hexsha
stringlengths
40
40
size
int64
7
1.04M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
247
max_stars_repo_name
stringlengths
4
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
368k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
247
max_issues_repo_name
stringlengths
4
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
247
max_forks_repo_name
stringlengths
4
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.04M
avg_line_length
float64
1.77
618k
max_line_length
int64
1
1.02M
alphanum_fraction
float64
0
1
original_content
stringlengths
7
1.04M
filtered:remove_function_no_docstring
int64
-102
942k
filtered:remove_class_no_docstring
int64
-354
977k
filtered:remove_delete_markers
int64
0
60.1k
85c1d41e0ffd477d4930abc2243ffa926855d096
565
py
Python
models.py
Arnaud15/ProjectMSE226
11db7260611242ba0e464c0fab266591afb3c1a6
[ "MIT" ]
null
null
null
models.py
Arnaud15/ProjectMSE226
11db7260611242ba0e464c0fab266591afb3c1a6
[ "MIT" ]
null
null
null
models.py
Arnaud15/ProjectMSE226
11db7260611242ba0e464c0fab266591afb3c1a6
[ "MIT" ]
null
null
null
import sklearn.linear_model as skl
56.5
118
0.723894
import sklearn.linear_model as skl def linear_regression(type, penalty_log='l2', alpha=0, l1_ratio=0, fit_intercept=True, normalize=False): dic = {"ols": skl.LinearRegression(fit_intercept, normalize), 'ridge': skl.Ridge(alpha, fit_intercept, normalize), "lasso": skl.Lasso(alpha, fit_intercept, normalize), "elasticNet": skl.ElasticNet(alpha, l1_ratio, fit_intercept, normalize, random_state=0), "logistic": skl.LogisticRegression(penalty=penalty_log, C=alpha, fit_intercept=fit_intercept)} reg = dic[type] return reg
507
0
23
a2bf734bd139742c1f3f8731ae4083b0bc7bfdd5
403
py
Python
tests/unit/test_util.py
yougov/pmxbot
7e13ec7dc9c1759a1d6a637b0424d7efbb6c62c1
[ "MIT" ]
17
2016-01-27T12:10:03.000Z
2019-08-28T23:02:51.000Z
tests/unit/test_util.py
yougov/pmxbot
7e13ec7dc9c1759a1d6a637b0424d7efbb6c62c1
[ "MIT" ]
79
2015-12-02T16:02:01.000Z
2020-02-09T01:51:05.000Z
tests/unit/test_util.py
yougov/pmxbot
7e13ec7dc9c1759a1d6a637b0424d7efbb6c62c1
[ "MIT" ]
8
2016-06-27T11:07:42.000Z
2019-01-24T20:21:42.000Z
import pytest from pmxbot import util @pytest.mark.xfail(reason="Wordnik is unreliable") @pytest.mark.xfail(reason="#97: Google is unreliable")
22.388889
54
0.784119
import pytest from pmxbot import util @pytest.mark.xfail(reason="Wordnik is unreliable") def test_lookup(needs_wordnik): assert util.lookup('dachshund') is not None @pytest.mark.xfail(reason="#97: Google is unreliable") def test_emergency_compliment(needs_internet): assert util.load_emergency_compliments() def test_acronym_lookup(needs_internet): assert util.lookup_acronym('NSFW')
186
0
67
07faafb2470cb4cfac7096981ce820ce593ba511
3,824
py
Python
examples/statistics.py
chiluf/visvis.dev
373846ea25044b7ca50f44c63dab4248e14deacd
[ "BSD-3-Clause" ]
null
null
null
examples/statistics.py
chiluf/visvis.dev
373846ea25044b7ca50f44c63dab4248e14deacd
[ "BSD-3-Clause" ]
null
null
null
examples/statistics.py
chiluf/visvis.dev
373846ea25044b7ca50f44c63dab4248e14deacd
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python """ This example a coupe of ways to visualize statistic data. As an example I took the monthly temperature in the region where I live (Twente, The Netherlands) over the period 1983-2010. This data was extracted from publicly available data obtained from the Royal Netherlands Meteorological Institute (KNMI). """ import visvis as vv temp_data = """ 1983: 8.00 2.73 9.00 13.02 14.63 21.10 25.03 23.73 17.72 13.34 9.31 5.35 1984: 4.78 4.06 7.38 12.24 14.14 16.86 19.19 22.24 15.99 14.15 10.44 5.81 1985: -1.87 2.28 6.50 12.06 17.67 17.36 21.03 19.73 17.49 13.55 4.06 6.92 1986: 3.55 -1.30 8.03 10.64 18.54 20.93 20.98 20.06 15.50 15.02 10.55 6.59 1987: -1.62 4.52 4.78 15.06 14.49 17.57 20.66 19.66 18.74 14.17 7.96 5.66 1988: 8.05 6.71 7.18 13.00 19.37 18.68 19.80 21.29 17.60 13.82 8.05 7.34 1989: 6.14 7.77 11.48 10.21 19.58 21.05 23.14 22.44 19.95 15.92 8.97 7.34 1990: 6.83 10.82 11.90 13.47 19.58 19.13 21.06 23.80 16.24 16.02 8.08 5.35 1991: 5.21 2.29 12.43 13.33 14.11 15.99 23.49 22.87 19.74 13.52 7.78 5.55 1992: 4.51 7.43 9.67 12.23 20.38 22.42 23.49 22.80 18.91 10.58 10.04 5.55 1993: 7.36 3.32 9.72 15.79 19.33 20.09 20.57 20.01 16.89 12.36 4.46 6.51 1994: 6.84 4.08 10.51 13.15 17.34 20.39 27.51 23.17 17.45 13.45 11.60 7.52 1995: 5.52 9.00 8.98 13.40 18.29 19.56 25.85 25.53 18.28 17.12 8.99 0.83 1996: 1.00 2.14 6.78 15.10 15.34 20.58 21.24 22.86 16.43 14.54 7.61 1.52 1997: 1.17 8.71 11.46 12.30 17.79 21.28 22.90 25.80 19.04 13.29 8.25 6.25 1998: 6.73 9.04 10.72 12.91 19.81 20.46 20.56 21.63 18.72 11.91 5.95 6.01 1999: 7.07 5.34 10.54 14.59 18.72 20.39 24.65 22.39 22.83 14.03 8.96 6.36 2000: 5.74 8.43 9.52 15.49 20.22 21.51 19.71 22.83 19.35 14.59 10.13 6.67 2001: 5.02 7.23 7.25 12.46 19.85 20.12 23.71 23.79 16.70 17.72 9.14 4.59 2002: 6.23 9.74 11.19 14.14 18.40 21.86 22.44 23.75 19.25 12.91 10.19 3.69 2003: 4.35 5.25 12.38 15.38 18.71 23.96 24.06 25.77 20.04 11.27 10.53 6.45 2004: 4.99 7.15 10.00 15.85 17.26 20.93 21.72 24.33 19.94 14.91 8.67 4.96 2005: 6.95 4.32 9.85 15.66 18.07 21.97 22.92 21.07 21.04 17.72 8.86 5.37 2006: 3.31 4.14 7.05 13.51 19.30 22.37 29.29 20.75 23.03 17.04 11.67 8.46 2007: 8.73 8.41 12.24 19.28 18.81 22.45 21.69 22.05 17.97 13.48 8.96 5.48 2008: 8.07 8.98 9.21 13.43 20.70 22.55 23.44 22.24 18.40 13.50 8.62 4.18 2009: 2.98 5.27 9.47 18.89 19.56 20.85 23.36 24.04 20.04 13.60 11.57 3.95 2010: 0.20 3.60 10.17 15.41 15.21 22.88 27.06 21.16 17.20 13.73 7.35 -0.62 """ # Collect data per month (just put all years on a heap) # Not the most readable code, but this example is about what we do with # the data next. temps_per_month = [[] for i in range(12)] for line in temp_data.splitlines(): if ":" not in line: continue temps = [float(t) for t in line.split(': ')[1].split(' ')] for i in range(12): temps_per_month[i].append(temps[i]) # Calculate means mean = lambda x: sum(x)/len(x) mean_temps_per_month = [mean(tt) for tt in temps_per_month] # Prepare figure vv.figure(1); vv.clf() # Show means in a normal bar chart a1 = vv.subplot(221); b2 = vv.bar(mean_temps_per_month) b2.color = 'r' # Show means in a 3D bar chart a2 = vv.subplot(222); b3 = vv.bar3(mean_temps_per_month) b3.color = 'g' a2.daspect = 1,1,0.3 # Show box plot a3 = vv.subplot(223) bp = vv.boxplot(temps_per_month) bp.lc = 'b' bp.lw = 2 # Show violin plot a4 = vv.subplot(224) vp = vv.boxplot(temps_per_month, whiskers='violin') vp.lc = 'm' vp.lw = 3 # Set legends and ticks for each axes for a in [a1, a2, a3, a4]: a.axis.xTicks = 'Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec'.split() if a is a2: a.axis.zLabel = 'Temperature [C^o]' a.axis.showGridZ = True else: a.axis.yLabel = 'Temperature [C^o]' a.axis.showGridY = True a.axis.xTicksAngle = -30 app = vv.use() app.Run()
39.020408
77
0.656642
#!/usr/bin/env python """ This example a coupe of ways to visualize statistic data. As an example I took the monthly temperature in the region where I live (Twente, The Netherlands) over the period 1983-2010. This data was extracted from publicly available data obtained from the Royal Netherlands Meteorological Institute (KNMI). """ import visvis as vv temp_data = """ 1983: 8.00 2.73 9.00 13.02 14.63 21.10 25.03 23.73 17.72 13.34 9.31 5.35 1984: 4.78 4.06 7.38 12.24 14.14 16.86 19.19 22.24 15.99 14.15 10.44 5.81 1985: -1.87 2.28 6.50 12.06 17.67 17.36 21.03 19.73 17.49 13.55 4.06 6.92 1986: 3.55 -1.30 8.03 10.64 18.54 20.93 20.98 20.06 15.50 15.02 10.55 6.59 1987: -1.62 4.52 4.78 15.06 14.49 17.57 20.66 19.66 18.74 14.17 7.96 5.66 1988: 8.05 6.71 7.18 13.00 19.37 18.68 19.80 21.29 17.60 13.82 8.05 7.34 1989: 6.14 7.77 11.48 10.21 19.58 21.05 23.14 22.44 19.95 15.92 8.97 7.34 1990: 6.83 10.82 11.90 13.47 19.58 19.13 21.06 23.80 16.24 16.02 8.08 5.35 1991: 5.21 2.29 12.43 13.33 14.11 15.99 23.49 22.87 19.74 13.52 7.78 5.55 1992: 4.51 7.43 9.67 12.23 20.38 22.42 23.49 22.80 18.91 10.58 10.04 5.55 1993: 7.36 3.32 9.72 15.79 19.33 20.09 20.57 20.01 16.89 12.36 4.46 6.51 1994: 6.84 4.08 10.51 13.15 17.34 20.39 27.51 23.17 17.45 13.45 11.60 7.52 1995: 5.52 9.00 8.98 13.40 18.29 19.56 25.85 25.53 18.28 17.12 8.99 0.83 1996: 1.00 2.14 6.78 15.10 15.34 20.58 21.24 22.86 16.43 14.54 7.61 1.52 1997: 1.17 8.71 11.46 12.30 17.79 21.28 22.90 25.80 19.04 13.29 8.25 6.25 1998: 6.73 9.04 10.72 12.91 19.81 20.46 20.56 21.63 18.72 11.91 5.95 6.01 1999: 7.07 5.34 10.54 14.59 18.72 20.39 24.65 22.39 22.83 14.03 8.96 6.36 2000: 5.74 8.43 9.52 15.49 20.22 21.51 19.71 22.83 19.35 14.59 10.13 6.67 2001: 5.02 7.23 7.25 12.46 19.85 20.12 23.71 23.79 16.70 17.72 9.14 4.59 2002: 6.23 9.74 11.19 14.14 18.40 21.86 22.44 23.75 19.25 12.91 10.19 3.69 2003: 4.35 5.25 12.38 15.38 18.71 23.96 24.06 25.77 20.04 11.27 10.53 6.45 2004: 4.99 7.15 10.00 15.85 17.26 20.93 21.72 24.33 19.94 14.91 8.67 4.96 2005: 6.95 4.32 9.85 15.66 18.07 21.97 22.92 21.07 21.04 17.72 8.86 5.37 2006: 3.31 4.14 7.05 13.51 19.30 22.37 29.29 20.75 23.03 17.04 11.67 8.46 2007: 8.73 8.41 12.24 19.28 18.81 22.45 21.69 22.05 17.97 13.48 8.96 5.48 2008: 8.07 8.98 9.21 13.43 20.70 22.55 23.44 22.24 18.40 13.50 8.62 4.18 2009: 2.98 5.27 9.47 18.89 19.56 20.85 23.36 24.04 20.04 13.60 11.57 3.95 2010: 0.20 3.60 10.17 15.41 15.21 22.88 27.06 21.16 17.20 13.73 7.35 -0.62 """ # Collect data per month (just put all years on a heap) # Not the most readable code, but this example is about what we do with # the data next. temps_per_month = [[] for i in range(12)] for line in temp_data.splitlines(): if ":" not in line: continue temps = [float(t) for t in line.split(': ')[1].split(' ')] for i in range(12): temps_per_month[i].append(temps[i]) # Calculate means mean = lambda x: sum(x)/len(x) mean_temps_per_month = [mean(tt) for tt in temps_per_month] # Prepare figure vv.figure(1); vv.clf() # Show means in a normal bar chart a1 = vv.subplot(221); b2 = vv.bar(mean_temps_per_month) b2.color = 'r' # Show means in a 3D bar chart a2 = vv.subplot(222); b3 = vv.bar3(mean_temps_per_month) b3.color = 'g' a2.daspect = 1,1,0.3 # Show box plot a3 = vv.subplot(223) bp = vv.boxplot(temps_per_month) bp.lc = 'b' bp.lw = 2 # Show violin plot a4 = vv.subplot(224) vp = vv.boxplot(temps_per_month, whiskers='violin') vp.lc = 'm' vp.lw = 3 # Set legends and ticks for each axes for a in [a1, a2, a3, a4]: a.axis.xTicks = 'Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec'.split() if a is a2: a.axis.zLabel = 'Temperature [C^o]' a.axis.showGridZ = True else: a.axis.yLabel = 'Temperature [C^o]' a.axis.showGridY = True a.axis.xTicksAngle = -30 app = vv.use() app.Run()
0
0
0
cdd3664562efc356638d927e7302539928cb2b06
1,320
py
Python
tests/terraform/checks/resource/gcp/test_CloudStorageLogging.py
kylelaker/checkov
6eada26030a87f397a6bf1831827b3dc6c5dad2d
[ "Apache-2.0" ]
4,013
2019-12-09T13:16:54.000Z
2022-03-31T14:31:01.000Z
tests/terraform/checks/resource/gcp/test_CloudStorageLogging.py
kylelaker/checkov
6eada26030a87f397a6bf1831827b3dc6c5dad2d
[ "Apache-2.0" ]
1,258
2019-12-17T09:55:51.000Z
2022-03-31T19:17:17.000Z
tests/terraform/checks/resource/gcp/test_CloudStorageLogging.py
kylelaker/checkov
6eada26030a87f397a6bf1831827b3dc6c5dad2d
[ "Apache-2.0" ]
638
2019-12-19T08:57:38.000Z
2022-03-30T21:38:37.000Z
import unittest import hcl2 from checkov.common.models.enums import CheckResult from checkov.terraform.checks.resource.gcp.CloudStorageLogging import check if __name__ == '__main__': unittest.main()
33
82
0.625
import unittest import hcl2 from checkov.common.models.enums import CheckResult from checkov.terraform.checks.resource.gcp.CloudStorageLogging import check class TestCloudStorageLogging(unittest.TestCase): def test_failure(self): hcl_res = hcl2.loads(""" resource "google_storage_bucket" "logging" { name = "jgwloggingbucket" location = var.location uniform_bucket_level_access = true } """) resource_conf = hcl_res['resource'][0]['google_storage_bucket']['logging'] scan_result = check.scan_resource_conf(conf=resource_conf) self.assertEqual(CheckResult.FAILED, scan_result) def test_success(self): hcl_res = hcl2.loads(""" resource "google_storage_bucket" "logging" { name = "jgwloggingbucket" location = var.location uniform_bucket_level_access = true logging { log_bucket = "mylovelybucket" } } """) resource_conf = hcl_res['resource'][0]['google_storage_bucket']['logging'] scan_result = check.scan_resource_conf(conf=resource_conf) self.assertEqual(CheckResult.PASSED, scan_result) if __name__ == '__main__': unittest.main()
1,008
28
77
802109d07a839590f191a668a78ce0dbc359cb5f
540
py
Python
antarest/study/storage/rawstudy/model/filesystem/root/input/hydro/prepro/area/prepro.py
AntaresSimulatorTeam/antaREST
d686d2a86a52737c211ae67f3cee591f559909f2
[ "Apache-2.0" ]
2
2020-09-30T11:40:22.000Z
2020-11-09T09:06:30.000Z
antarest/study/storage/rawstudy/model/filesystem/root/input/hydro/prepro/area/prepro.py
AntaresSimulatorTeam/antaREST
d686d2a86a52737c211ae67f3cee591f559909f2
[ "Apache-2.0" ]
542
2021-01-11T13:23:47.000Z
2022-03-31T15:38:10.000Z
antarest/study/storage/rawstudy/model/filesystem/root/input/hydro/prepro/area/prepro.py
AntaresSimulatorTeam/antaREST
d686d2a86a52737c211ae67f3cee591f559909f2
[ "Apache-2.0" ]
1
2020-10-01T12:18:15.000Z
2020-10-01T12:18:15.000Z
from antarest.study.storage.rawstudy.model.filesystem.config.model import ( FileStudyTreeConfig, ) from antarest.study.storage.rawstudy.model.filesystem.context import ( ContextServer, ) from antarest.study.storage.rawstudy.model.filesystem.ini_file_node import ( IniFileNode, )
33.75
76
0.768519
from antarest.study.storage.rawstudy.model.filesystem.config.model import ( FileStudyTreeConfig, ) from antarest.study.storage.rawstudy.model.filesystem.context import ( ContextServer, ) from antarest.study.storage.rawstudy.model.filesystem.ini_file_node import ( IniFileNode, ) class InputHydroPreproAreaPrepro(IniFileNode): def __init__(self, context: ContextServer, config: FileStudyTreeConfig): types = {"prepro": {"intermonthly-correlation": float}} IniFileNode.__init__(self, context, config, types)
174
25
49
d3b5b655afd498b598dfe9266c76d3818cd93340
26,166
py
Python
models/cifar/resnet.py
HRanWang/imagenet_whr
fcfe830c7889a7239d3f791de192d6121f8c316f
[ "MIT" ]
1
2019-10-19T15:30:02.000Z
2019-10-19T15:30:02.000Z
models/cifar/resnet.py
HRanWang/imagenet_whr
fcfe830c7889a7239d3f791de192d6121f8c316f
[ "MIT" ]
null
null
null
models/cifar/resnet.py
HRanWang/imagenet_whr
fcfe830c7889a7239d3f791de192d6121f8c316f
[ "MIT" ]
null
null
null
from __future__ import absolute_import '''Resnet for cifar dataset. Ported form https://github.com/facebook/fb.resnet.torch and https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py (c) YANG, Wei ''' import torch.nn as nn import math import torch import numpy as np __all__ = ['resnet','resnet50'] def conv3x3(in_planes, out_planes, stride=1): "3x3 convolution with padding" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) def resnet(**kwargs): """ Constructs a ResNet model. """ return ResNet(**kwargs) class Dconv_shuffle(nn.Module): """ Deformable convolution with random shuffling of the feature map. Random shuffling only happened within each page independently. The sampling locations are generated for each forward pass during the training. """ def resnet50(**kwargs): """ Constructs a ResNet model. """ return Resnet50(**kwargs)
41.798722
150
0.613697
from __future__ import absolute_import '''Resnet for cifar dataset. Ported form https://github.com/facebook/fb.resnet.torch and https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py (c) YANG, Wei ''' import torch.nn as nn import math import torch import numpy as np __all__ = ['resnet','resnet50'] def conv3x3(in_planes, out_planes, stride=1): "3x3 convolution with padding" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, depth, num_classes=1000, block_name='BasicBlock'): super(ResNet, self).__init__() # Model type specifies number of layers for CIFAR-10 model if block_name.lower() == 'basicblock': assert (depth - 2) % 6 == 0, 'When use basicblock, depth should be 6n+2, e.g. 20, 32, 44, 56, 110, 1202' n = (depth - 2) // 6 block = BasicBlock elif block_name.lower() == 'bottleneck': assert (depth - 2) % 9 == 0, 'When use bottleneck, depth should be 9n+2, e.g. 20, 29, 47, 56, 110, 1199' n = (depth - 2) // 9 block = Bottleneck else: raise ValueError('block_name shoule be Basicblock or Bottleneck') self.inplanes = 16 self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(16) self.relu = nn.ReLU(inplace=True) self.layer1 = self._make_layer(block, 16, n) self.layer2 = self._make_layer(block, 32, n, stride=2) self.layer3 = self._make_layer(block, 64, n, stride=2) self.avgpool = nn.AvgPool2d(8) self.fc = nn.Linear(64 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) # 32x32 x = self.layer1(x) # 32x32 x = self.layer2(x) # 16x16 x = self.layer3(x) # 8x8 x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x def resnet(**kwargs): """ Constructs a ResNet model. """ return ResNet(**kwargs) def conv_1_3x3(): return nn.Sequential(nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False), # 'SAME' nn.BatchNorm2d(64), nn.ReLU(inplace=True)) # TODO: nn.MaxPool2d(kernel_size=3, stride=2, padding=0)) # 'valid' def conv_1_3x3_dconv(): return nn.Sequential(Dconv_shuffle(3, 64, 3, 1, 1), nn.BatchNorm2d(64), nn.ReLU(inplace=True)) # TODO: nn.MaxPool2d(kernel_size=3, stride=2, padding=0)) # 'valid' class bottleneck(nn.Module): def __init__(self, inplanes, planes, kernel_size, strides=(2, 2)): super(bottleneck, self).__init__() plane1, plane2, plane3 = planes self.outchannels = plane3 self.conv1 = nn.Conv2d(inplanes, plane1, kernel_size=1, stride=1, padding=0, bias=False) self.bn1 = nn.BatchNorm2d(plane1) self.conv2 = nn.Conv2d(plane1, plane2, kernel_size=kernel_size, stride=strides, padding=int((kernel_size - 1) / 2), bias=False) self.bn2 = nn.BatchNorm2d(plane2) self.conv3 = nn.Conv2d(plane2, plane3, kernel_size=1, stride=1, padding=0, bias=False) self.bn3 = nn.BatchNorm2d(plane3) self.conv4 = nn.Conv2d(inplanes, plane3, kernel_size=1, stride=strides, padding=0, bias=False) self.bn4 = nn.BatchNorm2d(plane3) self.relu = nn.ReLU(inplace=True) def forward(self, input_tensor): out = self.conv1(input_tensor) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) shortcut = self.conv4(input_tensor) shortcut = self.bn4(shortcut) out += shortcut out = self.relu(out) return out class identity_block3(nn.Module): def __init__(self, inplanes, planes, kernel_size): super(identity_block3, self).__init__() plane1, plane2, plane3 = planes self.outchannels = plane3 self.conv1 = nn.Conv2d(inplanes, plane1, kernel_size=1, stride=1, padding=0, bias=False) self.bn1 = nn.BatchNorm2d(plane1) self.conv2 = nn.Conv2d(plane1, plane2, kernel_size=kernel_size, stride=1, padding=int((kernel_size - 1) / 2), bias=False) self.bn2 = nn.BatchNorm2d(plane2) self.conv3 = nn.Conv2d(plane2, plane3, kernel_size=1, stride=1, padding=0, bias=False) self.bn3 = nn.BatchNorm2d(plane3) self.relu = nn.ReLU(inplace=True) def forward(self, input_tensor, return_conv3_out=False): # return_conv3_out is only served for grad_cam.py out = self.conv1(input_tensor) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out_conv3 = self.conv3(out) out = self.bn3(out_conv3) out += input_tensor out = self.relu(out) if return_conv3_out: return out, out_conv3 else: return out class Dconv_shuffle(nn.Module): """ Deformable convolution with random shuffling of the feature map. Random shuffling only happened within each page independently. The sampling locations are generated for each forward pass during the training. """ def __init__(self, inplane, outplane, kernel_size, stride, padding): super(Dconv_shuffle, self).__init__() print('cifar Dconv_shuffle is used') self.dilated_conv = nn.Conv2d(inplane, outplane, kernel_size=kernel_size, stride=stride, padding=padding, bias=False) self.indices = None def _setup(self, inplane, spatial_size): self.indices = np.empty((inplane, spatial_size), dtype=np.int64) for i in range(inplane): self.indices[i, :] = np.arange(self.indices.shape[1])+ i*self.indices.shape[1] def forward(self, x): x_shape = x.size() # [128, 3, 32, 32] x = x.view(x_shape[0], -1) if self.indices is None: self._setup(x_shape[1], x_shape[2]*x_shape[3]) for i in range(x_shape[1]): np.random.shuffle(self.indices[i]) x = x[:, torch.from_numpy(self.indices)].view(x_shape) return self.dilated_conv(x) class bottleneck_shuffle(nn.Module): def __init__(self, inplanes, planes, kernel_size, strides=(2, 2), type='error'): super(bottleneck_shuffle, self).__init__() plane1, plane2, plane3 = planes self.conv1 = nn.Conv2d(inplanes, plane1, kernel_size=1, stride=1, padding=0, bias=False) self.bn1 = nn.BatchNorm2d(plane1) self.dconv1 = Dconv_shuffle(plane1, plane2, kernel_size=kernel_size, stride=strides, padding=1) self.bn2 = nn.BatchNorm2d(plane2) self.conv3 = nn.Conv2d(plane2, plane3, kernel_size=1, stride=1, padding=0, bias=False) self.bn3 = nn.BatchNorm2d(plane3) self.dconv2 = Dconv_shuffle(inplanes, plane3, kernel_size=1, stride=strides, padding=0) self.bn4 = nn.BatchNorm2d(plane3) self.relu = nn.ReLU(inplace=True) def forward(self, input_tensor): out = self.conv1(input_tensor) out = self.bn1(out) out = self.relu(out) out = self.dconv1(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) shortcut = self.dconv2(input_tensor) shortcut = self.bn4(shortcut) out += shortcut out = self.relu(out) return out class identity_block3_shuffle(nn.Module): def __init__(self, inplanes, planes, kernel_size, type='error'): super(identity_block3_shuffle, self).__init__() plane1, plane2, plane3 = planes self.conv1 = nn.Conv2d(inplanes, plane1, kernel_size=1, stride=1, padding=0, bias=False) self.bn1 = nn.BatchNorm2d(plane1) self.dconv = Dconv_shuffle(plane1, plane2, kernel_size=kernel_size, stride=1, padding=1) self.bn2 = nn.BatchNorm2d(plane2) self.conv3 = nn.Conv2d(plane2, plane3, kernel_size=1, stride=1, padding=0, bias=False) self.bn3 = nn.BatchNorm2d(plane3) self.relu = nn.ReLU(inplace=True) def forward(self, input_tensor): out = self.conv1(input_tensor) out = self.bn1(out) out = self.relu(out) out = self.dconv(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) x_shape = input_tensor.size() # [128, 3, 32, 32] x = input_tensor.view(x_shape[0], x_shape[1] * x_shape[2] * x_shape[3]) # [128, 3*32*32] shuffled_input = torch.empty(x_shape[0], x_shape[1], x_shape[2], x_shape[3]).cuda(0) perm = torch.empty(0).float() for i in range(x_shape[1]): a = torch.randperm(x_shape[2] * x_shape[3]) + i * x_shape[2] * x_shape[3] perm = torch.cat((perm, a.float()), 0) shuffled_input[:, :, :, :] = x[:, perm.long()].view(x_shape[0], x_shape[1], x_shape[2], x_shape[3]) out += shuffled_input out = self.relu(out) return out class Resnet50(nn.Module): def __init__(self, dropout_rate, num_classes, include_top, layer=99, type='none'): print('resnet50 is used') super(Resnet50, self).__init__() self.dropout_rate = dropout_rate self.num_classes = num_classes self.include_top = include_top block_ex = 4 # Define the building blocks if layer > 0: self.conv_3x3 = conv_1_3x3() else: self.conv_3x3 = conv_1_3x3_dconv() if layer > 10: self.bottleneck_1 = bottleneck(16*block_ex, [16*block_ex, 16*block_ex, 64*block_ex], kernel_size=3, strides=(1, 1)) else: self.bottleneck_1 = bottleneck_shuffle(16*block_ex, [16*block_ex, 16*block_ex, 64*block_ex], kernel_size=3, strides=(1, 1), type=type) if layer > 11: self.identity_block_1_1 = identity_block3(64*block_ex, [16*block_ex, 16*block_ex, 64*block_ex], kernel_size=3) else: self.identity_block_1_1 = identity_block3_shuffle(64*block_ex, [16*block_ex, 16*block_ex, 64*block_ex], kernel_size=3, type=type) if layer > 12: self.identity_block_1_2 = identity_block3(64*block_ex, [16*block_ex, 16*block_ex, 64*block_ex], kernel_size=3) else: self.identity_block_1_2 = identity_block3_shuffle(64*block_ex, [16*block_ex, 16*block_ex, 64*block_ex], kernel_size=3, type=type) if layer > 20: self.bottleneck_2 = bottleneck(64*block_ex, [32*block_ex, 32*block_ex, 128*block_ex], kernel_size=3, strides=(2, 2)) else: self.bottleneck_2 = bottleneck_shuffle(64*block_ex, [32*block_ex, 32*block_ex, 128*block_ex], kernel_size=3, strides=(2, 2), type=type) if layer > 21: self.identity_block_2_1 = identity_block3(128*block_ex, [32*block_ex, 32*block_ex, 128*block_ex], kernel_size=3) else: self.identity_block_2_1 = identity_block3_shuffle(128*block_ex, [32*block_ex, 32*block_ex, 128*block_ex], kernel_size=3, type=type) if layer > 22: self.identity_block_2_2 = identity_block3(128*block_ex, [32*block_ex, 32*block_ex, 128*block_ex], kernel_size=3) else: self.identity_block_2_2 = identity_block3_shuffle(128*block_ex, [32*block_ex, 32*block_ex, 128*block_ex], kernel_size=3, type=type) if layer > 23: self.identity_block_2_3 = identity_block3(128*block_ex, [32*block_ex, 32*block_ex, 128*block_ex], kernel_size=3) else: self.identity_block_2_3 = identity_block3_shuffle(128*block_ex, [32*block_ex, 32*block_ex, 128*block_ex], kernel_size=3, type=type) if layer > 30: self.bottleneck_3 = bottleneck(128*block_ex, [64*block_ex, 64*block_ex, 256*block_ex], kernel_size=3, strides=(2, 2)) else: self.bottleneck_3 = bottleneck_shuffle(128*block_ex, [64*block_ex, 64*block_ex, 256*block_ex], kernel_size=3, strides=(2, 2), type=type) if layer > 31: self.identity_block_3_1 = identity_block3(256*block_ex, [64*block_ex, 64*block_ex, 256*block_ex], kernel_size=3) else: self.identity_block_3_1 = identity_block3_shuffle(256*block_ex, [64*block_ex, 64*block_ex, 256*block_ex], kernel_size=3, type=type) if layer > 32: self.identity_block_3_2 = identity_block3(256*block_ex, [64*block_ex, 64*block_ex, 256*block_ex], kernel_size=3) else: self.identity_block_3_2 = identity_block3_shuffle(256*block_ex, [64*block_ex, 64*block_ex, 256*block_ex], kernel_size=3, type=type) if layer > 33: self.identity_block_3_3 = identity_block3(256*block_ex, [64*block_ex, 64*block_ex, 256*block_ex], kernel_size=3) else: self.identity_block_3_3 = identity_block3_shuffle(256*block_ex, [64*block_ex, 64*block_ex, 256*block_ex], kernel_size=3, type=type) if layer > 34: self.identity_block_3_4 = identity_block3(256*block_ex, [64*block_ex, 64*block_ex, 256*block_ex], kernel_size=3) else: self.identity_block_3_4 = identity_block3_shuffle(256*block_ex, [64*block_ex, 64*block_ex, 256*block_ex], kernel_size=3, type=type) if layer > 35: self.identity_block_3_5 = identity_block3(256*block_ex, [64*block_ex, 64*block_ex, 256*block_ex], kernel_size=3) else: self.identity_block_3_5 = identity_block3_shuffle(256*block_ex, [64*block_ex, 64*block_ex, 256*block_ex], kernel_size=3, type=type) if layer > 40: self.bottleneck_4 = bottleneck(256*block_ex, [128*block_ex, 128*block_ex, 512*block_ex], kernel_size=3, strides=(2, 2)) else: self.bottleneck_4 = bottleneck_shuffle(256*block_ex, [128*block_ex, 128*block_ex, 512*block_ex], kernel_size=3, strides=(2, 2), type=type) if layer > 41: self.identity_block_4_1 = identity_block3(512*block_ex, [128*block_ex, 128*block_ex, 512*block_ex], kernel_size=3) else: self.identity_block_4_1 = identity_block3_shuffle(512*block_ex, [128*block_ex, 128*block_ex, 512*block_ex], kernel_size=3, type=type) if layer > 42: self.identity_block_4_2 = identity_block3(512*block_ex, [128*block_ex, 128*block_ex, 512*block_ex], kernel_size=3) else: self.identity_block_4_2 = identity_block3_shuffle(512*block_ex, [128*block_ex, 128*block_ex, 512*block_ex], kernel_size=3, type=type) self.avgpool = nn.AdaptiveAvgPool2d(1) # TODO: check the final size self.fc = nn.Linear(512*block_ex, num_classes) # Initialize the weights for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): # raise Exception('You are using a model without BN!!!') nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def forward(self, input_x): # print(input_x.size()) x = self.conv_3x3(input_x) # np.save('/nethome/yuefan/fanyue/dconv/fm3x3.npy', x.detach().cpu().numpy()) # print(x.size()) x = self.bottleneck_1(x) x = self.identity_block_1_1(x) x = self.identity_block_1_2(x) # print(x.size()) x = self.bottleneck_2(x) x = self.identity_block_2_1(x) x = self.identity_block_2_2(x) x = self.identity_block_2_3(x) # print(x.size()) x = self.bottleneck_3(x) x = self.identity_block_3_1(x) x = self.identity_block_3_2(x) x = self.identity_block_3_3(x) x = self.identity_block_3_4(x) x = self.identity_block_3_5(x) # print(x.size()) x = self.bottleneck_4(x) x = self.identity_block_4_1(x) x = self.identity_block_4_2(x) # print("feature shape:", x.size()) if self.include_top: x = self.avgpool(x) x = x.view(x.size(0), -1) # TODO: why there is no dropout x = self.fc(x) return x class ResnetWHR(nn.Module): def __init__(self, dropout_rate, num_classes, include_top): """ This is ResNet50 for PCB verison """ super(ResnetWHR, self).__init__() self.dropout_rate = dropout_rate self.num_classes = num_classes self.include_top = include_top self.num_features = 512 # Define the building blocks self.conv_3x3 = conv_1_3x3() self.bottleneck_1 = bottleneck(16, [16, 16, 64], kernel_size=3, strides=(1, 1)) self.identity_block_1_1 = identity_block3(64, [16, 16, 64], kernel_size=3) self.identity_block_1_2 = identity_block3(64, [16, 16, 64], kernel_size=3) self.bottleneck_2 = bottleneck(64, [32, 32, 128], kernel_size=3, strides=(2, 2)) self.identity_block_2_1 = identity_block3(128, [32, 32, 128], kernel_size=3) self.identity_block_2_2 = identity_block3(128, [32, 32, 128], kernel_size=3) self.identity_block_2_3 = identity_block3(128, [32, 32, 128], kernel_size=3) self.bottleneck_3 = bottleneck(128, [64, 64, 256], kernel_size=3, strides=(2, 2)) self.identity_block_3_1 = identity_block3(256, [64, 64, 256], kernel_size=3) self.identity_block_3_2 = identity_block3(256, [64, 64, 256], kernel_size=3) self.identity_block_3_3 = identity_block3(256, [64, 64, 256], kernel_size=3) self.identity_block_3_4 = identity_block3(256, [64, 64, 256], kernel_size=3) self.identity_block_3_5 = identity_block3(256, [64, 64, 256], kernel_size=3) self.bottleneck_4 = bottleneck(256, [128, 128, 512], kernel_size=3, strides=(2, 2)) self.identity_block_4_1 = identity_block3(512, [128, 128, 512], kernel_size=3) self.identity_block_4_2 = identity_block3(512, [128, 128, 512], kernel_size=3) # =======================================top============================================= # self.se1 = SELayer(64) # self.se2 = SELayer(128) # self.se3 = SELayer(256) # self.local_conv_layer1 = nn.Conv2d(64, self.num_features, kernel_size=1, padding=0, bias=False) # self.local_conv_layer2 = nn.Conv2d(128, self.num_features, kernel_size=1, padding=0, bias=False) # self.local_conv_layer3 = nn.Conv2d(256, self.num_features, kernel_size=1, padding=0, bias=False) # self.instance_layer1 = nn.Linear(self.num_features, self.num_classes) # self.instance_layer2 = nn.Linear(self.num_features, self.num_classes) # self.instance_layer3 = nn.Linear(self.num_features, self.num_classes) self.instance0 = nn.Linear(self.num_features, self.num_classes) self.instance1 = nn.Linear(self.num_features, self.num_classes) self.instance2 = nn.Linear(self.num_features, self.num_classes) self.instance3 = nn.Linear(self.num_features, self.num_classes) self.instance4 = nn.Linear(self.num_features, self.num_classes) # self.linear_list = [] # for i in range(16): # self.linear_list.append(nn.Linear(self.num_features, self.num_classes).cuda()) # self.local_conv = nn.Conv2d(self.num_features, self.num_features, kernel_size=1, padding=0, bias=False) # self.local_bn = nn.BatchNorm2d(self.num_features) # Initialize the weights for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, std=0.001) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, input_x): x = self.conv_3x3(input_x) x = self.bottleneck_1(x) x = self.identity_block_1_1(x) x_layer1 = self.identity_block_1_2(x) x = self.bottleneck_2(x_layer1) x = self.identity_block_2_1(x) x = self.identity_block_2_2(x) x_layer2 = self.identity_block_2_3(x) x = self.bottleneck_3(x_layer2) x = self.identity_block_3_1(x) x = self.identity_block_3_2(x) x = self.identity_block_3_3(x) x = self.identity_block_3_4(x) x_layer3 = self.identity_block_3_5(x) x = self.bottleneck_4(x_layer3) x = self.identity_block_4_1(x) x = self.identity_block_4_2(x) # x_layer1 = self.se1(x_layer1) # x_layer1 = nn.functional.avg_pool2d(x_layer1, kernel_size=(32, 32), stride=(1, 1)) # x_layer1 = self.local_conv_layer1(x_layer1) # x_layer1 = x_layer1.contiguous().view(x_layer1.size(0), -1) # x_layer1 = self.instance_layer1(x_layer1) # # x_layer2 = self.se2(x_layer2) # x_layer2 = nn.functional.avg_pool2d(x_layer2, kernel_size=(16, 16), stride=(1, 1)) # x_layer2 = self.local_conv_layer2(x_layer2) # x_layer2 = x_layer2.contiguous().view(x_layer2.size(0), -1) # x_layer2 = self.instance_layer2(x_layer2) # # x_layer3 = self.se3(x_layer3) # x_layer3 = nn.functional.avg_pool2d(x_layer3, kernel_size=(8, 8), stride=(1, 1)) # x_layer3 = self.local_conv_layer3(x_layer3) # x_layer3 = x_layer3.contiguous().view(x_layer3.size(0), -1) # x_layer3 = self.instance_layer3(x_layer3) sx = x.size(2) / 4 x = nn.functional.avg_pool2d(x, kernel_size=(sx, x.size(3)), stride=(sx, x.size(3))) # 4x1 # x = self.local_conv(x) # x = self.local_bn(x) # x = nn.functional.relu(x) x4 = nn.functional.avg_pool2d(x, kernel_size=(4, 1), stride=(1, 1)) x4 = x4.contiguous().view(x4.size(0), -1) c4 = self.instance4(x4) # x = x.view(x.size(0), x.size(1), 16) # c_list = [] # for i in range(16): # x_offset = torch.empty(x.size(0), 512).cuda(0) # # print(x_offset[:, :, :].size(), x[:, :, i].size()) # x_offset[:, :] = x[:, :, i] # tmp = self.linear_list[i](x_offset) # c_list.append(tmp) x = x.chunk(4, dim=2) x0 = x[0].contiguous().view(x[0].size(0), -1) x1 = x[1].contiguous().view(x[1].size(0), -1) x2 = x[2].contiguous().view(x[2].size(0), -1) x3 = x[3].contiguous().view(x[3].size(0), -1) c0 = self.instance0(x0) c1 = self.instance1(x1) c2 = self.instance2(x2) c3 = self.instance3(x3) return c0, c1, c2, c3, c4#c_list, c4##, x_layer1, x_layer2, x_layer3 def resnet50(**kwargs): """ Constructs a ResNet model. """ return Resnet50(**kwargs)
20,490
4,004
678
1c293d539578de6f1ef7fcad8bd8b118b92f8704
824
py
Python
src/python/misc/serifxml_round_trip.py
BBN-E/text-open
c508f6caeaa51a43cdb0bc27d8ed77e5750fdda9
[ "Apache-2.0" ]
2
2022-03-24T14:37:51.000Z
2022-03-24T19:56:45.000Z
src/python/misc/serifxml_round_trip.py
BBN-E/text-open
c508f6caeaa51a43cdb0bc27d8ed77e5750fdda9
[ "Apache-2.0" ]
null
null
null
src/python/misc/serifxml_round_trip.py
BBN-E/text-open
c508f6caeaa51a43cdb0bc27d8ed77e5750fdda9
[ "Apache-2.0" ]
null
null
null
# Read in serifxml then save it an make sure the files are # essentially identical import sys, os script_dir = os.path.dirname(os.path.realpath(__file__)) sys.path.append(os.path.join(script_dir, "..")) import serifxml3 if len(sys.argv) != 3: print("Usage: " + sys.argv[0] + " input-serifxml-file output-serifxml-file") sys.exit(1) input_file, output_file = sys.argv[1:] if os.path.exists(output_file): os.remove(output_file) doc = serifxml3.Document(input_file) doc.save(output_file) print("Reading input serifxml") i = open(input_file) print("Writing output serifxml") o = open(output_file) i_contents = i.read() o_contents = o.read() i.close() o.close() print("Checking") if i_contents.strip() != o_contents.strip(): print("Serifxml files differ") sys.exit(1) print("Serifxml files match")
21.684211
80
0.713592
# Read in serifxml then save it an make sure the files are # essentially identical import sys, os script_dir = os.path.dirname(os.path.realpath(__file__)) sys.path.append(os.path.join(script_dir, "..")) import serifxml3 if len(sys.argv) != 3: print("Usage: " + sys.argv[0] + " input-serifxml-file output-serifxml-file") sys.exit(1) input_file, output_file = sys.argv[1:] if os.path.exists(output_file): os.remove(output_file) doc = serifxml3.Document(input_file) doc.save(output_file) print("Reading input serifxml") i = open(input_file) print("Writing output serifxml") o = open(output_file) i_contents = i.read() o_contents = o.read() i.close() o.close() print("Checking") if i_contents.strip() != o_contents.strip(): print("Serifxml files differ") sys.exit(1) print("Serifxml files match")
0
0
0
fa60c271da2ff5f23a591f6ce737335abc7c261e
331
py
Python
src/kgmk/dsa/algebra/modular/matrix/dot/jit.py
kagemeka/python
486ce39d97360b61029527bacf00a87fdbcf552c
[ "MIT" ]
null
null
null
src/kgmk/dsa/algebra/modular/matrix/dot/jit.py
kagemeka/python
486ce39d97360b61029527bacf00a87fdbcf552c
[ "MIT" ]
null
null
null
src/kgmk/dsa/algebra/modular/matrix/dot/jit.py
kagemeka/python
486ce39d97360b61029527bacf00a87fdbcf552c
[ "MIT" ]
null
null
null
import numpy as np import numba as nb @nb.njit
18.388889
51
0.567976
import numpy as np import numba as nb @nb.njit def mod_matrix_dot( a: np.ndarray, b: np.ndarray, mod: int, ) -> np.ndarray: ha, wa = a.shape hb, wb = b.shape assert wa == hb c = np.zeros((ha, wb), np.int64) for i in range(ha): for j in range(wb): c[i, j] = np.sum(a[i] * b[:, j] % mod) % mod return c
261
0
22
8ae9ce3f0d275395b8f614a561a53d141570dcb2
707
py
Python
SeRe/tools/data_pre/filename2txt.py
Anny-Anny/SeRe
2483269c5b5b36673b8893bb026689d731226cb8
[ "MIT" ]
null
null
null
SeRe/tools/data_pre/filename2txt.py
Anny-Anny/SeRe
2483269c5b5b36673b8893bb026689d731226cb8
[ "MIT" ]
null
null
null
SeRe/tools/data_pre/filename2txt.py
Anny-Anny/SeRe
2483269c5b5b36673b8893bb026689d731226cb8
[ "MIT" ]
null
null
null
import os ROOT = '/home/xjw/Downloads/code/mmsegmentation-0.21.0/' def txt2filename(txt_path): """ @param txt_path: @return: 返回数据集中包含的所有图片的名称 """ data = [] with open(txt_path, 'r') as f: for ch in f.readlines(): data.append(ch.strip()) return data if __name__ == '__main__': filename2txt('/home/xjw/Downloads/code/mmsegmentation-0.21.0/data/xiangtan/images/validation', ROOT + 'SeRe/tools/data_pre/val.txt')
23.566667
98
0.592645
import os ROOT = '/home/xjw/Downloads/code/mmsegmentation-0.21.0/' def filename2txt(filepath, txt_path): with open(txt_path, 'w+') as f: for root, dirs, files in os.walk(filepath): for name in files: f.write(name.split(".")[0] + '\n') f.close() def txt2filename(txt_path): """ @param txt_path: @return: 返回数据集中包含的所有图片的名称 """ data = [] with open(txt_path, 'r') as f: for ch in f.readlines(): data.append(ch.strip()) return data if __name__ == '__main__': filename2txt('/home/xjw/Downloads/code/mmsegmentation-0.21.0/data/xiangtan/images/validation', ROOT + 'SeRe/tools/data_pre/val.txt')
200
0
23
e38cea4dfc6f41ac44fabb67e89d4f818b54bb37
1,013
py
Python
Python/Multiflex_set_binary_mode.py
Terabee/sample_codes
a58676f5e7fec1dfcacc5269515b3ef069b01ec7
[ "MIT" ]
13
2019-06-24T05:34:08.000Z
2022-01-16T08:37:37.000Z
Python/Multiflex_set_binary_mode.py
Terabee/sample_codes
a58676f5e7fec1dfcacc5269515b3ef069b01ec7
[ "MIT" ]
8
2019-08-28T17:30:23.000Z
2021-10-01T17:07:23.000Z
Python/Multiflex_set_binary_mode.py
Terabee/sample_codes
a58676f5e7fec1dfcacc5269515b3ef069b01ec7
[ "MIT" ]
10
2019-04-30T20:19:41.000Z
2021-02-10T19:32:39.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Example TeraRanger MultiFlex configuration script. For more information about how to use this script, please refer to this document: https://www.terabee.com/wp-content/uploads/2017/09/TR-MF-Python-ReadMe.pdf """ import sys import binascii import serial if __name__ == "__main__": if len(sys.argv) < 2: print '\n \n[ERROR] Correct usage $ python multiflex_binary.py port' sys.exit(1) port_name = sys.argv[1] multiflex = serial.Serial(port_name, 115200, timeout=5, writeTimeout=5) print 'Connected to TeraRanger MultiFlex' multiflex.flushInput() multiflex.flushOutput() multiflex.write(bytearray([0x00, 0x11, 0x02, 0x4C])) response = multiflex.read(16) response = binascii.hexlify(response) if response.find("52451100d4") != -1: print 'ACK' if response.find("524511ff27") != -1: print 'NACK' multiflex.close() sys.exit(0)
26.657895
81
0.642646
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Example TeraRanger MultiFlex configuration script. For more information about how to use this script, please refer to this document: https://www.terabee.com/wp-content/uploads/2017/09/TR-MF-Python-ReadMe.pdf """ import sys import binascii import serial if __name__ == "__main__": if len(sys.argv) < 2: print '\n \n[ERROR] Correct usage $ python multiflex_binary.py port' sys.exit(1) port_name = sys.argv[1] multiflex = serial.Serial(port_name, 115200, timeout=5, writeTimeout=5) print 'Connected to TeraRanger MultiFlex' multiflex.flushInput() multiflex.flushOutput() multiflex.write(bytearray([0x00, 0x11, 0x02, 0x4C])) response = multiflex.read(16) response = binascii.hexlify(response) if response.find("52451100d4") != -1: print 'ACK' if response.find("524511ff27") != -1: print 'NACK' multiflex.close() sys.exit(0)
0
0
0
aecbe0d40235ca0fe8d7b8b6e024663d65c7ef43
1,236
py
Python
homepage/migrations/0007_userprofile_follows.py
Andre-Azu/instagramclone
94906c7d2f88c24c156b19a96ab0edf619c67277
[ "Unlicense" ]
null
null
null
homepage/migrations/0007_userprofile_follows.py
Andre-Azu/instagramclone
94906c7d2f88c24c156b19a96ab0edf619c67277
[ "Unlicense" ]
null
null
null
homepage/migrations/0007_userprofile_follows.py
Andre-Azu/instagramclone
94906c7d2f88c24c156b19a96ab0edf619c67277
[ "Unlicense" ]
null
null
null
# Generated by Django 4.0 on 2021-12-15 07:28 from django.db import migrations, models import django.db.models.deletion
38.625
146
0.615696
# Generated by Django 4.0 on 2021-12-15 07:28 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('homepage', '0006_image_comments_image_likes'), ] operations = [ migrations.CreateModel( name='Userprofile', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('profile_picture', models.ImageField(default=None, upload_to='instagram')), ('bio', models.CharField(max_length=100)), ('username', models.CharField(max_length=15)), ], ), migrations.CreateModel( name='Follows', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('followed', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='followers', to='homepage.userprofile')), ('follower', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='following', to='homepage.userprofile')), ], ), ]
0
1,091
23
5cbfbd355f1a6d92f9d29c7c9a4593dc242bdb15
5,347
py
Python
gateapi-python/gate_api/models/options_underlying_ticker.py
jarenmt/IEOPUMP
220f7f612d299f7305e82fe6c33661e6871f2d86
[ "MIT" ]
null
null
null
gateapi-python/gate_api/models/options_underlying_ticker.py
jarenmt/IEOPUMP
220f7f612d299f7305e82fe6c33661e6871f2d86
[ "MIT" ]
null
null
null
gateapi-python/gate_api/models/options_underlying_ticker.py
jarenmt/IEOPUMP
220f7f612d299f7305e82fe6c33661e6871f2d86
[ "MIT" ]
null
null
null
# coding: utf-8 """ Gate API v4 Welcome to Gate.io API APIv4 provides spot, margin and futures trading operations. There are public APIs to retrieve the real-time market statistics, and private APIs which needs authentication to trade on user's behalf. # noqa: E501 Contact: support@mail.gate.io Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from gate_api.configuration import Configuration class OptionsUnderlyingTicker(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = {'trade_put': 'int', 'trade_call': 'int', 'index_price': 'str'} attribute_map = {'trade_put': 'trade_put', 'trade_call': 'trade_call', 'index_price': 'index_price'} def __init__(self, trade_put=None, trade_call=None, index_price=None, local_vars_configuration=None): # noqa: E501 # type: (int, int, str, Configuration) -> None """OptionsUnderlyingTicker - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._trade_put = None self._trade_call = None self._index_price = None self.discriminator = None if trade_put is not None: self.trade_put = trade_put if trade_call is not None: self.trade_call = trade_call if index_price is not None: self.index_price = index_price @property def trade_put(self): """Gets the trade_put of this OptionsUnderlyingTicker. # noqa: E501 Total put options trades amount in last 24h # noqa: E501 :return: The trade_put of this OptionsUnderlyingTicker. # noqa: E501 :rtype: int """ return self._trade_put @trade_put.setter def trade_put(self, trade_put): """Sets the trade_put of this OptionsUnderlyingTicker. Total put options trades amount in last 24h # noqa: E501 :param trade_put: The trade_put of this OptionsUnderlyingTicker. # noqa: E501 :type: int """ self._trade_put = trade_put @property def trade_call(self): """Gets the trade_call of this OptionsUnderlyingTicker. # noqa: E501 Total call options trades amount in last 24h # noqa: E501 :return: The trade_call of this OptionsUnderlyingTicker. # noqa: E501 :rtype: int """ return self._trade_call @trade_call.setter def trade_call(self, trade_call): """Sets the trade_call of this OptionsUnderlyingTicker. Total call options trades amount in last 24h # noqa: E501 :param trade_call: The trade_call of this OptionsUnderlyingTicker. # noqa: E501 :type: int """ self._trade_call = trade_call @property def index_price(self): """Gets the index_price of this OptionsUnderlyingTicker. # noqa: E501 Index price # noqa: E501 :return: The index_price of this OptionsUnderlyingTicker. # noqa: E501 :rtype: str """ return self._index_price @index_price.setter def index_price(self, index_price): """Sets the index_price of this OptionsUnderlyingTicker. Index price # noqa: E501 :param index_price: The index_price of this OptionsUnderlyingTicker. # noqa: E501 :type: str """ self._index_price = index_price def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map(lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value)) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict( map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items(), ) ) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, OptionsUnderlyingTicker): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, OptionsUnderlyingTicker): return True return self.to_dict() != other.to_dict()
31.452941
239
0.616607
