot counts for each frequency """ norm_int = intensity / np.max(intensity) shot_counts = np.round(nshots / norm_int).astype(int) return shot_counts @dataclass @dataclass
37.516075
120
0.576604
import datetime import re import os import struct from dataclasses import dataclass, field from itertools import combinations, product from typing import List, Dict import pandas as pd import numpy as np import peakutils from matplotlib import pyplot as plt from scipy import signal as spsig import plotly.graph_objs as go from tqdm.autonotebook import tqdm import networkx as nx from ipywidgets import interactive, VBox, HBox from lmfit.models import LinearModel from pyspectools import routines from pyspectools import figurefactory as ff from pyspectools import fitting from pyspectools.spectra import analysis from pyspectools import parsers def parse_specdata(filename): # For reading the output of a SPECData analysis return pd.read_csv(filename, skiprows=4) def parse_spectrum(filename, threshold=20.0): """ Function to read in a blackchirp or QtFTM spectrum from file """ dataframe = pd.read_csv( filename, delimiter="\t", names=["Frequency", "Intensity"], skiprows=1 ) return dataframe[dataframe["Intensity"] <= threshold] def center_cavity(dataframe, thres=0.3, verbose=True): """ Finds the center frequency of a Doppler pair in cavity FTM measurements and provides a column of offset frequencies. Sometimes the peak finding threshold has to be tweaked to get the center frequency correctly. """ # Find the peak intensities center_indexes = peakutils.indexes(dataframe["Intensity"], thres=thres) peak_frequencies = dataframe.iloc[center_indexes]["Frequency"] # Calculate the center frequency as the average center = np.average(peak_frequencies) if verbose is True: print("Center frequency at " + str(center)) dataframe["Offset Frequency"] = dataframe["Frequency"] - center @dataclass class Batch: assay: str id: int machine: str date: datetime.datetime scans: List = field(default_factory=list) filter: List = field(default_factory=list) exp: float = 0.0 zeropad: bool = False window: str = "" @classmethod def from_qtftm(cls, filepath, assay, machine): """ Create a Batch object from a QtFTM scan file. :param filepath: :param assay: :param machine: :return: """ assays = ["dr", "magnet", "discharge", "dipole"] assay = assay.lower() if assay not in assays: raise Exception( "Not a valid assay type; choose dr, magnet, discharge, dipole." ) with open(filepath) as read_file: batch_df, batch_data = parse_batch(read_file.readlines()) batch_data["assay"] = assay batch_data["machine"] = machine.upper() batch_obj = cls(**batch_data) batch_obj.details = batch_df return batch_obj @classmethod def from_remote(cls, root_path, batch_id, assay, machine, ssh_obj=None): """ Create a Batch object by retrieving a QtFTM batch file from a remote location. The user must provide a path to the root directory of the batch type, e.g. /home/data/QtFTM/batch/, and the corresponding batch type ID. Additionally, the type of batch must be specified to determine the type of analysis required. Optionally, the user can provide a reference to a RemoteClient object from `pyspectools.routines`. If none is provided, a RemoteClient object will be created with public key authentication (if available), otherwise the user will be queried for a hostname, username, and password. Keep in mind this method can be slow as every scan is downloaded. I recommend creating this once, then saving a local copy for subsequent analysis. :param root_path: str path to the batch type root directory :param batch_id: int or str value for the batch number :param assay: str the batch type :param machine: str reference the machine used for the batch :param ssh_obj: `RemoteClient` object :return: """ if ssh_obj is None: default_keypath = os.path.join(os.path.expanduser("~"), ".ssh/id_rsa.pub") hostname = input("Please provide remote hostname: ") username = input("Please provide login: ") ssh_settings = {"hostname": hostname, "username": username} if os.path.isfile(default_keypath) is True: ssh_settings["key_filename"] = default_keypath else: password = input("Please provide password: ") ssh_settings["password"] = password ssh_obj = routines.RemoteClient(**ssh_settings) # Parse the scan data from remote file remote_path = ssh_obj.ls( os.path.join(root_path, "*", "*", str(batch_id) + ".txt") ) batch_df, batch_data = parse_batch(ssh_obj.open_remote(remote_path[0])) batch_data["assay"] = assay batch_data["machine"] = machine.upper() batch_obj = cls(**batch_data) batch_obj.details = batch_df batch_obj.remote = ssh_obj batch_obj.get_scans(root_path, batch_df.id.values) return batch_obj @classmethod def from_pickle(cls, filepath): """ Method to create a Scan object from a previously pickled Scan. :param filepath: path to the Scan pickle :return: instance of the Scan object """ batch_obj = routines.read_obj(filepath) if isinstance(batch_obj, Batch) is False: raise Exception("File is not a Scan object; {}".format(type(batch_obj))) else: return batch_obj def __repr__(self): return "{}-Batch {}".format(self.machine, self.id) def __copy__(self): batch_obj = Batch(**self.__dict__) return batch_obj def find_scan(self, id): scans = [scan for scan in self.scans if scan.id == id] if len(scans) == 0: raise Exception("No scans were found.") else: return scans[0] def get_scans(self, root_path, ids): """ Function to create Scan objects for all of the scans in a QtFTM batch. :param root_path: str scans root path :param ids: list scan ids :param src: str optional specifying whether a remote or local path is used """ root_path = root_path.replace("batch", "scans") path_list = tqdm( [ os.path.join(root_path, "*", "*", str(scan_id) + ".txt") for scan_id in ids ] ) if hasattr(self, "remote") is True: scans = [Scan.from_remote(path, self.remote) for path in path_list] else: scans = [Scan.from_qtftm(path) for path in path_list] self.scans = scans def process_dr(self, significance=16.0): """ Function to batch process all of the DR measurements. :param global_depletion: float between 0. and 1. specifying the expected depletion for any line without a specific expected value. :param depletion_dict: dict with keys corresponding to cavity frequencies, and values the expected depletion value between 0. and 1. :return dr_dict: dict with keys corresponding to cavity frequency, with each value a dict of the DR frequencies, scan IDs and Scan objects. """ if self.assay != "dr": raise Exception( "Batch is not a DR test! I think it's {}".format(self.assay) ) # Find the cavity frequencies that DR was performed on progressions = self.split_progression_batch() dr_dict = dict() counter = 0 for index, progression in tqdm(progressions.items()): ref = progression.pop(0) try: ref_fit = ref.fit_cavity(plot=False) roi, ref_x, ref_y = ref.get_line_roi() signal = [np.sum(ref_y, axis=0)] sigma = ( np.average( [ np.std(scan.spectrum["Intensity"].iloc[roi]) for scan in progression ] ) * significance ) connections = [ scan for scan in progression if scan.is_depleted(ref, roi, sigma) ] if len(connections) > 1: counter += len(connections) signal.extend( [ np.sum(scan.spectrum["Intensity"].iloc[roi], axis=0) for scan in connections ] ) dr_dict[index] = { "frequencies": [scan.dr_frequency for scan in connections], "ids": [scan.id for scan in connections], "cavity": ref.fit.frequency, "signal": signal, "expected": np.sum(ref_y) - sigma, } except ValueError: print("Progression {} could not be fit; ignoring.".format(index)) print( "Possible depletions detected in these indexes: {}".format( list(dr_dict.keys()) ) ) print("There are {} possible depletions.".format(counter)) return dr_dict def split_progression_batch(self): """ Split up a DR batch into individual progressions based on the cavity frequency and whether or not the scan IDs are consecutive. :return progressions: dict with keys corresponding to progression index and values are lists of Scans """ counter = 0 progressions = dict() self.details["id"] = self.details["id"].apply(int) for freq in self.details["ftfreq"].unique(): slice_df = self.details.loc[self.details["ftfreq"] == freq] chunks = routines.group_consecutives(slice_df["id"]) for chunk in chunks: progressions[counter] = [ scan for scan in self.scans if scan.id in chunk ] counter += 1 return progressions def interactive_dr_batch(self): """ Create an interactive widget slider with a Plotly figure. The batch will be split up into "subbatches" by the cavity frequency and whether or not the scan IDs are consecutive. :return vbox: VBox object with the Plotly figure and slider objects """ progressions = self.split_progression_batch() fig = go.FigureWidget() fig.layout["width"] = 900.0 fig.layout["showlegend"] = False def update_figure(index): fig.data = [] fig.add_traces([scan.scatter_trace() for scan in progressions[index]]) index_slider = interactive(update_figure, index=(0, len(progressions) - 1, 1)) vbox = VBox((fig, index_slider)) vbox.layout.align_items = "center" return vbox def plot_scans(self): """ Create a plotly figure of all of the Scans within a Batch. :return: """ fig = go.FigureWidget() fig.layout["title"] = "{} Batch {}".format(self.machine, self.id) fig.layout["showlegend"] = False fig.add_traces([scan.scatter_trace() for scan in self.scans]) return fig def reprocess_fft(self, **kwargs): """ Reprocess all of the FIDs with specified settings. The default values are taken from the Batch attributes, and kwargs provided will override the defaults. :param kwargs: """ param_list = ["filter", "exp", "zeropad", "window"] params = { key: value for key, value in self.__dict__.items() if key in param_list } params.update(**kwargs) _ = [scan.process_fid(**params) for scan in tqdm(self.scans)] def to_pickle(self, filepath=None, **kwargs): """ Pickles the Batch object with the joblib wrapper implemented in routines. :param filepath: optional argument to pickle to. Defaults to the {assay}-{id}.pkl :param kwargs: additional settings for the pickle operation """ if filepath is None: filepath = "{}-{}.pkl".format(self.assay, self.id) # the RemoteClient object has some thread locking going on that prevents # pickling TODO - figure out why paramiko doesn't allow pickling if hasattr(self, "remote"): delattr(self, "remote") routines.save_obj(self, filepath, **kwargs) def create_dr_network(self, scans): """ Take a list of scans, and generate a NetworkX Graph object for analysis and plotting. :param scans: list of scan IDs to connect :return fig: Plotly FigureWidget object """ connections = [ [np.floor(scan.cavity_frequency), np.floor(scan.dr_frequency)] for scan in self.scans if scan.id in scans ] fig, self.progressions = ff.dr_network_diagram(connections) return fig def find_optimum_scans(self, thres=0.8): """ :param thres: :return: """ progressions = self.split_progression_batch() data = list() for index, progression in tqdm(progressions.items()): snrs = [scan.calc_snr(thres=thres) for scan in progression] best_scan = progression[np.argmax(snrs)] try: fit_result = best_scan.fit_cavity(plot=False) if fit_result.best_values["w"] < 0.049: data.append( { "frequency": np.round(fit_result.best_values["x0"], 4), "snr": np.max(snrs), "scan": best_scan.id, "attenuation": best_scan.cavity_atten, "index": index, } ) except ValueError: print("Index {} failed to fit!".format(index)) opt_df = pd.DataFrame(data) return opt_df def search_frequency(self, frequency, tol=0.001): """ Search the Batch scans for a particular frequency, and return any scans that lie within the tolerance window :param frequency: float specifying frequency to search :param tol: float decimal percentage to use for the search tolerance :return new_batch: a new Batch object with selected scans """ upper = frequency * (1 + tol) lower = frequency * (1 - tol) scans = [scan for scan in self.scans if lower <= scan.cavity_frequency <= upper] # new_batch = deepcopy(self) # new_batch.scans = scans return scans @dataclass class Scan: """ DataClass for a Scan. Holds all of the relevant information that describes a FT scan, such as the ID, what machine it was collected on, and the experimental settings. Has a few class methods that will make look ups easily such as the date the scan was collected and the gases used. """ id: int machine: str fid: np.array date: datetime.datetime shots: int = 0 cavity_voltage: int = 0 cavity_atten: int = 0 cavity_frequency: float = 0.0 dr_frequency: float = 0.0 dr_power: int = 0 fid_points: int = 0 fid_spacing: float = 0.0 discharge: bool = False magnet: bool = False gases: Dict = field(default_factory=dict) filter: List = field(default_factory=list) exp: float = 0.0 zeropad: bool = False window: str = "" def __post_init__(self): """ Functions called after __init__ is called. """ # Perform FFT self.process_fid() def __deepcopy__(self): """ Dunder method to produce a deep copy - this will be used when manipulating multiple Scan objects. :return: A deep copy of the current Scan object """ class Empty(self.__class__): def __init__(self): pass new_scan = Empty() new_scan.__class__ = self.__class__ new_scan.__dict__.update(self.__dict__) return new_scan def __repr__(self): return str(f"Scan {self.id}") def average(self, others): """ Dunder method to co-average two or more Scans in the time domain. :param other: Scan object, or tuple/list :return: A new Scan object with the co-added FID """ new_scan = self.__deepcopy__() try: new_scan.fid = np.average(others.extend(new_scan.fid), axis=0) new_scan.average_ids = [scan.id for scan in others] # If there is no extend method, then assume we're working with a # single Scan except AttributeError: new_scan.fid = np.average([new_scan.fid, others.fid], axis=0) new_scan.average_ids = [others.id] new_scan.process_fid() return new_scan def __add__(self, other): """ Dunder method to co-add two or more Scans in the time domain. :param other: Scan object, or tuple/list :return: A new Scan object with the co-added FID """ new_scan = self.__deepcopy__() new_scan.fid = np.sum([new_scan.fid, other.fid], axis=0) new_scan.process_fid() return new_scan def __sub__(self, other): """ Dunder method to subtract another Scan from the current Scan in the time domain. i.e. this scan - other scan :param other: Scan object, or tuple/list :return: A new Scan object with the subtracted FID """ new_scan = self.__deepcopy__() new_scan.fid = np.subtract(new_scan.fid, other.fid) new_scan.process_fid() return new_scan def subtract_frequency(self, other): """ Method to subtract another Scan from the current in the frequency domain. :param other: Scan object to subtract with :return: A new Scan object with the subtracted spectrum """ new_scan = self.__deepcopy__() new_scan.spectrum["Intensity"] = ( new_scan.spectrum["Intensity"] - other.spectrum["Intensity"] ) new_scan.subtracted = other.id return new_scan def add_frequency(self, other): """ Method to add another Scan from the current in the frequency domain. :param other: Scan object to add with :return: A new Scan object with the co-added spectrum """ new_scan = self.__deepcopy__() new_scan.spectrum["Intensity"] = ( new_scan.spectrum["Intensity"] + other.spectrum["Intensity"] ) new_scan.subtracted = other.id return new_scan @classmethod def from_dict(cls, data_dict): """ Function to initialize a Scan object from a dictionary of FT scan data collected from `parse_scan`. :param data_dict: dict containing parsed data from FT :return: Scan object """ scan_obj = cls(**data_dict) return scan_obj @classmethod def from_qtftm(cls, filepath): """ Method to initialize a Scan object from a FT scan file. Will load the lines into memory and parse the data into a dictionary, which then gets passed into a Scan object. :param filepath: str path to FID file :return: Scan object """ with open(filepath) as read_file: data_dict = parse_scan(read_file.readlines()) scan_obj = cls(**data_dict) return scan_obj @classmethod def from_pickle(cls, filepath): """ Method to create a Scan object from a previously pickled Scan. :param filepath: path to the Scan pickle :return: instance of the Scan object """ scan_obj = routines.read_obj(filepath) if isinstance(scan_obj, Scan) is False: raise Exception("File is not a Scan object; {}".format(type(scan_obj))) else: return scan_obj @classmethod def from_remote(cls, remote_path, ssh_obj=None): """ Method to initialize a Scan object from a remote server. Has the option to pass an instance of a paramiko SSHClient, which would be useful in a Batch. If none is supplied, an instance will be created. :param remote_path: str remote path to the file :param ssh_obj: optional argument to supply a paramiko SSHClient object :return: Scan object from remote QtFTM file """ if ssh_obj is None: default_keypath = os.path.join(os.path.expanduser("~"), ".ssh/id_rsa.pub") hostname = input("Please provide remote hostname: ") username = input("Please provide login: ") ssh_settings = {"hostname": hostname, "username": username} if os.path.isfile(default_keypath) is True: ssh_settings["key_filename"] = default_keypath else: password = input("Please provide password: ") ssh_settings["password"] = password ssh_obj = routines.RemoteClient(**ssh_settings) # Parse the scan data from remote file data_dict = parse_scan(ssh_obj.open_remote(remote_path)) scan_obj = cls(**data_dict) return scan_obj def to_file(self, filepath, format="yaml"): """ Method to dump data to YAML format. Extensions are automatically decided, but can also be supplied. parameters: -------------------- :param filepath - str path to yaml file :param format - str denoting the syntax used for dumping. Defaults to YAML. """ if "." not in filepath: if format == "json": filepath += ".json" else: filepath += ".yml" if format == "json": writer = routines.dump_json else: writer = routines.dump_yaml writer(filepath, self.__dict__) def to_pickle(self, filepath=None, **kwargs): """ Pickles the Scan object with the joblib wrapper implemented in routines. :param filepath: optional argument to pickle to. Defaults to the id.pkl :param kwargs: additional settings for the pickle operation """ if filepath is None: filepath = "{}.pkl".format(self.id) routines.save_obj(self, filepath, **kwargs) def process_fid(self, **kwargs): """ Perform an FFT on the FID to yield the frequency domain spectrum. Kwargs are passed into the FID processing, which will override the Scan attributes. :param kwargs: Optional keyword arguments for processing the FID """ # Calculate the frequency bins frequencies = np.linspace( self.cavity_frequency, self.cavity_frequency + 1.0, len(self.fid) ) # Calculate the time bins time = np.linspace(0.0, self.fid_spacing * self.fid_points, self.fid_points) process_list = ["window", "filter", "exp", "zeropad"] process_dict = { key: value for key, value in self.__dict__.items() if key in process_list } # Override with user settings process_dict.update(**kwargs) temp_fid = np.copy(self.fid) self.spectrum = fid2fft( temp_fid, 1.0 / self.fid_spacing, frequencies, **process_dict ) self.fid_df = pd.DataFrame({"Time (us)": time * 1e6, "FID": temp_fid}) def within_time(self, date_range): """ Function for determining of the scan was taken between a specified date range in month/day/year, in the format 04/09/08 for April 9th, 2008. :param date_range: list containing the beginning and end date strings :return: bool - True if within range, False otherwise """ try: early = datetime.datetime.strptime(date_range[0], "%m/%d/%y") except: early = datetime.datetime(1, 1, 1) try: late = datetime.datetime.strptime(date_range[1], "%m/%d/%y") except: late = datetime.datetime(9999, 1, 1) return early <= self.date <= late def is_depleted(self, ref, roi=None, depletion=None): """ Function for determining if the signal in this Scan is less than that of another scan. This is done by a simple comparison of the average of 10 largest intensities in the two spectra. If the current scan is less intense than the reference by the expected depletion percentage, then it is "depleted". This function can be used to determine if a scan if depleted in DR/magnet/discharge assays. TODO - implement a chi squared test of sorts to determine if a depletion is statistically significant :param ref: second Scan object for comparison :param depletion: percentage of depletion expected of the reference :return: bool - True if signal in this Scan is less intense than the reference """ y_ref = ref.spectrum["Intensity"].values y_obs = self.spectrum["Intensity"].values self.ref_freq = ref.fit.frequency self.ref_id = ref.id if roi: y_ref = y_ref[roi] y_obs = y_obs[roi] # This doesn't work, or is not particularly discriminating. # chisq, p_value = chisquare( # y_obs, y_ref # ) if depletion is None: sigma = np.std(y_obs, axis=0) * 16.0 else: sigma = depletion expected = np.sum(y_ref, axis=0) - sigma return np.sum(y_obs, axis=0) <= expected def scatter_trace(self): """ Create a Plotly Scattergl trace. Called by the Batch function, although performance-wise it takes forever to plot up ~3000 scans. :return trace: Scattergl object """ text = "Scan ID: {}<br>Cavity: {}<br>DR: {}<br>Magnet: {}<br>Attn: {}".format( self.id, self.cavity_frequency, self.dr_frequency, self.magnet, self.cavity_atten, ) trace = go.Scattergl( x=np.linspace(self.id, self.id + 1, len(self.spectrum["Intensity"])), y=self.spectrum["Intensity"], text=text, marker={"color": "rgb(43,140,190)"}, hoverinfo="text", ) return trace def fit_cavity(self, plot=True, verbose=False): """ Perform a fit to the cavity spectrum. Uses a paired Gaussian model that minimizes the number of fitting parameters. :param plot: bool specify whether a Plotly figure is made :return: Model Fit result """ y = self.spectrum["Intensity"].dropna().values x = self.spectrum["Frequency (MHz)"].dropna().values model = fitting.PairGaussianModel() result = model.fit_pair(x, y, verbose=verbose) self.spectrum["Fit"] = result.best_fit self.fit = result self.fit.frequency = self.fit.best_values["x0"] if plot is True: fig = go.FigureWidget() fig.layout["xaxis"]["title"] = "Frequency (MHz)" fig.layout["xaxis"]["tickformat"] = ".2f" fig.add_scatter(x=x, y=y, name="Observed") fig.add_scatter(x=x, y=result.best_fit, name="Fit") return result, fig else: return result def get_line_roi(self): if hasattr(self, "fit") is False: raise Exception("Auto peak fitting has not been run yet!") # Get one of the Doppler horns plus 4sigma params = self.fit.best_values x = self.spectrum["Frequency (MHz)"].values y = self.spectrum["Intensity"].values _, low_end = routines.find_nearest( x, params["x0"] - params["xsep"] - params["w"] * 4.0 ) _, high_end = routines.find_nearest( x, params["x0"] + params["xsep"] + params["w"] * 4.0 ) index = list(range(low_end, high_end)) return index, x[low_end:high_end], y[low_end:high_end] def calc_snr(self, noise=None, thres=0.6): if noise is None: # Get the last 10 points at the end and at the beginning noise = np.average( [ self.spectrum["Intensity"].iloc[-10:], self.spectrum["Intensity"].iloc[:10], ] ) peaks = ( self.spectrum["Intensity"] .iloc[ peakutils.indexes( self.spectrum["Intensity"], thres=thres, thres_abs=True ) ] .values ) signal = np.average(np.sort(peaks)[:2]) return signal / noise def parse_scan(filecontents): """ Function for extracting the FID data from an FT scan. The data is returned as a dictionary, which can be used to initialize a Scan object. :param filecontents: list of lines from an FID file :return: dict containing parsed data from FID """ data = {"gases": dict()} # FID regex fid_regex = re.compile(r"^fid\d*", re.M) # Regex to find gas channels gas_regex = re.compile(r"^#Gas \d name", re.M) flow_regex = re.compile(r"^#Gas \d flow", re.M) # Regex to detect which channel is set to the discharge dc_regex = re.compile(r"^#Pulse ch \d name\s*DC", re.M) dc_channel = None for index, line in enumerate(filecontents): if "#Scan" in line: split_line = line.split() data["id"] = int(split_line[1]) try: data["machine"] = split_line[2] except IndexError: data["machine"] = "FT1" if "#Probe freq" in line: data["cavity_frequency"] = float(line.split()[2]) if "#Shots" in line: data["shots"] = int(line.split()[-1]) if "#Date" in line: strip_targets = ["#Date", "\t", "\n"] data["date"] = datetime.datetime.strptime( re.sub("|".join(strip_targets), "", line), "%a %b %d %H:%M:%S %Y" ) if "#Cavity Voltage" in line: data["cavity_voltage"] = int(line.split()[2]) if "#Attenuation" in line: data["cavity_atten"] = int(line.split()[1]) if "#DR freq" in line: data["dr_frequency"] = float(line.split()[2]) if "#DR power" in line: data["dr_power"] = int(line.split()[2]) if "#FID spacing" in line: data["fid_spacing"] = float(re.findall(r"\de[+-]?\d\d", line)[0]) if "#FID points" in line: data["fid_points"] = int(line.split()[-1]) # Get the name of the gas if gas_regex.match(line): split_line = line.split() # Only bother parsing if the channel is used gas_index = int(split_line[1]) try: data["gases"][gas_index] = {"gas": " ".join(split_line[3:])} except IndexError: data["gases"][gas_index] = {"gas": ""} # Get the flow rate for channel if flow_regex.match(line): split_line = line.split() gas_index = int(split_line[1]) data["gases"][gas_index]["flow"] = float(split_line[3]) if "#Magnet enabled" in line: data["magnet"] = bool(int(line.split()[2])) # Find the channel the discharge is set to and compile a regex # to look for the channel if dc_regex.match(line): dc_index = line.split()[2] dc_channel = re.compile(r"^#Pulse ch {} enabled".format(dc_index), re.M) # Once the discharge channel index is known, start searching for it if dc_channel: if dc_channel.match(line): data["discharge"] = bool(int(line.split()[-1])) # Find when the FID lines start popping up if fid_regex.match(line): fid = filecontents[index + 1 :] fid = [float(value) for value in fid] data["fid"] = np.array(fid) return data def perform_fft(fid, spacing, start=0, stop=-1, window="boxcar"): """ Perform an FFT on an FID to get the frequency domain spectrum. All of the arguments are optional, and provide control over how the FFT is performed, as well as post-processing parameters like window functions and zero-padding. This is based on the FFT code by Kyle Crabtree, with modifications to fit this dataclass. Parameters ---------- fid - Numpy 1D array Array holding the values of the FID spacing - float Time spacing between FID points in microseconds start - int, optional Starting index for the FID array to perform the FFT stop - int, optional End index for the FID array to perform the FFT zpf - int, optional Pad the FID with zeros to nth nearest power of 2 window - str Specify the window function used to process the FID. Defaults to boxcar, which is effectively no filtering. The names of the window functions available can be found at: https://docs.scipy.org/doc/scipy/reference/signal.windows.html Returns ------- """ fid = np.copy(fid) if window is not None and window in spsig.windows.__all__: window_f = spsig.windows.get_window(window, fid.size) fid *= window_f else: raise Exception("Specified window function is not implemented in SciPy!") # Set values to zero up to starting index fid[:start] = 0.0 if stop < 0: # If we're using negative indexes fid[fid.size + stop :] = 0.0 else: # Otherwise, index with a positive number fid[stop:] = 0.0 # Perform the FFT fft = np.fft.rfft(fid) read_length = len(fid) // 2 + 1 df = 1.0 / fid.size / spacing # Generate the frequency array frequency = np.linspace(0.0, self.header["sideband"] * df, read_length) frequency += self.header["probe_freq"] fft[(frequency >= f_max) & (frequency <= f_min)] = 0.0 fft *= 1000.0 return frequency, fft def fid2fft(fid, rate, frequencies, **kwargs): """ Process an FID by performing an FFT to yield the frequency domain information. Kwargs are passed as additional processing options, and are implemented as some case statements to ensure the settings are valid (e.g. conforms to sampling rate, etc.) :param fid: np.array corresponding to the FID intensity :param rate: sampling rate in Hz :param frequencies: np.array corresponding to the frequency bins :param kwargs: signal processing options: delay - delays the FID processing by setting the start of the FID to zero zeropad - Toggles whether or not the number of sampled points is doubled to get artificially higher resolution in the FFT window - Various window functions provided by `scipy.signal` exp - Specifies an exponential filter filter - 2-tuple specifying the frequency cutoffs for a band pass filter :return: freq_df - pandas dataframe with the FFT spectrum """ # Remove DC new_fid = fid - np.average(fid) if "delay" in kwargs: delay = int(kwargs["delay"] / (1.0 / rate) / 1e6) new_fid[:delay] = 0.0 # Zero-pad the FID if "zeropad" in kwargs: if kwargs["zeropad"] is True: # Pad the FID with zeros to get higher resolution fid = np.append(new_fid, np.zeros(len(new_fid))) # Since we've padded with zeros, we'll have to update the # frequency array frequencies = spsig.resample(frequencies, len(frequencies) * 2) # Apply a window function to the FID if "window" in kwargs: if kwargs["window"] in spsig.windows.__all__: new_fid *= spsig.get_window(kwargs["window"], new_fid.size) # Apply an exponential filter on the FID if "exp" in kwargs: if kwargs["exp"] > 0.0: new_fid *= spsig.exponential(len(new_fid), tau=kwargs["exp"]) # Apply a bandpass filter on the FID if ("filter" in kwargs) and (len(kwargs["filter"]) == 2): low, high = sorted(kwargs["filter"]) if low < high: new_fid = apply_butter_filter(new_fid, low, high, rate) # Perform the FFT fft = np.fft.rfft(new_fid) # Get the real part of the FFT, and only the non-duplicated side real_fft = np.abs(fft[: int(len(new_fid) / 2)]) / len(new_fid) * 1e3 frequencies = spsig.resample(frequencies, real_fft.size) # For some reason, resampling screws up the frequency ordering... real_fft = real_fft[np.argsort(frequencies)] frequencies = np.sort(frequencies) # Package into a pandas dataframe freq_df = pd.DataFrame({"Frequency (MHz)": frequencies, "Intensity": real_fft}) return freq_df def butter_bandpass(low, high, rate, order=1): """ A modified version of the Butterworth bandpass filter described here, adapted for use with the FID signal. http://scipy-cookbook.readthedocs.io/items/ButterworthBandpass.html The arguments are: :param low The low frequency cut-off, given in kHz. :param high The high frequency cut-off, given in kHz. :param rate The sampling rate, given in Hz. From the FIDs, this means that the inverse of the FID spacing is used. :return bandpass window """ # Calculate the Nyquist frequency nyq = 0.5 * (rate / (2.0 * np.pi)) low = (low * 1e3) / nyq high = (high * 1e3) / nyq if high > 1.0: raise Exception("High frequency cut-off exceeds the Nyquist frequency.") b, a = spsig.butter(order, [low, high], btype="band", analog=False) return b, a def apply_butter_filter(data, low, high, rate, order=1): """ A modified Butterworth bandpass filter, adapted from the Scipy cookbook. The argument data supplies the FID, which then uses the scipy signal processing function to apply the digital filter, and returns the filtered FID. See the `butter_bandpass` function for additional arguments. """ b, a = butter_bandpass(low, high, rate, order=order) y = spsig.lfilter(b, a, data) return y def parse_batch(filecontents): data = dict() for index, line in enumerate(filecontents): if "#Batch scan" in line: data["id"] = int(line.split()[2]) if "#Date" in line: strip_targets = ["#Date", "\t", "\n"] data["date"] = datetime.datetime.strptime( re.sub("|".join(strip_targets), "", line), "%a %b %d %H:%M:%S %Y" ) if line.startswith("batchscan"): scan_details = filecontents[index + 1 :] scan_details = [scan.split() for scan in scan_details] headers = [ "id", "max", "iscal", "issat", "ftfreq", "attn", "drfreq", "drpower", "pulses", "shots", "autofitpair_freq", "autofitpair_int", "autofitfreq", "autofitint", ] df = pd.DataFrame(scan_details, columns=headers) return df, data def generate_ftb_line(frequency, shots, **kwargs): """ Function that generates an FTB file for a list of frequencies, plus categorization tests. kwargs are passed as additional options for the ftb batch. Keywords are: magnet: bool dipole: float atten: int skiptune: bool drfreq: float drpower: int cal parameters: --------------- :param frequency: float for frequency in MHz :param shots: int number of shots to integrate for returns: --------------- :return ftbline: str """ line = "ftm:{:.4f} shots:{}".format(frequency, shots) for key, value in kwargs.items(): line += " {}:{}".format(key, value) line += "\n" return line def neu_categorize_frequencies(frequencies, intensities=None, nshots=50, **kwargs): """ Routine to generate an FTB batch file for performing a series of tests on frequencies. """ ftb_string = "" if intensities: norm_int = intensities / np.max(intensities) shotcounts = np.round(nshots / norm_int).astype(int) else: shotcounts = np.full(len(frequencies), nshots, dtype=int) # default settings for all stuff param_dict = { "dipole": 1.0, "magnet": "false", "drpower": "10", "skiptune": "false", } param_dict.update(kwargs) for freq, shot in zip(frequencies, shotcounts): ftb_string += generate_ftb_str(freq, shot, **param_dict) if "magnet" in kwargs: param_dict["magnet"] = "true" ftb_string += generate_ftb_str(freq, shot, **param_dict) def categorize_frequencies( frequencies, nshots=50, intensities=None, power=None, attn_list=None, dipole=None, attn=None, magnet=False, dr=False, discharge=False, ): """ Function that will format an FT batch file to perform categorization tests, with some flexibility on how certain tests are performed. """ ftb_str = "" if intensities is None: shots = np.full(len(frequencies), nshots, dtype=int) else: shots = np.sqrt(nshots / intensities).astype(int) if dipole: if attn is None: # If dipole test requested, but no attenuation # supplied do the default sweep dipole_test = [0.01, 0.1, 1.0, 3.0, 5.0] dipole_flag = "dipole" else: # Otherwise run specific attenuations dipole_test = attn_list dipole_flag = "atten" if dr is True: freq_list = combinations(frequencies, 2) print(list(freq_list)) else: freq_list = frequencies # loop over each frequency and number of shots for value, shotcount in zip(freq_list, shots): if dr is True: freq, dr_freq = value else: freq = value # Generate normal observation try: freq = float(freq) shotcount = int(shotcount) if dr is True: dr_freq = float(dr_freq) ftb_str += generate_ftb_line(freq, shotcount, **{"skiptune": "false"}) if dr is True: ftb_str += generate_ftb_line( freq, shotcount, **{"skiptune": "true", "drfreq": dr_freq} ) if dipole is True: for dipole_value in dipole_test: ftb_str += generate_ftb_line( freq, shotcount, **{dipole_flag: dipole_value} ) if magnet is True: ftb_str += generate_ftb_line(freq, shotcount, **{"magnet": "true"}) if discharge is True: # Toggle the discharge stack on and off ftb_str += generate_ftb_line( freq, shotcount, **{"pulse,1,enabled": "false"} ) ftb_str += generate_ftb_line( freq, shotcount, **{"pulse,1,enabled": "true"} ) except ValueError: print("Error with " + str(value)) return ftb_str def calculate_integration_times(intensity, nshots=50): """ Method for calculating the expected integration time in shot counts based on the intensity; either theoretical line strengths or SNR. parameters: --------------- intensity - array of intensity metric; e.g. SNR nshots - optional int number of shots used for the strongest line returns: --------------- shot_counts - array of shot counts for each frequency """ norm_int = intensity / np.max(intensity) shot_counts = np.round(nshots / norm_int).astype(int) return shot_counts class AssayBatch: @classmethod def from_csv(cls, filepath, exp_id): """ Create an AssayBatch session by providing a filepath to a file containing the frequency and intensity information, as well as the experiment ID from which it was based. parameters: -------------- filepath - path to a CSV file with Frequency/Intensity columns exp_id - experiment ID; typically the chirp experiment number """ df = pd.read_csv(filepath) return cls(df, exp_id) @classmethod def load_session(cls, filepath): """ Loads a previously saved AssayBatch session. """ session = routines.read_obj(filepath) obj = cls(**session) return obj def __init__(self, data, exp_id, freq_col="Frequency", int_col="Intensity"): folders = ["assays", "ftbfiles"] for folder in folders: if os.path.isdir(folder) is False: os.mkdir(folder) if os.path.isdir("assays/plots") is False: os.mkdir("./assays/plots") self.data = data self.exp_id = exp_id if freq_col not in self.data.columns: self.freq_col = self.data.columns[0] else: self.freq_col = freq_col if int_col not in self.data.columns: self.int_col = self.data.columns[0] else: self.int_col = int_col def calc_scan_SNR(self, peak_int, noise_array): """ Calculate the signal-to-noise ratio of a peak for a given reference noise intensity array and peak intensity. """ noise = np.mean(noise_array) return peak_int / noise def dipole_analysis( self, batch_path, thres=0.5, dipoles=[1.0, 0.01, 0.1, 1.0, 3.0, 5.0], snr_thres=5.0, ): """ Method for determining the optimal dipole moment to use for each frequency in a given exported batch of dipole tests. In addition to returning a pandas dataframe, it is also stored as the object attribute dipole_df. parameters: ---------------- batch_path - filepath to the exported XY file from a QtFTM batch thres - threshold in absolute intensity for peak detection (in Volts) dipoles - list of dipole moments used in the screening snr_thres - threshold in signal-to-noise for line detection returns: ---------------- optimal_df - pandas dataframe containing the optimal dipole moments """ batch_df = pd.read_csv(batch_path, sep="\t") batch_df.columns = ["Scan", "Intensity"] # Reference scan numbers from the batch scan_numbers = np.unique(np.around(batch_df["Scan"]).astype(int)) # Make a dataframe for what we expect everything should be full_df = pd.DataFrame( data=list(product(self.data["Frequency"], dipoles)), columns=["Frequency", "Dipole"], ) full_df["Scan"] = scan_numbers # Loop over each scan, and determine whether or not there is a peak # If there is sufficiently strong feature, add it to the list with the # scan number detected_scans = list() for index, scan in enumerate(scan_numbers): scan_slice = batch_df.loc[ (batch_df["Scan"] >= scan - 0.5) & (batch_df["Scan"] <= scan + 0.5) ] # Find the peaks based on absolute signal intensity # Assumption is that everything is integrated for the same period of time peaks = scan_slice.iloc[ peakutils.indexes(scan_slice["Intensity"], thres=thres, thres_abs=True) ].sort_values(["Intensity"], ascending=False) peak_int = np.average(peaks["Intensity"][:2]) snr = self.calc_scan_SNR(peak_int, scan_slice["Intensity"][-10:]) if snr >= snr_thres: detected_scans.append([scan, snr]) snr_df = pd.DataFrame(data=detected_scans, columns=["Scan", "SNR"]) # Merge the dataframes based on scan number. This will identify # scans where we observe a line obs_df = full_df.merge(snr_df, on=["Scan"], copy=False) optimal_data = list() # Loop over each frequency in order to determine the optimal # dipole moment to use for frequency in np.unique(obs_df["Frequency"]): slice_df = obs_df.loc[obs_df["Frequency"] == frequency] # Sort the best response dipole moment at the top slice_df.sort_values(["SNR"], inplace=True, ascending=False) slice_df.index = np.arange(len(slice_df)) optimal_data.append(slice_df.iloc[0].values) optimal_df = pd.DataFrame( optimal_data, columns=["Frequency", "Dipole", "Scan", "SNR"] ) optimal_df.sort_values(["SNR"], ascending=False, inplace=True) self.dipole_df = optimal_df # Generate histogram of dipole moments with plt.style.context("publication"): fig, ax = plt.subplots() self.dipole_df["Dipole"].hist(ax=ax) ax.set_xlabel("Dipole (D)") ax.set_ylabel("Counts") fig.savefig( "./assays/plots/{}-dipole.pdf".format(self.exp_id), format="pdf", transparent=True, ) return optimal_df def generate_magnet_test(self, dataframe=None, cal=False, nshots=50, **kwargs): """ Generate an FT batch file for performing magnetic tests. parameters: ----------------- dataframe - dataframe used for the frequency information. By default the dipole dataframe will be used. cal - bool denoting whether a calibration line is used. A user can provide it in kwargs, or use the default which is the first line in the dataframe (strongest if sorted by intensity) nshots - optional int specifying number of shots for each line, or if SNR is in the dataframe, the number of shots for the strongest line. kwargs - passed into the calibration settings, which are cal_freq, cal_rate, and cal_shots """ if dataframe is None: dataframe = self.dipole_df dataframe["Shots"] = calculate_integration_times( dataframe["SNR"].values, nshots ) ftb_str = "" # If there are no shots determined, if "Shots" not in dataframe: dataframe["Shots"] = nshots # If calibration is requested # cal_rate sets the number of scans per calibration if cal is True: cal_settings = { "cal_freq": dataframe["Frequency"][0], "cal_rate": 100, "cal_shots": dataframe["Shots"][0], } if "Dipole" in dataframe: cal_settings["cal_dipole"] = dataframe["Dipole"][0] cal_settings.update(kwargs) # Generate the calibration string cal_str = generate_ftb_line( cal_settings["cal_freq"], cal_settings["cal_shots"], **{"dipole": cal_settings["cal_dipole"], "skiptune": "false"}, ) cal_str = cal_str.replace("\n", " cal\n") # generate the batch file for index, row in dataframe.iterrows(): # If we want to add a calibration line if index % cal_settings["cal_rate"] == 0: ftb_str += cal_str param_dict = {} # Make sure the magnet is off if "Dipole" in row: param_df["dipole"] = row["Dipole"] param_df["magnet"] = "false" param_df["skiptune"] = "false" ftb_str += generate_ftb_line(row["Frequency"], row["Shots"], **param_df) # Turn on the magnet param_df["skiptune"] = "true" param_df["magnet"] = "true" ftb_str += generate_ftb_line(row["Frequency"], row["Shots"], **param_df) with open("./ftbfiles/{}.ftb".format(self.exp_id), "w+") as write_file: write_file.write(ftb_str) def generate_bruteforce_dr(self, nshots=10, dr_channel=3): """ Brute force double resonance test on every single frequency observed in the initial dipole test. This method will perform DR measurements on sequentially weaker lines, if the dipole_df is sorted by SNR. Optionally, the """ ftb_str = "" combos = combinations(self.dipole_df[["Frequency", "Dipole"]].values, 2) for index, combo in enumerate(combos): # For the first time a cavity frequency is used # we will measure it once without DR freq = combo[0][0] if (index == 0) or (last_freq != freq): ftb_str += generate_ftb_line( freq, nshots, **{ "dipole": combo[0][1], "pulse,{},enable".format(dr_channel): "false", "skiptune": "false", }, ) # Only do DR if the DR frequency is significantly different from # the cavity frequency if np.abs(combo[1][0] - freq) >= 100.0: ftb_str += generate_ftb_line( freq, nshots, **{ "dipole": combo[0][1], "drfreq": combo[1][0], "pulse,{},enable".format(dr_channel): "true", "skiptune": "true", }, ) last_freq = combo[0][0] print("There are {} combinations to measure.".format(index)) with open("./ftbfiles/{}-bruteDR.ftb".format(self.exp_id), "w+") as write_file: write_file.write(ftb_str) print("FTB file saved to ./ftbfiles/{}-bruteDR.ftb".format(self.exp_id)) def find_progressions(self, **kwargs): """ Uses the dipole assay data to look for harmonic progression. Kwargs are passed into the affinity propagation clustering; usually this means "preference" should be set to tune the number of clusters. returns: -------------- cluster_dict - dictionary containing all of the clustered progressions """ progressions = analysis.harmonic_finder(self.dipole_df["Frequency"].values) self.progression_df = fitting.harmonic_fitter(progressions) data, ap_obj = analysis.cluster_AP_analysis( self.progression_df, True, False, **kwargs ) self.cluster_dict = data self.cluster_obj = ap_obj return self.cluster_dict def generate_progression_test(self, nshots=50, dr_channel=3): """ Take the dipole moment dataframe and generate a DR batch. If possible, we will instead use the progressions predicted by the cluster model. """ ftb_str = "" count = 0 # Loop over progressions for index, sub_dict in self.cluster_dict.items(): # Take only frequencies that are in the current progression slice_df = self.dipole_df.loc[ self.dipole_df["Frequency"].isin(sub_dict["Frequencies"]) ] prog_data = slice_df[["Frequency", "Dipole", "Shots"]].values for sub_index, pair in enumerate(combinations(prog_data, 2)): count += 1 if (sub_index == 0) or (last_freq != pair[0][0]): ftb_str += generate_ftb_line( pair[0][0], 10, **{ "dipole": pair[0][1], "pulse,{},enable".format(dr_channel): "false", "skiptune": "false", }, ) # Perform the DR measurement ftb_str += generate_ftb_line( pair[0][0], 10, **{ "dipole": pair[0][1], "pulse,{},enable".format(dr_channel): "true", "skiptune": "true", }, ) last_freq = pair[0][0] print("There are {} combinations to test.".format(count)) with open( "./ftbfiles/{}-progressionDR.ftb".format(self.exp_id), "w+" ) as write_file: write_file.write(ftb_str) print("FTB file saved to ./ftbfiles/{}-progressionDR.ftb".format(self.exp_id)) def plot_scan(self, scan_number=None): """ Quick method for plotting up a strip to highlight a particular scan in a batch. parameters: --------------- scan_number - float corresponding to the scan """ fig = go.FigureWidget() fig.add_scatter(x=self.data["Scan"], y=self.data["Intensity"]) if scan_number is not None: fig.add_bar(x=[scan_number], y=[np.max(self.data["Intensity"])]) return fig def static_plot(self, scan_number, dataframe=None): """ Produce a static plot with matplotlib of a particular scan from a batch. Saves the plot to ./assays/plots/ By default, the full dataframe will be used for the plotting. Other dataframes (such as from other assays) can also be used. parameters: --------------- scan_number - float corresponding to the scan of interest dataframe - optional arg; pandas dataframe with Scan/Intensity """ if dataframe is None: dataframe = self.data slice_df = dataframe.loc[ (dataframe["Scan"] >= scan_number - 1.5) & (dataframe["Scan"] <= scan_number + 1.5) ] scan_numbers = np.unique(np.round(slice_df["Scan"])) with plt.style.context("publication"): fig, ax = plt.subplots() ax.plot(slice_df["Scan"], slice_df["Intensity"]) ax.set_xticks(scan_numbers) # Makes the x axis not scientific notation ax.get_xaxis().get_major_formatter().set_useOffset(False) ax.set_xlabel("Scan number") ax.set_ylabel("Intensity") fig.savefig( "./assays/plots/{}.pdf".format(scan_number), format="pdf", transparent=True, ) def save_session(self, filepath=None): """ Method to save the current assay analysis session to disk. The data can be reloaded using the AssayBatch.load_session class method. parameters: --------------- filepath - path to save the data to. By default, the path will be the experiment ID. """ if filepath is None: filepath = "./assays/{}-assay-analysis.dat".format(self.exp_id) routines.save_obj(self.__dict__, filepath) print("Saved session to {}".format(filepath)) def predict_prolate_series(progressions, J_thres=0.1): fit_df, fits = fitting.harmonic_fitter(progressions, J_thres) J_model = LinearModel() BJ_model = fitting.BJModel() predictions = dict() for index, row in fit_df.iterrows(): row = row.dropna() J_values = row[[col for col in row.keys() if "J" in str(col)]].values if len(J_values) > 2: J_fit = J_model.fit(data=J_values, x=np.arange(len(J_values))) J_predicted = J_fit.eval(x=np.arange(-10, 10, 1)) BJ_params = row[["B", "D"]].values freq_predicted = BJ_model.eval( J=J_predicted, B=BJ_params[0], D=BJ_params[1] ) elif len(J_values) == 2: frequencies = row[[2, 4]].values approx_B = np.abs(np.diff(frequencies)) next_freq = np.max(frequencies) + approx_B low_freq = np.min(frequencies) - approx_B freq_predicted = np.concatenate( (frequencies, [next_freq, low_freq]), axis=None ) freq_predicted = np.sort(freq_predicted) J_predicted = freq_predicted / approx_B # Filter out negative frequencies freq_predicted = freq_predicted[0.0 < freq_predicted] predictions[index] = { "predicted_freq": freq_predicted, "predicted_J": J_predicted, } return predictions @dataclass class BlackchirpExperiment: exp_id: int fid_start: int = 0 fid_end: int = -1 ft_min: float = 0.0 ft_max: float = 40000.0 ft_filter: str = "boxcar" freq_offset: float = 0.0 fids: List = field(default_factory=list) header: Dict = field(default_factory=dict) @classmethod def from_dir(cls, filepath): exp_id, header, fids, timedata = parsers.parse_blackchirp(filepath) exp_obj = cls(exp_id=exp_id, header=header, fids=fids) return exp_obj def process_ffts(self, weighting=None): """ Batch perform FFTs on all of the FIDs. The end result is a Pandas DataFrame with the Frequency and Intensity data, where the intensity is just the weighted co-average of all the FFTs. By default, every FID is equally weighted. Parameters ---------- weighting Returns ------- """ weight_factors = {index: 1.0 for index in range(len(self.fids))} if weighting: weight_factors.update(**weighting) # Work out the frequency bins frequency = self.fids[0].determine_frequencies() # Weight the FIDs weighted_fids = [ self.fids[index][1] * weight for index, weight in weight_factors.items() ] averaged = np.sum(weighted_fids) / np.sum( [weight for weight in weight_factors.values()] ) # Calculate the sample rate; inverse of the spacing, converted back to seconds rate = 1.0 / self.header["spacing"] / 1e6 fid2fft(averaged, rate, frequency) spectrum_df = pd.DataFrame( {"Frequency": fft_data[0][0] + self.freq_offset, "Intensity": averaged} ) self.spectrum = spectrum_df return spectrum_df @dataclass class BlackChirpFid: xy_data: np.array header: Dict = field(default_factory=dict) @classmethod def from_binary(cls, filepath): """ Create a BlackChirp FID object from a binary BlackChirp FID file. Parameters ---------- filepath - str Filepath to the BlackChirp .fid file Returns ------- BlackChirpFid object """ param_dict, xy_data, _ = parsers.read_binary_fid(filepath) fid_obj = cls(xy_data, param_dict) return fid_obj def to_pickle(self, filepath, **kwargs): """ Save the Blackchirp FID to a pickle file. Parameters ---------- filepath - str Filepath to save the FID to kwargs - dict-like Additional keyword arguments that are passed to the pickle function. """ routines.save_obj(self, filepath, **kwargs) def perform_fft(self, start=0, stop=-1, window="boxcar", f_min=0.0, f_max=30000.0): """ Perform an FFT on the current FID to get the frequency domain spectrum. All of the arguments are optional, and provide control over how the FFT is performed, as well as post-processing parameters like window functions and zero-padding. This is based on the FFT code by Kyle Crabtree, with modifications to fit this dataclass. Parameters ---------- start - int, optional Starting index for the FID array to perform the FFT stop - int, optional End index for the FID array to perform the FFT zpf - int, optional Pad the FID with zeros to nth nearest power of 2 window - str Specify the window function used to process the FID. Defaults to boxcar, which is effectively no filtering. The names of the window functions available can be found at: https://docs.scipy.org/doc/scipy/reference/signal.windows.html f_min - float Specify the minimum frequency in the spectrum; everything below this value is set to zero f_max - float Specify the maximum frequency in the spectrum; everything above this value is set to zero Returns ------- """ fid = np.copy(self.xy_data[1]) if window is not None and window in spsig.windows.__all__: window_f = spsig.windows.get_window(window, fid.size) fid *= window_f else: raise Exception("Specified window function is not implemented in SciPy!") # Set values to zero up to starting index fid[:start] = 0.0 if stop < 0: # If we're using negative indexes fid[fid.size + stop :] = 0.0 else: # Otherwise, index with a positive number fid[stop:] = 0.0 # Perform the FFT fft = np.fft.rfft(fid) read_length = len(fid) // 2 + 1 df = 1.0 / fid.size / self.header["spacing"] # Generate the frequency array frequency = np.linspace(0.0, self.header["sideband"] * df, read_length) frequency += self.header["probe_freq"] fft[(frequency >= f_max) & (frequency <= f_min)] = 0.0 fft *= 1000.0 return frequency, fft def determine_frequencies(self): """ Calculate the frequency bins for the FFT. Returns ------- frequency - numpy 1D array Array containing the frequency bins (x values) """ fid = self.xy_data[1] df = 1.0 / fid.size / self.header["spacing"] read_length = len(fid) // 2 + 1 # Generate the frequency array frequency = np.linspace(0.0, self.header["sideband"] * df, read_length) frequency += self.header["probe_freq"] return frequency
4,983
33,421
304
cf478e66633fb9947f670d728f5489d1a7e3d900
999
py
Python
dnsimple/struct/domain_renewal.py
mherrmann/dnsimple-python
a89127f0bafb2a001c902206fba87cbc4f3bc2d1
[ "MIT" ]
12
2020-06-18T17:16:03.000Z
2022-03-23T08:35:49.000Z
dnsimple/struct/domain_renewal.py
mherrmann/dnsimple-python
a89127f0bafb2a001c902206fba87cbc4f3bc2d1
[ "MIT" ]
129
2020-06-25T12:15:51.000Z
2022-03-23T09:42:16.000Z
dnsimple/struct/domain_renewal.py
mherrmann/dnsimple-python
a89127f0bafb2a001c902206fba87cbc4f3bc2d1
[ "MIT" ]
6
2020-07-03T09:34:01.000Z
2021-12-20T04:29:59.000Z
