hexsha
stringlengths
40
40
size
int64
7
1.04M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
247
max_stars_repo_name
stringlengths
4
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
368k
โŒ€
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
โŒ€
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
โŒ€
max_issues_repo_path
stringlengths
4
247
max_issues_repo_name
stringlengths
4
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
โŒ€
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
โŒ€
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
โŒ€
max_forks_repo_path
stringlengths
4
247
max_forks_repo_name
stringlengths
4
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
โŒ€
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
โŒ€
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
โŒ€
content
stringlengths
1
1.04M
avg_line_length
float64
1.77
618k
max_line_length
int64
1
1.02M
alphanum_fraction
float64
0
1
original_content
stringlengths
7
1.04M
filtered:remove_function_no_docstring
int64
-102
942k
filtered:remove_class_no_docstring
int64
-354
977k
filtered:remove_delete_markers
int64
0
60.1k
843a7a0fcaaeddc92d334ae668dee6b9974e0a0d
92
py
Python
ASGama CTF/[RE] xor in reverse/solver.py
bemrdo/CTF-2019
424512f7c43278d72091aa737da78907c14f9fc1
[ "MIT" ]
null
null
null
ASGama CTF/[RE] xor in reverse/solver.py
bemrdo/CTF-2019
424512f7c43278d72091aa737da78907c14f9fc1
[ "MIT" ]
null
null
null
ASGama CTF/[RE] xor in reverse/solver.py
bemrdo/CTF-2019
424512f7c43278d72091aa737da78907c14f9fc1
[ "MIT" ]
1
2020-03-14T07:24:12.000Z
2020-03-14T07:24:12.000Z
s = "a)))KkFmQ*wFz)TixK*||" flag = '' for i in s: flag += chr(ord(i) ^ 25) print flag
11.5
28
0.51087
s = "a)))KkFmQ*wFz)TixK*||" flag = '' for i in s: flag += chr(ord(i) ^ 25) print flag
0
0
0
9a4954bf539c0495ed9582a2a437a584b81eafba
1,537
py
Python
ELDAmwl/tests/test_factory.py
actris-scc/ELDAmwl
c4d8426e6609a00837779a80d4acd39c580a0178
[ "MIT" ]
1
2021-12-06T09:48:07.000Z
2021-12-06T09:48:07.000Z
ELDAmwl/tests/test_factory.py
actris-scc/ELDAmwl
c4d8426e6609a00837779a80d4acd39c580a0178
[ "MIT" ]
null
null
null
ELDAmwl/tests/test_factory.py
actris-scc/ELDAmwl
c4d8426e6609a00837779a80d4acd39c580a0178
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """Tests for Signals""" from ELDAmwl.bases.factory import BaseOperation from ELDAmwl.bases.factory import BaseOperationFactory from ELDAmwl.component.registry import Registry from unittest.mock import patch import unittest DB_DATA = [ ('TestA', OperationA), ('TestB', OperationB), ]
26.964912
109
0.7365
# -*- coding: utf-8 -*- """Tests for Signals""" from ELDAmwl.bases.factory import BaseOperation from ELDAmwl.bases.factory import BaseOperationFactory from ELDAmwl.component.registry import Registry from unittest.mock import patch import unittest class Factory(BaseOperationFactory): pass class OperationA(BaseOperation): pass class OperationB(BaseOperation): pass DB_DATA = [ ('TestA', OperationA), ('TestB', OperationB), ] def test_factory_registration(): registry = Registry() registry.register_class(Factory, 'TestA', OperationA) registry.register_class(Factory, 'TestB', OperationB) assert len(registry.factory_registry[Factory.name].registry) == 2 assert registry.get_factory_registration(Factory).find_class_by_name('TestA') == OperationA # noqa E501 assert registry.get_factory_registration(Factory).find_class_by_name('TestB') == OperationB # noqa E501 assert registry.find_class_by_name(Factory, 'TestA') == OperationA assert registry.find_class_by_name(Factory, 'TestB') == OperationB class TestFactory(unittest.TestCase): @patch.object(Factory, 'get_classname_from_db') def test_factory(self, mock_get_classname_from_db): from ELDAmwl.component.registry import registry for klass_name, klass in DB_DATA: registry.register_class(Factory, klass_name, klass) for klass_name, klass in DB_DATA: mock_get_classname_from_db.return_value = klass_name assert Factory()().__class__ == klass
940
159
115
bb519dce1d09797f72dd8f2de1841806604a851b
3,797
py
Python
pygtkweb/demos/012-label.py
allbuttonspressed/pyjs
c726fdead530eb63ee4763ae15daaa58d84cd58f
[ "ECL-2.0", "Apache-2.0" ]
1
2018-09-19T09:14:16.000Z
2018-09-19T09:14:16.000Z
pygtkweb/demos/012-label.py
andreyvit/pyjamas
1154abe3340a84dba7530b8174aaddecfc1a0944
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
pygtkweb/demos/012-label.py
andreyvit/pyjamas
1154abe3340a84dba7530b8174aaddecfc1a0944
[ "ECL-2.0", "Apache-2.0" ]
1
2019-08-13T20:32:25.000Z
2019-08-13T20:32:25.000Z
#!/usr/bin/env python # example label.py import pygtk pygtk.require('2.0') import gtk if __name__ == "__main__": Labels() main()
39.552083
82
0.520411
#!/usr/bin/env python # example label.py import pygtk pygtk.require('2.0') import gtk class Labels: def __init__(self): self.window = gtk.Window(gtk.WINDOW_TOPLEVEL) self.window.connect("destroy", lambda w: gtk.main_quit()) self.window.set_title("Label") vbox = gtk.VBox(False, 5) hbox = gtk.HBox(False, 5) self.window.add(hbox) hbox.pack_start(vbox, False, False, 0) self.window.set_border_width(5) frame = gtk.Frame("Normal Label") label = gtk.Label("This is a Normal label") frame.add(label) vbox.pack_start(frame, False, False, 0) frame = gtk.Frame("Multi-line Label") label = gtk.Label("This is a Multi-line label.\nSecond line\n" "Third line") frame.add(label) vbox.pack_start(frame, False, False, 0) frame = gtk.Frame("Left Justified Label") label = gtk.Label("This is a Left-Justified\n" "Multi-line label.\nThird line") label.set_justify(gtk.JUSTIFY_LEFT) frame.add(label) vbox.pack_start(frame, False, False, 0) frame = gtk.Frame("Right Justified Label") label = gtk.Label("This is a Right-Justified\nMulti-line label.\n" "Fourth line, (j/k)") label.set_justify(gtk.JUSTIFY_RIGHT) frame.add(label) vbox.pack_start(frame, False, False, 0) vbox = gtk.VBox(False, 5) hbox.pack_start(vbox, False, False, 0) frame = gtk.Frame("Line wrapped label") label = gtk.Label("This is an example of a line-wrapped label. It " "should not be taking up the entire " "width allocated to it, but automatically " "wraps the words to fit. " "The time has come, for all good men, to come to " "the aid of their party. " "The sixth sheik's six sheep's sick.\n" " It supports multiple paragraphs correctly, " "and correctly adds " "many extra spaces. ") label.set_line_wrap(True) frame.add(label) vbox.pack_start(frame, False, False, 0) frame = gtk.Frame("Filled, wrapped label") label = gtk.Label("This is an example of a line-wrapped, filled label. " "It should be taking " "up the entire width allocated to it. " "Here is a sentence to prove " "my point. Here is another sentence. " "Here comes the sun, do de do de do.\n" " This is a new paragraph.\n" " This is another newer, longer, better " "paragraph. It is coming to an end, " "unfortunately.") label.set_justify(gtk.JUSTIFY_FILL) label.set_line_wrap(True) frame.add(label) vbox.pack_start(frame, False, False, 0) frame = gtk.Frame("Underlined label") label = gtk.Label("This label is underlined!\n" "This one is underlined in quite a funky fashion") label.set_justify(gtk.JUSTIFY_LEFT) label.set_pattern( "_________________________ _ _________ _ ______ __ _______ ___") frame.add(label) vbox.pack_start(frame, False, False, 0) self.window.show_all () def main(): gtk.main() return 0 if __name__ == "__main__": Labels() main()
3,593
-8
72
8f3cea5c3a663cdfa9d722dafbf2c0cf1621974b
188
py
Python
3day/for10.py
jsjang93/joony
62f7a325094c887212b894932263bf84500e0f03
[ "MIT" ]
null
null
null
3day/for10.py
jsjang93/joony
62f7a325094c887212b894932263bf84500e0f03
[ "MIT" ]
null
null
null
3day/for10.py
jsjang93/joony
62f7a325094c887212b894932263bf84500e0f03
[ "MIT" ]
null
null
null
# for10.py # [์ž…๋ ฅ๋ณ€์ˆ˜ for ์ถ”์ถœ๋ณ€์ˆ˜ in ๋Œ€์ƒ if ์กฐ๊ฑด ] # a ์— 1 ~ 10 ๊นŒ์ง€ ์ˆซ์ž a = [ i for i in range(1,11) ] print(a) # b ์— 1 ~ 10 ๊นŒ์ง€ ์ˆซ์ž b = [ i+1 for i in range(10) ] print(b) print(id(a) == id(b))
13.428571
31
0.526596
# for10.py # [์ž…๋ ฅ๋ณ€์ˆ˜ for ์ถ”์ถœ๋ณ€์ˆ˜ in ๋Œ€์ƒ if ์กฐ๊ฑด ] # a ์— 1 ~ 10 ๊นŒ์ง€ ์ˆซ์ž a = [ i for i in range(1,11) ] print(a) # b ์— 1 ~ 10 ๊นŒ์ง€ ์ˆซ์ž b = [ i+1 for i in range(10) ] print(b) print(id(a) == id(b))
0
0
0
1534a129dbfddf083511bb0726870718c439eedb
1,417
py
Python
plot.py
yy-zhou/SVM-Spam-SMS-classifier
e6ac70be8fa54f7e7ab4fead06489d4d70985dd3
[ "MIT" ]
1
2019-02-21T15:42:03.000Z
2019-02-21T15:42:03.000Z
plot.py
yy-zhou/SVM-Spam-SMS-classifier
e6ac70be8fa54f7e7ab4fead06489d4d70985dd3
[ "MIT" ]
null
null
null
plot.py
yy-zhou/SVM-Spam-SMS-classifier
e6ac70be8fa54f7e7ab4fead06489d4d70985dd3
[ "MIT" ]
null
null
null
__author__ = 'BorisMirage' # --- coding:utf-8 --- ''' Create by BorisMirage File Name: plot Create Time: 2018-12-02 14:45 ''' from time import time import numpy as np import matplotlib.pyplot as plt from sklearn.manifold import TSNE if __name__ == '__main__': pass
25.763636
75
0.542696
__author__ = 'BorisMirage' # --- coding:utf-8 --- ''' Create by BorisMirage File Name: plot Create Time: 2018-12-02 14:45 ''' from time import time import numpy as np import matplotlib.pyplot as plt from sklearn.manifold import TSNE def svm_plot(x, y): def get_data(x, y): # clf = svm.SVC(kernel='linear', C=10) n_samples, n_features = len(x), len(x[0]) return x, y, n_samples, n_features def plot_embedding(data, label, title): x_min, x_max = np.min(data, 0), np.max(data, 0) data = (data - x_min) / (x_max - x_min) fig = plt.figure() ax = plt.subplot(111) for i in range(data.shape[0]): plt.text(data[i, 0], data[i, 1], str(label[i]), color=plt.cm.Set1(label[i] / 10.), fontdict={'weight': 'bold', 'size': 9}) plt.xticks([]) plt.yticks([]) plt.title(title) return fig def main(): data, label, n_samples, n_features = get_data(x, y) print('Computing t-SNE embedding') tsne = TSNE(n_components=3, init='pca', random_state=0) t0 = time() result = tsne.fit_transform(data) fig = plot_embedding(result, label, 't-SNE embedding of the messages (time %.2fs)' % (time() - t0)) plt.show() main() if __name__ == '__main__': pass
1,119
0
23
0ebace1dbbd279ebfafd87a38a3b7827f59351b3
283
py
Python
build_bridge.py
AaronC81/delta-pico
08a3dae3c8dbae3db45b8434351b4ac0abc5f1da
[ "MIT" ]
2
2021-12-22T23:37:30.000Z
2022-03-10T01:22:00.000Z
build_bridge.py
AaronC81/delta-pico
08a3dae3c8dbae3db45b8434351b4ac0abc5f1da
[ "MIT" ]
null
null
null
build_bridge.py
AaronC81/delta-pico
08a3dae3c8dbae3db45b8434351b4ac0abc5f1da
[ "MIT" ]
null
null
null
import subprocess, os print("Building Rust component...") # "cargo build" the bridge project root_dir = os.path.dirname(os.path.realpath(__file__)) bridge_dir = os.path.join(root_dir, "rust") subprocess.check_output(["cargo", "build", "--release"], cwd=bridge_dir) print("Done!")
25.727273
72
0.727915
import subprocess, os print("Building Rust component...") # "cargo build" the bridge project root_dir = os.path.dirname(os.path.realpath(__file__)) bridge_dir = os.path.join(root_dir, "rust") subprocess.check_output(["cargo", "build", "--release"], cwd=bridge_dir) print("Done!")
0
0
0
6f6bfd6faba641ab09d6d1307be60d49c893fb56
338
py
Python
stereo/preprocess/__init__.py
leying95/stereopy
1580a88a091a2ebc0f177ea73409e2c4b4dd4c7e
[ "MIT" ]
null
null
null
stereo/preprocess/__init__.py
leying95/stereopy
1580a88a091a2ebc0f177ea73409e2c4b4dd4c7e
[ "MIT" ]
null
null
null
stereo/preprocess/__init__.py
leying95/stereopy
1580a88a091a2ebc0f177ea73409e2c4b4dd4c7e
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # coding: utf-8 """ @author: Ping Qiu qiuping1@genomics.cn @last modified by: Ping Qiu @file:__init__.py.py @time:2021/03/05 """ from .filter import filter_cells, filter_genes, filter_coordinates from .normalize import Normalizer, normalize_total, normalize_zscore_disksmooth, quantile_norm from .qc import cal_qc
28.166667
94
0.786982
#!/usr/bin/env python3 # coding: utf-8 """ @author: Ping Qiu qiuping1@genomics.cn @last modified by: Ping Qiu @file:__init__.py.py @time:2021/03/05 """ from .filter import filter_cells, filter_genes, filter_coordinates from .normalize import Normalizer, normalize_total, normalize_zscore_disksmooth, quantile_norm from .qc import cal_qc
0
0
0
ae639af7b2deedc5fc4c667db8000d51c3ec0348
12,355
py
Python
tests/ut/python/dataset/test_datasets_usps.py
httpsgithu/mindspore
c29d6bb764e233b427319cb89ba79e420f1e2c64
[ "Apache-2.0" ]
1
2022-03-30T03:43:29.000Z
2022-03-30T03:43:29.000Z
tests/ut/python/dataset/test_datasets_usps.py
949144093/mindspore
c29d6bb764e233b427319cb89ba79e420f1e2c64
[ "Apache-2.0" ]
null
null
null
tests/ut/python/dataset/test_datasets_usps.py
949144093/mindspore
c29d6bb764e233b427319cb89ba79e420f1e2c64
[ "Apache-2.0" ]
null
null
null
# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Test USPS dataset operators """ import os from typing import cast import matplotlib.pyplot as plt import numpy as np import pytest import mindspore.dataset as ds import mindspore.dataset.vision.transforms as vision from mindspore import log as logger DATA_DIR = "../data/dataset/testUSPSDataset" WRONG_DIR = "../data/dataset/testMnistData" def load_usps(path, usage): """ load USPS data """ assert usage in ["train", "test"] if usage == "train": data_path = os.path.realpath(os.path.join(path, "usps")) elif usage == "test": data_path = os.path.realpath(os.path.join(path, "usps.t")) with open(data_path, 'r') as f: raw_data = [line.split() for line in f.readlines()] tmp_list = [[x.split(':')[-1] for x in data[1:]] for data in raw_data] images = np.asarray(tmp_list, dtype=np.float32).reshape((-1, 16, 16, 1)) images = ((cast(np.ndarray, images) + 1) / 2 * 255).astype(dtype=np.uint8) labels = [int(d[0]) - 1 for d in raw_data] return images, labels def visualize_dataset(images, labels): """ Helper function to visualize the dataset samples """ num_samples = len(images) for i in range(num_samples): plt.subplot(1, num_samples, i + 1) plt.imshow(images[i].squeeze(), cmap=plt.cm.gray) plt.title(labels[i]) plt.show() def test_usps_content_check(): """ Validate USPSDataset image readings """ logger.info("Test USPSDataset Op with content check") train_data = ds.USPSDataset(DATA_DIR, "train", num_samples=10, shuffle=False) images, labels = load_usps(DATA_DIR, "train") num_iter = 0 # in this example, each dictionary has keys "image" and "label" for i, data in enumerate(train_data.create_dict_iterator(num_epochs=1, output_numpy=True)): for m in range(16): for n in range(16): assert (data["image"][m, n, 0] != 0 or images[i][m, n, 0] != 255) and \ (data["image"][m, n, 0] != 255 or images[i][m, n, 0] != 0) assert (data["image"][m, n, 0] == images[i][m, n, 0]) or\ (data["image"][m, n, 0] == images[i][m, n, 0] + 1) or\ (data["image"][m, n, 0] + 1 == images[i][m, n, 0]) np.testing.assert_array_equal(data["label"], labels[i]) num_iter += 1 assert num_iter == 3 test_data = ds.USPSDataset(DATA_DIR, "test", num_samples=3, shuffle=False) images, labels = load_usps(DATA_DIR, "test") num_iter = 0 # in this example, each dictionary has keys "image" and "label" for i, data in enumerate(test_data.create_dict_iterator(num_epochs=1, output_numpy=True)): for m in range(16): for n in range(16): if (data["image"][m, n, 0] == 0 and images[i][m, n, 0] == 255) or\ (data["image"][m, n, 0] == 255 and images[i][m, n, 0] == 0): assert False if (data["image"][m, n, 0] != images[i][m, n, 0]) and\ (data["image"][m, n, 0] != images[i][m, n, 0] + 1) and\ (data["image"][m, n, 0] + 1 != images[i][m, n, 0]): assert False np.testing.assert_array_equal(data["label"], labels[i]) num_iter += 1 assert num_iter == 3 def test_usps_basic(): """ Validate USPSDataset """ logger.info("Test USPSDataset Op") # case 1: test loading whole dataset train_data = ds.USPSDataset(DATA_DIR, "train") num_iter = 0 for _ in train_data.create_dict_iterator(num_epochs=1): num_iter += 1 assert num_iter == 3 test_data = ds.USPSDataset(DATA_DIR, "test") num_iter = 0 for _ in test_data.create_dict_iterator(num_epochs=1): num_iter += 1 assert num_iter == 3 # case 2: test num_samples train_data = ds.USPSDataset(DATA_DIR, "train", num_samples=2) num_iter = 0 for _ in train_data.create_dict_iterator(num_epochs=1): num_iter += 1 assert num_iter == 2 # case 3: test repeat train_data = ds.USPSDataset(DATA_DIR, "train", num_samples=2) train_data = train_data.repeat(5) num_iter = 0 for _ in train_data.create_dict_iterator(num_epochs=1): num_iter += 1 assert num_iter == 10 # case 4: test batch with drop_remainder=False train_data = ds.USPSDataset(DATA_DIR, "train", num_samples=3) assert train_data.get_dataset_size() == 3 assert train_data.get_batch_size() == 1 train_data = train_data.batch(batch_size=2) # drop_remainder is default to be False assert train_data.get_batch_size() == 2 assert train_data.get_dataset_size() == 2 num_iter = 0 for _ in train_data.create_dict_iterator(num_epochs=1): num_iter += 1 assert num_iter == 2 # case 5: test batch with drop_remainder=True train_data = ds.USPSDataset(DATA_DIR, "train", num_samples=3) assert train_data.get_dataset_size() == 3 assert train_data.get_batch_size() == 1 train_data = train_data.batch(batch_size=2, drop_remainder=True) # the rest of incomplete batch will be dropped assert train_data.get_dataset_size() == 1 assert train_data.get_batch_size() == 2 num_iter = 0 for _ in train_data.create_dict_iterator(num_epochs=1): num_iter += 1 assert num_iter == 1 def test_usps_exception(): """ Test error cases for USPSDataset """ error_msg_3 = "num_shards is specified and currently requires shard_id as well" with pytest.raises(RuntimeError, match=error_msg_3): ds.USPSDataset(DATA_DIR, "train", num_shards=10) ds.USPSDataset(DATA_DIR, "test", num_shards=10) error_msg_4 = "shard_id is specified but num_shards is not" with pytest.raises(RuntimeError, match=error_msg_4): ds.USPSDataset(DATA_DIR, "train", shard_id=0) ds.USPSDataset(DATA_DIR, "test", shard_id=0) error_msg_5 = "Input shard_id is not within the required interval" with pytest.raises(ValueError, match=error_msg_5): ds.USPSDataset(DATA_DIR, "train", num_shards=5, shard_id=-1) ds.USPSDataset(DATA_DIR, "test", num_shards=5, shard_id=-1) with pytest.raises(ValueError, match=error_msg_5): ds.USPSDataset(DATA_DIR, "train", num_shards=5, shard_id=5) ds.USPSDataset(DATA_DIR, "test", num_shards=5, shard_id=5) with pytest.raises(ValueError, match=error_msg_5): ds.USPSDataset(DATA_DIR, "train", num_shards=2, shard_id=5) ds.USPSDataset(DATA_DIR, "test", num_shards=2, shard_id=5) error_msg_6 = "num_parallel_workers exceeds" with pytest.raises(ValueError, match=error_msg_6): ds.USPSDataset(DATA_DIR, "train", shuffle=False, num_parallel_workers=0) ds.USPSDataset(DATA_DIR, "test", shuffle=False, num_parallel_workers=0) with pytest.raises(ValueError, match=error_msg_6): ds.USPSDataset(DATA_DIR, "train", shuffle=False, num_parallel_workers=256) ds.USPSDataset(DATA_DIR, "test", shuffle=False, num_parallel_workers=256) with pytest.raises(ValueError, match=error_msg_6): ds.USPSDataset(DATA_DIR, "train", shuffle=False, num_parallel_workers=-2) ds.USPSDataset(DATA_DIR, "test", shuffle=False, num_parallel_workers=-2) error_msg_7 = "Argument shard_id" with pytest.raises(TypeError, match=error_msg_7): ds.USPSDataset(DATA_DIR, "train", num_shards=2, shard_id="0") ds.USPSDataset(DATA_DIR, "test", num_shards=2, shard_id="0") error_msg_8 = "invalid input shape" with pytest.raises(RuntimeError, match=error_msg_8): train_data = ds.USPSDataset(DATA_DIR, "train") train_data = train_data.map(operations=vision.Decode(), input_columns=["image"], num_parallel_workers=1) for _ in train_data.__iter__(): pass test_data = ds.USPSDataset(DATA_DIR, "test") test_data = test_data.map(operations=vision.Decode(), input_columns=["image"], num_parallel_workers=1) for _ in test_data.__iter__(): pass error_msg_9 = "usps does not exist or is a directory" with pytest.raises(RuntimeError, match=error_msg_9): train_data = ds.USPSDataset(WRONG_DIR, "train") for _ in train_data.__iter__(): pass error_msg_10 = "usps.t does not exist or is a directory" with pytest.raises(RuntimeError, match=error_msg_10): test_data = ds.USPSDataset(WRONG_DIR, "test") for _ in test_data.__iter__(): pass def test_usps_visualize(plot=False): """ Visualize USPSDataset results """ logger.info("Test USPSDataset visualization") train_data = ds.USPSDataset(DATA_DIR, "train", num_samples=3, shuffle=False) num_iter = 0 image_list, label_list = [], [] for item in train_data.create_dict_iterator(num_epochs=1, output_numpy=True): image = item["image"] label = item["label"] image_list.append(image) label_list.append("label {}".format(label)) assert isinstance(image, np.ndarray) assert image.shape == (16, 16, 1) assert image.dtype == np.uint8 assert label.dtype == np.uint32 num_iter += 1 assert num_iter == 3 if plot: visualize_dataset(image_list, label_list) test_data = ds.USPSDataset(DATA_DIR, "test", num_samples=3, shuffle=False) num_iter = 0 image_list, label_list = [], [] for item in test_data.create_dict_iterator(num_epochs=1, output_numpy=True): image = item["image"] label = item["label"] image_list.append(image) label_list.append("label {}".format(label)) assert isinstance(image, np.ndarray) assert image.shape == (16, 16, 1) assert image.dtype == np.uint8 assert label.dtype == np.uint32 num_iter += 1 assert num_iter == 3 if plot: visualize_dataset(image_list, label_list) def test_usps_usage(): """ Validate USPSDataset image readings """ logger.info("Test USPSDataset usage flag") assert test_config("train") == 3 assert test_config("test") == 3 assert "usage is not within the valid set of ['train', 'test', 'all']" in test_config("invalid") assert "Argument usage with value ['list'] is not of type [<class 'str'>]" in test_config(["list"]) # change this directory to the folder that contains all USPS files all_files_path = None # the following tests on the entire datasets if all_files_path is not None: assert test_config("train", all_files_path) == 3 assert test_config("test", all_files_path) == 3 assert ds.USPSDataset(all_files_path, usage="train").get_dataset_size() == 3 assert ds.USPSDataset(all_files_path, usage="test").get_dataset_size() == 3 if __name__ == '__main__': test_usps_content_check() test_usps_basic() test_usps_exception() test_usps_visualize(plot=True) test_usps_usage()
39.983819
117
0.630676
# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Test USPS dataset operators """ import os from typing import cast import matplotlib.pyplot as plt import numpy as np import pytest import mindspore.dataset as ds import mindspore.dataset.vision.transforms as vision from mindspore import log as logger DATA_DIR = "../data/dataset/testUSPSDataset" WRONG_DIR = "../data/dataset/testMnistData" def load_usps(path, usage): """ load USPS data """ assert usage in ["train", "test"] if usage == "train": data_path = os.path.realpath(os.path.join(path, "usps")) elif usage == "test": data_path = os.path.realpath(os.path.join(path, "usps.t")) with open(data_path, 'r') as f: raw_data = [line.split() for line in f.readlines()] tmp_list = [[x.split(':')[-1] for x in data[1:]] for data in raw_data] images = np.asarray(tmp_list, dtype=np.float32).reshape((-1, 16, 16, 1)) images = ((cast(np.ndarray, images) + 1) / 2 * 255).astype(dtype=np.uint8) labels = [int(d[0]) - 1 for d in raw_data] return images, labels def visualize_dataset(images, labels): """ Helper function to visualize the dataset samples """ num_samples = len(images) for i in range(num_samples): plt.subplot(1, num_samples, i + 1) plt.imshow(images[i].squeeze(), cmap=plt.cm.gray) plt.title(labels[i]) plt.show() def test_usps_content_check(): """ Validate USPSDataset image readings """ logger.info("Test USPSDataset Op with content check") train_data = ds.USPSDataset(DATA_DIR, "train", num_samples=10, shuffle=False) images, labels = load_usps(DATA_DIR, "train") num_iter = 0 # in this example, each dictionary has keys "image" and "label" for i, data in enumerate(train_data.create_dict_iterator(num_epochs=1, output_numpy=True)): for m in range(16): for n in range(16): assert (data["image"][m, n, 0] != 0 or images[i][m, n, 0] != 255) and \ (data["image"][m, n, 0] != 255 or images[i][m, n, 0] != 0) assert (data["image"][m, n, 0] == images[i][m, n, 0]) or\ (data["image"][m, n, 0] == images[i][m, n, 0] + 1) or\ (data["image"][m, n, 0] + 1 == images[i][m, n, 0]) np.testing.assert_array_equal(data["label"], labels[i]) num_iter += 1 assert num_iter == 3 test_data = ds.USPSDataset(DATA_DIR, "test", num_samples=3, shuffle=False) images, labels = load_usps(DATA_DIR, "test") num_iter = 0 # in this example, each dictionary has keys "image" and "label" for i, data in enumerate(test_data.create_dict_iterator(num_epochs=1, output_numpy=True)): for m in range(16): for n in range(16): if (data["image"][m, n, 0] == 0 and images[i][m, n, 0] == 255) or\ (data["image"][m, n, 0] == 255 and images[i][m, n, 0] == 0): assert False if (data["image"][m, n, 0] != images[i][m, n, 0]) and\ (data["image"][m, n, 0] != images[i][m, n, 0] + 1) and\ (data["image"][m, n, 0] + 1 != images[i][m, n, 0]): assert False np.testing.assert_array_equal(data["label"], labels[i]) num_iter += 1 assert num_iter == 3 def test_usps_basic(): """ Validate USPSDataset """ logger.info("Test USPSDataset Op") # case 1: test loading whole dataset train_data = ds.USPSDataset(DATA_DIR, "train") num_iter = 0 for _ in train_data.create_dict_iterator(num_epochs=1): num_iter += 1 assert num_iter == 3 test_data = ds.USPSDataset(DATA_DIR, "test") num_iter = 0 for _ in test_data.create_dict_iterator(num_epochs=1): num_iter += 1 assert num_iter == 3 # case 2: test num_samples train_data = ds.USPSDataset(DATA_DIR, "train", num_samples=2) num_iter = 0 for _ in train_data.create_dict_iterator(num_epochs=1): num_iter += 1 assert num_iter == 2 # case 3: test repeat train_data = ds.USPSDataset(DATA_DIR, "train", num_samples=2) train_data = train_data.repeat(5) num_iter = 0 for _ in train_data.create_dict_iterator(num_epochs=1): num_iter += 1 assert num_iter == 10 # case 4: test batch with drop_remainder=False train_data = ds.USPSDataset(DATA_DIR, "train", num_samples=3) assert train_data.get_dataset_size() == 3 assert train_data.get_batch_size() == 1 train_data = train_data.batch(batch_size=2) # drop_remainder is default to be False assert train_data.get_batch_size() == 2 assert train_data.get_dataset_size() == 2 num_iter = 0 for _ in train_data.create_dict_iterator(num_epochs=1): num_iter += 1 assert num_iter == 2 # case 5: test batch with drop_remainder=True train_data = ds.USPSDataset(DATA_DIR, "train", num_samples=3) assert train_data.get_dataset_size() == 3 assert train_data.get_batch_size() == 1 train_data = train_data.batch(batch_size=2, drop_remainder=True) # the rest of incomplete batch will be dropped assert train_data.get_dataset_size() == 1 assert train_data.get_batch_size() == 2 num_iter = 0 for _ in train_data.create_dict_iterator(num_epochs=1): num_iter += 1 assert num_iter == 1 def test_usps_exception(): """ Test error cases for USPSDataset """ error_msg_3 = "num_shards is specified and currently requires shard_id as well" with pytest.raises(RuntimeError, match=error_msg_3): ds.USPSDataset(DATA_DIR, "train", num_shards=10) ds.USPSDataset(DATA_DIR, "test", num_shards=10) error_msg_4 = "shard_id is specified but num_shards is not" with pytest.raises(RuntimeError, match=error_msg_4): ds.USPSDataset(DATA_DIR, "train", shard_id=0) ds.USPSDataset(DATA_DIR, "test", shard_id=0) error_msg_5 = "Input shard_id is not within the required interval" with pytest.raises(ValueError, match=error_msg_5): ds.USPSDataset(DATA_DIR, "train", num_shards=5, shard_id=-1) ds.USPSDataset(DATA_DIR, "test", num_shards=5, shard_id=-1) with pytest.raises(ValueError, match=error_msg_5): ds.USPSDataset(DATA_DIR, "train", num_shards=5, shard_id=5) ds.USPSDataset(DATA_DIR, "test", num_shards=5, shard_id=5) with pytest.raises(ValueError, match=error_msg_5): ds.USPSDataset(DATA_DIR, "train", num_shards=2, shard_id=5) ds.USPSDataset(DATA_DIR, "test", num_shards=2, shard_id=5) error_msg_6 = "num_parallel_workers exceeds" with pytest.raises(ValueError, match=error_msg_6): ds.USPSDataset(DATA_DIR, "train", shuffle=False, num_parallel_workers=0) ds.USPSDataset(DATA_DIR, "test", shuffle=False, num_parallel_workers=0) with pytest.raises(ValueError, match=error_msg_6): ds.USPSDataset(DATA_DIR, "train", shuffle=False, num_parallel_workers=256) ds.USPSDataset(DATA_DIR, "test", shuffle=False, num_parallel_workers=256) with pytest.raises(ValueError, match=error_msg_6): ds.USPSDataset(DATA_DIR, "train", shuffle=False, num_parallel_workers=-2) ds.USPSDataset(DATA_DIR, "test", shuffle=False, num_parallel_workers=-2) error_msg_7 = "Argument shard_id" with pytest.raises(TypeError, match=error_msg_7): ds.USPSDataset(DATA_DIR, "train", num_shards=2, shard_id="0") ds.USPSDataset(DATA_DIR, "test", num_shards=2, shard_id="0") error_msg_8 = "invalid input shape" with pytest.raises(RuntimeError, match=error_msg_8): train_data = ds.USPSDataset(DATA_DIR, "train") train_data = train_data.map(operations=vision.Decode(), input_columns=["image"], num_parallel_workers=1) for _ in train_data.__iter__(): pass test_data = ds.USPSDataset(DATA_DIR, "test") test_data = test_data.map(operations=vision.Decode(), input_columns=["image"], num_parallel_workers=1) for _ in test_data.__iter__(): pass error_msg_9 = "usps does not exist or is a directory" with pytest.raises(RuntimeError, match=error_msg_9): train_data = ds.USPSDataset(WRONG_DIR, "train") for _ in train_data.__iter__(): pass error_msg_10 = "usps.t does not exist or is a directory" with pytest.raises(RuntimeError, match=error_msg_10): test_data = ds.USPSDataset(WRONG_DIR, "test") for _ in test_data.__iter__(): pass def test_usps_visualize(plot=False): """ Visualize USPSDataset results """ logger.info("Test USPSDataset visualization") train_data = ds.USPSDataset(DATA_DIR, "train", num_samples=3, shuffle=False) num_iter = 0 image_list, label_list = [], [] for item in train_data.create_dict_iterator(num_epochs=1, output_numpy=True): image = item["image"] label = item["label"] image_list.append(image) label_list.append("label {}".format(label)) assert isinstance(image, np.ndarray) assert image.shape == (16, 16, 1) assert image.dtype == np.uint8 assert label.dtype == np.uint32 num_iter += 1 assert num_iter == 3 if plot: visualize_dataset(image_list, label_list) test_data = ds.USPSDataset(DATA_DIR, "test", num_samples=3, shuffle=False) num_iter = 0 image_list, label_list = [], [] for item in test_data.create_dict_iterator(num_epochs=1, output_numpy=True): image = item["image"] label = item["label"] image_list.append(image) label_list.append("label {}".format(label)) assert isinstance(image, np.ndarray) assert image.shape == (16, 16, 1) assert image.dtype == np.uint8 assert label.dtype == np.uint32 num_iter += 1 assert num_iter == 3 if plot: visualize_dataset(image_list, label_list) def test_usps_usage(): """ Validate USPSDataset image readings """ logger.info("Test USPSDataset usage flag") def test_config(usage, path=None): path = DATA_DIR if path is None else path try: data = ds.USPSDataset(path, usage=usage, shuffle=False) num_rows = 0 for _ in data.create_dict_iterator(num_epochs=1, output_numpy=True): num_rows += 1 except (ValueError, TypeError, RuntimeError) as e: return str(e) return num_rows assert test_config("train") == 3 assert test_config("test") == 3 assert "usage is not within the valid set of ['train', 'test', 'all']" in test_config("invalid") assert "Argument usage with value ['list'] is not of type [<class 'str'>]" in test_config(["list"]) # change this directory to the folder that contains all USPS files all_files_path = None # the following tests on the entire datasets if all_files_path is not None: assert test_config("train", all_files_path) == 3 assert test_config("test", all_files_path) == 3 assert ds.USPSDataset(all_files_path, usage="train").get_dataset_size() == 3 assert ds.USPSDataset(all_files_path, usage="test").get_dataset_size() == 3 if __name__ == '__main__': test_usps_content_check() test_usps_basic() test_usps_exception() test_usps_visualize(plot=True) test_usps_usage()
398
0
29
ec4aea568eff55f9b12d7d6ccea094cfc76818c4
919
py
Python
apps/plot.py
JongGuk/Raman_Mapping
e4b0fb44b8077a2a9c7965132794757a0079965e
[ "MIT" ]
null
null
null
apps/plot.py
JongGuk/Raman_Mapping
e4b0fb44b8077a2a9c7965132794757a0079965e
[ "MIT" ]
null
null
null
apps/plot.py
JongGuk/Raman_Mapping
e4b0fb44b8077a2a9c7965132794757a0079965e
[ "MIT" ]
null
null
null
import tkinter as tk from pandas import DataFrame import matplotlib.pyplot as plt from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg data = {'Raman Shift': [-464, -460, -455, -450, -445], 'Intensity1': [745, 752, 746, 740, 750], 'Intensity2': [734, 745, 768, 763, 755] } # ๋ฐ์ดํ„ฐ ์งค๋ผ์˜จ๊ฒƒ ๋ฐ›์•„์˜ค๊ธฐ df = DataFrame(data) # data ๋กœ๋ถ€ํ„ฐ ๋ฐ์ดํ„ฐ ํ”„๋ ˆ์ž„ ๋งŒ๋“ฆ df.set_index('Raman Shift', inplace=True) # ๋งŒ๋“ค์–ด์ง„ ๋ฐ์ดํ„ฐ ํ”„๋ ˆ์ž„ ์ค‘, Raman_Shift ํ•ญ๋ชฉ์„ x ์ถ•์œผ๋กœ ์ง€์ • root= tk.Tk() # tkinter ๋กœ ์ฐฝ ๋„์šฐ๊ธฐ figure = plt.Figure(figsize=(5,4), dpi=100) # ๊ทธ๋ž˜ํ”„ ๋„์šธ ์ฐฝ ์‚ฌ์ด์ฆˆ ax = figure.add_subplot(111) # ๊ทธ๋ž˜ํ”„ plot ๋ฐ x,y์ถ• ๋ฒ”์œ„ ์กฐ์ ˆ (๋ฒ”์œ„ ์ง€์ • ์ƒ๋žตํ•˜๋ฉด auto) ax.set_title('Raman spectrum at selected point') line = FigureCanvasTkAgg(figure, root) # Figure ๊ทธ๋ ค์„œ root์— ํ‘œ์‹œ line.get_tk_widget().pack() # pack ์—์„œ ๊ทธ๋ž˜ํ”„๋ฅผ ์ขŒ์ธก์ •๋ ฌ/์ฑ„์šฐ๊ธฐ ๋“ฑ ์„ค์ • #df.plot(~~~) # df.ํ–‰์ด๋ฆ„ ์œผ๋กœ ํŠน์ • ํ–‰ ์„ ํƒ ๊ฐ€๋Šฅ df.Intensity2.plot(kind='line', ax=ax, color='r', marker='o', fontsize=10) root.mainloop() #์ƒˆ๋กœ๊ณ ์นจ
34.037037
89
0.687704
import tkinter as tk from pandas import DataFrame import matplotlib.pyplot as plt from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg data = {'Raman Shift': [-464, -460, -455, -450, -445], 'Intensity1': [745, 752, 746, 740, 750], 'Intensity2': [734, 745, 768, 763, 755] } # ๋ฐ์ดํ„ฐ ์งค๋ผ์˜จ๊ฒƒ ๋ฐ›์•„์˜ค๊ธฐ df = DataFrame(data) # data ๋กœ๋ถ€ํ„ฐ ๋ฐ์ดํ„ฐ ํ”„๋ ˆ์ž„ ๋งŒ๋“ฆ df.set_index('Raman Shift', inplace=True) # ๋งŒ๋“ค์–ด์ง„ ๋ฐ์ดํ„ฐ ํ”„๋ ˆ์ž„ ์ค‘, Raman_Shift ํ•ญ๋ชฉ์„ x ์ถ•์œผ๋กœ ์ง€์ • root= tk.Tk() # tkinter ๋กœ ์ฐฝ ๋„์šฐ๊ธฐ figure = plt.Figure(figsize=(5,4), dpi=100) # ๊ทธ๋ž˜ํ”„ ๋„์šธ ์ฐฝ ์‚ฌ์ด์ฆˆ ax = figure.add_subplot(111) # ๊ทธ๋ž˜ํ”„ plot ๋ฐ x,y์ถ• ๋ฒ”์œ„ ์กฐ์ ˆ (๋ฒ”์œ„ ์ง€์ • ์ƒ๋žตํ•˜๋ฉด auto) ax.set_title('Raman spectrum at selected point') line = FigureCanvasTkAgg(figure, root) # Figure ๊ทธ๋ ค์„œ root์— ํ‘œ์‹œ line.get_tk_widget().pack() # pack ์—์„œ ๊ทธ๋ž˜ํ”„๋ฅผ ์ขŒ์ธก์ •๋ ฌ/์ฑ„์šฐ๊ธฐ ๋“ฑ ์„ค์ • #df.plot(~~~) # df.ํ–‰์ด๋ฆ„ ์œผ๋กœ ํŠน์ • ํ–‰ ์„ ํƒ ๊ฐ€๋Šฅ df.Intensity2.plot(kind='line', ax=ax, color='r', marker='o', fontsize=10) root.mainloop() #์ƒˆ๋กœ๊ณ ์นจ
0
0
0
59035eabd3ac8998d45ef40fc66c22001078419d
5,075
py
Python
openpose-app/MotionMeasure/OpenposeLogParser.py
B-C-WANG/AI-Apps
305d1960ec2b84081228543bf819deff694fddd2
[ "MIT" ]
7
2018-11-10T09:15:29.000Z
2021-06-05T01:54:45.000Z
openpose-app/MotionMeasure/OpenposeLogParser.py
B-C-WANG/AI-Apps
305d1960ec2b84081228543bf819deff694fddd2
[ "MIT" ]
null
null
null
openpose-app/MotionMeasure/OpenposeLogParser.py
B-C-WANG/AI-Apps
305d1960ec2b84081228543bf819deff694fddd2
[ "MIT" ]
4
2019-06-22T03:26:46.000Z
2020-05-17T11:40:22.000Z
# encoding: utf-8 import json import numpy as np import matplotlib.pyplot as plt import os import queue import _thread import traceback point_name = [ "Nose", "Neck", "RShoulder", "RElbow", "RWrist", "LShoulder", "LElbow", "LWrist", "MidHip", "RHip", "RKnee", "RAnkle", "LHip", "LKnee", "LAnkle", "REye", "LEye", "REar", "LEar", "LBigToe", "LSmallToe", "LHeel", "RBigToe", "RSmallToe", "RHeel", "Background" ] if __name__ == '__main__': while 1: for i in OpenposeJsonParser().stream_update_point_change_data_in_the_dir("G:\openpose\output",sum=True): print(i)
25.248756
129
0.521576
# encoding: utf-8 import json import numpy as np import matplotlib.pyplot as plt import os import queue import _thread import traceback point_name = [ "Nose", "Neck", "RShoulder", "RElbow", "RWrist", "LShoulder", "LElbow", "LWrist", "MidHip", "RHip", "RKnee", "RAnkle", "LHip", "LKnee", "LAnkle", "REye", "LEye", "REar", "LEar", "LBigToe", "LSmallToe", "LHeel", "RBigToe", "RSmallToe", "RHeel", "Background" ] class OpenposeJsonParser(): def __init__(self): pass def get_pose2d_state_of_first_people(self,json_file): ''' get all body points of first people: - all points will minus the position of point 1 to set 1 as center (1 is "Neck") to avoid the change of distance to camera the distance of two points will be scaled by distance of 2-5 2-5 is RShoulder and LShoulder, the distance can not change much with body in this way, all point distance is use 1 as center and use distance of 2-5 as 1, so it can be used to compare between two frame ''' try: with open(json_file, "r") as f: data = json.load(f) people = data["people"] people = people[0] pose2d = people["pose_keypoints_2d"] pose2d = np.array(pose2d).reshape(-1,3) #print(pose2d) # x y and confidence coord = pose2d[:,:2] center_pos = coord[1] if (center_pos[0] < [0.1,0.1]).any(): # return false if can not detect center point return False if (coord[2] < [0.1,0.1]).any() or (coord[5] < [0.1,0.1]).any(): # return false if can not detect 2 5 point return False # set the position of [0,0] to center position so that will be 9 after minus coord[(coord[:,:2] <[0.1,0.1]).any(axis=1)] = center_pos # set center position coord = coord - center_pos # reset coord = - coord # scale according to refer_distance refer_distance = np.sqrt(np.sum(np.square(coord[2]-coord[5]))) #print(refer_distance) coord = coord / refer_distance data ={} #print(coord) for i in range(coord.shape[0]): if (np.abs(coord[i,:]) < ([0.0001,0.0001])).any(): data[point_name[i]] = False else: data[point_name[i]] = coord[i,:] # finally add center_position, this center_position is the total_move of the body, its absolute value is meanningless data[point_name[1]] = center_pos / refer_distance return data except: # if met error, all set False info = {} for i in point_name[:-1]: info[i] = False return info def get_point_change_data(self,last_state,now_state,sum=False): try: # all points move distance, related to energy people use info = {} for name in point_name[:-1]:# background not included if now_state is bool: raise ValueError() if isinstance(now_state[name],bool) or isinstance(last_state[name],bool): info[name] = False else: info[name] = np.sqrt(np.sum(np.square(last_state[name] - now_state[name]))) if sum == False: return info else: value = 0 for i in info: value += 0 if info[i] == False else abs(info[i]) return value except: traceback.print_exc() if sum==False: info = {} for i in point_name: info[i] = 0 return info else: return 0 def stream_update_point_change_data_in_the_dir(self,json_file_dir,sum=False): last_state = None while last_state is None: file = os.listdir(json_file_dir) for i in file: if i.endswith(".json"): file_path = json_file_dir + "/" + i last_state = self.get_pose2d_state_of_first_people(file_path) os.remove(file_path) break while 1: file = os.listdir(json_file_dir) for i in file: if i.endswith(".json"): file_path = json_file_dir + "/" + i now_state = self.get_pose2d_state_of_first_people(file_path) os.remove(file_path) yield self.get_point_change_data(last_state,now_state,sum=sum) break if __name__ == '__main__': while 1: for i in OpenposeJsonParser().stream_update_point_change_data_in_the_dir("G:\openpose\output",sum=True): print(i)
1,901
2,527
23
0449817e405dd949fcb83eafc1beb5ae393f23f2
47,889
py
Python
experimental/eidelyur/variabledNLsimulation_v2.py
radiasoft/rsnibo
c2040f2ec21bbc2701a5968c6f2d3e3e0d31f81d
[ "Apache-2.0" ]
null
null
null
experimental/eidelyur/variabledNLsimulation_v2.py
radiasoft/rsnibo
c2040f2ec21bbc2701a5968c6f2d3e3e0d31f81d
[ "Apache-2.0" ]
null
null
null
experimental/eidelyur/variabledNLsimulation_v2.py
radiasoft/rsnibo
c2040f2ec21bbc2701a5968c6f2d3e3e0d31f81d
[ "Apache-2.0" ]
1
2019-04-26T22:58:22.000Z
2019-04-26T22:58:22.000Z
# # This script develops the script 'variabledNLsimulation_v1.py' (Yury Eidelman) # # Started at June 28, 2019 # # The three laws to change the strengths 't' of all nonlinear lens are implemented. # From initial value t_i to final value t_f during N stepsthese laws are follows. # 1) Linear: for step number n # t(n) = t_0 + (t_f-t_0)*n/(N-1) for n = 0,1,...,N-1 . # 2) Parabolic: for step number n # t(n) = t_0 + (t_f-t_0)*n^2/(N-1)^2 for n = 0,1,...,N-1 . # 3) Smooth sign-function: for step number n # t(n) = .5*(t_0+t_f) + .5*(t_f-t_0)*tanh(x(n)), where # x(n) = (6*n-3*(N-1))/(N-1) for n=0,1,...,N-1 . # In this approach x(0) = -3., x(N-1) = 3.; so, tanh(3.) = - tanh(-3.) = .9951 # import synergia import os, sys import inspect import math import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib import gridspec import rssynergia from rssynergia.base_diagnostics import lfplot from rssynergia.base_diagnostics import plotbeam from rssynergia.base_diagnostics import pltbunch # # Output attributes of 'generate_lens' method: # # same as output of 'NonlinearInsertion'class and as well: # s_vals (ndArray): coordinates of the center of each nonlinear lens (float ndArray, m); # knll (ndArray): "strength" of each nonlinear lens (float ndArray, m); # cnll (ndArray): aperture parameters for each nonlinear lens (float ndArray, m^1/2). # # Pickle helper is not necessary but is retained for this example # # Definition of class to ramp nonlinear lens # # Args of 'Ramp_actions' method are: # 'type' - type of magnification (1 - relative, 2 - absolute), # 'stepNumber' - current step of magnification, # 'strengthLens' - set of strengthes 't' of central lens of the nonlinear insertion for all steps of # magnification (relative magnification) or set of strengthes 't' of all lenses for # current step (absolute magnification), # 'updateOutputFlag' - flag to output the strength of one of nonlinear lens after it's magnification # for current step, # controlName - name of lens with maximal strength to use in output for checking of process # of magnification. # # # The arguments to __init__ are what the Ramp_actions instance is initialized with: # # Main method 'simulation' # # # End of main method 'simulation' # #======================================================== fileIOTA = ".../ioptics/ioptics/lattices/Iota8-2/lattice_1IO_nll_center.madx" # fileIOTA = ".../ioptics/ioptics/lattices/Iota8-4/lattice_8-4_1IO_nll_forTest.madx" print "\nIOTA Nonlinear lattice: {} \n".format(fileIOTA) lattice = synergia.lattice.MadX_reader().get_lattice("iota", \ "../ioptics/ioptics/lattices/Iota8-2/lattice_1IO_nll_center.madx") # --------- Games ----------------------------- # indices = np.argsort(knllLenses) # print "indices = ",indices # for n in range(nLenses+1): # print n,") name after sorting is ",nameLenses[indices[n]] # for n in range(nLenses+1): # print n,") knll after sorting is ",knllLenses[indices[n]] # for n in range(nLenses+1): # print n,") place after sorting is ",placeLenses[indices[n]] # ----------- End of games -------------------- stepperCrrnt = synergia.simulation.Independent_stepper_elements(lattice,2,3) lattice_simulator_Crrnt = stepperCrrnt.get_lattice_simulator() # To recognize attributes of 'bunchParticles': # printAttributes(lattice_simulator_Crrnt,'lattice_simulator_Crrnt','stepperCrrnt.get_lattice_simulator()') # slicesHelp = lattice_simulator_Crrnt.get_slices() # To recognize attributes of 'slicesHelp': # printAttributes(slicesHelp,'slicesHelp','lattice_simulator_Crrnt.get_slices()') # Bunch: bunch_origin = synergia.optics.generate_matched_bunch_transverse(lattice_simulator_Crrnt, 1e-6, \ 1e-6, 1e-3, 1e-4, 1e9, 1000, seed=1234) # # To compare two methods for drawing of the particles distributions: # loclTitle = "\nThese distributions were constructed using \ 'synergia.optics.generated_matched_bunch_transverse' method" loclTitle += "\nand plotted using two methods - 'pltbunch.plot_bunch' from the code synergia" loclTitle += "\nand 'plotcoordDistr' from this script (to verify method 'plotcoordDistr'):" print loclTitle pltbunch.plot_bunch(bunch_origin) # Distributions X-Y, X-X', Y-Y' using method 'plotcoordDistr': bunchParticles = bunch_origin.get_local_particles() # To recognize attributes of 'bunchParticles': # printAttributes(bunchParticles,'bunchParticles', 'bunch.get_local_particles()') plotcoordDistr(bunchParticles) selection = 'loop' while selection == 'loop': simulation() selection = raw_input("\nTo continue the simulation ('yes' or 'no'):") print'Your selection is ',selection if selection == 'yes': selection = 'loop' # if selection == 'no': # exit(0)
44.756075
145
0.628098