# coding: utf-8 """ Gate API v4 Welcome to Gate.io API APIv4 provides spot, margin and futures trading operations. There are public APIs to retrieve the real-time market statistics, and private APIs which needs authentication to trade on user's behalf. # noqa: E501 Contact: support@mail.gate.io Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from gate_api.configuration import Configuration class OptionsUnderlyingTicker(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = {'trade_put': 'int', 'trade_call': 'int', 'index_price': 'str'} attribute_map = {'trade_put': 'trade_put', 'trade_call': 'trade_call', 'index_price': 'index_price'} def __init__(self, trade_put=None, trade_call=None, index_price=None, local_vars_configuration=None): # noqa: E501 # type: (int, int, str, Configuration) -> None """OptionsUnderlyingTicker - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._trade_put = None self._trade_call = None self._index_price = None self.discriminator = None if trade_put is not None: self.trade_put = trade_put if trade_call is not None: self.trade_call = trade_call if index_price is not None: self.index_price = index_price @property def trade_put(self): """Gets the trade_put of this OptionsUnderlyingTicker. # noqa: E501 Total put options trades amount in last 24h # noqa: E501 :return: The trade_put of this OptionsUnderlyingTicker. # noqa: E501 :rtype: int """ return self._trade_put @trade_put.setter def trade_put(self, trade_put): """Sets the trade_put of this OptionsUnderlyingTicker. Total put options trades amount in last 24h # noqa: E501 :param trade_put: The trade_put of this OptionsUnderlyingTicker. # noqa: E501 :type: int """ self._trade_put = trade_put @property def trade_call(self): """Gets the trade_call of this OptionsUnderlyingTicker. # noqa: E501 Total call options trades amount in last 24h # noqa: E501 :return: The trade_call of this OptionsUnderlyingTicker. # noqa: E501 :rtype: int """ return self._trade_call @trade_call.setter def trade_call(self, trade_call): """Sets the trade_call of this OptionsUnderlyingTicker. Total call options trades amount in last 24h # noqa: E501 :param trade_call: The trade_call of this OptionsUnderlyingTicker. # noqa: E501 :type: int """ self._trade_call = trade_call @property def index_price(self): """Gets the index_price of this OptionsUnderlyingTicker. # noqa: E501 Index price # noqa: E501 :return: The index_price of this OptionsUnderlyingTicker. # noqa: E501 :rtype: str """ return self._index_price @index_price.setter def index_price(self, index_price): """Sets the index_price of this OptionsUnderlyingTicker. Index price # noqa: E501 :param index_price: The index_price of this OptionsUnderlyingTicker. # noqa: E501 :type: str """ self._index_price = index_price def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map(lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value)) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict( map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items(), ) ) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, OptionsUnderlyingTicker): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, OptionsUnderlyingTicker): return True return self.to_dict() != other.to_dict()
0
0
0
f5b61b7592684510eb43bc9ae6e4136074f3f566
577
py
Python
accounts/admin.py
GermanMtzmx/mailtest
9ec3f51344e6968698f8313ef987fca4d2907cdf
[ "Xnet", "X11" ]
null
null
null
accounts/admin.py
GermanMtzmx/mailtest
9ec3f51344e6968698f8313ef987fca4d2907cdf
[ "Xnet", "X11" ]
null
null
null
accounts/admin.py
GermanMtzmx/mailtest
9ec3f51344e6968698f8313ef987fca4d2907cdf
[ "Xnet", "X11" ]
null
null
null
from django.contrib import admin class UserAdmin(admin.ModelAdmin): """User admin""" exclude = ('renewed',) list_display = ('username', 'email', 'isActive', 'created', 'modified') list_filter = ('isActive',) search_fields = ('firstName', 'lastName', 'username', 'email') class SocialTokenAdmin(admin.ModelAdmin): """Social token admin""" list_display = ('token', 'social', 'user', 'created') search_fields = ('token',) #admin.site.register(User, UserAdmin) #admin.site.register(SocialToken, SocialTokenAdmin)
19.896552
51
0.637782
from django.contrib import admin class UserAdmin(admin.ModelAdmin): """User admin""" exclude = ('renewed',) list_display = ('username', 'email', 'isActive', 'created', 'modified') list_filter = ('isActive',) search_fields = ('firstName', 'lastName', 'username', 'email') class SocialTokenAdmin(admin.ModelAdmin): """Social token admin""" list_display = ('token', 'social', 'user', 'created') search_fields = ('token',) #admin.site.register(User, UserAdmin) #admin.site.register(SocialToken, SocialTokenAdmin)
0
0
0
b2aa72705f3ef23ab152b930ee038b7c4589011a
2,545
py
Python
J1939_PGN/J1939_PGN.py
CSS-Electronics/j1939_pgn
e268e1b2713c9f0d8634dda30e6493235eee5e56
[ "MIT" ]
1
2021-06-22T07:24:08.000Z
2021-06-22T07:24:08.000Z
J1939_PGN/J1939_PGN.py
CSS-Electronics/j1939_pgn
e268e1b2713c9f0d8634dda30e6493235eee5e56
[ "MIT" ]
null
null
null
J1939_PGN/J1939_PGN.py
CSS-Electronics/j1939_pgn
e268e1b2713c9f0d8634dda30e6493235eee5e56
[ "MIT" ]
null
null
null
from enum import Enum, auto class J1939_PDU(Enum): """ J1939 PDU type """ PDU1 = auto() PDU2 = auto() class J1939_PGN: """ J1939 PGN class. """ _id = None def __init__(self, msg_id: int = None, msg_pgn: int = None): """ Takes either a message ID or PGN :param msg_id: CAN-bus message ID :param msg_pgn: CAN-bus message J1939 PGN """ if msg_id is not None: self._id = msg_id elif msg_pgn is not None: self._id = msg_pgn << 8 @property def p(self) -> int: """ Priority :return: J1939 priority value """ return (self._id >> 26) & 0x7 @property def r(self) -> int: """ Reserved bit :return: Reserved bit value """ return (self._id >> 25) & 0x1 @property def dp(self) -> int: """ Data Page :return: Data Page value """ return (self._id >> 24) & 0x1 @property def pf(self) -> int: """ PDU format :return: PDU format value """ return (self._id >> 16) & 0xFF @property def ps(self) -> int: """ PDU Specific :return: PDU specific value """ return (self._id >> 8) & 0xFF @property def sa(self) -> int: """ Source Address :return: Source Address value """ return self._id & 0xFF @property def pdu(self) -> J1939_PDU: """ PDU type :return: PDU type as J1939_PDU """ if self.pf < 240: return J1939_PDU.PDU1 else: return J1939_PDU.PDU2 @property def id(self) -> int: """ Message ID :return: Message ID value """ return self._id @property def pgn(self): """ Message PGN :return: Message PGN value """ if self.pdu is J1939_PDU.PDU1: # Clear target address return (self._id >> 8) & 0x3FF00 else: return (self._id >> 8) & 0x3FFFF
21.752137
64
0.46169
from enum import Enum, auto class J1939_PDU(Enum): """ J1939 PDU type """ PDU1 = auto() PDU2 = auto() class J1939_PGN: """ J1939 PGN class. """ _id = None def __init__(self, msg_id: int = None, msg_pgn: int = None): """ Takes either a message ID or PGN :param msg_id: CAN-bus message ID :param msg_pgn: CAN-bus message J1939 PGN """ if msg_id is not None: self._id = msg_id elif msg_pgn is not None: self._id = msg_pgn << 8 @property def p(self) -> int: """ Priority :return: J1939 priority value """ return (self._id >> 26) & 0x7 @property def r(self) -> int: """ Reserved bit :return: Reserved bit value """ return (self._id >> 25) & 0x1 @property def dp(self) -> int: """ Data Page :return: Data Page value """ return (self._id >> 24) & 0x1 @property def pf(self) -> int: """ PDU format :return: PDU format value """ return (self._id >> 16) & 0xFF @property def ps(self) -> int: """ PDU Specific :return: PDU specific value """ return (self._id >> 8) & 0xFF @property def sa(self) -> int: """ Source Address :return: Source Address value """ return self._id & 0xFF @property def pdu(self) -> J1939_PDU: """ PDU type :return: PDU type as J1939_PDU """ if self.pf < 240: return J1939_PDU.PDU1 else: return J1939_PDU.PDU2 @property def id(self) -> int: """ Message ID :return: Message ID value """ return self._id @property def pgn(self): """ Message PGN :return: Message PGN value """ if self.pdu is J1939_PDU.PDU1: # Clear target address return (self._id >> 8) & 0x3FF00 else: return (self._id >> 8) & 0x3FFFF def __str__(self): return f"ID: 0x{self.id:08X} ({self.id:>9}), " \ f"P: 0x{self.p:01X}, " \ f"DP: 0x{self.dp:01X}, " \ f"PF: 0x{self.pf:02X} ({self.pf:>3}), " \ f"PS: 0x{self.ps:02X} ({self.ps:>3}), " \ f"SA: 0x{self.sa:02X} ({self.sa:>3}), " \ f"PGN: 0x{self.pgn:05X} ({self.pgn:>6})"
363
0
27
13568121b4814c3d81c59418c50fdd6901e9fb77
379
py
Python
exercises/exercise26.py
djangojeng-e/TIL
bdbe1dfb6ebc48b89067fddda195227cca64b8dc
[ "MIT" ]
null
null
null
exercises/exercise26.py
djangojeng-e/TIL
bdbe1dfb6ebc48b89067fddda195227cca64b8dc
[ "MIT" ]
null
null
null
exercises/exercise26.py
djangojeng-e/TIL
bdbe1dfb6ebc48b89067fddda195227cca64b8dc
[ "MIT" ]
null
null
null
birthday_dictionary = { "Albert Einstein" : "1/12/1912", "Jeong Eun Kim" : "21/12/1983", "Djangojeng-e" : "18/12/1986", "Django": "01/01/2005" } name = input("Who's Birthday do you want to look up?") if name in birthday_dictionary: print(f'{name}s birthday is {birthday_dictionary[name]}') else: print("We dont' have {}'s birthday".format(name))
21.055556
62
0.630607
birthday_dictionary = { "Albert Einstein" : "1/12/1912", "Jeong Eun Kim" : "21/12/1983", "Djangojeng-e" : "18/12/1986", "Django": "01/01/2005" } name = input("Who's Birthday do you want to look up?") if name in birthday_dictionary: print(f'{name}s birthday is {birthday_dictionary[name]}') else: print("We dont' have {}'s birthday".format(name))
0
0
0
49d3502c205ec9a70b70b5cd9b2d3a0fa593abcc
1,621
py
Python
Dice Rolling Simulator/dice_game.py
Hongyanlee0614/Cool-Python-Projects
4e35822b696674221636ede1b86acc0793305c18
[ "MIT" ]
null
null
null
Dice Rolling Simulator/dice_game.py
Hongyanlee0614/Cool-Python-Projects
4e35822b696674221636ede1b86acc0793305c18
[ "MIT" ]
null
null
null
Dice Rolling Simulator/dice_game.py
Hongyanlee0614/Cool-Python-Projects
4e35822b696674221636ede1b86acc0793305c18
[ "MIT" ]
null
null
null
import tkinter # for GUI from PIL import Image, ImageTk # operation regarding image import random # toplevel widget which represents the main window of an application root = tkinter.Tk() root.geometry('400x400') root.title('Data Flair Roll the Dice') # Adding label into the frame. Here we skip a line l0 = tkinter.Label(root, text="") l0.pack() # adding label with different font and formatting l1 = tkinter.Label(root, text="Hello from Data Flair!", fg="light green", bg="dark green", font="Helvetica 16 bold italic") l1.pack() # images dice = ['die1.png', 'die2.png', 'die3.png', 'die4.png', 'die5.png', 'die6.png'] # simulating the dice with random numbers between 0 to 6 and generating image image1 = ImageTk.PhotoImage(Image.open(random.choice(dice))) # construct a label widget for image label1 = tkinter.Label(root, image=image1) label1.image = image1 # packing a widget in the parent widget # expand=True enables image to be centered no matter how we resize the window label1.pack(expand=True) # function activated by button # adding button, and command will use rolling_dice function button = tkinter.Button(root, text='Roll the Dice', fg='blue', command=rolling_dice) # pack a widget in the parent widget button.pack(expand=True) # call the mainloop of Tk # keeps window open root.mainloop()
30.018519
80
0.687847
import tkinter # for GUI from PIL import Image, ImageTk # operation regarding image import random # toplevel widget which represents the main window of an application root = tkinter.Tk() root.geometry('400x400') root.title('Data Flair Roll the Dice') # Adding label into the frame. Here we skip a line l0 = tkinter.Label(root, text="") l0.pack() # adding label with different font and formatting l1 = tkinter.Label(root, text="Hello from Data Flair!", fg="light green", bg="dark green", font="Helvetica 16 bold italic") l1.pack() # images dice = ['die1.png', 'die2.png', 'die3.png', 'die4.png', 'die5.png', 'die6.png'] # simulating the dice with random numbers between 0 to 6 and generating image image1 = ImageTk.PhotoImage(Image.open(random.choice(dice))) # construct a label widget for image label1 = tkinter.Label(root, image=image1) label1.image = image1 # packing a widget in the parent widget # expand=True enables image to be centered no matter how we resize the window label1.pack(expand=True) # function activated by button def rolling_dice(): image1 = ImageTk.PhotoImage(Image.open(random.choice(dice))) # update image label1.configure(image=image1) # keep a reference label1.image = image1 # adding button, and command will use rolling_dice function button = tkinter.Button(root, text='Roll the Dice', fg='blue', command=rolling_dice) # pack a widget in the parent widget button.pack(expand=True) # call the mainloop of Tk # keeps window open root.mainloop()
171
0
25
e1bc973a11687fa3e830c8942a5ed3120eac2208
197
py
Python
fetch_gitignore/__init__.py
clickyotomy/git-fetch-gitignore
f534abf491f15ac85540fcb6ff5c6a9837c9b14e
[ "MIT" ]
3
2016-09-16T12:19:36.000Z
2019-08-08T20:24:57.000Z
fetch_gitignore/__init__.py
clickyotomy/git-fetch-gitignore
f534abf491f15ac85540fcb6ff5c6a9837c9b14e
[ "MIT" ]
null
null
null
fetch_gitignore/__init__.py
clickyotomy/git-fetch-gitignore
f534abf491f15ac85540fcb6ff5c6a9837c9b14e
[ "MIT" ]
null
null
null
#! /usr/bin/env python2.7 ''' __init__ file for fetch_gitignore. ''' __author__ = "Srinidhi Kaushik" __license__ = "MIT" __version__ = "0.0.1" __email__ = "clickyotomy@users.noreply.github.com"
16.416667
50
0.715736
#! /usr/bin/env python2.7 ''' __init__ file for fetch_gitignore. ''' __author__ = "Srinidhi Kaushik" __license__ = "MIT" __version__ = "0.0.1" __email__ = "clickyotomy@users.noreply.github.com"
0
0
0
2a4e2a2f19d2573e61fe39bb7dc94a42dc9ed626
3,030
py
Python
lista07_listaEncadeada/pylista07_questao06.py
mayararysia/ESTD
65aa8816aa8773066201cb410b02c1cb72ad5611
[ "MIT" ]
null
null
null
lista07_listaEncadeada/pylista07_questao06.py
mayararysia/ESTD
65aa8816aa8773066201cb410b02c1cb72ad5611
[ "MIT" ]
null
null
null
lista07_listaEncadeada/pylista07_questao06.py
mayararysia/ESTD
65aa8816aa8773066201cb410b02c1cb72ad5611
[ "MIT" ]
null
null
null
""" 06. Escreva um método show() para escrever toda a lista. Exemplo: lista = ListaOrdenada(); lista.append(3); lista.append(2); lista.show() imprime: [2,3] """ #Implementação da Classe Noh #Lista não ordenada: if __name__ == '__main__': minha_lista = ListaOrdenada() #exemplo de uso print(minha_lista.isEmpty()) minha_lista.append(8) minha_lista.append(2) minha_lista.append(9) print(minha_lista.isEmpty()) print("Size: ", minha_lista.size()) print(minha_lista.show())
23.129771
86
0.593729
""" 06. Escreva um método show() para escrever toda a lista. Exemplo: lista = ListaOrdenada(); lista.append(3); lista.append(2); lista.show() imprime: [2,3] """ #Implementação da Classe Noh class Noh: def __init__(self,valor_inicial): self._dados = valor_inicial self._proximo = None def getData(self): return self._dados def getNext(self): return self._proximo def setData(self, novo_valor): self._dados = novo_valor def setNext(self, novo_proximo): self._proximo = novo_proximo #Lista não ordenada: class ListaOrdenada: def __init__(self): #construtor self.head = None self.final = None def isEmpty(self): #<<<< return self.head == None def append(self, item): temp = Noh(item) if self.head == None: temp.setNext(self.head) self.head = temp if self.final == None: self.final = self.head else: self.final.setNext(temp) self.final = temp def add(self,item): atual = self.head anterior = None parar = False while atual != None and not parar: if atual.getData() > item: parar = True else: anterior = atual atual = atual.getNext() temp = Noh(item) if anterior == None: temp.setNext(self.head) self.head = temp else: temp.setNext(atual) anterior.setNext(temp) def size(self): atual = self.head contador = 0 while atual != None: contador = contador + 1 atual = atual.getNext() return contador def remove(self, item): atual = self.head anterior = None encontrou = False while not encontrou: #percorre a lista if atual.getData() == item: encontrou = True else: anterior = atual atual = atual.getNext() if anterior == None: self.head = atual.getNext() else: anterior.setNext(atual.getNext()) def search(self,item): atual = self.head #atual == temp encontrou = False parar = False while atual != None and not encontrou and not parar: if atual.getData() == item: encontrou = True else: if atual.getData() > item: parar = True else: atual = atual.getNext() return encontrou def show(self): #show if self.isEmpty(): print("Lista Vazia!") else: lista = [] aux = self.head while aux.getData()!= None: lista.append(aux.getData()) if aux.getNext() == None: break aux = aux.getNext() tam = len(lista) j=1 for i in range(tam-1): if j == (tam-1): break if lista[i]>lista[j]: aux = lista[i] lista[i] = lista[j] lista[j] = aux j = j+1 return lista if __name__ == '__main__': minha_lista = ListaOrdenada() #exemplo de uso print(minha_lista.isEmpty()) minha_lista.append(8) minha_lista.append(2) minha_lista.append(9) print(minha_lista.isEmpty()) print("Size: ", minha_lista.size()) print(minha_lista.show())
2,181
-12
371
b2524167a78952f075171b4993c8cca048abf2dd
901
py
Python
experiment/hyper-params-search/hps/common/Common.py
GyunHyukLee/GoldMine
93d765934cd8c4e152f12dc1a9677bd77ea64f28
[ "Apache-2.0" ]
13
2020-06-01T06:31:01.000Z
2021-03-08T04:57:01.000Z
experiment/hyper-params-search/hps/common/Common.py
GyunHyukLee/GoldMine
93d765934cd8c4e152f12dc1a9677bd77ea64f28
[ "Apache-2.0" ]
1
2020-10-13T08:56:38.000Z
2020-10-13T08:56:38.000Z
experiment/hyper-params-search/hps/common/Common.py
GyunHyukLee/GoldMine
93d765934cd8c4e152f12dc1a9677bd77ea64f28
[ "Apache-2.0" ]
7
2020-06-03T01:46:22.000Z
2021-03-08T04:57:04.000Z
# -*- coding: utf-8 -*- # Author : Jin Kim # e-mail : jinkim@seculayer.com # Powered by Seculayer © 2020 Solution Development 2 Team, R&D Center. import os from hps.common.Constants import Constants from hps.utils.Singleton import Singleton from hps.utils.MPLogger import MPLogger from hps.utils.CommonUtils import CommonUtils # class : Common
32.178571
93
0.7303
# -*- coding: utf-8 -*- # Author : Jin Kim # e-mail : jinkim@seculayer.com # Powered by Seculayer © 2020 Solution Development 2 Team, R&D Center. import os from hps.common.Constants import Constants from hps.utils.Singleton import Singleton from hps.utils.MPLogger import MPLogger from hps.utils.CommonUtils import CommonUtils # class : Common class Common(metaclass=Singleton): __FILE_REAL_PATH = os.path.dirname(os.path.realpath(__file__)) # make directories CommonUtils.mkdir(Constants.DIR_DATA) CommonUtils.mkdir(Constants.DIR_PARAMS) # make multi-process logger __DIR_LOG = __FILE_REAL_PATH + "/../../" + Constants.DEFAULT.get("LOG_CONFIG", "LOG_DIR") CommonUtils.mkdir(__DIR_LOG) LOGGER = MPLogger( log_dir=__DIR_LOG, log_name=Constants.DEFAULT.get("LOG_CONFIG", "LOG_NAME"), log_level=Constants.DEFAULT.get("LOG_CONFIG", "LOG_LEVEL") )
0
531
22
57d9b30c8c5f267a7385f0b7589bbb8355313743
2,306
py
Python
posto/webhook/auth.py
tefra/posto
95cc39348f0c59339d9b7038d8640510849a2805
[ "MIT" ]
null
null
null
posto/webhook/auth.py
tefra/posto
95cc39348f0c59339d9b7038d8640510849a2805
[ "MIT" ]
1
2022-01-27T09:37:28.000Z
2022-01-27T09:40:50.000Z
posto/webhook/auth.py
tefra/posto
95cc39348f0c59339d9b7038d8640510849a2805
[ "MIT" ]
null
null
null
import functools import hmac from typing import Any from typing import Callable from typing import Optional from flask import abort from flask import current_app from flask import request from werkzeug.exceptions import ServiceUnavailable def authorize_source() -> Callable: """Detect the source from the headers and authenticate by the config secret.""" return decorator def authorize_gitlab() -> Optional[str]: """ Check gitlab header token is correct and return the source name. The token is raw because gitlab only allows for ssl endpoints. """ source = "gitlab" if get_secret(source) == request.headers["X-Gitlab-Token"]: return source return None def authorize_github() -> Optional[str]: """ Verify github signature matches our secret with the payload and return the source name. Github uses HMAC signature verification, encode the payload with the secret """ source = "github" secret = get_secret(source) signature = request.headers["X-Hub-Signature"] signature_prefix = "sha1=" if not signature.startswith(signature_prefix): return None hmac_ = hmac.new(secret.encode("UTF-8"), msg=request.data, digestmod="sha1") calculated_sig = signature_prefix + hmac_.hexdigest() if not hmac.compare_digest(signature, calculated_sig): return None return source def get_secret(source: str) -> str: """Get the secret key from config by the source or raise an exception.""" secret = current_app.config.get(f"{source.upper()}_SECRET", None) if secret is None: raise ServiceUnavailable(f"Missing {source} secret") return secret __PARSERS__ = { "X-Gitlab-Token": authorize_gitlab, "X-Hub-Signature": authorize_github, }
25.622222
80
0.645707
import functools import hmac from typing import Any from typing import Callable from typing import Optional from flask import abort from flask import current_app from flask import request from werkzeug.exceptions import ServiceUnavailable def authorize_source() -> Callable: """Detect the source from the headers and authenticate by the config secret.""" def decorator(fn: Callable) -> Callable: @functools.wraps(fn) def wrapper(*args: Any, **kwargs: Any) -> Any: source = next( ( authorize_func() for name, authorize_func in __PARSERS__.items() if name in request.headers ), None, ) if source is None: abort(401) return fn(*args, source=source, **kwargs) return wrapper return decorator def authorize_gitlab() -> Optional[str]: """ Check gitlab header token is correct and return the source name. The token is raw because gitlab only allows for ssl endpoints. """ source = "gitlab" if get_secret(source) == request.headers["X-Gitlab-Token"]: return source return None def authorize_github() -> Optional[str]: """ Verify github signature matches our secret with the payload and return the source name. Github uses HMAC signature verification, encode the payload with the secret """ source = "github" secret = get_secret(source) signature = request.headers["X-Hub-Signature"] signature_prefix = "sha1=" if not signature.startswith(signature_prefix): return None hmac_ = hmac.new(secret.encode("UTF-8"), msg=request.data, digestmod="sha1") calculated_sig = signature_prefix + hmac_.hexdigest() if not hmac.compare_digest(signature, calculated_sig): return None return source def get_secret(source: str) -> str: """Get the secret key from config by the source or raise an exception.""" secret = current_app.config.get(f"{source.upper()}_SECRET", None) if secret is None: raise ServiceUnavailable(f"Missing {source} secret") return secret __PARSERS__ = { "X-Gitlab-Token": authorize_gitlab, "X-Hub-Signature": authorize_github, }
492
0
27
e509428d899feeca516dab5cb1e43ec7ec393808
15,280
py
Python
python/pysvso/optimizers/icp.py
mfkiwl/SEMANTIC_VISUAL_SUPPORTED_ODEMETRY
2249bf358f51b337eb52a347ea7d46bff0654576
[ "Apache-2.0" ]
191
2020-07-01T11:57:17.000Z
2022-03-23T12:40:43.000Z
python/pysvso/optimizers/icp.py
mfkiwl/SEMANTIC_VISUAL_SUPPORTED_ODEMETRY
2249bf358f51b337eb52a347ea7d46bff0654576
[ "Apache-2.0" ]
10
2020-07-06T12:41:51.000Z
2022-02-09T23:43:11.000Z
python/pysvso/optimizers/icp.py
mfkiwl/SEMANTIC_VISUAL_SUPPORTED_ODEMETRY
2249bf358f51b337eb52a347ea7d46bff0654576
[ "Apache-2.0" ]
45
2020-07-01T13:31:20.000Z
2022-02-03T07:21:42.000Z
import numpy as np from enum import Enum from pysvso.lib.maths.rotation import Euler, Quaternion, rotation_matrix, dRx, dRy, dRz from scipy.optimize import fmin_bfgs from scipy.optimize import fmin from scipy.optimize import minimize from scipy.optimize import approx_fprime # when point cloud is parse from sklearn.neighbors import NearestNeighbors # see FLANN manual https://www.cs.ubc.ca/research/flann/uploads/FLANN/flann_manual-1.8.4.pdf # remember to run 2to3 upon root of the source when you complete downloading the codes! from pyflann import * import numpy as np # used to build computation graph with import tensorflow.compat.v1 as tf tf.disable_v2_behavior() import tensorflow_graphics as tfg rotation_matrix_3d = tfg.geometry.transformation.rotation_matrix_3d # Lie Algebra ICP solver # The algorithm was first implemented by Lei (yiak.wy@gmail.com) in C++ in later of 2019 and reimplemented in python in 2020 # you should not use this algorithm without consent of Lei in any form and purposes. # ALL RIGHTS RESERVED # Points are very sparse, we don't have to do random sampling
30.499002
142
0.532199
import numpy as np from enum import Enum from pysvso.lib.maths.rotation import Euler, Quaternion, rotation_matrix, dRx, dRy, dRz from scipy.optimize import fmin_bfgs from scipy.optimize import fmin from scipy.optimize import minimize from scipy.optimize import approx_fprime # when point cloud is parse from sklearn.neighbors import NearestNeighbors # see FLANN manual https://www.cs.ubc.ca/research/flann/uploads/FLANN/flann_manual-1.8.4.pdf # remember to run 2to3 upon root of the source when you complete downloading the codes! from pyflann import * import numpy as np # used to build computation graph with import tensorflow.compat.v1 as tf tf.disable_v2_behavior() import tensorflow_graphics as tfg rotation_matrix_3d = tfg.geometry.transformation.rotation_matrix_3d class ICP: class Algorithm(Enum): POINT_POINT = 1 POINT_PLANE = 2 # G-ICP def __init__(self, algorithm=None): self.algorithm = algorithm or ICP.Algorithm.POINT_POINT # self.euler = Euler(0, 0, 0) # self.R = self.euler.R self.t = np.zeros((3, 1)) # self.max_iterations = 3 # self.USE_GRADIENT = False # self.HAND_MADE_OPT = True def transform(self, pcloud_src, R, t): N = pcloud_src.shape[0] matl = pcloud_src.T matl = R.dot(matl) + t return matl.T # @todo : TODO estimate transformation [R|t] between two points cloud def costImpl(self, x, pcloud_src, pcloud_dest): # print("x.shape: ", x.shape) N = pcloud_src.shape[0] assert (pcloud_src.shape == pcloud_dest.shape) R, t = self._get_pose(x) matl = pcloud_src.T # 3 * N matl = R.dot(matl) + t dx = matl.T - pcloud_dest # N = dx.shape[0] # _sum = 0. # for i in range(N): # v = dx[i].reshape((3,1)) # _sum += v.T.dot(v)[0,0] # pass _sum = np.sum(np.diag(np.dot(dx, dx.T))) _sum /= N return _sum # @todo : TODO # @state : DEPREACTED see "jac_mat" and "_optimize" # reference: g2o/types/icp/types/types_icp.cpp # I have tried autograd by HIPS from Harvard University. However, it doesn't work. # Supprisingly, tensorflow computes a reasonable gradient. def jac_flow(self, x, pcloud_src, pcloud_dest): """ Author : LEI WANG (yiakwy@gmail.com) Date : Jun 2, 2020 p* = R*p + t = [R|t]*p partial dp* / partial dt.T ~ I (partial d P* / dt1 = 0 + [1, 0, 0].T) (parital d P* / dt2 = 0 + [0, 1, 0].T) (partial d P* / dt3 = 0 + [0, 0, 1].T) In matrix form: J ~ 3*6 matrix """ # using computing graph N = pcloud_src.shape[0] assert (pcloud_src.shape == pcloud_dest.shape) R0, t0 = self._get_pose(x) rotation_matrix_3d = tfg.geometry.tranformation.rotation_matrix_3d # tf variables pcloud_src = tf.Variable(pcloud_src) pcloud_dest = tf.Variable(pcloud_dest) # R = tf.constant(R0, dtype=tf.float64) angle = tf.constant(np.array([x[0], x[1], x[2]])) t = tf.constant(t0, dtype=tf.float64) with tf.GradientTape(persistent=True) as tape: tape.watch(angle) # tape.watch(R) tape.watch(t) _T = tf.transpose R = rotation_matrix_3d.from_euler(angle) matl = _T(pcloud_src) matl = _T(tf.matmul(R, matl) + t) dx = matl - pcloud_dest _sum = tf.reduce_sum(tf.linalg.diag_part(tf.matmul(dx, _T(dx)))) _sum /= N dTheta = tape.gradient(_sum, angle) # dR = tape.gradient(_sum, R) dt = tape.gradient(_sum, t) # R1 = R0 + dR * step # t1 = t0 + dt * step # euler = Euler.fromMatrix(R1) # grad = np.array([ # euler.roll, # euler.yaw, # euler.pitch, # t1[0], # t1[1], # t1[2] # ]) - estimated_pose grad = np.array([ dTheta[0], dTheta[1], dTheta[2], dt[0], dt[1], dt[2] ]) del tape return grad pass # @todo : TODO def hess(self, x, pcloud_src, pcloud_dest): pass # @todo : TODO def check_gradient(self, x, pcloud_src, pcloud_dest): pass # @todo : TODO def jac_se3(self, x, pcloud_src, pcloud_dest): # using computing graph N = pcloud_src.shape[0] assert (pcloud_src.shape == pcloud_dest.shape) R0, t0 = self._get_pose(x) matl = pcloud_src.T # 3 * N matl = R0.dot(matl) + t0 dx = matl.T - pcloud_dest # ==== Rx = rotation_matrix(x[3], [1, 0, 0])[:3, :3] Ry = rotation_matrix(x[4], [0, 1, 0])[:3, :3] Rz = rotation_matrix(x[5], [0, 0, 1])[:3, :3] dRx_ = dRx(Rx) dRy_ = dRy(Ry) dRz_ = dRz(Rz) # hard coded J = np.zeros((3, 6, N)) J[0:3, 0:3, :] = np.eye(3)[:, :, np.newaxis] temp = dRx_.dot(Ry.dot(Rz.dot(pcloud_src.T))) print("temp shape:", temp.shape) J[0:3, 3, :] = temp J[0:3, 4, :] = Rx.dot(dRy_.dot(Rz.dot(pcloud_src.T))) J[0:3, 5, :] = Rx.dot(Ry.dot(dRz_.dot(pcloud_src.T))) return dx, J # implemented and refactored based on the algorithm elabrated in the following talk # ref : dis.uniroma1.it/~labrococo/tutorial_icra_2016/icra16_slam_tutorial_grisetti.pdf # note : does not work as expected for the moment, Jun 16, 2020 def jac_se3_manifold(self, x, pcloud_src, pcloud_dest): # using computing graph N = pcloud_src.shape[0] assert (pcloud_src.shape == pcloud_dest.shape) R0, t0 = self._get_pose(x) matl = pcloud_src.T # 3 * N matl = R0.dot(matl) + t0 dx = matl.T - pcloud_dest # ==== # hard coded J = np.zeros((3, 6, N)) J[0:3, 0:3, :] = np.eye(3)[:, :, np.newaxis] def _Skew(pred): skew = np.zeros((3, 3, N)) for i in range(N): v = pred[:, i].reshape((3,)) skew[:, :, i] = np.array([ [0., -v[2], v[1]], [v[2], 0., -v[0]], [-v[1], v[0], 0.] ]) return skew J[0:3, 3:6, :] = _Skew(matl) return dx, J # implemented and refactored based on the algorithm elabrated in the following talk # ref : dis.uniroma1.it/~labrococo/tutorial_icra_2016/icra16_slam_tutorial_grisetti.pdf # note : does not work as expected for the moment, Jun 16, 2020 def _minimize(self, pcloud_src, pcloud_dest, estimated_pose, max_iter=10): # find optimal H such that incremental function 0 = H * dx holds x = estimated_pose.copy() chi_stats = np.zeros((max_iter,)) for k in range(max_iter): H = np.zeros((6, 6)) b = np.zeros((6, 1)) chi = 0. # dx, J = self.jac_se3(x, pcloud_src, pcloud_dest) # manifold method dx, J = self.jac_se3_manifold(x, pcloud_src, pcloud_dest) N = pcloud_src.shape[0] for i in range(N): dxi = dx[i, :].reshape((3, 1)) err = dxi.T.dot(dxi) print("err_i : %f" % err) if err > 1.: continue # print("dxi shape:", dxi) Ji = J[:, :, i] # print("Ji shape:", Ji) H += Ji.T.dot(Ji) temp = Ji.T.dot(dxi) # print("temp shape:", temp) b += temp chi += err chi /= N chi_stats[k] = chi # might produce huge error here delta = -np.linalg.solve(H, b).reshape((6,)) # x += delta # manifold method R1, t1 = self._get_pose(delta) R0, t0 = self._get_pose(x) R = R1.dot(R0) t = R1.dot(t0) + t1 euler = Euler.fromMatrix(R) x = np.array([ euler.roll, euler.yaw, euler.pitch, t[0][0], t[1][0], t[2][0]]) print("Iter %d, chi %f, delta %s, x %s" % (k, chi, delta, x)) return x, chi_stats[-1] pass # see github.com/gramaziokohler/icp/blob/master/icp.py # used for initial estimation of the R, t, this will make matches closer to the fact def svd_solver(self, pcloud_src, pcloud_dest): N = pcloud_src.shape[0] M = pcloud_src.shape[1] assert (pcloud_src.shape == pcloud_dest.shape) # substract the clouds to origins centroid_src = np.mean(pcloud_src, axis=0).reshape((3, 1)) centroid_dest = np.mean(pcloud_dest, axis=0).reshape((3, 1)) print("[ICP.svd_solver] centroid_src.shape", centroid_src.shape) pcl_src = pcloud_src - centroid_src.T pcl_dest = pcloud_dest - centroid_dest.T # get rotation matrix using SVD H = np.dot(pcl_src.T, pcl_dest) U, S, VT = np.linalg.svd(H) R = np.dot(VT.T, U.T) if np.linalg.det(R) < 0: VT[M - 1, :] *= -1 R = np.dot(VT.T, U.T) # get translation t = centroid_dest - R.dot(centroid_src) print("[ICP.svd_solver] t.shape", t.shape) return R, t # @todo : TODO # refine the cost by obj=([R|t]*x - x').T.dot([R|t]*x - x') def computeError(self, pcloud_src, pcloud_dest, estimated_pose): N = pcloud_src.shape[0] assert (N == pcloud_dest.shape[0]) # searching direction numOfvar = estimated_pose.shape[0] assert (numOfvar == 6) delta = np.zeros((numOfvar,)) # reformed input functions def costImpl(x): return self.costImpl(x, pcloud_src, pcloud_dest) # err0 = costImpl(estimated_pose) print("[ICP] error %s for estimated_pose %s" % ( err0, estimated_pose )) # using Lie algebra to computed SO3 jacobian and hessian instead, see G2OICP # def jac(x): # return self.jac(x, pcloud_src, pcloud_dest) # pass # def hess(x): # return self.hess(x, pcloud_src, pcloud_dest) # pass # res = minimize(costImpl, estimated_pose, method='Newton-CG', jac=jac, hess=hess) if not self.USE_GRADIENT: res = fmin(costImpl, estimated_pose, full_output=1) else: if self.HAND_MADE_OPT: # compute se3 jaccoby internally res = self._minimize(pcloud_src, pcloud_dest, estimated_pose.copy(), max_iter=10) # optimize! pass else: raise Exception("Not Implemented yet!") new_estimated_pose, err1 = res[0], res[1] print("[ICP] error %s with new_estimated_pose %s" % ( err1, new_estimated_pose )) if np.abs(err1) < np.abs(err0): delta = new_estimated_pose # - estimated_pose cost = err1 else: print("[ICP] reject the proposal, using previous estimated_pose %s with error %f instead" % ( estimated_pose, err0 )) delta = estimated_pose cost = err0 # reform the output return delta, cost def _get_pose(self, estimated_pose): self.euler.update(*estimated_pose[0:3]) R = self.euler.R t = estimated_pose[3:6] t = t.reshape((3, 1)) return R[:3, :3], t # credits to # 1. (2D/python) https://github.com/agnivsen/icp as the starter of the implementation # 2. (2D/python) https://gist.github.com/ecward/c373932638fd04a2243e # 3. (3D/c++) Alex Segal original G-ICP implementation : # 4. (2D/python) python implementation by Jacob Everist recommended by Alex Segal though it is very poor, http://jacobeverist.com/gen_icp def _icp_point_point(self, pcloud_src, pcloud_dest, matches, estimated_pose, callback=None): # make initial estiamtion if estimated_pose is None: R, t = self.svd_solver(pcloud_src, pcloud_dest) print("estimated_pose, \nR:\n%s\nt:\n%s\n" % (R, t)) self.euler = Euler.fromMatrix(R) estimated_pose = np.array([ self.euler.roll, self.euler.yaw, self.euler.pitch, t[0][0], t[1][0], t[2][0]]) pcloud_src = self.transform(pcloud_src, R, t) k = 0 numOfvars = estimated_pose.shape[0] while k < self.max_iterations: init_pose = np.zeros((numOfvars,)) # association if matches is None: nbrs = NearestNeighbors(n_neighbors=1, algorithm='auto').fit(pcloud_dest) dist, indices = nbrs.kneighbors(pcloud_src, return_distance=True) print("indices: \n%s\n" % indices) N = pcloud_src.shape[0] matches = np.zeros((N, 2)).astype(np.integer) for i in range(N): matches[i, 0] = i matches[i, 1] = indices[i][0] pass print("Association: \nmatches:\n%s\n" % matches) # iteration delta, cost = self.computeError(pcloud_src[matches[:, 0].ravel()], pcloud_dest[matches[:, 1].ravel()], init_pose) delta = delta.reshape((6,)) R, t = self._get_pose(delta) # update source point cloud pcloud_src = self.transform(pcloud_src, R, t) # update estimated pose estimated_pose += delta # check errors if callback is not None: callback(pcloud_src) k += 1 print("cost:", cost) if np.abs(cost) < 1e-6: break else: print("iterating ...") # return estimated_pose # I am concerned that we don't have enough points and the assumption of ICP point-plane is no longer held. def _icp_point_plane(self): raise Exception("Not Implemented Yet") # Lie Algebra ICP solver class G2OICP: pass class SacModel(object): def __init__(self): pass # The algorithm was first implemented by Lei (yiak.wy@gmail.com) in C++ in later of 2019 and reimplemented in python in 2020 # you should not use this algorithm without consent of Lei in any form and purposes. # ALL RIGHTS RESERVED # Points are very sparse, we don't have to do random sampling class SacVolume(SacModel): def __init__(self): pass class Ransac: def __init__(self, model): self._sac_model = model self.max_iterations = 10 def optimize(self): pass
9,835
4,125
221
7f93836e41dc7de37d20c9086ad3bdf24f6efdd0
938
py
Python
train.py
tfandkusu/food101-tflite
be09912a8b7c398a348eb86a1b216356e56cbe13
[ "Apache-2.0" ]
7
2019-05-12T22:44:37.000Z
2021-06-07T08:29:58.000Z
train.py
tfkeras/food101-tflite
be09912a8b7c398a348eb86a1b216356e56cbe13
[ "Apache-2.0" ]
null
null
null
train.py
tfkeras/food101-tflite
be09912a8b7c398a348eb86a1b216356e56cbe13
[ "Apache-2.0" ]
3
2019-06-04T12:08:43.000Z
2020-04-23T18:09:29.000Z
import tensorflow as tf import model import data # 訓練データ作成担当 g = data.Data() # GPUをすべて使わないオプション config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) tf.keras.backend.set_session(sess) # モデルを作成 model = model.make(tflite=False) # 最適化を定義 optimizer = tf.keras.optimizers.Adam(lr=0.001) model.compile(optimizer=optimizer,loss="categorical_crossentropy", metrics=["categorical_accuracy"]) # コールバック cb = Callback() # 途中から学習する場合 initial_epoch = 0 if initial_epoch >= 1: model.load_weights("weight.hdf5") # 学習する model.fit_generator(g.generator(), validation_data=g.generator_test(), validation_steps=g.test_steps(), callbacks = [cb], steps_per_epoch=data.TRAIN_SIZE/data.BATCH_SIZE,epochs=50, initial_epoch=initial_epoch)
26.8
66
0.749467
import tensorflow as tf import model import data # 訓練データ作成担当 g = data.Data() # GPUをすべて使わないオプション config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) tf.keras.backend.set_session(sess) # モデルを作成 model = model.make(tflite=False) # 最適化を定義 optimizer = tf.keras.optimizers.Adam(lr=0.001) model.compile(optimizer=optimizer,loss="categorical_crossentropy", metrics=["categorical_accuracy"]) # コールバック class Callback(tf.keras.callbacks.Callback): def on_epoch_end(self,epoch, logs=None): "各エポック終了時に重みを保存する" model.save("weight.hdf5") cb = Callback() # 途中から学習する場合 initial_epoch = 0 if initial_epoch >= 1: model.load_weights("weight.hdf5") # 学習する model.fit_generator(g.generator(), validation_data=g.generator_test(), validation_steps=g.test_steps(), callbacks = [cb], steps_per_epoch=data.TRAIN_SIZE/data.BATCH_SIZE,epochs=50, initial_epoch=initial_epoch)
0
161
22
96d3891dd1dd4c7b4e68f80119deca6d242b9c04
6,468
py
Python
fastapi/account/controllers/account.py
ilDug/docker-utils
6580e916a8c2c0d91f2e3da52a9d839507569bb7
[ "MIT" ]
null
null
null
fastapi/account/controllers/account.py
ilDug/docker-utils
6580e916a8c2c0d91f2e3da52a9d839507569bb7
[ "MIT" ]
null
null
null
fastapi/account/controllers/account.py
ilDug/docker-utils
6580e916a8c2c0d91f2e3da52a9d839507569bb7
[ "MIT" ]
null
null
null
import uuid import hashlib import bcrypt import json from string import Template from datetime import datetime from fastapi import HTTPException from fastapi.encoders import jsonable_encoder from pydantic import IPvAnyAddress from pymongo import MongoClient from bson import json_util from core.models import MongoModel from account.models import JWTModel, UserModel from core import DagMail, DagMailConfig from account.jwt import JWT from core.utils.string import random_string from config.conf import ( MONGO_CS, ACTIVATION_KEY_LENGTH, EMAIL_TEMPLATE_ACTIVATION, EMAIL_TEMPLATE_BASE, MAIL_CONFIG, )
36.96
110
0.548237
import uuid import hashlib import bcrypt import json from string import Template from datetime import datetime from fastapi import HTTPException from fastapi.encoders import jsonable_encoder from pydantic import IPvAnyAddress from pymongo import MongoClient from bson import json_util from core.models import MongoModel from account.models import JWTModel, UserModel from core import DagMail, DagMailConfig from account.jwt import JWT from core.utils.string import random_string from config.conf import ( MONGO_CS, ACTIVATION_KEY_LENGTH, EMAIL_TEMPLATE_ACTIVATION, EMAIL_TEMPLATE_BASE, MAIL_CONFIG, ) class Account: UUID_NAMESPACE = uuid.UUID("9711c6f0-b5a2-11eb-9e14-c82a1456945d") ACTIVATION_SCOPE = "account_activation" def __init__(self): pass # si connette al server e restituisce il token JWT def login(self, email: str, password: str, ip: IPvAnyAddress = None): if not email: raise HTTPException(400, "il campo email non è specificato") if not password: raise HTTPException(400, "la richiesta non contiene la password") email = email.lower().strip() # controlla che l'utente sia presente nel database with MongoClient(MONGO_CS) as c: user = c.shop.users.find_one({"email": email}) if user is None: raise HTTPException( 404, "Utente non registrato. Procedi prima con la registrazione del tuo account.", ) user = UserModel(**user) # verifica la password if not bcrypt.checkpw(password.encode(), user.hashed_password.encode()): raise HTTPException(500, "password non corretta per questo account.") # crea il token filtrando i dati sensibili token: str = JWT.create( user.dict(exclude={"id", "hashed_password", "registration_date"}) ) jwt: JWTModel = JWT.verify(token) # inserisce il token nel database assieme ai dati del login access = c.shop.accesses.insert_one( { "uid": str(jwt.uid), "jti": str(jwt.jti), "ip": ip, "date": datetime.utcnow(), } ).inserted_id if access is None: raise HTTPException( 500, "Errore, si sono verificati problemi con la connsessione al server, riprovare più tardi", ) return str(token) # registra l'utente e rotrna il token JWT def register(self, email: str, password: str, ip: IPvAnyAddress = None) -> str: if not email: raise HTTPException(400, "il campo email non è specificato") if not password: raise HTTPException(400, "la richiesta non contiene la password") email = email.lower().strip() # controlla che l'utente esista email_hash = hashlib.md5(email.encode()).hexdigest() if self.exists(email_hash): raise HTTPException( 400, "un utente con questa email esiste gia' nel database" ) salt = bcrypt.gensalt() hashed_pw = bcrypt.hashpw(password.encode(), salt).decode() uid = uuid.uuid5(self.UUID_NAMESPACE, email) with MongoClient(MONGO_CS) as c: with c.start_session() as s: with s.start_transaction() as t: # cerca se la chiave di attivazione esiste while True: activation_key = random_string(ACTIVATION_KEY_LENGTH) if c.shop.operations.find_one({"key": activation_key}) is None: break # inserisce il nuovo utente id = c.shop.users.insert_one( { "uid": str(uid), "email": email, "active": False, "authorizations": ["basic"], "hashed_password": hashed_pw, "registration_date": datetime.now(), } ).inserted_id if id is None: raise HTTPException(500, str("errore inserimento nuovo utente")) # genera una chiave di attivazione e la inserisce id = c.shop.operations.insert_one( { "uid": str(uid), "key": activation_key, "created_at": datetime.utcnow(), "used_at": None, "scope": self.ACTIVATION_SCOPE, } ).inserted_id if id is None: raise HTTPException( 500, "errore generazione chiave di attivazione" ) # manda la mail di attivazione if not self.send_activation_email(email, activation_key): raise HTTPException(500, "errori di invio email di attivazione") return self.login(email, password, ip) def exists(self, email_hash: str) -> bool: with MongoClient(MONGO_CS) as c: emails = [ hashlib.md5(e["email"].encode()).hexdigest() for e in c.shop.users.find({}, {"email": 1, "_id": 0}) ] return email_hash in emails # manda la email cn il codice di attivazione edell'account # @return boolean se la mail è stata invata def send_activation_email(self, email: str, activation_key: str) -> bool: content_template = EMAIL_TEMPLATE_ACTIVATION.read_text() content = Template(content_template).substitute(ACTIVATION_KEY=activation_key) body_template = EMAIL_TEMPLATE_BASE.read_text() body = Template(body_template).substitute(CONTENT=content) try: config = DagMailConfig(**MAIL_CONFIG) with DagMail(config) as ms: ms.add_receiver(email) ms.messageHTML(body, "Attivazione Account") ms.send() return True except Exception as e: print(str(e)) return False
5,367
458
23
511eaa58ab745f5d34d4945e2abfe854d6b5c2c5
1,305
py
Python
tools/ui2py.py
BYUCamachoLab/autogator
464d43d797c58a03263527bb7fdc737adb045c75
[ "MIT" ]
null
null
null
tools/ui2py.py
BYUCamachoLab/autogator
464d43d797c58a03263527bb7fdc737adb045c75
[ "MIT" ]
2
2021-05-04T15:46:46.000Z
2022-02-14T19:18:38.000Z
tools/ui2py.py
BYUCamachoLab/autogator
464d43d797c58a03263527bb7fdc737adb045c75
[ "MIT" ]
2
2019-09-09T20:33:02.000Z
2019-09-25T21:44:46.000Z
#! /usr/bin/env python # -*- coding: utf-8 -*- # # Copyright © Autogator Project Contributors # Licensed under the terms of the MIT License # (see autogator/__init__.py for details) """ Tool that converts all .ui and .qrc files in the autogator.resources folder to python files in autogator.compiled. Usage: $ python3 ui2py.py """ import sys import os import subprocess os.chdir(os.path.join(os.path.dirname(os.path.abspath(__file__)), os.pardir)) path = 'autogator' res = os.path.join(path, 'resources') dest = os.path.join(path, 'compiled') for root, directories, filenames in os.walk(res): for filename in filenames: item = os.path.join(root, filename) if item.endswith('.ui'): name, _ = os.path.splitext(filename) rename = name + '_ui' + '.py' path2dest = os.path.join(dest, rename) print(*['pyside2-uic', '--from-imports', item, '-o', path2dest]) subprocess.call(['pyside2-uic', '--from-imports', item, '-o', path2dest]) if item.endswith('.qrc'): name, _ = os.path.splitext(filename) rename = name + '_rc' + '.py' path2dest = os.path.join(dest, rename) args = ['pyside2-rcc', item, '-o', path2dest] print(*args) subprocess.call(args)
31.071429
85
0.616092
#! /usr/bin/env python # -*- coding: utf-8 -*- # # Copyright © Autogator Project Contributors # Licensed under the terms of the MIT License # (see autogator/__init__.py for details) """ Tool that converts all .ui and .qrc files in the autogator.resources folder to python files in autogator.compiled. Usage: $ python3 ui2py.py """ import sys import os import subprocess os.chdir(os.path.join(os.path.dirname(os.path.abspath(__file__)), os.pardir)) path = 'autogator' res = os.path.join(path, 'resources') dest = os.path.join(path, 'compiled') for root, directories, filenames in os.walk(res): for filename in filenames: item = os.path.join(root, filename) if item.endswith('.ui'): name, _ = os.path.splitext(filename) rename = name + '_ui' + '.py' path2dest = os.path.join(dest, rename) print(*['pyside2-uic', '--from-imports', item, '-o', path2dest]) subprocess.call(['pyside2-uic', '--from-imports', item, '-o', path2dest]) if item.endswith('.qrc'): name, _ = os.path.splitext(filename) rename = name + '_rc' + '.py' path2dest = os.path.join(dest, rename) args = ['pyside2-rcc', item, '-o', path2dest] print(*args) subprocess.call(args)
0
0
0
37f14711c2fe081a327c2678cd3e96f52faa5215
2,150
py
Python
annotate/tests/test_pages.py
iafisher/exegesis
25bb55ecf82e9ffbf4dbdb71e6e86000d37a9966
[ "MIT" ]
null
null
null
annotate/tests/test_pages.py
iafisher/exegesis
25bb55ecf82e9ffbf4dbdb71e6e86000d37a9966
[ "MIT" ]
7
2018-07-28T02:30:45.000Z
2018-08-11T21:05:55.000Z
annotate/tests/test_pages.py
iafisher/exegesis
25bb55ecf82e9ffbf4dbdb71e6e86000d37a9966
[ "MIT" ]
null
null
null
from django.contrib.auth import get_user_model from django.test import TestCase from annotate import models class TestPages(TestCase): """Test that the proper templates are used to render pages."""