import json from dataclasses import dataclass import omitempty from dnsimple.struct import Struct class DomainRenewRequest(dict): """DomainRenewRequest represents the attributes you can pass to a renew API request.""" @dataclass class DomainRenewal(Struct): """Represents the result of a domain renewal call.""" id = None """The domain registration ID in DNSimple""" domain_id = None """The associated domain ID""" state = None """The state of the renewal""" period = None """The number of years the domain was registered for""" created_at = None """When the domain renewal was created in DNSimple""" updated_at = None """When the domain renewal was last updated in DNSimple"""
27
91
0.692693
import json from dataclasses import dataclass import omitempty from dnsimple.struct import Struct class DomainRenewRequest(dict): """DomainRenewRequest represents the attributes you can pass to a renew API request.""" def __init__(self, period=None, premium_price=None): dict.__init__(self, period=period, premium_price=premium_price) def to_json(self): return json.dumps(omitempty(self)) @dataclass class DomainRenewal(Struct): """Represents the result of a domain renewal call.""" id = None """The domain registration ID in DNSimple""" domain_id = None """The associated domain ID""" state = None """The state of the renewal""" period = None """The number of years the domain was registered for""" created_at = None """When the domain renewal was created in DNSimple""" updated_at = None """When the domain renewal was last updated in DNSimple""" def __init__(self, data): super().__init__(data)
178
0
80
ab2b1e286f0be8439a38f4a5f410e09790e73292
898
py
Python
transmute_core/framework/request_adapter.py
yunstanford/transmute-core
a8e5dd055f0f3d39327d71dd61bf0ee147f59ebe
[ "MIT" ]
null
null
null
transmute_core/framework/request_adapter.py
yunstanford/transmute-core
a8e5dd055f0f3d39327d71dd61bf0ee147f59ebe
[ "MIT" ]
null
null
null
transmute_core/framework/request_adapter.py
yunstanford/transmute-core
a8e5dd055f0f3d39327d71dd61bf0ee147f59ebe
[ "MIT" ]
null
null
null
class RequestAdapter(object): """ RequestAdapters bridge transmute's representation of a request, with the framework's implementation. implement the unimplemented methods. """ @property def body(self): """ return the request body. """ raise NotImplementedError() def _get_framework_args(self): """ often, a framework provides specific variables that are passed into the handler function (e.g. the request object in aiohttp). return a dictionary of these arguments, which will be added to the function arguments if they appear. """ raise NotImplementedError()
28.0625
71
0.662584
class RequestAdapter(object): """ RequestAdapters bridge transmute's representation of a request, with the framework's implementation. implement the unimplemented methods. """ @property def body(self): """ return the request body. """ raise NotImplementedError() def _get_framework_args(self): """ often, a framework provides specific variables that are passed into the handler function (e.g. the request object in aiohttp). return a dictionary of these arguments, which will be added to the function arguments if they appear. """ raise NotImplementedError() def _query_argument(self, key, is_list): raise NotImplementedError() def _header_argument(self, key): raise NotImplementedError() def _path_argument(self, key): raise NotImplementedError()
147
0
81
2d8767d69cb3fe7dd0333a69a100b095f51eda10
942
py
Python
week4_divide_and_conquer/4_number_of_inversions/inversions.py
thegautamkumarjaiswal/Algorithm-s_ToolBox_Solutions
bb265647ed183f44e0d56f14a4b8b966af73dfd2
[ "Apache-2.0" ]
null
null
null
week4_divide_and_conquer/4_number_of_inversions/inversions.py
thegautamkumarjaiswal/Algorithm-s_ToolBox_Solutions
bb265647ed183f44e0d56f14a4b8b966af73dfd2
[ "Apache-2.0" ]
null
null
null
week4_divide_and_conquer/4_number_of_inversions/inversions.py
thegautamkumarjaiswal/Algorithm-s_ToolBox_Solutions
bb265647ed183f44e0d56f14a4b8b966af73dfd2
[ "Apache-2.0" ]
null
null
null
# python3 """ Task: Count the number of inversions of a given sequence """ tot_count = 0 n = int ( input () ) seq = [ int ( i ) for i in input ().split () ] mergesort ( seq ) print ( tot_count )
21.409091
64
0.505308
# python3 """ Task: Count the number of inversions of a given sequence """ def merge(left , right) : i , j , inversion_counter = 0 , 0 , 0 final = list () while i < len ( left ) and j < len ( right ) : if left [ i ] <= right [ j ] : final.append ( left [ i ] ) i += 1 else : final.append ( right [ j ] ) inversion_counter += len ( left ) - i j += 1 final += left [ i : ] final += right [ j : ] return final , inversion_counter def mergesort(arr) : global tot_count if len ( arr ) <= 1 : return arr mid = len ( arr ) // 2 left = mergesort ( arr [ :mid ] ) right = mergesort ( arr [ mid : ] ) sorted_arr , temp = merge ( left , right ) tot_count += temp return sorted_arr tot_count = 0 n = int ( input () ) seq = [ int ( i ) for i in input ().split () ] mergesort ( seq ) print ( tot_count )
696
0
46
7672fabf7a8b7a3f323dedbf8df709a757105afa
3,646
py
Python
py3/tflib/lsun256.py
fr42k/gap-wgan-gp
4e373c43d606a1b83f76893d93f9cf8be8cd460d
[ "MIT" ]
null
null
null
py3/tflib/lsun256.py
fr42k/gap-wgan-gp
4e373c43d606a1b83f76893d93f9cf8be8cd460d
[ "MIT" ]
null
null
null
py3/tflib/lsun256.py
fr42k/gap-wgan-gp
4e373c43d606a1b83f76893d93f9cf8be8cd460d
[ "MIT" ]
null
null
null
import numpy as np import scipy.misc import os import time # from PIL import Image DATA_DIR = '/home/ubuntu/lsun/bedrooms/' NEW_DATA_DIR = '/home/ubuntu/lsun/bedrooms_128/' # with open(DATA_DIR+'files.txt', 'r') as f: # files = [l[:-1] for l in f] # # images = np.zeros((batch_size, 3, 256, 256), dtype='int32') # random_state = np.random.RandomState(42) # random_state.shuffle(files) # z = 1729468 # for i, path in enumerate(files): # if i < 1729500: # continue # try: # image = scipy.misc.imread( # os.path.normpath(os.path.join(DATA_DIR, path)) # ) # # try: # # image = image.transpose(2,0,1) # offset_y = (image.shape[0]-256)/2 # offset_x = (image.shape[1]-256)/2 # image = image[offset_y:offset_y+256, offset_x:offset_x+256] # image = image[::2,::2]+image[1::2,::2]+image[::2,1::2]+image[1::2,1::2] # image = image / 4 # # image = image.astype('int32') # # im = Image.fromarray(image) # # p = os.path.normpath(os.path.join(NEW_DATA_DIR, path)) # # try: # # os.makedirs(os.path.dirname(p)) # # except: # # pass # scipy.misc.imsave(NEW_DATA_DIR+'{}.jpg'.format(z), image) # # im.save(p[:-4]+'jpg') # if z % 100 == 0: # print z # z += 1 # except: # print "skip" # # if i > 0 and i % batch_size == 0: # # if downscale: # # downscaled_images = images[:,:,::2,::2] + images[:,:,1::2,::2] + images[:,:,::2,1::2] + images[:,:,1::2,1::2] # # downscaled_images = downscaled_images / 4. # # yield (downscaled_images.astype('int32'),) # # else: # # yield (images,) # # except Exception as ex: # # print ex # # print "warning data preprocess failed for path {}".format(path) if __name__ == '__main__': train_gen = load(64) t0 = time.time() for i, batch in enumerate(train_gen(), start=1): print "{}\t{}".format(str(time.time() - t0), batch[0][0,0,0,0]) if i == 1000: break t0 = time.time()
36.828283
133
0.507131
import numpy as np import scipy.misc import os import time # from PIL import Image DATA_DIR = '/home/ubuntu/lsun/bedrooms/' NEW_DATA_DIR = '/home/ubuntu/lsun/bedrooms_128/' # with open(DATA_DIR+'files.txt', 'r') as f: # files = [l[:-1] for l in f] # # images = np.zeros((batch_size, 3, 256, 256), dtype='int32') # random_state = np.random.RandomState(42) # random_state.shuffle(files) # z = 1729468 # for i, path in enumerate(files): # if i < 1729500: # continue # try: # image = scipy.misc.imread( # os.path.normpath(os.path.join(DATA_DIR, path)) # ) # # try: # # image = image.transpose(2,0,1) # offset_y = (image.shape[0]-256)/2 # offset_x = (image.shape[1]-256)/2 # image = image[offset_y:offset_y+256, offset_x:offset_x+256] # image = image[::2,::2]+image[1::2,::2]+image[::2,1::2]+image[1::2,1::2] # image = image / 4 # # image = image.astype('int32') # # im = Image.fromarray(image) # # p = os.path.normpath(os.path.join(NEW_DATA_DIR, path)) # # try: # # os.makedirs(os.path.dirname(p)) # # except: # # pass # scipy.misc.imsave(NEW_DATA_DIR+'{}.jpg'.format(z), image) # # im.save(p[:-4]+'jpg') # if z % 100 == 0: # print z # z += 1 # except: # print "skip" # # if i > 0 and i % batch_size == 0: # # if downscale: # # downscaled_images = images[:,:,::2,::2] + images[:,:,1::2,::2] + images[:,:,::2,1::2] + images[:,:,1::2,1::2] # # downscaled_images = downscaled_images / 4. # # yield (downscaled_images.astype('int32'),) # # else: # # yield (images,) # # except Exception as ex: # # print ex # # print "warning data preprocess failed for path {}".format(path) def load(batch_size, downscale=False): def generator(): with open(DATA_DIR+'files.txt', 'r') as f: files = [l[:-1] for l in f] images = np.zeros((batch_size, 3, 256, 256), dtype='int32') random_state = np.random.RandomState(42) random_state.shuffle(files) for i, path in enumerate(files): try: image = scipy.misc.imread( os.path.normpath(os.path.join(DATA_DIR, path)) ) except Exception as ex: print ex print "warning data load failed for path {}".format(path) try: image = image.transpose(2,0,1) offset_y = (image.shape[1]-256)/2 offset_x = (image.shape[2]-256)/2 images[i % batch_size] = image[:, offset_y:offset_y+256, offset_x:offset_x+256] if i > 0 and i % batch_size == 0: if downscale: downscaled_images = images[:,:,::2,::2] + images[:,:,1::2,::2] + images[:,:,::2,1::2] + images[:,:,1::2,1::2] downscaled_images = downscaled_images / 4 yield (downscaled_images.astype('int32'),) else: yield (images,) except Exception as ex: print ex print "warning data preprocess failed for path {}".format(path) return generator if __name__ == '__main__': train_gen = load(64) t0 = time.time() for i, batch in enumerate(train_gen(), start=1): print "{}\t{}".format(str(time.time() - t0), batch[0][0,0,0,0]) if i == 1000: break t0 = time.time()
1,458
0
23
0980ee7ae89d6028f2daf449114f96ec122ba0e5
3,461
py
Python
server/favorite_thing/serializers.py
omobosteven/favorite-things
c5fdf307f9a0c5d2ab659d0cc826f0f7201df141
[ "MIT" ]
null
null
null
server/favorite_thing/serializers.py
omobosteven/favorite-things
c5fdf307f9a0c5d2ab659d0cc826f0f7201df141
[ "MIT" ]
15
2019-12-04T23:16:58.000Z
2022-02-27T05:06:03.000Z
server/favorite_thing/serializers.py
omobosteven/favorite-things
c5fdf307f9a0c5d2ab659d0cc826f0f7201df141
[ "MIT" ]
1
2019-07-25T20:35:24.000Z
2019-07-25T20:35:24.000Z
from django.db.utils import IntegrityError from django.db.models import Q from rest_framework import serializers from core.models import FavoriteThing from core.models import Category from .helper import reorder_rankings, reorder_rankings_subtract
39.781609
78
0.645478
from django.db.utils import IntegrityError from django.db.models import Q from rest_framework import serializers from core.models import FavoriteThing from core.models import Category from .helper import reorder_rankings, reorder_rankings_subtract class FavoriteThingSerializer(serializers.ModelSerializer): category = serializers.SlugRelatedField( queryset=Category.objects.all(), slug_field='name') class Meta: model = FavoriteThing fields = ('favorite_thing_id', 'title', 'description', 'ranking', 'metadata', 'category', 'user', 'created_at', 'modified_at') read_only_fields = ( 'favorite_thing_id', 'user', 'created_at', 'modified_at') extra_kwargs = { 'description': {'required': False, 'min_length': 10}, } def create(self, validated_data): ranking = validated_data.get('ranking') category = validated_data.get('category') user = validated_data.get('user') rankings_queryset = FavoriteThing.objects.order_by('ranking')\ .filter(Q(category=category) & Q(user=user.user_id)) existing_ranking = rankings_queryset.filter(ranking=ranking) if not rankings_queryset and ranking > 1: ranking = 1 validated_data = {**validated_data, 'ranking': ranking} if rankings_queryset and \ ranking > rankings_queryset.last().ranking + 1: ranking = rankings_queryset.last().ranking + 1 validated_data = {**validated_data, 'ranking': ranking} if existing_ranking: next_rankings = rankings_queryset.filter(ranking__gte=ranking) reorder_rankings(next_rankings) try: favorite_thing = FavoriteThing.objects.create(**validated_data) return favorite_thing except IntegrityError: raise serializers.ValidationError('Favorite thing already exist') def update(self, instance, validated_data): ranking = validated_data.get('ranking', instance.ranking) category = validated_data.get('category', instance.category) user = instance.user favorite_thing_id = instance.favorite_thing_id rankings_queryset = FavoriteThing.objects.order_by('ranking')\ .filter(Q(category=category) & Q(user=user.user_id)) if ranking > rankings_queryset.last().ranking + 1: ranking = rankings_queryset.last().ranking validated_data = {**validated_data, 'ranking': ranking} existing_ranking = rankings_queryset.filter(ranking=ranking) if existing_ranking and \ existing_ranking.first().favorite_thing_id != \ favorite_thing_id: if ranking > instance.ranking: next_rankings = rankings_queryset.filter( ranking__range=(instance.ranking+1, ranking)) reorder_rankings_subtract(next_rankings) else: next_rankings = rankings_queryset.filter( ranking__range=(ranking, instance.ranking-1)) reorder_rankings(next_rankings) for attr, value in validated_data.items(): setattr(instance, attr, value) try: instance.save() return instance except IntegrityError: raise serializers.ValidationError( 'Favorite thing already exist in database')
2,592
597
23
52f33d0f97e1c3d24a976315266ee6737b9b34db
14,048
py
Python
tests/cron_job_tests/test_genomic_data_quality_pipeline.py
all-of-us/raw-data-repository
d28ad957557587b03ff9c63d55dd55e0508f91d8
[ "BSD-3-Clause" ]
39
2017-10-13T19:16:27.000Z
2021-09-24T16:58:21.000Z
tests/cron_job_tests/test_genomic_data_quality_pipeline.py
all-of-us/raw-data-repository
d28ad957557587b03ff9c63d55dd55e0508f91d8
[ "BSD-3-Clause" ]
312
2017-09-08T15:42:13.000Z
2022-03-23T18:21:40.000Z
tests/cron_job_tests/test_genomic_data_quality_pipeline.py
all-of-us/raw-data-repository
d28ad957557587b03ff9c63d55dd55e0508f91d8
[ "BSD-3-Clause" ]
19
2017-09-15T13:58:00.000Z
2022-02-07T18:33:20.000Z
# Tests for the Genomics Data Quality Pipeline import mock, datetime, pytz from rdr_service import clock from rdr_service.api_util import open_cloud_file from rdr_service.genomic_enums import GenomicJob, GenomicSubProcessStatus, GenomicSubProcessResult, \ GenomicManifestTypes, GenomicIncidentCode from tests.helpers.unittest_base import BaseTestCase from rdr_service.genomic.genomic_job_controller import DataQualityJobController from rdr_service.genomic.genomic_data_quality_components import ReportingComponent
42.313253
105
0.670487
# Tests for the Genomics Data Quality Pipeline import mock, datetime, pytz from rdr_service import clock from rdr_service.api_util import open_cloud_file from rdr_service.genomic_enums import GenomicJob, GenomicSubProcessStatus, GenomicSubProcessResult, \ GenomicManifestTypes, GenomicIncidentCode from tests.helpers.unittest_base import BaseTestCase from rdr_service.genomic.genomic_job_controller import DataQualityJobController from rdr_service.genomic.genomic_data_quality_components import ReportingComponent class GenomicDataQualityJobControllerTest(BaseTestCase): def setUp(self, with_data=True, with_consent_codes=False) -> None: super().setUp() @mock.patch('rdr_service.genomic.genomic_job_controller.genomic_job_run_update') @mock.patch('rdr_service.genomic.genomic_job_controller.bq_genomic_job_run_update') @mock.patch('rdr_service.dao.genomics_dao.GenomicJobRunDao.insert_run_record') @mock.patch('rdr_service.dao.genomics_dao.GenomicJobRunDao.update_run_record') def test_data_quality_job_controller_creation(self, job_update_mock, job_insert_mock, bq_update_mock, resource_update_mock): new_run = mock.Mock() new_run.id = 1 job_insert_mock.return_value = new_run # Test context manager works correctly with DataQualityJobController(GenomicJob.DAILY_SUMMARY_REPORT_JOB_RUNS): pass job_insert_mock.assert_called_with(GenomicJob.DAILY_SUMMARY_REPORT_JOB_RUNS) job_update_mock.assert_called_with(new_run.id, GenomicSubProcessResult.UNSET, GenomicSubProcessStatus.COMPLETED) bq_update_mock.assert_called() resource_update_mock.assert_called() @mock.patch('rdr_service.genomic.genomic_job_controller.DataQualityJobController.get_report') def test_controller_job_registry(self, report_job_mock): with DataQualityJobController(GenomicJob.DAILY_SUMMARY_REPORT_JOB_RUNS) as controller: controller.execute_workflow() report_job_mock.assert_called_once() class GenomicDataQualityComponentTest(BaseTestCase): def setUp(self, with_data=True, with_consent_codes=False) -> None: super().setUp() self.fake_time = datetime.datetime(2021, 2, 1, 0, 0, 0, 0, tzinfo=pytz.timezone("UTC")) def test_reporting_component_get_report_def_from_date(self): rc = ReportingComponent() with clock.FakeClock(self.fake_time): query_module = 'rdr_service.genomic.genomic_data.GenomicQueryClass.dq_report_runs_summary' with mock.patch(query_module) as query_def: query_def.return_value = ("", {}) # Report defs for reports report_def_d = rc.set_report_def(level="SUMMARY", target="RUNS", time_frame="D") report_def_w = rc.set_report_def(level="SUMMARY", target="RUNS", time_frame="W") exp_from_date_d = self.fake_time - datetime.timedelta(days=1) exp_from_date_w = self.fake_time - datetime.timedelta(days=7) self.assertEqual(exp_from_date_d, report_def_d.from_date) self.assertEqual(exp_from_date_w, report_def_w.from_date) def test_reporting_component_get_report_def_query(self): rc = ReportingComponent() # Report defs to test (QUERY, LEVEL, TARGET, TIME_FRAME) test_definitions = ( ("dq_report_runs_summary", {"level": "SUMMARY", "target": "RUNS", "time_frame": "D"}), ) for test_def in test_definitions: query_class = 'rdr_service.genomic.genomic_data.GenomicQueryClass' query_class += f".{test_def[0]}" with mock.patch(query_class) as query_mock: query_mock.return_value = ("", {}) rc.set_report_def(**test_def[1]) query_mock.assert_called() def test_reporting_component_summary_runs_query(self): # set up genomic job runs for report def_fields = ("jobId", "startTime", "runResult") run_defs = ( (GenomicJob.METRICS_INGESTION, self.fake_time, GenomicSubProcessResult.SUCCESS), (GenomicJob.METRICS_INGESTION, self.fake_time, GenomicSubProcessResult.SUCCESS), (GenomicJob.METRICS_INGESTION, self.fake_time, GenomicSubProcessResult.ERROR), (GenomicJob.AW1_MANIFEST, self.fake_time, GenomicSubProcessResult.SUCCESS), (GenomicJob.AW1_MANIFEST, self.fake_time, GenomicSubProcessResult.ERROR), (GenomicJob.AW1_MANIFEST, self.fake_time, GenomicSubProcessResult.ERROR), ) for run_def in run_defs: def_dict = dict(zip(def_fields, run_def)) self.data_generator.create_database_genomic_job_run(**def_dict) # Generate report with ReportingComponent rc = ReportingComponent() report_ran_time = self.fake_time + datetime.timedelta(hours=6) rc.set_report_def(level="SUMMARY", target="RUNS", time_frame="D") with clock.FakeClock(report_ran_time): report_data = rc.get_report_data() # Get the genomic_job_run records for row in report_data: if row['job_id'] == 1: self.assertEqual(0, row['UNSET']) self.assertEqual(2, row['SUCCESS']) self.assertEqual(1, row['ERROR']) if row['job_id'] == 8: self.assertEqual(0, row['UNSET']) self.assertEqual(1, row['SUCCESS']) self.assertEqual(2, row['ERROR']) self.assertEqual(0, row['NO_FILES']) self.assertEqual(0, row['INVALID_FILE_NAME']) self.assertEqual(0, row['INVALID_FILE_STRUCTURE']) class GenomicDataQualityReportTest(BaseTestCase): def setUp(self, with_data=False, with_consent_codes=False) -> None: super().setUp() def test_daily_ingestion_summary(self): # Set up test data bucket_name = "test-bucket" aw1_file_name = "AW1_wgs_sample_manifests/RDR_AoU_SEQ_PKG-2104-026571.csv" aw1_manifest_path = f"{bucket_name}/{aw1_file_name}" aw2_file_name = "AW2_wgs_data_manifests/RDR_AoU_SEQ_DataManifest_04092021.csv" aw2_manifest_path = f"{bucket_name}/{aw2_file_name}" # Create AW1 job_run aw1_job_run = self.data_generator.create_database_genomic_job_run( jobId=GenomicJob.AW1_MANIFEST, startTime=clock.CLOCK.now(), runResult=GenomicSubProcessResult.SUCCESS ) # Create AW2 job_run aw2_job_run = self.data_generator.create_database_genomic_job_run( jobId=GenomicJob.METRICS_INGESTION, startTime=clock.CLOCK.now(), runResult=GenomicSubProcessResult.SUCCESS ) # Create genomic_aw1_raw record self.data_generator.create_database_genomic_aw1_raw( file_path=aw1_manifest_path, package_id="PKG-2104-026571", biobank_id="A10001", ) # Create genomic_aw2_raw record self.data_generator.create_database_genomic_aw2_raw( file_path=aw2_manifest_path, biobank_id="A10001", sample_id="100001", biobankidsampleid="A10001_100001", ) # Create AW1 genomic_manifest_file record aw1_manifest_file = self.data_generator.create_database_genomic_manifest_file( created=clock.CLOCK.now(), modified=clock.CLOCK.now(), uploadDate=clock.CLOCK.now(), manifestTypeId=GenomicManifestTypes.BIOBANK_GC, filePath=aw1_manifest_path, fileName=aw1_file_name, bucketName=bucket_name, recordCount=1, rdrProcessingComplete=1, rdrProcessingCompleteDate=clock.CLOCK.now(), ) # Create AW2 genomic_manifest_file record aw2_manifest_file = self.data_generator.create_database_genomic_manifest_file( created=clock.CLOCK.now(), modified=clock.CLOCK.now(), uploadDate=clock.CLOCK.now(), manifestTypeId=GenomicManifestTypes.GC_DRC, filePath=aw2_manifest_path, fileName=aw2_file_name, bucketName=bucket_name, recordCount=1, rdrProcessingComplete=1, rdrProcessingCompleteDate=clock.CLOCK.now(), ) # Create AW1 file_processed self.data_generator.create_database_genomic_file_processed( runId=aw1_job_run.id, startTime=clock.CLOCK.now(), genomicManifestFileId=aw1_manifest_file.id, filePath=f"/{aw1_manifest_path}", bucketName=bucket_name, fileName=aw1_file_name, ) # Create AW2 file_processed self.data_generator.create_database_genomic_file_processed( runId=aw2_job_run.id, startTime=clock.CLOCK.now(), genomicManifestFileId=aw2_manifest_file.id, filePath=f"/{aw2_manifest_path}", bucketName=bucket_name, fileName=aw2_file_name, ) with DataQualityJobController(GenomicJob.DAILY_SUMMARY_REPORT_INGESTIONS) as controller: report_output = controller.execute_workflow() expected_report = "```Daily Ingestions Summary\n" expected_report += "record_count ingested_count incident_count " expected_report += "file_type gc_site_id genome_type file_path\n" expected_report += "1 0 0 aw1 rdr aou_wgs " expected_report += f"{aw1_manifest_path}\n" expected_report += "1 0 0 aw2 rdr aou_wgs " expected_report += f"{aw2_manifest_path}" expected_report += "\n```" self.assertEqual(expected_report, report_output) @mock.patch('rdr_service.services.slack_utils.SlackMessageHandler.send_message_to_webhook') @mock.patch('rdr_service.genomic.genomic_data_quality_components.ReportingComponent.get_report_data') @mock.patch('rdr_service.genomic.genomic_data_quality_components.ReportingComponent.format_report') def test_report_slack_integration(self, format_mock, report_data_mock, slack_handler_mock): # Mock the generated report expected_report = "record_count ingested_count incident_count " expected_report += "file_type gc_site_id genome_type file_path\n" expected_report += "1 0 0 aw1 rdr aou_wgs " expected_report += "test-bucket/AW1_wgs_sample_manifests/RDR_AoU_SEQ_PKG-2104-026571.csv" expected_report += "\n" report_data_mock.return_value = None # skip running the report query format_mock.return_value = expected_report # Run the workflow with DataQualityJobController(GenomicJob.DAILY_SUMMARY_REPORT_INGESTIONS) as controller: controller.execute_workflow(slack=True) # Test the slack API was called correctly slack_handler_mock.assert_called_with(message_data={'text': expected_report}) def test_daily_ingestion_summary_no_files(self): with DataQualityJobController(GenomicJob.DAILY_SUMMARY_REPORT_INGESTIONS) as controller: report_output = controller.execute_workflow() expected_report = "No data to display for Daily Ingestions Summary" self.assertEqual(expected_report, report_output) @mock.patch('rdr_service.genomic.genomic_data_quality_components.ReportingComponent.format_report') def test_daily_ingestion_summary_long_report(self, format_mock): format_mock.return_value = "test\n" * 30 with DataQualityJobController(GenomicJob.DAILY_SUMMARY_REPORT_INGESTIONS) as controller: report_output = controller.execute_workflow(slack=True) expected_report = "test\n" * 30 with open_cloud_file(report_output, 'r') as report_file: report_file_data = report_file.read() self.assertEqual(expected_report, report_file_data) def test_daily_incident_report(self): # timeframes time_1 = datetime.datetime(2021, 5, 13, 0, 0, 0, 0) time_2 = time_1 - datetime.timedelta(days=2) # Set up test data # Create AW1 job_run aw1_job_run = self.data_generator.create_database_genomic_job_run( jobId=GenomicJob.AW1_MANIFEST, startTime=time_1, runResult=GenomicSubProcessResult.SUCCESS ) with clock.FakeClock(time_1): # Incident included in report self.data_generator.create_database_genomic_incident( code=GenomicIncidentCode.UNABLE_TO_FIND_MEMBER.name, message='test message', source_job_run_id=aw1_job_run.id, biobank_id="10001", sample_id="20001", collection_tube_id="30001", ) with clock.FakeClock(time_2): # Incident excluded from report self.data_generator.create_database_genomic_incident( code=GenomicIncidentCode.UNABLE_TO_FIND_MEMBER.name, message='test message 2', source_job_run_id=aw1_job_run.id, biobank_id="10002", sample_id="20002", collection_tube_id="30002", ) with clock.FakeClock(time_1): with DataQualityJobController(GenomicJob.DAILY_SUMMARY_REPORT_INCIDENTS) as controller: report_output = controller.execute_workflow() expected_report = "```Daily Incidents Summary\n" expected_report += "code created biobank_id genomic_set_member_id " \ "source_job_run_id source_file_processed_id\n" expected_report += "UNABLE_TO_FIND_MEMBER 2021-05-13 00:00:00 10001 None 1 None" expected_report += "\n```" self.assertEqual(expected_report, report_output)
12,168
1,182
176
431ef6db152840abe39b59d1b1a27606e88c65d6
716
py
Python
Tried/Strings/1237.py
LorranSutter/URI-Online-Judge
aef885b9a7caa83484cf172e29eea8ec92fc3627
[ "MIT" ]
null
null
null
Tried/Strings/1237.py
LorranSutter/URI-Online-Judge
aef885b9a7caa83484cf172e29eea8ec92fc3627
[ "MIT" ]
null
null
null
Tried/Strings/1237.py
LorranSutter/URI-Online-Judge
aef885b9a7caa83484cf172e29eea8ec92fc3627
[ "MIT" ]
null
null
null
# Time limit exceeded while True: try: A = input() B = input() lA = len(A) lB = len(B) biggest = "" shortest = "" lshortest = 0 if max(lA, lB) == lA: biggest, shortest = A, B lbiggest = lA lshortest = lB else: biggest, shortest = B, A lbiggest = lB lshortest = lA bSub = 0 currentSub = 0 for k in range(lshortest): for w in range(lbiggest): if shortest[k] == biggest[w]: currentSub = 1 q = w+1 for p in range(k+1,lshortest): if q >= lbiggest: break if shortest[p] == biggest[q]: currentSub += 1 q += 1 else: break if currentSub >= bSub: bSub = currentSub print(bSub) except: break
14.916667
35
0.539106
# Time limit exceeded while True: try: A = input() B = input() lA = len(A) lB = len(B) biggest = "" shortest = "" lshortest = 0 if max(lA, lB) == lA: biggest, shortest = A, B lbiggest = lA lshortest = lB else: biggest, shortest = B, A lbiggest = lB lshortest = lA bSub = 0 currentSub = 0 for k in range(lshortest): for w in range(lbiggest): if shortest[k] == biggest[w]: currentSub = 1 q = w+1 for p in range(k+1,lshortest): if q >= lbiggest: break if shortest[p] == biggest[q]: currentSub += 1 q += 1 else: break if currentSub >= bSub: bSub = currentSub print(bSub) except: break
0
0
0
32ed63da26a1030fea2213fe16ac945a18313b1b
1,490
py
Python
galvatron_lib/core/location_handlers/chrome_handler.py
viking333/galvatron
c2dc9c94ad64e79ad234c4a04b039f6cf429e0f3
[ "MIT" ]
null
null
null
galvatron_lib/core/location_handlers/chrome_handler.py
viking333/galvatron
c2dc9c94ad64e79ad234c4a04b039f6cf429e0f3
[ "MIT" ]
null
null
null
galvatron_lib/core/location_handlers/chrome_handler.py
viking333/galvatron
c2dc9c94ad64e79ad234c4a04b039f6cf429e0f3
[ "MIT" ]
7
2019-08-22T15:17:44.000Z
2020-01-03T17:18:06.000Z
import os, urllib, requests, json priority = 1
37.25
230
0.672483
import os, urllib, requests, json priority = 1 def get_extension_id(arg1): package = "\"{}\"".format(arg1.replace("chrome://", "")) package = urllib.quote_plus(package) url = "https://chrome.google.com/webstore/ajax/item?hl=en&gl=GB&pv=20181009&count=2&searchTerm={}".format(package) resp = requests.post(url) data = json.loads(resp.text.replace(")]}'\n\n", "")) items = [x[0] for x in data[1][1] if x[1] == arg1.replace("chrome://", "")] if len(items): return items[0] return None def download_extension(app, extension_id, browser_version="49.0"): url = "https://clients2.google.com/service/update2/crx?response=redirect&acceptformat=crx3&prodversion={version}&x=id%3D{extension_id}%26installsource%3Dondemand%26uc".format(version=browser_version, extension_id=extension_id) dest_location = os.path.join(os.sep, "tmp", "{}.zip".format(extension_id)) print(dest_location) try: urllib.urlretrieve(url, dest_location) except Exception as ex: app.output(ex) return None return dest_location def handles(location): return location.lower().startswith("chrome://") def handle(app, location): extension_id = get_extension_id(location) if extension_id: app.output("Downloading chrome extension {}".format(extension_id)) return (download_extension(app, extension_id), None) else: app.error("Chrome extension not found") return (None, None)
1,351
0
92
eb509f37c00b60320a88eccf0074acfe172aadc6
124
py
Python
Code/lecture 17/code6_list.py
capacitybuilding/Introduction-to-Computng
77639e53ed53896581c4a8431f32198237ac70dc
[ "MIT" ]
null
null
null
Code/lecture 17/code6_list.py
capacitybuilding/Introduction-to-Computng
77639e53ed53896581c4a8431f32198237ac70dc
[ "MIT" ]
null
null
null
Code/lecture 17/code6_list.py
capacitybuilding/Introduction-to-Computng
77639e53ed53896581c4a8431f32198237ac70dc
[ "MIT" ]
null
null
null
list1 = [1, 4, 8, 2, 9] print len(list1) print max(list1), min(list1) print list1[-2] print list1[-5:3] print list1[-3:]
12.4
28
0.629032
list1 = [1, 4, 8, 2, 9] print len(list1) print max(list1), min(list1) print list1[-2] print list1[-5:3] print list1[-3:]
0
0
0
698015ddf789237819b0eaa04da727793abc9f2a
2,079
py
Python
plot/histogram.py
IvoryLu/data-processing
65d91537dea777d037e9a419a355a0c8493aa19c
[ "BSD-3-Clause" ]
null
null
null
plot/histogram.py
IvoryLu/data-processing
65d91537dea777d037e9a419a355a0c8493aa19c
[ "BSD-3-Clause" ]
null
null
null
plot/histogram.py
IvoryLu/data-processing
65d91537dea777d037e9a419a355a0c8493aa19c
[ "BSD-3-Clause" ]
null
null
null
from matplotlib import pyplot as plt from script import sales_times1 from script import sales_times2 # normed=True This command divides the height of each column by # a constant such that the total shaded area of the histogram sums # to 1 plt.hist(sales_times1, bins=20, alpha=0.4, normed=True) plt.hist(sales_times2, bins=20, alpha=0.4, normed=True) plt.show() #%% from matplotlib import pyplot as plt exam_scores1 = [62.58, 67.63, 81.37, 52.53, 62.98, 72.15, 59.05, 73.85, 97.24, 76.81, 89.34, 74.44, 68.52, 85.13, 90.75, 70.29, 75.62, 85.38, 77.82, 98.31, 79.08, 61.72, 71.33, 80.77, 80.31, 78.16, 61.15, 64.99, 72.67, 78.94] exam_scores2 = [72.38, 71.28, 79.24, 83.86, 84.42, 79.38, 75.51, 76.63, 81.48,78.81,79.23,74.38,79.27,81.07,75.42,90.35,82.93,86.74,81.33,95.1,86.57,83.66,85.58,81.87,92.14,72.15,91.64,74.21,89.04,76.54,81.9,96.5,80.05,74.77,72.26,73.23,92.6,66.22,70.09,77.2] # Make your plot here plt.figure(figsize=(10,8)) plt.hist(exam_scores1,bins=12,normed=True, histtype='step',linewidth=2) plt.hist(exam_scores2,bins=12,normed=True, histtype='step',linewidth=2) legends=["1st Yr Teaching","2nd Yr Teaching"] plt.legend(legends) plt.title("Final Exam Score Distribution") plt.xlabel("Percentage") plt.ylabel("Frequency") plt.savefig("my_histogram.png") #%% import numpy as np import pandas as pd # Import matplotlib pyplot from matplotlib import pyplot as plt # Read in transactions data greatest_books = pd.read_csv("top-hundred-books.csv") # Save transaction times to a separate numpy array author_ages = greatest_books['Ages'] # Use numpy to calculate the average age of the top 100 authors average_age = np.average(author_ages) print("The average age of the 100 greatest authors, according to Le Monde is: " + str(average_age)) # Plot the figure plt.hist(author_ages, range=(10, 80), bins=14, edgecolor='black') plt.title("Age of Top 100 Novel Authors at Publication") plt.xlabel("Publication Age") plt.ylabel("Count") plt.axvline(average_age, color='r', linestyle='solid', linewidth=2, label="Mean") plt.legend() plt.show()
36.473684
259
0.721501
from matplotlib import pyplot as plt from script import sales_times1 from script import sales_times2 # normed=True This command divides the height of each column by # a constant such that the total shaded area of the histogram sums # to 1 plt.hist(sales_times1, bins=20, alpha=0.4, normed=True) plt.hist(sales_times2, bins=20, alpha=0.4, normed=True) plt.show() #%% from matplotlib import pyplot as plt exam_scores1 = [62.58, 67.63, 81.37, 52.53, 62.98, 72.15, 59.05, 73.85, 97.24, 76.81, 89.34, 74.44, 68.52, 85.13, 90.75, 70.29, 75.62, 85.38, 77.82, 98.31, 79.08, 61.72, 71.33, 80.77, 80.31, 78.16, 61.15, 64.99, 72.67, 78.94] exam_scores2 = [72.38, 71.28, 79.24, 83.86, 84.42, 79.38, 75.51, 76.63, 81.48,78.81,79.23,74.38,79.27,81.07,75.42,90.35,82.93,86.74,81.33,95.1,86.57,83.66,85.58,81.87,92.14,72.15,91.64,74.21,89.04,76.54,81.9,96.5,80.05,74.77,72.26,73.23,92.6,66.22,70.09,77.2] # Make your plot here plt.figure(figsize=(10,8)) plt.hist(exam_scores1,bins=12,normed=True, histtype='step',linewidth=2) plt.hist(exam_scores2,bins=12,normed=True, histtype='step',linewidth=2) legends=["1st Yr Teaching","2nd Yr Teaching"] plt.legend(legends) plt.title("Final Exam Score Distribution") plt.xlabel("Percentage") plt.ylabel("Frequency") plt.savefig("my_histogram.png") #%% import numpy as np import pandas as pd # Import matplotlib pyplot from matplotlib import pyplot as plt # Read in transactions data greatest_books = pd.read_csv("top-hundred-books.csv") # Save transaction times to a separate numpy array author_ages = greatest_books['Ages'] # Use numpy to calculate the average age of the top 100 authors average_age = np.average(author_ages) print("The average age of the 100 greatest authors, according to Le Monde is: " + str(average_age)) # Plot the figure plt.hist(author_ages, range=(10, 80), bins=14, edgecolor='black') plt.title("Age of Top 100 Novel Authors at Publication") plt.xlabel("Publication Age") plt.ylabel("Count") plt.axvline(average_age, color='r', linestyle='solid', linewidth=2, label="Mean") plt.legend() plt.show()
0
0
0
9f18495a49f1afc15c2ebfbfac14e88650c4cc8b
214
py
Python
basico/aula002/aula02.py
KaicPierre/Curso-de-Python3
6267ba92c298f0ffa103e374615f040b0db13339
[ "MIT" ]
1
2020-09-04T07:46:45.000Z
2020-09-04T07:46:45.000Z
basico/aula002/aula02.py
KaicPierre/Curso-de-Python3
6267ba92c298f0ffa103e374615f040b0db13339
[ "MIT" ]
null
null
null
basico/aula002/aula02.py
KaicPierre/Curso-de-Python3
6267ba92c298f0ffa103e374615f040b0db13339
[ "MIT" ]
null
null
null
# print(123456) # print('Kaic', 'Pierre', 'Outra Coisa') # print('Kaic', 'Pierre', sep='-', end='') # print('Testando', 'Outras', 'Coisas', sep='-', end='') print('428', '330', '048', sep='.', end='-') print('93')
30.571429
56
0.537383
# print(123456) # print('Kaic', 'Pierre', 'Outra Coisa') # print('Kaic', 'Pierre', sep='-', end='') # print('Testando', 'Outras', 'Coisas', sep='-', end='') print('428', '330', '048', sep='.', end='-') print('93')
0
0
0
6dda831cadd31c8f32d1dc02a292c613ee99c7ef
6,245
py
Python
voc_classifier/bert_model.py
myeonghak/kobert-multi-label-VOC-classifier
983524e8331b5e833d85779dfe7521c21bf2d1cd
[ "Apache-2.0" ]
6
2021-08-18T00:52:38.000Z
2021-12-03T12:37:18.000Z
voc_classifier/bert_model.py
myeonghak/kobert-multi-label-VOC-classifier
983524e8331b5e833d85779dfe7521c21bf2d1cd
[ "Apache-2.0" ]
null
null
null
voc_classifier/bert_model.py
myeonghak/kobert-multi-label-VOC-classifier
983524e8331b5e833d85779dfe7521c21bf2d1cd
[ "Apache-2.0" ]
1
2022-03-24T08:02:44.000Z
2022-03-24T08:02:44.000Z
import sys sys.path.append("../") # KoBERT 모델 import config import pandas as pd import numpy as np from sklearn.preprocessing import OneHotEncoder import torch from torch import nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import Dataset, DataLoader import gluonnlp as nlp from tqdm import tqdm, tqdm_notebook from KoBERT.kobert.utils import get_tokenizer from KoBERT.kobert.pytorch_kobert import get_pytorch_kobert_model from transformers import AdamW # from transformers.optimization import WarmupLinearSchedule from transformers import get_linear_schedule_with_warmup device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') bertmodel, vocab = get_pytorch_kobert_model() # 토크나이저 메서드를 tokenizer에 호출 # 코퍼스를 토큰으로 만드는 과정을 수행, 이 때 토크나이저는 kobert 패키지에 있는 get_tokenizer()를 사용하고, # 토큰화를 위해 필요한 단어 사전은 kobert의 vocab을 사용함. # uncased로 투입해야 하므로 lower = False tokenizer = get_tokenizer() tok = nlp.data.BERTSPTokenizer(tokenizer, vocab, lower = False) print(f'device using: {device}') model_config=config.model_config class EarlyStopping: """Early stops the training if validation loss doesn't improve after a given patience.""" def __init__(self, patience=7, verbose=False, delta=0, path='checkpoint.pt', trace_func=print): """ Args: patience (int): How long to wait after last time validation loss improved. Default: 7 verbose (bool): If True, prints a message for each validation loss improvement. Default: False delta (float): Minimum change in the monitored quantity to qualify as an improvement. Default: 0 path (str): Path for the checkpoint to be saved to. Default: 'checkpoint.pt' trace_func (function): trace print function. Default: print """ self.patience = patience self.verbose = verbose self.counter = 0 self.best_score = None self.early_stop = False self.val_loss_min = np.Inf self.delta = delta self.path = path self.trace_func = trace_func def save_checkpoint(self, val_loss, model): '''Saves model when validation loss decrease.''' if self.verbose: self.trace_func(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...') torch.save(model.state_dict(), self.path) self.val_loss_min = val_loss
36.098266
151
0.63699
import sys sys.path.append("../") # KoBERT 모델 import config import pandas as pd import numpy as np from sklearn.preprocessing import OneHotEncoder import torch from torch import nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import Dataset, DataLoader import gluonnlp as nlp from tqdm import tqdm, tqdm_notebook from KoBERT.kobert.utils import get_tokenizer from KoBERT.kobert.pytorch_kobert import get_pytorch_kobert_model from transformers import AdamW # from transformers.optimization import WarmupLinearSchedule from transformers import get_linear_schedule_with_warmup device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') bertmodel, vocab = get_pytorch_kobert_model() # 토크나이저 메서드를 tokenizer에 호출 # 코퍼스를 토큰으로 만드는 과정을 수행, 이 때 토크나이저는 kobert 패키지에 있는 get_tokenizer()를 사용하고, # 토큰화를 위해 필요한 단어 사전은 kobert의 vocab을 사용함. # uncased로 투입해야 하므로 lower = False tokenizer = get_tokenizer() tok = nlp.data.BERTSPTokenizer(tokenizer, vocab, lower = False) print(f'device using: {device}') model_config=config.model_config class Data_for_BERT(Dataset): def __init__(self, dataset, max_len, pad, pair, label_cols): # gluon nlp 패키지의 data.BERTSentenceTransform 메서드를 사용, # 버트 활용을 위한 토크나이저를 bert_tokenizer로 주고, # 문장 내 시퀀스의 최대 수를 max_len 인자로 제공. 이 말은 max_len개의 (단어를 쪼갠) 덩어리만 활용한다는 의미 # pad 인자는 max_len보다 짧은 문장을 패딩해주겠냐는 것을 묻는 것, # pair 인자는 문장으로 변환할지, 문장 쌍으로 변환할지. transform = nlp.data.BERTSentenceTransform(tok, max_seq_length = max_len, pad=pad, pair=pair) self.sentences = [transform([txt]) for txt in dataset.text] # self.sentences_Customer = [transform([txt]) for txt in dataset.Customer] # self.labels = [np.int32(i) for i in dataset.label] self.labels=dataset[label_cols].values # ohe = OneHotEncoder().fit(pd.Series(self.labels).values.reshape(-1,1)) # self.labels = ohe.transform(pd.Series(self.labels).values.reshape(-1,1)).toarray() # target.bcat # self.labels = b_ohe.fit_transform(pd.Series(self.labels).values.reshape(-1,1)) def __getitem__(self,i): return (self.sentences[i] + (self.labels[i],)) def __len__(self): return(len(self.labels)) class BERTClassifier(nn.Module): def __init__(self, hidden_size = 768, num_classes = 8, dr_rate = None, params = None): # BERTClassifier의 자식 노드에 클래스 속성을 상속시켜준다? # 인풋으로 넣는 bert 모델을 클래스 내부의 bert 메서드로 넣어주고 # dr_rate(drop-out rate)를 dr_rate로 넣어줌 super(BERTClassifier, self).__init__() self.bert = bertmodel self.dr_rate = dr_rate # 여기서 nn.Linear는 keras의 Dense 층과 같은 fully connected layer # hidden layer의 사이즈를 입력해주고(여기서는 768) # out-put layer의 사이즈를 num_classes 인자의 수만큼 잡아줌. # self.lstm_layer = nn.LSTM(512, 128, 2) self.classifier = nn.Linear(hidden_size, num_classes) # dr_rate가 정의되어 있을 경우, 넣어준 비율에 맞게 weight를 drop-out 시켜줌 if dr_rate: self.dropout = nn.Dropout(p=dr_rate) def generate_attention_mask(self, token_ids, valid_length): # 버트 모델에 사용할 attention_mask를 만들어 줌. # token_id를 인풋으로 받아, attention mask를 만들어 냄 # torch.zeros_like()는 토치 텐서를 인풋으로 받아, 스칼라 값 0으로 채워진 같은 사이즈의 텐서를 뱉어냄 attention_mask = torch.zeros_like(token_ids) for i,v in enumerate(valid_length): attention_mask[i][:v] = 1 return attention_mask.float() def forward(self, token_ids, valid_length, segment_ids): # attention mask 를 만들어 내고, 버트 모델을 넣어줌. attention_mask = self.generate_attention_mask(token_ids, valid_length) # .long() pytorch는 .to()와 같은 기능을 수행함. 이는 장치(GPU)에 모델을 넣어주는 역할을 수행 # 출력값으로 classifier() _, pooler = self.bert(input_ids = token_ids, token_type_ids = segment_ids.long(), attention_mask = attention_mask.float().to(token_ids.device)) if self.dr_rate: out=self.dropout(pooler) # output=self.lstm_layer(out) return self.classifier(out) class EarlyStopping: """Early stops the training if validation loss doesn't improve after a given patience.""" def __init__(self, patience=7, verbose=False, delta=0, path='checkpoint.pt', trace_func=print): """ Args: patience (int): How long to wait after last time validation loss improved. Default: 7 verbose (bool): If True, prints a message for each validation loss improvement. Default: False delta (float): Minimum change in the monitored quantity to qualify as an improvement. Default: 0 path (str): Path for the checkpoint to be saved to. Default: 'checkpoint.pt' trace_func (function): trace print function. Default: print """ self.patience = patience self.verbose = verbose self.counter = 0 self.best_score = None self.early_stop = False self.val_loss_min = np.Inf self.delta = delta self.path = path self.trace_func = trace_func def __call__(self, val_loss, model): score = -val_loss if self.best_score is None: self.best_score = score self.save_checkpoint(val_loss, model) elif score < self.best_score + self.delta: self.counter += 1 self.trace_func(f'EarlyStopping counter: {self.counter} out of {self.patience}') if self.counter >= self.patience: self.early_stop = True else: self.best_score = score self.save_checkpoint(val_loss, model) self.counter = 0 def save_checkpoint(self, val_loss, model): '''Saves model when validation loss decrease.''' if self.verbose: self.trace_func(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...') torch.save(model.state_dict(), self.path) self.val_loss_min = val_loss
4,011
19
261
55ed52af5669483d0d12633c9132b7026ed87a23
2,061
py
Python
src/plugins/pic_searcher/model.py
Lycreal/qbot
e0cb5af8295efb1d58780ac4a420551e1183ba8b
[ "MIT" ]
7
2019-10-09T07:09:37.000Z
2020-07-15T01:30:25.000Z
src/plugins/pic_searcher/model.py
Lycreal/cqbot
b189a17283a63e982bf7f99e529486af8d2bfb76
[ "MIT" ]
59
2021-05-20T07:21:50.000Z
2022-03-25T21:17:07.000Z
src/plugins/pic_searcher/model.py
Lycreal/cqbot
b189a17283a63e982bf7f99e529486af8d2bfb76
[ "MIT" ]
2
2020-12-31T06:23:10.000Z
2021-07-27T07:40:16.000Z
import urllib.parse from .saucenao import get_saucenao_detail, SauceNAOError
32.203125
95
0.5541
import urllib.parse from .saucenao import get_saucenao_detail, SauceNAOError class PicSearcher: @classmethod async def do_search(cls, image: str, site: str = 'saucenao') -> str: try: if site == 'saucenao': reply: str = await cls.do_search_saucenao(image) else: reply = await cls.do_search_saucenao(image) except Exception as e: import traceback reply = '处理异常:{}'.format("\n".join(traceback.format_exception_only(type(e), e))) return reply @classmethod async def do_search_saucenao(cls, img_url: str) -> str: try: results = await get_saucenao_detail(img_url) for result in [result for result in results if cls.float(result.Similarity) > 0.9]: if cls.check_pixiv_url(result.URL): break else: if results and cls.float(results[0].Similarity) > 0.6: result = results[0] else: result = None if result: result.URL = cls.shorten_pixiv_url(result.URL) reply = str(result) else: reply = '未找到相似图片\n' except SauceNAOError as e: reply = str(e) return reply.strip() @staticmethod def float(string: str) -> float: """百分数转为int""" if string.endswith('%'): return float(string.rstrip("%")) / 100 else: return float(string) @staticmethod def check_pixiv_url(url: str) -> bool: parse = urllib.parse.urlparse(url) return bool('pixiv' in parse.hostname) @staticmethod def shorten_pixiv_url(url: str) -> str: parse = urllib.parse.urlparse(url) if 'pixiv' in parse.hostname: querys = dict(urllib.parse.parse_qsl(parse.query)) illust_id = querys.get('illust_id') if illust_id: return f'https://www.pixiv.net/artworks/{illust_id}' return url
1,599
394
23
47c13dd4c0d747a6ab363ae514e4d9c517553a49
48
py
Python
week1/logical1.py
pkoarmy/Learning-Python
79067de3c09240d26939ca23ec98e96304660e7c
[ "MIT" ]
null
null
null
week1/logical1.py
pkoarmy/Learning-Python
79067de3c09240d26939ca23ec98e96304660e7c
[ "MIT" ]
null
null
null
week1/logical1.py
pkoarmy/Learning-Python
79067de3c09240d26939ca23ec98e96304660e7c
[ "MIT" ]
null
null
null
A = True B = False print(A and B) print(A or B)
9.6
14
0.625
A = True B = False print(A and B) print(A or B)
0
0
0
49326b7f76171a6e4c3018363dc191db9d2b6e72
8,565
py
Python
Dockerfiles/gedlab-khmer-filter-abund/pymodules/python2.7/lib/python/pygsl/gsl_function.py
poojavade/Genomics_Docker
829b5094bba18bbe03ae97daf925fee40a8476e8
[ "Apache-2.0" ]
1
2019-07-29T02:53:51.000Z
2019-07-29T02:53:51.000Z
Dockerfiles/gedlab-khmer-filter-abund/pymodules/python2.7/lib/python/pygsl/gsl_function.py
poojavade/Genomics_Docker
829b5094bba18bbe03ae97daf925fee40a8476e8
[ "Apache-2.0" ]
1
2021-09-11T14:30:32.000Z
2021-09-11T14:30:32.000Z
Dockerfiles/gedlab-khmer-filter-abund/pymodules/python2.7/lib/python/pygsl/gsl_function.py
poojavade/Genomics_Docker
829b5094bba18bbe03ae97daf925fee40a8476e8
[ "Apache-2.0" ]
2
2016-12-19T02:27:46.000Z
2019-07-29T02:53:54.000Z
#!/usr/bin/env python # Author : Pierre Schnizer """ Collection of Callbacks systems for pygsl. They follow the GSL definitions as close as possible. Instead os a struct python classes are used. All solvers accept a C void pointer, which is passed to the callback. In Pygsl this is an abitrary python object. See the doc strings of the various classes for further detail. """ from . import _callback class gsl_function(_gsl_function): """ This class defines the callbacks known as gsl_function to gsl. e.g to supply the function f: def f(x, params): a = params[0] b = parmas[1] c = params[3] return a * x ** 2 + b * x + c to some solver, use function = gsl_function(f, params) """ initfunc = _callback.gsl_function_init freefunc = _callback.gsl_function_free class gsl_function_fdf(_gsl_function_fdf): """ This class defines the callbacks known as gsl_function_fdf to gsl. e.g to supply the function f: def f(x, None): return exp(2 * x) def df(x, None): return 2 * exp(2 * x) def fdf(x, None): myf = f(x, None) mydf = df(x, None) return myf, mydf to some solver, accepting gsl_function_fdf, use function = gsl_function_fdf(f, df, fdf, params) """ initfunc = _callback.gsl_function_init_fdf freefunc = _callback.gsl_function_free_fdf class gsl_multiroot_function(_gsl_function): """ This class defines the callbacks for gsl_multiroot_function. To supply the function rosenbrock define the function: def rosenbrock_f(x, params): a = params[0] b = params[1] y = copy.copy(x) y[0] = a * (1 - x[0]) y[1] = b * (x[1] - x[0] * x[0]) return y sys = multiroots.gsl_multiroot_function(rosenbrock_f, params, 2) """ initfunc = _callback.gsl_multiroot_function_init freefunc = _callback.gsl_multiroot_function_free class gsl_multiroot_function_fdf(_gsl_function_fdf): """ This class defines the callbacks for gsl_multiroot_function. To supply the function rosenbrock define the functions: def rosenbrock_f(x, params): a = params[0] b = params[1] y = copy.copy(x) y[0] = a * (1 - x[0]) y[1] = b * (x[1] - x[0] * x[0]) return y def rosenbrock_df(x, params): a = params[0] b = params[1] df = Numeric.zeros((x.shape[0], x.shape[0]), Numeric.Float) df[0,0] = -a df[0,1] = 0 df[1,0] = -2 * b * x[0] df[1,1] = b return df def rosenbrock_fdf(x, params): f = rosenbrock_f(x, params) df = rosenbrock_df(x, params) return f, df # dimension of x size = 2 sys = multiroots.gsl_multiroot_function(rosenbrock_f, rosenbrock_df, rosenbrock_fdf, params, size) """ initfunc = _callback.gsl_multiroot_function_init_fdf freefunc = _callback.gsl_multiroot_function_free_fdf class gsl_multifit_function(_gsl_function): """ This class defines the callbacks for gsl_multimin_function. To fit a exponential function to data write the following function: def exp_f(x, params): A = x[0] lambda_ = x[1] b = x[2] t= params[0] yi = params[1] sigma = params[2] Yi = A * exp(-lambda_ * t) + b f = yi - Yi / sigma return f # Number of data samples n = len(data) # Number of paramters p = 3 multifit_nlin.gsl_multifit_function(exp_f, data, n, p) """ initfunc = _callback.gsl_multifit_function_init freefunc = _callback.gsl_multifit_function_free class gsl_multifit_function_fdf(_gsl_function_fdf): """ This class defines the callbacks for gsl_multimin_function. def exp_f(x, params): A = x[0] lambda_ = x[1] b = x[2] t= params[0] yi = params[1] sigma = params[2] Yi = A * exp(-lambda_ * t) + b f = yi - Yi / sigma return f def exp_df(x, params): A = x[0] lambda_ = x[1] b = x[2] t= params[0] yi = params[1] sigma = params[2] e = exp(-lambda_ * t) e_s = e/sigma df = Numeric.array((e_s, -t * A * e_s, 1/sigma)) df = Numeric.transpose(df) print df.shape return df def exp_fdf(x, params): f = exp_f(x, params) df = exp_df(x, params) return f, df # Number of data samples n = len(data) # Number of paramters p = 3 multifit_nlin.gsl_multifit_function_fdf(exp_f, exp_df, exp_fdf, data, n, p) """ initfunc = _callback.gsl_multifit_function_init_fdf freefunc = _callback.gsl_multifit_function_free_fdf class gsl_multimin_function(gsl_multiroot_function): """ This class defines the callbacks for gsl_multimin_function. The following example function defines a simple paraboloid with two parameters. To supply the system define the function: def my_f(v, params): x = v[0] y = v[1] dp = params t1 = (x - dp[0]) t2 = (y - dp[1]) f = 10.0 * t1 * t1 + 20.0 * t2 * t2 + 30.0 return f # dimension of x size = 2 sys = multimin.gsl_multifit_function(my_f, params, 2) """ initfunc = _callback.gsl_multimin_function_init freefunc = _callback.gsl_multimin_function_free class gsl_multimin_function_fdf(gsl_multiroot_function_fdf): """ This class defines the callbacks for gsl_multimin_function_fdf. The following example function defines a simple paraboloid with two parameters. To supply the system define the function: def my_f(v, params): x = v[0] y = v[1] dp = params t1 = (x - dp[0]) t2 = (y - dp[1]) f = 10.0 * t1 * t1 + 20.0 * t2 * t2 + 30.0 return f def my_df(v, params): x = v[0] y = v[1] df = Numeric.zeros(v.shape, Numeric.Float) dp = params df[0] = 20. * (x - dp[0]) df[1] = 40. * (y - dp[1]) return df def my_fdf(v, params): f = my_f(v, params) df = my_df(v,params) return f, df # dimension of x size = 2 sys = multimin.gsl_multifit_function(my_f, my_df, my_fdf, params, size) """ initfunc = _callback.gsl_multimin_function_init_fdf freefunc = _callback.gsl_multimin_function_free_fdf class gsl_monte_function(gsl_multiroot_function): """ This class defines the callbacks for gsl_monte_function. """ initfunc = _callback.gsl_monte_function_init freefunc = _callback.gsl_monte_function_free
26.682243
79
0.585873