# # This script develops the script 'variabledNLsimulation_v1.py' (Yury Eidelman) # # Started at June 28, 2019 # # The three laws to change the strengths 't' of all nonlinear lens are implemented. # From initial value t_i to final value t_f during N stepsthese laws are follows. # 1) Linear: for step number n # t(n) = t_0 + (t_f-t_0)*n/(N-1) for n = 0,1,...,N-1 . # 2) Parabolic: for step number n # t(n) = t_0 + (t_f-t_0)*n^2/(N-1)^2 for n = 0,1,...,N-1 . # 3) Smooth sign-function: for step number n # t(n) = .5*(t_0+t_f) + .5*(t_f-t_0)*tanh(x(n)), where # x(n) = (6*n-3*(N-1))/(N-1) for n=0,1,...,N-1 . # In this approach x(0) = -3., x(N-1) = 3.; so, tanh(3.) = - tanh(-3.) = .9951 # import synergia import os, sys import inspect import math import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib import gridspec import rssynergia from rssynergia.base_diagnostics import lfplot from rssynergia.base_diagnostics import plotbeam from rssynergia.base_diagnostics import pltbunch def plotcoordDistr(bunchParticles): # # Plot X-X', Y-Y', and X-Y distributions for 'bunchParticles' # # bunchParticles is a 'bunch' object; # particles is 2D array: (numberOfParticles,(x,x',y,y',s,dp(?),ID); # numbPartcls = bunchParticles.shape[0] particles = bunchParticles.real newCoordinates = np.zeros((6,numbPartcls)) for k in range(numbPartcls): for j in range(6): newCoordinates[j,k] = 1.e3*particles[k,j] # Units: mm and mrad xmax = 1.15*np.max(abs(newCoordinates[0,:])) xpmax = 1.15*np.max(abs(newCoordinates[1,:])) ymax = 1.15*np.max(abs(newCoordinates[2,:])) ypmax = 1.15*np.max(abs(newCoordinates[3,:])) meanX = np.mean(newCoordinates[0,:]) meanPX = np.mean(newCoordinates[1,:]) stdX = np.std(newCoordinates[0,:]) stdPX = np.std(newCoordinates[1,:]) meanY = np.mean(newCoordinates[2,:]) meanPY = np.mean(newCoordinates[3,:]) stdY = np.std(newCoordinates[2,:]) stdPY = np.std(newCoordinates[3,:]) # Another way - use gridspec fig = plt.figure(figsize=(15,5)) gs = gridspec.GridSpec(1, 3, width_ratios=[1,1,1]) ax0 = plt.subplot(gs[0]) plt.plot(newCoordinates[0,:],newCoordinates[2,:],'.',color='k') x0Title = "X,mm: <> = {:.3f} +- {:.3f}\nY,mm: <> = {:.3f} +- {:.3f}".format(meanX,stdX,meanY,stdY) ax0.set_title(x0Title,color='m',fontsize='16') ax0.set_xlim([-xmax,xmax]) ax0.set_ylim([-ymax,ymax]) ax0.set_xlabel('X, mm',color='m',fontsize='14') ax0.set_ylabel('Y, mm',color='m',fontsize='14') ax0.grid(True) ax1 = plt.subplot(gs[1]) plt.plot(newCoordinates[0,:],newCoordinates[1,:],'.',color='b') x1Title = "X,mm: <> = {:.3f} +- {:.3f}\nX\',mrad: <> = {:.3f} +- {:.3f}".format(meanX,stdX,meanPX,stdPX) ax1.set_title(x1Title,color='m',fontsize='16') ax1.set_xlim([-xmax,xmax]) ax1.set_ylim([-xpmax,xpmax]) ax1.set_xlabel('X, mm',color='m',fontsize='14') ax1.set_ylabel('X\', mrad',color='m',fontsize='14') ax1.grid(True) ax2 = plt.subplot(gs[2]) plt.plot(newCoordinates[2,:],newCoordinates[3,:],'.',color='r') x2Title = "Y,mm: <> = {:.3f} +- {:.3f}\nY\',mrad: <> = {:.3f} +- {:.3f}".format(meanY,stdY,meanPY,stdPY) ax2.set_title(x2Title,color='m',fontsize='16') ax2.set_xlim([-ymax,ymax]) ax2.set_ylim([-ypmax,ypmax]) ax2.set_xlabel('Y, mm',color='m',fontsize='14') ax2.set_ylabel('Y\', mrad',color='m',fontsize='14') ax2.grid(True) # fig.canvas.set_window_title('Synergia Phase Space Distribution') fig.tight_layout() plt.show() return def plotTracks(tracksCoords,numberTracks): # # Plot'numberTracks' tracks from 'tracksCoords' # # tracksCoords is 3D array: (totalTurns,particles,(x,y)) # # print "numberTracks = ",numberTracks trackColor = ['r','b','k','m','g'] numbPoints = tracksCoords.shape[0] # print "numbPoints = ",numbPoints xmax = 1.15*np.max(np.max(abs(tracksCoords[:,0:numberTracks,0]))) ymax = 1.15*np.max(np.max(abs(tracksCoords[:,0:numberTracks,1]))) turn = np.arange(0,numbPoints) # Another way - use gridspec fig = plt.figure(figsize=(15,5)) gs = gridspec.GridSpec(1, 2, width_ratios=[1,1]) ax0 = plt.subplot(gs[0]) for prtcl in range(numberTracks): plt.plot(turn,tracksCoords[0:numbPoints,prtcl,0],'.-',color=trackColor[prtcl]) # x0Title = "X,mm: <> = {:.3f} +- {:.3f}\nY,mm: <> = {:.3f} +- {:.3f}".format(meanX,stdX,meanY,stdY) # ax0.set_title(x0Title,color='m',fontsize='16') ax0.set_ylim([-xmax,xmax]) ax0.set_xlabel('Turn',color='m',fontsize='14') ax0.set_ylabel('X, mm',color='m',fontsize='14') ax0.grid(True) ax1 = plt.subplot(gs[1]) for prtcl in range(numberTracks): plt.plot(turn,tracksCoords[0:numbPoints,prtcl,1],'.-',color=trackColor[prtcl]) # x0Title = "X,mm: <> = {:.3f} +- {:.3f}\nY,mm: <> = {:.3f} +- {:.3f}".format(meanX,stdX,meanY,stdY) # ax0.set_title(x0Title,color='m',fontsize='16') ax1.set_ylim([-ymax,ymax]) ax1.set_xlabel('Turn',color='m',fontsize='14') ax1.set_ylabel('Y, mm',color='m',fontsize='14') ax1.grid(True) # fig.canvas.set_window_title('Synergia Phase Space Distribution') fig.tight_layout() plt.show() return def plotParamLens(s_center,knll,cnll,title0,title1): # # Plot distribution of the strength 'knll' of the nonlinear lens inside # nonlinear insertion: # knll_plot = np.zeros(len(knll)) for n in range(len(knll)): knll_plot[n]=1.e6*knll[n] # Another way - use gridspec fig = plt.figure(figsize=(15,5)) gs = gridspec.GridSpec(1, 2, width_ratios=[1,1]) ax0 = plt.subplot(gs[0]) plt.plot(s_center,knll_plot,'-x',color='r') ax0.set_xlabel('s, m',color='m',fontsize=14) ax0.set_ylabel('10^6 * knll, m',color='m',fontsize=14) ax0.set_title(title0,color='m',fontsize=16) ax0.grid(True) ax1 = plt.subplot(gs[1]) plt.plot(s_center,cnll,'-x',color='r') ax1.set_xlabel('s, m',color='m',fontsize=14) ax1.set_ylabel('cnll, m^1/2',color='m',fontsize=14) ax1.set_title(title1,color='m',fontsize=16) ax1.grid(True) fig.tight_layout() plt.show() return def printAttributes(object,name,title): # # List of all attributes of 'object' for checking: # attrList = inspect.getmembers(object) strTitle = "\nattrList ("+name+" = "+title+"):\n{}\n" print strTitle.format(attrList) def tracksCoords(bunchParticles): # # Preparation of the track coordinates: # # 'bunchParticle' is a 'bunch' object; # 'particles' is 2D array: (numberParrticles,(x,x',y,y',s,dE,ID)); # numbPartcls = bunchParticles.shape[0] particles = bunchParticles.real trackCoordinates = np.zeros((numbPartcls,2)) for prtcl in range(numbPartcls): trackCoordinates[prtcl,0] = 1.e3*particles[prtcl,0] # x, mm trackCoordinates[prtcl,1] = 1.e3*particles[prtcl,2] # y, mm # if prtcl < 3: # print "Particle {}: x = {} mm, y = {} mm". \ # format(prtcl,trackCoordinates[prtcl,0],trackCoordinates[prtcl,1]) return trackCoordinates class NonlinearInsertion(object): # # Generation of the nonlinear lenses as set of segments of the nonlinear insertion # # Source: # 1) Nonlinear Accelerator Lattices with One and Two Analytic Invariants. # V. Danilov and S. Nagaitsev. Phys. Rev. ST Accel. Beams 13, 084002 (2010); # https://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.13.084002. # 2) Complex Representation of Potentials and Fields for the Nonlinear # Magnetic Insert of the Integrable Optics Test Accelerator. # Chad Mitchell. March 2017; https://esholarship.org/uc/item/7dt4t236. # 3) Madx CERN User Guide. Chapter 10.10 - Nonlinear Lens with Elliptical Potential. # http://mad.web.cern.ch/mad/ # # Input args: # length: the length of the nonlinear insertion (float, m); # phase: the phase advance modulo 2pi through the nonlinear insertion; # t: the strength parameter for center of the insertion (float, dimensionless, # defaults to 0.1); # c: the aperture parameter for center of the insertion # (float, m^1/2, is defined by poles in the x-axis, defaults to 0.01); # num_lens: the number of lonlinear lenses as an segments of the insertion (int, defaults to 20). # # Output attributes are the same as input one. # def __init__(self, length, phase, t = 0.1, c = 0.01, num_lens = 20): self.length = length self.phase = phase self.t = t self._c = c self.num_lens = num_lens # print "Input data for NonlinearInsertion:\nlength = ",self.length,", phase = ",self.phase, \ # ", t = ",self.t,", c = ",self.c,", num_lens = ",self.num_lens # Aperture parameter c must be positive: @property def c(self): return self._c @c.setter def c(self, cval): if cval < 0: raise ValueError("Aperture parameter c must be positive") self._c = c # # Output attributes of 'generate_lens' method: # # same as output of 'NonlinearInsertion'class and as well: # s_vals (ndArray): coordinates of the center of each nonlinear lens (float ndArray, m); # knll (ndArray): "strength" of each nonlinear lens (float ndArray, m); # cnll (ndArray): aperture parameters for each nonlinear lens (float ndArray, m^1/2). # def generate_lens(self,flag): indxShift = self.num_lens-2*((self.num_lens+1)/2)+1 # Focal length f0 of the insertion (m): f0 = self.length/4.0*(1.0+1.0/np.tan(np.pi*self.phase)**2) # print "f0 = ",f0 # Coordinates s_vals of the center of each nonlinear lens (m): first_lens = .5*(self.length/self.num_lens) last_lens = self.length - first_lens s_vals = np.linspace(first_lens,last_lens,self.num_lens) self.s_vals = s_vals # Set the structural beta-function of the nonlinear magnet (m): beta_n = self.length*(1.-s_vals*(self.length-s_vals)/self.length/f0)/ \ np.sqrt(1.0-(1.0-self.length/2.0/f0)**2) # self.betas = beta_n cnll = self.c*np.sqrt(beta_n) knn = self.t*self.length/self.num_lens/beta_n**2 knll = knn*cnll**2 # Sequence of lenses start from the minimal value of knll (flag = 1): self.cnll = cnll self.knll = knll # Sequence of lenses start from the maximal value of knll (flag = 2): if flag == 2: cnll_help = [] knll_help = [] indxMax = 0 for n in range(self.num_lens-1): if knll[n] < knll[n+1]: indxMax = n+1 else: break for n in range (self.num_lens): if n <= indxMax: cnll_help.append(float(cnll[indxMax-n])) knll_help.append(float(knll[indxMax-n])) else: cnll_help.append(float(cnll[n-indxMax-indxShift])) knll_help.append(float(knll[n-indxMax-indxShift])) self.cnll = cnll_help self.knll = knll_help return self # Pickle helper is not necessary but is retained for this example # class Pickle_helper: __getstate_manages_dict__ = 1 def __init__(self, *args): self.args = args def __getinitargs__(self): return self.args def __getstate__(self): return self.__dict__ def __setstate__(self, state): self.__dict__ = state # Definition of class to ramp nonlinear lens class Ramp_actions(synergia.simulation.Propagate_actions, Pickle_helper): # # Args of 'Ramp_actions' method are: # 'type' - type of magnification (1 - relative, 2 - absolute), # 'stepNumber' - current step of magnification, # 'strengthLens' - set of strengthes 't' of central lens of the nonlinear insertion for all steps of # magnification (relative magnification) or set of strengthes 't' of all lenses for # current step (absolute magnification), # 'updateOutputFlag' - flag to output the strength of one of nonlinear lens after it's magnification # for current step, # controlName - name of lens with maximal strength to use in output for checking of process # of magnification. # # # The arguments to __init__ are what the Ramp_actions instance is initialized with: def __init__(self, type,stepNumber,strengthLens,outputFlag,controlName): selfObject = synergia.simulation.Propagate_actions.__init__(self) # To recognize attributes of 'selfObject': # printAttributes(selfObject,'selfObject','synergia.simulation.Propagate_actions.__init__(self)') # Pickling the arguments to the initializer allows the module to resume # after checkpointing. They should be in the same order as the arguments to __init__. Pickle_helper.__init__(self, type,stepNumber,strengthLens,outputFlag,controlName) self.type = type self.stepNumber = stepNumber self.strengthLens = strengthLens self.outputFlag = outputFlag self.controlName = controlName def turn_end_action(self, stepper, bunch, turn_num): #--------------------------- # For checking: # testObject = stepper.get_lattice_simulator().get_lattice() # To recognize attributes of 'testObject': # printAttributes(testObject,'testObject','stepper.get_lattice_simulator().get_lattice()') # print "testName = '{}'".format(testObject.get_name()) #--------------------------- # Relative magnification: if self.type == 1: if self.stepNumber == 0: self.multiplier = self.strengthLens[0] print "Initialization lattice (relative magnification): Step ",self.stepNumber, \ ", multiplier = ",self.multiplier else: self.multiplier = self.strengthLens[self.stepNumber]/self.strengthLens[self.stepNumber-1] # Output title for checking of variables update: print "Modified lattice (relative magnification): Step ",self.stepNumber, \ ", multiplier = ",self.multiplier for element in stepper.get_lattice_simulator().get_lattice().get_elements(): # To recognize attributes of 'element': # printAttributes(element,'element', \ # 'stepper.get_lattice_simulator().get_lattice().get_elements()') if element.get_type() == "nllens": old_knll = element.get_double_attribute("knll") new_knll = self.multiplier*old_knll element.set_double_attribute("knll", new_knll) # Output for checking of variables update checking nonlinear lens 'n.11' only: if ((self.outputFlag == 1) and (element.get_name() == self.controlName)): print element.get_name(),": knll=",old_knll," --> ",new_knll # Absolute magnification: if self.type == 2: # Output title for checking of variables update: print "Modified lattice (absolute magnification): Step ",self.stepNumber crrntLens = 0 for element in stepper.get_lattice_simulator().get_lattice().get_elements(): # To recognize attributes of 'element': # printAttributes(element,'element', \ # 'stepper.get_lattice_simulator().get_lattice().get_elements()') if element.get_type() == "nllens": old_knll = element.get_double_attribute("knll") new_knll = self.strengthLens[crrntLens] element.set_double_attribute("knll", new_knll) crrntLens += 1 # Output for checking of variables update checking nonlinear lens 'n.11' only: if ((self.outputFlag == 1) and (element.get_name() == self.controlName)): print element.get_name(),": knll=",old_knll," --> ",new_knll stepper.get_lattice_simulator().update() def t_on_knll_function(l0,mu0,cval,lensNumb): # # "Reverse" dependence dimensionless strength 'tval' of nonlinear central lens on # parameter 'knll' of this lens # nPoints = 50 knll = np.zeros(nPoints) t = np.zeros(nPoints) knll_logMin = math.log10(1.e-7) knll_logMax = math.log10(1.e-4) # Focal length f0 of the insertion (m): f0 = l0/4.0*(1.0+1.0/np.tan(np.pi*mu0)**2) # print "f0 = ",f0," m" # Coordinate of the centers of the nonlinear lenses (m): first_lens_center = .5*(l0/lensNumb) last_lens_center = l0 - first_lens_center s_vals = np.linspace(first_lens_center,last_lens_center,lensNumb) # print "s_val =",s_vals # Coordinate of the center of the nonlinear lens in the middle of nonlinear inserion (m): s_center = s_vals[(num_lens+1)/2] # Structural beta-function in the nonlinear magnet (m): beta_center = l0*(1.-s_center*(l0-s_center)/l0/f0)/np.sqrt(1.0-(1.0-l0/2.0/f0)**2) cnll_center = cval*np.sqrt(beta_center) # print "s_center = ",s_center," m, beta_center = ",beta_center," m, cnll_center = ",cnll_center," m" for n in range(nPoints): knll_log10 = knll_logMin + n*(knll_logMax - knll_logMin)/nPoints knll[n] = math.pow(10.,knll_log10) t[n] = knll[n]*beta_center**2/(l0/lensNumb*cnll_center**2) fig_10 = plt.figure(figsize=(15,5)) gs_10 = gridspec.GridSpec(1, 2, width_ratios=[1,1]) ax_10 = plt.subplot(gs_10[0]) # plt.semilogx(knll,t,'-x',color='r') plt.loglog(knll,t,'-x',color='r') ax_10.set_xlabel('knnl, m',color='m',fontsize=14) ax_10.set_ylabel('Srength Parameter of the central lens, t',color='m',fontsize=14) # Attempt to change number of grid lines: # start, end = ax_10.get_xlim() # ax_10.xaxis.set_ticks(np.arange(start, end, (end-start)/30)) title_t = "Nonlinear Insertion ({} lenses): L={:.2f} m, phase= {:.2f}, c={:.2f} m^1/2". \ format(lensNumb,l0, mu0, cval) ax_10.set_title(title_t,color='m',fontsize=14) ax_10.grid(True) fig_10.tight_layout() plt.show() return def lawsMagnification(t_i,t_f,steps): # For relative magnification: t_i = 1., t_f = magnification: # # Three laws of magnification are in use # # 1) Linear: for step number n # t(n) = t_i + (t_f-t_i)*n/(N-1) for n = 0,1,...,N-1 . tLin = np.zeros(steps) for n in range(steps): tLin[n] = t_i+n*(t_f-t_i)/(steps-1) # 2) Parabolic: for step number n # t(n) = t_i + (t_f-t_i)*n^2/(N-1)^2 for n = 0,1,...,N-1 . tPar= np.zeros(steps) for n in range(steps): tPar[n] = t_i+n**2*(t_f-t_i)/(steps-1)**2 # 3) Smooth sign-function: for step number n # t(n) = .5*(t_f+t_i) + .5*(t_f-t_i)*tanh(x(n)), where # x(n) = (6*n-3*(N-1))/(N-1) for n=0,1,...,N-1 . # In this approach x(0) = -3., x(N-1) = 3.; so, tanh(3.) = - tanh(-3.) = .9951 tSSF= np.zeros(steps) for n in range(steps): x = (6.*n-3.*(steps-1))/(steps-1) tSSF[n] = .5*(t_f+t_i)+.5*(t_f-t_i)*np.tanh(x) # Plotting all cases: step = range(steps) tMin = .975*min(tLin) tMax = 1.025*max(tLin) fig = plt.figure(figsize=(15,5)) gs = gridspec.GridSpec(1, 3, width_ratios=[1,1,1]) ax0 = plt.subplot(gs[0]) plt.plot(step,tLin,'-x',color='r') x0Title = 'Linear Magnification' ax0.set_title(x0Title,color='m',fontsize='16') ax0.set_xlim([-1,steps+1]) ax0.set_ylim([tMin,tMax]) ax0.set_xlabel('Step n',color='m',fontsize='14') ax0.set_ylabel('t',color='m',fontsize='14') ax0.grid(True) ax1 = plt.subplot(gs[1]) plt.plot(step,tPar,'-x',color='r') x1Title = 'Parabolic Magnification' ax1.set_title(x1Title,color='m',fontsize='16') ax1.set_xlim([-1,steps+1]) ax1.set_ylim([tMin,tMax]) ax1.set_xlabel('Step n',color='m',fontsize='14') ax1.set_ylabel('t',color='m',fontsize='14') ax1.grid(True) ax2 = plt.subplot(gs[2]) plt.plot(step,tSSF,'-x',color='r') x2Title = 'Smooth Sign-function Magnification' ax2.set_title(x2Title,color='m',fontsize='16') ax2.set_xlim([-1,steps+1]) ax2.set_ylim([tMin,tMax]) ax2.set_xlabel('Step n',color='m',fontsize='14') ax2.set_ylabel('t',color='m',fontsize='14') ax2.grid(True) fig.tight_layout() plt.show() selection = int(raw_input("\nYour selection of the law magnification \ \n(1 - linear, 2 - parabolic, 3 - smooth sign-function; -1 - exit): ")) return selection # # Main method 'simulation' # def simulation(): # # Main predefined parameters of the nonlinear insertion: insrtn_l0 = 1.8 # total length, m insrtn_mu0 = .3 # phase, rad (/2pi) insrtn_c = .01 # aperture factor, m^(1/2) num_lens = 20 # number of lens inside insertion # # Interactive input of the parameters for simulation: # particlesInBunch = int(raw_input('\nTotal number of particles (= -1 to interrupt simulation):')) if particlesInBunch == -1: return totalTurns = int(raw_input('\nTotal number if turns (= -1 to interrupt simulation):')) if totalTurns == -1: return updateAfterTurns = int(raw_input( \ '\nPeriodicity (in turns) to update the parameters and distribution plots \n(nonlinear structure; = -1 to interrupt simulation)')) if updateAfterTurns == -1: return stepsInMgnfctn = int(totalTurns/updateAfterTurns)+0 print "steps for magnification: ",stepsInMgnfctn updateOutputFlag = int(raw_input('\nupdateOutputFlag (0 - no, 1 - yes, -1 - to interrupt simulation):')) if updateOutputFlag == -1: return magnificationType = int(raw_input( \ '\nMagnification type \n(1 - relative, 2 - absolute, 0 - to interrupt simulation):')) if magnificationType == 0: return else: if magnificationType == 1: mgnfctnFctr = float(raw_input( \ "\nFactor of relative magnification (RM) of the strength 't' of all (!) nonlinear lenses \n (RM = t_f/t_i; -1. - to interrupt simulation):")) if mgnfctnFctr == -1.: return else: t_i = 1. t_f = mgnfctnFctr else: print "\nInformation for help (20 nonlinear lenses inside of the insertion): \n" t_on_knll_function(insrtn_l0,insrtn_mu0,insrtn_c,20) t_i = float(raw_input( \ "\nInitial value 't_i' of the strength of the central (!) nonlinear lens \n (-1.- to interrupt simulation):")) if t_i == -1.: return t_f = float(raw_input( \ "\nFinal value 't_f' of the strength of nonlinear lens \n (-1.- to interrupt simulation):")) if t_f == -1.: return print "" law = lawsMagnification(t_i,t_f,stepsInMgnfctn) print 'Your selection of law magnification: ', law if law == -1: return # Input data for simulation: print "\n################################################################\n###" print "### Parameters for simulation:\n###" print "### Particles in the bunch = ",particlesInBunch print "### Total number of turns = ",totalTurns print "### Periodicity (in turns) to update the parameters = ",updateAfterTurns print "### magnificationType = ",magnificationType if magnificationType == 1: print "### Factor of relative magnification (RM) = ",mgnfctnFctr if magnificationType == 2: print "### For absolute magnification (AM) initial value t_i = ",t_i print "### For absolute magnification (AM) final value t_f = ",t_f laws = ['linear', 'parabolic', 'smooth sign-function'] print "### Law of magnification: ",laws[law-1] print "### Steps in magnification: ",stepsInMgnfctn print "###\n### Predefined parameters for nonlinear insertion:\n###" print "### Length = ",insrtn_l0," m" print "### Phase = ",insrtn_mu0," rad (/2pi)" print "### Aperture factor = ",insrtn_c," m^(1/2)" print "### Number of lens inside insertion = ",num_lens print "###\n################################################################" # # For relative type of maginfication (magnificationType = 1): # if magnificationType == 1: # # t_i = 1. and t_f is total factor of magnification. # So, 1D-array 'strengthLens[0:stepsInMgnfctn]' describes current value of the # strength (knll) of lens for current step n; Then 1D-array 'magnifications[0:stepsInMgnfctn]' # describe magnification factor to pass from old_knll_value = knll[n-1] to # new_knll_value = knll[n] on step n: # new_knll_value = magnifications[n]*old_knll_value . # Factor 'magnifications' is the same for all lens of nonlinear insertion! # strengthLens = np.zeros(stepsInMgnfctn) magnifications = np.zeros(stepsInMgnfctn) totalMgnfcn = 1. # # For absolute magnification (magnificationType = 2): # if magnificationType == 2: # # parameters t_i and t_f characterize only central lens of nonlinear insertion. # So, the strength of 't' for all rest lenses must be recalculate in corresponding # distribution of beta-function inside the insertion by using method 'generate_lens'. # So, 1D-array 'strengthLens[0:stepsInMgnfctn]' describes value of the strength # of central lens only for current step n. # strengthLens = np.zeros(stepsInMgnfctn) for n in range(stepsInMgnfctn): if law == 1: # 1) Linear: for step number n # t(n) = t_i + (t_f-t_i)*n/(N-1) for n = 0,1,...,N-1 . strengthLens[n] = t_i+n*(t_f-t_i)/(stepsInMgnfctn-1) elif law == 2: # 2) Parabolic: for step number n # t(n) = t_i + (t_f-t_i)*n^2/(N-1)^2 for n = 0,1,...,N-1 . strengthLens[n] = t_i+n**2*(t_f-t_i)/(stepsInMgnfctn-1)**2 elif law == 3: # 3) Smooth sign-function: for step number n # t(n) = .5*(t_i+t_f) + .5*(t_f-t_i)*tanh(x(n)), where # x(n) = (6*n-3*(N-1))/(N-1) for n=0,1,...,N-1 . # In this approach x(0) = -3., x(N-1) = 3.; so, tanh(3.) = - tanh(-3.) = .9951 x = (6.*n-3.*(stepsInMgnfctn-1))/(stepsInMgnfctn-1) strengthLens[n] = .5*(t_i+t_f)+.5*(t_f-t_i)*np.tanh(x) if magnificationType == 1: if n == 0: print "\nRelative magnification:" magnifications[n] = strengthLens[n] else: magnifications[n] = strengthLens[n]/strengthLens[n-1] print " magnifications[{}] = {}".format(n,magnifications[n]) totalMgnfcn *= magnifications[n] if n == stepsInMgnfctn-1: print "Total relative magnification (RM) will be = ",totalMgnfcn if magnificationType == 2: if n == 0: print \ "\nStrengths 't' and corresponding values 'knll' of cenrtal lens for absolute magnification:" # Calculate value 'knll', which correspond to current value of strngth 't' = strengthLens[n]: f0Crrnt = insrtn_l0/4.0*(1.0+1.0/np.tan(np.pi*insrtn_mu0)**2) first_lens_center = .5*(insrtn_l0/num_lens) last_lens_center = insrtn_l0 - first_lens_center # Coordinates of the center of the nonlinear lenses in the nonlinear inserion (m): s_vals = np.linspace(first_lens_center,last_lens_center,num_lens) # print "s_val =",s_vals # Coordinate of the center of the nonlinear lens in the middle of nonlinear inserion (m): s_center = s_vals[(num_lens+1)/2] # Structural beta-function of the nonlinear magnet (m): beta_center = insrtn_l0*(1.-s_center*(insrtn_l0-s_center)/insrtn_l0/f0Crrnt)/ \ np.sqrt(1.0-(1.0-insrtn_l0/2.0/f0Crrnt)**2) cnll_center = insrtn_c*np.sqrt(beta_center) # print "s_center = ",s_center," m, beta_center = ",beta_center, \ # " m, cnll_center = ",cnll_center," m" knll_center = insrtn_l0/num_lens*strengthLens[n]*(cnll_center/beta_center)**2 print " t[{}]] = {} ==> knll = {} m".format(n,strengthLens[n],knll_center) # # Simulated lattice: # fileIOTA = ".../ioptics/ioptics/lattices/Iota8-2/lattice_1IO_nll_center.madx" print "\nIOTA Nonlinear lattice: {} \n".format(fileIOTA) lattice = synergia.lattice.MadX_reader().get_lattice("iota", \ "../ioptics/ioptics/lattices/Iota8-2/lattice_1IO_nll_center.madx") # To recognize attributes of 'lattice': # printAttributes(lattice,'lattice','synergia.lattice.MadX_reader().get_lattice') # fileIOTA = ".../ioptics/ioptics/lattices/Iota8-4/lattice_8-4_1IO_nll_forTest.madx" # print "\nIOTA Nonlinear lattice: {} \n".format(fileIOTA) # lattice = synergia.lattice.MadX_reader().get_lattice("iota", \ # "../ioptics/ioptics/lattices/Iota8-4/lattice_8-4_1IO_nll_forTest.madx") # For checking only: # k = 0 # for elem in lattice.get_elements(): # if k == 0: # printAttributes(elem,'elem','lattice.get_elements') # k += 1 # if elem.get_type() == 'nllens': # elem.set_string_attribute("extractor_type", "chef_propagate") # else: # elem.set_string_attribute("extractor_type", "chef_map") # print "elem ({}): name = {}, type = {}, stringAttrbt ={}". \ # format(k,elem.get_name(),elem.get_type(),elem.get_string_attribute("extractor_type")) knllLenses = [] nameLenses = [] placeLenses = [] numberLenses = 0 for element in lattice.get_elements(): if element.get_type() == 'nllens': knllLenses.append(float(element.get_double_attribute("knll"))) nameLenses.append(element.get_name()) placeLenses.append(int(numberLenses)) numberLenses += 1 num_lens = numberLenses # number of lens inside insertion # print "placeLenses: ",placeLenses # print "nameLenses: ",nameLenses # print "knllLenses: ",knllLenses # print "Number of lenses: ",numberLenses # Name of lens with maximal strength to use in output for checking of process of magnification controlName = nameLenses[np.argmax(knllLenses)] # print "controlName: ",controlName startSequenceLenses = 1 # First lens has minimal knll if knllLenses[0] > knllLenses[1]: startSequenceLenses = 2 # First lens has maximal knll # print "startSequenceLenses = ",startSequenceLenses # Original version: # lattice_simulator = synergia.simulation.Lattice_simulator(lattice, 2) # Bunch: # bunch = synergia.optics.generate_matched_bunch_transverse(lattice_simulator, 1e-6, \ # 1e-6, 1e-3, 1e-4, 1e9, 10000, seed=1234) # YuE version: stepperCrrnt = synergia.simulation.Independent_stepper_elements(lattice,2,3) lattice_simulator_Crrnt = stepperCrrnt.get_lattice_simulator() # Bunch: bunch_origin = synergia.optics.generate_matched_bunch_transverse( \ lattice_simulator_Crrnt, 1e-6, 1e-6, 1e-3, 1e-4, 1e9, particlesInBunch, seed=1234) # For checking: # To recognize attributes of 'bunch_origin': # printAttributes(bunch_origin,'bunch_origin','synergia.optics.generate_matched_bunch_transverse') # particlesTmp = bunch_origin.get_local_particles() # To recognize attributes of 'particlesTmp': # printAttributes(particlesTmp,'particlesTmp','bunch_origin.get_local_particles') # 'particlesCrrnt' is 2D array: (numberoFParticle,(x,x',y,y',s,dE,ID)); # particlesCrrnt = particlesTmp.real # print " particlesCrrnt:" # for prtcl in range(5): # print "x (m) for particle {}: {}".format(prtcl,particlesCrrnt[prtcl,0]) # print "y (m) for particle {}: {}".format(prtcl,particlesCrrnt[prtcl,2]) # print "s (m) for particle {}: {}".format(prtcl,particlesCrrnt[prtcl,4]) # End of checking #------------------------------------------------- # For checking only: # # 1) Attributes: # printAttributes(bunch,'bunch','synergia.optics.generate_matched_bunch_transverse') # 2) Distributions X-Y, X-X', Y-Y' using method 'pltbunch.plot_bunch': loclTitle = "\nThese distributions were constructed using " loclTitle += "'synergia.optics.generated_matched_bunch_transverse' method:\n" print loclTitle pltbunch.plot_bunch(bunch_origin) # 3) Distributions X-Y, X-X', Y-Y' using method 'plotcoordDistr': bunchParticles = bunch_origin.get_local_particles() # To recognize attributes of 'bunchParticles': # printAttributes(bunchParticles,'bunchParticles', 'bunch.get_local_particles()') plotcoordDistr(bunchParticles) #-------------------------------------------------- # Steppers (YuE: both case 'splitoperator' and 'independent' work properly!): # stepper = 'splitoperator' stepper = 'independent' if stepper == "splitoperator": # Use the Split operator stepper with a dummy collective operator (with evenly-spaced steps) no_op = synergia.simulation.Dummy_collective_operator("stub") stepper = synergia.simulation.Split_operator_stepper( lattice_simulator_Crrnt, no_op, 4) elif stepper == "independent": # Use the Independent particle stepper (by element) stepper = synergia.simulation.Independent_stepper_elements( lattice_simulator_Crrnt, 4) else: sys.stderr.write("fodo.py: stepper must be either 'independent' or 'splitoperator'\n") exit(1) # Bunch simulator: bunch_simulator = synergia.simulation.Bunch_simulator(bunch_origin) # This diagnostics does not use! # Diagnostics: # diagnostic_flag = 'None' # for part in range(0, 0): # bunch_simulator.add_per_step(synergia.bunch.Diagnostics_track("step_track_%02d.h5" % part, # part)) # if diagnostic_flag == 'step_full2': # bunch_simulator.add_per_step(synergia.bunch.Diagnostics_full2("step_full2.h5")) # if diagnostic_flag == 'step_particles': # bunch_simulator.add_per_step(synergia.bunch.Diagnostics_particles("step_particles.h5")) # for part in range(0, 0): # bunch_simulator.add_per_turn(synergia.bunch.Diagnostics_track("turn_track_%02d.h5" % part, # part)) # if diagnostic_flag == 'turn_full2': # bunch_simulator.add_per_turn(synergia.bunch.Diagnostics_full2("turn_full2.h5")) # if diagnostic_flag == 'turn_particles': # bunch_simulator.add_per_turn(synergia.bunch.Diagnostics_particles("turn_particles.h5")) #--------------------------- # Propagate #--------------------------- # Ramp action is instantiated and passed to the propagator instance during the propagate method print "\n-------------------\n" print " Nonlinear parameters will be CHANGED after each {} turns".format(updateAfterTurns) print "\n-------------------\n" # ะše-setting the original 'bunch_origin' object, because it was changed (for some unknown reason) # while pulling a 'bunch' object through a fixed number of turns in a linear structure bunch_origin = synergia.optics.generate_matched_bunch_transverse(lattice_simulator_Crrnt, 1e-6, \ 1e-6, 1e-3, 1e-4, 1e9, particlesInBunch, seed=1234) # For checking (to verify that particles from "old" and "new" 'bunch_origin' objects are the same): # particlesOrg4 = bunch_origin.get_local_particles() # To recognize attributes of 'particlesOrg2': # printAttributes(particlesOrg4,'particlesOrg4','bunch_origin.get_local_particles') # End of checking (result: particles in both "old" and "new" objects are the same!) bunch = bunch_origin # For checking: # particlesTmp2 = bunch.get_local_particles() # To recognize attributes of 'particlesTmp2': # printAttributes(particlesTmp2,'particlesTmp2','bunch.get_local_particles') # particlesCrrnt2 = particlesTmp2.real # print " particlesCrrnt (again for nonlinear):" # for prtcl in range(5): # print "x (m) for particle {}: {}".format(prtcl,particlesCrrnt2[prtcl,0]) # print "y (m) for particle {}: {}".format(prtcl,particlesCrrnt2[prtcl,2]) # End of checking bunch_simulator = synergia.simulation.Bunch_simulator(bunch) propagator = synergia.simulation.Propagator(stepper) # propagator.set_checkpoint_period(0) # propagator.set_checkpoint_with_xml(True) # tracksNonLinear is 3D array: (totalTurns,bunchParticles,(x,y)) tracksNonLinear = np.zeros((totalTurns,particlesInBunch,2)) nUpdate = 1 stepOfMgnfcn = 1 totalTimeCPU = 0. for turnCrrnt in range(totalTurns): timeStart = os.times() # # Without of initialization: # propagatorCrrnt = propagator.propagate(bunch_simulator, 1, 1, 0) # To recognize attributes of 'propagatorCrrnt': # printAttributes(propagatorCrrnt,'propagatorCrrnt', \ # 'propagator.propagate(bunch_simulator, 1, 1, 0)') if turnCrrnt == 0: #------------------ # Initialization of the lattice before first turn: # if magnificationType == 1: ramp_actions = Ramp_actions(magnificationType,0,strengthLens, \ updateOutputFlag,controlName) if magnificationType == 2: dataInsertion = \ NonlinearInsertion(insrtn_l0, insrtn_mu0, strengthLens[stepOfMgnfcn], \ insrtn_c, num_lens).generate_lens(startSequenceLenses) knll_lens = dataInsertion.knll ramp_actions = Ramp_actions(magnificationType,0,knll_lens, \ updateOutputFlag,controlName) propagatorCrrnt = propagator.propagate(bunch_simulator, ramp_actions, 1, 1, 0) # # End of initialization of the lattice before first turn #------------------ # bunchParticles is 2D array: (numberParrticles,(x,x',y,y',s,dE,ID)) bunchParticles = bunch.get_local_particles() # coordsTracks is 2D array: (bunchParticles,(x,y)) coordsTracks = tracksCoords(bunchParticles) numbPartcls = bunchParticles.shape[0] for prtcl in range(numbPartcls): for k in range(2): tracksNonLinear[turnCrrnt,prtcl,k] = coordsTracks[prtcl,k] # if prtcl < 3: # print "tracksNonLinear (turn {}) for particle {}: x = {} mm, y = {} mm". \ # format(turnCrrnt,prtcl,tracksNonLinear[turnCrrnt,prtcl,0], \ # tracksNonLinear[turnCrrnt,prtcl,1]) turnNumber = turnCrrnt+1 timeEnd = os.times() timeOfTurn = float(timeEnd[0] - timeStart[0]) # CPU time in seconds totalTimeCPU += timeOfTurn print ('Turn %3d is completed (CPU time = %6.3f seconds)' % (turnNumber, timeOfTurn)) if turnCrrnt == totalTurns-1: break sys.stdout.flush() if nUpdate == updateAfterTurns: timeStart = os.times() print "\n" plotcoordDistr(bunchParticles) #== # #== # Possibility for future to redefine parameters "in-fly" of simulation: #== # #== if updateInsideSmlnFlag == 1: #== print "Old multiplyier for knl = {}".format(knlMultiplier) #== # Multiplier 'knlMultiplier' is the same for all nonlinear lenses: #== knlMultiplier = float(raw_input('\nNew multiplyier for knl:')) #== print "Old multiplyier for cnll = {}".format(cnllMultiplier) #== # IF NEEDED: multiplier 'cnllMultiplier' is the same for all nonlinear lenses: #== cnllMultiplier = float(raw_input('\nNew multiplyier for cnll:')) if magnificationType == 1: # # Relative magnification - for current step 'stepOfMgnfcn' > 1 multipliers for all lenses are the same # and equal to ratio strengthLens[stepOfMgnfcn]/strengthLens[stepOfMgnfcn-1] (except the first step): # if stepOfMgnfcn == 0: knlMultiplier = strengthLens[stepOfMgnfcn] else: knlMultiplier = strengthLens[stepOfMgnfcn]/strengthLens[stepOfMgnfcn-1] # print "Step for relative magnification ",stepOfMgnfcn,": knlMultiplier = ",knlMultiplier # # REMINDER regarding of 'Ramp_actions' class! # # Args are: # magnificationType - type of magnification (1 - relative, 2 - absolute), # stepOfMgnfcn - current step of magnification, # strengthLens - set of strengthes 't' of central lens of the nonlinear insertion for all steps of # magnification (relative magnification) or set of strengthes 't' of all lenses for # current step (absolute magnification), # updateOutputFlag - flag to output the strength of one of nonlinear lens after it's magnification # for current step, # controlName - name of lens with maximal strength to use in output for checking of process of # magnification. # ramp_actions = Ramp_actions(magnificationType,stepOfMgnfcn,strengthLens, \ updateOutputFlag,controlName) if magnificationType == 2: # # Absolute magnification - for current step stepOfMgnfcn the strength 't' for central nonlinear lens # equals strengthLens[stepOfMgnfcn] # # # REMINDER regarding of 'NonlinearInsertion' class! # # Input args: # length: the length of the nonlinear insertion (float, m); # phase: the phase advance modulo 2pi through the nonlinear insertion; # t: the strength parameter for center of the insertion (float, dimensionless, defaults to 0.1); # c: the aperture parameter for center of the insertion # (float, m^1/2, is defined by poles in the x-axis, defaults to 0.01); # num_lens: the number of nonlinear lenses as an segments of the insertion (int, defaults to 20). # # Output attributes are the same as input one. # # # REMINDER regarding of 'generate_lens' method! # # Input arg: # startSequenceLenses - flag of the distribution 'knll' parameter of the lenses # (1 - nonlinear insertion in *.madx description of the IOTA ring started from lens with minimal strength, # 2 - nonlinear insertion in *.madx description of the IOTA ring started from lens with maximal strength). # # Output attributes: # # same as output of 'NonlinearInsertion' class and as well: # s_vals (ndArray) - coordinates of the center of each nonlinear lens (float ndArray, m); # knll (ndArray) - "strength" of each nonlinear lens (float ndArray, m); # cnll (ndArray) - aperture parameters for each nonlinear lens (float ndArray, m^1/2). # dataInsertion = \ NonlinearInsertion(insrtn_l0, insrtn_mu0, strengthLens[stepOfMgnfcn], insrtn_c, num_lens). \ generate_lens(startSequenceLenses) coords_lens = dataInsertion.s_vals knll_lens = dataInsertion.knll cnll_lens = dataInsertion.cnll # if stepOfMgnfcn > 0: # print "Step for absolute magnification ",stepOfMgnfcn, \ # ": for central lens current 't' = ",strengthLens[stepOfMgnfcn] # print "coords_lens = ",coords_lens # print "knll_lens = ",knll_lens # print "cnll_lens = ",cnll_lens # title_k for knll-plot, title_c - for cnll-plot: title_k = "Nonlinear Insertion: L={:.1f}m, phase= {:.2f}, t={:.4f}, c={:.2f}m^1/2". \ format(insrtn_l0, insrtn_mu0, strengthLens[stepOfMgnfcn], insrtn_c) # print "title_k = ",title_k title_c = title_k # print "title_c = ",title_c plotParamLens(coords_lens,knll_lens,cnll_lens,title_k,title_c) # print "Step ",stepOfMgnfcn,": knll = ",knll_lens ramp_actions = Ramp_actions(magnificationType,stepOfMgnfcn,knll_lens, \ updateOutputFlag,controlName) stepOfMgnfcn += 1 nUpdate = 0 print "\n After {} turns:\n".format(turnNumber) propagatorCrrnt = propagator.propagate(bunch_simulator, ramp_actions, 1, 1, 0) timeEnd = os.times() timeUpdateAndPlot = float(timeEnd[0] - timeStart[0]) # CPU time in seconds totalTimeCPU += timeUpdateAndPlot print ('\nUpdate and plotting are completed (CPU time = %6.3f seconds)\n' % timeUpdateAndPlot) nUpdate += 1 # for prtcl in range(5): # print "x (mm) for particle {}: {}".format(prtcl,tracksNonLinear[:,prtcl,0]) # print "y (mm) for particle {}: {}".format(prtcl,tracksNonLinear[:,prtcl,1]) print "\n\n Final results: \n\n" plotcoordDistr(bunchParticles) plotTracks(tracksNonLinear,5) print ('\nFor %5d turns CPU time = %6.3f seconds\n' % (totalTurns, totalTimeCPU)) return # # End of main method 'simulation' # #======================================================== fileIOTA = ".../ioptics/ioptics/lattices/Iota8-2/lattice_1IO_nll_center.madx" # fileIOTA = ".../ioptics/ioptics/lattices/Iota8-4/lattice_8-4_1IO_nll_forTest.madx" print "\nIOTA Nonlinear lattice: {} \n".format(fileIOTA) lattice = synergia.lattice.MadX_reader().get_lattice("iota", \ "../ioptics/ioptics/lattices/Iota8-2/lattice_1IO_nll_center.madx") # --------- Games ----------------------------- # indices = np.argsort(knllLenses) # print "indices = ",indices # for n in range(nLenses+1): # print n,") name after sorting is ",nameLenses[indices[n]] # for n in range(nLenses+1): # print n,") knll after sorting is ",knllLenses[indices[n]] # for n in range(nLenses+1): # print n,") place after sorting is ",placeLenses[indices[n]] # ----------- End of games -------------------- stepperCrrnt = synergia.simulation.Independent_stepper_elements(lattice,2,3) lattice_simulator_Crrnt = stepperCrrnt.get_lattice_simulator() # To recognize attributes of 'bunchParticles': # printAttributes(lattice_simulator_Crrnt,'lattice_simulator_Crrnt','stepperCrrnt.get_lattice_simulator()') # slicesHelp = lattice_simulator_Crrnt.get_slices() # To recognize attributes of 'slicesHelp': # printAttributes(slicesHelp,'slicesHelp','lattice_simulator_Crrnt.get_slices()') # Bunch: bunch_origin = synergia.optics.generate_matched_bunch_transverse(lattice_simulator_Crrnt, 1e-6, \ 1e-6, 1e-3, 1e-4, 1e9, 1000, seed=1234) # # To compare two methods for drawing of the particles distributions: # loclTitle = "\nThese distributions were constructed using \ 'synergia.optics.generated_matched_bunch_transverse' method" loclTitle += "\nand plotted using two methods - 'pltbunch.plot_bunch' from the code synergia" loclTitle += "\nand 'plotcoordDistr' from this script (to verify method 'plotcoordDistr'):" print loclTitle pltbunch.plot_bunch(bunch_origin) # Distributions X-Y, X-X', Y-Y' using method 'plotcoordDistr': bunchParticles = bunch_origin.get_local_particles() # To recognize attributes of 'bunchParticles': # printAttributes(bunchParticles,'bunchParticles', 'bunch.get_local_particles()') plotcoordDistr(bunchParticles) selection = 'loop' while selection == 'loop': simulation() selection = raw_input("\nTo continue the simulation ('yes' or 'no'):") print'Your selection is ',selection if selection == 'yes': selection = 'loop' # if selection == 'no': # exit(0)
40,746
1,792
339
2e52a259e89d5bda865dcd429e1f812444177e48
311
py
Python
tools/ExperimentServerTester/src/script.py
zstars/weblabdeusto
09bd9d93d483671bca67ee5c70a9c412eb5d352f
[ "BSD-2-Clause" ]
15
2015-03-12T12:15:41.000Z
2021-12-20T17:53:24.000Z
tools/ExperimentServerTester/src/script.py
zstars/weblabdeusto
09bd9d93d483671bca67ee5c70a9c412eb5d352f
[ "BSD-2-Clause" ]
44
2015-01-07T09:22:05.000Z
2017-01-31T22:44:21.000Z
tools/ExperimentServerTester/src/script.py
zstars/weblabdeusto
09bd9d93d483671bca67ee5c70a9c412eb5d352f
[ "BSD-2-Clause" ]
22
2015-01-13T13:55:48.000Z
2021-12-16T17:07:00.000Z
import time connect("127.0.0.1", "10039", "weblab") #test_me("hello") start_experiment() send_file("script.py", "A script file") response = send_command("Test Command") print "The response is: %s" % response msg_box("Test Message", "test") time.sleep(2) dispose() disconnect()
13.521739
40
0.633441
import time connect("127.0.0.1", "10039", "weblab") #test_me("hello") start_experiment() send_file("script.py", "A script file") response = send_command("Test Command") print "The response is: %s" % response msg_box("Test Message", "test") time.sleep(2) dispose() disconnect()
0
0
0
48cabd08bfb5c7aca6c826bcc5b96062a846eb14
3,887
py
Python
source/vsm-dashboard/vsm_dashboard/dashboards/vsm/poolsmanagement/form.py
ramkrsna/virtual-storage-manager
78125bfb4dd4d78ff96bc3274c8919003769c545
[ "Apache-2.0" ]
172
2015-01-07T08:40:17.000Z
2019-02-18T07:01:11.000Z
source/vsm-dashboard/vsm_dashboard/dashboards/vsm/poolsmanagement/form.py
ramkrsna/virtual-storage-manager
78125bfb4dd4d78ff96bc3274c8919003769c545
[ "Apache-2.0" ]
83
2015-03-06T07:47:03.000Z
2018-07-05T15:10:19.000Z
source/vsm-dashboard/vsm_dashboard/dashboards/vsm/poolsmanagement/form.py
ramkrsna/virtual-storage-manager
78125bfb4dd4d78ff96bc3274c8919003769c545
[ "Apache-2.0" ]
125
2015-01-05T12:22:15.000Z
2019-02-18T07:01:39.000Z
# Copyright 2014 Intel Corporation, All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the"License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from django.core import validators from django.core.urlresolvers import reverse from django.utils.translation import ugettext_lazy as _ from horizon import exceptions from horizon import forms from horizon import messages from horizon.utils.validators import validate_port_range # from horizon.utils import fields import logging from vsm_dashboard.api import vsm as vsm_api from vsm_dashboard.utils.validators import validate_pool_name LOG = logging.getLogger(__name__)
40.915789
137
0.654747
# Copyright 2014 Intel Corporation, All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the"License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from django.core import validators from django.core.urlresolvers import reverse from django.utils.translation import ugettext_lazy as _ from horizon import exceptions from horizon import forms from horizon import messages from horizon.utils.validators import validate_port_range # from horizon.utils import fields import logging from vsm_dashboard.api import vsm as vsm_api from vsm_dashboard.utils.validators import validate_pool_name LOG = logging.getLogger(__name__) class CreateErasureCodedPool(forms.SelfHandlingForm): failure_url = 'horizon:vsm:poolsmanagement:index' name = forms.CharField(label=_("Pool name"), max_length=255, min_length=1, error_messages={ 'required': _('This field is required.'), 'invalid': _("The string may only contain" " ASCII characters and numbers.")}, validators=[validate_pool_name]) tag = forms.CharField(label=_("Tag"), max_length=16, min_length=1, error_messages={ 'required': _('This field is required.'),}) storage_group = forms.ChoiceField(label=_('Storage Group')) ec_profile = forms.ChoiceField(label=_('Erasure Coded Profile')) ec_failure_domain = forms.ChoiceField(label=_('Erasure Coded Failure Domain')) def __init__(self, request, *args, **kwargs): super(CreateErasureCodedPool, self).__init__(request, *args, **kwargs) storage_group_list = [] ec_profile_list = [] ec_failure_domain_list = [('osd', "OSD (default)"), ("zone", "Zone"), ('host', "Host")] ec_profiles = vsm_api.ec_profiles(self.request) for k, v in enumerate(ec_profiles): ec_profile_list.append((v['id'], v['name'])) try: rsp, group_list= vsm_api.get_storage_group_list(self.request) for key in group_list: storage_group_list.append((key, group_list[key])) except: msg = _('Failed to get storage_group_list.') redirect = reverse(self.failure_url) exceptions.handle(request, msg, redirect=redirect) return False self.fields['storage_group'].choices = storage_group_list self.fields['ec_profile'].choices = ec_profile_list self.fields['ec_failure_domain'].choices = ec_failure_domain_list def handle(self, request, data): pass class RemoveCacheTier(forms.SelfHandlingForm): failure_url = 'horizon:vsm:poolsmanagement:index' cache_tier_pool = forms.ChoiceField(label=_('Cache Tier Pool'), required=False) def __init__(self, request, *args, **kwargs): super(RemoveCacheTier, self).__init__(request, *args, **kwargs) cache_tier_pool_list = [('',"Select a Cache Tier Pool")] pools = vsm_api.pool_status(request) cache_tier_pool_list += [(pool.pool_id, pool.name) for pool in pools if str(pool.cache_tier_status).startswith("Cache pool for")] self.fields['cache_tier_pool'].choices = cache_tier_pool_list def handle(self, request, data): pass
1,477
1,279
46
f1c1a2b775dd8f42670af033d3b68469cf42d8f7
4,515
py
Python
icaldump/crawler.py
adrien-f/ical-dumper
0dc597c77017c59041ae78d3c69854e40019a863
[ "MIT" ]
null
null
null
icaldump/crawler.py
adrien-f/ical-dumper
0dc597c77017c59041ae78d3c69854e40019a863
[ "MIT" ]
null
null
null
icaldump/crawler.py
adrien-f/ical-dumper
0dc597c77017c59041ae78d3c69854e40019a863
[ "MIT" ]
null
null
null
import arrow import requests from arrow import Arrow from bs4 import BeautifulSoup from collections import defaultdict from icalendar import Calendar, Event, vText, vCalAddress from hashlib import md5 import json
48.031915
222
0.578295
import arrow import requests from arrow import Arrow from bs4 import BeautifulSoup from collections import defaultdict from icalendar import Calendar, Event, vText, vCalAddress from hashlib import md5 import json class Crawler(object): def __init__(self, username, password, root_path): self.username = username self.password = password self.root_path = root_path def _auth(self): req = requests.post('{}/login_form'.format(self.root_path), { 'form.submitted': 1, 'came_from': self.root_path, 'js_enabled': 0, 'cookies_enabled': None, 'login_name': None, 'pwd_empty': 0, '__ac_name': self.username, '__ac_password': self.password, 'submit': 'Se connecter' }, headers={'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/53.0.2785.143 Safari/537.36'}) req.raise_for_status() if ('login_form' in req.url): raise Exception('Could not authenticate user {}.'.format(self.username)) else: self.cookies = req.history[0].cookies def _fetch_calendar(self, date): req = requests.get('{}/emploi_du_temps'.format(self.root_path), { 'date': date.format('MM/DD/YYYY') }, cookies=self.cookies, headers={'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/53.0.2785.143 Safari/537.36'}) req.raise_for_status() return req.text def _parse_calendar(self, calendar, week): bs = BeautifulSoup(calendar, 'html.parser') day_offset_map = {} planning = defaultdict(list) for day in bs.body.find(id='DivBody').find_all('div', class_='Jour'): style = day['style'][:-1] rules = dict(item.strip().split(':') for item in style.split(';')) left = int(float(rules['left'][:-1])) if not (100 < left < 190): continue day_text = day.find('td').text day_offset_map[left] = arrow.get(day_text, 'dddd D MMMM', locale='fr_FR').replace(year=week.year).isoformat() for case in bs.body.find(id='DivBody').select('.Case'): if "Pas de cours cette semaine" in case.text: continue style = case['style'][:-1] rules = dict(item.strip().split(':') for item in style.split(';')) left = int(float(rules.get('left', '0.0%')[:-1])) if not (100 < left < 190): continue planning[day_offset_map[left]].append({ 'name': case.find('td', class_='TCase').text.title(), 'teacher': list(case.find('td', class_='TCProf').strings)[0].title(), 'group': list(case.find('td', class_='TCProf').strings)[1], 'time': case.find('td', class_='TChdeb').text, 'room': case.find('td', class_='TCSalle').text }) return planning def crawl(self, start, end): self._auth() planning = {} for r in arrow.Arrow.span_range('week', start, end): print('Fetching calendar for week {}'.format(r[0].format('YYYY-MM-DD'))) calendar = self._fetch_calendar(r[0]) planning = {**planning, **self._parse_calendar(calendar, r[0])} return planning, self._build_ical(planning) def _build_ical(self, planning): c = Calendar() for day, courses in planning.items(): for course in courses: event = Event() start_time, end_time = course['time'].split(' - ') event.add('uid', md5("{course[name]}.{course[teacher]}.{course[teacher]}.{start_time}.{end_time}.{day}".format(course=course, start_time=start_time, end_time=end_time, day=day).encode('utf-8')).hexdigest()) event.add('location', course['room']) event.add('summary', course['name']) event.add('dtstart', arrow.get(day).clone().replace(hours=int(start_time.split(':')[0]), minutes=int(start_time.split(':')[1])).datetime) event.add('dtend', arrow.get(day).clone().replace(hours=int(end_time.split(':')[0]), minutes=int(end_time.split(':')[1])).datetime) event.add('description', "Prof: {}\nGroupe: {}".format(course['teacher'], course['group'])) c.add_component(event) return c.to_ical()
4,108
1
185
47a36abef43918b317e5caf6a9faf6952120ecad
178
py
Python
recipe/run_test.py
AnacondaRecipes/pyproj-feedstock
5000f3a702d692f508b8994ae84a7e8f7d55fe57
[ "BSD-3-Clause" ]
4
2019-04-15T22:42:28.000Z
2021-11-09T11:29:36.000Z
recipe/run_test.py
AnacondaRecipes/pyproj-feedstock
5000f3a702d692f508b8994ae84a7e8f7d55fe57
[ "BSD-3-Clause" ]
116
2016-03-05T08:22:09.000Z
2022-03-28T21:28:40.000Z
recipe/run_test.py
AnacondaRecipes/pyproj-feedstock
5000f3a702d692f508b8994ae84a7e8f7d55fe57
[ "BSD-3-Clause" ]
15
2016-03-03T06:34:09.000Z
2022-03-18T13:19:21.000Z
import os import sys import pyproj from pyproj import Proj Proj(init="epsg:4269") # Test pyproj_datadir. if not os.path.isdir(pyproj.datadir.get_data_dir()): sys.exit(1)
13.692308
52
0.741573
import os import sys import pyproj from pyproj import Proj Proj(init="epsg:4269") # Test pyproj_datadir. if not os.path.isdir(pyproj.datadir.get_data_dir()): sys.exit(1)
0
0
0
66127ade5069a08d2d95e3b0c7cbd430fd9d7d41
2,462
py
Python
xontrib_term_integrations/kitty_completions.py
jnoortheen/xontrib-term-integrations
3c0f29835fb79a521a5d603d862387dcda93c959
[ "MIT" ]
4
2022-01-14T08:03:13.000Z
2022-03-27T15:26:07.000Z
xontrib_term_integrations/kitty_completions.py
jnoortheen/xontrib-iterm2
3c0f29835fb79a521a5d603d862387dcda93c959
[ "MIT" ]
4
2022-01-08T08:01:03.000Z
2022-03-07T18:53:26.000Z
xontrib_term_integrations/kitty_completions.py
jnoortheen/xontrib-term-integrations
3c0f29835fb79a521a5d603d862387dcda93c959
[ "MIT" ]
null
null
null
"""Completers for pip.""" import contextlib import os import subprocess from xonsh.built_ins import XSH from xonsh.completers.tools import RichCompletion, contextual_command_completer from xonsh.parsers.completion_context import CommandContext def generate_completions_from_string(output: str): """Rich completion from multi-line string, each line representing a completion.""" if output: lines = output.strip().splitlines(keepends=False) # if there is a single completion candidate then maybe it is over append_space = len(lines) == 1 for line in lines: comp = create_rich_completion(line, append_space) yield comp @contextual_command_completer def xonsh_complete(ctx: CommandContext): """Completes python's package manager pip.""" if not ctx.completing_command("kitty"): return None # like fish's # commandline --tokenize --cut-at-cursor --current-process tokens = [arg.raw_value for arg in ctx.args[: ctx.arg_index]] # it already filters by prefix, just return it return get_completions(*tokens, ctx.prefix) if __name__ == "__main__": # small testing won't hurt from xonsh.main import setup setup() print(list(get_completions("kitty", "-"))) print(list(get_completions("kitty", "--"))) print(list(get_completions("kitty", "--d")))
28.298851
86
0.655971
"""Completers for pip.""" import contextlib import os import subprocess from xonsh.built_ins import XSH from xonsh.completers.tools import RichCompletion, contextual_command_completer from xonsh.parsers.completion_context import CommandContext def create_rich_completion(line: str, append_space=False): line = line.strip() if "\t" in line: cmd, desc = map(str.strip, line.split("\t", maxsplit=1)) else: cmd, desc = line, "" # special treatment for path completions. # not appending space even if it is a single candidate. if cmd.endswith(os.pathsep): append_space = False return RichCompletion( cmd, description=desc, append_space=append_space, ) def generate_completions_from_string(output: str): """Rich completion from multi-line string, each line representing a completion.""" if output: lines = output.strip().splitlines(keepends=False) # if there is a single completion candidate then maybe it is over append_space = len(lines) == 1 for line in lines: comp = create_rich_completion(line, append_space) yield comp def run_subproc(exe: str, *tokens: "str"): env = XSH.env.detype() with contextlib.suppress(FileNotFoundError): proc = subprocess.Popen( [exe, "+complete", "fish2"], stderr=subprocess.DEVNULL, stdin=subprocess.PIPE, stdout=subprocess.PIPE, env=env, text=True, ) out, _ = proc.communicate(input="\n".join(tokens)) return out def get_completions(*args): if not args: return exe = args[0] output = run_subproc(exe, *args) return generate_completions_from_string(output) @contextual_command_completer def xonsh_complete(ctx: CommandContext): """Completes python's package manager pip.""" if not ctx.completing_command("kitty"): return None # like fish's # commandline --tokenize --cut-at-cursor --current-process tokens = [arg.raw_value for arg in ctx.args[: ctx.arg_index]] # it already filters by prefix, just return it return get_completions(*tokens, ctx.prefix) if __name__ == "__main__": # small testing won't hurt from xonsh.main import setup setup() print(list(get_completions("kitty", "-"))) print(list(get_completions("kitty", "--"))) print(list(get_completions("kitty", "--d")))