38.392857
77
0.669767
from django.contrib.auth import get_user_model from django.test import TestCase from annotate import models class TestPages(TestCase): """Test that the proper templates are used to render pages.""" def setUp(self): User = get_user_model() User.objects.create_user('temporary', 'temporary@example.com', 'pwd') def test_index_page_template(self): self.client.login(username='temporary', password='pwd') response = self.client.get('/') self.assertTemplateUsed(response, 'annotate/index.html') def test_login_page_template(self): response = self.client.get('/login') self.assertTemplateUsed(response, 'annotate/login.html') def test_path_page_template(self): self.client.login(username='temporary', password='pwd') # Create a minimal project with a directory and a file. project = models.Project.objects.create(name='temporary') models.Directory.objects.create(fullpath='', dirpath='', name='', project=project) models.Snippet.objects.create(fullpath='README.txt', dirpath='', name='README.txt', text='Lorem ipsum', project=project, downloaded=True) response = self.client.get('/project/temporary') self.assertTemplateUsed(response, 'annotate/directory.html') response = self.client.get('/project/temporary/README.txt') self.assertTemplateUsed(response, 'annotate/snippet.html') def test_login_page_redirects(self): self.client.login(username='temporary', password='pwd') response = self.client.get('/login') self.assertRedirects(response, '/') def test_index_page_redirects(self): response = self.client.get('/') self.assertRedirects(response, '/login/?next=/') def test_logout_page_redirects(self): self.client.login(username='temporary', password='pwd') response = self.client.get('/logout') self.assertRedirects(response, '/login') # Can't access pages after logging out. response = self.client.get('/') self.assertRedirects(response, '/login/?next=/')
1,757
0
189
ae43fe8255d01b1bdd638bd84beb9976436c8118
1,117
py
Python
Resize.py
PENGsBIT/PIL-demo
36181d79ca6ab9fe177d734ab20ec093a9ba2246
[ "Apache-2.0" ]
null
null
null
Resize.py
PENGsBIT/PIL-demo
36181d79ca6ab9fe177d734ab20ec093a9ba2246
[ "Apache-2.0" ]
null
null
null
Resize.py
PENGsBIT/PIL-demo
36181d79ca6ab9fe177d734ab20ec093a9ba2246
[ "Apache-2.0" ]
null
null
null
# -*-coding:utf-8-*- import numpy as np from PIL import Image from scipy import misc
32.852941
97
0.617726
# -*-coding:utf-8-*- import numpy as np from PIL import Image from scipy import misc def resize(img): # img = Image.open(cirFileName) # w, h = img.size # # 去掉浮点,防报错 # w, h = round(w * 0.2), round(h * 0.2) img = img.resize((200, 200), Image.ANTIALIAS).convert("RGBA") return img def getResultArray(): fileName = "1.png" imgBeforeExpand = misc.imread(fileName, flatten=False, mode='YCbCr') imgBeforeExpand = imgBeforeExpand / 255.0 # imgBeforeExpand = np.uint8(imgBeforeExpand*255) # h, w = imgBeforeExpand.shape[:2] # print(imgBeforeExpand.shape) h = 150 w = 160 data = list() data.append(misc.imresize(imgBeforeExpand[:, :, 0], [h, w], 'bicubic', mode="F")[:, :, None]) data.append(misc.imresize(imgBeforeExpand[:, :, 1], [h, w], 'bicubic', mode="F")[:, :, None]) data.append(misc.imresize(imgBeforeExpand[:, :, 2], [h, w], 'bicubic', mode="F")[:, :, None]) data_out = np.concatenate(data, axis=2) data_out[data_out > 1] = 1.0 data_out = np.uint8(data_out * 255) img = misc.toimage(arr=data_out, mode="YCbCr") return img
1,000
0
46
f179ba977ded22d79e6b5ab337596e7134fe8e7c
2,023
py
Python
.ipynb_checkpoints/settings-checkpoint.py
dbbabcock/data_690_ai_the_toy_show
97614cdaa1d7204abd1c30b5463976578be6a67d
[ "MIT" ]
null
null
null
.ipynb_checkpoints/settings-checkpoint.py
dbbabcock/data_690_ai_the_toy_show
97614cdaa1d7204abd1c30b5463976578be6a67d
[ "MIT" ]
null
null
null
.ipynb_checkpoints/settings-checkpoint.py
dbbabcock/data_690_ai_the_toy_show
97614cdaa1d7204abd1c30b5463976578be6a67d
[ "MIT" ]
null
null
null
from datetime import datetime import torch import torchvision def load_stored_resnet_model(categories, file_path): '''Adapted from NVIDIA DLI Course Code: Getting Started with AI on Jetson Nano''' print("Loading stored classification model...") # If we're on the Jetson Nano use cuda, otherwise cpu: device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = torchvision.models.resnet18(pretrained=True) model.fc = torch.nn.Linear(512, len(categories)) model = model.to(device) # model.load_state_dict(torch.load(file_path)) model.load_state_dict(torch.load(file_path, map_location=torch.device('cpu'))) model.eval() print("Model ready!") return model
38.169811
92
0.638655
from datetime import datetime import torch import torchvision def __init__(): global toy_list, model_file_path, model, response_dict, computer_name, categories toy_list = ['Minnie Mouse', 'Tigger', 'Horse', 'White Bear', 'Flamingo', 'Tiger Puppet', 'Elephant Puppet', 'Oriole', 'Black Cat'] # Create the categories for the model to use, which requires a 'No Toy' option: categories = toy_list.copy() categories.append('No Toy') model_file_path = './data/toy_classify_resnet18_model_051321.pth' model = load_stored_resnet_model(categories, model_file_path) response_dict = { "morning_text_list": ["Good morning!", "It's a lovely morning!", "What a great morning to visit the Toy Show!"], "afternoon_text_list" : ["Good afternoon!", "It's a lovely afternoon!"], "show_toy_text_list" : ["Would you like to show me a toy to talk to?", "Do you have a friend to show me?", "Who are you playing with today? Can you show me?"] } # My daughter named the computer 'Dorris Therese' so that's what we'll use: computer_name = 'Dorris' def load_stored_resnet_model(categories, file_path): '''Adapted from NVIDIA DLI Course Code: Getting Started with AI on Jetson Nano''' print("Loading stored classification model...") # If we're on the Jetson Nano use cuda, otherwise cpu: device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = torchvision.models.resnet18(pretrained=True) model.fc = torch.nn.Linear(512, len(categories)) model = model.to(device) # model.load_state_dict(torch.load(file_path)) model.load_state_dict(torch.load(file_path, map_location=torch.device('cpu'))) model.eval() print("Model ready!") return model def check_time(): curr_hour = datetime.now().time().hour return curr_hour
1,243
0
50
bfb54c2d2ea587f2eea3dd14e9aabadd7e86ef91
550
py
Python
utea_web/moduli/migrations/0009_auto_20181003_1248.py
arol-varesi/utea_web
36b04656b93b123d3805d25ee4e61c6ae68252ed
[ "MIT" ]
null
null
null
utea_web/moduli/migrations/0009_auto_20181003_1248.py
arol-varesi/utea_web
36b04656b93b123d3805d25ee4e61c6ae68252ed
[ "MIT" ]
null
null
null
utea_web/moduli/migrations/0009_auto_20181003_1248.py
arol-varesi/utea_web
36b04656b93b123d3805d25ee4e61c6ae68252ed
[ "MIT" ]
1
2021-10-02T11:45:34.000Z
2021-10-02T11:45:34.000Z
# Generated by Django 2.1.1 on 2018-10-03 10:48 from django.db import migrations, models
22.916667
50
0.581818
# Generated by Django 2.1.1 on 2018-10-03 10:48 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('moduli', '0008_auto_20181002_2154'), ] operations = [ migrations.AlterField( model_name='sigla', name='descrizione', field=models.CharField(max_length=60), ), migrations.AlterField( model_name='traduzione', name='traduzione', field=models.CharField(max_length=60), ), ]
0
436
23
9f9d45af4cae398c88e5f196080679db57c797e3
540
py
Python
venv/lib/python3.8/site-packages/zif.py
Jn-mic/Projects-Portfolio
642b9e58b81e8d505cc7462370e80fbab2945fd9
[ "MIT" ]
null
null
null
venv/lib/python3.8/site-packages/zif.py
Jn-mic/Projects-Portfolio
642b9e58b81e8d505cc7462370e80fbab2945fd9
[ "MIT" ]
null
null
null
venv/lib/python3.8/site-packages/zif.py
Jn-mic/Projects-Portfolio
642b9e58b81e8d505cc7462370e80fbab2945fd9
[ "MIT" ]
null
null
null
import zipfile # #压缩 # file=zipfile.ZipFile('text.zip','w')#text.zip创建压缩包文件名 w读 # file.write("class.py")#压缩的文件名 # file.close() #解压缩 # file=zipfile.ZipFile('text.zip','r')#写 # file.extractall(path="../")#写到哪个路径下 创建到卓面 默认是在跟慕入下面 #暴力破解加密的压缩包 fileobj=open("pwd.txt","r")#新建一个txt文件 for item in fileobj.readlines(): print(item.strip())#strip()去空格 newpwd=item.strip() try: file=zipfile.ZipFile("class2.zip","r")#解压缩包 file.extractall(pwd=newpwd.encode("utf-8")) except: print("errot")
25.714286
59
0.631481
import zipfile # #压缩 # file=zipfile.ZipFile('text.zip','w')#text.zip创建压缩包文件名 w读 # file.write("class.py")#压缩的文件名 # file.close() #解压缩 # file=zipfile.ZipFile('text.zip','r')#写 # file.extractall(path="../")#写到哪个路径下 创建到卓面 默认是在跟慕入下面 #暴力破解加密的压缩包 fileobj=open("pwd.txt","r")#新建一个txt文件 for item in fileobj.readlines(): print(item.strip())#strip()去空格 newpwd=item.strip() try: file=zipfile.ZipFile("class2.zip","r")#解压缩包 file.extractall(pwd=newpwd.encode("utf-8")) except: print("errot")
0
0
0
c8c11a61c01891c5110af5047097e53b2754d5ff
2,155
py
Python
feature_extraction/measurements/granularity.py
widoptimization-willett/feature-extraction
25e963e3383673aad6aedfd504e69a1df7f47f9a
[ "Apache-2.0" ]
null
null
null
feature_extraction/measurements/granularity.py
widoptimization-willett/feature-extraction
25e963e3383673aad6aedfd504e69a1df7f47f9a
[ "Apache-2.0" ]
null
null
null
feature_extraction/measurements/granularity.py
widoptimization-willett/feature-extraction
25e963e3383673aad6aedfd504e69a1df7f47f9a
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 import numpy as np import skimage import skimage.morphology as morph from . import Measurement from ..util.cleanup import cell_aoi_and_clip
34.758065
117
0.706729
# coding=utf-8 import numpy as np import skimage import skimage.morphology as morph from . import Measurement from ..util.cleanup import cell_aoi_and_clip class Granularity(Measurement): default_options = { 'subsampling': 2, # 2x downsampling 'element_size': 20, 'spectrum_length': 16, # standard stuff 'clip_cell_borders': True, 'cell_border_erosion': None, } def compute(self, image): # -- get mask, potentially clip image image, aoi_mask = cell_aoi_and_clip(image, clip=self.options.clip_cell_borders, erosion=self.options.cell_border_erosion) # -- subsample image/mask image = skimage.measure.block_reduce(image, (self.options.subsampling, self.options.subsampling)) aoi_mask = skimage.measure.block_reduce(aoi_mask, (self.options.subsampling, self.options.subsampling)) > 0.9 # reconvert to bool after averaging during subsampling # -- remove background pixels using a black tophat transform. # that is, heavily open the (subsampled) input image with a disk, # and then subtract that from the original image. bg_image = morph.opening(image, morph.disk(self.options.element_size)) image -= bg_image image[image < 0] = 0 # make sure we don't have negative intensities # -- perform "accelerated granulometry" # adapted from lines [271-334] of cellprofiler/src/modules/measuregranularity.py # structuring/neighborhood element elem = np.array([[False, True, False], [True, True, True], [False, True, False]]) # set up an array for recording means at each spectrum step and populate with # the initial mean means = [max(np.mean(image[aoi_mask]), np.finfo(float).eps)] # set up an array for recording {G_k(I)}, k∈{1,spectrum_length} G = [] im_ero = image.copy() # im_ero holds the result of the erosion, which is eroded at each step with ``elem``. for i in range(1, self.options.spectrum_length): im_ero = morph.erosion(im_ero, elem) im_rec = morph.reconstruction(im_ero, image, selem=elem) means.append(np.mean(im_rec[aoi_mask])) G_k = (means[i-1] - means[i]) * 100 / means[0] G.append(G_k) return G
1,753
224
23
4ecda2218db21b332e4657876d786a1dfb654049
8,817
py
Python
src/Linestring.py
Lovely-XPP/tkzgeom
bf68e139dc05f759542d6611f4dc07f4f2727b92
[ "MIT" ]
41
2021-11-24T05:54:08.000Z
2022-03-26T10:19:30.000Z
src/Linestring.py
Lovely-XPP/tkzgeom
bf68e139dc05f759542d6611f4dc07f4f2727b92
[ "MIT" ]
1
2022-02-28T04:34:51.000Z
2022-03-07T10:49:27.000Z
src/Linestring.py
Lovely-XPP/tkzgeom
bf68e139dc05f759542d6611f4dc07f4f2727b92
[ "MIT" ]
10
2021-11-24T07:35:17.000Z
2022-03-25T18:42:14.000Z
from PyQt5 import QtCore, QtWidgets, QtGui from Item import Item from Tikzifyables.Arrowable import Arrowable from Tikzifyables.DashPatternable import DashPatternable from Tikzifyables.Colourable.LineColourable import LineColourable from Tikzifyables.Decorationable import Decorationable from Tikzifyables.CurveStrategyable import CurveStrategyable import Constant as c from GeometryMath import point_segment_dist_sqr
52.171598
135
0.653851
from PyQt5 import QtCore, QtWidgets, QtGui from Item import Item from Tikzifyables.Arrowable import Arrowable from Tikzifyables.DashPatternable import DashPatternable from Tikzifyables.Colourable.LineColourable import LineColourable from Tikzifyables.Decorationable import Decorationable from Tikzifyables.CurveStrategyable import CurveStrategyable import Constant as c from GeometryMath import point_segment_dist_sqr class Linestring(Item, DashPatternable, LineColourable, Decorationable, Arrowable, CurveStrategyable): def __init__(self, item): """Create Linestring.""" Item.__init__(self, item) if item is None: self.dictionary_builder(None, "") DashPatternable.__init__(self, self.item) LineColourable.__init__(self, self.item) Decorationable.__init__(self, self.item) Arrowable.__init__(self, self.item) CurveStrategyable.__init__(self, self.item) def tikzify(self): strategy_options, strategy_coordinates = self.tikzify_strategy(True) options = [ '' if self.item["line"]["line_width"] == c.Segment.Default.LINE_WIDTH else f'line width={self.item["line"]["line_width"]}', self.tikzify_dash(), 'draw=' + self.tikzify_line_colour(), self.tikzify_arrows(), self.tikzify_decoration(), strategy_options ] options = filter(bool, options) return "\\draw[%s] %s;" % (', '.join(options), strategy_coordinates) def __str__(self): # TODO modify this too, this is now an error return "Segment from (%s) to (%s)" % (self.item["definition"]["A"], self.item["definition"]["B"]) def draw_on_canvas(self, items, scene, colour=QtCore.Qt.darkMagenta): thickness = 4 coord_list = [items[i].get_canvas_coordinates() for i in self.item["definition"]] for i in range(len(coord_list) - 1): graphics_line = QtWidgets.QGraphicsLineItem(*coord_list[i], *coord_list[i + 1]) pen = QtGui.QPen() pen.setWidth(thickness) pen.setDashPattern([4, 4]) pen.setColor(colour) graphics_line.setPen(pen) scene.addItem(graphics_line) @staticmethod def draw_on_canvas_static(x, y, id_history, scene, colour=QtCore.Qt.darkMagenta): thickness = 4 coord_list = [scene.project_data.items[i].get_canvas_coordinates() for i in id_history] + [[x, y]] for i in range(len(coord_list) - 1): graphics_line = QtWidgets.QGraphicsLineItem(*coord_list[i], *coord_list[i + 1]) pen = QtGui.QPen() pen.setWidth(thickness) pen.setColor(colour) pen.setDashPattern([4, 4]) graphics_line.setPen(pen) scene.addItem(graphics_line) def distance_sqr(self, x, y, items): min_dist = 1e6 coord_list = [items[i].get_canvas_coordinates() for i in self.depends_on()] for i in range(len(coord_list) - 1): if (distance := point_segment_dist_sqr(coord_list[i], coord_list[i + 1], [x, y])) < min_dist: min_dist = distance return min_dist def depends_on(self): return self.item["definition"] def definition_string(self): def_str = [('{0:.6g}'.format(i) if isinstance(i, float) else i) for i in self.item["definition"]] return '%s(%s)' % (type(self).__name__, ', '.join(def_str)) @staticmethod def static_patterns(): return [i * 'p' for i in range(3, 40)] def patterns(self): return [i * 'p' for i in range(3, 40)] def next_id_func(self, definition, iter_counter): return 'Linestring_' + chr(ord('A') + iter_counter % 26) + (iter_counter // 26) * '\'' def definition_builder(self, data, items=None): return data[:-1] def parse_into_definition(self, arguments, items): # arguments length condition if len(arguments) <= 1: return None # all arguments are members of the regular expression for argument name if not all(map(lambda x: self.name_pattern(x), arguments)): return None # all arguments are items that already exist if not all(map(lambda x: x in items, arguments)): return None # the type of all arguments is of a certain type if not all(map(lambda x: items[x].item["type"] == 'point', arguments)): return None # self-reference condition (self-reference is not permitted) if self.get_id() in arguments: return None return self.definition_builder(arguments+['mock item']) def dictionary_builder(self, definition, id_, sub_type=None): # TODO create Linestring class in Constant.py and modify entries here dictionary = {} dictionary["id"] = id_ dictionary["type"] = 'linestring' dictionary["sub_type"] = None dictionary["show"] = True dictionary["definition"] = definition dictionary["line"] = {} dictionary["line"]["line_width"] = c.Linestring.Default.LINE_WIDTH dictionary["line"]["colour"] = {} dictionary["line"]["colour"]["name"] = c.Linestring.Default.Line_Colour.NAME dictionary["line"]["colour"]["mix_with"] = c.Linestring.Default.Line_Colour.MIX_WITH dictionary["line"]["colour"]["mix_percent"] = c.Linestring.Default.Line_Colour.MIX_RATIO dictionary["line"]["colour"]["strength"] = c.Linestring.Default.Line_Colour.STRENGTH dictionary["line"]["dash"] = {} dictionary["line"]["dash"]["stroke"] = c.Linestring.Default.LINE_DASH_STROKE dictionary["line"]["dash"]["custom_pattern"] = c.Linestring.Default.LINE_DASH_CUSTOM dictionary["line"]["double"] = {} dictionary["line"]["double"]["distance"] = c.Linestring.Default.Double_Line.DISTANCE dictionary["line"]["double"]["colour"] = {} dictionary["line"]["double"]["colour"]["name"] = c.Linestring.Default.Double_Line.Colour.NAME dictionary["line"]["double"]["colour"]["mix_with"] = c.Linestring.Default.Double_Line.Colour.MIX_WITH dictionary["line"]["double"]["colour"]["mix_percent"] = c.Linestring.Default.Double_Line.Colour.MIX_RATIO dictionary["line"]["double"]["colour"]["strength"] = c.Linestring.Default.Double_Line.Colour.STRENGTH dictionary["line"]["decoration"] = {} dictionary["line"]["decoration"]["type"] = c.Linestring.Default.Decoration.TYPE dictionary["line"]["decoration"]["amplitude"] = c.Linestring.Default.Decoration.AMPLITUDE dictionary["line"]["decoration"]["wavelength"] = c.Linestring.Default.Decoration.WAVELENGTH dictionary["line"]["decoration"]["text"] = c.Linestring.Default.Decoration.TEXT dictionary["line"]["strategy"] = {} dictionary["line"]["strategy"]["type"] = c.Linestring.Default.Strategy.TYPE dictionary["line"]["strategy"]["rounded_corners"] = c.Linestring.Default.Strategy.ROUNDED_CORNERS dictionary["line"]["strategy"]["bend_angle"] = c.Linestring.Default.Strategy.BEND_ANGLE dictionary["line"]["strategy"]["in_angle"] = c.Linestring.Default.Strategy.IN_ANGLE dictionary["line"]["strategy"]["out_angle"] = c.Linestring.Default.Strategy.OUT_ANGLE dictionary["line"]["strategy"]["smooth_tension"] = c.Linestring.Default.Strategy.SMOOTH_TENSION dictionary["line"]["strategy"]["loop"] = False dictionary["line"]["strategy"]["loop_size"] = c.Linestring.Default.Strategy.LOOP_SIZE dictionary["line"]["connect_to"] = c.Linestring.Default.LINE_CONNECT_TO dictionary["o_arrow"] = {} dictionary["o_arrow"]["width"] = c.Linestring.Default.O_Arrow.WIDTH dictionary["o_arrow"]["length"] = c.Linestring.Default.O_Arrow.LENGTH dictionary["o_arrow"]["tip"] = c.Linestring.Default.O_Arrow.TIP dictionary["o_arrow"]["bending"] = c.Linestring.Default.O_Arrow.BENDING dictionary["o_arrow"]["side"] = c.Linestring.Default.O_Arrow.SIDE dictionary["o_arrow"]["reversed"] = c.Linestring.Default.O_Arrow.REVERSED dictionary["o_arrow"]["bending"] = c.Linestring.Default.O_ARROW_BENDING dictionary["d_arrow"] = {} dictionary["d_arrow"]["width"] = c.Linestring.Default.D_Arrow.WIDTH dictionary["d_arrow"]["length"] = c.Linestring.Default.D_Arrow.LENGTH dictionary["d_arrow"]["tip"] = c.Linestring.Default.D_Arrow.TIP dictionary["d_arrow"]["bending"] = c.Linestring.Default.D_Arrow.BENDING dictionary["d_arrow"]["side"] = c.Linestring.Default.D_Arrow.SIDE dictionary["d_arrow"]["reversed"] = c.Linestring.Default.D_Arrow.REVERSED dictionary["d_arrow"]["bending"] = c.Linestring.Default.D_ARROW_BENDING self.item = dictionary
7,494
880
23
67995b2f86c3ae2b6a09815a02f81e478aa1eb27
12,847
py
Python
virtnet_conf.py
gizmoguy/faucet-gui
0055b29be284dfcc68e36f3f0f864c99c062376c
[ "Apache-2.0" ]
16
2018-08-31T02:17:55.000Z
2021-12-27T06:43:51.000Z
virtnet_conf.py
urantialife/faucet-gui
f9741a8c47da6fc6fb1a508c794e04bcb69cfef6
[ "Apache-2.0" ]
2
2018-08-31T04:02:09.000Z
2021-06-04T13:27:48.000Z
virtnet_conf.py
urantialife/faucet-gui
f9741a8c47da6fc6fb1a508c794e04bcb69cfef6
[ "Apache-2.0" ]
9
2019-01-06T17:58:48.000Z
2021-12-28T17:59:55.000Z
""" PROGRAM_NAME: virtnet_creator FILE_NAME: conf.py AUTHOR: Brendan Geoghegan PROGRAM_DESCRIPTION: This program is a GUI application for users to build or load network topologies that have a SDN controller at their center. The original code tied into a Xen loadout used to clone, startup, and operate VMs, but this simplified version is only meant to visually generate network topologies and then generate the requisite YAML files for a Faucet SDN controller. FILE_DESCRIPTION: This file contains functions to read and write a custom config file for saving and loading a specific network configuration. In theory this would allow users to quickly spin up the same network environment over and over again. Right now the file type is saves as .virtnet, you can find this being called from main.py. """ class confIO: '''Initiate a series of read functions going through the .virtnet file and creating instances of devices''' '''Function to read controller information from .virtnet file and to instantiate new controller objects''' '''Function to read switch information from .virtnet file and to instantiate new controller objects''' '''Function to read host information from .virtnet file and to instantiate new controller objects''' '''read in all the in/out of band connections, controller relations, and vlans to create links''' '''Initiate a series of write functions going through the list of devices and pulling out info''' '''Function to write controller information to a .virtnet file''' '''Function to write switch information and any attached hosts information to a .virtnet file''' '''Function to capture all the links (In/Out band) from each switch to write to .virtnet file''' '''Function to capture the VLAN data from a controller and add to the end of the file'''
49.794574
120
0.592745
""" PROGRAM_NAME: virtnet_creator FILE_NAME: conf.py AUTHOR: Brendan Geoghegan PROGRAM_DESCRIPTION: This program is a GUI application for users to build or load network topologies that have a SDN controller at their center. The original code tied into a Xen loadout used to clone, startup, and operate VMs, but this simplified version is only meant to visually generate network topologies and then generate the requisite YAML files for a Faucet SDN controller. FILE_DESCRIPTION: This file contains functions to read and write a custom config file for saving and loading a specific network configuration. In theory this would allow users to quickly spin up the same network environment over and over again. Right now the file type is saves as .virtnet, you can find this being called from main.py. """ class confIO: def __init__(self): self.id = "YAML_IO" self.file = None self.device_dictionary = {} self.parent = None self.host = None '''Initiate a series of read functions going through the .virtnet file and creating instances of devices''' def read(self, filename, sdn_widget): # print ("entering config read function") self.file = open(filename, "r") '''check the first and last line of the file for good formatting''' if self.file.readline() != "Row 0 : Controller\n": print "First line of config file is not correct" return for line in self.file: pass if line != "END_CONNECTION_LIST\n": print "Last line of config file is not correct" return self.file.seek(0,0) #reset file reader line = self.file.readline() self.device_dictionary = {} '''first we read in all the equipment and populate our program''' while line != "END_ASSET_LIST\n": if line.split(':').__len__() != 2: line = self.file.readline() continue else: device_type = line.split(':')[1].strip() if device_type == "Controller": self.__read_controller(sdn_widget) elif device_type == "Switch" or device_type == "Host": device_row = int(line.split(":")[0].strip("Row ")) #rows help determine parents while device_row <= self.parent.row: # move back up the tree until you find the next parent self.parent = self.parent.parent if device_type == "Switch": self.__read_switch(sdn_widget) elif device_type == "Host": self.__read_host(sdn_widget) line = self.file.readline() '''read in all the in/out of band connections, assigned controllers, and vlans''' self.__read_connections() self.device_dictionary.clear() # done using this, time to clean self.file.close() # and close file '''Function to read controller information from .virtnet file and to instantiate new controller objects''' def __read_controller(self, sdn_widget): self.parent = sdn_widget.add_controller() line = self.file.readline() while line.split(':')[0].strip() != "END": line_in = line.split(':') if line_in[0].strip() == 'ID': self.parent.id = line_in[1].strip() if line_in[0].strip() == 'DISPLAY_ID': self.parent.display_id = line_in[1].strip() if line_in[0].strip() == 'IP_ADDR': self.parent.ip_address = line_in[1].strip() if line_in[0].strip() == 'NETMASK': self.parent.netmask = line_in[1].strip() if line_in[0].strip() == 'MAC_ADDR': mac = line_in[1].strip() self.parent.mac_address = ':'.join([mac[i:i + 2] for i in range(0, len(mac), 2)]) # puts :'s in mac_adr if line_in[0].strip() == 'Next_Switch_Num': self.parent.next_switch_number = int(line_in[1].strip()) line = self.file.readline() self.device_dictionary[self.parent.mac_address] = self.parent # this is used to quickly check mac addrs later '''Function to read switch information from .virtnet file and to instantiate new controller objects''' def __read_switch(self, sdn_widget): self.parent.next_switch_number -= 1 # due to how the system adds switches in the first place self.parent = sdn_widget.add_switch(self.parent) line = self.file.readline() while line.split(':')[0].strip() != "END": line_in = line.split(':') if line_in[0].strip() == 'ID': self.parent.id = line_in[1].strip() if line_in[0].strip() == 'DISPLAY_ID': self.parent.display_id = line_in[1].strip() if line_in[0].strip() == 'IP_ADDR': self.parent.ip_address = line_in[1].strip() if line_in[0].strip() == 'NETMASK': self.parent.netmask = line_in[1].strip() if line_in[0].strip() == 'MAC_ADDR': mac = line_in[1].strip() self.parent.mac_address = ':'.join([mac[i:i + 2] for i in range(0, len(mac), 2)]) # puts :'s in mac_adr if line_in[0].strip() == 'DP_ID': self.parent.dp_id = line_in[1].strip() if line_in[0].strip() == 'Next_Switch_Num': self.parent.next_switch_number = int(line_in[1].strip()) if line_in[0].strip() == 'Next_Host_Num': self.parent.next_host_number = int(line_in[1].strip()) line = self.file.readline() self.device_dictionary[self.parent.mac_address] = self.parent # this is used to quickly check mac_addrs later '''Function to read host information from .virtnet file and to instantiate new controller objects''' def __read_host(self, sdn_widget): self.parent.next_host_number -= 1 # due to how the system adds switches in the first place host = sdn_widget.add_host(self.parent) line = self.file.readline() while line.split(':')[0].strip() != "END": line_in = line.split(':') if line_in[0].strip() == 'ID': host.id = line_in[1].strip() if line_in[0].strip() == 'DISPLAY_ID': host.display_id = line_in[1].strip() if line_in[0].strip() == 'IP_ADDR': host.ip_address = line_in[1].strip() if line_in[0].strip() == 'NETMASK': host.netmask = line_in[1].strip() if line_in[0].strip() == 'MAC_ADDR': mac = line_in[1].strip() host.mac_address = ':'.join([mac[i:i + 2] for i in range(0, len(mac), 2)]) # puts :'s in mac_adr if line_in[0].strip() == 'VLAN' : host.vlan = int(line_in[1].strip()) line = self.file.readline() self.device_dictionary[host.mac_address] = host # this is used to quickly check s later '''read in all the in/out of band connections, controller relations, and vlans to create links''' def __read_connections(self): # clear any connections that would have been automatically added in equipment population for i in self.device_dictionary: if self.device_dictionary[i].type == "Switch": tmp_switch = self.device_dictionary[i] tmp_switch.interface_list[:] = [] tmp_switch.controller_list[:] = [] tmp_switch.vlans.clear() tmp_switch.next_eth_num = 1 # counter for naming the next ethX added tmp_switch.next_in_band_num = 1 # counter for naming the next in_band connection tmp_switch.next_out_band_num = 1 # counter for naming the next out_band connection elif self.device_dictionary[i].type == "Controller": self.device_dictionary[i].vlans.clear() line = self.file.readline() while line != "END_CONNECTION_LIST\n": connection = line.split(":")[0].strip() mac_a = line.split(":")[1].strip() mac_a = ':'.join([mac_a[i:i + 2] for i in range(0, len(mac_a), 2)]) # puts :'s in mac addr mac_b = line.split(":")[2].strip() mac_b = ':'.join([mac_b[i:i + 2] for i in range(0, len(mac_b), 2)]) # puts :'s in mac addr if connection == "In_Band": self.device_dictionary[mac_a].add_interface(self.device_dictionary[mac_b], True) elif connection == "Out_Band": self.device_dictionary[mac_a].add_interface(self.device_dictionary[mac_b], False) elif connection == "Assigned_Controller": self.device_dictionary[mac_a].controller_list.append(self.device_dictionary[mac_b]) elif connection == "Vlans": vlan_list = mac_b.split() for i in vlan_list: self.device_dictionary[mac_a].vlans.add(i.strip()) line = self.file.readline() '''Initiate a series of write functions going through the list of devices and pulling out info''' def write(self, filename, controller_list, switch_list): # print ("entering config write function") if controller_list is None: return self.file = open(filename,"w") for c in controller_list: self.file.write("Row 0 : Controller\n") self.__write_controller(c) self.file.write("END_ASSET_LIST\n") for s in switch_list: self.__write_switch_connections(s) for c in controller_list: self.__write_controller_vlans(c) self.file.write("END_CONNECTION_LIST\n") self.file.close() '''Function to write controller information to a .virtnet file''' def __write_controller(self, c): self.file.write("ID : "+ c.id+"\n") self.file.write("DISPLAY_ID :"+ c.display_id+"\n") self.file.write("IP_ADDR : "+ c.ip_address+"\n") self.file.write("NETMASK : "+ c.netmask+"\n") self.file.write("MAC_ADDR : " + str(c.mac_address).replace(':','') + "\n") self.file.write("Next_Switch_Num : "+ str(c.next_switch_number)+"\n") v_lan_string = " " for i in c.vlans: v_lan_string += str(i)+" " self.file.write("V_LAN : " + v_lan_string + "\n") self.file.write("END : Controller\n") for s in c.children: self.__write_switch(s) '''Function to write switch information and any attached hosts information to a .virtnet file''' def __write_switch(self, s): self.file.write("Row "+ str(s.row) + " : Switch\n") self.file.write("ID : "+ s.id+"\n") self.file.write("DISPLAY_ID :" + s.display_id+"\n") self.file.write("IP_ADDR : "+ s.ip_address+"\n") self.file.write("NETMASK : " + s.netmask + "\n") self.file.write("MAC_ADDR : "+ str(s.mac_address).replace(":",'')+"\n") self.file.write("DP_ID : " + s.dp_id + "\n") self.file.write("Next_Switch_Num : "+ str(s.next_switch_number)+"\n") self.file.write("Next_Host_Num : "+ str(s.next_host_number)+"\n") self.file.write("END : Switch\n") for child in s.children: if child.type == "Host": self.file.write("Row " + str(child.row) + " : Host\n") self.file.write("ID : "+ child.id + "\n") self.file.write("DISPLAY_ID :" + child.display_id+"\n") self.file.write("IP_ADDR : "+ child.ip_address + "\n") self.file.write("NETMASK : " + child.netmask + "\n") self.file.write("MAC_ADDR : " + str(child.mac_address).replace(':','') + "\n") self.file.write("VLAN : " + str(child.vlan) + "\n") self.file.write("END : Host\n") else: self.__write_switch(child) '''Function to capture all the links (In/Out band) from each switch to write to .virtnet file''' def __write_switch_connections(self, s): s_mac = str(s.mac_address).replace(':','') for i in s.interface_list: if i.in_band: self.file.write("In_Band: " + s_mac + " : " + str(i.device.mac_address).replace(':', '') + "\n") else: self.file.write("Out_Band: " + s_mac + " : " + str(i.device.mac_address).replace(':', '') + "\n") for i in s.controller_list: self.file.write("Assigned_Controller: " + s_mac + " : " + str(i.mac_address).replace(':','') + "\n") vlan_string = "Vlans : " + s_mac + " : " for i in s.vlans: vlan_string += str(i) + ' ' self.file.write(vlan_string + '\n') '''Function to capture the VLAN data from a controller and add to the end of the file''' def __write_controller_vlans(self, c): c_mac= str(c.mac_address).replace(':','') vlan_string = "Vlans : " + c_mac + " : " for i in c.vlans: vlan_string += str(i) + ' ' self.file.write(vlan_string + '\n')
10,725
0
286
9630077f65b7d28eba7099895195d4d403635301
339
py
Python
StoryMap/apps/users/admin.py
LittleBai0606/StoryMap
1169e763031f92ee6da65829fa9cbce1ebd991ad
[ "MIT" ]
1
2021-11-01T05:58:25.000Z
2021-11-01T05:58:25.000Z
StoryMap/apps/users/admin.py
LittleBai0606/StoryMap
1169e763031f92ee6da65829fa9cbce1ebd991ad
[ "MIT" ]
null
null
null
StoryMap/apps/users/admin.py
LittleBai0606/StoryMap
1169e763031f92ee6da65829fa9cbce1ebd991ad
[ "MIT" ]
null
null
null
from django.contrib import admin from .models import UserProfile # Register your models here. admin.site.register(UserProfile, UserProfileAdmin)
24.214286
92
0.722714
from django.contrib import admin from .models import UserProfile # Register your models here. class UserProfileAdmin(admin.ModelAdmin): fields = ['username', 'password', 'email', 'nickname', 'gender', 'birthday', 'avatar', ] list_display = ['username', 'email', 'nickname'] admin.site.register(UserProfile, UserProfileAdmin)
0
168
23
df7a5da0ce6a0c9361b27bfdc4e070c0fb9fba67
2,013
py
Python
turn_classification/turn_classification.py
team8/outdoor-blind-navigation
78b99fe1a193161c4b809990c71940fbed719785
[ "MIT" ]
6
2021-05-18T16:46:04.000Z
2022-01-08T02:49:27.000Z
turn_classification/turn_classification.py
aoberai/outdoor-blind-navigation
78b99fe1a193161c4b809990c71940fbed719785
[ "MIT" ]
15
2021-05-19T23:40:50.000Z
2021-07-06T08:24:40.000Z
turn_classification/turn_classification.py
aoberai/outdoor-blind-navigation
78b99fe1a193161c4b809990c71940fbed719785
[ "MIT" ]
4
2021-05-26T02:10:43.000Z
2021-09-04T17:59:51.000Z
import cv2 import threading import tensorflow as tf import numpy as np import time import capturer from utils.circularBuffer import CircularBuffer labels = ['Left Turn', 'No Turn', 'Right Turn'] model_path = "./turn_classification/turn_classification_model_final_v1.h5" readings_buffer_size = 20 image_preprocessing_dimens = (100, 100) detection_threshold = 0.5
38.711538
141
0.694983
import cv2 import threading import tensorflow as tf import numpy as np import time import capturer from utils.circularBuffer import CircularBuffer labels = ['Left Turn', 'No Turn', 'Right Turn'] model_path = "./turn_classification/turn_classification_model_final_v1.h5" readings_buffer_size = 20 image_preprocessing_dimens = (100, 100) detection_threshold = 0.5 class TurnClassification: def __init__(self): self.model = tf.keras.models.load_model(model_path) self.readings_buffer = CircularBuffer(readings_buffer_size, noneOverridePercent=0.5) self.images_queue = CircularBuffer(1) self.classifier_queue = CircularBuffer(1) threading.Thread(target=self.classification_starter).start() def capture_processing(self): while True: try: frame = capturer.get_images().get_last() if frame is not None: preprocessed_frame = cv2.resize(frame, image_preprocessing_dimens, interpolation=cv2.INTER_LINEAR) self.images_queue.add(np.expand_dims(preprocessed_frame, 0)) except Exception as e: print("Capturing Not Working", e) def classification_starter(self): threading.Thread(target=self.capture_processing).start() while True: try: self.perform_inference(self.images_queue.get_last()) except Exception as e: print("Classification Not Working", e) def perform_inference(self, image): feedforward_result = self.model.predict(image).tolist()[0] self.readings_buffer.add(None if feedforward_result == None or max(feedforward_result) < detection_threshold else feedforward_result) averaged_result = self.readings_buffer.mean() # print(averaged_result) self.classifier_queue.add("No Turn" if averaged_result is None else labels[np.argmax(averaged_result)]) def get_inference(self): return self.classifier_queue.get_last()
1,487
4
158
8a3a89d4511059d142d7dd9786e728c20d3522fe
8,071
py
Python
ardana_service/admin.py
ArdanaCLM/ardana-service
680099101de36fce893ef6d138b75d778f92f182
[ "Apache-2.0" ]
1
2017-07-20T01:04:21.000Z
2017-07-20T01:04:21.000Z
ardana_service/admin.py
GarySmith/ardana-service
680099101de36fce893ef6d138b75d778f92f182
[ "Apache-2.0" ]
null
null
null
ardana_service/admin.py
GarySmith/ardana-service
680099101de36fce893ef6d138b75d778f92f182
[ "Apache-2.0" ]
2
2017-08-02T17:18:47.000Z
2019-10-11T23:48:58.000Z
# (c) Copyright 2017-2019 SUSE LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from flask import abort from flask import Blueprint from flask import jsonify from flask import request from keystoneauth1 import exceptions as exc from keystoneauth1 import session as ks_session from keystoneclient.auth.identity import v3 from keystoneclient.v3 import client as ks_client import logging import os from oslo_config import cfg import pbr.version import pwd import threading import time from .util import ping from . import config from . import policy bp = Blueprint('admin', __name__) CONF = cfg.CONF LOG = logging.getLogger(__name__) USER_AGENT = 'Installer UI' @bp.route("/api/v2/version") def version(): """Returns the version of the service .. :quickref: Admin; Returns the version of the service **Example valid response**: .. sourcecode:: http HTTP/1.1 200 OK 0.0.1.dev16 """ version_info = pbr.version.VersionInfo('ardana-service') return version_info.version_string_with_vcs() @bp.route("/api/v2/heartbeat") def heartbeat(): """Returns the epoch time Simple API to verify that the service is up and responding. Returns the number of seconds since 1970-01-01 00:00:00 GMT. .. :quickref: Admin; Returns the epoch time **Example valid response**: .. sourcecode:: http HTTP/1.1 200 OK 1502745650 """ return jsonify(int(time.time())) @bp.route("/api/v2/user") @policy.enforce('lifecycle:get_user') def user(): """Returns the username the service is running under .. :quickref: Admin; Returns the username the service is running under **Example valid response**: .. sourcecode:: http HTTP/1.1 200 OK {"username": "myusername"} """ user_dict = {'username': pwd.getpwuid(os.getuid()).pw_name} return jsonify(user_dict) @bp.route("/api/v2/restart", methods=['POST']) @policy.enforce('lifecycle:restart') def restart(): """Requests the service to restart after a specified delay, in seconds .. :quickref: Admin; Requests a service restart after a delay **Example Request**: .. sourcecode:: http POST /api/v2/user HTTP/1.1 Content-Type: application/json { "delay": 60 } """ info = request.get_json() or {} delay_secs = int(info.get('delay', 0)) t = threading.Timer(delay_secs, update_trigger_file) t.start() return jsonify('Success') @bp.route("/api/v2/login", methods=['POST']) def login(): """Authenticates with keystone and returns a token .. :quickref: Admin; Authenticates with keystone **Example Request**: .. sourcecode:: http POST /api/v2/login HTTP/1.1 Content-Type: application/json { "username": "admin", "password": "secret" } **Example Response**: .. sourcecode:: http HTTP/1.1 200 OK Content-Type: application/json { "token": "gAAAAABbEaruZDQGIH5KmKWHlDZIw7CLq", "expires": "2018-06-01T21:22:06+00:00" } :status 200: successful authentication :status 401: invalid credentials :status 403: authentication not permitted, or user not authorized for any projects """ if not config.requires_auth(): abort(403, "authentication not permitted since service is in insecure mode") info = request.get_json() or {} username = info.get('username') password = info.get('password') user_domain_name = info.get('user_domain_name', 'Default') token = _authenticate(CONF.keystone_authtoken.auth_url, username, password, user_domain_name) return jsonify(token) def _authenticate(auth_url, username=None, password=None, user_domain_name='Default'): """Authenticate with keystone Creates an unscoped token using the given credentials (which validates them), and then uses that token to get a project-scoped token. """ unscoped_auth = v3.Password(auth_url, username=username, password=password, user_domain_name=user_domain_name, unscoped=True) session = ks_session.Session(user_agent=USER_AGENT, verify=not CONF.keystone_authtoken.insecure) try: # Trigger keystone to verify the credentials unscoped_auth_ref = unscoped_auth.get_access(session) except exc.connection.ConnectFailure as e: abort(503, str(e)) except exc.http.HttpError as e: abort(e.http_status, e.message) except exc.ClientException as e: abort(401, str(e)) except Exception as e: LOG.exception(e) abort(500, "Unable to authenticate") client = ks_client.Client(session=session, auth=unscoped_auth, user_agent=USER_AGENT) auth_url = unscoped_auth.auth_url projects = client.projects.list(user=unscoped_auth_ref.user_id) # Filter out disabled projects projects = [project for project in projects if project.enabled] # Prioritize the admin project by putting it at the beginning of the list for pos, project in enumerate(projects): if project.name == 'admin': projects.pop(pos) projects.insert(0, project) break # Return the first project token that we have the admin role on, otherwise # return the first project token we have any role on. fallback_auth_ref = None for project in projects: auth = v3.Token(auth_url=auth_url, token=unscoped_auth_ref.auth_token, project_id=project.id, reauthenticate=False) try: auth_ref = auth.get_access(session) if 'admin' in auth_ref.role_names: return {'token': auth_ref.auth_token, 'expires': auth_ref.expires.isoformat()} elif not fallback_auth_ref: fallback_auth_ref = auth_ref except Exception as e: pass if fallback_auth_ref: return {'token': fallback_auth_ref.auth_token, 'expires': fallback_auth_ref.expires.isoformat()} # TODO(gary): Consider as a secondary fallback to return a domain-scoped # token abort(403, "Not authorized for any project") @bp.route("/api/v2/is_secured") def get_secured(): """Returns whether authentication is required Returns a json object indicating whether the service is configured to enforce authentication .. :quickref: Model; Returns whether authentication is required **Example Response**: .. sourcecode:: http HTTP/1.1 200 OK Content-Type: application/json { "isSecured": false } :status 200: success """ return jsonify({'isSecured': config.requires_auth()}) @bp.route("/api/v2/connection_test", methods=['POST'])
26.813953
79
0.638087
# (c) Copyright 2017-2019 SUSE LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from flask import abort from flask import Blueprint from flask import jsonify from flask import request from keystoneauth1 import exceptions as exc from keystoneauth1 import session as ks_session from keystoneclient.auth.identity import v3 from keystoneclient.v3 import client as ks_client import logging import os from oslo_config import cfg import pbr.version import pwd import threading import time from .util import ping from . import config from . import policy bp = Blueprint('admin', __name__) CONF = cfg.CONF LOG = logging.getLogger(__name__) USER_AGENT = 'Installer UI' @bp.route("/api/v2/version") def version(): """Returns the version of the service .. :quickref: Admin; Returns the version of the service **Example valid response**: .. sourcecode:: http HTTP/1.1 200 OK 0.0.1.dev16 """ version_info = pbr.version.VersionInfo('ardana-service') return version_info.version_string_with_vcs() @bp.route("/api/v2/heartbeat") def heartbeat(): """Returns the epoch time Simple API to verify that the service is up and responding. Returns the number of seconds since 1970-01-01 00:00:00 GMT. .. :quickref: Admin; Returns the epoch time **Example valid response**: .. sourcecode:: http HTTP/1.1 200 OK 1502745650 """ return jsonify(int(time.time())) @bp.route("/api/v2/user") @policy.enforce('lifecycle:get_user') def user(): """Returns the username the service is running under .. :quickref: Admin; Returns the username the service is running under **Example valid response**: .. sourcecode:: http HTTP/1.1 200 OK {"username": "myusername"} """ user_dict = {'username': pwd.getpwuid(os.getuid()).pw_name} return jsonify(user_dict) def update_trigger_file(): trigger_file = os.path.join(CONF.paths.log_dir, 'trigger.txt') with open(trigger_file, 'w') as f: f.write("Triggered restart at %s\n" % time.asctime()) @bp.route("/api/v2/restart", methods=['POST']) @policy.enforce('lifecycle:restart') def restart(): """Requests the service to restart after a specified delay, in seconds .. :quickref: Admin; Requests a service restart after a delay **Example Request**: .. sourcecode:: http POST /api/v2/user HTTP/1.1 Content-Type: application/json { "delay": 60 } """ info = request.get_json() or {} delay_secs = int(info.get('delay', 0)) t = threading.Timer(delay_secs, update_trigger_file) t.start() return jsonify('Success') @bp.route("/api/v2/login", methods=['POST']) def login(): """Authenticates with keystone and returns a token .. :quickref: Admin; Authenticates with keystone **Example Request**: .. sourcecode:: http POST /api/v2/login HTTP/1.1 Content-Type: application/json { "username": "admin", "password": "secret" } **Example Response**: .. sourcecode:: http HTTP/1.1 200 OK Content-Type: application/json { "token": "gAAAAABbEaruZDQGIH5KmKWHlDZIw7CLq", "expires": "2018-06-01T21:22:06+00:00" } :status 200: successful authentication :status 401: invalid credentials :status 403: authentication not permitted, or user not authorized for any projects """ if not config.requires_auth(): abort(403, "authentication not permitted since service is in insecure mode") info = request.get_json() or {} username = info.get('username') password = info.get('password') user_domain_name = info.get('user_domain_name', 'Default') token = _authenticate(CONF.keystone_authtoken.auth_url, username, password, user_domain_name) return jsonify(token) def _authenticate(auth_url, username=None, password=None, user_domain_name='Default'): """Authenticate with keystone Creates an unscoped token using the given credentials (which validates them), and then uses that token to get a project-scoped token. """ unscoped_auth = v3.Password(auth_url, username=username, password=password, user_domain_name=user_domain_name, unscoped=True) session = ks_session.Session(user_agent=USER_AGENT, verify=not CONF.keystone_authtoken.insecure) try: # Trigger keystone to verify the credentials unscoped_auth_ref = unscoped_auth.get_access(session) except exc.connection.ConnectFailure as e: abort(503, str(e)) except exc.http.HttpError as e: abort(e.http_status, e.message) except exc.ClientException as e: abort(401, str(e)) except Exception as e: LOG.exception(e) abort(500, "Unable to authenticate") client = ks_client.Client(session=session, auth=unscoped_auth, user_agent=USER_AGENT) auth_url = unscoped_auth.auth_url projects = client.projects.list(user=unscoped_auth_ref.user_id) # Filter out disabled projects projects = [project for project in projects if project.enabled] # Prioritize the admin project by putting it at the beginning of the list for pos, project in enumerate(projects): if project.name == 'admin': projects.pop(pos) projects.insert(0, project) break # Return the first project token that we have the admin role on, otherwise # return the first project token we have any role on. fallback_auth_ref = None for project in projects: auth = v3.Token(auth_url=auth_url, token=unscoped_auth_ref.auth_token, project_id=project.id, reauthenticate=False) try: auth_ref = auth.get_access(session) if 'admin' in auth_ref.role_names: return {'token': auth_ref.auth_token, 'expires': auth_ref.expires.isoformat()} elif not fallback_auth_ref: fallback_auth_ref = auth_ref except Exception as e: pass if fallback_auth_ref: return {'token': fallback_auth_ref.auth_token, 'expires': fallback_auth_ref.expires.isoformat()} # TODO(gary): Consider as a secondary fallback to return a domain-scoped # token abort(403, "Not authorized for any project") @bp.route("/api/v2/is_secured") def get_secured(): """Returns whether authentication is required Returns a json object indicating whether the service is configured to enforce authentication .. :quickref: Model; Returns whether authentication is required **Example Response**: .. sourcecode:: http HTTP/1.1 200 OK Content-Type: application/json { "isSecured": false } :status 200: success """ return jsonify({'isSecured': config.requires_auth()}) @bp.route("/api/v2/connection_test", methods=['POST']) def connection_test(): body = request.get_json() or {} host = body['host'] try: ping(host, 22) return jsonify('Success') except Exception as e: return jsonify(error=str(e)), 404
369
0
45
3a3491b43a5a2b9285bd18407b12c00d9f4f6e46
8,549
py
Python
src/generate.py
josephnavarro/ascii-art-generator
9317aaff92b58ab68a9598fdb89c95699bea4927
[ "MIT" ]
null
null
null
src/generate.py
josephnavarro/ascii-art-generator
9317aaff92b58ab68a9598fdb89c95699bea4927
[ "MIT" ]
null
null
null
src/generate.py
josephnavarro/ascii-art-generator
9317aaff92b58ab68a9598fdb89c95699bea4927
[ "MIT" ]
null
null
null
#! usr/bin/env python3 """ : : Utility for generating ASCII art given an input image. : : """ from src.ascii import * from src.luminosity import * UPPER = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" LOWER = "abcdefghijklmnopqrstuvwxyz" DIGIT = "0123456789" SYMBOL = "~!@#$%^&*()_+`-=[]{}|\\:;\"'<>?,./" #CHARACTERS = UPPER + LOWER + DIGIT + SYMBOL CHARACTERS = SYMBOL ITER_WIDTH = 4 ITER_HEIGHT = 2 FONT_SIZE = 99 INVERT = True def fn_GetNumValues(d_Dict: dict) -> int: """ : : Gets the total number of unique values from the given mapping. : : : Args: : dict d_Luminosity : : : Returns: : Number of unique values : : """ return len(list(set(d_Dict.values()))) def fn_MapRange(l_List: iter, i_Range: int) -> dict: """ : : Evenly assigns a numerical value within a given range to each element of a list. : : : Args: : iter l_List : List of items that will be mapped as values in the output dictionary : int i_Range : Maximum value for the range of numbers that will be mapped as keys in the output : : Returns: : Dictionary containing the above mapping : : """ # Set up local containers # ... i_LenList = len(l_List) # type: int i_M = 0 # type: int f_Step = i_LenList / i_Range # type: float f_N = 0 # type: float d_Output = {} # type: dict # Step through list and populate output dictionary evenly # ... while f_N < i_LenList: try: i_Index = int(round(f_N)) o_Item = l_List[i_Index] d_Output[i_M] = o_Item f_N += f_Step i_M += 1 except IndexError: break return d_Output def fn_CrossChain(d_Dict1: dict, d_Dict2: dict, b_Default: bool = False) -> dict: """ : : Maps keys in the first dictionary to values in the second dictionary. (In other words, the first dictionary's : keys will be mapped to the second dictionary's values, for each value in the first that's a key in the second). : : In case of hash misses in the second dictionary, supplying a "default" value may be enabled. If enabled, the : default value will be taken as the "last" element of the second dictionary (that is, as though its entries : were sorted in order of its keys). : : : Args: : dict d_Dict1 : Dictionary whose keys are to become keys in the output dictionary : dict d_Dict2 : Dictionary whose values are to become values in the output dictionary : bool b_Default : Whether to use a fallback value in place of "missing" values (default False) : : Returns: : Dictionary containing keys from the first dictionary mapped to values from the second dictionary : : """ d_Output = {} # Supply default value if needed # ... if b_Default: v_Default = fn_SortByKey(d_Dict2)[-1] else: v_Default = None # Remap keys(1) to values(2) # ... for k1, v1 in d_Dict1.items(): if v1 in d_Dict2: d_Output[k1] = d_Dict2[v1] elif b_Default: d_Output[k1] = v_Default return d_Output def fn_ParallelChain(d_Dict1: dict, d_Dict2: dict, b_Default: bool = False) -> dict: """ : : Maps values in the first dictionary to values in the second dictionary. (In other words, the first dictionary's : values will be mapped to the second dictionary's values, for each key in the first that's also a key in the : second). : : In case of hash misses in the second dictionary, supplying a "default" value may be enabled. If enabled, the : default value will be taken as the "last" element of the second dictionary (that is, as though its entries were : sorted in order of its keys). : : : Args: : dict d_Dict1 : Dictionary whose values are to become keys in the output dictionary : dict d_Dict2 : Dictionary whose values are to become values in the output dictionary : bool b_Default : Whether to use a fallback value in place of "missing" values (default False) : : Returns: : Dictionary containing values from the first dictionary mapped to values from the second dictionary : : """ d_Output = {} # Supply default value if needed # ... if b_Default: v_Default = fn_SortByKey(d_Dict2)[-1] else: v_Default = None # Remap values(1) to values(2) # ... for k1, v1 in d_Dict1.items(): if k1 in d_Dict2: d_Output[v1] = d_Dict2[k1] elif b_Default: d_Output[v1] = v_Default return d_Output def fn_SortByKey(d_Dict: dict) -> list: """ : : Returns a list of values in a dictionary in order of their keys. : : : Args: : dict d_Dict : An unsigned integer! : : Returns: : List of values sorted by key : : """ return [y[1] for y in sorted([(k, v) for k, v in d_Dict.items()], key=lambda x: x[0])] def fn_GenerateAscii(d_CoordToChar: dict) -> str: """ : : Generates an ASCII image string given characters mapped to (relative) rendering coordinates. : : : Args: : dict d_CoordToChar : Mapping from 2-tuple coordinates to string characters : : Returns: : ASCII image (or any other encoding really), separated by newlines : : """ d_Ascii = {} # type: dict s_Output = '' # type: str # Map images to x-y coordinates, splitting x- and y- into their own sub-dictionaries # ... for i2_Coord, s_Char in d_CoordToChar.items(): i_X, i_Y = i2_Coord if i_X not in d_Ascii: d_Ascii[i_X] = {} if i_Y not in d_Ascii[i_X]: d_Ascii[i_X][i_Y] = s_Char # Sort the entries for each "row" of ASCII characters in the dictionary, then join them and concatenate the # resulting string # ... for i_X, d_X in d_Ascii.items(): s_Output += ''.join(fn_SortByKey(d_X)) s_Output += '\n' return s_Output def fn_ProcessImage( s_FontFilename: str, s_ImageFilename: str, s_Output: str = '', s_CharacterSet: str = CHARACTERS, b_Invert: bool = INVERT, i_Size: int = FONT_SIZE, i_IterWidth: int = ITER_WIDTH, i_IterHeight: int = ITER_HEIGHT, ): """ : : Loads an image and converts it to ASCII art, then prints it out. : : """ # Load font and sort glyphs in order of luminosity # ... o_FreetypeFace = fn_LoadFont(s_FontFilename, i_Size) # type: freetype.Face s_Characters = fn_SortGlyphs(o_FreetypeFace, s_CharacterSet, b_Invert) # type: str # Load image and profile it for luminosity # ... o_Image = fn_LoadImage(s_ImageFilename) # type: Image d_CoordToImage = fn_Iterate2D(o_Image, i_IterWidth, i_IterHeight) # type: dict d_CoordToLum = fn_MapLuminosity2D(d_CoordToImage) # type: dict i_NumLuminosity = fn_GetNumValues(d_CoordToLum) # type: int l_Luminosity = list(set(d_CoordToLum.values())) # type: list # Relay a series of associative mappings, ending with characters mapped under relative coordinates # ... d_CharRange = fn_MapRange(s_Characters, i_NumLuminosity) # type: dict d_LumRange = fn_MapRange(l_Luminosity, i_NumLuminosity) # type: dict d_LumToChar = fn_ParallelChain(d_LumRange, d_CharRange) # type: dict d_ImageToLum = fn_ParallelChain(d_CoordToImage, d_CoordToLum) # type: dict d_ImageToChar = fn_CrossChain(d_ImageToLum, d_LumToChar, True) # type: dict d_CoordToChar = fn_CrossChain(d_CoordToImage, d_ImageToChar) # type: dict # Generate ASCII image using coordinates -> characters # ... s_Out = fn_GenerateAscii(d_CoordToChar) # If output filename specified, save file there; otherwise, just print it out. # ... if s_Output: with open(s_Output, 'w') as f: f.write(s_Out) print("Wrote to output file: {0}".format(s_Output)) else: print() print(s_Out) if __name__ == "__main__": fn_ProcessImage("../res/arial.ttf", "../res/nagatoro.png")
30.208481
118
0.601474