#!/usr/bin/env python # Author : Pierre Schnizer """ Collection of Callbacks systems for pygsl. They follow the GSL definitions as close as possible. Instead os a struct python classes are used. All solvers accept a C void pointer, which is passed to the callback. In Pygsl this is an abitrary python object. See the doc strings of the various classes for further detail. """ from . import _callback class _gsl_function: initfunc = None freefunc = None def __init__(self, func, args): """ input : func, args func ... a callable Python object accepting a double and args args ... additional arguments. Supply None if not needed. """ self._ptr = None assert(self.initfunc != None) assert(self.freefunc != None) self._ptr = self.initfunc((func, args)) def __del__(self,): if hasattr(self, '_ptr'): if self._ptr != None: self.freefunc(self._ptr) def get_ptr(self): return self._ptr class _gsl_function_fdf(_gsl_function): def __init__(self, func, deriv, fdf, args): self._ptr = None assert(self.initfunc != None) assert(self.freefunc != None) self._ptr = self.initfunc((func, deriv, fdf, args)) class gsl_function(_gsl_function): """ This class defines the callbacks known as gsl_function to gsl. e.g to supply the function f: def f(x, params): a = params[0] b = parmas[1] c = params[3] return a * x ** 2 + b * x + c to some solver, use function = gsl_function(f, params) """ initfunc = _callback.gsl_function_init freefunc = _callback.gsl_function_free class gsl_function_fdf(_gsl_function_fdf): """ This class defines the callbacks known as gsl_function_fdf to gsl. e.g to supply the function f: def f(x, None): return exp(2 * x) def df(x, None): return 2 * exp(2 * x) def fdf(x, None): myf = f(x, None) mydf = df(x, None) return myf, mydf to some solver, accepting gsl_function_fdf, use function = gsl_function_fdf(f, df, fdf, params) """ initfunc = _callback.gsl_function_init_fdf freefunc = _callback.gsl_function_free_fdf class gsl_multiroot_function(_gsl_function): """ This class defines the callbacks for gsl_multiroot_function. To supply the function rosenbrock define the function: def rosenbrock_f(x, params): a = params[0] b = params[1] y = copy.copy(x) y[0] = a * (1 - x[0]) y[1] = b * (x[1] - x[0] * x[0]) return y sys = multiroots.gsl_multiroot_function(rosenbrock_f, params, 2) """ initfunc = _callback.gsl_multiroot_function_init freefunc = _callback.gsl_multiroot_function_free def __init__(self, func, args, size): self._ptr = None assert(self.initfunc != None) assert(self.freefunc != None) self._ptr = self.initfunc((func, args, size)) class gsl_multiroot_function_fdf(_gsl_function_fdf): """ This class defines the callbacks for gsl_multiroot_function. To supply the function rosenbrock define the functions: def rosenbrock_f(x, params): a = params[0] b = params[1] y = copy.copy(x) y[0] = a * (1 - x[0]) y[1] = b * (x[1] - x[0] * x[0]) return y def rosenbrock_df(x, params): a = params[0] b = params[1] df = Numeric.zeros((x.shape[0], x.shape[0]), Numeric.Float) df[0,0] = -a df[0,1] = 0 df[1,0] = -2 * b * x[0] df[1,1] = b return df def rosenbrock_fdf(x, params): f = rosenbrock_f(x, params) df = rosenbrock_df(x, params) return f, df # dimension of x size = 2 sys = multiroots.gsl_multiroot_function(rosenbrock_f, rosenbrock_df, rosenbrock_fdf, params, size) """ initfunc = _callback.gsl_multiroot_function_init_fdf freefunc = _callback.gsl_multiroot_function_free_fdf def __init__(self, f, df, fdf, args, size): self._ptr = None assert(self.initfunc != None) assert(self.freefunc != None) self._ptr = self.initfunc((f, df, fdf, args, size)) class gsl_multifit_function(_gsl_function): """ This class defines the callbacks for gsl_multimin_function. To fit a exponential function to data write the following function: def exp_f(x, params): A = x[0] lambda_ = x[1] b = x[2] t= params[0] yi = params[1] sigma = params[2] Yi = A * exp(-lambda_ * t) + b f = yi - Yi / sigma return f # Number of data samples n = len(data) # Number of paramters p = 3 multifit_nlin.gsl_multifit_function(exp_f, data, n, p) """ initfunc = _callback.gsl_multifit_function_init freefunc = _callback.gsl_multifit_function_free def __init__(self, f, args, n, p): self._ptr = None assert(self.initfunc != None) assert(self.freefunc != None) self._ptr = self.initfunc((f, args, n, p)) class gsl_multifit_function_fdf(_gsl_function_fdf): """ This class defines the callbacks for gsl_multimin_function. def exp_f(x, params): A = x[0] lambda_ = x[1] b = x[2] t= params[0] yi = params[1] sigma = params[2] Yi = A * exp(-lambda_ * t) + b f = yi - Yi / sigma return f def exp_df(x, params): A = x[0] lambda_ = x[1] b = x[2] t= params[0] yi = params[1] sigma = params[2] e = exp(-lambda_ * t) e_s = e/sigma df = Numeric.array((e_s, -t * A * e_s, 1/sigma)) df = Numeric.transpose(df) print df.shape return df def exp_fdf(x, params): f = exp_f(x, params) df = exp_df(x, params) return f, df # Number of data samples n = len(data) # Number of paramters p = 3 multifit_nlin.gsl_multifit_function_fdf(exp_f, exp_df, exp_fdf, data, n, p) """ initfunc = _callback.gsl_multifit_function_init_fdf freefunc = _callback.gsl_multifit_function_free_fdf def __init__(self, f, df, fdf, args, n, p): self._ptr = None assert(self.initfunc != None) assert(self.freefunc != None) self._ptr = self.initfunc((f, df, fdf, args, n, p)) class gsl_multimin_function(gsl_multiroot_function): """ This class defines the callbacks for gsl_multimin_function. The following example function defines a simple paraboloid with two parameters. To supply the system define the function: def my_f(v, params): x = v[0] y = v[1] dp = params t1 = (x - dp[0]) t2 = (y - dp[1]) f = 10.0 * t1 * t1 + 20.0 * t2 * t2 + 30.0 return f # dimension of x size = 2 sys = multimin.gsl_multifit_function(my_f, params, 2) """ initfunc = _callback.gsl_multimin_function_init freefunc = _callback.gsl_multimin_function_free class gsl_multimin_function_fdf(gsl_multiroot_function_fdf): """ This class defines the callbacks for gsl_multimin_function_fdf. The following example function defines a simple paraboloid with two parameters. To supply the system define the function: def my_f(v, params): x = v[0] y = v[1] dp = params t1 = (x - dp[0]) t2 = (y - dp[1]) f = 10.0 * t1 * t1 + 20.0 * t2 * t2 + 30.0 return f def my_df(v, params): x = v[0] y = v[1] df = Numeric.zeros(v.shape, Numeric.Float) dp = params df[0] = 20. * (x - dp[0]) df[1] = 40. * (y - dp[1]) return df def my_fdf(v, params): f = my_f(v, params) df = my_df(v,params) return f, df # dimension of x size = 2 sys = multimin.gsl_multifit_function(my_f, my_df, my_fdf, params, size) """ initfunc = _callback.gsl_multimin_function_init_fdf freefunc = _callback.gsl_multimin_function_free_fdf class gsl_monte_function(gsl_multiroot_function): """ This class defines the callbacks for gsl_monte_function. """ initfunc = _callback.gsl_monte_function_init freefunc = _callback.gsl_monte_function_free
1,015
520
186
25348b308d580d2c34e6c0dbc12c85b434a6ba49
441
py
Python
d05/main.py
burk3/aoc2020
541d6102276978ea5e4e7abbd25a8811268be148
[ "MIT" ]
null
null
null
d05/main.py
burk3/aoc2020
541d6102276978ea5e4e7abbd25a8811268be148
[ "MIT" ]
null
null
null
d05/main.py
burk3/aoc2020
541d6102276978ea5e4e7abbd25a8811268be148
[ "MIT" ]
null
null
null
import argparse if __name__ == "__main__": main()
20.045455
61
0.562358
import argparse def to_n(s: str) -> int: s = s.replace("F", "0").replace("B", "1") s = s.replace("L", "0").replace("R", "1") return int(s, base=2) def main(): parser = argparse.ArgumentParser() parser.add_argument("input", type=argparse.FileType("r")) args = parser.parse_args() r = 0 for line in args.input: r = max(r, to_n(line.strip())) print(r) if __name__ == "__main__": main()
339
0
46
f7651a1cc1b8afbcfdaaac06947975fdaeb6345c
1,128
py
Python
Bio-StrongHold/src/Creating_a_Restriction_Map.py
crf1111/Bio-Informatics-Learning
2ccc02d7a23584c12aee44c5620160cdcaf70bd4
[ "MIT" ]
1
2018-10-10T19:03:52.000Z
2018-10-10T19:03:52.000Z
Bio-StrongHold/src/Creating_a_Restriction_Map.py
crf1111/Bio-Informatics-Learning
2ccc02d7a23584c12aee44c5620160cdcaf70bd4
[ "MIT" ]
null
null
null
Bio-StrongHold/src/Creating_a_Restriction_Map.py
crf1111/Bio-Informatics-Learning
2ccc02d7a23584c12aee44c5620160cdcaf70bd4
[ "MIT" ]
null
null
null
from collections import Counter def partial_digest(distances): '''Returns a set whose positive pairwise differences generate 'distances'.''' # Initialize variables. X = {0} width = max(distances) # Create lambda functions for multiset operations. new_dist = lambda y, S: Counter(abs(y-s) for s in S) containment = lambda a, b: all(a[x] <= b[x] for x in a) # Create the multiset which generates 'distances'. while len(distances) > 0: y = max(distances) if containment(new_dist(y, X), distances): X |= {y} distances -= new_dist(y, X) else: X |= {width - y} distances -= new_dist(width - y, X) return X def main(): '''Main call. Reads, runs, and saves problem specific data.''' # Read the input data. with open('data/data.dat') as input_data: distances = Counter(map(int,input_data.read().strip().split())) # Get the partial digest. X = sorted(list(partial_digest(distances))) # Print and save the answer. print ' '.join(map(str, X)) if __name__ == '__main__': main()
26.857143
81
0.606383
from collections import Counter def partial_digest(distances): '''Returns a set whose positive pairwise differences generate 'distances'.''' # Initialize variables. X = {0} width = max(distances) # Create lambda functions for multiset operations. new_dist = lambda y, S: Counter(abs(y-s) for s in S) containment = lambda a, b: all(a[x] <= b[x] for x in a) # Create the multiset which generates 'distances'. while len(distances) > 0: y = max(distances) if containment(new_dist(y, X), distances): X |= {y} distances -= new_dist(y, X) else: X |= {width - y} distances -= new_dist(width - y, X) return X def main(): '''Main call. Reads, runs, and saves problem specific data.''' # Read the input data. with open('data/data.dat') as input_data: distances = Counter(map(int,input_data.read().strip().split())) # Get the partial digest. X = sorted(list(partial_digest(distances))) # Print and save the answer. print ' '.join(map(str, X)) if __name__ == '__main__': main()
0
0
0
5249edbb51e3631d816de207fdd0682d7f1d7da4
1,291
py
Python
exercises/exercise_10_25_16.py
JSBCCA/pythoncode
b7f2af8b0efc2d01d3e4568265eb3a5038a8679f
[ "MIT" ]
null
null
null
exercises/exercise_10_25_16.py
JSBCCA/pythoncode
b7f2af8b0efc2d01d3e4568265eb3a5038a8679f
[ "MIT" ]
null
null
null
exercises/exercise_10_25_16.py
JSBCCA/pythoncode
b7f2af8b0efc2d01d3e4568265eb3a5038a8679f
[ "MIT" ]
null
null
null
if __name__ == '__main__': text = input("Give words: ") print(pig_latin(text))
35.861111
74
0.459334
def pig_latin(text_input): final = "" # create final string, couples, and split text_input couples = ['bl', 'br', 'ch', 'cl', 'cr', 'dr', 'fl', 'fr', 'gh', 'gl', 'gr', 'ph', 'pl', 'pr', 'qu', 'sh', 'sk', 'sl', 'sm', 'sn', 'sp', 'st', 'sw', 'th', 'tr', 'tw', 'wh', 'wr'] split_text = text_input.strip().lower().split() for i in range(len(split_text)): # test for symbols and numbers if not split_text[i].isalpha(): return "Invalid." for i in range(len(split_text)): # test passed, convert to pig latin word = split_text[i] if word[0] in 'aeiou': # vowel rule if i == 0: final += word.title() else: final += word elif word[0:2] in couples: # first two letters rule if i == 0: final += word[2:].title() else: final += word[2:] final += word[0:2] else: # regular rule if i == 0: final += word[1:].title() else: final += word[1:] final += word[0] final += 'ay ' # add 'ay' return final.strip() if __name__ == '__main__': text = input("Give words: ") print(pig_latin(text))
1,180
0
22
8a17fe6998c6e108cf61b5bc941dda0925aaff14
5,144
py
Python
North Pacific/PacificTimestepDensities.py
OceanParcels/SKIM-garbagepatchlocations
3c028e3ceba902ff79f52e31b83bed811bde1133
[ "MIT" ]
1
2021-07-13T12:55:20.000Z
2021-07-13T12:55:20.000Z
North Pacific/PacificTimestepDensities.py
OceanParcels/SKIM-garbagepatchlocations
3c028e3ceba902ff79f52e31b83bed811bde1133
[ "MIT" ]
null
null
null
North Pacific/PacificTimestepDensities.py
OceanParcels/SKIM-garbagepatchlocations
3c028e3ceba902ff79f52e31b83bed811bde1133
[ "MIT" ]
1
2022-02-28T14:03:13.000Z
2022-02-28T14:03:13.000Z
# -*- coding: utf-8 -*- """ Created on Wed Aug 15 13:35:23 2018 @author: Victor Onink Here we create a figure that has the 24h, and the 3h flow field densities for the North Pacific """ import numpy as np from mpl_toolkits.basemap import Basemap import matplotlib.pyplot as plt from scipy import io import pandas as pd # cbar=my_map.colorbar(density) # cbar.ax.tick_params(labelsize=12) # cbar.set_label("Plastic Counts ($10^{-3}$ # km$^{-2}$)", rotation=90,fontsize=12) #%% location='D:\Desktop\Thesis\ParcelsFigData\Data\North Pacific\OutputFiles\Onink et al\Densities/' File=['NorthPacificTotalDensity24h','NorthPacificStokesTotalDensity24h', 'NorthPacificTotalDensity3h','NorthPacificStokesTotalDensity3h'] axeslabelsize=14 textsize=12 fig,axes=plt.subplots(nrows=2, ncols=1,figsize=(10*2,8*1)) for i in range(len(File)): density=np.load(location+File[i]) density[np.isnan(density)]=0 meanFinalYear=np.sum(density[-183:,:,:]/density[-183:,:,:].shape[0],axis=0) meanFinalYear[meanFinalYear==0]=np.nan latD=np.linspace(-80,80,160) lonD=np.linspace(0,359,360) plt.subplot(2,2,i+1) density=plotDensity(i,lonD,latD,meanFinalYear) fig.subplots_adjust(right=0.9) cbar_ax = fig.add_axes([0.93, 0.12, 0.02, 0.74]) cbar=fig.colorbar(density,cax=cbar_ax) cbar.ax.tick_params(labelsize=textsize) cbar.set_label("Plastic Counts ($10^{-3}$ # km$^{-2}$)", rotation=90,fontsize=axeslabelsize) cbar.ax.set_yticklabels(['<0.1','0.3','0.5','0.7','0.9','1.1','1.3','1.5','1.7','1.9<']) plt.subplots_adjust(wspace=0.06) plt.savefig('D:\Desktop\Thesis\ParcelsFigData\Data\North Pacific\Figures\NorthPacificTimeStepDensities.jpg', bbox_inches='tight')
43.965812
108
0.666796
# -*- coding: utf-8 -*- """ Created on Wed Aug 15 13:35:23 2018 @author: Victor Onink Here we create a figure that has the 24h, and the 3h flow field densities for the North Pacific """ import numpy as np from mpl_toolkits.basemap import Basemap import matplotlib.pyplot as plt from scipy import io import pandas as pd def AreaCalc(sizeLat,sizeLon): #Calculate surface area of grid cells deg2rd = np.pi/180. r=6378.1 lon_bins = np.linspace(0,360., sizeLon+1) lat_bins = np.linspace(-90, 90, sizeLat+1) Area=np.array([[deg2rd*(lon_bins[i+1]-lon_bins[i])*(np.sin(deg2rd*lat_bins[j+1]) - np.sin(deg2rd*lat_bins[j])) for i in range(len(lon_bins)-1)] for j in range(len(lat_bins)-1)]) Area=r*r*Area*1000*1000 #convert it to m^2 instead of km^2 return Area def AreaWeighAverage(dataset,coarseness): AreaInitial=AreaCalc(dataset.shape[0],dataset.shape[1]) AreaFinal=AreaCalc(dataset.shape[0]/coarseness,dataset.shape[1]/coarseness) dataset[np.isnan(dataset)]=0 DataSetArea=np.multiply(AreaInitial,dataset) temp=DataSetArea.reshape((DataSetArea.shape[0] // coarseness,coarseness, DataSetArea.shape[1] // coarseness,coarseness)) finalDataset = np.sum(temp,axis=(1,3)) finalDataset=np.divide(finalDataset,AreaFinal) finalDataset[finalDataset==0]=np.nan return finalDataset def plotParticles(lon, lat): latmin,latmax=-5,75 lonmin,lonmax=-100,20 my_map = Basemap(projection='cyl', llcrnrlon=lonmin, urcrnrlon=lonmax,llcrnrlat=latmin,urcrnrlat=latmax, resolution='l') my_map.drawcoastlines() my_map.fillcontinents(color = 'gray') my_map.drawmapboundary() my_map.drawmeridians(np.arange(0, 360, 30)) my_map.drawparallels(np.arange(-90, 90, 30)) my_map.plot(lon,lat,'r.',markersize=3) def HistogramFunction(londata,latdata): londata,latdata=londata.reshape(np.size(londata)),latdata.reshape(np.size(latdata)) binsLon=np.arange(-180,180) binsLat=np.arange(-90,90) density=np.zeros((len(binsLon),len(binsLat))) for i in range(np.array(londata).shape[0]): density[np.argmin(np.abs(londata[i]-binsLon)),np.argmin(np.abs(latdata[i]-binsLat))]+=1 #Now, normalize it by area area=AreaCalc(len(binsLat),len(binsLon)).T density/=area density[density==0]=np.nan return density def plotDensity(typ,lon,lat,dens): Lat,Lon=np.meshgrid(lat,lon) # Lon,Lat=np.meshgrid(lon,lat) latmin,latmax=0,75 lonmin,lonmax=95,285 my_map = Basemap(projection='cyl', llcrnrlon=lonmin, urcrnrlon=lonmax,llcrnrlat=latmin,urcrnrlat=latmax, resolution='l') # my_map.drawcoastlines() my_map.fillcontinents(color = 'gray') my_map.drawmapboundary() my_map.drawmeridians(np.arange(0, 360, 30),labels=[0,0,0,1],fontsize=12) if (typ+1)%2==1: my_map.drawparallels(np.arange(-90, 91, 30),labels=[1,0,0,0],fontsize=12) else: my_map.drawparallels(np.arange(-90, 91, 30),fontsize=12) density=my_map.contourf(Lon,Lat,dens/1e-8,np.linspace(1e-1,2e0,20), #norm=colors.LogNorm(1e-10,1e-9), cmap='rainbow',extend='both') # my_map.contour(LonSam,LatSam,sample,[1e4,1e5],colors='k',zorder=100) # my_map.contour(LonP,LatP,CountPvS,[5e4],colors='k',zorder=100) title=['(a) Total Currents ($\Delta$t=24h)','(b) Total Currents + Stokes Drift ($\Delta$t=24h)', '(c) Total Currents ($\Delta$t=3h)','(d) Total Currents + Stokes Drift ($\Delta$t=3h)'] plt.title(title[typ],fontsize=14,fontweight='bold') return density # cbar=my_map.colorbar(density) # cbar.ax.tick_params(labelsize=12) # cbar.set_label("Plastic Counts ($10^{-3}$ # km$^{-2}$)", rotation=90,fontsize=12) #%% location='D:\Desktop\Thesis\ParcelsFigData\Data\North Pacific\OutputFiles\Onink et al\Densities/' File=['NorthPacificTotalDensity24h','NorthPacificStokesTotalDensity24h', 'NorthPacificTotalDensity3h','NorthPacificStokesTotalDensity3h'] axeslabelsize=14 textsize=12 fig,axes=plt.subplots(nrows=2, ncols=1,figsize=(10*2,8*1)) for i in range(len(File)): density=np.load(location+File[i]) density[np.isnan(density)]=0 meanFinalYear=np.sum(density[-183:,:,:]/density[-183:,:,:].shape[0],axis=0) meanFinalYear[meanFinalYear==0]=np.nan latD=np.linspace(-80,80,160) lonD=np.linspace(0,359,360) plt.subplot(2,2,i+1) density=plotDensity(i,lonD,latD,meanFinalYear) fig.subplots_adjust(right=0.9) cbar_ax = fig.add_axes([0.93, 0.12, 0.02, 0.74]) cbar=fig.colorbar(density,cax=cbar_ax) cbar.ax.tick_params(labelsize=textsize) cbar.set_label("Plastic Counts ($10^{-3}$ # km$^{-2}$)", rotation=90,fontsize=axeslabelsize) cbar.ax.set_yticklabels(['<0.1','0.3','0.5','0.7','0.9','1.1','1.3','1.5','1.7','1.9<']) plt.subplots_adjust(wspace=0.06) plt.savefig('D:\Desktop\Thesis\ParcelsFigData\Data\North Pacific\Figures\NorthPacificTimeStepDensities.jpg', bbox_inches='tight')
3,294
0
118
abd35021221bc3bef34a47edf3e936e59ef5dd0a
1,563
py
Python
openduty/settings_environment.py
pataquets/openduty
5604e22b6a1aec7406ccd94ab2c17c1a6abd56c7
[ "MIT" ]
null
null
null
openduty/settings_environment.py
pataquets/openduty
5604e22b6a1aec7406ccd94ab2c17c1a6abd56c7
[ "MIT" ]
2
2020-07-18T18:13:51.000Z
2020-07-18T18:14:43.000Z
openduty/settings_environment.py
pataquets/openduty
5604e22b6a1aec7406ccd94ab2c17c1a6abd56c7
[ "MIT" ]
3
2016-10-24T17:36:00.000Z
2018-04-30T18:07:51.000Z
from settings import * BASE_URL = os.getenv('OPENDUTY_BASE_URL', "http://localhost") XMPP_SETTINGS = { 'user': os.getenv('OPENDUTY_XMPP_USER'), 'password': os.getenv('OPENDUTY_XMPP_PASS'), 'server': os.getenv('OPENDUTY_XMPP_SERVER', 'xmpp'), 'port': os.getenv('OPENDUTY_XMPP_PORT', 5222), } EMAIL_SETTINGS = { 'user': os.getenv('OPENDUTY_EMAIL_USER'), 'password': os.getenv('OPENDUTY_EMAIL_PASS'), } ''' TWILIO_SETTINGS = { 'SID': "TWILIO_ACCOUNT_SID", 'token': "TWILIO_ACCOUNT_TOKEN", 'phone_number': "your_twilio_phone_number", 'sms_number': "your_twilio_sms_number", 'twiml_url': "http://www.website.org/voice.xml" } ''' SLACK_SETTINGS = { 'apikey': os.getenv('OPENDUTY_SLACK_APIKEY', "YOUR_SLACK_API_KEY") } ''' PROWL_SETTINGS = { 'priority': 0 'application': 'openduty' } ''' DATABASES = { 'default': { 'ENGINE': os.getenv('OPENDUTY_DATABASE_ENGINE', 'django.db.backends.mysql'), 'NAME': os.getenv('OPENDUTY_DATABASE_NAME', 'openduty'), 'USER': os.getenv('OPENDUTY_DATABASE_USER', 'openduty'), 'PASSWORD': os.getenv('OPENDUTY_DATABASE_PASS', 'dutyfree'), 'HOST': os.getenv('OPENDUTY_DATABASE_HOST', 'db'), 'PORT': os.getenv('OPENDUTY_DATABASE_PORT', '3306') } } # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = os.getenv('OPENDUTY_SECRET_KEY', 'yoursecretkey') ALLOWED_HOSTS = ['your.dutyfree.host'] DEBUG = os.getenv('OPENDUTY_DEBUG', False) TEMPLATE_DEBUG = os.getenv('OPENDUTY_TEMPLATE_DEBUG', False)
27.421053
84
0.676903
from settings import * BASE_URL = os.getenv('OPENDUTY_BASE_URL', "http://localhost") XMPP_SETTINGS = { 'user': os.getenv('OPENDUTY_XMPP_USER'), 'password': os.getenv('OPENDUTY_XMPP_PASS'), 'server': os.getenv('OPENDUTY_XMPP_SERVER', 'xmpp'), 'port': os.getenv('OPENDUTY_XMPP_PORT', 5222), } EMAIL_SETTINGS = { 'user': os.getenv('OPENDUTY_EMAIL_USER'), 'password': os.getenv('OPENDUTY_EMAIL_PASS'), } ''' TWILIO_SETTINGS = { 'SID': "TWILIO_ACCOUNT_SID", 'token': "TWILIO_ACCOUNT_TOKEN", 'phone_number': "your_twilio_phone_number", 'sms_number': "your_twilio_sms_number", 'twiml_url': "http://www.website.org/voice.xml" } ''' SLACK_SETTINGS = { 'apikey': os.getenv('OPENDUTY_SLACK_APIKEY', "YOUR_SLACK_API_KEY") } ''' PROWL_SETTINGS = { 'priority': 0 'application': 'openduty' } ''' DATABASES = { 'default': { 'ENGINE': os.getenv('OPENDUTY_DATABASE_ENGINE', 'django.db.backends.mysql'), 'NAME': os.getenv('OPENDUTY_DATABASE_NAME', 'openduty'), 'USER': os.getenv('OPENDUTY_DATABASE_USER', 'openduty'), 'PASSWORD': os.getenv('OPENDUTY_DATABASE_PASS', 'dutyfree'), 'HOST': os.getenv('OPENDUTY_DATABASE_HOST', 'db'), 'PORT': os.getenv('OPENDUTY_DATABASE_PORT', '3306') } } # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = os.getenv('OPENDUTY_SECRET_KEY', 'yoursecretkey') ALLOWED_HOSTS = ['your.dutyfree.host'] DEBUG = os.getenv('OPENDUTY_DEBUG', False) TEMPLATE_DEBUG = os.getenv('OPENDUTY_TEMPLATE_DEBUG', False)
0
0
0
6df353ed1986cfdd80127c2f8b54ef1714e4f5d8
1,313
py
Python
NaiveBayes/src/test.py
quqixun/MLAlgorithms
1ad46a899a6280a08c196fb4eb0931408c8636c7
[ "MIT" ]
2
2018-04-25T18:00:28.000Z
2018-08-08T09:39:18.000Z
NaiveBayes/src/test.py
quqixun/MLAlgorithms
1ad46a899a6280a08c196fb4eb0931408c8636c7
[ "MIT" ]
null
null
null
NaiveBayes/src/test.py
quqixun/MLAlgorithms
1ad46a899a6280a08c196fb4eb0931408c8636c7
[ "MIT" ]
2
2019-03-03T02:55:48.000Z
2021-01-21T04:50:46.000Z
# Conventional Machine Learning Algorithms # Test Script for Class of "NaiveBayes". # Author: Qixun Qu # Create on: 2018/04/24 # Modify on: 2018/04/25 # ,,, ,,, # ;" '; ;' ", # ; @.ss$$$$$$s.@ ; # `s$$$$$$$$$$$$$$$' # $$$$$$$$$$$$$$$$$$ # $$$$P""Y$$$Y""W$$$$$ # $$$$ p"$$$"q $$$$$ # $$$$ .$$$$$. $$$$' # $$$DaU$$O$$DaU$$$' # '$$$$'.^.'$$$$' # '&$$$$$&' from __future__ import division from __future__ import print_function from utils import * from NaiveBayes import * from sklearn.datasets import make_hastie_10_2 # Basic settings random_state = 9527 n_samples = 10000 test_size = 0.2 # Generate Dataset for training and testing # Obtain all samples X, y = make_hastie_10_2(n_samples=n_samples, random_state=random_state) # Split dataset X_train, y_train, X_test, y_test = split_dataset(X, y, test_size, random_state) # Normalize dataset X_train_scaled, X_test_scaled = scale_dataset(X_train, X_test) # Train Gaussian Naive Bayes Classifier nb = NaiveBayes(alpha=1) nb.fit(X_train_scaled, y_train, cont_feat_idx="all") # Predict test set and evaluate results y_pred = nb.predict(X_test_scaled) print("Accuracy of test set:", accuracy(y_pred, y_test)) # Accuracy can reach 0.9765.
24.314815
65
0.603199
# Conventional Machine Learning Algorithms # Test Script for Class of "NaiveBayes". # Author: Qixun Qu # Create on: 2018/04/24 # Modify on: 2018/04/25 # ,,, ,,, # ;" '; ;' ", # ; @.ss$$$$$$s.@ ; # `s$$$$$$$$$$$$$$$' # $$$$$$$$$$$$$$$$$$ # $$$$P""Y$$$Y""W$$$$$ # $$$$ p"$$$"q $$$$$ # $$$$ .$$$$$. $$$$' # $$$DaU$$O$$DaU$$$' # '$$$$'.^.'$$$$' # '&$$$$$&' from __future__ import division from __future__ import print_function from utils import * from NaiveBayes import * from sklearn.datasets import make_hastie_10_2 # Basic settings random_state = 9527 n_samples = 10000 test_size = 0.2 # Generate Dataset for training and testing # Obtain all samples X, y = make_hastie_10_2(n_samples=n_samples, random_state=random_state) # Split dataset X_train, y_train, X_test, y_test = split_dataset(X, y, test_size, random_state) # Normalize dataset X_train_scaled, X_test_scaled = scale_dataset(X_train, X_test) # Train Gaussian Naive Bayes Classifier nb = NaiveBayes(alpha=1) nb.fit(X_train_scaled, y_train, cont_feat_idx="all") # Predict test set and evaluate results y_pred = nb.predict(X_test_scaled) print("Accuracy of test set:", accuracy(y_pred, y_test)) # Accuracy can reach 0.9765.
0
0
0
192178a5c7c75105a3ee01c6e1f52067461ee41b
2,921
py
Python
login_script.py
ThBlitz/Minecraft-Packet-Mapper-MPM-
a2583574d176b57df341ee3eb023b1f29f0f1183
[ "MIT" ]
null
null
null
login_script.py
ThBlitz/Minecraft-Packet-Mapper-MPM-
a2583574d176b57df341ee3eb023b1f29f0f1183
[ "MIT" ]
null
null
null
login_script.py
ThBlitz/Minecraft-Packet-Mapper-MPM-
a2583574d176b57df341ee3eb023b1f29f0f1183
[ "MIT" ]
null
null
null
from Bridge import Proxy2Server import os from DataTypes import Packet, A_Packet_Class from DataTypes import VarInt, Output_Streamer, Bytes_Streamer, Socket_Streamer import time output = Output_Streamer() input = Bytes_Streamer() login_packets = A_Packet_Class() SOCK = Socket_Streamer('connect.2b2t.org', 25565, login_packets) handshake = Packet(login_packets) handshake.set(['VarInt', 'VarInt', 'String', 'Ushort', 'VarInt']) status = Packet(login_packets) status.set(['VarInt', 'String']) request = Packet(login_packets) request.set(['VarInt']) ping_pong = Packet(login_packets) ping_pong.set(['VarInt', 'Long']) encryption_req = Packet(login_packets) encryption_req.set(['VarInt', 'String', 'String', 'String']) encryption_res = Packet(login_packets) encryption_res.set(['VarInt', 'String', 'String']) login_success = Packet(login_packets) login_success.set(['VarInt', 'String', 'String']) set_compression = Packet(login_packets) set_compression.set(['VarInt', 'VarInt']) login_packets.map_pack(pack_0) login_packets.map_unpack(unpack_0) # data = handshake.pack([0x00, 340, b'2b2t.org', 25565, 1]) # server_sock.write(data) # data = request.pack([0x00]) # server_sock.write(data) # status.unpack(server_sock, output) input.write(handshake.pack([0x00, 340, b'2b2t.org', 25565, 2])) SOCK.write(input) input.write(status.pack([0x00, b'ThBlitz'])) SOCK.write(input) SOCK.read(input) encryption_req.unpack(input, output) print(f'encryption_req : {output.getvalue()}') data = output.getvalue() login_packets.server_id = data[1] login_packets.server_public_key = data[2] login_packets.verification_token = data[3] import secrets login_packets.aes_key = secrets.randbits(128).to_bytes(16, 'big') hash , ver_token , shared_secret = login_packets.get_hash() import mojang_api uuid , name , token , login_data = mojang_api.login_through_microsoft() res = mojang_api.join_server(token, uuid, hash) print(f'response from mojang : {res}') input.reset() input.write(encryption_res.pack([0x01, shared_secret, ver_token])) SOCK.write(input) login_packets.encryption_enabled = True SOCK.read(input) set_compression.unpack(input, output) login_packets.compression_threshold = output.getvalue()[1] login_packets.compression_enabled = True print(f'compression_packet : {output.getvalue()}') SOCK.read(input) login_success.unpack(input, output) print(f'login_success : {output.getvalue()}') SOCK.read(input) status.unpack(input, output) print(input.getvalue()) while True: SOCK.read(input) print(hex(VarInt.unpack(input))) print(input.read()) time.sleep(1) # t
20.716312
78
0.740157
from Bridge import Proxy2Server import os from DataTypes import Packet, A_Packet_Class from DataTypes import VarInt, Output_Streamer, Bytes_Streamer, Socket_Streamer import time output = Output_Streamer() input = Bytes_Streamer() login_packets = A_Packet_Class() SOCK = Socket_Streamer('connect.2b2t.org', 25565, login_packets) handshake = Packet(login_packets) handshake.set(['VarInt', 'VarInt', 'String', 'Ushort', 'VarInt']) status = Packet(login_packets) status.set(['VarInt', 'String']) request = Packet(login_packets) request.set(['VarInt']) ping_pong = Packet(login_packets) ping_pong.set(['VarInt', 'Long']) encryption_req = Packet(login_packets) encryption_req.set(['VarInt', 'String', 'String', 'String']) encryption_res = Packet(login_packets) encryption_res.set(['VarInt', 'String', 'String']) login_success = Packet(login_packets) login_success.set(['VarInt', 'String', 'String']) set_compression = Packet(login_packets) set_compression.set(['VarInt', 'VarInt']) def pack_0(self, input): if self.compression_enabled == True: self.compress(input) packet_len = input.add_len() # print(packet_len) return def unpack_0(self, input, output): # if self.compression_enabled == True: # self.decompress(input) output.reset() return login_packets.map_pack(pack_0) login_packets.map_unpack(unpack_0) # data = handshake.pack([0x00, 340, b'2b2t.org', 25565, 1]) # server_sock.write(data) # data = request.pack([0x00]) # server_sock.write(data) # status.unpack(server_sock, output) input.write(handshake.pack([0x00, 340, b'2b2t.org', 25565, 2])) SOCK.write(input) input.write(status.pack([0x00, b'ThBlitz'])) SOCK.write(input) SOCK.read(input) encryption_req.unpack(input, output) print(f'encryption_req : {output.getvalue()}') data = output.getvalue() login_packets.server_id = data[1] login_packets.server_public_key = data[2] login_packets.verification_token = data[3] import secrets login_packets.aes_key = secrets.randbits(128).to_bytes(16, 'big') hash , ver_token , shared_secret = login_packets.get_hash() import mojang_api uuid , name , token , login_data = mojang_api.login_through_microsoft() res = mojang_api.join_server(token, uuid, hash) print(f'response from mojang : {res}') input.reset() input.write(encryption_res.pack([0x01, shared_secret, ver_token])) SOCK.write(input) login_packets.encryption_enabled = True SOCK.read(input) set_compression.unpack(input, output) login_packets.compression_threshold = output.getvalue()[1] login_packets.compression_enabled = True print(f'compression_packet : {output.getvalue()}') SOCK.read(input) login_success.unpack(input, output) print(f'login_success : {output.getvalue()}') SOCK.read(input) status.unpack(input, output) print(input.getvalue()) while True: SOCK.read(input) print(hex(VarInt.unpack(input))) print(input.read()) time.sleep(1) # t
264
0
46
fe59772b65a640da95a676113cf3e37dc12af265
4,836
py
Python
src/data_analysis/analyze_goodreads_reviews_cleaned.py
ejgenc/data-analysis_goodreads_translation_reviews
c00dc7b59d5e3295df89d080e7d49792c15fa760
[ "MIT" ]
1
2021-09-04T15:11:20.000Z
2021-09-04T15:11:20.000Z
src/data_analysis/analyze_goodreads_reviews_cleaned.py
ejgenc/data-analysis_goodreads_translation_reviews
c00dc7b59d5e3295df89d080e7d49792c15fa760
[ "MIT" ]
null
null
null
src/data_analysis/analyze_goodreads_reviews_cleaned.py
ejgenc/data-analysis_goodreads_translation_reviews
c00dc7b59d5e3295df89d080e7d49792c15fa760
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Wed Mar 17 13:35:39 2021 @author: ejgen ------ What is this file? ------ This script targets the files goodreads_reviews_cleaned.csv and review_sentences_analyzed.csv, calculating summary statistics such as review length and sentiment score. This script targets the following files: ../../data/cleaned/goodreads_reviews_cleaned.csv ../../data/analysis_results/review_sentences_analyzed.csv The resulting csv file is located at: ../../data/analysis_results/goodreads_reviews_analyzed.csv """ #%% --- Import required packages --- import os from pathlib import Path # To wrap around filepaths import pandas as pd #%% --- Set proper directory to assure integration with doit --- abspath = os.path.abspath(__file__) dname = os.path.dirname(abspath) os.chdir(dname) #%% --- Import data --- #goodreads_reviews_cleaned import_fp = Path("../../data/cleaned/goodreads_reviews_cleaned.csv") goodreads_reviews = pd.read_csv(import_fp, encoding = "utf-8", index_col = False) #review_sentences_analyzed import_fp = Path("../../data/analysis_results/review_sentences_analyzed.csv") sentences_analyzed = pd.read_csv(import_fp, encoding = "utf-8") #%% --- Prepare data --- sentences_analyzed = sentences_analyzed.loc[:,["review_id", "sentence_id", "sent_mentions_original", "sent_mentions_trans", "length_in_words", "VADER_score_compound"]] # Take a subset of goodreads reviews to include only reviews whose review no # appear in sentences_analyzed. rid_mask = goodreads_reviews["review_id"].isin(sentences_analyzed["review_id"]) goodreads_reviews = goodreads_reviews.loc[rid_mask, :] #%% --- Analyze: review length in sentences and words. --- length_per_review = (sentences_analyzed .groupby("review_id") ["length_in_words"] .agg(["sum","count"]) .rename({"sum" : "total_length_in_words", "count" : "total_length_in_sentences"}, axis = 1)) goodreads_reviews = (goodreads_reviews .merge(length_per_review, how = "left", on = "review_id")) #%% --- Analyze: mention ratios for explicit translation/author mentions orig_mention_mask = sentences_analyzed["sent_mentions_original"] == True trans_mention_mask = sentences_analyzed["sent_mentions_trans"] == True only_orig_mention_mask = (orig_mention_mask & ~trans_mention_mask) only_trans_mention_mask = (~orig_mention_mask & trans_mention_mask) both_mention_mask = (orig_mention_mask & trans_mention_mask) masks = {"share_of_only_trans_mentions" : only_trans_mention_mask, "share_of_trans_mentions" : trans_mention_mask, "share_of_only_orig_mentions": only_orig_mention_mask, "share_of_orig_mentions": orig_mention_mask} for prefix, mask in masks.items(): calc = (sentences_analyzed[mask]. groupby("review_id") ["length_in_words"] .agg(["count"]) .rename({"count": prefix}, axis = 1) .reset_index()) goodreads_reviews = (goodreads_reviews.merge(calc, how = "left", on = "review_id") .fillna(value = 0, axis = 0)) goodreads_reviews[prefix] = ((goodreads_reviews[prefix] / goodreads_reviews["total_length_in_sentences"]) * 100) #%% --- Analyze: VADER score for the whole review --- VADER_score_per_review = (sentences_analyzed .groupby("review_id") ["VADER_score_compound"] .agg(["sum","count"]) .reset_index()) VADER_score_per_review["avg_VADER_score"] = (VADER_score_per_review["sum"] / VADER_score_per_review["count"]) VADER_score_per_review = VADER_score_per_review.drop(labels = ["sum","count"], axis = "columns") goodreads_reviews = goodreads_reviews.merge(VADER_score_per_review, how = "left", on = "review_id") #%% --- Export data --- export_fp = Path("../../data/analysis_results/goodreads_reviews_analyzed.csv") goodreads_reviews.to_csv(export_fp, encoding = "utf-8", index = False)
38.07874
81
0.580645
# -*- coding: utf-8 -*- """ Created on Wed Mar 17 13:35:39 2021 @author: ejgen ------ What is this file? ------ This script targets the files goodreads_reviews_cleaned.csv and review_sentences_analyzed.csv, calculating summary statistics such as review length and sentiment score. This script targets the following files: ../../data/cleaned/goodreads_reviews_cleaned.csv ../../data/analysis_results/review_sentences_analyzed.csv The resulting csv file is located at: ../../data/analysis_results/goodreads_reviews_analyzed.csv """ #%% --- Import required packages --- import os from pathlib import Path # To wrap around filepaths import pandas as pd #%% --- Set proper directory to assure integration with doit --- abspath = os.path.abspath(__file__) dname = os.path.dirname(abspath) os.chdir(dname) #%% --- Import data --- #goodreads_reviews_cleaned import_fp = Path("../../data/cleaned/goodreads_reviews_cleaned.csv") goodreads_reviews = pd.read_csv(import_fp, encoding = "utf-8", index_col = False) #review_sentences_analyzed import_fp = Path("../../data/analysis_results/review_sentences_analyzed.csv") sentences_analyzed = pd.read_csv(import_fp, encoding = "utf-8") #%% --- Prepare data --- sentences_analyzed = sentences_analyzed.loc[:,["review_id", "sentence_id", "sent_mentions_original", "sent_mentions_trans", "length_in_words", "VADER_score_compound"]] # Take a subset of goodreads reviews to include only reviews whose review no # appear in sentences_analyzed. rid_mask = goodreads_reviews["review_id"].isin(sentences_analyzed["review_id"]) goodreads_reviews = goodreads_reviews.loc[rid_mask, :] #%% --- Analyze: review length in sentences and words. --- length_per_review = (sentences_analyzed .groupby("review_id") ["length_in_words"] .agg(["sum","count"]) .rename({"sum" : "total_length_in_words", "count" : "total_length_in_sentences"}, axis = 1)) goodreads_reviews = (goodreads_reviews .merge(length_per_review, how = "left", on = "review_id")) #%% --- Analyze: mention ratios for explicit translation/author mentions orig_mention_mask = sentences_analyzed["sent_mentions_original"] == True trans_mention_mask = sentences_analyzed["sent_mentions_trans"] == True only_orig_mention_mask = (orig_mention_mask & ~trans_mention_mask) only_trans_mention_mask = (~orig_mention_mask & trans_mention_mask) both_mention_mask = (orig_mention_mask & trans_mention_mask) masks = {"share_of_only_trans_mentions" : only_trans_mention_mask, "share_of_trans_mentions" : trans_mention_mask, "share_of_only_orig_mentions": only_orig_mention_mask, "share_of_orig_mentions": orig_mention_mask} for prefix, mask in masks.items(): calc = (sentences_analyzed[mask]. groupby("review_id") ["length_in_words"] .agg(["count"]) .rename({"count": prefix}, axis = 1) .reset_index()) goodreads_reviews = (goodreads_reviews.merge(calc, how = "left", on = "review_id") .fillna(value = 0, axis = 0)) goodreads_reviews[prefix] = ((goodreads_reviews[prefix] / goodreads_reviews["total_length_in_sentences"]) * 100) #%% --- Analyze: VADER score for the whole review --- VADER_score_per_review = (sentences_analyzed .groupby("review_id") ["VADER_score_compound"] .agg(["sum","count"]) .reset_index()) VADER_score_per_review["avg_VADER_score"] = (VADER_score_per_review["sum"] / VADER_score_per_review["count"]) VADER_score_per_review = VADER_score_per_review.drop(labels = ["sum","count"], axis = "columns") goodreads_reviews = goodreads_reviews.merge(VADER_score_per_review, how = "left", on = "review_id") #%% --- Export data --- export_fp = Path("../../data/analysis_results/goodreads_reviews_analyzed.csv") goodreads_reviews.to_csv(export_fp, encoding = "utf-8", index = False)
0
0
0
14d38902ff34fd61ae460246a58b5f14f1a88d4b
2,614
py
Python
save_face.py
idea4good/ReadFace
0482befcfe6e2d232cae87fd9802aa80d037c907
[ "Apache-2.0" ]
2
2018-10-13T10:42:04.000Z
2020-05-13T03:49:54.000Z
save_face.py
idea4good/ReadFace
0482befcfe6e2d232cae87fd9802aa80d037c907
[ "Apache-2.0" ]
1
2018-05-03T06:09:21.000Z
2018-05-07T09:51:35.000Z
save_face.py
idea4good/ReadFace
0482befcfe6e2d232cae87fd9802aa80d037c907
[ "Apache-2.0" ]
null
null
null
import cv2, json, sys, datetime import tensorflow as tf import numpy as np from face_filter import c_face_filter from mtcnn_detect import c_MTCNNDetect from face_attr import c_face_attr_reader standard_face_size = 160 # 160(weight) * 160(height) detect_resolution = 80 # 80(weight) * 80(height) the_face_attrs_reader = c_face_attr_reader(standard_face_size) the_filter = c_face_filter() face_detect = c_MTCNNDetect(tf.Graph(), scale_factor=2) #scale_factor, rescales image for faster detection vs = cv2.VideoCapture(0) ret = 0 while ret >= 0: ret = record_single_face()
39.014925
121
0.594109
import cv2, json, sys, datetime import tensorflow as tf import numpy as np from face_filter import c_face_filter from mtcnn_detect import c_MTCNNDetect from face_attr import c_face_attr_reader standard_face_size = 160 # 160(weight) * 160(height) detect_resolution = 80 # 80(weight) * 80(height) def record_single_face(): face_imgs = {"Left" : [], "Right": [], "Center": []} face_img_cnt = {"Left" : 0, "Right": 0, "Center": 0} face_attrs = {"Left" : [], "Right": [], "Center": []} while True: _, frame = vs.read() rects, landmarks = face_detect.detect_face(frame, detect_resolution); tip = ""; tip_color = 0; if(len(rects) <= 0): tip = "No face found!"; tip_color = (0, 0, 255); else: face, direction = the_filter.filter_standard_face(frame, standard_face_size, landmarks[0]);# save 1 face only if len(face) == standard_face_size and len(face[0]) == standard_face_size: face_imgs[direction].append(face) face_img_cnt[direction] += 1 tip = "Recording..."; tip_color = (0, 255, 0) else: tip = "Filter face failed!"; tip_color = (0, 255, 255) if(face_img_cnt["Left"] > 0 and face_img_cnt["Right"] > 0 and face_img_cnt["Center"] > 0): tip = "Press 's'/'c' to save/clear this record"; tip_color = (0, 255, 255) cv2.putText(frame, tip, (0, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, tip_color, 2, cv2.LINE_AA) cv2.imshow("Press 'q' to exit", frame) key = cv2.waitKey(1) & 0xFF if (key == ord("q")): return -1 elif (key == ord("c")): return 0 elif (key == ord("s")): break if(face_img_cnt["Left"] == 0 or face_img_cnt["Right"] == 0 or face_img_cnt["Center"] == 0): return 0 file_name = './faces/Face.' + datetime.datetime.now().strftime("%Y-%m-%d.%H-%M-%S") + '.attr' print('-------------- ' + file_name + ' --------------') for key in face_img_cnt: print(key + " image count: " + str(face_img_cnt[key])) for key in face_imgs: face_attrs[key] = [np.mean(the_face_attrs_reader.get_face_attr(face_imgs[key]),axis=0).tolist()] f = open(file_name, 'w') f.write(json.dumps(face_attrs)) return 1 the_face_attrs_reader = c_face_attr_reader(standard_face_size) the_filter = c_face_filter() face_detect = c_MTCNNDetect(tf.Graph(), scale_factor=2) #scale_factor, rescales image for faster detection vs = cv2.VideoCapture(0) ret = 0 while ret >= 0: ret = record_single_face()
2,014
0
23
d5bd8672c6fe31af95abb4e2bcd7359d4196917f
15,661
py
Python
otp/level/LevelSpec.py
AnonymousDeveloper65535/open-toontown
3d05c22a7d960ad843dde231140447c46973dba5
[ "BSD-3-Clause" ]
8
2017-10-10T11:41:01.000Z
2021-02-23T12:55:47.000Z
otp/level/LevelSpec.py
AnonymousDeveloper65535/open-toontown
3d05c22a7d960ad843dde231140447c46973dba5
[ "BSD-3-Clause" ]
1
2018-07-28T20:07:04.000Z
2018-07-30T18:28:34.000Z
otp/level/LevelSpec.py
AnonymousDeveloper65535/open-toontown
3d05c22a7d960ad843dde231140447c46973dba5
[ "BSD-3-Clause" ]
2
2019-04-06T16:18:23.000Z
2021-02-25T06:25:01.000Z
from pandac import PandaModules as PM from direct.directnotify import DirectNotifyGlobal from direct.showbase.PythonUtil import list2dict, uniqueElements import string import LevelConstants import types if __dev__: import os
37.023641
162
0.534066
from pandac import PandaModules as PM from direct.directnotify import DirectNotifyGlobal from direct.showbase.PythonUtil import list2dict, uniqueElements import string import LevelConstants import types if __dev__: import os class LevelSpec: notify = DirectNotifyGlobal.directNotify.newCategory('LevelSpec') SystemEntIds = (LevelConstants.UberZoneEntId, LevelConstants.LevelMgrEntId, LevelConstants.EditMgrEntId) def __init__(self, spec = None, scenario = 0): newSpec = 0 if type(spec) is types.ModuleType: if __dev__: reload(spec) self.specDict = spec.levelSpec if __dev__: self.setFilename(spec.__file__) elif type(spec) is types.DictType: self.specDict = spec elif spec is None: if __dev__: newSpec = 1 self.specDict = {'globalEntities': {}, 'scenarios': [{}]} self.entId2specDict = {} self.entId2specDict.update(list2dict(self.getGlobalEntIds(), value=self.privGetGlobalEntityDict())) for i in range(self.getNumScenarios()): self.entId2specDict.update(list2dict(self.getScenarioEntIds(i), value=self.privGetScenarioEntityDict(i))) self.setScenario(scenario) if __dev__: if newSpec: import EntityTypes import EntityTypeRegistry etr = EntityTypeRegistry.EntityTypeRegistry(EntityTypes) self.setEntityTypeReg(etr) entId = LevelConstants.UberZoneEntId self.insertEntity(entId, 'zone') self.doSetAttrib(entId, 'name', 'UberZone') entId = LevelConstants.LevelMgrEntId self.insertEntity(entId, 'levelMgr') self.doSetAttrib(entId, 'name', 'LevelMgr') entId = LevelConstants.EditMgrEntId self.insertEntity(entId, 'editMgr') self.doSetAttrib(entId, 'name', 'EditMgr') return def destroy(self): del self.specDict del self.entId2specDict del self.scenario if hasattr(self, 'level'): del self.level if hasattr(self, 'entTypeReg'): del self.entTypeReg def getNumScenarios(self): return len(self.specDict['scenarios']) def setScenario(self, scenario): self.scenario = scenario def getScenario(self): return self.scenario def getGlobalEntIds(self): return self.privGetGlobalEntityDict().keys() def getScenarioEntIds(self, scenario = None): if scenario is None: scenario = self.scenario return self.privGetScenarioEntityDict(scenario).keys() def getAllEntIds(self): return self.getGlobalEntIds() + self.getScenarioEntIds() def getAllEntIdsFromAllScenarios(self): entIds = self.getGlobalEntIds() for scenario in xrange(self.getNumScenarios()): entIds.extend(self.getScenarioEntIds(scenario)) return entIds def getEntitySpec(self, entId): specDict = self.entId2specDict[entId] return specDict[entId] def getCopyOfSpec(self, spec): specCopy = {} if not isClient(): print 'EXECWARNING LevelSpec exec: %s' % self.getSpecImportsModuleName() printStack() exec 'from %s import *' % self.getSpecImportsModuleName() for key in spec.keys(): specCopy[key] = eval(repr(spec[key])) return specCopy def getEntitySpecCopy(self, entId): specDict = self.entId2specDict[entId] return self.getCopyOfSpec(specDict[entId]) def getEntityType(self, entId): return self.getEntitySpec(entId)['type'] def getEntityZoneEntId(self, entId): spec = self.getEntitySpec(entId) type = spec['type'] if type == 'zone': return entId return self.getEntityZoneEntId(spec['parentEntId']) def getEntType2ids(self, entIds): entType2ids = {} for entId in entIds: type = self.getEntityType(entId) entType2ids.setdefault(type, []) entType2ids[type].append(entId) return entType2ids def privGetGlobalEntityDict(self): return self.specDict['globalEntities'] def privGetScenarioEntityDict(self, scenario): return self.specDict['scenarios'][scenario] def printZones(self): allIds = self.getAllEntIds() type2id = self.getEntType2ids(allIds) zoneIds = type2id['zone'] if 0 in zoneIds: zoneIds.remove(0) zoneIds.sort() for zoneNum in zoneIds: spec = self.getEntitySpec(zoneNum) print 'zone %s: %s' % (zoneNum, spec['name']) if __dev__: def setLevel(self, level): self.level = level def hasLevel(self): return hasattr(self, 'level') def setEntityTypeReg(self, entTypeReg): self.entTypeReg = entTypeReg for entId in self.getAllEntIds(): spec = self.getEntitySpec(entId) type = self.getEntityType(entId) typeDesc = self.entTypeReg.getTypeDesc(type) attribDescDict = typeDesc.getAttribDescDict() for attribName, desc in attribDescDict.iteritems(): if attribName not in spec: spec[attribName] = desc.getDefaultValue() self.checkSpecIntegrity() def hasEntityTypeReg(self): return hasattr(self, 'entTypeReg') def setFilename(self, filename): self.filename = filename def doSetAttrib(self, entId, attrib, value): specDict = self.entId2specDict[entId] specDict[entId][attrib] = value def setAttribChange(self, entId, attrib, value, username): LevelSpec.notify.info('setAttribChange(%s): %s, %s = %s' % (username, entId, attrib, repr(value))) self.doSetAttrib(entId, attrib, value) if self.hasLevel(): self.level.handleAttribChange(entId, attrib, value, username) def insertEntity(self, entId, entType, parentEntId = 'unspecified'): LevelSpec.notify.info('inserting entity %s (%s)' % (entId, entType)) globalEnts = self.privGetGlobalEntityDict() self.entId2specDict[entId] = globalEnts globalEnts[entId] = {} spec = globalEnts[entId] attribDescs = self.entTypeReg.getTypeDesc(entType).getAttribDescDict() for name, desc in attribDescs.items(): spec[name] = desc.getDefaultValue() spec['type'] = entType if parentEntId != 'unspecified': spec['parentEntId'] = parentEntId if self.hasLevel(): self.level.handleEntityInsert(entId) else: LevelSpec.notify.warning('no level to be notified of insertion') def removeEntity(self, entId): LevelSpec.notify.info('removing entity %s' % entId) if self.hasLevel(): self.level.handleEntityRemove(entId) else: LevelSpec.notify.warning('no level to be notified of removal') dict = self.entId2specDict[entId] del dict[entId] del self.entId2specDict[entId] def removeZoneReferences(self, removedZoneNums): type2ids = self.getEntType2ids(self.getAllEntIdsFromAllScenarios()) for type in type2ids: typeDesc = self.entTypeReg.getTypeDesc(type) visZoneListAttribs = typeDesc.getAttribsOfType('visZoneList') if len(visZoneListAttribs) > 0: for entId in type2ids[type]: spec = self.getEntitySpec(entId) for attribName in visZoneListAttribs: for zoneNum in removedZoneNums: while zoneNum in spec[attribName]: spec[attribName].remove(zoneNum) def getSpecImportsModuleName(self): return 'toontown.coghq.SpecImports' def getFilename(self): return self.filename def privGetBackupFilename(self, filename): return '%s.bak' % filename def saveToDisk(self, filename = None, makeBackup = 1): if filename is None: filename = self.filename if filename.endswith('.pyc'): filename = filename.replace('.pyc', '.py') if makeBackup and self.privFileExists(filename): try: backupFilename = self.privGetBackupFilename(filename) self.privRemoveFile(backupFilename) os.rename(filename, backupFilename) except OSError, e: LevelSpec.notify.warning('error during backup: %s' % str(e)) LevelSpec.notify.info("writing to '%s'" % filename) self.privRemoveFile(filename) self.privSaveToDisk(filename) return def privSaveToDisk(self, filename): retval = 1 f = file(filename, 'wb') try: f.write(self.getPrettyString()) except IOError: retval = 0 f.close() return retval def privFileExists(self, filename): try: os.stat(filename) return 1 except OSError: return 0 def privRemoveFile(self, filename): try: os.remove(filename) return 1 except OSError: return 0 def getPrettyString(self): import pprint tabWidth = 4 tab = ' ' * tabWidth globalEntitiesName = 'GlobalEntities' scenarioEntitiesName = 'Scenario%s' topLevelName = 'levelSpec' def getPrettyEntityDictStr(name, dict, tabs = 0): def t(n): return (tabs + n) * tab def sortList(lst, firstElements = []): elements = list(lst) result = [] for el in firstElements: if el in elements: result.append(el) elements.remove(el) elements.sort() result.extend(elements) return result firstTypes = ('levelMgr', 'editMgr', 'zone') firstAttribs = ('type', 'name', 'comment', 'parentEntId', 'pos', 'x', 'y', 'z', 'hpr', 'h', 'p', 'r', 'scale', 'sx', 'sy', 'sz', 'color', 'model') str = t(0) + '%s = {\n' % name entIds = dict.keys() entType2ids = self.getEntType2ids(entIds) types = sortList(entType2ids.keys(), firstTypes) for type in types: str += t(1) + '# %s\n' % string.upper(type) entIds = entType2ids[type] entIds.sort() for entId in entIds: str += t(1) + '%s: {\n' % entId spec = dict[entId] attribs = sortList(spec.keys(), firstAttribs) for attrib in attribs: str += t(2) + "'%s': %s,\n" % (attrib, repr(spec[attrib])) str += t(2) + '}, # end entity %s\n' % entId str += t(1) + '}\n' return str def getPrettyTopLevelDictStr(tabs = 0): def t(n): return (tabs + n) * tab str = t(0) + '%s = {\n' % topLevelName str += t(1) + "'globalEntities': %s,\n" % globalEntitiesName str += t(1) + "'scenarios': [\n" for i in range(self.getNumScenarios()): str += t(2) + '%s,\n' % (scenarioEntitiesName % i) str += t(2) + '],\n' str += t(1) + '}\n' return str str = 'from %s import *\n' % self.getSpecImportsModuleName() str += '\n' str += getPrettyEntityDictStr('GlobalEntities', self.privGetGlobalEntityDict()) str += '\n' numScenarios = self.getNumScenarios() for i in range(numScenarios): str += getPrettyEntityDictStr('Scenario%s' % i, self.privGetScenarioEntityDict(i)) str += '\n' str += getPrettyTopLevelDictStr() self.testPrettyString(prettyString=str) return str def _recurKeyTest(self, dict1, dict2): s = '' errorCount = 0 if set(dict1.keys()) != set(dict2.keys()): return 0 for key in dict1: if type(dict1[key]) == type({}) and type(dict2[key]) == type({}): if not self._recurKeyTest(dict1[key], dict2[key]): return 0 else: strd1 = repr(dict1[key]) strd2 = repr(dict2[key]) if strd1 != strd2: s += '\nBAD VALUE(%s): %s != %s\n' % (key, strd1, strd2) errorCount += 1 print s if errorCount == 0: return 1 else: return 0 def testPrettyString(self, prettyString = None): if prettyString is None: prettyString = self.getPrettyString() if not isClient(): print 'EXECWARNING LevelSpec exec 2: %s' % prettyString printStack() exec prettyString if self._recurKeyTest(levelSpec, self.specDict): return 1 return def checkSpecIntegrity(self): entIds = self.getGlobalEntIds() entIds = list2dict(entIds) for i in range(self.getNumScenarios()): for id in self.getScenarioEntIds(i): entIds[id] = None if self.entTypeReg is not None: allEntIds = entIds for entId in allEntIds: spec = self.getEntitySpec(entId) entType = spec['type'] typeDesc = self.entTypeReg.getTypeDesc(entType) attribNames = typeDesc.getAttribNames() attribDescs = typeDesc.getAttribDescDict() for attrib in spec.keys(): if attrib not in attribNames: LevelSpec.notify.warning("entId %s (%s): unknown attrib '%s', omitting" % (entId, spec['type'], attrib)) del spec[attrib] for attribName in attribNames: if not spec.has_key(attribName): LevelSpec.notify.warning("entId %s (%s): missing attrib '%s'" % (entId, spec['type'], attribName)) return def stringHash(self): h = PM.HashVal() h.hashString(repr(self)) return h.asHex() def __hash__(self): return hash(repr(self)) def __str__(self): return 'LevelSpec' def __repr__(self): return 'LevelSpec(%s, scenario=%s)' % (repeatableRepr(self.specDict), repeatableRepr(self.scenario))
13,957
1,452
23
8612134a84d546ccb13eba2fcebd4f7f0b9a3940
6,349
py
Python
grantTempAdmin.py
hoyle-ub/MakeMeAdminPy
9a674fb829b1a83e9f6e61436d36fd0b13897196
[ "BSD-3-Clause" ]
null
null
null
grantTempAdmin.py
hoyle-ub/MakeMeAdminPy
9a674fb829b1a83e9f6e61436d36fd0b13897196
[ "BSD-3-Clause" ]
null
null
null
grantTempAdmin.py
hoyle-ub/MakeMeAdminPy
9a674fb829b1a83e9f6e61436d36fd0b13897196