1,022
0
69
4b0e96bdf51100d375dbba004ff29b2e3d770875
9,381
py
Python
enhterm/provider/parser/argparser/__init__.py
pyl1b/enhterm
b4eacc25ef1bdfecab9a662b5269d016070d4e6b
[ "MIT" ]
null
null
null
enhterm/provider/parser/argparser/__init__.py
pyl1b/enhterm
b4eacc25ef1bdfecab9a662b5269d016070d4e6b
[ "MIT" ]
null
null
null
enhterm/provider/parser/argparser/__init__.py
pyl1b/enhterm
b4eacc25ef1bdfecab9a662b5269d016070d4e6b
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Contains the definition of the ArgParser class. """ import logging from argparse import ArgumentParser, ArgumentError, Namespace import shlex from enhterm.command import Command from enhterm.command.error import ErrorCommand from enhterm.command.noop import NoOpCommand from enhterm.command.text import TextCommand from enhterm.impl.p2p.p2p_provider import RemoteProvider from enhterm.provider import Provider from enhterm.provider.parser import Parser from enhterm.provider.queue_provider import QueueProvider from enhterm.provider.text_provider import TextProvider logger = logging.getLogger('et.argparser') class ArgParseCommand(Command): """ A command returned by our parser. """ def __init__(self, parsed=None, *args, **kwargs): """ Constructor. """ super().__init__(*args, **kwargs) self.parsed = parsed if parsed is not None: self.call_me = parsed.func del parsed.__dict__['func'] if hasattr(parsed, 'command'): # Because we set the dest parameter to 'command' a # command attribute is set, with the value of the # name of the subparser. self.command_name = parsed.command del parsed.__dict__['command'] else: # When a subparser was not set or was set but without # dest argument. self.command_name = None else: self.command_name = None self.call_me = None def __str__(self): """ Represent this object as a human-readable string. """ return 'ArgParseCommand()' def __repr__(self): """ Represent this object as a python constructor. """ return 'ArgParseCommand()' def execute(self): """ Called by the command loop to do some work. The return value will be deposited by the command loop it into the `result` member. """ return self.call_me(command=self, **self.parsed.__dict__) def encode(self): """ Called when a class instance needs to be serialized. .. note: The `result` and `uuid` members should not be serialized in case of :class:`~Command`. """ return self.command_name, self.parsed.__dict__ def decode(self, raw_data): """ Apply raw data to this instance. It is asserted that correct class has already been constructed and that it has `result` and `uuid` members set in case of :class:`~Command`.. Raises: DecodeError: The implementation should raise this class or a subclass of it. Arguments: raw_data (bytes): The data to apply. """ assert len(raw_data) == 2 self.command_name, self.parsed = raw_data self.parsed = Namespace(**self.parsed) @classmethod def class_id(cls): """ A unique identifier of the class. This value is used as a key when a constructor needs to be associated with a string (see :class:`enhterm.ser_deser.dsds.DictSerDeSer`). """ return "argparse" class ParserError(Exception): """ Hops the exceptions back to :meth:`~parse`.""" pass class NoOpError(Exception): """ :meth:`~parse` should return a :class:`~NoOpCommand`.""" pass class ArgParser(ArgumentParser, Parser): """ Parser that uses argparse library to interpret the text. Note the two functions of this class: an `enhterm` parser and :class:`argparse.ArgumentParser`. The usual use of this parser is through subparsers that implement commands. >>> from enhterm.provider.parser.argparser import ArgParser >>> testee = ArgParser() >>> subparsers = testee.add_subparsers( >>> title="commands", dest="command", help="commands") >>> def do_add(command, arguments): >>> return sum(arguments.integers) >>> parser_add = subparsers.add_parser('add') >>> parser_add.add_argument( >>> 'integers', metavar='int', nargs='+', type=int, >>> help='an integer to be summed') >>> parser_add.set_defaults(func=do_add) >>> testee.parse('add -h') >>> result = testee.parse('add 1 2 3') >>> exec_result = result.execute() A simpler variant is: >>> from enhterm.provider.parser.argparser import ArgParser >>> testee = ArgParser() Attributes: """ def __init__(self, *args, **kwargs): """ Constructor. Arguments: """ provider = kwargs.pop('provider', None) super().__init__(*args, **kwargs) assert provider is not None, "The provider must be set and kept " \ "the same for the lifetime of the parser" self.provider = provider self.prog = '' self._subparser_action = None self.prefix = '' self.suffix = '' def add_subparsers(self, **kwargs): """ Monkey-patch add_parser method. Parsers created by the sub-parser have same class as the main parser (in our case the class:`~ArgParser` class). Because we want messages printed by the argparse library to go through our watchers, we want to set the parser so it is available in :meth:`~_print_message`. This is because we don't want to ask the user to place this argument themselves each time they create the parser. """ result = super().add_subparsers(**kwargs) previous_method = result.add_parser result.add_parser = monkey_patch return result def __str__(self): """ Represent this object as a human-readable string. """ return 'ArgParser()' def __repr__(self): """ Represent this object as a python constructor. """ return 'ArgParser()' @property def parse(self, text): """ Convert a text into a command. Arguments: text (str): The text to parse. This should be a full command. Returns: Command The command that resulted from parsing the text. If the parsing was unsuccessful the method may return either :class:`~NoOpCommand' to keep using the provider or `None` to uninstall it. """ try: if text.startswith('wrap-commands') or text.startswith('wcs ') or text == 'wcs': args = self.parse_args(shlex.split(text)) else: args = self.parse_args(shlex.split(f'{self.prefix}{text}{self.suffix}')) return ArgParseCommand(parsed=args) except ParserError as exc: message = str(exc) self.provider.term.error(message) return ErrorCommand(message=message) except NoOpError: return NoOpCommand() def error(self, message): """ The parser has encountered an error while interpreting the input. This method, according to argparse specs, should not return. We raise a custom exception that is caught in :meth:`~parse` and we pass along the error message. """ raise ParserError(message) def exit(self, status=0, message=None): """ Trap any exits left out by other code (help, version). """ raise NoOpError class ArgparseRemoteProvider(RemoteProvider): """ A provider that simply takes the text and creates a text command for it. """ def __init__(self, parser=None, *args, **kwargs): """ Constructor. """ super().__init__(*args, **kwargs) if parser: self.parser = parser parser.provider = self else: self.parser = ArgParser(provider=self) def __str__(self): """ Represent this object as a human-readable string. """ return 'ArgparseRemoteProvider()' def __repr__(self): """ Represent this object as a python constructor. """ return 'ArgparseRemoteProvider()' def enqueue_command(self, command): """ Adds a command to the internal list. """ assert isinstance(command, TextCommand) new_command = self.parser.parse(command.content) new_command.provider = self new_command.uuid = command.uuid self.queue.put(new_command) return new_command
31.908163
92
0.606865
# -*- coding: utf-8 -*- """ Contains the definition of the ArgParser class. """ import logging from argparse import ArgumentParser, ArgumentError, Namespace import shlex from enhterm.command import Command from enhterm.command.error import ErrorCommand from enhterm.command.noop import NoOpCommand from enhterm.command.text import TextCommand from enhterm.impl.p2p.p2p_provider import RemoteProvider from enhterm.provider import Provider from enhterm.provider.parser import Parser from enhterm.provider.queue_provider import QueueProvider from enhterm.provider.text_provider import TextProvider logger = logging.getLogger('et.argparser') class ArgParseCommand(Command): """ A command returned by our parser. """ def __init__(self, parsed=None, *args, **kwargs): """ Constructor. """ super().__init__(*args, **kwargs) self.parsed = parsed if parsed is not None: self.call_me = parsed.func del parsed.__dict__['func'] if hasattr(parsed, 'command'): # Because we set the dest parameter to 'command' a # command attribute is set, with the value of the # name of the subparser. self.command_name = parsed.command del parsed.__dict__['command'] else: # When a subparser was not set or was set but without # dest argument. self.command_name = None else: self.command_name = None self.call_me = None def __str__(self): """ Represent this object as a human-readable string. """ return 'ArgParseCommand()' def __repr__(self): """ Represent this object as a python constructor. """ return 'ArgParseCommand()' def execute(self): """ Called by the command loop to do some work. The return value will be deposited by the command loop it into the `result` member. """ return self.call_me(command=self, **self.parsed.__dict__) def encode(self): """ Called when a class instance needs to be serialized. .. note: The `result` and `uuid` members should not be serialized in case of :class:`~Command`. """ return self.command_name, self.parsed.__dict__ def decode(self, raw_data): """ Apply raw data to this instance. It is asserted that correct class has already been constructed and that it has `result` and `uuid` members set in case of :class:`~Command`.. Raises: DecodeError: The implementation should raise this class or a subclass of it. Arguments: raw_data (bytes): The data to apply. """ assert len(raw_data) == 2 self.command_name, self.parsed = raw_data self.parsed = Namespace(**self.parsed) @classmethod def class_id(cls): """ A unique identifier of the class. This value is used as a key when a constructor needs to be associated with a string (see :class:`enhterm.ser_deser.dsds.DictSerDeSer`). """ return "argparse" class ParserError(Exception): """ Hops the exceptions back to :meth:`~parse`.""" pass class NoOpError(Exception): """ :meth:`~parse` should return a :class:`~NoOpCommand`.""" pass class ArgParser(ArgumentParser, Parser): """ Parser that uses argparse library to interpret the text. Note the two functions of this class: an `enhterm` parser and :class:`argparse.ArgumentParser`. The usual use of this parser is through subparsers that implement commands. >>> from enhterm.provider.parser.argparser import ArgParser >>> testee = ArgParser() >>> subparsers = testee.add_subparsers( >>> title="commands", dest="command", help="commands") >>> def do_add(command, arguments): >>> return sum(arguments.integers) >>> parser_add = subparsers.add_parser('add') >>> parser_add.add_argument( >>> 'integers', metavar='int', nargs='+', type=int, >>> help='an integer to be summed') >>> parser_add.set_defaults(func=do_add) >>> testee.parse('add -h') >>> result = testee.parse('add 1 2 3') >>> exec_result = result.execute() A simpler variant is: >>> from enhterm.provider.parser.argparser import ArgParser >>> testee = ArgParser() Attributes: """ def __init__(self, *args, **kwargs): """ Constructor. Arguments: """ provider = kwargs.pop('provider', None) super().__init__(*args, **kwargs) assert provider is not None, "The provider must be set and kept " \ "the same for the lifetime of the parser" self.provider = provider self.prog = '' self._subparser_action = None self.prefix = '' self.suffix = '' def add_subparsers(self, **kwargs): """ Monkey-patch add_parser method. Parsers created by the sub-parser have same class as the main parser (in our case the class:`~ArgParser` class). Because we want messages printed by the argparse library to go through our watchers, we want to set the parser so it is available in :meth:`~_print_message`. This is because we don't want to ask the user to place this argument themselves each time they create the parser. """ result = super().add_subparsers(**kwargs) previous_method = result.add_parser def monkey_patch(*args, **my_kw_args): return previous_method(*args, **my_kw_args, provider=self.provider) result.add_parser = monkey_patch return result def __str__(self): """ Represent this object as a human-readable string. """ return 'ArgParser()' def __repr__(self): """ Represent this object as a python constructor. """ return 'ArgParser()' @property def subparsers(self): if self._subparser_action is None: self._subparser_action = self.add_subparsers( title="commands", dest="command", help="commands") return self._subparser_action def add_parser(self, *args, **kwargs): return self.subparsers.add_parser(*args, **kwargs) def parse(self, text): """ Convert a text into a command. Arguments: text (str): The text to parse. This should be a full command. Returns: Command The command that resulted from parsing the text. If the parsing was unsuccessful the method may return either :class:`~NoOpCommand' to keep using the provider or `None` to uninstall it. """ try: if text.startswith('wrap-commands') or text.startswith('wcs ') or text == 'wcs': args = self.parse_args(shlex.split(text)) else: args = self.parse_args(shlex.split(f'{self.prefix}{text}{self.suffix}')) return ArgParseCommand(parsed=args) except ParserError as exc: message = str(exc) self.provider.term.error(message) return ErrorCommand(message=message) except NoOpError: return NoOpCommand() def error(self, message): """ The parser has encountered an error while interpreting the input. This method, according to argparse specs, should not return. We raise a custom exception that is caught in :meth:`~parse` and we pass along the error message. """ raise ParserError(message) def exit(self, status=0, message=None): """ Trap any exits left out by other code (help, version). """ raise NoOpError def print_usage(self, file=None): self._print_message(self.format_usage(), file) def print_help(self, file=None): self._print_message(self.format_help(), file) def _print_message(self, message, file=None): if message: assert file is None self.provider.term.info(message) class ArgparseRemoteProvider(RemoteProvider): """ A provider that simply takes the text and creates a text command for it. """ def __init__(self, parser=None, *args, **kwargs): """ Constructor. """ super().__init__(*args, **kwargs) if parser: self.parser = parser parser.provider = self else: self.parser = ArgParser(provider=self) def __str__(self): """ Represent this object as a human-readable string. """ return 'ArgparseRemoteProvider()' def __repr__(self): """ Represent this object as a python constructor. """ return 'ArgparseRemoteProvider()' def enqueue_command(self, command): """ Adds a command to the internal list. """ assert isinstance(command, TextCommand) new_command = self.parser.parse(command.content) new_command.provider = self new_command.uuid = command.uuid self.queue.put(new_command) return new_command
667
0
165
3c90085df15908d2e744ebdb67e564f8b9b0393f
7,665
py
Python
farabio/models/segmentation/linknet.py
tuttelikz/farabi
5b65cdf39ceecbd69ae759d030b132ee74661b48
[ "Apache-2.0" ]
53
2021-04-06T17:57:12.000Z
2022-03-07T17:45:45.000Z
farabio/models/segmentation/linknet.py
tuttelikz/farabi
5b65cdf39ceecbd69ae759d030b132ee74661b48
[ "Apache-2.0" ]
1
2022-03-07T19:48:44.000Z
2022-03-07T19:49:47.000Z
farabio/models/segmentation/linknet.py
tuttelikz/farabi
5b65cdf39ceecbd69ae759d030b132ee74661b48
[ "Apache-2.0" ]
2
2021-12-06T14:42:44.000Z
2021-12-07T11:33:14.000Z
"""LinkNet Paper: https://arxiv.org/pdf/1707.03718 Adapted from: https://github.com/qubvel/segmentation_models.pytorch/blob/master/segmentation_models_pytorch/linknet/model.py Copyright 2021 | farabio """ from typing import List, Optional, Union, Any import torch import torch.nn as nn import torch.nn.functional as F from farabio.models.segmentation.base import SegModel, SegmentationHead from farabio.models.segmentation.backbones._backbones import get_backbone from farabio.models.segmentation.blocks import Conv2dReLU from farabio.utils.helpers import get_num_parameters __all__ = [ 'Linknet', 'linknet_vgg11', 'linknet_vgg11_bn', 'linknet_vgg13', 'linknet_vgg13_bn', 'linknet_vgg16', 'linknet_vgg16_bn', 'linknet_vgg19', 'linknet_vgg19_bn', 'linknet_mobilenetv2', 'linknet_resnet18', 'linknet_resnet34', 'linknet_resnet50', 'linknet_resnet101', 'linknet_resnet152' ] # test()
33.915929
124
0.663405
"""LinkNet Paper: https://arxiv.org/pdf/1707.03718 Adapted from: https://github.com/qubvel/segmentation_models.pytorch/blob/master/segmentation_models_pytorch/linknet/model.py Copyright 2021 | farabio """ from typing import List, Optional, Union, Any import torch import torch.nn as nn import torch.nn.functional as F from farabio.models.segmentation.base import SegModel, SegmentationHead from farabio.models.segmentation.backbones._backbones import get_backbone from farabio.models.segmentation.blocks import Conv2dReLU from farabio.utils.helpers import get_num_parameters __all__ = [ 'Linknet', 'linknet_vgg11', 'linknet_vgg11_bn', 'linknet_vgg13', 'linknet_vgg13_bn', 'linknet_vgg16', 'linknet_vgg16_bn', 'linknet_vgg19', 'linknet_vgg19_bn', 'linknet_mobilenetv2', 'linknet_resnet18', 'linknet_resnet34', 'linknet_resnet50', 'linknet_resnet101', 'linknet_resnet152' ] class Linknet(SegModel): def __init__( self, in_channels: int = 3, out_channels: int = 1, encoder_name: str = "resnet34", encoder_depth: int = 5, decoder_use_bn: bool = True, decoder_attention_type: Optional[str] = None, activation: Optional[Union[str, callable]] = None ): super().__init__() self.encoder = get_backbone( encoder_name, in_channels = in_channels, depth = encoder_depth, ) self.decoder = LinknetDecoder( encoder_channels = self.encoder.out_channels, n_blocks = encoder_depth, prefinal_channels=32, use_bn = decoder_use_bn ) self.seg_head = SegmentationHead( in_channels=32, out_channels=out_channels, activation=activation, kernel_size=1 ) self.class_head = None self.name = "linknet-{}".format(encoder_name) self.init() class LinknetDecoder(nn.Module): def __init__( self, encoder_channels, n_blocks=5, prefinal_channels=32, use_bn = True ): super().__init__() encoder_channels = encoder_channels[1:] encoder_channels = encoder_channels[::-1] channels = list(encoder_channels) + [prefinal_channels] self.blocks = nn.ModuleList([ DecoderBlock(channels[i], channels[i+1], use_bn=use_bn) for i in range(n_blocks) ]) def forward(self, *features): features = features[1:] features = features[::-1] x = features[0] skips = features[1:] for i, decoder_block in enumerate(self.blocks): skip = skips[i] if i < len(skips) else None x = decoder_block(x, skip) return x class DecoderBlock(nn.Module): def __init__(self, in_channels, out_channels, use_bn=True): super().__init__() self.block = nn.Sequential( Conv2dReLU(in_channels, in_channels // 4, kernel_size=1, use_bn=use_bn), TransposeX2(in_channels // 4, in_channels // 4, use_bn=use_bn), Conv2dReLU(in_channels // 4, out_channels, kernel_size=1, use_bn=use_bn) ) def forward(self, x, skip=None): x = self.block(x) if skip is not None: x = x + skip return x class TransposeX2(nn.Sequential): def __init__(self, in_channels, out_channels, use_bn=True): super().__init__() layers = [ nn.ConvTranspose2d(in_channels, out_channels, kernel_size=4, stride=2, padding=1), nn.ReLU(inplace=True) ] if use_bn: layers.insert(1, nn.BatchNorm2d(out_channels)) super().__init__(*layers) def _linknet( backbone: str = "resnet18", in_channels = 3, out_channels = 1, **kwargs: Any ) -> Linknet: model = Linknet( encoder_name=backbone, in_channels=in_channels, out_channels=out_channels ) return model def linknet_vgg11(in_channels=3, out_channels=1, **kwargs: Any) -> Linknet: return _linknet(backbone="vgg11", in_channels=in_channels, out_channels=out_channels, **kwargs) def linknet_vgg11_bn(in_channels=3, out_channels=1, **kwargs: Any) -> Linknet: return _linknet(backbone="vgg11_bn", in_channels=in_channels, out_channels=out_channels, **kwargs) def linknet_vgg13(in_channels=3, out_channels=1, **kwargs: Any) -> Linknet: return _linknet(backbone="vgg13", in_channels=in_channels, out_channels=out_channels, **kwargs) def linknet_vgg13_bn(in_channels=3, out_channels=1, **kwargs: Any) -> Linknet: return _linknet(backbone="vgg13_bn", in_channels=in_channels, out_channels=out_channels, **kwargs) def linknet_vgg16(in_channels=3, out_channels=1, **kwargs: Any) -> Linknet: return _linknet(backbone="vgg16", in_channels=in_channels, out_channels=out_channels, **kwargs) def linknet_vgg16_bn(in_channels=3, out_channels=1, **kwargs: Any) -> Linknet: return _linknet(backbone="vgg16_bn", in_channels=in_channels, out_channels=out_channels, **kwargs) def linknet_vgg19(in_channels=3, out_channels=1, **kwargs: Any) -> Linknet: return _linknet(backbone="vgg19", in_channels=in_channels, out_channels=out_channels, **kwargs) def linknet_vgg19_bn(in_channels=3, out_channels=1, **kwargs: Any) -> Linknet: return _linknet(backbone="vgg19_bn", in_channels=in_channels, out_channels=out_channels, **kwargs) def linknet_mobilenetv2(in_channels=3, out_channels=1, **kwargs: Any) -> Linknet: return _linknet(backbone="mobilenet_v2", in_channels=in_channels, out_channels=out_channels, **kwargs) def linknet_resnet18(in_channels=3, out_channels=1, **kwargs: Any) -> Linknet: return _linknet(backbone="resnet18", in_channels=in_channels, out_channels=out_channels, **kwargs) def linknet_resnet34(in_channels=3, out_channels=1, **kwargs: Any) -> Linknet: return _linknet(backbone="resnet34", in_channels=in_channels, out_channels=out_channels, **kwargs) def linknet_resnet50(in_channels=3, out_channels=1, **kwargs: Any) -> Linknet: return _linknet(backbone="resnet50", in_channels=in_channels, out_channels=out_channels, **kwargs) def linknet_resnet101(in_channels=3, out_channels=1, **kwargs: Any) -> Linknet: return _linknet(backbone="resnet101", in_channels=in_channels, out_channels=out_channels, **kwargs) def linknet_resnet152(in_channels=3, out_channels=1, **kwargs: Any) -> Linknet: return _linknet(backbone="resnet152", in_channels=in_channels, out_channels=out_channels, **kwargs) def test(): x = torch.randn(4, 3, 256, 256) tests = { "linknet_vgg11": linknet_vgg11(), "linknet_vgg11_bn": linknet_vgg11_bn(), "linknet_vgg13": linknet_vgg13(), "linknet_vgg13_bn": linknet_vgg13_bn(), "linknet_vgg16": linknet_vgg16(), "linknet_vgg16_bn": linknet_vgg16_bn(), "linknet_vgg19": linknet_vgg19(), "linknet_vgg19_bn": linknet_vgg19_bn(), "linknet_mobilenetv2": linknet_mobilenetv2(), "linknet_resnet18": linknet_resnet18(), "linknet_resnet34": linknet_resnet34(), "linknet_resnet50": linknet_resnet50(), "linknet_resnet101": linknet_resnet101(), "linknet_resnet152": linknet_resnet152(), } for key, value in tests.items(): model = tests[key] y = model(x) print("Model name: ", model.name) print("Trainable parameters: ", get_num_parameters(model)) print("in shape: ", x.shape, ", out shape: ", y.shape) # test()
6,071
35
630
ab8cb05d5c02d84b5dee7c2f53886dd4b6bffb7a
971
py
Python
students/k3342/laboratory_works/Frolov_Alex/laboratory_work_2/lab2_app/migrations/0002_auto_20200613_2256.py
TonikX/ITMO_ICT_-WebProgramming_2020
ba566c1b3ab04585665c69860b713741906935a0
[ "MIT" ]
10
2020-03-20T09:06:12.000Z
2021-07-27T13:06:02.000Z
students/k3342/laboratory_works/Frolov_Alex/laboratory_work_2/lab2_app/migrations/0002_auto_20200613_2256.py
TonikX/ITMO_ICT_-WebProgramming_2020
ba566c1b3ab04585665c69860b713741906935a0
[ "MIT" ]
134
2020-03-23T09:47:48.000Z
2022-03-12T01:05:19.000Z
students/k3342/laboratory_works/Frolov_Alex/laboratory_work_2/lab2_app/migrations/0002_auto_20200613_2256.py
TonikX/ITMO_ICT_-WebProgramming_2020
ba566c1b3ab04585665c69860b713741906935a0
[ "MIT" ]
71
2020-03-20T12:45:56.000Z
2021-10-31T19:22:25.000Z
# Generated by Django 3.0.5 on 2020-06-13 19:56 from django.db import migrations, models
40.458333
376
0.527291
# Generated by Django 3.0.5 on 2020-06-13 19:56 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('lab2_app', '0001_initial'), ] operations = [ migrations.AlterField( model_name='nclass', name='letter', field=models.CharField(blank=True, choices=[('ะ', 'ะ'), ('ะ‘', 'ะ‘'), ('ะ’', 'ะ’'), ('ะ“', 'ะ“')], max_length=2, verbose_name='ะ‘ัƒะบะฒะฐ'), ), migrations.AlterField( model_name='timetable', name='lesson', field=models.CharField(blank=True, choices=[('1-8:30-9:10', '1-8:30-9:10'), ('2-9:20-10:00', '2-9:20-10:00'), ('3-10:10-10:50', '3-10:10-10:50'), ('4-11:00-11:40', '4-11:00-11:40'), ('5-12:10-12:50', '5-12:10-12:50'), ('6-13:10-13:50', '6-13:10-13:50'), ('7-14:00-14:40', '7-14:00-14:40'), ('8-14:45-15:25', '8-14:45-15:25')], max_length=50, verbose_name='ะฃั€ะพะบ'), ), ]
0
868
25
98e6d816ecc49f008ca2ce95cf7c99f5e3356e23
94
py
Python
trading_bot/tools/setting_parameters.py
ArthurBernard/Strategy_Manager
a6c80fe1a51a300e8a612fb69e0e17d0ae06f455
[ "MIT" ]
6
2020-02-24T02:19:30.000Z
2021-12-19T03:03:11.000Z
trading_bot/tools/setting_parameters.py
ArthurBernard/Strategy_Manager
a6c80fe1a51a300e8a612fb69e0e17d0ae06f455
[ "MIT" ]
1
2020-06-17T03:29:14.000Z
2020-06-17T04:45:34.000Z
trading_bot/tools/setting_parameters.py
ArthurBernard/Trading_Bot
a6c80fe1a51a300e8a612fb69e0e17d0ae06f455
[ "MIT" ]
1
2019-01-02T16:00:07.000Z
2019-01-02T16:00:07.000Z
#!/usr/bin/env python3 # coding: utf-8 # Import built-in packages # Import external packages
15.666667
26
0.734043
#!/usr/bin/env python3 # coding: utf-8 # Import built-in packages # Import external packages
0
0
0
facf09de719c86989c7c7380adeb080e99663302
1,685
py
Python
chwall/fetcher/local.py
milouse/chwall
963045658abd41c94e29850e9f416c8970e06c32
[ "WTFPL" ]
4
2019-11-02T12:22:48.000Z
2022-01-07T11:40:40.000Z
chwall/fetcher/local.py
milouse/chwall
963045658abd41c94e29850e9f416c8970e06c32
[ "WTFPL" ]
1
2022-03-29T18:44:47.000Z
2022-03-30T07:04:54.000Z
chwall/fetcher/local.py
milouse/chwall
963045658abd41c94e29850e9f416c8970e06c32
[ "WTFPL" ]
null
null
null
import os import glob from chwall.utils import get_logger import gettext # Uncomment the following line during development. # Please, be cautious to NOT commit the following line uncommented. # gettext.bindtextdomain("chwall", "./locale") gettext.textdomain("chwall") _ = gettext.gettext logger = get_logger(__name__)
27.622951
67
0.511573
import os import glob from chwall.utils import get_logger import gettext # Uncomment the following line during development. # Please, be cautious to NOT commit the following line uncommented. # gettext.bindtextdomain("chwall", "./locale") gettext.textdomain("chwall") _ = gettext.gettext logger = get_logger(__name__) def fetch_pictures(config): conf = config.get("local", {}) paths = conf.get("paths", []) include_fav = conf.get("favorites", True) fav_dir = config["general"]["favorites_path"] try: if os.path.exists(fav_dir) and include_fav: paths.insert(0, fav_dir) except PermissionError as e: logger.error(e) if len(paths) == 0: return {} pictures = {} for path in paths: path = os.path.expanduser(path) try: for ext in ["jpg", "jpeg", "png"]: glob_path = "{}/*.{}".format(path, ext) for f in glob.iglob(glob_path, recursive=True): pictures[f] = { "image": f, "type": "local", "url": f, "copyright": _("Local wallpaper") } except PermissionError as e: logger.error(e) return pictures def preferences(): return { "name": _("Local files"), "options": { "paths": { "widget": "list", "label": _("Wallpaper repositories") }, "favorites": { "label": _("Include favorites wallpapers"), "widget": "toggle", "default": True } } }
1,316
0
46
170f178a212883d5eb070081e64ebf6154b68374
7,190
py
Python
python/server.py
air01a/esp32_rekognition
1e91a7ae8898e765c27153d4aedf4eef82a8e275
[ "MIT" ]
null
null
null
python/server.py
air01a/esp32_rekognition
1e91a7ae8898e765c27153d4aedf4eef82a8e275
[ "MIT" ]
null
null
null
python/server.py
air01a/esp32_rekognition
1e91a7ae8898e765c27153d4aedf4eef82a8e275
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 TOKEN = "" TIMER = 30 __all__ = ["SimpleHTTPRequestHandler"] import os import posixpath import http.server import urllib.request, urllib.parse, urllib.error import cgi import shutil import mimetypes import re from io import BytesIO import time from AWSRekognition import AWSRekognition import re import np import cv2 if __name__ == '__main__': run()
27.760618
91
0.668846
#!/usr/bin/env python3 TOKEN = "" TIMER = 30 __all__ = ["SimpleHTTPRequestHandler"] import os import posixpath import http.server import urllib.request, urllib.parse, urllib.error import cgi import shutil import mimetypes import re from io import BytesIO import time from AWSRekognition import AWSRekognition import re import np import cv2 class SimpleHTTPRequestHandler(http.server.BaseHTTPRequestHandler): # check for security token def secure(self): global TOKEN self.cookie='?' headers = self.headers.get('Authorization') if headers==None: print(str(self.path)) if str(self.path).find(TOKEN)!=-1: self.cookie='?id=' + TOKEN return True if headers == TOKEN: return True self.send_response(503) self.end_headers() return False #Manage GET def do_GET(self): if not self.secure(): return False """Serve a GET request.""" f = self.send_head() if f: self.copyfile(f, self.wfile) f.close() # Manage HEAD def do_HEAD(self): if not self.secure(): return False """Serve a HEAD request.""" f = self.send_head() if f: f.close() # Mange POST to get FILE def do_POST(self): if not self.secure(): return False """Serve a POST request.""" r, info = self.deal_post_data() print((r, info, "by: ", self.client_address)) f = BytesIO() f.write(str(TIMER).encode()) length = f.tell() f.seek(0) self.send_response(200) self.send_header("Content-type", "text/html") self.send_header("Content-Length", str(length)) self.end_headers() if f: self.copyfile(f, self.wfile) f.close() # Use AWS Reko to draw bbox around people on the frame def getHuman(self,frame): aws = AWSRekognition() res = aws.labelDetection(frame) print(res) file_bytes = np.asarray(bytearray(frame), dtype=np.uint8) img = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR) for box in res: cat,prob,x,y,w,h,module = box if cat=='Person': cv2.rectangle(img, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), (255, 0, 0)) name=str(time.time())+".jpg" cv2.imwrite(name, img) # Get file in POST DATA the Ugly way def deal_post_data(self): content_type = self.headers['content-type'] if not content_type: return (False, "Content-Type header doesn't contain boundary") boundary = content_type.split("=")[1].encode() remainbytes = int(self.headers['content-length']) line = self.rfile.readline() remainbytes -= len(line) if not boundary in line: return (False, "Content NOT begin with boundary") line = self.rfile.readline() remainbytes -= len(line) fn = re.findall(r'Content-Disposition.*name="imageFile"; filename="(.*)"', line.decode()) if not fn: return (False, "Can't find out file name...") path = self.translate_path(self.path) fn = os.path.join(path, fn[0]) line = self.rfile.readline() remainbytes -= len(line) line = self.rfile.readline() remainbytes -= len(line) out = BytesIO() preline = self.rfile.readline() remainbytes -= len(preline) while remainbytes > 0: line = self.rfile.readline() remainbytes -= len(line) if boundary in line: preline = preline[0:-1] if preline.endswith(b'\r'): preline = preline[0:-1] out.write(preline) self.getHuman(out.getvalue()) return (True, "File '%s' upload success!" % fn) else: out.write(preline) preline = line return (False, "Unexpect Ends of data.") # Send header to get and head request def send_head(self): path = self.translate_path(self.path) f = None if os.path.isdir(path): if not self.path.endswith('/'): # redirect browser - doing basically what apache does self.send_response(301) self.send_header("Location", self.path + "/") self.end_headers() return None for index in "index.html", "index.htm": index = os.path.join(path, index) if os.path.exists(index): path = index break else: return self.list_directory(path) ctype = self.guess_type(path) try: f = open(path, 'rb') except IOError: self.send_error(404, "File not found") return None self.send_response(200) self.send_header("Content-type", ctype) fs = os.fstat(f.fileno()) self.send_header("Content-Length", str(fs[6])) self.send_header("Last-Modified", self.date_time_string(fs.st_mtime)) self.end_headers() return f # List files in current directory and encapsulate the result in html def list_directory(self, path): try: list = os.listdir(path) except os.error: self.send_error(404, "No permission to list directory") return None list.sort(key=lambda a: a.lower()) f = BytesIO() displaypath = cgi.escape(urllib.parse.unquote(self.path)) f.write(b'<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">') f.write(("<html>\n<title>Directory listing for %s</title>\n" % displaypath).encode()) f.write(("<body>\n<h2>Directory listing for %s</h2>\n" % displaypath).encode()) f.write(b"<hr>\n") f.write(b"<form ENCTYPE=\"multipart/form-data\" method=\"post\">") f.write(b"<input name=\"imageFile\" type=\"file\"/>") f.write(b"<input type=\"submit\" value=\"upload\"/></form>\n") f.write(b"<hr>\n<ul>\n") for name in list: fullname = os.path.join(path, name) displayname = linkname = name # Append / for directories or @ for symbolic links if os.path.isdir(fullname): displayname = name + "/" linkname = name + "/" if os.path.islink(fullname): displayname = name + "@" # Note: a link to a directory displays with @ and links with / f.write(('<li><a href="%s">%s</a>\n' % (urllib.parse.quote(linkname)+self.cookie, cgi.escape(displayname))).encode()) f.write(b"</ul>\n<hr>\n</body>\n</html>\n") length = f.tell() f.seek(0) self.send_response(200) self.send_header("Content-type", "text/html") self.send_header("Content-Length", str(length)) self.end_headers() return f def translate_path(self, path): # abandon query parameters path = path.split('?',1)[0] path = path.split('#',1)[0] path = posixpath.normpath(urllib.parse.unquote(path)) words = path.split('/') words = [_f for _f in words if _f] path = os.getcwd() for word in words: drive, word = os.path.splitdrive(word) head, word = os.path.split(word) if word in (os.curdir, os.pardir): continue path = os.path.join(path, word) return path def copyfile(self, source, outputfile): shutil.copyfileobj(source, outputfile) def guess_type(self, path): base, ext = posixpath.splitext(path) if ext in self.extensions_map: return self.extensions_map[ext] ext = ext.lower() if ext in self.extensions_map: return self.extensions_map[ext] else: return self.extensions_map[''] if not mimetypes.inited: mimetypes.init() # try to read system mime.types extensions_map = mimetypes.types_map.copy() extensions_map.update({ '': 'application/octet-stream', # Default '.py': 'text/plain', '.c': 'text/plain', '.h': 'text/plain', }) def run(HandlerClass = SimpleHTTPRequestHandler,ServerClass = http.server.HTTPServer): server_address = ('0.0.0.0', 8081) httpd = ServerClass(server_address,HandlerClass) httpd.serve_forever() if __name__ == '__main__': run()
5,885
872
47
1622590d2431eaa2a1f8c59dc73a7726022c9d22
800
py
Python
tests/data/generator/test_sea_generator.py
trajkova-elena/scikit-multiflow
dd372c677a97346a9c60cd25b45b350e0fd83d3c
[ "BSD-3-Clause" ]
1
2020-10-14T10:36:28.000Z
2020-10-14T10:36:28.000Z
tests/data/generator/test_sea_generator.py
trajkova-elena/scikit-multiflow
dd372c677a97346a9c60cd25b45b350e0fd83d3c
[ "BSD-3-Clause" ]
null
null
null
tests/data/generator/test_sea_generator.py
trajkova-elena/scikit-multiflow
dd372c677a97346a9c60cd25b45b350e0fd83d3c
[ "BSD-3-Clause" ]
3
2020-10-02T08:36:52.000Z
2020-10-21T10:50:20.000Z
import os import numpy as np from skmultiflow.data.generator.sea_generator import SEAGenerator
36.363636
125
0.72875
import os import numpy as np from skmultiflow.data.generator.sea_generator import SEAGenerator def test_sea_generator(test_path): stream = SEAGenerator(classification_function=2, random_state=112, balance_classes=False, noise_percentage=0.28) # Load test data corresponding to first 10 instances test_file = os.path.join(test_path, 'sea_stream.npz') data = np.load(test_file) X_expected = data['X'] y_expected = data['y'] for j in range(0,10): X, y = stream.next_sample() assert np.alltrue(np.isclose(X, X_expected[j])) assert np.alltrue(np.isclose(y[0], y_expected[j])) expected_info = "SEAGenerator(balance_classes=False, classification_function=2, noise_percentage=0.28, random_state=112)" assert stream.get_info() == expected_info
681
0
23
68597cccb9af19fe7498a4081ce24a2e1772b686
300
py
Python
web/visualizer.py
jagsgill/410project
f3e28f796ff89aa43c48cd8e18ad0ad412335263
[ "MIT" ]
null
null
null
web/visualizer.py
jagsgill/410project
f3e28f796ff89aa43c48cd8e18ad0ad412335263
[ "MIT" ]
null
null
null
web/visualizer.py
jagsgill/410project
f3e28f796ff89aa43c48cd8e18ad0ad412335263
[ "MIT" ]
null
null
null
import json import flask import os app = flask.Flask(__name__) @app.route("/") if __name__ == "__main__": begin()
15
53
0.673333
import json import flask import os app = flask.Flask(__name__) @app.route("/") def index(): return flask.render_template("index.html") def begin(): port = 8080 os.system("open http://localhost:{0}/".format(port)) app.debug = True app.run(port=port) if __name__ == "__main__": begin()
134
0
45
9fef173258aa5bfe192c3ee01893f01998735937
597
py
Python
src/__init__.py
scott-currie/stock_portfolio
568d581ed277d1999563f4da427cc6b4fa5d387b
[ "MIT" ]
null
null
null
src/__init__.py
scott-currie/stock_portfolio
568d581ed277d1999563f4da427cc6b4fa5d387b
[ "MIT" ]
6
2020-03-24T16:39:37.000Z
2021-09-08T01:06:58.000Z
src/__init__.py
scott-currie/stock_portfolio
568d581ed277d1999563f4da427cc6b4fa5d387b
[ "MIT" ]
null
null
null
from flask import Flask import os basedir = os.path.abspath(os.path.dirname(__file__)) # `flask run` - runs application on local server app = Flask(__name__, static_url_path='', static_folder='static', instance_relative_config=True) DATABASE_URL = os.environ.get('DATABASE_URL') if os.environ.get('TESTING') == 'True': DATABASE_URL = os.environ.get('TEST_DATABASE_URL') app.config.from_mapping( SECRET_KEY=os.environ.get('SECRET_KEY'), SQLALCHEMY_DATABASE_URI=DATABASE_URL, SQLALCHEMY_TRACK_MODIFICATIONS=False, ) from . import routes, models, exceptions, auth
24.875
65
0.743719
from flask import Flask import os basedir = os.path.abspath(os.path.dirname(__file__)) # `flask run` - runs application on local server app = Flask(__name__, static_url_path='', static_folder='static', instance_relative_config=True) DATABASE_URL = os.environ.get('DATABASE_URL') if os.environ.get('TESTING') == 'True': DATABASE_URL = os.environ.get('TEST_DATABASE_URL') app.config.from_mapping( SECRET_KEY=os.environ.get('SECRET_KEY'), SQLALCHEMY_DATABASE_URI=DATABASE_URL, SQLALCHEMY_TRACK_MODIFICATIONS=False, ) from . import routes, models, exceptions, auth
0
0
0
6189469b12c3351f8e07df13c8b4ead29dc48169
1,376
py
Python
utils/jsdati.py
bynil/v2ex-crawler
c3ceefba9b330e1356259433e67633bf5d5da956
[ "MIT" ]
15
2017-10-09T13:15:27.000Z
2020-06-30T23:42:54.000Z
utils/jsdati.py
bynil/v2ex-crawler
c3ceefba9b330e1356259433e67633bf5d5da956
[ "MIT" ]
2
2019-10-21T15:03:29.000Z
2021-06-02T03:11:54.000Z
utils/jsdati.py
bynil/v2ex-crawler
c3ceefba9b330e1356259433e67633bf5d5da956
[ "MIT" ]
3
2017-10-17T02:52:26.000Z
2019-07-05T02:54:52.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # Author: gexiao # Created on 2018-05-07 22:04 import logging import requests import base64 SERVER_HOST = 'https://v2-api.jsdama.com/upload' SOFTWARE_ID = 9487 SOFTWARE_SECRET = 'nb4GHmdsPxzbcB7iIrU36JPI73HOjUyUEnq3pkob'
31.272727
112
0.590843
#!/usr/bin/env python # -*- coding: utf-8 -*- # Author: gexiao # Created on 2018-05-07 22:04 import logging import requests import base64 SERVER_HOST = 'https://v2-api.jsdama.com/upload' SOFTWARE_ID = 9487 SOFTWARE_SECRET = 'nb4GHmdsPxzbcB7iIrU36JPI73HOjUyUEnq3pkob' class JsdatiApi(): def __init__(self, username, password): self.username = username self.password = password def decode_image_bin_content(self, content, type): filedata = base64.b64encode(content).decode('ascii') payload = {'softwareId': SOFTWARE_ID, 'softwareSecret': SOFTWARE_SECRET, 'username': self.username, 'password': self.password, 'captchaData': filedata, 'captchaType': 1017, # 8ไฝๆˆ–8ไฝไปฅไธŠ่‹ฑๆ–‡ๆˆ–ๆ•ฐๅญ—็ฑปๅž‹ } headers = { 'Accept-Encoding': "application/json, text/javascript, */*; q=0.01", 'Content-Type': "application/json", } response = requests.request("POST", SERVER_HOST, json=payload, headers=headers) res = response.json() # {"code":0,"data":{"recognition":"NDSBJCSY","captchaId":"20180507:000000000016483190234"},"message":""} if res['code'] == 0: return res['data']['recognition'] else: logging.error(res) return res['code']
1,056
-3
77
21cd0b478e379ec3b6523625ca68a49624cc6e66
2,786
py
Python
rdchiral/utils.py
Furuidemu/retrosim
21f5449f617a93f2a64e927fcde224b298327727
[ "MIT" ]
65
2020-06-27T04:28:21.000Z
2022-03-30T11:18:22.000Z
template/rdchiral/utils.py
sw32-seo/GTA
86b102a14b78f6c8b50d742a56445c748e59b51e
[ "MIT" ]
15
2020-07-07T13:17:05.000Z
2022-03-22T12:52:29.000Z
template/rdchiral/utils.py
sw32-seo/GTA
86b102a14b78f6c8b50d742a56445c748e59b51e
[ "MIT" ]
14
2020-06-30T09:22:13.000Z
2022-03-30T11:18:28.000Z
from __future__ import print_function PLEVEL = 0 def parity4(data): ''' Thanks to http://www.dalkescientific.com/writings/diary/archive/2016/08/15/fragment_parity_calculation.html ''' if data[0] < data[1]: if data[2] < data[3]: if data[0] < data[2]: if data[1] < data[2]: return 0 # (0, 1, 2, 3) else: if data[1] < data[3]: return 1 # (0, 2, 1, 3) else: return 0 # (0, 3, 1, 2) else: if data[0] < data[3]: if data[1] < data[3]: return 0 # (1, 2, 0, 3) else: return 1 # (1, 3, 0, 2) else: return 0 # (2, 3, 0, 1) else: if data[0] < data[3]: if data[1] < data[2]: if data[1] < data[3]: return 1 # (0, 1, 3, 2) else: return 0 # (0, 2, 3, 1) else: return 1 # (0, 3, 2, 1) else: if data[0] < data[2]: if data[1] < data[2]: return 1 # (1, 2, 3, 0) else: return 0 # (1, 3, 2, 0) else: return 1 # (2, 3, 1, 0) else: if data[2] < data[3]: if data[0] < data[3]: if data[0] < data[2]: return 1 # (1, 0, 2, 3) else: if data[1] < data[2]: return 0 # (2, 0, 1, 3) else: return 1 # (2, 1, 0, 3) else: if data[1] < data[2]: return 1 # (3, 0, 1, 2) else: if data[1] < data[3]: return 0 # (3, 1, 0, 2) else: return 1 # (3, 2, 0, 1) else: if data[0] < data[2]: if data[0] < data[3]: return 0 # (1, 0, 3, 2) else: if data[1] < data[3]: return 1 # (2, 0, 3, 1) else: return 0 # (2, 1, 3, 0) else: if data[1] < data[2]: if data[1] < data[3]: return 0 # (3, 0, 2, 1) else: return 1 # (3, 1, 2, 0) else: return 0 # (3, 2, 1, 0)
33.97561
111
0.298277
from __future__ import print_function PLEVEL = 0 def vprint(level, txt, *args): if PLEVEL >= level: print(txt.format(*args)) def parity4(data): ''' Thanks to http://www.dalkescientific.com/writings/diary/archive/2016/08/15/fragment_parity_calculation.html ''' if data[0] < data[1]: if data[2] < data[3]: if data[0] < data[2]: if data[1] < data[2]: return 0 # (0, 1, 2, 3) else: if data[1] < data[3]: return 1 # (0, 2, 1, 3) else: return 0 # (0, 3, 1, 2) else: if data[0] < data[3]: if data[1] < data[3]: return 0 # (1, 2, 0, 3) else: return 1 # (1, 3, 0, 2) else: return 0 # (2, 3, 0, 1) else: if data[0] < data[3]: if data[1] < data[2]: if data[1] < data[3]: return 1 # (0, 1, 3, 2) else: return 0 # (0, 2, 3, 1) else: return 1 # (0, 3, 2, 1) else: if data[0] < data[2]: if data[1] < data[2]: return 1 # (1, 2, 3, 0) else: return 0 # (1, 3, 2, 0) else: return 1 # (2, 3, 1, 0) else: if data[2] < data[3]: if data[0] < data[3]: if data[0] < data[2]: return 1 # (1, 0, 2, 3) else: if data[1] < data[2]: return 0 # (2, 0, 1, 3) else: return 1 # (2, 1, 0, 3) else: if data[1] < data[2]: return 1 # (3, 0, 1, 2) else: if data[1] < data[3]: return 0 # (3, 1, 0, 2) else: return 1 # (3, 2, 0, 1) else: if data[0] < data[2]: if data[0] < data[3]: return 0 # (1, 0, 3, 2) else: if data[1] < data[3]: return 1 # (2, 0, 3, 1) else: return 0 # (2, 1, 3, 0) else: if data[1] < data[2]: if data[1] < data[3]: return 0 # (3, 0, 2, 1) else: return 1 # (3, 1, 2, 0) else: return 0 # (3, 2, 1, 0)
66
0
22
c60aab25d55598eaca48d8eaa95733efdd745194
1,897
py
Python
Third course/5th semester/Analysis of algorithms course/Lab3 - Sorting/main1.py
tekcellat/University
9a0196a45c9cf33ac58018d636c3e4857eba0330
[ "MIT" ]
null
null
null
Third course/5th semester/Analysis of algorithms course/Lab3 - Sorting/main1.py
tekcellat/University
9a0196a45c9cf33ac58018d636c3e4857eba0330
[ "MIT" ]
null
null
null
Third course/5th semester/Analysis of algorithms course/Lab3 - Sorting/main1.py
tekcellat/University
9a0196a45c9cf33ac58018d636c3e4857eba0330
[ "MIT" ]
7
2020-12-04T07:26:46.000Z
2022-03-08T17:47:47.000Z
from sort import * import time import random n1 = int(input("Size\nFrom: ")) n2 = int(input("To: ")) h = int(input("Step:")) if n1 > n2 or n2 == n1 or h == 0: print("Wrong input") exit() else: result = measure_time(get_best_array, get_best_array, mysort_quick_middle, n1, n2 + 1, h, 100) print("\n", result, "\n") result = measure_time(get_worst_array, get_best_array, mysort_quick_end, n1, n2 + 1, h, 100) print("\n", result, "\n") result = measure_time(get_random_array, get_random_array, mysort_quick_middle, n1, n2 + 1, h, 100) print("\n", result, "\n")
22.583333
103
0.530311
from sort import * import time import random def get_random_array(n): array = [] for i in range(n): array.append(random.randint(0, 20000)) return array def get_best_array(n): array = [] for i in range(n): array.append(i) return array def get_worst_array(n): array = [] for i in range(n): array.append(n - i) return array def get_calc_time(func, arr): t2 = time.process_time() func(arr) t1 = time.process_time() - t2 return t1 def measure_time(get_array, get_array_quick, func, n1, n2, st, it): t_bubble = [] t_shell = [] t_quick = [] for n in range(n1, n2, st): print(n, ' ', time.time()) t = 0 for i in range(it): arr = get_array(n) t += get_calc_time(mysort_bubble, arr) t_bubble.append(t / it) t = 0 for i in range(it): arr = get_array(n) t += get_calc_time(mysort_insert, arr) t_shell.append(t / it) t = 0 for i in range(it): arr = get_array_quick(n) t += get_calc_time(func, arr) t_quick.append(t / it) return (t_bubble, t_shell, t_quick) n1 = int(input("Size\nFrom: ")) n2 = int(input("To: ")) h = int(input("Step:")) if n1 > n2 or n2 == n1 or h == 0: print("Wrong input") exit() else: result = measure_time(get_best_array, get_best_array, mysort_quick_middle, n1, n2 + 1, h, 100) print("\n", result, "\n") result = measure_time(get_worst_array, get_best_array, mysort_quick_end, n1, n2 + 1, h, 100) print("\n", result, "\n") result = measure_time(get_random_array, get_random_array, mysort_quick_middle, n1, n2 + 1, h, 100) print("\n", result, "\n")
1,152
0
125
09f55b7870106786dba51122424f11feffb40feb
1,680
py
Python
flocker/common/_era.py
stackriot/flocker
eaa586248986d7cd681c99c948546c2b507e44de
[ "Apache-2.0" ]
2,690
2015-01-02T11:12:11.000Z
2022-03-15T15:41:51.000Z
flocker/common/_era.py
stackriot/flocker
eaa586248986d7cd681c99c948546c2b507e44de
[ "Apache-2.0" ]
2,102
2015-01-02T18:49:40.000Z
2021-01-21T18:49:47.000Z
flocker/common/_era.py
stackriot/flocker
eaa586248986d7cd681c99c948546c2b507e44de
[ "Apache-2.0" ]
333
2015-01-10T01:44:01.000Z
2022-03-08T15:03:04.000Z
# Copyright ClusterHQ Inc. See LICENSE file for details. """ Era information for Flocker nodes. Every time a node reboots it gets a new, globally unique era. """ import sys from uuid import UUID from zope.interface import implementer from twisted.internet.defer import succeed from twisted.python.filepath import FilePath from twisted.python.usage import Options from twisted.python.runtime import platform from ..common.script import ( ICommandLineScript, flocker_standard_options, FlockerScriptRunner, ) _BOOT_ID = FilePath(b"/proc/sys/kernel/random/boot_id") def get_era(): """ :return UUID: A node- and boot-specific globally unique id. """ return UUID(hex=_BOOT_ID.getContent().strip()) @flocker_standard_options class EraOptions(Options): """ Command line options for ``flocker-node-era``. """ longdesc = ( "Print the current node's era to stdout. The era is a unique" "identifier per reboot per node, and can be used to discover the" "current node's state safely using Flocker's REST API.\n" ) synopsis = "Usage: flocker-node-era" @implementer(ICommandLineScript) class EraScript(object): """ Output the era to stdout. """ def era_main(): """ Entry point for ``flocker-node-era`` command-line tool. """ return FlockerScriptRunner( script=EraScript(), options=EraOptions(), logging=False).main()
24.347826
73
0.682738