#! usr/bin/env python3 """ : : Utility for generating ASCII art given an input image. : : """ from src.ascii import * from src.luminosity import * UPPER = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" LOWER = "abcdefghijklmnopqrstuvwxyz" DIGIT = "0123456789" SYMBOL = "~!@#$%^&*()_+`-=[]{}|\\:;\"'<>?,./" #CHARACTERS = UPPER + LOWER + DIGIT + SYMBOL CHARACTERS = SYMBOL ITER_WIDTH = 4 ITER_HEIGHT = 2 FONT_SIZE = 99 INVERT = True def fn_GetNumValues(d_Dict: dict) -> int: """ : : Gets the total number of unique values from the given mapping. : : : Args: : dict d_Luminosity : : : Returns: : Number of unique values : : """ return len(list(set(d_Dict.values()))) def fn_MapRange(l_List: iter, i_Range: int) -> dict: """ : : Evenly assigns a numerical value within a given range to each element of a list. : : : Args: : iter l_List : List of items that will be mapped as values in the output dictionary : int i_Range : Maximum value for the range of numbers that will be mapped as keys in the output : : Returns: : Dictionary containing the above mapping : : """ # Set up local containers # ... i_LenList = len(l_List) # type: int i_M = 0 # type: int f_Step = i_LenList / i_Range # type: float f_N = 0 # type: float d_Output = {} # type: dict # Step through list and populate output dictionary evenly # ... while f_N < i_LenList: try: i_Index = int(round(f_N)) o_Item = l_List[i_Index] d_Output[i_M] = o_Item f_N += f_Step i_M += 1 except IndexError: break return d_Output def fn_CrossChain(d_Dict1: dict, d_Dict2: dict, b_Default: bool = False) -> dict: """ : : Maps keys in the first dictionary to values in the second dictionary. (In other words, the first dictionary's : keys will be mapped to the second dictionary's values, for each value in the first that's a key in the second). : : In case of hash misses in the second dictionary, supplying a "default" value may be enabled. If enabled, the : default value will be taken as the "last" element of the second dictionary (that is, as though its entries : were sorted in order of its keys). : : : Args: : dict d_Dict1 : Dictionary whose keys are to become keys in the output dictionary : dict d_Dict2 : Dictionary whose values are to become values in the output dictionary : bool b_Default : Whether to use a fallback value in place of "missing" values (default False) : : Returns: : Dictionary containing keys from the first dictionary mapped to values from the second dictionary : : """ d_Output = {} # Supply default value if needed # ... if b_Default: v_Default = fn_SortByKey(d_Dict2)[-1] else: v_Default = None # Remap keys(1) to values(2) # ... for k1, v1 in d_Dict1.items(): if v1 in d_Dict2: d_Output[k1] = d_Dict2[v1] elif b_Default: d_Output[k1] = v_Default return d_Output def fn_ParallelChain(d_Dict1: dict, d_Dict2: dict, b_Default: bool = False) -> dict: """ : : Maps values in the first dictionary to values in the second dictionary. (In other words, the first dictionary's : values will be mapped to the second dictionary's values, for each key in the first that's also a key in the : second). : : In case of hash misses in the second dictionary, supplying a "default" value may be enabled. If enabled, the : default value will be taken as the "last" element of the second dictionary (that is, as though its entries were : sorted in order of its keys). : : : Args: : dict d_Dict1 : Dictionary whose values are to become keys in the output dictionary : dict d_Dict2 : Dictionary whose values are to become values in the output dictionary : bool b_Default : Whether to use a fallback value in place of "missing" values (default False) : : Returns: : Dictionary containing values from the first dictionary mapped to values from the second dictionary : : """ d_Output = {} # Supply default value if needed # ... if b_Default: v_Default = fn_SortByKey(d_Dict2)[-1] else: v_Default = None # Remap values(1) to values(2) # ... for k1, v1 in d_Dict1.items(): if k1 in d_Dict2: d_Output[v1] = d_Dict2[k1] elif b_Default: d_Output[v1] = v_Default return d_Output def fn_SortByKey(d_Dict: dict) -> list: """ : : Returns a list of values in a dictionary in order of their keys. : : : Args: : dict d_Dict : An unsigned integer! : : Returns: : List of values sorted by key : : """ return [y[1] for y in sorted([(k, v) for k, v in d_Dict.items()], key=lambda x: x[0])] def fn_GenerateAscii(d_CoordToChar: dict) -> str: """ : : Generates an ASCII image string given characters mapped to (relative) rendering coordinates. : : : Args: : dict d_CoordToChar : Mapping from 2-tuple coordinates to string characters : : Returns: : ASCII image (or any other encoding really), separated by newlines : : """ d_Ascii = {} # type: dict s_Output = '' # type: str # Map images to x-y coordinates, splitting x- and y- into their own sub-dictionaries # ... for i2_Coord, s_Char in d_CoordToChar.items(): i_X, i_Y = i2_Coord if i_X not in d_Ascii: d_Ascii[i_X] = {} if i_Y not in d_Ascii[i_X]: d_Ascii[i_X][i_Y] = s_Char # Sort the entries for each "row" of ASCII characters in the dictionary, then join them and concatenate the # resulting string # ... for i_X, d_X in d_Ascii.items(): s_Output += ''.join(fn_SortByKey(d_X)) s_Output += '\n' return s_Output def fn_ProcessImage( s_FontFilename: str, s_ImageFilename: str, s_Output: str = '', s_CharacterSet: str = CHARACTERS, b_Invert: bool = INVERT, i_Size: int = FONT_SIZE, i_IterWidth: int = ITER_WIDTH, i_IterHeight: int = ITER_HEIGHT, ): """ : : Loads an image and converts it to ASCII art, then prints it out. : : """ # Load font and sort glyphs in order of luminosity # ... o_FreetypeFace = fn_LoadFont(s_FontFilename, i_Size) # type: freetype.Face s_Characters = fn_SortGlyphs(o_FreetypeFace, s_CharacterSet, b_Invert) # type: str # Load image and profile it for luminosity # ... o_Image = fn_LoadImage(s_ImageFilename) # type: Image d_CoordToImage = fn_Iterate2D(o_Image, i_IterWidth, i_IterHeight) # type: dict d_CoordToLum = fn_MapLuminosity2D(d_CoordToImage) # type: dict i_NumLuminosity = fn_GetNumValues(d_CoordToLum) # type: int l_Luminosity = list(set(d_CoordToLum.values())) # type: list # Relay a series of associative mappings, ending with characters mapped under relative coordinates # ... d_CharRange = fn_MapRange(s_Characters, i_NumLuminosity) # type: dict d_LumRange = fn_MapRange(l_Luminosity, i_NumLuminosity) # type: dict d_LumToChar = fn_ParallelChain(d_LumRange, d_CharRange) # type: dict d_ImageToLum = fn_ParallelChain(d_CoordToImage, d_CoordToLum) # type: dict d_ImageToChar = fn_CrossChain(d_ImageToLum, d_LumToChar, True) # type: dict d_CoordToChar = fn_CrossChain(d_CoordToImage, d_ImageToChar) # type: dict # Generate ASCII image using coordinates -> characters # ... s_Out = fn_GenerateAscii(d_CoordToChar) # If output filename specified, save file there; otherwise, just print it out. # ... if s_Output: with open(s_Output, 'w') as f: f.write(s_Out) print("Wrote to output file: {0}".format(s_Output)) else: print() print(s_Out) if __name__ == "__main__": fn_ProcessImage("../res/arial.ttf", "../res/nagatoro.png")
0
0
0
8feb772e81d2e7de2f57a541d565f8376b286c08
11,234
py
Python
app/admin.py
sedrof/not-phs
8f4031e220a7690c5304cebe310e3ef14d8e7424
[ "MIT" ]
null
null
null
app/admin.py
sedrof/not-phs
8f4031e220a7690c5304cebe310e3ef14d8e7424
[ "MIT" ]
null
null
null
app/admin.py
sedrof/not-phs
8f4031e220a7690c5304cebe310e3ef14d8e7424
[ "MIT" ]
null
null
null
from import_export.admin import ImportExportModelAdmin, ExportMixin from django.contrib import admin from master_data.models import * from centrelink.models import * from calculator.models import * from imports.models import * from django.utils.safestring import mark_safe from json2html import * from django.contrib.auth.models import Group, User from django import forms from django.contrib.admin.widgets import FilteredSelectMultiple from import_export import resources import nested_admin admin.site.unregister(Group) # Register the new Group ModelAdmin. admin.site.register(Group, GroupAdmin) admin.site.site_header = 'CRA Calculator' admin.site.index_title = 'CRA Calculator' admin.site.site_title = 'CRA Calculator' admin.site.register(Transaction, TransactionAdmin) @ admin.register( FamilySituation, MaintenanceType, Relationship, ) @ admin.register(RentAssessmentRate) @ admin.register(CraRate) @ admin.register(FtbRate) @ admin.register(MaintenanceIncomeTestRate) @ admin.register( FamilySituationRate, FtbAMaximumPayment, MaintenanceTypeRate, ) @ admin.register(Batch) # from django_otp import OTP_HOTP # admin.site.unregister(OTP_HOTP)
32.847953
129
0.60673
from import_export.admin import ImportExportModelAdmin, ExportMixin from django.contrib import admin from master_data.models import * from centrelink.models import * from calculator.models import * from imports.models import * from django.utils.safestring import mark_safe from json2html import * from django.contrib.auth.models import Group, User from django import forms from django.contrib.admin.widgets import FilteredSelectMultiple from import_export import resources import nested_admin class GroupAdminForm(forms.ModelForm): class Meta: model = Group exclude = [] # Add the users field. users = forms.ModelMultipleChoiceField( queryset=User.objects.all(), required=False, widget=FilteredSelectMultiple('users', False) ) def __init__(self, *args, **kwargs): # Do the normal form initialisation. super(GroupAdminForm, self).__init__(*args, **kwargs) # If it is an existing group (saved objects have a pk). if self.instance.pk: # Populate the users field with the current Group users. self.fields['users'].initial = self.instance.user_set.all() def save_m2m(self): # Add the users to the Group. self.instance.user_set.set(self.cleaned_data['users']) def save(self, *args, **kwargs): # Default save instance = super(GroupAdminForm, self).save() # Save many-to-many data self.save_m2m() return instance admin.site.unregister(Group) class GroupAdmin(admin.ModelAdmin): # Use our custom form. form = GroupAdminForm # Filter permissions horizontal as well. filter_horizontal = ['permissions'] # Register the new Group ModelAdmin. admin.site.register(Group, GroupAdmin) admin.site.site_header = 'CRA Calculator' admin.site.index_title = 'CRA Calculator' admin.site.site_title = 'CRA Calculator' class FamilyMemberInline(nested_admin.NestedTabularInline): model = FamilyMember extra = 0 max_num = 5 def sufficient_info_provided(self, obj): return obj.sufficient_information_provided sufficient_info_provided.boolean = True def age(self, obj): return obj.age fieldsets = ( ('FamilyMember Details', { 'fields': ('name', 'date_of_birth', 'age', 'income', 'relationship', 'rent_percentage', 'care_percentage', 'sufficient_info_provided'), }),) readonly_fields = ['sufficient_info_provided', 'age' ] class FamilyGroupInline(nested_admin.NestedTabularInline): model = FamilyGroup inlines = [FamilyMemberInline,] extra = 0 def sufficient_info_provided(self, obj): return obj.sufficient_information_provided sufficient_info_provided.boolean = True fieldsets = ( ('FamilyGroup Details', { 'fields': ('name', 'family_type', 'last_rent', 'any_income_support_payment', 'cra_eligibilty', 'cra_amount', 'ftb_a', 'ftb_b', 'maintenance_amount', 'maintenance_type', 'number_of_additional_children', 'sufficient_info_provided'), }),) readonly_fields = ['sufficient_info_provided' ] class TransactionAdmin(nested_admin.SortableHiddenMixin, nested_admin.NestedModelAdmin): inlines = [FamilyGroupInline,] def save_model(self, request, obj, form, change): obj.user = request.user super().save_model(request, obj, form, change) def get_queryset(self, request): qs = super().get_queryset(request) if request.user.is_superuser: return qs # return qs.filter(user__groups__user=request.user) return qs.filter(user__groups=request.user.groups.first()) def complete(self, obj): return obj.complete complete.boolean = True def last_rent(self, obj): if obj.complete: return obj.last_rent return None def household_rent(self, obj): if obj.complete: return "%.2f" % float(obj.household_rent) return None def report(self, obj): if obj.complete: return mark_safe(json2html.convert(json=obj.report, table_attributes="class=\"results\" style=\"overflow-x:auto;\"")) # return 0 def export_csv(modeladmin, request, queryset): import csv from django.utils.encoding import smart_str from django.http import HttpResponse response = HttpResponse(content_type='text/csv') response['Content-Disposition'] = 'attachment; filename=Report.csv' writer = csv.writer(response, csv.excel) response.write(u'\ufeff'.encode('utf8')) writer.writerow([ smart_str(u"chp_referene"), smart_str(u"Name"), smart_str(u"contact_id"), smart_str(u"date_of_birth"), smart_str(u"age"), smart_str(u"Relationship"), smart_str(u"Income"), smart_str(u"property_market_rent"), smart_str(u"FG_Name"), smart_str(u"last_rent"), smart_str(u"Family_type"), smart_str(u"any_income_support_payment"), smart_str(u"cra_eligibilty"), smart_str(u"cra_amount"), smart_str(u"ftb_a"), smart_str(u"ftb_b"), smart_str(u"maintenance_amount"), smart_str(u"maintenance_type"), smart_str(u"maintenance_amount"), smart_str(u"number_of_additional_children"), smart_str(u"rent_effective_date"), smart_str(u"income_period"), smart_str(u"number_of_family_group"), smart_str(u"cruser"), smart_str(u"prop_id"), smart_str(u"state"), smart_str(u"CRA"), smart_str(u"household_rent"), ]) for obj in queryset: for fg in obj.family_groups.all(): for fm in fg.family_members.all(): if obj.complete: writer.writerow([ smart_str(obj.chp_reference), smart_str(fm.name), smart_str(fm.contact_id), smart_str(fm.date_of_birth), smart_str(fm.age), smart_str(fm.relationship), smart_str(fm.income), smart_str(obj.property_market_rent), smart_str(fm.family_group), smart_str(fm.family_group.last_rent), smart_str(fm.family_group.family_type), smart_str(fm.family_group.any_income_support_payment), smart_str(fm.family_group.cra_eligibilty), smart_str(fm.family_group.cra_amount), smart_str(fm.family_group.ftb_a), smart_str(fm.family_group.ftb_b), smart_str(fm.family_group.maintenance_amount), smart_str(fm.family_group.maintenance_type), smart_str(fm.family_group.maintenance_amount), smart_str(fm.family_group.number_of_additional_children), smart_str(obj.rent_effective_date), smart_str(obj.income_period), smart_str(obj.number_of_family_group), smart_str(obj.cruser), smart_str(obj.prop_id), smart_str(obj.state), smart_str(obj.cra_compon), smart_str(obj.household_rent), ]) elif not obj.complete: writer.writerow([ smart_str(obj.chp_reference), smart_str('ERROR' ), smart_str('IN THE'), smart_str('INPUTS'), smart_str('PLEASE GO'), smart_str('BACK TO THE'), smart_str('APP AND '), smart_str('CORRECT IT'), ]) writer.writerows([]) return response export_csv.short_description = u"Export CSV" fieldsets = ( (None, { 'fields': ('complete',), }), ('Transaction Details', { 'fields': ('chp_reference', 'income_period', 'property_market_rent', 'rent_effective_date', 'number_of_family_group','state',), }), ('Result', { 'classes': ('collapse',), 'fields': ('report', 'print_report'), }), ) readonly_fields = ['report', 'complete', 'last_rent', 'print_report'] list_display = ['chp_reference', 'complete', 'income_period', 'last_rent', 'household_rent', 'property_market_rent', 'rent_effective_date', 'print_report',] display_text = ['Result'] search_fields = ['chp_reference', 'user__username'] actions = [export_csv,] max_num = 5 admin.site.register(Transaction, TransactionAdmin) class FamilySituationRateInline(admin.TabularInline): model = FamilySituationRate extra = 0 class FtbAMaximumPaymentInline(admin.TabularInline): model = FtbAMaximumPayment extra = 0 class MaintenanceTypeRateInline(admin.TabularInline): model = MaintenanceTypeRate extra = 0 class TransactionResource(resources.ModelResource): class Meta: model = Transaction @ admin.register( FamilySituation, MaintenanceType, Relationship, ) class CraAdmin(ImportExportModelAdmin, admin.ModelAdmin): pass @ admin.register(RentAssessmentRate) class RentAssessmentRateAdmin(ImportExportModelAdmin, admin.ModelAdmin): list_editable = ['cra', 'ftb', 'maintenance', 'active'] list_display = ['name', 'cra', 'ftb', 'maintenance', 'active'] @ admin.register(CraRate) class CraRateAdmin(ImportExportModelAdmin, admin.ModelAdmin): inlines = [FamilySituationRateInline, ] @ admin.register(FtbRate) class FtbRateAdmin(ImportExportModelAdmin, admin.ModelAdmin): inlines = [FtbAMaximumPaymentInline, ] @ admin.register(MaintenanceIncomeTestRate) class MaintenanceIncomeTestRateAdmin(ImportExportModelAdmin, admin.ModelAdmin): inlines = [MaintenanceTypeRateInline, ] @ admin.register( FamilySituationRate, FtbAMaximumPayment, MaintenanceTypeRate, ) class CraAdmin(ImportExportModelAdmin, admin.ModelAdmin): def get_model_perms(self, request): return {} @ admin.register(Batch) class BatchAdmin(ImportExportModelAdmin): def has_change_permission(self, request, obj=None): return None def has_add_permission(self, request, obj=None): return None # list_display = ['batch', 'transaction_chp_reference', # 'family_group_name', 'family_member_name', 'message'] list_display = ['batch', 'transaction_chp_reference', 'message',] # from django_otp import OTP_HOTP # admin.site.unregister(OTP_HOTP)
5,757
3,877
387
2ed8a4a9bb1c53941ec398bf527dee4dcaca6772
686
py
Python
skyportal/handlers/api/internal/instrument_observation_params.py
jialin-wu-02/skyportal
29d606ad8567b2230fb0553b18dd3cb9d3ab2d84
[ "BSD-3-Clause" ]
null
null
null
skyportal/handlers/api/internal/instrument_observation_params.py
jialin-wu-02/skyportal
29d606ad8567b2230fb0553b18dd3cb9d3ab2d84
[ "BSD-3-Clause" ]
156
2019-10-17T19:35:22.000Z
2021-08-01T13:23:47.000Z
skyportal/handlers/api/internal/instrument_observation_params.py
jialin-wu-02/skyportal
29d606ad8567b2230fb0553b18dd3cb9d3ab2d84
[ "BSD-3-Clause" ]
null
null
null
import json from baselayer.app.access import auth_or_token from ...base import BaseHandler
38.111111
89
0.677843
import json from baselayer.app.access import auth_or_token from ...base import BaseHandler class InstrumentObservationParamsHandler(BaseHandler): @auth_or_token def get(self): try: with open("instrument_observation_params.json") as f: instrument_data = json.load(f) except FileNotFoundError: return self.error("Instrument observation parameters file does not exist.") except json.JSONDecodeError: return self.error("JSON parse error: instrument observation parameters file " "does not contain properly formatted JSON.") return self.success(data=instrument_data)
493
78
23
951b82e5411a16957eaeb5663362a43cd0c01672
1,555
py
Python
src/data/parse.py
samatix/ml-asset-managers
27c9c0b3f67fd0350e80c5fb2729e64a13dccbb8
[ "Apache-2.0" ]
2
2022-01-01T11:06:22.000Z
2022-02-19T03:19:18.000Z
src/data/parse.py
samatix/ml-asset-managers
27c9c0b3f67fd0350e80c5fb2729e64a13dccbb8
[ "Apache-2.0" ]
null
null
null
src/data/parse.py
samatix/ml-asset-managers
27c9c0b3f67fd0350e80c5fb2729e64a13dccbb8
[ "Apache-2.0" ]
2
2020-08-15T05:38:49.000Z
2022-03-05T07:31:11.000Z
# Copyright 2020 Ayoub ENNASSIRI # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime as dt import csv import logging from src.data.models import Tick from src.runner import pipeline class ParseTickDataFn(pipeline.DoFn): """ Parse the raw tick data events into a tick object """
31.1
74
0.579421
# Copyright 2020 Ayoub ENNASSIRI # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime as dt import csv import logging from src.data.models import Tick from src.runner import pipeline class ParseTickDataFn(pipeline.DoFn): """ Parse the raw tick data events into a tick object """ def __init__(self): self.ticks_counter = 0 self.errors_parse_num = 0 def process(self, elements): for e in elements: try: row = list(csv.reader([e]))[0] self.ticks_counter += 1 yield Tick( time=dt.datetime.strptime( f"{row[0]},{row[1]}", '%m/%d/%Y,%H:%M:%S' ), price=float(row[2]), bid=float(row[3]), ask=float(row[4]), quantity=float(row[5]) ) except: self.errors_parse_num += 1 logging.error(f"Parsing error of element = {e}")
697
0
54
059cf7be37e442771a2a7e9542192e55afa38fe8
675
py
Python
pytup2019/bowler_queries/remove_debugger.py
lensvol/pytup2019
9fe2413a7fcb5e4a4631c42400daeebc2176fce1
[ "MIT" ]
1
2020-03-14T15:16:55.000Z
2020-03-14T15:16:55.000Z
pytup2019/bowler_queries/remove_debugger.py
lensvol/pytup2019
9fe2413a7fcb5e4a4631c42400daeebc2176fce1
[ "MIT" ]
null
null
null
pytup2019/bowler_queries/remove_debugger.py
lensvol/pytup2019
9fe2413a7fcb5e4a4631c42400daeebc2176fce1
[ "MIT" ]
null
null
null
#!/usr/bin/env python import sys from bowler import Query, Filename, Capture, LN PATTERN = """ power < "ipdb" trailer < '.' 'set_trace' > trailer < '(' ')' > > | power < "breakpoint" trailer < "(" ")" > > """
22.5
87
0.62963
#!/usr/bin/env python import sys from bowler import Query, Filename, Capture, LN PATTERN = """ power < "ipdb" trailer < '.' 'set_trace' > trailer < '(' ')' > > | power < "breakpoint" trailer < "(" ")" > > """ def remove_debugger_statements(node: LN, capture: Capture, filename: Filename): parent_index = node.parent.children.index(node) node.parent.children = ( node.parent.children[0:parent_index] + node.parent.children[parent_index + 2 :] ) return None def get_query(path): return ( Query(path) .select(PATTERN) .modify(remove_debugger_statements) .execute(interactive=False, write=True) )
405
0
46
d036b24263c3c6126474bf42a609edea5fe3d39d
1,679
py
Python
Web/testyummly.py
magmastonealex/InTheFridge
95b2e7127f259bd57afceb5759914621c6ab3e5b
[ "Apache-2.0" ]
1
2015-04-20T01:25:25.000Z
2015-04-20T01:25:25.000Z
Web/testyummly.py
magmapus/InTheFridge
95b2e7127f259bd57afceb5759914621c6ab3e5b
[ "Apache-2.0" ]
null
null
null
Web/testyummly.py
magmapus/InTheFridge
95b2e7127f259bd57afceb5759914621c6ab3e5b
[ "Apache-2.0" ]
null
null
null
import requests import urllib import json if __name__ == "__main__": y=Yummly() y.setup('d579507d','736c339e12b7a287c72c2de82313657e') ing=["fruit","milk"] print y.getAll(ing,"course^course-Beverages") y.getCourses() #todo
30.527273
152
0.645622
import requests import urllib import json class Yummly: s=requests.Session() base="http://api.yummly.com/v1/api/recipes" def setup(self,appid,appkey): self.s.headers.update({'X-Yummly-App-ID':appid,'X-Yummly-App-Key':appkey}) def qsearch(self,ing,course): pms=urllib.quote("allowedCourse[]")+"="+urllib.quote(course) pms=pms+"&"+urllib.quote("allowedIngredient[]")+"="+urllib.quote(ing) q=self.s.get(self.base+"?"+pms) return json.loads(q.text)["matches"] def getRecipie(self,rid): pms=urllib.quote(rid) q=self.s.get("http://api.yummly.com/v1/api/recipe/"+pms) rec=json.loads(q.text) return {'url':rec["attribution"]["url"], 'image':rec["images"][0]["hostedLargeUrl"],'name':rec["name"],'time':rec["totalTime"],'rating':rec["rating"]} def getAll(self,ing,course): total=[] for item in ing: t=self.qsearch(item,course) for k in t: k["rank"]=1 k["needmore"]=len(k["ingredients"]) for i in k["ingredients"]: for x in ing: if i.find(x) != -1: k["rank"]=k["rank"]+1 k["needmore"]=k["needmore"]-1 k["rank"]=k["rank"]-k["needmore"] total.append(k) final=[] ids=[] for it in total: if it["id"] not in ids: ids.append(it["id"]) final.append(it) newlist = sorted(final, key=lambda k: k['rank']) newlist.reverse() last=[] for r in newlist[:10]: last.append(y.getRecipie(r["id"])) return last def getCourses(self): q=self.s.get("http://api.yummly.com/v1/api/metadata/course") print q.text if __name__ == "__main__": y=Yummly() y.setup('d579507d','736c339e12b7a287c72c2de82313657e') ing=["fruit","milk"] print y.getAll(ing,"course^course-Beverages") y.getCourses() #todo
1,255
174
22
b9544fa75fdfdd8216e4bbd3c9533a4f56740534
1,182
py
Python
data_storing/assets/tables/moving_average.py
marcellogoccia/deep-value-investing
4d45cc92c157246485b638d2052596a76975ec8a
[ "MIT" ]
null
null
null
data_storing/assets/tables/moving_average.py
marcellogoccia/deep-value-investing
4d45cc92c157246485b638d2052596a76975ec8a
[ "MIT" ]
null
null
null
data_storing/assets/tables/moving_average.py
marcellogoccia/deep-value-investing
4d45cc92c157246485b638d2052596a76975ec8a
[ "MIT" ]
null
null
null
from utilities.config import database from utilities.common_methods import getDebugInfo from utilities import log from sqlalchemy import Column, ForeignKey from sqlalchemy.types import Integer, Float, Date, String from sqlalchemy.orm import relationship from data_storing.assets.base import Base table_name = database.name_table_moving_average
35.818182
103
0.725888
from utilities.config import database from utilities.common_methods import getDebugInfo from utilities import log from sqlalchemy import Column, ForeignKey from sqlalchemy.types import Integer, Float, Date, String from sqlalchemy.orm import relationship from data_storing.assets.base import Base table_name = database.name_table_moving_average class MovingAverage(Base): __tablename__ = table_name id = Column(Integer, primary_key=True, nullable=False, autoincrement=True) equity_id = Column(Integer, ForeignKey(f'{database.name_table_equity}.id')) technical_analysis_id = Column(Integer, ForeignKey(f'{database.name_table_technical_analysis}.id')) technical_analysis = relationship(u'TechnicalAnalysis', back_populates=f'{table_name}') day = Column(Date, default=None) # the day it was measured type = Column(String(15), default=None) # simple or exponential period = Column(Float, default=None) # 5 - 10 - 20 - 200 etc. value = Column(Float, default=None) # the value of the moving average def __repr__(self): return f"<{table_name}," \ f"day: {self.day}," \ f"type: {self.type}>"
101
710
23
d913e76a3b390e2b515230b0eab52acb3113fad6
387
py
Python
tests/unittests/test_scaled_f_score.py
sharockys/listentweet
afd376f527488fa0809a80173dcedd9847f85e19
[ "MIT" ]
null
null
null
tests/unittests/test_scaled_f_score.py
sharockys/listentweet
afd376f527488fa0809a80173dcedd9847f85e19
[ "MIT" ]
16
2021-04-28T07:54:55.000Z
2022-03-29T11:15:05.000Z
tests/unittests/test_scaled_f_score.py
sharockys/listentweet
afd376f527488fa0809a80173dcedd9847f85e19
[ "MIT" ]
null
null
null
import nltk
29.769231
74
0.749354
import nltk def test_ScaledFScore(): # primitive test only. from listentweet.keyword_extraction.scaled_f_score import ScaledFScore nltk.download("gutenberg") emma = nltk.corpus.gutenberg.open("austen-emma.txt").readlines() sfs = ScaledFScore(emma) characteristic_words = sfs.get_f1_score(keyword="emma", max_terms=30) assert "emma" in characteristic_words
351
0
23
a96eca71d5759d02d2e44335fcb14f0c2dff7682
478
py
Python
src/exercise_one/scripts/data_processing.py
Ali-Elganzory/ARL-ROS
403c05d1332c3814ec7039b5ef733f708d845f8b
[ "MIT" ]
null
null
null
src/exercise_one/scripts/data_processing.py
Ali-Elganzory/ARL-ROS
403c05d1332c3814ec7039b5ef733f708d845f8b
[ "MIT" ]
null
null
null
src/exercise_one/scripts/data_processing.py
Ali-Elganzory/ARL-ROS
403c05d1332c3814ec7039b5ef733f708d845f8b
[ "MIT" ]
null
null
null
import rospy from std_msgs.msg import String if __name__ == "__main__": data_processing()
22.761905
82
0.669456
import rospy from std_msgs.msg import String def process_clbk(raw_data: String): name, age, height = map(lambda x: x.split(": ")[1], raw_data.data.split(", ")) age = int(age) height = int(height) rospy.loginfo(f"\nname: {name}\nage: {age}\nheight: {height}") def data_processing(): rospy.init_node("data_processing") subscriber = rospy.Subscriber("raw_data", String, process_clbk) rospy.spin() if __name__ == "__main__": data_processing()
333
0
46
2d0e162b87c63c828d5b570a15927ce895086357
14,969
py
Python
src/3_model/minlp/data_plots.py
akxen/rep-gep
ed470cd60ecba110e228ce54b8c471cb9cb0256d
[ "MIT" ]
null
null
null
src/3_model/minlp/data_plots.py
akxen/rep-gep
ed470cd60ecba110e228ce54b8c471cb9cb0256d
[ "MIT" ]
null
null
null
src/3_model/minlp/data_plots.py
akxen/rep-gep
ed470cd60ecba110e228ce54b8c471cb9cb0256d
[ "MIT" ]
null
null
null
"""Plot input traces to visualise data""" import os import sys import pandas as pd import matplotlib.pyplot as plt from matplotlib.ticker import MultipleLocator sys.path.append(os.path.join(os.path.dirname(__file__), 'utils')) from utils.data import ModelData def plot_coal_fuel_costs(): """Coal fuel costs""" # Class containing model data data = ModelData() # Get coal DUIDs mask = data.existing_units['PARAMETERS']['FUEL_TYPE_PRIMARY'].isin(['COAL']) # Initialise figures fig, ax = plt.subplots() # Generators in order of increasing fuel cost (based on cost in last year) generator_order = data.existing_units.loc[mask, 'FUEL_COST'].T.iloc[-1].sort_values().index # Plot fuel costs for existing units data.existing_units.loc[mask, 'FUEL_COST'].T.loc[:, generator_order].plot(ax=ax, cmap='tab20c', alpha=0.9) # Add legend ax.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=7, mode="expand", borderaxespad=0., prop={'size': 6}) # Add axes labels ax.set_ylabel('Fuel cost (\$/GJ)') ax.set_xlabel('Year') # Format axes ticks ax.xaxis.set_major_locator(MultipleLocator(5)) ax.xaxis.set_minor_locator(MultipleLocator(1)) ax.yaxis.set_major_locator(MultipleLocator(0.5)) ax.yaxis.set_minor_locator(MultipleLocator(0.1)) # Adjust figure placement and size fig.subplots_adjust(top=0.8, left=0.1, right=0.95) fig.set_size_inches(6.69291, 6.69291 * 0.8) # Save figure fig.savefig(os.path.join(os.path.dirname(__file__), 'output', 'figures', 'fuel_cost_coal.pdf')) plt.show() def plot_gas_fuel_costs(): """Plot fuel costs for candidate gas generators""" # Class containing model data data = ModelData() # Get coal DUIDs mask = data.existing_units['PARAMETERS']['FUEL_TYPE_PRIMARY'].isin(['GAS']) # Initialise figures fig, ax = plt.subplots() # Generators in order of increasing fuel cost (based on cost in last year) generator_order = data.existing_units.loc[mask, 'FUEL_COST'].T.iloc[-1].sort_values().index # Plot fuel costs for existing units data.existing_units.loc[mask, 'FUEL_COST'].T.loc[:, generator_order].plot(ax=ax, cmap='tab20c', alpha=0.9) # Add legend ax.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=7, mode="expand", borderaxespad=0., prop={'size': 6}) # Add axes labels ax.set_ylabel('Fuel cost (\$/GJ)') ax.set_xlabel('Year') # Format axes ticks ax.xaxis.set_major_locator(MultipleLocator(5)) ax.xaxis.set_minor_locator(MultipleLocator(1)) ax.yaxis.set_major_locator(MultipleLocator(0.5)) ax.yaxis.set_minor_locator(MultipleLocator(0.1)) # Adjust figure placement and size fig.subplots_adjust(top=0.7, left=0.1, right=0.95) fig.set_size_inches(6.69291, 6.69291 * 0.8) # Save figure fig.savefig(os.path.join(os.path.dirname(__file__), 'output', 'figures', 'fuel_cost_gas.pdf')) plt.show() def plot_coal_build_costs(): """Plot build costs for candidate coal generators""" # Class containing model data data = ModelData() # Get coal DUIDs mask = data.candidate_units['PARAMETERS']['FUEL_TYPE_PRIMARY'].isin(['COAL']) # Initialise figures fig, ax = plt.subplots() # Plot build costs for candidate units data.candidate_units.loc[mask, 'BUILD_COST'].T.plot(ax=ax, cmap='tab20c', alpha=0.9) # Add legend ax.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=5, mode="expand", borderaxespad=0., prop={'size': 6}) # Add axes labels ax.set_ylabel('Build cost (\$/kW)') ax.set_xlabel('Year') # Format axes ticks ax.xaxis.set_major_locator(MultipleLocator(5)) ax.xaxis.set_minor_locator(MultipleLocator(1)) ax.yaxis.set_major_locator(MultipleLocator(1000)) ax.yaxis.set_minor_locator(MultipleLocator(200)) # Adjust figure placement and size fig.subplots_adjust(top=0.85, left=0.1, right=0.95) fig.set_size_inches(6.69291, 6.69291 * 0.6) # Save figure fig.savefig(os.path.join(os.path.dirname(__file__), 'output', 'figures', f'build_costs_coal.pdf')) plt.show() def plot_gas_build_costs(): """Plotting candidate gas generator build costs""" # Class containing model data data = ModelData() # Get coal DUIDs mask = data.candidate_units['PARAMETERS']['FUEL_TYPE_PRIMARY'].isin(['GAS']) # Initialise figures fig, ax = plt.subplots() # Plot build costs for candidate units data.candidate_units.loc[mask, 'BUILD_COST'].T.plot(ax=ax, cmap='tab20c', alpha=0.9) # Add legend ax.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=5, mode="expand", borderaxespad=0., prop={'size': 6}) # Add axes labels ax.set_ylabel('Build cost (\$/kW)') ax.set_xlabel('Year') # Format axes ticks ax.xaxis.set_major_locator(MultipleLocator(5)) ax.xaxis.set_minor_locator(MultipleLocator(1)) ax.yaxis.set_major_locator(MultipleLocator(1000)) ax.yaxis.set_minor_locator(MultipleLocator(200)) # Adjust figure placement and size fig.subplots_adjust(top=0.73, left=0.1, right=0.95) fig.set_size_inches(6.69291, 6.69291 * 0.6) # Save figure fig.savefig(os.path.join(os.path.dirname(__file__), 'output', 'figures', f'build_costs_gas.pdf')) plt.show() def plot_solar_build_costs(): """Plot solar build costs""" # Class containing model data data = ModelData() # Get coal DUIDs mask = data.candidate_units['PARAMETERS']['FUEL_TYPE_PRIMARY'].isin(['SOLAR']) # Initialise figures fig, ax = plt.subplots() # Plot build costs for candidate units data.candidate_units.loc[mask, 'BUILD_COST'].T.plot(ax=ax, cmap='tab20c', alpha=0.9) # Add legend ax.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=5, mode="expand", borderaxespad=0., prop={'size': 6}) # Add axes labels ax.set_ylabel('Build cost (\$/kW)') ax.set_xlabel('Year') # Format axes ticks ax.xaxis.set_major_locator(MultipleLocator(5)) ax.xaxis.set_minor_locator(MultipleLocator(1)) ax.yaxis.set_major_locator(MultipleLocator(1000)) ax.yaxis.set_minor_locator(MultipleLocator(200)) # Adjust figure placement and size fig.subplots_adjust(top=0.75, left=0.1, right=0.95) fig.set_size_inches(6.69291, 6.69291 * 0.6) # Save figure fig.savefig(os.path.join(os.path.dirname(__file__), 'output', 'figures', f'build_costs_solar.pdf')) plt.show() def plot_wind_build_cost(): """Plot build costs for candidate wind generators""" # Class containing model data data = ModelData() # Get coal DUIDs mask = data.candidate_units['PARAMETERS']['FUEL_TYPE_PRIMARY'].isin(['WIND']) # Initialise figures fig, ax = plt.subplots() # Plot build costs for candidate units data.candidate_units.loc[mask, 'BUILD_COST'].T.plot(ax=ax, cmap='tab20c', alpha=0.9) # Add legend ax.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=5, mode="expand", borderaxespad=0., prop={'size': 6}) # Add axes labels ax.set_ylabel('Build cost (\$/kW)') ax.set_xlabel('Year') # Format axes ticks ax.xaxis.set_major_locator(MultipleLocator(5)) ax.xaxis.set_minor_locator(MultipleLocator(1)) ax.yaxis.set_major_locator(MultipleLocator(100)) ax.yaxis.set_minor_locator(MultipleLocator(50)) # Adjust figure placement and size fig.subplots_adjust(top=0.85, left=0.1, right=0.95) fig.set_size_inches(6.69291, 6.69291 * 0.6) # Save figure fig.savefig(os.path.join(os.path.dirname(__file__), 'output', 'figures', f'build_costs_wind.pdf')) plt.show() def plot_demand_profiles(nem_zone='ADE'): """Plot demand profiles""" # Class containing model data data = ModelData() df = pd.read_hdf(os.path.join(os.path.dirname(__file__), os.path.pardir, '2_input_traces', 'output', 'dataset.h5')) df_d = df.loc[:, [('DEMAND', 'ADE')]] # Data for 20202 df_d = df_d.sort_index() df_d = df_d.loc[df_d.index.year == 2020, :] # Day of year df_d['day_of_year'] = df_d.index.dayofyear.values # Hour in a given day df_d['hour'] = df_d.index.hour.values # Adjust last hour in each day - set as 24th hour df_d['hour'] = df_d['hour'].replace(0, 24) plt.clf() fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True) df_d.pivot(index='day_of_year', columns='hour', values=('DEMAND', nem_zone)).T.plot(ax=ax1, legend=False, alpha=0.4, cmap='viridis') df_d.pivot(index='day_of_year', columns='hour', values=('DEMAND', nem_zone)).T.plot(ax=ax2, legend=False, alpha=0.1, cmap='viridis') # Plot traces obtained from k-means clustering data.input_traces.loc[2020, ('DEMAND', nem_zone)].T.plot(ax=ax2, color='r', legend=False, alpha=0.8) ax1.set_ylabel('ADE Demand (MW)') ax2.set_ylabel('ADE Demand (MW)') ax2.set_xlabel('Hour') # Format axes ticks ax2.xaxis.set_major_locator(MultipleLocator(5)) ax2.xaxis.set_minor_locator(MultipleLocator(1)) ax1.yaxis.set_major_locator(MultipleLocator(500)) ax1.yaxis.set_minor_locator(MultipleLocator(100)) ax2.yaxis.set_major_locator(MultipleLocator(500)) ax2.yaxis.set_minor_locator(MultipleLocator(100)) # Adjust figure placement and size fig.subplots_adjust(top=0.95, bottom=0.08, left=0.1, right=0.95) fig.set_size_inches(6.69291, 6.69291) # Save figure fig.savefig(os.path.join(os.path.dirname(__file__), 'output', 'figures', f'demand_profiles_{nem_zone}.pdf')) plt.show() def plot_wind_capacity_factors(wind_bubble='YPS'): """Plotting wind capacity factors for a given wind bubble""" # Class containing model data data = ModelData() df = pd.read_hdf(os.path.join(os.path.dirname(__file__), os.path.pardir, '2_input_traces', 'output', 'dataset.h5')) df_d = df.loc[:, [('WIND', wind_bubble)]] # Data for 20202 df_d = df_d.sort_index() df_d = df_d.loc[df_d.index.year == 2020, :] # Day of year df_d['day_of_year'] = df_d.index.dayofyear.values # Hour in a given day df_d['hour'] = df_d.index.hour.values # Adjust last hour in each day - set as 24th hour df_d['hour'] = df_d['hour'].replace(0, 24) plt.clf() fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True) df_d.pivot(index='day_of_year', columns='hour', values=('WIND', wind_bubble)).T.plot(ax=ax1, legend=False, alpha=0.4, cmap='viridis') df_d.pivot(index='day_of_year', columns='hour', values=('WIND', wind_bubble)).T.plot(ax=ax2, legend=False, alpha=0.1, cmap='viridis') # Plot traces obtained from k-means clustering data.input_traces.loc[2020, ('WIND', wind_bubble)].T.plot(ax=ax2, color='r', legend=False, alpha=0.8) ax1.set_ylabel(f'{wind_bubble} capacity factor [-]') ax2.set_ylabel(f'{wind_bubble} capacity factor [-]') ax2.set_xlabel('Hour') # Format axes ticks ax2.xaxis.set_major_locator(MultipleLocator(5)) ax2.xaxis.set_minor_locator(MultipleLocator(1)) ax1.yaxis.set_major_locator(MultipleLocator(0.2)) ax1.yaxis.set_minor_locator(MultipleLocator(0.05)) ax2.yaxis.set_major_locator(MultipleLocator(0.2)) ax2.yaxis.set_minor_locator(MultipleLocator(0.05)) # Adjust figure placement and size fig.subplots_adjust(top=0.95, bottom=0.08, left=0.1, right=0.95) fig.set_size_inches(6.69291, 6.69291) # Save figure fig.savefig(os.path.join(os.path.dirname(__file__), 'output', 'figures', f'wind_profiles_{wind_bubble}.pdf')) plt.show() def plot_solar_capacity_factors(nem_zone='ADE', technology='DAT'): """Plot solar capacity factors""" # Construct solar technology ID based on NEM zone and technology type tech_id = f'{nem_zone}|{technology}' # Class containing model data data = ModelData() df = pd.read_hdf(os.path.join(os.path.dirname(__file__), os.path.pardir, '2_input_traces', 'output', 'dataset.h5')) df_d = df.loc[:, [('SOLAR', tech_id)]] # Data for 2020 df_d = df_d.sort_index() df_d = df_d.loc[df_d.index.year == 2020, :] # Day of year df_d['day_of_year'] = df_d.index.dayofyear.values # Hour in a given day df_d['hour'] = df_d.index.hour.values # Adjust last hour in each day - set as 24th hour df_d['hour'] = df_d['hour'].replace(0, 24) plt.clf() fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True) df_d.pivot(index='day_of_year', columns='hour', values=('SOLAR', tech_id)).T.plot(ax=ax1, legend=False, alpha=0.4, cmap='viridis') df_d.pivot(index='day_of_year', columns='hour', values=('SOLAR', tech_id)).T.plot(ax=ax2, legend=False, alpha=0.1, cmap='viridis') # Plot traces obtained from k-means clustering data.input_traces.loc[2020, ('SOLAR', tech_id)].T.plot(ax=ax2, color='r', legend=False, alpha=0.8) ax1.set_ylabel(f'{tech_id} capacity factor [-]') ax2.set_ylabel(f'{tech_id} capacity factor [-]') ax2.set_xlabel('Hour') # Format axes ticks ax2.xaxis.set_major_locator(MultipleLocator(5)) ax2.xaxis.set_minor_locator(MultipleLocator(1)) ax1.yaxis.set_major_locator(MultipleLocator(0.2)) ax1.yaxis.set_minor_locator(MultipleLocator(0.05)) ax2.yaxis.set_major_locator(MultipleLocator(0.2)) ax2.yaxis.set_minor_locator(MultipleLocator(0.05)) # Adjust figure placement and size fig.subplots_adjust(top=0.95, bottom=0.08, left=0.1, right=0.95) fig.set_size_inches(6.69291, 6.69291) # Save figure fig.savefig(os.path.join(os.path.dirname(__file__), 'output', 'figures', f"solar_profiles_{tech_id.replace('|', '-')}.pdf")) plt.show() if __name__ == '__main__': # Create plots plot_coal_build_costs() plot_gas_build_costs() plot_solar_build_costs() plot_wind_build_cost() plot_coal_fuel_costs() plot_gas_fuel_costs() plot_demand_profiles(nem_zone='ADE') plot_wind_capacity_factors(wind_bubble='YPS') plot_solar_capacity_factors(nem_zone='ADE', technology='DAT')
34.175799
121
0.636582
"""Plot input traces to visualise data""" import os import sys import pandas as pd import matplotlib.pyplot as plt from matplotlib.ticker import MultipleLocator sys.path.append(os.path.join(os.path.dirname(__file__), 'utils')) from utils.data import ModelData def plot_coal_fuel_costs(): """Coal fuel costs""" # Class containing model data data = ModelData() # Get coal DUIDs mask = data.existing_units['PARAMETERS']['FUEL_TYPE_PRIMARY'].isin(['COAL']) # Initialise figures fig, ax = plt.subplots() # Generators in order of increasing fuel cost (based on cost in last year) generator_order = data.existing_units.loc[mask, 'FUEL_COST'].T.iloc[-1].sort_values().index # Plot fuel costs for existing units data.existing_units.loc[mask, 'FUEL_COST'].T.loc[:, generator_order].plot(ax=ax, cmap='tab20c', alpha=0.9) # Add legend ax.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=7, mode="expand", borderaxespad=0., prop={'size': 6}) # Add axes labels ax.set_ylabel('Fuel cost (\$/GJ)') ax.set_xlabel('Year') # Format axes ticks ax.xaxis.set_major_locator(MultipleLocator(5)) ax.xaxis.set_minor_locator(MultipleLocator(1)) ax.yaxis.set_major_locator(MultipleLocator(0.5)) ax.yaxis.set_minor_locator(MultipleLocator(0.1)) # Adjust figure placement and size fig.subplots_adjust(top=0.8, left=0.1, right=0.95) fig.set_size_inches(6.69291, 6.69291 * 0.8) # Save figure fig.savefig(os.path.join(os.path.dirname(__file__), 'output', 'figures', 'fuel_cost_coal.pdf')) plt.show() def plot_gas_fuel_costs(): """Plot fuel costs for candidate gas generators""" # Class containing model data data = ModelData() # Get coal DUIDs mask = data.existing_units['PARAMETERS']['FUEL_TYPE_PRIMARY'].isin(['GAS']) # Initialise figures fig, ax = plt.subplots() # Generators in order of increasing fuel cost (based on cost in last year) generator_order = data.existing_units.loc[mask, 'FUEL_COST'].T.iloc[-1].sort_values().index # Plot fuel costs for existing units data.existing_units.loc[mask, 'FUEL_COST'].T.loc[:, generator_order].plot(ax=ax, cmap='tab20c', alpha=0.9) # Add legend ax.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=7, mode="expand", borderaxespad=0., prop={'size': 6}) # Add axes labels ax.set_ylabel('Fuel cost (\$/GJ)') ax.set_xlabel('Year') # Format axes ticks ax.xaxis.set_major_locator(MultipleLocator(5)) ax.xaxis.set_minor_locator(MultipleLocator(1)) ax.yaxis.set_major_locator(MultipleLocator(0.5)) ax.yaxis.set_minor_locator(MultipleLocator(0.1)) # Adjust figure placement and size fig.subplots_adjust(top=0.7, left=0.1, right=0.95) fig.set_size_inches(6.69291, 6.69291 * 0.8) # Save figure fig.savefig(os.path.join(os.path.dirname(__file__), 'output', 'figures', 'fuel_cost_gas.pdf')) plt.show() def plot_coal_build_costs(): """Plot build costs for candidate coal generators""" # Class containing model data data = ModelData() # Get coal DUIDs mask = data.candidate_units['PARAMETERS']['FUEL_TYPE_PRIMARY'].isin(['COAL']) # Initialise figures fig, ax = plt.subplots() # Plot build costs for candidate units data.candidate_units.loc[mask, 'BUILD_COST'].T.plot(ax=ax, cmap='tab20c', alpha=0.9) # Add legend ax.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=5, mode="expand", borderaxespad=0., prop={'size': 6}) # Add axes labels ax.set_ylabel('Build cost (\$/kW)') ax.set_xlabel('Year') # Format axes ticks ax.xaxis.set_major_locator(MultipleLocator(5)) ax.xaxis.set_minor_locator(MultipleLocator(1)) ax.yaxis.set_major_locator(MultipleLocator(1000)) ax.yaxis.set_minor_locator(MultipleLocator(200)) # Adjust figure placement and size fig.subplots_adjust(top=0.85, left=0.1, right=0.95) fig.set_size_inches(6.69291, 6.69291 * 0.6) # Save figure fig.savefig(os.path.join(os.path.dirname(__file__), 'output', 'figures', f'build_costs_coal.pdf')) plt.show() def plot_gas_build_costs(): """Plotting candidate gas generator build costs""" # Class containing model data data = ModelData() # Get coal DUIDs mask = data.candidate_units['PARAMETERS']['FUEL_TYPE_PRIMARY'].isin(['GAS']) # Initialise figures fig, ax = plt.subplots() # Plot build costs for candidate units data.candidate_units.loc[mask, 'BUILD_COST'].T.plot(ax=ax, cmap='tab20c', alpha=0.9) # Add legend ax.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=5, mode="expand", borderaxespad=0., prop={'size': 6}) # Add axes labels ax.set_ylabel('Build cost (\$/kW)') ax.set_xlabel('Year') # Format axes ticks ax.xaxis.set_major_locator(MultipleLocator(5)) ax.xaxis.set_minor_locator(MultipleLocator(1)) ax.yaxis.set_major_locator(MultipleLocator(1000)) ax.yaxis.set_minor_locator(MultipleLocator(200)) # Adjust figure placement and size fig.subplots_adjust(top=0.73, left=0.1, right=0.95) fig.set_size_inches(6.69291, 6.69291 * 0.6) # Save figure fig.savefig(os.path.join(os.path.dirname(__file__), 'output', 'figures', f'build_costs_gas.pdf')) plt.show() def plot_solar_build_costs(): """Plot solar build costs""" # Class containing model data data = ModelData() # Get coal DUIDs mask = data.candidate_units['PARAMETERS']['FUEL_TYPE_PRIMARY'].isin(['SOLAR']) # Initialise figures fig, ax = plt.subplots() # Plot build costs for candidate units data.candidate_units.loc[mask, 'BUILD_COST'].T.plot(ax=ax, cmap='tab20c', alpha=0.9) # Add legend ax.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=5, mode="expand", borderaxespad=0., prop={'size': 6}) # Add axes labels ax.set_ylabel('Build cost (\$/kW)') ax.set_xlabel('Year') # Format axes ticks ax.xaxis.set_major_locator(MultipleLocator(5)) ax.xaxis.set_minor_locator(MultipleLocator(1)) ax.yaxis.set_major_locator(MultipleLocator(1000)) ax.yaxis.set_minor_locator(MultipleLocator(200)) # Adjust figure placement and size fig.subplots_adjust(top=0.75, left=0.1, right=0.95) fig.set_size_inches(6.69291, 6.69291 * 0.6) # Save figure fig.savefig(os.path.join(os.path.dirname(__file__), 'output', 'figures', f'build_costs_solar.pdf')) plt.show() def plot_wind_build_cost(): """Plot build costs for candidate wind generators""" # Class containing model data data = ModelData() # Get coal DUIDs mask = data.candidate_units['PARAMETERS']['FUEL_TYPE_PRIMARY'].isin(['WIND']) # Initialise figures fig, ax = plt.subplots() # Plot build costs for candidate units data.candidate_units.loc[mask, 'BUILD_COST'].T.plot(ax=ax, cmap='tab20c', alpha=0.9) # Add legend ax.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=5, mode="expand", borderaxespad=0., prop={'size': 6}) # Add axes labels ax.set_ylabel('Build cost (\$/kW)') ax.set_xlabel('Year') # Format axes ticks ax.xaxis.set_major_locator(MultipleLocator(5)) ax.xaxis.set_minor_locator(MultipleLocator(1)) ax.yaxis.set_major_locator(MultipleLocator(100)) ax.yaxis.set_minor_locator(MultipleLocator(50)) # Adjust figure placement and size fig.subplots_adjust(top=0.85, left=0.1, right=0.95) fig.set_size_inches(6.69291, 6.69291 * 0.6) # Save figure fig.savefig(os.path.join(os.path.dirname(__file__), 'output', 'figures', f'build_costs_wind.pdf')) plt.show() def plot_demand_profiles(nem_zone='ADE'): """Plot demand profiles""" # Class containing model data data = ModelData() df = pd.read_hdf(os.path.join(os.path.dirname(__file__), os.path.pardir, '2_input_traces', 'output', 'dataset.h5')) df_d = df.loc[:, [('DEMAND', 'ADE')]] # Data for 20202 df_d = df_d.sort_index() df_d = df_d.loc[df_d.index.year == 2020, :] # Day of year df_d['day_of_year'] = df_d.index.dayofyear.values # Hour in a given day df_d['hour'] = df_d.index.hour.values # Adjust last hour in each day - set as 24th hour df_d['hour'] = df_d['hour'].replace(0, 24) plt.clf() fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True) df_d.pivot(index='day_of_year', columns='hour', values=('DEMAND', nem_zone)).T.plot(ax=ax1, legend=False, alpha=0.4, cmap='viridis') df_d.pivot(index='day_of_year', columns='hour', values=('DEMAND', nem_zone)).T.plot(ax=ax2, legend=False, alpha=0.1, cmap='viridis') # Plot traces obtained from k-means clustering data.input_traces.loc[2020, ('DEMAND', nem_zone)].T.plot(ax=ax2, color='r', legend=False, alpha=0.8) ax1.set_ylabel('ADE Demand (MW)') ax2.set_ylabel('ADE Demand (MW)') ax2.set_xlabel('Hour') # Format axes ticks ax2.xaxis.set_major_locator(MultipleLocator(5)) ax2.xaxis.set_minor_locator(MultipleLocator(1)) ax1.yaxis.set_major_locator(MultipleLocator(500)) ax1.yaxis.set_minor_locator(MultipleLocator(100)) ax2.yaxis.set_major_locator(MultipleLocator(500)) ax2.yaxis.set_minor_locator(MultipleLocator(100)) # Adjust figure placement and size fig.subplots_adjust(top=0.95, bottom=0.08, left=0.1, right=0.95) fig.set_size_inches(6.69291, 6.69291) # Save figure fig.savefig(os.path.join(os.path.dirname(__file__), 'output', 'figures', f'demand_profiles_{nem_zone}.pdf')) plt.show() def plot_wind_capacity_factors(wind_bubble='YPS'): """Plotting wind capacity factors for a given wind bubble""" # Class containing model data data = ModelData() df = pd.read_hdf(os.path.join(os.path.dirname(__file__), os.path.pardir, '2_input_traces', 'output', 'dataset.h5')) df_d = df.loc[:, [('WIND', wind_bubble)]] # Data for 20202 df_d = df_d.sort_index() df_d = df_d.loc[df_d.index.year == 2020, :] # Day of year df_d['day_of_year'] = df_d.index.dayofyear.values # Hour in a given day df_d['hour'] = df_d.index.hour.values # Adjust last hour in each day - set as 24th hour df_d['hour'] = df_d['hour'].replace(0, 24) plt.clf() fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True) df_d.pivot(index='day_of_year', columns='hour', values=('WIND', wind_bubble)).T.plot(ax=ax1, legend=False, alpha=0.4, cmap='viridis') df_d.pivot(index='day_of_year', columns='hour', values=('WIND', wind_bubble)).T.plot(ax=ax2, legend=False, alpha=0.1, cmap='viridis') # Plot traces obtained from k-means clustering data.input_traces.loc[2020, ('WIND', wind_bubble)].T.plot(ax=ax2, color='r', legend=False, alpha=0.8) ax1.set_ylabel(f'{wind_bubble} capacity factor [-]') ax2.set_ylabel(f'{wind_bubble} capacity factor [-]') ax2.set_xlabel('Hour') # Format axes ticks ax2.xaxis.set_major_locator(MultipleLocator(5)) ax2.xaxis.set_minor_locator(MultipleLocator(1)) ax1.yaxis.set_major_locator(MultipleLocator(0.2)) ax1.yaxis.set_minor_locator(MultipleLocator(0.05)) ax2.yaxis.set_major_locator(MultipleLocator(0.2)) ax2.yaxis.set_minor_locator(MultipleLocator(0.05)) # Adjust figure placement and size fig.subplots_adjust(top=0.95, bottom=0.08, left=0.1, right=0.95) fig.set_size_inches(6.69291, 6.69291) # Save figure fig.savefig(os.path.join(os.path.dirname(__file__), 'output', 'figures', f'wind_profiles_{wind_bubble}.pdf')) plt.show() def plot_solar_capacity_factors(nem_zone='ADE', technology='DAT'): """Plot solar capacity factors""" # Construct solar technology ID based on NEM zone and technology type tech_id = f'{nem_zone}|{technology}' # Class containing model data data = ModelData() df = pd.read_hdf(os.path.join(os.path.dirname(__file__), os.path.pardir, '2_input_traces', 'output', 'dataset.h5')) df_d = df.loc[:, [('SOLAR', tech_id)]] # Data for 2020 df_d = df_d.sort_index() df_d = df_d.loc[df_d.index.year == 2020, :] # Day of year df_d['day_of_year'] = df_d.index.dayofyear.values # Hour in a given day df_d['hour'] = df_d.index.hour.values # Adjust last hour in each day - set as 24th hour df_d['hour'] = df_d['hour'].replace(0, 24) plt.clf() fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True) df_d.pivot(index='day_of_year', columns='hour', values=('SOLAR', tech_id)).T.plot(ax=ax1, legend=False, alpha=0.4, cmap='viridis') df_d.pivot(index='day_of_year', columns='hour', values=('SOLAR', tech_id)).T.plot(ax=ax2, legend=False, alpha=0.1, cmap='viridis') # Plot traces obtained from k-means clustering data.input_traces.loc[2020, ('SOLAR', tech_id)].T.plot(ax=ax2, color='r', legend=False, alpha=0.8) ax1.set_ylabel(f'{tech_id} capacity factor [-]') ax2.set_ylabel(f'{tech_id} capacity factor [-]') ax2.set_xlabel('Hour') # Format axes ticks ax2.xaxis.set_major_locator(MultipleLocator(5)) ax2.xaxis.set_minor_locator(MultipleLocator(1)) ax1.yaxis.set_major_locator(MultipleLocator(0.2)) ax1.yaxis.set_minor_locator(MultipleLocator(0.05)) ax2.yaxis.set_major_locator(MultipleLocator(0.2)) ax2.yaxis.set_minor_locator(MultipleLocator(0.05)) # Adjust figure placement and size fig.subplots_adjust(top=0.95, bottom=0.08, left=0.1, right=0.95) fig.set_size_inches(6.69291, 6.69291) # Save figure fig.savefig(os.path.join(os.path.dirname(__file__), 'output', 'figures', f"solar_profiles_{tech_id.replace('|', '-')}.pdf")) plt.show() if __name__ == '__main__': # Create plots plot_coal_build_costs() plot_gas_build_costs() plot_solar_build_costs() plot_wind_build_cost() plot_coal_fuel_costs() plot_gas_fuel_costs() plot_demand_profiles(nem_zone='ADE') plot_wind_capacity_factors(wind_bubble='YPS') plot_solar_capacity_factors(nem_zone='ADE', technology='DAT')
0
0
0
98e8ef272f6ae099e91304a8f9b8a8b7b3ca7691
572
py
Python
app/mod_whatis/views.py
crtarsorg/glasomer.rs-v2
ac43e1ba30b80a4ba9ca67768680b6e79f1512f3
[ "CC0-1.0" ]
null
null
null
app/mod_whatis/views.py
crtarsorg/glasomer.rs-v2
ac43e1ba30b80a4ba9ca67768680b6e79f1512f3
[ "CC0-1.0" ]
54
2017-03-06T12:48:40.000Z
2017-04-20T08:33:09.000Z
app/mod_whatis/views.py
crtarsorg/glasomer.rs-v2
ac43e1ba30b80a4ba9ca67768680b6e79f1512f3
[ "CC0-1.0" ]
null
null
null
from flask import Blueprint, render_template from app import mongo_utils from bson import json_util import json mod_whatis = Blueprint('whatis', __name__, url_prefix='/sta-je-glasomer') @mod_whatis.route('/', methods=['GET'])
38.133333
108
0.758741
from flask import Blueprint, render_template from app import mongo_utils from bson import json_util import json mod_whatis = Blueprint('whatis', __name__, url_prefix='/sta-je-glasomer') @mod_whatis.route('/', methods=['GET']) def index(): year = "" project_enabled = mongo_utils.get_enabled_project() for project in json.loads(json_util.dumps(project_enabled)): year = project['year'] glasomer_text = mongo_utils.find_glasomer_text(year) return render_template('mod_whatis/index.html',glasomer_text=json.loads(json_util.dumps(glasomer_text)))
323
0
22
5a7cf5792682d6ad3c192a5fde31f431b97168ff
313
py
Python
course/migrations/0047_remove_page_data_ordinal_uniqueness.py
inducer/courseflow
0f9786e3616dbedf08365d81a731f672b97ba9f5
[ "Unlicense" ]
284
2015-01-09T12:02:28.000Z
2022-03-27T14:30:46.000Z
course/migrations/0047_remove_page_data_ordinal_uniqueness.py
inducer/courseflow
0f9786e3616dbedf08365d81a731f672b97ba9f5
[ "Unlicense" ]
799
2015-02-26T08:49:46.000Z
2022-03-31T16:09:26.000Z
course/migrations/0047_remove_page_data_ordinal_uniqueness.py
inducer/courseflow
0f9786e3616dbedf08365d81a731f672b97ba9f5
[ "Unlicense" ]
120
2015-01-30T18:00:56.000Z
2022-03-28T06:24:43.000Z
from django.db import models, migrations
19.5625
57
0.613419
from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('course', '0046_allow_null_page_data_ordinals'), ] operations = [ migrations.AlterUniqueTogether( name='flowpagedata', unique_together=set(), ), ]
0
248
23
629635c2446dffba0f7e84880658f4cf63855f95
1,388
py
Python
main-step-demo.py
cfalguiere/datalab-utils
cfa36030ce12efc8e4b5b7ad065ab59e763e0b78
[ "MIT" ]
null
null
null
main-step-demo.py
cfalguiere/datalab-utils
cfa36030ce12efc8e4b5b7ad065ab59e763e0b78
[ "MIT" ]
6
2018-03-13T10:52:45.000Z
2018-03-14T21:37:17.000Z
main-step-demo.py
cfalguiere/datalab-utils
cfa36030ce12efc8e4b5b7ad065ab59e763e0b78
[ "MIT" ]
null
null
null
#!/usr/bin/python #-*- coding: utf-8 -*- """Run Score Credit Habitat""" from __future__ import print_function import sys import logging from easydatalab.common.app import AppContext from easydatalab.common.exceptions import ExecutionError def main(): """Main entry point for the script.""" cfgFile = 'easydatalab/tests/resources/config/config_for_unittests.cfg' logCfgFile = 'easydatalab/resources/log_config.yml' with AppContext(log_config_file=logCfgFile) as appContext: appContext.logger.info("default logger for %s" % str( appContext) ) appContext.skip_steps( [ 'skipped step' ] ) with appContext.new_configuration(cfgFile) as appConfiguration: appConfiguration.show() with appContext.new_step ('something') as step: if step.enabled(): print("does something") with appContext.new_step ('skipped step') as step: if step.enabled(): print("does skipped") with appContext.new_step ('failed step') as step: if step.enabled(): raise ExecutionError('step 3', 'failed to complete task') with appContext.new_step ('something else') as step: if step.enabled(): print("does something else") if __name__ == '__main__': sys.exit(main())
31.545455
77
0.627522
#!/usr/bin/python #-*- coding: utf-8 -*- """Run Score Credit Habitat""" from __future__ import print_function import sys import logging from easydatalab.common.app import AppContext from easydatalab.common.exceptions import ExecutionError def main(): """Main entry point for the script.""" cfgFile = 'easydatalab/tests/resources/config/config_for_unittests.cfg' logCfgFile = 'easydatalab/resources/log_config.yml' with AppContext(log_config_file=logCfgFile) as appContext: appContext.logger.info("default logger for %s" % str( appContext) ) appContext.skip_steps( [ 'skipped step' ] ) with appContext.new_configuration(cfgFile) as appConfiguration: appConfiguration.show() with appContext.new_step ('something') as step: if step.enabled(): print("does something") with appContext.new_step ('skipped step') as step: if step.enabled(): print("does skipped") with appContext.new_step ('failed step') as step: if step.enabled(): raise ExecutionError('step 3', 'failed to complete task') with appContext.new_step ('something else') as step: if step.enabled(): print("does something else") if __name__ == '__main__': sys.exit(main())
0
0
0
2d0633efdab3a26a7e6897b19ca7b6bd561f2da7
697
py
Python
src/daemons/videod.py
schnema123/pydrive
287a9f83604470e6bd01d2a3d4f355559f8253d8
[ "MIT" ]
null
null
null
src/daemons/videod.py
schnema123/pydrive
287a9f83604470e6bd01d2a3d4f355559f8253d8
[ "MIT" ]
null
null
null
src/daemons/videod.py
schnema123/pydrive
287a9f83604470e6bd01d2a3d4f355559f8253d8
[ "MIT" ]
null
null
null
import socket import zmq from shared.daemon_ports import get_port from shared.messaging.sock import create_sub_sock # Send from replayd -> videod if __name__ == "__main__": """ context = zmq.Context() port = get_port("replayd") socket = create_sub_sock(context, port) """ videosocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) print("Connecting...") connected = False while not connected: try: videosocket.connect(("localhost", 4444)) connected = True except ConnectionRefusedError as e: pass print("Connected...") while True: data = videosocket.recv(1024) print(data)
21.78125
67
0.637016
import socket import zmq from shared.daemon_ports import get_port from shared.messaging.sock import create_sub_sock # Send from replayd -> videod if __name__ == "__main__": """ context = zmq.Context() port = get_port("replayd") socket = create_sub_sock(context, port) """ videosocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) print("Connecting...") connected = False while not connected: try: videosocket.connect(("localhost", 4444)) connected = True except ConnectionRefusedError as e: pass print("Connected...") while True: data = videosocket.recv(1024) print(data)
0
0
0
1dc5885e8b632bcad5a0b70c1b8d8c5702ffa110
1,820
py
Python
setup.py
bocadilloproject/bocadillo-cli
f11ec438504eb2edd3c4e8f5d2992e804b3da6b0
[ "MIT" ]
6
2019-04-17T17:07:46.000Z
2020-08-09T07:37:34.000Z
setup.py
bocadilloproject/bocadillo-cli
f11ec438504eb2edd3c4e8f5d2992e804b3da6b0
[ "MIT" ]
10
2019-04-17T21:27:46.000Z
2019-06-17T05:45:51.000Z
setup.py
bocadilloproject/bocadillo-cli
f11ec438504eb2edd3c4e8f5d2992e804b3da6b0
[ "MIT" ]
1
2019-05-12T17:32:45.000Z
2019-05-12T17:32:45.000Z