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Copyright (c) 2017 Jamf. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the Jamf nor the names of its contributors may be # used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY JAMF SOFTWARE, LLC "AS IS" AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL JAMF SOFTWARE, LLC BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # This script was modified from Andrina Kelly's version presented at JNUC2013 for allowing # a user to elevate their privelages to administrator once per day for 60 minutes. After # the 60 minutes if a user created a new admin account that account will have admin rights # also revoked. # # To accomplish this the following will be performed: # - A launch daemon will be put in place in order to remove admin rights # - Log will be written to tempAdmin.log # - This policy in Jamf will be set to only be allowed once per day # # REQUIREMENTS: # - Jamf Pro # - Policy for enabling tempAdmin via Self Service # - Policy to remove tempAdmin via custom trigger # - tempAdmin.sh & removeTempAdmin.sh Scripts # # # Written by: Joshua Roskos | Professional Services Engineer | Jamf # # Created On: June 20th, 2017 # Updated On: July 26th, 2017 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # IMPORTS # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # import os, plistlib, pwd, grp, subprocess, sys from SystemConfiguration import SCDynamicStoreCopyConsoleUser from datetime import datetime # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # VARIABLES # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # userName = (SCDynamicStoreCopyConsoleUser(None, None, None) or [None])[0] # get the logged in user's name workingDir = '/usr/local/jamfps/' # working directory for script launchdFile = 'com.jamfps.adminremove.plist' # launch daemon file name launchdLabel = launchdFile.replace('.plist', '') # launch daemon label plistFile = 'MakeMeAdmin.plist' # settings file name tempAdminLog = 'tempAdmin.log' # script log file adminTimer = 3600 # how long should they have admin rights for (in seconds) policyCustomTrigger = 'adminremove' # custom trigger specified for removeTempAdmin.py policy # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # LAUNCH DAEMON # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # place launchd plist to call JSS policy to remove admin rights. print 'Creating LaunchDaemon...' launchDaemon = { 'Label':launchdLabel, 'LaunchOnlyOnce':True, 'ProgramArguments':['/usr/local/jamf/bin/jamf', 'policy', '-trigger', policyCustomTrigger], 'StartInterval':adminTimer, 'UserName':'root', } plistlib.writePlist(launchDaemon, '/Library/LaunchDaemons/' + launchdFile) # set the permission on the file just made. userID = pwd.getpwnam("root").pw_uid groupID = grp.getgrnam("wheel").gr_gid os.chown('/Library/LaunchDaemons/' + launchdFile, userID, groupID) os.chmod('/Library/LaunchDaemons/' + launchdFile, 0644) # load the removal plist timer. print 'Loading LaunchDaemon...' subprocess.call(["launchctl", "load", "-w", '/Library/LaunchDaemons/' + launchdFile]) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # APPLICATION # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # build log files if not os.path.exists(workingDir): os.makedirs(workingDir) # record user that will need to have admin rights removed # record current existing admins print 'Retrieving List of Current Admins...' currentAdmins = grp.getgrnam('admin').gr_mem print 'Updating Plist...' plist = { 'User2Remove':userName, 'CurrentAdminUsers':currentAdmins} plistlib.writePlist(plist, workingDir + plistFile) # give current logged user admin rights subprocess.call(["dseditgroup", "-o", "edit", "-a", userName, "-t", "user", "admin"]) # add log entry log = open(workingDir + tempAdminLog, "a+") log.write("{} - MakeMeAdmin Granted Admin Rights for {}\r\n".format(datetime.now(), userName)) log.close() print 'Granted Admin Right to ' + userName
49.217054
133
0.556466
#!/usr/bin/env python # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Copyright (c) 2017 Jamf. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the Jamf nor the names of its contributors may be # used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY JAMF SOFTWARE, LLC "AS IS" AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL JAMF SOFTWARE, LLC BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # This script was modified from Andrina Kelly's version presented at JNUC2013 for allowing # a user to elevate their privelages to administrator once per day for 60 minutes. After # the 60 minutes if a user created a new admin account that account will have admin rights # also revoked. # # To accomplish this the following will be performed: # - A launch daemon will be put in place in order to remove admin rights # - Log will be written to tempAdmin.log # - This policy in Jamf will be set to only be allowed once per day # # REQUIREMENTS: # - Jamf Pro # - Policy for enabling tempAdmin via Self Service # - Policy to remove tempAdmin via custom trigger # - tempAdmin.sh & removeTempAdmin.sh Scripts # # # Written by: Joshua Roskos | Professional Services Engineer | Jamf # # Created On: June 20th, 2017 # Updated On: July 26th, 2017 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # IMPORTS # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # import os, plistlib, pwd, grp, subprocess, sys from SystemConfiguration import SCDynamicStoreCopyConsoleUser from datetime import datetime # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # VARIABLES # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # userName = (SCDynamicStoreCopyConsoleUser(None, None, None) or [None])[0] # get the logged in user's name workingDir = '/usr/local/jamfps/' # working directory for script launchdFile = 'com.jamfps.adminremove.plist' # launch daemon file name launchdLabel = launchdFile.replace('.plist', '') # launch daemon label plistFile = 'MakeMeAdmin.plist' # settings file name tempAdminLog = 'tempAdmin.log' # script log file adminTimer = 3600 # how long should they have admin rights for (in seconds) policyCustomTrigger = 'adminremove' # custom trigger specified for removeTempAdmin.py policy # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # LAUNCH DAEMON # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # place launchd plist to call JSS policy to remove admin rights. print 'Creating LaunchDaemon...' launchDaemon = { 'Label':launchdLabel, 'LaunchOnlyOnce':True, 'ProgramArguments':['/usr/local/jamf/bin/jamf', 'policy', '-trigger', policyCustomTrigger], 'StartInterval':adminTimer, 'UserName':'root', } plistlib.writePlist(launchDaemon, '/Library/LaunchDaemons/' + launchdFile) # set the permission on the file just made. userID = pwd.getpwnam("root").pw_uid groupID = grp.getgrnam("wheel").gr_gid os.chown('/Library/LaunchDaemons/' + launchdFile, userID, groupID) os.chmod('/Library/LaunchDaemons/' + launchdFile, 0644) # load the removal plist timer. print 'Loading LaunchDaemon...' subprocess.call(["launchctl", "load", "-w", '/Library/LaunchDaemons/' + launchdFile]) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # APPLICATION # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # build log files if not os.path.exists(workingDir): os.makedirs(workingDir) # record user that will need to have admin rights removed # record current existing admins print 'Retrieving List of Current Admins...' currentAdmins = grp.getgrnam('admin').gr_mem print 'Updating Plist...' plist = { 'User2Remove':userName, 'CurrentAdminUsers':currentAdmins} plistlib.writePlist(plist, workingDir + plistFile) # give current logged user admin rights subprocess.call(["dseditgroup", "-o", "edit", "-a", userName, "-t", "user", "admin"]) # add log entry log = open(workingDir + tempAdminLog, "a+") log.write("{} - MakeMeAdmin Granted Admin Rights for {}\r\n".format(datetime.now(), userName)) log.close() print 'Granted Admin Right to ' + userName
0
0
0
8d63061f1915c19b1edccebd546ba851e25c34a5
86
py
Python
boj/10930.py
JeongHoLim/practice
5f8914ba42b2ae01e0a00e92a7af9fcf63c8b7c2
[ "MIT" ]
1
2022-01-16T19:57:28.000Z
2022-01-16T19:57:28.000Z
boj/10930.py
JeongHoLim/practice
5f8914ba42b2ae01e0a00e92a7af9fcf63c8b7c2
[ "MIT" ]
null
null
null
boj/10930.py
JeongHoLim/practice
5f8914ba42b2ae01e0a00e92a7af9fcf63c8b7c2
[ "MIT" ]
null
null
null
import hashlib message = input() print(hashlib.sha256(message.encode()).hexdigest())
17.2
51
0.755814
import hashlib message = input() print(hashlib.sha256(message.encode()).hexdigest())
0
0
0
29f85f52ee9b12989c3c1794431c329b04a4a16a
2,127
py
Python
my_app/migrations/0001_initial.py
B0und/kotanima_server
01b25531de219d16831d97a76c7e5f6326b6e99d
[ "MIT" ]
1
2021-10-03T20:20:22.000Z
2021-10-03T20:20:22.000Z
my_app/migrations/0001_initial.py
Kotanima/kotanima_server
01b25531de219d16831d97a76c7e5f6326b6e99d
[ "MIT" ]
null
null
null
my_app/migrations/0001_initial.py
Kotanima/kotanima_server
01b25531de219d16831d97a76c7e5f6326b6e99d
[ "MIT" ]
null
null
null
# Generated by Django 3.1.6 on 2021-04-17 11:19 import django.contrib.postgres.fields from django.db import migrations, models
42.54
147
0.586272
# Generated by Django 3.1.6 on 2021-04-17 11:19 import django.contrib.postgres.fields from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='RedditPost', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('sub_name', models.CharField(default=None, max_length=20)), ('post_id', models.CharField(max_length=6)), ('author', models.CharField(max_length=20)), ('title', models.CharField(max_length=300)), ('url', models.CharField(max_length=64)), ('created_utc', models.CharField(max_length=10)), ('phash', models.CharField(max_length=16, null=True)), ('dislike', models.BooleanField(default=None, null=True)), ('wrong_format', models.BooleanField(default=False)), ('selected', models.BooleanField(default=False)), ('source_link', models.TextField(default=None, null=True)), ('visible_tags', django.contrib.postgres.fields.ArrayField(base_field=models.CharField(max_length=9999), blank=True, size=None)), ('invisible_tags', django.contrib.postgres.fields.ArrayField(base_field=models.CharField(max_length=9999), blank=True, size=None)), ], options={ 'ordering': ['id'], }, ), migrations.CreateModel( name='VkPost', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('scheduled_date', models.CharField(max_length=10, null=True)), ('phash', models.CharField(max_length=16)), ], ), migrations.AddConstraint( model_name='redditpost', constraint=models.UniqueConstraint(fields=('sub_name', 'post_id'), name='unique_post_in_sub'), ), ]
0
1,975
23
37a24d22cb3598933be530ff93291dd60b3d68a5
5,591
py
Python
PyStationB/libraries/ABEX/tests/test_generic_parsing.py
BrunoKM/station-b-libraries
ea3591837e4a33f0bef789d905467754c27913b3
[ "MIT" ]
6
2021-09-29T15:46:55.000Z
2021-12-14T18:39:51.000Z
PyStationB/libraries/ABEX/tests/test_generic_parsing.py
BrunoKM/station-b-libraries
ea3591837e4a33f0bef789d905467754c27913b3
[ "MIT" ]
null
null
null
PyStationB/libraries/ABEX/tests/test_generic_parsing.py
BrunoKM/station-b-libraries
ea3591837e4a33f0bef789d905467754c27913b3
[ "MIT" ]
3
2021-09-27T10:35:20.000Z
2021-10-02T17:53:07.000Z
# ------------------------------------------------------------------------------------------ # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License (MIT). See LICENSE in the repo root for license information. # ------------------------------------------------------------------------------------------ from enum import Enum from typing import Any, Dict, List, Optional, Tuple import param import pytest from abex.common.generic_parsing import GenericConfig, IntTuple def test_overridable_parameter() -> None: """ Test to check overridable parameters are correctly identified. """ param_dict = ParamClass.get_overridable_parameters() assert "name" in param_dict assert "flag" in param_dict assert "seed" in param_dict assert "number" in param_dict assert "integers" in param_dict assert "optional_int" in param_dict assert "optional_float" in param_dict assert "tuple1" in param_dict assert "int_tuple" in param_dict assert "enum" in param_dict assert "readonly" not in param_dict assert "_non_override" not in param_dict assert "constant" not in param_dict def test_create_parser() -> None: """ Check that parse_args works as expected, with both non default and default values. """ check(["--name=foo"], "name", "foo") check(["--seed", "42"], "seed", 42) check(["--seed", ""], "seed", 42) check(["--number", "2.17"], "number", 2.17) check(["--number", ""], "number", 3.14) check(["--integers", "1,2,3"], "integers", [1, 2, 3]) check(["--optional_int", ""], "optional_int", None) check(["--optional_int", "2"], "optional_int", 2) check(["--optional_float", ""], "optional_float", None) check(["--optional_float", "3.14"], "optional_float", 3.14) check(["--tuple1", "1,2"], "tuple1", (1, 2.0)) check(["--int_tuple", "1,2,3"], "int_tuple", (1, 2, 3)) check(["--enum=2"], "enum", ParamEnum.EnumValue2) check(["--floats=1,2,3.14"], "floats", [1.0, 2.0, 3.14]) check(["--integers=1,2,3"], "integers", [1, 2, 3]) check(["--flag"], "flag", True) # Check that default values are created as expected, and that the non-overridable parameters # are omitted. defaults = vars(ParamClass.create_argparser().parse_args([])) assert defaults["seed"] == 42 assert defaults["tuple1"] == (1, 2.3) assert defaults["int_tuple"] == (1, 1, 1) assert defaults["enum"] == ParamEnum.EnumValue1 assert "readonly" not in defaults assert "constant" not in defaults assert "_non_override" not in defaults # We can't test if all invalid cases are handled because argparse call sys.exit # upon errors. def test_apply_overrides() -> None: """ Test that overrides are applied correctly, ond only to overridable parameters, """ m = ParamClass() overrides = {"name": "newName", "int_tuple": (0, 1, 2)} actual_overrides = m.apply_overrides(overrides) assert actual_overrides == overrides assert all([x == i and isinstance(x, int) for i, x in enumerate(m.int_tuple)]) assert m.name == "newName" # Attempt to change seed and constant, but the latter should be ignored. change_seed: Dict[str, Any] = {"seed": 123} old_constant = m.constant changes2 = m.apply_overrides({**change_seed, "constant": "Nothing"}) assert changes2 == change_seed assert m.seed == 123 assert m.constant == old_constant @pytest.mark.parametrize("value_idx_0", [1.0, 1]) @pytest.mark.parametrize("value_idx_1", [2.0, 2]) @pytest.mark.parametrize("value_idx_2", [3.0, 3]) def test_int_tuple_validation(value_idx_0: Any, value_idx_1: Any, value_idx_2: Any) -> None: """ Test integer tuple parameter is validated correctly. """ m = ParamClass() val = (value_idx_0, value_idx_1, value_idx_2) if not all([isinstance(x, int) for x in val]): with pytest.raises(ValueError): m.int_tuple = (value_idx_0, value_idx_1, value_idx_2) else: m.int_tuple = (value_idx_0, value_idx_1, value_idx_2)
43.341085
111
0.636738
# ------------------------------------------------------------------------------------------ # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License (MIT). See LICENSE in the repo root for license information. # ------------------------------------------------------------------------------------------ from enum import Enum from typing import Any, Dict, List, Optional, Tuple import param import pytest from abex.common.generic_parsing import GenericConfig, IntTuple class ParamEnum(Enum): EnumValue1 = ("1",) EnumValue2 = "2" class ParamClass(GenericConfig): name: str = param.String(None, doc="Name") # type: ignore # auto seed: int = param.Integer(42, doc="Seed") # type: ignore # auto flag: int = param.Boolean(False, doc="Flag") # type: ignore # auto number: float = param.Number(3.14) # type: ignore # auto integers: List[int] = param.List(None, class_=int) # type: ignore # auto optional_int: Optional[int] = param.Integer(None, doc="Optional int") # type: ignore # auto optional_float: Optional[float] = param.Number(None, doc="Optional float") # type: ignore # auto floats: List[float] = param.List(None, class_=float) # type: ignore # auto tuple1: Tuple[int, float] = param.NumericTuple((1, 2.3), length=2, doc="Tuple") # type: ignore # auto int_tuple: Tuple[int, int, int] = IntTuple((1, 1, 1), length=3, doc="Integer Tuple") # type: ignore # auto enum: ParamEnum = param.ClassSelector( default=ParamEnum.EnumValue1, class_=ParamEnum, instantiate=False # type: ignore # auto ) readonly: str = param.String("Nope", readonly=True) # type: ignore # auto _non_override: str = param.String("Nope") # type: ignore # auto constant: str = param.String("Nope", constant=True) # type: ignore # auto def test_overridable_parameter() -> None: """ Test to check overridable parameters are correctly identified. """ param_dict = ParamClass.get_overridable_parameters() assert "name" in param_dict assert "flag" in param_dict assert "seed" in param_dict assert "number" in param_dict assert "integers" in param_dict assert "optional_int" in param_dict assert "optional_float" in param_dict assert "tuple1" in param_dict assert "int_tuple" in param_dict assert "enum" in param_dict assert "readonly" not in param_dict assert "_non_override" not in param_dict assert "constant" not in param_dict def test_create_parser() -> None: """ Check that parse_args works as expected, with both non default and default values. """ def check(arg: List[str], expected_key: str, expected_value: Any) -> None: parsed = ParamClass.parse_args(arg) assert getattr(parsed, expected_key) == expected_value check(["--name=foo"], "name", "foo") check(["--seed", "42"], "seed", 42) check(["--seed", ""], "seed", 42) check(["--number", "2.17"], "number", 2.17) check(["--number", ""], "number", 3.14) check(["--integers", "1,2,3"], "integers", [1, 2, 3]) check(["--optional_int", ""], "optional_int", None) check(["--optional_int", "2"], "optional_int", 2) check(["--optional_float", ""], "optional_float", None) check(["--optional_float", "3.14"], "optional_float", 3.14) check(["--tuple1", "1,2"], "tuple1", (1, 2.0)) check(["--int_tuple", "1,2,3"], "int_tuple", (1, 2, 3)) check(["--enum=2"], "enum", ParamEnum.EnumValue2) check(["--floats=1,2,3.14"], "floats", [1.0, 2.0, 3.14]) check(["--integers=1,2,3"], "integers", [1, 2, 3]) check(["--flag"], "flag", True) # Check that default values are created as expected, and that the non-overridable parameters # are omitted. defaults = vars(ParamClass.create_argparser().parse_args([])) assert defaults["seed"] == 42 assert defaults["tuple1"] == (1, 2.3) assert defaults["int_tuple"] == (1, 1, 1) assert defaults["enum"] == ParamEnum.EnumValue1 assert "readonly" not in defaults assert "constant" not in defaults assert "_non_override" not in defaults # We can't test if all invalid cases are handled because argparse call sys.exit # upon errors. def test_apply_overrides() -> None: """ Test that overrides are applied correctly, ond only to overridable parameters, """ m = ParamClass() overrides = {"name": "newName", "int_tuple": (0, 1, 2)} actual_overrides = m.apply_overrides(overrides) assert actual_overrides == overrides assert all([x == i and isinstance(x, int) for i, x in enumerate(m.int_tuple)]) assert m.name == "newName" # Attempt to change seed and constant, but the latter should be ignored. change_seed: Dict[str, Any] = {"seed": 123} old_constant = m.constant changes2 = m.apply_overrides({**change_seed, "constant": "Nothing"}) assert changes2 == change_seed assert m.seed == 123 assert m.constant == old_constant @pytest.mark.parametrize("value_idx_0", [1.0, 1]) @pytest.mark.parametrize("value_idx_1", [2.0, 2]) @pytest.mark.parametrize("value_idx_2", [3.0, 3]) def test_int_tuple_validation(value_idx_0: Any, value_idx_1: Any, value_idx_2: Any) -> None: """ Test integer tuple parameter is validated correctly. """ m = ParamClass() val = (value_idx_0, value_idx_1, value_idx_2) if not all([isinstance(x, int) for x in val]): with pytest.raises(ValueError): m.int_tuple = (value_idx_0, value_idx_1, value_idx_2) else: m.int_tuple = (value_idx_0, value_idx_1, value_idx_2)
160
1,279
73
1cfd6c15d5a97dcc496e4cf4e6fa21334efe7b93
1,873
py
Python
sdk/apimanagement/azure-mgmt-apimanagement/azure/mgmt/apimanagement/models/virtual_network_configuration_py3.py
tzhanl/azure-sdk-for-python
18cd03f4ab8fd76cc0498f03e80fbc99f217c96e
[ "MIT" ]
1
2021-09-07T18:36:04.000Z
2021-09-07T18:36:04.000Z
sdk/apimanagement/azure-mgmt-apimanagement/azure/mgmt/apimanagement/models/virtual_network_configuration_py3.py
tzhanl/azure-sdk-for-python
18cd03f4ab8fd76cc0498f03e80fbc99f217c96e
[ "MIT" ]
2
2019-10-02T23:37:38.000Z
2020-10-02T01:17:31.000Z
sdk/apimanagement/azure-mgmt-apimanagement/azure/mgmt/apimanagement/models/virtual_network_configuration_py3.py
tzhanl/azure-sdk-for-python
18cd03f4ab8fd76cc0498f03e80fbc99f217c96e
[ "MIT" ]
1
2019-06-17T22:18:23.000Z
2019-06-17T22:18:23.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class VirtualNetworkConfiguration(Model): """Configuration of a virtual network to which API Management service is deployed. Variables are only populated by the server, and will be ignored when sending a request. :ivar vnetid: The virtual network ID. This is typically a GUID. Expect a null GUID by default. :vartype vnetid: str :ivar subnetname: The name of the subnet. :vartype subnetname: str :param subnet_resource_id: The full resource ID of a subnet in a virtual network to deploy the API Management service in. :type subnet_resource_id: str """ _validation = { 'vnetid': {'readonly': True}, 'subnetname': {'readonly': True}, 'subnet_resource_id': {'pattern': r'^/subscriptions/[^/]*/resourceGroups/[^/]*/providers/Microsoft.(ClassicNetwork|Network)/virtualNetworks/[^/]*/subnets/[^/]*$'}, } _attribute_map = { 'vnetid': {'key': 'vnetid', 'type': 'str'}, 'subnetname': {'key': 'subnetname', 'type': 'str'}, 'subnet_resource_id': {'key': 'subnetResourceId', 'type': 'str'}, }
38.22449
171
0.623065
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class VirtualNetworkConfiguration(Model): """Configuration of a virtual network to which API Management service is deployed. Variables are only populated by the server, and will be ignored when sending a request. :ivar vnetid: The virtual network ID. This is typically a GUID. Expect a null GUID by default. :vartype vnetid: str :ivar subnetname: The name of the subnet. :vartype subnetname: str :param subnet_resource_id: The full resource ID of a subnet in a virtual network to deploy the API Management service in. :type subnet_resource_id: str """ _validation = { 'vnetid': {'readonly': True}, 'subnetname': {'readonly': True}, 'subnet_resource_id': {'pattern': r'^/subscriptions/[^/]*/resourceGroups/[^/]*/providers/Microsoft.(ClassicNetwork|Network)/virtualNetworks/[^/]*/subnets/[^/]*$'}, } _attribute_map = { 'vnetid': {'key': 'vnetid', 'type': 'str'}, 'subnetname': {'key': 'subnetname', 'type': 'str'}, 'subnet_resource_id': {'key': 'subnetResourceId', 'type': 'str'}, } def __init__(self, *, subnet_resource_id: str=None, **kwargs) -> None: super(VirtualNetworkConfiguration, self).__init__(**kwargs) self.vnetid = None self.subnetname = None self.subnet_resource_id = subnet_resource_id
228
0
27
7fd3683a28de92b0f6f5f6203676d99dc6051d1a
1,289
py
Python
django/app_website/views.py
a-rey/aaronmreyes_heroku
f397741ec33a35c318b6e4d51837b352183085f9
[ "MIT" ]
1
2022-03-12T22:23:44.000Z
2022-03-12T22:23:44.000Z
django/app_website/views.py
a-rey/docker_website
f397741ec33a35c318b6e4d51837b352183085f9
[ "MIT" ]
2
2020-04-07T22:09:50.000Z
2020-04-07T22:09:50.000Z
django/app_website/views.py
a-rey/docker_website
f397741ec33a35c318b6e4d51837b352183085f9
[ "MIT" ]
null
null
null
import django.shortcuts def main(request): """ request handler for '/'. """ return django.shortcuts.render(request, 'app_website/index.html', {}) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # global error handlers for app_website # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ def error_400(request, exception): """ request handler for a 400 error. """ context = { 'err': '[400 Bad Request] Path: ' + request.path, } return django.shortcuts.render(request, 'app_website/error.html', context) def error_403(request, exception): """ request handler for a 403 error. """ context = { 'err': '[403 Permission Denied] Path: ' + request.path, } return django.shortcuts.render(request, 'app_website/error.html', context) def error_404(request, exception): """ request handler for a 404 error. """ context = { 'err': '[404 Page Not Found] Path: ' + request.path, } return django.shortcuts.render(request, 'app_website/error.html', context) def error_500(request): """ request handler for a 500 error. """ context = { 'err': '[500 Server Error] Path: ' + request.path, } return django.shortcuts.render(request, 'app_website/error.html', context)
23.87037
79
0.582622
import django.shortcuts def main(request): """ request handler for '/'. """ return django.shortcuts.render(request, 'app_website/index.html', {}) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # global error handlers for app_website # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ def error_400(request, exception): """ request handler for a 400 error. """ context = { 'err': '[400 Bad Request] Path: ' + request.path, } return django.shortcuts.render(request, 'app_website/error.html', context) def error_403(request, exception): """ request handler for a 403 error. """ context = { 'err': '[403 Permission Denied] Path: ' + request.path, } return django.shortcuts.render(request, 'app_website/error.html', context) def error_404(request, exception): """ request handler for a 404 error. """ context = { 'err': '[404 Page Not Found] Path: ' + request.path, } return django.shortcuts.render(request, 'app_website/error.html', context) def error_500(request): """ request handler for a 500 error. """ context = { 'err': '[500 Server Error] Path: ' + request.path, } return django.shortcuts.render(request, 'app_website/error.html', context)
0
0
0
f3f230d0ddb68e27c72ea274c9b6285a7b13450d
53
py
Python
backend/app/views/sculpt_a_sequence/__init__.py
Edinburgh-Genome-Foundry/CUBA
d57565951ead619ef9263e8b356b451001fb910f
[ "MIT" ]
15
2018-02-12T13:12:13.000Z
2021-08-15T11:37:59.000Z
backend/app/views/sculpt_a_sequence/__init__.py
Edinburgh-Genome-Foundry/CUBA
d57565951ead619ef9263e8b356b451001fb910f
[ "MIT" ]
9
2020-06-05T17:54:54.000Z
2022-02-12T12:03:19.000Z
backend/app/views/sculpt_a_sequence/__init__.py
Edinburgh-Genome-Foundry/CUBA
d57565951ead619ef9263e8b356b451001fb910f
[ "MIT" ]
3
2018-10-18T13:08:50.000Z
2020-08-17T14:09:46.000Z
from .SculptASequenceView import SculptASequenceView
26.5
52
0.90566
from .SculptASequenceView import SculptASequenceView
0
0
0
28bef48c033a719579453f4084bb87df283e7408
13,037
py
Python
ansible/lib/ansible/module_utils/netcfg.py
kiv-box/kafka
debec1c4bc8c43776070ee447a53b55fef42bd52
[ "Apache-2.0" ]
null
null
null
ansible/lib/ansible/module_utils/netcfg.py
kiv-box/kafka
debec1c4bc8c43776070ee447a53b55fef42bd52
[ "Apache-2.0" ]
null
null
null
ansible/lib/ansible/module_utils/netcfg.py
kiv-box/kafka
debec1c4bc8c43776070ee447a53b55fef42bd52
[ "Apache-2.0" ]
null
null
null
# This code is part of Ansible, but is an independent component. # This particular file snippet, and this file snippet only, is BSD licensed. # Modules you write using this snippet, which is embedded dynamically by Ansible # still belong to the author of the module, and may assign their own license # to the complete work. # # Copyright (c) 2015 Peter Sprygada, <psprygada@ansible.com> # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE # USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import itertools import re from ansible.module_utils.six import string_types from ansible.module_utils.six.moves import zip, zip_longest DEFAULT_COMMENT_TOKENS = ['#', '!', '/*', '*/']
31.490338
92
0.554192
# This code is part of Ansible, but is an independent component. # This particular file snippet, and this file snippet only, is BSD licensed. # Modules you write using this snippet, which is embedded dynamically by Ansible # still belong to the author of the module, and may assign their own license # to the complete work. # # Copyright (c) 2015 Peter Sprygada, <psprygada@ansible.com> # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE # USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import itertools import re from ansible.module_utils.six import string_types from ansible.module_utils.six.moves import zip, zip_longest DEFAULT_COMMENT_TOKENS = ['#', '!', '/*', '*/'] def to_list(val): if isinstance(val, (list, tuple)): return list(val) elif val is not None: return [val] else: return list() class Config(object): def __init__(self, connection): self.connection = connection def __call__(self, commands, **kwargs): lines = to_list(commands) return self.connection.configure(lines, **kwargs) def load_config(self, commands, **kwargs): commands = to_list(commands) return self.connection.load_config(commands, **kwargs) def get_config(self, **kwargs): return self.connection.get_config(**kwargs) def save_config(self): return self.connection.save_config() class ConfigLine(object): def __init__(self, text): self.text = text self.children = list() self.parents = list() self.raw = None @property def line(self): line = [p.text for p in self.parents] line.append(self.text) return ' '.join(line) def __str__(self): return self.raw def __eq__(self, other): return self.line == other.line def __ne__(self, other): return not self.__eq__(other) def ignore_line(text, tokens=None): for item in (tokens or DEFAULT_COMMENT_TOKENS): if text.startswith(item): return True def get_next(iterable): item, next_item = itertools.tee(iterable, 2) next_item = itertools.islice(next_item, 1, None) return zip_longest(item, next_item) def parse(lines, indent, comment_tokens=None): toplevel = re.compile(r'\S') childline = re.compile(r'^\s*(.+)$') ancestors = list() config = list() for line in str(lines).split('\n'): text = str(re.sub(r'([{};])', '', line)).strip() cfg = ConfigLine(text) cfg.raw = line if not text or ignore_line(text, comment_tokens): continue # handle top level commands if toplevel.match(line): ancestors = [cfg] # handle sub level commands else: match = childline.match(line) line_indent = match.start(1) level = int(line_indent / indent) parent_level = level - 1 cfg.parents = ancestors[:level] if level > len(ancestors): config.append(cfg) continue for i in range(level, len(ancestors)): ancestors.pop() ancestors.append(cfg) ancestors[parent_level].children.append(cfg) config.append(cfg) return config def dumps(objects, output='block'): if output == 'block': items = [c.raw for c in objects] elif output == 'commands': items = [c.text for c in objects] elif output == 'lines': items = list() for obj in objects: line = list() line.extend([p.text for p in obj.parents]) line.append(obj.text) items.append(' '.join(line)) else: raise TypeError('unknown value supplied for keyword output') return '\n'.join(items) class NetworkConfig(object): def __init__(self, indent=None, contents=None, device_os=None): self.indent = indent or 1 self._config = list() self._device_os = device_os self._syntax = 'block' # block, lines, junos if self._device_os == 'junos': self._syntax = 'junos' if contents: self.load(contents) @property def items(self): return self._config def __str__(self): if self._device_os == 'junos': return dumps(self.expand_line(self.items), 'lines') return dumps(self.expand_line(self.items)) def load(self, contents): # Going to start adding device profiles post 2.2 tokens = list(DEFAULT_COMMENT_TOKENS) if self._device_os == 'sros': tokens.append('echo') self._config = parse(contents, indent=4, comment_tokens=tokens) else: self._config = parse(contents, indent=self.indent) def load_from_file(self, filename): self.load(open(filename).read()) def get(self, path): if isinstance(path, string_types): path = [path] for item in self._config: if item.text == path[-1]: parents = [p.text for p in item.parents] if parents == path[:-1]: return item def get_object(self, path): for item in self.items: if item.text == path[-1]: parents = [p.text for p in item.parents] if parents == path[:-1]: return item def get_section_objects(self, path): if not isinstance(path, list): path = [path] obj = self.get_object(path) if not obj: raise ValueError('path does not exist in config') return self.expand_section(obj) def search(self, regexp, path=None): regex = re.compile(r'^%s' % regexp, re.M) if path: parent = self.get(path) if not parent or not parent.children: return children = [c.text for c in parent.children] data = '\n'.join(children) else: data = str(self) match = regex.search(data) if match: if match.groups(): values = match.groupdict().values() groups = list(set(match.groups()).difference(values)) return (groups, match.groupdict()) else: return match.group() def findall(self, regexp): regexp = r'%s' % regexp return re.findall(regexp, str(self)) def expand_line(self, objs): visited = set() expanded = list() for o in objs: for p in o.parents: if p not in visited: visited.add(p) expanded.append(p) expanded.append(o) visited.add(o) return expanded def expand_section(self, configobj, S=None): if S is None: S = list() S.append(configobj) for child in configobj.children: if child in S: continue self.expand_section(child, S) return S def expand_block(self, objects, visited=None): items = list() if not visited: visited = set() for o in objects: items.append(o) visited.add(o) for child in o.children: items.extend(self.expand_block([child], visited)) return items def diff_line(self, other, path=None): diff = list() for item in self.items: if item not in other: diff.append(item) return diff def diff_strict(self, other, path=None): diff = list() for index, item in enumerate(self.items): try: if item != other[index]: diff.append(item) except IndexError: diff.append(item) return diff def diff_exact(self, other, path=None): diff = list() if len(other) != len(self.items): diff.extend(self.items) else: for ours, theirs in zip(self.items, other): if ours != theirs: diff.extend(self.items) break return diff def difference(self, other, path=None, match='line', replace='line'): try: if path and match != 'line': try: other = other.get_section_objects(path) except ValueError: other = list() else: other = other.items func = getattr(self, 'diff_%s' % match) updates = func(other, path=path) except AttributeError: raise raise TypeError('invalid value for match keyword') if self._device_os == 'junos': return updates if replace == 'block': parents = list() for u in updates: if u.parents is None: if u not in parents: parents.append(u) else: for p in u.parents: if p not in parents: parents.append(p) return self.expand_block(parents) return self.expand_line(updates) def replace(self, patterns, repl, parents=None, add_if_missing=False, ignore_whitespace=True): match = None parents = to_list(parents) or list() patterns = [re.compile(r, re.I) for r in to_list(patterns)] for item in self.items: for regexp in patterns: text = item.text if not ignore_whitespace: text = item.raw if regexp.search(text): if item.text != repl: if parents == [p.text for p in item.parents]: match = item break if match: match.text = repl indent = len(match.raw) - len(match.raw.lstrip()) match.raw = repl.rjust(len(repl) + indent) elif add_if_missing: self.add(repl, parents=parents) def add(self, lines, parents=None): """Adds one or lines of configuration """ ancestors = list() offset = 0 obj = None ## global config command if not parents: for line in to_list(lines): item = ConfigLine(line) item.raw = line if item not in self.items: self.items.append(item) else: for index, p in enumerate(parents): try: i = index + 1 obj = self.get_section_objects(parents[:i])[0] ancestors.append(obj) except ValueError: # add parent to config offset = index * self.indent obj = ConfigLine(p) obj.raw = p.rjust(len(p) + offset) if ancestors: obj.parents = list(ancestors) ancestors[-1].children.append(obj) self.items.append(obj) ancestors.append(obj) # add child objects for line in to_list(lines): # check if child already exists for child in ancestors[-1].children: if child.text == line: break else: offset = len(parents) * self.indent item = ConfigLine(line) item.raw = line.rjust(len(line) + offset) item.parents = ancestors ancestors[-1].children.append(item) self.items.append(item)
8,508
2,341
319
315d972515790c8be08d568bf8607f2d1b58ff02
4,054
py
Python
tests/func/test_check_ignore.py
santos22/dvc
adce620621230da180c184d5b295ad3129560251
[ "Apache-2.0" ]
null
null
null
tests/func/test_check_ignore.py
santos22/dvc
adce620621230da180c184d5b295ad3129560251
[ "Apache-2.0" ]
null
null
null
tests/func/test_check_ignore.py
santos22/dvc
adce620621230da180c184d5b295ad3129560251
[ "Apache-2.0" ]
null
null
null
import os import pytest from dvc.ignore import DvcIgnore from dvc.main import main @pytest.mark.parametrize( "file,ret,output", [("ignored", 0, True), ("not_ignored", 1, False)] ) @pytest.mark.parametrize( "file,ret,output", [ ("file", 0, "{}:1:f*\tfile\n".format(DvcIgnore.DVCIGNORE_FILE)), ("foo", 0, "{}:2:!foo\tfoo\n".format(DvcIgnore.DVCIGNORE_FILE)), ( os.path.join("dir", "foobar"), 0, "{}:1:foobar\t{}\n".format( os.path.join("dir", DvcIgnore.DVCIGNORE_FILE), os.path.join("dir", "foobar"), ), ), ], ) @pytest.mark.parametrize("non_matching", [True, False]) @pytest.mark.parametrize( "args", [ ["-n", "file"], ["-a", "file"], ["-q", "-d", "file"], ["--stdin", "file"], [], ], ) @pytest.mark.parametrize("path,ret", [({"dir": {}}, 0), ({"dir": "files"}, 1)]) @pytest.mark.parametrize( "file,ret,output", [("ignored", 0, True), ("not_ignored", 1, False)] )
29.808824
79
0.602121
import os import pytest from dvc.ignore import DvcIgnore from dvc.main import main @pytest.mark.parametrize( "file,ret,output", [("ignored", 0, True), ("not_ignored", 1, False)] ) def test_check_ignore(tmp_dir, dvc, file, ret, output, caplog): tmp_dir.gen(DvcIgnore.DVCIGNORE_FILE, "ignored") assert main(["check-ignore", file]) == ret assert (file in caplog.text) is output assert "Having any troubles?" not in caplog.text @pytest.mark.parametrize( "file,ret,output", [ ("file", 0, "{}:1:f*\tfile\n".format(DvcIgnore.DVCIGNORE_FILE)), ("foo", 0, "{}:2:!foo\tfoo\n".format(DvcIgnore.DVCIGNORE_FILE)), ( os.path.join("dir", "foobar"), 0, "{}:1:foobar\t{}\n".format( os.path.join("dir", DvcIgnore.DVCIGNORE_FILE), os.path.join("dir", "foobar"), ), ), ], ) def test_check_ignore_details(tmp_dir, dvc, file, ret, output, caplog): tmp_dir.gen(DvcIgnore.DVCIGNORE_FILE, "f*\n!foo") tmp_dir.gen({"dir": {DvcIgnore.DVCIGNORE_FILE: "foobar"}}) assert main(["check-ignore", "-d", file]) == ret assert output in caplog.text @pytest.mark.parametrize("non_matching", [True, False]) def test_check_ignore_non_matching(tmp_dir, dvc, non_matching, caplog): tmp_dir.gen(DvcIgnore.DVCIGNORE_FILE, "other") if non_matching: assert main(["check-ignore", "-d", "-n", "file"]) == 1 else: assert main(["check-ignore", "-d", "file"]) == 1 assert ("::\tfile\n" in caplog.text) is non_matching @pytest.mark.parametrize( "args", [ ["-n", "file"], ["-a", "file"], ["-q", "-d", "file"], ["--stdin", "file"], [], ], ) def test_check_ignore_error_args_cases(tmp_dir, dvc, args, caplog): assert main(["check-ignore"] + args) == 255 assert ("Having any troubles?" in caplog.text) == ("-q" not in args) @pytest.mark.parametrize("path,ret", [({"dir": {}}, 0), ({"dir": "files"}, 1)]) def test_check_ignore_dir(tmp_dir, dvc, path, ret): tmp_dir.gen(DvcIgnore.DVCIGNORE_FILE, "dir/") tmp_dir.gen(path) assert main(["check-ignore", "-q", "dir"]) == ret def test_check_ignore_default_dir(tmp_dir, dvc): assert main(["check-ignore", "-q", ".dvc"]) == 1 def test_check_ignore_out_side_repo(tmp_dir, dvc): tmp_dir.gen(DvcIgnore.DVCIGNORE_FILE, "file") assert main(["check-ignore", "-q", "../file"]) == 1 def test_check_ignore_sub_repo(tmp_dir, dvc): tmp_dir.gen( {DvcIgnore.DVCIGNORE_FILE: "other", "dir": {".dvc": {}, "foo": "bar"}} ) assert main(["check-ignore", "-q", os.path.join("dir", "foo")]) == 1 def test_check_sub_dir_ignore_file(tmp_dir, dvc, caplog): tmp_dir.gen( { DvcIgnore.DVCIGNORE_FILE: "other", "dir": {DvcIgnore.DVCIGNORE_FILE: "bar\nfoo", "foo": "bar"}, } ) assert main(["check-ignore", "-d", os.path.join("dir", "foo")]) == 0 assert ( "{}:2:foo\t{}".format( os.path.join("dir", DvcIgnore.DVCIGNORE_FILE), os.path.join("dir", "foo"), ) in caplog.text ) sub_dir = tmp_dir / "dir" with sub_dir.chdir(): assert main(["check-ignore", "-d", "foo"]) == 0 assert ".dvcignore:2:foo\tfoo" in caplog.text def test_check_ignore_details_all(tmp_dir, dvc, caplog): tmp_dir.gen(DvcIgnore.DVCIGNORE_FILE, "f*\n!foo") assert main(["check-ignore", "-d", "-a", "foo"]) == 0 assert "{}:1:f*\tfoo\n".format(DvcIgnore.DVCIGNORE_FILE) in caplog.text assert "{}:2:!foo\tfoo\n".format(DvcIgnore.DVCIGNORE_FILE) in caplog.text @pytest.mark.parametrize( "file,ret,output", [("ignored", 0, True), ("not_ignored", 1, False)] ) def test_check_ignore_stdin_mode( tmp_dir, dvc, file, ret, output, caplog, mocker ): tmp_dir.gen(DvcIgnore.DVCIGNORE_FILE, "ignored") mocker.patch("builtins.input", side_effect=[file, ""]) assert main(["check-ignore", "--stdin"]) == ret assert (file in caplog.text) is output
2,741
0
247
14401b26c4f2699577a5a8de47556e68420e2570
3,923
py
Python
streamdeck.py
the-gearheads/StreamDeck
616d06e28c0e79093507a656a6972a916ab17fc7
[ "MIT" ]
null
null
null
streamdeck.py
the-gearheads/StreamDeck
616d06e28c0e79093507a656a6972a916ab17fc7
[ "MIT" ]
null
null
null
streamdeck.py
the-gearheads/StreamDeck
616d06e28c0e79093507a656a6972a916ab17fc7
[ "MIT" ]
null
null
null
import os import threading import time from networktables import NetworkTables from PIL import Image from PIL.ImageColor import getcolor, getrgb from PIL.ImageOps import grayscale from StreamDeck.DeviceManager import DeviceManager from StreamDeck.ImageHelpers import PILHelper ASSETS_PATH = os.path.join(os.path.dirname(__file__), "assets") ASSETS_PATH = os.path.join(os.path.dirname(__file__), "icons") # As a client to connect to a robot NetworkTables.initialize(server="10.11.89.2") # NetworkTables.initialize(server="127.0.0.1") time.sleep(3) sd = NetworkTables.getTable("StreamDeck/0") # a = [ # "default", # "default", # "default", # "default", # "default", # "default", # "default", # "default", # "default", # "default", # "default", # "default", # "default", # "default", # "default", # ] # sd.putStringArray("Icons", a) buttons = [] for i in range(0, 15): sd.putBoolean(f"Action/{i}", False) sd.putBoolean(f"Status/{i}", False) button = Button(i) buttons.append(button) deck = DeviceManager().enumerate()[0] deck.open() deck.reset() print( "Opened '{}' device (serial number: '{}')".format( deck.deck_type(), deck.get_serial_number() ) ) # Set initial screen brightness to 30%. deck.set_brightness(30) # Set initial key images. # for key in range(deck.key_count()): # update_key_image(deck, key, False) # Register callback function for when a key state changes. deck.set_key_callback(key_change_callback) while True: for button in buttons: button.update(deck) # Wait until all application threads have terminated (for this example, # this is when all deck handles are closed). for t in threading.enumerate(): if t is threading.currentThread(): continue if t.is_alive(): t.join()
25.640523
81
0.624522
import os import threading import time from networktables import NetworkTables from PIL import Image from PIL.ImageColor import getcolor, getrgb from PIL.ImageOps import grayscale from StreamDeck.DeviceManager import DeviceManager from StreamDeck.ImageHelpers import PILHelper ASSETS_PATH = os.path.join(os.path.dirname(__file__), "assets") def image_tint(src, tint="#ffffff"): # From https://stackoverflow.com/a/12310820 if src.mode not in ["RGB", "RGBA"]: raise TypeError("Unsupported source image mode: {}".format(src.mode)) src.load() tr, tg, tb = getrgb(tint) tl = getcolor(tint, "L") if not tl: tl = 1 tl = float(tl) sr, sg, sb = map(lambda tv: tv / tl, (tr, tg, tb)) luts = ( tuple(map(lambda lr: int(lr * sr + 0.5), range(256))) + tuple(map(lambda lg: int(lg * sg + 0.5), range(256))) + tuple(map(lambda lb: int(lb * sb + 0.5), range(256))) ) l = grayscale(src) if Image.getmodebands(src.mode) < 4: merge_args = (src.mode, (l, l, l)) else: a = Image.new("L", src.size) a.putdata(src.getdata(3)) luts += tuple(range(256)) return Image.merge(*merge_args).point(luts) ASSETS_PATH = os.path.join(os.path.dirname(__file__), "icons") def render_key_image(deck, icon_filename): image = PILHelper.create_image(deck) icon = Image.open(ASSETS_PATH + "/" + icon_filename).convert("RGBA") icon.thumbnail((image.width, image.height - 20), Image.LANCZOS) icon_pos = ((image.width - icon.width) // 2, 0) image.paste(icon, icon_pos, icon) return image def key_change_callback(deck, key, state): if state: button = buttons[key] button.set(deck) class Button: def __init__(self, key): self.key = key self.active = False def set(self, deck): sd.putBoolean(f"Action/{self.key}", True) self.update(deck) def update(self, deck): x = sd.getBoolean(f"Status/{self.key}", False) y = sd.getBoolean(f"Action/{self.key}", False) icon_array = sd.getStringArray("Icons", []) name = icon_array[self.key] image = None if x: image = render_key_image(deck, name + "/active.png") else: image = render_key_image(deck, name + "/inactive.png") if y: image = image_tint(image, tint="#882020") image = PILHelper.to_native_format(deck, image) deck.set_key_image(self.key, image) # As a client to connect to a robot NetworkTables.initialize(server="10.11.89.2") # NetworkTables.initialize(server="127.0.0.1") time.sleep(3) sd = NetworkTables.getTable("StreamDeck/0") # a = [ # "default", # "default", # "default", # "default", # "default", # "default", # "default", # "default", # "default", # "default", # "default", # "default", # "default", # "default", # "default", # ] # sd.putStringArray("Icons", a) buttons = [] for i in range(0, 15): sd.putBoolean(f"Action/{i}", False) sd.putBoolean(f"Status/{i}", False) button = Button(i) buttons.append(button) deck = DeviceManager().enumerate()[0] deck.open() deck.reset() print( "Opened '{}' device (serial number: '{}')".format( deck.deck_type(), deck.get_serial_number() ) ) # Set initial screen brightness to 30%. deck.set_brightness(30) # Set initial key images. # for key in range(deck.key_count()): # update_key_image(deck, key, False) # Register callback function for when a key state changes. deck.set_key_callback(key_change_callback) while True: for button in buttons: button.update(deck) # Wait until all application threads have terminated (for this example, # this is when all deck handles are closed). for t in threading.enumerate(): if t is threading.currentThread(): continue if t.is_alive(): t.join()
1,919
-8
172
873966cecd914fb9e587a731142d35c5dac67b39
9,649
py
Python
_curry.py
GoNZooo/dragonfly-grammars
22d639d8f86f4f5a7c44caa73e75c4938c0ce199
[ "MIT" ]
3
2020-09-06T10:40:19.000Z
2020-09-29T20:39:52.000Z
_curry.py
GoNZooo/dragonfly-grammars
22d639d8f86f4f5a7c44caa73e75c4938c0ce199
[ "MIT" ]
null
null
null
_curry.py
GoNZooo/dragonfly-grammars
22d639d8f86f4f5a7c44caa73e75c4938c0ce199
[ "MIT" ]
null
null
null
from dragonfly import (Grammar, CompoundRule, Text, MappingRule, Dictation, Function, Choice) from macro_utilities import (replace_in_text, comment_choice, execute_with_dictation) from vim.rules.letter import (camel_case, proper) comparison_choice_map = { "equal": "==", "not equal": "/=", "less or equal": "<=", "greater or equal": ">=", "less": "<", "greater": ">", } stack_command_choice_map = { "build fast": "build --fast", "build": "build", "shell": "repl", "shall": "repl", "test": "test", "test fast": "test --fast", "run": "run", "install": "install", } # The main Curry grammar rules are activated here curryBootstrap = Grammar("curry bootstrap") curryBootstrap.add_rule(CurryEnabler()) curryBootstrap.load() curryGrammar = Grammar("curry grammar") curryGrammar.add_rule(CurryUtilities()) curryGrammar.add_rule(CurryDisabler()) curryGrammar.load() curryGrammar.disable()
31.025723
96
0.635092
from dragonfly import (Grammar, CompoundRule, Text, MappingRule, Dictation, Function, Choice) from macro_utilities import (replace_in_text, comment_choice, execute_with_dictation) from vim.rules.letter import (camel_case, proper) class CurryEnabler(CompoundRule): spec = "enable Curry" def _process_recognition(self, node, extras): curryBootstrap.disable() curryGrammar.enable() print("Curry grammar enabled!") class CurryDisabler(CompoundRule): spec = "disable Curry" def _process_recognition(self, node, extras): curryGrammar.disable() curryBootstrap.enable() print("Curry grammar disabled") def dictation_to_identifier(dictation): return camel_case(str(dictation).lower()) def output_bind(name): if name == "": command = replace_in_text("$ <- _") else: name = dictation_to_identifier(name) command = replace_in_text("%s <- $" % name) command.execute() def output_let(name): if name == "": command = replace_in_text("let $ = _") else: name = dictation_to_identifier(name) command = replace_in_text("let %s = $" % name) command.execute() def output_case(name): if name == "": command = replace_in_text("case $ of") else: name = dictation_to_identifier(name) command = Text("case %s of" % name) command.execute() comparison_choice_map = { "equal": "==", "not equal": "/=", "less or equal": "<=", "greater or equal": ">=", "less": "<", "greater": ">", } def comparison_choice(name="comparison"): return Choice(name, comparison_choice_map) def output_if_comparison(name, construct, comparison=None): if comparison is not None: execute_with_dictation( name, lambda n: replace_in_text( "%s %s %s $ then _ else _" % (construct, dictation_to_identifier(n), comparison) ), lambda n: replace_in_text("%s $ %s _ then _ else _" % (construct, comparison)) ) def output_if(name): if name == "": command = replace_in_text("if $ then _ else _") else: name = dictation_to_identifier(name) command = replace_in_text("if %s then $ else _" % name) command.execute() def output_type_signature(name): if name == "": command = replace_in_text("$ :: _") else: name = dictation_to_identifier(name) command = replace_in_text("%s :: $" % name) command.execute() def format_module_name(module_name): module_name = str(module_name) components = module_name.split(".") formatted_components = [] for component in components: formatted_components.append(proper(component)) return ".".join(formatted_components) def output_import(import_name): if import_name == "": command = replace_in_text("import $ (_)") else: import_name = format_module_name(import_name) command = replace_in_text("import %s ($)" % import_name) command.execute() def output_import_qualified(import_name): if import_name == "": command = replace_in_text("import qualified $ as _") else: import_name = format_module_name(import_name) command = replace_in_text("import qualified %s as $" % import_name) command.execute() def output_import_as(import_name): if import_name == "": command = replace_in_text("import $ as _") else: import_name = format_module_name(import_name) command = replace_in_text("import %s as $" % import_name) command.execute() def output_binding(name): if name == "": command = replace_in_text("$ = _") else: name = dictation_to_identifier(name) command = Text("%s = " % name) command.execute() def output_check_equal(name): output_check_comparison("==", name) def output_check_not_equal(name): output_check_comparison("/=", name) def output_check_comparison(comparison, name): if name == "": command = replace_in_text("$ %s _" % comparison) else: name = dictation_to_identifier(name) command = replace_in_text("%s %s $" % (name, comparison)) command.execute() def output_data_type(type_name): if type_name == "": command = replace_in_text("data $ =") else: type_name = dictation_to_type_name(type_name) command = Text("data %s = " % type_name) command.execute() def dictation_to_type_name(name): return proper(str(name).replace("-", "")) def output_new_type(type_name, new_type_base): if type_name == "" and new_type_base == "": command = replace_in_text("newtype $ = _") elif type_name == "": new_type_base = dictation_to_type_name(new_type_base) command = replace_in_text("newtype $ = _ %s" % new_type_base) elif new_type_base == "": type_name = dictation_to_type_name(type_name) command = Text("newtype %s = %s " % (type_name, type_name)) else: type_name = dictation_to_type_name(type_name) new_type_base = dictation_to_type_name(new_type_base) command = Text("newtype %s = %s %s" % (type_name, type_name, new_type_base)) command.execute() def output_wrapped_type(type_name, new_type_base): if type_name == "" and new_type_base == "": command = replace_in_text("type $ = Wrapped \"_\" _") elif type_name == "": new_type_base = dictation_to_type_name(new_type_base) command = replace_in_text("type $ = Wrapped \"_\" %s" % new_type_base) elif new_type_base == "": type_name = dictation_to_type_name(type_name) command = Text("type %s = Wrapped \"%s\" " % (type_name, type_name)) else: type_name = dictation_to_type_name(type_name) new_type_base = dictation_to_type_name(new_type_base) command = Text("type %s = Wrapped \"%s\" %s" % (type_name, type_name, new_type_base)) command.execute() def output_language_extension(language_extension): Text("{-# LANGUAGE %s #-}" % proper(str(language_extension))).execute() def output_comment(comment, comment_type=None): if comment_type is None: command = Text("-- %s" % comment) else: command = Text("-- %s %s" % (comment_type, comment)) command.execute() stack_command_choice_map = { "build fast": "build --fast", "build": "build", "shell": "repl", "shall": "repl", "test": "test", "test fast": "test --fast", "run": "run", "install": "install", } def stack_command_choice(name="stack_command"): return Choice(name, stack_command_choice_map) def output_stack_command(stack_command=None): command_text = "stack " if stack_command is None: command = Text(command_text) else: command = Text(command_text + str(stack_command)) command.execute() class CurryUtilities(MappingRule): mapping = { "if [<name>] is <comparison>": Function(output_if_comparison, construct="if"), "if [<name>]": Function(output_if), "case [on <name>]": Function(output_case), "let [<name>]": Function(output_let), "anonymous function": replace_in_text("\\$ -> _"), "signature [for <name>]": Function(output_type_signature), "import [<import_name>]": Function(output_import), "import qualified [<import_name>]": Function(output_import_qualified), "import [<import_name>] as": Function(output_import_as), "qualified pure script import": replace_in_text("import $ as _"), "check [<name>] is equal": Function(output_check_equal), "check [<name>] is not equal": Function(output_check_not_equal), "map": Text(" <$> "), "apply": Text(" <*> "), "operator bind": Text(" >>= "), "discard": Text(" >> "), "[<name>] equals": Function(output_binding), "bind [<name>]": Function(output_bind), "backwards arrow": Text(" <- "), "backwards fat arrow": Text(" <= "), "arrow": Text(" -> "), "fat arrow": Text(" => "), "monad reader": Text("MonadReader env m"), "monad IO": Text("MonadIO m"), "monad unlift": Text("MonadUnliftIO m"), "monad state": Text("MonadState s m"), "data type [<type_name>]": Function(output_data_type), "new type [<new_type_base>] is called [<type_name>]": Function(output_new_type), "wrapped [<new_type_base>] is called [<type_name>]": Function(output_wrapped_type), "language extension <language_extension>": Function(output_language_extension), "[<comment_type>] comment [<comment>]": Function(output_comment), # terminal commands "stack [<stack_command>]": Function(output_stack_command), } extras = [ Dictation("name", default=""), Dictation("comment", default=""), Dictation("type_name", default=""), Dictation("new_type_base", default=""), Dictation("import_name", default=""), Dictation("language_extension", default=""), comment_choice("comment_type"), stack_command_choice("stack_command"), comparison_choice("comparison"), ] # The main Curry grammar rules are activated here curryBootstrap = Grammar("curry bootstrap") curryBootstrap.add_rule(CurryEnabler()) curryBootstrap.load() curryGrammar = Grammar("curry grammar") curryGrammar.add_rule(CurryUtilities()) curryGrammar.add_rule(CurryDisabler()) curryGrammar.load() curryGrammar.disable() def unload(): global curryGrammar if curryGrammar: curryGrammar.unload() curryGrammar = None