# Copyright ClusterHQ Inc. See LICENSE file for details. """ Era information for Flocker nodes. Every time a node reboots it gets a new, globally unique era. """ import sys from uuid import UUID from zope.interface import implementer from twisted.internet.defer import succeed from twisted.python.filepath import FilePath from twisted.python.usage import Options from twisted.python.runtime import platform from ..common.script import ( ICommandLineScript, flocker_standard_options, FlockerScriptRunner, ) _BOOT_ID = FilePath(b"/proc/sys/kernel/random/boot_id") def get_era(): """ :return UUID: A node- and boot-specific globally unique id. """ return UUID(hex=_BOOT_ID.getContent().strip()) @flocker_standard_options class EraOptions(Options): """ Command line options for ``flocker-node-era``. """ longdesc = ( "Print the current node's era to stdout. The era is a unique" "identifier per reboot per node, and can be used to discover the" "current node's state safely using Flocker's REST API.\n" ) synopsis = "Usage: flocker-node-era" @implementer(ICommandLineScript) class EraScript(object): """ Output the era to stdout. """ def main(self, reactor, options): if not platform.isLinux(): raise SystemExit("flocker-node-era only works on Linux.") sys.stdout.write(str(get_era())) sys.stdout.flush() return succeed(None) def era_main(): """ Entry point for ``flocker-node-era`` command-line tool. """ return FlockerScriptRunner( script=EraScript(), options=EraOptions(), logging=False).main()
214
0
26
82e9d12b07897f4af449eb7e6367c29c879bc2f3
1,801
py
Python
book/_build/jupyter_execute/pandas/Week 4-Introduction to Data Science[Coursera].py
hossainlab/dsnotes
fee64e157f45724bba1f49ad1b186dcaaf1e6c02
[ "CC0-1.0" ]
null
null
null
book/_build/jupyter_execute/pandas/Week 4-Introduction to Data Science[Coursera].py
hossainlab/dsnotes
fee64e157f45724bba1f49ad1b186dcaaf1e6c02
[ "CC0-1.0" ]
null
null
null
book/_build/jupyter_execute/pandas/Week 4-Introduction to Data Science[Coursera].py
hossainlab/dsnotes
fee64e157f45724bba1f49ad1b186dcaaf1e6c02
[ "CC0-1.0" ]
null
null
null
# Distributions in Pandas import pandas as pd import numpy as np np.random.binomial(1, 0.5) np.random.binomial(1000, 0.5)/1000 chance_of_tornado = 0.01/100 np.random.binomial(100000, chance_of_tornado) chance_of_tornado = 0.01 tornado_events = np.random.binomial(1, chance_of_tornado, 1000000) two_days_in_a_row = 0 for j in range(1,len(tornado_events)-1): if tornado_events[j]==1 and tornado_events[j-1]==1: two_days_in_a_row+=1 print('{} tornadoes back to back in {} years'.format(two_days_in_a_row, 1000000/365)) np.random.uniform(0, 1) np.random.normal(0.75) Formula for standard deviation $$\sqrt{\frac{1}{N} \sum_{i=1}^N (x_i - \overline{x})^2}$$ distribution = np.random.normal(0.75,size=1000) np.sqrt(np.sum((np.mean(distribution)-distribution)**2)/len(distribution)) np.std(distribution) import scipy.stats as stats stats.kurtosis(distribution) stats.skew(distribution) chi_squared_df2 = np.random.chisquare(2, size=10000) stats.skew(chi_squared_df2) chi_squared_df5 = np.random.chisquare(5, size=10000) stats.skew(chi_squared_df5) %matplotlib inline import matplotlib import matplotlib.pyplot as plt output = plt.hist([chi_squared_df2,chi_squared_df5], bins=50, histtype='step', label=['2 degrees of freedom','5 degrees of freedom']) plt.legend(loc='upper right') # Hypothesis Testing df = pd.read_csv('grades.csv') df.head() len(df) early = df[df['assignment1_submission'] <= '2015-12-31'] late = df[df['assignment1_submission'] > '2015-12-31'] early.mean() late.mean() from scipy import stats stats.ttest_ind? stats.ttest_ind(early['assignment1_grade'], late['assignment1_grade']) stats.ttest_ind(early['assignment2_grade'], late['assignment2_grade']) stats.ttest_ind(early['assignment3_grade'], late['assignment3_grade'])
22.797468
85
0.7407
# Distributions in Pandas import pandas as pd import numpy as np np.random.binomial(1, 0.5) np.random.binomial(1000, 0.5)/1000 chance_of_tornado = 0.01/100 np.random.binomial(100000, chance_of_tornado) chance_of_tornado = 0.01 tornado_events = np.random.binomial(1, chance_of_tornado, 1000000) two_days_in_a_row = 0 for j in range(1,len(tornado_events)-1): if tornado_events[j]==1 and tornado_events[j-1]==1: two_days_in_a_row+=1 print('{} tornadoes back to back in {} years'.format(two_days_in_a_row, 1000000/365)) np.random.uniform(0, 1) np.random.normal(0.75) Formula for standard deviation $$\sqrt{\frac{1}{N} \sum_{i=1}^N (x_i - \overline{x})^2}$$ distribution = np.random.normal(0.75,size=1000) np.sqrt(np.sum((np.mean(distribution)-distribution)**2)/len(distribution)) np.std(distribution) import scipy.stats as stats stats.kurtosis(distribution) stats.skew(distribution) chi_squared_df2 = np.random.chisquare(2, size=10000) stats.skew(chi_squared_df2) chi_squared_df5 = np.random.chisquare(5, size=10000) stats.skew(chi_squared_df5) %matplotlib inline import matplotlib import matplotlib.pyplot as plt output = plt.hist([chi_squared_df2,chi_squared_df5], bins=50, histtype='step', label=['2 degrees of freedom','5 degrees of freedom']) plt.legend(loc='upper right') # Hypothesis Testing df = pd.read_csv('grades.csv') df.head() len(df) early = df[df['assignment1_submission'] <= '2015-12-31'] late = df[df['assignment1_submission'] > '2015-12-31'] early.mean() late.mean() from scipy import stats stats.ttest_ind? stats.ttest_ind(early['assignment1_grade'], late['assignment1_grade']) stats.ttest_ind(early['assignment2_grade'], late['assignment2_grade']) stats.ttest_ind(early['assignment3_grade'], late['assignment3_grade'])
0
0
0
514f367de86a238caeba42c73f5c4c8ed5711914
207
py
Python
jarbas/settings_unit_tests.py
mazulo/serenata-de-amor
d5f6feb97f1bbd748fda6e99fe07a47c52db3fa6
[ "MIT" ]
null
null
null
jarbas/settings_unit_tests.py
mazulo/serenata-de-amor
d5f6feb97f1bbd748fda6e99fe07a47c52db3fa6
[ "MIT" ]
null
null
null
jarbas/settings_unit_tests.py
mazulo/serenata-de-amor
d5f6feb97f1bbd748fda6e99fe07a47c52db3fa6
[ "MIT" ]
null
null
null
from jarbas.settings import * MIGRATION_MODULES = DisableMigrations()
15.923077
39
0.700483
from jarbas.settings import * class DisableMigrations: def __contains__(self, item): return True def __getitem__(self, item): return None MIGRATION_MODULES = DisableMigrations()
55
3
76
129442cfda6260b8d0649c7091329a38a7fc5a11
5,173
py
Python
sdk/communication/azure-communication-identity/samples/identity_samples.py
abhahn/azure-sdk-for-python
09521dfb517e0859ec961cae006fb728d787b565
[ "MIT" ]
2
2019-08-23T21:14:00.000Z
2021-09-07T18:32:34.000Z
sdk/communication/azure-communication-identity/samples/identity_samples.py
rakshith91/azure-sdk-for-python
3c4f2575d31260fa1bda870b04e34c082ac5702b
[ "MIT" ]
null
null
null
sdk/communication/azure-communication-identity/samples/identity_samples.py
rakshith91/azure-sdk-for-python
3c4f2575d31260fa1bda870b04e34c082ac5702b
[ "MIT" ]
null
null
null
# coding: utf-8 # ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- """ FILE: identity_sample.py DESCRIPTION: These samples demonstrate creating a user, issuing a token, revoking a token and deleting a user. ///authenticating a client via a connection string USAGE: python identity_samples.py Set the environment variables with your own values before running the sample: 1) AZURE_COMMUNICATION_SERVICE_ENDPOINT - Communication Service endpoint url """ import os if __name__ == '__main__': sample = CommunicationIdentityClientSamples() sample.create_user() sample.create_user_with_token() sample.get_token() sample.revoke_tokens() sample.delete_user()
46.603604
107
0.7023
# coding: utf-8 # ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- """ FILE: identity_sample.py DESCRIPTION: These samples demonstrate creating a user, issuing a token, revoking a token and deleting a user. ///authenticating a client via a connection string USAGE: python identity_samples.py Set the environment variables with your own values before running the sample: 1) AZURE_COMMUNICATION_SERVICE_ENDPOINT - Communication Service endpoint url """ import os class CommunicationIdentityClientSamples(object): def __init__(self): self.connection_string = os.getenv('AZURE_COMMUNICATION_SERVICE_CONNECTION_STRING') self.endpoint = os.getenv('AZURE_COMMUNICATION_SERVICE_ENDPOINT') self.client_id = os.getenv('AZURE_CLIENT_ID') self.client_secret = os.getenv('AZURE_CLIENT_SECRET') self.tenant_id = os.getenv('AZURE_TENANT_ID') def get_token(self): from azure.communication.identity import ( CommunicationIdentityClient, CommunicationTokenScope ) if self.client_id is not None and self.client_secret is not None and self.tenant_id is not None: from azure.identity import DefaultAzureCredential identity_client = CommunicationIdentityClient(self.endpoint, DefaultAzureCredential()) else: identity_client = CommunicationIdentityClient.from_connection_string(self.connection_string) user = identity_client.create_user() print("Getting token for: " + user.identifier) tokenresponse = identity_client.get_token(user, scopes=[CommunicationTokenScope.CHAT]) print("Token issued with value: " + tokenresponse.token) def revoke_tokens(self): from azure.communication.identity import ( CommunicationIdentityClient, CommunicationTokenScope ) if self.client_id is not None and self.client_secret is not None and self.tenant_id is not None: from azure.identity import DefaultAzureCredential identity_client = CommunicationIdentityClient(self.endpoint, DefaultAzureCredential()) else: identity_client = CommunicationIdentityClient.from_connection_string(self.connection_string) user = identity_client.create_user() tokenresponse = identity_client.get_token(user, scopes=[CommunicationTokenScope.CHAT]) print("Revoking token: " + tokenresponse.token) identity_client.revoke_tokens(user) print(tokenresponse.token + " revoked successfully") def create_user(self): from azure.communication.identity import CommunicationIdentityClient if self.client_id is not None and self.client_secret is not None and self.tenant_id is not None: from azure.identity import DefaultAzureCredential identity_client = CommunicationIdentityClient(self.endpoint, DefaultAzureCredential()) else: identity_client = CommunicationIdentityClient.from_connection_string(self.connection_string) print("Creating new user") user = identity_client.create_user() print("User created with id:" + user.identifier) def create_user_with_token(self): from azure.communication.identity import ( CommunicationIdentityClient, CommunicationTokenScope ) if self.client_id is not None and self.client_secret is not None and self.tenant_id is not None: from azure.identity import DefaultAzureCredential identity_client = CommunicationIdentityClient(self.endpoint, DefaultAzureCredential()) else: identity_client = CommunicationIdentityClient.from_connection_string(self.connection_string) print("Creating new user with token") user, tokenresponse = identity_client.create_user_with_token(scopes=[CommunicationTokenScope.CHAT]) print("User created with id:" + user.identifier) print("Token issued with value: " + tokenresponse.token) def delete_user(self): from azure.communication.identity import CommunicationIdentityClient if self.client_id is not None and self.client_secret is not None and self.tenant_id is not None: from azure.identity import DefaultAzureCredential identity_client = CommunicationIdentityClient(self.endpoint, DefaultAzureCredential()) else: identity_client = CommunicationIdentityClient.from_connection_string(self.connection_string) user = identity_client.create_user() print("Deleting user: " + user.identifier) identity_client.delete_user(user) print(user.identifier + " deleted") if __name__ == '__main__': sample = CommunicationIdentityClientSamples() sample.create_user() sample.create_user_with_token() sample.get_token() sample.revoke_tokens() sample.delete_user()
4,003
28
185
d0ae7e9e7b74ad5927d28b3655f5e9408cd4c60e
497
py
Python
receiver.py
rasathus/raspberrylogger
f2084b67b679523b6c0ec1f436a5fcad6f104aaa
[ "MIT" ]
null
null
null
receiver.py
rasathus/raspberrylogger
f2084b67b679523b6c0ec1f436a5fcad6f104aaa
[ "MIT" ]
null
null
null
receiver.py
rasathus/raspberrylogger
f2084b67b679523b6c0ec1f436a5fcad6f104aaa
[ "MIT" ]
null
null
null
''' Created on 1 Dec 2012 @author: Jeremy ''' import serial import sys import rt import time s = serial.Serial(sys.argv[1],115200,timeout=15) t = time.time() c = 0 RT = rt.RaceTech(s) RT.run(decode)
17.75
76
0.565392
''' Created on 1 Dec 2012 @author: Jeremy ''' import serial import sys import rt import time s = serial.Serial(sys.argv[1],115200,timeout=15) t = time.time() c = 0 def decode(header,length,msg,cs,variable_length): # print header,length,msg,cs global c,t c += 1 if c > 999: d = time.time() - t print 'Received %d messages in %.3f seconds (%.3f mps)' % (c,d,c/d) c = 0 t = time.time() RT = rt.RaceTech(s) RT.run(decode)
252
0
25
e3ee2b35688dd42c5efe6d2b57469efb051f11a0
670
py
Python
project/urls.py
dmitrytk/takkand.pw
162fd5bb0e58c419977e06ce4633177918bd6f61
[ "MIT" ]
null
null
null
project/urls.py
dmitrytk/takkand.pw
162fd5bb0e58c419977e06ce4633177918bd6f61
[ "MIT" ]
10
2021-03-18T23:07:30.000Z
2022-03-12T00:13:17.000Z
project/urls.py
dmitrytk/takkand.pw
162fd5bb0e58c419977e06ce4633177918bd6f61
[ "MIT" ]
null
null
null
from django.contrib import admin from django.urls import path, include from django.conf import settings from django.conf.urls.static import static from pages import views urlpatterns = [ path('admin/', admin.site.urls), path('accounts/', include('allauth.urls')), # allauth path('', include('pages.urls')), # Home and tools pages path('db/', include('db.urls')), # Oil field and well database path('accounts/', include('users.urls')), ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) handler404 = views.handler404 handler500 = views.handler500
39.411765
81
0.632836
from django.contrib import admin from django.urls import path, include from django.conf import settings from django.conf.urls.static import static from pages import views urlpatterns = [ path('admin/', admin.site.urls), path('accounts/', include('allauth.urls')), # allauth path('', include('pages.urls')), # Home and tools pages path('db/', include('db.urls')), # Oil field and well database path('accounts/', include('users.urls')), ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) handler404 = views.handler404 handler500 = views.handler500
0
0
0
5f78fda933058c7a4fb151a47534efae216f1181
2,805
py
Python
app/Http/Controllers/machinelearning.py
ChrisFodor333/early_warning
b506e6ddaa50912f3cc5b58ee73de8a463879716
[ "MIT" ]
null
null
null
app/Http/Controllers/machinelearning.py
ChrisFodor333/early_warning
b506e6ddaa50912f3cc5b58ee73de8a463879716
[ "MIT" ]
null
null
null
app/Http/Controllers/machinelearning.py
ChrisFodor333/early_warning
b506e6ddaa50912f3cc5b58ee73de8a463879716
[ "MIT" ]
null
null
null
#!/usr/bin/python import numpy as np import pandas as pd import sys df = pd.read_csv('https://raw.githubusercontent.com/ChrisFodor333/early_warning/main/assets/machine.csv',header = 0); df = df.dropna(); #df.head(20); from sklearn.model_selection import train_test_split data = df X = data[['altman', 'in05', 'quicktest','bonity','taffler','binkert']] y = data['result'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2) pd.options.mode.chained_assignment = None from sklearn.preprocessing import LabelEncoder labelencoder = LabelEncoder() data["result"] = labelencoder.fit_transform(data["result"]) type = pd.DataFrame({'result': ['No Financial Distress', 'First Degree Financial Distress ', 'Second Degree Financial Distress', 'Third Degree Financial Distress']}) data = create_dummies(data,"result") # Aby nevypรญsal warningy import warnings from sklearn.exceptions import DataConversionWarning warnings.filterwarnings(action='ignore', category=DataConversionWarning) # Vlastnosti pred strednou normalizรกciou vlastnosti_pred = X_train # Strednรก normalizรกcia pre rรฝchlejลกรญ classifier from sklearn.preprocessing import StandardScaler sc = StandardScaler() #Transformรกcia dรกt X_train_array = sc.fit_transform(X_train.values) # Priradรญm ลกkรกlovanรฉ รบdaje do DataFrame a pouลพijem argumenty indexu a stฤบpcov, aby som zachoval svoje pรดvodnรฉ indexy a nรกzvy stฤบpcov: X_train = pd.DataFrame(X_train_array, index=X_train.index, columns=X_train.columns) # Vycentrovanรฉ testovacie dรกta na trรฉnovacรญch dรกtach X_test_array = sc.transform(X_test.values) X_test = pd.DataFrame(X_test_array, index=X_test.index, columns=X_test.columns) # import modelu MLP from sklearn.neural_network import MLPClassifier # Inicializovanie perceptrรณnu mlp = MLPClassifier(hidden_layer_sizes =(100,),solver='adam',learning_rate_init= 0.01, max_iter=500) # Natrรฉnovaลฅ model mlp.fit(X_train, y_train) # Vรฝstupy MLPClassifier (activation='relu', alpha=0.0001, batch_size='auto', beta_1=0.9, beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=10, learning_rate='constant', learning_rate_init=0.01, max_iter=1000, momentum=0.9, nesterovs_momentum=True, power_t=0.5, random_state=None, shuffle=True, solver='adam', tol=0.0001, validation_fraction=0.1, verbose=False, warm_start=False) altman = sys.argv[1] in05 = sys.argv[2] qt = sys.argv[3] bonity = sys.argv[4] taffler = sys.argv[5] binkert = sys.argv[6] X_test = [[altman, in05, qt, bonity, taffler, binkert]]; X_test = np.array(X_test); X_test.reshape(1, -1); mlp.predict(X_test) mlp.predict_proba(X_test)*100 print(mlp.predict(X_test),mlp.predict_proba(X_test)*100);
31.166667
165
0.775045
#!/usr/bin/python import numpy as np import pandas as pd import sys df = pd.read_csv('https://raw.githubusercontent.com/ChrisFodor333/early_warning/main/assets/machine.csv',header = 0); df = df.dropna(); #df.head(20); from sklearn.model_selection import train_test_split data = df X = data[['altman', 'in05', 'quicktest','bonity','taffler','binkert']] y = data['result'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2) pd.options.mode.chained_assignment = None from sklearn.preprocessing import LabelEncoder labelencoder = LabelEncoder() data["result"] = labelencoder.fit_transform(data["result"]) type = pd.DataFrame({'result': ['No Financial Distress', 'First Degree Financial Distress ', 'Second Degree Financial Distress', 'Third Degree Financial Distress']}) def create_dummies(df,column_name): dummies = pd.get_dummies(df[column_name],prefix=column_name) df = pd.concat([df,dummies],axis=1) return df data = create_dummies(data,"result") # Aby nevypรญsal warningy import warnings from sklearn.exceptions import DataConversionWarning warnings.filterwarnings(action='ignore', category=DataConversionWarning) # Vlastnosti pred strednou normalizรกciou vlastnosti_pred = X_train # Strednรก normalizรกcia pre rรฝchlejลกรญ classifier from sklearn.preprocessing import StandardScaler sc = StandardScaler() #Transformรกcia dรกt X_train_array = sc.fit_transform(X_train.values) # Priradรญm ลกkรกlovanรฉ รบdaje do DataFrame a pouลพijem argumenty indexu a stฤบpcov, aby som zachoval svoje pรดvodnรฉ indexy a nรกzvy stฤบpcov: X_train = pd.DataFrame(X_train_array, index=X_train.index, columns=X_train.columns) # Vycentrovanรฉ testovacie dรกta na trรฉnovacรญch dรกtach X_test_array = sc.transform(X_test.values) X_test = pd.DataFrame(X_test_array, index=X_test.index, columns=X_test.columns) # import modelu MLP from sklearn.neural_network import MLPClassifier # Inicializovanie perceptrรณnu mlp = MLPClassifier(hidden_layer_sizes =(100,),solver='adam',learning_rate_init= 0.01, max_iter=500) # Natrรฉnovaลฅ model mlp.fit(X_train, y_train) # Vรฝstupy MLPClassifier (activation='relu', alpha=0.0001, batch_size='auto', beta_1=0.9, beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=10, learning_rate='constant', learning_rate_init=0.01, max_iter=1000, momentum=0.9, nesterovs_momentum=True, power_t=0.5, random_state=None, shuffle=True, solver='adam', tol=0.0001, validation_fraction=0.1, verbose=False, warm_start=False) altman = sys.argv[1] in05 = sys.argv[2] qt = sys.argv[3] bonity = sys.argv[4] taffler = sys.argv[5] binkert = sys.argv[6] X_test = [[altman, in05, qt, bonity, taffler, binkert]]; X_test = np.array(X_test); X_test.reshape(1, -1); mlp.predict(X_test) mlp.predict_proba(X_test)*100 print(mlp.predict(X_test),mlp.predict_proba(X_test)*100);
133
0
23
ed370fff408ba9f8a4761235130117e6135851e7
215
py
Python
python/hello_world.py
alanverdugo/travis_github_pages
5a7aefc4ac09e27e9a4214469c64262e62458553
[ "Apache-2.0" ]
null
null
null
python/hello_world.py
alanverdugo/travis_github_pages
5a7aefc4ac09e27e9a4214469c64262e62458553
[ "Apache-2.0" ]
null
null
null
python/hello_world.py
alanverdugo/travis_github_pages
5a7aefc4ac09e27e9a4214469c64262e62458553
[ "Apache-2.0" ]
1
2020-01-30T16:49:12.000Z
2020-01-30T16:49:12.000Z
#!/usr/bin/python """Sample program.""" def hello_world(): """Print a message to stdout.""" print("Hello, world!") def return_true(): """You can rent this space for only $5 a week.""" return True
17.916667
53
0.609302
#!/usr/bin/python """Sample program.""" def hello_world(): """Print a message to stdout.""" print("Hello, world!") def return_true(): """You can rent this space for only $5 a week.""" return True
0
0
0
867226d0bb3ecd16b14fbd99c31bdc8838ca1406
1,616
py
Python
allaccess/tests/test_backends.py
BarracudaPff/code-golf-data-pythpn
42e8858c2ebc6a061012bcadb167d29cebb85c5e
[ "MIT" ]
null
null
null
allaccess/tests/test_backends.py
BarracudaPff/code-golf-data-pythpn
42e8858c2ebc6a061012bcadb167d29cebb85c5e
[ "MIT" ]
null
null
null
allaccess/tests/test_backends.py
BarracudaPff/code-golf-data-pythpn
42e8858c2ebc6a061012bcadb167d29cebb85c5e
[ "MIT" ]
null
null
null
from django.contrib.auth import authenticate from .base import AllAccessTestCase class AuthBackendTestCase(AllAccessTestCase): "Custom contrib.auth backend tests." def test_successful_authenticate(self): "User successfully authenticated." provider = self.access.provider identifier = self.access.identifier user = authenticate(provider=provider, identifier=identifier) self.assertEqual(user, self.user, "Correct user was not returned.") def test_provider_name(self): "Match on provider name as a string." provider = self.access.provider.name identifier = self.access.identifier user = authenticate(provider=provider, identifier=identifier) self.assertEqual(user, self.user, "Correct user was not returned.") def test_failed_authentication(self): "No matches found for the provider/id pair." provider = self.access.provider identifier = self.access.identifier self.access.delete() user = authenticate(provider=provider, identifier=identifier) self.assertEqual(user, None, "No user should be returned.") def test_match_no_user(self): "Matched access is not associated with a user." self.access.user = None self.access.save() user = authenticate(provider=self.access.provider, identifier=self.access.identifier) self.assertEqual(user, None, "No user should be returned.") def test_performance(self): "Only one query should be required to get the user." with self.assertNumQueries(1): authenticate(provider=self.access.provider, identifier=self.access.identifier)
44.888889
87
0.778465
from django.contrib.auth import authenticate from .base import AllAccessTestCase class AuthBackendTestCase(AllAccessTestCase): "Custom contrib.auth backend tests." def setUp(self): self.user = self.create_user() self.access = self.create_access(user=self.user) def test_successful_authenticate(self): "User successfully authenticated." provider = self.access.provider identifier = self.access.identifier user = authenticate(provider=provider, identifier=identifier) self.assertEqual(user, self.user, "Correct user was not returned.") def test_provider_name(self): "Match on provider name as a string." provider = self.access.provider.name identifier = self.access.identifier user = authenticate(provider=provider, identifier=identifier) self.assertEqual(user, self.user, "Correct user was not returned.") def test_failed_authentication(self): "No matches found for the provider/id pair." provider = self.access.provider identifier = self.access.identifier self.access.delete() user = authenticate(provider=provider, identifier=identifier) self.assertEqual(user, None, "No user should be returned.") def test_match_no_user(self): "Matched access is not associated with a user." self.access.user = None self.access.save() user = authenticate(provider=self.access.provider, identifier=self.access.identifier) self.assertEqual(user, None, "No user should be returned.") def test_performance(self): "Only one query should be required to get the user." with self.assertNumQueries(1): authenticate(provider=self.access.provider, identifier=self.access.identifier)
79
0
23
e1ac703da42b95f543e965d75dca58d86d5ede31
717
py
Python
src/_stories/shortcuts.py
gtors/stories
0614624f472151f20617afa4e6c4a0af9b409b6d
[ "BSD-2-Clause" ]
null
null
null
src/_stories/shortcuts.py
gtors/stories
0614624f472151f20617afa4e6c4a0af9b409b6d
[ "BSD-2-Clause" ]
null
null
null
src/_stories/shortcuts.py
gtors/stories
0614624f472151f20617afa4e6c4a0af9b409b6d
[ "BSD-2-Clause" ]
null
null
null
from _stories.mounted import ClassMountedStory
23.9
52
0.60251
from _stories.mounted import ClassMountedStory def contract_in(cls, *args): def setter(contract): for attrname in dir(cls): attribute = getattr(cls, attrname) if type(attribute) is ClassMountedStory: attribute.contract(contract) return contract if args: return setter(*args) else: return setter def failures_in(cls, *args): def setter(failures): for attrname in dir(cls): attribute = getattr(cls, attrname) if type(attribute) is ClassMountedStory: attribute.failures(failures) return failures if args: return setter(*args) else: return setter
622
0
46
6766ab8b4ecce2efa50640fdfa43566253393b40
466
py
Python
mundo_1/ex017.py
tseiiti/curso_em_video
59565ce809c1f025fb41ab69de3b8c5b53c8f7b2
[ "MIT" ]
null
null
null
mundo_1/ex017.py
tseiiti/curso_em_video
59565ce809c1f025fb41ab69de3b8c5b53c8f7b2
[ "MIT" ]
null
null
null
mundo_1/ex017.py
tseiiti/curso_em_video
59565ce809c1f025fb41ab69de3b8c5b53c8f7b2
[ "MIT" ]
null
null
null
from os import system, name system('cls' if name == 'nt' else 'clear') dsc = ('''DESAFIO 017: Faรงa um programa que leia o comprimento do cateto oposto e do cateto adjacente de um triรขngulo retรขngulo, calcule e mostre o comprimento da hipotenusa. ''') from math import hypot n1 = float(input('Cateto oposto: ')) n2 = float(input('Cateto adjacente: ')) #print('A hipotenusa รฉ {}'.format((n1 ** 2 + n2 ** 2) ** 0.5)) print('A hipotenusa รฉ {}'.format(hypot(n1, n2)))
31.066667
84
0.684549
from os import system, name system('cls' if name == 'nt' else 'clear') dsc = ('''DESAFIO 017: Faรงa um programa que leia o comprimento do cateto oposto e do cateto adjacente de um triรขngulo retรขngulo, calcule e mostre o comprimento da hipotenusa. ''') from math import hypot n1 = float(input('Cateto oposto: ')) n2 = float(input('Cateto adjacente: ')) #print('A hipotenusa รฉ {}'.format((n1 ** 2 + n2 ** 2) ** 0.5)) print('A hipotenusa รฉ {}'.format(hypot(n1, n2)))
0
0
0
3889096aea39db5a3ddcfe2ddce7a298cdf60775
696
py
Python
scripts/dmg_settings.py
magicien/JoyfulPlayer
a06e684bd37f387a977427a83f21b07f567f7f09
[ "MIT" ]
1
2020-07-04T18:38:54.000Z
2020-07-04T18:38:54.000Z
scripts/dmg_settings.py
magicien/JoyfulPlayer
a06e684bd37f387a977427a83f21b07f567f7f09
[ "MIT" ]
null
null
null
scripts/dmg_settings.py
magicien/JoyfulPlayer
a06e684bd37f387a977427a83f21b07f567f7f09
[ "MIT" ]
null
null
null
from __future__ import unicode_literals import biplist import os.path app = defines.get('app', './dmg/JoyfulPlayer.app') appname = os.path.basename(app) # Basics format = defines.get('format', 'UDZO') size = defines.get('size', None) files = [ app ] icon_locations = { appname: (160, 160), } # Window configuration show_status_bar = False show_tab_view = False show_toolbar = False show_pathbar = False show_sidebar = False sidebar_width = 180 window_rect = ((322, 331), (320, 362)) defaullt_view = 'icon_view' # Icon view configuration arrange_by = None grid_offset = (0, 0) grid_spacing = 100 scrolll_position = (0, 0) label_pos = 'bottom' text_size = 12 icon_size = 164
16.571429
50
0.712644
from __future__ import unicode_literals import biplist import os.path app = defines.get('app', './dmg/JoyfulPlayer.app') appname = os.path.basename(app) # Basics format = defines.get('format', 'UDZO') size = defines.get('size', None) files = [ app ] icon_locations = { appname: (160, 160), } # Window configuration show_status_bar = False show_tab_view = False show_toolbar = False show_pathbar = False show_sidebar = False sidebar_width = 180 window_rect = ((322, 331), (320, 362)) defaullt_view = 'icon_view' # Icon view configuration arrange_by = None grid_offset = (0, 0) grid_spacing = 100 scrolll_position = (0, 0) label_pos = 'bottom' text_size = 12 icon_size = 164
0
0
0
d976a1a0f0149c3c740a9169eca118f522e6a8b3
916
py
Python
examples/gps/mf_lqr.py
JoeMWatson/trajopt
8b98718721e0c373cd7dc01a35f42447c1134713
[ "MIT" ]
1
2019-10-17T08:42:17.000Z
2019-10-17T08:42:17.000Z
examples/gps/mf_lqr.py
JoeMWatson/trajopt
8b98718721e0c373cd7dc01a35f42447c1134713
[ "MIT" ]
null
null
null
examples/gps/mf_lqr.py
JoeMWatson/trajopt
8b98718721e0c373cd7dc01a35f42447c1134713
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # @Filename: mf_lqr.py # @Date: 2019-06-16-18-38 # @Author: Hany Abdulsamad # @Contact: hany@robot-learning.de import gym from trajopt.gps import MFGPS # lqr task env = gym.make('LQR-TO-v0') env._max_episode_steps = 100 alg = MFGPS(env, nb_steps=100, kl_bound=10., init_ctl_sigma=50., activation=range(100)) # run gps trace = alg.run(nb_episodes=10, nb_iter=5) # plot dists alg.plot() # execute and plot nb_episodes = 25 data = alg.sample(nb_episodes, stoch=False) import matplotlib.pyplot as plt plt.figure() for k in range(alg.nb_xdim): plt.subplot(alg.nb_xdim + alg.nb_udim, 1, k + 1) plt.plot(data['x'][k, ...]) for k in range(alg.nb_udim): plt.subplot(alg.nb_xdim + alg.nb_udim, 1, alg.nb_xdim + k + 1) plt.plot(data['u'][k, ...]) plt.show() # plot objective plt.figure() plt.plot(trace) plt.show()
18.693878
66
0.649563
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # @Filename: mf_lqr.py # @Date: 2019-06-16-18-38 # @Author: Hany Abdulsamad # @Contact: hany@robot-learning.de import gym from trajopt.gps import MFGPS # lqr task env = gym.make('LQR-TO-v0') env._max_episode_steps = 100 alg = MFGPS(env, nb_steps=100, kl_bound=10., init_ctl_sigma=50., activation=range(100)) # run gps trace = alg.run(nb_episodes=10, nb_iter=5) # plot dists alg.plot() # execute and plot nb_episodes = 25 data = alg.sample(nb_episodes, stoch=False) import matplotlib.pyplot as plt plt.figure() for k in range(alg.nb_xdim): plt.subplot(alg.nb_xdim + alg.nb_udim, 1, k + 1) plt.plot(data['x'][k, ...]) for k in range(alg.nb_udim): plt.subplot(alg.nb_xdim + alg.nb_udim, 1, alg.nb_xdim + k + 1) plt.plot(data['u'][k, ...]) plt.show() # plot objective plt.figure() plt.plot(trace) plt.show()
0
0
0
ea039db56cbfde50039819cf3b9a23da17aaa55f
1,089
py
Python
L.I.S.A/client.py
malnou-org/malnou
7ebe565f5df6058bbb9b0991b4d20e2cb79cda65
[ "MIT" ]
8
2019-07-17T13:15:55.000Z
2021-11-08T09:34:04.000Z
L.I.S.A/client.py
PotatoSpudowski/malnou
7ebe565f5df6058bbb9b0991b4d20e2cb79cda65
[ "MIT" ]
null
null
null
L.I.S.A/client.py
PotatoSpudowski/malnou
7ebe565f5df6058bbb9b0991b4d20e2cb79cda65
[ "MIT" ]
1
2019-08-25T09:17:40.000Z
2019-08-25T09:17:40.000Z
import time import sys import uuid import argparse import ibmiotf.device import wiotp.sdk.device from configparser import ConfigParser
25.928571
107
0.662994
import time import sys import uuid import argparse import ibmiotf.device import wiotp.sdk.device from configparser import ConfigParser def commandProcessor(cmd): print("Command received: %s" % cmd.data) def myOnPublishCallback(): print("Confirmed event received by IoTF\n") def sendToCloud(data): authMethod = None cfg = ConfigParser() cfg.read('device.cfg') deviceOptions = { "identity": {"orgId": cfg.get('device', 'org'), "typeId": cfg.get('device', 'type'), "deviceId": cfg.get('device', 'id')}, "auth": {"token": cfg.get('device', 'auth-token')}, } deviceCli = wiotp.sdk.device.DeviceClient(deviceOptions) deviceCli.commandCallback = commandProcessor # Connect and send datapoint(s) into the cloud deviceCli.connect() success = deviceCli.publishEvent("Child_screening", "json", data, qos=0, onPublish=myOnPublishCallback) if not success: print("Not connected to IoTF") # Disconnect the device and application from the cloud deviceCli.disconnect()
883
0
69
f5c3e4a7036aaa2b68eeebe3f97522092aaea427
2,062
py
Python
lonely-lemmings/earlyinternet/gifapp/urls.py
Vthechamp22/summer-code-jam-2021
0a8bf1f22f6c73300891fd779da36efd8e1304c1
[ "MIT" ]
40
2020-08-02T07:38:22.000Z
2021-07-26T01:46:50.000Z
lonely-lemmings/earlyinternet/gifapp/urls.py
Vthechamp22/summer-code-jam-2021
0a8bf1f22f6c73300891fd779da36efd8e1304c1
[ "MIT" ]
134
2020-07-31T12:15:45.000Z
2020-12-13T04:42:19.000Z
lonely-lemmings/earlyinternet/gifapp/urls.py
Vthechamp22/summer-code-jam-2021
0a8bf1f22f6c73300891fd779da36efd8e1304c1
[ "MIT" ]
101
2020-07-31T12:00:47.000Z
2021-11-01T09:06:58.000Z
from django.urls import path from django.contrib.auth import views as auth_views from . import editorviews from . import userviews urlpatterns = [ # editor paths path("project", editorviews.render_all_projects, name="projects"), path("project/create", editorviews.parse_new_project_request, name="new"), path("project/<str:project_name>", editorviews.paint, name="paint"), path("project/<str:project_name>/save", editorviews.parse_save_request, name="save"), path("project/<str:project_name>/render", editorviews.parse_render_request, name="render"), path("project/<str:project_name>/view", editorviews.parse_view_request, name="view"), path("project/<str:project_name>/publish", editorviews.parse_post_request, name="publish"), path("project/<str:project_name>/load", editorviews.parse_image_request, name="images"), path("project/<str:user>/<str:project_name>/detail", userviews.detail, name="project-detail"), path("project/<str:user>/<str:project_name>/comment", userviews.submit_comment, name="submit-comment"), path("", userviews.home, name="home"), # user authentication paths path("login/", auth_views.LoginView.as_view(template_name='login.html'), name="login"), path("logout/", auth_views.LogoutView.as_view(template_name='logout.html'), name="logout"), path("register/", userviews.register, name="register"), # password reset paths path("password_reset/", auth_views.PasswordResetView.as_view(template_name='password_reset.html'), name='password_reset'), path("password_reset/done", auth_views.PasswordResetDoneView.as_view(template_name='password_reset_done.html'), name='password_reset_done'), path("password_reset/confirm", auth_views.PasswordResetConfirmView.as_view(template_name='password_reset_confirm.html'), name='password_reset_confirm'), path("password_reset/complete", auth_views.PasswordResetCompleteView.as_view(template_name='password_reset_complete.html'), name='password_reset_complete'), ]
52.871795
115
0.739088
from django.urls import path from django.contrib.auth import views as auth_views from . import editorviews from . import userviews urlpatterns = [ # editor paths path("project", editorviews.render_all_projects, name="projects"), path("project/create", editorviews.parse_new_project_request, name="new"), path("project/<str:project_name>", editorviews.paint, name="paint"), path("project/<str:project_name>/save", editorviews.parse_save_request, name="save"), path("project/<str:project_name>/render", editorviews.parse_render_request, name="render"), path("project/<str:project_name>/view", editorviews.parse_view_request, name="view"), path("project/<str:project_name>/publish", editorviews.parse_post_request, name="publish"), path("project/<str:project_name>/load", editorviews.parse_image_request, name="images"), path("project/<str:user>/<str:project_name>/detail", userviews.detail, name="project-detail"), path("project/<str:user>/<str:project_name>/comment", userviews.submit_comment, name="submit-comment"), path("", userviews.home, name="home"), # user authentication paths path("login/", auth_views.LoginView.as_view(template_name='login.html'), name="login"), path("logout/", auth_views.LogoutView.as_view(template_name='logout.html'), name="logout"), path("register/", userviews.register, name="register"), # password reset paths path("password_reset/", auth_views.PasswordResetView.as_view(template_name='password_reset.html'), name='password_reset'), path("password_reset/done", auth_views.PasswordResetDoneView.as_view(template_name='password_reset_done.html'), name='password_reset_done'), path("password_reset/confirm", auth_views.PasswordResetConfirmView.as_view(template_name='password_reset_confirm.html'), name='password_reset_confirm'), path("password_reset/complete", auth_views.PasswordResetCompleteView.as_view(template_name='password_reset_complete.html'), name='password_reset_complete'), ]
0
0
0
5e365b996113e0816d0acd5b8b5838506b5170ec
1,400
py
Python
src/mdscripts/mdpmaker/mdpmaker.py
awacha/mdscripts
831bda06557fa2d5f0899fc2f6552c9e49146cef
[ "BSD-3-Clause" ]
null
null
null
src/mdscripts/mdpmaker/mdpmaker.py
awacha/mdscripts
831bda06557fa2d5f0899fc2f6552c9e49146cef
[ "BSD-3-Clause" ]
null
null
null
src/mdscripts/mdpmaker/mdpmaker.py
awacha/mdscripts
831bda06557fa2d5f0899fc2f6552c9e49146cef
[ "BSD-3-Clause" ]
null
null
null
from PyQt5 import QtWidgets from .pages import IntroPage, EMPage, SimTypePage, IntegratorPage, \ NeighbourSearchPage, FreqControlPage, CoulombPage, \ VdWPage, EwaldPage, ThermostatPage, EndPage
34.146341
74
0.622857
from PyQt5 import QtWidgets from .pages import IntroPage, EMPage, SimTypePage, IntegratorPage, \ NeighbourSearchPage, FreqControlPage, CoulombPage, \ VdWPage, EwaldPage, ThermostatPage, EndPage class MDPWizard(QtWidgets.QWizard): def __init__(self, parent=None): super().__init__(parent) self._pages = [] self.setupUi(self) def setupUi(self, Wizard): self.setButtonText(QtWidgets.QWizard.CustomButton1, 'Load MDP...') self.customButtonClicked.connect(self.onCustomButtonClicked) for pageclass in [ IntroPage, SimTypePage, EMPage, IntegratorPage, NeighbourSearchPage, FreqControlPage, CoulombPage, VdWPage, EwaldPage, ThermostatPage, EndPage]: page = pageclass() self._pages.append(page) self.setPage(page.pageID, page) def onCustomButtonClicked(self, which: int): if which == QtWidgets.QWizard.CustomButton1: # open new file filename, fltr = QtWidgets.QFileDialog.getOpenFileUrl( parent=self, caption='Load an MDP file', directory='', filter='MDP files (*.mdp);;All files (*)', initialFilter='MDP files (*.mdp)') if filename: self.loadMDP(filename) def loadMDP(filename): pass def saveMDP(filename): pass
1,025
14
157
f7728f245f6643550200ae56f152b0dcaf86976e
14,468
py
Python
sidpy/hdf/dtype_utils.py
ziatdinovmax/sidpy
299147bfc22741b5170aa00e92b34159dfc910c5
[ "MIT" ]
null
null
null
sidpy/hdf/dtype_utils.py
ziatdinovmax/sidpy
299147bfc22741b5170aa00e92b34159dfc910c5
[ "MIT" ]
null
null
null
sidpy/hdf/dtype_utils.py
ziatdinovmax/sidpy
299147bfc22741b5170aa00e92b34159dfc910c5
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Utilities for transforming and validating data types Given that many of the data transformations involve copying the data, they should ideally happen in a lazy manner to avoid memory issues. Created on Tue Nov 3 21:14:25 2015 @author: Suhas Somnath, Chris Smith """ from __future__ import division, absolute_import, unicode_literals, print_function import sys from warnings import warn import h5py import numpy as np import dask.array as da __all__ = ['flatten_complex_to_real', 'get_compound_sub_dtypes', 'flatten_compound_to_real', 'check_dtype', 'stack_real_to_complex', 'validate_dtype', 'is_complex_dtype', 'stack_real_to_compound', 'stack_real_to_target_dtype', 'flatten_to_real'] from sidpy.hdf.hdf_utils import lazy_load_array if sys.version_info.major == 3: unicode = str def flatten_complex_to_real(dataset, lazy=False): """ Stacks the real values followed by the imaginary values in the last dimension of the given N dimensional matrix. Thus a complex matrix of shape (2, 3, 5) will turn into a matrix of shape (2, 3, 10) Parameters ---------- dataset : array-like or :class:`numpy.ndarray`, or :class:`h5py.Dataset`, or :class:`dask.array.core.Array` Dataset of complex data type lazy : bool, optional. Default = False If set to True, will use lazy Dask arrays instead of in-memory numpy arrays Returns ------- retval : :class:`numpy.ndarray`, or :class:`dask.array.core.Array` real valued dataset """ if not isinstance(dataset, (h5py.Dataset, np.ndarray, da.core.Array)): raise TypeError('dataset should either be a h5py.Dataset or numpy / dask array') if not is_complex_dtype(dataset.dtype): raise TypeError("Expected a complex valued dataset") if isinstance(dataset, da.core.Array): lazy = True xp = np if lazy: dataset = lazy_load_array(dataset) xp = da axis = xp.array(dataset).ndim - 1 if axis == -1: return xp.hstack([xp.real(dataset), xp.imag(dataset)]) else: # along the last axis return xp.concatenate([xp.real(dataset), xp.imag(dataset)], axis=axis) def flatten_compound_to_real(dataset, lazy=False): """ Flattens the individual components in a structured array or compound valued hdf5 dataset along the last axis to form a real valued array. Thus a compound h5py.Dataset or structured numpy matrix of shape (2, 3, 5) having 3 components will turn into a real valued matrix of shape (2, 3, 15), assuming that all the sub-dtypes of the matrix are real valued. ie - this function does not handle structured dtypes having complex values Parameters ---------- dataset : :class:`numpy.ndarray`, or :class:`h5py.Dataset`, or :class:`dask.array.core.Array` Numpy array that is a structured array or a :class:`h5py.Dataset` of compound dtype lazy : bool, optional. Default = False If set to True, will use lazy Dask arrays instead of in-memory numpy arrays Returns ------- retval : :class:`numpy.ndarray`, or :class:`dask.array.core.Array` real valued dataset """ if isinstance(dataset, h5py.Dataset): if len(dataset.dtype) == 0: raise TypeError("Expected compound h5py dataset") if lazy: xp = da dataset = lazy_load_array(dataset) else: xp = np warn('HDF5 datasets will be loaded as Dask arrays in the future. ie - kwarg lazy will default to True in future releases of sidpy') return xp.concatenate([xp.array(dataset[name]) for name in dataset.dtype.names], axis=len(dataset.shape) - 1) elif isinstance(dataset, (np.ndarray, da.core.Array)): if isinstance(dataset, da.core.Array): lazy = True xp = np if lazy: dataset = lazy_load_array(dataset) xp = da if len(dataset.dtype) == 0: raise TypeError("Expected structured array") if dataset.ndim > 0: return xp.concatenate([dataset[name] for name in dataset.dtype.names], axis=dataset.ndim - 1) else: return xp.hstack([dataset[name] for name in dataset.dtype.names]) elif isinstance(dataset, np.void): return np.hstack([dataset[name] for name in dataset.dtype.names]) else: raise TypeError('Datatype {} not supported'.format(type(dataset))) def flatten_to_real(ds_main, lazy=False): """ Flattens complex / compound / real valued arrays to real valued arrays Parameters ---------- ds_main : :class:`numpy.ndarray`, or :class:`h5py.Dataset`, or :class:`dask.array.core.Array` Compound, complex or real valued numpy array or HDF5 dataset lazy : bool, optional. Default = False If set to True, will use lazy Dask arrays instead of in-memory numpy arrays Returns ---------- ds_main : :class:`numpy.ndarray`, or :class:`dask.array.core.Array` Array raveled to a float data type """ if not isinstance(ds_main, (h5py.Dataset, np.ndarray, da.core.Array)): ds_main = np.array(ds_main) if is_complex_dtype(ds_main.dtype): return flatten_complex_to_real(ds_main, lazy=lazy) elif len(ds_main.dtype) > 0: return flatten_compound_to_real(ds_main, lazy=lazy) else: return ds_main def get_compound_sub_dtypes(struct_dtype): """ Returns a dictionary of the dtypes of each of the fields in the given structured array dtype Parameters ---------- struct_dtype : :class:`numpy.dtype` dtype of a structured array Returns ------- dtypes : dict Dictionary whose keys are the field names and values are the corresponding dtypes """ if not isinstance(struct_dtype, np.dtype): raise TypeError('Provided object must be a structured array dtype') dtypes = dict() for field_name in struct_dtype.fields: dtypes[field_name] = struct_dtype.fields[field_name][0] return dtypes def check_dtype(h5_dset): """ Checks the datatype of the input HDF5 dataset and provides the appropriate function calls to convert it to a float Parameters ---------- h5_dset : :class:`h5py.Dataset` Dataset of interest Returns ------- func : callable function that will convert the dataset to a float is_complex : bool is the input dataset complex? is_compound : bool is the input dataset compound? n_features : Unsigned int Unsigned integer - the length of the 2nd dimension of the data after `func` is called on it type_mult : Unsigned int multiplier that converts from the typesize of the input :class:`~numpy.dtype` to the typesize of the data after func is run on it """ if not isinstance(h5_dset, h5py.Dataset): raise TypeError('h5_dset should be a h5py.Dataset object') is_complex = False is_compound = False in_dtype = h5_dset.dtype # TODO: avoid assuming 2d shape - why does one even need n_samples!? We only care about the last dimension! n_features = h5_dset.shape[-1] if is_complex_dtype(h5_dset.dtype): is_complex = True new_dtype = np.real(h5_dset[0, 0]).dtype type_mult = new_dtype.itemsize * 2 func = flatten_complex_to_real n_features *= 2 elif len(h5_dset.dtype) > 0: """ Some form of structured numpy is in use We only support real scalars for the component types at the current time """ is_compound = True # TODO: Avoid hard-coding to float32 new_dtype = np.float32 type_mult = len(in_dtype) * new_dtype(0).itemsize func = flatten_compound_to_real n_features *= len(in_dtype) else: if h5_dset.dtype not in [np.float32, np.float64]: new_dtype = np.float32 else: new_dtype = h5_dset.dtype.type type_mult = new_dtype(0).itemsize func = new_dtype return func, is_complex, is_compound, n_features, type_mult def stack_real_to_complex(ds_real, lazy=False): """ Puts the real and imaginary sections of the provided matrix (in the last axis) together to make complex matrix Parameters ------------ ds_real : :class:`numpy.ndarray`, :class:`dask.array.core.Array`, or :class:`h5py.Dataset` n dimensional real-valued numpy array or HDF5 dataset where data arranged as [instance, 2 x features], where the first half of the features are the real component and the second half contains the imaginary components lazy : bool, optional. Default = False If set to True, will use lazy Dask arrays instead of in-memory numpy arrays Returns ---------- ds_compound : :class:`numpy.ndarray` or :class:`dask.array.core.Array` 2D complex array arranged as [sample, features] """ if not isinstance(ds_real, (np.ndarray, da.core.Array, h5py.Dataset)): if not isinstance(ds_real, (tuple, list)): raise TypeError("Expected at least an iterable like a list or tuple") ds_real = np.array(ds_real) if len(ds_real.dtype) > 0: raise TypeError("Array cannot have a compound dtype") if is_complex_dtype(ds_real.dtype): raise TypeError("Array cannot have complex dtype") if ds_real.shape[-1] / 2 != ds_real.shape[-1] // 2: raise ValueError("Last dimension must be even sized") half_point = ds_real.shape[-1] // 2 if isinstance(ds_real, da.core.Array): lazy = True if lazy and not isinstance(ds_real, da.core.Array): ds_real = lazy_load_array(ds_real) return ds_real[..., :half_point] + 1j * ds_real[..., half_point:] def stack_real_to_compound(ds_real, compound_type, lazy=False): """ Converts a real-valued dataset to a compound dataset (along the last axis) of the provided compound d-type Parameters ------------ ds_real : :class:`numpy.ndarray`, :class:`dask.array.core.Array`, or :class:`h5py.Dataset` n dimensional real-valued numpy array or HDF5 dataset where data arranged as [instance, features] compound_type : :class:`numpy.dtype` Target complex data-type lazy : bool, optional. Default = False If set to True, will use lazy Dask arrays instead of in-memory numpy arrays Returns ---------- ds_compound : :class:`numpy.ndarray` or :class:`dask.array.core.Array` N-dimensional complex-valued array arranged as [sample, features] """ if lazy or isinstance(ds_real, da.core.Array): raise NotImplementedError('Lazy operation not available due to absence of Dask support') if not isinstance(ds_real, (np.ndarray, h5py.Dataset)): if not isinstance(ds_real, (list, tuple)): raise TypeError("Expected at least an iterable like a list or tuple") ds_real = np.array(ds_real) if len(ds_real.dtype) > 0: raise TypeError("Array cannot have a compound dtype") elif is_complex_dtype(ds_real.dtype): raise TypeError("Array cannot have complex dtype") if not isinstance(compound_type, np.dtype): raise TypeError('Provided object must be a structured array dtype') new_spec_length = ds_real.shape[-1] / len(compound_type) if new_spec_length % 1: raise ValueError('Provided compound type was not compatible by number of elements') new_spec_length = int(new_spec_length) new_shape = list(ds_real.shape) # Make mutable new_shape[-1] = new_spec_length xp = np kwargs = {} """ if isinstance(ds_real, h5py.Dataset) and not lazy: warn('HDF5 datasets will be loaded as Dask arrays in the future. ie - kwarg lazy will default to True in future releases of sidpy') if isinstance(ds_real, da.core.Array): lazy = True if lazy: xp = da ds_real = lazy_load_array(ds_real) kwargs = {'chunks': 'auto'} """ ds_compound = xp.empty(new_shape, dtype=compound_type, **kwargs) for name_ind, name in enumerate(compound_type.names): i_start = name_ind * new_spec_length i_end = (name_ind + 1) * new_spec_length ds_compound[name] = ds_real[..., i_start:i_end] return ds_compound.squeeze() def stack_real_to_target_dtype(ds_real, new_dtype, lazy=False): """ Transforms real data into the target dtype Parameters ---------- ds_real : :class:`numpy.ndarray`, :class:`dask.array.core.Array` or :class:`h5py.Dataset` n dimensional real-valued numpy array or HDF5 dataset new_dtype : :class:`numpy.dtype` Target data-type Returns ---------- ret_val : :class:`numpy.ndarray` or :class:`dask.array.core.Array` N-dimensional array of the target data-type """ if is_complex_dtype(new_dtype): return stack_real_to_complex(ds_real, lazy=lazy) try: if len(new_dtype) > 0: return stack_real_to_compound(ds_real, new_dtype, lazy=lazy) except TypeError: return new_dtype(ds_real) # catching all other cases, such as np.dtype('<f4') return new_dtype.type(ds_real) def validate_dtype(dtype): """ Checks the provided object to ensure that it is a valid dtype that can be written to an HDF5 file. Raises a type error if invalid. Returns True if the object passed the tests Parameters ---------- dtype : object Object that is hopefully a :class:`h5py.Datatype`, or :class:`numpy.dtype` object Returns ------- status : bool True if the object was a valid data-type """ if isinstance(dtype, (h5py.Datatype, np.dtype)): pass elif isinstance(np.dtype(dtype), np.dtype): # This should catch all those instances when dtype is something familiar like - np.float32 pass else: raise TypeError('dtype should either be a numpy or h5py dtype') return True def is_complex_dtype(dtype): """ Checks if the provided dtype is a complex dtype Parameters ---------- dtype : object Object that is a class:`h5py.Datatype`, or :class:`numpy.dtype` object Returns ------- is_complex : bool True if the dtype was a complex dtype. Else returns False """ validate_dtype(dtype) if dtype in [np.complex, np.complex64, np.complex128]: return True return False