import os import re import setuptools description = "Standard development tooling for Bocadillo" with open("README.md", "r") as readme: long_description = readme.read() NAME = "bocadillo-cli" PACKAGE = "bocadillo_cli" GITHUB = "https://github.com/bocadilloproject/bocadillo-cli" CHANGELOG = f"{GITHUB}/blob/master/CHANGELOG.md" HERE = os.path.abspath(os.path.dirname(__file__)) setuptools.setup( name=NAME, version=find_version(PACKAGE, "version.py"), author="Florimond Manca", author_email="florimond.manca@gmail.com", description=description, long_description=long_description, long_description_content_type="text/markdown", packages=setuptools.find_packages(exclude=["bocadillo_cli.templates"]), include_package_data=True, # see MANIFEST.in entry_points={"console_scripts": ["bocadillo=bocadillo_cli.main:cli"]}, install_requires=["click>=7.0, <8.0", "jinja2>=2.10.1"], python_requires=">=3.6", url=GITHUB, license="MIT", classifiers=[ "Development Status :: 3 - Alpha", "Environment :: Console", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Natural Language :: English", "Operating System :: OS Independent", "Programming Language :: Python :: 3 :: Only", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Topic :: Utilities", "Topic :: Software Development :: Code Generators", ], )
33.090909
76
0.659341
import os import re import setuptools description = "Standard development tooling for Bocadillo" with open("README.md", "r") as readme: long_description = readme.read() NAME = "bocadillo-cli" PACKAGE = "bocadillo_cli" GITHUB = "https://github.com/bocadilloproject/bocadillo-cli" CHANGELOG = f"{GITHUB}/blob/master/CHANGELOG.md" HERE = os.path.abspath(os.path.dirname(__file__)) def find_version(*parts): with open(os.path.join(HERE, *parts), "r") as fp: content = fp.read() version_match = re.match(r"^__version__ = ['\"]([^'\"]*)['\"]", content) if version_match: return version_match.group(1) raise RuntimeError("Unable to find version string.") setuptools.setup( name=NAME, version=find_version(PACKAGE, "version.py"), author="Florimond Manca", author_email="florimond.manca@gmail.com", description=description, long_description=long_description, long_description_content_type="text/markdown", packages=setuptools.find_packages(exclude=["bocadillo_cli.templates"]), include_package_data=True, # see MANIFEST.in entry_points={"console_scripts": ["bocadillo=bocadillo_cli.main:cli"]}, install_requires=["click>=7.0, <8.0", "jinja2>=2.10.1"], python_requires=">=3.6", url=GITHUB, license="MIT", classifiers=[ "Development Status :: 3 - Alpha", "Environment :: Console", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Natural Language :: English", "Operating System :: OS Independent", "Programming Language :: Python :: 3 :: Only", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Topic :: Utilities", "Topic :: Software Development :: Code Generators", ], )
280
0
23
dc155e623350a743adcb1fb509940559b7b8f2f2
1,396
py
Python
7_dynamic_programming/easy/knapsack_DP_easy.py
itsEmShoji/TCScurriculum
bd27c8c2b26032e9e6f92a50b40ec19d45301988
[ "MIT" ]
null
null
null
7_dynamic_programming/easy/knapsack_DP_easy.py
itsEmShoji/TCScurriculum
bd27c8c2b26032e9e6f92a50b40ec19d45301988
[ "MIT" ]
null
null
null
7_dynamic_programming/easy/knapsack_DP_easy.py
itsEmShoji/TCScurriculum
bd27c8c2b26032e9e6f92a50b40ec19d45301988
[ "MIT" ]
null
null
null
# TODO: imports # REQUIRES: num_items >= 0, capacity >= 0, # size of item_values >= num_items, # size of item_weights >= num_items, # item_values are all >= 0, item_weights are all >= 0 # EFFECTS: Computes the max value that can be obtained by picking # from a set of num_items items without exceeding the given # capacity. Choosing item i produces the value item_values[i] # but uses weight item_weights[i] out of the available # capacity. # Must use dynamic programming! # Build table K[][] in bottom up manner # TODO: loop through items # TODO: second loop through weights upto capacity # TODO: if statement # TODO: set item and weight to 0 # TODO: if item weights[item-1] is less than weight K[cap][weight] = max(item_values[cap-1] + K[cap-1][weight-item_weights[cap-1]], K[cap-1][weight]) # TODO: else # TODO: set k[item][weight] to previously found answer # TODO: return K at num_items and capacity if __name__ == '__main__': unittest.main(argv=['first-arg-is-ignored'], exit=False)
34.04878
81
0.657593
# TODO: imports # REQUIRES: num_items >= 0, capacity >= 0, # size of item_values >= num_items, # size of item_weights >= num_items, # item_values are all >= 0, item_weights are all >= 0 # EFFECTS: Computes the max value that can be obtained by picking # from a set of num_items items without exceeding the given # capacity. Choosing item i produces the value item_values[i] # but uses weight item_weights[i] out of the available # capacity. # Must use dynamic programming! def knapsack_dp(capacity, item_weights, item_values, num_items): # TODO: declare rows and columns K = [[0 for x in range(cols)] for y in range(rows)] # Build table K[][] in bottom up manner # TODO: loop through items # TODO: second loop through weights upto capacity # TODO: if statement # TODO: set item and weight to 0 # TODO: if item weights[item-1] is less than weight K[cap][weight] = max(item_values[cap-1] + K[cap-1][weight-item_weights[cap-1]], K[cap-1][weight]) # TODO: else # TODO: set k[item][weight] to previously found answer # TODO: return K at num_items and capacity class MyTest(unittest.TestCase): def test(self): self.assertEqual(knapsack_dp(0, [], [], 0), 0) # TODO: Add more tests if __name__ == '__main__': unittest.main(argv=['first-arg-is-ignored'], exit=False)
217
11
72
a0127677f968c02630c0e8876bdfc54172dc9051
4,858
py
Python
EDMScripts/OldScripts/SimpleEDMLoop.py
gautampk/EDMSuite
e7b67336b45e679d7903d527f6d81080c6846166
[ "MIT" ]
6
2017-02-02T17:54:23.000Z
2021-07-03T12:41:36.000Z
EDMScripts/OldScripts/SimpleEDMLoop.py
gautampk/EDMSuite
e7b67336b45e679d7903d527f6d81080c6846166
[ "MIT" ]
null
null
null
EDMScripts/OldScripts/SimpleEDMLoop.py
gautampk/EDMSuite
e7b67336b45e679d7903d527f6d81080c6846166
[ "MIT" ]
11
2015-03-19T18:23:38.000Z
2021-02-18T11:05:51.000Z
# Import a whole load of stuff from System.IO import * from System.Drawing import * from System.Runtime.Remoting import * from System.Threading import * from System.Windows.Forms import * from System.Xml.Serialization import * from System import * from DAQ.Environment import * from EDMConfig import *
33.503448
109
0.735282
# Import a whole load of stuff from System.IO import * from System.Drawing import * from System.Runtime.Remoting import * from System.Threading import * from System.Windows.Forms import * from System.Xml.Serialization import * from System import * from DAQ.Environment import * from EDMConfig import * def saveBlockConfig(path, config): fs = FileStream(path, FileMode.Create) s = XmlSerializer(BlockConfig) s.Serialize(fs,config) fs.Close() def loadBlockConfig(path): fs = FileStream(path, FileMode.Open) s = XmlSerializer(BlockConfig) bc = s.Deserialize(fs) fs.Close() return bc def writeLatestBlockNotificationFile(cluster, blockIndex): fs = FileStream(Environs.FileSystem.Paths["settingsPath"] + "\\BlockHead\\latestBlock.txt", FileMode.Create) sw = StreamWriter(fs) sw.WriteLine(cluster + "\t" + str(blockIndex)) sw.Close() fs.Close() def checkYAGAndFix(): interlockFailed = hc.YAGInterlockFailed; if (interlockFailed): bh.StopPattern(); bh.StartPattern(); def prompt(text): sys.stdout.write(text) return sys.stdin.readline().strip() def EDMGoReal(nullRun): # Setup f = None fileSystem = Environs.FileSystem dataPath = fileSystem.GetDataDirectory(fileSystem.Paths["edmDataPath"]) print("Data directory is : " + dataPath) print("") suggestedClusterName = fileSystem.GenerateNextDataFileName() # User inputs data cluster = prompt("Cluster name [" + suggestedClusterName +"]: ") if cluster == "": cluster = suggestedClusterName print("Using cluster " + suggestedClusterName) eState = Boolean.Parse(prompt("E-state: ")) bState = Boolean.Parse(prompt("B-state: ")) print("Measuring parameters ...") hc.UpdateBCurrentMonitor() hc.UpdateBCurrentMonitor() hc.UpdateVMonitor() # load a default BlockConfig and customise it appropriately settingsPath = fileSystem.Paths["settingsPath"] + "\\BlockHead\\" bc = loadBlockConfig(settingsPath + "default.xml") bc.Settings["cluster"] = cluster bc.Settings["eState"] = eState bc.Settings["bState"] = bState bc.Settings["ePlus"] = hc.CPlusMonitorVoltage * hc.CPlusMonitorScale bc.Settings["eMinus"] = hc.CMinusMonitorVoltage * hc.CMinusMonitorScale bc.GetModulationByName("B").Centre = (hc.BiasCurrent)/1000 bc.GetModulationByName("B").Step = abs(hc.FlipStepCurrent)/1000 bc.GetModulationByName("DB").Step = abs(hc.CalStepCurrent)/1000 print("V plus: " + str(hc.CPlusMonitorVoltage * hc.CPlusMonitorScale)) print("V minus: " + str(hc.CMinusMonitorVoltage * hc.CMinusMonitorScale)) print("Bias: " + str(hc.BiasCurrent)) print("B step: " + str(abs(hc.FlipStepCurrent))) print("DB step: " + str(abs(hc.CalStepCurrent))) print("Setting rf parameters ...") bc.GetModulationByName("RF1A").Centre = hc.RF1AttCentre bc.GetModulationByName("RF1A").Step = hc.RF1AttStep bc.GetModulationByName("RF2A").Centre = hc.RF2AttCentre bc.GetModulationByName("RF2A").Step = hc.RF2AttStep bc.GetModulationByName("RF1F").Centre = hc.RF1FMCentre bc.GetModulationByName("RF1F").Step = hc.RF1FMStep bc.GetModulationByName("RF2F").Centre = hc.RF2FMCentre bc.GetModulationByName("RF2F").Step = hc.RF2FMStep print("Storing E switch parameters ...") bc.Settings["eRampDownTime"] = hc.ERampDownTime bc.Settings["eRampDownDelay"] = hc.ERampDownDelay bc.Settings["eBleedTime"] = hc.EBleedTime bc.Settings["eSwitchTime"] = hc.ESwitchTime bc.Settings["eRampUpTime"] = hc.ERampUpTime bc.Settings["eRampUpDelay"] = hc.ERampUpDelay # this is for legacy analysis compatibility bc.Settings["eDischargeTime"] = hc.ERampDownTime + hc.ERampDownDelay bc.Settings["eChargeTime"] = hc.ERampUpTime + hc.ERampUpDelay # loop and take data bh.StartPattern() blockIndex = 0 if nullRun: maxBlockIndex = 10000 else: maxBlockIndex = 60 while blockIndex < maxBlockIndex: print("Acquiring block " + str(blockIndex) + " ...") # save the block config and load into blockhead print("Saving temp config.") bc.Settings["clusterIndex"] = blockIndex tempConfigFile ='%(p)stemp%(c)s_%(i)s.xml' % {'p': settingsPath, 'c': cluster, 'i': blockIndex} saveBlockConfig(tempConfigFile, bc) System.Threading.Thread.Sleep(500) print("Loading temp config.") bh.LoadConfig(tempConfigFile) # take the block and save it print("Running ...") bh.AcquireAndWait() print("Done.") blockPath = '%(p)s%(c)s_%(i)s.zip' % {'p': dataPath, 'c': cluster, 'i': blockIndex} bh.SaveBlock(blockPath) print("Saved block "+ str(blockIndex) + ".") # give mma a chance to analyse the block print("Notifying Mathematica and waiting ...") writeLatestBlockNotificationFile(cluster, blockIndex) System.Threading.Thread.Sleep(5000) print("Done.") # increment and loop File.Delete(tempConfigFile) # if not nullRun: checkYAGAndFix() blockIndex = blockIndex + 1 bh.StopPattern() def EDMGoNull(): EDMGoReal(True) def EDMGo(): EDMGoReal(False) def run_script(): EDMGo()
4,345
0
208
667fb47b49bdff6addfc9ed051899adc1ecd6337
1,558
py
Python
parent/venv/message_box.py
lugidm/FusariumUNet
853dc39848b2570a73504e1db57e3ccd26764573
[ "Unlicense" ]
null
null
null
parent/venv/message_box.py
lugidm/FusariumUNet
853dc39848b2570a73504e1db57e3ccd26764573
[ "Unlicense" ]
null
null
null
parent/venv/message_box.py
lugidm/FusariumUNet
853dc39848b2570a73504e1db57e3ccd26764573
[ "Unlicense" ]
null
null
null
import tkinter
30.54902
109
0.610398
import tkinter class Mbox(object): def __init__(self, root, msg): tki = tkinter self.top = root self.top.attributes("-topmost", True) self.return_value = None frm = tki.Frame(self.top, borderwidth=4, relief='ridge') frm.pack(fill='both', expand=True) label = tki.Label(frm, text=msg) label.pack(padx=4, pady=4) fuse_bt = tki.Button(frm, text='fuse both annotations', command=self.fuse, fg='green') fuse_bt.pack() new_file_bt = tki.Button(frm, text='create a new file', command=self.new_file, fg='green') new_file_bt.pack() overwrite_bt = tki.Button(frm, text='overwrite old annotations', command=self.overwrite, fg='orange') overwrite_bt.pack() discard_bt = tki.Button(frm, text='discard all new changes', command=self.discard, fg='red') discard_bt.pack() b_cancel = tki.Button(frm, text='Cancel', command=self.cancel) b_cancel.pack(padx=4, pady=4) def fuse(self): self.top.destroy() self.return_value = 'fuse' def new_file(self): self.top.destroy() self.return_value = 'new_file' def overwrite(self): self.top.destroy() self.return_value = 'overwrite' def discard(self): self.top.destroy() self.return_value = 'discard' def cancel(self): self.top.destroy() self.return_value = 'cancel' def show(self): self.top.deiconify() self.top.wait_window() return self.return_value
1,333
-2
211
6a698ccac6fd0c7f76e5a8a4bb85aeca85cff63e
22,145
py
Python
mycroft/stt/__init__.py
NeonDaniel/HolmesV
ecf839156758d98d020f6272e4727aad60278004
[ "Apache-2.0" ]
9
2021-05-06T18:04:18.000Z
2022-02-23T21:59:49.000Z
mycroft/stt/__init__.py
NeonDaniel/HolmesV
ecf839156758d98d020f6272e4727aad60278004
[ "Apache-2.0" ]
5
2021-04-13T22:54:47.000Z
2021-04-18T14:24:25.000Z
mycroft/stt/__init__.py
HelloChatterbox/mycroft-lib
c417807d32eff629354ffe740da14caed2a1bee5
[ "Apache-2.0" ]
4
2021-09-11T04:02:10.000Z
2021-12-18T23:57:19.000Z
# Copyright 2017 Mycroft AI Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import re import json from abc import ABCMeta, abstractmethod from requests import post, put, exceptions from speech_recognition import Recognizer from queue import Queue from threading import Thread from mycroft.api import STTApi, HTTPError from mycroft.configuration import Configuration from mycroft.util.log import LOG from mycroft.util.plugins import load_plugin class STT(metaclass=ABCMeta): """STT Base class, all STT backends derive from this one. """ @staticmethod def init_language(config_core): """Helper method to get language code from Mycroft config.""" lang = config_core.get("lang", "en-US") langs = lang.split("-") if len(langs) == 2: return langs[0].lower() + "-" + langs[1].upper() return lang @abstractmethod def execute(self, audio, language=None): """Implementation of STT functionallity. This method needs to be implemented by the derived class to implement the specific STT engine connection. The method gets passed audio and optionally a language code and is expected to return a text string. Args: audio (AudioData): audio recorded by mycroft. language (str): optional language code Returns: str: parsed text """ class IBMSTT(TokenSTT): """ IBM Speech to Text Enables IBM Speech to Text access using API key. To use IBM as a service provider, it must be configured locally in your config file. An IBM Cloud account with Speech to Text enabled is required (limited free tier may be available). STT config should match the following format: "stt": { "module": "ibm", "ibm": { "credential": { "token": "YOUR_API_KEY" }, "url": "URL_FROM_SERVICE" } } """ class YandexSTT(STT): """ Yandex SpeechKit STT To use create service account with role 'editor' in your cloud folder, create API key for account and add it to local mycroft.conf file. The STT config will look like this: "stt": { "module": "yandex", "yandex": { "lang": "en-US", "credential": { "api_key": "YOUR_API_KEY" } } } """ def requires_pairing(func): """Decorator kicking of pairing sequence if client is not allowed access. Checks the http status of the response if an HTTP error is recieved. If a 401 status is detected returns "pair my device" to trigger the pairing skill. """ return wrapper class MycroftSTT(STT): """Default mycroft STT.""" @requires_pairing class MycroftDeepSpeechSTT(STT): """Mycroft Hosted DeepSpeech""" @requires_pairing class DeepSpeechServerSTT(STT): """ STT interface for the deepspeech-server: https://github.com/MainRo/deepspeech-server use this if you want to host DeepSpeech yourself """ class StreamThread(Thread, metaclass=ABCMeta): """ABC class to be used with StreamingSTT class implementations. This class reads audio chunks from a queue and sends it to a parsing STT engine. Args: queue (Queue): Input Queue language (str): language code for the current language. """ def _get_data(self): """Generator reading audio data from queue.""" while True: d = self.queue.get() if d is None: break yield d self.queue.task_done() def run(self): """Thread entry point.""" return self.handle_audio_stream(self._get_data(), self.language) @abstractmethod def handle_audio_stream(self, audio, language): """Handling of audio stream. Needs to be implemented by derived class to process audio data and optionally update `self.text` with the current hypothesis. Argumens: audio (bytes): raw audio data. language (str): language code for the current session. """ class StreamingSTT(STT, metaclass=ABCMeta): """ABC class for threaded streaming STT implemenations.""" def stream_start(self, language=None): """Indicate start of new audio stream. This creates a new thread for handling the incomming audio stream as it's collected by Mycroft. Args: language (str): optional language code for the new stream. """ self.stream_stop() language = language or self.lang self.queue = Queue() self.stream = self.create_streaming_thread() self.stream.start() def stream_data(self, data): """Receiver of audio data. Args: data (bytes): raw audio data. """ self.queue.put(data) def stream_stop(self): """Indicate that the audio stream has ended. This will tear down the processing thread and collect the result Returns: str: parsed text """ if self.stream is not None: self.queue.put(None) self.stream.join() text = self.stream.text self.stream = None self.queue = None return text return None def execute(self, audio, language=None): """End the parsing thread and collect data.""" return self.stream_stop() @abstractmethod def create_streaming_thread(self): """Create thread for parsing audio chunks. This method should be implemented by the derived class to return an instance derived from StreamThread to handle the audio stream and send it to the STT engine. Returns: StreamThread: Thread to handle audio data. """ class DeepSpeechStreamServerSTT(StreamingSTT): """ Streaming STT interface for the deepspeech-server: https://github.com/JPEWdev/deep-dregs use this if you want to host DeepSpeech yourself STT config will look like this: "stt": { "module": "deepspeech_stream_server", "deepspeech_stream_server": { "stream_uri": "http://localhost:8080/stt?format=16K_PCM16" ... """ class GoogleCloudStreamingSTT(StreamingSTT): """ Streaming STT interface for Google Cloud Speech-To-Text To use pip install google-cloud-speech and add the Google API key to local mycroft.conf file. The STT config will look like this: "stt": { "module": "google_cloud_streaming", "google_cloud_streaming": { "credential": { "json": { # Paste Google API JSON here ... """ def load_stt_plugin(module_name): """Wrapper function for loading stt plugin. Args: module_name (str): Mycroft stt module name from config Returns: class: STT plugin class """ return load_plugin('mycroft.plugin.stt', module_name)
33.757622
79
0.603116
# Copyright 2017 Mycroft AI Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import re import json from abc import ABCMeta, abstractmethod from requests import post, put, exceptions from speech_recognition import Recognizer from queue import Queue from threading import Thread from mycroft.api import STTApi, HTTPError from mycroft.configuration import Configuration from mycroft.util.log import LOG from mycroft.util.plugins import load_plugin class STT(metaclass=ABCMeta): """STT Base class, all STT backends derive from this one. """ def __init__(self): config_core = Configuration.get() self.lang = str(self.init_language(config_core)) config_stt = config_core.get("stt", {}) self.config = config_stt.get(config_stt.get("module"), {}) self.credential = self.config.get("credential", {}) self.recognizer = Recognizer() self.can_stream = False @staticmethod def init_language(config_core): """Helper method to get language code from Mycroft config.""" lang = config_core.get("lang", "en-US") langs = lang.split("-") if len(langs) == 2: return langs[0].lower() + "-" + langs[1].upper() return lang @abstractmethod def execute(self, audio, language=None): """Implementation of STT functionallity. This method needs to be implemented by the derived class to implement the specific STT engine connection. The method gets passed audio and optionally a language code and is expected to return a text string. Args: audio (AudioData): audio recorded by mycroft. language (str): optional language code Returns: str: parsed text """ class TokenSTT(STT, metaclass=ABCMeta): def __init__(self): super(TokenSTT, self).__init__() self.token = self.credential.get("token") class GoogleJsonSTT(STT, metaclass=ABCMeta): def __init__(self): super(GoogleJsonSTT, self).__init__() self.json_credentials = json.dumps(self.credential.get("json")) class BasicSTT(STT, metaclass=ABCMeta): def __init__(self): super(BasicSTT, self).__init__() self.username = self.credential.get("username") self.password = self.credential.get("password") class KeySTT(STT, metaclass=ABCMeta): def __init__(self): super(KeySTT, self).__init__() self.id = self.credential.get("client_id") self.key = self.credential.get("client_key") class GoogleSTT(TokenSTT): def __init__(self): super(GoogleSTT, self).__init__() def execute(self, audio, language=None): self.lang = language or self.lang return self.recognizer.recognize_google(audio, self.token, self.lang) class GoogleCloudSTT(GoogleJsonSTT): def __init__(self): super(GoogleCloudSTT, self).__init__() # override language with module specific language selection self.lang = self.config.get('lang') or self.lang def execute(self, audio, language=None): self.lang = language or self.lang return self.recognizer.recognize_google_cloud(audio, self.json_credentials, self.lang) class WITSTT(TokenSTT): def __init__(self): super(WITSTT, self).__init__() def execute(self, audio, language=None): LOG.warning("WITSTT language should be configured at wit.ai settings.") return self.recognizer.recognize_wit(audio, self.token) class IBMSTT(TokenSTT): """ IBM Speech to Text Enables IBM Speech to Text access using API key. To use IBM as a service provider, it must be configured locally in your config file. An IBM Cloud account with Speech to Text enabled is required (limited free tier may be available). STT config should match the following format: "stt": { "module": "ibm", "ibm": { "credential": { "token": "YOUR_API_KEY" }, "url": "URL_FROM_SERVICE" } } """ def __init__(self): super(IBMSTT, self).__init__() def execute(self, audio, language=None): if not self.token: raise ValueError('API key (token) for IBM Cloud is not defined.') url_base = self.config.get('url', '') if not url_base: raise ValueError('URL for IBM Cloud is not defined.') url = url_base + '/v1/recognize' self.lang = language or self.lang supported_languages = [ 'ar-AR', 'pt-BR', 'zh-CN', 'nl-NL', 'en-GB', 'en-US', 'fr-FR', 'de-DE', 'it-IT', 'ja-JP', 'ko-KR', 'es-AR', 'es-ES', 'es-CL', 'es-CO', 'es-MX', 'es-PE' ] if self.lang not in supported_languages: raise ValueError( 'Unsupported language "{}" for IBM STT.'.format(self.lang)) audio_model = 'BroadbandModel' if audio.sample_rate < 16000 and not self.lang == 'ar-AR': audio_model = 'NarrowbandModel' params = { 'model': '{}_{}'.format(self.lang, audio_model), 'profanity_filter': 'false' } headers = { 'Content-Type': 'audio/x-flac', 'X-Watson-Learning-Opt-Out': 'true' } response = post(url, auth=('apikey', self.token), headers=headers, data=audio.get_flac_data(), params=params) if response.status_code == 200: result = json.loads(response.text) if result.get('error_code') is None: if ('results' not in result or len(result['results']) < 1 or 'alternatives' not in result['results'][0]): raise Exception( 'Transcription failed. Invalid or empty results.') transcription = [] for utterance in result['results']: if 'alternatives' not in utterance: raise Exception( 'Transcription failed. Invalid or empty results.') for hypothesis in utterance['alternatives']: if 'transcript' in hypothesis: transcription.append(hypothesis['transcript']) return '\n'.join(transcription) elif response.status_code == 401: # Unauthorized raise Exception('Invalid API key for IBM Cloud.') else: raise Exception( 'Request to IBM Cloud failed. Code: {} Body: {}'.format( response.status_code, response.text)) class YandexSTT(STT): """ Yandex SpeechKit STT To use create service account with role 'editor' in your cloud folder, create API key for account and add it to local mycroft.conf file. The STT config will look like this: "stt": { "module": "yandex", "yandex": { "lang": "en-US", "credential": { "api_key": "YOUR_API_KEY" } } } """ def __init__(self): super(YandexSTT, self).__init__() self.lang = self.config.get('lang') or self.lang self.api_key = self.credential.get("api_key") if self.api_key is None: raise ValueError("API key for Yandex STT is not defined") def execute(self, audio, language=None): self.lang = language or self.lang if self.lang not in ["en-US", "ru-RU", "tr-TR"]: raise ValueError( "Unsupported language '{}' for Yandex STT".format(self.lang)) # Select sample rate based on source sample rate # and supported sample rate list supported_sample_rates = [8000, 16000, 48000] sample_rate = audio.sample_rate if sample_rate not in supported_sample_rates: for supported_sample_rate in supported_sample_rates: if audio.sample_rate < supported_sample_rate: sample_rate = supported_sample_rate break if sample_rate not in supported_sample_rates: sample_rate = supported_sample_rates[-1] raw_data = audio.get_raw_data(convert_rate=sample_rate, convert_width=2) # Based on https://cloud.yandex.com/docs/speechkit/stt#request url = "https://stt.api.cloud.yandex.net/speech/v1/stt:recognize" headers = {"Authorization": "Api-Key {}".format(self.api_key)} params = "&".join([ "lang={}".format(self.lang), "format=lpcm", "sampleRateHertz={}".format(sample_rate) ]) response = post(url + "?" + params, headers=headers, data=raw_data) if response.status_code == 200: result = json.loads(response.text) if result.get("error_code") is None: return result.get("result") elif response.status_code == 401: # Unauthorized raise Exception("Invalid API key for Yandex STT") else: raise Exception( "Request to Yandex STT failed: code: {}, body: {}".format( response.status_code, response.text)) def requires_pairing(func): """Decorator kicking of pairing sequence if client is not allowed access. Checks the http status of the response if an HTTP error is recieved. If a 401 status is detected returns "pair my device" to trigger the pairing skill. """ def wrapper(*args, **kwargs): try: return func(*args, **kwargs) except HTTPError as e: if e.response.status_code == 401: LOG.warning('Access Denied at mycroft.ai') # phrase to start the pairing process return 'pair my device' else: raise return wrapper class MycroftSTT(STT): """Default mycroft STT.""" def __init__(self): super(MycroftSTT, self).__init__() self.api = STTApi("stt") @requires_pairing def execute(self, audio, language=None): self.lang = language or self.lang try: return self.api.stt(audio.get_flac_data(convert_rate=16000), self.lang, 1)[0] except Exception: return self.api.stt(audio.get_flac_data(), self.lang, 1)[0] class MycroftDeepSpeechSTT(STT): """Mycroft Hosted DeepSpeech""" def __init__(self): super(MycroftDeepSpeechSTT, self).__init__() self.api = STTApi("deepspeech") @requires_pairing def execute(self, audio, language=None): language = language or self.lang if not language.startswith("en"): raise ValueError("Deepspeech is currently english only") return self.api.stt(audio.get_wav_data(), self.lang, 1) class DeepSpeechServerSTT(STT): """ STT interface for the deepspeech-server: https://github.com/MainRo/deepspeech-server use this if you want to host DeepSpeech yourself """ def __init__(self): super(DeepSpeechServerSTT, self).__init__() def execute(self, audio, language=None): language = language or self.lang response = post(self.config.get("uri"), data=audio.get_wav_data()) return response.text class StreamThread(Thread, metaclass=ABCMeta): """ABC class to be used with StreamingSTT class implementations. This class reads audio chunks from a queue and sends it to a parsing STT engine. Args: queue (Queue): Input Queue language (str): language code for the current language. """ def __init__(self, queue, language): super().__init__() self.language = language self.queue = queue self.text = None def _get_data(self): """Generator reading audio data from queue.""" while True: d = self.queue.get() if d is None: break yield d self.queue.task_done() def run(self): """Thread entry point.""" return self.handle_audio_stream(self._get_data(), self.language) @abstractmethod def handle_audio_stream(self, audio, language): """Handling of audio stream. Needs to be implemented by derived class to process audio data and optionally update `self.text` with the current hypothesis. Argumens: audio (bytes): raw audio data. language (str): language code for the current session. """ class StreamingSTT(STT, metaclass=ABCMeta): """ABC class for threaded streaming STT implemenations.""" def __init__(self): super().__init__() self.stream = None self.can_stream = True def stream_start(self, language=None): """Indicate start of new audio stream. This creates a new thread for handling the incomming audio stream as it's collected by Mycroft. Args: language (str): optional language code for the new stream. """ self.stream_stop() language = language or self.lang self.queue = Queue() self.stream = self.create_streaming_thread() self.stream.start() def stream_data(self, data): """Receiver of audio data. Args: data (bytes): raw audio data. """ self.queue.put(data) def stream_stop(self): """Indicate that the audio stream has ended. This will tear down the processing thread and collect the result Returns: str: parsed text """ if self.stream is not None: self.queue.put(None) self.stream.join() text = self.stream.text self.stream = None self.queue = None return text return None def execute(self, audio, language=None): """End the parsing thread and collect data.""" return self.stream_stop() @abstractmethod def create_streaming_thread(self): """Create thread for parsing audio chunks. This method should be implemented by the derived class to return an instance derived from StreamThread to handle the audio stream and send it to the STT engine. Returns: StreamThread: Thread to handle audio data. """ class DeepSpeechStreamThread(StreamThread): def __init__(self, queue, language, url): if not language.startswith("en"): raise ValueError("Deepspeech is currently english only") super().__init__(queue, language) self.url = url def handle_audio_stream(self, audio, language): self.response = post(self.url, data=audio, stream=True) self.text = self.response.text if self.response else None return self.text class DeepSpeechStreamServerSTT(StreamingSTT): """ Streaming STT interface for the deepspeech-server: https://github.com/JPEWdev/deep-dregs use this if you want to host DeepSpeech yourself STT config will look like this: "stt": { "module": "deepspeech_stream_server", "deepspeech_stream_server": { "stream_uri": "http://localhost:8080/stt?format=16K_PCM16" ... """ def create_streaming_thread(self): self.queue = Queue() return DeepSpeechStreamThread( self.queue, self.lang, self.config.get('stream_uri') ) class GoogleStreamThread(StreamThread): def __init__(self, queue, lang, client, streaming_config): super().__init__(queue, lang) self.client = client self.streaming_config = streaming_config def handle_audio_stream(self, audio, language): req = (types.StreamingRecognizeRequest(audio_content=x) for x in audio) responses = self.client.streaming_recognize(self.streaming_config, req) for res in responses: if res.results and res.results[0].is_final: self.text = res.results[0].alternatives[0].transcript return self.text class GoogleCloudStreamingSTT(StreamingSTT): """ Streaming STT interface for Google Cloud Speech-To-Text To use pip install google-cloud-speech and add the Google API key to local mycroft.conf file. The STT config will look like this: "stt": { "module": "google_cloud_streaming", "google_cloud_streaming": { "credential": { "json": { # Paste Google API JSON here ... """ def __init__(self): global SpeechClient, types, enums, Credentials from google.cloud.speech import SpeechClient, types, enums from google.oauth2.service_account import Credentials super(GoogleCloudStreamingSTT, self).__init__() # override language with module specific language selection self.language = self.config.get('lang') or self.lang credentials = Credentials.from_service_account_info( self.credential.get('json') ) self.client = SpeechClient(credentials=credentials) recognition_config = types.RecognitionConfig( encoding=enums.RecognitionConfig.AudioEncoding.LINEAR16, sample_rate_hertz=16000, language_code=self.language, model='command_and_search', max_alternatives=1, ) self.streaming_config = types.StreamingRecognitionConfig( config=recognition_config, interim_results=True, single_utterance=True, ) def create_streaming_thread(self): self.queue = Queue() return GoogleStreamThread( self.queue, self.language, self.client, self.streaming_config ) class KaldiSTT(STT): def __init__(self): super(KaldiSTT, self).__init__() def execute(self, audio, language=None): language = language or self.lang response = post(self.config.get("uri"), data=audio.get_wav_data()) return self.get_response(response) def get_response(self, response): try: hypotheses = response.json()["hypotheses"] return re.sub(r'\s*\[noise\]\s*', '', hypotheses[0]["utterance"]) except Exception: return None class BingSTT(TokenSTT): def __init__(self): super(BingSTT, self).__init__() def execute(self, audio, language=None): self.lang = language or self.lang return self.recognizer.recognize_bing(audio, self.token, self.lang) class HoundifySTT(KeySTT): def __init__(self): super(HoundifySTT, self).__init__() def execute(self, audio, language=None): self.lang = language or self.lang return self.recognizer.recognize_houndify(audio, self.id, self.key) class GoVivaceSTT(TokenSTT): def __init__(self): super(GoVivaceSTT, self).__init__() self.default_uri = "https://services.govivace.com:49149/telephony" if not self.lang.startswith("en") and not self.lang.startswith("es"): LOG.error("GoVivace STT only supports english and spanish") raise NotImplementedError def execute(self, audio, language=None): url = self.config.get("uri", self.default_uri) + "?key=" + \ self.token + "&action=find&format=8K_PCM16&validation_string=" response = put(url, data=audio.get_wav_data(convert_rate=8000)) return self.get_response(response) def get_response(self, response): return response.json()["result"]["hypotheses"][0]["transcript"] def load_stt_plugin(module_name): """Wrapper function for loading stt plugin. Args: module_name (str): Mycroft stt module name from config Returns: class: STT plugin class """ return load_plugin('mycroft.plugin.stt', module_name) class STTFactory: CLASSES = { "mycroft": MycroftSTT, "google": GoogleSTT, "google_cloud": GoogleCloudSTT, "google_cloud_streaming": GoogleCloudStreamingSTT, "wit": WITSTT, "ibm": IBMSTT, "kaldi": KaldiSTT, "bing": BingSTT, "govivace": GoVivaceSTT, "houndify": HoundifySTT, "deepspeech_server": DeepSpeechServerSTT, "deepspeech_stream_server": DeepSpeechStreamServerSTT, "mycroft_deepspeech": MycroftDeepSpeechSTT, "yandex": YandexSTT } @staticmethod def create(): try: config = Configuration.get().get("stt", {}) module = config.get("module", "mycroft") if module in STTFactory.CLASSES: clazz = STTFactory.CLASSES[module] else: clazz = load_stt_plugin(module) LOG.info('Loaded the STT plugin {}'.format(module)) return clazz() except Exception: # The STT backend failed to start. Report it and fall back to # default. LOG.exception('The selected STT backend could not be loaded, ' 'falling back to default...') if module != 'mycroft': return MycroftSTT() else: raise
12,249
730
1,407
6af4692a61fa738f40f505d58ac7cde5a59bfad9
1,698
py
Python
sdk/ingestion/microsoft/bing/commerce/ingestion/models/transformation_tryout_response_py3.py
microsoft/bing-commerce-sdk-for-python
cf555ea0bb14792708617d2435dd5aab1c4cbe90
[ "MIT" ]
1
2020-05-04T09:58:07.000Z
2020-05-04T09:58:07.000Z
sdk/ingestion/microsoft/bing/commerce/ingestion/models/transformation_tryout_response_py3.py
microsoft/bing-commerce-sdk-for-python
cf555ea0bb14792708617d2435dd5aab1c4cbe90
[ "MIT" ]
2
2020-04-21T02:32:32.000Z
2020-04-21T19:37:54.000Z
sdk/ingestion/microsoft/bing/commerce/ingestion/models/transformation_tryout_response_py3.py
microsoft/bing-commerce-sdk-for-python
cf555ea0bb14792708617d2435dd5aab1c4cbe90
[ "MIT" ]
4
2020-07-31T10:39:22.000Z
2021-11-10T08:14:07.000Z
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. # coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class TransformationTryoutResponse(Model): """A response representing the status of a transformation config tryout requset. :param status: The status of the transformation config tryout. :type status: str :param error_message: Any error messages that happened while transforming, if any. :type error_message: str :param results: A list of records that the transformation config outputed. :type results: list[str] :param console_output: The console output of the transformation config, if any. Can be useful for debugging. :type console_output: list[str] """ _attribute_map = { 'status': {'key': 'status', 'type': 'str'}, 'error_message': {'key': 'errorMessage', 'type': 'str'}, 'results': {'key': 'results', 'type': '[str]'}, 'console_output': {'key': 'consoleOutput', 'type': '[str]'}, }
39.488372
123
0.604829
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. # coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class TransformationTryoutResponse(Model): """A response representing the status of a transformation config tryout requset. :param status: The status of the transformation config tryout. :type status: str :param error_message: Any error messages that happened while transforming, if any. :type error_message: str :param results: A list of records that the transformation config outputed. :type results: list[str] :param console_output: The console output of the transformation config, if any. Can be useful for debugging. :type console_output: list[str] """ _attribute_map = { 'status': {'key': 'status', 'type': 'str'}, 'error_message': {'key': 'errorMessage', 'type': 'str'}, 'results': {'key': 'results', 'type': '[str]'}, 'console_output': {'key': 'consoleOutput', 'type': '[str]'}, } def __init__(self, *, status: str=None, error_message: str=None, results=None, console_output=None, **kwargs) -> None: super(TransformationTryoutResponse, self).__init__(**kwargs) self.status = status self.error_message = error_message self.results = results self.console_output = console_output
319
0
29
c94779c915148b6ad1bdd49ed67c0ea57c1425eb
789
py
Python
rucken_todo/serializers/TodoProjectSerializer.py
site15/rucken-todo-django
bf30d4ad43be22bd8383447e07b151d6dc99da72
[ "MIT" ]
3
2018-06-04T07:36:59.000Z
2019-10-07T05:33:56.000Z
rucken_todo/serializers/TodoProjectSerializer.py
site15/rucken-todo-django-example
bf30d4ad43be22bd8383447e07b151d6dc99da72
[ "MIT" ]
428
2017-11-24T20:19:39.000Z
2022-03-26T04:13:25.000Z
rucken_todo/serializers/TodoProjectSerializer.py
rucken/todo-django
bf30d4ad43be22bd8383447e07b151d6dc99da72
[ "MIT" ]
null
null
null
from __future__ import unicode_literals from dynamic_rest.serializers import ( DynamicModelSerializer, DynamicRelationField ) from ..models import TodoProject from .ShortUserSerializer import ShortUserSerializer from .ShortTodoStatusSerializer import ShortTodoStatusSerializer
35.863636
109
0.735108
from __future__ import unicode_literals from dynamic_rest.serializers import ( DynamicModelSerializer, DynamicRelationField ) from ..models import TodoProject from .ShortUserSerializer import ShortUserSerializer from .ShortTodoStatusSerializer import ShortTodoStatusSerializer class TodoProjectSerializer(DynamicModelSerializer): users = DynamicRelationField(ShortUserSerializer, many=True, embed=True) statuses = DynamicRelationField(ShortTodoStatusSerializer, source='todostatus_set', many=True, embed=True) class Meta: model = TodoProject fields = ('id', 'title', 'description', 'is_public', 'users', 'statuses', 'created_at', 'updated_at') read_only_fields = ('created_at', 'updated_at', 'statuses')
0
478
23
fb3c596fe6612b15cdd72e0d834f7c922c8070d3
2,102
py
Python
src/detection/visualisation.py
wdoppenberg/crater-detection
471d1bc508dee873cc5d05329147dfc5314bc15d
[ "MIT" ]
8
2021-06-09T15:07:16.000Z
2021-12-22T09:39:29.000Z
src/detection/visualisation.py
wdoppenberg/crater-detection
471d1bc508dee873cc5d05329147dfc5314bc15d
[ "MIT" ]
3
2021-04-23T12:29:40.000Z
2021-06-10T11:01:05.000Z
src/detection/visualisation.py
wdoppenberg/crater-detection
471d1bc508dee873cc5d05329147dfc5314bc15d
[ "MIT" ]
null
null
null
from typing import Union import cv2 import numpy as np import torch from matplotlib import pyplot as plt, patches
37.535714
111
0.572312
from typing import Union import cv2 import numpy as np import torch from matplotlib import pyplot as plt, patches def draw_patches( img: Union[np.ndarray, torch.Tensor], bboxes: Union[np.ndarray, torch.Tensor], labels: Union[np.ndarray, torch.Tensor], scores: Union[np.ndarray, torch.Tensor], masks: Union[np.ndarray, torch.Tensor] = None, min_score: float = 0., ax=None, return_fig: bool = False, figsize=(10, 10) ): img, bboxes, labels, scores, masks = map(lambda arr: arr.numpy() if isinstance(arr, torch.Tensor) else arr, (img, bboxes, labels, scores, masks)) return_fig_check = False if ax is None: return_fig_check = True fig, ax = plt.subplots(1, 1, figsize=figsize) ax.imshow(img[0], cmap='gray') for (xmin, ymin, xmax, ymax), s in zip(bboxes, scores): if s < min_score: continue cx, cy, w, h = (xmin + xmax) / 2, (ymin + ymax) / 2, xmax - xmin, ymax - ymin patch = patches.Rectangle((cx - 0.5 * w, cy - 0.5 * h), w, h, fill=False, color="r") ax.add_patch(patch) bbox_props = dict(boxstyle="round", fc="cyan", ec="0.5", alpha=0.5) if w < 15: ax.text(cx - 1.2 * w, cy, f"{s:.0%}", ha="center", va="center", size=8, bbox=bbox_props) else: ax.text(cx, cy, f"{s:.0%}", ha="center", va="center", size=8, bbox=bbox_props) if return_fig and return_fig_check: return fig def draw_detections(df, shape=(256, 256)): img_ellipses = np.zeros(shape) for i, r in df.iterrows(): center_coordinates = (round(r['x_pix']), round(r['y_pix'])) axes_length = (round(r['a_pix']), round(r['b_pix'])) angle = round(r['angle_pix']) img_ellipses = cv2.ellipse(img_ellipses, center_coordinates, axes_length, angle, 0, 360, (255, 255, 255), 1) img_ellipses = cv2.circle(img_ellipses, center_coordinates, 0, (255, 255, 255), 1) return img_ellipses
1,940
0
46
e1e37ca4bd3f37516c74ca148f8f13300997a396
1,502
py
Python
quorapy/scraper.py
djunehor/quorapy
0496a362d7ecd0b2422288a26290a8503d562128
[ "MIT" ]
null
null
null
quorapy/scraper.py
djunehor/quorapy
0496a362d7ecd0b2422288a26290a8503d562128
[ "MIT" ]
null
null
null
quorapy/scraper.py
djunehor/quorapy
0496a362d7ecd0b2422288a26290a8503d562128
[ "MIT" ]
null
null
null
"""Module for scraping""" from bs4 import BeautifulSoup import dateparser import datetime class Scraper: """Scraper class""" def get_urls(self): """Scrapes posts on a page""" all_urls = [] # infinite scroll urls = self.soup.find_all("a", class_="SQnoC3ObvgnGjWt90zD9Z _2INHSNB8V5eaWp4P0rY_mE") for url in urls: all_urls.append(url['href']) return all_urls
28.339623
94
0.561252
"""Module for scraping""" from bs4 import BeautifulSoup import dateparser import datetime class Scraper: """Scraper class""" def __init__(self, html): self.html = html self.soup = BeautifulSoup(html, "lxml") print(f"[Scraper] Retrieved page") def get_urls(self): """Scrapes posts on a page""" all_urls = [] # infinite scroll urls = self.soup.find_all("a", class_="SQnoC3ObvgnGjWt90zD9Z _2INHSNB8V5eaWp4P0rY_mE") for url in urls: all_urls.append(url['href']) return all_urls def get_details(self): data = {} thread = self.soup.find_all('div', 'pagedlist_item') user_div = thread.pop() a = user_div.find('a', class_="user") data['text'] = self.soup.find('span', class_='rendered_qtext').get_text() data['user'] = {} try: data['user']['url'] = "https://quora.com"+a['href'] except: pass data['user']['name'] = a.get_text() try: text = self.soup.find('p', class_="log_action_bar").get_text() split = text.split(' · ') date_time = split.pop().rstrip() data['datetime'] = str(dateparser.parse(date_time)) except: data['datetime'] = str(datetime.datetime.now()) return data def get_followers(self): links = self.soup.find_all("span", class_='list_count') span = links.pop() return span.text
994
0
81
0d64ae13b623685600630d0fe9894fd2c441936e
890
py
Python
test/test_key.py
emartech/python-easy-crypto
ef09b42e43fb6649498bfb7b5ffbbf490a94d85d
[ "MIT" ]
3
2019-11-03T18:26:35.000Z
2021-03-07T02:37:52.000Z
test/test_key.py
emartech/python-easy-crypto
ef09b42e43fb6649498bfb7b5ffbbf490a94d85d
[ "MIT" ]
4
2019-06-05T01:48:19.000Z
2019-07-19T11:53:51.000Z
test/test_key.py
emartech/python-easy-crypto
ef09b42e43fb6649498bfb7b5ffbbf490a94d85d
[ "MIT" ]
2
2019-07-11T08:59:03.000Z
2022-02-17T19:41:21.000Z
import unittest import os from easycrypto.key import Key
29.666667
59
0.652809
import unittest import os from easycrypto.key import Key class KeyTest(unittest.TestCase): def test_key_length_is_as_specified(self): key, _ = Key.generate('pwd', 12) self.assertEqual(len(key), 32) def test_generate_uses_different_salt_every_time(self): self.assertNotEqual( Key.generate('weakpassword', 12), Key.generate('weakpassword', 12) ) def test_generate_with_salt_is_deterministic(self): salt = os.urandom(12) self.assertEqual( Key.generate_with_salt('weakpassword', salt), Key.generate_with_salt('weakpassword', salt) ) def test_generate_with_salt_uses_password(self): salt = os.urandom(12) self.assertNotEqual( Key.generate_with_salt('weakpassword', salt), Key.generate_with_salt('anotherpassword', salt) )
690
12
130
0320bc714098189f04667b3582a960eb0486b15d
5,128
py
Python
readinglistreader.py
treese/ReadingListReader
d9e56ec2225400994706ad9c2e9d4815fe4f509d
[ "MIT" ]
62
2015-01-08T03:22:03.000Z
2021-12-22T00:46:30.000Z
readinglistreader.py
treese/ReadingListReader
d9e56ec2225400994706ad9c2e9d4815fe4f509d
[ "MIT" ]
7
2015-02-16T14:12:02.000Z
2021-07-22T06:03:47.000Z
readinglistreader.py
treese/ReadingListReader
d9e56ec2225400994706ad9c2e9d4815fe4f509d
[ "MIT" ]
16
2015-04-19T22:15:24.000Z
2021-09-14T13:08:57.000Z
#!/usr/bin/env python import os import argparse import datetime from readinglistlib import ReadingListReader # Configure CLI fields = ['title', 'url', 'preview', 'date', 'added', 'viewed', 'uuid', 'synckey', 'syncserverid'] ap = argparse.ArgumentParser(description='This script outputs the contents of your Safari Reading List, a queue of temporary bookmarks representing articles you intend to read. By default, it prints the title and url of unread articles in chronological order, beginning with the oldest bookmark. Default output is compliant with CSV conventions.') ap.add_argument('--separator', action='store', default=',', metavar='SEP', help='Separates field values. Specify \'tab\' to use an actual tab character. Defaults to \',\'.') ap.add_argument('--quote', action='store', default='"', help='Specify \'\' to suppress quoting. Defaults to \'"\'.') ap.add_argument('--forcequotes', action='store_true', default=False, help="Quote all field values. By default, only quote empty fields or values containing SEP, QUOTE, or newlines.") ap.add_argument('--fields', action='store', nargs='+', default=['title', 'url'], choices=fields, metavar='FIELD', help='Controls format of output record. Acceptable fields are title, url, preview, date, added, viewed, uuid, synckey, and syncserverid. Defaults to title and url. (Date is date article was originally bookmarked. If defined, added is date bookmark was synced via iCloud. If defined, viewed is date article was read.)') ap.add_argument('--header', action='store_true', default=False, help='Output a header record containing field labels.') ap.add_argument('--timestamp', action='store', default='%a %b %d %H:%M:%S %Y', metavar='FORMAT', help='Controls format of date, added, and viewed fields. Understands strftime directives. Defaults to \'%%a %%b %%d %%H:%%M:%%S %%Y\' (eg, \'' + datetime.datetime.now().strftime('%a %b %d %H:%M:%S %Y') + '\').') ap.add_argument('--bookmarks', action='store_true', default=False, help='Output items in Netscape bookmarks file format. Overrides preceding tabular output options.') ap.add_argument('--show', action='store', default='unread', choices=['unread', 'read', 'all'], metavar='FILTER', help='Control which items to output. Acceptable FILTER values are unread, read, or all. Defaults to unread.') ap.add_argument('--sortfield', action='store', default='date', choices=fields, metavar='FIELD', help="Controls how output is sorted. Defaults to date.") ap.add_argument('--sortorder', action='store', default='ascending', choices=['ascending', 'descending'], metavar='ORDER', help='May be ascending or descending. Defaults to ascending.') ap.add_argument('--output', action='store', type=argparse.FileType('w'), default='-', help='Output file path. Defaults to stdout.') ap.add_argument('--input', action='store', default=os.path.expanduser('~/Library/Safari/Bookmarks.plist'), help='Input file path. Assumed to be a Safari bookmarks file formatted as a binary property list. Defaults to ~/Library/Safari/Bookmarks.plist') args = ap.parse_args() # Reinterpretation of fiddly options if 'tab' == args.separator: args.separator = '\t' # Input if not os.path.exists(args.input): raise SystemExit, "The input file does not exist: %s" % args.input rlr = ReadingListReader(args.input) bookmarks = rlr.read( show = None if 'all' == args.show else args.show, sortfield = args.sortfield, ascending = True if 'ascending' == args.sortorder else False, dateformat = args.timestamp) if args.bookmarks: # Netscape Bookmarks File formatted output # eg http://msdn.microsoft.com/en-us/library/ie/aa753582(v=vs.85).aspx print >> args.output, '<!DOCTYPE NETSCAPE-Bookmark-file-1>\n<HTML>\n<META HTTP-EQUIV="CONTENT-TYPE" CONTENT="text/html; charset=UTF-8">\n<Title>Bookmarks</Title>\n<H1>Bookmarks</H1>\n<DT><H3 FOLDED>Reading List Bookmarks</H3>\n<DL>' for bookmark in bookmarks: print >> args.output, ' <DT><A HREF="%s">%s</A>' % (bookmark['url'].encode('utf-8'), bookmark['title'].encode('utf-8')) print >> args.output, '</DL>\n</HTML>' else: # CSV or custom tabular formatted output # Accepts a value. Tests if it should be quoted and, if so, returns quoted # value with any quote characters escaped via duplication. # Quoting rules derived from: # https://tools.ietf.org/html/rfc4180 # http://www.creativyst.com/Doc/Articles/CSV/CSV01.htm # Accepts a list of values. Prints record with separators and, if required, quotes. # Header record if True == args.header: output_record(args.fields) for bookmark in bookmarks: field_values = [] for field in args.fields: field_value = bookmark[field] field_values.append(field_value.encode('utf-8')) output_record(field_values)
61.783133
433
0.719189
#!/usr/bin/env python import os import argparse import datetime from readinglistlib import ReadingListReader # Configure CLI fields = ['title', 'url', 'preview', 'date', 'added', 'viewed', 'uuid', 'synckey', 'syncserverid'] ap = argparse.ArgumentParser(description='This script outputs the contents of your Safari Reading List, a queue of temporary bookmarks representing articles you intend to read. By default, it prints the title and url of unread articles in chronological order, beginning with the oldest bookmark. Default output is compliant with CSV conventions.') ap.add_argument('--separator', action='store', default=',', metavar='SEP', help='Separates field values. Specify \'tab\' to use an actual tab character. Defaults to \',\'.') ap.add_argument('--quote', action='store', default='"', help='Specify \'\' to suppress quoting. Defaults to \'"\'.') ap.add_argument('--forcequotes', action='store_true', default=False, help="Quote all field values. By default, only quote empty fields or values containing SEP, QUOTE, or newlines.") ap.add_argument('--fields', action='store', nargs='+', default=['title', 'url'], choices=fields, metavar='FIELD', help='Controls format of output record. Acceptable fields are title, url, preview, date, added, viewed, uuid, synckey, and syncserverid. Defaults to title and url. (Date is date article was originally bookmarked. If defined, added is date bookmark was synced via iCloud. If defined, viewed is date article was read.)') ap.add_argument('--header', action='store_true', default=False, help='Output a header record containing field labels.') ap.add_argument('--timestamp', action='store', default='%a %b %d %H:%M:%S %Y', metavar='FORMAT', help='Controls format of date, added, and viewed fields. Understands strftime directives. Defaults to \'%%a %%b %%d %%H:%%M:%%S %%Y\' (eg, \'' + datetime.datetime.now().strftime('%a %b %d %H:%M:%S %Y') + '\').') ap.add_argument('--bookmarks', action='store_true', default=False, help='Output items in Netscape bookmarks file format. Overrides preceding tabular output options.') ap.add_argument('--show', action='store', default='unread', choices=['unread', 'read', 'all'], metavar='FILTER', help='Control which items to output. Acceptable FILTER values are unread, read, or all. Defaults to unread.') ap.add_argument('--sortfield', action='store', default='date', choices=fields, metavar='FIELD', help="Controls how output is sorted. Defaults to date.") ap.add_argument('--sortorder', action='store', default='ascending', choices=['ascending', 'descending'], metavar='ORDER', help='May be ascending or descending. Defaults to ascending.') ap.add_argument('--output', action='store', type=argparse.FileType('w'), default='-', help='Output file path. Defaults to stdout.') ap.add_argument('--input', action='store', default=os.path.expanduser('~/Library/Safari/Bookmarks.plist'), help='Input file path. Assumed to be a Safari bookmarks file formatted as a binary property list. Defaults to ~/Library/Safari/Bookmarks.plist') args = ap.parse_args() # Reinterpretation of fiddly options if 'tab' == args.separator: args.separator = '\t' # Input if not os.path.exists(args.input): raise SystemExit, "The input file does not exist: %s" % args.input rlr = ReadingListReader(args.input) bookmarks = rlr.read( show = None if 'all' == args.show else args.show, sortfield = args.sortfield, ascending = True if 'ascending' == args.sortorder else False, dateformat = args.timestamp) if args.bookmarks: # Netscape Bookmarks File formatted output # eg http://msdn.microsoft.com/en-us/library/ie/aa753582(v=vs.85).aspx print >> args.output, '<!DOCTYPE NETSCAPE-Bookmark-file-1>\n<HTML>\n<META HTTP-EQUIV="CONTENT-TYPE" CONTENT="text/html; charset=UTF-8">\n<Title>Bookmarks</Title>\n<H1>Bookmarks</H1>\n<DT><H3 FOLDED>Reading List Bookmarks</H3>\n<DL>' for bookmark in bookmarks: print >> args.output, ' <DT><A HREF="%s">%s</A>' % (bookmark['url'].encode('utf-8'), bookmark['title'].encode('utf-8')) print >> args.output, '</DL>\n</HTML>' else: # CSV or custom tabular formatted output # Accepts a value. Tests if it should be quoted and, if so, returns quoted # value with any quote characters escaped via duplication. # Quoting rules derived from: # https://tools.ietf.org/html/rfc4180 # http://www.creativyst.com/Doc/Articles/CSV/CSV01.htm def quotify(value): if (args.forcequotes or '' == value or -1 != value.find(args.separator) or -1 != value.find(args.quote) or -1 != value.find('\n')) and '' != args.quote: return '%s%s%s' % (args.quote, value.replace(args.quote, '%s%s' % (args.quote, args.quote)), args.quote) else: return value # Accepts a list of values. Prints record with separators and, if required, quotes. def output_record(values): print >> args.output, args.separator.join(map(quotify, values)) # Header record if True == args.header: output_record(args.fields) for bookmark in bookmarks: field_values = [] for field in args.fields: field_value = bookmark[field] field_values.append(field_value.encode('utf-8')) output_record(field_values)
356
0
46
85890f25969655f8b43b5f8b0ea57d7e21d01c40
745
py
Python
exercicio_py/ex0004_conta_quantidade_caractere/main_v0.py
danielle8farias/Exercicios-Python-3
f2fe9b6ca63536df1d83fd10162cfc04de36b830
[ "MIT" ]
null
null
null
exercicio_py/ex0004_conta_quantidade_caractere/main_v0.py
danielle8farias/Exercicios-Python-3
f2fe9b6ca63536df1d83fd10162cfc04de36b830
[ "MIT" ]
null
null
null
exercicio_py/ex0004_conta_quantidade_caractere/main_v0.py
danielle8farias/Exercicios-Python-3
f2fe9b6ca63536df1d83fd10162cfc04de36b830
[ "MIT" ]
null
null
null
######## # autora: danielle8farias@gmail.com # repositório: https://github.com/danielle8farias # Descrição: Usuário informa nome e sobrenome. # O programa retorna quantas letras o nome completo possui (excluindo espaços) # e quantas letras o primeiro nome possui. ######## nome_completo = input('Digite seu nome completo: ') #count(' ') conta os espaços em branco #len() retorna o tamanho da string # retirando espaço entre os nomes tamanho_completo = len(nome_completo) - nome_completo.count(' ') print(f'Seu nome completo possui: {tamanho_completo} letras.') #find() retorna a posição de um caractere # nesse caso queremos encontrar o primeiro espaço num = nome_completo.find(' ') print(f'Seu primeiro nome possui: {num} letras.\n')
37.25
79
0.739597
######## # autora: danielle8farias@gmail.com # repositório: https://github.com/danielle8farias # Descrição: Usuário informa nome e sobrenome. # O programa retorna quantas letras o nome completo possui (excluindo espaços) # e quantas letras o primeiro nome possui. ######## nome_completo = input('Digite seu nome completo: ') #count(' ') conta os espaços em branco #len() retorna o tamanho da string # retirando espaço entre os nomes tamanho_completo = len(nome_completo) - nome_completo.count(' ') print(f'Seu nome completo possui: {tamanho_completo} letras.') #find() retorna a posição de um caractere # nesse caso queremos encontrar o primeiro espaço num = nome_completo.find(' ') print(f'Seu primeiro nome possui: {num} letras.\n')
0
0
0
67ce0d92034f71c96a8e965173c68e6445d1be29
31
py
Python
techrachit.py
eastmest/Termux-Megapackage
08f610d25539cfdc5992893996aa4c89630c9a07
[ "MIT" ]
null
null
null
techrachit.py
eastmest/Termux-Megapackage
08f610d25539cfdc5992893996aa4c89630c9a07
[ "MIT" ]
null
null
null
techrachit.py
eastmest/Termux-Megapackage
08f610d25539cfdc5992893996aa4c89630c9a07
[ "MIT" ]
null
null
null
print ("tech rachit are here")
15.5
30
0.709677
print ("tech rachit are here")
0
0
0
3fa62522c102c532d31c74e82903732fc572abac
390
py
Python
feedback/urls.py
asb29/Redundant
ee816fd41f9217610bd11f757cf9175288723c70
[ "MIT" ]
null
null
null
feedback/urls.py
asb29/Redundant
ee816fd41f9217610bd11f757cf9175288723c70