5,599
2,434
644
3bbe192c0bd0ecce276a3a5226d771eca7a1f92d
712
py
Python
updatorr/__init__.py
idlesign/deluge-updatorr
aa7c5b0a312fdef580c8dd263760d48f3ac2a56e
[ "BSD-3-Clause" ]
14
2015-02-24T21:50:06.000Z
2022-01-17T07:51:35.000Z
updatorr/__init__.py
idlesign/deluge-updatorr
aa7c5b0a312fdef580c8dd263760d48f3ac2a56e
[ "BSD-3-Clause" ]
1
2016-07-07T05:15:37.000Z
2016-07-07T05:50:56.000Z
updatorr/__init__.py
idlesign/deluge-updatorr
aa7c5b0a312fdef580c8dd263760d48f3ac2a56e
[ "BSD-3-Clause" ]
4
2015-04-27T10:47:23.000Z
2019-01-08T02:53:18.000Z
from deluge.plugins.init import PluginInitBase VERSION = (0, 1, 8)
25.428571
54
0.714888
from deluge.plugins.init import PluginInitBase VERSION = (0, 1, 8) class CorePlugin(PluginInitBase): def __init__(self, plugin_name): from core import Core as _plugin_cls self._plugin_cls = _plugin_cls super(CorePlugin, self).__init__(plugin_name) class GtkUIPlugin(PluginInitBase): def __init__(self, plugin_name): from gtkui import GtkUI as _plugin_cls self._plugin_cls = _plugin_cls super(GtkUIPlugin, self).__init__(plugin_name) class WebUIPlugin(PluginInitBase): def __init__(self, plugin_name): from webui import WebUI as _plugin_cls self._plugin_cls = _plugin_cls super(WebUIPlugin, self).__init__(plugin_name)
453
38
149
18263fc551610af8df9f1b2b30108a9e0d99788f
993
py
Python
applications/users/views/profile.py
arielcalzadadeveloper/django-base-project
6e6b8d4f25f45d76f34633f38eaec8d4880130ea
[ "MIT" ]
null
null
null
applications/users/views/profile.py
arielcalzadadeveloper/django-base-project
6e6b8d4f25f45d76f34633f38eaec8d4880130ea
[ "MIT" ]
null
null
null
applications/users/views/profile.py
arielcalzadadeveloper/django-base-project
6e6b8d4f25f45d76f34633f38eaec8d4880130ea
[ "MIT" ]
null
null
null
from django.shortcuts import reverse from django.views.generic import UpdateView from applications.users.forms.profile import ProfileForm from applications.users.layouts.profile import ProfileLayout from applications.users.mixins.authenticated import AuthenticatedMixin from applications.common.mixins.add_message import AddMessageMixin from applications.common.mixins.add_request_to_form import AddRequestToFormMixin Profile = ProfileCBV.as_view()
31.03125
89
0.769386
from django.shortcuts import reverse from django.views.generic import UpdateView from applications.users.forms.profile import ProfileForm from applications.users.layouts.profile import ProfileLayout from applications.users.mixins.authenticated import AuthenticatedMixin from applications.common.mixins.add_message import AddMessageMixin from applications.common.mixins.add_request_to_form import AddRequestToFormMixin class ProfileCBV(AddRequestToFormMixin, AddMessageMixin, AuthenticatedMixin, UpdateView): template_name = "users/profile.html" form_class = ProfileForm def get_object(self, queryset=None): return self.request.user def get_context_data(self, **kwargs): context_data = super(ProfileCBV, self).get_context_data(**kwargs) context_data.update({ "form_layout": ProfileLayout(), }) return context_data def get_success_url(self): return reverse("users:profile") Profile = ProfileCBV.as_view()
298
219
23
eadbb2d6d149a0b57c452f236114b2ae0e66a136
9,334
py
Python
app/main/video/video.py
BorrowHome/flasky-sandbox
70ef7aa087a0954f7ff4b4845f6599d8481ef0b1
[ "Apache-2.0" ]
1
2021-03-15T02:59:13.000Z
2021-03-15T02:59:13.000Z
app/main/video/video.py
BorrowHome/flasky-sandbox
70ef7aa087a0954f7ff4b4845f6599d8481ef0b1
[ "Apache-2.0" ]
6
2021-03-19T09:49:44.000Z
2022-03-12T00:10:14.000Z
app/main/video/video.py
BorrowHome/flasky-sandbox
70ef7aa087a0954f7ff4b4845f6599d8481ef0b1
[ "Apache-2.0" ]
2
2020-01-11T13:39:22.000Z
2020-07-02T03:57:43.000Z
# -*- coding: utf-8 -*- import csv import os import cv2 import numpy as np from flask import render_template, request, redirect, url_for from flask import jsonify from app.main import main from app.utils.frame.frame import base64_to_png from app.utils.frame.site import Site from app.utils.frame.sub import PictureSub from config import Config import json @main.route('/') @main.route('/picture/', methods=['GET', 'POST']) # INFO 2019/12/25 15:18 liliangbin 背景图片设置 @main.route('/background/', methods=['GET', 'POST']) # TODO 2020/1/4 15:13 liliangbin 返回的地址应该是画框的位置(视频名字和时间位置)通过前端设置了 @main.route('/site/', methods=['GET', 'POST']) # TODO 2020/6/12 15:50 liliangbin 代码可以优化一波 @main.route('/change_datas/', methods=['GET', 'POST']) # INFO 2020/6/12 15:51 liliangbin 获取用户 @main.route("/site_get/", methods=['GET', 'POST']) @main.route('/video_location/', methods=['POST'])
35.9
117
0.607028
# -*- coding: utf-8 -*- import csv import os import cv2 import numpy as np from flask import render_template, request, redirect, url_for from flask import jsonify from app.main import main from app.utils.frame.frame import base64_to_png from app.utils.frame.site import Site from app.utils.frame.sub import PictureSub from config import Config import json @main.route('/') def index(): # 这里的主入口是我们函数的dir 最好用绝对路径,临时用相对路径 # 使用url_for的时候使用的是函数名(路由名和函数名应一样。) video_names = [] path_in = './app/static/video/' path_out = 'http://localhost:8082/static/video/' image_path = Config.UPLOAD_IMAGE_PATH document_path = Config.SAVE_DOCUMENT_PATH for dirpath, dirnames, filenames in os.walk(path_in): for filename in filenames: # dir_file_name = os.path.join(dirpath, filename) dir_file_name = filename if os.path.splitext(dir_file_name)[1] == '.mp4' or '.avi': # (('./app/static/movie', '.mp4')) print(dir_file_name) video_names.append(dir_file_name) with open(document_path + "site_0.txt", "r+") as f: a = f.readlines() print(a) frame_location = Site(int(a[0]), int(a[1]), int(a[2]), int(a[3])) video_src = video_names[0] tmp2 = frame_location.locate_y + frame_location.move_y tmp1 = frame_location.locate_x + frame_location.move_x site_left_top = [str(frame_location.locate_x), str(frame_location.locate_y)] site_left_bottom = [str(frame_location.locate_x), str(tmp2)] site_right_top = [str(tmp1), str(frame_location.locate_y)] site_right_bottom = [str(tmp1), str(tmp2)] return jsonify( { 'video_names': video_names, 'site': { 'site_left_top': site_left_top, 'site_left_bottom': site_left_bottom, 'site_right_top': site_right_top, 'site_right_bottom': site_right_bottom, }, 'video_src': video_src } ) @main.route('/picture/', methods=['GET', 'POST']) def picture(): # TODO 2019/10/1 12:02 liliangbin 当前帧解码 ,并调用图像处理函数 返回一个字符串 # 输入的base64编码字符串必须符合base64的padding规则。“当原数据长度不是3的整数倍时, 如果最后剩下两个输入数据,在编码结果后加1个“=”; # 如果最后剩下一个输入数据,编码结果后加2个“=”;如果没有剩下任何数据,就什么都不要加,这样才可以保证资料还原的正确性。” # import time start = time.clock() # 中间写上代码块 image_path = Config.UPLOAD_IMAGE_PATH document_path = Config.SAVE_DOCUMENT_PATH if request.method == 'POST': data = json.loads(request.get_data(as_text=True)) str = data.get('current_frame') video_name = data.get('video_name') imageStart = time.clock() img_np = base64_to_png(str) cv2.imwrite(image_path + "current_" + video_name + ".png", img_np) imageEnd = time.clock() print('base64topng: %s Seconds' % (imageEnd - imageStart)) res = {} sub = PictureSub() # 背景图 writeImgeStart = time.clock() background = cv2.imread(image_path + "back_" + video_name + ".png") print(background.shape) writeImgeEnd = time.clock() print('WriteImge: %s Seconds' % (writeImgeEnd - writeImgeStart)) currentFrame = img_np print(currentFrame.shape) q = sub.subtract_demo(background, currentFrame) substractIMRun = time.clock() print('substract : %s Seconds' % (substractIMRun - writeImgeEnd)) s = sub.inverse(q) InvserseSTOP = time.clock() print('inverse : %s Seconds' % (InvserseSTOP - substractIMRun)) # t = sub.iblack(s, 220) imageRun = time.clock() print('iblack: %s Seconds' % (imageRun - InvserseSTOP)) print('sub starct ALL : %s Seconds' % (imageRun - writeImgeEnd)) # cv2.imwrite(image_path + "iblack_" + id + ".png", t) cv2.imwrite(image_path + "ipaint_" + video_name + ".png", s) imageStop = time.clock() print('write twoImge: %s Seconds' % (imageStop - imageRun)) with open(document_path + "site_" + video_name + ".txt", "r+") as f: a = f.readlines() print(a) frame_location = Site(int(a[0]), int(a[1]), int(a[2]), int(a[3])) res = sub.ipaint(s, 220, video_name, frame_location.locate_x, frame_location.move_x, frame_location.locate_y, frame_location.move_y) res['max'] = frame_location.locate_y + frame_location.move_y # 变化得y轴 list_y = np.array(res['list_y']) data_total = res['max'] - list_y max_index = max(data_total.tolist()) res['list_y'] = data_total.tolist() res['max'] = max_index + 20 res['video_name'] = video_name # 以前使用的是jsonify===> 前端使用 data["list_y"]==>有什么区别 end = time.clock() print('Running time: %s Seconds' % (end - start)) return res # INFO 2019/12/25 15:18 liliangbin 背景图片设置 @main.route('/background/', methods=['GET', 'POST']) def background(): image_path = Config.UPLOAD_IMAGE_PATH document_path = Config.SAVE_DOCUMENT_PATH if request.method == 'POST': jsonData = json.loads(request.get_data(as_text=True)) frame = jsonData.get('current_frame') video_name = jsonData.get('video_name') img_np = base64_to_png(frame) cv2.imwrite(image_path + "back_" + video_name + ".png", img_np) return 'done' # TODO 2020/1/4 15:13 liliangbin 返回的地址应该是画框的位置(视频名字和时间位置)通过前端设置了 @main.route('/site/', methods=['GET', 'POST']) def site(): image_path = Config.UPLOAD_IMAGE_PATH document_path = Config.SAVE_DOCUMENT_PATH if request.method == 'POST': print("post") print(request.form) # 数据识别得的时候最好使用整数实现,int和float的转化有问题,就在计算得时候。脑阔疼 # 大坑 locate_x = int(float(request.form['locate_x'])) locate_y = int(float(request.form['locate_y'])) move_x = int(float(request.form['move_x'])) move_y = int(float(request.form['move_y'])) id = request.form['id'] print(id, "fdsf") with open(document_path + "site_" + id + ".txt", 'w') as f: f.write(str(locate_x) + '\n') f.write(str(locate_y) + '\n') f.write(str(move_x) + '\n') f.write(str(move_y) + '\n') return "done" # TODO 2020/6/12 15:50 liliangbin 代码可以优化一波 @main.route('/change_datas/', methods=['GET', 'POST']) def change_datas(): # 输入的base64编码字符串必须符合base64的padding规则。“当原数据长度不是3的整数倍时, 如果最后剩下两个输入数据,在编码结果后加1个“=”; # 如果最后剩下一个输入数据,编码结果后加2个“=”;如果没有剩下任何数据,就什么都不要加,这样才可以保证资料还原的正确性。” s = [] image_path = Config.UPLOAD_IMAGE_PATH document_path = Config.SAVE_DOCUMENT_PATH if request.method == 'POST': new = eval(request.form.getlist("current_frame")[0]) id = request.form['id'] print(type(new), new) # new=[int(new[0]),int(new[1])] with open(document_path + "site_" + id + ".txt", "r+") as f: a = f.readlines() print(a) frame_location = Site(int(a[0]), int(a[1]), int(a[2]), int(a[3])) with open(document_path + "sand_" + id + ".csv", "r+", encoding="utf-8", newline="")as f: reader = csv.reader(f) # writer = csv.writer(f) print("正在修改csv文件") for i in reader: s.append(i) for i in s: # print(i) if str(new[0]) == i[0]: s[s.index(i)][1] = str(frame_location.move_y + frame_location.locate_y - new[1]) break with open(document_path + "sand_" + id + ".csv", "w", newline="")as f: writer = csv.writer(f) for i in s: writer.writerow(i) print("csv文件修改成功") return "true" # INFO 2020/6/12 15:51 liliangbin 获取用户 @main.route("/site_get/", methods=['GET', 'POST']) def site_get(): document_path = Config.SAVE_DOCUMENT_PATH res = {} if request.method == 'POST': id = request.form["id"] try: with open(document_path + "site_" + id + ".txt", "r+") as f: a = f.readlines() print(a) frame_location = Site(int(a[0]), int(a[1]), int(a[2]), int(a[3])) except Exception as e: print(e.__cause__) print('现在还没有存储该site') frame_location = Site(0, 0, 0, 0) tmp2 = frame_location.locate_y + frame_location.move_y tmp1 = frame_location.locate_x + frame_location.move_x res['site_left_top'] = str(frame_location.locate_x) + ',' + str(frame_location.locate_y) res['site_left_bottom'] = str(frame_location.locate_x) + ',' + str(tmp2) res['site_right_top'] = str(tmp1) + ',' + str(frame_location.locate_y) res['site_right_bottom'] = str(tmp1) + ',' + str(tmp2) # return redirect(url_for('main.index')) return res @main.route('/video_location/', methods=['POST']) def video_location(): document_path = Config.SAVE_DOCUMENT_PATH video_save_location = request.form.get('video_location') location = request.args.get('location') print(video_save_location) print(location) with open(document_path + "video_save_location.txt", 'w') as f: f.write(str(video_save_location)) if location == 'ipc': return redirect(url_for('.ipc')) elif location == 'multi_video': return redirect(url_for('.multi_ipc_video')) return redirect('.')
9,068
0
154
ec9fd9597bdca1b68870394bf77473afe8484e61
233
py
Python
lfs/manage/discounts/forms.py
naro/django-lfs
312404370e497d00aa0f7221dc55a70a20490fb5
[ "BSD-3-Clause" ]
null
null
null
lfs/manage/discounts/forms.py
naro/django-lfs
312404370e497d00aa0f7221dc55a70a20490fb5
[ "BSD-3-Clause" ]
null
null
null
lfs/manage/discounts/forms.py
naro/django-lfs
312404370e497d00aa0f7221dc55a70a20490fb5
[ "BSD-3-Clause" ]
null
null
null
# django imports from django.forms import ModelForm # lfs imports from lfs.discounts.models import Discount class DiscountForm(ModelForm): """ Form to manage discount data. """
16.642857
41
0.690987
# django imports from django.forms import ModelForm # lfs imports from lfs.discounts.models import Discount class DiscountForm(ModelForm): """ Form to manage discount data. """ class Meta: model = Discount
0
15
26
161fc216cd97b68346d08db33a110ef3a04fb9bd
5,738
py
Python
betka/utils.py
phracek/betka
12c920bd76d33f81bbf8cda6f27d673c8826cf9e
[ "MIT" ]
1
2020-11-05T21:16:28.000Z
2020-11-05T21:16:28.000Z
betka/utils.py
phracek/betka
12c920bd76d33f81bbf8cda6f27d673c8826cf9e
[ "MIT" ]
16
2020-03-20T11:23:27.000Z
2022-03-08T17:09:11.000Z
betka/utils.py
phracek/betka
12c920bd76d33f81bbf8cda6f27d673c8826cf9e
[ "MIT" ]
1
2020-03-11T09:29:48.000Z
2020-03-11T09:29:48.000Z
# MIT License # # Copyright (c) 2020 SCL team at Red Hat # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from contextlib import contextmanager import logging import shutil import os import json import jinja2 import subprocess from pathlib import Path from betka.constants import HOME logger = logging.getLogger(__name__) def run_cmd(cmd, return_output=False, ignore_error=False, shell=False, **kwargs): """ Run provided command on host system using the same user as invoked this code. Raises subprocess.CalledProcessError if it fails. :param cmd: list or str :param return_output: bool, return output of the command :param ignore_error: bool, do not fail in case nonzero return code :param shell: bool, run command in shell :param kwargs: pass keyword arguments to subprocess.check_* functions; for more info, please check `help(subprocess.Popen)` :return: None or str """ logger.debug("command: %r", cmd) try: if return_output: return subprocess.check_output( cmd, stderr=subprocess.STDOUT, universal_newlines=True, shell=shell, **kwargs, ) else: return subprocess.check_call(cmd, shell=shell, **kwargs) except subprocess.CalledProcessError as cpe: if ignore_error: if return_output: return cpe.output else: return cpe.returncode else: logger.error(f"failed with code {cpe.returncode} and output:\n{cpe.output}") raise cpe def text_from_template(template_dir, template_filename, template_data): """ Create text based on template in path template_dir/template_filename :param template_dir: string, directory containing templates :param template_filename: template for text in jinja :param template_data: dict, data for substitution in template :return: string """ if not os.path.exists(os.path.join(template_dir, template_filename)): raise FileNotFoundError("Path to template not found.") template_loader = jinja2.FileSystemLoader(searchpath=template_dir) template_env = jinja2.Environment(loader=template_loader) template = template_env.get_template(template_filename) output_text = template.render(template_data=template_data) logger.debug("Text from template created:") logger.debug(output_text) return output_text def copy_upstream2downstream(src_parent: Path, dest_parent: Path): """Copies content from upstream repo to downstream repo Copies all files/dirs/symlinks from upstream source to dist-git one by one, while removing previous if exists. :param src_parent: path to source directory :param dest_parent: path to destination directory """ for f in src_parent.iterdir(): if f.name.startswith(".git"): continue dest = dest_parent / f.name src = src_parent / f.name logger.debug(f"Copying {str(src)} to {str(dest)}.") # First remove the dest only if it is not symlink. if dest.is_dir() and not dest.is_symlink(): logger.debug("rmtree %s", dest) shutil.rmtree(dest) else: if dest.exists(): dest.unlink() # Now copy the src to dest if src.is_symlink() or not src.is_dir(): logger.debug("cp %s %s", src, dest) shutil.copy2(src, dest, follow_symlinks=False) else: logger.debug("cp -r %s %s", src, dest) shutil.copytree(src, dest, symlinks=True) def clean_directory(path: Path): """ Function cleans directory except itself :param path: directory path which is cleaned """ for d in path.iterdir(): src = path / d if src.is_dir(): logger.debug("rmtree %s", str(src)) shutil.rmtree(src) else: src.unlink() def list_dir_content(dir_name: Path): """ Lists all content of dir_name :param dir_name: Directory for showing files """ logger.info("Look for a content in '%s' directory", str(dir_name)) for f in dir_name.rglob("*"): if str(f).startswith(".git"): continue logger.debug(f"{f.parent / f.name}") @contextmanager def cwd(path): """ Switch to Path directory and once action is done returns back :param path: :return: """ prev_cwd = Path.cwd() os.chdir(path) try: yield finally: os.chdir(prev_cwd)
32.788571
89
0.66626
# MIT License # # Copyright (c) 2020 SCL team at Red Hat # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from contextlib import contextmanager import logging import shutil import os import json import jinja2 import subprocess from pathlib import Path from betka.constants import HOME logger = logging.getLogger(__name__) def run_cmd(cmd, return_output=False, ignore_error=False, shell=False, **kwargs): """ Run provided command on host system using the same user as invoked this code. Raises subprocess.CalledProcessError if it fails. :param cmd: list or str :param return_output: bool, return output of the command :param ignore_error: bool, do not fail in case nonzero return code :param shell: bool, run command in shell :param kwargs: pass keyword arguments to subprocess.check_* functions; for more info, please check `help(subprocess.Popen)` :return: None or str """ logger.debug("command: %r", cmd) try: if return_output: return subprocess.check_output( cmd, stderr=subprocess.STDOUT, universal_newlines=True, shell=shell, **kwargs, ) else: return subprocess.check_call(cmd, shell=shell, **kwargs) except subprocess.CalledProcessError as cpe: if ignore_error: if return_output: return cpe.output else: return cpe.returncode else: logger.error(f"failed with code {cpe.returncode} and output:\n{cpe.output}") raise cpe def text_from_template(template_dir, template_filename, template_data): """ Create text based on template in path template_dir/template_filename :param template_dir: string, directory containing templates :param template_filename: template for text in jinja :param template_data: dict, data for substitution in template :return: string """ if not os.path.exists(os.path.join(template_dir, template_filename)): raise FileNotFoundError("Path to template not found.") template_loader = jinja2.FileSystemLoader(searchpath=template_dir) template_env = jinja2.Environment(loader=template_loader) template = template_env.get_template(template_filename) output_text = template.render(template_data=template_data) logger.debug("Text from template created:") logger.debug(output_text) return output_text def copy_upstream2downstream(src_parent: Path, dest_parent: Path): """Copies content from upstream repo to downstream repo Copies all files/dirs/symlinks from upstream source to dist-git one by one, while removing previous if exists. :param src_parent: path to source directory :param dest_parent: path to destination directory """ for f in src_parent.iterdir(): if f.name.startswith(".git"): continue dest = dest_parent / f.name src = src_parent / f.name logger.debug(f"Copying {str(src)} to {str(dest)}.") # First remove the dest only if it is not symlink. if dest.is_dir() and not dest.is_symlink(): logger.debug("rmtree %s", dest) shutil.rmtree(dest) else: if dest.exists(): dest.unlink() # Now copy the src to dest if src.is_symlink() or not src.is_dir(): logger.debug("cp %s %s", src, dest) shutil.copy2(src, dest, follow_symlinks=False) else: logger.debug("cp -r %s %s", src, dest) shutil.copytree(src, dest, symlinks=True) def clean_directory(path: Path): """ Function cleans directory except itself :param path: directory path which is cleaned """ for d in path.iterdir(): src = path / d if src.is_dir(): logger.debug("rmtree %s", str(src)) shutil.rmtree(src) else: src.unlink() def list_dir_content(dir_name: Path): """ Lists all content of dir_name :param dir_name: Directory for showing files """ logger.info("Look for a content in '%s' directory", str(dir_name)) for f in dir_name.rglob("*"): if str(f).startswith(".git"): continue logger.debug(f"{f.parent / f.name}") def load_config_json(): with open(f"{HOME}/config.json") as config_file: data = json.load(config_file) return data @contextmanager def cwd(path): """ Switch to Path directory and once action is done returns back :param path: :return: """ prev_cwd = Path.cwd() os.chdir(path) try: yield finally: os.chdir(prev_cwd)
109
0
23
7f019039c93471670011b52c66c98041328e2ea4
2,848
py
Python
deepspeech/io/collator.py
iclementine/DeepSpeech
d0635c6592a2e787ca296e15241e7371a83ca55f
[ "Apache-2.0" ]
1
2021-05-14T23:27:13.000Z
2021-05-14T23:27:13.000Z
deepspeech/io/collator.py
xihuanafeng/DeepSpeech
2bdf4c946af66cc173d638c072ba6435cd18a286
[ "Apache-2.0" ]
null
null
null
deepspeech/io/collator.py
xihuanafeng/DeepSpeech
2bdf4c946af66cc173d638c072ba6435cd18a286
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from deepspeech.frontend.utility import IGNORE_ID from deepspeech.io.utility import pad_sequence from deepspeech.utils.log import Log __all__ = ["SpeechCollator"] logger = Log(__name__).getlog()
36.050633
86
0.61236
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from deepspeech.frontend.utility import IGNORE_ID from deepspeech.io.utility import pad_sequence from deepspeech.utils.log import Log __all__ = ["SpeechCollator"] logger = Log(__name__).getlog() class SpeechCollator(): def __init__(self, keep_transcription_text=True): """ Padding audio features with zeros to make them have the same shape (or a user-defined shape) within one bach. if ``keep_transcription_text`` is False, text is token ids else is raw string. """ self._keep_transcription_text = keep_transcription_text def __call__(self, batch): """batch examples Args: batch ([List]): batch is (audio, text) audio (np.ndarray) shape (D, T) text (List[int] or str): shape (U,) Returns: tuple(audio, text, audio_lens, text_lens): batched data. audio : (B, Tmax, D) audio_lens: (B) text : (B, Umax) text_lens: (B) """ audios = [] audio_lens = [] texts = [] text_lens = [] for audio, text in batch: # audio audios.append(audio.T) # [T, D] audio_lens.append(audio.shape[1]) # text # for training, text is token ids # else text is string, convert to unicode ord tokens = [] if self._keep_transcription_text: assert isinstance(text, str), (type(text), text) tokens = [ord(t) for t in text] else: tokens = text # token ids tokens = tokens if isinstance(tokens, np.ndarray) else np.array( tokens, dtype=np.int64) texts.append(tokens) text_lens.append(tokens.shape[0]) padded_audios = pad_sequence( audios, padding_value=0.0).astype(np.float32) #[B, T, D] audio_lens = np.array(audio_lens).astype(np.int64) padded_texts = pad_sequence( texts, padding_value=IGNORE_ID).astype(np.int64) text_lens = np.array(text_lens).astype(np.int64) return padded_audios, audio_lens, padded_texts, text_lens
0
1,997
23
c7c5f6d1f99a696768cc8b80c7193f77e06c25f7
28,956
py
Python
lib/vclib/svn/svn_ra.py
cmanley/viewvc
18ce398586ff99ee13ac64f85c205efdf9c23bad
[ "BSD-2-Clause" ]
null
null
null
lib/vclib/svn/svn_ra.py
cmanley/viewvc
18ce398586ff99ee13ac64f85c205efdf9c23bad
[ "BSD-2-Clause" ]
null
null
null
lib/vclib/svn/svn_ra.py
cmanley/viewvc
18ce398586ff99ee13ac64f85c205efdf9c23bad
[ "BSD-2-Clause" ]
null
null
null
# -*-python-*- # # Copyright (C) 1999-2018 The ViewCVS Group. All Rights Reserved. # # By using this file, you agree to the terms and conditions set forth in # the LICENSE.html file which can be found at the top level of the ViewVC # distribution or at http://viewvc.org/license-1.html. # # For more information, visit http://viewvc.org/ # # ----------------------------------------------------------------------- "Version Control lib driver for remotely accessible Subversion repositories." import vclib import sys import os import re import tempfile import time import urllib from svn_repos import Revision, SVNChangedPath, _datestr_to_date, \ _compare_paths, _path_parts, _cleanup_path, \ _rev2optrev, _fix_subversion_exception, \ _split_revprops, _canonicalize_path from svn import core, delta, client, wc, ra ### Require Subversion 1.3.1 or better. (for svn_ra_get_locations support) if (core.SVN_VER_MAJOR, core.SVN_VER_MINOR, core.SVN_VER_PATCH) < (1, 3, 1): raise Exception, "Version requirement not met (needs 1.3.1 or better)" ### BEGIN COMPATABILITY CODE ### try: SVN_INVALID_REVNUM = core.SVN_INVALID_REVNUM except AttributeError: # The 1.4.x bindings are missing core.SVN_INVALID_REVNUM SVN_INVALID_REVNUM = -1 ### END COMPATABILITY CODE ### def cat_to_tempfile(svnrepos, path, rev): """Check out file revision to temporary file""" temp = tempfile.mktemp() stream = core.svn_stream_from_aprfile(temp) url = svnrepos._geturl(path) client.svn_client_cat(core.Stream(stream), url, _rev2optrev(rev), svnrepos.ctx) core.svn_stream_close(stream) return temp
36.285714
79
0.645738
# -*-python-*- # # Copyright (C) 1999-2018 The ViewCVS Group. All Rights Reserved. # # By using this file, you agree to the terms and conditions set forth in # the LICENSE.html file which can be found at the top level of the ViewVC # distribution or at http://viewvc.org/license-1.html. # # For more information, visit http://viewvc.org/ # # ----------------------------------------------------------------------- "Version Control lib driver for remotely accessible Subversion repositories." import vclib import sys import os import re import tempfile import time import urllib from svn_repos import Revision, SVNChangedPath, _datestr_to_date, \ _compare_paths, _path_parts, _cleanup_path, \ _rev2optrev, _fix_subversion_exception, \ _split_revprops, _canonicalize_path from svn import core, delta, client, wc, ra ### Require Subversion 1.3.1 or better. (for svn_ra_get_locations support) if (core.SVN_VER_MAJOR, core.SVN_VER_MINOR, core.SVN_VER_PATCH) < (1, 3, 1): raise Exception, "Version requirement not met (needs 1.3.1 or better)" ### BEGIN COMPATABILITY CODE ### try: SVN_INVALID_REVNUM = core.SVN_INVALID_REVNUM except AttributeError: # The 1.4.x bindings are missing core.SVN_INVALID_REVNUM SVN_INVALID_REVNUM = -1 def list_directory(url, peg_rev, rev, flag, ctx): try: dirents, locks = client.svn_client_ls3(url, peg_rev, rev, flag, ctx) except TypeError: # 1.4.x bindings are goofed dirents = client.svn_client_ls3(None, url, peg_rev, rev, flag, ctx) locks = {} return dirents, locks def get_directory_props(ra_session, path, rev): try: dirents, fetched_rev, props = ra.svn_ra_get_dir(ra_session, path, rev) except ValueError: # older bindings are goofed props = ra.svn_ra_get_dir(ra_session, path, rev) return props def client_log(url, start_rev, end_rev, log_limit, include_changes, cross_copies, cb_func, ctx): include_changes = include_changes and 1 or 0 cross_copies = cross_copies and 1 or 0 try: client.svn_client_log4([url], start_rev, start_rev, end_rev, log_limit, include_changes, not cross_copies, 0, None, cb_func, ctx) except AttributeError: # Wrap old svn_log_message_receiver_t interface with a # svn_log_entry_t one. def cb_convert(paths, revision, author, date, message, pool): class svn_log_entry_t: pass log_entry = svn_log_entry_t() log_entry.changed_paths = paths log_entry.revision = revision log_entry.revprops = { core.SVN_PROP_REVISION_LOG : message, core.SVN_PROP_REVISION_AUTHOR : author, core.SVN_PROP_REVISION_DATE : date, } cb_func(log_entry, pool) client.svn_client_log2([url], start_rev, end_rev, log_limit, include_changes, not cross_copies, cb_convert, ctx) def setup_client_ctx(config_dir): # Ensure that the configuration directory exists. core.svn_config_ensure(config_dir) # Fetch the configuration (and 'config' bit thereof). cfg = core.svn_config_get_config(config_dir) config = cfg.get(core.SVN_CONFIG_CATEGORY_CONFIG) # Here's the compat-sensitive part: try to use # svn_cmdline_create_auth_baton(), and fall back to making our own # if that fails. try: auth_baton = core.svn_cmdline_create_auth_baton(1, None, None, config_dir, 1, 1, config, None) except AttributeError: auth_baton = core.svn_auth_open([ client.svn_client_get_simple_provider(), client.svn_client_get_username_provider(), client.svn_client_get_ssl_server_trust_file_provider(), client.svn_client_get_ssl_client_cert_file_provider(), client.svn_client_get_ssl_client_cert_pw_file_provider(), ]) if config_dir is not None: core.svn_auth_set_parameter(auth_baton, core.SVN_AUTH_PARAM_CONFIG_DIR, config_dir) # Create, setup, and return the client context baton. ctx = client.svn_client_create_context() ctx.config = cfg ctx.auth_baton = auth_baton return ctx ### END COMPATABILITY CODE ### class LogCollector: def __init__(self, path, show_all_logs, lockinfo, access_check_func): # This class uses leading slashes for paths internally if not path: self.path = '/' else: self.path = path[0] == '/' and path or '/' + path self.logs = [] self.show_all_logs = show_all_logs self.lockinfo = lockinfo self.access_check_func = access_check_func self.done = False def add_log(self, log_entry, pool): if self.done: return paths = log_entry.changed_paths revision = log_entry.revision msg, author, date, revprops = _split_revprops(log_entry.revprops) # Changed paths have leading slashes changed_paths = paths.keys() changed_paths.sort(lambda a, b: _compare_paths(a, b)) this_path = None if self.path in changed_paths: this_path = self.path change = paths[self.path] if change.copyfrom_path: this_path = change.copyfrom_path for changed_path in changed_paths: if changed_path != self.path: # If a parent of our path was copied, our "next previous" # (huh?) path will exist elsewhere (under the copy source). if (self.path.rfind(changed_path) == 0) and \ self.path[len(changed_path)] == '/': change = paths[changed_path] if change.copyfrom_path: this_path = change.copyfrom_path + self.path[len(changed_path):] if self.show_all_logs or this_path: if self.access_check_func is None \ or self.access_check_func(self.path[1:], revision): entry = Revision(revision, date, author, msg, None, self.lockinfo, self.path[1:], None, None) self.logs.append(entry) else: self.done = True if this_path: self.path = this_path def cat_to_tempfile(svnrepos, path, rev): """Check out file revision to temporary file""" temp = tempfile.mktemp() stream = core.svn_stream_from_aprfile(temp) url = svnrepos._geturl(path) client.svn_client_cat(core.Stream(stream), url, _rev2optrev(rev), svnrepos.ctx) core.svn_stream_close(stream) return temp class SelfCleanFP: def __init__(self, path): self._fp = open(path, 'r') self._path = path self._eof = 0 def read(self, len=None): if len: chunk = self._fp.read(len) else: chunk = self._fp.read() if chunk == '': self._eof = 1 return chunk def readline(self): chunk = self._fp.readline() if chunk == '': self._eof = 1 return chunk def readlines(self): lines = self._fp.readlines() self._eof = 1 return lines def close(self): self._fp.close() os.remove(self._path) def __del__(self): self.close() def eof(self): return self._eof class RemoteSubversionRepository(vclib.Repository): def __init__(self, name, rootpath, authorizer, utilities, config_dir): self.name = name self.rootpath = rootpath self.auth = authorizer self.diff_cmd = utilities.diff or 'diff' self.config_dir = config_dir or None # See if this repository is even viewable, authz-wise. if not vclib.check_root_access(self): raise vclib.ReposNotFound(name) def open(self): # Setup the client context baton, complete with non-prompting authstuffs. self.ctx = setup_client_ctx(self.config_dir) ra_callbacks = ra.svn_ra_callbacks_t() ra_callbacks.auth_baton = self.ctx.auth_baton self.ra_session = ra.svn_ra_open(self.rootpath, ra_callbacks, None, self.ctx.config) self.youngest = ra.svn_ra_get_latest_revnum(self.ra_session) self._dirent_cache = { } self._revinfo_cache = { } # See if a universal read access determination can be made. if self.auth and self.auth.check_universal_access(self.name) == 1: self.auth = None def rootname(self): return self.name def rootpath(self): return self.rootpath def roottype(self): return vclib.SVN def authorizer(self): return self.auth def itemtype(self, path_parts, rev): pathtype = None if not len(path_parts): pathtype = vclib.DIR else: path = self._getpath(path_parts) rev = self._getrev(rev) try: kind = ra.svn_ra_check_path(self.ra_session, path, rev) if kind == core.svn_node_file: pathtype = vclib.FILE elif kind == core.svn_node_dir: pathtype = vclib.DIR except: pass if pathtype is None: raise vclib.ItemNotFound(path_parts) if not vclib.check_path_access(self, path_parts, pathtype, rev): raise vclib.ItemNotFound(path_parts) return pathtype def openfile(self, path_parts, rev, options): path = self._getpath(path_parts) if self.itemtype(path_parts, rev) != vclib.FILE: # does auth-check raise vclib.Error("Path '%s' is not a file." % path) rev = self._getrev(rev) url = self._geturl(path) ### rev here should be the last history revision of the URL fp = SelfCleanFP(cat_to_tempfile(self, path, rev)) lh_rev, c_rev = self._get_last_history_rev(path_parts, rev) return fp, lh_rev def listdir(self, path_parts, rev, options): path = self._getpath(path_parts) if self.itemtype(path_parts, rev) != vclib.DIR: # does auth-check raise vclib.Error("Path '%s' is not a directory." % path) rev = self._getrev(rev) entries = [] dirents, locks = self._get_dirents(path, rev) for name in dirents.keys(): entry = dirents[name] if entry.kind == core.svn_node_dir: kind = vclib.DIR elif entry.kind == core.svn_node_file: kind = vclib.FILE else: kind = None entries.append(vclib.DirEntry(name, kind)) return entries def dirlogs(self, path_parts, rev, entries, options): path = self._getpath(path_parts) if self.itemtype(path_parts, rev) != vclib.DIR: # does auth-check raise vclib.Error("Path '%s' is not a directory." % path) rev = self._getrev(rev) dirents, locks = self._get_dirents(path, rev) for entry in entries: entry_path_parts = path_parts + [entry.name] dirent = dirents.get(entry.name, None) # dirents is authz-sanitized, so ensure the entry is found therein. if dirent is None: continue # Get authz-sanitized revision metadata. entry.date, entry.author, entry.log, revprops, changes = \ self._revinfo(dirent.created_rev) entry.rev = str(dirent.created_rev) entry.size = dirent.size entry.lockinfo = None if locks.has_key(entry.name): entry.lockinfo = locks[entry.name].owner def itemlog(self, path_parts, rev, sortby, first, limit, options): assert sortby == vclib.SORTBY_DEFAULT or sortby == vclib.SORTBY_REV path_type = self.itemtype(path_parts, rev) # does auth-check path = self._getpath(path_parts) rev = self._getrev(rev) url = self._geturl(path) # If this is a file, fetch the lock status and size (as of REV) # for this item. lockinfo = size_in_rev = None if path_type == vclib.FILE: basename = path_parts[-1] list_url = self._geturl(self._getpath(path_parts[:-1])) dirents, locks = list_directory(list_url, _rev2optrev(rev), _rev2optrev(rev), 0, self.ctx) if locks.has_key(basename): lockinfo = locks[basename].owner if dirents.has_key(basename): size_in_rev = dirents[basename].size # Special handling for the 'svn_latest_log' scenario. ### FIXME: Don't like this hack. We should just introduce ### something more direct in the vclib API. if options.get('svn_latest_log', 0): dir_lh_rev, dir_c_rev = self._get_last_history_rev(path_parts, rev) date, author, log, revprops, changes = self._revinfo(dir_lh_rev) return [vclib.Revision(dir_lh_rev, str(dir_lh_rev), date, author, None, log, size_in_rev, lockinfo)] def _access_checker(check_path, check_rev): return vclib.check_path_access(self, _path_parts(check_path), path_type, check_rev) # It's okay if we're told to not show all logs on a file -- all # the revisions should match correctly anyway. lc = LogCollector(path, options.get('svn_show_all_dir_logs', 0), lockinfo, _access_checker) cross_copies = options.get('svn_cross_copies', 0) log_limit = 0 if limit: log_limit = first + limit client_log(url, _rev2optrev(rev), _rev2optrev(1), log_limit, 1, cross_copies, lc.add_log, self.ctx) revs = lc.logs revs.sort() prev = None for rev in revs: # Swap out revision info with stuff from the cache (which is # authz-sanitized). rev.date, rev.author, rev.log, revprops, changes \ = self._revinfo(rev.number) rev.prev = prev prev = rev revs.reverse() if len(revs) < first: return [] if limit: return revs[first:first+limit] return revs def itemprops(self, path_parts, rev): path = self._getpath(path_parts) path_type = self.itemtype(path_parts, rev) # does auth-check rev = self._getrev(rev) url = self._geturl(path) pairs = client.svn_client_proplist2(url, _rev2optrev(rev), _rev2optrev(rev), 0, self.ctx) return pairs and pairs[0][1] or {} def annotate(self, path_parts, rev, include_text=False): path = self._getpath(path_parts) if self.itemtype(path_parts, rev) != vclib.FILE: # does auth-check raise vclib.Error("Path '%s' is not a file." % path) rev = self._getrev(rev) url = self._geturl(path) # Examine logs for the file to determine the oldest revision we are # permitted to see. log_options = { 'svn_cross_copies' : 1, 'svn_show_all_dir_logs' : 1, } revs = self.itemlog(path_parts, rev, vclib.SORTBY_REV, 0, 0, log_options) oldest_rev = revs[-1].number # Now calculate the annotation data. Note that we'll not # inherently trust the provided author and date, because authz # rules might necessitate that we strip that information out. blame_data = [] def _blame_cb(line_no, revision, author, date, line, pool, blame_data=blame_data): prev_rev = None if revision > 1: prev_rev = revision - 1 # If we have an invalid revision, clear the date and author # values. Otherwise, if we have authz filtering to do, use the # revinfo cache to do so. if revision < 0: date = author = None elif self.auth: date, author, msg, revprops, changes = self._revinfo(revision) # Strip text if the caller doesn't want it. if not include_text: line = None blame_data.append(vclib.Annotation(line, line_no + 1, revision, prev_rev, author, date)) client.blame2(url, _rev2optrev(rev), _rev2optrev(oldest_rev), _rev2optrev(rev), _blame_cb, self.ctx) return blame_data, rev def revinfo(self, rev): return self._revinfo(rev, 1) def rawdiff(self, path_parts1, rev1, path_parts2, rev2, type, options={}): p1 = self._getpath(path_parts1) p2 = self._getpath(path_parts2) r1 = self._getrev(rev1) r2 = self._getrev(rev2) if not vclib.check_path_access(self, path_parts1, vclib.FILE, rev1): raise vclib.ItemNotFound(path_parts1) if not vclib.check_path_access(self, path_parts2, vclib.FILE, rev2): raise vclib.ItemNotFound(path_parts2) args = vclib._diff_args(type, options) def _date_from_rev(rev): date, author, msg, revprops, changes = self._revinfo(rev) return date try: temp1 = cat_to_tempfile(self, p1, r1) temp2 = cat_to_tempfile(self, p2, r2) info1 = p1, _date_from_rev(r1), r1 info2 = p2, _date_from_rev(r2), r2 return vclib._diff_fp(temp1, temp2, info1, info2, self.diff_cmd, args) except core.SubversionException, e: _fix_subversion_exception(e) if e.apr_err == vclib.svn.core.SVN_ERR_FS_NOT_FOUND: raise vclib.InvalidRevision raise def isexecutable(self, path_parts, rev): props = self.itemprops(path_parts, rev) # does authz-check return props.has_key(core.SVN_PROP_EXECUTABLE) def filesize(self, path_parts, rev): path = self._getpath(path_parts) if self.itemtype(path_parts, rev) != vclib.FILE: # does auth-check raise vclib.Error("Path '%s' is not a file." % path) rev = self._getrev(rev) dirents, locks = self._get_dirents(self._getpath(path_parts[:-1]), rev) dirent = dirents.get(path_parts[-1], None) return dirent.size def _getpath(self, path_parts): return '/'.join(path_parts) def _getrev(self, rev): if rev is None or rev == 'HEAD': return self.youngest try: if type(rev) == type(''): while rev[0] == 'r': rev = rev[1:] rev = int(rev) except: raise vclib.InvalidRevision(rev) if (rev < 0) or (rev > self.youngest): raise vclib.InvalidRevision(rev) return rev def _geturl(self, path=None): if not path: return self.rootpath path = self.rootpath + '/' + urllib.quote(path) return _canonicalize_path(path) def _get_dirents(self, path, rev): """Return a 2-type of dirents and locks, possibly reading/writing from a local cache of that information. This functions performs authz checks, stripping out unreadable dirents.""" dir_url = self._geturl(path) path_parts = _path_parts(path) if path: key = str(rev) + '/' + path else: key = str(rev) # Ensure that the cache gets filled... dirents_locks = self._dirent_cache.get(key) if not dirents_locks: tmp_dirents, locks = list_directory(dir_url, _rev2optrev(rev), _rev2optrev(rev), 0, self.ctx) dirents = {} for name, dirent in tmp_dirents.items(): dirent_parts = path_parts + [name] kind = dirent.kind if (kind == core.svn_node_dir or kind == core.svn_node_file) \ and vclib.check_path_access(self, dirent_parts, kind == core.svn_node_dir \ and vclib.DIR or vclib.FILE, rev): lh_rev, c_rev = self._get_last_history_rev(dirent_parts, rev) dirent.created_rev = lh_rev dirents[name] = dirent dirents_locks = [dirents, locks] self._dirent_cache[key] = dirents_locks # ...then return the goodies from the cache. return dirents_locks[0], dirents_locks[1] def _get_last_history_rev(self, path_parts, rev): """Return the a 2-tuple which contains: - the last interesting revision equal to or older than REV in the history of PATH_PARTS. - the created_rev of of PATH_PARTS as of REV.""" path = self._getpath(path_parts) url = self._geturl(self._getpath(path_parts)) optrev = _rev2optrev(rev) # Get the last-changed-rev. revisions = [] def _info_cb(path, info, pool, retval=revisions): revisions.append(info.last_changed_rev) client.svn_client_info(url, optrev, optrev, _info_cb, 0, self.ctx) last_changed_rev = revisions[0] # Now, this object might not have been directly edited since the # last-changed-rev, but it might have been the child of a copy. # To determine this, we'll run a potentially no-op log between # LAST_CHANGED_REV and REV. lc = LogCollector(path, 1, None, None) client_log(url, optrev, _rev2optrev(last_changed_rev), 1, 1, 0, lc.add_log, self.ctx) revs = lc.logs if revs: revs.sort() return revs[0].number, last_changed_rev else: return last_changed_rev, last_changed_rev def _revinfo_fetch(self, rev, include_changed_paths=0): need_changes = include_changed_paths or self.auth revs = [] def _log_cb(log_entry, pool, retval=revs): # If Subversion happens to call us more than once, we choose not # to care. if retval: return revision = log_entry.revision msg, author, date, revprops = _split_revprops(log_entry.revprops) action_map = { 'D' : vclib.DELETED, 'A' : vclib.ADDED, 'R' : vclib.REPLACED, 'M' : vclib.MODIFIED, } # Easy out: if we won't use the changed-path info, just return a # changes-less tuple. if not need_changes: return revs.append([date, author, msg, revprops, None]) # Subversion 1.5 and earlier didn't offer the 'changed_paths2' # hash, and in Subversion 1.6, it's offered but broken. try: changed_paths = log_entry.changed_paths2 paths = (changed_paths or {}).keys() except: changed_paths = log_entry.changed_paths paths = (changed_paths or {}).keys() paths.sort(lambda a, b: _compare_paths(a, b)) # If we get this far, our caller needs changed-paths, or we need # them for authz-related sanitization. changes = [] found_readable = found_unreadable = 0 for path in paths: change = changed_paths[path] # svn_log_changed_path_t (which we might get instead of the # svn_log_changed_path2_t we'd prefer) doesn't have the # 'node_kind' member. pathtype = None if hasattr(change, 'node_kind'): if change.node_kind == core.svn_node_dir: pathtype = vclib.DIR elif change.node_kind == core.svn_node_file: pathtype = vclib.FILE # svn_log_changed_path2_t only has the 'text_modified' and # 'props_modified' bits in Subversion 1.7 and beyond. And # svn_log_changed_path_t is without. text_modified = props_modified = 0 if hasattr(change, 'text_modified'): if change.text_modified == core.svn_tristate_true: text_modified = 1 if hasattr(change, 'props_modified'): if change.props_modified == core.svn_tristate_true: props_modified = 1 # Wrong, diddily wrong wrong wrong. Can you say, # "Manufacturing data left and right because it hurts to # figure out the right stuff?" action = action_map.get(change.action, vclib.MODIFIED) if change.copyfrom_path and change.copyfrom_rev: is_copy = 1 base_path = change.copyfrom_path base_rev = change.copyfrom_rev elif action == vclib.ADDED or action == vclib.REPLACED: is_copy = 0 base_path = base_rev = None else: is_copy = 0 base_path = path base_rev = revision - 1 # Check authz rules (sadly, we have to lie about the path type) parts = _path_parts(path) if vclib.check_path_access(self, parts, vclib.FILE, revision): if is_copy and base_path and (base_path != path): parts = _path_parts(base_path) if not vclib.check_path_access(self, parts, vclib.FILE, base_rev): is_copy = 0 base_path = None base_rev = None found_unreadable = 1 changes.append(SVNChangedPath(path, revision, pathtype, base_path, base_rev, action, is_copy, text_modified, props_modified)) found_readable = 1 else: found_unreadable = 1 # If our caller doesn't want changed-path stuff, and we have # the info we need to make an authz determination already, # quit this loop and get on with it. if (not include_changed_paths) and found_unreadable and found_readable: break # Filter unreadable information. if found_unreadable: msg = None if not found_readable: author = None date = None # Drop unrequested changes. if not include_changed_paths: changes = None # Add this revision information to the "return" array. retval.append([date, author, msg, revprops, changes]) optrev = _rev2optrev(rev) client_log(self.rootpath, optrev, optrev, 1, need_changes, 0, _log_cb, self.ctx) return tuple(revs[0]) def _revinfo(self, rev, include_changed_paths=0): """Internal-use, cache-friendly revision information harvester.""" # Consult the revinfo cache first. If we don't have cached info, # or our caller wants changed paths and we don't have those for # this revision, go do the real work. rev = self._getrev(rev) cached_info = self._revinfo_cache.get(rev) if not cached_info \ or (include_changed_paths and cached_info[4] is None): cached_info = self._revinfo_fetch(rev, include_changed_paths) self._revinfo_cache[rev] = cached_info return cached_info ##--- custom --## def get_youngest_revision(self): return self.youngest def get_location(self, path, rev, old_rev): try: results = ra.get_locations(self.ra_session, path, rev, [old_rev]) except core.SubversionException, e: _fix_subversion_exception(e) if e.apr_err == core.SVN_ERR_FS_NOT_FOUND: raise vclib.ItemNotFound(path) raise try: old_path = results[old_rev] except KeyError: raise vclib.ItemNotFound(path) old_path = _cleanup_path(old_path) old_path_parts = _path_parts(old_path) # Check access (lying about path types) if not vclib.check_path_access(self, old_path_parts, vclib.FILE, old_rev): raise vclib.ItemNotFound(path) return old_path def created_rev(self, path, rev): lh_rev, c_rev = self._get_last_history_rev(_path_parts(path), rev) return lh_rev def last_rev(self, path, peg_revision, limit_revision=None): """Given PATH, known to exist in PEG_REVISION, find the youngest revision older than, or equal to, LIMIT_REVISION in which path exists. Return that revision, and the path at which PATH exists in that revision.""" # Here's the plan, man. In the trivial case (where PEG_REVISION is # the same as LIMIT_REVISION), this is a no-brainer. If # LIMIT_REVISION is older than PEG_REVISION, we can use Subversion's # history tracing code to find the right location. If, however, # LIMIT_REVISION is younger than PEG_REVISION, we suffer from # Subversion's lack of forward history searching. Our workaround, # ugly as it may be, involves a binary search through the revisions # between PEG_REVISION and LIMIT_REVISION to find our last live # revision. peg_revision = self._getrev(peg_revision) limit_revision = self._getrev(limit_revision) if peg_revision == limit_revision: return peg_revision, path elif peg_revision > limit_revision: path = self.get_location(path, peg_revision, limit_revision) return limit_revision, path else: direction = 1 while peg_revision != limit_revision: mid = (peg_revision + 1 + limit_revision) / 2 try: path = self.get_location(path, peg_revision, mid) except vclib.ItemNotFound: limit_revision = mid - 1 else: peg_revision = mid return peg_revision, path def get_symlink_target(self, path_parts, rev): """Return the target of the symbolic link versioned at PATH_PARTS in REV, or None if that object is not a symlink.""" path = self._getpath(path_parts) path_type = self.itemtype(path_parts, rev) # does auth-check rev = self._getrev(rev) url = self._geturl(path) # Symlinks must be files with the svn:special property set on them # and with file contents which read "link SOME_PATH". if path_type != vclib.FILE: return None pairs = client.svn_client_proplist2(url, _rev2optrev(rev), _rev2optrev(rev), 0, self.ctx) props = pairs and pairs[0][1] or {} if not props.has_key(core.SVN_PROP_SPECIAL): return None pathspec = '' ### FIXME: We're being a touch sloppy here, first by grabbing the ### whole file and then by checking only the first line ### of it. fp = SelfCleanFP(cat_to_tempfile(self, path, rev)) pathspec = fp.readline() fp.close() if pathspec[:5] != 'link ': return None return pathspec[5:]
20,482