35.99005
143
0.661736
# -*- coding: utf-8 -*- """ Utilities for transforming and validating data types Given that many of the data transformations involve copying the data, they should ideally happen in a lazy manner to avoid memory issues. Created on Tue Nov 3 21:14:25 2015 @author: Suhas Somnath, Chris Smith """ from __future__ import division, absolute_import, unicode_literals, print_function import sys from warnings import warn import h5py import numpy as np import dask.array as da __all__ = ['flatten_complex_to_real', 'get_compound_sub_dtypes', 'flatten_compound_to_real', 'check_dtype', 'stack_real_to_complex', 'validate_dtype', 'is_complex_dtype', 'stack_real_to_compound', 'stack_real_to_target_dtype', 'flatten_to_real'] from sidpy.hdf.hdf_utils import lazy_load_array if sys.version_info.major == 3: unicode = str def flatten_complex_to_real(dataset, lazy=False): """ Stacks the real values followed by the imaginary values in the last dimension of the given N dimensional matrix. Thus a complex matrix of shape (2, 3, 5) will turn into a matrix of shape (2, 3, 10) Parameters ---------- dataset : array-like or :class:`numpy.ndarray`, or :class:`h5py.Dataset`, or :class:`dask.array.core.Array` Dataset of complex data type lazy : bool, optional. Default = False If set to True, will use lazy Dask arrays instead of in-memory numpy arrays Returns ------- retval : :class:`numpy.ndarray`, or :class:`dask.array.core.Array` real valued dataset """ if not isinstance(dataset, (h5py.Dataset, np.ndarray, da.core.Array)): raise TypeError('dataset should either be a h5py.Dataset or numpy / dask array') if not is_complex_dtype(dataset.dtype): raise TypeError("Expected a complex valued dataset") if isinstance(dataset, da.core.Array): lazy = True xp = np if lazy: dataset = lazy_load_array(dataset) xp = da axis = xp.array(dataset).ndim - 1 if axis == -1: return xp.hstack([xp.real(dataset), xp.imag(dataset)]) else: # along the last axis return xp.concatenate([xp.real(dataset), xp.imag(dataset)], axis=axis) def flatten_compound_to_real(dataset, lazy=False): """ Flattens the individual components in a structured array or compound valued hdf5 dataset along the last axis to form a real valued array. Thus a compound h5py.Dataset or structured numpy matrix of shape (2, 3, 5) having 3 components will turn into a real valued matrix of shape (2, 3, 15), assuming that all the sub-dtypes of the matrix are real valued. ie - this function does not handle structured dtypes having complex values Parameters ---------- dataset : :class:`numpy.ndarray`, or :class:`h5py.Dataset`, or :class:`dask.array.core.Array` Numpy array that is a structured array or a :class:`h5py.Dataset` of compound dtype lazy : bool, optional. Default = False If set to True, will use lazy Dask arrays instead of in-memory numpy arrays Returns ------- retval : :class:`numpy.ndarray`, or :class:`dask.array.core.Array` real valued dataset """ if isinstance(dataset, h5py.Dataset): if len(dataset.dtype) == 0: raise TypeError("Expected compound h5py dataset") if lazy: xp = da dataset = lazy_load_array(dataset) else: xp = np warn('HDF5 datasets will be loaded as Dask arrays in the future. ie - kwarg lazy will default to True in future releases of sidpy') return xp.concatenate([xp.array(dataset[name]) for name in dataset.dtype.names], axis=len(dataset.shape) - 1) elif isinstance(dataset, (np.ndarray, da.core.Array)): if isinstance(dataset, da.core.Array): lazy = True xp = np if lazy: dataset = lazy_load_array(dataset) xp = da if len(dataset.dtype) == 0: raise TypeError("Expected structured array") if dataset.ndim > 0: return xp.concatenate([dataset[name] for name in dataset.dtype.names], axis=dataset.ndim - 1) else: return xp.hstack([dataset[name] for name in dataset.dtype.names]) elif isinstance(dataset, np.void): return np.hstack([dataset[name] for name in dataset.dtype.names]) else: raise TypeError('Datatype {} not supported'.format(type(dataset))) def flatten_to_real(ds_main, lazy=False): """ Flattens complex / compound / real valued arrays to real valued arrays Parameters ---------- ds_main : :class:`numpy.ndarray`, or :class:`h5py.Dataset`, or :class:`dask.array.core.Array` Compound, complex or real valued numpy array or HDF5 dataset lazy : bool, optional. Default = False If set to True, will use lazy Dask arrays instead of in-memory numpy arrays Returns ---------- ds_main : :class:`numpy.ndarray`, or :class:`dask.array.core.Array` Array raveled to a float data type """ if not isinstance(ds_main, (h5py.Dataset, np.ndarray, da.core.Array)): ds_main = np.array(ds_main) if is_complex_dtype(ds_main.dtype): return flatten_complex_to_real(ds_main, lazy=lazy) elif len(ds_main.dtype) > 0: return flatten_compound_to_real(ds_main, lazy=lazy) else: return ds_main def get_compound_sub_dtypes(struct_dtype): """ Returns a dictionary of the dtypes of each of the fields in the given structured array dtype Parameters ---------- struct_dtype : :class:`numpy.dtype` dtype of a structured array Returns ------- dtypes : dict Dictionary whose keys are the field names and values are the corresponding dtypes """ if not isinstance(struct_dtype, np.dtype): raise TypeError('Provided object must be a structured array dtype') dtypes = dict() for field_name in struct_dtype.fields: dtypes[field_name] = struct_dtype.fields[field_name][0] return dtypes def check_dtype(h5_dset): """ Checks the datatype of the input HDF5 dataset and provides the appropriate function calls to convert it to a float Parameters ---------- h5_dset : :class:`h5py.Dataset` Dataset of interest Returns ------- func : callable function that will convert the dataset to a float is_complex : bool is the input dataset complex? is_compound : bool is the input dataset compound? n_features : Unsigned int Unsigned integer - the length of the 2nd dimension of the data after `func` is called on it type_mult : Unsigned int multiplier that converts from the typesize of the input :class:`~numpy.dtype` to the typesize of the data after func is run on it """ if not isinstance(h5_dset, h5py.Dataset): raise TypeError('h5_dset should be a h5py.Dataset object') is_complex = False is_compound = False in_dtype = h5_dset.dtype # TODO: avoid assuming 2d shape - why does one even need n_samples!? We only care about the last dimension! n_features = h5_dset.shape[-1] if is_complex_dtype(h5_dset.dtype): is_complex = True new_dtype = np.real(h5_dset[0, 0]).dtype type_mult = new_dtype.itemsize * 2 func = flatten_complex_to_real n_features *= 2 elif len(h5_dset.dtype) > 0: """ Some form of structured numpy is in use We only support real scalars for the component types at the current time """ is_compound = True # TODO: Avoid hard-coding to float32 new_dtype = np.float32 type_mult = len(in_dtype) * new_dtype(0).itemsize func = flatten_compound_to_real n_features *= len(in_dtype) else: if h5_dset.dtype not in [np.float32, np.float64]: new_dtype = np.float32 else: new_dtype = h5_dset.dtype.type type_mult = new_dtype(0).itemsize func = new_dtype return func, is_complex, is_compound, n_features, type_mult def stack_real_to_complex(ds_real, lazy=False): """ Puts the real and imaginary sections of the provided matrix (in the last axis) together to make complex matrix Parameters ------------ ds_real : :class:`numpy.ndarray`, :class:`dask.array.core.Array`, or :class:`h5py.Dataset` n dimensional real-valued numpy array or HDF5 dataset where data arranged as [instance, 2 x features], where the first half of the features are the real component and the second half contains the imaginary components lazy : bool, optional. Default = False If set to True, will use lazy Dask arrays instead of in-memory numpy arrays Returns ---------- ds_compound : :class:`numpy.ndarray` or :class:`dask.array.core.Array` 2D complex array arranged as [sample, features] """ if not isinstance(ds_real, (np.ndarray, da.core.Array, h5py.Dataset)): if not isinstance(ds_real, (tuple, list)): raise TypeError("Expected at least an iterable like a list or tuple") ds_real = np.array(ds_real) if len(ds_real.dtype) > 0: raise TypeError("Array cannot have a compound dtype") if is_complex_dtype(ds_real.dtype): raise TypeError("Array cannot have complex dtype") if ds_real.shape[-1] / 2 != ds_real.shape[-1] // 2: raise ValueError("Last dimension must be even sized") half_point = ds_real.shape[-1] // 2 if isinstance(ds_real, da.core.Array): lazy = True if lazy and not isinstance(ds_real, da.core.Array): ds_real = lazy_load_array(ds_real) return ds_real[..., :half_point] + 1j * ds_real[..., half_point:] def stack_real_to_compound(ds_real, compound_type, lazy=False): """ Converts a real-valued dataset to a compound dataset (along the last axis) of the provided compound d-type Parameters ------------ ds_real : :class:`numpy.ndarray`, :class:`dask.array.core.Array`, or :class:`h5py.Dataset` n dimensional real-valued numpy array or HDF5 dataset where data arranged as [instance, features] compound_type : :class:`numpy.dtype` Target complex data-type lazy : bool, optional. Default = False If set to True, will use lazy Dask arrays instead of in-memory numpy arrays Returns ---------- ds_compound : :class:`numpy.ndarray` or :class:`dask.array.core.Array` N-dimensional complex-valued array arranged as [sample, features] """ if lazy or isinstance(ds_real, da.core.Array): raise NotImplementedError('Lazy operation not available due to absence of Dask support') if not isinstance(ds_real, (np.ndarray, h5py.Dataset)): if not isinstance(ds_real, (list, tuple)): raise TypeError("Expected at least an iterable like a list or tuple") ds_real = np.array(ds_real) if len(ds_real.dtype) > 0: raise TypeError("Array cannot have a compound dtype") elif is_complex_dtype(ds_real.dtype): raise TypeError("Array cannot have complex dtype") if not isinstance(compound_type, np.dtype): raise TypeError('Provided object must be a structured array dtype') new_spec_length = ds_real.shape[-1] / len(compound_type) if new_spec_length % 1: raise ValueError('Provided compound type was not compatible by number of elements') new_spec_length = int(new_spec_length) new_shape = list(ds_real.shape) # Make mutable new_shape[-1] = new_spec_length xp = np kwargs = {} """ if isinstance(ds_real, h5py.Dataset) and not lazy: warn('HDF5 datasets will be loaded as Dask arrays in the future. ie - kwarg lazy will default to True in future releases of sidpy') if isinstance(ds_real, da.core.Array): lazy = True if lazy: xp = da ds_real = lazy_load_array(ds_real) kwargs = {'chunks': 'auto'} """ ds_compound = xp.empty(new_shape, dtype=compound_type, **kwargs) for name_ind, name in enumerate(compound_type.names): i_start = name_ind * new_spec_length i_end = (name_ind + 1) * new_spec_length ds_compound[name] = ds_real[..., i_start:i_end] return ds_compound.squeeze() def stack_real_to_target_dtype(ds_real, new_dtype, lazy=False): """ Transforms real data into the target dtype Parameters ---------- ds_real : :class:`numpy.ndarray`, :class:`dask.array.core.Array` or :class:`h5py.Dataset` n dimensional real-valued numpy array or HDF5 dataset new_dtype : :class:`numpy.dtype` Target data-type Returns ---------- ret_val : :class:`numpy.ndarray` or :class:`dask.array.core.Array` N-dimensional array of the target data-type """ if is_complex_dtype(new_dtype): return stack_real_to_complex(ds_real, lazy=lazy) try: if len(new_dtype) > 0: return stack_real_to_compound(ds_real, new_dtype, lazy=lazy) except TypeError: return new_dtype(ds_real) # catching all other cases, such as np.dtype('<f4') return new_dtype.type(ds_real) def validate_dtype(dtype): """ Checks the provided object to ensure that it is a valid dtype that can be written to an HDF5 file. Raises a type error if invalid. Returns True if the object passed the tests Parameters ---------- dtype : object Object that is hopefully a :class:`h5py.Datatype`, or :class:`numpy.dtype` object Returns ------- status : bool True if the object was a valid data-type """ if isinstance(dtype, (h5py.Datatype, np.dtype)): pass elif isinstance(np.dtype(dtype), np.dtype): # This should catch all those instances when dtype is something familiar like - np.float32 pass else: raise TypeError('dtype should either be a numpy or h5py dtype') return True def is_complex_dtype(dtype): """ Checks if the provided dtype is a complex dtype Parameters ---------- dtype : object Object that is a class:`h5py.Datatype`, or :class:`numpy.dtype` object Returns ------- is_complex : bool True if the dtype was a complex dtype. Else returns False """ validate_dtype(dtype) if dtype in [np.complex, np.complex64, np.complex128]: return True return False
0
0
0
e1ac5baef00b06d774dac67914421c5c10c7f2b8
4,347
py
Python
artellapipe/libs/usd/core/usdview.py
ArtellaPipe/artellapipe-libs-usd
20b89bceca730aa961cc10a98ee6b94e09908d80
[ "MIT" ]
1
2021-12-01T12:06:59.000Z
2021-12-01T12:06:59.000Z
artellapipe/libs/usd/core/usdview.py
ArtellaPipe/artellapipe-libs-usd
20b89bceca730aa961cc10a98ee6b94e09908d80
[ "MIT" ]
null
null
null
artellapipe/libs/usd/core/usdview.py
ArtellaPipe/artellapipe-libs-usd
20b89bceca730aa961cc10a98ee6b94e09908d80
[ "MIT" ]
1
2022-01-04T09:00:21.000Z
2022-01-04T09:00:21.000Z
#! /usr/bin/env python # -*- coding: utf-8 -*- """ Module that contains functions related with Pixar USD usdview application """ from __future__ import print_function, division, absolute_import __author__ = "Tomas Poveda" __license__ = "MIT" __maintainer__ = "Tomas Poveda" __email__ = "tpovedatd@gmail.com" import os import sys import logging import subprocess from artellapipe.libs.usd.core import usdpaths LOGGER = logging.getLogger('artellapipe-libs-usd') def get_usd_view_path(): """ Returns path to USD view executable :return: str """ platform_path = usdpaths.get_platform_path() usd_view_path = os.path.join(platform_path, 'pixar', 'bin', 'usdview') return usd_view_path def open_usd_file(usd_file_path): """ Opens given USD file in USD viewer (usdview) :param usd_file_path: str :return: bool """ if not usd_file_path or not os.path.isfile(usd_file_path): LOGGER.warning('Given USD file path does not exists: {}!'.format(usd_file_path)) return False usd_view_path = get_usd_view_path() if not os.path.exists(usd_view_path): LOGGER.warning( 'usdview path does not exists: {}. Impossible to open USD file!'.format(usd_view_path)) return False usd_view_python_libs_path = get_usd_view_python_libs_path() if not os.path.isdir(usd_view_python_libs_path): LOGGER.warning( 'No usdview Pythyon libs directory found. usdview cannot be opened or usdview OpenGL can be disabled') usd_view_python_libs_path = None pixar_usd_binaries_path = usdpaths.get_pixar_usd_binaries_path() if not pixar_usd_binaries_path: LOGGER.warning( 'No Pixar USD binaries path found: "{}". Impossible to launch usdview'.format(pixar_usd_binaries_path)) return False pixar_usd_libraries_path = usdpaths.get_pixar_usd_libraries_path() if not pixar_usd_libraries_path: LOGGER.warning( 'No Pixar USD libraries path found: "{}". Impossible to launch usdview'.format(pixar_usd_libraries_path)) return False # Dictionary that contains the environment configuration that will be used by usdview instance usd_view_env = dict() usd_view_env['PATH'] = r'{}{}{}'.format(pixar_usd_binaries_path, os.pathsep, pixar_usd_libraries_path) pixar_usd_python_libs_path = usdpaths.get_pixar_usd_python_libs_path() if pixar_usd_python_libs_path and os.path.isdir(pixar_usd_python_libs_path): if usd_view_python_libs_path and os.path.isdir(usd_view_python_libs_path): usd_view_env['PYTHONPATH'] = r'{}{}{}'.format( pixar_usd_python_libs_path, os.pathsep, usd_view_python_libs_path) else: usd_view_env['PYTHONPATH'] = r'{}'.format(pixar_usd_python_libs_path) else: if usd_view_python_libs_path and os.path.isdir(usd_view_python_libs_path): usd_view_env['PYTHONPATH'] = r'{}'.format(usd_view_python_libs_path) usd_view_plugins_path = get_usd_view_plugins_path() if usd_view_plugins_path and os.path.isdir(usd_view_python_libs_path): usd_view_env['PYTHONPATH'] += r'{}{}'.format(os.pathsep, usd_view_plugins_path) for name in os.listdir(usd_view_plugins_path): plugin_path = os.path.join(usd_view_plugins_path, name) if not os.path.isdir(plugin_path): continue if usd_view_env.get('PXR_PLUGINPATH_NAME', None): usd_view_env['PXR_PLUGINPATH_NAME'] += r'{}{}'.format(os.pathsep, plugin_path) else: usd_view_env['PXR_PLUGINPATH_NAME'] = r'{}'.format(plugin_path) p = subprocess.Popen( ['python.exe', usd_view_path, usd_file_path], env=usd_view_env) # output, error = p.communicate() # if error: # LOGGER.error('>>> usdview: {}'.format(error)) return True
34.228346
117
0.700023
#! /usr/bin/env python # -*- coding: utf-8 -*- """ Module that contains functions related with Pixar USD usdview application """ from __future__ import print_function, division, absolute_import __author__ = "Tomas Poveda" __license__ = "MIT" __maintainer__ = "Tomas Poveda" __email__ = "tpovedatd@gmail.com" import os import sys import logging import subprocess from artellapipe.libs.usd.core import usdpaths LOGGER = logging.getLogger('artellapipe-libs-usd') def get_usd_view_path(): """ Returns path to USD view executable :return: str """ platform_path = usdpaths.get_platform_path() usd_view_path = os.path.join(platform_path, 'pixar', 'bin', 'usdview') return usd_view_path def get_usd_view_python_libs_path(): externals_path = usdpaths.get_usd_externals_path() if sys.version[0] == '2': usd_view_py_libs_path = os.path.join(externals_path, 'python', '2') else: usd_view_py_libs_path = os.path.join(externals_path, 'python', '3') return usd_view_py_libs_path def get_usd_view_plugins_path(): plugins_path = usdpaths.get_usd_plugins_path() return os.path.join(plugins_path, 'usdview') def open_usd_file(usd_file_path): """ Opens given USD file in USD viewer (usdview) :param usd_file_path: str :return: bool """ if not usd_file_path or not os.path.isfile(usd_file_path): LOGGER.warning('Given USD file path does not exists: {}!'.format(usd_file_path)) return False usd_view_path = get_usd_view_path() if not os.path.exists(usd_view_path): LOGGER.warning( 'usdview path does not exists: {}. Impossible to open USD file!'.format(usd_view_path)) return False usd_view_python_libs_path = get_usd_view_python_libs_path() if not os.path.isdir(usd_view_python_libs_path): LOGGER.warning( 'No usdview Pythyon libs directory found. usdview cannot be opened or usdview OpenGL can be disabled') usd_view_python_libs_path = None pixar_usd_binaries_path = usdpaths.get_pixar_usd_binaries_path() if not pixar_usd_binaries_path: LOGGER.warning( 'No Pixar USD binaries path found: "{}". Impossible to launch usdview'.format(pixar_usd_binaries_path)) return False pixar_usd_libraries_path = usdpaths.get_pixar_usd_libraries_path() if not pixar_usd_libraries_path: LOGGER.warning( 'No Pixar USD libraries path found: "{}". Impossible to launch usdview'.format(pixar_usd_libraries_path)) return False # Dictionary that contains the environment configuration that will be used by usdview instance usd_view_env = dict() usd_view_env['PATH'] = r'{}{}{}'.format(pixar_usd_binaries_path, os.pathsep, pixar_usd_libraries_path) pixar_usd_python_libs_path = usdpaths.get_pixar_usd_python_libs_path() if pixar_usd_python_libs_path and os.path.isdir(pixar_usd_python_libs_path): if usd_view_python_libs_path and os.path.isdir(usd_view_python_libs_path): usd_view_env['PYTHONPATH'] = r'{}{}{}'.format( pixar_usd_python_libs_path, os.pathsep, usd_view_python_libs_path) else: usd_view_env['PYTHONPATH'] = r'{}'.format(pixar_usd_python_libs_path) else: if usd_view_python_libs_path and os.path.isdir(usd_view_python_libs_path): usd_view_env['PYTHONPATH'] = r'{}'.format(usd_view_python_libs_path) usd_view_plugins_path = get_usd_view_plugins_path() if usd_view_plugins_path and os.path.isdir(usd_view_python_libs_path): usd_view_env['PYTHONPATH'] += r'{}{}'.format(os.pathsep, usd_view_plugins_path) for name in os.listdir(usd_view_plugins_path): plugin_path = os.path.join(usd_view_plugins_path, name) if not os.path.isdir(plugin_path): continue if usd_view_env.get('PXR_PLUGINPATH_NAME', None): usd_view_env['PXR_PLUGINPATH_NAME'] += r'{}{}'.format(os.pathsep, plugin_path) else: usd_view_env['PXR_PLUGINPATH_NAME'] = r'{}'.format(plugin_path) p = subprocess.Popen( ['python.exe', usd_view_path, usd_file_path], env=usd_view_env) # output, error = p.communicate() # if error: # LOGGER.error('>>> usdview: {}'.format(error)) return True
411
0
46
3d6edba4947aa5c21d770035d86b0d082f1079c6
1,509
py
Python
data/transcoder_evaluation_gfg/python/LCS_FORMED_CONSECUTIVE_SEGMENTS_LEAST_LENGTH_K.py
mxl1n/CodeGen
e5101dd5c5e9c3720c70c80f78b18f13e118335a
[ "MIT" ]
241
2021-07-20T08:35:20.000Z
2022-03-31T02:39:08.000Z
data/transcoder_evaluation_gfg/python/LCS_FORMED_CONSECUTIVE_SEGMENTS_LEAST_LENGTH_K.py
mxl1n/CodeGen
e5101dd5c5e9c3720c70c80f78b18f13e118335a
[ "MIT" ]
49
2021-07-22T23:18:42.000Z
2022-03-24T09:15:26.000Z
data/transcoder_evaluation_gfg/python/LCS_FORMED_CONSECUTIVE_SEGMENTS_LEAST_LENGTH_K.py
mxl1n/CodeGen
e5101dd5c5e9c3720c70c80f78b18f13e118335a
[ "MIT" ]
71
2021-07-21T05:17:52.000Z
2022-03-29T23:49:28.000Z
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # #TOFILL if __name__ == '__main__': param = [ (4,'aggayxysdfa','aggajxaaasdfa',), (2,'55571659965107','390286654154',), (3,'01011011100','0000110001000',), (5,'aggasdfa','aggajasdfaxy',), (2,'5710246551','79032504084062',), (3,'0100010','10100000',), (3,'aabcaaaa','baaabcd',), (1,'1219','3337119582',), (2,'111000011','011',), (2,'wiC oD','csiuGOUwE',) ] n_success = 0 for i, parameters_set in enumerate(param): if f_filled(*parameters_set) == f_gold(*parameters_set): n_success+=1 print("#Results: %i, %i" % (n_success, len(param)))
35.928571
91
0.473161
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # def f_gold ( k , s1 , s2 ) : n = len ( s1 ) m = len ( s2 ) lcs = [ [ 0 for x in range ( m + 1 ) ] for y in range ( n + 1 ) ] cnt = [ [ 0 for x in range ( m + 1 ) ] for y in range ( n + 1 ) ] for i in range ( 1 , n + 1 ) : for j in range ( 1 , m + 1 ) : lcs [ i ] [ j ] = max ( lcs [ i - 1 ] [ j ] , lcs [ i ] [ j - 1 ] ) if ( s1 [ i - 1 ] == s2 [ j - 1 ] ) : cnt [ i ] [ j ] = cnt [ i - 1 ] [ j - 1 ] + 1 ; if ( cnt [ i ] [ j ] >= k ) : for a in range ( k , cnt [ i ] [ j ] + 1 ) : lcs [ i ] [ j ] = max ( lcs [ i ] [ j ] , lcs [ i - a ] [ j - a ] + a ) return lcs [ n ] [ m ] #TOFILL if __name__ == '__main__': param = [ (4,'aggayxysdfa','aggajxaaasdfa',), (2,'55571659965107','390286654154',), (3,'01011011100','0000110001000',), (5,'aggasdfa','aggajasdfaxy',), (2,'5710246551','79032504084062',), (3,'0100010','10100000',), (3,'aabcaaaa','baaabcd',), (1,'1219','3337119582',), (2,'111000011','011',), (2,'wiC oD','csiuGOUwE',) ] n_success = 0 for i, parameters_set in enumerate(param): if f_filled(*parameters_set) == f_gold(*parameters_set): n_success+=1 print("#Results: %i, %i" % (n_success, len(param)))
675
0
22
af7b906d9f975113497674a1301d8a1da8b05a40
13,694
py
Python
TD3.py
NamKim88/PGPS
51617637cde9b46a6f9fe0ae8c418cb60b0cf15a
[ "MIT" ]
2
2020-10-06T12:11:25.000Z
2021-09-03T08:57:06.000Z
TD3.py
NamKim88/PGPS
51617637cde9b46a6f9fe0ae8c418cb60b0cf15a
[ "MIT" ]
null
null
null
TD3.py
NamKim88/PGPS
51617637cde9b46a6f9fe0ae8c418cb60b0cf15a
[ "MIT" ]
null
null
null
import numpy as np import os import copy import torch import torch.nn as nn from torch.optim import Adam import torch.nn.functional as FF os.environ['CUDA_VISIBLE_DEVICES'] = '1' USE_CUDA = torch.cuda.is_available() FloatTensor = torch.cuda.FloatTensor if USE_CUDA else torch.FloatTensor Device = torch.device("cuda" if USE_CUDA else "cpu")
39.578035
108
0.635607
import numpy as np import os import copy import torch import torch.nn as nn from torch.optim import Adam import torch.nn.functional as FF os.environ['CUDA_VISIBLE_DEVICES'] = '1' USE_CUDA = torch.cuda.is_available() FloatTensor = torch.cuda.FloatTensor if USE_CUDA else torch.FloatTensor Device = torch.device("cuda" if USE_CUDA else "cpu") class RLNN(nn.Module): def __init__(self, args): super(RLNN, self).__init__() self.args = args self.nonlinearity_actor = args.nonlinearity_actor self.nonlinearity_critic = args.nonlinearity_critic def set_params(self, params): cpt = 0 for param in self.parameters(): tmp = np.product(param.size()) param.data.copy_(torch.from_numpy(params[cpt:cpt + tmp]).view(param.size()).to(Device)) cpt += tmp def get_params(self): return copy.deepcopy(np.hstack([v.cpu().data.numpy().flatten() for v in self.parameters()])) def get_grads(self): return copy.deepcopy(np.hstack([v.grad.cpu().data.numpy().flatten() for v in self.parameters()])) def get_size(self): return self.get_params().shape[0] def load_model(self, filename, net_name): if filename is None: return params = np.load('{}/{}.npy'.format(filename, net_name)) self.set_params(params) def save_model(self, output, net_name): params = self.get_params() np.save('{}/{}.npy'.format(output, net_name), params) class Actor(RLNN): def __init__(self, args, state_dim, action_dim, max_action, hidden1_node=400, hidden2_node=300): super(Actor, self).__init__(args) self.l1 = nn.Linear(state_dim, hidden1_node) self.l2 = nn.Linear(hidden1_node, hidden2_node) self.l3 = nn.Linear(hidden2_node, action_dim) self.max_action = max_action self.to(Device) def forward(self, state): # Relu was used in original TD3 if self.nonlinearity_actor == "relu": a = FF.relu(self.l1(state)) a = FF.relu(self.l2(a)) a = torch.tanh(self.l3(a)) # Elu was used in CERL elif self.nonlinearity_actor == "elu": a = FF.elu(self.l1(state)) a = FF.elu(self.l2(a)) a = torch.tanh(self.l3(a)) # Tanh was used in ERL, CEM-RL, and PDERL, this is basic setting else: a = torch.tanh(self.l1(state)) a = torch.tanh(self.l2(a)) a = torch.tanh(self.l3(a)) return self.max_action * a def select_action(self, state): # Input state is np.array(), therefore, convert np.array() to tensor state = FloatTensor(state).unsqueeze(0) # Get action from current policy action = self.forward(state) # Must be env.step(np.array* or lis*), therefore, convert tensor to np.array() return action.cpu().data.numpy().flatten() class Critic(RLNN): def __init__(self, args, state_dim, action_dim, hidden1_node=400, hidden2_node=300): super(Critic, self).__init__(args) # Q1 architecture self.l1 = nn.Linear(state_dim + action_dim, hidden1_node) self.l2 = nn.Linear(hidden1_node, hidden2_node) self.l3 = nn.Linear(hidden2_node, 1) # Q2 architecture self.l4 = nn.Linear(state_dim + action_dim, hidden1_node) self.l5 = nn.Linear(hidden1_node, hidden2_node) self.l6 = nn.Linear(hidden2_node, 1) self.to(Device) def forward(self, state, action): # The input of critic-Q is [state, action] sa = torch.cat([state, action], 1) # Relu was used in original TD3 if self.nonlinearity_critic == "relu": q1 = FF.relu(self.l1(sa)) q1 = FF.relu(self.l2(q1)) q2 = FF.relu(self.l4(sa)) q2 = FF.relu(self.l5(q2)) # Elu was used in ERL, CERL, and PDERL elif self.nonlinearity_critic == "elu": q1 = FF.elu(self.l1(sa)) q1 = FF.elu(self.l2(q1)) q2 = FF.elu(self.l4(sa)) q2 = FF.elu(self.l5(q2)) # Leaky_relu was used in CEM-RL, this is basic setting else: q1 = FF.leaky_relu(self.l1(sa)) q1 = FF.leaky_relu(self.l2(q1)) q2 = FF.leaky_relu(self.l4(sa)) q2 = FF.leaky_relu(self.l5(q2)) q1 = self.l3(q1) q2 = self.l6(q2) return q1, q2 def Q1(self, state, action): sa = torch.cat([state, action], 1) if self.nonlinearity_critic == "relu": q1 = FF.relu(self.l1(sa)) q1 = FF.relu(self.l2(q1)) elif self.nonlinearity_critic == "elu": q1 = FF.elu(self.l1(sa)) q1 = FF.elu(self.l2(q1)) else: q1 = FF.leaky_relu(self.l1(sa)) q1 = FF.leaky_relu(self.l2(q1)) q1 = self.l3(q1) return q1 class TD3(object): def __init__(self, state_dim, action_dim, max_action, args): # Parameters about the neural net structure of critic and actor self.args = args self.max_action = max_action # Training batch size self.batch_size = args.batch_size self.discount = args.discount self.tau = args.tau # Action noise is added in the action of target Q self.policy_noise = args.policy_noise self.noise_clip = args.noise_clip # Parameters for Asynchronous update frequency self.total_iterC = 0 self.total_iterA = 0 self.policy_freq = args.policy_freq # Guided Beta self.guided_beta = args.guided_beta # Define critics and actors self.critic = Critic(args, state_dim, action_dim, self.args.h1_critic, self.args.h2_critic) self.actor = Actor(args, state_dim, action_dim, max_action, self.args.h1_actor, self.args.h2_actor) self.critic_target = copy.deepcopy(self.critic) self.actor_target = copy.deepcopy(self.actor) # Define optimizer in which Adam is used self.critic_optimizer = Adam(self.critic.parameters(), lr=args.critic_lr, weight_decay=args.l2_rate) self.actor_optimizer = Adam(self.actor.parameters(), lr=args.actor_lr, weight_decay=args.l2_rate) def select_action(self, state): # Call the select_action function of actor return self.actor.select_action(state) def train(self, replay_buffer): self.total_iterC += 1 # Sample mini-batch from replay buffer state, action, next_state, reward, not_done = replay_buffer.sample(self.batch_size) # Define target_Q used to estimate critic loss (=TD error) with torch.no_grad(): # Select action according to policy and add clipped noise noise = (torch.randn_like(action) * self.policy_noise).clamp(-self.noise_clip, self.noise_clip) next_action = (self.actor_target(next_state) + noise).clamp(-self.max_action, self.max_action) # Calculate the target_Q value target_Q1, target_Q2 = self.critic_target(next_state, next_action) target_Q = torch.min(target_Q1, target_Q2) target_Q = reward + not_done * self.discount * target_Q # Get current_Q value current_Q1, current_Q2 = self.critic(state, action) # Calculate critic loss (=difference between target_Q and current_Q) critic_loss = FF.mse_loss(current_Q1, target_Q) + FF.mse_loss(current_Q2, target_Q) # Optimize the critic parameters self.critic_optimizer.zero_grad() critic_loss.backward() nn.utils.clip_grad_norm_(self.critic.parameters(), 10) self.critic_optimizer.step() if self.total_iterC % self.policy_freq == 0: self.total_iterA += 1 # Compute actor loss actor_loss = -self.critic.Q1(state, self.actor(state)).mean() # Optimize the actor parameters self.actor_optimizer.zero_grad() actor_loss.backward() nn.utils.clip_grad_norm_(self.actor.parameters(), 10) self.actor_optimizer.step() # Update the frozen target models for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) def train_guided(self, replay_buffer, guided_param): self.total_iterC += 1 state, action, next_state, reward, not_done = replay_buffer.sample(self.batch_size) with torch.no_grad(): noise = (torch.randn_like(action) * self.policy_noise).clamp(-self.noise_clip, self.noise_clip) next_action = (self.actor_target(next_state) + noise).clamp(-self.max_action, self.max_action) target_Q1, target_Q2 = self.critic_target(next_state, next_action) target_Q = torch.min(target_Q1, target_Q2) target_Q = reward + not_done * self.discount * target_Q current_Q1, current_Q2 = self.critic(state, action) critic_loss = FF.mse_loss(current_Q1, target_Q) + FF.mse_loss(current_Q2, target_Q) self.critic_optimizer.zero_grad() critic_loss.backward() nn.utils.clip_grad_norm_(self.critic.parameters(), 10) self.critic_optimizer.step() if self.total_iterC % self.policy_freq == 0: self.total_iterA += 1 with torch.no_grad(): guided_actor = copy.deepcopy(self.actor) guided_actor.set_params(guided_param) distance = ((self.actor(state) - guided_actor(state)) ** 2).mean() actor_loss = -self.critic.Q1(state, self.actor(state)).mean() + self.guided_beta * distance self.actor_optimizer.zero_grad() actor_loss.backward() nn.utils.clip_grad_norm_(self.actor.parameters(), 10) self.actor_optimizer.step() for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) def train_critic(self, replay_buffer): self.total_iterC += 1 state, action, next_state, reward, not_done = replay_buffer.sample(self.batch_size) with torch.no_grad(): noise = (torch.randn_like(action) * self.policy_noise).clamp(-self.noise_clip, self.noise_clip) next_action = (self.actor_target(next_state) + noise).clamp(-self.max_action, self.max_action) target_Q1, target_Q2 = self.critic_target(next_state, next_action) target_Q = torch.min(target_Q1, target_Q2) target_Q = reward + not_done * self.discount * target_Q current_Q1, current_Q2 = self.critic(state, action) critic_loss = FF.mse_loss(current_Q1, target_Q) + FF.mse_loss(current_Q2, target_Q) self.critic_optimizer.zero_grad() critic_loss.backward() nn.utils.clip_grad_norm_(self.critic.parameters(), 10) self.critic_optimizer.step() for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) def train_actor(self, replay_buffer): self.total_iterA += 1 state, action, next_state, reward, not_done = replay_buffer.sample(self.batch_size) actor_loss = -self.critic.Q1(state, self.actor(state)).mean() self.actor_optimizer.zero_grad() actor_loss.backward() nn.utils.clip_grad_norm_(self.actor.parameters(), 10) self.actor_optimizer.step() for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) def train_actor_guided(self, replay_buffer, guided_param): self.total_iterA += 1 state, action, next_state, reward, not_done = replay_buffer.sample(self.batch_size) with torch.no_grad(): guided_actor = copy.deepcopy(self.actor) guided_actor.set_params(guided_param) distance = ((self.actor(state) - guided_actor(state)) ** 2).mean() actor_loss = -self.critic.Q1(state, self.actor(state)).mean() + self.guided_beta * distance self.actor_optimizer.zero_grad() actor_loss.backward() nn.utils.clip_grad_norm_(self.actor.parameters(), 10) self.actor_optimizer.step() for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) def save(self, filename): np.save(filename + "_critic.npy", self.critic.state_dict().data.cpu().numpy()) np.save(filename + "_actor.npy", self.actor.state_dict().data.cpu().numpy()) def load(self, filename): params_critic = np.laod(filename + "_critic.npy") self.critic.set_params(params_critic) self.critic_optimizer = copy.deepcopy(self.critic) params_actor = np.laod(filename + "_actor.npy") self.critic.set_params(params_actor) self.actor_target = copy.deepcopy(self.actor)
12,669
-7
682
13bdfd3b8751d680236d3414ac983cb03ec44f16
3,724
py
Python
QuickPotato/harness/results.py
JoeyHendricks/QuickPotato
5e33e64d77997b00a43f5573353138436b1f1a34
[ "MIT" ]
130
2020-11-19T00:19:53.000Z
2022-01-18T21:16:40.000Z
QuickPotato/harness/results.py
JoeyHendricks/QuickPotato
5e33e64d77997b00a43f5573353138436b1f1a34
[ "MIT" ]
16
2020-11-22T14:27:11.000Z
2022-01-19T17:38:57.000Z
QuickPotato/harness/results.py
JoeyHendricks/QuickPotato
5e33e64d77997b00a43f5573353138436b1f1a34
[ "MIT" ]
11
2020-12-02T08:36:46.000Z
2021-12-27T06:52:23.000Z
from QuickPotato.database.queries import Crud
28.868217
89
0.584855
from QuickPotato.database.queries import Crud class BoundariesTestEvidence(Crud): def __init__(self): super(BoundariesTestEvidence, self).__init__() self.test_id = None self.test_case_name = None self.database_name = None self.epoch_timestamp = None self.human_timestamp = None self.verification_name = None self.status = None self.value = None self.boundary = None def save(self): """ Will insert the test results into the database. Returns ------- Will return True on success """ payload = { "test_id": self.test_id, "test_case_name": self.test_case_name, "epoch_timestamp": self.epoch_timestamp, "human_timestamp": self.human_timestamp, "verification_name": self.verification_name, "status": self.status, "value": self.value, "boundary": self.boundary } return self.insert_boundaries_test_evidence( database_name=self.database_name, payload=payload ) class RegressionTestEvidence(Crud): def __init__(self): super(RegressionTestEvidence, self).__init__() self.test_id = None self.test_case_name = None self.database_name = None self.epoch_timestamp = None self.human_timestamp = None self.verification_name = None self.status = None self.value = None self.critical_value = None def save_test_evidence(self): """ Will insert the test results into the database. Returns ------- Will return True on success """ payload = { "test_id": self.test_id, "test_case_name": self.test_case_name, "epoch_timestamp": self.epoch_timestamp, "human_timestamp": self.human_timestamp, "verification_name": self.verification_name, "status": self.status, "value": self.value, "critical_value": self.critical_value } return self.insert_regression_test_evidence( database_name=self.database_name, payload=payload ) class TestReport(Crud): def __init__(self): super(TestReport, self).__init__() self.test_id = None self.test_case_name = None self.database_name = None self.epoch_timestamp = None self.human_timestamp = None self.status = None self.boundaries_breached = None self.regression_found = None def save(self): """ Will insert the test results into the database. Returns ------- Will return True on success """ payload = { "test_id": self.test_id, "test_case_name": self.test_case_name, "epoch_timestamp": self.epoch_timestamp, "human_timestamp": self.human_timestamp, "status": self.status, "boundaries_breached": self.boundaries_breached, "regression_found": self.regression_found } if self.check_if_test_id_exists_in_test_report(self.database_name, self.test_id): # Update existing test results return self.update_results_in_test_report( database_name=self.database_name, test_id=self.test_id, payload=payload ) else: # Insert new test results return self.insert_results_into_test_report( database_name=self.database_name, payload=payload )
1,007
2,599
69
ebc77182ef16795e237af1a79e03276e443b251d
276
py
Python
chill/examples/chill/testcases/peel12.script.py
CompOpt4Apps/Artifact-DataDepSimplify
4fa1bf2bda2902fec50a54ee79ae405a554fc9f4
[ "MIT" ]
5
2019-05-20T03:35:41.000Z
2021-09-16T22:22:13.000Z
chill/examples/chill/testcases/peel12.script.py
CompOpt4Apps/Artifact-DataDepSimplify
4fa1bf2bda2902fec50a54ee79ae405a554fc9f4
[ "MIT" ]
null
null
null
chill/examples/chill/testcases/peel12.script.py
CompOpt4Apps/Artifact-DataDepSimplify
4fa1bf2bda2902fec50a54ee79ae405a554fc9f4
[ "MIT" ]
null
null
null
# # example from CHiLL manual page 13 # # peel 4 statements from the END of innermost loop # from chill import * source('peel9101112.c') destination('peel12modified.c') procedure('mm') loop(0) peel(1,2,-4) # statement 1, loop 2 (middle, for j), 4 statements from END
15.333333
74
0.699275
# # example from CHiLL manual page 13 # # peel 4 statements from the END of innermost loop # from chill import * source('peel9101112.c') destination('peel12modified.c') procedure('mm') loop(0) peel(1,2,-4) # statement 1, loop 2 (middle, for j), 4 statements from END
0
0
0
eb7a380c79b2a724dacaac572d80cf9e40cec552
5,408
py
Python
Main crawler/novel/spiders/crawler.py
phantom0174/Novel_Crawler
9a38ec46bb6d0963ba3d80ae99e7b4f9ff7c15a0
[ "MIT" ]
1
2022-03-19T13:20:00.000Z
2022-03-19T13:20:00.000Z
Main crawler/novel/spiders/crawler.py
phantom0174/Light-Novel-crawler
9a38ec46bb6d0963ba3d80ae99e7b4f9ff7c15a0
[ "MIT" ]
null
null
null
Main crawler/novel/spiders/crawler.py
phantom0174/Light-Novel-crawler
9a38ec46bb6d0963ba3d80ae99e7b4f9ff7c15a0
[ "MIT" ]
null
null
null
import scrapy from opencc import OpenCC import os all = [[]] del(all[0])
37.041096
225
0.514238
import scrapy from opencc import OpenCC import os all = [[]] del(all[0]) class ncrawler(scrapy.Spider): name = 'n' #Things of web links start_urls = [input('Input the url of the book :')] domain = str() domain_set = bool(0) #Crawler mode set parse_mode = int(1) next_chapter = int(0) #Index of txt inputing cur_book_chapter_count = int(0) cur_book = int(0) #Temp book_text = [] #Book basic info book_name_tw = str() book_ccount = [] title_order_tw = [] chapter_name_tw = [] chapter_links = [] def parse(self, response): if(ncrawler.domain_set == bool(0) and ncrawler.start_urls[0][-1] == 'm'): ncrawler.domain = ncrawler.start_urls[0].split('i')[0] if (ncrawler.parse_mode == 1): book_name_link = response.xpath('//*[@id="title"]/text()') order_links = response.xpath('//td[contains(@class,"css")]') book_name = book_name_link.get() #Partial basic info class_order = [] title_order = [] chapter_name = [] chapter_partial_links = [] for i in order_links: spec_class = i.xpath('@class').get() if (spec_class == 'ccss' and i.xpath('string()').get() != '\xa0'): class_order.append(spec_class) chapter_name.append(i.xpath('a/text()').extract()) chapter_partial_links.append(i.css('a::attr(href)').extract()) elif (spec_class == 'vcss'): class_order.append(spec_class) title_order.append(i.xpath('text()').get()) class_order.append('vcss') # find the chapter count of each book chapter_count = int(0) for i in class_order: if (i != 'vcss'): chapter_count += 1 else: ncrawler.book_ccount.append(chapter_count) chapter_count = 0 ncrawler.book_ccount.remove(0) class_order.clear() # translate cc = OpenCC('s2tw') ncrawler.book_name_tw = cc.convert(book_name) # for i in title_order: ncrawler.title_order_tw.append(cc.convert(i)) for i in range(len(chapter_name)): ncrawler.chapter_name_tw.append(cc.convert(str(chapter_name[i]))) title_order.clear() chapter_name.clear() #Specific character removal ncrawler.book_name_tw = ncrawler.book_name_tw.replace('\\','_').replace('/','_').replace(':','๏ผš').replace('*','๏ผŠ').replace('?','๏ผŸ').replace('"','_').replace('<','๏ผœ').replace('>','๏ผž').replace('|','๏ฝœ') for i in range(len(ncrawler.title_order_tw)): ncrawler.title_order_tw[i] = ncrawler.title_order_tw[i].replace('\\','_').replace('/','_').replace(':','๏ผš').replace('*','๏ผŠ').replace('?','๏ผŸ').replace('"','_').replace('<','๏ผœ').replace('>','๏ผž').replace('|','๏ฝœ') # for i in chapter_partial_links: ncrawler.chapter_links.append(ncrawler.domain + i[0]) ncrawler.parse_mode = 2 elif(ncrawler.parse_mode == 2): cc = OpenCC('s2tw') chapter_title = cc.convert(response.xpath('//*[@id="title"]/text()').get()) if(chapter_title[-3:-1] != 'ๆ’ๅœ–'): text_links = response.xpath('//*[@id="content"]/text()') inner_string = str() for i in text_links: inner_string = inner_string + i.get() ncrawler.book_text.append(inner_string) ncrawler.cur_book_chapter_count += 1 if(ncrawler.cur_book_chapter_count == ncrawler.book_ccount[ncrawler.cur_book]): temp = [] for i in ncrawler.book_text: temp.append(i) all.append(temp) ncrawler.book_text.clear() ncrawler.cur_book += 1 ncrawler.cur_book_chapter_count = 0 ncrawler.next_chapter += 1 if(ncrawler.next_chapter > (len(ncrawler.chapter_links) - 1)): chapter_title_count = int(0) for i in range(len(ncrawler.title_order_tw)): folder = 'D:\\' + ncrawler.book_name_tw if not os.path.isdir(folder): os.mkdir(folder) path = str(folder + '\\' + str(i + 1) + ncrawler.title_order_tw[i] + '.txt') f = open(path, 'w', encoding='UTF-8') for j in range(len(all[i])): if (ncrawler.chapter_name_tw[chapter_title_count][2:-2] != 'ๆ’ๅœ–'): chapter_head = str('//' + ncrawler.chapter_name_tw[chapter_title_count][2:-2]) f.write(chapter_head) cc = OpenCC('s2tw') for k in all[i][j]: f.write(cc.convert(k)) chapter_title_count += 1 f.close() if(ncrawler.parse_mode == 2 and ncrawler.next_chapter <= len(ncrawler.chapter_links) - 1): yield scrapy.Request(url=ncrawler.chapter_links[ncrawler.next_chapter], callback=self.parse)
4,838
506
23
2a562ab23ac47bf79051fcbd2ddf912e304dc587
663
py
Python
examples/django_example/example/urls.py
hhru/python_social_auth
56945b8a031f276f4415a92a9ca4b7d61e951b12
[ "BSD-3-Clause" ]
1
2015-11-05T07:12:28.000Z
2015-11-05T07:12:28.000Z
examples/django_example/example/urls.py
JasonSanford/python-social-auth
2034a4390f785639c99fc05a0b747739e6d297fd
[ "BSD-3-Clause" ]
null
null
null
examples/django_example/example/urls.py
JasonSanford/python-social-auth
2034a4390f785639c99fc05a0b747739e6d297fd
[ "BSD-3-Clause" ]
null
null
null
from django.conf.urls import patterns, include, url from django.contrib import admin admin.autodiscover() urlpatterns = patterns('', url(r'^$', 'example.app.views.home'), url(r'^admin/', include(admin.site.urls)), url(r'^signup-email/', 'example.app.views.signup_email'), url(r'^email-sent/', 'example.app.views.validation_sent'), url(r'^login/$', 'example.app.views.home'), url(r'^logout/$', 'example.app.views.logout'), url(r'^done/$', 'example.app.views.done', name='done'), url(r'^email/$', 'example.app.views.require_email', name='require_email'), url(r'', include('social.apps.django_app.urls', namespace='social')) )
36.833333
78
0.665158
from django.conf.urls import patterns, include, url from django.contrib import admin admin.autodiscover() urlpatterns = patterns('', url(r'^$', 'example.app.views.home'), url(r'^admin/', include(admin.site.urls)), url(r'^signup-email/', 'example.app.views.signup_email'), url(r'^email-sent/', 'example.app.views.validation_sent'), url(r'^login/$', 'example.app.views.home'), url(r'^logout/$', 'example.app.views.logout'), url(r'^done/$', 'example.app.views.done', name='done'), url(r'^email/$', 'example.app.views.require_email', name='require_email'), url(r'', include('social.apps.django_app.urls', namespace='social')) )
0
0
0
1acfbcde022326d208f6aa498eaf13494d09b493
188
py
Python
test_examples/python_2.py
Tejas-P-Herle/Python_Language_Converter
f349659a7fcc980d31ddf58f38b35a4aae28561b
[ "MIT" ]
3
2018-05-09T14:06:55.000Z
2019-04-10T22:53:42.000Z
test_examples/python_2.py
Tejas-P-Herle/PLC
f349659a7fcc980d31ddf58f38b35a4aae28561b
[ "MIT" ]
null
null
null
test_examples/python_2.py
Tejas-P-Herle/PLC
f349659a7fcc980d31ddf58f38b35a4aae28561b
[ "MIT" ]
null
null
null
if __name__ == "__main__": main()
14.461538
26
0.478723
def main(): value = 1 if value == 0: print("False") elif value == 1: print("True") else: print("Undefined") if __name__ == "__main__": main()
126
0
22
b2974283a5479f9baea3ad417a3eb2cb36194a6b
1,308
py
Python
apps/api/auth/decorators.py
Praetorian-Defence/praetorian-api
181fa22b043e58b2ac9c5f4eae4c3471a44c9bf4
[ "MIT" ]
2
2020-06-29T15:12:04.000Z
2020-10-13T14:18:21.000Z
apps/api/auth/decorators.py
Praetorian-Defence/praetorian-api
181fa22b043e58b2ac9c5f4eae4c3471a44c9bf4
[ "MIT" ]
10
2021-01-04T11:33:38.000Z
2021-05-07T10:23:48.000Z
apps/api/auth/decorators.py
zurek11/praetorian-api
181fa22b043e58b2ac9c5f4eae4c3471a44c9bf4
[ "MIT" ]
null
null
null
from functools import wraps from http import HTTPStatus from django.utils.translation import gettext as _ from apps.api.errors import ApiException def signature_exempt(view_func): """Mark a view function as being exempt from signature and apikey check.""" wrapped_view.signature_exempt = True return wraps(view_func)(wrapped_view)
33.538462
113
0.716361
from functools import wraps from http import HTTPStatus from django.utils.translation import gettext as _ from apps.api.errors import ApiException def token_required(func): @wraps(func) def inner(request, *args, **kwargs): if not hasattr(request, 'user') or not request.user or not request.user.is_authenticated: raise ApiException(request, _("Invalid or missing credentials"), status_code=HTTPStatus.UNAUTHORIZED) elif request.user.is_2fa and not request.token.active_2fa: raise ApiException(request, _("Invalid or missing credentials"), status_code=HTTPStatus.UNAUTHORIZED) return func(request, *args, **kwargs) return inner def superuser_required(func): @wraps(func) def inner(request, *args, **kwargs): if not request.user.is_authenticated or not request.user.is_superuser: raise ApiException(request, _('User is unauthorized.'), status_code=HTTPStatus.FORBIDDEN) return func(request, *args, **kwargs) return inner def signature_exempt(view_func): """Mark a view function as being exempt from signature and apikey check.""" def wrapped_view(*args, **kwargs): return view_func(*args, **kwargs) wrapped_view.signature_exempt = True return wraps(view_func)(wrapped_view)
887
0
72
944fa87a20a65b14f77e66c05ef217e835e0f5ea
644
py
Python
qv/pages.py
Furuneko/otree_quadratic_voting
30ec9002d03153a6b22c9f1eedfe242b199c1255
[ "MIT" ]
1
2020-02-22T21:26:12.000Z
2020-02-22T21:26:12.000Z
qv/pages.py
Furuneko/otree_quadratic_voting
30ec9002d03153a6b22c9f1eedfe242b199c1255
[ "MIT" ]
null
null
null
qv/pages.py
Furuneko/otree_quadratic_voting
30ec9002d03153a6b22c9f1eedfe242b199c1255
[ "MIT" ]
null
null