[ "MIT" ]
null
null
null
feedback/urls.py
asb29/Redundant
ee816fd41f9217610bd11f757cf9175288723c70
[ "MIT" ]
null
null
null
from django.conf.urls import url from . import views app_name = 'feedback' urlpatterns = [ url(r'^article/(?P<slug>[-\w]+)/comment$', views.comment, name='comment'), url(r'^reviewcomment/(?P<comment_id>[0-9]+)/$', views.reviewcomment, name='review-comment'), url(r'^article/(?P<slug>[-\w]+)/like$', views.like, name='like'), ]
21.666667
51
0.561538
from django.conf.urls import url from . import views app_name = 'feedback' urlpatterns = [ url(r'^article/(?P<slug>[-\w]+)/comment$', views.comment, name='comment'), url(r'^reviewcomment/(?P<comment_id>[0-9]+)/$', views.reviewcomment, name='review-comment'), url(r'^article/(?P<slug>[-\w]+)/like$', views.like, name='like'), ]
0
0
0
2fc23c16f3cf180ba3fd5c3369c888fc32045d14
27,933
py
Python
pref/webapp/views/property.py
ahampt/Pref
6a6b44c751da4358d97c7f170237b8fc0a4bc3d0
[ "MIT" ]
null
null
null
pref/webapp/views/property.py
ahampt/Pref
6a6b44c751da4358d97c7f170237b8fc0a4bc3d0
[ "MIT" ]
7
2015-08-02T20:58:23.000Z
2016-05-02T03:25:21.000Z
pref/webapp/views/property.py
ahampt/Pref
6a6b44c751da4358d97c7f170237b8fc0a4bc3d0
[ "MIT" ]
null
null
null
import logging, sys from django.conf import settings from django.core.exceptions import ObjectDoesNotExist, ValidationError from django.core.mail import send_mail from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger from django.http import HttpResponse, Http404 from django.shortcuts import render_to_response, redirect from django.template import RequestContext from webapp.tools.misc_tools import create_movie_property, person_is_relevant, genre_is_relevant, generate_header_dict, set_msg, check_and_get_session_info, get_type_dict from webapp.models import Profiles, People, Genres, Movies, Properties, Associations property_logger = logging.getLogger('log.property') associate_logger = logging.getLogger('log.associate') # Display people list # Person tools including view, delete, edit, suggestion, and movie association tools (add, remove) # Display genre list # Genre tools including view, delete, edit, suggestion, and movie association tools (add, remove)
67.798544
315
0.666667
import logging, sys from django.conf import settings from django.core.exceptions import ObjectDoesNotExist, ValidationError from django.core.mail import send_mail from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger from django.http import HttpResponse, Http404 from django.shortcuts import render_to_response, redirect from django.template import RequestContext from webapp.tools.misc_tools import create_movie_property, person_is_relevant, genre_is_relevant, generate_header_dict, set_msg, check_and_get_session_info, get_type_dict from webapp.models import Profiles, People, Genres, Movies, Properties, Associations property_logger = logging.getLogger('log.property') associate_logger = logging.getLogger('log.associate') # Display people list def people(request): try: logged_in_profile_info = { } permission_response = check_and_get_session_info(request, logged_in_profile_info) if permission_response != True: return permission_response '''***************************************************************************** Display people list page PATH: webapp.views.propery.people; METHOD: none; PARAMS: none; MISC: none; *****************************************************************************''' people = None people_list = People.objects.all().order_by('Name') length = int(request.GET.get('length')) if request.GET.get('length') and request.GET.get('length').isdigit() else 25 length = length if length <= 100 else 100 paginator = Paginator(people_list, length) page = request.GET.get('page') try: people = paginator.page(page) except PageNotAnInteger: people = paginator.page(1) except EmptyPage: people = paginator.page(paginator.num_pages) return render_to_response('property/view_people_list.html', {'header' : generate_header_dict(request, 'People List'), 'people' : people}, RequestContext(request)) except Exception: property_logger.error('Unexpected error: ' + str(sys.exc_info()[0])) return render_to_response('500.html', {'header' : generate_header_dict(request, 'Error')}, RequestContext(request)) # Person tools including view, delete, edit, suggestion, and movie association tools (add, remove) def person(request, urlname): try: logged_in_profile_info = { } permission_response = check_and_get_session_info(request, logged_in_profile_info) if permission_response != True: return permission_response # Get all movie associations with person and get all profile associations with said movies type_dict = get_type_dict() person = People.objects.get(UrlName=urlname) directed_properties = Properties.objects.select_related().filter(ConsumeableTypeId=type_dict['CONSUMEABLE_MOVIE'], PropertyTypeId=type_dict['PROPERTY_DIRECTOR'], PropertyId=person.id).order_by('-ConsumeableId__Year', 'ConsumeableId__Title') written_properties = Properties.objects.select_related().filter(ConsumeableTypeId=type_dict['CONSUMEABLE_MOVIE'], PropertyTypeId=type_dict['PROPERTY_WRITER'], PropertyId=person.id).order_by('-ConsumeableId__Year', 'ConsumeableId__Title') acted_properties = Properties.objects.select_related().filter(ConsumeableTypeId=type_dict['CONSUMEABLE_MOVIE'], PropertyTypeId=type_dict['PROPERTY_ACTOR'], PropertyId=person.id).order_by('-ConsumeableId__Year', 'ConsumeableId__Title') directed_movies, written_movies, acted_movies = [], [], [] directed_movies_tuples, written_movies_tuples, acted_movies_tuples = [], [], [] for prop in directed_properties: movie = prop.ConsumeableId directed_movies.append(movie) try: association = Associations.objects.get(ProfileId = logged_in_profile_info['id'], ConsumeableId = movie, ConsumeableTypeId = type_dict['CONSUMEABLE_MOVIE']) directed_movies_tuples.append((movie, True)) except Exception: directed_movies_tuples.append((movie, False)) for prop in written_properties: movie = prop.ConsumeableId written_movies.append(movie) try: association = Associations.objects.get(ProfileId = logged_in_profile_info['id'], ConsumeableId = movie, ConsumeableTypeId = type_dict['CONSUMEABLE_MOVIE']) written_movies_tuples.append((movie, True)) except Exception: written_movies_tuples.append((movie, False)) for prop in acted_properties: movie = prop.ConsumeableId acted_movies.append(movie) try: association = Associations.objects.get(ProfileId = logged_in_profile_info['id'], ConsumeableId = movie, ConsumeableTypeId = type_dict['CONSUMEABLE_MOVIE']) acted_movies_tuples.append((movie, True)) except Exception: acted_movies_tuples.append((movie, False)) if request.GET.get('suggestion'): if request.method == 'POST': '''***************************************************************************** Send suggestion/comment/correction email and redirect to person page PATH: webapp.views.property.person urlname; METHOD: post; PARAMS: get - suggestion; MISC: none; *****************************************************************************''' profile = Profiles.objects.get(id=logged_in_profile_info['id']) email_from = settings.DEFAULT_FROM_EMAIL email_subject = 'Profile: ' + str(profile.Username) + ' Id: ' + str(profile.id) + ' PersonId: ' + str(person.id) email_message = request.POST.get('message') if request.POST.get('message') else None set_msg(request, 'Thank you for your feedback!', 'We have recieved your suggestion/comment/correction and will react to it appropriately.', 'success') if email_message: # send email send_mail(email_subject, email_message, email_from, [settings.DEFAULT_TO_EMAIL], fail_silently=False) else: pass return redirect('webapp.views.property.person', urlname=person.UrlName) else: '''***************************************************************************** Display suggestion/comment/correction page PATH: webapp.views.property.person urlname; METHOD: not post; PARAMS: get - suggestion; MISC: none; *****************************************************************************''' return render_to_response('site/suggestion_form.html', {'header' : generate_header_dict(request, 'Suggestion/Comment/Correction'), 'person' : person}, RequestContext(request)) elif logged_in_profile_info['admin'] and request.GET.get('edit'): if request.method == 'POST': '''***************************************************************************** Save changes made to person and redirect to person page PATH: webapp.views.property.person urlname; METHOD: post; PARAMS: get - edit; MISC: logged_in_profile.IsAdmin; *****************************************************************************''' person.Name = request.POST.get('name') person.RottenTomatoesId = None if (not request.POST.get('rottentomatoes') or (request.POST.get('rottentomatoes') and request.POST.get('rottentomatoes') == 'None')) else request.POST.get('rottentomatoes') try: person.full_clean() person.save() property_logger.info(person.UrlName + ' Update Success by ' + logged_in_profile_info['username']) set_msg(request, 'Person Updated!', person.Name + ' has successfully been updated.', 'success') return redirect('webapp.views.property.person', urlname=person.UrlName) except ValidationError as e: property_logger.info(person.UrlName + ' Update Failure by ' + logged_in_profile_info['username']) error_msg = e.message_dict for key in error_msg: error_msg[key] = str(error_msg[key][0]) return render_to_response('property/edit_person.html', {'header' : generate_header_dict(request, 'Update'), 'person' : person, 'directed_movies' : directed_movies, 'written_movies' : written_movies, 'acted_movies' : acted_movies, 'error_msg' : error_msg}, RequestContext(request)) else: '''***************************************************************************** Display edit page PATH: webapp.views.property.person urlname; METHOD: not post; PARAMS: get - edit; MISC: logged_in_profile.IsAdmin; *****************************************************************************''' return render_to_response('property/edit_person.html', {'header' : generate_header_dict(request, 'Update'), 'person' : person, 'directed_movies' : directed_movies, 'written_movies' : written_movies, 'acted_movies' : acted_movies}, RequestContext(request)) elif logged_in_profile_info['admin'] and request.GET.get('delete'): '''***************************************************************************** Delete person and redirect to home PATH: webapp.views.property.person urlname; METHOD: none; PARAMS: get - delete; MISC: logged_in_profile.IsAdmin; *****************************************************************************''' # Delete all movie associations with person for prop in directed_properties: prop.delete() associate_logger.info(prop.ConsumeableId.UrlTitle + ' Disassociated ' + person.UrlName + ' Success by ' + logged_in_profile_info['username']) for prop in written_properties: prop.delete() associate_logger.info(prop.ConsumeableId.UrlTitle + ' Disassociated ' + person.UrlName + ' Success by ' + logged_in_profile_info['username']) for prop in acted_properties: prop.delete() associate_logger.info(prop.ConsumeableId.UrlTitle + ' Disassociated ' + person.UrlName + ' Success by ' + logged_in_profile_info['username']) # Delete person person.delete() property_logger.info(person.UrlName + ' Delete Success by ' + logged_in_profile_info['username']) set_msg(request, 'Person Deleted!', person.Name + ' has successfully been deleted.', 'danger') return redirect('webapp.views.site.home') elif logged_in_profile_info['admin'] and request.GET.get('add') and request.method == 'POST': '''***************************************************************************** Create movie association with person and redirect to edit page PATH: webapp.views.property.person urlname; METHOD: post; PARAMS: get - add; MISC: logged_in_profile.IsAdmin; *****************************************************************************''' try: value = request.POST.get('add') title = value[:len(value) - 7] if value and len(value) > 7 else None year = int(value[len(value) - 5:len(value)-1]) if value and len(value) > 7 and value[len(value) - 5:len(value)-1].isdigit() else None type = str(request.GET.get('t')) if request.GET.get('t') else None movie = Movies.objects.get(Title=title, Year=year) create_movie_property(movie, person.id, person.UrlName, type, logged_in_profile_info['username']) directed_properties = Properties.objects.select_related().filter(ConsumeableTypeId=type_dict['CONSUMEABLE_MOVIE'], PropertyTypeId=type_dict['PROPERTY_DIRECTOR'], PropertyId=person.id) written_properties = Properties.objects.select_related().filter(ConsumeableTypeId=type_dict['CONSUMEABLE_MOVIE'], PropertyTypeId=type_dict['PROPERTY_WRITER'], PropertyId=person.id) acted_properties = Properties.objects.select_related().filter(ConsumeableTypeId=type_dict['CONSUMEABLE_MOVIE'], PropertyTypeId=type_dict['PROPERTY_ACTOR'], PropertyId=person.id) directed_movies, written_movies, acted_movies = [], [], [] for prop in directed_properties: directed_movies.append(prop.ConsumeableId) for prop in written_properties: written_movies.append(prop.ConsumeableId) for prop in acted_properties: acted_movies.append(prop.ConsumeableId) set_msg(request, 'Movie Added!', movie.Title + ' has successfully been added to ' + person.Name + '\'s career.', 'success') return render_to_response('property/edit_person.html', {'header' : generate_header_dict(request, 'Update'), 'person' : person, 'directed_movies' : directed_movies, 'written_movies' : written_movies, 'acted_movies' : acted_movies}, RequestContext(request)) except ObjectDoesNotExist: property_logger.info(value + ' Added to ' + person.UrlName + ' Failure by ' + logged_in_profile_info['username']) return render_to_response('property/edit_person.html', {'header' : generate_header_dict(request, 'Update'), 'person' : person, 'directed_movies' : directed_movies, 'written_movies' : written_movies, 'acted_movies' : acted_movies, 'error_msg' : {'MovieTitle' : 'Movie does not exist.'}}, RequestContext(request)) except Exception: property_logger.info(value + ' Added to ' + person.UrlName + ' Failure by ' + logged_in_profile_info['username']) return render_to_response('property/edit_person.html', {'header' : generate_header_dict(request, 'Update'), 'person' : person, 'directed_movies' : directed_movies, 'written_movies' : written_movies, 'acted_movies' : acted_movies, 'error_msg' : {'Movie' : 'Movie not found.'}}, RequestContext(request)) elif logged_in_profile_info['admin'] and request.GET.get('remove'): '''***************************************************************************** Remove property association with movie and redirect to home or edit page appropriately PATH: webapp.views.property.person urlname; METHOD: none; PARAMS: get - remove; MISC: logged_in_profile.IsAdmin; *****************************************************************************''' re = True if request.GET.get('movie') else False id = request.GET.get('i') type = str(request.GET.get('t')) if request.GET.get('t') else None movie = Movies.objects.get(UrlTitle=id) prop = Properties.objects.get(ConsumeableTypeId=type_dict['CONSUMEABLE_MOVIE'], ConsumeableId=movie, PropertyId=person.id, PropertyTypeId=type_dict['PROPERTY_' + type]) prop.delete() associate_logger.info(movie.UrlTitle + ' Disassociated ' + person.UrlName + ' Success by ' + logged_in_profile_info['username']) if person_is_relevant(person): if re: set_msg(request, 'Person Removed!', person.Name + ' has successfully been removed from ' + movie.Title + '.', 'warning') response = redirect('webapp.views.movie.view', urltitle=movie.UrlTitle) response['Location'] += '?edit=1' return response else: set_msg(request, 'Movie Removed!', movie.Title + ' has successfully been removed from ' + person.Name + ' \'s career.', 'warning') response = redirect('webapp.views.property.person', urlname=person.UrlName) response['Location'] += '?edit=1' return response else: if re: person.delete() property_logger.info(person.Name + ' Delete Success by' + logged_in_profile_info['username']) set_msg(request, 'Person Deleted!', person.Name + ' has successfully been deleted due to the removal of them from ' + movie.Title + '.', 'danger') response = redirect('webapp.views.movie.view', urltitle=movie.UrlTitle) response['Location'] += '?edit=1' return response else: person.delete() property_logger.info(person.Name + ' Delete Success by' + logged_in_profile_info['username']) set_msg(request, 'Person Deleted!', person.Name + ' has successfully been deleted due to the removal of ' + movie.Title + ' from their career.', 'danger') return redirect('webapp.views.site.home') else: '''***************************************************************************** Display person page PATH: webapp.views.property.person urltitle; METHOD: none; PARAMS: none; MISC: none; *****************************************************************************''' return render_to_response('property/view_person.html', {'header' : generate_header_dict(request, person.Name), 'person' : person, 'directed_movies' : directed_movies_tuples, 'written_movies' : written_movies_tuples, 'acted_movies' : acted_movies_tuples}, RequestContext(request)) except ObjectDoesNotExist: raise Http404 except Exception: property_logger.error('Unexpected error: ' + str(sys.exc_info()[0])) return render_to_response('500.html', {'header' : generate_header_dict(request, 'Error')}, RequestContext(request)) # Display genre list def genres(request): try: logged_in_profile_info = { } permission_response = check_and_get_session_info(request, logged_in_profile_info) if permission_response != True: return permission_response '''***************************************************************************** Display genre list page PATH: webapp.views.property.genres; METHOD: none; PARAMS: none; MISC: none; *****************************************************************************''' genres = None genre_list = Genres.objects.all().order_by('Description') length = int(request.GET.get('length')) if request.GET.get('length') and request.GET.get('length').isdigit() else 25 length = length if length <= 100 else 100 paginator = Paginator(genre_list, length) page = request.GET.get('page') try: genres = paginator.page(page) except PageNotAnInteger: genres = paginator.page(1) except EmptyPage: genres = paginator.page(paginator.num_pages) return render_to_response('property/view_genre_list.html', {'header' : generate_header_dict(request, 'Genre List'), 'genres' : genres}, RequestContext(request)) except Exception: property_logger.error('Unexpected error: ' + str(sys.exc_info()[0])) return render_to_response('500.html', {'header' : generate_header_dict(request, 'Error')}, RequestContext(request)) # Genre tools including view, delete, edit, suggestion, and movie association tools (add, remove) def genre(request, description): try: logged_in_profile_info = { } permission_response = check_and_get_session_info(request, logged_in_profile_info) if permission_response != True: return permission_response type_dict = get_type_dict() genre = Genres.objects.get(Description=description) properties = Properties.objects.select_related().filter(ConsumeableTypeId=type_dict['CONSUMEABLE_MOVIE'], PropertyTypeId=type_dict['PROPERTY_GENRE'], PropertyId=genre.id).order_by('-ConsumeableId__Year', 'ConsumeableId__Title') length = int(request.GET.get('length')) if request.GET.get('length') and request.GET.get('length').isdigit() else 25 length = length if length <= 100 else 100 paginator = Paginator(properties, length) page = request.GET.get('page') try: genre_movies = paginator.page(page) except PageNotAnInteger: genre_movies = paginator.page(1) except EmptyPage: genre_movies = paginator.page(paginator.num_pages) movies, movies_tuples = [], [] for prop in genre_movies: movie = prop.ConsumeableId movies.append(movie) try: association = Associations.objects.get(ProfileId = logged_in_profile_info['id'], ConsumeableId = movie, ConsumeableTypeId = type_dict['CONSUMEABLE_MOVIE']) movies_tuples.append((movie, True)) except Exception: movies_tuples.append((movie, False)) if request.GET.get('suggestion'): if request.method == 'POST': '''***************************************************************************** Send suggestion/comment/correction email and redirect to genre page PATH: webapp.views.property.genre description; METHOD: post; PARAMS: get - suggestion; MISC: none; *****************************************************************************''' profile = Profiles.objects.get(id=logged_in_profile_info['id']) email_from = settings.DEFAULT_FROM_EMAIL email_subject = 'Profile: ' + str(profile.Username) + ' Id: ' + str(profile.id) + ' GenreId: ' + str(genre.id) email_message = request.POST.get('message') if request.POST.get('message') else None set_msg(request, 'Thank you for your feedback!', 'We have recieved your suggestion/comment/correction and will react to it appropriately.', 'success') if email_message: # send email send_mail(email_subject, email_message, email_from, [settings.DEFAULT_TO_EMAIL], fail_silently=False) else: pass return redirect('webapp.views.property.genre', description=genre.Description) else: '''***************************************************************************** Display suggestion/comment/correction page PATH: webapp.views.property.genre description; METHOD: not post; PARAMS: get - suggestion; MISC: none; *****************************************************************************''' return render_to_response('site/suggestion_form.html', {'header' : generate_header_dict(request, 'Suggestion/Comment/Correction'), 'genre' : genre}, RequestContext(request)) elif logged_in_profile_info['admin'] and request.GET.get('edit'): if request.method == 'POST': '''***************************************************************************** Save changes made to genre and redirect to genre page PATH: webapp.views.property.genre description; METHOD: post; PARAMS: get - edit; MISC: logged_in_profile.IsAdmin; *****************************************************************************''' genre.Description = request.POST.get('description') try: genre.full_clean() genre.save() property_logger.info(genre.Description + ' Update Success by ' + logged_in_profile_info['username']) set_msg(request, 'Genre Updated!', genre.Description + ' has successfully been updated.', 'success') return redirect('webapp.views.property.genre', description=genre.Description) except ValidationError as e: property_logger.info(genre.Description + ' Update Failure by ' + logged_in_profile_info['username']) error_msg = e.message_dict for key in error_msg: error_msg[key] = str(error_msg[key][0]) return render_to_response('property/edit_genre.html', {'header' : generate_header_dict(request, 'Update'), 'genre' : genre, 'movies' : movies, 'error_msg' : error_msg}, RequestContext(request)) else: '''***************************************************************************** Display edit page PATH: webapp.views.property.genre description; METHOD: not post; PARAMS: get - edit; MISC: logged_in_profile.IsAdmin; *****************************************************************************''' return render_to_response('property/edit_genre.html', {'header' : generate_header_dict(request, 'Update'), 'genre' : genre, 'movies' : movies}, RequestContext(request)) elif logged_in_profile_info['admin'] and request.GET.get('delete'): '''***************************************************************************** Delete genre and redirect to home PATH: webapp.views.property.genre description; METHOD: none; PARAMS: get - delete; MISC: logged_in_profile.IsAdmin; *****************************************************************************''' for prop in properties: prop.delete() associate_logger.info(prop.ConsumeableId.UrlTitle + ' Disassociated ' + genre.Description + ' Success by ' + logged_in_profile_info['username']) genre.delete() property_logger.info(genre.Description + ' Delete Success by' + logged_in_profile_info['username']) set_msg(request, 'Genre Deleted!', genre.Description + ' has successfully been deleted.', 'danger') return redirect('webapp.views.site.home') elif logged_in_profile_info['admin'] and request.GET.get('add') and request.method == 'POST': try: '''***************************************************************************** Create movie association with genre and redirect to edit page PATH: webapp.views.property.genre description; METHOD: post; PARAMS: get - add; MISC: logged_in_profile.IsAdmin; *****************************************************************************''' value = request.POST.get('add') title = value[:len(value) - 7] if value and len(value) > 7 else None year = int(value[len(value) - 5:len(value)-1]) if value and len(value) > 7 and value[len(value) - 5:len(value)-1].isdigit() else None movie = Movies.objects.get(Title=title, Year=year) create_movie_property(movie, genre.id, genre.Description, 3, logged_in_profile_info['username']) properties = Properties.objects.select_related().filter(ConsumeableTypeId=type_dict['CONSUMEABLE_MOVIE'], PropertyTypeId=type_dict['PROPERTY_GENRE'], PropertyId=genre.id) movies = [] for prop in properties: movies.append(prop.ConsumeableId) set_msg(request, 'Movie Added!', movie.Title + ' has successfully been added to' + genre.Description + ' movies.', 'warning') return render_to_response('property/edit_genre.html', {'header' : generate_header_dict(request, 'Update'), 'genre' : genre, 'movies' : movies}, RequestContext(request)) except ObjectDoesNotExist: property_logger.info(value + ' Added to ' + genre.Description + ' Failure by ' + logged_in_profile_info['username']) return render_to_response('property/edit_genre.html', {'header' : generate_header_dict(request, 'Update'), 'genre' : genre, 'movies' : movies, 'error_msg' : {'MovieTitle' : 'Movie does not exist.'}}, RequestContext(request)) except Exception: property_logger.info(value + ' Added to ' + genre.Description + ' Failure by ' + logged_in_profile_info['username']) return render_to_response('property/edit_genre.html', {'header' : generate_header_dict(request, 'Update'), 'genre' : genre, 'movies' : movies, 'error_msg' : {'MovieTitle' : 'Year must be between 1901 and 2155 (inclusive).'}}, RequestContext(request)) elif logged_in_profile_info['admin'] and request.GET.get('remove'): '''***************************************************************************** Remove property association with movie and redirect to home or edit page appropriately PATH: webapp.views.property.genre descsription; METHOD: none; PARAMS: get - remove; MISC: logged_in_profile.IsAdmin; *****************************************************************************''' re = True if request.GET.get('movie') else False id = request.GET.get('i') movie = Movies.objects.get(UrlTitle=id) prop = Properties.objects.get(ConsumeableId=movie, ConsumeableTypeId=type_dict['CONSUMEABLE_MOVIE'], PropertyId=genre.id, PropertyTypeId=type_dict['PROPERTY_GENRE']) prop.delete() associate_logger.info(movie.UrlTitle + ' Disassociated ' + genre.Description + ' Success by ' + logged_in_profile_info['username']) if genre_is_relevant(genre): if re: set_msg(request, 'Genre Removed!', genre.Description + ' has successfully been removed from ' + movie.Title + '.', 'warning') response = redirect('webapp.views.movie.view', urltitle=movie.UrlTitle) response['Location'] += '?edit=1' return response else: set_msg(request, 'Movie Removed!', movie.Title + ' has successfully been removed from' + genre.Description + 'movies.', 'warning') response = redirect('webapp.views.property.genre', description=genre.Description) response['Location'] += '?edit=1' return resposne else: if re: genre.delete() property_logger.info(genre.Description + ' Delete Success by' + logged_in_profile_info['username']) set_msg(request, 'Genre Deleted!', genre.Description + ' has successfully been deleted due to the removal of it from ' + movie.Title + '.', 'danger') response = redirect('webapp.views.movie.view', urltitle=movie.UrlTitle) response['Location'] += '?edit=1' return response else: genre.delete() property_logger.info(genre.Description + ' Delete Success by' + logged_in_profile_info['username']) set_msg(request, 'Genre Deleted!', genre.Description + ' has successfully been deleted due to the removal of ' + movie.Title + ' from this genre.', 'danger') return redirect('webapp.views.site.home') else: return render_to_response('property/view_genre.html', {'header' : generate_header_dict(request, genre.Description), 'genre' : genre, 'movies' : movies_tuples, 'page' : genre_movies}, RequestContext(request)) except ObjectDoesNotExist: raise Http404 except Exception: property_logger.error('Unexpected error: ' + str(sys.exc_info()[0])) return render_to_response('500.html', {'header' : generate_header_dict(request, 'Error')}, RequestContext(request))
26,854
0
88
a77e4ba1d9535c20aa67f0efe32a4d0cd4d16c2b
6,253
py
Python
src/motor/3rdparty/compute/CUDA/mak/build.py
motor-dev/Motor
98cb099fe1c2d31e455ed868cc2a25eae51e79f0
[ "BSD-3-Clause" ]
null
null
null
src/motor/3rdparty/compute/CUDA/mak/build.py
motor-dev/Motor
98cb099fe1c2d31e455ed868cc2a25eae51e79f0
[ "BSD-3-Clause" ]
null
null
null
src/motor/3rdparty/compute/CUDA/mak/build.py
motor-dev/Motor
98cb099fe1c2d31e455ed868cc2a25eae51e79f0
[ "BSD-3-Clause" ]
null
null
null
from waflib import Task from waflib.TaskGen import feature, before_method, taskgen_method, extension from waflib.Tools import c_preproc try: import cPickle as pickle except ImportError: import pickle template_kernel = """ _MOTOR_PLUGIN_EXPORT void _%(kernel)s(const u32 index, const u32 total, const minitl::array< minitl::weak<const Motor::KernelScheduler::IMemoryBuffer> >& /*argv*/) { motor_forceuse(index); motor_forceuse(total); } _MOTOR_REGISTER_METHOD_NAMED(MOTOR_KERNEL_ID, _%(kernel)s, _%(kernel)s); """ template_cpp = """ %(pch)s #include <motor/config/config.hh> #include <motor/kernel/simd.hh> #include <motor/kernel/input/input.hh> #include <motor/plugin/dynobjectlist.hh> #include <motor/minitl/array.hh> #include <motor/plugin.compute.cuda/memorybuffer.hh> #include <motor/scheduler/kernel/parameters/parameters.hh> using namespace Kernel; _MOTOR_REGISTER_PLUGIN(MOTOR_KERNEL_ID, MOTOR_KERNEL_NAME); %(kernels)s """ class nvcc(Task.Task): "nvcc" run_str = '${NVCC_CXX} ${NVCC_CXXFLAGS} --fatbin ${NVCC_FRAMEWORKPATH_ST:FRAMEWORKPATH} ${NVCC_CPPPATH_ST:INCPATHS} -DMOTOR_COMPUTE=1 ${NVCC_DEFINES_ST:DEFINES} -D_NVCC=1 ${NVCC_CXX_SRC_F}${SRC[0].abspath()} ${NVCC_CXX_TGT_F} ${TGT}' ext_out = ['.fatbin'] color = 'GREEN' class cudac(Task.Task): "Generates a CUDA binder to call the C++ kernel" color = 'CYAN' @feature('motor:cuda:kernel_create') @before_method('process_source') @feature('motor:preprocess')
39.828025
237
0.611866
from waflib import Task from waflib.TaskGen import feature, before_method, taskgen_method, extension from waflib.Tools import c_preproc try: import cPickle as pickle except ImportError: import pickle template_kernel = """ _MOTOR_PLUGIN_EXPORT void _%(kernel)s(const u32 index, const u32 total, const minitl::array< minitl::weak<const Motor::KernelScheduler::IMemoryBuffer> >& /*argv*/) { motor_forceuse(index); motor_forceuse(total); } _MOTOR_REGISTER_METHOD_NAMED(MOTOR_KERNEL_ID, _%(kernel)s, _%(kernel)s); """ template_cpp = """ %(pch)s #include <motor/config/config.hh> #include <motor/kernel/simd.hh> #include <motor/kernel/input/input.hh> #include <motor/plugin/dynobjectlist.hh> #include <motor/minitl/array.hh> #include <motor/plugin.compute.cuda/memorybuffer.hh> #include <motor/scheduler/kernel/parameters/parameters.hh> using namespace Kernel; _MOTOR_REGISTER_PLUGIN(MOTOR_KERNEL_ID, MOTOR_KERNEL_NAME); %(kernels)s """ class nvcc(Task.Task): "nvcc" run_str = '${NVCC_CXX} ${NVCC_CXXFLAGS} --fatbin ${NVCC_FRAMEWORKPATH_ST:FRAMEWORKPATH} ${NVCC_CPPPATH_ST:INCPATHS} -DMOTOR_COMPUTE=1 ${NVCC_DEFINES_ST:DEFINES} -D_NVCC=1 ${NVCC_CXX_SRC_F}${SRC[0].abspath()} ${NVCC_CXX_TGT_F} ${TGT}' ext_out = ['.fatbin'] def scan(self): try: incn = self.generator.includes_nodes except AttributeError: raise Errors.WafError('%r is missing a feature such as "c", "cxx" or "includes": ' % self.generator) nodepaths = [x for x in incn if x.is_child_of(x.ctx.srcnode) or x.is_child_of(x.ctx.bldnode)] nodepaths.append(self.generator.bld.motornode.make_node('src/plugin/compute/cuda/api.cuda')) tmp = c_preproc.c_parser(nodepaths) tmp.start(self.inputs[0], self.env) return (tmp.nodes, tmp.names) color = 'GREEN' class cudac(Task.Task): "Generates a CUDA binder to call the C++ kernel" color = 'CYAN' def sig_vars(self): Task.Task.sig_vars(self) self.m.update(template_kernel.encode('utf-8')) self.m.update(template_cpp.encode('utf-8')) self.m.update((self.generator.pchstop if self.generator.pchstop else '').encode('utf-8')) def scan(self): return ([], []) def run(self): with open(self.inputs[0].abspath(), 'rb') as input_file: kernel_name, includes, source, kernel_methods = pickle.load(input_file) kernels = [] for method, namespace, args in kernel_methods: args = [] for arg in method.parameters[2:]: args.append((arg.name, arg.type)) kernel_params = { 'args': ',\n '.join('%s(0, 0, 0)' % arg[1] for i, arg in enumerate(args)), 'kernel': method.name, 'kernelnamespace': '::'.join(namespace) } kernels.append(template_kernel % kernel_params) params = { 'pch': '#include <%s>\n' % self.generator.pchstop if self.generator.pchstop else '', 'kernels': '\n\n'.join(kernels) } with open(self.outputs[0].abspath(), 'w') as out: out.write(template_cpp % params) @feature('motor:cuda:kernel_create') @before_method('process_source') def build_cuda_kernels(task_gen): for f in getattr(task_gen, 'features', []): task_gen.env.append_value('NVCC_CXXFLAGS', task_gen.env['NVCC_CXXFLAGS_%s' % f]) ast = task_gen.kernel_ast cuda_source = task_gen.kernel_source out_cc = ast.change_ext('.cudacall.cc') task_gen.create_task('cudac', [ast], [out_cc]) task_gen.source.append(out_cc) cuda_bin = task_gen.make_bld_node('obj', cuda_source.parent, cuda_source.name[:-2] + 'fatbin') cuda_cc = task_gen.make_bld_node('src', cuda_source.parent, cuda_source.name[:-2] + 'cc') task_gen.create_task('nvcc', [cuda_source], [cuda_bin]) task_gen.create_task('bin2c', [cuda_bin], [cuda_cc], var='%s_cudaKernel' % '_'.join(task_gen.kernel)) task_gen.source.append(cuda_cc) @feature('motor:preprocess') def create_cuda_kernels(task_gen): for kernel, kernel_source, kernel_path, kernel_ast in task_gen.kernels: kernel_target = '.'.join([task_gen.parent, '.'.join(kernel), 'cuda']) kernel_gens = [] for env in task_gen.bld.multiarch_envs: for kernel_type, toolchain in env.KERNEL_TOOLCHAINS: if kernel_type != 'cuda': continue kernel_env = task_gen.bld.all_envs[toolchain] tgen = task_gen.bld.get_tgen_by_name(env.ENV_PREFIX % task_gen.parent) kernel_task_gen = task_gen.bld( env=kernel_env.derive(), bld_env=env, target=env.ENV_PREFIX % kernel_target, target_name=env.ENV_PREFIX % task_gen.parent, safe_target_name=kernel_target.replace('.', '_').replace('-', '_'), kernel=kernel, features=[ 'cxx', task_gen.bld.env.STATIC and 'cxxobjects' or 'cxxshlib', 'motor:cxx', 'motor:kernel', 'motor:cuda:kernel_create' ], pchstop=tgen.preprocess.pchstop, defines=tgen.defines + [ 'MOTOR_KERNEL_ID=%s_%s' % (task_gen.parent.replace('.', '_'), kernel_target.replace('.', '_')), 'MOTOR_KERNEL_NAME=%s' % (kernel_target), 'MOTOR_KERNEL_TARGET=%s' % kernel_type, ], includes=tgen.includes, kernel_source=kernel_source, kernel_ast=kernel_ast, use=tgen.use + [env.ENV_PREFIX % 'plugin.compute.cuda'], uselib=tgen.uselib, source_nodes=tgen.source_nodes, ) kernel_task_gen.env.PLUGIN = kernel_task_gen.env.plugin_name kernel_gens.append(kernel_task_gen) task_gen.bld.multiarch(kernel_target, kernel_gens) def build(bld): cuda = bld.thirdparty('motor.3rdparty.compute.CUDA') if cuda: cuda.export_lib += ['cudart_static']
4,551
0
175
773ebb715bc24daa595c7968a1ae63723535d201
1,023
py
Python
sols/1022.py
Paul11100/LeetCode
9896c579dff1812c0c76964db8d60603ee715e35
[ "MIT" ]
null
null
null
sols/1022.py
Paul11100/LeetCode
9896c579dff1812c0c76964db8d60603ee715e35
[ "MIT" ]
null
null
null
sols/1022.py
Paul11100/LeetCode
9896c579dff1812c0c76964db8d60603ee715e35
[ "MIT" ]
null
null
null
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right # DFS and convert binary (Accepted), O(n) time and space # Recursion (Top Voted), O(n) time and space
31.96875
87
0.540567
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: # DFS and convert binary (Accepted), O(n) time and space def sumRootToLeaf(self, root: Optional[TreeNode]) -> int: self.res = 0 def dfs(node, cur): cur *= 2 cur += node.val if node.left: dfs(node.left, cur) if node.right: dfs(node.right, cur) if not node.left and not node.right: self.res += cur dfs(root, 0) return self.res # Recursion (Top Voted), O(n) time and space def sumRootToLeaf(self, root: Optional[TreeNode], val=0) -> int: if not root: return 0 val = val * 2 + root.val if root.left == root.right: return val return self.sumRootToLeaf(root.left, val) + self.sumRootToLeaf(root.right, val)
652
-6
74
82d289627c3ee9209ff2dfa6c1d190469fb034cb
286
py
Python
tests/__init__.py
sturmianseq/zenmake
44f1131c1ab677d8c3c930150c63a7dde4ef7de0
[ "BSD-3-Clause" ]
2
2019-10-14T05:05:34.000Z
2022-03-28T04:55:00.000Z
tests/__init__.py
sturmianseq/zenmake
44f1131c1ab677d8c3c930150c63a7dde4ef7de0
[ "BSD-3-Clause" ]
42
2020-08-25T07:59:32.000Z
2021-11-15T03:12:29.000Z
tests/__init__.py
sturmianseq/zenmake
44f1131c1ab677d8c3c930150c63a7dde4ef7de0
[ "BSD-3-Clause" ]
1
2021-08-13T13:59:51.000Z
2021-08-13T13:59:51.000Z
import sys from os import path ZENMAKE_DIR = path.dirname(path.abspath(__file__)) ZENMAKE_DIR = path.normpath(path.join(ZENMAKE_DIR, path.pardir, 'src', 'zenmake')) if ZENMAKE_DIR not in sys.path: sys.path.insert(1, ZENMAKE_DIR) # for test 'testLoadPyModule()' something = 'qaz'
23.833333
82
0.744755
import sys from os import path ZENMAKE_DIR = path.dirname(path.abspath(__file__)) ZENMAKE_DIR = path.normpath(path.join(ZENMAKE_DIR, path.pardir, 'src', 'zenmake')) if ZENMAKE_DIR not in sys.path: sys.path.insert(1, ZENMAKE_DIR) # for test 'testLoadPyModule()' something = 'qaz'
0
0
0
0a2c7252d45b9a2d213668ef67304ff04ab1a631
5,680
py
Python
Drivers/THINGSPEAK.py
bbaumg/Sensor
95eae629a7d36099cf0786e4d3a46c826ed93099
[ "MIT" ]
null
null
null
Drivers/THINGSPEAK.py
bbaumg/Sensor
95eae629a7d36099cf0786e4d3a46c826ed93099
[ "MIT" ]
null
null
null
Drivers/THINGSPEAK.py
bbaumg/Sensor
95eae629a7d36099cf0786e4d3a46c826ed93099
[ "MIT" ]
null
null
null
# Author: Barrett Baumgartner # # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import requests import logging THINGSPEAK_URL = 'https://api.thingspeak.com/'
33.609467
85
0.687324
# Author: Barrett Baumgartner # # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import requests import logging THINGSPEAK_URL = 'https://api.thingspeak.com/' class thingspeak(object): def __init__(self, channel, apiKey, tsURL=THINGSPEAK_URL): """ Initalization "constructor" for the object. Initially populates the "fields" list. Defines the variables inside the object for holding most recent values for the update call """ logging.info("Instantiating a thingspeak object") self.tsRUL = tsURL # URL for the thingspeak server logging.info("Thingspeak URL = " + str(self.tsRUL)) self.apiKey = apiKey # API Key for the Channel logging.info("API Key = " + str(self.apiKey)) self.channel = channel # Channel Number logging.info("Channel = " + str(self.channel)) self.fields = dict() # List of fields and their description logging.debug("List of fields as 'fields[]' = " + str(self.fields)) self.field = dict() # Fields and their most recent saved value logging.debug("List of field values as 'field[]' = " + str(self.field)) #~ self.last = dict() #~ logging.debug("List of last written (non-null) values written" + str(self.last)) try: results = requests.get(self.tsRUL) if results.ok != True: logging.error("The URL didn't return a 200") exit(1) except: logging.error("Error reaching the thingspeak URL = " + str(self.tsRUL)) exit(1) self.fields = self.get_fields() logging.debug(self.fields) self.clear_field_values() logging.debug(self.field) def get_fields(self): """Get the list of fields and their description and return them""" logging.debug("Beginning") options=dict(api_key = self.apiKey, results = 0) url = '{ts}channels/{id}/feeds.json'.format( ts=self.tsRUL, id=self.channel ) try: results = requests.get(url, params=options) if results.ok != True: logging.error("The URL didn't return a 200") return except: logging.error("Error calling the thingspeak URL") return resultsJson = results.json() channelsJson = resultsJson['channel'] fields = dict() for i in range(1,8): if 'field'+str(i) in channelsJson: fields['field'+str(i)] = channelsJson['field'+str(i)] return fields def get_last_channel(self): # --------------------- # WARNING: Not working # --------------------- logging.debug("Beginning") options=dict(api_key = self.apiKey, results = 100) url = '{ts}channels/{id}/feeds.json'.format( ts=self.tsRUL, id=self.channel ) results = requests.get(url, params=options) print(results.json()) return def get_last_field(self, field): # --------------------- # WARNING: Not working # --------------------- logging.debug("Getting last value for field = " + str(field)) print(field[-1:]) options=dict(api_key = self.apiKey, results = 100) url = '{ts}channels/{id}/fields/{fld}.json'.format( ts=self.tsRUL, id=self.channel, fld=field[-1:] ) results = requests.get(url, params=options) resultsJson = results.json() channel = resultsJson['channel'] feeds = resultsJson['feeds'] lastEntry = channel['last_entry_id'] print(lastEntry) return def post_update(self): """POST an update to the channel for all fields with values""" logging.info("Beginning") options=dict( api_key = self.apiKey ) counter = 0 for key, value in self.field.items(): if value != None: counter += 1 options[key] = value if counter == 0: logging.error("There was nothing to update. Check the field values") return url = '{ts}update'.format( ts=self.tsRUL, ) logging.debug("Options = " + str(options)) try: results = requests.post(url, params=options) if results.ok != True: logging.error("The update failed") return False except: logging.error("There was an error trying to update the values") return False self.clear_field_values() return True def clear_field_values(self): """Clear out any saved values in the fields within the object""" logging.info("Clearing values in the field[] dictionary of the object") logging.debug("Before = " + str(self.field)) for key, value in self.fields.items(): self.field[str(key)] = None logging.debug("After = " + str(self.field)) return def field_name(self, name): """returns the name of field when description is passed in""" logging.info("Getting the field name " + str(name)) try: fieldName = self.fields.keys()[self.fields.values().index(name)] logging.info("The field name for " + str(name) + " is " + str(fieldName)) return fieldName except: logging.error(str(name)+ " Field Name was not found") return False
883
3,601
23
c8aa1d30b2fb5fede83f69d67c6dcdcea0d94f4b
83
py
Python
build/lib/psearcher/__init__.py
iridesc/psearcher
ee64a6c2cf9d326d562ccb06ec0c9e08b5862b2e
[ "MIT" ]
1
2019-12-04T15:54:50.000Z
2019-12-04T15:54:50.000Z
psearcher/__init__.py
iridesc/psearcher
ee64a6c2cf9d326d562ccb06ec0c9e08b5862b2e
[ "MIT" ]
null
null
null
psearcher/__init__.py
iridesc/psearcher
ee64a6c2cf9d326d562ccb06ec0c9e08b5862b2e
[ "MIT" ]
null
null
null
from .BaseEngine import BaseEngine from .Bing import Bing from .Baidu import Baidu
20.75
34
0.819277
from .BaseEngine import BaseEngine from .Bing import Bing from .Baidu import Baidu
0
0
0
623fad3932fdae3b4cc05b052d24851f20dc14b2
157
py
Python
server/app/services/device_data/views/_reports_type/__init__.py
goodfree/ActorCloud
e8db470830ea6f6f208ad43c2e56a2e8976bc468
[ "Apache-2.0" ]
173
2019-06-10T07:14:49.000Z
2022-03-31T08:42:36.000Z
server/app/services/device_data/views/_reports_type/__init__.py
zlyz12345/ActorCloud
9c34b371c23464981323ef9865d9913bde1fe09c
[ "Apache-2.0" ]
27
2019-06-12T08:25:29.000Z
2022-02-26T11:37:15.000Z
server/app/services/device_data/views/_reports_type/__init__.py
zlyz12345/ActorCloud
9c34b371c23464981323ef9865d9913bde1fe09c
[ "Apache-2.0" ]
67
2019-06-10T08:40:05.000Z
2022-03-09T03:43:56.000Z
from .aggr_events import devices_event_aggr_data __all__ = ['REPORTS_TYPE_FUNC'] REPORTS_TYPE_FUNC = { 'devicesEventAggr': devices_event_aggr_data }
15.7
48
0.789809
from .aggr_events import devices_event_aggr_data __all__ = ['REPORTS_TYPE_FUNC'] REPORTS_TYPE_FUNC = { 'devicesEventAggr': devices_event_aggr_data }
0
0
0
ba536605d96d30f13a42d4df687616345dedf4d2
6,657
py
Python
school/school/migrations/0001_initial.py
firemark/sample-school-django
3b9758ba62e4a37915e69e607d2a2948f1dc0204
[ "MIT" ]
null
null
null
school/school/migrations/0001_initial.py
firemark/sample-school-django
3b9758ba62e4a37915e69e607d2a2948f1dc0204
[ "MIT" ]
null
null
null
school/school/migrations/0001_initial.py
firemark/sample-school-django
3b9758ba62e4a37915e69e607d2a2948f1dc0204
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2016-09-18 23:26 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion
138.6875
4,712
0.700916
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2016-09-18 23:26 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='City', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('coutry_code', models.IntegerField(db_index=True)), ('district_code', models.IntegerField(db_index=True)), ('comm_code', models.IntegerField(db_index=True)), ], ), migrations.CreateModel( name='School', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('school_code', models.IntegerField(choices=[(1, b'Przedszkole'), (3, b'Szko\xc5\x82a podstawowa'), (4, b'Gimnazjum'), (13, b'Zasadnicza szko\xc5\x82a zawodowa'), (14, b'Liceum og\xc3\xb3lnokszta\xc5\x82c\xc4\x85ce'), (15, b'Liceum profilowane'), (16, b'Technikum'), (17, b'Liceum og\xc3\xb3lnokszta\xc5\x82c\xc4\x85ce uzupe\xc5\x82niaj\xc4\x85ce dla absolwent\xc3\xb3w zasadniczych szk\xc3\xb3\xc5\x82 zawodowych'), (18, b'Technikum uzupe\xc5\x82niaj\xc4\x85ce dla absolwent\xc3\xb3w zasadniczych szk\xc3\xb3\xc5\x82 zawodowych'), (19, b'Szko\xc5\x82a policealna (ponadgimnazjalna)'), (20, b'Szko\xc5\x82a specjalna'), (21, b'Sze\xc5\x9bcioletnia og\xc3\xb3lnokszta\xc5\x82c\xc4\x85ca szko\xc5\x82a muzyczna I stopnia'), (22, b'Sze\xc5\x9bcioletnia szko\xc5\x82a muzyczna I stopnia'), (23, b'Czteroletnia szko\xc5\x82a muzyczna I stopnia'), (24, b'Sze\xc5\x9bcioletnia og\xc3\xb3lnokszta\xc5\x82c\xc4\x85ca szko\xc5\x82a muzyczna II stopnia'), (25, b'Sze\xc5\x9bcioletnia szko\xc5\x82a muzyczna II stopnia'), (26, b'Sze\xc5\x9bcioletnia og\xc3\xb3lnokszta\xc5\x82c\xc4\x85ca szko\xc5\x82a sztuk pi\xc4\x99knych'), (27, b'Czteroletnie liceum plastyczne'), (29, b'Dziewi\xc4\x99cioletnia og\xc3\xb3lnokszta\xc5\x82c\xc4\x85ca szko\xc5\x82a baletowa'), (30, b'Sze\xc5\x9bcioletnia szko\xc5\x82a sztuki ta\xc5\x84ca'), (31, b'Czteroletnia szko\xc5\x82a sztuki cyrkowej'), (32, b'Policealna szko\xc5\x82a artystyczna'), (33, b'Szko\xc5\x82a pomaturalna bibliotekarska'), (34, b'Kolegium nauczycielskie'), (35, b'Nauczycielskie Kolegium J\xc4\x99zyk\xc3\xb3w Obcych'), (36, b'O\xc5\x9brodek politechniczny'), (37, b'Pa\xc5\x82ac m\xc5\x82odzie\xc5\xbcy'), (38, b'M\xc5\x82odzie\xc5\xbcowy dom kultury'), (39, b'Ognisko pracy pozaszkolnej'), (40, b'Mi\xc4\x99dzyszkolny o\xc5\x9brodek sportowy'), (41, b'Ogr\xc3\xb3d jordanowski'), (42, b'Pozaszkolna plac\xc3\xb3wka specjalistyczna'), (43, b'Szkolne schronisko m\xc5\x82odzie\xc5\xbcowe'), (44, b'Plac\xc3\xb3wki artystyczne (ognisko artystyczne)'), (45, b'Centrum Kszta\xc5\x82cenia Praktycznego'), (46, b'Centrum Kszta\xc5\x82cenia Ustawicznego ze szko\xc5\x82ami'), (47, b'O\xc5\x9brodek dokszta\xc5\x82cania i doskonalenia zawodowego'), (48, b'Poradnia psychologiczno-pedagogiczna'), (49, b'Poradnia specjalistyczna'), (50, b'Specjalny O\xc5\x9brodek Wychowawczy'), (51, b'Specjalny O\xc5\x9brodek Szkolno-Wychowawczy'), (52, b'O\xc5\x9brodek Rewalidacyjno-Wychowawczy dla upo\xc5\x9bledzonych umys\xc5\x82owo'), (53, b'M\xc5\x82odzie\xc5\xbcowy O\xc5\x9brodek Wychowawczy'), (54, b'M\xc5\x82odzie\xc5\xbcowy O\xc5\x9brodek Socjoterapii ze szko\xc5\x82ami'), (55, b'Bursa'), (56, b'Dom wczas\xc3\xb3w dzieci\xc4\x99cych'), (57, b'Plac\xc3\xb3wka doskonalenia nauczycieli'), (58, b'Biblioteki pedagogiczne'), (59, b'Publiczna plac\xc3\xb3wka opieku\xc5\x84czo-wychowawcza w systemie pomocy spo\xc5\x82ecznej'), (60, b'Zak\xc5\x82ad poprawczy'), (61, b'Schronisko dla nieletnich'), (62, b'Rodzinny o\xc5\x9brodek diagnostyczno-konsultacyjny'), (63, b'Publiczny o\xc5\x9brodek adopcyjno-opieku\xc5\x84czy'), (64, b'Niepubliczna plac\xc3\xb3wka o\xc5\x9bwiatowo-wychowawcza w systemie o\xc5\x9bwiaty'), (65, b'Kolegium Pracownik\xc3\xb3w S\xc5\x82u\xc5\xbcb Spo\xc5\x82ecznych'), (66, b'Szko\xc5\x82a pomaturalna animator\xc3\xb3w kultury'), (67, b'Delegatura'), (68, b'Internat'), (69, b'Czteroletnia szko\xc5\x82a muzyczna II stopnia'), (70, b'Dziewi\xc4\x99cioletnia szko\xc5\x82a sztuki ta\xc5\x84ca'), (73, b'Szko\xc5\x82a specjalna przysposabiaj\xc4\x85ca do pracy na podbudowie 8-letniej szko\xc5\x82y podstawowej'), (74, b'Centrum Kszta\xc5\x82cenia Ustawicznego - bez szk\xc3\xb3\xc5\x82'), (75, b'Niepubliczna plac\xc3\xb3wka kszta\xc5\x82cenia ustawicznego i praktycznego'), (76, b'M\xc5\x82odzie\xc5\xbcowy O\xc5\x9brodek Socjoterapii bez szk\xc3\xb3\xc5\x82'), (80, b'Zesp\xc3\xb3\xc5\x82 wychowania przedszkolnego'), (81, b'Punkt przedszkolny'), (82, b'Pozna\xc5\x84ska szko\xc5\x82a ch\xc3\xb3ralna '), (83, b'Niepubliczna plac\xc3\xb3wka kszta\xc5\x82cenia ustawicznego i praktycznego ze szko\xc5\x82ami'), (90, b'Bednarska Szko\xc5\x82a Realna'), (100, b'Zesp\xc3\xb3\xc5\x82 szk\xc3\xb3\xc5\x82 i plac\xc3\xb3wek o\xc5\x9bwiatowych'), (101, b'Minister'), (102, b'Kuratorium o\xc5\x9bwiaty (wraz z delegaturami)'), (103, b'Jednostka Samorz\xc4\x85du Terytorialnego'), (104, b'ZEAS (zesp\xc3\xb3\xc5\x82 obs\xc5\x82ugi ekonomiczno-administracyjnej szk\xc3\xb3\xc5\x82)'), (105, b'Specjalistyczna jednostka nadzoru'), (106, b'Organ sprawuj\xc4\x85cy nadz\xc3\xb3r pedagogiczny nad zak\xc5\x82adami poprawczymi(\xe2\x80\xa6)'), (107, b'Centralna Komisja Egzaminacyjna'), (108, b'Okr\xc4\x99gowa Komisja Egzaminacyjna')], db_index=True)), ('name', models.CharField(max_length=100)), ('street', models.CharField(max_length=100)), ('street_nr', models.CharField(max_length=10)), ('zip_code', models.CharField(max_length=10)), ('patron', models.CharField(blank=True, max_length=150, null=True)), ('site', models.CharField(blank=True, max_length=200, null=True)), ('telephone', models.CharField(blank=True, max_length=30, null=True)), ('boys', models.IntegerField(default=0)), ('girls', models.IntegerField(default=0)), ('agencies', models.IntegerField(default=0)), ('fulltime_teachers', models.IntegerField(default=0)), ('nonfulltime_teachers', models.IntegerField(default=0)), ('city', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='school.City')), ], ), ]
0
6,447
23
a3beca4cb5005e736958d53aabeebe0736bd64f0
108
py
Python
run.py
TinLe/fantasticsearch
dfd43f56d70c33738f69f08fd9d613401dbc5634
[ "Apache-2.0" ]
null
null
null
run.py
TinLe/fantasticsearch
dfd43f56d70c33738f69f08fd9d613401dbc5634
[ "Apache-2.0" ]
null
null
null
run.py
TinLe/fantasticsearch
dfd43f56d70c33738f69f08fd9d613401dbc5634
[ "Apache-2.0" ]
null
null
null
#!flask/bin/python from fantasticsearch import fantasticsearch fantasticsearch.run(debug=True, port=5001)
18
43
0.824074
#!flask/bin/python from fantasticsearch import fantasticsearch fantasticsearch.run(debug=True, port=5001)
0
0
0
2b0a3505c24baa750d6115f2ad0f6544ab52f9c6
201
py
Python
ci.py
arelemegha/python-programs
c9af116c0db45dcd13d97e80a32733df372fe2d4
[ "CC0-1.0" ]
null
null
null
ci.py
arelemegha/python-programs
c9af116c0db45dcd13d97e80a32733df372fe2d4
[ "CC0-1.0" ]
null
null
null
ci.py
arelemegha/python-programs
c9af116c0db45dcd13d97e80a32733df372fe2d4
[ "CC0-1.0" ]
null
null
null
p = float(input("Enter the principle amount : ")) r = float(input("Enter the rate : ")) t = int(input("Enter the time: ")) a = p * (pow((1 + r / 100), t)) ci = a-p print("compound interest is : ", ci)
28.714286
49
0.587065
p = float(input("Enter the principle amount : ")) r = float(input("Enter the rate : ")) t = int(input("Enter the time: ")) a = p * (pow((1 + r / 100), t)) ci = a-p print("compound interest is : ", ci)
0
0
0
ec82a1fc36f35ef6fe3a1fa212ae968fe8f68e2b
386
py
Python
src/browserist/browser/get/element.py
jakob-bagterp/browserist
76bd916dd217b7da3759fd6ec3374191002dc091
[ "Apache-2.0" ]
2
2022-02-20T10:03:19.000Z
2022-03-22T11:17:10.000Z
src/browserist/browser/get/element.py
jakob-bagterp/browserist
76bd916dd217b7da3759fd6ec3374191002dc091
[ "Apache-2.0" ]
null
null
null
src/browserist/browser/get/element.py
jakob-bagterp/browserist
76bd916dd217b7da3759fd6ec3374191002dc091
[ "Apache-2.0" ]
null
null
null
from selenium.webdriver.common.by import By from ...constant import timeout from ...model.type.xpath import XPath from ..wait.for_element import wait_for_element
32.166667
86
0.753886
from selenium.webdriver.common.by import By from ...constant import timeout from ...model.type.xpath import XPath from ..wait.for_element import wait_for_element def get_element(driver: object, xpath: str, timeout: int = timeout.DEFAULT) -> object: xpath = XPath(xpath) wait_for_element(driver, xpath, timeout) return driver.find_element(By.XPATH, xpath) # type: ignore
199
0
23
034de1341e667b7696b2129e6182000c170e9094
73
py
Python
AnalyzeSystem/f0_test.py
keel-210/AutoSinger
c9a855570b9222befca11072f47632b4ddebe294
[ "MIT" ]
null
null
null
AnalyzeSystem/f0_test.py
keel-210/AutoSinger
c9a855570b9222befca11072f47632b4ddebe294
[ "MIT" ]
null
null
null
AnalyzeSystem/f0_test.py
keel-210/AutoSinger
c9a855570b9222befca11072f47632b4ddebe294
[ "MIT" ]
null
null
null
import pyworld as pyworld import pysptk as sptk import pyreaper as reaper
24.333333
25
0.849315
import pyworld as pyworld import pysptk as sptk import pyreaper as reaper
0
0
0
f9ed84d75a8201857334c9dfb6e24601b014935d
1,622
py
Python
pages/themes/DBMS-Lecture2/examples/mongo_CRUD.py
WWWCourses/PythonCourseNetIT-Slides
78dbb5eb7695cc64042b71a1911d4ef3feddb074
[ "MIT" ]
null
null
null
pages/themes/DBMS-Lecture2/examples/mongo_CRUD.py
WWWCourses/PythonCourseNetIT-Slides
78dbb5eb7695cc64042b71a1911d4ef3feddb074
[ "MIT" ]
null
null
null
pages/themes/DBMS-Lecture2/examples/mongo_CRUD.py
WWWCourses/PythonCourseNetIT-Slides
78dbb5eb7695cc64042b71a1911d4ef3feddb074
[ "MIT" ]
null
null
null
import pymongo # ------------------------- Connect to MongoDB Server ------------------------ # # connect to MongoDB server: client = pymongo.MongoClient("mongodb://localhost:27017") # ----------------------- Switch context to a database ----------------------- # # get "python_course" database: db = client.python_course # ------------------- Show all Collections in the database: ------------------ # # get all collections in the database: collections = db.list_collection_names() # print(collections) # ---------------------------------- Create ---------------------------------- # # insert a new document into "todos" collection: res = db.todos.insert_one({"title": "Learn MongoDB", "done": False}) # get the id of the inserted document: # print(res.inserted_id) # insert multiple documents into "todos" collection: res = db.todos.insert_many([ {"title": "Learn Python", "done": True}, {"title": "Learn Flask", "done": False}, {"title": "Learn Flask-MongoDB", "done": False} ]) # print(res.inserted_ids) # insert multiple documents with different shape into "todos" collection: res = db.todos.insert_many([ {"title": "Learn Python", "done": True}, {"title": "Learn Flask", "description":"Learn Flask to develop quick and easy web applications with the ability to scale up."}, {"title": "Learn MongoDB", "due": "2021-12-31"} ]) # print(list(db.todos.find())[-3:-1]) # ----------------------------------- Read ----------------------------------- # # find first document in "todos" collection: print(db.todos.find_one()) # find all documents in "todos" collection: for todo in db.todos.find(): print(todo)
36.044444
128
0.586313
import pymongo # ------------------------- Connect to MongoDB Server ------------------------ # # connect to MongoDB server: client = pymongo.MongoClient("mongodb://localhost:27017") # ----------------------- Switch context to a database ----------------------- # # get "python_course" database: db = client.python_course # ------------------- Show all Collections in the database: ------------------ # # get all collections in the database: collections = db.list_collection_names() # print(collections) # ---------------------------------- Create ---------------------------------- # # insert a new document into "todos" collection: res = db.todos.insert_one({"title": "Learn MongoDB", "done": False}) # get the id of the inserted document: # print(res.inserted_id) # insert multiple documents into "todos" collection: res = db.todos.insert_many([ {"title": "Learn Python", "done": True}, {"title": "Learn Flask", "done": False}, {"title": "Learn Flask-MongoDB", "done": False} ]) # print(res.inserted_ids) # insert multiple documents with different shape into "todos" collection: res = db.todos.insert_many([ {"title": "Learn Python", "done": True}, {"title": "Learn Flask", "description":"Learn Flask to develop quick and easy web applications with the ability to scale up."}, {"title": "Learn MongoDB", "due": "2021-12-31"} ]) # print(list(db.todos.find())[-3:-1]) # ----------------------------------- Read ----------------------------------- # # find first document in "todos" collection: print(db.todos.find_one()) # find all documents in "todos" collection: for todo in db.todos.find(): print(todo)
0
0
0
9b780f6fac390d0cc6693e2c3cd1ca78f31f2eb6
348
py
Python
opensenate/tests/parliamentarians_test.py
g0ulartleo/opendata-senado
091d060d55d49f844d192baa1c0aef1aa039f1c0
[ "MIT" ]
null
null
null
opensenate/tests/parliamentarians_test.py
g0ulartleo/opendata-senado
091d060d55d49f844d192baa1c0aef1aa039f1c0
[ "MIT" ]
null
null
null
opensenate/tests/parliamentarians_test.py
g0ulartleo/opendata-senado
091d060d55d49f844d192baa1c0aef1aa039f1c0
[ "MIT" ]
null
null
null
from unittest import TestCase from ..parliamentarians import SenatorClient
29
45
0.695402
from unittest import TestCase from ..parliamentarians import SenatorClient class TestParliamentarians(TestCase): def test_get_senator(self): senator_client = SenatorClient() senators = senator_client.get() self.assertIsInstance(senators, list) if len(senators) <= 0: raise Exception("Empty list!")