6,375
407
defb121c8e657f37a2d4f8f5f56bc62934ede14f
14,143
py
Python
pdfannots.py
pykong/pdfannots
4d95245d95dca6d1114b39674c2bd5d329d825e7
[ "MIT" ]
1
2018-11-23T12:29:52.000Z
2018-11-23T12:29:52.000Z
pdfannots.py
pykong/pdfannots
4d95245d95dca6d1114b39674c2bd5d329d825e7
[ "MIT" ]
null
null
null
pdfannots.py
pykong/pdfannots
4d95245d95dca6d1114b39674c2bd5d329d825e7
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import io import pathlib import sys import tempfile from multiprocessing import Pool, cpu_count import PyPDF2 as PyPDF2 import click import pdfminer.pdftypes as pdftypes import pdfminer.settings from fpdf import FPDF from pdfminer.converter import TextConverter from pdfminer.layout import LAParams, LTAnno, LTContainer, LTText, LTTextBox from pdfminer.pdfdocument import PDFDocument, PDFNoOutlines from pdfminer.pdfinterp import PDFPageInterpreter, PDFResourceManager from pdfminer.pdfpage import PDFPage from pdfminer.pdfparser import PDFParser from pdfminer.psparser import PSLiteral, PSLiteralTable from tqdm import tqdm pdfminer.settings.STRICT = False SUBSTITUTIONS = { u'ff': 'ff', u'fi': 'fi', u'fl': 'fl', u'’': "'", } ANNOT_SUBTYPES = set(['Text', 'Highlight', 'Squiggly', 'StrikeOut', 'Underline']) DEBUG_BOXHIT = False OUTDIR = "" @click.command() @click.option('--outdir', default="", help='Specify output directory') @click.argument('files', nargs=-1) if __name__ == "__main__": main()
32.143182
114
0.581489
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import io import pathlib import sys import tempfile from multiprocessing import Pool, cpu_count import PyPDF2 as PyPDF2 import click import pdfminer.pdftypes as pdftypes import pdfminer.settings from fpdf import FPDF from pdfminer.converter import TextConverter from pdfminer.layout import LAParams, LTAnno, LTContainer, LTText, LTTextBox from pdfminer.pdfdocument import PDFDocument, PDFNoOutlines from pdfminer.pdfinterp import PDFPageInterpreter, PDFResourceManager from pdfminer.pdfpage import PDFPage from pdfminer.pdfparser import PDFParser from pdfminer.psparser import PSLiteral, PSLiteralTable from tqdm import tqdm pdfminer.settings.STRICT = False SUBSTITUTIONS = { u'ff': 'ff', u'fi': 'fi', u'fl': 'fl', u'’': "'", } ANNOT_SUBTYPES = set(['Text', 'Highlight', 'Squiggly', 'StrikeOut', 'Underline']) DEBUG_BOXHIT = False OUTDIR = "" def box_hit(item, box): (x0, y0, x1, y1) = box assert item.x0 <= item.x1 and item.y0 <= item.y1 assert x0 <= x1 and y0 <= y1 # does most of the item area overlap the box? # http://math.stackexchange.com/questions/99565/simplest-way-to-calculate-the-intersect-area-of-two-rectangles x_overlap = max(0, min(item.x1, x1) - max(item.x0, x0)) y_overlap = max(0, min(item.y1, y1) - max(item.y0, y0)) overlap_area = x_overlap * y_overlap item_area = (item.x1 - item.x0) * (item.y1 - item.y0) assert overlap_area <= item_area if DEBUG_BOXHIT and overlap_area != 0: print("'%s' %f-%f,%f-%f in %f-%f,%f-%f %2.0f%%" % (item.get_text(), item.x0, item.x1, item.y0, item.y1, x0, x1, y0, y1, 100 * overlap_area / item_area)) if item_area == 0: return False else: return overlap_area >= 0.5 * item_area class RectExtractor(TextConverter): def __init__(self, rsrcmgr, codec='utf-8', page_num=1): dummy = io.StringIO() TextConverter.__init__(self, rsrcmgr, outfp=dummy, codec=codec, pageno=page_num, laparams=LAParams()) self.annots = [] def set_coords(self, annots): self.annots = [a for a in annots if a.boxes] self._last_hit = [] def test_boxes(self, item): self._last_hit = [] for a in self.annots: if any([box_hit(item, b) for b in a.boxes]): self._last_hit.append(a) return self._last_hit def receive_layout(self, lt_page): def render(item): if isinstance(item, LTContainer): for child in item: render(child) elif isinstance(item, LTAnno): # this catches whitespace for a in self._last_hit: a.capture(item.get_text()) elif isinstance(item, LTText): for a in self.test_boxes(item): a.capture(item.get_text()) if isinstance(item, LTTextBox): for a in self.test_boxes(item): a.capture('\n') render(lt_page) class Annotation: def __init__(self, page_num, tag_name, coords=None, rect=None, contents=None): self.page_num = page_num self.tag_name = tag_name if contents == '': self.contents = None else: self.contents = contents self.rect = rect self.text = '' if coords is None: self.boxes = None else: assert (len(coords) % 8 == 0) self.boxes = [] while coords: (x0, y0, x1, y1, x2, y2, x3, y3) = coords[:8] coords = coords[8:] x_coords = [x0, x1, x2, x3] y_coords = [y0, y1, y2, y3] box = (min(x_coords), min(y_coords), max(x_coords), max(y_coords)) self.boxes.append(box) def capture(self, text): if text == '\n': # kludge for latex: elide hyphens, join lines if self.text.endswith('-'): self.text = self.text[:-1] else: self.text += ' ' else: self.text += text def get_text(self): if self.text: # replace tex ligatures (and other common odd characters) return ''.join([SUBSTITUTIONS.get(c, c) for c in self.text.strip()]) else: return None def get_start_pos(self): if self.rect: (x0, y0, x1, y1) = self.rect elif self.boxes: (x0, y0, x1, y1) = self.boxes[0] else: return None return min(x0, x1), max(y0, y1) # assume left-to-right top-to-bottom text :) def get_annots(pdf_annots, page_num): annots = [] for pa in pdf_annots: subtype = pa.get('Subtype') if subtype is not None and subtype.name not in ANNOT_SUBTYPES: continue contents = pa.get('Contents') if contents is not None: contents = str(contents, 'utf-8') # 'utf-8' , iso8859-15 contents = contents.replace('\r\n', '\n').replace('\r', '\n') a = Annotation(page_num, subtype.name.lower(), pa.get('QuadPoints'), pa.get('Rect'), contents) annots.append(a) return annots def normalise_to_box(pos, box): (x, y) = pos (x0, y0, x1, y1) = box if x < x0: x = x0 elif x > x1: x = x1 if y < y0: y = y0 elif y > y1: y = y1 return x, y def nearest_outline(outlines, page_num, media_box, pos): (x, y) = normalise_to_box(pos, media_box) prev = None for o in outlines: if o.page_num < page_num: prev = o elif o.page_num > page_num: return prev else: # XXX: assume two-column left-to-right top-to-bottom documents (o_x, o_y) = normalise_to_box((o.x, o.y), media_box) (x0, y0, x1, y1) = media_box colwidth = (x1 - x0) / 2 outline_col = (o_x - x0) // colwidth pos_col = (x - x0) // colwidth if outline_col > pos_col or (outline_col == pos_col and o.y < y): return prev else: prev = o return prev def prettify(text): # re.sub(r"\s\s+", " ", text) # return text return " ".join(text.split()) def structure_extracts(annots, outlines, media_boxes): def format_paging(annot): apos = annot.get_start_pos() if apos: o = nearest_outline(outlines, annot.page_num, media_boxes[annot.page_num], apos) if o: return o.title, annot.page_num + 1 return "- Missing chapter name -", annot.page_num + 1 def format_text(annot): if annot.boxes: if annot.get_text(): return prettify(annot.get_text()) else: return "(XXX: missing text!)" else: return '' nits = [a for a in annots if a.tag_name in ['squiggly', 'strikeout', 'underline']] comments = [a for a in annots if a.tag_name in ['highlight', 'text'] and a.contents] highlights = [a for a in annots if a.tag_name == 'highlight' and a.contents is None] annot_list = [(highlights, "Highlights"), (comments, "Comments"), (nits, "Nits"), ] annot_dic = {} for annot in annot_list: annot_type = annot[0] annot_name = annot[1] for t in annot_type: title, page = format_paging(t) text = format_text(t) try: annot_dic[title][page][annot_name] except KeyError: annot_dic.setdefault(title, {}) annot_dic[title].setdefault(page, {}) annot_dic[title][page].setdefault(annot_name, []) finally: annot_dic[title][page][annot_name].append(text) return annot_dic def resolve_dest(doc, dest): if isinstance(dest, bytes): dest = pdftypes.resolve1(doc.get_dest(dest)) elif isinstance(dest, PSLiteral): dest = pdftypes.resolve1(doc.get_dest(dest.name)) if isinstance(dest, dict): dest = dest['D'] return dest class Outline: def __init__(self, title, dest, page_num, x, y): self.title = title self.dest = dest self.page_num = page_num self.x = x self.y = y def get_outlines(doc, pages_dict): result = [] for (level, title, dest_name, action_ref, _) in doc.get_outlines(): if dest_name is None and action_ref: action = action_ref.resolve() if isinstance(action, dict): subtype = action.get('S') if subtype is PSLiteralTable.intern('GoTo'): dest_name = action.get('D') if dest_name is None: continue dest = resolve_dest(doc, dest_name) page_num = pages_dict[dest[0].objid] (_, _, target_x, target_y, _) = dest result.append(Outline(title, dest_name, page_num, target_x, target_y)) return result class PDF(FPDF): def _page_setup(self): self.set_margins(left=20, top=15, right=20) # self.set_title(title) # self.set_author('Jules Verne') def _chapter_title(self, title): self.ln() self.set_font('Arial', '', 22) self.cell(w=0, h=6, txt=str(title), border=0, ln=0, align='L', fill=0, link="") self.ln(12) # Line break def _chapter_page(self, page_num): self.set_font('Arial', '', 19) self.cell(w=0, h=6, txt="Page: " + str(page_num), border=0, ln=0, align='L', fill=0, link="") self.ln(9) def _chapter_body(self, annotations): # Times 12 self.set_font('Arial', 'U', 17) for key, annot in annotations.items(): self.cell(w=0, h=6, txt=str(key), border=0, ln=0, align='L', fill=0, link="") # Line break self.ln(7) self.set_font('Times', '', 14) for a in annot: # Output justified text self.multi_cell(0, 5, a) # Line break self.ln(2) def print_chapter(self, title, page_num, page_content): self.add_page() # TODO: transfer to wider scope self._page_setup() self._chapter_title(title) self._chapter_page(page_num) self._chapter_body(page_content) def create_cover(cover_doner, body_donor, output_path): with open(cover_doner, 'rb') as pdf1File, open(body_donor, 'rb') as pdf2File: pdf1Reader = PyPDF2.PdfFileReader(pdf1File) pdf2Reader = PyPDF2.PdfFileReader(pdf2File) pdfWriter = PyPDF2.PdfFileWriter() # get cover = 1st page from donor pageObj = pdf1Reader.getPage(0) pdfWriter.addPage(pageObj) for pageNum in range(pdf2Reader.numPages): pageObj = pdf2Reader.getPage(pageNum) pdfWriter.addPage(pageObj) with open(output_path, 'wb') as pdfOutputFile: pdfWriter.write(pdfOutputFile) def extract_annots(fh): rsrcmgr = PDFResourceManager() device = RectExtractor(rsrcmgr) interpreter = PDFPageInterpreter(rsrcmgr, device) with open(fh, 'rb') as pdf_file: parser = PDFParser(pdf_file) doc = PDFDocument(parser) pages_dict = {} media_boxes = {} all_annots = [] tqdm_desc = fh.ljust(25)[:25] # make string exactly 25 chars long for (page_num, page) in tqdm(enumerate(PDFPage.create_pages(doc)), desc=tqdm_desc): pages_dict[page.pageid] = page_num media_boxes[page_num] = page.mediabox if page.annots is None or page.annots is []: continue # emit progress indicator sys.stderr.write((" " if page_num > 0 else "") + "%d" % (page_num + 1)) sys.stderr.flush() pdf_annots = [ar.resolve() for ar in pdftypes.resolve1(page.annots)] page_annots = get_annots(pdf_annots, page_num) device.set_coords(page_annots) interpreter.process_page(page) all_annots.extend(page_annots) outlines = [] try: outlines = get_outlines(doc, pages_dict) except PDFNoOutlines: sys.stderr.write("Document doesn't include outlines (\"bookmarks\")\n") except: e = sys.exc_info()[0] sys.stderr.write("Warning: failed to retrieve outlines: %s\n" % e) device.close() # pretty_print(all_annots, outlines, media_boxes) extract_dic = structure_extracts(all_annots, outlines, media_boxes) pdf = PDF() for key_1, chapter in extract_dic.items(): for key_2, page_content in chapter.items(): pdf.print_chapter(title=key_1, page_num=key_2, page_content=page_content) # constructing output file path with tempfile.NamedTemporaryFile(suffix='.pdf') as tmp: tmp_path = tmp.name pdf.output(tmp_path, 'F') # copy cover from source pdf in outputpath p = pathlib.Path(fh) out_fname = pathlib.Path(p.stem + ".sum" + p.suffix) out_dir = pathlib.Path(OUTDIR) output_path = pathlib.Path.joinpath(out_dir, out_fname) create_cover(cover_doner=fh, body_donor=tmp_path, output_path=output_path) @click.command() @click.option('--outdir', default="", help='Specify output directory') @click.argument('files', nargs=-1) def main(outdir, files): # ugly hack to work around maps arg limit global OUTDIR OUTDIR = outdir if not files: sys.stderr.write("Usage: FILE_1.PDF FILE_2.PDF ...") sys.exit(1) else: for f in files: if not f.lower().endswith(".pdf"): sys.stderr.write("Wrong file extension: " + f) sys.exit(1) files = set(files) # make sure all files are unique if outdir: # create target dir if not existing pathlib.Path(outdir).mkdir(parents=True, exist_ok=True) p = Pool(processes=cpu_count()) # does processes default to this value anyway? p.map(extract_annots, files) if __name__ == "__main__": main()
12,337
-2
718
c015a9dfa5a763bce4bb483cef8e2db5dd41369b
1,196
py
Python
scripts/loss.py
Spritaro/condinst_tensorrt
22063a75e015bba45b588cdb6ebf1ac663ff1924
[ "MIT" ]
3
2021-11-14T14:11:10.000Z
2022-02-16T11:42:40.000Z
scripts/loss.py
datomi79/condinst_tensorrt
22063a75e015bba45b588cdb6ebf1ac663ff1924
[ "MIT" ]
null
null
null
scripts/loss.py
datomi79/condinst_tensorrt
22063a75e015bba45b588cdb6ebf1ac663ff1924
[ "MIT" ]
1
2022-02-14T21:47:55.000Z
2022-02-14T21:47:55.000Z
import torch def heatmap_focal_loss(preds, gt_heatmap, alpha, gamma, eps=1e-3): """ Params: preds: Tensor[num_classes, height, width] gt_heatmap: Tensor[num_classes, height, width] alpha: gamma: how much you want to reduce penalty around the ground truth locations eps: add small number to prevent inf error Returns: loss: Tensor[] """ # See CornerNet paper for detail https://arxiv.org/abs/1808.01244 loss = -torch.where( gt_heatmap == 1, (1 - preds)**alpha * torch.log(preds + eps), # Loss for positive locations (1 - gt_heatmap) ** gamma * (preds)**alpha * torch.log(1 - preds - eps) # loss for negative locations ).sum() return loss def dice_loss(inputs, targets, smooth=1.0): """ Params: inputs: arbitrary size of Tensor targets: arbitrary size of Tensor smooth: smoothing factor Returns: loss: Tensor[] """ inputs = inputs.view(-1) targets = targets.view(-1) # Squred denominator version of Dice loss dice = (2 * (inputs*targets).sum() + smooth) / ((inputs**2).sum() + (targets**2).sum() + smooth) return 1 - dice
31.473684
109
0.612876
import torch def heatmap_focal_loss(preds, gt_heatmap, alpha, gamma, eps=1e-3): """ Params: preds: Tensor[num_classes, height, width] gt_heatmap: Tensor[num_classes, height, width] alpha: gamma: how much you want to reduce penalty around the ground truth locations eps: add small number to prevent inf error Returns: loss: Tensor[] """ # See CornerNet paper for detail https://arxiv.org/abs/1808.01244 loss = -torch.where( gt_heatmap == 1, (1 - preds)**alpha * torch.log(preds + eps), # Loss for positive locations (1 - gt_heatmap) ** gamma * (preds)**alpha * torch.log(1 - preds - eps) # loss for negative locations ).sum() return loss def dice_loss(inputs, targets, smooth=1.0): """ Params: inputs: arbitrary size of Tensor targets: arbitrary size of Tensor smooth: smoothing factor Returns: loss: Tensor[] """ inputs = inputs.view(-1) targets = targets.view(-1) # Squred denominator version of Dice loss dice = (2 * (inputs*targets).sum() + smooth) / ((inputs**2).sum() + (targets**2).sum() + smooth) return 1 - dice
0
0
0
cfcd628d6daa7217e23c473f633d9ebe42bea5a0
3,352
py
Python
preprocessors/verilog_tokenize.py
JonathanPierce/Algae
8fc42981f8a97a3ee9d9f71cb051621422150a08
[ "MIT" ]
18
2015-09-01T03:47:42.000Z
2021-01-28T21:49:09.000Z
preprocessors/verilog_tokenize.py
JonathanPierce/Algae
8fc42981f8a97a3ee9d9f71cb051621422150a08
[ "MIT" ]
5
2015-11-24T21:51:39.000Z
2016-01-04T18:59:43.000Z
preprocessors/verilog_tokenize.py
JonathanPierce/Algae
8fc42981f8a97a3ee9d9f71cb051621422150a08
[ "MIT" ]
4
2016-01-22T11:23:48.000Z
2018-02-22T23:41:27.000Z
import pygments.lexers.hdl as lexers from multiprocessing import Process import helpers.common as common tokenizer = lexers.VerilogLexer()
37.662921
1,353
0.666766
import pygments.lexers.hdl as lexers from multiprocessing import Process import helpers.common as common tokenizer = lexers.VerilogLexer() def compress_value(value): names = ['always', 'always_comb', 'always_ff', 'always_latch', 'and', 'assign', 'automatic', 'begin', 'break', 'buf', 'bufif0', 'bufif1', 'case', 'casex', 'casez', 'cmos', 'const', 'continue', 'deassign', 'default', 'defparam', 'disable', 'do', 'edge', 'else', 'end', 'endcase', 'endfunction', 'endgenerate', 'endmodule', 'endpackage', 'endprimitive','endspecify', 'endtable', 'endtask', 'enum', 'event', 'final', 'for','force', 'forever', 'fork', 'function', 'generate', 'genvar', 'highz0','highz1', 'if', 'initial', 'inout', 'input', 'integer', 'join', 'large','localparam', 'macromodule', 'medium', 'module', 'nand', 'negedge','nmos', 'nor', 'not', 'notif0', 'notif1', 'or', 'output', 'packed','parameter', 'pmos', 'posedge', 'primitive', 'pull0', 'pull1','pulldown', 'pullup', 'rcmos', 'ref', 'release', 'repeat', 'return','rnmos', 'rpmos', 'rtran', 'rtranif0', 'rtranif1', 'scalared', 'signed','small', 'specify', 'specparam', 'strength', 'string', 'strong0','strong1', 'struct', 'table', 'task', 'tran', 'tranif0', 'tranif1','type', 'typedef', 'unsigned', 'var', 'vectored', 'void', 'wait','weak0', 'weak1', 'while', 'xnor', 'xor', 'byte', 'shortint', 'int', 'longint', 'integer', 'time','bit', 'logic', 'reg', 'supply0', 'supply1', 'tri', 'triand','trior', 'tri0', 'tri1', 'trireg', 'uwire', 'wire', 'wand', 'wo','shortreal', 'real', 'realtime'] value = value.lower() if value in names: # compress these down to a single letter index = names.index(value) return chr(48 + index) # leave punctuation and operators alone return value def process_token(token): kind = str(token[1]) value = token[2] if "Token.Comment" in kind or "Token.Text" in kind: # ignore comments return "" if "Token.Keyword" in kind or "Token.Punctuation" in kind or "Token.Operator" in kind: # ignore common tokens to speed edit distance return compress_value(value) if "Token.Name" in kind: return "@" if "Token.Literal" in kind or "Token.String" in kind: return "#" # catch all for all others return "?" def tokenize(text): iterable = tokenizer.get_tokens_unprocessed(text) result = "" for token in iterable: result += process_token(token) return result def doAssignment(students, assign, helpers): helpers.printf("processing '{}' in parellel...\n".format(assign.name)) # for each student for student in students: # for each entry entries = assign.args["entries"] for entry in entries: sources = entry["sources"] # try to read the text text = helpers.readFromAssignment(student, assign.name, sources[0]) if text != None: # tokenize the file result = tokenize(text) # write the result safeFilename = common.makeFilenameSafe(sources[0]) + "vted.txt" helpers.writeToPreprocessed(result, student, assign.name, safeFilename) # all done helpers.printf("Finished '{}'!\n".format(assign.name)) def run(students, assignments, args, helpers): # threads to join later threads = [] # for each assignment for assign in assignments: t = Process(target=doAssignment, args=(students, assign, helpers)) threads.append(t) t.start() # join the threads for t in threads: t.join() # all done here return True
3,097
0
115
8674b3f9d5c0f0928f6536ab7399dbeda0ee16e1
20,839
py
Python
tests/test_event_handlers.py
star302b/dj-stripe
1d26394414515c4f3ada7132b0eae8f793a0badd
[ "MIT" ]
null
null
null
tests/test_event_handlers.py
star302b/dj-stripe
1d26394414515c4f3ada7132b0eae8f793a0badd
[ "MIT" ]
null
null
null
tests/test_event_handlers.py
star302b/dj-stripe
1d26394414515c4f3ada7132b0eae8f793a0badd
[ "MIT" ]
null
null
null
""" .. module:: dj-stripe.tests.test_event_handlers :synopsis: dj-stripe Event Handler Tests. .. moduleauthor:: Alex Kavanaugh (@kavdev) .. moduleauthor:: Lee Skillen (@lskillen) """ from copy import deepcopy import decimal from django.contrib.auth import get_user_model from django.test import TestCase from mock import patch from djstripe.models import Event, Charge, Transfer, Account, Plan, Customer, InvoiceItem, Invoice, Card, Subscription from tests import (FAKE_CARD, FAKE_CHARGE, FAKE_CHARGE_II, FAKE_CUSTOMER, FAKE_CUSTOMER_II, FAKE_EVENT_CHARGE_SUCCEEDED, FAKE_EVENT_CUSTOMER_CREATED, FAKE_EVENT_CUSTOMER_DELETED, FAKE_EVENT_CUSTOMER_SOURCE_CREATED, FAKE_EVENT_CUSTOMER_SOURCE_DELETED, FAKE_EVENT_CUSTOMER_SOURCE_DELETED_DUPE, FAKE_EVENT_CUSTOMER_SUBSCRIPTION_CREATED, FAKE_EVENT_CUSTOMER_SUBSCRIPTION_DELETED, FAKE_EVENT_INVOICE_CREATED, FAKE_EVENT_INVOICE_DELETED, FAKE_EVENT_INVOICEITEM_CREATED, FAKE_EVENT_INVOICEITEM_DELETED, FAKE_EVENT_PLAN_CREATED, FAKE_EVENT_PLAN_DELETED, FAKE_EVENT_TRANSFER_CREATED, FAKE_EVENT_TRANSFER_DELETED, FAKE_INVOICE, FAKE_INVOICE_II, FAKE_INVOICEITEM, FAKE_PLAN, FAKE_SUBSCRIPTION, FAKE_SUBSCRIPTION_III, FAKE_TRANSFER)
46.619687
118
0.729018
""" .. module:: dj-stripe.tests.test_event_handlers :synopsis: dj-stripe Event Handler Tests. .. moduleauthor:: Alex Kavanaugh (@kavdev) .. moduleauthor:: Lee Skillen (@lskillen) """ from copy import deepcopy import decimal from django.contrib.auth import get_user_model from django.test import TestCase from mock import patch from djstripe.models import Event, Charge, Transfer, Account, Plan, Customer, InvoiceItem, Invoice, Card, Subscription from tests import (FAKE_CARD, FAKE_CHARGE, FAKE_CHARGE_II, FAKE_CUSTOMER, FAKE_CUSTOMER_II, FAKE_EVENT_CHARGE_SUCCEEDED, FAKE_EVENT_CUSTOMER_CREATED, FAKE_EVENT_CUSTOMER_DELETED, FAKE_EVENT_CUSTOMER_SOURCE_CREATED, FAKE_EVENT_CUSTOMER_SOURCE_DELETED, FAKE_EVENT_CUSTOMER_SOURCE_DELETED_DUPE, FAKE_EVENT_CUSTOMER_SUBSCRIPTION_CREATED, FAKE_EVENT_CUSTOMER_SUBSCRIPTION_DELETED, FAKE_EVENT_INVOICE_CREATED, FAKE_EVENT_INVOICE_DELETED, FAKE_EVENT_INVOICEITEM_CREATED, FAKE_EVENT_INVOICEITEM_DELETED, FAKE_EVENT_PLAN_CREATED, FAKE_EVENT_PLAN_DELETED, FAKE_EVENT_TRANSFER_CREATED, FAKE_EVENT_TRANSFER_DELETED, FAKE_INVOICE, FAKE_INVOICE_II, FAKE_INVOICEITEM, FAKE_PLAN, FAKE_SUBSCRIPTION, FAKE_SUBSCRIPTION_III, FAKE_TRANSFER) class EventTestCase(TestCase): # # Helpers # @patch('stripe.Event.retrieve') def _create_event(self, event_data, event_retrieve_mock, patch_data=None): event_data = deepcopy(event_data) if patch_data: event_data.update(patch_data) event_retrieve_mock.return_value = event_data event = Event.sync_from_stripe_data(event_data) event.validate() return event class TestChargeEvents(EventTestCase): def setUp(self): self.user = get_user_model().objects.create_user(username="pydanny", email="pydanny@gmail.com") @patch("djstripe.models.Account.get_default_account") @patch('stripe.Customer.retrieve', return_value=deepcopy(FAKE_CUSTOMER)) @patch('stripe.Charge.retrieve') @patch("stripe.Event.retrieve") def test_charge_created(self, event_retrieve_mock, charge_retrieve_mock, customer_retrieve_mock, account_mock): fake_stripe_event = deepcopy(FAKE_EVENT_CHARGE_SUCCEEDED) event_retrieve_mock.return_value = fake_stripe_event charge_retrieve_mock.return_value = fake_stripe_event["data"]["object"] account_mock.return_value = Account.objects.create() Customer.objects.create(subscriber=self.user, stripe_id=FAKE_CUSTOMER["id"], livemode=False) event = Event.sync_from_stripe_data(fake_stripe_event) event.validate() event.process() charge = Charge.objects.get(stripe_id=fake_stripe_event["data"]["object"]["id"]) self.assertEquals(charge.amount, fake_stripe_event["data"]["object"]["amount"] / decimal.Decimal("100")) self.assertEquals(charge.status, fake_stripe_event["data"]["object"]["status"]) class TestCustomerEvents(EventTestCase): def setUp(self): self.user = get_user_model().objects.create_user(username="pydanny", email="pydanny@gmail.com") @patch("stripe.Customer.retrieve") @patch("stripe.Event.retrieve") def test_customer_created(self, event_retrieve_mock, customer_retrieve_mock): fake_stripe_event = deepcopy(FAKE_EVENT_CUSTOMER_CREATED) event_retrieve_mock.return_value = fake_stripe_event customer_retrieve_mock.return_value = fake_stripe_event["data"]["object"] Customer.objects.create(subscriber=self.user, stripe_id=FAKE_CUSTOMER["id"], livemode=False) event = Event.sync_from_stripe_data(fake_stripe_event) event.validate() event.process() customer = Customer.objects.get(stripe_id=fake_stripe_event["data"]["object"]["id"]) self.assertEquals(customer.account_balance, fake_stripe_event["data"]["object"]["account_balance"]) self.assertEquals(customer.currency, fake_stripe_event["data"]["object"]["currency"]) @patch("stripe.Customer.retrieve") @patch("stripe.Event.retrieve") def test_customer_created_no_customer_exists(self, event_retrieve_mock, customer_retrieve_mock): fake_stripe_event = deepcopy(FAKE_EVENT_CUSTOMER_CREATED) event_retrieve_mock.return_value = fake_stripe_event customer_retrieve_mock.return_value = fake_stripe_event["data"]["object"] event = Event.sync_from_stripe_data(fake_stripe_event) event.validate() event.process() self.assertFalse(Customer.objects.filter(stripe_id=fake_stripe_event["data"]["object"]["id"]).exists()) @patch("stripe.Customer.retrieve", return_value=FAKE_CUSTOMER) def test_customer_deleted(self, customer_retrieve_mock): Customer.objects.create(subscriber=self.user, stripe_id=FAKE_CUSTOMER["id"], livemode=False) event = self._create_event(FAKE_EVENT_CUSTOMER_CREATED) self.assertTrue(event.process()) event = self._create_event(FAKE_EVENT_CUSTOMER_DELETED) self.assertTrue(event.process()) customer = Customer.objects.get(stripe_id=FAKE_CUSTOMER["id"]) self.assertIsNotNone(customer.date_purged) @patch("stripe.Customer.retrieve", return_value=deepcopy(FAKE_CUSTOMER)) @patch("stripe.Event.retrieve") def test_customer_card_created(self, event_retrieve_mock, customer_retrieve_mock): fake_stripe_event = deepcopy(FAKE_EVENT_CUSTOMER_SOURCE_CREATED) event_retrieve_mock.return_value = fake_stripe_event customer = Customer.objects.create(subscriber=self.user, stripe_id=FAKE_CUSTOMER["id"], livemode=False) event = Event.sync_from_stripe_data(fake_stripe_event) event.validate() event.process() card = Card.objects.get(stripe_id=fake_stripe_event["data"]["object"]["id"]) self.assertIn(card, customer.sources.all()) self.assertEqual(card.brand, fake_stripe_event["data"]["object"]["brand"]) self.assertEqual(card.last4, fake_stripe_event["data"]["object"]["last4"]) @patch("stripe.Customer.retrieve", return_value=deepcopy(FAKE_CUSTOMER)) @patch("stripe.Event.retrieve") def test_customer_unknown_source_created(self, event_retrieve_mock, customer_retrieve_mock): fake_stripe_event = deepcopy(FAKE_EVENT_CUSTOMER_SOURCE_CREATED) fake_stripe_event["data"]["object"]["object"] = "unknown" event_retrieve_mock.return_value = fake_stripe_event Customer.objects.create(subscriber=self.user, stripe_id=FAKE_CUSTOMER["id"], livemode=False) event = Event.sync_from_stripe_data(fake_stripe_event) event.validate() event.process() self.assertFalse(Card.objects.filter(stripe_id=fake_stripe_event["data"]["object"]["id"]).exists()) @patch("stripe.Customer.retrieve", return_value=deepcopy(FAKE_CUSTOMER)) def test_customer_default_source_deleted(self, customer_retrieve_mock): event = self._create_event(FAKE_EVENT_CUSTOMER_SOURCE_CREATED) Customer.objects.create(subscriber=self.user, stripe_id=FAKE_CUSTOMER["id"], livemode=False) self.assertTrue(event.process()) card = Card.objects.get(stripe_id=FAKE_CARD["id"]) customer = Customer.objects.get(stripe_id=FAKE_CUSTOMER["id"]) customer.default_source = card customer.save() self.assertIsNotNone(customer.default_source) self.assertTrue(customer.has_valid_source()) event = self._create_event(FAKE_EVENT_CUSTOMER_SOURCE_DELETED) self.assertTrue(event.process()) customer = Customer.objects.get(stripe_id=FAKE_CUSTOMER["id"]) self.assertIsNone(customer.default_source) self.assertFalse(customer.has_valid_source()) @patch("stripe.Customer.retrieve", return_value=deepcopy(FAKE_CUSTOMER)) def test_customer_source_double_delete(self, customer_retrieve_mock): event = self._create_event(FAKE_EVENT_CUSTOMER_SOURCE_CREATED) Customer.objects.create(subscriber=self.user, stripe_id=FAKE_CUSTOMER["id"], livemode=False) self.assertTrue(event.process()) event = self._create_event(FAKE_EVENT_CUSTOMER_SOURCE_DELETED) self.assertTrue(event.process()) event = self._create_event(FAKE_EVENT_CUSTOMER_SOURCE_DELETED_DUPE) self.assertTrue(event.process()) @patch("stripe.Plan.retrieve", return_value=deepcopy(FAKE_PLAN)) @patch("stripe.Subscription.retrieve", return_value=deepcopy(FAKE_SUBSCRIPTION)) @patch("stripe.Customer.retrieve", return_value=deepcopy(FAKE_CUSTOMER)) @patch("stripe.Event.retrieve") def test_customer_subscription_created(self, event_retrieve_mock, customer_retrieve_mock, subscription_retrieve_mock, plan_retrieve_mock): fake_stripe_event = deepcopy(FAKE_EVENT_CUSTOMER_SUBSCRIPTION_CREATED) event_retrieve_mock.return_value = fake_stripe_event customer = Customer.objects.create(subscriber=self.user, stripe_id=FAKE_CUSTOMER["id"], livemode=False) event = Event.sync_from_stripe_data(fake_stripe_event) event.validate() event.process() subscription = Subscription.objects.get(stripe_id=fake_stripe_event["data"]["object"]["id"]) self.assertIn(subscription, customer.subscriptions.all()) self.assertEqual(subscription.status, fake_stripe_event["data"]["object"]["status"]) self.assertEqual(subscription.quantity, fake_stripe_event["data"]["object"]["quantity"]) @patch("stripe.Plan.retrieve", return_value=deepcopy(FAKE_PLAN)) @patch("stripe.Subscription.retrieve", return_value=deepcopy(FAKE_SUBSCRIPTION)) @patch("stripe.Customer.retrieve", return_value=deepcopy(FAKE_CUSTOMER)) def test_customer_subscription_deleted( self, customer_retrieve_mock, subscription_retrieve_mock, plan_retrieve_mock): Customer.objects.create(subscriber=self.user, stripe_id=FAKE_CUSTOMER["id"], livemode=False) event = self._create_event(FAKE_EVENT_CUSTOMER_SUBSCRIPTION_CREATED) self.assertTrue(event.process()) Subscription.objects.get(stripe_id=FAKE_SUBSCRIPTION["id"]) event = self._create_event(FAKE_EVENT_CUSTOMER_SUBSCRIPTION_DELETED) self.assertTrue(event.process()) with self.assertRaises(Subscription.DoesNotExist): Subscription.objects.get(stripe_id=FAKE_SUBSCRIPTION["id"]) @patch("stripe.Customer.retrieve") @patch("stripe.Event.retrieve") def test_customer_bogus_event_type(self, event_retrieve_mock, customer_retrieve_mock): fake_stripe_event = deepcopy(FAKE_EVENT_CUSTOMER_CREATED) fake_stripe_event["data"]["object"]["customer"] = fake_stripe_event["data"]["object"]["id"] fake_stripe_event["type"] = "customer.praised" event_retrieve_mock.return_value = fake_stripe_event customer_retrieve_mock.return_value = fake_stripe_event["data"]["object"] Customer.objects.create(subscriber=self.user, stripe_id=FAKE_CUSTOMER["id"], livemode=False) event = Event.sync_from_stripe_data(fake_stripe_event) event.validate() event.process() customer = Customer.objects.get(stripe_id=fake_stripe_event["data"]["object"]["id"]) self.assertEqual(None, customer.account_balance) class TestInvoiceEvents(EventTestCase): @patch("djstripe.models.Account.get_default_account") @patch("stripe.Subscription.retrieve", return_value=deepcopy(FAKE_SUBSCRIPTION)) @patch("stripe.Customer.retrieve", return_value=deepcopy(FAKE_CUSTOMER)) @patch("stripe.Charge.retrieve", return_value=deepcopy(FAKE_CHARGE)) @patch("stripe.Invoice.retrieve", return_value=deepcopy(FAKE_INVOICE)) @patch("stripe.Event.retrieve") def test_invoice_created_no_existing_customer(self, event_retrieve_mock, invoice_retrieve_mock, charge_retrieve_mock, customer_retrieve_mock, subscription_retrieve_mock, default_account_mock): default_account_mock.return_value = Account.objects.create() fake_stripe_event = deepcopy(FAKE_EVENT_INVOICE_CREATED) event_retrieve_mock.return_value = fake_stripe_event invoice_retrieve_mock.return_value = fake_stripe_event["data"]["object"] event = Event.sync_from_stripe_data(fake_stripe_event) event.validate() event.process() self.assertEquals(Customer.objects.count(), 1) customer = Customer.objects.get() self.assertEquals(customer.subscriber, None) @patch("djstripe.models.Account.get_default_account") @patch("stripe.Subscription.retrieve", return_value=deepcopy(FAKE_SUBSCRIPTION)) @patch("stripe.Customer.retrieve", return_value=deepcopy(FAKE_CUSTOMER)) @patch("stripe.Charge.retrieve", return_value=deepcopy(FAKE_CHARGE)) @patch("stripe.Invoice.retrieve") @patch("stripe.Event.retrieve") def test_invoice_created(self, event_retrieve_mock, invoice_retrieve_mock, charge_retrieve_mock, customer_retrieve_mock, subscription_retrieve_mock, default_account_mock): default_account_mock.return_value = Account.objects.create() user = get_user_model().objects.create_user(username="pydanny", email="pydanny@gmail.com") Customer.objects.create(subscriber=user, stripe_id=FAKE_CUSTOMER["id"], livemode=False) fake_stripe_event = deepcopy(FAKE_EVENT_INVOICE_CREATED) event_retrieve_mock.return_value = fake_stripe_event invoice_retrieve_mock.return_value = fake_stripe_event["data"]["object"] event = Event.sync_from_stripe_data(fake_stripe_event) event.validate() event.process() invoice = Invoice.objects.get(stripe_id=fake_stripe_event["data"]["object"]["id"]) self.assertEquals( invoice.amount_due, fake_stripe_event["data"]["object"]["amount_due"] / decimal.Decimal("100") ) self.assertEquals(invoice.paid, fake_stripe_event["data"]["object"]["paid"]) @patch("djstripe.models.Account.get_default_account") @patch("stripe.Subscription.retrieve", return_value=deepcopy(FAKE_SUBSCRIPTION)) @patch("stripe.Customer.retrieve", return_value=deepcopy(FAKE_CUSTOMER)) @patch("stripe.Charge.retrieve", return_value=deepcopy(FAKE_CHARGE)) @patch("stripe.Invoice.retrieve", return_value=deepcopy(FAKE_INVOICE)) def test_invoice_deleted(self, invoice_retrieve_mock, charge_retrieve_mock, customer_retrieve_mock, subscription_retrieve_mock, default_account_mock): default_account_mock.return_value = Account.objects.create() user = get_user_model().objects.create_user(username="pydanny", email="pydanny@gmail.com") Customer.objects.create(subscriber=user, stripe_id=FAKE_CUSTOMER["id"], livemode=False) event = self._create_event(FAKE_EVENT_INVOICE_CREATED) self.assertTrue(event.process()) Invoice.objects.get(stripe_id=FAKE_INVOICE["id"]) event = self._create_event(FAKE_EVENT_INVOICE_DELETED) self.assertTrue(event.process()) with self.assertRaises(Invoice.DoesNotExist): Invoice.objects.get(stripe_id=FAKE_INVOICE["id"]) class TestInvoiceItemEvents(EventTestCase): @patch("djstripe.models.Account.get_default_account") @patch("stripe.Subscription.retrieve", return_value=deepcopy(FAKE_SUBSCRIPTION_III)) @patch("stripe.Customer.retrieve", return_value=deepcopy(FAKE_CUSTOMER_II)) @patch("stripe.Charge.retrieve", return_value=deepcopy(FAKE_CHARGE_II)) @patch("stripe.Invoice.retrieve", return_value=deepcopy(FAKE_INVOICE_II)) @patch("stripe.InvoiceItem.retrieve") @patch("stripe.Event.retrieve") def test_invoiceitem_created(self, event_retrieve_mock, invoiceitem_retrieve_mock, invoice_retrieve_mock, charge_retrieve_mock, customer_retrieve_mock, subscription_retrieve_mock, default_account_mock): default_account_mock.return_value = Account.objects.create() user = get_user_model().objects.create_user(username="pydanny", email="pydanny@gmail.com") Customer.objects.create(subscriber=user, stripe_id=FAKE_CUSTOMER_II["id"], livemode=False) fake_stripe_event = deepcopy(FAKE_EVENT_INVOICEITEM_CREATED) event_retrieve_mock.return_value = fake_stripe_event invoiceitem_retrieve_mock.return_value = fake_stripe_event["data"]["object"] event = Event.sync_from_stripe_data(fake_stripe_event) event.validate() event.process() invoiceitem = InvoiceItem.objects.get(stripe_id=fake_stripe_event["data"]["object"]["id"]) self.assertEquals(invoiceitem.amount, fake_stripe_event["data"]["object"]["amount"] / decimal.Decimal("100")) @patch("djstripe.models.Account.get_default_account") @patch("stripe.Subscription.retrieve", return_value=deepcopy(FAKE_SUBSCRIPTION_III)) @patch("stripe.Customer.retrieve", return_value=deepcopy(FAKE_CUSTOMER_II)) @patch("stripe.Charge.retrieve", return_value=deepcopy(FAKE_CHARGE_II)) @patch("stripe.Invoice.retrieve", return_value=deepcopy(FAKE_INVOICE_II)) @patch("stripe.InvoiceItem.retrieve", return_value=deepcopy(FAKE_INVOICEITEM)) def test_invoiceitem_deleted( self, invoiceitem_retrieve_mock, invoice_retrieve_mock, charge_retrieve_mock, customer_retrieve_mock, subscription_retrieve_mock, default_account_mock): default_account_mock.return_value = Account.objects.create() user = get_user_model().objects.create_user(username="pydanny", email="pydanny@gmail.com") Customer.objects.create(subscriber=user, stripe_id=FAKE_CUSTOMER_II["id"], livemode=False) event = self._create_event(FAKE_EVENT_INVOICEITEM_CREATED) self.assertTrue(event.process()) InvoiceItem.objects.get(stripe_id=FAKE_INVOICEITEM["id"]) event = self._create_event(FAKE_EVENT_INVOICEITEM_DELETED) self.assertTrue(event.process()) with self.assertRaises(InvoiceItem.DoesNotExist): InvoiceItem.objects.get(stripe_id=FAKE_INVOICEITEM["id"]) class TestPlanEvents(EventTestCase): @patch('stripe.Plan.retrieve') @patch("stripe.Event.retrieve") def test_plan_created(self, event_retrieve_mock, plan_retrieve_mock): fake_stripe_event = deepcopy(FAKE_EVENT_PLAN_CREATED) event_retrieve_mock.return_value = fake_stripe_event plan_retrieve_mock.return_value = fake_stripe_event["data"]["object"] event = Event.sync_from_stripe_data(fake_stripe_event) event.validate() event.process() plan = Plan.objects.get(stripe_id=fake_stripe_event["data"]["object"]["id"]) self.assertEquals(plan.name, fake_stripe_event["data"]["object"]["name"]) @patch('stripe.Plan.retrieve', return_value=FAKE_PLAN) def test_plan_deleted(self, plan_retrieve_mock): event = self._create_event(FAKE_EVENT_PLAN_CREATED) self.assertTrue(event.process()) Plan.objects.get(stripe_id=FAKE_PLAN["id"]) event = self._create_event(FAKE_EVENT_PLAN_DELETED) self.assertTrue(event.process()) with self.assertRaises(Plan.DoesNotExist): Plan.objects.get(stripe_id=FAKE_PLAN["id"]) class TestTransferEvents(EventTestCase): @patch('stripe.Transfer.retrieve') @patch("stripe.Event.retrieve") def test_transfer_created(self, event_retrieve_mock, transfer_retrieve_mock): fake_stripe_event = deepcopy(FAKE_EVENT_TRANSFER_CREATED) event_retrieve_mock.return_value = fake_stripe_event transfer_retrieve_mock.return_value = fake_stripe_event["data"]["object"] event = Event.sync_from_stripe_data(fake_stripe_event) event.validate() event.process() transfer = Transfer.objects.get(stripe_id=fake_stripe_event["data"]["object"]["id"]) self.assertEquals(transfer.amount, fake_stripe_event["data"]["object"]["amount"] / decimal.Decimal("100")) self.assertEquals(transfer.status, fake_stripe_event["data"]["object"]["status"]) @patch('stripe.Transfer.retrieve', return_value=FAKE_TRANSFER) def test_transfer_deleted(self, transfer_retrieve_mock): event = self._create_event(FAKE_EVENT_TRANSFER_CREATED) self.assertTrue(event.process()) Transfer.objects.get(stripe_id=FAKE_TRANSFER["id"]) event = self._create_event(FAKE_EVENT_TRANSFER_DELETED) self.assertTrue(event.process()) with self.assertRaises(Transfer.DoesNotExist): Transfer.objects.get(stripe_id=FAKE_TRANSFER["id"])
14,830
4,514
161
9ff7a9dd754ac5e203b75c39934d21c4dbb3bd05
4,489
py
Python
kms_utils.py
unai-ttxu/marathon-lb-sec
a893cc7c550af02b15d307f941023c7d26a9f1ba
[ "Apache-2.0" ]
23
2017-04-17T14:15:10.000Z
2021-03-27T12:14:58.000Z
kms_utils.py
unai-ttxu/marathon-lb-sec
a893cc7c550af02b15d307f941023c7d26a9f1ba
[ "Apache-2.0" ]
13
2017-11-10T11:31:04.000Z
2019-07-02T08:13:21.000Z
kms_utils.py
unai-ttxu/marathon-lb-sec
a893cc7c550af02b15d307f941023c7d26a9f1ba
[ "Apache-2.0" ]
17
2017-03-17T08:48:59.000Z
2020-04-13T15:06:48.000Z
import common import json import logging import os import subprocess import time from dateutil import parser head_vault_hosts = 'OLD_IFS=${IFS};IFS=\',\' read -r -a VAULT_HOSTS <<< \"$STRING_VAULT_HOST\";IFS=${OLD_IFS};' source_kms_utils = '. /usr/sbin/kms_utils.sh;' global vault_token global vault_accessor global MAX_PERCENTAGE_EXPIRATION vault_token = os.getenv('VAULT_TOKEN', '') vault_accessor = os.getenv('ACCESSOR_TOKEN','') MIN_PERCENTAGE_EXPIRATION = 0.2 logger = None
34.267176
183
0.704611
import common import json import logging import os import subprocess import time from dateutil import parser head_vault_hosts = 'OLD_IFS=${IFS};IFS=\',\' read -r -a VAULT_HOSTS <<< \"$STRING_VAULT_HOST\";IFS=${OLD_IFS};' source_kms_utils = '. /usr/sbin/kms_utils.sh;' global vault_token global vault_accessor global MAX_PERCENTAGE_EXPIRATION vault_token = os.getenv('VAULT_TOKEN', '') vault_accessor = os.getenv('ACCESSOR_TOKEN','') MIN_PERCENTAGE_EXPIRATION = 0.2 logger = None def init_log(): global logger logger = common.marathon_lb_logger.getChild('kms_utils.py') def login(): global vault_token global vault_accessor resp,_ = exec_with_kms_utils('', 'login', 'echo "{\\\"vaulttoken\\\": \\\"$VAULT_TOKEN\\\",\\\"accessor\\\": \\\"$ACCESSOR_TOKEN\\\"}"') jsonVal = json.loads(resp.decode("utf-8")) vault_accessor = (jsonVal['accessor']) vault_token = (jsonVal['vaulttoken']) def get_cert(cluster, instance, fqdn, o_format, store_path): variables = ''.join(['export VAULT_TOKEN=', vault_token, ';']) command = ' '.join(['getCert', cluster, instance, fqdn, o_format, store_path]) resp,returncode = exec_with_kms_utils(variables, command , '') logger.debug('get_cert for ' + instance + ' returned ' + str(returncode) + ' and ' + resp.decode("utf-8")) return returncode == 0 def get_token_info(): variables = ''.join(['export VAULT_TOKEN=', vault_token, ';', 'export ACCESSOR_TOKEN=', vault_accessor, ';']) command = 'token_info' resp,_ = exec_with_kms_utils(variables, command, '') respArr = resp.decode("utf-8").split(',') jsonValue = json.loads(','.join(respArr[1:])) logger.debug('status ' + respArr[0]) logger.debug(jsonValue) return jsonValue def check_token_needs_renewal(force): jsonInfo = get_token_info() creationTime = jsonInfo['data']['creation_time'] #Convert time as given from Vault to epoch time expire_time_vault = jsonInfo['data']['expire_time'] expire_time = int(parser.parse(expire_time_vault).timestamp()) ttl = jsonInfo['data']['ttl'] lastRenewalTime = 0 try: lastRenewalTime = jsonInfo['data']['last_renewal_time'] except KeyError: pass if (lastRenewalTime > 0): percentage = ttl / (expire_time - lastRenewalTime) else: percentage = ttl / (expire_time - creationTime) logger.debug('Checked token expiration: percentage -> ' + str(percentage)) if (percentage <= MIN_PERCENTAGE_EXPIRATION and percentage > 0): logger.info('Token about to expire... needs renewal') jsonInfo = renewal_token() lease_duration_vault = jsonInfo['auth']['lease_duration'] expire_time = int(time.time()) + int(lease_duration_vault) elif (percentage <= 0): logger.info('Token expired!!') return False elif force: logger.info('Forced renewal') jsonInfo = renewal_token() lease_duration_vault = jsonInfo['auth']['lease_duration'] expire_time = int(time.time()) + int(lease_duration_vault) #Write expire_time to file with open('/marathon-lb/token-status', 'w') as fd: fd.write(str(int(expire_time))) return True def renewal_token(): variables = ''.join(['export VAULT_TOKEN=', vault_token, ';']) command = 'token_renewal' resp,_ = exec_with_kms_utils(variables, command, '') respArr = resp.decode("utf-8").split(',') # Due to kms_utils.sh issue, response could contain a spurious status_code as follows # # 000{request_response} # # This 000 spurious status code is caused by an empty parameter set by kms_utils.sh # which results in an additional curl to an empty URL. # # As fixing kms_utils.sh could generate strong side effects, we need to strip this # spurious response code from the request response here spurious_status_code = '000' if respArr[1].startswith(spurious_status_code): respArr[1] = respArr[1][len(spurious_status_code):] jsonValue = json.loads(','.join(respArr[1:])) logger.debug('status ' + respArr[0]) logger.debug(jsonValue) return jsonValue def exec_with_kms_utils(variables, command, extra_command): logger.debug('>>> exec_with_kms_utils: [COMM:'+command+', VARS:'+variables+', EXTRA_COMM:'+extra_command+']') proc = subprocess.Popen(['bash', '-c', head_vault_hosts + variables + source_kms_utils + command + ';' + extra_command], shell=False, stdout=subprocess.PIPE, stderr=subprocess.PIPE) try: resp,_ = proc.communicate(timeout=10) except subprocess.TimeoutExpired as e: proc.kill() raise e return resp, proc.returncode
3,844
0
160
7d51bd641910bdf93e36062ca99dbd8e06962b76
154
py
Python
chapter_2/intro-sys-mod.py
bimri/programming_python
ba52ccd18b9b4e6c5387bf4032f381ae816b5e77
[ "MIT" ]
null
null
null
chapter_2/intro-sys-mod.py
bimri/programming_python
ba52ccd18b9b4e6c5387bf4032f381ae816b5e77
[ "MIT" ]
null
null
null
chapter_2/intro-sys-mod.py
bimri/programming_python
ba52ccd18b9b4e6c5387bf4032f381ae816b5e77
[ "MIT" ]
null
null
null
"Introducing the sys Module" import sys print(sys.platform) print(sys.maxsize) print(sys.version) if sys.platform[:3] == 'win': print('hello windows')
17.111111
52
0.727273
"Introducing the sys Module" import sys print(sys.platform) print(sys.maxsize) print(sys.version) if sys.platform[:3] == 'win': print('hello windows')
0
0
0
e62a25962c26e93b18a28ed5fccdc965fc0e07e8
31
py
Python
hyperion/importers/__init__.py
astrofrog/hyperion
e90d7af1df4f064a960594d812c07ff27d87fcc7
[ "BSD-2-Clause" ]
2
2015-05-14T17:26:16.000Z
2019-03-13T17:33:18.000Z
hyperion/importers/__init__.py
astrofrog/hyperion
e90d7af1df4f064a960594d812c07ff27d87fcc7
[ "BSD-2-Clause" ]
null
null
null
hyperion/importers/__init__.py
astrofrog/hyperion
e90d7af1df4f064a960594d812c07ff27d87fcc7
[ "BSD-2-Clause" ]
null
null
null
from .orion import parse_orion
15.5
30
0.83871
from .orion import parse_orion
0
0
0
842d510acc09dda24940ad15781378acbc93a47e
1,009
py
Python
aoc/day09.py
ryanolsonx/aocpy
051f965c443c3d4798e15f1fe86327b0d755d27f
[ "MIT" ]
null
null
null
aoc/day09.py
ryanolsonx/aocpy
051f965c443c3d4798e15f1fe86327b0d755d27f
[ "MIT" ]
null
null
null
aoc/day09.py
ryanolsonx/aocpy
051f965c443c3d4798e15f1fe86327b0d755d27f
[ "MIT" ]
null
null
null
with open("./day09.input") as file: data = [int(line.strip()) for line in file.readlines()] p1 = get_first_not_matching(25) print(p1) p2 = get_contiguous_ns_that_add_to(p1) print(p2)
15.287879
56
0.581764
with open("./day09.input") as file: data = [int(line.strip()) for line in file.readlines()] def get_first_not_matching(preamble_size): i = preamble_size while i < len(data): n = data[i] is_match = False ds = data[i - preamble_size:i] for j in ds: for k in ds: if j == k: continue if j + k == n: is_match = True break if is_match: break if not is_match: return n i += 1 p1 = get_first_not_matching(25) print(p1) def get_min_max(ns): min = ns[0] max = ns[0] for n in ns: if n < min: min = n if n > max: max = n return (min, max) def get_contiguous_ns_that_add_to(value): i = 0 while i < len(data): n1 = data[i] acc = n1 group = [n1] j = i + 1 while j < len(data): n2 = data[j] if acc + n2 > value: # start over break group.append(n2) if acc + n2 == value: min, max = get_min_max(group) return min + max else: acc += n2 j += 1 i += 1 p2 = get_contiguous_ns_that_add_to(p1) print(p2)
753
0
69
5f957dac4e3aaa4e9760d7ae025a52ebc53a0390
1,533
py
Python
utils/ppmi_data.py
Devin-Taylor/multi-head-co-attention
466bf1cfe39bc271ff5a1947e15756b69cf22967
[ "MIT" ]
2
2019-11-04T14:26:21.000Z
2019-11-09T21:13:41.000Z
utils/ppmi_data.py
Devin-Taylor/multi-head-co-attention
466bf1cfe39bc271ff5a1947e15756b69cf22967
[ "MIT" ]
null
null
null
utils/ppmi_data.py
Devin-Taylor/multi-head-co-attention
466bf1cfe39bc271ff5a1947e15756b69cf22967
[ "MIT" ]
null
null
null
import json import os import nibabel as nib import numpy as np import pandas as pd ROOT = "./" DATA = os.path.join(ROOT, "data/")
38.325
127
0.714938
import json import os import nibabel as nib import numpy as np import pandas as pd ROOT = "./" DATA = os.path.join(ROOT, "data/") def load_ppmi(dataset, filter_feats=True, normalise=True): patient_summary = pd.read_csv(os.path.join(DATA, "patient_summary.csv")) metadata = patient_summary[patient_summary.DIAGNOSIS == dataset] methylation_data_path = os.path.join(DATA, "ppmi_only_caucasian_Zhou_filtered.pkl") meth_data = pd.read_pickle(methylation_data_path) metadata = pd.merge(metadata, meth_data, how="left", left_on="meth_file", right_index=True).dropna().reset_index(drop=True) spect_root = "CONTROLS" if dataset == "CONTROL" else "PD" spect_data = np.array([np.asarray(nib.load(os.path.join(DATA, spect_root, x)).dataobj) for x in metadata.spect_file]) spect_data = np.expand_dims(spect_data, axis=1) # insert channel meth_data = metadata.iloc[:, 5:] # NOTE hard indexing so keep this in mind metadata = metadata.iloc[:, :5] with open(os.path.join(DATA, "meth_classification_filtered_xgb_tuned_441.json")) as fd: meth_features = json.load(fd) if filter_feats: meth_data = meth_data.loc[:, meth_data.columns.isin(meth_features)] if normalise: # NOTE these values are the max and min across all control and PD images in the database global_min = -1.0 global_max = 5.6598325 spect_data = (spect_data - global_min)/(global_max - global_min) age = metadata.Age.values return meth_data, spect_data, age, metadata
1,378
0
23
1a9eb26b2e45a592e8105ef8cc9bc6ff155afcb4
3,981
py
Python
Programming_for_GIA_Core_Skills/Assessment_2/final_model.py
jord9762/jordy9762.github.io
28bcc21d140371e08cd074895f48fe646e2e7c79
[ "Apache-2.0" ]
null
null
null
Programming_for_GIA_Core_Skills/Assessment_2/final_model.py
jord9762/jordy9762.github.io
28bcc21d140371e08cd074895f48fe646e2e7c79
[ "Apache-2.0" ]
null
null
null
Programming_for_GIA_Core_Skills/Assessment_2/final_model.py
jord9762/jordy9762.github.io
28bcc21d140371e08cd074895f48fe646e2e7c79
[ "Apache-2.0" ]
null
null
null
import matplotlib import random import operator import csv import drunkframework import matplotlib.animation import matplotlib.pyplot """WARNING!!!!!""" """This code was tested using Spyder 5.0.4, should any problems be encountered using older models please try """ #creates a new empty list for what will be the csv environment data, see https://docs.python.org/3/library/csv.html for more environment = [] #drunks adapted from agents from GUI's practical replacing "agents" drunks = [] #density is an empty list which will track agent movement independent of the movement process density= [] #specifies number of drunks/agents num_of_drunks = 25 #outlines the number of iterations the line 64-78 code will undergo num_of_iterations = 100 #sets the dimensions for the matplotlib plots fig = matplotlib.pyplot.figure(figsize=(7, 7)) ax = fig.add_axes([0, 0, 1, 1]) f = open('drunk.txt', newline='') #Note that the correct directory must be navigated to in the terminal else the full file path will be needed reader = csv.reader(f, quoting=csv.QUOTE_NONNUMERIC) #Used for testing purposes to ascertain the lay of the environment #matplotlib.pyplot.xlim(0, 300) #matplotlib.pyplot.ylim(0, 300) #matplotlib.pyplot.imshow(environment) for row in reader: rowlist =[] for value in row: rowlist.append(value) environment.append(rowlist) f.close() #print (rowlist) Used this to check list structure #Code on lines 46-50 appends the density list output to a 300x300 grid, this code is needed #to prevent the error "IndexError: list index out of range" for i in range(300): rowlist = [] for j in range(300): rowlist.append(0) density.append(rowlist) #matplotlib.pyplot.imshow(environment) run this in isolation to check the environment is #correct ## Make drunks and assign them with an identification number. for i in range(num_of_drunks): identification = ((1+i)*10) # print(identification) #this should print 10-250 giving each of the drunks an identification number, later to be matched up with houses drunks.append(drunkframework.Drunk(environment, drunks, identification)) #This is is supposed to work whereby if the co-ordinates of stilldrunk match their identification number they are home #In the prototype density of the environment changed throughout the iterations, as such the drunks would #often stop in areas which were not their home. The work around this was seperating the process of track #and move through the creation of the density list. Track is left in but commented. for i in range (num_of_drunks): stilldrunk = drunks[i] for j in range(num_of_iterations): while environment [stilldrunk._y][stilldrunk._x] != stilldrunk.identification: density[drunks[i]._y][drunks[i]._x]+=1 drunks[i].move() #drunks[i].track() omitted from the final iteration of the application #saves density list (see lines 68 to 73) with open('density.txt', 'w', newline='') as f: csvwriter = csv.writer(f, delimiter=',', quoting=csv.QUOTE_NONNUMERIC) for row in density: csvwriter.writerow(row) #lines 79 to 90 serve the purpose of display the density and drunks in relation #to their finishing position within the environment matplotlib.pyplot.xlim(0, 300) matplotlib.pyplot.ylim(0, 300) matplotlib.pyplot.imshow(density) matplotlib.pyplot.xlim(0, 300) matplotlib.pyplot.ylim(0, 300) matplotlib.pyplot.show(drunks) matplotlib.pyplot.xlim(0, 300) matplotlib.pyplot.ylim(0, 300) matplotlib.pyplot.imshow(environment) #Code below just prints we're home for each of the 25 agents following a resolution of #the code for i in range(num_of_drunks): matplotlib.pyplot.scatter(drunks[i]._x, drunks[i]._y) print("we're home!")