null
from otree.api import Currency as c, currency_range from ._builtin import Page, WaitPage from .models import Constants page_sequence = [ QV ]
28
89
0.614907
from otree.api import Currency as c, currency_range from ._builtin import Page, WaitPage from .models import Constants class QV(Page): form_model = 'player' form_fields = ['q' + str(n) for n in range(1, len(Constants.questions)+1)] + \ ['q' + str(n) + '_agree' for n in range(1, len(Constants.questions)+1)] def vars_for_template(self): return { 'title': self.session.vars['survey_title'], 'num_questions': len(Constants.questions), 'questions': self.participant.vars['questions'], 'credits': Constants.vote_credits } page_sequence = [ QV ]
252
220
23
26a2050769dd854ae446a223707a3abffc1952e2
1,832
py
Python
random-priority-raffle.py
greghaskins/random-priority-raffle
15cb8425a13adcd5c9b56dc3fff63646060c83a4
[ "MIT" ]
null
null
null
random-priority-raffle.py
greghaskins/random-priority-raffle
15cb8425a13adcd5c9b56dc3fff63646060c83a4
[ "MIT" ]
null
null
null
random-priority-raffle.py
greghaskins/random-priority-raffle
15cb8425a13adcd5c9b56dc3fff63646060c83a4
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import os import sys import random from pprint import pprint import yaml import raffle # ------------------------ # Command-line interface # ------------------------ USAGE = f""" Usage: {os.path.basename(__file__)} config_file [random_seed] config_file (required): Raffle configuration file in YAML format. See config.sample.yaml for an example. random_seed (optional): An optional seed value to use for the underlying random number generator. Use this parameter for greater control and repeatable results. If not specified, the random number generator will use cryptographic random values provided by the operating system. """ try: with open(sys.argv[1], 'r') as config_file: configuration = yaml.safe_load(config_file) random_seed = sys.argv[2] if len(sys.argv) > 2 else None except (IndexError, IOError, yaml.parser.ParserError) as e: sys.stderr.write(USAGE) raise e try: prizes = configuration['prizes'] entries = configuration['entries'] preferences = configuration['preferences'] except KeyError as e: sys.stderr.write(f"Invalid configuration file: {repr(e)}\n") sys.exit(1) if random_seed: print(f"Using random seed: {random_seed}") random_source = random.Random(random_seed) else: print("Using system random number generator") random_source = random.SystemRandom() print("Running raffle with configuration:") pprint(configuration) results = raffle.raffle(prizes, entries, preferences, random_source) leftover_prizes = list(prizes) print("=" * 78) print("Results:\n") for i, (participant, prize) in enumerate(results): print(f"{i + 1}: {participant} -> {prize}") leftover_prizes.remove(prize) print("=" * 78) print("Leftover prizes:\n") pprint(leftover_prizes)
26.171429
72
0.691048
#!/usr/bin/env python3 import os import sys import random from pprint import pprint import yaml import raffle # ------------------------ # Command-line interface # ------------------------ USAGE = f""" Usage: {os.path.basename(__file__)} config_file [random_seed] config_file (required): Raffle configuration file in YAML format. See config.sample.yaml for an example. random_seed (optional): An optional seed value to use for the underlying random number generator. Use this parameter for greater control and repeatable results. If not specified, the random number generator will use cryptographic random values provided by the operating system. """ try: with open(sys.argv[1], 'r') as config_file: configuration = yaml.safe_load(config_file) random_seed = sys.argv[2] if len(sys.argv) > 2 else None except (IndexError, IOError, yaml.parser.ParserError) as e: sys.stderr.write(USAGE) raise e try: prizes = configuration['prizes'] entries = configuration['entries'] preferences = configuration['preferences'] except KeyError as e: sys.stderr.write(f"Invalid configuration file: {repr(e)}\n") sys.exit(1) if random_seed: print(f"Using random seed: {random_seed}") random_source = random.Random(random_seed) else: print("Using system random number generator") random_source = random.SystemRandom() print("Running raffle with configuration:") pprint(configuration) results = raffle.raffle(prizes, entries, preferences, random_source) leftover_prizes = list(prizes) print("=" * 78) print("Results:\n") for i, (participant, prize) in enumerate(results): print(f"{i + 1}: {participant} -> {prize}") leftover_prizes.remove(prize) print("=" * 78) print("Leftover prizes:\n") pprint(leftover_prizes)
0
0
0
211a957319f53b0ed619653772aec6e92b690c12
294
py
Python
notaso/comments/admin.py
jpadilla/notaso
1c2f94d36b3d360d70f6c9937beb053beb8d8ad3
[ "MIT" ]
11
2017-03-16T21:47:51.000Z
2021-11-30T12:38:59.000Z
notaso/comments/admin.py
jpadilla/notaso
1c2f94d36b3d360d70f6c9937beb053beb8d8ad3
[ "MIT" ]
43
2015-01-13T14:14:48.000Z
2021-12-29T14:21:25.000Z
notaso/comments/admin.py
jpadilla/notaso
1c2f94d36b3d360d70f6c9937beb053beb8d8ad3
[ "MIT" ]
5
2015-09-27T15:05:36.000Z
2019-05-14T17:09:06.000Z
from django.contrib import admin from .models import Comment admin.site.register(Comment, CommentAdmin)
24.5
77
0.755102
from django.contrib import admin from .models import Comment class CommentAdmin(admin.ModelAdmin): list_display = ("created_at", "body", "professor", "created_by") search_fields = ["body", "professor__first_name", "professor__last_name"] admin.site.register(Comment, CommentAdmin)
0
163
23
57f61a27645356777c47ccb25a3133113ccffa1b
734
py
Python
output_newtargs/cp/pandas_merge_CP_bglf4_scores_newinformers_pkis1.py
SpencerEricksen/informers
5fd3934f5789c371026fc9eece1846ff1294122b
[ "MIT" ]
null
null
null
output_newtargs/cp/pandas_merge_CP_bglf4_scores_newinformers_pkis1.py
SpencerEricksen/informers
5fd3934f5789c371026fc9eece1846ff1294122b
[ "MIT" ]
1
2019-01-15T22:17:25.000Z
2019-01-16T12:14:39.000Z
output_newtargs/cp/pandas_merge_CP_bglf4_scores_newinformers_pkis1.py
SpencerEricksen/informers
5fd3934f5789c371026fc9eece1846ff1294122b
[ "MIT" ]
1
2019-01-15T12:36:15.000Z
2019-01-15T12:36:15.000Z
#!/home/ssericksen/anaconda2/bin/python2.7 import pandas as pd import numpy as np # load Ching-Pei's compound scores for BGLF4 with PKIS1 df1 = pd.read_csv('bglf4_pkis1', sep=" ") df1.set_index('fid', inplace=True) df1.columns = ['BGLF4'] df1.index.rename('molid', inplace=True) df1.index = df1.index.map(str) # load informer list as dataframe df2 = pd.read_csv('new_pkis1_informers_CP.csv', header=None) df2.set_index(0, inplace=True) df2.index.rename('molid', inplace=True) df2.columns = ['BGLF4'] df2.index = df2.index.map(str) # merge dataframes df3 = pd.concat( [df1, df2], axis=0 ) print("duplicated indices: {}").format( df3.duplicated().sum() ) # check duplicates for PKIS1 molid '11959682' print( df3.loc['11959682'] )
27.185185
64
0.723433
#!/home/ssericksen/anaconda2/bin/python2.7 import pandas as pd import numpy as np # load Ching-Pei's compound scores for BGLF4 with PKIS1 df1 = pd.read_csv('bglf4_pkis1', sep=" ") df1.set_index('fid', inplace=True) df1.columns = ['BGLF4'] df1.index.rename('molid', inplace=True) df1.index = df1.index.map(str) # load informer list as dataframe df2 = pd.read_csv('new_pkis1_informers_CP.csv', header=None) df2.set_index(0, inplace=True) df2.index.rename('molid', inplace=True) df2.columns = ['BGLF4'] df2.index = df2.index.map(str) # merge dataframes df3 = pd.concat( [df1, df2], axis=0 ) print("duplicated indices: {}").format( df3.duplicated().sum() ) # check duplicates for PKIS1 molid '11959682' print( df3.loc['11959682'] )
0
0
0
54ba5ac4b0ad8172cb60636d5bb318552a5456aa
3,169
py
Python
fwenchino/quique.py
fwenchino/lambdata-fwenchino
f5bfecbd858086df90af4c7280162928ef615a4f
[ "MIT" ]
1
2019-09-04T15:24:32.000Z
2019-09-04T15:24:32.000Z
fwenchino/quique.py
fwenchino/lambdata-fwenchino
f5bfecbd858086df90af4c7280162928ef615a4f
[ "MIT" ]
null
null
null
fwenchino/quique.py
fwenchino/lambdata-fwenchino
f5bfecbd858086df90af4c7280162928ef615a4f
[ "MIT" ]
1
2019-08-14T15:46:45.000Z
2019-08-14T15:46:45.000Z
import pandas as pd import numpy as np
30.76699
87
0.535185
import pandas as pd import numpy as np def null_report(df): total = df.isnull().sum() perc = total / df.isnull().count() * 100 tt = pd.concat([total, perc], axis=1, keys=['Total', 'Percent']) types = [] for col in df.columns: dtypeimport pandas as pd import numpy as np class null_report(): """This class provides dataframe NaN reporting functionality in tidy form """ def generate_report(self): total = self.isnull().sum() perc = total / self.isnull().count() * 100 new_frame = pd.concat([total, perc], axis=1, keys=['Total', 'Percent']) types = [] for col in self.columns: dtype = str(self[col].dtype) types.append(dtype) new_frame['Types'] = types return np.transpose(new_frame) def train_val_test_split(df): train, val, test = np.split(df.sample(frac=1), [int(.6 * len(df)), int(.8 * len(df))]) return train, val, test def add_list_to_df(df, lst): """This function takes a dataframe and a list, then adds the list to the dataframe as a new column """ s = pd.Series(lst) return pd.concat([df, s], axis=1) def simple_confusion_matrix(y_true, y_pred): y_true = pd.Series(y_true, name='True') y_pred = pd.Series(y_pred, name='Predicted') return pd.crosstab(y_true, y_pred, margins=True) def show_full_frames(): pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) def split_datetime(df, col): df[col] = df[col].to_datetime() df['month'] = df[col].dt.month df['year'] = df[col].dt.year df['day'] = df[col].dt.day = str(df[col].dtype) types.append(dtype) tt['Types'] = types return np.transpose(tt) def train_val_test_split(df): (train, val, test) = np.split(df.sample(frac=1), [int(.6 * len(df)), int(.8 * len(df))]) return (train, val, test) class complex_number: def __init__(self, r=0, i=0): self.real = r self.imag = i def getData(self): print '{0}+{1}j'.format(self.real, self.image) def add_list_to_df(df, lst): s = pd.Series(lst) return pd.concat(df, s) def simple_confusion_matrix(y_true, y_pred): y_true = pd.Series(y_true, name='True') y_pred = pd.Series(y_pred, name='Predicted') return pd.crosstab(y_true, y_pred, margins=True) def show_full_frames(): pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) def split_datetime(df, col): df[col] = df[col].to_datetime() df['month'] = df[col].dt.month df['year'] = df[col].dt.year df['day'] = df[col].dt.day
2,908
0
215
360ce2242fc5b5c05d51c1ed4b51c81b17534215
8,395
py
Python
pytomato/conversion_af_er.py
robsonzagrejr/pytomato
3da3d9557f398a7ce2f3f8741c7cd70de9bfe05f
[ "MIT" ]
2
2021-02-25T14:29:13.000Z
2021-04-12T02:53:55.000Z
pytomato/conversion_af_er.py
robsonzagrejr/pytomato
3da3d9557f398a7ce2f3f8741c7cd70de9bfe05f
[ "MIT" ]
null
null
null
pytomato/conversion_af_er.py
robsonzagrejr/pytomato
3da3d9557f398a7ce2f3f8741c7cd70de9bfe05f
[ "MIT" ]
null
null
null
letters = 'abcdefghijklmnopqrstuvwxyz' numbers = '0123456789' """Teste Main criado para testar as funรงรตes. """ if __name__ == '__main__': print(er_to_afd('[J-M1-9]abc')) # er_to_afd('a(a|b)*a') # er_to_afd('aa*(bb*aa*b)*')
28.361486
94
0.517213
class Node: def __init__(self, left=None,right=None,data=None,father=None,first=None,fulfilled=None): self.left = left self.right = right self.data = data self.father = father self.is_first_of_chain = first self.fulfilled = fulfilled self.lastpos = None self.firstpos = None self.nullable = None def post_order(self, root): res = [] if root: res = self.post_order(root.left) res = res + self.post_order(root.right) res.append(root) return res def render_tree(er): string = er.replace(' ','')[::-1] tree = Node() last = tree idx = 0 while(idx < len(string)): char = string[idx] if char == '#': last.data = '#' last.father = Node(left=last) last.is_first_of_chain = True tree = last else: last, idx = add_node(idx,string,last) idx = idx+1 return tree.father.left def add_node(idx, string, node): char = string[idx] if idx+1 < len(string) and string[idx+1] == '\\': idx += 1 new = concat(Node(data=char),node) return new.left, idx if char == ')': idx = idx+1 char = string[idx] new_node = Node(data=char, first=True) new_node.father = Node(left=new_node) while(not string[idx] == '('): new_node, idx = add_node(idx+1, string, new_node) n = new_node while(n.data): n = n.father n = n.left if not node.data == '*': new = concat(n,node) new.left.fulfilled = True return new.left, idx else: node.left = n node.father.fulfilled = True return node.father, idx if char == '(': return node, idx if char == '|': n = node while(not n.is_first_of_chain): n = node.father new = Node(right=n,data='|', father=n.father) n.father.left = new n.father = new return new, idx if node.fulfilled: new = concat(Node(data=char),node) return new.left, idx if node.data == '|': node.left = Node(data=char, first=True, father=node) return node.left, idx if node.data == '*': node.left = Node(data=char,father=node) node.fulfilled = True return node, idx new = concat(Node(data=char),node) return new.left, idx def concat(node1,node2): if node2.is_first_of_chain: is_first = True node2.is_first_of_chain = False else: is_first = False new = Node(right=node2, data='concat', father=node2.father, first=is_first) node1.father = new node2.father.left = new new.left = node1 return new def define_nodes(tree): nodes = tree.post_order(tree) count = 1 nodes_idx = dict() for n in nodes: if n.data == '|': n.nullable = n.left.nullable or n.right.nullable n.firstpos = n.left.firstpos | n.right.firstpos n.lastpos = n.left.lastpos | n.right.lastpos elif n.data == 'concat': n.nullable = n.left.nullable and n.right.nullable if n.left.nullable: n.firstpos = n.left.firstpos | n.right.firstpos else: n.firstpos = n.left.firstpos if n.right.nullable: n.lastpos = n.left.lastpos | n.right.lastpos else: n.lastpos = n.right.lastpos elif n.data == '*': n.nullable = True n.firstpos = n.left.firstpos n.lastpos = n.left.lastpos else: if n.data == '&': n.nullable = True n.firstpos = set() n.lastpos = set() else: n.nullable = False n.firstpos = set([count]) n.lastpos = set([count]) nodes_idx[f'{count}'] = n.data count = count + 1 return count-1, nodes_idx def define_followpos(tree, n_nodes): nodes = tree.post_order(tree) followpos = dict() for idx in range(n_nodes): followpos[f'{idx+1}'] = set() for n in nodes: if n.data == 'concat': for lastpos_node in n.left.lastpos: followpos[str(lastpos_node)] = followpos[str(lastpos_node)] | n.right.firstpos if n.data == '*': for firstpos_node in n.lastpos: followpos[str(firstpos_node)] = followpos[str(firstpos_node)] | n.firstpos return followpos, tree.firstpos def afd(followpos, nodes_idx, initial_state): union = dict() states = list() states.append(initial_state) visited_states = list() automata = dict() idx = -1 while(not len(states) == 0): state = states.pop() visited_states.append(state) for pos in state: node = nodes_idx.get(str(pos)) if not node == '#': if not union.__contains__(node): union[node] = set(followpos.get(str(pos))) else: union[node] = union.get(node) | set(followpos.get(str(pos))) for s in union.items(): if visited_states.count(s[1]) == 0: states.append(s[1]) if automata.get(str(state)): automata[str(state)]['states'] = union.copy() else: idx += 1 automata[str(state)] = {'states': union.copy(), 'name': f'q{idx}'} union.clear() return automata def format_afd(automata, initial_state, final, alphabet): initial_state = [str(i) for i in initial_state] afd = dict() afd['n_estados'] = len(automata) afd['inicial'] = "{" + ', '.join(initial_state) + "}" afd['inicial'] = automata[afd['inicial']]['name'] afd['aceitacao'] = list() afd['alfabeto'] = list(alphabet) afd['transicoes'] = dict() for transiction in automata: trans = automata.get(transiction) if transiction.find(final) >= 0: afd.get('aceitacao').append(trans['name']) t = dict() for a in alphabet: tr = trans['states'].get(a) if (tr): t[a] = [automata.get(f'{tr}')['name']] #else: # t[a] = [] afd.get('transicoes')[automata.get(transiction)['name']] = t return afd letters = 'abcdefghijklmnopqrstuvwxyz' numbers = '0123456789' def transform_suffix(suffix): string = '' is_until = False for c in suffix: if c == '-': is_until = True else: if is_until: if c.isnumeric(): s = numbers.split(string[-1])[1] else: if c.isupper(): s = letters.upper().split(string[-1])[1] else: s = letters.split(string[-1])[1] string += s.split(c)[0] + c is_until = False else: string += c str_ref = '' for c in string: str_ref += c + '|' return '(' + str_ref[0:-1] + ')' def refatorate_regex(string): preffix = '' is_bracket = False for c in string: if c == '[': is_bracket = True suffix = '' elif c == ']': is_bracket = False preffix += transform_suffix(suffix) else: if is_bracket: suffix += c else: preffix += c return preffix + '#' def er_to_afd(string): string = refatorate_regex(string) tree = render_tree(string) n_nodes, nodes_idx = define_nodes(tree) followpos, initial_state = define_followpos(tree, n_nodes) automata = afd(followpos,nodes_idx,initial_state) final = [item[0] for item in list(nodes_idx.items()) if item[1] == '#'][0] alphabet = set([item[1] for item in list(nodes_idx.items()) if not item[1] == '#']) return format_afd(automata, initial_state, final, alphabet) """Teste Main criado para testar as funรงรตes. """ if __name__ == '__main__': print(er_to_afd('[J-M1-9]abc')) # er_to_afd('a(a|b)*a') # er_to_afd('aa*(bb*aa*b)*')
7,851
-10
313
4efe3582bfe30a1821bdbca1585fa90da4e93489
18,842
py
Python
accelerator_abstract/models/base_core_profile.py
masschallenge/django-accelerator
8af898b574be3b8335edc8961924d1c6fa8b5fd5
[ "MIT" ]
6
2017-06-14T19:34:01.000Z
2020-03-08T07:16:59.000Z
accelerator_abstract/models/base_core_profile.py
masschallenge/django-accelerator
8af898b574be3b8335edc8961924d1c6fa8b5fd5
[ "MIT" ]
160
2017-06-20T17:12:13.000Z
2022-03-30T13:53:12.000Z
accelerator_abstract/models/base_core_profile.py
masschallenge/django-accelerator
8af898b574be3b8335edc8961924d1c6fa8b5fd5
[ "MIT" ]
null
null
null
# MIT License # Copyright (c) 2017 MassChallenge, Inc. from datetime import datetime from decimal import Decimal from pytz import utc import swapper from django.conf import settings from django.core.validators import ( RegexValidator, MaxLengthValidator, ) from django.db import models from django.db.models import Q from sorl.thumbnail import ImageField from django.utils.safestring import mark_safe from accelerator_abstract.models.accelerator_model import AcceleratorModel from accelerator_abstract.models.base_user_role import ( BaseUserRole, ) from accelerator_abstract.models.base_base_profile import ( EXPERT_USER_TYPE, ) from accelerator_abstract.models.base_user_utils import ( has_staff_clearance, ) from accelerator_abstract.models.base_program import ( ACTIVE_PROGRAM_STATUS, ENDED_PROGRAM_STATUS, ) INVITED_JUDGE_ALERT = ( "<h4>{first_name}, we would like to invite you to be a judge at " "MassChallenge!</h4>" "<p>&nbsp;</p>" "<p>{round_name} judging occurs from {start_date} to {end_date}! " "Of all our potential judges, we would like you, {first_name}, " "to take part." "</p><p>&nbsp;</p>" '<p><a class="btn btn-primary" href="/expert/commitments/">Click ' "here to tell us your availability" "</a></p> <p>&nbsp;</p>" ) MENTOR_TYPE_HELPTEXT = ( "Allowed Values: " "F - Functional Expert, " "P - Partner, " "T - Technical, " "E - Entrepreneur, " "N - Once accepted, now rejected, " "X - Not Accepted as a Mentor (may still be a judge)") JUDGE_TYPE_HELPTEXT = ( "Allowed Values: " "1 - Round 1 Judge, " "2 - Round 2 Judge, " "3 - Pre-final Judge, " "4 - Final Judge, " "0 - Once Accepted, now rejected, " "X - Not Accepted as a Judge (May still be a mentor)") IDENTITY_HELP_TEXT_VALUE = (mark_safe( 'Select as many options as you feel best represent your identity. ' 'Please press and hold Control (CTRL) on PCs or ' 'Command (&#8984;) on Macs to select multiple options')) JUDGE_FIELDS_TO_LABELS = {'desired_judge_label': 'Desired Judge', 'confirmed_judge_label': 'Judge'} BIO_MAX_LENGTH = 7500 PRIVACY_CHOICES = (("staff", "MC Staff Only"), ("finalists and staff", "Finalists and MC Staff"), ("public", "All Users"),) BASE_INTEREST = "I would like to participate in MassChallenge %s" BASE_TOPIC = ("Please describe the topic(s) you would be available " "to speak%s about%s") REF_BY_TEXT = ("If someone referred you to MassChallenge, please provide " "their name (and organization if relevant). Otherwise, please " "indicate how you learned about the opportunity to participate " "at MassChallenge (helps us understand the effectiveness of " "our outreach programs).") OTHER_EXPERTS_TEXT = ("We're always looking for more great experts to join " "the MassChallenge community and program. We welcome " "the names and contact info (email) of individuals you " "think could be great additions to the program, as well " "as how you think they might want to be involved " "(Judge, Mentor, etc.) Also, please encourage these " "individuals to fill out their own Expert Profile.")
37.608782
79
0.635495
# MIT License # Copyright (c) 2017 MassChallenge, Inc. from datetime import datetime from decimal import Decimal from pytz import utc import swapper from django.conf import settings from django.core.validators import ( RegexValidator, MaxLengthValidator, ) from django.db import models from django.db.models import Q from sorl.thumbnail import ImageField from django.utils.safestring import mark_safe from accelerator_abstract.models.accelerator_model import AcceleratorModel from accelerator_abstract.models.base_user_role import ( BaseUserRole, ) from accelerator_abstract.models.base_base_profile import ( EXPERT_USER_TYPE, ) from accelerator_abstract.models.base_user_utils import ( has_staff_clearance, ) from accelerator_abstract.models.base_program import ( ACTIVE_PROGRAM_STATUS, ENDED_PROGRAM_STATUS, ) INVITED_JUDGE_ALERT = ( "<h4>{first_name}, we would like to invite you to be a judge at " "MassChallenge!</h4>" "<p>&nbsp;</p>" "<p>{round_name} judging occurs from {start_date} to {end_date}! " "Of all our potential judges, we would like you, {first_name}, " "to take part." "</p><p>&nbsp;</p>" '<p><a class="btn btn-primary" href="/expert/commitments/">Click ' "here to tell us your availability" "</a></p> <p>&nbsp;</p>" ) MENTOR_TYPE_HELPTEXT = ( "Allowed Values: " "F - Functional Expert, " "P - Partner, " "T - Technical, " "E - Entrepreneur, " "N - Once accepted, now rejected, " "X - Not Accepted as a Mentor (may still be a judge)") JUDGE_TYPE_HELPTEXT = ( "Allowed Values: " "1 - Round 1 Judge, " "2 - Round 2 Judge, " "3 - Pre-final Judge, " "4 - Final Judge, " "0 - Once Accepted, now rejected, " "X - Not Accepted as a Judge (May still be a mentor)") IDENTITY_HELP_TEXT_VALUE = (mark_safe( 'Select as many options as you feel best represent your identity. ' 'Please press and hold Control (CTRL) on PCs or ' 'Command (&#8984;) on Macs to select multiple options')) JUDGE_FIELDS_TO_LABELS = {'desired_judge_label': 'Desired Judge', 'confirmed_judge_label': 'Judge'} BIO_MAX_LENGTH = 7500 PRIVACY_CHOICES = (("staff", "MC Staff Only"), ("finalists and staff", "Finalists and MC Staff"), ("public", "All Users"),) BASE_INTEREST = "I would like to participate in MassChallenge %s" BASE_TOPIC = ("Please describe the topic(s) you would be available " "to speak%s about%s") REF_BY_TEXT = ("If someone referred you to MassChallenge, please provide " "their name (and organization if relevant). Otherwise, please " "indicate how you learned about the opportunity to participate " "at MassChallenge (helps us understand the effectiveness of " "our outreach programs).") OTHER_EXPERTS_TEXT = ("We're always looking for more great experts to join " "the MassChallenge community and program. We welcome " "the names and contact info (email) of individuals you " "think could be great additions to the program, as well " "as how you think they might want to be involved " "(Judge, Mentor, etc.) Also, please encourage these " "individuals to fill out their own Expert Profile.") class BaseCoreProfile(AcceleratorModel): user = models.OneToOneField(settings.AUTH_USER_MODEL, on_delete=models.CASCADE) gender_identity = models.ManyToManyField( swapper.get_model_name( AcceleratorModel.Meta.app_label, 'GenderChoices'), help_text=IDENTITY_HELP_TEXT_VALUE, blank=True ) gender_self_description = models.TextField(blank=True, default="") phone = models.CharField( verbose_name="Phone", max_length=20, validators=[RegexValidator( regex='^[0-9x.+() -]+$', message='Digits and +()-.x only')], blank=True) linked_in_url = models.URLField( verbose_name="LinkedIn profile URL", blank=True) facebook_url = models.URLField( verbose_name="Facebook profile URL", blank=True) twitter_handle = models.CharField( verbose_name="Twitter handle", max_length=40, blank=True) personal_website_url = models.URLField( verbose_name="Website URL", max_length=255, blank=True) landing_page = models.CharField( verbose_name="Current landing page within the site", validators=[RegexValidator( "^[^:]*$", "Must be a page within the site"), ], max_length=200, blank=True) image = ImageField( upload_to='profile_pics', verbose_name="Profile Picture", help_text="Suggested size: <400px on the short side", blank=True) drupal_id = models.IntegerField(blank=True, null=True) drupal_creation_date = models.DateTimeField(blank=True, null=True) drupal_last_login = models.DateTimeField(blank=True, null=True) interest_categories = models.ManyToManyField( to=swapper.get_model_name(AcceleratorModel.Meta.app_label, 'InterestCategory'), blank=True) users_last_activity = models.DateTimeField(blank=True, null=True) current_program = models.ForeignKey( swapper.get_model_name(AcceleratorModel.Meta.app_label, 'Program'), blank=True, null=True, on_delete=models.CASCADE, ) program_families = models.ManyToManyField( swapper.get_model_name(AcceleratorModel.Meta.app_label, 'ProgramFamily'), help_text="Which of our Program Families would you like to be " "involved with?", related_name="interested_%(class)s", blank=True ) user_type = None default_page = "member_homepage" newsletter_sender = models.BooleanField(default=False) birth_year = models.DateField(blank=True, null=True) ethno_racial_identification = models.ManyToManyField( swapper.get_model_name( AcceleratorModel.Meta.app_label, 'EthnoRacialIdentity' ), blank=True, help_text=IDENTITY_HELP_TEXT_VALUE ) authorization_to_share_ethno_racial_identity = models.BooleanField( default=False, ) bio = models.TextField(blank=True, default="", validators=[MaxLengthValidator(BIO_MAX_LENGTH)]) title = models.CharField( max_length=255, blank=True, verbose_name="Professional Title") company = models.CharField( max_length=255, blank=True, verbose_name="Company Name") expert_category = models.ForeignKey( swapper.get_model_name(AcceleratorModel.Meta.app_label, "ExpertCategory"), verbose_name="I primarily consider myself a(n)", related_name="%(class)s_experts", blank=True, null=True, # added on_delete=models.CASCADE) primary_industry = models.ForeignKey( settings.MPTT_SWAPPABLE_INDUSTRY_MODEL, verbose_name="Primary Industry", related_name="%(class)s_experts", limit_choices_to={'level__exact': 0}, null=True, blank=True, on_delete=models.CASCADE) additional_industries = models.ManyToManyField( settings.MPTT_SWAPPABLE_INDUSTRY_MODEL, verbose_name="Additional Industries", help_text=(mark_safe( 'You may select up to 5 related industries. To select multiple ' 'industries, please press and hold Control (CTRL) on PCs or ' 'Command (&#8984;) on Macs.')), related_name="%(class)s_secondary_experts", blank=True, ) functional_expertise = models.ManyToManyField( swapper.get_model_name(AcceleratorModel.Meta.app_label, 'FunctionalExpertise'), verbose_name="Functional Expertise", related_name="%(class)s_experts", blank=True) public_website_consent = models.BooleanField( verbose_name="Public Website Consent", blank=False, null=False, default=False) privacy_email = models.CharField( max_length=64, verbose_name="Privacy - Email", choices=PRIVACY_CHOICES, blank=True, default=PRIVACY_CHOICES[1][0]) privacy_phone = models.CharField( max_length=64, verbose_name="Privacy - Phone", choices=PRIVACY_CHOICES, blank=True, default=PRIVACY_CHOICES[1][0]) privacy_web = models.CharField( max_length=64, verbose_name="Privacy - Web", choices=PRIVACY_CHOICES, blank=True, default=PRIVACY_CHOICES[1][0]) home_program_family = models.ForeignKey( swapper.get_model_name(AcceleratorModel.Meta.app_label, "ProgramFamily"), verbose_name="Home Program Family", blank=True, null=True, on_delete=models.CASCADE) judge_interest = models.BooleanField( verbose_name="Judge", help_text=BASE_INTEREST % 'as a Judge', default=False) mentor_interest = models.BooleanField( verbose_name="Mentor", help_text=BASE_INTEREST % 'as a Mentor', default=False) speaker_interest = models.BooleanField( verbose_name="Speaker", help_text=BASE_INTEREST % 'as a Speaker', default=False) speaker_topics = models.TextField( verbose_name="Speaker Topics", help_text=BASE_TOPIC % ('', ''), blank=True) office_hours_interest = models.BooleanField( verbose_name="Office Hours", help_text=BASE_INTEREST % 'by holding Office Hours', default=False) office_hours_topics = models.TextField( verbose_name="Office Hour Topics", help_text=BASE_TOPIC % (' to Finalists', ' during Office Hours'), blank=True) referred_by = models.TextField( max_length=500, blank=True, help_text=REF_BY_TEXT) other_potential_experts = models.TextField( max_length=500, blank=True, help_text=OTHER_EXPERTS_TEXT) salutation = models.CharField( max_length=255, blank=True) mentor_type = models.CharField( max_length=1, blank=True, help_text=MENTOR_TYPE_HELPTEXT, verbose_name="Mentor Type") judge_type = models.CharField( max_length=1, blank=True, help_text=JUDGE_TYPE_HELPTEXT, verbose_name="Judge Type") public_website_consent_checked = models.BooleanField( verbose_name="Public Website Consent Check", blank=False, null=False, default=False) mentoring_specialties = models.ManyToManyField( swapper.get_model_name(AcceleratorModel.Meta.app_label, 'MentoringSpecialties'), verbose_name="Mentoring Specialties", help_text='Hold down "Control", or "Command" on a Mac,' 'to select more than one.', related_name="%(class)s_experts", blank=True) expert_group = models.CharField( verbose_name="Expert Group", max_length=10, blank=True) reliability = models.DecimalField( max_digits=3, decimal_places=2, default=Decimal("1.00"), blank=True, null=True) internal_notes = models.TextField( max_length=500, blank=True, help_text="Internal notes only for use by MassChallenge Staff " "(not visible to Expert)") class Meta(AcceleratorModel.Meta): db_table = 'accelerator_coreprofile' abstract = True def __str__(self): identifier = self.full_name() ptype = '' if self.user_type is not None: ptype = ("%s " % self.user_type).title() return "%sProfile for %s" % (ptype, identifier) def full_name(self): return self.user.full_name() def image_url(self): if str(self.image): return self.image.storage.url( self.image.name) else: return "" def is_judge(self, *args, **kwargs): """prevent attribute errors on subclasses """ return False def is_program_graduate(self, program=None): """ This checks if the user is an alumni or graduate of the program """ qs = self.user.programrolegrant_set.filter( program_role__user_role__name=BaseUserRole.FINALIST, program_role__program__program_status=ENDED_PROGRAM_STATUS) if program: qs = qs.filter(program_role__program=program) return qs.exists() def is_alum_in_residence(self, program=None): qs = self.user.programrolegrant_set.filter( program_role__user_role__name=BaseUserRole.AIR) if program: qs = qs.filter(program_role__program=program) return qs.exists() def is_mentor(self, program=None): """If program is specified, is the expert a mentor in that program. Otherwise, is the expert a mentor in any program. """ if program: return self.user.programrolegrant_set.filter( program_role__program__exact=program, program_role__user_role__name=BaseUserRole.MENTOR).exists() else: return self.user.programrolegrant_set.filter( program_role__user_role__name=BaseUserRole.MENTOR).exists() def user_roles(self): return set([prg.program_role.user_role for prg in self.user.programrolegrant_set.all() if prg.program_role.user_role is not None]) def is_office_hour_holder(self): user_role_names = set([ur.name for ur in self.user_roles()]) return len(user_role_names.intersection( BaseUserRole.OFFICE_HOUR_ROLES)) > 0 def is_partner(self): PartnerTeamMember = swapper.load_model( 'accelerator', 'PartnerTeamMember') return PartnerTeamMember.objects.filter( team_member=self.user).exists() def is_partner_admin(self): PartnerTeamMember = swapper.load_model( 'accelerator', 'PartnerTeamMember') return PartnerTeamMember.objects.filter( team_member=self.user, partner_administrator=True).exists() def get_active_alerts(self, page=None): """no op """ return [] def _get_staff_landing_page(self): if has_staff_clearance(self.user): return '/staff' def role_based_landing_page(self, exclude_role_names=[]): if self.user_type.upper() == EXPERT_USER_TYPE: return "/dashboard/expert/overview/" JudgingRound = swapper.load_model(AcceleratorModel.Meta.app_label, "JudgingRound") UserRole = swapper.load_model( 'accelerator', 'UserRole') now = utc.localize(datetime.now()) active_judging_round_labels = JudgingRound.objects.filter( end_date_time__gt=now, is_active=True).values_list("confirmed_judge_label", flat=True) active_judge_grants = Q( program_role__user_role__name=UserRole.JUDGE, program_role__user_label_id__in=active_judging_round_labels) desired_judging_round_labels = JudgingRound.objects.filter( end_date_time__gt=now).values_list("desired_judge_label", flat=True) desired_judge_grants = Q( program_role__user_role__name=UserRole.DESIRED_JUDGE, program_role__user_label__in=desired_judging_round_labels ) active_mentor_grants = Q( program_role__user_role__name=UserRole.MENTOR, program_role__program__program_status=ACTIVE_PROGRAM_STATUS ) REMAINING_ROLES = UserRole.objects.exclude( name__in=[UserRole.JUDGE, UserRole.DESIRED_JUDGE, UserRole.MENTOR]).values_list("name", flat=True) remaining_grants = Q( program_role__user_role__name__in=REMAINING_ROLES, program_role__user_role__isnull=False, program_role__landing_page__isnull=False) query = self.user.programrolegrant_set.filter( active_judge_grants | desired_judge_grants | active_mentor_grants | remaining_grants).exclude( program_role__landing_page="").exclude( program_role__landing_page__isnull=True) if exclude_role_names: query = query.exclude( program_role__user_role__name__in=exclude_role_names) grant = query.order_by("-program_role__program__end_date", "program_role__user_role__sort_order" ).first() if grant: return grant.program_role.landing_page return self.default_page def calc_landing_page(self): return ( self._get_staff_landing_page() or self.role_based_landing_page()) def check_landing_page(self): page = self.landing_page or self.calc_landing_page() if page == "/": return self.default_page return page def first_startup(self, statuses=[]): startup_memberships = self.user.startupteammember_set.order_by( '-startup__created_datetime') if statuses: startup_memberships = startup_memberships.filter( startup__startupstatus__program_startup_status__in=statuses) if startup_memberships: return startup_memberships.first().startup return None def interest_category_names(self): return [interest.name for interest in self.interest_categories.all()] def program_family_names(self): return [pf.name for pf in self.program_families.all()] def confirmed_mentor_programs(self): return list(self.user.programrolegrant_set.filter( program_role__user_role__name=BaseUserRole.MENTOR).values_list( 'program_role__program__name', flat=True)) def confirmed_memtor_program_families_all(self): return list(self.user.programrolegrant_set.filter( program_role__user_role__name=BaseUserRole.MENTOR).values_list( "program_role__program__program_family__name", flat=True ).distinct())
5,235
10,152
23
53efe294a1220ff799829ac423b0c9a968ee15e5
2,527
py
Python
game.py
AILab-FOI/MMO-IF
74a633bb7687ffdca8b3043046b0c572d5cc2969
[ "MIT" ]
null
null
null
game.py
AILab-FOI/MMO-IF
74a633bb7687ffdca8b3043046b0c572d5cc2969
[ "MIT" ]
null
null
null
game.py
AILab-FOI/MMO-IF
74a633bb7687ffdca8b3043046b0c572d5cc2969
[ "MIT" ]
null
null
null
import re import asyncio import pexpect as px import sys from glulxe.interface import i7Game from avatar import Avatar GAME_FILE_NAME = "rooms.gblorb" game = None current_location = None EXIT_COMMANDS = ["quit", "exit"] ROOM_SELECTION_PATTERN = 'You entered (.*) room' MESSAGE_PARAMS_PATTERN = '@([^\s]+) (.*)' agent = None if __name__ == "__main__": if len(sys.argv) == 3: jid = sys.argv[1] password = sys.argv[2] loop = asyncio.get_event_loop() loop.run_until_complete(main(jid, password))
24.066667
90
0.663633
import re import asyncio import pexpect as px import sys from glulxe.interface import i7Game from avatar import Avatar GAME_FILE_NAME = "rooms.gblorb" game = None current_location = None EXIT_COMMANDS = ["quit", "exit"] ROOM_SELECTION_PATTERN = 'You entered (.*) room' MESSAGE_PARAMS_PATTERN = '@([^\s]+) (.*)' agent = None def get_room_name(response): if match := re.search(ROOM_SELECTION_PATTERN, response, re.IGNORECASE): return match.group(1) return None def get_message_params(response): if match := re.search(MESSAGE_PARAMS_PATTERN, response, re.IGNORECASE): receiver = match.group(1) message = match.group(2) if not receiver is None and not message is None: return (receiver, message) return None async def change_location(response): location = get_room_name(response) global current_location if not location is None and not location is current_location: current_location = location loop = asyncio.get_event_loop() loop.create_task(agent.send_location(location)) await asyncio.sleep(1) async def send_message_to_player(command): try: (player, message) = get_message_params(command) await agent.send_msg(player, message) except: pass async def process_command(command): # is communication if command.startswith('@'): await send_message_to_player(command) return output = game.next(command) print(output) # location change if 'west' in command or 'east' in command or 'north' in command or 'south' in command: await change_location(output) async def start_agent(jid, password): global agent agent = Avatar( jid, password ) agent.start() # wait for agent to start up await asyncio.sleep(2) async def start_game(): global game game = i7Game(GAME_FILE_NAME, interactive=False) intro = game.intro() print(intro) await change_location(intro) async def main(jid, password): await start_agent(jid, password) await start_game() loop = asyncio.get_event_loop() while True: cmd = input('--> ') if cmd in EXIT_COMMANDS: break loop.create_task(process_command(cmd.lower())) await asyncio.sleep(1) if __name__ == "__main__": if len(sys.argv) == 3: jid = sys.argv[1] password = sys.argv[2] loop = asyncio.get_event_loop() loop.run_until_complete(main(jid, password))
1,803
0
184
91b93cc884ac8c0ea566b0f4ff9cf827afc1c82d
605
py
Python
solvers/brick_heads/instructions/gen_instructions.py
Anthony102899/Lego-ImageGenerator
52b19c8bb20f77a3394675e7c037c943a50c1e15
[ "Unlicense" ]
1
2022-03-20T10:23:38.000Z
2022-03-20T10:23:38.000Z
solvers/brick_heads/instructions/gen_instructions.py
Anthony102899/Lego-ImageGenerator
52b19c8bb20f77a3394675e7c037c943a50c1e15
[ "Unlicense" ]
null
null
null
solvers/brick_heads/instructions/gen_instructions.py
Anthony102899/Lego-ImageGenerator
52b19c8bb20f77a3394675e7c037c943a50c1e15
[ "Unlicense" ]
null
null
null
from bricks_modeling.file_IO.model_writer import write_bricks_to_file_with_steps, write_model_to_file from util.debugger import MyDebugger from bricks_modeling.file_IO.model_reader import read_model_from_file, read_bricks_from_file ''' We assume the following information is provided: 1) assembly order 2) grouping 3) default camera view ''' if __name__ == "__main__": debugger = MyDebugger("brick_heads") file_path = r"data/full_models/steped_talor.ldr" model = read_model_from_file(file_path, read_fake_bricks=True) write_model_to_file(model, debugger.file_path(f"complete_full.ldr"))
35.588235
101
0.813223
from bricks_modeling.file_IO.model_writer import write_bricks_to_file_with_steps, write_model_to_file from util.debugger import MyDebugger from bricks_modeling.file_IO.model_reader import read_model_from_file, read_bricks_from_file ''' We assume the following information is provided: 1) assembly order 2) grouping 3) default camera view ''' if __name__ == "__main__": debugger = MyDebugger("brick_heads") file_path = r"data/full_models/steped_talor.ldr" model = read_model_from_file(file_path, read_fake_bricks=True) write_model_to_file(model, debugger.file_path(f"complete_full.ldr"))
0
0
0
c4854e4f5f1c246890c85558e1848fb6019895b8
2,047
py
Python
sweeper/cloud/base/cloud_provider.py
dominoFire/sweeper
26c5497b81c8d0c50671f8ab75c1cf5c4c8191c9
[ "MIT" ]
null
null
null
sweeper/cloud/base/cloud_provider.py
dominoFire/sweeper
26c5497b81c8d0c50671f8ab75c1cf5c4c8191c9
[ "MIT" ]
null
null
null
sweeper/cloud/base/cloud_provider.py
dominoFire/sweeper
26c5497b81c8d0c50671f8ab75c1cf5c4c8191c9
[ "MIT" ]
null
null
null
from sweeper.cloud import resource_config_combinations class CloudProvider: """ A CloudProvider object represents a Cloud Computing service that sweeper can manage in order to execute a workflow in this cloud base """ def __init__(self): """ Default constructor. You should overwrite all of this class for creating a new Cloud base """ self.name = "Base Cloud Provider" """Name of the cloud base""" def create_vm(self, name, config, **kwargs): """ Creates a virtual machine in the cloud base service """ raise NotImplementedError("You must implement create_vm") def delete_vm(self, name): """ Deletes the named virtual machine provided by this CloudProvider :param name: Name of the cloud resource to delete from this cloud base :return: None """ raise NotImplementedError("You must implement delete_vm") def get_config(self, config_name): """ Get a configuration name provided :param config_name: Name of the Configuration Name provided by this cloud base :return: as ResourceConfig object """ raise NotImplementedError("You must implement get_config") def list_configs(self): """ List all available configurations provided by this cloud base :return: A list of ResourceConfig Objects """ raise NotImplementedError("You must implement list_configs") # NOTE: We assume Method create_instance is implemented in each Cloud Provider Class # but, I can't find a way to create an interface for such static method def possible_configs(self, num): """ Returns all possible combinations of VM resources that has the number of :num: resources required. You should call this method from the implementation classes """ configs = self.list_configs() combs = resource_config_combinations(num, configs) return combs
31.984375
88
0.656571
from sweeper.cloud import resource_config_combinations class CloudProvider: """ A CloudProvider object represents a Cloud Computing service that sweeper can manage in order to execute a workflow in this cloud base """ def __init__(self): """ Default constructor. You should overwrite all of this class for creating a new Cloud base """ self.name = "Base Cloud Provider" """Name of the cloud base""" def create_vm(self, name, config, **kwargs): """ Creates a virtual machine in the cloud base service """ raise NotImplementedError("You must implement create_vm") def delete_vm(self, name): """ Deletes the named virtual machine provided by this CloudProvider :param name: Name of the cloud resource to delete from this cloud base :return: None """ raise NotImplementedError("You must implement delete_vm") def get_config(self, config_name): """ Get a configuration name provided :param config_name: Name of the Configuration Name provided by this cloud base :return: as ResourceConfig object """ raise NotImplementedError("You must implement get_config") def list_configs(self): """ List all available configurations provided by this cloud base :return: A list of ResourceConfig Objects """ raise NotImplementedError("You must implement list_configs") # NOTE: We assume Method create_instance is implemented in each Cloud Provider Class # but, I can't find a way to create an interface for such static method def possible_configs(self, num): """ Returns all possible combinations of VM resources that has the number of :num: resources required. You should call this method from the implementation classes """ configs = self.list_configs() combs = resource_config_combinations(num, configs) return combs
0
0
0
406fc37da635061f79eb792d85f802ecf740e1cf
800
py
Python
data/Stats.py
T-amairi/IOTA
f7a212be681a002413219adca56f69bcdfbe8d17
[ "MIT" ]
3
2021-06-28T19:42:11.000Z
2021-08-11T08:23:10.000Z
data/Stats.py
T-amairi/IOTA
f7a212be681a002413219adca56f69bcdfbe8d17
[ "MIT" ]
null
null
null
data/Stats.py
T-amairi/IOTA
f7a212be681a002413219adca56f69bcdfbe8d17
[ "MIT" ]
1
2022-03-21T14:12:07.000Z
2022-03-21T14:12:07.000Z
import re import glob import os path = r".\data\log" os.chdir(path) t = [] logs = glob.glob("log*.txt") Nbrun = len(logs) for log in logs: l = open(log,'r') m = re.findall("(?<=Elapsed: )(.*?)(?=s)",l.read()) if float(m[-1]) > 0: t.append(float(m[-1])) l.close() if t: t = float(sum(t)/len(t)) print("Average time of execution:",t,"seconds") path = r"..\tracking" os.chdir(path) TipsFile = glob.glob("Number*.txt") NbModule = 0 for file in TipsFile: NbTips = 0 Nbrun = 0 f = open(file,'r') for line in f.readlines(): NbTips += int(line) Nbrun += 1 NbTips = NbTips/Nbrun print("Average number of tips for NodeModule[" + str(NbModule) + "]:",NbTips) NbModule += 1 f.close()
19.512195
82
0.535
import re import glob import os path = r".\data\log" os.chdir(path) t = [] logs = glob.glob("log*.txt") Nbrun = len(logs) for log in logs: l = open(log,'r') m = re.findall("(?<=Elapsed: )(.*?)(?=s)",l.read()) if float(m[-1]) > 0: t.append(float(m[-1])) l.close() if t: t = float(sum(t)/len(t)) print("Average time of execution:",t,"seconds") path = r"..\tracking" os.chdir(path) TipsFile = glob.glob("Number*.txt") NbModule = 0 for file in TipsFile: NbTips = 0 Nbrun = 0 f = open(file,'r') for line in f.readlines(): NbTips += int(line) Nbrun += 1 NbTips = NbTips/Nbrun print("Average number of tips for NodeModule[" + str(NbModule) + "]:",NbTips) NbModule += 1 f.close()
0
0
0
35fa41d37e98a2e529dec8561a025c496d6009c4
12,922
py
Python
lib/surface/topic/filters.py
google-cloud-sdk-unofficial/google-cloud-sdk
2a48a04df14be46c8745050f98768e30474a1aac
[ "Apache-2.0" ]
2
2019-11-10T09:17:07.000Z
2019-12-18T13:44:08.000Z
lib/surface/topic/filters.py
google-cloud-sdk-unofficial/google-cloud-sdk
2a48a04df14be46c8745050f98768e30474a1aac
[ "Apache-2.0" ]
null
null
null
lib/surface/topic/filters.py
google-cloud-sdk-unofficial/google-cloud-sdk
2a48a04df14be46c8745050f98768e30474a1aac
[ "Apache-2.0" ]
1
2020-07-25T01:40:19.000Z
2020-07-25T01:40:19.000Z