207
16
49
d06ea409af79d80d23b209f9aa5dc10f5c6cf8f0
733
py
Python
molecule/blockbook/tests/test_chain.py
trustwallet/ansible-collection-blockchain
4ea4ae041dc4625ba914925cccafebefd99c672f
[ "MIT" ]
1
2022-03-24T21:27:27.000Z
2022-03-24T21:27:27.000Z
molecule/blockbook/tests/test_chain.py
trustwallet/ansible-collection-blockchain
4ea4ae041dc4625ba914925cccafebefd99c672f
[ "MIT" ]
null
null
null
molecule/blockbook/tests/test_chain.py
trustwallet/ansible-collection-blockchain
4ea4ae041dc4625ba914925cccafebefd99c672f
[ "MIT" ]
2
2022-03-19T17:34:56.000Z
2022-03-23T19:08:55.000Z
import os import pytest import testinfra.utils.ansible_runner from ansible.template import Templar from ansible.parsing.dataloader import DataLoader testinfra_hosts = testinfra.utils.ansible_runner.AnsibleRunner( os.environ['MOLECULE_INVENTORY_FILE']).get_hosts('all') @pytest.mark.chain("firo") @pytest.mark.chain("firo") @pytest.mark.chain("firo")
27.148148
63
0.768076
import os import pytest import testinfra.utils.ansible_runner from ansible.template import Templar from ansible.parsing.dataloader import DataLoader testinfra_hosts = testinfra.utils.ansible_runner.AnsibleRunner( os.environ['MOLECULE_INVENTORY_FILE']).get_hosts('all') @pytest.mark.chain("firo") def test_blockbook_firo_running_and_enabled(host): s = host.service('blockbook-firo') assert s.is_enabled assert s.is_running @pytest.mark.chain("firo") def test_backend_firo_running_and_enabled(host): s = host.service('backend-firo') assert s.is_enabled assert s.is_running @pytest.mark.chain("firo") def test_http_is_listening(host): s = host.socket("tcp://0.0.0.0:9150") assert s.is_listening
308
0
66
a131c678638de05ea4d2a12998c4a9866393a59c
1,008
py
Python
networks/spm.py
kamiLight/CADepth-master
8251f12f21393aae3261c3765218063cea1cae30
[ "MIT" ]
11
2022-01-03T14:56:40.000Z
2022-03-01T06:37:05.000Z
networks/spm.py
kamiLight/CADepth-master
8251f12f21393aae3261c3765218063cea1cae30
[ "MIT" ]
1
2022-03-23T01:28:56.000Z
2022-03-24T00:46:44.000Z
networks/spm.py
kamiLight/CADepth-master
8251f12f21393aae3261c3765218063cea1cae30
[ "MIT" ]
1
2022-01-14T08:25:50.000Z
2022-01-14T08:25:50.000Z
import torch import torch.nn as nn class SPM(nn.Module): """ Structure Perception Module """ def forward(self,x): """ inputs : x : input feature maps(B X C X H X W) returns : out : attention value + input feature attention: B X C X C """ m_batchsize, C, height, width = x.size() proj_query = x.view(m_batchsize, C, -1) proj_key = x.view(m_batchsize, C, -1).permute(0, 2, 1) energy = torch.bmm(proj_query, proj_key) energy_new = torch.max(energy, -1, keepdim=True)[0].expand_as(energy)-energy attention = self.softmax(energy_new) proj_value = x.view(m_batchsize, C, -1) out = torch.bmm(attention, proj_value) out = out.view(m_batchsize, C, height, width) out = out + x return out
32.516129
84
0.5625
import torch import torch.nn as nn class SPM(nn.Module): """ Structure Perception Module """ def __init__(self, in_dim): super(SPM, self).__init__() self.chanel_in = in_dim self.softmax = nn.Softmax(dim=-1) def forward(self,x): """ inputs : x : input feature maps(B X C X H X W) returns : out : attention value + input feature attention: B X C X C """ m_batchsize, C, height, width = x.size() proj_query = x.view(m_batchsize, C, -1) proj_key = x.view(m_batchsize, C, -1).permute(0, 2, 1) energy = torch.bmm(proj_query, proj_key) energy_new = torch.max(energy, -1, keepdim=True)[0].expand_as(energy)-energy attention = self.softmax(energy_new) proj_value = x.view(m_batchsize, C, -1) out = torch.bmm(attention, proj_value) out = out.view(m_batchsize, C, height, width) out = out + x return out
116
0
26
d5ee6b368b0d4584ed1bd6908ed0752e007fd580
558
py
Python
examples/serialized_declare.py
jmptbl/puka
bc6e845c8a5f4319ffc54cc71959c56a8893edaf
[ "MIT" ]
81
2015-01-22T10:09:37.000Z
2022-01-25T04:38:29.000Z
examples/serialized_declare.py
ov7a/puka
d2a1a8747b417021d6f18df7ee73d336f670f5a9
[ "MIT" ]
17
2015-05-13T01:51:53.000Z
2021-03-05T04:01:39.000Z
examples/serialized_declare.py
ov7a/puka
d2a1a8747b417021d6f18df7ee73d336f670f5a9
[ "MIT" ]
25
2015-02-12T14:02:41.000Z
2020-05-15T14:08:43.000Z
#!/usr/bin/env python import sys sys.path.append("..") import logging FORMAT_CONS = '%(asctime)s %(name)-12s %(levelname)8s\t%(message)s' logging.basicConfig(level=logging.DEBUG, format=FORMAT_CONS) import puka client = puka.Client("amqp://localhost/") promise = client.connect() client.wait(promise) for i in range(1000): promise = client.queue_declare(queue='a%04i' % i) client.wait(promise) for i in range(1000): promise = client.queue_delete(queue='a%04i' % i) client.wait(promise) promise = client.close() client.wait(promise)
19.241379
67
0.706093
#!/usr/bin/env python import sys sys.path.append("..") import logging FORMAT_CONS = '%(asctime)s %(name)-12s %(levelname)8s\t%(message)s' logging.basicConfig(level=logging.DEBUG, format=FORMAT_CONS) import puka client = puka.Client("amqp://localhost/") promise = client.connect() client.wait(promise) for i in range(1000): promise = client.queue_declare(queue='a%04i' % i) client.wait(promise) for i in range(1000): promise = client.queue_delete(queue='a%04i' % i) client.wait(promise) promise = client.close() client.wait(promise)
0
0
0
21beef38496aa0556afe362af0fdf823475e15cb
3,065
py
Python
tssimul.py
jli05/CS229-TimeSeries-LSTM
366b87d81bbdfecd74c97ffb5387622c0d60d43d
[ "Apache-2.0" ]
null
null
null
tssimul.py
jli05/CS229-TimeSeries-LSTM
366b87d81bbdfecd74c97ffb5387622c0d60d43d
[ "Apache-2.0" ]
null
null
null
tssimul.py
jli05/CS229-TimeSeries-LSTM
366b87d81bbdfecd74c97ffb5387622c0d60d43d
[ "Apache-2.0" ]
null
null
null
''' Simulate ARIMA(p, 0, q) model ''' import argparse import numpy as np from scipy import stats def simulate_eps(sigma, size, dist='normal', df=None): ''' Simulate innovation ''' n_samples, length_sample = size if dist.startswith('n'): eps = np.random.standard_normal(size) * sigma elif dist.startswith('t'): eps = np.random.standard_t(df, size) / np.sqrt(df / (df - 2)) * sigma elif dist.startswith('exp'): eps = np.random.exponential(sigma, size) - sigma else: raise ValueError(f'Unrecognised distribution "{dist}"') return eps def simulate_arima_given_innov(ar, ma, eps): ''' Simulate ARIMA ''' n_samples, length_sample = eps.shape order_p = len(ar) order_q = len(ma) assert order_p >= order_q samples = np.zeros_like(eps) samples_pre_innov = np.zeros_like(eps) for i in range(order_p, length_sample): samples[:, i] = (samples[:, (i - order_p):i].dot(ar[::-1]) + eps[:, i] + eps[:, (i - order_q):i].dot(ma[::-1])) samples_pre_innov[:, order_p:] = samples[:, order_p:] - eps[:, order_p:] return np.concatenate([samples[:, None, :], samples_pre_innov[:, None, :], eps[:, None, :]], axis=1) def simulate_arima(ar, ma, sigma, size, dist='normal', df=None): ''' Simulate ARIMA ''' eps = simulate_eps(sigma, size, dist, df) ts = simulate_arima_given_innov(ar, ma, eps) return ts def simulate_sv(beta, sigma, intercept, size): ''' Simulate log-variance with AR1 ''' n_samples, length_sample = size # Generate first the variational part with zero intercept # Finally add intercept to the entire array logvar = np.zeros(size) eps = np.random.standard_normal(size) * sigma logvar[:, 0] = 3 * eps[:, 0] for i in range(1, length_sample): logvar[:, i] = beta * logvar[:, i - 1] + eps[:, i] var = np.exp(intercept + logvar) sv = np.random.normal(0, np.sqrt(var / 255), size) return sv, np.sqrt(var) def simulate_rs(p0, p00, p10, mu, sigma, size): ''' Simulate regime-switching model ''' n_samples, length_sample = size eps = [np.random.normal(m, s / np.sqrt(255), size) for m, s in zip(mu, sigma)] eps = np.stack(eps, axis=2) # Simulate regimes prob0 = np.zeros(size) regime = np.zeros(size) prob0[:, 0] = p0 regime[:, 0] = 1 - np.random.binomial(1, p0, n_samples) for i in range(1, length_sample): prob0[:, i] = np.where(regime[:, i - 1] == 0, p00, p10) regime[:, i] = 1 - np.random.binomial(1, prob0[:, i], n_samples) ts = np.where(regime == 0, eps[:, :, 0], eps[:, :, 1]) return ts, prob0, regime if __name__ == '__main__': ar = [0.0868, 0.3667] ma = [-0.1150, -0.4068] sigma = .0112 simulation = simulate_arima(5000, 1000, ar, ma, sigma) simulation_test = simulate_arima(500, 1000, ar, ma, sigma) np.savez_compressed('simulation', data=simulation) np.savez_compressed('simulation_test', data=simulation_test)
32.606383
78
0.604894
''' Simulate ARIMA(p, 0, q) model ''' import argparse import numpy as np from scipy import stats def simulate_eps(sigma, size, dist='normal', df=None): ''' Simulate innovation ''' n_samples, length_sample = size if dist.startswith('n'): eps = np.random.standard_normal(size) * sigma elif dist.startswith('t'): eps = np.random.standard_t(df, size) / np.sqrt(df / (df - 2)) * sigma elif dist.startswith('exp'): eps = np.random.exponential(sigma, size) - sigma else: raise ValueError(f'Unrecognised distribution "{dist}"') return eps def simulate_arima_given_innov(ar, ma, eps): ''' Simulate ARIMA ''' n_samples, length_sample = eps.shape order_p = len(ar) order_q = len(ma) assert order_p >= order_q samples = np.zeros_like(eps) samples_pre_innov = np.zeros_like(eps) for i in range(order_p, length_sample): samples[:, i] = (samples[:, (i - order_p):i].dot(ar[::-1]) + eps[:, i] + eps[:, (i - order_q):i].dot(ma[::-1])) samples_pre_innov[:, order_p:] = samples[:, order_p:] - eps[:, order_p:] return np.concatenate([samples[:, None, :], samples_pre_innov[:, None, :], eps[:, None, :]], axis=1) def simulate_arima(ar, ma, sigma, size, dist='normal', df=None): ''' Simulate ARIMA ''' eps = simulate_eps(sigma, size, dist, df) ts = simulate_arima_given_innov(ar, ma, eps) return ts def simulate_sv(beta, sigma, intercept, size): ''' Simulate log-variance with AR1 ''' n_samples, length_sample = size # Generate first the variational part with zero intercept # Finally add intercept to the entire array logvar = np.zeros(size) eps = np.random.standard_normal(size) * sigma logvar[:, 0] = 3 * eps[:, 0] for i in range(1, length_sample): logvar[:, i] = beta * logvar[:, i - 1] + eps[:, i] var = np.exp(intercept + logvar) sv = np.random.normal(0, np.sqrt(var / 255), size) return sv, np.sqrt(var) def simulate_rs(p0, p00, p10, mu, sigma, size): ''' Simulate regime-switching model ''' n_samples, length_sample = size eps = [np.random.normal(m, s / np.sqrt(255), size) for m, s in zip(mu, sigma)] eps = np.stack(eps, axis=2) # Simulate regimes prob0 = np.zeros(size) regime = np.zeros(size) prob0[:, 0] = p0 regime[:, 0] = 1 - np.random.binomial(1, p0, n_samples) for i in range(1, length_sample): prob0[:, i] = np.where(regime[:, i - 1] == 0, p00, p10) regime[:, i] = 1 - np.random.binomial(1, prob0[:, i], n_samples) ts = np.where(regime == 0, eps[:, :, 0], eps[:, :, 1]) return ts, prob0, regime if __name__ == '__main__': ar = [0.0868, 0.3667] ma = [-0.1150, -0.4068] sigma = .0112 simulation = simulate_arima(5000, 1000, ar, ma, sigma) simulation_test = simulate_arima(500, 1000, ar, ma, sigma) np.savez_compressed('simulation', data=simulation) np.savez_compressed('simulation_test', data=simulation_test)
0
0
0
c150f8cf6799b8c70596657c3001737e829dd448
24,931
py
Python
dm_alchemy/types/unity_python_conversion.py
locross93/dm_alchemy
35449de51d56c427959ae6a3be13d6c6ab738be5
[ "Apache-2.0" ]
182
2021-02-08T15:25:06.000Z
2022-03-31T00:46:23.000Z
dm_alchemy/types/unity_python_conversion.py
locross93/dm_alchemy
35449de51d56c427959ae6a3be13d6c6ab738be5
[ "Apache-2.0" ]
6
2021-02-12T10:42:51.000Z
2022-03-14T23:59:45.000Z
dm_alchemy/types/unity_python_conversion.py
locross93/dm_alchemy
35449de51d56c427959ae6a3be13d6c6ab738be5
[ "Apache-2.0" ]
18
2021-02-08T20:37:22.000Z
2022-03-15T20:54:14.000Z
# Lint as python3 # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Code to convert between unity types and python types.""" import copy import itertools from typing import Any, Dict, Sequence, Tuple from dm_alchemy.protos import alchemy_pb2 from dm_alchemy.protos import hypercube_pb2 from dm_alchemy.types import graphs from dm_alchemy.types import stones_and_potions from dm_alchemy.types import utils import frozendict import numpy as np from dm_alchemy.protos import color_info_pb2 from dm_alchemy.protos import unity_types_pb2 PotionMap = stones_and_potions.PotionMap StoneMap = stones_and_potions.StoneMap AlignedStone = stones_and_potions.AlignedStone PerceivedStone = stones_and_potions.PerceivedStone PerceivedPotion = stones_and_potions.PerceivedPotion LatentStone = stones_and_potions.LatentStone LatentPotion = stones_and_potions.LatentPotion MapsAndGraph = Tuple[PotionMap, StoneMap, graphs.Graph] COLOR_TYPE = alchemy_pb2.PerceptualMappingApplicator.Type.COLOR SIZE_TYPE = alchemy_pb2.PerceptualMappingApplicator.Type.SIZE ROUNDNESS_TYPE = alchemy_pb2.PerceptualMappingApplicator.Type.ROUNDNESS # Colours are defined in AlchemyColors.asset _STONE_COLOURS = frozendict.frozendict({ 'purple': unity_types_pb2.Color( r=0.52156866, g=0.22745098, b=0.6313726, a=1.0), 'blurple': unity_types_pb2.Color( r=0.2608, g=0.2667, b=0.5941, a=1.0), 'blue': unity_types_pb2.Color( r=0.0, g=0.30588236, b=0.5568628, a=1.0) }) _POTION_COLOURS = frozendict.frozendict({ 'green': unity_types_pb2.Color( r=0.24394463, g=0.6911765, b=0.35806578, a=1.0), 'red': unity_types_pb2.Color( r=0.9647059, g=0.015686275, b=0.06666667, a=1.0), 'yellow': unity_types_pb2.Color( r=0.9411765, g=0.84705883, b=0.078431375, a=1.0), 'orange': unity_types_pb2.Color( r=0.9764706, g=0.4, b=0.10980392, a=1.0), 'turquoise': unity_types_pb2.Color( r=0.21176471, g=0.72156864, b=0.7411765, a=1.0), 'pink': unity_types_pb2.Color( r=0.9843137, g=0.43529412, b=0.43529412, a=1.0) }) # This is the order of perceived axes in unity. PERCEIVED_AXIS = (COLOR_TYPE, SIZE_TYPE, ROUNDNESS_TYPE) AXIS_NUMBER = frozendict.frozendict({ a: i for i, a in enumerate(PERCEIVED_AXIS)}) SIZE_NAME_AT_COORD = frozendict.frozendict( {-1: 'small', 0: 'medium', 1: 'large'}) _STONE_SIZES = frozendict.frozendict( {'small': 1.0, 'medium': 1.4, 'large': 1.8}) SIZE_AT_COORD = frozendict.frozendict( {coord: _STONE_SIZES[name] for coord, name in SIZE_NAME_AT_COORD.items()}) _COORD_AT_SIZE = frozendict.frozendict({v: k for k, v in SIZE_AT_COORD.items()}) ROUNDNESS_NAME_AT_COORD = frozendict.frozendict( {-1: 'pointy', 0: 'somewhat pointy', 1: 'round'}) _STONE_ROUNDNESSES = frozendict.frozendict( {'pointy': 0.0, 'somewhat pointy': 0.5, 'round': 1.0}) ROUNDNESS_AT_COORD = frozendict.frozendict( {coord: _STONE_ROUNDNESSES[name] for coord, name in ROUNDNESS_NAME_AT_COORD.items()}) _COORD_AT_ROUNDNESS = frozendict.frozendict({ v: k for k, v in ROUNDNESS_AT_COORD.items()}) # The colour proto is not hashable so convert to a type which is. COLOUR_NAME_AT_COORD = frozendict.frozendict( {-1: 'purple', 0: 'blurple', 1: 'blue'}) COLOUR_AT_COORD = frozendict.frozendict({ coord: _STONE_COLOURS[name] for coord, name in COLOUR_NAME_AT_COORD.items()}) _COORD_AT_COLOUR = frozendict.frozendict( {colour_proto_to_hashable(v): k for k, v in COLOUR_AT_COORD.items()}) POTION_COLOUR_AT_PERCEIVED_POTION = frozendict.frozendict({ PerceivedPotion(0, 1): 'green', PerceivedPotion(0, -1): 'red', PerceivedPotion(1, 1): 'yellow', PerceivedPotion(1, -1): 'orange', PerceivedPotion(2, 1): 'turquoise', PerceivedPotion(2, -1): 'pink', }) _PERCEIVED_POTION_AT_POTION_COLOUR = frozendict.frozendict({ colour_proto_to_hashable(_POTION_COLOURS[v]): k for k, v in POTION_COLOUR_AT_PERCEIVED_POTION.items()}) def to_stone_unity_properties( perceived_stone: PerceivedStone, latent_stone: LatentStone ) -> alchemy_pb2.StoneProperties: """Convert a perceived and latent stone to StoneProperties.""" return alchemy_pb2.StoneProperties( reward=15 if perceived_stone.reward > 2 else perceived_stone.reward, latent=latent_stone_to_unity(latent_stone), **perceptual_features(perceived_stone)) def unity_to_perceived_stone( stone_properties: alchemy_pb2.StoneProperties ) -> PerceivedStone: """Convert StoneProperties to a perceived stone.""" size = _COORD_AT_SIZE[round(stone_properties.size, 1)] roundness = _COORD_AT_ROUNDNESS[round(stone_properties.roundness, 1)] colour = _COORD_AT_COLOUR[colour_proto_to_hashable(stone_properties.color)] # Use numpy object type to store python ints rather than numpy ints. perceived_coords = np.array([0, 0, 0], dtype=np.float) perceived_coords[AXIS_NUMBER[SIZE_TYPE]] = size perceived_coords[AXIS_NUMBER[ROUNDNESS_TYPE]] = roundness perceived_coords[AXIS_NUMBER[COLOR_TYPE]] = colour latent_stone = _unity_to_latent_stone(stone_properties.latent) return PerceivedStone(latent_stone.reward(), perceived_coords) def _from_stone_unity_properties( stone_properties: alchemy_pb2.StoneProperties, rotation: np.ndarray ) -> Tuple[PerceivedStone, AlignedStone, LatentStone]: """Convert StoneProperties to a perceived and latent stone.""" latent_stone = _unity_to_latent_stone(stone_properties.latent) perceived_stone = unity_to_perceived_stone(stone_properties) aligned_stone = stones_and_potions.align(perceived_stone, rotation) return perceived_stone, aligned_stone, latent_stone def to_potion_unity_properties( perceived_potion: PerceivedPotion, latent_potion: LatentPotion, graph: graphs.Graph ) -> alchemy_pb2.PotionProperties: """Convert a perceived and latent potion and graph to PotionProperties.""" colour_name = POTION_COLOUR_AT_PERCEIVED_POTION[perceived_potion] colour = get_colour_info((colour_name, _POTION_COLOURS[colour_name])) reactions = set() for startnode, endnodes in graph.edge_list.edges.items(): expected_end_coords = copy.deepcopy(startnode.coords) expected_end_coords[latent_potion.latent_dim] = ( startnode.coords[latent_potion.latent_dim] + 2 * latent_potion.latent_dir) expected_end_node = graph.node_list.get_node_by_coords( expected_end_coords) if not expected_end_node: continue if expected_end_node in endnodes: reactions.add((startnode.idx, expected_end_node.idx)) reactions = [alchemy_pb2.PotionReaction(from_stone_index=from_stone, to_stone_index=to_stone) for from_stone, to_stone in reactions] sorted_reactions = sorted( reactions, key=lambda reaction: reaction.from_stone_index) return alchemy_pb2.PotionProperties( label=latent_potion_to_unity(latent_potion), reward=0, color=colour, glow_color=colour, reactions=sorted_reactions) def _potions_from_potion_unity_properties( potion: alchemy_pb2.PotionProperties ) -> Tuple[PerceivedPotion, LatentPotion]: """Convert the unity representation to a perceived and latent potion.""" return (unity_to_perceived_potion(potion), _unity_to_latent_potion(potion.label)) def graphs_from_potion_unity_properties( potions: Sequence[alchemy_pb2.PotionProperties]) -> graphs.Graph: """Convert a sequence of PotionProperties to a Graph.""" node_list = graphs.all_nodes_in_graph() edge_list = graphs.EdgeList() for i, potion in enumerate(potions): _, latent = _potions_from_potion_unity_properties(potion) utils_potion = stones_and_potions.Potion( i, latent.latent_dim, latent.latent_dir) for reaction in potion.reactions: edge_list.add_edge( node_list.get_node_by_idx(reaction.from_stone_index), node_list.get_node_by_idx(reaction.to_stone_index), utils_potion) return graphs.Graph(node_list, edge_list) def to_unity_chemistry( chemistry: utils.Chemistry ) -> Tuple[alchemy_pb2.Chemistry, alchemy_pb2.RotationMapping]: """Convert from python types to unity Chemistry object.""" # Latent stones and potions are always in the same places. latent_stones = stones_and_potions.possible_latent_stones() latent_potions = stones_and_potions.possible_latent_potions() # Apply the dimension swapping map between latent stones in unity and latent # stones in python (see from_unity_chemistry for more explanation). python_to_unity = PythonToUnityDimMap(chemistry) python_latent_stones = [python_to_unity.apply_to_stone(latent_stone) for latent_stone in latent_stones] python_latent_potions = [python_to_unity.apply_to_potion(latent_potion) for latent_potion in latent_potions] # Apply the stone map to them to get perceptual stones. aligned_stones = [chemistry.stone_map.apply_inverse(stone) for stone in python_latent_stones] perceived_stones = [ stones_and_potions.unalign(stone, chemistry.rotation) for stone in aligned_stones] unity_stones = [to_stone_unity_properties(perceived, latent) for perceived, latent in zip(perceived_stones, latent_stones)] # Apply the potion map to them to get perceptual potions. perceived_potions = [chemistry.potion_map.apply_inverse(potion) for potion in python_latent_potions] unity_potions = [ to_potion_unity_properties(perceived, latent, python_to_unity.graph) for perceived, latent in zip(perceived_potions, latent_potions)] unity_chemistry = alchemy_pb2.Chemistry( stones=unity_stones, potions=unity_potions) rotation_mapping = rotation_to_unity(python_to_unity.rotation) return unity_chemistry, rotation_mapping def rotation_from_unity( rotation_mapping: alchemy_pb2.RotationMapping ) -> np.ndarray: """Get the transformation to undo rotation from unity.""" # Rotate back angles = [-int(rotation_mapping.rotation_angles.x), -int(rotation_mapping.rotation_angles.y), -int(rotation_mapping.rotation_angles.z)] return stones_and_potions.rotation_from_angles(angles) def rotation_to_unity(rotation: np.ndarray) -> alchemy_pb2.RotationMapping: """Convert the transformation to undo rotation to unity.""" angles = stones_and_potions.rotation_to_angles(rotation) return alchemy_pb2.RotationMapping(rotation_angles=unity_types_pb2.Vector3( **{axis: -round(a) for axis, a in zip('xyz', angles)})) def potion_map_from_potions( latent_potions: Sequence[LatentPotion], perceived_potions: Sequence[PerceivedPotion] ) -> PotionMap: """Calculate potion map relating latent and perceived potions.""" dimension_map = [-1, -1, -1] direction_map = [0, 0, 0] for perceived_potion, latent_potion in zip(perceived_potions, latent_potions): dimension_map[perceived_potion.perceived_dim] = latent_potion.latent_dim if latent_potion.latent_dir == perceived_potion.perceived_dir: direction_map[latent_potion.latent_dim] = 1 else: direction_map[latent_potion.latent_dim] = -1 return PotionMap(dim_map=dimension_map, dir_map=direction_map) def find_dim_map_and_stone_map( chemistry: utils.Chemistry ) -> Tuple[np.ndarray, StoneMap, np.ndarray]: """Find a dimension map and stone map which map latent stones to perceived.""" latent_stones = stones_and_potions.possible_latent_stones() aligned_stones = [chemistry.stone_map.apply_inverse(stone) for stone in latent_stones] perceived_stones = [stones_and_potions.unalign(stone, chemistry.rotation) for stone in aligned_stones] for dim_map in [np.eye(3, dtype=np.int)[p, :] for p in itertools.permutations( [0, 1, 2])]: for stone_map in stones_and_potions.possible_stone_maps(): sm = np.diag(stone_map.latent_pos_dir.astype(np.int)) # Since we do rotation before reflection in this case we must allow # rotation forwards and backwards to get all cases. # Because of the scaling this is not just the inverse matrix. inverse_rotation = stones_and_potions.rotation_from_angles( [-a for a in stones_and_potions.rotation_to_angles( chemistry.rotation)]) for rotation in [chemistry.rotation, inverse_rotation]: all_match = True for ls, ps in zip(latent_stones, perceived_stones): new_ls = np.matmul(dim_map, ls.latent_coords.astype(np.int)) ps_prime = np.matmul(sm, np.matmul(np.linalg.inv(rotation), new_ls)) if not all(abs(a - b) < 0.0001 for a, b in zip( ps_prime, ps.perceived_coords.astype(np.int))): all_match = False break if all_match: return np.linalg.inv(dim_map), stone_map, rotation assert False, ( 'No dimension map and stone map takes latent stones to the passed ' 'perceived stones with the passed rotation.') def _apply_dim_map_to_graph( dim_map: np.ndarray, graph: graphs.Graph ) -> graphs.Graph: """Swap latent dimensions in graph.""" edge_list = graphs.EdgeList() for start_node, end_nodes in graph.edge_list.edges.items(): start_coords = np.matmul(dim_map, np.array(start_node.coords)).tolist() new_start_node = graph.node_list.get_node_by_coords(start_coords) for end_node, edge in end_nodes.items(): end_coords = np.matmul(dim_map, np.array(end_node.coords)).tolist() new_end_node = graph.node_list.get_node_by_coords(end_coords) new_potion = stones_and_potions.Potion( edge[1].idx, np.where(dim_map[edge[1].dimension, :])[0][0], edge[1].direction) edge_list.add_edge(new_start_node, new_end_node, new_potion) return graphs.Graph(graph.node_list, edge_list) class PythonToUnityDimMap: """Convert from python method of mapping to unity method.""" def from_unity_chemistry( chemistry: alchemy_pb2.Chemistry, rotation_mapping: alchemy_pb2.RotationMapping ) -> utils.Chemistry: """Convert from unity Chemistry object to corresponding python types. Args: chemistry: A chemistry object received from the alchemy unity environment. rotation_mapping: A rotation mapping object received from the alchemy unity environment. Returns: A PotionMap describing the transformation from potion perceptual space to latent space. A StoneMap describing the transformation from stone aligned perceptual space to latent space. A Graph describing the available edges in latent space. A np.ndarray describing the rotation from stone aligned perceptual space to stone perceptual space. """ # In unity the latent stones are (possibly) rotated and then "perceptual # mapping applicators" are applied to say how this is represented on screen, # e.g. -1 in the first latent dimension is purple and +1 is blue. # By only considering 7 possible rotations (0 rotation and 45 degrees # clockise or anticlockwise about each axis) and just considering in what # direction perceptual attributes change, when this is combined with the # mapping of potion pairs to latent space dimensions and assigning a direction # to that potion pair, we get all mappings which are 45 degrees offset on one # axis (note that latent variables have the same effect on the reward so # swapping latent space dimensions has no effect). We get duplicates because # after rotating, one dimension of the max reward stone will have value 0 so # reflecting about this does not change the value. However, the configuration # is such that the task distribution is as it would be if we avoided # duplicates. # An alternative way to generate all these mappings without the duplicates # would be to take the stones latent coordinates and first apply a mapping # which changes the positive direction and then rotate these positions by 45 # degrees clockwise (excluding anticlockwise rotations). # It is easier to run algorithms like the ideal observer assuming the second # breakdown of the mapping because the rotation does not effect the best # action to take so we can take the perceived coordinates and undo the # rotation using any plausible rotation (even if it is not the correct one) # and then maintain a belief state over the remaining aspects of the # chemistry and update the belief state if we find the rotation was wrong. # We can switch between these equivalent breakdowns by possibly rotating in # the opposite direction. # From unity we get # perceived_stone = sm * r * latent_stone # where r rotates plus or minus 45 degrees and sm changes directions, we want # perceived_stone = r_prime * sm * latent_stone # where r_prime is rotating clockwise about the axis that r rotates around. rotation = rotation_from_unity(rotation_mapping) abs_rotation = stones_and_potions.rotation_from_angles( [-abs(a) for a in stones_and_potions.rotation_to_angles(rotation)]) python_stones = [_from_stone_unity_properties(stone, abs_rotation) for stone in chemistry.stones] python_potions = [_potions_from_potion_unity_properties(potion) for potion in chemistry.potions] graph = graphs_from_potion_unity_properties(chemistry.potions) # So sm_prime is diagonal with elements in {-1, 1} and dim_map is such that # the sum of each row and each column is 1 with non zero elements 1. # Let a := sm_prime * dim_map # a := [a11 a12 a13] # [a21 a22 a23] # [a31 a32 a33] # a * [1, 1, 1] = [a11 + a12 + a13, a21 + a22 + a23, a31 + a32 + a33] sum_of_each_row = _get_aligned_coords_matching_latent( python_stones, [1, 1, 1]) stone_map = StoneMap(pos_dir=sum_of_each_row) sm_prime = np.diag(sum_of_each_row) # a * [1, 1, 1] - a * [-1, 1, 1] = 2 * [a11, a21, a31] first_column = ((sum_of_each_row - _get_aligned_coords_matching_latent( python_stones, [-1, 1, 1]))/2).astype(np.int) second_column = ((sum_of_each_row - _get_aligned_coords_matching_latent( python_stones, [1, -1, 1]))/2).astype(np.int) third_column = ((sum_of_each_row - _get_aligned_coords_matching_latent( python_stones, [1, 1, -1]))/2).astype(np.int) a = np.hstack((first_column.reshape((3, 1)), second_column.reshape((3, 1)), third_column.reshape((3, 1)))) dim_map = np.rint(np.matmul(np.linalg.inv(sm_prime), a)).astype(np.int) latent_stones = [latent_stone for _, _, latent_stone in python_stones] aligned_stones = [aligned_stone for _, aligned_stone, _ in python_stones] latent_stones = [_apply_dim_map_to_stone(dim_map, latent_stone) for latent_stone in latent_stones] latent_potions = [latent_potion for _, latent_potion in python_potions] latent_potions = [_apply_dim_map_to_potion(dim_map, latent_potion) for latent_potion in latent_potions] perceived_potions = [perceived_potion for perceived_potion, _ in python_potions] graph = _apply_dim_map_to_graph(dim_map, graph) for aligned_stone, latent_stone in zip(aligned_stones, latent_stones): assert stone_map.apply(aligned_stone) == latent_stone, ( 'Applying the stone map to the aligned stone did not give the ' 'expected latent stone.\n{aligned_stone}\n{latent_stone}\n' '{stone_map}\n{chemistry}'.format( aligned_stone=aligned_stone, latent_stone=latent_stone, stone_map=stone_map, chemistry=chemistry)) potion_map = potion_map_from_potions(latent_potions, perceived_potions) for perceived_potion, latent_potion in zip(perceived_potions, latent_potions): assert potion_map.apply(perceived_potion) == latent_potion, ( 'Applying the potion map to the perceived potion did not give the ' 'expected latent potion.{perceived_potion}\n{latent_potion}\n' '{potion_map}\n{chemistry}'.format( perceived_potion=perceived_potion, latent_potion=latent_potion, potion_map=potion_map, chemistry=chemistry)) return utils.Chemistry(potion_map, stone_map, graph, abs_rotation)
43.661996
80
0.740083
# Lint as python3 # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Code to convert between unity types and python types.""" import copy import itertools from typing import Any, Dict, Sequence, Tuple from dm_alchemy.protos import alchemy_pb2 from dm_alchemy.protos import hypercube_pb2 from dm_alchemy.types import graphs from dm_alchemy.types import stones_and_potions from dm_alchemy.types import utils import frozendict import numpy as np from dm_alchemy.protos import color_info_pb2 from dm_alchemy.protos import unity_types_pb2 PotionMap = stones_and_potions.PotionMap StoneMap = stones_and_potions.StoneMap AlignedStone = stones_and_potions.AlignedStone PerceivedStone = stones_and_potions.PerceivedStone PerceivedPotion = stones_and_potions.PerceivedPotion LatentStone = stones_and_potions.LatentStone LatentPotion = stones_and_potions.LatentPotion MapsAndGraph = Tuple[PotionMap, StoneMap, graphs.Graph] COLOR_TYPE = alchemy_pb2.PerceptualMappingApplicator.Type.COLOR SIZE_TYPE = alchemy_pb2.PerceptualMappingApplicator.Type.SIZE ROUNDNESS_TYPE = alchemy_pb2.PerceptualMappingApplicator.Type.ROUNDNESS # Colours are defined in AlchemyColors.asset _STONE_COLOURS = frozendict.frozendict({ 'purple': unity_types_pb2.Color( r=0.52156866, g=0.22745098, b=0.6313726, a=1.0), 'blurple': unity_types_pb2.Color( r=0.2608, g=0.2667, b=0.5941, a=1.0), 'blue': unity_types_pb2.Color( r=0.0, g=0.30588236, b=0.5568628, a=1.0) }) _POTION_COLOURS = frozendict.frozendict({ 'green': unity_types_pb2.Color( r=0.24394463, g=0.6911765, b=0.35806578, a=1.0), 'red': unity_types_pb2.Color( r=0.9647059, g=0.015686275, b=0.06666667, a=1.0), 'yellow': unity_types_pb2.Color( r=0.9411765, g=0.84705883, b=0.078431375, a=1.0), 'orange': unity_types_pb2.Color( r=0.9764706, g=0.4, b=0.10980392, a=1.0), 'turquoise': unity_types_pb2.Color( r=0.21176471, g=0.72156864, b=0.7411765, a=1.0), 'pink': unity_types_pb2.Color( r=0.9843137, g=0.43529412, b=0.43529412, a=1.0) }) # This is the order of perceived axes in unity. PERCEIVED_AXIS = (COLOR_TYPE, SIZE_TYPE, ROUNDNESS_TYPE) AXIS_NUMBER = frozendict.frozendict({ a: i for i, a in enumerate(PERCEIVED_AXIS)}) SIZE_NAME_AT_COORD = frozendict.frozendict( {-1: 'small', 0: 'medium', 1: 'large'}) _STONE_SIZES = frozendict.frozendict( {'small': 1.0, 'medium': 1.4, 'large': 1.8}) SIZE_AT_COORD = frozendict.frozendict( {coord: _STONE_SIZES[name] for coord, name in SIZE_NAME_AT_COORD.items()}) _COORD_AT_SIZE = frozendict.frozendict({v: k for k, v in SIZE_AT_COORD.items()}) ROUNDNESS_NAME_AT_COORD = frozendict.frozendict( {-1: 'pointy', 0: 'somewhat pointy', 1: 'round'}) _STONE_ROUNDNESSES = frozendict.frozendict( {'pointy': 0.0, 'somewhat pointy': 0.5, 'round': 1.0}) ROUNDNESS_AT_COORD = frozendict.frozendict( {coord: _STONE_ROUNDNESSES[name] for coord, name in ROUNDNESS_NAME_AT_COORD.items()}) _COORD_AT_ROUNDNESS = frozendict.frozendict({ v: k for k, v in ROUNDNESS_AT_COORD.items()}) # The colour proto is not hashable so convert to a type which is. def colour_proto_to_hashable( colour: unity_types_pb2.Color) -> Tuple[float, float, float, float]: return (round(colour.r, 2), round(colour.g, 2), round(colour.b, 2), round(colour.a, 2)) COLOUR_NAME_AT_COORD = frozendict.frozendict( {-1: 'purple', 0: 'blurple', 1: 'blue'}) COLOUR_AT_COORD = frozendict.frozendict({ coord: _STONE_COLOURS[name] for coord, name in COLOUR_NAME_AT_COORD.items()}) _COORD_AT_COLOUR = frozendict.frozendict( {colour_proto_to_hashable(v): k for k, v in COLOUR_AT_COORD.items()}) POTION_COLOUR_AT_PERCEIVED_POTION = frozendict.frozendict({ PerceivedPotion(0, 1): 'green', PerceivedPotion(0, -1): 'red', PerceivedPotion(1, 1): 'yellow', PerceivedPotion(1, -1): 'orange', PerceivedPotion(2, 1): 'turquoise', PerceivedPotion(2, -1): 'pink', }) _PERCEIVED_POTION_AT_POTION_COLOUR = frozendict.frozendict({ colour_proto_to_hashable(_POTION_COLOURS[v]): k for k, v in POTION_COLOUR_AT_PERCEIVED_POTION.items()}) def get_colour_info( name_and_colour: Tuple[str, unity_types_pb2.Color] ) -> color_info_pb2.ColorInfo: return color_info_pb2.ColorInfo( color=name_and_colour[1], name=name_and_colour[0]) def latent_stone_to_unity( latent_stone: LatentStone) -> hypercube_pb2.HypercubeVertex: return hypercube_pb2.HypercubeVertex( index=latent_stone.index(), coordinates=latent_stone.latent_coords.tolist()) def _unity_to_latent_stone( latent: hypercube_pb2.HypercubeVertex) -> LatentStone: # Use numpy object type to store python ints rather than numpy ints. return LatentStone(np.array([int(coord) for coord in latent.coordinates], dtype=np.object)) def perceptual_features(perceived_stone: PerceivedStone) -> Dict[str, Any]: return { 'size': SIZE_AT_COORD[perceived_stone.perceived_coords[AXIS_NUMBER[ SIZE_TYPE]]], 'roundness': ROUNDNESS_AT_COORD[perceived_stone.perceived_coords[ AXIS_NUMBER[ROUNDNESS_TYPE]]], 'color': COLOUR_AT_COORD[perceived_stone.perceived_coords[AXIS_NUMBER[ COLOR_TYPE]]], } def to_stone_unity_properties( perceived_stone: PerceivedStone, latent_stone: LatentStone ) -> alchemy_pb2.StoneProperties: """Convert a perceived and latent stone to StoneProperties.""" return alchemy_pb2.StoneProperties( reward=15 if perceived_stone.reward > 2 else perceived_stone.reward, latent=latent_stone_to_unity(latent_stone), **perceptual_features(perceived_stone)) def unity_to_perceived_stone( stone_properties: alchemy_pb2.StoneProperties ) -> PerceivedStone: """Convert StoneProperties to a perceived stone.""" size = _COORD_AT_SIZE[round(stone_properties.size, 1)] roundness = _COORD_AT_ROUNDNESS[round(stone_properties.roundness, 1)] colour = _COORD_AT_COLOUR[colour_proto_to_hashable(stone_properties.color)] # Use numpy object type to store python ints rather than numpy ints. perceived_coords = np.array([0, 0, 0], dtype=np.float) perceived_coords[AXIS_NUMBER[SIZE_TYPE]] = size perceived_coords[AXIS_NUMBER[ROUNDNESS_TYPE]] = roundness perceived_coords[AXIS_NUMBER[COLOR_TYPE]] = colour latent_stone = _unity_to_latent_stone(stone_properties.latent) return PerceivedStone(latent_stone.reward(), perceived_coords) def _from_stone_unity_properties( stone_properties: alchemy_pb2.StoneProperties, rotation: np.ndarray ) -> Tuple[PerceivedStone, AlignedStone, LatentStone]: """Convert StoneProperties to a perceived and latent stone.""" latent_stone = _unity_to_latent_stone(stone_properties.latent) perceived_stone = unity_to_perceived_stone(stone_properties) aligned_stone = stones_and_potions.align(perceived_stone, rotation) return perceived_stone, aligned_stone, latent_stone def latent_potion_to_unity( latent_potion: LatentPotion) -> hypercube_pb2.EdgeLabel: if latent_potion.latent_dir == 1: direction = hypercube_pb2.EdgeLabel.Direction.POSITIVE else: direction = hypercube_pb2.EdgeLabel.Direction.NEGATIVE return hypercube_pb2.EdgeLabel( dimension_index=latent_potion.latent_dim, direction=direction) def _unity_to_latent_potion( edge_label: hypercube_pb2.EdgeLabel) -> LatentPotion: if edge_label.direction == hypercube_pb2.EdgeLabel.Direction.POSITIVE: latent_dir = 1 else: latent_dir = -1 return LatentPotion( latent_dim=edge_label.dimension_index, latent_dir=latent_dir) def to_potion_unity_properties( perceived_potion: PerceivedPotion, latent_potion: LatentPotion, graph: graphs.Graph ) -> alchemy_pb2.PotionProperties: """Convert a perceived and latent potion and graph to PotionProperties.""" colour_name = POTION_COLOUR_AT_PERCEIVED_POTION[perceived_potion] colour = get_colour_info((colour_name, _POTION_COLOURS[colour_name])) reactions = set() for startnode, endnodes in graph.edge_list.edges.items(): expected_end_coords = copy.deepcopy(startnode.coords) expected_end_coords[latent_potion.latent_dim] = ( startnode.coords[latent_potion.latent_dim] + 2 * latent_potion.latent_dir) expected_end_node = graph.node_list.get_node_by_coords( expected_end_coords) if not expected_end_node: continue if expected_end_node in endnodes: reactions.add((startnode.idx, expected_end_node.idx)) reactions = [alchemy_pb2.PotionReaction(from_stone_index=from_stone, to_stone_index=to_stone) for from_stone, to_stone in reactions] sorted_reactions = sorted( reactions, key=lambda reaction: reaction.from_stone_index) return alchemy_pb2.PotionProperties( label=latent_potion_to_unity(latent_potion), reward=0, color=colour, glow_color=colour, reactions=sorted_reactions) def unity_to_perceived_potion( potion: alchemy_pb2.PotionProperties ) -> PerceivedPotion: return _PERCEIVED_POTION_AT_POTION_COLOUR[ colour_proto_to_hashable(potion.color.color)] def _potions_from_potion_unity_properties( potion: alchemy_pb2.PotionProperties ) -> Tuple[PerceivedPotion, LatentPotion]: """Convert the unity representation to a perceived and latent potion.""" return (unity_to_perceived_potion(potion), _unity_to_latent_potion(potion.label)) def graphs_from_potion_unity_properties( potions: Sequence[alchemy_pb2.PotionProperties]) -> graphs.Graph: """Convert a sequence of PotionProperties to a Graph.""" node_list = graphs.all_nodes_in_graph() edge_list = graphs.EdgeList() for i, potion in enumerate(potions): _, latent = _potions_from_potion_unity_properties(potion) utils_potion = stones_and_potions.Potion( i, latent.latent_dim, latent.latent_dir) for reaction in potion.reactions: edge_list.add_edge( node_list.get_node_by_idx(reaction.from_stone_index), node_list.get_node_by_idx(reaction.to_stone_index), utils_potion) return graphs.Graph(node_list, edge_list) def to_unity_chemistry( chemistry: utils.Chemistry ) -> Tuple[alchemy_pb2.Chemistry, alchemy_pb2.RotationMapping]: """Convert from python types to unity Chemistry object.""" # Latent stones and potions are always in the same places. latent_stones = stones_and_potions.possible_latent_stones() latent_potions = stones_and_potions.possible_latent_potions() # Apply the dimension swapping map between latent stones in unity and latent # stones in python (see from_unity_chemistry for more explanation). python_to_unity = PythonToUnityDimMap(chemistry) python_latent_stones = [python_to_unity.apply_to_stone(latent_stone) for latent_stone in latent_stones] python_latent_potions = [python_to_unity.apply_to_potion(latent_potion) for latent_potion in latent_potions] # Apply the stone map to them to get perceptual stones. aligned_stones = [chemistry.stone_map.apply_inverse(stone) for stone in python_latent_stones] perceived_stones = [ stones_and_potions.unalign(stone, chemistry.rotation) for stone in aligned_stones] unity_stones = [to_stone_unity_properties(perceived, latent) for perceived, latent in zip(perceived_stones, latent_stones)] # Apply the potion map to them to get perceptual potions. perceived_potions = [chemistry.potion_map.apply_inverse(potion) for potion in python_latent_potions] unity_potions = [ to_potion_unity_properties(perceived, latent, python_to_unity.graph) for perceived, latent in zip(perceived_potions, latent_potions)] unity_chemistry = alchemy_pb2.Chemistry( stones=unity_stones, potions=unity_potions) rotation_mapping = rotation_to_unity(python_to_unity.rotation) return unity_chemistry, rotation_mapping def rotation_from_unity( rotation_mapping: alchemy_pb2.RotationMapping ) -> np.ndarray: """Get the transformation to undo rotation from unity.""" # Rotate back angles = [-int(rotation_mapping.rotation_angles.x), -int(rotation_mapping.rotation_angles.y), -int(rotation_mapping.rotation_angles.z)] return stones_and_potions.rotation_from_angles(angles) def rotation_to_unity(rotation: np.ndarray) -> alchemy_pb2.RotationMapping: """Convert the transformation to undo rotation to unity.""" angles = stones_and_potions.rotation_to_angles(rotation) return alchemy_pb2.RotationMapping(rotation_angles=unity_types_pb2.Vector3( **{axis: -round(a) for axis, a in zip('xyz', angles)})) def potion_map_from_potions( latent_potions: Sequence[LatentPotion], perceived_potions: Sequence[PerceivedPotion] ) -> PotionMap: """Calculate potion map relating latent and perceived potions.""" dimension_map = [-1, -1, -1] direction_map = [0, 0, 0] for perceived_potion, latent_potion in zip(perceived_potions, latent_potions): dimension_map[perceived_potion.perceived_dim] = latent_potion.latent_dim if latent_potion.latent_dir == perceived_potion.perceived_dir: direction_map[latent_potion.latent_dim] = 1 else: direction_map[latent_potion.latent_dim] = -1 return PotionMap(dim_map=dimension_map, dir_map=direction_map) def _get_aligned_coords_matching_latent( python_stones: Sequence[Tuple[PerceivedStone, AlignedStone, LatentStone]], latent_coords: Sequence[int] ) -> np.ndarray: return [aligned_stone.aligned_coords.astype(np.int) for _, aligned_stone, latent_stone in python_stones if latent_stone.latent_coords.tolist() == latent_coords][0] def find_dim_map_and_stone_map( chemistry: utils.Chemistry ) -> Tuple[np.ndarray, StoneMap, np.ndarray]: """Find a dimension map and stone map which map latent stones to perceived.""" latent_stones = stones_and_potions.possible_latent_stones() aligned_stones = [chemistry.stone_map.apply_inverse(stone) for stone in latent_stones] perceived_stones = [stones_and_potions.unalign(stone, chemistry.rotation) for stone in aligned_stones] for dim_map in [np.eye(3, dtype=np.int)[p, :] for p in itertools.permutations( [0, 1, 2])]: for stone_map in stones_and_potions.possible_stone_maps(): sm = np.diag(stone_map.latent_pos_dir.astype(np.int)) # Since we do rotation before reflection in this case we must allow # rotation forwards and backwards to get all cases. # Because of the scaling this is not just the inverse matrix. inverse_rotation = stones_and_potions.rotation_from_angles( [-a for a in stones_and_potions.rotation_to_angles( chemistry.rotation)]) for rotation in [chemistry.rotation, inverse_rotation]: all_match = True for ls, ps in zip(latent_stones, perceived_stones): new_ls = np.matmul(dim_map, ls.latent_coords.astype(np.int)) ps_prime = np.matmul(sm, np.matmul(np.linalg.inv(rotation), new_ls)) if not all(abs(a - b) < 0.0001 for a, b in zip( ps_prime, ps.perceived_coords.astype(np.int))): all_match = False break if all_match: return np.linalg.inv(dim_map), stone_map, rotation assert False, ( 'No dimension map and stone map takes latent stones to the passed ' 'perceived stones with the passed rotation.') def _apply_dim_map_to_stone( dim_map: np.ndarray, latent_stone: LatentStone ) -> LatentStone: coords = np.rint(np.matmul( dim_map, latent_stone.latent_coords.astype(np.int))) return LatentStone(np.array([int(c) for c in coords], np.object)) def _apply_dim_map_to_potion( dim_map: np.ndarray, latent_potion: LatentPotion ) -> LatentPotion: return LatentPotion( np.where(dim_map[latent_potion.latent_dim, :])[0][0], latent_potion.latent_dir) def _apply_dim_map_to_graph( dim_map: np.ndarray, graph: graphs.Graph ) -> graphs.Graph: """Swap latent dimensions in graph.""" edge_list = graphs.EdgeList() for start_node, end_nodes in graph.edge_list.edges.items(): start_coords = np.matmul(dim_map, np.array(start_node.coords)).tolist() new_start_node = graph.node_list.get_node_by_coords(start_coords) for end_node, edge in end_nodes.items(): end_coords = np.matmul(dim_map, np.array(end_node.coords)).tolist() new_end_node = graph.node_list.get_node_by_coords(end_coords) new_potion = stones_and_potions.Potion( edge[1].idx, np.where(dim_map[edge[1].dimension, :])[0][0], edge[1].direction) edge_list.add_edge(new_start_node, new_end_node, new_potion) return graphs.Graph(graph.node_list, edge_list) class PythonToUnityDimMap: """Convert from python method of mapping to unity method.""" def __init__(self, chemistry: utils.Chemistry): self._chemistry = chemistry self._dim_map, self.stone_map, self.rotation = find_dim_map_and_stone_map( chemistry) self.graph = self._apply_to_graph(self._chemistry.graph) self.potion_map = self._apply_to_potion_map(self._chemistry.potion_map) def apply_to_stone(self, latent_stone: LatentStone) -> LatentStone: return _apply_dim_map_to_stone(self._dim_map, latent_stone) def apply_to_potion(self, latent_potion: LatentPotion) -> LatentPotion: return _apply_dim_map_to_potion(self._dim_map, latent_potion) def _apply_to_graph(self, graph: graphs.Graph) -> graphs.Graph: return _apply_dim_map_to_graph(self._dim_map, graph) def _apply_to_potion_map(self, potion_map: PotionMap) -> PotionMap: latent_potions = stones_and_potions.possible_latent_potions() new_latent_potions = [self.apply_to_potion(latent_potion) for latent_potion in latent_potions] perceived_potions = [potion_map.apply_inverse(latent_potion) for latent_potion in latent_potions] return potion_map_from_potions(new_latent_potions, perceived_potions) def from_unity_chemistry( chemistry: alchemy_pb2.Chemistry, rotation_mapping: alchemy_pb2.RotationMapping ) -> utils.Chemistry: """Convert from unity Chemistry object to corresponding python types. Args: chemistry: A chemistry object received from the alchemy unity environment. rotation_mapping: A rotation mapping object received from the alchemy unity environment. Returns: A PotionMap describing the transformation from potion perceptual space to latent space. A StoneMap describing the transformation from stone aligned perceptual space to latent space. A Graph describing the available edges in latent space. A np.ndarray describing the rotation from stone aligned perceptual space to stone perceptual space. """ # In unity the latent stones are (possibly) rotated and then "perceptual # mapping applicators" are applied to say how this is represented on screen, # e.g. -1 in the first latent dimension is purple and +1 is blue. # By only considering 7 possible rotations (0 rotation and 45 degrees # clockise or anticlockwise about each axis) and just considering in what # direction perceptual attributes change, when this is combined with the # mapping of potion pairs to latent space dimensions and assigning a direction # to that potion pair, we get all mappings which are 45 degrees offset on one # axis (note that latent variables have the same effect on the reward so # swapping latent space dimensions has no effect). We get duplicates because # after rotating, one dimension of the max reward stone will have value 0 so # reflecting about this does not change the value. However, the configuration # is such that the task distribution is as it would be if we avoided # duplicates. # An alternative way to generate all these mappings without the duplicates # would be to take the stones latent coordinates and first apply a mapping # which changes the positive direction and then rotate these positions by 45 # degrees clockwise (excluding anticlockwise rotations). # It is easier to run algorithms like the ideal observer assuming the second # breakdown of the mapping because the rotation does not effect the best # action to take so we can take the perceived coordinates and undo the # rotation using any plausible rotation (even if it is not the correct one) # and then maintain a belief state over the remaining aspects of the # chemistry and update the belief state if we find the rotation was wrong. # We can switch between these equivalent breakdowns by possibly rotating in # the opposite direction. # From unity we get # perceived_stone = sm * r * latent_stone # where r rotates plus or minus 45 degrees and sm changes directions, we want # perceived_stone = r_prime * sm * latent_stone # where r_prime is rotating clockwise about the axis that r rotates around. rotation = rotation_from_unity(rotation_mapping) abs_rotation = stones_and_potions.rotation_from_angles( [-abs(a) for a in stones_and_potions.rotation_to_angles(rotation)]) python_stones = [_from_stone_unity_properties(stone, abs_rotation) for stone in chemistry.stones] python_potions = [_potions_from_potion_unity_properties(potion) for potion in chemistry.potions] graph = graphs_from_potion_unity_properties(chemistry.potions) # So sm_prime is diagonal with elements in {-1, 1} and dim_map is such that # the sum of each row and each column is 1 with non zero elements 1. # Let a := sm_prime * dim_map # a := [a11 a12 a13] # [a21 a22 a23] # [a31 a32 a33] # a * [1, 1, 1] = [a11 + a12 + a13, a21 + a22 + a23, a31 + a32 + a33] sum_of_each_row = _get_aligned_coords_matching_latent( python_stones, [1, 1, 1]) stone_map = StoneMap(pos_dir=sum_of_each_row) sm_prime = np.diag(sum_of_each_row) # a * [1, 1, 1] - a * [-1, 1, 1] = 2 * [a11, a21, a31] first_column = ((sum_of_each_row - _get_aligned_coords_matching_latent( python_stones, [-1, 1, 1]))/2).astype(np.int) second_column = ((sum_of_each_row - _get_aligned_coords_matching_latent( python_stones, [1, -1, 1]))/2).astype(np.int) third_column = ((sum_of_each_row - _get_aligned_coords_matching_latent( python_stones, [1, 1, -1]))/2).astype(np.int) a = np.hstack((first_column.reshape((3, 1)), second_column.reshape((3, 1)), third_column.reshape((3, 1)))) dim_map = np.rint(np.matmul(np.linalg.inv(sm_prime), a)).astype(np.int) latent_stones = [latent_stone for _, _, latent_stone in python_stones] aligned_stones = [aligned_stone for _, aligned_stone, _ in python_stones] latent_stones = [_apply_dim_map_to_stone(dim_map, latent_stone) for latent_stone in latent_stones] latent_potions = [latent_potion for _, latent_potion in python_potions] latent_potions = [_apply_dim_map_to_potion(dim_map, latent_potion) for latent_potion in latent_potions] perceived_potions = [perceived_potion for perceived_potion, _ in python_potions] graph = _apply_dim_map_to_graph(dim_map, graph) for aligned_stone, latent_stone in zip(aligned_stones, latent_stones): assert stone_map.apply(aligned_stone) == latent_stone, ( 'Applying the stone map to the aligned stone did not give the ' 'expected latent stone.\n{aligned_stone}\n{latent_stone}\n' '{stone_map}\n{chemistry}'.format( aligned_stone=aligned_stone, latent_stone=latent_stone, stone_map=stone_map, chemistry=chemistry)) potion_map = potion_map_from_potions(latent_potions, perceived_potions) for perceived_potion, latent_potion in zip(perceived_potions, latent_potions): assert potion_map.apply(perceived_potion) == latent_potion, ( 'Applying the potion map to the perceived potion did not give the ' 'expected latent potion.{perceived_potion}\n{latent_potion}\n' '{potion_map}\n{chemistry}'.format( perceived_potion=perceived_potion, latent_potion=latent_potion, potion_map=potion_map, chemistry=chemistry)) return utils.Chemistry(potion_map, stone_map, graph, abs_rotation)
3,794
0
377
3e437eb10c5579c54d13b48fb00dc5e65c50fb7b
8,319
py
Python
fastatomography/tomo/backends/astra_cpu.py
PhilippPelz/fasta-tomography
a75f0559c5912249d7c6e330b061ecad744556bf
[ "MIT" ]
1
2021-06-07T14:08:26.000Z
2021-06-07T14:08:26.000Z
fastatomography/tomo/backends/astra_cpu.py
PhilippPelz/fasta-tomography
a75f0559c5912249d7c6e330b061ecad744556bf
[ "MIT" ]
null
null
null
fastatomography/tomo/backends/astra_cpu.py
PhilippPelz/fasta-tomography
a75f0559c5912249d7c6e330b061ecad744556bf
[ "MIT" ]
null
null
null
# Copyright 2014-2017 The ODL contributors # # This file is part of ODL. # # This Source Code Form is subject to the terms of the Mozilla Public License, # v. 2.0. If a copy of the MPL was not distributed with this file, You can # obtain one at https://mozilla.org/MPL/2.0/. """Backend for ASTRA using CPU.""" from __future__ import print_function, division, absolute_import import numpy as np try: import astra except ImportError: pass from odl.discr import DiscreteLp, DiscreteLpElement from odl.tomo.backends.astra_setup import ( astra_projection_geometry, astra_volume_geometry, astra_data, astra_projector, astra_algorithm) from odl.tomo.geometry import Geometry from odl.util import writable_array __all__ = ('astra_cpu_forward_projector', 'astra_cpu_back_projector') # TODO: use context manager when creating data structures # TODO: is magnification scaling at the right place? def astra_cpu_forward_projector(vol_data, geometry, proj_space, out=None): """Run an ASTRA forward projection on the given data using the CPU. Parameters ---------- vol_data : `DiscreteLpElement` Volume data to which the forward projector is applied geometry : `Geometry` Geometry defining the tomographic setup proj_space : `DiscreteLp` Space to which the calling operator maps out : ``proj_space`` element, optional Element of the projection space to which the result is written. If ``None``, an element in ``proj_space`` is created. Returns ------- out : ``proj_space`` element Projection data resulting from the application of the projector. If ``out`` was provided, the returned object is a reference to it. """ if not isinstance(vol_data, DiscreteLpElement): raise TypeError('volume data {!r} is not a `DiscreteLpElement` ' 'instance.'.format(vol_data)) if vol_data.space.impl != 'numpy': raise TypeError("`vol_data.space.impl` must be 'numpy', got {!r}" "".format(vol_data.space.impl)) if not isinstance(geometry, Geometry): raise TypeError('geometry {!r} is not a Geometry instance' ''.format(geometry)) if not isinstance(proj_space, DiscreteLp): raise TypeError('`proj_space` {!r} is not a DiscreteLp ' 'instance.'.format(proj_space)) if proj_space.impl != 'numpy': raise TypeError("`proj_space.impl` must be 'numpy', got {!r}" "".format(proj_space.impl)) if vol_data.ndim != geometry.ndim: raise ValueError('dimensions {} of volume data and {} of geometry ' 'do not match' ''.format(vol_data.ndim, geometry.ndim)) if out is None: out = proj_space.element() else: if out not in proj_space: raise TypeError('`out` {} is neither None nor a ' 'DiscreteLpElement instance'.format(out)) ndim = vol_data.ndim # Create astra geometries vol_geom = astra_volume_geometry(vol_data.space) proj_geom = astra_projection_geometry(geometry) # Create projector if not all(s == vol_data.space.interp_byaxis[0] for s in vol_data.space.interp_byaxis): raise ValueError('volume interpolation must be the same in each ' 'dimension, got {}'.format(vol_data.space.interp)) vol_interp = vol_data.space.interp proj_id = astra_projector(vol_interp, vol_geom, proj_geom, ndim, impl='cpu') # Create ASTRA data structures vol_data_arr = np.asarray(vol_data) vol_id = astra_data(vol_geom, datatype='volume', data=vol_data_arr, allow_copy=True) with writable_array(out, dtype='float32', order='C') as out_arr: sino_id = astra_data(proj_geom, datatype='projection', data=out_arr, ndim=proj_space.ndim) # Create algorithm algo_id = astra_algorithm('forward', ndim, vol_id, sino_id, proj_id, impl='cpu') # Run algorithm astra.algorithm.run(algo_id) # Delete ASTRA objects astra.algorithm.delete(algo_id) astra.data2d.delete((vol_id, sino_id)) astra.projector.delete(proj_id) return out def astra_cpu_back_projector(proj_data, geometry, reco_space, out=None): """Run an ASTRA back-projection on the given data using the CPU. Parameters ---------- proj_data : `DiscreteLpElement` Projection data to which the back-projector is applied geometry : `Geometry` Geometry defining the tomographic setup reco_space : `DiscreteLp` Space to which the calling operator maps out : ``reco_space`` element, optional Element of the reconstruction space to which the result is written. If ``None``, an element in ``reco_space`` is created. Returns ------- out : ``reco_space`` element Reconstruction data resulting from the application of the backward projector. If ``out`` was provided, the returned object is a reference to it. """ if not isinstance(proj_data, DiscreteLpElement): raise TypeError('projection data {!r} is not a DiscreteLpElement ' 'instance'.format(proj_data)) if proj_data.space.impl != 'numpy': raise TypeError('`proj_data` must be a `numpy.ndarray` based, ' "container got `impl` {!r}" "".format(proj_data.space.impl)) if not isinstance(geometry, Geometry): raise TypeError('geometry {!r} is not a Geometry instance' ''.format(geometry)) if not isinstance(reco_space, DiscreteLp): raise TypeError('reconstruction space {!r} is not a DiscreteLp ' 'instance'.format(reco_space)) if reco_space.impl != 'numpy': raise TypeError("`reco_space.impl` must be 'numpy', got {!r}" "".format(reco_space.impl)) if reco_space.ndim != geometry.ndim: raise ValueError('dimensions {} of reconstruction space and {} of ' 'geometry do not match'.format( reco_space.ndim, geometry.ndim)) if out is None: out = reco_space.element() else: if out not in reco_space: raise TypeError('`out` {} is neither None nor a ' 'DiscreteLpElement instance'.format(out)) ndim = proj_data.ndim # Create astra geometries vol_geom = astra_volume_geometry(reco_space) proj_geom = astra_projection_geometry(geometry) # Create ASTRA data structure sino_id = astra_data(proj_geom, datatype='projection', data=proj_data, allow_copy=True) # Create projector # TODO: implement with different schemes for angles and detector if not all(s == proj_data.space.interp_byaxis[0] for s in proj_data.space.interp_byaxis): raise ValueError('data interpolation must be the same in each ' 'dimension, got {}' ''.format(proj_data.space.interp_byaxis)) proj_interp = proj_data.space.interp proj_id = astra_projector(proj_interp, vol_geom, proj_geom, ndim, impl='cpu') # Convert out to correct dtype and order if needed. with writable_array(out, dtype='float32', order='C') as out_arr: vol_id = astra_data(vol_geom, datatype='volume', data=out_arr, ndim=reco_space.ndim) # Create algorithm algo_id = astra_algorithm('backward', ndim, vol_id, sino_id, proj_id, impl='cpu') # Run algorithm astra.algorithm.run(algo_id) # Weight the adjoint by appropriate weights scaling_factor = float(proj_data.space.weighting.const) scaling_factor /= float(reco_space.weighting.const) out *= scaling_factor # Delete ASTRA objects astra.algorithm.delete(algo_id) astra.data2d.delete((vol_id, sino_id)) astra.projector.delete(proj_id) return out if __name__ == '__main__': from odl.util.testutils import run_doctests run_doctests()
38.513889
78
0.63361