36.190909
140
0.707109
import matplotlib import random import operator import csv import drunkframework import matplotlib.animation import matplotlib.pyplot """WARNING!!!!!""" """This code was tested using Spyder 5.0.4, should any problems be encountered using older models please try """ #creates a new empty list for what will be the csv environment data, see https://docs.python.org/3/library/csv.html for more environment = [] #drunks adapted from agents from GUI's practical replacing "agents" drunks = [] #density is an empty list which will track agent movement independent of the movement process density= [] #specifies number of drunks/agents num_of_drunks = 25 #outlines the number of iterations the line 64-78 code will undergo num_of_iterations = 100 #sets the dimensions for the matplotlib plots fig = matplotlib.pyplot.figure(figsize=(7, 7)) ax = fig.add_axes([0, 0, 1, 1]) f = open('drunk.txt', newline='') #Note that the correct directory must be navigated to in the terminal else the full file path will be needed reader = csv.reader(f, quoting=csv.QUOTE_NONNUMERIC) #Used for testing purposes to ascertain the lay of the environment #matplotlib.pyplot.xlim(0, 300) #matplotlib.pyplot.ylim(0, 300) #matplotlib.pyplot.imshow(environment) for row in reader: rowlist =[] for value in row: rowlist.append(value) environment.append(rowlist) f.close() #print (rowlist) Used this to check list structure #Code on lines 46-50 appends the density list output to a 300x300 grid, this code is needed #to prevent the error "IndexError: list index out of range" for i in range(300): rowlist = [] for j in range(300): rowlist.append(0) density.append(rowlist) #matplotlib.pyplot.imshow(environment) run this in isolation to check the environment is #correct ## Make drunks and assign them with an identification number. for i in range(num_of_drunks): identification = ((1+i)*10) # print(identification) #this should print 10-250 giving each of the drunks an identification number, later to be matched up with houses drunks.append(drunkframework.Drunk(environment, drunks, identification)) #This is is supposed to work whereby if the co-ordinates of stilldrunk match their identification number they are home #In the prototype density of the environment changed throughout the iterations, as such the drunks would #often stop in areas which were not their home. The work around this was seperating the process of track #and move through the creation of the density list. Track is left in but commented. for i in range (num_of_drunks): stilldrunk = drunks[i] for j in range(num_of_iterations): while environment [stilldrunk._y][stilldrunk._x] != stilldrunk.identification: density[drunks[i]._y][drunks[i]._x]+=1 drunks[i].move() #drunks[i].track() omitted from the final iteration of the application #saves density list (see lines 68 to 73) with open('density.txt', 'w', newline='') as f: csvwriter = csv.writer(f, delimiter=',', quoting=csv.QUOTE_NONNUMERIC) for row in density: csvwriter.writerow(row) #lines 79 to 90 serve the purpose of display the density and drunks in relation #to their finishing position within the environment matplotlib.pyplot.xlim(0, 300) matplotlib.pyplot.ylim(0, 300) matplotlib.pyplot.imshow(density) matplotlib.pyplot.xlim(0, 300) matplotlib.pyplot.ylim(0, 300) matplotlib.pyplot.show(drunks) matplotlib.pyplot.xlim(0, 300) matplotlib.pyplot.ylim(0, 300) matplotlib.pyplot.imshow(environment) #Code below just prints we're home for each of the 25 agents following a resolution of #the code for i in range(num_of_drunks): matplotlib.pyplot.scatter(drunks[i]._x, drunks[i]._y) print("we're home!")
0
0
0
7fb3bf3ccd9b91d3bdbcbdf7e10aa8941cf222d8
1,841
py
Python
script/test_caffemodel.py
duguyue100/transcaffe
aee7f34e98630ca4b1d717f65bc3b83edd00acd6
[ "MIT" ]
1
2017-10-30T01:34:14.000Z
2017-10-30T01:34:14.000Z
script/test_caffemodel.py
duguyue100/transcaffe
aee7f34e98630ca4b1d717f65bc3b83edd00acd6
[ "MIT" ]
null
null
null
script/test_caffemodel.py
duguyue100/transcaffe
aee7f34e98630ca4b1d717f65bc3b83edd00acd6
[ "MIT" ]
1
2021-07-11T04:30:58.000Z
2021-07-11T04:30:58.000Z
"""Loading a .caffemodel and figure out the encoding. Author: Yuhuang Hu Email : duguyue100@gmail.com """ from __future__ import absolute_import from __future__ import print_function import os # from keras.utils.visualize_util import plot from keras.datasets import mnist as dataset from keras.utils import np_utils import transcaffe as tc batch_size = 128 nb_classes = 10 nb_epoch = 40 # input image dimensions img_rows, img_cols = 28, 28 # number of convolutional filters to use nb_filters = 32 # size of pooling area for max pooling nb_pool = 2 # convolution kernel size nb_conv = 3 # color channels chnls = 1 # the data, shuffled and split between train and test sets (X_train, y_train), (X_test, y_test) = dataset.load_data() X_train = X_train.reshape(X_train.shape[0], chnls, img_rows, img_cols) X_test = X_test.reshape(X_test.shape[0], chnls, img_rows, img_cols) X_train = X_train.astype("float32") X_test = X_test.astype("float32") X_train /= 255 X_test /= 255 # convert class vectors to binary class matrices Y_train = np_utils.to_categorical(y_train, nb_classes) Y_test = np_utils.to_categorical(y_test, nb_classes) print('X_train shape:', X_train.shape) print(X_train.shape[0], 'train samples') print(X_test.shape[0], 'test samples') # define model for testing data_path = os.environ["TRANSCAFFE_DATA"] # model_str = os.path.join(data_path, # "VGG_ILSVRC_16_layers_deploy.prototxt.txt") model_str = os.path.join(data_path, "lenet.prototxt.txt") model_bin = os.path.join(data_path, "lenet_iter_10000.caffemodel") model = tc.load(model_str, model_bin, target_lib="keras") model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=['accuracy']) score = model.evaluate(X_test, Y_test, verbose=0) print('Test score:', score[0]) print('Test accuracy:', score[1])
27.893939
70
0.751222
"""Loading a .caffemodel and figure out the encoding. Author: Yuhuang Hu Email : duguyue100@gmail.com """ from __future__ import absolute_import from __future__ import print_function import os # from keras.utils.visualize_util import plot from keras.datasets import mnist as dataset from keras.utils import np_utils import transcaffe as tc batch_size = 128 nb_classes = 10 nb_epoch = 40 # input image dimensions img_rows, img_cols = 28, 28 # number of convolutional filters to use nb_filters = 32 # size of pooling area for max pooling nb_pool = 2 # convolution kernel size nb_conv = 3 # color channels chnls = 1 # the data, shuffled and split between train and test sets (X_train, y_train), (X_test, y_test) = dataset.load_data() X_train = X_train.reshape(X_train.shape[0], chnls, img_rows, img_cols) X_test = X_test.reshape(X_test.shape[0], chnls, img_rows, img_cols) X_train = X_train.astype("float32") X_test = X_test.astype("float32") X_train /= 255 X_test /= 255 # convert class vectors to binary class matrices Y_train = np_utils.to_categorical(y_train, nb_classes) Y_test = np_utils.to_categorical(y_test, nb_classes) print('X_train shape:', X_train.shape) print(X_train.shape[0], 'train samples') print(X_test.shape[0], 'test samples') # define model for testing data_path = os.environ["TRANSCAFFE_DATA"] # model_str = os.path.join(data_path, # "VGG_ILSVRC_16_layers_deploy.prototxt.txt") model_str = os.path.join(data_path, "lenet.prototxt.txt") model_bin = os.path.join(data_path, "lenet_iter_10000.caffemodel") model = tc.load(model_str, model_bin, target_lib="keras") model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=['accuracy']) score = model.evaluate(X_test, Y_test, verbose=0) print('Test score:', score[0]) print('Test accuracy:', score[1])
0
0
0
bdafb5b9a495fe79186ed42ceb1d64616f684e58
2,044
py
Python
tlaunch/lp_k8s/config.py
TARTRL/TLaunch
198dada129f2143b6f626a50b82d45575f4c1115
[ "Apache-2.0" ]
18
2021-12-19T09:43:17.000Z
2021-12-30T06:09:03.000Z
tlaunch/lp_k8s/config.py
TARTRL/TLaunch
198dada129f2143b6f626a50b82d45575f4c1115
[ "Apache-2.0" ]
null
null
null
tlaunch/lp_k8s/config.py
TARTRL/TLaunch
198dada129f2143b6f626a50b82d45575f4c1115
[ "Apache-2.0" ]
1
2022-01-14T06:20:20.000Z
2022-01-14T06:20:20.000Z
from typing import Dict, List, Optional from kubernetes import client from tlaunch.lp_k8s.resource import Resource from tlaunch.lp_k8s.util import map_opt DEFAULT_PORT = 8001 DEFAULT_NAME = 'launchpad' REVERB_IMAGE = 'reg.real-ai.cn/launchpad/reverb' DEFAULT_COMMAND = ['python3', '-u', '-mlaunchpad_kubernetes.process_entry']
30.969697
79
0.627202
from typing import Dict, List, Optional from kubernetes import client from tlaunch.lp_k8s.resource import Resource from tlaunch.lp_k8s.util import map_opt DEFAULT_PORT = 8001 DEFAULT_NAME = 'launchpad' REVERB_IMAGE = 'reg.real-ai.cn/launchpad/reverb' DEFAULT_COMMAND = ['python3', '-u', '-mlaunchpad_kubernetes.process_entry'] class Container: def __init__(self, image: Optional[str] = None, command: Optional[List[str]] = None, flags: List[str] = [], resources: Optional[Resource] = None, env: Optional[Dict[str, str]] = None): self.job_name = DEFAULT_NAME self.image = image or REVERB_IMAGE self.command = command or DEFAULT_COMMAND + flags self.resources = resources self.env = env def build(self) -> client.V1Container: return client.V1Container( name=self.job_name, image=self.image, command=self.command, ports=[ client.V1ContainerPort(name='launchpad', container_port=DEFAULT_PORT) ], resources=map_opt( self.resources, lambda x: client.V1ResourceRequirements(limits=x.limits, requests=x.requests)), env=map_opt( self.env, lambda e: [client.V1EnvVar(name=k, value=v) for k, v in e.items()])) def set_job_name(self, job_name: str) -> 'Container': self.job_name = job_name return self class Config: def __init__(self, container: Optional[Container] = None, **kwargs): self.container = container or Container() self.kwargs = kwargs def build(self) -> client.V1PodSpec: return client.V1PodSpec(**self.kwargs, containers=[self.container.build()]) def set_job_name(self, job_name: str) -> 'Config': self.container.set_job_name(job_name) return self class DefaultReverbConfig(Config): def __init__(self) -> None: self.container = Container(image=REVERB_IMAGE)
1,470
0
241
2f89d30a8c0491da0365da93766c0592009a4f5a
2,694
py
Python
retry_download_errors.py
calstateteach/canvas_artifacts_download
1fbff01c80214d1e05616097aecd13cbb7faa3ca
[ "MIT" ]
null
null
null
retry_download_errors.py
calstateteach/canvas_artifacts_download
1fbff01c80214d1e05616097aecd13cbb7faa3ca
[ "MIT" ]
null
null
null
retry_download_errors.py
calstateteach/canvas_artifacts_download
1fbff01c80214d1e05616097aecd13cbb7faa3ca
[ "MIT" ]
null
null
null
"""Retry downloading files that caused errors in http_downloader. We can find files to try downloading again by parsing the err.txt file for error messages. Error log lines we are interested in look like: 09-04-2017 12:45:17..Error_http_downloader 'exports/CalStateTEACH Term 1/grios/Schedule/Mentor Info.docx', 'https://ourdomain.instructure.com/files/8080/download?download_frd=1&verifier=zVZdnkpTmmJIGYAg2U0PaDqESrJBFLi0Xsm73Eldu' A regex string that captures the file name & URL looks like: [0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9] [0-9][0-9]:[0-9][0-9]:[0-9][0-9]\.\.Error_http_downloader '(.*)', '(.*)'$ 09.04.2017 tps Created. 09.17.2018 tps Change bad global Null reference to None. """ import script_logging import http_downloader import os import re import shutil ######### Constants ######### # Regex pattern for extracting file download details from error log. REGEX_PATTERN = "[0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9] [0-9][0-9]:[0-9][0-9]:[0-9][0-9]\.\.Error_http_downloader '(.*)', '(.*)'$" def make_cp_file_name(): """Create a unique file that looks like "retry000.txt", "retry001.txt", "retry002.txt", etc. """ cp_file_name = None # Function return variable n = 0 while True: cp_file_name = 'retry%03d.txt' % n if (not os.path.exists(cp_file_name)): break else: n = n + 1 continue return cp_file_name ######### Stand-Alone Execution ######### if __name__ == "__main__": load_errors()
30.613636
228
0.639198
"""Retry downloading files that caused errors in http_downloader. We can find files to try downloading again by parsing the err.txt file for error messages. Error log lines we are interested in look like: 09-04-2017 12:45:17..Error_http_downloader 'exports/CalStateTEACH Term 1/grios/Schedule/Mentor Info.docx', 'https://ourdomain.instructure.com/files/8080/download?download_frd=1&verifier=zVZdnkpTmmJIGYAg2U0PaDqESrJBFLi0Xsm73Eldu' A regex string that captures the file name & URL looks like: [0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9] [0-9][0-9]:[0-9][0-9]:[0-9][0-9]\.\.Error_http_downloader '(.*)', '(.*)'$ 09.04.2017 tps Created. 09.17.2018 tps Change bad global Null reference to None. """ import script_logging import http_downloader import os import re import shutil ######### Constants ######### # Regex pattern for extracting file download details from error log. REGEX_PATTERN = "[0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9] [0-9][0-9]:[0-9][0-9]:[0-9][0-9]\.\.Error_http_downloader '(.*)', '(.*)'$" def make_cp_file_name(): """Create a unique file that looks like "retry000.txt", "retry001.txt", "retry002.txt", etc. """ cp_file_name = None # Function return variable n = 0 while True: cp_file_name = 'retry%03d.txt' % n if (not os.path.exists(cp_file_name)): break else: n = n + 1 continue return cp_file_name def cp_err_log(): err_log_file = script_logging.ERR_FILE_NAME err_log_cp = make_cp_file_name() script_logging.log_status('Copying error log %s to %s' % (err_log_file, err_log_cp)) shutil.copy(err_log_file, err_log_cp) def load_errors(): pattern = re.compile(REGEX_PATTERN) err_list = [] # Accumulate the download errors file_name = script_logging.ERR_FILE_NAME if (os.path.isfile(file_name)): with open(file_name, 'r') as f: for line in f: match = pattern.match(line) if match: err_list.append((match.group(1), match.group(2))) # Let's see what download errors we found if len(err_list) > 0: # This process might still generate errors, so save the current # error before starting a new one. cp_err_log() script_logging.clear_error_log() for err in err_list: # Retry the download download_file = err[0] download_url = err[1] http_downloader.download(download_url, download_file) else: script_logging.log_status('No download errors to retry.') ######### Stand-Alone Execution ######### if __name__ == "__main__": load_errors()
1,131
0
46
fea9894192b3f338d5d4d6a5b7224a49e2e10fb5
4,769
py
Python
beatcrunch/utils/model_common.py
iero/BeatCrunch
baa88595670b0dc1fb2a0e95fe33b176a0c010d6
[ "Apache-2.0" ]
null
null
null
beatcrunch/utils/model_common.py
iero/BeatCrunch
baa88595670b0dc1fb2a0e95fe33b176a0c010d6
[ "Apache-2.0" ]
null
null
null
beatcrunch/utils/model_common.py
iero/BeatCrunch
baa88595670b0dc1fb2a0e95fe33b176a0c010d6
[ "Apache-2.0" ]
null
null
null
from nltk import RegexpTokenizer # Common stopwords in french and english # Clean text or sentence, removing stopwords # return list
108.386364
2,076
0.626756
from nltk import RegexpTokenizer # Common stopwords in french and english def get_stopwords(lang) : stopset = [] stopwords_ponctuation = [',','"',';',':','.','?','!','*','—'] for w in stopwords_ponctuation: stopset.append(w) if lang == "fr" or lang == "all": stopwords_base = ['aussi','au','aux','avec','ça','ce','ces','dans','de','des','du','elle','en','et','eux','il','je','là','la','le','leur','leurs','lui','ma','mais','me','même','mes','moi','mon','ne','nos','notre','nous','on','ou','où','par','pas','pour','qu','que','qui','si','sa','se','ses','son','sur','ta','te','tes','toi','ton','tu','un','une','vos','votre','vous','ceci','cela','celà','cet','cette','ici','ils','les','leurs','quel','quels','quelle','quelles','sans','soi','tout','toutes','toute','tous'] stopwords_lettres_seules = ['c','d','j','l','à','m','n','s','t','y',"c’","d’","j’","l’","m’","n’","s’","t’","qu’"] stopwords_verbeterne_etre = ['être','été','étée','étées','étés','étant','suis','es','est','sommes','êtes','sont','serai','seras','sera','serons','serez','seront','serais','serait','serions','seriez','seraient','étais','était','étions','étiez','étaient','fus','fut','fûmes','fûtes','furent','sois','soit','soyons','soyez','soient','fusse','fusses','fût','fussions','fussiez','fussent'] stopwords_verbeterne_avoir = ['a','avoir','ayant','eu','eue','eues','eus','ai','as','avons','avez','ont','aurai','auras','aura','aurons','aurez','auront','aurais','aurait','aurions','auriez','auraient','avais','avait','avions','aviez','avaient','eut','eûmes','eûtes','eurent','aie','aies','ait','ayons','ayez','aient','eusse','eusses','eût','eussions','eussiez','eussent'] for w in stopwords_base: stopset.append(w) for w in stopwords_lettres_seules: stopset.append(w) for w in stopwords_verbeterne_avoir: stopset.append(w) for w in stopwords_verbeterne_etre: stopset.append(w) if lang == "en" or lang == "all": stopwords_base = ['a','about','above','above','across','after','afterwards','again','against','all','almost','alone','along','already','also','although','always','among','amongst','amoungst','amount','and','another','any','anyhow','anyone','anything','anyway','anywhere','are','around','as','at','back','because','before','beforehand','behind','below','beside','besides','between','beyond','bill','both','bottom','but','by','co','con','de','describe','detail','do','done','down','due','during','each','eg','eight','either','else','elsewhere','empty','enough','etc','even','ever','every','everyone','everything','everywhere','except','few','fire','for','former','formerly','from','front','full','further','he','hence','her','here','hereafter','hereby','herein','hereupon','hers','herself','him','himself','his','how','however','hundred','i','if','in','inc','indeed','interest','into','it','its','itself','last','latter','latterly','least','less','ltd','many','me','meanwhile','mill','mine','more','moreover','most','mostly','much','must','my','myself','name','namely','neither','never','nevertheless','next','no','nobody','none','nor','not','nothing','now','nowhere','of','off','often','on','once','only','onto','or','other','others','otherwise','our','ours','ourselves','out','over','own','part','per','perhaps','please','rather','re','same','serious','several','she','side','since','sincere','so','some','somehow','someone','something','sometime','sometimes','somewhere','still','such','than','that','the','their','them','themselves','then','there','thereafter','thereby','therefore','therein','thereupon','these','they','thin','this','those','though','through','throughout','thru','thus','to','together','too','toward','towards','under','until','upon','us','very','via','we','well','were','what','whatever','when','whence','whenever','where','whereafter','whereas','whereby','wherein','whereupon','wherever','whether','which','while','whither','who','whoever','whole','whom','whose','why','with','within','without','yet','you','your','yours','yourself','yourselves','the'] stopwords_verbs = ['am','be','became','become','becomes','becoming','been','being','call','can','cannot','cant','could','couldnt','cry','fill','find','found','get','give','go','had','has','hasnt','have','is','keep','made','may','might','move','say','says','see','seem','seemed','seeming','seems','should','show','take','put','was','will','would'] for w in stopwords_base: stopset.append(w) for w in stopwords_verbs: stopset.append(w) return stopset # Clean text or sentence, removing stopwords # return list def nlp_clean(data,stopwords): new_str = data.lower() tokenizer = RegexpTokenizer(r'\w+') dlist = tokenizer.tokenize(new_str) for a in dlist : if len(a) < 2 : dlist.remove(a) cleanList = [word for word in dlist if word not in stopwords] return cleanList
4,638
0
44
b87d6c5cb06be96998619a9cb340e11359c13595
15,498
py
Python
faster_rcnn/rpn_util.py
Kelicious/faster_rcnn
fde1a2f342855b8a3b6c1a54878e59d29102a26d
[ "MIT" ]
18
2018-05-13T14:50:03.000Z
2022-02-23T14:27:17.000Z
faster_rcnn/rpn_util.py
Kelicious/faster_rcnn
fde1a2f342855b8a3b6c1a54878e59d29102a26d
[ "MIT" ]
3
2018-05-15T08:46:10.000Z
2020-03-17T12:46:31.000Z
faster_rcnn/rpn_util.py
Kelicious/faster_rcnn
fde1a2f342855b8a3b6c1a54878e59d29102a26d
[ "MIT" ]
15
2018-05-13T14:50:24.000Z
2022-02-24T09:50:07.000Z
import random from enum import Enum import numpy as np from custom_decorators import profile from shapes import Box from shared_constants import BBREG_MULTIPLIERS, DEFAULT_ANCHORS from util import calc_iou, cross_ious, get_reg_params, get_bbox_coords POS_OVERLAP = 0.7 NEG_OVERLAP = 0.3 SAMPLE_SIZE = 256 MAX_POS_SAMPLES = 128 class RpnTrainingManager: """ Encapsulates the details of generating training inputs for a region proposal network for a given image. """ def __init__(self, calc_conv_dims, stride, preprocess_func, anchor_dims=DEFAULT_ANCHORS): """ :param calc_conv_dims: function that accepts a tuple of the image's height and width in pixels and returns the height and width of the convolutional layer prior to the rpn layers. :param stride: positive integer, the cumulative stride at the convolutional layer prior to the rpn layers. :param preprocess_func: function that applies the same transformation to the image's pixels as used for Imagenet training. Otherwise the Imagenet pre-trained weights will be mismatched. :param anchor_dims: list of lists of positive integers, one height and width pair for each anchor. """ self._cache = {} self.calc_conv_dims = calc_conv_dims self.stride = stride self.preprocess_func = preprocess_func self.anchor_dims = anchor_dims @profile def batched_image(self, image): """ Returns the image data to be fed into the network. :param image: shapes.Image object. :return: 4-d numpy array with a single batch of the image, should can be used as a Keras model input. """ return np.expand_dims(self.preprocess_func(image.data), axis=0) @profile @profile def rpn_y_true(self, image): """ Takes an image and returns the Keras model inputs to train with. :param image: shapes.Image object to generate training inputs for. :return: tuple where the first element is a numpy array of the ground truth network output for whether each anchor overlaps with an object, and the second element is a numpy array of the ground truth network output for the bounding box transformation parameters to transform each anchor into an object's bounding box. """ ''' Consider removing caching - added when self.process was taking 0.4s to run. Since then, optimized it down to 0.02s locally, 0.003s on aws so the cache isn't too useful anymore. ''' if image.cache_key not in self._cache: self._process(image) results = self._cache[image.cache_key] # TODO: why is the cached result being deleted? Investigate whether restoring it improves training time. del self._cache[image.cache_key] can_use = _apply_sampling(results['is_pos'], results['can_use']) conv_rows, conv_cols = self.calc_conv_dims(image.height, image.width) is_pos = np.reshape(results['is_pos'], (conv_rows, conv_cols, len(self.anchor_dims))) can_use = np.reshape(can_use, (conv_rows, conv_cols, len(self.anchor_dims))) selected_is_pos = np.logical_and(is_pos, can_use) # combine arrays with whether or not to use for the loss function y_class = np.concatenate([can_use, is_pos], axis=2) bbreg_can_use = np.repeat(selected_is_pos, 4, axis = 2) bbreg_targets = np.reshape(results['bbreg_targets'], (conv_rows, conv_cols, 4 * len(self.anchor_dims))) y_bbreg = np.concatenate([bbreg_can_use, bbreg_targets], axis = 2) y_class = np.expand_dims(y_class, axis=0) y_bbreg = np.expand_dims(y_bbreg, axis=0) return y_class, y_bbreg def _idx_to_conv(idx, conv_width, anchors_per_loc): """ Converts an anchor box index in a 1-d numpy array to its corresponding 3-d index representing its convolution position and anchor index. :param idx: non-negative integer, the position in a 1-d numpy array of anchors. :param conv_width: the number of possible horizontal positions the convolutional layer's filters can occupy, i.e. close to the width in pixels divided by the cumulative stride at that layer. :param anchors_per_loc: positive integer, the number of anchors at each convolutional filter position. :return: tuple of the row, column, and anchor index of the convolutional filter position for this index. """ divisor = conv_width * anchors_per_loc y, remainder = idx // divisor, idx % divisor x, anchor_idx = remainder // anchors_per_loc, remainder % anchors_per_loc return y, x, anchor_idx @profile def _get_conv_center(conv_x, conv_y, stride): """ Finds the center of this convolution position in the image's original coordinate space. :param conv_x: non-negative integer, x coordinate of the convolution position. :param conv_y: non-negative integer, y coordinate of the convolution position. :param stride: positive integer, the cumulative stride in pixels at this layer of the network. :return: tuple of positive integers, the x and y coordinates of the center of the convolution position. """ x_center = stride * (conv_x + 0.5) y_center = stride * (conv_y + 0.5) return int(x_center), int(y_center) @profile @profile @profile @profile # this function was a huge bottleneck so threw away box abstractions to optimize performance @profile def _get_all_anchor_coords(conv_rows, conv_cols, anchor_dims, stride): """ Given the shape of a convolutional layer and the anchors to generate for each position, return all anchors. :param conv_rows: positive integer, height of this convolutional layer. :param conv_cols: positive integer, width of this convolutional layer. :param anchor_dims: list of lists of positive integers, one height and width pair for each anchor. :param stride: positive integer, cumulative stride of this anchor position in pixels. :return: 2-d numpy array with one row for each anchor box containing its [x1, y1, x2, y2] coordinates. """ num_boxes = conv_rows * conv_cols * len(anchor_dims) y, x, anchor_idxs = _num_boxes_to_conv_np(num_boxes, conv_cols, len(anchor_dims)) x_center, y_center = _get_conv_center_np(x, y, stride) anchor_coords = np.zeros((num_boxes, 4), dtype=np.float32) anchor_height = anchor_dims[anchor_idxs, 0] anchor_width = anchor_dims[anchor_idxs, 1] anchor_coords[:, 0] = x_center - anchor_width // 2 anchor_coords[:, 1] = y_center - anchor_height // 2 anchor_coords[:, 2] = anchor_coords[:, 0] + anchor_width anchor_coords[:, 3] = anchor_coords[:, 1] + anchor_height return anchor_coords @profile @profile def _apply_sampling(is_pos, can_use): """ Applies the sampling logic described in the Faster R-CNN paper to determine which anchors should be evaluated in the loss function. :param is_pos: 1-d numpy array of booleans for whether each anchor is a true positive for some object. :param can_use: 1-d numpy array of booleans for whether each anchor can be used at all in the loss function. :return: 1-d numpy array of booleans of which anchors were chosen to be used in the loss function. """ # extract [0] due to np.where returning a tuple pos_locs = np.where(np.logical_and(is_pos == 1, can_use == 1))[0] neg_locs = np.where(np.logical_and(is_pos == 0, can_use == 1))[0] num_pos = len(pos_locs) num_neg = len(neg_locs) # cap the number of positive samples per batch to no more than half the batch size if num_pos > MAX_POS_SAMPLES: locs_off = random.sample(range(num_pos), num_pos - MAX_POS_SAMPLES) can_use[pos_locs[locs_off]] = 0 num_pos = MAX_POS_SAMPLES # fill remaining portion of the batch size with negative samples if num_neg + num_pos > SAMPLE_SIZE: locs_off = random.sample(range(num_neg), num_neg + num_pos - SAMPLE_SIZE) can_use[neg_locs[locs_off]] = 0 return can_use
44.153846
154
0.703123
import random from enum import Enum import numpy as np from custom_decorators import profile from shapes import Box from shared_constants import BBREG_MULTIPLIERS, DEFAULT_ANCHORS from util import calc_iou, cross_ious, get_reg_params, get_bbox_coords POS_OVERLAP = 0.7 NEG_OVERLAP = 0.3 SAMPLE_SIZE = 256 MAX_POS_SAMPLES = 128 class RpnClass(Enum): NEG = 0 POS = 1 NEUTRAL = 2 class RpnTrainingManager: """ Encapsulates the details of generating training inputs for a region proposal network for a given image. """ def __init__(self, calc_conv_dims, stride, preprocess_func, anchor_dims=DEFAULT_ANCHORS): """ :param calc_conv_dims: function that accepts a tuple of the image's height and width in pixels and returns the height and width of the convolutional layer prior to the rpn layers. :param stride: positive integer, the cumulative stride at the convolutional layer prior to the rpn layers. :param preprocess_func: function that applies the same transformation to the image's pixels as used for Imagenet training. Otherwise the Imagenet pre-trained weights will be mismatched. :param anchor_dims: list of lists of positive integers, one height and width pair for each anchor. """ self._cache = {} self.calc_conv_dims = calc_conv_dims self.stride = stride self.preprocess_func = preprocess_func self.anchor_dims = anchor_dims @profile def batched_image(self, image): """ Returns the image data to be fed into the network. :param image: shapes.Image object. :return: 4-d numpy array with a single batch of the image, should can be used as a Keras model input. """ return np.expand_dims(self.preprocess_func(image.data), axis=0) @profile def _process(self, image): # internal method, performs the expensive calculations needed to produce training inputs. conv_rows, conv_cols = self.calc_conv_dims(image.height, image.width) num_anchors = conv_rows * conv_cols * len(self.anchor_dims) bbreg_targets = np.zeros((num_anchors, 4), dtype=np.float32) can_use = np.zeros(num_anchors, dtype=np.bool) is_pos = np.zeros(num_anchors, dtype=np.bool) gt_box_coords = get_bbox_coords(image.gt_boxes) anchor_coords = _get_all_anchor_coords(conv_rows, conv_cols, self.anchor_dims, self.stride) out_of_bounds_idxs = _get_out_of_bounds_idxs(anchor_coords, image.width, image.height) all_ious = cross_ious(anchor_coords, gt_box_coords) # all_ious, out_of_bounds_idxs = get_all_ious_faster(gt_box_coords, conv_rows, conv_cols, ANCHORS_PER_LOC, image.width, image.height, self.stride) max_iou_by_anchor = np.amax(all_ious, axis=1) max_idx_by_anchor = np.argmax(all_ious, axis=1) max_iou_by_gt_box = np.amax(all_ious, axis=0) max_idx_by_gt_box = np.argmax(all_ious, axis=0) # anchors with more than 0.7 IOU with a gt box are positives pos_box_idxs = np.where(max_iou_by_anchor > POS_OVERLAP)[0] # for each gt box, the highest non-zero IOU anchor is a positive eligible_idxs = np.where(max_iou_by_gt_box > 0.0) more_pos_box_idxs = max_idx_by_gt_box[eligible_idxs] total_pos_idxs = np.unique(np.concatenate((pos_box_idxs, more_pos_box_idxs))) can_use[total_pos_idxs] = 1 is_pos[total_pos_idxs] = 1 # don't bother optimizing, profiling showed this loop's runtime is negligible for box_idx in total_pos_idxs: y, x, anchor_idx = _idx_to_conv(box_idx, conv_cols, len(self.anchor_dims)) x_center, y_center = _get_conv_center(x, y, self.stride) anchor_height, anchor_width = self.anchor_dims[anchor_idx] anchor_box = Box.from_center_dims_int(x_center, y_center, anchor_width, anchor_height) gt_box_idx = max_idx_by_anchor[box_idx] reg_params = get_reg_params(anchor_box.corners, gt_box_coords[gt_box_idx]) bbreg_targets[box_idx, :] = BBREG_MULTIPLIERS * reg_params neg_box_idxs = np.where(np.logical_and(is_pos == 0, max_iou_by_anchor < NEG_OVERLAP))[0] can_use[neg_box_idxs] = 1 can_use[out_of_bounds_idxs] = 0 self._cache[image.cache_key] = { 'can_use': can_use, 'is_pos': is_pos, 'bbreg_targets': bbreg_targets } @profile def rpn_y_true(self, image): """ Takes an image and returns the Keras model inputs to train with. :param image: shapes.Image object to generate training inputs for. :return: tuple where the first element is a numpy array of the ground truth network output for whether each anchor overlaps with an object, and the second element is a numpy array of the ground truth network output for the bounding box transformation parameters to transform each anchor into an object's bounding box. """ ''' Consider removing caching - added when self.process was taking 0.4s to run. Since then, optimized it down to 0.02s locally, 0.003s on aws so the cache isn't too useful anymore. ''' if image.cache_key not in self._cache: self._process(image) results = self._cache[image.cache_key] # TODO: why is the cached result being deleted? Investigate whether restoring it improves training time. del self._cache[image.cache_key] can_use = _apply_sampling(results['is_pos'], results['can_use']) conv_rows, conv_cols = self.calc_conv_dims(image.height, image.width) is_pos = np.reshape(results['is_pos'], (conv_rows, conv_cols, len(self.anchor_dims))) can_use = np.reshape(can_use, (conv_rows, conv_cols, len(self.anchor_dims))) selected_is_pos = np.logical_and(is_pos, can_use) # combine arrays with whether or not to use for the loss function y_class = np.concatenate([can_use, is_pos], axis=2) bbreg_can_use = np.repeat(selected_is_pos, 4, axis = 2) bbreg_targets = np.reshape(results['bbreg_targets'], (conv_rows, conv_cols, 4 * len(self.anchor_dims))) y_bbreg = np.concatenate([bbreg_can_use, bbreg_targets], axis = 2) y_class = np.expand_dims(y_class, axis=0) y_bbreg = np.expand_dims(y_bbreg, axis=0) return y_class, y_bbreg def _idx_to_conv(idx, conv_width, anchors_per_loc): """ Converts an anchor box index in a 1-d numpy array to its corresponding 3-d index representing its convolution position and anchor index. :param idx: non-negative integer, the position in a 1-d numpy array of anchors. :param conv_width: the number of possible horizontal positions the convolutional layer's filters can occupy, i.e. close to the width in pixels divided by the cumulative stride at that layer. :param anchors_per_loc: positive integer, the number of anchors at each convolutional filter position. :return: tuple of the row, column, and anchor index of the convolutional filter position for this index. """ divisor = conv_width * anchors_per_loc y, remainder = idx // divisor, idx % divisor x, anchor_idx = remainder // anchors_per_loc, remainder % anchors_per_loc return y, x, anchor_idx @profile def _num_boxes_to_conv_np(num_boxes, conv_width, anchors_per_loc): # similar to _idx_to_conv but for multiple boxes at once, uses vectorized operations to optimize the performance idxs = np.arange(num_boxes) divisor = conv_width * anchors_per_loc y, remainder = idxs // divisor, idxs % divisor x, anchor_idx = remainder // anchors_per_loc, remainder % anchors_per_loc return y, x, anchor_idx def _get_conv_center(conv_x, conv_y, stride): """ Finds the center of this convolution position in the image's original coordinate space. :param conv_x: non-negative integer, x coordinate of the convolution position. :param conv_y: non-negative integer, y coordinate of the convolution position. :param stride: positive integer, the cumulative stride in pixels at this layer of the network. :return: tuple of positive integers, the x and y coordinates of the center of the convolution position. """ x_center = stride * (conv_x + 0.5) y_center = stride * (conv_y + 0.5) return int(x_center), int(y_center) @profile def _get_conv_center_np(conv_x, conv_y, stride): # like _get_conv_center but optimized for multiple boxes. x_center = stride * (conv_x + 0.5) y_center = stride * (conv_y + 0.5) return x_center.astype('int32'), y_center.astype('int32') @profile def _get_all_ious(bbox_coords, conv_rows, conv_cols, anchor_dims, img_width, img_height, stride): # not used anymore, might be useful to keep around as a reference num_boxes = conv_rows * conv_cols * len(anchor_dims) num_gt_boxes = len(bbox_coords) result = np.zeros((num_boxes, num_gt_boxes)) out_of_bounds_idxs = [] num_boxes = conv_rows * conv_cols * len(anchor_dims) for i in range(num_boxes): y, x, anchor_idx = _idx_to_conv(i, conv_cols, len(anchor_dims)) x_center, y_center = _get_conv_center(x, y, stride) anchor_height, anchor_width = anchor_dims[anchor_idx] anchor_box = Box.from_center_dims_int(x_center, y_center, anchor_width, anchor_height) if _out_of_bounds(anchor_box, img_width, img_height): out_of_bounds_idxs.append(i) continue for bbox_idx in range(num_gt_boxes): iou = calc_iou(bbox_coords[bbox_idx], anchor_box.corners) result[i, bbox_idx] = iou return result, out_of_bounds_idxs @profile def _get_all_ious_fast(bbox_coords, conv_rows, conv_cols, anchor_dims, img_width, img_height, stride): # optimization of _get_all_ious using vectorized operations, also not used anymore num_boxes = conv_rows * conv_cols * len(anchor_dims) num_gt_boxes = len(bbox_coords) result = np.zeros((num_boxes, num_gt_boxes)) out_of_bounds_idxs = [] num_boxes = conv_rows * conv_cols * len(anchor_dims) coords = np.zeros((4)) for i in range(num_boxes): y, x, anchor_idx = _idx_to_conv(i, conv_cols, len(anchor_dims)) x_center, y_center = _get_conv_center(x, y, stride) anchor_height, anchor_width = anchor_dims[anchor_idx] coords[0] = x_center - anchor_width // 2 coords[2] = coords[0] + anchor_width coords[1] = y_center - anchor_height // 2 coords[3] = coords[1] + anchor_height if _out_of_bounds_coords(coords, img_width, img_height): out_of_bounds_idxs.append(i) continue for bbox_idx in range(num_gt_boxes): iou = calc_iou(bbox_coords[bbox_idx], coords) result[i, bbox_idx] = iou return result, out_of_bounds_idxs @profile # this function was a huge bottleneck so threw away box abstractions to optimize performance def _get_all_ious_faster(bbox_coords, conv_rows, conv_cols, anchor_dims, img_width, img_height, stride): # even more optimized version of _get_all_ious_fast, also not used anymore num_boxes = conv_rows * conv_cols * len(anchor_dims) y, x, anchor_idxs = _num_boxes_to_conv_np(num_boxes, conv_cols, len(anchor_dims)) x_center, y_center = _get_conv_center_np(x, y, stride) anchor_coords = np.zeros((num_boxes, 4)) anchor_height = anchor_dims[anchor_idxs, 0] anchor_width = anchor_dims[anchor_idxs, 1] anchor_coords[:, 0] = x_center - anchor_width // 2 anchor_coords[:, 1] = y_center - anchor_height // 2 anchor_coords[:, 2] = anchor_coords[:, 0] + anchor_width anchor_coords[:, 3] = anchor_coords[:, 1] + anchor_height result = cross_ious(anchor_coords, bbox_coords) out_of_bounds_idxs = np.where(np.logical_or.reduce(( anchor_coords[:,0] < 0, anchor_coords[:,1] < 0, anchor_coords[:,2] >= img_width, anchor_coords[:,3] >= img_height)))[0] return result, out_of_bounds_idxs @profile def _get_all_anchor_coords(conv_rows, conv_cols, anchor_dims, stride): """ Given the shape of a convolutional layer and the anchors to generate for each position, return all anchors. :param conv_rows: positive integer, height of this convolutional layer. :param conv_cols: positive integer, width of this convolutional layer. :param anchor_dims: list of lists of positive integers, one height and width pair for each anchor. :param stride: positive integer, cumulative stride of this anchor position in pixels. :return: 2-d numpy array with one row for each anchor box containing its [x1, y1, x2, y2] coordinates. """ num_boxes = conv_rows * conv_cols * len(anchor_dims) y, x, anchor_idxs = _num_boxes_to_conv_np(num_boxes, conv_cols, len(anchor_dims)) x_center, y_center = _get_conv_center_np(x, y, stride) anchor_coords = np.zeros((num_boxes, 4), dtype=np.float32) anchor_height = anchor_dims[anchor_idxs, 0] anchor_width = anchor_dims[anchor_idxs, 1] anchor_coords[:, 0] = x_center - anchor_width // 2 anchor_coords[:, 1] = y_center - anchor_height // 2 anchor_coords[:, 2] = anchor_coords[:, 0] + anchor_width anchor_coords[:, 3] = anchor_coords[:, 1] + anchor_height return anchor_coords @profile def _get_out_of_bounds_idxs(anchor_coords, img_width, img_height): # internal function for figuring out which anchors are out of bounds out_of_bounds_idxs = np.where(np.logical_or.reduce(( anchor_coords[:,0] < 0, anchor_coords[:,1] < 0, anchor_coords[:,2] >= img_width, anchor_coords[:,3] >= img_height)))[0] return out_of_bounds_idxs def _out_of_bounds(box, width, height): # internal function for checking whether a box is out of bounds, not used anymore return box.x1 < 0 or box.x2 >= width or box.y1 < 0 or box.y2 >= height def _out_of_bounds_coords(coords, width, height): # similar to _out_of_bounds but takes its argument as a numpy array instead of a shapes.Box instance return coords[0] < 0 or coords[2] >= width or coords[1] < 0 or coords[3] >= height @profile def _apply_sampling(is_pos, can_use): """ Applies the sampling logic described in the Faster R-CNN paper to determine which anchors should be evaluated in the loss function. :param is_pos: 1-d numpy array of booleans for whether each anchor is a true positive for some object. :param can_use: 1-d numpy array of booleans for whether each anchor can be used at all in the loss function. :return: 1-d numpy array of booleans of which anchors were chosen to be used in the loss function. """ # extract [0] due to np.where returning a tuple pos_locs = np.where(np.logical_and(is_pos == 1, can_use == 1))[0] neg_locs = np.where(np.logical_and(is_pos == 0, can_use == 1))[0] num_pos = len(pos_locs) num_neg = len(neg_locs) # cap the number of positive samples per batch to no more than half the batch size if num_pos > MAX_POS_SAMPLES: locs_off = random.sample(range(num_pos), num_pos - MAX_POS_SAMPLES) can_use[pos_locs[locs_off]] = 0 num_pos = MAX_POS_SAMPLES # fill remaining portion of the batch size with negative samples if num_neg + num_pos > SAMPLE_SIZE: locs_off = random.sample(range(num_neg), num_neg + num_pos - SAMPLE_SIZE) can_use[neg_locs[locs_off]] = 0 return can_use
7,177
40
227
f7ded778c29259e2a89bf5a9a9ac772ebb515972
25,965
py
Python
samples/client/petstore/python-experimental/petstore_api/models/xml_item.py
malymato/openapi-generator
47e2c0d027d867de67633bbc9c0a5d7e1054a778
[ "Apache-2.0" ]
2
2019-12-08T12:00:11.000Z
2022-01-02T13:47:52.000Z
samples/client/petstore/python-experimental/petstore_api/models/xml_item.py
malymato/openapi-generator
47e2c0d027d867de67633bbc9c0a5d7e1054a778
[ "Apache-2.0" ]
8
2021-03-01T21:18:19.000Z
2022-02-27T07:56:15.000Z
samples/client/petstore/python-experimental/petstore_api/models/xml_item.py
malymato/openapi-generator
47e2c0d027d867de67633bbc9c0a5d7e1054a778
[ "Apache-2.0" ]
1
2020-03-08T12:31:09.000Z
2020-03-08T12:31:09.000Z