# -*- coding: utf-8 -*- # # Copyright 2014 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Resource filters supplementary help.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import textwrap from googlecloudsdk.calliope import base from googlecloudsdk.core.resource import resource_topics class Filters(base.TopicCommand): """Resource filters supplementary help.""" detailed_help = { 'DESCRIPTION': textwrap.dedent("""\ {description} + Note: Depending on the specific server API, filtering may be done entirely by the client, entirely by the server, or by a combination of both. ### Filter Expressions A filter expression is a Boolean function that selects the resources to print from a list of resources. Expressions are composed of terms connected by logic operators. *LogicOperator*:: Logic operators must be in uppercase: *AND*, *OR*, *NOT*. Additionally, expressions containing both *AND* and *OR* must be parenthesized to disambiguate precedence. *NOT* _term-1_::: True if _term-1_ is False, otherwise False. _term-1_ *AND* _term-2_::: True if both _term-1_ and _term-2_ are true. _term-1_ *OR* _term-2_::: True if at least one of _term-1_ or _term-2_ is true. _term-1_ _term-2_::: Term conjunction (implicit *AND*) is True if both _term-1_ and _term-2_ are true. Conjunction has lower precedence than *OR*. *Terms*:: A term is a _key_ _operator_ _value_ tuple, where _key_ is a dotted name that evaluates to the value of a resource attribute, and _value_ may be: *number*::: integer or floating point numeric constant *unquoted literal*::: character sequence terminated by space, ( or ) *quoted literal*::: _"..."_ or _'...'_ Most filter expressions need to be quoted in shell commands. If you use _'...'_ shell quotes then use _"..."_ filter string literal quotes and vice versa. Quoted literals will be interpreted as string values, even when the value could also be a valid number. For example, 'key:1e9' will be interpreted as a key named 'key' with the string value '1e9', rather than with the float value of one billion expressed in scientific notation. *Operator Terms*:: _key_ *:* _simple-pattern_::: *:* operator evaluation is changing for consistency across Google APIs. The current default is deprecated and will be dropped shortly. A warning will be displayed when a --filter expression would return different matches using both the deprecated and new implementations. + The current deprecated default is True if _key_ contains _simple-pattern_. The match is case insensitive. It allows one ```*``` that matches any sequence of 0 or more characters. If ```*``` is specified then the match is anchored, meaning all characters from the beginning and end of the value must match. + The new implementation is True if _simple-pattern_ matches any _word_ in _key_. Words are locale specific but typically consist of alpha-numeric characters. Non-word characters that do not appear in _simple-pattern_ are ignored. The matching is anchored and case insensitive. An optional trailing ```*``` does a word prefix match. + Use _key_```:*``` to test if _key_ is defined and ```-```_key_```:*``` to test if _key_ is undefined. _key_ *:(* _simple-pattern_ ... *)*::: True if _key_ matches any _simple-pattern_ in the (space, tab, newline, comma) separated list. _key_ *=* _value_::: True if _key_ is equal to _value_, or [deprecated] equivalent to *:* with the exception that the trailing ```*``` prefix match is not supported. + For historical reasons, this operation currently behaves differently for different Google APIs. For many APIs, this is True if key is equal to value. For a few APIs, this is currently equivalent to *:*, with the exception that the trailing ```*``` prefix match is not supported. However, this behaviour is being phased out, and use of ```=``` for those APIs is deprecated; for those APIs, if you want matching, you should use ```:``` instead of ```=```, and if you want to test for equality, you can use _key_ <= _value_ AND _key_ >= _value_. _key_ *=(* _value_ ... *)*::: True if _key_ is equal to any _value_ in the (space, tab, newline, *,*) separated list. _key_ *!=* _value_::: True if _key_ is not _value_. Equivalent to -_key_=_value_ and NOT _key_=_value_. _key_ *<* _value_::: True if _key_ is less than _value_. If both _key_ and _value_ are numeric then numeric comparison is used, otherwise lexicographic string comparison is used. _key_ *<=* _value_::: True if _key_ is less than or equal to _value_. If both _key_ and _value_ are numeric then numeric comparison is used, otherwise lexicographic string comparison is used. _key_ *>=* _value_::: True if _key_ is greater than or equal to _value_. If both _key_ and _value_ are numeric then numeric comparison is used, otherwise lexicographic string comparison is used. _key_ *>* _value_::: True if _key_ is greater than _value_. If both _key_ and _value_ are numeric then numeric comparison is used, otherwise lexicographic string comparison is used. _key_ *~* _value_::: True if _key_ contains a match for the RE (regular expression) pattern _value_. _key_ *!*~ _value_::: True if _key_ does not contain a match for the RE (regular expression) pattern _value_. For more about regular expression syntax, see: https://docs.python.org/3/library/re.html#re-syntax which follows the PCRE dialect. ### Determine which fields are available for filtering In order to build filters, it is often helpful to review some representative fields returned from commands. One simple way to do this is to add `--format=yaml --limit=1` to a command. With these flags, a single record is returned and its full contents are displayed as a YAML document. For example, a list of project fields could be generated by running: $ gcloud projects list --format=yaml --limit=1 This might display the following data: ```yaml createTime: '2021-02-10T19:19:49.242Z' lifecycleState: ACTIVE name: MyProject parent: id: '123' type: folder projectId: my-project projectNumber: '456' ``` Using this data, one way of filtering projects is by their parent's ID by specifying ``parent.id'' as the _key_. ### Filter on a custom or nested list in response By default the filter exprespression operates on root level resources. In order to filter on a nested list(not at the root level of the json) , one can use the `--flatten` flag to provide a the `resource-key` to list. For example, To list members under `my-project` that have an editor role, one can run: $ gcloud projects get-iam-policy cloudsdktest --flatten=bindings --filter=bindings.role:roles/editor --format='value(bindings.members)' """).format( description=resource_topics.ResourceDescription('filter')), 'EXAMPLES': textwrap.dedent("""\ List all Google Compute Engine instance resources: $ gcloud compute instances list List Compute Engine instance resources that have machineType *f1-micro*: $ gcloud compute instances list --filter="machineType:f1-micro" List Compute Engine instance resources using a regular expression for zone *us* and not MachineType *f1-micro*: $ gcloud compute instances list --filter="zone ~ us AND -machineType:f1-micro" List Compute Engine instance resources with tag *my-tag*: $ gcloud compute instances list --filter="tags.items=my-tag" List Compute Engine instance resources with tag *my-tag* or *my-other-tag*: $ gcloud compute instances list --filter="tags.items=(my-tag,my-other-tag)" List Compute Engine instance resources with tag *my-tag* and *my-other-tag*: $ gcloud compute instances list --filter="tags.items=my-tag AND tags.items=my-other-tag" List Compute Engine instance resources which either have tag *my-tag* but not *my-other-tag* or have tag *alternative-tag*: $ gcloud compute instances list --filter="(tags.items=my-tag AND -tags.items=my-other-tag) OR tags.items=alternative-tag" List Compute Engine instance resources which contain the key *fingerprint* in the *metadata* object: $ gcloud compute instances list --limit=1 --filter="metadata.list(show="keys"):fingerprint" List Compute Engine instance resources with label *my-label* with any value: $ gcloud compute instances list --filter="labels.my-label:*" List Container Registry images that have a tag with the value '30e5504145': $ gcloud container images list-tags --filter="'tags:30e5504145'" The last example encloses the filter expression in single quotes because the value '30e5504145' could be interpreted as a number in scientific notation. List in JSON format those projects where the labels match specific values (e.g. label.env is 'test' and label.version is alpha): $ gcloud projects list --format="json" --filter="labels.env=test AND labels.version=alpha" List projects that were created on and after a specific date: $ gcloud projects list --format="table(projectNumber,projectId,createTime)" --filter="createTime>=2018-01-15" List projects that were created on and after a specific date and time and sort from oldest to newest (with dates and times listed according to the local timezone): $ gcloud projects list --format="table(projectNumber,projectId,createTime.date(tz=LOCAL))" --filter="createTime>=2018-01-15T12:00:00" --sort-by=createTime List projects that were created within the last two weeks, using ISO8601 durations: $ gcloud projects list --format="table(projectNumber,projectId,createTime)" --filter="createTime>-P2W" For more about ISO8601 durations, see: https://en.wikipedia.org/wiki/ISO_8601 + The table below shows examples of pattern matching if used with the `:` operator: PATTERN | VALUE | MATCHES | DEPRECATED_MATCHES --- | --- | --- | --- abc* | abcpdqxyz | True | True abc | abcpdqxyz | False | True pdq* | abcpdqxyz | False | False pdq | abcpdqxyz | False | True xyz* | abcpdqxyz | False | False xyz | abcpdqxyz | False | True * | abcpdqxyz | True | True * | (None) | False | False * | ('') | False | False * | (otherwise) | True | True abc* | abc.pdq.xyz | True | True abc | abc.pdq.xyz | True | True abc.pdq | abc.pdq.xyz | True | True pdq* | abc.pdq.xyz | True | False pdq | abc.pdq.xyz | True | True pdq.xyz | abc.pdq.xyz | True | True xyz* | abc.pdq.xyz | True | False xyz | abc.pdq.xyz | True | True """), }
39.76
166
0.627225
# -*- coding: utf-8 -*- # # Copyright 2014 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Resource filters supplementary help.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import textwrap from googlecloudsdk.calliope import base from googlecloudsdk.core.resource import resource_topics class Filters(base.TopicCommand): """Resource filters supplementary help.""" detailed_help = { 'DESCRIPTION': textwrap.dedent("""\ {description} + Note: Depending on the specific server API, filtering may be done entirely by the client, entirely by the server, or by a combination of both. ### Filter Expressions A filter expression is a Boolean function that selects the resources to print from a list of resources. Expressions are composed of terms connected by logic operators. *LogicOperator*:: Logic operators must be in uppercase: *AND*, *OR*, *NOT*. Additionally, expressions containing both *AND* and *OR* must be parenthesized to disambiguate precedence. *NOT* _term-1_::: True if _term-1_ is False, otherwise False. _term-1_ *AND* _term-2_::: True if both _term-1_ and _term-2_ are true. _term-1_ *OR* _term-2_::: True if at least one of _term-1_ or _term-2_ is true. _term-1_ _term-2_::: Term conjunction (implicit *AND*) is True if both _term-1_ and _term-2_ are true. Conjunction has lower precedence than *OR*. *Terms*:: A term is a _key_ _operator_ _value_ tuple, where _key_ is a dotted name that evaluates to the value of a resource attribute, and _value_ may be: *number*::: integer or floating point numeric constant *unquoted literal*::: character sequence terminated by space, ( or ) *quoted literal*::: _"..."_ or _'...'_ Most filter expressions need to be quoted in shell commands. If you use _'...'_ shell quotes then use _"..."_ filter string literal quotes and vice versa. Quoted literals will be interpreted as string values, even when the value could also be a valid number. For example, 'key:1e9' will be interpreted as a key named 'key' with the string value '1e9', rather than with the float value of one billion expressed in scientific notation. *Operator Terms*:: _key_ *:* _simple-pattern_::: *:* operator evaluation is changing for consistency across Google APIs. The current default is deprecated and will be dropped shortly. A warning will be displayed when a --filter expression would return different matches using both the deprecated and new implementations. + The current deprecated default is True if _key_ contains _simple-pattern_. The match is case insensitive. It allows one ```*``` that matches any sequence of 0 or more characters. If ```*``` is specified then the match is anchored, meaning all characters from the beginning and end of the value must match. + The new implementation is True if _simple-pattern_ matches any _word_ in _key_. Words are locale specific but typically consist of alpha-numeric characters. Non-word characters that do not appear in _simple-pattern_ are ignored. The matching is anchored and case insensitive. An optional trailing ```*``` does a word prefix match. + Use _key_```:*``` to test if _key_ is defined and ```-```_key_```:*``` to test if _key_ is undefined. _key_ *:(* _simple-pattern_ ... *)*::: True if _key_ matches any _simple-pattern_ in the (space, tab, newline, comma) separated list. _key_ *=* _value_::: True if _key_ is equal to _value_, or [deprecated] equivalent to *:* with the exception that the trailing ```*``` prefix match is not supported. + For historical reasons, this operation currently behaves differently for different Google APIs. For many APIs, this is True if key is equal to value. For a few APIs, this is currently equivalent to *:*, with the exception that the trailing ```*``` prefix match is not supported. However, this behaviour is being phased out, and use of ```=``` for those APIs is deprecated; for those APIs, if you want matching, you should use ```:``` instead of ```=```, and if you want to test for equality, you can use _key_ <= _value_ AND _key_ >= _value_. _key_ *=(* _value_ ... *)*::: True if _key_ is equal to any _value_ in the (space, tab, newline, *,*) separated list. _key_ *!=* _value_::: True if _key_ is not _value_. Equivalent to -_key_=_value_ and NOT _key_=_value_. _key_ *<* _value_::: True if _key_ is less than _value_. If both _key_ and _value_ are numeric then numeric comparison is used, otherwise lexicographic string comparison is used. _key_ *<=* _value_::: True if _key_ is less than or equal to _value_. If both _key_ and _value_ are numeric then numeric comparison is used, otherwise lexicographic string comparison is used. _key_ *>=* _value_::: True if _key_ is greater than or equal to _value_. If both _key_ and _value_ are numeric then numeric comparison is used, otherwise lexicographic string comparison is used. _key_ *>* _value_::: True if _key_ is greater than _value_. If both _key_ and _value_ are numeric then numeric comparison is used, otherwise lexicographic string comparison is used. _key_ *~* _value_::: True if _key_ contains a match for the RE (regular expression) pattern _value_. _key_ *!*~ _value_::: True if _key_ does not contain a match for the RE (regular expression) pattern _value_. For more about regular expression syntax, see: https://docs.python.org/3/library/re.html#re-syntax which follows the PCRE dialect. ### Determine which fields are available for filtering In order to build filters, it is often helpful to review some representative fields returned from commands. One simple way to do this is to add `--format=yaml --limit=1` to a command. With these flags, a single record is returned and its full contents are displayed as a YAML document. For example, a list of project fields could be generated by running: $ gcloud projects list --format=yaml --limit=1 This might display the following data: ```yaml createTime: '2021-02-10T19:19:49.242Z' lifecycleState: ACTIVE name: MyProject parent: id: '123' type: folder projectId: my-project projectNumber: '456' ``` Using this data, one way of filtering projects is by their parent's ID by specifying ``parent.id'' as the _key_. ### Filter on a custom or nested list in response By default the filter exprespression operates on root level resources. In order to filter on a nested list(not at the root level of the json) , one can use the `--flatten` flag to provide a the `resource-key` to list. For example, To list members under `my-project` that have an editor role, one can run: $ gcloud projects get-iam-policy cloudsdktest --flatten=bindings --filter=bindings.role:roles/editor --format='value(bindings.members)' """).format( description=resource_topics.ResourceDescription('filter')), 'EXAMPLES': textwrap.dedent("""\ List all Google Compute Engine instance resources: $ gcloud compute instances list List Compute Engine instance resources that have machineType *f1-micro*: $ gcloud compute instances list --filter="machineType:f1-micro" List Compute Engine instance resources using a regular expression for zone *us* and not MachineType *f1-micro*: $ gcloud compute instances list --filter="zone ~ us AND -machineType:f1-micro" List Compute Engine instance resources with tag *my-tag*: $ gcloud compute instances list --filter="tags.items=my-tag" List Compute Engine instance resources with tag *my-tag* or *my-other-tag*: $ gcloud compute instances list --filter="tags.items=(my-tag,my-other-tag)" List Compute Engine instance resources with tag *my-tag* and *my-other-tag*: $ gcloud compute instances list --filter="tags.items=my-tag AND tags.items=my-other-tag" List Compute Engine instance resources which either have tag *my-tag* but not *my-other-tag* or have tag *alternative-tag*: $ gcloud compute instances list --filter="(tags.items=my-tag AND -tags.items=my-other-tag) OR tags.items=alternative-tag" List Compute Engine instance resources which contain the key *fingerprint* in the *metadata* object: $ gcloud compute instances list --limit=1 --filter="metadata.list(show="keys"):fingerprint" List Compute Engine instance resources with label *my-label* with any value: $ gcloud compute instances list --filter="labels.my-label:*" List Container Registry images that have a tag with the value '30e5504145': $ gcloud container images list-tags --filter="'tags:30e5504145'" The last example encloses the filter expression in single quotes because the value '30e5504145' could be interpreted as a number in scientific notation. List in JSON format those projects where the labels match specific values (e.g. label.env is 'test' and label.version is alpha): $ gcloud projects list --format="json" --filter="labels.env=test AND labels.version=alpha" List projects that were created on and after a specific date: $ gcloud projects list --format="table(projectNumber,projectId,createTime)" --filter="createTime>=2018-01-15" List projects that were created on and after a specific date and time and sort from oldest to newest (with dates and times listed according to the local timezone): $ gcloud projects list --format="table(projectNumber,projectId,createTime.date(tz=LOCAL))" --filter="createTime>=2018-01-15T12:00:00" --sort-by=createTime List projects that were created within the last two weeks, using ISO8601 durations: $ gcloud projects list --format="table(projectNumber,projectId,createTime)" --filter="createTime>-P2W" For more about ISO8601 durations, see: https://en.wikipedia.org/wiki/ISO_8601 + The table below shows examples of pattern matching if used with the `:` operator: PATTERN | VALUE | MATCHES | DEPRECATED_MATCHES --- | --- | --- | --- abc* | abcpdqxyz | True | True abc | abcpdqxyz | False | True pdq* | abcpdqxyz | False | False pdq | abcpdqxyz | False | True xyz* | abcpdqxyz | False | False xyz | abcpdqxyz | False | True * | abcpdqxyz | True | True * | (None) | False | False * | ('') | False | False * | (otherwise) | True | True abc* | abc.pdq.xyz | True | True abc | abc.pdq.xyz | True | True abc.pdq | abc.pdq.xyz | True | True pdq* | abc.pdq.xyz | True | False pdq | abc.pdq.xyz | True | True pdq.xyz | abc.pdq.xyz | True | True xyz* | abc.pdq.xyz | True | False xyz | abc.pdq.xyz | True | True """), }
0
0
0
e7ea76e3a00992a63464a4b9c3737bee379992e0
471
py
Python
ai2_replication/tables.py
georgetown-cset/ai-definitions-for-policymaking
667e928c8bb30f6e02696ac71081c6bae4096f50
[ "ADSL" ]
1
2020-06-24T20:45:03.000Z
2020-06-24T20:45:03.000Z
ai2_replication/tables.py
georgetown-cset/ai-definitions-for-policymaking
667e928c8bb30f6e02696ac71081c6bae4096f50
[ "ADSL" ]
null
null
null
ai2_replication/tables.py
georgetown-cset/ai-definitions-for-policymaking
667e928c8bb30f6e02696ac71081c6bae4096f50
[ "ADSL" ]
null
null
null
from bq import create_client, read_sql, query DATASET = 'ai2_replication' client = create_client() make_table('institutions') make_table('paper_authors_w_countries') make_table('language') make_table('ai_papers_any_author') make_table('paper_author_institution') make_table('oecd_comparison')
24.789474
65
0.757962
from bq import create_client, read_sql, query DATASET = 'ai2_replication' client = create_client() def make_table(table, **kw): sql = read_sql(f'../ai2_replication/{table}.sql') job = query(sql, table, dataset=DATASET, truncate=True, **kw) return job.result() make_table('institutions') make_table('paper_authors_w_countries') make_table('language') make_table('ai_papers_any_author') make_table('paper_author_institution') make_table('oecd_comparison')
151
0
23
93de89bf39c112dd5fd852b80fc612aaf44d3160
3,477
py
Python
app01/models.py
xinxinliang/ksDjango
0c0f4a5842cf225e77035b716979fcf9b8d03311
[ "Apache-2.0" ]
13
2021-03-11T12:35:29.000Z
2022-02-25T02:22:47.000Z
app01/models.py
xinxinliang/ksDjango
0c0f4a5842cf225e77035b716979fcf9b8d03311
[ "Apache-2.0" ]
1
2021-11-04T03:02:10.000Z
2021-11-04T03:02:10.000Z
app01/models.py
xinxinliang/ksDjango
0c0f4a5842cf225e77035b716979fcf9b8d03311
[ "Apache-2.0" ]
4
2021-06-12T19:27:01.000Z
2022-02-04T05:13:54.000Z
from django.db import models from datetime import datetime # Create your models here.
37.387097
119
0.708944
from django.db import models from datetime import datetime # Create your models here. class UserTitle(models.Model): #ๅฅณไธบF๏ผŒ็”ทไธบM GENDER = [ (0,"ๆœช็Ÿฅ"), (1,"็”ท"), (2,"ๅฅณ") ] STATE = [ (0,"0ๅˆๆฌก็ˆฌๅ–"), (1,"1ksVideo"), (2,"1ksLive"), (3,"2ksVideo+ksLive"), (4,"3videoMP4"), (5,"4vieo+liveMP4") ] USERIMG = "https://tx2.a.yximgs.com/uhead/AB/2020/08/17/09/BMjAyMDA4MTcwOTM2MDNfMjQ0NzAyMDZfMV9oZDM4Nl8xODU=_s.jpg" userID = models.CharField(max_length=256,unique=True,verbose_name="็”จๆˆทid") userName = models.CharField(max_length=256,verbose_name="็”จๆˆทๅ") createTime = models.DateTimeField(default=datetime.now,verbose_name="ๅˆ›ๅปบๆ—ถ้—ด") stateUser = models.IntegerField(choices=STATE,verbose_name="็”จๆˆทไฟกๆฏ็Šถๆ€",default=0) ksID = models.CharField(max_length=128,verbose_name="ๅฟซๆ‰‹id",default="xxxxxxxxxxxxxx") user_text = models.CharField(max_length=2560,verbose_name="็”จๆˆท็ฎ€่ฟฐ",default="xxxxxxxxxxxxx") gender = models.IntegerField(choices=GENDER,verbose_name="ๆ€งๅˆซ",default=0) fan = models.CharField(max_length=32,verbose_name="็ฒ‰ไธๆ•ฐ",default="-1") xinzuo = models.CharField(max_length=32,verbose_name="ๆ˜Ÿๅบง",default="ๆœช็Ÿฅ") cityName = models.CharField(max_length=32,verbose_name="ๅœฐๅ€",default="ๆœช็Ÿฅ") follow = models.CharField(max_length=32,verbose_name="ๅ…ณๆณจ็š„ๆ•ฐ้‡",default="-1") photo = models.CharField(max_length=32,verbose_name="ไฝœๅ“ๆ•ฐ้‡",default="-1") userImg = models.CharField(max_length=256,verbose_name="ๅ›พ็‰‡ๅœฐๅ€",default=USERIMG) def __str__(self): return self.userName class Mate: verbose_name = verbose_name_plural = "็”จๆˆทIDๅ’Œๅๅญ—" class UserVideo(models.Model): STATE = [ (1,"้ป˜่ฎคksVideo"), (2,"ksVideo+ksLive") ] # ๅฝ“่ขซๅ‚็…งๅˆ ้™คๆ—ถ๏ผŒ่‡ชๅทฑไนŸ่ขซๅˆ ้™ค theUser = models.ForeignKey(UserTitle,on_delete=models.CASCADE) videoID = models.CharField(max_length=128,default="xxxxxxxxxxxxxx",verbose_name="่ง†้ข‘id") caption = models.CharField(max_length=512,default="ๆš‚ๆ— ",verbose_name="่ง†้ข‘ๆ่ฟฐ") coversUrl = models.CharField(max_length=512,default="xxxxxxxxxxx",verbose_name="่ง†้ข‘ๅฐ้ข") videoPath = models.CharField(max_length=512,default="xxxxxxxxxxxxx",verbose_name="่ง†้ข‘ๅœฐๅ€") realLikeCount = models.CharField(max_length=64,default="xxxxxxxxxxx",verbose_name="ๅ…ทไฝ“็‚น่ตžๆ•ฐ้‡") animatedCoverUrl = models.CharField(max_length=512,default="xxxxxxxx",verbose_name="ๅฐ้ขๅŠจ็”ป") stateVideo = models.IntegerField(choices=STATE,default=1,verbose_name="็Šถๆ€") displayView = models.CharField(max_length=64,default="-1",verbose_name="ๆ’ญๆ”พ้‡") displayComment = models.CharField(max_length=64,default="-1",verbose_name="่ฏ„่ฎบๆ•ฐ") def __str__(self): return self.videoID class Mate: verbose_name = verbose_name_plural = "่ง†้ข‘ไฟกๆฏ" class UserPhoto(models.Model): thephotoUser = models.ForeignKey(UserTitle,on_delete=models.CASCADE) photoID = models.CharField(max_length=128,verbose_name="็›ธๅ†Œid",default="xxxxxxxx") caption = models.CharField(max_length=512,verbose_name="็›ธๅ†Œๆ่ฟฐ",default="ๆš‚ๆ— ") displayView = models.CharField(max_length=32,verbose_name="ๆ’ญๆ”พ้‡",default="-1") displayLike = models.CharField(max_length=32,verbose_name="็‚น่ตžๆ•ฐ",default="-1") displayComment = models.CharField(max_length=32,verbose_name="่ฏ„่ฎบๆ•ฐ",default="-1") imgUrls = models.CharField(max_length=5000,default=" ") def __str__(self): return self.photoID class Mate: verbose_name = verbose_name_plural = "็›ธๅ†Œไฟกๆฏ"
77
3,525
69
8826c003f0775c51783e8ad89aa5dd24eeb638cd
1,710
py
Python
instruments/common/example/image-classification/train_imagenet.py
All-less/mxnet-speculative-synchronization
f9220e4d8451768eeee3e680bb0b2edf8f91b9f3
[ "MIT" ]
6
2017-12-09T06:36:20.000Z
2019-10-09T07:59:18.000Z
instruments/common/example/image-classification/train_imagenet.py
All-less/mxnet-speculative-synchronization
f9220e4d8451768eeee3e680bb0b2edf8f91b9f3
[ "MIT" ]
null
null
null
instruments/common/example/image-classification/train_imagenet.py
All-less/mxnet-speculative-synchronization
f9220e4d8451768eeee3e680bb0b2edf8f91b9f3
[ "MIT" ]
2
2019-12-27T12:24:08.000Z
2019-12-27T12:26:32.000Z
import os import argparse import logging role = os.getenv('DMLC_ROLE').upper() if role == 'WORKER': role = 'Worker' # backward compatibility rank = os.getenv('DMLC_{}_ID'.format(role.upper())) logging.basicConfig(level=logging.INFO, format='%(asctime)s {0}[{1}] %(message)s'.format(role, rank)) from common import find_mxnet, data, fit import mxnet as mx if __name__ == '__main__': # parse args parser = argparse.ArgumentParser(description="train imagenet", formatter_class=argparse.ArgumentDefaultsHelpFormatter) fit.add_fit_args(parser) data.add_data_args(parser) data.add_data_aug_args(parser) # use a large aug level data.set_data_aug_level(parser, 3) parser.set_defaults( # network network = 'resnet', num_layers = 18, # data data_train = '/home/ubuntu/ILSVRC2012/ILSVRC2012_dataset_train.rec', # ALL DATA MUST BE PLACED IN A FOLDER data_val = '/home/ubuntu/ILSVRC2012/ILSVRC2012_dataset_val.rec', # INSTEAD OF A BUCKET num_classes = 1000, num_examples = 281167, image_shape = '3,224,224', min_random_scale = 1, # if input image has min size k, suggest to use # 256.0/x, e.g. 0.533 for 480 # train lr = 0.03, num_epochs = 80, lr_step_epochs = '30,60', disp_batches = 1 ) args = parser.parse_args() # load network from importlib import import_module net = import_module('symbols.'+args.network) sym = net.get_symbol(**vars(args)) # train fit.fit(args, sym, data.get_rec_iter)
35.625
120
0.609942
import os import argparse import logging role = os.getenv('DMLC_ROLE').upper() if role == 'WORKER': role = 'Worker' # backward compatibility rank = os.getenv('DMLC_{}_ID'.format(role.upper())) logging.basicConfig(level=logging.INFO, format='%(asctime)s {0}[{1}] %(message)s'.format(role, rank)) from common import find_mxnet, data, fit import mxnet as mx if __name__ == '__main__': # parse args parser = argparse.ArgumentParser(description="train imagenet", formatter_class=argparse.ArgumentDefaultsHelpFormatter) fit.add_fit_args(parser) data.add_data_args(parser) data.add_data_aug_args(parser) # use a large aug level data.set_data_aug_level(parser, 3) parser.set_defaults( # network network = 'resnet', num_layers = 18, # data data_train = '/home/ubuntu/ILSVRC2012/ILSVRC2012_dataset_train.rec', # ALL DATA MUST BE PLACED IN A FOLDER data_val = '/home/ubuntu/ILSVRC2012/ILSVRC2012_dataset_val.rec', # INSTEAD OF A BUCKET num_classes = 1000, num_examples = 281167, image_shape = '3,224,224', min_random_scale = 1, # if input image has min size k, suggest to use # 256.0/x, e.g. 0.533 for 480 # train lr = 0.03, num_epochs = 80, lr_step_epochs = '30,60', disp_batches = 1 ) args = parser.parse_args() # load network from importlib import import_module net = import_module('symbols.'+args.network) sym = net.get_symbol(**vars(args)) # train fit.fit(args, sym, data.get_rec_iter)
0
0
0
4848485d15db0cd77a31069526785a7cedbeb90e
26,456
py
Python
transitfeed/loader.py
opentransitmap/transitfeed
65d9a789dd8f58ffcb1a158a1807e1ee74b688ee
[ "Apache-2.0" ]
null
null
null
transitfeed/loader.py
opentransitmap/transitfeed
65d9a789dd8f58ffcb1a158a1807e1ee74b688ee
[ "Apache-2.0" ]
null
null
null
transitfeed/loader.py
opentransitmap/transitfeed
65d9a789dd8f58ffcb1a158a1807e1ee74b688ee
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python2.5 # Copyright (C) 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import codecs import csv import os import re import zipfile from . import gtfsfactoryuser from . import problems from . import util from .compat import StringIO
40.329268
88
0.570759
#!/usr/bin/python2.5 # Copyright (C) 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import codecs import csv import os import re import zipfile from . import gtfsfactoryuser from . import problems from . import util from .compat import StringIO class Loader: def __init__( self, feed_path=None, schedule=None, problems=problems.default_problem_reporter, extra_validation=False, load_stop_times=True, memory_db=True, zip=None, check_duplicate_trips=False, gtfs_factory=None, ): """Initialize a new Loader object. Args: feed_path: string path to a zip file or directory schedule: a Schedule object or None to have one created problems: a ProblemReporter object, the default reporter raises an exception for each problem extra_validation: True if you would like extra validation load_stop_times: load the stop_times table, used to speed load time when times are not needed. The default is True. memory_db: if creating a new Schedule object use an in-memory sqlite database instead of creating one in a temporary file zip: a zipfile.ZipFile object, optionally used instead of path """ if gtfs_factory is None: gtfs_factory = gtfsfactoryuser.GtfsFactoryUser().GetGtfsFactory() if not schedule: schedule = gtfs_factory.Schedule( problem_reporter=problems, memory_db=memory_db, check_duplicate_trips=check_duplicate_trips, ) self._extra_validation = extra_validation self._schedule = schedule self._problems = problems self._path = feed_path self._zip = zip self._load_stop_times = load_stop_times self._gtfs_factory = gtfs_factory def _DetermineFormat(self): """Determines whether the feed is in a form that we understand, and if so, returns True.""" if self._zip: # If zip was passed to __init__ then path isn't used assert not self._path return True if not isinstance(self._path, basestring) and hasattr(self._path, "read"): # A file-like object, used for testing with a StringIO file self._zip = zipfile.ZipFile(self._path, mode="r") return True if not os.path.exists(self._path): self._problems.FeedNotFound(self._path) return False if self._path.endswith(".zip"): try: self._zip = zipfile.ZipFile(self._path, mode="r") except IOError: # self._path is a directory pass except zipfile.BadZipfile: self._problems.UnknownFormat(self._path) return False if not self._zip and not os.path.isdir(self._path): self._problems.UnknownFormat(self._path) return False return True def _GetFileNames(self): """Returns a list of file names in the feed.""" if self._zip: return self._zip.namelist() else: return os.listdir(self._path) def _CheckFileNames(self): filenames = self._GetFileNames() known_filenames = self._gtfs_factory.GetKnownFilenames() for feed_file in filenames: if feed_file not in known_filenames: if not feed_file.startswith("."): # Don't worry about .svn files and other hidden files # as this will break the tests. self._problems.UnknownFile(feed_file) def _GetUtf8Contents(self, file_name): """Check for errors in file_name and return a string for csv reader.""" contents = self._FileContents(file_name) if not contents: # Missing file return # Check for errors that will prevent csv.reader from working if len(contents) >= 2 and contents[0:2] in ( codecs.BOM_UTF16_BE, codecs.BOM_UTF16_LE, ): self._problems.FileFormat("appears to be encoded in utf-16", (file_name,)) # Convert and continue, so we can find more errors contents = codecs.getdecoder("utf-16")(contents)[0].encode("utf-8") null_index = contents.find("\0") if null_index != -1: # It is easier to get some surrounding text than calculate the exact # row_num m = re.search(r".{,20}\0.{,20}", contents, re.DOTALL) self._problems.FileFormat( 'contains a null in text "%s" at byte %d' % (codecs.getencoder("string_escape")(m.group()), null_index + 1), (file_name,), ) return # strip out any UTF-8 Byte Order Marker (otherwise it'll be # treated as part of the first column name, causing a mis-parse) contents = contents.lstrip(codecs.BOM_UTF8) return contents def _ReadCsvDict(self, file_name, cols, required, deprecated): """Reads lines from file_name, yielding a dict of unicode values.""" assert file_name.endswith(".txt") table_name = file_name[0:-4] contents = self._GetUtf8Contents(file_name) if not contents: return eol_checker = util.EndOfLineChecker( StringIO(contents), file_name, self._problems ) # The csv module doesn't provide a way to skip trailing space, but when I # checked 15/675 feeds had trailing space in a header row and 120 had spaces # after fields. Space after header fields can cause a serious parsing # problem, so warn. Space after body fields can cause a problem time, # integer and id fields; they will be validated at higher levels. reader = csv.reader(eol_checker, skipinitialspace=True) raw_header = next(reader) header_occurrences = util.defaultdict(lambda: 0) header = [] valid_columns = [] # Index into raw_header and raw_row for i, h in enumerate(raw_header): h_stripped = h.strip() if not h_stripped: self._problems.CsvSyntax( description="The header row should not contain any blank values. " "The corresponding column will be skipped for the " "entire file.", context=(file_name, 1, [""] * len(raw_header), raw_header), type=problems.TYPE_ERROR, ) continue elif h != h_stripped: self._problems.CsvSyntax( description="The header row should not contain any " "space characters.", context=(file_name, 1, [""] * len(raw_header), raw_header), type=problems.TYPE_WARNING, ) header.append(h_stripped) valid_columns.append(i) header_occurrences[h_stripped] += 1 for name, count in header_occurrences.items(): if count > 1: self._problems.DuplicateColumn( header=name, file_name=file_name, count=count ) self._schedule._table_columns[table_name] = header # check for unrecognized columns, which are often misspellings header_context = (file_name, 1, [""] * len(header), header) valid_cols = cols + [deprecated_name for (deprecated_name, _) in deprecated] unknown_cols = set(header) - set(valid_cols) if len(unknown_cols) == len(header): self._problems.CsvSyntax( description="The header row did not contain any known column " "names. The file is most likely missing the header row " "or not in the expected CSV format.", context=(file_name, 1, [""] * len(raw_header), raw_header), type=problems.TYPE_ERROR, ) else: for col in unknown_cols: # this is provided in order to create a nice colored list of # columns in the validator output self._problems.UnrecognizedColumn(file_name, col, header_context) # check for missing required columns missing_cols = set(required) - set(header) for col in missing_cols: # this is provided in order to create a nice colored list of # columns in the validator output self._problems.MissingColumn(file_name, col, header_context) # check for deprecated columns for (deprecated_name, new_name) in deprecated: if deprecated_name in header: self._problems.DeprecatedColumn( file_name, deprecated_name, new_name, header_context ) line_num = 1 # First line read by reader.next() above for raw_row in reader: line_num += 1 if len(raw_row) == 0: # skip extra empty lines in file continue if len(raw_row) > len(raw_header): self._problems.OtherProblem( "Found too many cells (commas) in line " '%d of file "%s". Every row in the file ' "should have the same number of cells as " "the header (first line) does." % (line_num, file_name), (file_name, line_num), type=problems.TYPE_WARNING, ) if len(raw_row) < len(raw_header): self._problems.OtherProblem( "Found missing cells (commas) in line " '%d of file "%s". Every row in the file ' "should have the same number of cells as " "the header (first line) does." % (line_num, file_name), (file_name, line_num), type=problems.TYPE_WARNING, ) # raw_row is a list of raw bytes which should be valid utf-8. Convert each # valid_columns of raw_row into Unicode. valid_values = [] unicode_error_columns = [] # index of valid_values elements with an error for i in valid_columns: try: valid_values.append(raw_row[i].decode("utf-8")) except UnicodeDecodeError: # Replace all invalid characters with REPLACEMENT CHARACTER (U+FFFD) valid_values.append( codecs.getdecoder("utf8")(raw_row[i], errors="replace")[0] ) unicode_error_columns.append(len(valid_values) - 1) except IndexError: break # The error report may contain a dump of all values in valid_values so # problems can not be reported until after converting all of raw_row to # Unicode. for i in unicode_error_columns: self._problems.InvalidValue( header[i], valid_values[i], "Unicode error", (file_name, line_num, valid_values, header), ) # We strip ALL whitespace from around values. This matches the behavior # of both the Google and OneBusAway GTFS parser. valid_values = [value.strip() for value in valid_values] d = dict(zip(header, valid_values)) yield (d, line_num, header, valid_values) # TODO: Add testing for this specific function def _ReadCSV(self, file_name, cols, required, deprecated): """Reads lines from file_name, yielding a list of unicode values corresponding to the column names in cols.""" contents = self._GetUtf8Contents(file_name) if not contents: return eol_checker = util.EndOfLineChecker( StringIO(contents), file_name, self._problems ) reader = csv.reader(eol_checker) # Use excel dialect header = next(reader) header = map(lambda x: x.strip(), header) # trim any whitespace header_occurrences = util.defaultdict(lambda: 0) for column_header in header: header_occurrences[column_header] += 1 for name, count in header_occurrences.items(): if count > 1: self._problems.DuplicateColumn( header=name, file_name=file_name, count=count ) # check for unrecognized columns, which are often misspellings header_context = (file_name, 1, [""] * len(header), header) valid_cols = cols + [deprecated_name for (deprecated_name, _) in deprecated] unknown_cols = set(header).difference(set(valid_cols)) for col in unknown_cols: # this is provided in order to create a nice colored list of # columns in the validator output self._problems.UnrecognizedColumn(file_name, col, header_context) # check for missing required columns col_index = [-1] * len(cols) for i in range(len(cols)): if cols[i] in header: col_index[i] = header.index(cols[i]) elif cols[i] in required: self._problems.MissingColumn(file_name, cols[i], header_context) # check for deprecated columns for (deprecated_name, new_name) in deprecated: if deprecated_name in header: self._problems.DeprecatedColumn( file_name, deprecated_name, new_name, header_context ) row_num = 1 for row in reader: row_num += 1 if len(row) == 0: # skip extra empty lines in file continue if len(row) > len(header): self._problems.OtherProblem( "Found too many cells (commas) in line " '%d of file "%s". Every row in the file ' "should have the same number of cells as " "the header (first line) does." % (row_num, file_name), (file_name, row_num), type=problems.TYPE_WARNING, ) if len(row) < len(header): self._problems.OtherProblem( "Found missing cells (commas) in line " '%d of file "%s". Every row in the file ' "should have the same number of cells as " "the header (first line) does." % (row_num, file_name), (file_name, row_num), type=problems.TYPE_WARNING, ) result = [None] * len(cols) unicode_error_columns = [] # A list of column numbers with an error for i in range(len(cols)): ci = col_index[i] if ci >= 0: if len(row) <= ci: # handle short CSV rows result[i] = u"" else: try: result[i] = row[ci].decode("utf-8").strip() except UnicodeDecodeError: # Replace all invalid characters with # REPLACEMENT CHARACTER (U+FFFD) result[i] = codecs.getdecoder("utf8")( row[ci], errors="replace" )[0].strip() unicode_error_columns.append(i) for i in unicode_error_columns: self._problems.InvalidValue( cols[i], result[i], "Unicode error", (file_name, row_num, result, cols), ) yield (result, row_num, cols) def _HasFile(self, file_name): """Returns True if there's a file in the current feed with the given file_name in the current feed.""" if self._zip: return file_name in self._zip.namelist() else: file_path = os.path.join(self._path, file_name) return os.path.exists(file_path) and os.path.isfile(file_path) def _FileContents(self, file_name): results = None if self._zip: try: results = self._zip.read(file_name) except KeyError: # file not found in archve self._problems.MissingFile(file_name) return None else: try: data_file = open(os.path.join(self._path, file_name), "rb") results = data_file.read() except IOError: # file not found self._problems.MissingFile(file_name) return None if not results: self._problems.EmptyFile(file_name) return results def _LoadFeed(self): loading_order = self._gtfs_factory.GetLoadingOrder() for filename in loading_order: if not self._gtfs_factory.IsFileRequired(filename) and not self._HasFile( filename ): pass # File is not required, and feed does not have it. else: object_class = self._gtfs_factory.GetGtfsClassByFileName(filename) for (d, row_num, header, row) in self._ReadCsvDict( filename, object_class._FIELD_NAMES, object_class._REQUIRED_FIELD_NAMES, object_class._DEPRECATED_FIELD_NAMES, ): self._problems.SetFileContext(filename, row_num, row, header) instance = object_class(field_dict=d) instance.SetGtfsFactory(self._gtfs_factory) if not instance.ValidateBeforeAdd(self._problems): continue instance.AddToSchedule(self._schedule, self._problems) instance.ValidateAfterAdd(self._problems) self._problems.ClearContext() def _LoadCalendar(self): file_name = "calendar.txt" file_name_dates = "calendar_dates.txt" if not self._HasFile(file_name) and not self._HasFile(file_name_dates): self._problems.MissingFile(file_name) return # map period IDs to (period object, (file_name, row_num, row, cols)) periods = {} service_period_class = self._gtfs_factory.ServicePeriod # process calendar.txt if self._HasFile(file_name): has_useful_contents = False for (row, row_num, cols) in self._ReadCSV( file_name, service_period_class._FIELD_NAMES, service_period_class._REQUIRED_FIELD_NAMES, service_period_class._DEPRECATED_FIELD_NAMES, ): context = (file_name, row_num, row, cols) self._problems.SetFileContext(*context) period = service_period_class(field_list=row) if period.service_id in periods: self._problems.DuplicateID("service_id", period.service_id) else: periods[period.service_id] = (period, context) self._problems.ClearContext() # process calendar_dates.txt if self._HasFile(file_name_dates): # ['service_id', 'date', 'exception_type'] for (row, row_num, cols) in self._ReadCSV( file_name_dates, service_period_class._FIELD_NAMES_CALENDAR_DATES, service_period_class._REQUIRED_FIELD_NAMES_CALENDAR_DATES, service_period_class._DEPRECATED_FIELD_NAMES_CALENDAR_DATES, ): context = (file_name_dates, row_num, row, cols) self._problems.SetFileContext(*context) service_id = row[0] period = None if service_id in periods: period = periods[service_id][0] else: period = service_period_class(service_id) periods[period.service_id] = (period, context) exception_type = row[2] if exception_type == u"1": period.SetDateHasService(row[1], True, self._problems) elif exception_type == u"2": period.SetDateHasService(row[1], False, self._problems) else: self._problems.InvalidValue("exception_type", exception_type) self._problems.ClearContext() # Now insert the periods into the schedule object, so that they're # validated with both calendar and calendar_dates info present for period, context in periods.values(): self._problems.SetFileContext(*context) self._schedule.AddServicePeriodObject(period, self._problems) self._problems.ClearContext() def _LoadShapes(self): file_name = "shapes.txt" if not self._HasFile(file_name): return shapes = {} # shape_id to shape object shape_class = self._gtfs_factory.Shape for (d, row_num, header, row) in self._ReadCsvDict( file_name, shape_class._FIELD_NAMES, shape_class._REQUIRED_FIELD_NAMES, shape_class._DEPRECATED_FIELD_NAMES, ): file_context = (file_name, row_num, row, header) self._problems.SetFileContext(*file_context) shapepoint = self._gtfs_factory.ShapePoint(field_dict=d) if not shapepoint.ParseAttributes(self._problems): continue if shapepoint.shape_id in shapes: shape = shapes[shapepoint.shape_id] else: shape = shape_class(shapepoint.shape_id) shape.SetGtfsFactory(self._gtfs_factory) shapes[shapepoint.shape_id] = shape shape.AddShapePointObjectUnsorted(shapepoint, self._problems) self._problems.ClearContext() for shape_id, shape in shapes.items(): self._schedule.AddShapeObject(shape, self._problems) del shapes[shape_id] def _LoadStopTimes(self): stop_time_class = self._gtfs_factory.StopTime for (row, row_num, cols) in self._ReadCSV( "stop_times.txt", stop_time_class._FIELD_NAMES, stop_time_class._REQUIRED_FIELD_NAMES, stop_time_class._DEPRECATED_FIELD_NAMES, ): file_context = ("stop_times.txt", row_num, row, cols) self._problems.SetFileContext(*file_context) ( trip_id, arrival_time, departure_time, stop_id, stop_sequence, stop_headsign, pickup_type, drop_off_type, shape_dist_traveled, timepoint, ) = row try: sequence = int(stop_sequence) except (TypeError, ValueError): self._problems.InvalidValue( "stop_sequence", stop_sequence, "This should be a number." ) continue if sequence < 0: self._problems.InvalidValue( "stop_sequence", sequence, "Sequence numbers should be 0 or higher." ) if stop_id not in self._schedule.stops: self._problems.InvalidValue( "stop_id", stop_id, "This value wasn't defined in stops.txt" ) continue stop = self._schedule.stops[stop_id] if trip_id not in self._schedule.trips: self._problems.InvalidValue( "trip_id", trip_id, "This value wasn't defined in trips.txt" ) continue trip = self._schedule.trips[trip_id] # If self._problems.Report returns then StopTime.__init__ will return # even if the StopTime object has an error. Thus this code may add a # StopTime that didn't validate to the database. # Trip.GetStopTimes then tries to make a StopTime from the invalid data # and calls the problem reporter for errors. An ugly solution is to # wrap problems and a better solution is to move all validation out of # __init__. For now make sure Trip.GetStopTimes gets a problem reporter # when called from Trip.Validate. stop_time = stop_time_class( self._problems, stop, arrival_time, departure_time, stop_headsign, pickup_type, drop_off_type, shape_dist_traveled, stop_sequence=sequence, timepoint=timepoint, ) trip._AddStopTimeObjectUnordered(stop_time, self._schedule) self._problems.ClearContext() # stop_times are validated in Trip.ValidateChildren, called by # Schedule.Validate def Load(self): self._problems.ClearContext() if not self._DetermineFormat(): return self._schedule self._CheckFileNames() self._LoadCalendar() self._LoadShapes() self._LoadFeed() if self._load_stop_times: self._LoadStopTimes() if self._zip: self._zip.close() self._zip = None if self._extra_validation: self._schedule.Validate(self._problems, validate_children=False) return self._schedule
9,843
15,785
23
5ba01580c6da41b657c147d3afe1463ceba3337a
4,050
py
Python
sitetree/tests/conftest.py
jonkiparsky/django-sitetree
4b9ab29ee7c26c20cd7711b8261cc1cadd8c4e50
[ "BSD-3-Clause" ]
null
null
null
sitetree/tests/conftest.py
jonkiparsky/django-sitetree
4b9ab29ee7c26c20cd7711b8261cc1cadd8c4e50
[ "BSD-3-Clause" ]
null
null
null
sitetree/tests/conftest.py
jonkiparsky/django-sitetree
4b9ab29ee7c26c20cd7711b8261cc1cadd8c4e50
[ "BSD-3-Clause" ]
null
null
null
import pytest from pytest_djangoapp import configure_djangoapp_plugin pytest_plugins = configure_djangoapp_plugin( extend_INSTALLED_APPS=[ 'django.contrib.admin', ], ) @pytest.fixture def build_tree(): """Builds a sitetree from dict definition. Returns items indexed by urls. Example: items_map = build_tree( {'alias': 'mytree'}, [{ 'title': 'one', 'url': '/one/', 'children': [ {'title': 'subone', 'url': '/subone/'} ] }] ) """ from sitetree.models import Tree, TreeItem from django.contrib.auth.models import Permission return build @pytest.fixture
37.850467
114
0.465679
import pytest from pytest_djangoapp import configure_djangoapp_plugin pytest_plugins = configure_djangoapp_plugin( extend_INSTALLED_APPS=[ 'django.contrib.admin', ], ) @pytest.fixture def build_tree(): """Builds a sitetree from dict definition. Returns items indexed by urls. Example: items_map = build_tree( {'alias': 'mytree'}, [{ 'title': 'one', 'url': '/one/', 'children': [ {'title': 'subone', 'url': '/subone/'} ] }] ) """ from sitetree.models import Tree, TreeItem from django.contrib.auth.models import Permission def build(tree_dict, items): def attach_items(tree, items, parent=None): for item_dict in items: children = item_dict.pop('children', []) access_permissions = item_dict.pop('access_permissions', []) item = TreeItem(**item_dict) item.tree = tree item.parent = parent item.save() for permission in access_permissions: item.access_permissions.add(Permission.objects.get(codename=permission)) items_map['%s' % item.url] = item children and attach_items(tree, children, parent=item) items_map = {} tree = Tree(**tree_dict) tree.save() attach_items(tree, items) return items_map return build @pytest.fixture def common_tree(build_tree): items = build_tree( {'alias': 'mytree'}, [{ 'title': 'Home', 'url': '/home/', 'children': [ {'title': 'Users', 'url': '/users/', 'children': [ {'title': 'Moderators', 'url': '/users/moderators/'}, {'title': 'Ordinary', 'url': '/users/ordinary/'}, {'title': 'Hidden', 'hidden': True, 'url': '/users/hidden/'}, ]}, {'title': 'Articles', 'url': '/articles/', 'children': [ {'title': 'About cats', 'url': '/articles/cats/', 'children': [ {'title': 'Good', 'url': '/articles/cats/good/'}, {'title': 'Bad', 'url': '/articles/cats/bad/'}, {'title': 'Ugly', 'url': '/articles/cats/ugly/'}, ]}, {'title': 'About dogs', 'url': '/articles/dogs/'}, {'title': 'About mice', 'inmenu': False, 'url': '/articles/mice/'}, ]}, {'title': 'Contacts', 'inbreadcrumbs': False, 'url': '/contacts/', 'children': [ {'title': 'Russia', 'url': '/contacts/russia/', 'hint': 'The place', 'description': 'Russian Federation', 'children': [ {'title': 'Web', 'alias': 'ruweb', 'url': '/contacts/russia/web/', 'children': [ {'title': 'Public {{ subtitle }}', 'url': '/contacts/russia/web/public/'}, {'title': 'Private', 'url': '/contacts/russia/web/private/', 'hint': 'Private Area Hint', 'description': 'Private Area Description', }, ]}, {'title': 'Postal', 'insitetree': False, 'url': '/contacts/russia/postal/'}, ]}, {'title': 'Australia', 'urlaspattern': True, 'url': 'contacts_australia australia_var', 'children': [ {'title': 'Alice Springs', 'access_loggedin': True, 'url': '/contacts/australia/alice/'}, {'title': 'Darwin', 'access_guest': True, 'url': '/contacts/australia/darwin/'}, ]}, {'title': 'China', 'urlaspattern': True, 'url': 'contacts_china china_var'}, ]}, ] }] ) items[''] = items['/home/'] return items
3,293
0
49
bf1414b0416a3eb72adcb754f86a3570bc77a1ae
433
py
Python
code/tools/pull_sz_starts.py
akashpattnaik/pre-ictal-similarity
85f963aa0c6d2d0a6e971ffa005c400e136a0a76
[ "MIT" ]
null
null
null
code/tools/pull_sz_starts.py