# Copyright 2014-2017 The ODL contributors # # This file is part of ODL. # # This Source Code Form is subject to the terms of the Mozilla Public License, # v. 2.0. If a copy of the MPL was not distributed with this file, You can # obtain one at https://mozilla.org/MPL/2.0/. """Backend for ASTRA using CPU.""" from __future__ import print_function, division, absolute_import import numpy as np try: import astra except ImportError: pass from odl.discr import DiscreteLp, DiscreteLpElement from odl.tomo.backends.astra_setup import ( astra_projection_geometry, astra_volume_geometry, astra_data, astra_projector, astra_algorithm) from odl.tomo.geometry import Geometry from odl.util import writable_array __all__ = ('astra_cpu_forward_projector', 'astra_cpu_back_projector') # TODO: use context manager when creating data structures # TODO: is magnification scaling at the right place? def astra_cpu_forward_projector(vol_data, geometry, proj_space, out=None): """Run an ASTRA forward projection on the given data using the CPU. Parameters ---------- vol_data : `DiscreteLpElement` Volume data to which the forward projector is applied geometry : `Geometry` Geometry defining the tomographic setup proj_space : `DiscreteLp` Space to which the calling operator maps out : ``proj_space`` element, optional Element of the projection space to which the result is written. If ``None``, an element in ``proj_space`` is created. Returns ------- out : ``proj_space`` element Projection data resulting from the application of the projector. If ``out`` was provided, the returned object is a reference to it. """ if not isinstance(vol_data, DiscreteLpElement): raise TypeError('volume data {!r} is not a `DiscreteLpElement` ' 'instance.'.format(vol_data)) if vol_data.space.impl != 'numpy': raise TypeError("`vol_data.space.impl` must be 'numpy', got {!r}" "".format(vol_data.space.impl)) if not isinstance(geometry, Geometry): raise TypeError('geometry {!r} is not a Geometry instance' ''.format(geometry)) if not isinstance(proj_space, DiscreteLp): raise TypeError('`proj_space` {!r} is not a DiscreteLp ' 'instance.'.format(proj_space)) if proj_space.impl != 'numpy': raise TypeError("`proj_space.impl` must be 'numpy', got {!r}" "".format(proj_space.impl)) if vol_data.ndim != geometry.ndim: raise ValueError('dimensions {} of volume data and {} of geometry ' 'do not match' ''.format(vol_data.ndim, geometry.ndim)) if out is None: out = proj_space.element() else: if out not in proj_space: raise TypeError('`out` {} is neither None nor a ' 'DiscreteLpElement instance'.format(out)) ndim = vol_data.ndim # Create astra geometries vol_geom = astra_volume_geometry(vol_data.space) proj_geom = astra_projection_geometry(geometry) # Create projector if not all(s == vol_data.space.interp_byaxis[0] for s in vol_data.space.interp_byaxis): raise ValueError('volume interpolation must be the same in each ' 'dimension, got {}'.format(vol_data.space.interp)) vol_interp = vol_data.space.interp proj_id = astra_projector(vol_interp, vol_geom, proj_geom, ndim, impl='cpu') # Create ASTRA data structures vol_data_arr = np.asarray(vol_data) vol_id = astra_data(vol_geom, datatype='volume', data=vol_data_arr, allow_copy=True) with writable_array(out, dtype='float32', order='C') as out_arr: sino_id = astra_data(proj_geom, datatype='projection', data=out_arr, ndim=proj_space.ndim) # Create algorithm algo_id = astra_algorithm('forward', ndim, vol_id, sino_id, proj_id, impl='cpu') # Run algorithm astra.algorithm.run(algo_id) # Delete ASTRA objects astra.algorithm.delete(algo_id) astra.data2d.delete((vol_id, sino_id)) astra.projector.delete(proj_id) return out def astra_cpu_back_projector(proj_data, geometry, reco_space, out=None): """Run an ASTRA back-projection on the given data using the CPU. Parameters ---------- proj_data : `DiscreteLpElement` Projection data to which the back-projector is applied geometry : `Geometry` Geometry defining the tomographic setup reco_space : `DiscreteLp` Space to which the calling operator maps out : ``reco_space`` element, optional Element of the reconstruction space to which the result is written. If ``None``, an element in ``reco_space`` is created. Returns ------- out : ``reco_space`` element Reconstruction data resulting from the application of the backward projector. If ``out`` was provided, the returned object is a reference to it. """ if not isinstance(proj_data, DiscreteLpElement): raise TypeError('projection data {!r} is not a DiscreteLpElement ' 'instance'.format(proj_data)) if proj_data.space.impl != 'numpy': raise TypeError('`proj_data` must be a `numpy.ndarray` based, ' "container got `impl` {!r}" "".format(proj_data.space.impl)) if not isinstance(geometry, Geometry): raise TypeError('geometry {!r} is not a Geometry instance' ''.format(geometry)) if not isinstance(reco_space, DiscreteLp): raise TypeError('reconstruction space {!r} is not a DiscreteLp ' 'instance'.format(reco_space)) if reco_space.impl != 'numpy': raise TypeError("`reco_space.impl` must be 'numpy', got {!r}" "".format(reco_space.impl)) if reco_space.ndim != geometry.ndim: raise ValueError('dimensions {} of reconstruction space and {} of ' 'geometry do not match'.format( reco_space.ndim, geometry.ndim)) if out is None: out = reco_space.element() else: if out not in reco_space: raise TypeError('`out` {} is neither None nor a ' 'DiscreteLpElement instance'.format(out)) ndim = proj_data.ndim # Create astra geometries vol_geom = astra_volume_geometry(reco_space) proj_geom = astra_projection_geometry(geometry) # Create ASTRA data structure sino_id = astra_data(proj_geom, datatype='projection', data=proj_data, allow_copy=True) # Create projector # TODO: implement with different schemes for angles and detector if not all(s == proj_data.space.interp_byaxis[0] for s in proj_data.space.interp_byaxis): raise ValueError('data interpolation must be the same in each ' 'dimension, got {}' ''.format(proj_data.space.interp_byaxis)) proj_interp = proj_data.space.interp proj_id = astra_projector(proj_interp, vol_geom, proj_geom, ndim, impl='cpu') # Convert out to correct dtype and order if needed. with writable_array(out, dtype='float32', order='C') as out_arr: vol_id = astra_data(vol_geom, datatype='volume', data=out_arr, ndim=reco_space.ndim) # Create algorithm algo_id = astra_algorithm('backward', ndim, vol_id, sino_id, proj_id, impl='cpu') # Run algorithm astra.algorithm.run(algo_id) # Weight the adjoint by appropriate weights scaling_factor = float(proj_data.space.weighting.const) scaling_factor /= float(reco_space.weighting.const) out *= scaling_factor # Delete ASTRA objects astra.algorithm.delete(algo_id) astra.data2d.delete((vol_id, sino_id)) astra.projector.delete(proj_id) return out if __name__ == '__main__': from odl.util.testutils import run_doctests run_doctests()
0
0
0
2032cd849767a64618fdc7306202ed98d257d8f4
1,960
py
Python
frappe/query_builder/terms.py
Don-Leopardo/frappe
39097b05a7a9904776a435ee2c3d7a579d429389
[ "MIT" ]
3,755
2015-01-06T07:47:43.000Z
2022-03-31T20:54:23.000Z
frappe/query_builder/terms.py
Don-Leopardo/frappe
39097b05a7a9904776a435ee2c3d7a579d429389
[ "MIT" ]
7,369
2015-01-01T19:59:41.000Z
2022-03-31T23:02:05.000Z
frappe/query_builder/terms.py
Don-Leopardo/frappe
39097b05a7a9904776a435ee2c3d7a579d429389
[ "MIT" ]
2,685
2015-01-07T17:51:03.000Z
2022-03-31T23:16:24.000Z
from typing import Any, Dict, Optional from pypika.terms import Function, ValueWrapper from pypika.utils import format_alias_sql
39.2
138
0.764286
from typing import Any, Dict, Optional from pypika.terms import Function, ValueWrapper from pypika.utils import format_alias_sql class NamedParameterWrapper(): def __init__(self, parameters: Dict[str, Any]): self.parameters = parameters def update_parameters(self, param_key: Any, param_value: Any, **kwargs): self.parameters[param_key[2:-2]] = param_value def get_sql(self, **kwargs): return f'%(param{len(self.parameters) + 1})s' class ParameterizedValueWrapper(ValueWrapper): def get_sql(self, quote_char: Optional[str] = None, secondary_quote_char: str = "'", param_wrapper= None, **kwargs: Any) -> str: if param_wrapper is None: sql = self.get_value_sql(quote_char=quote_char, secondary_quote_char=secondary_quote_char, **kwargs) return format_alias_sql(sql, self.alias, quote_char=quote_char, **kwargs) else: value_sql = self.get_value_sql(quote_char=quote_char, **kwargs) if not isinstance(self.value,int) else self.value param_sql = param_wrapper.get_sql(**kwargs) param_wrapper.update_parameters(param_key=param_sql, param_value=value_sql, **kwargs) return format_alias_sql(param_sql, self.alias, quote_char=quote_char, **kwargs) class ParameterizedFunction(Function): def get_sql(self, **kwargs: Any) -> str: with_alias = kwargs.pop("with_alias", False) with_namespace = kwargs.pop("with_namespace", False) quote_char = kwargs.pop("quote_char", None) dialect = kwargs.pop("dialect", None) param_wrapper = kwargs.pop("param_wrapper", None) function_sql = self.get_function_sql(with_namespace=with_namespace, quote_char=quote_char, param_wrapper=param_wrapper, dialect=dialect) if self.schema is not None: function_sql = "{schema}.{function}".format( schema=self.schema.get_sql(quote_char=quote_char, dialect=dialect, **kwargs), function=function_sql, ) if with_alias: return format_alias_sql(function_sql, self.alias, quote_char=quote_char, **kwargs) return function_sql
1,590
51
186
2437b1fc5a17eb5303585ed2331bad10c365b40a
59
py
Python
src/qsiprep_analyses/utils/__init__.py
GalBenZvi/qsiprep_analyses
51512cffca218210f6b85e5eadd593b382963bbd
[ "Apache-2.0" ]
null
null
null
src/qsiprep_analyses/utils/__init__.py
GalBenZvi/qsiprep_analyses
51512cffca218210f6b85e5eadd593b382963bbd
[ "Apache-2.0" ]
6
2022-03-04T15:28:20.000Z
2022-03-30T09:37:12.000Z
src/qsiprep_analyses/utils/__init__.py
GalBenZvi/qsiprep_analyses
51512cffca218210f6b85e5eadd593b382963bbd
[ "Apache-2.0" ]
2
2022-03-13T11:07:48.000Z
2022-03-13T11:50:40.000Z
""" Utilities for the :mod:`qsiprep_analyses` package. """
14.75
50
0.694915
""" Utilities for the :mod:`qsiprep_analyses` package. """
0
0
0
5bca9217161ce91c534256d2d0103754755ea4e6
2,240
py
Python
My_Account/migrations/0001_initial.py
CHESyrian/Syrians
8376e9bed6e3a03f536d8aacd523d630f6bc4345
[ "MIT" ]
null
null
null
My_Account/migrations/0001_initial.py
CHESyrian/Syrians
8376e9bed6e3a03f536d8aacd523d630f6bc4345
[ "MIT" ]
null
null
null
My_Account/migrations/0001_initial.py
CHESyrian/Syrians
8376e9bed6e3a03f536d8aacd523d630f6bc4345
[ "MIT" ]
null
null
null
# Generated by Django 3.0.3 on 2020-04-22 21:23 from django.conf import settings from django.db import migrations, models import django.db.models.deletion
44.8
133
0.612946
# Generated by Django 3.0.3 on 2020-04-22 21:23 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Sharing_Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('Post', models.TextField()), ('Post_Date', models.DateTimeField(auto_now=True)), ('username', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Sharing_Image', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('Image', models.ImageField(upload_to='users_profiles/uploaded_images/')), ('Image_Text', models.TextField(null=True)), ('Image_Date', models.DateTimeField(auto_now=True)), ('username', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Profile_Model', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('Address', models.CharField(max_length=64, null=True)), ('Job', models.CharField(max_length=32, null=True)), ('Bio', models.CharField(max_length=120, null=True)), ('Number_Phone', models.CharField(max_length=16, null=True)), ('Profile_Image', models.ImageField(upload_to='users_profiles/profile_images/')), ('Cover_Image', models.ImageField(upload_to='users_profiles/cover_images/')), ('username', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
0
2,060
23
d00702f8ce3921e21728a7927615308f95062ef8
3,279
py
Python
refresh.py
pwillworth/dfkreport
ae10226430a3a74ac3c07ae888cab14dde778db8
[ "Apache-2.0" ]
11
2022-01-18T17:36:12.000Z
2022-03-21T21:09:17.000Z
refresh.py
pwillworth/dfkreport
ae10226430a3a74ac3c07ae888cab14dde778db8
[ "Apache-2.0" ]
null
null
null
refresh.py
pwillworth/dfkreport
ae10226430a3a74ac3c07ae888cab14dde778db8
[ "Apache-2.0" ]
4
2022-01-18T18:37:48.000Z
2022-01-22T02:14:48.000Z
#!/usr/bin/env python3 import nets import db import contracts from web3 import Web3 import prices import logging import logging.handlers import jsonpickle # Iterate through all transactions for account and run refresh actions # Update the gas transaction fee amount and value assuming tx is on Harmony if __name__ == "__main__": main()
43.72
175
0.655688
#!/usr/bin/env python3 import nets import db import contracts from web3 import Web3 import prices import logging import logging.handlers import jsonpickle def main(): handler = logging.handlers.RotatingFileHandler('../refresh.log', maxBytes=33554432, backupCount=10) logging.basicConfig(handlers=[handler], level=logging.INFO, format='%(asctime)s.%(msecs)03d %(levelname)-8s %(message)s', datefmt='%Y-%m-%d %H:%M:%S') logging.info('Starting refresh process') # Connect to right network that txs are for w3 = Web3(Web3.HTTPProvider(nets.hmy_web3)) if not w3.isConnected(): logging.error('Error: Critical w3 connection failure') return 'Error: Blockchain connection failure.' con = db.aConn() cur = con.cursor() cur.execute("SELECT DISTINCT account FROM transactions") row = cur.fetchone() while row != None: logging.info('Starting refresh of account {0}'.format(row[0])) refreshAccount(w3, con, row[0]) row = cur.fetchone() con.close() # Iterate through all transactions for account and run refresh actions def refreshAccount(w3, con, account): cur = con.cursor() cur.execute("SELECT * FROM transactions WHERE account=%s", (account)) row = cur.fetchone() while row != None: if row[7] == None and account not in contracts.address_map: addFee(w3, con, row[0], row[2], row[3], account) row = cur.fetchone() # Update the gas transaction fee amount and value assuming tx is on Harmony def addFee(w3, con, tx, eventType, events, account): # don't want to add gas to payment service tx or tavern sales/hires because gas is paid by other account if (eventType != 'airdrops' or '0x6Ca68D6Df270a047b12Ba8405ec688B5dF42D50C' not in events) and (eventType != 'tavern' or ('sale' not in events and 'hire' not in events)): try: # sometimes they just don't exist yet result = w3.eth.get_transaction(tx) receipt = w3.eth.get_transaction_receipt(tx) except Exception as err: logging.error('Got failed to get transaction {0} {1}'.format(tx, str(err))) return 'Error: Failed to get tx' block = result['blockNumber'] timestamp = w3.eth.get_block(block)['timestamp'] txFee = Web3.fromWei(result['gasPrice'], 'ether') * receipt['gasUsed'] feeValue = prices.priceLookup(timestamp, '0xcF664087a5bB0237a0BAd6742852ec6c8d69A27a') * txFee logging.info('updating gas data {0}: - {1}/{2}'.format(tx, txFee, feeValue)) # Update each event object inside if events != None and events != '': results = jsonpickle.decode(events) if type(results) is list and len(results) > 0: results[0].fiatFeeValue = feeValue elif type(results) is not list: results.fiatFeeValue = feeValue events = jsonpickle.encode(results) cur = con.cursor() cur.execute("UPDATE transactions SET events=%s, network='harmony', fee=%s, feeValue=%s WHERE txHash=%s AND account=%s", (events, txFee, feeValue, tx, account)) con.commit() else: logging.info('skipping tx {0}, does not meet update criteria'.format(tx)) if __name__ == "__main__": main()
2,871
0
67
d57b9bd1fceae16ab680d68d444523487314cf4c
5,908
py
Python
examples/research/ftt-nas/fixed_point_plugins/fixed_point_patch_new.py
Harald-R/aw_nas
8cf0cf48f7bcfd7893e6355dcc3ccbc83fd39783
[ "MIT" ]
195
2020-08-15T17:39:23.000Z
2022-02-28T07:48:03.000Z
examples/research/ftt-nas/fixed_point_plugins/fixed_point_patch_new.py
Harald-R/aw_nas
8cf0cf48f7bcfd7893e6355dcc3ccbc83fd39783
[ "MIT" ]
22
2020-08-16T01:44:48.000Z
2022-03-12T00:46:54.000Z
examples/research/ftt-nas/fixed_point_plugins/fixed_point_patch_new.py
Harald-R/aw_nas
8cf0cf48f7bcfd7893e6355dcc3ccbc83fd39783
[ "MIT" ]
27
2020-08-16T06:34:56.000Z
2022-03-06T18:16:52.000Z
#pylint: disable-all """ Script for patch SubCandidateNet/CNNGenotypeModel.forward """ from contextlib import contextmanager import six import numpy as np import torch from torch import nn from nics_fix_pt.quant import quantitize from aw_nas.weights_manager.super_net import SubCandidateNet from aw_nas.final.cnn_model import CNNGenotypeModel BITWIDTH = 8 FIX_METHOD = 1 # auto_fix # ---- patch ---- ## Here do not patch forward, as activation is not quantized in calls to `forward`, ## it's not meaningful to quantize the weights during the calls to `forward` too ## It must be patched, or ``backward through a graph second time'' error will occur. ## Let's reset all the module attributes to the original parameters in `_parameters`. SubCandidateNet.old_forward = SubCandidateNet.forward CNNGenotypeModel.old_forward = CNNGenotypeModel.forward SubCandidateNet.forward = fix_forward CNNGenotypeModel.forward = fix_forward # only patch `forward_one_step_callback`, not forward SubCandidateNet.old_forward_one_step_callback = SubCandidateNet.forward_one_step_callback CNNGenotypeModel.old_forward_one_step_callback = CNNGenotypeModel.forward_one_step_callback SubCandidateNet.forward_one_step_callback = fix_forward_one_step_callback CNNGenotypeModel.forward_one_step_callback = fix_forward_one_step_callback # ---- end patch ---- @contextmanager """ Note there are a lot randomness in the search process. so all the number are just a ref. | | quantize | 30 eva | time quantize weight / | #quantize | ratio | | | patch method | step time | time feature inject 1e-4 | calls | | |---+--------------------------------------------------+-----------+--------------------------+-----------+-------| | 1 | old | ~65 | 31.01/12.82 | ~68088 | 2.4 | | 2 | new patch forward&fonestepcallback | ~75 | 28.68/13.05 | ~63954 | 2.2 | | 3 | new patch fonestepcallback | ~60 | 14.19/12.90 | ~31997 | 1.1 | | x | new patch forward(set original)&fonestepcallback | ~60 | - | ~31997 | - | from 1->2, the quantization call reduction comes from avoiding quantizing unused params in one forward pass (`check_visited=True`) and avoiding duplicated quantization calls when there are double connection in the rollout. """
48.826446
130
0.629824
#pylint: disable-all """ Script for patch SubCandidateNet/CNNGenotypeModel.forward """ from contextlib import contextmanager import six import numpy as np import torch from torch import nn from nics_fix_pt.quant import quantitize from aw_nas.weights_manager.super_net import SubCandidateNet from aw_nas.final.cnn_model import CNNGenotypeModel BITWIDTH = 8 FIX_METHOD = 1 # auto_fix def _generate_default_fix_cfg(names, scale=0, bitwidth=8, method=0): return {n: { "method": torch.autograd.Variable(torch.IntTensor(np.array([method])), requires_grad=False), "scale": torch.autograd.Variable(torch.IntTensor(np.array([scale])), requires_grad=False), "bitwidth": torch.autograd.Variable(torch.IntTensor(np.array([bitwidth])), requires_grad=False) } for n in names} # ---- patch ---- ## Here do not patch forward, as activation is not quantized in calls to `forward`, ## it's not meaningful to quantize the weights during the calls to `forward` too ## It must be patched, or ``backward through a graph second time'' error will occur. ## Let's reset all the module attributes to the original parameters in `_parameters`. SubCandidateNet.old_forward = SubCandidateNet.forward CNNGenotypeModel.old_forward = CNNGenotypeModel.forward def fix_forward(self, *args, **kwargs): with fix_params(self, original=True): return self.old_forward(*args, **kwargs) SubCandidateNet.forward = fix_forward CNNGenotypeModel.forward = fix_forward # only patch `forward_one_step_callback`, not forward SubCandidateNet.old_forward_one_step_callback = SubCandidateNet.forward_one_step_callback CNNGenotypeModel.old_forward_one_step_callback = CNNGenotypeModel.forward_one_step_callback def fix_forward_one_step_callback(self, inputs, callback): with fix_params(self): return self.old_forward_one_step_callback(inputs, callback) SubCandidateNet.forward_one_step_callback = fix_forward_one_step_callback CNNGenotypeModel.forward_one_step_callback = fix_forward_one_step_callback # ---- end patch ---- def quantize(self, fix_cfg, original=False): for n, param in six.iteritems(self._parameters): if not isinstance(param, (torch.Tensor, torch.autograd.Variable)): continue if not original: # run quantize param, _ = quantitize(param, fix_cfg.get(n, {}), {}, name=n) object.__setattr__(self, n, param) for n, param in six.iteritems(self._buffers): if not isinstance(param, (torch.Tensor, torch.autograd.Variable)): continue if not original: # run quantize param, _ = quantitize(param, fix_cfg.get(n, {}), {}, name=n) object.__setattr__(self, n, param) def setback_buffer(self): for n, param in six.iteritems(self._buffers): if param is not None: # set buffer back, as there will be no gradient, just in-place modification # FIXME: For fixed-point batch norm, # the running mean/var accumulattion is on quantitized mean/var, # which means it might fail to update the running mean/var # if the updating momentum is too small self._buffers[n] = getattr(self, n) @contextmanager def fix_params(module, original=False): if not hasattr(module, "_generated_fixed_cfgs"): module._generated_fixed_cfgs = {} for mod_prefix, mod in module.named_modules(): if isinstance(mod, (nn.Conv2d, nn.Linear)): to_fix = ["weight", "bias"] # elif isinstance(mod, nn.BatchNorm2d): # to_fix = ["weight", "bias", "running_mean", "running_var"] else: to_fix = [] if to_fix: module._generated_fixed_cfgs[mod_prefix] = _generate_default_fix_cfg( to_fix, method=FIX_METHOD, bitwidth=BITWIDTH) current_active_modules = dict(module.named_modules()) \ if not hasattr(module, "active_named_members")\ else dict(module.active_named_members(member="modules", prefix="super_net", check_visited=True)) # FIXME: possible multi-access in multi-gpu to_fix_mods = set(module._generated_fixed_cfgs.keys()).intersection( current_active_modules.keys()) for mod_prefix in to_fix_mods: fix_cfg = module._generated_fixed_cfgs[mod_prefix] mod = current_active_modules[mod_prefix] quantize(mod, fix_cfg, original=original) yield if not original: for mod_prefix in to_fix_mods: mod = current_active_modules[mod_prefix] setback_buffer(mod) """ Note there are a lot randomness in the search process. so all the number are just a ref. | | quantize | 30 eva | time quantize weight / | #quantize | ratio | | | patch method | step time | time feature inject 1e-4 | calls | | |---+--------------------------------------------------+-----------+--------------------------+-----------+-------| | 1 | old | ~65 | 31.01/12.82 | ~68088 | 2.4 | | 2 | new patch forward&fonestepcallback | ~75 | 28.68/13.05 | ~63954 | 2.2 | | 3 | new patch fonestepcallback | ~60 | 14.19/12.90 | ~31997 | 1.1 | | x | new patch forward(set original)&fonestepcallback | ~60 | - | ~31997 | - | from 1->2, the quantization call reduction comes from avoiding quantizing unused params in one forward pass (`check_visited=True`) and avoiding duplicated quantization calls when there are double connection in the rollout. """
3,287
0
135
eedd7919dde8c6f614677433f04639e63a253d58
2,942
py
Python
gland_classification/four_resolutions_model/model.py
onermustafaumit/MLNM
eef9a694fc616d68094c6dbf4d8fd4e45c842e2d
[ "MIT" ]
1
2022-02-07T06:41:43.000Z
2022-02-07T06:41:43.000Z
gland_classification/four_resolutions_model/model.py
onermustafaumit/MLNM
eef9a694fc616d68094c6dbf4d8fd4e45c842e2d
[ "MIT" ]
null
null
null
gland_classification/four_resolutions_model/model.py
onermustafaumit/MLNM
eef9a694fc616d68094c6dbf4d8fd4e45c842e2d
[ "MIT" ]
null
null
null
import torchvision import torch.nn as nn
45.261538
119
0.71312
import torchvision import torch.nn as nn class ResNet(nn.Module): def __init__(self, pretrained=False, num_classes=2, num_intermediate_features=64): super().__init__() self.pretrained = pretrained self.num_classes = num_classes self.num_intermediate_features = num_intermediate_features self.resnet = torchvision.models.resnet18(pretrained=pretrained) self.in_features = self.resnet.fc.in_features self.resnet.fc = nn.Linear(self.in_features, num_intermediate_features, bias=True) self.fc2 = nn.Linear(num_intermediate_features, num_classes) self.dropout = nn.Dropout(0.5) def forward(self, x): feature_vec = self.resnet(x) feature_vec = self.dropout(feature_vec) class_score_vec = self.fc2(feature_vec) return feature_vec, class_score_vec class Model(nn.Module): def __init__(self, pretrained=False, num_classes=2, num_intermediate_features=64): super().__init__() self.pretrained = pretrained self.num_classes = num_classes self.num_intermediate_features = num_intermediate_features self.resnet_high = ResNet(pretrained, num_classes, num_intermediate_features) self.resnet_medium = ResNet(pretrained, num_classes, num_intermediate_features) self.resnet_low = ResNet(pretrained, num_classes, num_intermediate_features) self.resnet_low2 = ResNet(pretrained, num_classes, num_intermediate_features) self.fc3 = nn.Linear(num_intermediate_features, 10) self.fc4 = nn.Linear(10, num_classes) self.dropout_high = nn.Dropout(0.5) self.dropout_medium = nn.Dropout(0.5) self.dropout_low = nn.Dropout(0.5) self.dropout_low2 = nn.Dropout(0.5) self.dropout_result = nn.Dropout(0.5) self.dropout_fc3 = nn.Dropout(0.5) def forward(self, x_high, x_medium, x_low, x_low2): feature_vec_high, class_score_vec_high = self.resnet_high(x_high) feature_vec_high = self.dropout_high(feature_vec_high) feature_vec_medium, class_score_vec_medium = self.resnet_medium(x_medium) feature_vec_medium = self.dropout_medium(feature_vec_medium) feature_vec_low, class_score_vec_low = self.resnet_low(x_low) feature_vec_low = self.dropout_low(feature_vec_low) feature_vec_low2, class_score_vec_low2 = self.resnet_low2(x_low2) feature_vec_low2 = self.dropout_low2(feature_vec_low2) feature_vec = feature_vec_high + feature_vec_medium + feature_vec_low + feature_vec_low2 feature_vec = self.dropout_result(feature_vec) feature_vec = self.fc3(feature_vec) feature_vec = self.dropout_fc3(feature_vec) class_score_vec = self.fc4(feature_vec) return class_score_vec_high, class_score_vec_medium, class_score_vec_low, class_score_vec_low2, class_score_vec
2,714
5
168
9dbbc46dc3ab82348e7ae0fc2b05ea58038bf2f9
5,019
py
Python
py/sym/messages/authz_pb2.py
symopsio/protobufs
5a33aa2c00116810e7e5a1d2b23f9134bb13eb10
[ "Apache-2.0" ]
null
null
null
py/sym/messages/authz_pb2.py
symopsio/protobufs
5a33aa2c00116810e7e5a1d2b23f9134bb13eb10
[ "Apache-2.0" ]
null
null
null
py/sym/messages/authz_pb2.py
symopsio/protobufs
5a33aa2c00116810e7e5a1d2b23f9134bb13eb10
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: sym/messages/authz.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from sym.models import schema_pb2 as sym_dot_models_dot_schema__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='sym/messages/authz.proto', package='sym.messages', syntax='proto3', serialized_options=b'Z%github.com/symopsio/types/go/messages', create_key=_descriptor._internal_create_key, serialized_pb=b'\n\x18sym/messages/authz.proto\x12\x0csym.messages\x1a\x17sym/models/schema.proto\"G\n\x05\x41uthz\x12\"\n\x06schema\x18\x01 \x01(\x0b\x32\x12.sym.models.Schema\x12\x0c\n\x04user\x18\x02 \x01(\t\x12\x0c\n\x04role\x18\x03 \x01(\t\"1\n\rAuthzResponse\x12\n\n\x02ok\x18\x01 \x01(\x08\x12\x14\n\x0c\x65rrorMessage\x18\x02 \x01(\tB\'Z%github.com/symopsio/types/go/messagesb\x06proto3' , dependencies=[sym_dot_models_dot_schema__pb2.DESCRIPTOR,]) _AUTHZ = _descriptor.Descriptor( name='Authz', full_name='sym.messages.Authz', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='schema', full_name='sym.messages.Authz.schema', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='user', full_name='sym.messages.Authz.user', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='role', full_name='sym.messages.Authz.role', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=67, serialized_end=138, ) _AUTHZRESPONSE = _descriptor.Descriptor( name='AuthzResponse', full_name='sym.messages.AuthzResponse', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='ok', full_name='sym.messages.AuthzResponse.ok', index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='errorMessage', full_name='sym.messages.AuthzResponse.errorMessage', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=140, serialized_end=189, ) _AUTHZ.fields_by_name['schema'].message_type = sym_dot_models_dot_schema__pb2._SCHEMA DESCRIPTOR.message_types_by_name['Authz'] = _AUTHZ DESCRIPTOR.message_types_by_name['AuthzResponse'] = _AUTHZRESPONSE _sym_db.RegisterFileDescriptor(DESCRIPTOR) Authz = _reflection.GeneratedProtocolMessageType('Authz', (_message.Message,), { 'DESCRIPTOR' : _AUTHZ, '__module__' : 'sym.messages.authz_pb2' # @@protoc_insertion_point(class_scope:sym.messages.Authz) }) _sym_db.RegisterMessage(Authz) AuthzResponse = _reflection.GeneratedProtocolMessageType('AuthzResponse', (_message.Message,), { 'DESCRIPTOR' : _AUTHZRESPONSE, '__module__' : 'sym.messages.authz_pb2' # @@protoc_insertion_point(class_scope:sym.messages.AuthzResponse) }) _sym_db.RegisterMessage(AuthzResponse) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
36.904412
397
0.75533
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: sym/messages/authz.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from sym.models import schema_pb2 as sym_dot_models_dot_schema__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='sym/messages/authz.proto', package='sym.messages', syntax='proto3', serialized_options=b'Z%github.com/symopsio/types/go/messages', create_key=_descriptor._internal_create_key, serialized_pb=b'\n\x18sym/messages/authz.proto\x12\x0csym.messages\x1a\x17sym/models/schema.proto\"G\n\x05\x41uthz\x12\"\n\x06schema\x18\x01 \x01(\x0b\x32\x12.sym.models.Schema\x12\x0c\n\x04user\x18\x02 \x01(\t\x12\x0c\n\x04role\x18\x03 \x01(\t\"1\n\rAuthzResponse\x12\n\n\x02ok\x18\x01 \x01(\x08\x12\x14\n\x0c\x65rrorMessage\x18\x02 \x01(\tB\'Z%github.com/symopsio/types/go/messagesb\x06proto3' , dependencies=[sym_dot_models_dot_schema__pb2.DESCRIPTOR,]) _AUTHZ = _descriptor.Descriptor( name='Authz', full_name='sym.messages.Authz', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='schema', full_name='sym.messages.Authz.schema', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='user', full_name='sym.messages.Authz.user', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='role', full_name='sym.messages.Authz.role', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=67, serialized_end=138, ) _AUTHZRESPONSE = _descriptor.Descriptor( name='AuthzResponse', full_name='sym.messages.AuthzResponse', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='ok', full_name='sym.messages.AuthzResponse.ok', index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='errorMessage', full_name='sym.messages.AuthzResponse.errorMessage', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=140, serialized_end=189, ) _AUTHZ.fields_by_name['schema'].message_type = sym_dot_models_dot_schema__pb2._SCHEMA DESCRIPTOR.message_types_by_name['Authz'] = _AUTHZ DESCRIPTOR.message_types_by_name['AuthzResponse'] = _AUTHZRESPONSE _sym_db.RegisterFileDescriptor(DESCRIPTOR) Authz = _reflection.GeneratedProtocolMessageType('Authz', (_message.Message,), { 'DESCRIPTOR' : _AUTHZ, '__module__' : 'sym.messages.authz_pb2' # @@protoc_insertion_point(class_scope:sym.messages.Authz) }) _sym_db.RegisterMessage(Authz) AuthzResponse = _reflection.GeneratedProtocolMessageType('AuthzResponse', (_message.Message,), { 'DESCRIPTOR' : _AUTHZRESPONSE, '__module__' : 'sym.messages.authz_pb2' # @@protoc_insertion_point(class_scope:sym.messages.AuthzResponse) }) _sym_db.RegisterMessage(AuthzResponse) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
0
0
0
65515bf65bebc383c9d94596460baa49da4a8f9c
2,506
py
Python
parser.py
winterYANGWT/STEFANN_PyTorch
bcee0ddbc286b4c83de0b2ea243091fb9c14fb90
[ "Apache-2.0" ]
1
2021-07-11T04:47:18.000Z
2021-07-11T04:47:18.000Z
parser.py
mathemusician/STEFANN_PyTorch
82941bc859af424babcf1f23a3d973764226263b
[ "Apache-2.0" ]
1
2021-08-11T16:37:02.000Z
2021-08-11T16:37:02.000Z
parser.py
mathemusician/STEFANN_PyTorch
82941bc859af424babcf1f23a3d973764226263b
[ "Apache-2.0" ]
1
2021-07-10T04:26:33.000Z
2021-07-10T04:26:33.000Z
import os import os.path as path import itertools import pandas as pd import glob import config import random FANNET_IMG_DIR='/mnt/Data/GoogleFontsSTEFANN/fannet' COLORNET_IMG_DIR='/mnt/Data/GoogleFontsSTEFANN/colornet' if __name__=='__main__': process_fannet(path.join(FANNET_IMG_DIR,'train'), './Data/STEFANN/fannet_train.csv') process_fannet(path.join(FANNET_IMG_DIR,'valid'), './Data/STEFANN/fannet_val.csv') process_colornet(path.join(COLORNET_IMG_DIR,'train'), './Data/STEFANN/colornet_train.csv') process_colornet(path.join(COLORNET_IMG_DIR,'valid'), './Data/STEFANN/colornet_val.csv')
31.721519
72
0.622107
import os import os.path as path import itertools import pandas as pd import glob import config import random FANNET_IMG_DIR='/mnt/Data/GoogleFontsSTEFANN/fannet' COLORNET_IMG_DIR='/mnt/Data/GoogleFontsSTEFANN/colornet' def process_fannet(img_dir,save_path): perms=itertools.product(os.listdir(img_dir), list(config.SRC_CHRS), list(config.TRGT_CHRS)) df=pd.DataFrame(columns=['src_img_path', 'trgt_label', 'trgt_img_path', 'font']) item_list=[] for perm in perms: item={} src_chr=str(ord(perm[1])) trgt_chr=str(ord(perm[2])) font=perm[0] src_img_path=path.join(img_dir,font,src_chr+'.jpg') trgt_img_path=path.join(img_dir,font,trgt_chr+'.jpg') item['src_img_path']=src_img_path item['trgt_label']=config.TRGT_CHRS.find(perm[2]) item['trgt_img_path']=trgt_img_path item['font']=font item_list.append(item) random.shuffle(item_list) df=df.append(item_list,ignore_index=True) df.to_csv(save_path,index=False) def process_colornet(img_dir,save_path): input1_img_dir=path.join(img_dir,'input_color') input2_img_dir=path.join(img_dir,'input_mask') output_img_dir=path.join(img_dir,'output_color') files_name=sorted(p.split('/')[-1] for p in \ glob.glob('{}/*{}'.format(input1_img_dir,'.jpg'))) df=pd.DataFrame(columns=['input_color', 'input_mask', 'output_color']) item_list=[] for file_name in files_name: item={} item['input_color']=path.join(input1_img_dir,file_name) item['input_mask']=path.join(input2_img_dir,file_name) item['output_color']=path.join(output_img_dir,file_name) item_list.append(item) random.shuffle(item_list) df=df.append(item_list,ignore_index=True) df.to_csv(save_path,index=False) if __name__=='__main__': process_fannet(path.join(FANNET_IMG_DIR,'train'), './Data/STEFANN/fannet_train.csv') process_fannet(path.join(FANNET_IMG_DIR,'valid'), './Data/STEFANN/fannet_val.csv') process_colornet(path.join(COLORNET_IMG_DIR,'train'), './Data/STEFANN/colornet_train.csv') process_colornet(path.join(COLORNET_IMG_DIR,'valid'), './Data/STEFANN/colornet_val.csv')
1,762
0
46
7b8242216757295d93bacc284fc1accdd444067f
1,084
py
Python
js_code.py
luoshenshen/LibrarySeats
c9fbd4fb7c26d380ee17b765cb4b83b1f3bbb78c
[ "MIT" ]
12
2021-06-03T03:26:45.000Z
2022-03-06T09:45:57.000Z
js_code.py
luoshenshen/LibrarySeats
c9fbd4fb7c26d380ee17b765cb4b83b1f3bbb78c
[ "MIT" ]
5
2021-11-06T07:35:00.000Z
2022-03-13T06:02:58.000Z
js_code.py
luoshenshen/LibrarySeats
c9fbd4fb7c26d380ee17b765cb4b83b1f3bbb78c
[ "MIT" ]
4
2021-06-07T09:46:31.000Z
2022-03-09T14:20:34.000Z
''' @ project: LibrarySeats @ file: test @ user: 罗申申 @ email: luoshenshen@buaa.edu.cn @ tool: PyCharm @ time: 2021/5/24 14:27 ''' import re import function import execjs import browser_tools def verify_code_get(jsname,cookie,time): '''代码不麻烦,主要是分析js花了些时间''' url = "https://static.wechat.laixuanzuo.com/template/theme2/cache/layout/" + jsname + ".js" pattern_js_bg = 'void 0\=\=\=.\&\&\(.\=""\);' pattern_js_end = '.\.ajax_get' pattern_js = pattern_js_bg + '.*' + pattern_js_end pattern_js_res = '\+"\&".*\+"\&yzm\="' exjs = network(url,cookie,time) funjs = re.search(pattern_js, exjs).group(0) funjs = funjs[19:-10] resjs = re.search(pattern_js_res, exjs).group(0) resultcommond = resjs[5:-14] exjs8 = exjs docjs = execjs.compile(exjs8 + funjs) return docjs.eval(resultcommond)
23.565217
95
0.654059
''' @ project: LibrarySeats @ file: test @ user: 罗申申 @ email: luoshenshen@buaa.edu.cn @ tool: PyCharm @ time: 2021/5/24 14:27 ''' import re import function import execjs import browser_tools def obtain_js(html): js = '<script src="(.*?)"' href = re.compile(js, re.S).findall(html) return href def verify_code_get(jsname,cookie,time): '''代码不麻烦,主要是分析js花了些时间''' url = "https://static.wechat.laixuanzuo.com/template/theme2/cache/layout/" + jsname + ".js" pattern_js_bg = 'void 0\=\=\=.\&\&\(.\=""\);' pattern_js_end = '.\.ajax_get' pattern_js = pattern_js_bg + '.*' + pattern_js_end pattern_js_res = '\+"\&".*\+"\&yzm\="' exjs = network(url,cookie,time) funjs = re.search(pattern_js, exjs).group(0) funjs = funjs[19:-10] resjs = re.search(pattern_js_res, exjs).group(0) resultcommond = resjs[5:-14] exjs8 = exjs docjs = execjs.compile(exjs8 + funjs) return docjs.eval(resultcommond) def network(url,cookie,time): return function.session_get(url=url, header=browser_tools.get_js_header(cookie,time)).text
195
0
46
9d5a188e29aa85bb09a92509714e910b4fa52596
1,678
py
Python
en16931/tests/test_invoice_line.py
invinet/python-en16931
f6671f86e8d578c3c82a48134426f89ec13b160c
[ "Apache-2.0" ]
9
2018-07-09T10:34:27.000Z
2021-10-13T20:11:04.000Z
en16931/tests/test_invoice_line.py
invinet/python-en16931
f6671f86e8d578c3c82a48134426f89ec13b160c
[ "Apache-2.0" ]
null
null
null
en16931/tests/test_invoice_line.py
invinet/python-en16931
f6671f86e8d578c3c82a48134426f89ec13b160c
[ "Apache-2.0" ]
1
2022-02-07T15:30:53.000Z
2022-02-07T15:30:53.000Z
import pytest from en16931.invoice_line import InvoiceLine
28.931034
62
0.585221
import pytest from en16931.invoice_line import InvoiceLine class TestInvoiceLine: def test_initialization(self): il = InvoiceLine(quantity=11, unit_code="EA", price=2, item_name='test', currency="EUR", tax_percent=0.21, tax_category="S") assert il.is_valid() assert il.currency == "EUR" def test_invalid_currency(self): il = InvoiceLine() with pytest.raises(KeyError): il.currency = "blah" def test_no_taxes(self): il = InvoiceLine() assert il.tax is None def test_creation(self): il = InvoiceLine() il.quantity = 11 il.price = 2 il.item_name = 'test' il.tax_percent = 0.21 il.tax_category = "S" assert il.is_valid() def test_line_extension_amount(self): il = InvoiceLine(quantity=11, unit_code="EA", price=2, item_name='test', currency="EUR", tax_percent=0.21, tax_category="S") assert str(il.line_extension_amount) == '22.00' def test_invalid_unit_code(self): il = InvoiceLine() with pytest.raises(ValueError): il.unit_code = "ASF" def test_invalid_price(self): il = InvoiceLine() with pytest.raises(ValueError): il.price = "dasdas" def test_invalid_line_extension_amount(self): il = InvoiceLine() with pytest.raises(ValueError): il.line_extension_amount = "expensive" def test_invalid_quantity(self): il = InvoiceLine() with pytest.raises(ValueError): il.quantity = "dasdas"
1,350
1
266
9faa68d2b05b4a33cebe4f7dd86018471e582c98
3,336
py
Python
var_caller_mt.py
shimbalama/friday_sessions_QIMR
5f5c65fdea98b22df845b09e3a72dbc7989e8ed1
[ "MIT" ]
null
null
null
var_caller_mt.py
shimbalama/friday_sessions_QIMR
5f5c65fdea98b22df845b09e3a72dbc7989e8ed1
[ "MIT" ]
null
null
null
var_caller_mt.py
shimbalama/friday_sessions_QIMR
5f5c65fdea98b22df845b09e3a72dbc7989e8ed1
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 from multiprocessing import Pool, TimeoutError from glob import glob import gzip import pysam from Bio import SeqIO from collections import Counter, defaultdict import scipy.stats as stats import operator import pandas as pd import argparse import cProfile import sys def chunk_ref(args, chroms): ''' Split ref into chunks for threading ''' #make server mode where just takes one chrom and scatters with WDL chunks = [] size = 100000 #just for testing, put back to 1mb total_len = 0 for record in SeqIO.parse(args.ref, 'fasta'): if record.id in chroms: for i in range(0, len(record.seq), size): if len(record.seq) > i + size: end = i + size else:#end of chrom end = len(record.seq) chunks.append((record.id, i, i+size)) return chunks if __name__ == '__main__': main()
25.082707
121
0.555456
#!/usr/bin/env python3 from multiprocessing import Pool, TimeoutError from glob import glob import gzip import pysam from Bio import SeqIO from collections import Counter, defaultdict import scipy.stats as stats import operator import pandas as pd import argparse import cProfile import sys def main (): parser = argparse.ArgumentParser(description='somatic var caller') required = parser.add_argument_group( 'Required', 'ref and pileups') required.add_argument( '-r', '--ref', type=str, help='ref 37 or 38 [38]') required.add_argument( '-c', '--cancer_pile', type=str, help='pileup of tumour/cancer') required.add_argument( '-n', '--normal_pile', type=str, help='pileup of normal/blood') optional = parser.add_argument_group( 'Optional', 'threads and chroms') optional.add_argument( '-x', '--chrom', type=str, help='Which chromosomes to query. comma,separated,list or [all]', default='all') optional.add_argument( '-t', '--threads', type=int, help='Threads [5]', default=8) args = parser.parse_args() if args.chrom == 'all': chroms = ['chr' + str(i+1) for i in range(22)] + ['chrX', 'chrY'] else: chroms = args.chrom.split(',') chunks = chunk_ref(args, chroms) print (f'len chunks {len(chunks)}') d={} with Pool(processes=args.threads) as pool: tmp = [(args, chunk) for chunk in chunks] res = pool.map(doit, tmp) for vars in res: d = {**d, **vars} df = pd.DataFrame.from_dict(d, orient='index') df.to_csv('test.tsv', sep='\t') ''' Some useful code: #Define what chroms you want if args.chrom == 'all': chroms = ['chr' + str(i+1) for i in range(22)] + ['chrX', 'chrY'] else: chroms = args.chrom.split(',') #Parse tabix for pos in tabixfile.fetch('chr' + str(self.chrom), self.start, self.end): tmp_d = dict(zip(keys, pos.split())) ... # variant call with fisher oddsratio, pvalue1 = stats.fisher_exact([ [tumour_count, normal_count], [non_base_tumour, non_base_normal]], alternative='greater') ''' def doit(tup): #https://stackoverflow.com/questions/53890693/cprofile-causes-pickling-error-when-running-multiprocessing-python-code args, genomic_region = tup print (genomic_region) def chunk_ref(args, chroms): ''' Split ref into chunks for threading ''' #make server mode where just takes one chrom and scatters with WDL chunks = [] size = 100000 #just for testing, put back to 1mb total_len = 0 for record in SeqIO.parse(args.ref, 'fasta'): if record.id in chroms: for i in range(0, len(record.seq), size): if len(record.seq) > i + size: end = i + size else:#end of chrom end = len(record.seq) chunks.append((record.id, i, i+size)) return chunks if __name__ == '__main__': main()
2,328
0
46
dade49d1b215000562cd2d23b09812f5a692264c
713
py
Python
BOJ_Solved/BOJ-16928.py
CodingLeeSeungHoon/Python_Algorithm_TeamNote
1e92986999b45aa9951e12e67b23062e410e9b36
[ "MIT" ]
7
2021-11-19T14:50:59.000Z
2022-02-25T20:00:20.000Z
BOJ_Solved/BOJ-16928.py
CodingLeeSeungHoon/Python_Algorithm_TeamNote
1e92986999b45aa9951e12e67b23062e410e9b36
[ "MIT" ]
null
null
null
BOJ_Solved/BOJ-16928.py
CodingLeeSeungHoon/Python_Algorithm_TeamNote
1e92986999b45aa9951e12e67b23062e410e9b36
[ "MIT" ]
null
null
null
# coding=utf-8 """ 백준 16928번 : 뱀과 사다리 게임 """ import sys from collections import deque input = sys.stdin.readline N, M = map(int, input().split()) graph = [*range(101)] visited = [-1] * 101 for _ in range(N + M): x, y = map(int, input().split()) graph[x] = y bfs(graph, 1, visited) print(visited[-1])
19.27027
63
0.504909
# coding=utf-8 """ 백준 16928번 : 뱀과 사다리 게임 """ import sys from collections import deque input = sys.stdin.readline def bfs(graph, start, visited): queue = deque([start]) visited[start] = 0 while queue: v = queue.popleft() for i in range(1, 7): y = v + i if y > 100: continue y = graph[y] if visited[y] == -1 or visited[y] > visited[v] + 1: visited[y] = visited[v] + 1 queue.append(y) N, M = map(int, input().split()) graph = [*range(101)] visited = [-1] * 101 for _ in range(N + M): x, y = map(int, input().split()) graph[x] = y bfs(graph, 1, visited) print(visited[-1])
376
0
23
b156fbcb3777c67bbda34c74c49e66b3b3d17cc7
4,001
py
Python
data/birthmark_xml_create.py
mitubaEX/MITUBASearcher
7d6eb92bcc608a27519d8e6e30b033dc784694f3
[ "Apache-2.0" ]
null
null
null
data/birthmark_xml_create.py
mitubaEX/MITUBASearcher
7d6eb92bcc608a27519d8e6e30b033dc784694f3
[ "Apache-2.0" ]
5
2017-09-12T15:41:33.000Z
2017-10-23T14:21:23.000Z
data/birthmark_xml_create.py
mitubaEX/MITUBASearcher
7d6eb92bcc608a27519d8e6e30b033dc784694f3
[ "Apache-2.0" ]
null
null
null
import glob import os import sys import csv csv.field_size_limit(1000000000) # -*- coding: utf-8 -*- import codecs files = [] cvfv = codecs.open("./birth_cvfv.xml","w",'utf-8') fmc = codecs.open("./birth_fmc.xml","w",'utf-8') fuc = codecs.open("./birth_fuc.xml","w",'utf-8') _2gram = codecs.open("./birth_2gram.xml","w",'utf-8') _3gram = codecs.open("./birth_3gram.xml","w",'utf-8') _4gram = codecs.open("./birth_4gram.xml","w",'utf-8') _5gram = codecs.open("./birth_5gram.xml","w",'utf-8') _6gram = codecs.open("./birth_6gram.xml","w",'utf-8') smc = codecs.open("./birth_smc.xml","w",'utf-8') uc = codecs.open("./birth_uc.xml","w",'utf-8') wsp = codecs.open("./birth_wsp.xml","w",'utf-8') files = [cvfv, fmc, fuc, _2gram, _3gram, _4gram, _5gram, _6gram, smc, uc, wsp] for j in files: init(j) tmp = glob.glob("./*.csv") count = 0 for i in tmp: reader = open(i).read().split('\n') if '\0' not in open(i).read(): if reader is not None: for row in reader: row = row.split(',',3) if len(row) >= 4: row[0] = row[0].replace('\n',"").replace('<','&lt;').replace(">",'&gt;').replace("&",'&amp;').replace("\"",'&quot;').replace("\'",'&apos;') row[1] = row[1].replace('\n',"").replace('<','&lt;').replace(">",'&gt;').replace("&",'&amp;').replace("\"",'&quot;').replace("\'",'&apos;') row[2] = row[2].replace('\n',"").replace('<','&lt;').replace(">",'&gt;').replace("&",'&amp;').replace("\"",'&quot;').replace("\'",'&apos;') row[3] = row[3].replace('\n',"").replace('<','&lt;').replace(">",'&gt;').replace("&",'&amp;').replace("\"",'&quot;').replace("\'",'&apos;') if "cvfv" in row[2]: writer(cvfv, row) elif "fmc" in row[2]: writer(fmc, row) elif "fuc" in row[2]: writer(fuc, row) elif "2-gram" in str(i): writer(_2gram, row) elif "3-gram" in str(i): writer(_3gram, row) elif "4-gram" in str(i): writer(_4gram, row) elif "5-gram" in str(i): writer(_5gram, row) elif "6-gram" in str(i): writer(_6gram, row) elif "smc" in row[2]: writer(smc, row) elif "uc" in row[2]: writer(uc, row) elif "wsp" in row[2]: writer(wsp, row) for j in files: finish_writer(j)
43.021505
198
0.48038
import glob import os import sys import csv csv.field_size_limit(1000000000) # -*- coding: utf-8 -*- import codecs files = [] cvfv = codecs.open("./birth_cvfv.xml","w",'utf-8') fmc = codecs.open("./birth_fmc.xml","w",'utf-8') fuc = codecs.open("./birth_fuc.xml","w",'utf-8') _2gram = codecs.open("./birth_2gram.xml","w",'utf-8') _3gram = codecs.open("./birth_3gram.xml","w",'utf-8') _4gram = codecs.open("./birth_4gram.xml","w",'utf-8') _5gram = codecs.open("./birth_5gram.xml","w",'utf-8') _6gram = codecs.open("./birth_6gram.xml","w",'utf-8') smc = codecs.open("./birth_smc.xml","w",'utf-8') uc = codecs.open("./birth_uc.xml","w",'utf-8') wsp = codecs.open("./birth_wsp.xml","w",'utf-8') files = [cvfv, fmc, fuc, _2gram, _3gram, _4gram, _5gram, _6gram, smc, uc, wsp] def init(filename): filename.write("<add>\n") filename.write("<doc>\n") def writer(filename, row): if uc == filename: filename.write("</doc>\n") filename.write("<doc>\n") filename.write("<field name=\"filename\">"+unicode(row[0], 'utf-8')+"</field>\n") filename.write("<field name=\"place\">"+unicode(row[1], 'utf-8')+"</field>\n") filename.write("<field name=\"barthmark\">"+unicode(row[2], 'utf-8')+"</field>\n") if len(row[3]) <= 30000: filename.write("<field name=\"data\">"+row[3].decode('utf-8').replace('<','&lt;').replace(">",'&gt;').replace("&",'&amp;').replace("\"",'&quot;').replace("\'",'&apo s;')+"</field>\n") else: filename.write("</doc>\n") filename.write("<doc>\n") filename.write("<field name=\"filename\">"+row[0]+"</field>\n") filename.write("<field name=\"place\">"+row[1]+"</field>\n") filename.write("<field name=\"barthmark\">"+row[2]+"</field>\n") if len(row[3]) <= 30000: filename.write("<field name=\"data\">"+row[3].decode('utf-8').replace('<','&lt;').replace(">",'&gt;').replace("&",'&amp;').replace("\"",'&quot;').replace("\'",'&apo s;')+"</field>\n") def finish_writer(filename): filename.write("</doc>\n") filename.write("</add>\n") for j in files: init(j) tmp = glob.glob("./*.csv") count = 0 for i in tmp: reader = open(i).read().split('\n') if '\0' not in open(i).read(): if reader is not None: for row in reader: row = row.split(',',3) if len(row) >= 4: row[0] = row[0].replace('\n',"").replace('<','&lt;').replace(">",'&gt;').replace("&",'&amp;').replace("\"",'&quot;').replace("\'",'&apos;') row[1] = row[1].replace('\n',"").replace('<','&lt;').replace(">",'&gt;').replace("&",'&amp;').replace("\"",'&quot;').replace("\'",'&apos;') row[2] = row[2].replace('\n',"").replace('<','&lt;').replace(">",'&gt;').replace("&",'&amp;').replace("\"",'&quot;').replace("\'",'&apos;') row[3] = row[3].replace('\n',"").replace('<','&lt;').replace(">",'&gt;').replace("&",'&amp;').replace("\"",'&quot;').replace("\'",'&apos;') if "cvfv" in row[2]: writer(cvfv, row) elif "fmc" in row[2]: writer(fmc, row) elif "fuc" in row[2]: writer(fuc, row) elif "2-gram" in str(i): writer(_2gram, row) elif "3-gram" in str(i): writer(_3gram, row) elif "4-gram" in str(i): writer(_4gram, row) elif "5-gram" in str(i): writer(_5gram, row) elif "6-gram" in str(i): writer(_6gram, row) elif "smc" in row[2]: writer(smc, row) elif "uc" in row[2]: writer(uc, row) elif "wsp" in row[2]: writer(wsp, row) for j in files: finish_writer(j)
1,249
0
69
95964d33b38741eebab8192e62f19d04248c6675
1,170
py
Python
setup.py
AmidBidee/Robot-Arm
cfacfc779b2f025846e9748167bcfb15ce207923
[ "MIT" ]
1
2022-03-27T20:09:10.000Z
2022-03-27T20:09:10.000Z
setup.py
AmidBidee/Robot-Arm
cfacfc779b2f025846e9748167bcfb15ce207923
[ "MIT" ]
4
2022-03-25T03:45:10.000Z
2022-03-29T14:31:16.000Z
setup.py
AmidBidee/RobotArm
cfacfc779b2f025846e9748167bcfb15ce207923
[ "MIT" ]
null
null
null
import setuptools from setuptools import setup, find_packages with open("README.md", "r") as fh: long_description = fh.read() setup( name="robotarm", # Replace with your username version="0.0.4", author="<Aaron Ahmid Balogun>", author_email="<amidbidee@gmail.com>", description="<Template Setup.py package>", long_description=long_description, long_description_content_type="text/markdown", url="<https://github.com/AmidBidee/RobotArm>", classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], install_requires=['gunicorn', 'flask', 'pyyaml', 'python-decouple', 'requests', 'psutil', 'tabulate'], package_dir={"": "robotarm"}, packages=find_packages( where='.', include=['robotarm*'], # ["*"] by default exclude=['robotarm.tests'], # empty by default ), python_requires=">=3.6", py_modules=['arm', 'robotarm', 'controllers', 'handlers', 'armservice'], entry_points={ 'console_scripts': [ 'arm=Robot-Arm.robotarm.arm:main', ], }, )
21.272727
106
0.620513
import setuptools from setuptools import setup, find_packages with open("README.md", "r") as fh: long_description = fh.read() setup( name="robotarm", # Replace with your username version="0.0.4", author="<Aaron Ahmid Balogun>", author_email="<amidbidee@gmail.com>", description="<Template Setup.py package>", long_description=long_description, long_description_content_type="text/markdown", url="<https://github.com/AmidBidee/RobotArm>", classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], install_requires=['gunicorn', 'flask', 'pyyaml', 'python-decouple', 'requests', 'psutil', 'tabulate'], package_dir={"": "robotarm"}, packages=find_packages( where='.', include=['robotarm*'], # ["*"] by default exclude=['robotarm.tests'], # empty by default ), python_requires=">=3.6", py_modules=['arm', 'robotarm', 'controllers', 'handlers', 'armservice'], entry_points={ 'console_scripts': [ 'arm=Robot-Arm.robotarm.arm:main', ], }, )
0
0
0
51cb20a476045ed9a30f634816c937e0032634fa
5,628
py
Python
samples/snippets/publisher_test.py
deckikwok/python-pubsub
7e02bd8bc87676b0f38c90bc218dd4714f09f3a4
[ "Apache-2.0" ]
null
null
null
samples/snippets/publisher_test.py
deckikwok/python-pubsub
7e02bd8bc87676b0f38c90bc218dd4714f09f3a4
[ "Apache-2.0" ]
null
null
null
samples/snippets/publisher_test.py
deckikwok/python-pubsub
7e02bd8bc87676b0f38c90bc218dd4714f09f3a4
[ "Apache-2.0" ]
null
null
null
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import uuid import backoff from google.api_core.exceptions import NotFound from google.cloud import pubsub_v1 import mock import pytest import publisher UUID = uuid.uuid4().hex PROJECT_ID = os.environ["GOOGLE_CLOUD_PROJECT"] TOPIC_ID = "publisher-test-topic-" + UUID SUBSCRIPTION_ID = "publisher-test-subscription-" + UUID # Allow 60s for tests to finish. MAX_TIME = 60 @pytest.fixture(scope="module") @pytest.fixture(scope="module") @pytest.fixture(scope="module") @pytest.fixture(scope="module")
29.621053
88
0.744314
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import uuid import backoff from google.api_core.exceptions import NotFound from google.cloud import pubsub_v1 import mock import pytest import publisher UUID = uuid.uuid4().hex PROJECT_ID = os.environ["GOOGLE_CLOUD_PROJECT"] TOPIC_ID = "publisher-test-topic-" + UUID SUBSCRIPTION_ID = "publisher-test-subscription-" + UUID # Allow 60s for tests to finish. MAX_TIME = 60 @pytest.fixture(scope="module") def publisher_client(): yield pubsub_v1.PublisherClient() @pytest.fixture(scope="module") def subscriber_client(): subscriber_client = pubsub_v1.SubscriberClient() yield subscriber_client # Close the subscriber client properly during teardown. subscriber_client.close() @pytest.fixture(scope="module") def topic_path(publisher_client): topic_path = publisher_client.topic_path(PROJECT_ID, TOPIC_ID) try: topic = publisher_client.get_topic(request={"topic": topic_path}) except NotFound: topic = publisher_client.create_topic(request={"name": topic_path}) yield topic.name try: publisher_client.delete_topic(request={"topic": topic.name}) except NotFound: pass @pytest.fixture(scope="module") def subscription_path(subscriber_client, topic_path): subscription_path = subscriber_client.subscription_path(PROJECT_ID, SUBSCRIPTION_ID) subscription = subscriber_client.create_subscription( request={"name": subscription_path, "topic": topic_path} ) yield subscription.name try: subscriber_client.delete_subscription( request={"subscription": subscription_path} ) except NotFound: pass def _make_sleep_patch(): real_sleep = time.sleep def new_sleep(period): if period == 60: real_sleep(5) raise RuntimeError("sigil") else: real_sleep(period) return mock.patch("time.sleep", new=new_sleep) def test_create(publisher_client, capsys): # The scope of `topic_path` is limited to this function. topic_path = publisher_client.topic_path(PROJECT_ID, TOPIC_ID) try: publisher_client.delete_topic(request={"topic": topic_path}) except NotFound: pass publisher.create_topic(PROJECT_ID, TOPIC_ID) out, _ = capsys.readouterr() assert f"Created topic: {topic_path}" in out def test_list(topic_path, capsys): publisher.list_topics(PROJECT_ID) out, _ = capsys.readouterr() assert topic_path in out def test_publish(topic_path, capsys): publisher.publish_messages(PROJECT_ID, TOPIC_ID) out, _ = capsys.readouterr() assert f"Published messages to {topic_path}." in out def test_publish_with_custom_attributes(topic_path, capsys): publisher.publish_messages_with_custom_attributes(PROJECT_ID, TOPIC_ID) out, _ = capsys.readouterr() assert f"Published messages with custom attributes to {topic_path}." in out def test_publish_with_batch_settings(topic_path, capsys): publisher.publish_messages_with_batch_settings(PROJECT_ID, TOPIC_ID) out, _ = capsys.readouterr() assert f"Published messages with batch settings to {topic_path}." in out def test_publish_with_flow_control_settings(topic_path, capsys): publisher.publish_messages_with_flow_control_settings(PROJECT_ID, TOPIC_ID) out, _ = capsys.readouterr() assert f"Published messages with flow control settings to {topic_path}." in out def test_publish_with_retry_settings(topic_path, capsys): publisher.publish_messages_with_retry_settings(PROJECT_ID, TOPIC_ID) out, _ = capsys.readouterr() assert f"Published messages with retry settings to {topic_path}." in out def test_publish_with_error_handler(topic_path, capsys): publisher.publish_messages_with_error_handler(PROJECT_ID, TOPIC_ID) out, _ = capsys.readouterr() assert f"Published messages with error handler to {topic_path}." in out def test_publish_with_ordering_keys(topic_path, capsys): publisher.publish_with_ordering_keys(PROJECT_ID, TOPIC_ID) out, _ = capsys.readouterr() assert f"Published messages with ordering keys to {topic_path}." in out def test_resume_publish_with_error_handler(topic_path, capsys): publisher.resume_publish_with_ordering_keys(PROJECT_ID, TOPIC_ID) out, _ = capsys.readouterr() assert f"Resumed publishing messages with ordering keys to {topic_path}." in out def test_detach_subscription(subscription_path, capsys): publisher.detach_subscription(PROJECT_ID, SUBSCRIPTION_ID) out, _ = capsys.readouterr() assert f"{subscription_path} is detached." in out def test_delete(publisher_client): publisher.delete_topic(PROJECT_ID, TOPIC_ID) @backoff.on_exception(backoff.expo, AssertionError, max_time=MAX_TIME) def eventually_consistent_test(): with pytest.raises(Exception): publisher_client.get_topic( request={"topic": publisher_client.topic_path(PROJECT_ID, TOPIC_ID)} ) eventually_consistent_test()
4,100
0
387
7b2a91c84bc4cb09ca9e0267db05e2ac0ace93e9
3,354
py
Python
newsapp/models.py
Esther-Anyona/four-one-one
6a5e019b35710941a669c1b49e993b683c99d615
[ "MIT" ]
null
null
null
newsapp/models.py
Esther-Anyona/four-one-one
6a5e019b35710941a669c1b49e993b683c99d615
[ "MIT" ]
null
null
null
newsapp/models.py
Esther-Anyona/four-one-one
6a5e019b35710941a669c1b49e993b683c99d615
[ "MIT" ]
null
null
null
from django.db import models from django.contrib.auth.models import User from cloudinary.models import CloudinaryField # CloudinaryImage("turtles.jpg").image(width=70, height=53, crop="scale") """ Models """
34.9375
173
0.720036
from django.db import models from django.contrib.auth.models import User from cloudinary.models import CloudinaryField # CloudinaryImage("turtles.jpg").image(width=70, height=53, crop="scale") """ Models """ class Neighbourhood(models.Model): neighbourhood_name = models.CharField(max_length=100) location = models.CharField(max_length=50) description = models.TextField() occupants_count = models.IntegerField(null=True, blank=True) admin = models.ForeignKey(User, on_delete=models.CASCADE) neighbourhood_pic = CloudinaryField('hood-pic') ambulance_contact = models.CharField(max_length=20, null=True, blank=True) police_contact = models.CharField(max_length=20, null=True, blank=True) date_created = models.DateTimeField(auto_now_add=True) def create_neigbourhood(self): self.save() def get_neighbourhoods(self): neighbourhoods = Neighbourhood.objects.all() return neighbourhoods class Profile(models.Model): user = models.OneToOneField(User, on_delete=models.CASCADE) member_id = models.CharField(max_length=10, blank=True) profile_pic = CloudinaryField('profile-pic') bio = models.TextField(blank=True) neighbourhood_id = models.ForeignKey(Neighbourhood, on_delete=models.CASCADE) email = models.CharField(max_length=100) date_created = models.DateTimeField(auto_now_add=True) def __str__(self): return f'{self.user.username} Profile' def save_profile(self): super().save() class Business(models.Model): name = models.CharField(max_length=200, null=True, blank=True) description = models.TextField(blank=True) user = models.ForeignKey(Profile, on_delete=models.CASCADE, related_name='Business_owner') neighbourhood_id = models.ForeignKey(Neighbourhood, on_delete=models.CASCADE, related_name='Hood') business_email = models.CharField(max_length=100) image = CloudinaryField('business_image', null=True) date_created = models.DateTimeField(auto_now_add=True, null=True) date_updated = models.DateTimeField(auto_now_add=True, null=True) def __str__(self): return f'{self.name}Business' def create_business(self): self.save() def delete_business(self): self.delete() @classmethod def find_business(cls,business_id): business = cls.objects.get(id = business_id) return business def update_business(self, id, name, description, user, neighbourhood_id, biz_email): update = NeighbourHood.objects.filter(id = id).update(name = name , description = description, user=user, neighbourhood_id = neighbourhood_id, biz_email = biz_email) return update """ methods """ # create_business() # delete_business() # find_business(business_id) # update_business() class Post(models.Model): title = models.CharField(max_length=50, null=True) post = models.TextField() date_created = models.DateTimeField(auto_now_add=True) author = models.ForeignKey(Profile, on_delete=models.CASCADE, related_name='Author') neighbourhood = models.ForeignKey(Neighbourhood, on_delete=models.CASCADE, related_name='Hood_post') def __str__(self): return f'{self.title} Post' def save_post(self): self.save() def delete_post(self): self.delete()
701
2,349
91
38bbd6e96323d1dc65e0352cdedb7d3a7f70fe9a
321
py
Python
setup.py
fiefdx/pytea
466f2e15506fc66e402437aa2cfeb8b2c9f19c64
[ "MIT" ]
1
2016-09-04T10:24:27.000Z
2016-09-04T10:24:27.000Z
setup.py
fiefdx/pytea
466f2e15506fc66e402437aa2cfeb8b2c9f19c64
[ "MIT" ]
null
null
null
setup.py
fiefdx/pytea
466f2e15506fc66e402437aa2cfeb8b2c9f19c64
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- ''' Created on 2014-07-16 @summary: Trellis TEA use pure python @author: fiefdx ''' from distutils.core import setup setup(name='pytea', version='1.0.2', author = 'fiefdx', author_email = 'fiefdx@gmail.com', package_dir={'pytea': 'src'}, packages=['pytea'], )
20.0625
40
0.595016
# -*- coding: utf-8 -*- ''' Created on 2014-07-16 @summary: Trellis TEA use pure python @author: fiefdx ''' from distutils.core import setup setup(name='pytea', version='1.0.2', author = 'fiefdx', author_email = 'fiefdx@gmail.com', package_dir={'pytea': 'src'}, packages=['pytea'], )
0
0
0