# coding: utf-8 """ OpenAPI Petstore This spec is mainly for testing Petstore server and contains fake endpoints, models. Please do not use this for any other purpose. Special characters: \" \\ # noqa: E501 The version of the OpenAPI document: 1.0.0 Generated by: https://openapi-generator.tech """ import pprint # noqa: F401 import re # noqa: F401 import six # noqa: F401 from petstore_api.exceptions import ( # noqa: F401 ApiKeyError, ApiTypeError, ApiValueError, ) from petstore_api.model_utils import ( # noqa: F401 ModelNormal, ModelSimple, check_allowed_values, check_validations, date, datetime, file_type, get_simple_class, int, model_to_dict, none_type, str, type_error_message, validate_and_convert_types ) class XmlItem(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. openapi_types (dict): The key is attribute name and the value is attribute type. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } attribute_map = { 'attribute_string': 'attribute_string', # noqa: E501 'attribute_number': 'attribute_number', # noqa: E501 'attribute_integer': 'attribute_integer', # noqa: E501 'attribute_boolean': 'attribute_boolean', # noqa: E501 'wrapped_array': 'wrapped_array', # noqa: E501 'name_string': 'name_string', # noqa: E501 'name_number': 'name_number', # noqa: E501 'name_integer': 'name_integer', # noqa: E501 'name_boolean': 'name_boolean', # noqa: E501 'name_array': 'name_array', # noqa: E501 'name_wrapped_array': 'name_wrapped_array', # noqa: E501 'prefix_string': 'prefix_string', # noqa: E501 'prefix_number': 'prefix_number', # noqa: E501 'prefix_integer': 'prefix_integer', # noqa: E501 'prefix_boolean': 'prefix_boolean', # noqa: E501 'prefix_array': 'prefix_array', # noqa: E501 'prefix_wrapped_array': 'prefix_wrapped_array', # noqa: E501 'namespace_string': 'namespace_string', # noqa: E501 'namespace_number': 'namespace_number', # noqa: E501 'namespace_integer': 'namespace_integer', # noqa: E501 'namespace_boolean': 'namespace_boolean', # noqa: E501 'namespace_array': 'namespace_array', # noqa: E501 'namespace_wrapped_array': 'namespace_wrapped_array', # noqa: E501 'prefix_ns_string': 'prefix_ns_string', # noqa: E501 'prefix_ns_number': 'prefix_ns_number', # noqa: E501 'prefix_ns_integer': 'prefix_ns_integer', # noqa: E501 'prefix_ns_boolean': 'prefix_ns_boolean', # noqa: E501 'prefix_ns_array': 'prefix_ns_array', # noqa: E501 'prefix_ns_wrapped_array': 'prefix_ns_wrapped_array' # noqa: E501 } openapi_types = { 'attribute_string': (str,), # noqa: E501 'attribute_number': (float,), # noqa: E501 'attribute_integer': (int,), # noqa: E501 'attribute_boolean': (bool,), # noqa: E501 'wrapped_array': ([int],), # noqa: E501 'name_string': (str,), # noqa: E501 'name_number': (float,), # noqa: E501 'name_integer': (int,), # noqa: E501 'name_boolean': (bool,), # noqa: E501 'name_array': ([int],), # noqa: E501 'name_wrapped_array': ([int],), # noqa: E501 'prefix_string': (str,), # noqa: E501 'prefix_number': (float,), # noqa: E501 'prefix_integer': (int,), # noqa: E501 'prefix_boolean': (bool,), # noqa: E501 'prefix_array': ([int],), # noqa: E501 'prefix_wrapped_array': ([int],), # noqa: E501 'namespace_string': (str,), # noqa: E501 'namespace_number': (float,), # noqa: E501 'namespace_integer': (int,), # noqa: E501 'namespace_boolean': (bool,), # noqa: E501 'namespace_array': ([int],), # noqa: E501 'namespace_wrapped_array': ([int],), # noqa: E501 'prefix_ns_string': (str,), # noqa: E501 'prefix_ns_number': (float,), # noqa: E501 'prefix_ns_integer': (int,), # noqa: E501 'prefix_ns_boolean': (bool,), # noqa: E501 'prefix_ns_array': ([int],), # noqa: E501 'prefix_ns_wrapped_array': ([int],), # noqa: E501 } validations = { } additional_properties_type = None discriminator = None def __init__(self, _check_type=True, _from_server=False, _path_to_item=(), _configuration=None, **kwargs): # noqa: E501 """XmlItem - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _from_server (bool): True if the data is from the server False if the data is from the client (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. attribute_string (str): [optional] # noqa: E501 attribute_number (float): [optional] # noqa: E501 attribute_integer (int): [optional] # noqa: E501 attribute_boolean (bool): [optional] # noqa: E501 wrapped_array ([int]): [optional] # noqa: E501 name_string (str): [optional] # noqa: E501 name_number (float): [optional] # noqa: E501 name_integer (int): [optional] # noqa: E501 name_boolean (bool): [optional] # noqa: E501 name_array ([int]): [optional] # noqa: E501 name_wrapped_array ([int]): [optional] # noqa: E501 prefix_string (str): [optional] # noqa: E501 prefix_number (float): [optional] # noqa: E501 prefix_integer (int): [optional] # noqa: E501 prefix_boolean (bool): [optional] # noqa: E501 prefix_array ([int]): [optional] # noqa: E501 prefix_wrapped_array ([int]): [optional] # noqa: E501 namespace_string (str): [optional] # noqa: E501 namespace_number (float): [optional] # noqa: E501 namespace_integer (int): [optional] # noqa: E501 namespace_boolean (bool): [optional] # noqa: E501 namespace_array ([int]): [optional] # noqa: E501 namespace_wrapped_array ([int]): [optional] # noqa: E501 prefix_ns_string (str): [optional] # noqa: E501 prefix_ns_number (float): [optional] # noqa: E501 prefix_ns_integer (int): [optional] # noqa: E501 prefix_ns_boolean (bool): [optional] # noqa: E501 prefix_ns_array ([int]): [optional] # noqa: E501 prefix_ns_wrapped_array ([int]): [optional] # noqa: E501 """ self._data_store = {} self._check_type = _check_type self._from_server = _from_server self._path_to_item = _path_to_item self._configuration = _configuration for var_name, var_value in six.iteritems(kwargs): self.__set_item(var_name, var_value) def __setitem__(self, name, value): """this allows us to set values with instance[field_name] = val""" self.__set_item(name, value) def __getitem__(self, name): """this allows us to get a value with val = instance[field_name]""" return self.__get_item(name) @property def attribute_string(self): """Gets the attribute_string of this XmlItem. # noqa: E501 Returns: (str): The attribute_string of this XmlItem. # noqa: E501 """ return self.__get_item('attribute_string') @attribute_string.setter def attribute_string(self, value): """Sets the attribute_string of this XmlItem. # noqa: E501 """ return self.__set_item('attribute_string', value) @property def attribute_number(self): """Gets the attribute_number of this XmlItem. # noqa: E501 Returns: (float): The attribute_number of this XmlItem. # noqa: E501 """ return self.__get_item('attribute_number') @attribute_number.setter def attribute_number(self, value): """Sets the attribute_number of this XmlItem. # noqa: E501 """ return self.__set_item('attribute_number', value) @property def attribute_integer(self): """Gets the attribute_integer of this XmlItem. # noqa: E501 Returns: (int): The attribute_integer of this XmlItem. # noqa: E501 """ return self.__get_item('attribute_integer') @attribute_integer.setter def attribute_integer(self, value): """Sets the attribute_integer of this XmlItem. # noqa: E501 """ return self.__set_item('attribute_integer', value) @property def attribute_boolean(self): """Gets the attribute_boolean of this XmlItem. # noqa: E501 Returns: (bool): The attribute_boolean of this XmlItem. # noqa: E501 """ return self.__get_item('attribute_boolean') @attribute_boolean.setter def attribute_boolean(self, value): """Sets the attribute_boolean of this XmlItem. # noqa: E501 """ return self.__set_item('attribute_boolean', value) @property def wrapped_array(self): """Gets the wrapped_array of this XmlItem. # noqa: E501 Returns: ([int]): The wrapped_array of this XmlItem. # noqa: E501 """ return self.__get_item('wrapped_array') @wrapped_array.setter def wrapped_array(self, value): """Sets the wrapped_array of this XmlItem. # noqa: E501 """ return self.__set_item('wrapped_array', value) @property def name_string(self): """Gets the name_string of this XmlItem. # noqa: E501 Returns: (str): The name_string of this XmlItem. # noqa: E501 """ return self.__get_item('name_string') @name_string.setter def name_string(self, value): """Sets the name_string of this XmlItem. # noqa: E501 """ return self.__set_item('name_string', value) @property def name_number(self): """Gets the name_number of this XmlItem. # noqa: E501 Returns: (float): The name_number of this XmlItem. # noqa: E501 """ return self.__get_item('name_number') @name_number.setter def name_number(self, value): """Sets the name_number of this XmlItem. # noqa: E501 """ return self.__set_item('name_number', value) @property def name_integer(self): """Gets the name_integer of this XmlItem. # noqa: E501 Returns: (int): The name_integer of this XmlItem. # noqa: E501 """ return self.__get_item('name_integer') @name_integer.setter def name_integer(self, value): """Sets the name_integer of this XmlItem. # noqa: E501 """ return self.__set_item('name_integer', value) @property def name_boolean(self): """Gets the name_boolean of this XmlItem. # noqa: E501 Returns: (bool): The name_boolean of this XmlItem. # noqa: E501 """ return self.__get_item('name_boolean') @name_boolean.setter def name_boolean(self, value): """Sets the name_boolean of this XmlItem. # noqa: E501 """ return self.__set_item('name_boolean', value) @property def name_array(self): """Gets the name_array of this XmlItem. # noqa: E501 Returns: ([int]): The name_array of this XmlItem. # noqa: E501 """ return self.__get_item('name_array') @name_array.setter def name_array(self, value): """Sets the name_array of this XmlItem. # noqa: E501 """ return self.__set_item('name_array', value) @property def name_wrapped_array(self): """Gets the name_wrapped_array of this XmlItem. # noqa: E501 Returns: ([int]): The name_wrapped_array of this XmlItem. # noqa: E501 """ return self.__get_item('name_wrapped_array') @name_wrapped_array.setter def name_wrapped_array(self, value): """Sets the name_wrapped_array of this XmlItem. # noqa: E501 """ return self.__set_item('name_wrapped_array', value) @property def prefix_string(self): """Gets the prefix_string of this XmlItem. # noqa: E501 Returns: (str): The prefix_string of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_string') @prefix_string.setter def prefix_string(self, value): """Sets the prefix_string of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_string', value) @property def prefix_number(self): """Gets the prefix_number of this XmlItem. # noqa: E501 Returns: (float): The prefix_number of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_number') @prefix_number.setter def prefix_number(self, value): """Sets the prefix_number of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_number', value) @property def prefix_integer(self): """Gets the prefix_integer of this XmlItem. # noqa: E501 Returns: (int): The prefix_integer of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_integer') @prefix_integer.setter def prefix_integer(self, value): """Sets the prefix_integer of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_integer', value) @property def prefix_boolean(self): """Gets the prefix_boolean of this XmlItem. # noqa: E501 Returns: (bool): The prefix_boolean of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_boolean') @prefix_boolean.setter def prefix_boolean(self, value): """Sets the prefix_boolean of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_boolean', value) @property def prefix_array(self): """Gets the prefix_array of this XmlItem. # noqa: E501 Returns: ([int]): The prefix_array of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_array') @prefix_array.setter def prefix_array(self, value): """Sets the prefix_array of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_array', value) @property def prefix_wrapped_array(self): """Gets the prefix_wrapped_array of this XmlItem. # noqa: E501 Returns: ([int]): The prefix_wrapped_array of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_wrapped_array') @prefix_wrapped_array.setter def prefix_wrapped_array(self, value): """Sets the prefix_wrapped_array of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_wrapped_array', value) @property def namespace_string(self): """Gets the namespace_string of this XmlItem. # noqa: E501 Returns: (str): The namespace_string of this XmlItem. # noqa: E501 """ return self.__get_item('namespace_string') @namespace_string.setter def namespace_string(self, value): """Sets the namespace_string of this XmlItem. # noqa: E501 """ return self.__set_item('namespace_string', value) @property def namespace_number(self): """Gets the namespace_number of this XmlItem. # noqa: E501 Returns: (float): The namespace_number of this XmlItem. # noqa: E501 """ return self.__get_item('namespace_number') @namespace_number.setter def namespace_number(self, value): """Sets the namespace_number of this XmlItem. # noqa: E501 """ return self.__set_item('namespace_number', value) @property def namespace_integer(self): """Gets the namespace_integer of this XmlItem. # noqa: E501 Returns: (int): The namespace_integer of this XmlItem. # noqa: E501 """ return self.__get_item('namespace_integer') @namespace_integer.setter def namespace_integer(self, value): """Sets the namespace_integer of this XmlItem. # noqa: E501 """ return self.__set_item('namespace_integer', value) @property def namespace_boolean(self): """Gets the namespace_boolean of this XmlItem. # noqa: E501 Returns: (bool): The namespace_boolean of this XmlItem. # noqa: E501 """ return self.__get_item('namespace_boolean') @namespace_boolean.setter def namespace_boolean(self, value): """Sets the namespace_boolean of this XmlItem. # noqa: E501 """ return self.__set_item('namespace_boolean', value) @property def namespace_array(self): """Gets the namespace_array of this XmlItem. # noqa: E501 Returns: ([int]): The namespace_array of this XmlItem. # noqa: E501 """ return self.__get_item('namespace_array') @namespace_array.setter def namespace_array(self, value): """Sets the namespace_array of this XmlItem. # noqa: E501 """ return self.__set_item('namespace_array', value) @property def namespace_wrapped_array(self): """Gets the namespace_wrapped_array of this XmlItem. # noqa: E501 Returns: ([int]): The namespace_wrapped_array of this XmlItem. # noqa: E501 """ return self.__get_item('namespace_wrapped_array') @namespace_wrapped_array.setter def namespace_wrapped_array(self, value): """Sets the namespace_wrapped_array of this XmlItem. # noqa: E501 """ return self.__set_item('namespace_wrapped_array', value) @property def prefix_ns_string(self): """Gets the prefix_ns_string of this XmlItem. # noqa: E501 Returns: (str): The prefix_ns_string of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_ns_string') @prefix_ns_string.setter def prefix_ns_string(self, value): """Sets the prefix_ns_string of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_ns_string', value) @property def prefix_ns_number(self): """Gets the prefix_ns_number of this XmlItem. # noqa: E501 Returns: (float): The prefix_ns_number of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_ns_number') @prefix_ns_number.setter def prefix_ns_number(self, value): """Sets the prefix_ns_number of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_ns_number', value) @property def prefix_ns_integer(self): """Gets the prefix_ns_integer of this XmlItem. # noqa: E501 Returns: (int): The prefix_ns_integer of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_ns_integer') @prefix_ns_integer.setter def prefix_ns_integer(self, value): """Sets the prefix_ns_integer of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_ns_integer', value) @property def prefix_ns_boolean(self): """Gets the prefix_ns_boolean of this XmlItem. # noqa: E501 Returns: (bool): The prefix_ns_boolean of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_ns_boolean') @prefix_ns_boolean.setter def prefix_ns_boolean(self, value): """Sets the prefix_ns_boolean of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_ns_boolean', value) @property def prefix_ns_array(self): """Gets the prefix_ns_array of this XmlItem. # noqa: E501 Returns: ([int]): The prefix_ns_array of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_ns_array') @prefix_ns_array.setter def prefix_ns_array(self, value): """Sets the prefix_ns_array of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_ns_array', value) @property def prefix_ns_wrapped_array(self): """Gets the prefix_ns_wrapped_array of this XmlItem. # noqa: E501 Returns: ([int]): The prefix_ns_wrapped_array of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_ns_wrapped_array') @prefix_ns_wrapped_array.setter def prefix_ns_wrapped_array(self, value): """Sets the prefix_ns_wrapped_array of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_ns_wrapped_array', value) def to_dict(self): """Returns the model properties as a dict""" return model_to_dict(self, serialize=False) def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, XmlItem): return False if not set(self._data_store.keys()) == set(other._data_store.keys()): return False for _var_name, this_val in six.iteritems(self._data_store): that_val = other._data_store[_var_name] types = set() types.add(this_val.__class__) types.add(that_val.__class__) vals_equal = this_val == that_val if (not six.PY3 and len(types) == 2 and unicode in types): # noqa: F821 vals_equal = ( this_val.encode('utf-8') == that_val.encode('utf-8') ) if not vals_equal: return False return True def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
35.135318
174
0.605507
# coding: utf-8 """ OpenAPI Petstore This spec is mainly for testing Petstore server and contains fake endpoints, models. Please do not use this for any other purpose. Special characters: \" \\ # noqa: E501 The version of the OpenAPI document: 1.0.0 Generated by: https://openapi-generator.tech """ import pprint # noqa: F401 import re # noqa: F401 import six # noqa: F401 from petstore_api.exceptions import ( # noqa: F401 ApiKeyError, ApiTypeError, ApiValueError, ) from petstore_api.model_utils import ( # noqa: F401 ModelNormal, ModelSimple, check_allowed_values, check_validations, date, datetime, file_type, get_simple_class, int, model_to_dict, none_type, str, type_error_message, validate_and_convert_types ) class XmlItem(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. openapi_types (dict): The key is attribute name and the value is attribute type. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } attribute_map = { 'attribute_string': 'attribute_string', # noqa: E501 'attribute_number': 'attribute_number', # noqa: E501 'attribute_integer': 'attribute_integer', # noqa: E501 'attribute_boolean': 'attribute_boolean', # noqa: E501 'wrapped_array': 'wrapped_array', # noqa: E501 'name_string': 'name_string', # noqa: E501 'name_number': 'name_number', # noqa: E501 'name_integer': 'name_integer', # noqa: E501 'name_boolean': 'name_boolean', # noqa: E501 'name_array': 'name_array', # noqa: E501 'name_wrapped_array': 'name_wrapped_array', # noqa: E501 'prefix_string': 'prefix_string', # noqa: E501 'prefix_number': 'prefix_number', # noqa: E501 'prefix_integer': 'prefix_integer', # noqa: E501 'prefix_boolean': 'prefix_boolean', # noqa: E501 'prefix_array': 'prefix_array', # noqa: E501 'prefix_wrapped_array': 'prefix_wrapped_array', # noqa: E501 'namespace_string': 'namespace_string', # noqa: E501 'namespace_number': 'namespace_number', # noqa: E501 'namespace_integer': 'namespace_integer', # noqa: E501 'namespace_boolean': 'namespace_boolean', # noqa: E501 'namespace_array': 'namespace_array', # noqa: E501 'namespace_wrapped_array': 'namespace_wrapped_array', # noqa: E501 'prefix_ns_string': 'prefix_ns_string', # noqa: E501 'prefix_ns_number': 'prefix_ns_number', # noqa: E501 'prefix_ns_integer': 'prefix_ns_integer', # noqa: E501 'prefix_ns_boolean': 'prefix_ns_boolean', # noqa: E501 'prefix_ns_array': 'prefix_ns_array', # noqa: E501 'prefix_ns_wrapped_array': 'prefix_ns_wrapped_array' # noqa: E501 } openapi_types = { 'attribute_string': (str,), # noqa: E501 'attribute_number': (float,), # noqa: E501 'attribute_integer': (int,), # noqa: E501 'attribute_boolean': (bool,), # noqa: E501 'wrapped_array': ([int],), # noqa: E501 'name_string': (str,), # noqa: E501 'name_number': (float,), # noqa: E501 'name_integer': (int,), # noqa: E501 'name_boolean': (bool,), # noqa: E501 'name_array': ([int],), # noqa: E501 'name_wrapped_array': ([int],), # noqa: E501 'prefix_string': (str,), # noqa: E501 'prefix_number': (float,), # noqa: E501 'prefix_integer': (int,), # noqa: E501 'prefix_boolean': (bool,), # noqa: E501 'prefix_array': ([int],), # noqa: E501 'prefix_wrapped_array': ([int],), # noqa: E501 'namespace_string': (str,), # noqa: E501 'namespace_number': (float,), # noqa: E501 'namespace_integer': (int,), # noqa: E501 'namespace_boolean': (bool,), # noqa: E501 'namespace_array': ([int],), # noqa: E501 'namespace_wrapped_array': ([int],), # noqa: E501 'prefix_ns_string': (str,), # noqa: E501 'prefix_ns_number': (float,), # noqa: E501 'prefix_ns_integer': (int,), # noqa: E501 'prefix_ns_boolean': (bool,), # noqa: E501 'prefix_ns_array': ([int],), # noqa: E501 'prefix_ns_wrapped_array': ([int],), # noqa: E501 } validations = { } additional_properties_type = None discriminator = None def __init__(self, _check_type=True, _from_server=False, _path_to_item=(), _configuration=None, **kwargs): # noqa: E501 """XmlItem - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _from_server (bool): True if the data is from the server False if the data is from the client (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. attribute_string (str): [optional] # noqa: E501 attribute_number (float): [optional] # noqa: E501 attribute_integer (int): [optional] # noqa: E501 attribute_boolean (bool): [optional] # noqa: E501 wrapped_array ([int]): [optional] # noqa: E501 name_string (str): [optional] # noqa: E501 name_number (float): [optional] # noqa: E501 name_integer (int): [optional] # noqa: E501 name_boolean (bool): [optional] # noqa: E501 name_array ([int]): [optional] # noqa: E501 name_wrapped_array ([int]): [optional] # noqa: E501 prefix_string (str): [optional] # noqa: E501 prefix_number (float): [optional] # noqa: E501 prefix_integer (int): [optional] # noqa: E501 prefix_boolean (bool): [optional] # noqa: E501 prefix_array ([int]): [optional] # noqa: E501 prefix_wrapped_array ([int]): [optional] # noqa: E501 namespace_string (str): [optional] # noqa: E501 namespace_number (float): [optional] # noqa: E501 namespace_integer (int): [optional] # noqa: E501 namespace_boolean (bool): [optional] # noqa: E501 namespace_array ([int]): [optional] # noqa: E501 namespace_wrapped_array ([int]): [optional] # noqa: E501 prefix_ns_string (str): [optional] # noqa: E501 prefix_ns_number (float): [optional] # noqa: E501 prefix_ns_integer (int): [optional] # noqa: E501 prefix_ns_boolean (bool): [optional] # noqa: E501 prefix_ns_array ([int]): [optional] # noqa: E501 prefix_ns_wrapped_array ([int]): [optional] # noqa: E501 """ self._data_store = {} self._check_type = _check_type self._from_server = _from_server self._path_to_item = _path_to_item self._configuration = _configuration for var_name, var_value in six.iteritems(kwargs): self.__set_item(var_name, var_value) def __set_item(self, name, value): path_to_item = [] if self._path_to_item: path_to_item.extend(self._path_to_item) path_to_item.append(name) if name in self.openapi_types: required_types_mixed = self.openapi_types[name] elif self.additional_properties_type is None: raise ApiKeyError( "{0} has no key '{1}'".format(type(self).__name__, name), path_to_item ) elif self.additional_properties_type is not None: required_types_mixed = self.additional_properties_type if get_simple_class(name) != str: error_msg = type_error_message( var_name=name, var_value=name, valid_classes=(str,), key_type=True ) raise ApiTypeError( error_msg, path_to_item=path_to_item, valid_classes=(str,), key_type=True ) if self._check_type: value = validate_and_convert_types( value, required_types_mixed, path_to_item, self._from_server, self._check_type, configuration=self._configuration) if (name,) in self.allowed_values: check_allowed_values( self.allowed_values, (name,), value ) if (name,) in self.validations: check_validations( self.validations, (name,), value ) self._data_store[name] = value def __get_item(self, name): if name in self._data_store: return self._data_store[name] path_to_item = [] if self._path_to_item: path_to_item.extend(self._path_to_item) path_to_item.append(name) raise ApiKeyError( "{0} has no key '{1}'".format(type(self).__name__, name), [name] ) def __setitem__(self, name, value): """this allows us to set values with instance[field_name] = val""" self.__set_item(name, value) def __getitem__(self, name): """this allows us to get a value with val = instance[field_name]""" return self.__get_item(name) @property def attribute_string(self): """Gets the attribute_string of this XmlItem. # noqa: E501 Returns: (str): The attribute_string of this XmlItem. # noqa: E501 """ return self.__get_item('attribute_string') @attribute_string.setter def attribute_string(self, value): """Sets the attribute_string of this XmlItem. # noqa: E501 """ return self.__set_item('attribute_string', value) @property def attribute_number(self): """Gets the attribute_number of this XmlItem. # noqa: E501 Returns: (float): The attribute_number of this XmlItem. # noqa: E501 """ return self.__get_item('attribute_number') @attribute_number.setter def attribute_number(self, value): """Sets the attribute_number of this XmlItem. # noqa: E501 """ return self.__set_item('attribute_number', value) @property def attribute_integer(self): """Gets the attribute_integer of this XmlItem. # noqa: E501 Returns: (int): The attribute_integer of this XmlItem. # noqa: E501 """ return self.__get_item('attribute_integer') @attribute_integer.setter def attribute_integer(self, value): """Sets the attribute_integer of this XmlItem. # noqa: E501 """ return self.__set_item('attribute_integer', value) @property def attribute_boolean(self): """Gets the attribute_boolean of this XmlItem. # noqa: E501 Returns: (bool): The attribute_boolean of this XmlItem. # noqa: E501 """ return self.__get_item('attribute_boolean') @attribute_boolean.setter def attribute_boolean(self, value): """Sets the attribute_boolean of this XmlItem. # noqa: E501 """ return self.__set_item('attribute_boolean', value) @property def wrapped_array(self): """Gets the wrapped_array of this XmlItem. # noqa: E501 Returns: ([int]): The wrapped_array of this XmlItem. # noqa: E501 """ return self.__get_item('wrapped_array') @wrapped_array.setter def wrapped_array(self, value): """Sets the wrapped_array of this XmlItem. # noqa: E501 """ return self.__set_item('wrapped_array', value) @property def name_string(self): """Gets the name_string of this XmlItem. # noqa: E501 Returns: (str): The name_string of this XmlItem. # noqa: E501 """ return self.__get_item('name_string') @name_string.setter def name_string(self, value): """Sets the name_string of this XmlItem. # noqa: E501 """ return self.__set_item('name_string', value) @property def name_number(self): """Gets the name_number of this XmlItem. # noqa: E501 Returns: (float): The name_number of this XmlItem. # noqa: E501 """ return self.__get_item('name_number') @name_number.setter def name_number(self, value): """Sets the name_number of this XmlItem. # noqa: E501 """ return self.__set_item('name_number', value) @property def name_integer(self): """Gets the name_integer of this XmlItem. # noqa: E501 Returns: (int): The name_integer of this XmlItem. # noqa: E501 """ return self.__get_item('name_integer') @name_integer.setter def name_integer(self, value): """Sets the name_integer of this XmlItem. # noqa: E501 """ return self.__set_item('name_integer', value) @property def name_boolean(self): """Gets the name_boolean of this XmlItem. # noqa: E501 Returns: (bool): The name_boolean of this XmlItem. # noqa: E501 """ return self.__get_item('name_boolean') @name_boolean.setter def name_boolean(self, value): """Sets the name_boolean of this XmlItem. # noqa: E501 """ return self.__set_item('name_boolean', value) @property def name_array(self): """Gets the name_array of this XmlItem. # noqa: E501 Returns: ([int]): The name_array of this XmlItem. # noqa: E501 """ return self.__get_item('name_array') @name_array.setter def name_array(self, value): """Sets the name_array of this XmlItem. # noqa: E501 """ return self.__set_item('name_array', value) @property def name_wrapped_array(self): """Gets the name_wrapped_array of this XmlItem. # noqa: E501 Returns: ([int]): The name_wrapped_array of this XmlItem. # noqa: E501 """ return self.__get_item('name_wrapped_array') @name_wrapped_array.setter def name_wrapped_array(self, value): """Sets the name_wrapped_array of this XmlItem. # noqa: E501 """ return self.__set_item('name_wrapped_array', value) @property def prefix_string(self): """Gets the prefix_string of this XmlItem. # noqa: E501 Returns: (str): The prefix_string of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_string') @prefix_string.setter def prefix_string(self, value): """Sets the prefix_string of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_string', value) @property def prefix_number(self): """Gets the prefix_number of this XmlItem. # noqa: E501 Returns: (float): The prefix_number of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_number') @prefix_number.setter def prefix_number(self, value): """Sets the prefix_number of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_number', value) @property def prefix_integer(self): """Gets the prefix_integer of this XmlItem. # noqa: E501 Returns: (int): The prefix_integer of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_integer') @prefix_integer.setter def prefix_integer(self, value): """Sets the prefix_integer of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_integer', value) @property def prefix_boolean(self): """Gets the prefix_boolean of this XmlItem. # noqa: E501 Returns: (bool): The prefix_boolean of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_boolean') @prefix_boolean.setter def prefix_boolean(self, value): """Sets the prefix_boolean of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_boolean', value) @property def prefix_array(self): """Gets the prefix_array of this XmlItem. # noqa: E501 Returns: ([int]): The prefix_array of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_array') @prefix_array.setter def prefix_array(self, value): """Sets the prefix_array of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_array', value) @property def prefix_wrapped_array(self): """Gets the prefix_wrapped_array of this XmlItem. # noqa: E501 Returns: ([int]): The prefix_wrapped_array of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_wrapped_array') @prefix_wrapped_array.setter def prefix_wrapped_array(self, value): """Sets the prefix_wrapped_array of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_wrapped_array', value) @property def namespace_string(self): """Gets the namespace_string of this XmlItem. # noqa: E501 Returns: (str): The namespace_string of this XmlItem. # noqa: E501 """ return self.__get_item('namespace_string') @namespace_string.setter def namespace_string(self, value): """Sets the namespace_string of this XmlItem. # noqa: E501 """ return self.__set_item('namespace_string', value) @property def namespace_number(self): """Gets the namespace_number of this XmlItem. # noqa: E501 Returns: (float): The namespace_number of this XmlItem. # noqa: E501 """ return self.__get_item('namespace_number') @namespace_number.setter def namespace_number(self, value): """Sets the namespace_number of this XmlItem. # noqa: E501 """ return self.__set_item('namespace_number', value) @property def namespace_integer(self): """Gets the namespace_integer of this XmlItem. # noqa: E501 Returns: (int): The namespace_integer of this XmlItem. # noqa: E501 """ return self.__get_item('namespace_integer') @namespace_integer.setter def namespace_integer(self, value): """Sets the namespace_integer of this XmlItem. # noqa: E501 """ return self.__set_item('namespace_integer', value) @property def namespace_boolean(self): """Gets the namespace_boolean of this XmlItem. # noqa: E501 Returns: (bool): The namespace_boolean of this XmlItem. # noqa: E501 """ return self.__get_item('namespace_boolean') @namespace_boolean.setter def namespace_boolean(self, value): """Sets the namespace_boolean of this XmlItem. # noqa: E501 """ return self.__set_item('namespace_boolean', value) @property def namespace_array(self): """Gets the namespace_array of this XmlItem. # noqa: E501 Returns: ([int]): The namespace_array of this XmlItem. # noqa: E501 """ return self.__get_item('namespace_array') @namespace_array.setter def namespace_array(self, value): """Sets the namespace_array of this XmlItem. # noqa: E501 """ return self.__set_item('namespace_array', value) @property def namespace_wrapped_array(self): """Gets the namespace_wrapped_array of this XmlItem. # noqa: E501 Returns: ([int]): The namespace_wrapped_array of this XmlItem. # noqa: E501 """ return self.__get_item('namespace_wrapped_array') @namespace_wrapped_array.setter def namespace_wrapped_array(self, value): """Sets the namespace_wrapped_array of this XmlItem. # noqa: E501 """ return self.__set_item('namespace_wrapped_array', value) @property def prefix_ns_string(self): """Gets the prefix_ns_string of this XmlItem. # noqa: E501 Returns: (str): The prefix_ns_string of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_ns_string') @prefix_ns_string.setter def prefix_ns_string(self, value): """Sets the prefix_ns_string of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_ns_string', value) @property def prefix_ns_number(self): """Gets the prefix_ns_number of this XmlItem. # noqa: E501 Returns: (float): The prefix_ns_number of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_ns_number') @prefix_ns_number.setter def prefix_ns_number(self, value): """Sets the prefix_ns_number of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_ns_number', value) @property def prefix_ns_integer(self): """Gets the prefix_ns_integer of this XmlItem. # noqa: E501 Returns: (int): The prefix_ns_integer of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_ns_integer') @prefix_ns_integer.setter def prefix_ns_integer(self, value): """Sets the prefix_ns_integer of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_ns_integer', value) @property def prefix_ns_boolean(self): """Gets the prefix_ns_boolean of this XmlItem. # noqa: E501 Returns: (bool): The prefix_ns_boolean of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_ns_boolean') @prefix_ns_boolean.setter def prefix_ns_boolean(self, value): """Sets the prefix_ns_boolean of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_ns_boolean', value) @property def prefix_ns_array(self): """Gets the prefix_ns_array of this XmlItem. # noqa: E501 Returns: ([int]): The prefix_ns_array of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_ns_array') @prefix_ns_array.setter def prefix_ns_array(self, value): """Sets the prefix_ns_array of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_ns_array', value) @property def prefix_ns_wrapped_array(self): """Gets the prefix_ns_wrapped_array of this XmlItem. # noqa: E501 Returns: ([int]): The prefix_ns_wrapped_array of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_ns_wrapped_array') @prefix_ns_wrapped_array.setter def prefix_ns_wrapped_array(self, value): """Sets the prefix_ns_wrapped_array of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_ns_wrapped_array', value) def to_dict(self): """Returns the model properties as a dict""" return model_to_dict(self, serialize=False) def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, XmlItem): return False if not set(self._data_store.keys()) == set(other._data_store.keys()): return False for _var_name, this_val in six.iteritems(self._data_store): that_val = other._data_store[_var_name] types = set() types.add(this_val.__class__) types.add(that_val.__class__) vals_equal = this_val == that_val if (not six.PY3 and len(types) == 2 and unicode in types): # noqa: F821 vals_equal = ( this_val.encode('utf-8') == that_val.encode('utf-8') ) if not vals_equal: return False return True def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
1,959
0
54
9cc0213534d4746545b92434c9c6e16f37a99b1a
4,745
py
Python
Grundgeruest/models.py
wmles/olymp
97b1a256982c2a75c39ba3a855b63a147d4409c5
[ "MIT" ]
null
null
null
Grundgeruest/models.py
wmles/olymp
97b1a256982c2a75c39ba3a855b63a147d4409c5
[ "MIT" ]
null
null
null
Grundgeruest/models.py
wmles/olymp
97b1a256982c2a75c39ba3a855b63a147d4409c5
[ "MIT" ]
null
null
null
""" Die Modelle für Projektweite Daten: Nutzer/Profile """ from django.db import models from django.contrib.auth.models import AbstractUser from django.conf import settings from django.utils.translation import ugettext as _ from userena.models import UserenaBaseProfile from django.core.validators import RegexValidator import random, string from django.template.defaultfilters import slugify from django.urls import reverse def knoepfe_kopf(user): """ gibt Knöpfe für Kopfleiste als Liste von Tupeln zurück """ anmelden = (reverse('userena_signin'), 'Anmelden') registrieren = (reverse('userena_signup'), 'Registrieren') abmelden = (reverse('userena_signout'), 'Abmelden') profil = lambda nutzer: (reverse('userena_profile_detail', kwargs={'username': nutzer.username}), 'Profil') spam = ('spam', 'spam') admin = ('/admin/', 'admin') if user.username == 'admin': liste = [abmelden, profil(user), spam] elif user.is_authenticated(): liste = [abmelden, profil(user)] else: liste = [anmelden, registrieren] if user.is_staff and user.get_all_permissions(): liste.append(admin) return liste def knoepfe_menü(user): """ gibt Knöpfe für Menüleiste als Liste von Tupeln zurück """ alle = { 'index': ('/', 'Startseite'), 'olymp': (reverse('Wettbewerbe:index'), 'Wettbewerbe'), 'ehemalige': (reverse('Ehemalige:index'), 'Ehemalige'), 'impressum': (reverse('impressum'), 'Impressum'), 'db': ('https://olymp.piokg.de/static/db.pdf', 'Datenbanklayout'), # quick and very dirty :) 'todo': ('/todo/', 'ToDo-Liste'), } if user.username == 'admin': return [alle[name] for name in ('index', 'olymp', 'ehemalige', 'todo', 'db')] else: return [alle[name] for name in ('index', 'olymp', 'db', 'impressum')] class Nutzer(AbstractUser): """ Nutzer-Klasse """ def knoepfe_kopf(nutzer): """ soll Liste von Paaren für Knöpfe der Kopfleiste ausgeben Nutzt im Moment die module-fkt gleichen Namens, könnte später vll die Gruppenzugehörigkeit heranziehen, etc, ist flexibel """ return knoepfe_kopf(nutzer) def knoepfe_menü(self): """ soll Liste von Paaren für Knöpfe der Menüleiste ausgeben Nutzt im Moment die module-fkt gleichen Namens, könnte später vll die Gruppenzugehörigkeit heranziehen, etc, ist flexibel """ return knoepfe_menü(self)
32.278912
100
0.616228
""" Die Modelle für Projektweite Daten: Nutzer/Profile """ from django.db import models from django.contrib.auth.models import AbstractUser from django.conf import settings from django.utils.translation import ugettext as _ from userena.models import UserenaBaseProfile from django.core.validators import RegexValidator import random, string from django.template.defaultfilters import slugify from django.urls import reverse class MinimalModel(models.Model): zeit_erstellt = models.DateTimeField( auto_now_add=True, editable=False) zeit_geaendert = models.DateTimeField( auto_now=True, editable=False) class Meta: abstract = True ordering = ["-zeit_geaendert"] def __str__(self): return self.__class__().__name__() + ' geändert ' + str(zeit_geaendert) class Grundklasse(MinimalModel): bezeichnung = models.CharField(max_length=30) slug = models.SlugField( max_length=30, null=False, blank=True) def save(self, **kwargs): if not self.slug: self.slug = slugify(self.bezeichnung) super(Grundklasse, self).save() class Meta: abstract = True ordering = ["bezeichnung"] def __str__(self): return str(self.bezeichnung) def knoepfe_kopf(user): """ gibt Knöpfe für Kopfleiste als Liste von Tupeln zurück """ anmelden = (reverse('userena_signin'), 'Anmelden') registrieren = (reverse('userena_signup'), 'Registrieren') abmelden = (reverse('userena_signout'), 'Abmelden') profil = lambda nutzer: (reverse('userena_profile_detail', kwargs={'username': nutzer.username}), 'Profil') spam = ('spam', 'spam') admin = ('/admin/', 'admin') if user.username == 'admin': liste = [abmelden, profil(user), spam] elif user.is_authenticated(): liste = [abmelden, profil(user)] else: liste = [anmelden, registrieren] if user.is_staff and user.get_all_permissions(): liste.append(admin) return liste def knoepfe_menü(user): """ gibt Knöpfe für Menüleiste als Liste von Tupeln zurück """ alle = { 'index': ('/', 'Startseite'), 'olymp': (reverse('Wettbewerbe:index'), 'Wettbewerbe'), 'ehemalige': (reverse('Ehemalige:index'), 'Ehemalige'), 'impressum': (reverse('impressum'), 'Impressum'), 'db': ('https://olymp.piokg.de/static/db.pdf', 'Datenbanklayout'), # quick and very dirty :) 'todo': ('/todo/', 'ToDo-Liste'), } if user.username == 'admin': return [alle[name] for name in ('index', 'olymp', 'ehemalige', 'todo', 'db')] else: return [alle[name] for name in ('index', 'olymp', 'db', 'impressum')] class Nutzer(AbstractUser): """ Nutzer-Klasse """ def knoepfe_kopf(nutzer): """ soll Liste von Paaren für Knöpfe der Kopfleiste ausgeben Nutzt im Moment die module-fkt gleichen Namens, könnte später vll die Gruppenzugehörigkeit heranziehen, etc, ist flexibel """ return knoepfe_kopf(nutzer) def knoepfe_menü(self): """ soll Liste von Paaren für Knöpfe der Menüleiste ausgeben Nutzt im Moment die module-fkt gleichen Namens, könnte später vll die Gruppenzugehörigkeit heranziehen, etc, ist flexibel """ return knoepfe_menü(self) def save(self, *args, **kwargs): if not self.username: self.username = ''.join(random.sample(string.ascii_lowercase, 20)) super(Nutzer, self).save(*args, **kwargs) class Meta: verbose_name_plural = 'Nutzer' verbose_name = 'Nutzer' def __str__(self): return 'Nutzer %s (%s)' % (self.username, self.email) class Nutzerprofil(UserenaBaseProfile): user = models.OneToOneField(settings.AUTH_USER_MODEL, unique=True, verbose_name=_('Nutzer'), related_name='my_profile') geschlecht = models.CharField( max_length=1, choices=[('w', 'weiblich'), ('m', 'männlich'), (' ', 'sonstiges')], default=' ') tel = models.CharField( max_length=20, null=True, blank=True) strasse = models.CharField( max_length=30, blank=True) plz = models.CharField( max_length = 5, validators=[RegexValidator('^[0-9]+$')], blank=True) ort = models.CharField( max_length=30, blank=True) anredename = models.CharField( max_length=30, null=True, blank=True) class Meta(): verbose_name = 'Nutzerprofil' verbose_name_plural = 'Nutzerprofile'
461
1,595
158
b3e937dcb8ac9e14cc91bc39a1395544f1f257fb
8,595
py
Python
dataset/datasets.py
notplus/FaceLandmark_PFLD_UltraLight
89aa36d5369f7d8d6661eb67d8490c774ea4685a
[ "Apache-2.0" ]
38
2021-05-10T01:22:44.000Z
2022-03-30T06:54:39.000Z
dataset/datasets.py
notplus/FaceLandmark_PFLD_UltraLight
89aa36d5369f7d8d6661eb67d8490c774ea4685a
[ "Apache-2.0" ]
7
2021-06-01T06:39:47.000Z
2022-03-16T05:43:50.000Z
dataset/datasets.py
notplus/FaceLandmark_PFLD_UltraLight
89aa36d5369f7d8d6661eb67d8490c774ea4685a
[ "Apache-2.0" ]
14
2021-05-10T01:22:46.000Z
2022-03-30T06:54:42.000Z
import numpy as np import cv2 import sys import torch sys.path.append('..') from torch.utils import data from torch.utils.data import DataLoader if __name__ == '__main__': file_list = './data/test_data/list.txt' wlfwdataset = WLFWDatasets(file_list) dataloader = DataLoader(wlfwdataset, batch_size=256, shuffle=True, num_workers=0, drop_last=False) for img, landmark, attribute, euler_angle in dataloader: print("img shape", img.shape) print("landmark size", landmark.size()) print("attrbute size", attribute) print("euler_angle", euler_angle.size())
33.705882
166
0.601745
import numpy as np import cv2 import sys import torch sys.path.append('..') from torch.utils import data from torch.utils.data import DataLoader def flip(img, annotation): # parse img = np.fliplr(img).copy() h, w = img.shape[:2] x_min, y_min, x_max, y_max = annotation[0:4] landmark_x = annotation[4::2] landmark_y = annotation[4 + 1::2] bbox = np.array([w - x_max, y_min, w - x_min, y_max]) for i in range(len(landmark_x)): landmark_x[i] = w - landmark_x[i] new_annotation = list() new_annotation.append(x_min) new_annotation.append(y_min) new_annotation.append(x_max) new_annotation.append(y_max) for i in range(len(landmark_x)): new_annotation.append(landmark_x[i]) new_annotation.append(landmark_y[i]) return img, new_annotation def channel_shuffle(img, annotation): if (img.shape[2] == 3): ch_arr = [0, 1, 2] np.random.shuffle(ch_arr) img = img[..., ch_arr] return img, annotation def random_noise(img, annotation, limit=[0, 0.2], p=0.5): if random.random() < p: H, W = img.shape[:2] noise = np.random.uniform(limit[0], limit[1], size=(H, W)) * 255 img = img + noise[:, :, np.newaxis] * np.array([1, 1, 1]) img = np.clip(img, 0, 255).astype(np.uint8) return img, annotation def random_brightness(img, annotation, brightness=0.3): alpha = 1 + np.random.uniform(-brightness, brightness) img = alpha * image img = np.clip(img, 0, 255).astype(np.uint8) return img, annotation def random_contrast(img, annotation, contrast=0.3): coef = np.array([[[0.114, 0.587, 0.299]]]) # rgb to gray (YCbCr) alpha = 1.0 + np.random.uniform(-contrast, contrast) gray = img * coef gray = (3.0 * (1.0 - alpha) / gray.size) * np.sum(gray) img = alpha * img + gray img = np.clip(img, 0, 255).astype(np.uint8) return img, annotation def random_saturation(img, annotation, saturation=0.5): coef = nd.array([[[0.299, 0.587, 0.114]]]) alpha = np.random.uniform(-saturation, saturation) gray = img * coef gray = np.sum(gray, axis=2, keepdims=True) img = alpha * img + (1.0 - alpha) * gray img = np.clip(img, 0, 255).astype(np.uint8) return img, annotation def random_hue(image, annotation, hue=0.5): h = int(np.random.uniform(-hue, hue) * 180) hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) hsv[:, :, 0] = (hsv[:, :, 0].astype(int) + h) % 180 image = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) return image, annotation def scale(img, annotation): f_xy = np.random.uniform(-0.4, 0.8) origin_h, origin_w = img.shape[:2] bbox = annotation[0:4] landmark_x = annotation[4::2] landmark_y = annotation[4 + 1::2] h, w = int(origin_h * f_xy), int(origin_w * f_xy) image = resize(img, (h, w), preserve_range=True, anti_aliasing=True, mode='constant').astype(np.uint8) new_annotation = list() for i in range(len(bbox)): bbox[i] = bbox[i] * f_xy new_annotation.append(bbox[i]) for i in range(len(landmark_x)): landmark_x[i] = landmark_x[i] * f_xy landmark_y[i] = landmark_y[i] * f_xy new_annotation.append(landmark_x[i]) new_annotation.append(landmark_y[i]) return image, new_annotation def rotate(img, annotation, alpha=30): bbox = annotation[0:4] landmark_x = annotation[4::2] landmark_y = annotation[4 + 1::2] center = ((bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2) rot_mat = cv2.getRotationMatrix2D(center, alpha, 1) img_rotated_by_alpha = cv2.warpAffine(img, rot_mat, (img.shape[1], img.shape[0])) point_x = [bbox[0], bbox[2], bbox[0], bbox[2]] point_y = [bbox[1], bbox[3], bbox[3], bbox[1]] new_point_x = list() new_point_y = list() for (x, y) in zip(landmark_x, landmark_y): new_point_x.append(rot_mat[0][0] * x + rot_mat[0][1] * y + rot_mat[0][2]) new_point_y.append(rot_mat[1][0] * x + rot_mat[1][1] * y + rot_mat[1][2]) new_annotation = list() new_annotation.append(min(new_point_x)) new_annotation.append(min(new_point_y)) new_annotation.append(max(new_point_x)) new_annotation.append(max(new_point_y)) for (x, y) in zip(landmark_x, landmark_y): new_annotation.append(rot_mat[0][0] * x + rot_mat[0][1] * y + rot_mat[0][2]) new_annotation.append(rot_mat[1][0] * x + rot_mat[1][1] * y + rot_mat[1][2]) return img_rotated_by_alpha, new_annotation def generate_FT(image): image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) f = np.fft.fft2(image) fshift = np.fft.fftshift(f) fimg = np.log(np.abs(fshift) + 1) maxx = -1 minn = 100000 for i in range(len(fimg)): if maxx < max(fimg[i]): maxx = max(fimg[i]) if minn > min(fimg[i]): minn = min(fimg[i]) fimg = (fimg - minn + 1) / (maxx - minn + 1) return fimg def draw_labelmap(img, pt, sigma=1, type='Gaussian'): # Draw a 2D gaussian # Adopted from https://github.com/anewell/pose-hg-train/blob/master/src/pypose/draw.py # Check that any part of the gaussian is in-bounds ul = [int(int(pt[0]) - 3 * sigma), int(int(pt[1]) - 3 * sigma)] br = [int(int(pt[0]) + 3 * sigma + 1), int(int(pt[1]) + 3 * sigma + 1)] if (ul[0] >= img.shape[1] or ul[1] >= img.shape[0] or br[0] < 0 or br[1] < 0): # If not, just return the image as is return to_torch(img) # Generate gaussian size = 6 * sigma + 1 x = np.arange(0, size, 1, float) y = x[:, np.newaxis] x0 = y0 = size // 2 # The gaussian is not normalized, we want the center value to equal 1 if type == 'Gaussian': g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2)) elif type == 'Cauchy': g = sigma / (((x - x0) ** 2 + (y - y0) ** 2 + sigma ** 2) ** 1.5) # Usable gaussian range g_x = max(0, -ul[0]), min(br[0], img.shape[1]) - ul[0] g_y = max(0, -ul[1]), min(br[1], img.shape[0]) - ul[1] # Image range img_x = max(0, ul[0]), min(br[0], img.shape[1]) img_y = max(0, ul[1]), min(br[1], img.shape[0]) img[img_y[0]:img_y[1], img_x[0]:img_x[1]] = g[g_y[0]:g_y[1], g_x[0]:g_x[1]] return img class WLFWDatasets(data.Dataset): def __init__(self, file_list, transforms=None): self.line = None self.lm_number = 98 self.img_size = 96 self.ft_size = self.img_size // 2 self.hm_size = self.img_size // 2 self.transforms = transforms with open(file_list, 'r') as f: self.lines = f.readlines() def __getitem__(self, index): self.line = self.lines[index].strip() jpg_idx = self.line.find('png') line_data = [self.line[:jpg_idx + 3]] line_data.extend(self.line[jpg_idx + 4:].split()) self.line = line_data self.img = cv2.imread(self.line[0]) # generate ft # self.ft_img = generate_FT(self.img) # self.ft_img = cv2.resize(self.ft_img, (self.ft_size, self.ft_size)) # self.ft_img = torch.from_numpy(self.ft_img).float() # self.ft_img = torch.unsqueeze(self.ft_img, 0) self.landmark = np.asarray(self.line[1:197], dtype=np.float32) # generate heatmap # self.heatmaps = np.zeros((self.lm_number, self.img_size, self.img_size)) # for idx in range(self.lm_number): # self.heatmaps[idx, :, :] = draw_labelmap(self.heatmaps[idx, :, :], (self.landmark[idx * 2] * self.img_size, self.landmark[idx * 2 + 1] * self.img_size)) # self.heatmap = cv2.resize(self.heatmap, (self.hm_size, self.hm_size)) # self.heatmap = (self.heatmap * 255).astype(np.uint8) # with open("heatmap.txt", "w") as f: # for i in range(self.hm_size): # str_ = ','.join(str(s) for s in self.heatmap[i, :]) # f.write(str_ + '\n') # cv2.imwrite('heatmap.jpg', self.heatmap) if self.transforms: self.img = self.transforms(self.img) return self.img, self.landmark def __len__(self): return len(self.lines) if __name__ == '__main__': file_list = './data/test_data/list.txt' wlfwdataset = WLFWDatasets(file_list) dataloader = DataLoader(wlfwdataset, batch_size=256, shuffle=True, num_workers=0, drop_last=False) for img, landmark, attribute, euler_angle in dataloader: print("img shape", img.shape) print("landmark size", landmark.size()) print("attrbute size", attribute) print("euler_angle", euler_angle.size())
7,612
12
356
966bc627671a534dd1312e08c0b1d98dc88fba85
1,671
py
Python
tests/test_masks.py
nexpy/nexusformat
8c7eccaae2e60d7643e473093c5087b653270f7b
[ "BSD-3-Clause-Clear" ]
9
2015-01-12T22:26:35.000Z
2020-06-02T08:17:24.000Z
tests/test_masks.py
rayosborn/nexusformat
8c7eccaae2e60d7643e473093c5087b653270f7b
[ "BSD-3-Clause-Clear" ]
23
2015-12-15T11:57:20.000Z
2021-11-17T18:03:18.000Z
tests/test_masks.py
rayosborn/nexusformat
8c7eccaae2e60d7643e473093c5087b653270f7b
[ "BSD-3-Clause-Clear" ]
12
2015-05-22T18:27:43.000Z
2022-03-31T12:35:19.000Z
import os import numpy as np import pytest from nexusformat.nexus.tree import NXfield, NXgroup, NXroot, nxload @pytest.mark.parametrize("save", ["False", "True"])
33.42
76
0.652902
import os import numpy as np import pytest from nexusformat.nexus.tree import NXfield, NXgroup, NXroot, nxload def test_field_masks(arr1D): field = NXfield(arr1D) field[10:20] = np.ma.masked assert isinstance(field.nxvalue, np.ma.masked_array) assert np.all(field[8:12].mask == np.array([False, False, True, True])) assert np.all(field.mask[8:12] == np.array([False, False, True, True])) assert np.ma.is_masked(field[8:12].nxvalue) assert np.ma.is_masked(field.nxvalue[10]) assert np.ma.is_masked(field[10].nxvalue) assert field[10].mask field.mask[10] = np.ma.nomask assert np.all(field.mask[8:12] == np.array([False, False, False, True])) assert not field[10].mask @pytest.mark.parametrize("save", ["False", "True"]) def test_group_masks(tmpdir, arr1D, save): group = NXgroup(NXfield(arr1D, name='field')) group['field'][10:20] = np.ma.masked if save: root = NXroot(group) filename = os.path.join(tmpdir, "file1.nxs") root.save(filename, mode="w") root = nxload(filename, "rw") group = root['group'] assert isinstance(group['field'].nxvalue, np.ma.masked_array) assert np.all(group['field'].mask[9:11] == np.array([False, True])) assert 'mask' in group['field'].attrs assert group['field'].attrs['mask'] == 'field_mask' assert 'field_mask' in group assert group['field_mask'].dtype == bool assert group['field'].mask == group['field_mask'] group['field'].mask[10] = np.ma.nomask assert np.all(group['field'].mask[10:12] == np.array([False, True])) assert np.all(group['field_mask'][10:12] == np.array([False, True]))
1,459
0
45