akashpattnaik/pre-ictal-similarity
85f963aa0c6d2d0a6e971ffa005c400e136a0a76
[ "MIT" ]
null
null
null
code/tools/pull_sz_starts.py
akashpattnaik/pre-ictal-similarity
85f963aa0c6d2d0a6e971ffa005c400e136a0a76
[ "MIT" ]
null
null
null
import numpy as np
28.866667
57
0.639723
import numpy as np def pull_sz_starts(patient, metadata): assert(patient in metadata) sz_names = metadata[patient]["Events"]["Ictal"] sz_starts = [] for sz_name in sz_names: if patient == "HUP111": if 'D01' in sz_names[sz_name]['iEEG_record']: continue sz_starts.append(sz_names[sz_name]["SeizureEEC"]) sz_starts = np.array(sz_starts) return np.unique(sz_starts)
392
0
23
7ebda6c3eb3ba2e6b4feae34ffc9e247ff699693
1,930
py
Python
kaggle/machine-learning/underfitting_and_overfitting.py
matteougolotti/ML
759eff5f5bcaa41e9ff19a2d78869bd4b968324d
[ "MIT" ]
null
null
null
kaggle/machine-learning/underfitting_and_overfitting.py
matteougolotti/ML
759eff5f5bcaa41e9ff19a2d78869bd4b968324d
[ "MIT" ]
null
null
null
kaggle/machine-learning/underfitting_and_overfitting.py
matteougolotti/ML
759eff5f5bcaa41e9ff19a2d78869bd4b968324d
[ "MIT" ]
null
null
null
import pandas as pd from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeRegressor iowa_file_path = 'rain.csv' home_data = pd.read_csv(iowa_file_path) # Create target object and call it y y = home_data.SalePrice # Create X features = ['LotArea', 'YearBuilt', '1stFlrSF', '2ndFlrSF', 'FullBath', 'BedroomAbvGr', 'TotRmsAbvGrd'] X = home_data[features] # Split into validation and training data train_X, val_X, train_y, val_y = train_test_split(X, y, random_state=1) # Specify Model iowa_model = DecisionTreeRegressor(random_state=1) # Fit Model iowa_model.fit(train_X, train_y) # Make validation predictions and calculate mean absolute error val_predictions = iowa_model.predict(val_X) val_mae = mean_absolute_error(val_predictions, val_y) print("Validation MAE: {:,.0f}".format(val_mae)) # Find best tree dept to reduce overfitting and underfitting candidate_max_leaf_nodes = [5, 25, 50, 100, 250, 500] # Write loop to find the ideal tree size from candidate_max_leaf_nodes candidate = 0 min_mae = get_mae(candidate_max_leaf_nodes[0], train_X, val_X, train_y, val_y) for i in range(len(candidate_max_leaf_nodes)): n = candidate_max_leaf_nodes[i] mae = get_mae(n, train_X, val_X, train_y, val_y) if mae < min_mae: min_mae = mae candidate = i # Store the best value of max_leaf_nodes (it will be either 5, 25, 50, 100, 250 or 500) best_tree_size = candidate_max_leaf_nodes[candidate] print(candidate) # Final optimized model final_model = DecisionTreeRegressor(max_leaf_nodes = 100, random_state = 0) final_model.fit(X, y)
33.275862
103
0.765285
import pandas as pd from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeRegressor def get_mae(max_leaf_nodes, train_X, val_X, train_y, val_y): model = DecisionTreeRegressor(max_leaf_nodes=max_leaf_nodes, random_state=0) model.fit(train_X, train_y) preds_val = model.predict(val_X) mae = mean_absolute_error(val_y, preds_val) return(mae) iowa_file_path = 'rain.csv' home_data = pd.read_csv(iowa_file_path) # Create target object and call it y y = home_data.SalePrice # Create X features = ['LotArea', 'YearBuilt', '1stFlrSF', '2ndFlrSF', 'FullBath', 'BedroomAbvGr', 'TotRmsAbvGrd'] X = home_data[features] # Split into validation and training data train_X, val_X, train_y, val_y = train_test_split(X, y, random_state=1) # Specify Model iowa_model = DecisionTreeRegressor(random_state=1) # Fit Model iowa_model.fit(train_X, train_y) # Make validation predictions and calculate mean absolute error val_predictions = iowa_model.predict(val_X) val_mae = mean_absolute_error(val_predictions, val_y) print("Validation MAE: {:,.0f}".format(val_mae)) # Find best tree dept to reduce overfitting and underfitting candidate_max_leaf_nodes = [5, 25, 50, 100, 250, 500] # Write loop to find the ideal tree size from candidate_max_leaf_nodes candidate = 0 min_mae = get_mae(candidate_max_leaf_nodes[0], train_X, val_X, train_y, val_y) for i in range(len(candidate_max_leaf_nodes)): n = candidate_max_leaf_nodes[i] mae = get_mae(n, train_X, val_X, train_y, val_y) if mae < min_mae: min_mae = mae candidate = i # Store the best value of max_leaf_nodes (it will be either 5, 25, 50, 100, 250 or 500) best_tree_size = candidate_max_leaf_nodes[candidate] print(candidate) # Final optimized model final_model = DecisionTreeRegressor(max_leaf_nodes = 100, random_state = 0) final_model.fit(X, y)
253
0
23
b7c8dadccc4c73a9db593b8f6745709e72ed05ab
790
py
Python
fractal.py
nayanshah/python
250d5dfe7d48a15d53288d7a9f371ff7c66de57c
[ "MIT" ]
null
null
null
fractal.py
nayanshah/python
250d5dfe7d48a15d53288d7a9f371ff7c66de57c
[ "MIT" ]
null
null
null
fractal.py
nayanshah/python
250d5dfe7d48a15d53288d7a9f371ff7c66de57c
[ "MIT" ]
1
2020-05-21T15:13:36.000Z
2020-05-21T15:13:36.000Z
from turtle import * # Fractals if __name__ == '__main__': draw_fractal(5, 90, 10, 'FX', 'X', 'X+YF+', 'Y', '-FX-Y')
25.483871
98
0.517722
from turtle import * # Fractals def draw_fractal(length, angle, level, initial_state, target, replacement, target2, replacement2): state = initial_state for counter in range(level): state2 = '' for character in state: if character == target: state2 += replacement elif character == target2: state2 += replacement2 else: state2 += character state = state2 # draw for character in state: if character == 'F': forward(length) elif character == '+': right(angle) elif character == '-': left(angle) if __name__ == '__main__': draw_fractal(5, 90, 10, 'FX', 'X', 'X+YF+', 'Y', '-FX-Y')
637
0
22
0889099ad9836adbaca7686283915041684afcf0
146
py
Python
fileconversions/conversions/jpeg_to_pdf_conversion.py
wilbertom/fileconversions
c48fda9b2804524fc57d1f6963d09645825b0da6
[ "MIT" ]
null
null
null
fileconversions/conversions/jpeg_to_pdf_conversion.py
wilbertom/fileconversions
c48fda9b2804524fc57d1f6963d09645825b0da6
[ "MIT" ]
null
null
null
fileconversions/conversions/jpeg_to_pdf_conversion.py
wilbertom/fileconversions
c48fda9b2804524fc57d1f6963d09645825b0da6
[ "MIT" ]
null
null
null
from .command_conversion import CommandConversion
20.857143
49
0.780822
from .command_conversion import CommandConversion class JpegToPdf(CommandConversion): command_name = 'convert' output_extension = 'pdf'
0
72
23
76b48b0af6e5bf545ed6ea33494e598053b496cb
1,989
py
Python
Doc2Vector/data/datamake.py
sladesha/algorithm
3ade2e7fd4a7b3acb6eb4f99ef81227ba51569e4
[ "MIT" ]
520
2018-02-07T05:48:49.000Z
2022-03-07T02:03:06.000Z
Doc2Vector/data/datamake.py
WADRHAW/deep_learning
3ade2e7fd4a7b3acb6eb4f99ef81227ba51569e4
[ "MIT" ]
15
2019-02-20T15:11:11.000Z
2022-02-10T00:39:57.000Z
Doc2Vector/data/datamake.py
WADRHAW/deep_learning
3ade2e7fd4a7b3acb6eb4f99ef81227ba51569e4
[ "MIT" ]
251
2017-12-28T09:46:13.000Z
2022-03-20T13:39:09.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2020/1/10 3:23 PM # @Author : Slade # @File : datamake.py from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tensorflow as tf import numpy as np flags = tf.app.flags flags.DEFINE_string("input_dir", "./data/", "input dir") flags.DEFINE_string("output_dir", "./text/data/", "output dir") FLAGS = flags.FLAGS # ่ฟ ไธค่ฝฆ ่ฅฟ็“œ ๅˆฐ ๅŒ—ไบฌ ๅˆฐไป˜ # 23 1023 94 782 4234 10304 if __name__ == "__main__": tf.logging.set_verbosity(tf.logging.INFO) tf.app.run()
32.080645
114
0.604827
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2020/1/10 3:23 PM # @Author : Slade # @File : datamake.py from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tensorflow as tf import numpy as np flags = tf.app.flags flags.DEFINE_string("input_dir", "./data/", "input dir") flags.DEFINE_string("output_dir", "./text/data/", "output dir") FLAGS = flags.FLAGS # ่ฟ ไธค่ฝฆ ่ฅฟ็“œ ๅˆฐ ๅŒ—ไบฌ ๅˆฐไป˜ # 23 1023 94 782 4234 10304 def gen_tfrecords(in_file): basename = os.path.basename(in_file) + ".tfrecord" out_file = os.path.join(FLAGS.output_dir, basename) tfrecord_out = tf.python_io.TFRecordWriter(out_file) with open(in_file) as fi: idx = 0 for line in fi: fields = line.strip().split(' ') for i in range(len(fields)): content = np.array(fields[max(0, i - 2):i] + fields[i + 1:min(i + 3, len(fields))]) target = np.array([fields[i]]) feature = { "context_word": tf.train.Feature(int64_list=tf.train.Int64List(value=content.astype(np.int))), "target_word": tf.train.Feature(int64_list=tf.train.Int64List(value=target.astype(np.int))), "cate_id": tf.train.Feature(int64_list=tf.train.Int64List(value=[idx])) } idx += 1 # serialized to Example example = tf.train.Example(features=tf.train.Features(feature=feature)) print(example) serialized = example.SerializeToString() print(serialized) print(".....") tfrecord_out.write(serialized) # ๆ•ฐๆฎๆ‰“ๅŒ…ๅฎŒๆˆ tfrecord_out.close() def main(_): if not os.path.exists(FLAGS.output_dir): os.mkdir(FLAGS.output_dir) gen_tfrecords(FLAGS.input_dir + "test.txt") if __name__ == "__main__": tf.logging.set_verbosity(tf.logging.INFO) tf.app.run()
1,365
0
45
c777c78c953cfbfd3c1f69bdc31089c5cd84467c
3,743
py
Python
tests/fixtures.py
WilmerLab/mofun
ec95f2c4455a37ff73d0f595b56f4a246924c2dd
[ "MIT" ]
null
null
null
tests/fixtures.py
WilmerLab/mofun
ec95f2c4455a37ff73d0f595b56f4a246924c2dd
[ "MIT" ]
null
null
null
tests/fixtures.py
WilmerLab/mofun
ec95f2c4455a37ff73d0f595b56f4a246924c2dd
[ "MIT" ]
null
null
null
from math import sqrt from pathlib import Path import ase.io import numpy as np from numpy.linalg import norm from numpy.testing import assert_equal as np_assert_equal import pytest from pytest import approx import tests from mofun import Atoms from mofun.helpers import typekey sqrt2_2 = sqrt(2) / 2 sqrt3_2 = sqrt(3) / 2 @pytest.fixture @pytest.fixture @pytest.fixture @pytest.fixture @pytest.fixture @pytest.fixture @pytest.fixture @pytest.fixture @pytest.fixture @pytest.fixture
34.027273
118
0.674058
from math import sqrt from pathlib import Path import ase.io import numpy as np from numpy.linalg import norm from numpy.testing import assert_equal as np_assert_equal import pytest from pytest import approx import tests from mofun import Atoms from mofun.helpers import typekey sqrt2_2 = sqrt(2) / 2 sqrt3_2 = sqrt(3) / 2 def random_positions(num): return np.random.rand(num, 3) * 100 def assert_topo(topo, expected_topo, types=None, expected_types=None, coeffs=None, expected_coeffs=None): # check right atoms are part of the topo sorted_topo = sorted([typekey(t) for t in topo]) sorted_expected_topo = sorted([typekey(t) for t in expected_topo]) np_assert_equal(sorted_topo, sorted_expected_topo) # check types are mapped (assume coeffs are ordered the same!) if types is not None and expected_types is not None: sorted_topo_w_types = sorted([(*typekey(t), types[i]) for i, t in enumerate(topo)]) sorted_expected_topo_w_types = sorted([(*typekey(t), expected_types[i]) for i, t in enumerate(expected_topo)]) np_assert_equal(sorted_topo_w_types, sorted_expected_topo_w_types) # check coeffs for each type are equal if coeffs is not None and expected_coeffs is not None: np_assert_equal(coeffs, expected_coeffs) def assert_benzene(coords): # incomplete sample p = coords assert norm(p[0] - p[1]) == approx(2.42, 5e-2) assert norm(p[0] - p[3]) == approx(1.40, 5e-2) assert norm(p[0] - p[4]) == approx(2.79, 5e-2) assert norm(p[5] - p[8]) == approx(0.93, 5e-2) @pytest.fixture def linear_cnnc(): yield Atoms(elements='CNNC', positions=[(0., 0., 0), (1.0, 0., 0.), (2.0, 0., 0.), (3.0, 0., 0.)], bonds=[(0,1), (1,2), (2,3)], bond_types=[0] * 3, angles=[(0,1,2), (1,2,3)], angle_types=[0,0], dihedrals=[(0,1,2,3)], dihedral_types=[0], cell=15*np.identity(3)) @pytest.fixture def octane(): # CH3 CH2 CH2 CH2 CH2 CH2 CH2 CH3 # with Path("tests/molecules/octane.xyz") as path: structure = Atoms.from_ase_atoms(ase.io.read(path)) structure.cell = 60 * np.identity(3) structure.translate((30., 30., 30.)) yield structure @pytest.fixture def half_octane(): # CH3 CH2 CH2 CH2 # with Path("tests/molecules/half_octane.xyz") as path: structure = Atoms.from_ase_atoms(ase.io.read(path)) structure.cell = 60 * np.identity(3) structure.translate((30., 30., 30.)) yield structure @pytest.fixture def hkust1_cif(): with Path("tests/hkust-1/hkust-1-with-bonds.cif") as path: yield Atoms.load_p1_cif(path) @pytest.fixture def hkust1_3x3x3_xyz(): with Path("tests/hkust-1/hkust-1-3x3x3.xyz") as path: structure = Atoms.from_ase_atoms(ase.io.read(path)) structure.cell = 79.0290 * np.identity(3) yield structure @pytest.fixture def hkust1_3x3x3_cif(): with Path("tests/hkust-1/hkust-1-3x3x3.cif") as path: yield Atoms.load_p1_cif(path) @pytest.fixture def benzene(): with Path("tests/molecules/benzene.xyz") as path: yield Atoms.from_ase_atoms(ase.io.read(path)) @pytest.fixture def uio66_linker_no_bonds(): with Path("tests/uio66/uio66-linker-no-bonds.lmpdat").open() as fd: yield Atoms.load_lmpdat(fd, atom_format="atomic") @pytest.fixture def uio66_linker_some_bonds(): # this was a modified UIO-66-F linker with bonds defined for the C-F bond. The F's have been # replaced by H's. with Path("tests/uio66/uio66-linker.lmpdat").open() as fd: yield Atoms.load_lmpdat(fd, atom_format="atomic") @pytest.fixture def uio66_linker_cml(): with Path("tests/uio66/uio66-linker.cml") as path: yield Atoms.load_cml(path)
2,956
0
289
9588a3d4cd7e7a5db5bcec909837d679078f7fb9
2,535
py
Python
src/scs_core/position/nmea/nmea_report.py
seoss/scs_core
0d4323c5697a39eb44a887f179ba5dca3716c1d2
[ "MIT" ]
3
2019-03-12T01:59:58.000Z
2020-09-12T07:27:42.000Z
src/scs_core/position/nmea/nmea_report.py
seoss/scs_core
0d4323c5697a39eb44a887f179ba5dca3716c1d2
[ "MIT" ]
1
2018-04-20T07:58:38.000Z
2021-03-27T08:52:45.000Z
src/scs_core/position/nmea/nmea_report.py
seoss/scs_core
0d4323c5697a39eb44a887f179ba5dca3716c1d2
[ "MIT" ]
4
2017-09-29T13:08:43.000Z
2019-10-09T09:13:58.000Z
""" Created on 31 Dec 2016 @author: Bruno Beloff (bruno.beloff@southcoastscience.com) A helper class for validating and preparing GPS module output strings. https://www.nmea.org https://en.wikipedia.org/wiki/NMEA_0183 """ # -------------------------------------------------------------------------------------------------------------------- class NMEAReport(object): """ classdocs """ # ---------------------------------------------------------------------------------------------------------------- @classmethod # ---------------------------------------------------------------------------------------------------------------- @classmethod # ---------------------------------------------------------------------------------------------------------------- def __init__(self, fields): """ Constructor """ self.__fields = fields # ---------------------------------------------------------------------------------------------------------------- @property # ---------------------------------------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------------------------------------
26.40625
118
0.390138
""" Created on 31 Dec 2016 @author: Bruno Beloff (bruno.beloff@southcoastscience.com) A helper class for validating and preparing GPS module output strings. https://www.nmea.org https://en.wikipedia.org/wiki/NMEA_0183 """ # -------------------------------------------------------------------------------------------------------------------- class NMEAReport(object): """ classdocs """ # ---------------------------------------------------------------------------------------------------------------- @classmethod def checksum(cls, text): cs = 0 for c in text[1:]: cs ^= ord(c) return cs # ---------------------------------------------------------------------------------------------------------------- @classmethod def construct(cls, line): main = line.strip().split("*") if len(main) != 2: raise ValueError("malformed line:%s" % (line.strip())) fields = [item.strip() for item in main[0].split(",")] cs = int(main[1], 16) if cs != cls.checksum(main[0]): raise ValueError("invalid checksum:%s" % (line.strip())) return NMEAReport(fields) # ---------------------------------------------------------------------------------------------------------------- def __init__(self, fields): """ Constructor """ self.__fields = fields def __len__(self): return len(self.__fields) # ---------------------------------------------------------------------------------------------------------------- @property def message_id(self): return self.str(0) if len(self) > 0 else None # ---------------------------------------------------------------------------------------------------------------- def int(self, index): number_str = self.str(index) number = None if number_str is None else int(number_str) return number def float(self, index, precision): index_str = self.str(index) number = None if index_str is None else float(index_str) if number is None: return None return round(number, precision) def str(self, index): return self.__fields[index] if len(self.__fields[index]) > 0 else None # ---------------------------------------------------------------------------------------------------------------- def __str__(self, *args, **kwargs): return "NMEAReport:{fields:%s}" % self.__fields
1,032
0
213
8376ebe3fb4d0496496aef10e2331b23800d0f80
2,280
py
Python
dojo/db_migrations/0063_jira_refactor.py
mtcolman/django-DefectDojo
76175aca446e077884bdb5e1d8e2a671a0840775
[ "BSD-3-Clause" ]
1,772
2018-01-22T23:32:15.000Z
2022-03-31T14:49:33.000Z
dojo/db_migrations/0063_jira_refactor.py
mtcolman/django-DefectDojo
76175aca446e077884bdb5e1d8e2a671a0840775
[ "BSD-3-Clause" ]
3,461
2018-01-20T19:12:28.000Z
2022-03-31T17:14:39.000Z
dojo/db_migrations/0063_jira_refactor.py
mtcolman/django-DefectDojo
76175aca446e077884bdb5e1d8e2a671a0840775
[ "BSD-3-Clause" ]
1,173
2018-01-23T07:10:23.000Z
2022-03-31T14:40:43.000Z
# Generated by Django 2.2.16 on 2020-11-07 11:31 from django.db import migrations, models import django.db.models.deletion
35.076923
159
0.60307
# Generated by Django 2.2.16 on 2020-11-07 11:31 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('dojo', '0062_add_vuln_id_from_tool'), ] operations = [ migrations.DeleteModel( name='JIRA_Clone', ), migrations.DeleteModel( name='JIRA_Details_Cache', ), migrations.RenameModel( old_name='JIRA_PKey', new_name='JIRA_Project', ), migrations.AddField( model_name='jira_issue', name='jira_change', field=models.DateTimeField(help_text='The date the linked Jira issue was last modified.', null=True, verbose_name='Jira last update'), ), migrations.AddField( model_name='jira_issue', name='jira_creation', field=models.DateTimeField(help_text='The date a Jira issue was created from this finding.', null=True, verbose_name='Jira creation'), ), migrations.RenameModel( old_name='JIRA_Conf', new_name='JIRA_Instance', ), migrations.RenameField( model_name='jira_project', old_name='conf', new_name='jira_instance', ), migrations.AddField( model_name='jira_issue', name='jira_project', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='dojo.JIRA_Project'), ), migrations.AddField( model_name='JIRA_Project', name='engagement', field=models.OneToOneField(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='dojo.Engagement'), ), migrations.AlterField( model_name='JIRA_Project', name='product', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='dojo.Product'), ), migrations.AlterField( model_name='jira_project', name='jira_instance', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='dojo.JIRA_Instance', verbose_name='JIRA Instance'), ), ]
0
2,132
23
f2e3923b50c3ce6f9c16b2637347a6d6f8f1281d
584
py
Python
chaoshi/chaoshi/items.py
basicworld/scrapy.com.jd
414a1827909c514dddedb552b8732d5b07a5d441
[ "MIT" ]
null
null
null
chaoshi/chaoshi/items.py
basicworld/scrapy.com.jd
414a1827909c514dddedb552b8732d5b07a5d441
[ "MIT" ]
null
null
null
chaoshi/chaoshi/items.py
basicworld/scrapy.com.jd
414a1827909c514dddedb552b8732d5b07a5d441
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # http://doc.scrapy.org/en/latest/topics/items.html import scrapy
24.333333
51
0.690068
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # http://doc.scrapy.org/en/latest/topics/items.html import scrapy class ChaoshiCategoryItem(scrapy.Item): # define the fields for your item here like: cateUrl = scrapy.Field() # ๅˆ†็ฑป็š„url cateName = scrapy.Field() # ๅˆ†็ฑปๅ็งฐ ๅญ˜ๅ‚จไบŒ็บงๅˆ†็ฑป class ChaoshiGoodsItem(scrapy.Item): # define the fields for your item here like: goodsName = scrapy.Field() goodsId = scrapy.Field() goodsUrl = scrapy.Field() goodsPrice = scrapy.Field() goodsPicUrl = scrapy.Field()
0
396
46
d33b2a5160487e545d49f24a69782cecb3600af5
215
py
Python
Tests/Test_add_new_movie.py
agafonovOleg402Targeting/Se-python-16
bc0bf860f470d0c325ee8bb9aaae4059352fb18a
[ "Apache-2.0" ]
null
null
null
Tests/Test_add_new_movie.py
agafonovOleg402Targeting/Se-python-16
bc0bf860f470d0c325ee8bb9aaae4059352fb18a
[ "Apache-2.0" ]
null
null
null
Tests/Test_add_new_movie.py
agafonovOleg402Targeting/Se-python-16
bc0bf860f470d0c325ee8bb9aaae4059352fb18a
[ "Apache-2.0" ]
null
null
null
from conftest import app from model.User import User
23.888889
33
0.725581
from conftest import app from model.User import User def test_add_new_movie(app): app.login(User.Admin()) assert app.is_logged_in() app.add_new_movie() app.logout() assert app.is_not_logged_in()
140
0
23
3c8d880715812d51e091ed9db6fa6f0f5b6498ad
27,654
py
Python
tests/unittests/BuscoConfig_unittests.py
aglabx/aglab_busco
a6f763e044cf649d82bc40b45b1c67c7dc09ee38
[ "MIT" ]
null
null
null
tests/unittests/BuscoConfig_unittests.py
aglabx/aglab_busco
a6f763e044cf649d82bc40b45b1c67c7dc09ee38
[ "MIT" ]
null
null
null
tests/unittests/BuscoConfig_unittests.py
aglabx/aglab_busco
a6f763e044cf649d82bc40b45b1c67c7dc09ee38
[ "MIT" ]
null
null
null
import unittest from busco import BuscoConfig import shutil import os from unittest.mock import Mock from unittest.mock import patch, call
42.349158
88
0.658567
import unittest from busco import BuscoConfig import shutil import os from unittest.mock import Mock from unittest.mock import patch, call class TestBuscoConfig(unittest.TestCase): maxDiff = None def setUp(self): self.maxDiff = None self.base_config = "config/config.ini" self.params = { "auto-lineage": False, "auto-lineage-euk": False, "auto-lineage-prok": False, "config_file": None, "cpu": None, "evalue": None, "force": False, "help": "==SUPPRESS==", "in": None, "limit": None, "lineage_dataset": None, "list_datasets": "==SUPPRESS==", "mode": None, "offline": False, "out": None, "out_path": None, "quiet": False, "restart": False, "metaeuk_parameters": None, "metaeuk_rerun_parameters": None, "use_augustus": False, "augustus_parameters": None, "augustus_species": None, "long": False, "datasets_version": None, "download_base_url": None, "download_path": None, "update-data": False, "version": "==SUPPRESS==", "tar": False, } self.test_params = { "in": "input_test", "out": "output_test", "mode": "mode_test", } self.config_structure = { "augustus": ["path", "command"], "busco_run": [ "in", "out", "out_path", "mode", "auto-lineage", "auto-lineage-prok", "auto-lineage-euk", "cpu", "force", "restart", "download_path", "datasets_version", "quiet", "offline", "long", "augustus_parameters", "augustus_species", "download_base_url", "lineage_dataset", "update-data", "metaeuk_parameters", "metaeuk_rerun_parameters", "evalue", "limit", "use_augustus", "batch_mode", "tar", ], "etraining": ["path", "command"], "gff2gbSmallDNA.pl": ["path", "command"], "hmmsearch": ["path", "command"], "makeblastdb": ["path", "command"], "metaeuk": ["path", "command"], "new_species.pl": ["path", "command"], "optimize_augustus.pl": ["path", "command"], "prodigal": ["path", "command"], "sepp": ["path", "command"], "tblastn": ["path", "command"], } def test_read_config_file(self): config = BuscoConfig.BaseConfig() config.conf_file = self.base_config config._load_config_file() self.assertIn("busco_run", config.sections()) def test_read_config_file_ioerror(self): with self.assertRaises(BuscoConfig.BatchFatalError): config = BuscoConfig.BaseConfig() config.conf_file = "/path/not/found" config._load_config_file() def test_read_config_file_parseerror(self): config_path = "tests/config_parseerror_test.ini" test_config_contents = "in=input_file\n" with open(config_path, "w") as f: f.write(test_config_contents) with self.assertRaises(BuscoConfig.BatchFatalError): config = BuscoConfig.BaseConfig() config.conf_file = config_path config._load_config_file() os.remove(config_path) def test_read_config_file_duplicateerror(self): config_path = "tests/config_duplicate_test.ini" test_config_contents = "[busco_run]\n" "in=input_file\n" "in=input_file\n" with open(config_path, "w") as f: f.write(test_config_contents) with self.assertRaises(BuscoConfig.BatchFatalError): config = BuscoConfig.BaseConfig() config.conf_file = config_path config._load_config_file() os.remove(config_path) def test_config_update_args_bool(self): update_params = { "force": True, "offline": True, "quiet": True, "restart": True, } config = BuscoConfig.BuscoConfigMain(self.base_config, update_params) config.configure() self.assertEqual( update_params, {key: config.getboolean("busco_run", key) for key in update_params.keys()}, ) def test_config_update_args_nonbool(self): update_params = { "cpu": "10", "evalue": "0.01", "in": "input_file", "limit": "1", "lineage_dataset": "test", "mode": "test", "out": "test", "out_path": "test", } config = BuscoConfig.BuscoConfigMain(self.base_config, update_params) config.configure() self.assertEqual( update_params, {key: config.get("busco_run", key) for key in update_params.keys()}, ) def test_config_default_params(self): correct_default_params = { "auto-lineage": False, "auto-lineage-euk": False, "auto-lineage-prok": False, "cpu": "1", "datasets_version": "odb10", "download_base_url": "https://busco-data.ezlab.org/v5/data/", "download_path": os.path.join(os.getcwd(), "busco_downloads"), "evalue": "0.001", "force": False, "limit": "3", "long": False, "offline": False, "out_path": os.getcwd(), "quiet": False, "restart": False, "update-data": False, "use_augustus": False, } config = BuscoConfig.BuscoConfigMain(self.base_config, {}) config.configure() config_default_filled = { key: config.get("busco_run", key) for key in correct_default_params } self.assertEqual( {key: str(val) for key, val in correct_default_params.items()}, config_default_filled, ) @patch( "busco.BuscoConfig.BuscoConfigMain.getboolean", side_effect=[True, False, False, True, False], ) def test_config_auto_lineage_settings(self, *args): for _ in range(2): config = BuscoConfig.BuscoConfigMain(self.base_config, {}) config.configure() self.assertEqual(config.get("busco_run", "auto-lineage"), "True") @patch("busco.BuscoConfig.BuscoConfigMain.getboolean", return_value=True) def test_config_auto_lineage_both_selected_warning(self, *args): with self.assertLogs(BuscoConfig.logger, "WARNING"): config = BuscoConfig.BuscoConfigMain(self.base_config, {}) config.configure() self.assertEqual(config.get("busco_run", "auto-lineage-euk"), "False") self.assertEqual(config.get("busco_run", "auto-lineage-prok"), "False") def test_mandatory_keys_check_log(self): with self.assertLogs(BuscoConfig.logger, 20): params_test = {"in": "input_file", "out": "output_name", "mode": "genome"} config = BuscoConfig.BuscoConfigMain(self.base_config, params_test) config.configure() config._check_mandatory_keys_exist() def test_mandatory_keys_check_missing_param_in(self): with self.assertRaises(BuscoConfig.BatchFatalError): params_test = {"out": "output_name", "mode": "genome"} config = BuscoConfig.BuscoConfigMain(self.base_config, params_test) config.configure() config._check_mandatory_keys_exist() def test_mandatory_keys_check_missing_param_mode(self): with self.assertRaises(BuscoConfig.BatchFatalError): params_test = {"in": "input_file", "out": "output_name"} config = BuscoConfig.BuscoConfigMain(self.base_config, params_test) config.configure() config._check_mandatory_keys_exist() def test_mandatory_keys_check_missing_param_out(self): with self.assertRaises(BuscoConfig.BatchFatalError): params_test = {"in": "input_file", "mode": "genome"} config = BuscoConfig.BuscoConfigMain(self.base_config, params_test) config.configure() config._check_mandatory_keys_exist() def test_previous_run_check_without_existing_run(self): output_dir = os.path.join(os.getcwd(), self.test_params["out"]) if os.path.exists(output_dir): shutil.rmtree(output_dir) config = BuscoConfig.BuscoConfigMain(self.base_config, self.test_params) config.configure() self.assertIsNone(config._check_no_previous_run()) def test_previous_run_check_with_existing_run_no_force(self): previous_run_name = "test_busco_run_dir" os.makedirs(previous_run_name, exist_ok=True) self.test_params["out"] = previous_run_name self.test_params["force"] = "False" with self.assertRaises(BuscoConfig.BatchFatalError): config = BuscoConfig.BuscoConfigMain(self.base_config, self.test_params) config.configure() config._check_no_previous_run() shutil.rmtree(previous_run_name) def test_previous_run_check_with_existing_run_with_force_and_log(self): previous_run_name = "test_busco_run_dir" os.makedirs(previous_run_name, exist_ok=True) self.test_params["out"] = previous_run_name self.test_params["force"] = "True" with self.assertLogs(BuscoConfig.logger, 20): config = BuscoConfig.BuscoConfigMain(self.base_config, self.test_params) config.configure() config._check_no_previous_run() self.assertFalse(os.path.exists(previous_run_name)) try: # In case of test failure, remove tmp folder anyway shutil.rmtree(previous_run_name) except FileNotFoundError: pass def test_previous_run_check_without_existing_run_and_restart(self): self.test_params["restart"] = "True" with self.assertLogs(BuscoConfig.logger, "WARNING"): config = BuscoConfig.BuscoConfigMain(self.base_config, self.test_params) config.configure() config._check_no_previous_run() self.assertEqual(config.getboolean("busco_run", "restart"), False) def test_previous_run_check_with_existing_run_and_restart(self): previous_run_name = "test_busco_run_dir" os.makedirs(previous_run_name, exist_ok=True) self.test_params.update({"out": previous_run_name, "restart": True}) with self.assertLogs(BuscoConfig.logger, "INFO"): config = BuscoConfig.BuscoConfigMain(self.base_config, self.test_params) config.configure() config._check_no_previous_run() self.assertEqual(config.getboolean("busco_run", "restart"), True) shutil.rmtree(previous_run_name) def test_create_required_paths(self): config = BuscoConfig.BuscoConfigMain(self.base_config, self.test_params) config.configure() config.main_out = os.path.join( config.get("busco_run", "out_path"), config.get("busco_run", "out") ) config._create_required_paths() output_dir = os.path.join(os.getcwd(), self.test_params["out"]) self.assertTrue(os.path.exists(output_dir)) shutil.rmtree(output_dir) def test_config_structure(self): config = BuscoConfig.BuscoConfigMain(self.base_config, self.test_params) config.configure() self.assertEqual( set(config.PERMITTED_OPTIONS), set(self.config_structure["busco_run"]) ) def test_catch_disallowed_keys(self): for section_name in self.config_structure: with self.assertRaises(BuscoConfig.BatchFatalError): config = BuscoConfig.BuscoConfigMain(self.base_config, self.test_params) config.configure() config.set(section_name, "forbidden_option", "forbidden_value") config._check_allowed_keys() def test_out_value_check_invalid(self): for str_format in ["/path/to/output", "output/"]: self.test_params["out"] = str_format with self.assertRaises(BuscoConfig.BatchFatalError): config = BuscoConfig.BuscoConfigMain(self.base_config, self.test_params) config.configure() config._check_out_value() def test_out_value_check_valid(self): config = BuscoConfig.BuscoConfigMain(self.base_config, self.test_params) config.configure() self.assertIsNone(config._check_out_value()) def test_limit_value_out_of_range(self): for lim_val in [-1, 0, 25]: self.test_params["limit"] = lim_val with self.assertRaises(BuscoConfig.BatchFatalError): config = BuscoConfig.BuscoConfigMain(self.base_config, self.test_params) config.configure() config._check_limit_value() def test_limit_value_within_range(self): for lim_val in [1, 20]: self.test_params["limit"] = lim_val config = BuscoConfig.BuscoConfigMain(self.base_config, self.test_params) config.configure() self.assertIsNone(config._check_limit_value()) def test_evalue_nondefault(self): self.test_params["evalue"] = 1 with self.assertLogs(BuscoConfig.logger, level="WARNING"): config = BuscoConfig.BuscoConfigMain(self.base_config, self.test_params) config.configure() config._check_evalue() @patch("__main__.BuscoConfig_unittests.BuscoConfig.logger.warning") def test_evalue_default(self, mock_logger): self.test_params["evalue"] = 0.001 config = BuscoConfig.BuscoConfigMain(self.base_config, self.test_params) config.configure() config._check_evalue() mock_logger.assert_not_called() def test_expand_all_paths_tilde(self): config = BuscoConfig.BuscoConfigMain(self.base_config, self.test_params) config.configure() config.set("busco_run", "download_path", "~/test_download_path") config._expand_all_paths() self.assertEqual( config.get("busco_run", "download_path"), os.path.expanduser("~/test_download_path"), ) def test_expand_all_paths_relative_path_current_dir(self): config = BuscoConfig.BuscoConfigMain(self.base_config, self.test_params) config.configure() config.set("busco_run", "out_path", "./test_out_path") config._expand_all_paths() self.assertEqual( config.get("busco_run", "out_path"), os.path.abspath("./test_out_path") ) def test_expand_all_paths_relative_path_parent_dir(self): config = BuscoConfig.BuscoConfigMain(self.base_config, self.test_params) config.configure() config.set("busco_run", "in", "../test_input_file") config._expand_all_paths() self.assertEqual( config.get("busco_run", "in"), os.path.abspath("../test_input_file") ) def test_expand_all_paths_hmmsearch(self): config = BuscoConfig.BuscoConfigMain(self.base_config, self.test_params) config.configure() config.set("hmmsearch", "path", "~/test_hmmsearch_path") config._expand_all_paths() self.assertEqual( config.get("hmmsearch", "path"), os.path.expanduser("~/test_hmmsearch_path") ) @patch( "__main__.BuscoConfig_unittests.BuscoConfig.os.path.isdir", return_value=True ) def test_batch_mode_true(self, *args): config = BuscoConfig.BuscoConfigMain(self.base_config, self.test_params) config.set = Mock() config._check_batch_mode() calls = [call("busco_run", "batch_mode", "True")] config.set.assert_has_calls(calls) @patch( "__main__.BuscoConfig_unittests.BuscoConfig.os.path.isdir", return_value=False ) @patch( "__main__.BuscoConfig_unittests.BuscoConfig.os.path.isfile", return_value=True ) def test_batch_mode_false_with_file(self, *args): config = BuscoConfig.BuscoConfigMain(self.base_config, self.test_params) config.set = Mock() config._check_batch_mode() @patch( "__main__.BuscoConfig_unittests.BuscoConfig.os.path.isdir", return_value=False ) @patch( "__main__.BuscoConfig_unittests.BuscoConfig.os.path.isfile", return_value=False ) def test_batch_mode_false_with_error(self, *args): config = BuscoConfig.BuscoConfigMain(self.base_config, self.test_params) config.set = Mock() with self.assertRaises(BuscoConfig.BatchFatalError): config._check_batch_mode() def test_required_input_exists_false(self): input_filename = "test_input_file" if os.path.exists(input_filename): os.remove(input_filename) self.test_params["in"] = input_filename config = BuscoConfig.BuscoConfigMain(self.base_config, self.test_params) config.configure() with self.assertRaises(BuscoConfig.BatchFatalError): config._check_required_input_exists() @patch("__main__.BuscoConfig_unittests.BuscoConfig.BuscoDownloadManager") def test_downloader_initialized(self, mock_downloader): config = BuscoConfig.BuscoConfigMain(self.base_config, self.test_params) config.configure() config._init_downloader() mock_downloader.assert_called() @patch("__main__.BuscoConfig_unittests.BuscoConfig.PrettyLog") def test_log_config(self, mock_pretty_log): config = BuscoConfig.BuscoConfigMain(self.base_config, self.test_params) config.configure() with self.assertLogs(BuscoConfig.logger, level="DEBUG"): config.log_config() mock_pretty_log.assert_called() @patch.object(BuscoConfig.BuscoConfigMain, "log_config") @patch.object(BuscoConfig.BuscoConfigMain, "_init_downloader") @patch.object(BuscoConfig.BuscoConfigMain, "_check_batch_mode") @patch.object(BuscoConfig.BuscoConfigMain, "_check_required_input_exists") @patch.object(BuscoConfig.BuscoConfigMain, "_expand_all_paths") @patch.object(BuscoConfig.BuscoConfigMain, "_check_evalue") @patch.object(BuscoConfig.BuscoConfigMain, "_check_limit_value") @patch.object(BuscoConfig.BuscoConfigMain, "_check_out_value") @patch.object(BuscoConfig.BuscoConfigMain, "_check_allowed_keys") @patch.object(BuscoConfig.BuscoConfigMain, "_create_required_paths") @patch.object(BuscoConfig.BuscoConfigMain, "_check_no_previous_run") @patch.object(BuscoConfig.BuscoConfigMain, "_check_mandatory_keys_exist") def test_validation( self, mock_check_mandatory_keys, mock_check_no_previous_run, mock_create_required_paths, mock_check_allowed_keys, mock_check_out_value, mock_check_limit_value, mock_check_evalue, mock_expand_all_paths, mock_check_input, mock_check_batch, mock_init_downloader, mock_log_config, ): config = BuscoConfig.BuscoConfigMain(self.base_config, self.test_params) config.configure() config.validate() mock_check_mandatory_keys.assert_called() mock_check_no_previous_run.assert_called() mock_create_required_paths.assert_called() mock_check_allowed_keys.assert_called() mock_check_out_value.assert_called() mock_check_limit_value.assert_called() mock_check_evalue.assert_called() mock_expand_all_paths.assert_called() mock_check_input.assert_called() mock_check_batch.assert_called() mock_init_downloader.assert_called() mock_log_config.assert_called() def test_check_lineage_present_false(self): try: del self.test_params["lineage_dataset"] # just in case, probably redundant except KeyError: pass config = BuscoConfig.BuscoConfigMain(self.base_config, self.test_params) config.configure() self.assertFalse(config.check_lineage_present()) def test_check_lineage_present_true_with_dataset_version_correct(self): self.test_params["lineage_dataset"] = "test_dataset_odb10" self.test_params["datasets_version"] = "odb10" config = BuscoConfig.BuscoConfigMain(self.base_config, self.test_params) config.configure() config.check_lineage_present() self.assertEqual( config.get("busco_run", "datasets_version"), self.test_params["datasets_version"], ) def test_check_lineage_present_true_with_dataset_version_mismatch(self): self.test_params["lineage_dataset"] = "test_dataset_odb10" self.test_params["datasets_version"] = "odb11" config = BuscoConfig.BuscoConfigMain(self.base_config, self.test_params) config.configure() with self.assertLogs(BuscoConfig.logger, level="WARNING"): config.check_lineage_present() self.assertEqual( config.get("busco_run", "datasets_version"), self.test_params["lineage_dataset"].split("_")[-1], ) def test_check_lineage_present_true_with_odb_missing(self): self.test_params["lineage_dataset"] = "test_dataset" self.test_params["datasets_version"] = "odb10" config = BuscoConfig.BuscoConfigMain(self.base_config, self.test_params) config.configure() config.check_lineage_present() self.assertEqual( config.get("busco_run", "lineage_dataset"), "{}_{}".format( self.test_params["lineage_dataset"], self.test_params["datasets_version"], ), ) def test_check_lineage_present_true_with_invalid_dataset_version(self): self.test_params["lineage_dataset"] = "test_dataset" self.test_params["datasets_version"] = "odb11" config = BuscoConfig.BuscoConfigMain(self.base_config, self.test_params) config.configure() with self.assertRaises(BuscoConfig.BatchFatalError): config.check_lineage_present() def test_set_results_dirname(self): config = BuscoConfig.BuscoConfigMain(self.base_config, self.test_params) config.configure() test_dataset_path = "/path/to/lineage_dataset" with patch("busco.BuscoConfig.BuscoConfig.set"): config.set_results_dirname(test_dataset_path) config.set.assert_called_with( "busco_run", "lineage_results_dir", "run_lineage_dataset" ) @patch("busco.BuscoConfig.BuscoConfigAuto.load_dataset_config") @patch("busco.BuscoConfig.BuscoConfigAuto.download_lineage_file") @patch("busco.BuscoConfig.BuscoConfigAuto._create_required_paths") @patch("busco.BuscoConfig.BuscoConfigAuto.set_results_dirname") @patch("busco.BuscoConfig.BuscoConfig") @patch("busco.BuscoConfig.BuscoConfigAuto._propagate_config") def test_autoconfig_init_propagates_mainconfig(self, mock_propagate, *args): config = BuscoConfig.BuscoConfigMain(self.base_config, self.test_params) config.configure() BuscoConfig.BuscoConfigAuto(config, None) mock_propagate.assert_called_with(config) @patch("busco.BuscoConfig.BuscoConfigAuto.load_dataset_config") @patch("busco.BuscoConfig.BuscoConfigAuto.download_lineage_file") @patch("busco.BuscoConfig.BuscoConfigAuto._create_required_paths") @patch("busco.BuscoConfig.BuscoConfig") @patch("busco.BuscoConfig.BuscoConfigAuto._propagate_config") @patch("busco.BuscoConfig.BuscoConfigAuto.set_results_dirname") def test_autoconfig_init_sets_results_dirname(self, mock_set_dirname, *args): BuscoConfig.BuscoConfigAuto(None, "lineage") mock_set_dirname.assert_called_with("lineage") @patch("busco.BuscoConfig.BuscoConfigAuto.load_dataset") @patch("busco.BuscoConfig.BuscoConfig") @patch("busco.BuscoConfig.BuscoConfigAuto._propagate_config") @patch("busco.BuscoConfig.BuscoConfigAuto._create_required_paths") def test_autoconfig_init_creates_paths(self, mock_create_paths, *args): BuscoConfig.BuscoConfigAuto(None, None) mock_create_paths.assert_called() @patch("busco.BuscoConfig.BuscoConfigAuto.load_dataset_config") @patch("busco.BuscoConfig.BuscoConfig") @patch("busco.BuscoConfig.BuscoConfigAuto._propagate_config") @patch("busco.BuscoConfig.BuscoConfigAuto.set_results_dirname") @patch("busco.BuscoConfig.BuscoConfigAuto._create_required_paths") @patch("busco.BuscoConfig.BuscoConfigAuto.download_lineage_file") def test_autoconfig_init_downloads_lineage(self, mock_download_lineage, *args): BuscoConfig.BuscoConfigAuto(None, "lineage") mock_download_lineage.assert_called_with("lineage") @patch("busco.BuscoConfig.BuscoConfig") @patch("busco.BuscoConfig.BuscoConfigAuto._propagate_config") @patch("busco.BuscoConfig.BuscoConfigAuto.set_results_dirname") @patch("busco.BuscoConfig.BuscoConfigAuto._create_required_paths") @patch("busco.BuscoConfig.BuscoConfigAuto.download_lineage_file") @patch("busco.BuscoConfig.BuscoConfigAuto.load_dataset_config") def test_autoconfig_init_loads_lineage_config(self, mock_load_dataset, *args): BuscoConfig.BuscoConfigAuto(None, None) mock_load_dataset.assert_called() @patch("busco.BuscoConfig.BuscoConfigAuto._propagate_config") @patch("busco.BuscoConfig.BuscoConfigAuto._create_required_paths") @patch("busco.BuscoConfig.BuscoConfigAuto.load_dataset") @patch("busco.BuscoConfig.BuscoConfig.__init__") def test_autoconfig_init_calls_super(self, mock_config_parent, *args): BuscoConfig.BuscoConfigAuto(None, None) mock_config_parent.assert_called() @patch("busco.BuscoConfig.BuscoConfigAuto._create_required_paths") @patch("busco.BuscoConfig.BuscoConfigAuto.download_lineage_file") @patch("busco.BuscoConfig.BuscoConfigAuto.load_dataset_config") def test_propagate_config(self, *args): config = BuscoConfig.BuscoConfigMain(self.base_config, self.params) config.configure() config.downloader = Mock() autoconfig = BuscoConfig.BuscoConfigAuto(config, "test") autoconfig._propagate_config(config) self.assertEqual(autoconfig, config) @patch("busco.BuscoConfig.BuscoConfigAuto.load_dataset_config") @patch("busco.BuscoConfig.BuscoConfigAuto.download_lineage_file") @patch("busco.BuscoConfig.BuscoConfigAuto._propagate_config") @patch("busco.BuscoConfig.BuscoConfigAuto.set_results_dirname") @patch("busco.BuscoConfig.BuscoConfigAuto.get", return_value="test") @patch("busco.BuscoConfig.BuscoConfig._create_required_paths") def test_autolineage_create_path_method_calls_parent( self, mock_create_paths, *args ): config = BuscoConfig.BuscoConfigMain(self.base_config, self.test_params) config.configure() BuscoConfig.BuscoConfigAuto(config, None) mock_create_paths.assert_called_with("test/auto_lineage") def tearDown(self): self.test_params = {}
21,546
5,945
23
be1e37cc8ea7da820395a7b6bd5ced6c48fb173b
1,366
py
Python
migrations/versions/8fde055f9d29_add_driver_switch_activity_status.py
MTES-MCT/mobilic-api
b3754de2282262fd60a27dc90e40777df9c1e230
[ "MIT" ]
null
null
null
migrations/versions/8fde055f9d29_add_driver_switch_activity_status.py
MTES-MCT/mobilic-api
b3754de2282262fd60a27dc90e40777df9c1e230
[ "MIT" ]
8
2021-04-19T17:47:55.000Z
2022-02-16T17:40:18.000Z
migrations/versions/8fde055f9d29_add_driver_switch_activity_status.py
MTES-MCT/mobilic-api
b3754de2282262fd60a27dc90e40777df9c1e230
[ "MIT" ]
null
null
null
"""Add driver switch activity status Revision ID: 8fde055f9d29 Revises: 8fe63e4276dc Create Date: 2020-02-15 16:46:48.890628 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = "8fde055f9d29" down_revision = "8fe63e4276dc" branch_labels = None depends_on = None
23.551724
62
0.590044
"""Add driver switch activity status Revision ID: 8fde055f9d29 Revises: 8fe63e4276dc Create Date: 2020-02-15 16:46:48.890628 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = "8fde055f9d29" down_revision = "8fe63e4276dc" branch_labels = None depends_on = None def upgrade(): op.drop_constraint("activityvalidationstatus", "activity") op.alter_column( "activity", "validation_status", type_=sa.Enum( "no_activity_switch", "driver_switch", "unauthorized_submitter", "conflicting_with_history", "validated", "pending", "rejected", name="activityvalidationstatus", native_enum=False, ), nullable=False, ) # ### end Alembic commands ### def downgrade(): op.drop_constraint("activityvalidationstatus", "activity") op.alter_column( "activity", "validation_status", type_=sa.Enum( "no_activity_switch", "unauthorized_submitter", "conflicting_with_history", "validated", "pending", "rejected", name="activityvalidationstatus", native_enum=False, ), nullable=False, ) # ### end Alembic commands ###
1,001
0
46
a5ae2c8bc00df24165fd508fc5d03ce301c458c9
11,501
py
Python
uweclang/corpus/manager.py
SkySchermer/uweclang
c4404b550c8c1e6d22eff0a5ddeb8127080b2ad3
[ "MIT" ]
null
null
null
uweclang/corpus/manager.py
SkySchermer/uweclang
c4404b550c8c1e6d22eff0a5ddeb8127080b2ad3
[ "MIT" ]
null
null
null
uweclang/corpus/manager.py
SkySchermer/uweclang
c4404b550c8c1e6d22eff0a5ddeb8127080b2ad3
[ "MIT" ]
null
null
null
"""UWEC Language Tools manager module Provides functions for defining and managing a corpus. """ # Python 3 forward compatability imports. from __future__ import print_function from __future__ import division from __future__ import absolute_import from __future__ import unicode_literals import sys import os import hashlib import uweclang.batch from itertools import chain # Import async module. import trollius as asyncio from trollius import From # Setup logger. import logging logging.getLogger(__name__).addHandler(logging.NullHandler()) def _default_filter(meta_data): """The default meta data filter which accepts all files. """ return True def default_metadata_function(filename): """A function producing a dictionary of metadata for a given file. This is the default implementation producing the file name, location, extension, and file size. Arguments: filename (str): The name of the file. Returns: None: If the file path is invalid. (dict): A dictionary containing the metadata. """ if not (filename and os.path.isfile(filename)): return None metadata = dict() # Collect basic metadata: metadata['filename'] = os.path.basename(filename) metadata['location'] = os.path.abspath(filename) ext = uweclang.split_ext(filename) metadata['base'] = ext[0] metadata['extension'] = ext[1] metadata['size'] = os.path.getsize(filename) # Get word count: # with open(os.path.abspath(filename), 'r') as f: # words = 0 # buf_size = 1024 * 1024 # read_f = f.read # loop optimization # buf = read_f(buf_size) # while buf: # try: # words += buf.count('/') # buf = read_f(buf_size) # except UnicodeDecodeError as e: # pass # Skip decode error? metadata['word_count'] = 0#words return metadata def get_file_md5(filename): """Returns the MD5 hash of the given file. """ block_size = 65536 hasher = hashlib.md5() with open(filename, 'rb') as f: buf = f.read(block_size) while len(buf) > 0: hasher.update(buf) buf = f.read(block_size) return hasher.hexdigest() class Corpus(object): """A corpus object for managing a collection of tagged text files. Attributes: file_metadata (dict): A dictionary containing corpus meta data for files indexed by ID. """ def add_files(self, search_locations, extensions=None, recursive=False): """Searches for files in the given locations and adds them to the corpus. Arguments: search_locations ([str]): A list of files and directories to search. extensions ([str]): The file extensions to find in directories. Defaults to None, which will find all files. recursive: (bool): Whether to search directories recursively. Note: Files given in search_locations that do not have the specified extensions will be included in the output. The extensions argument only effects files in the directories given. """ log = logging.getLogger('uweclang.corpus.manager') files = uweclang.get_files(search_locations, extensions=extensions, recursive=recursive) self._file_count += files[1] for f in files[0]: log.debug('Adding file %s', str(f)) # Get file meta data: self.file_metadata[self._current_id] = self._meta_op(f) meta = self.file_metadata[self._current_id] meta['corpus_id'] = self._current_id # meta['MD5'] = get_file_md5(f) # Get file count: self._word_count += meta['word_count'] # Set next file ID: self._current_id += 1 # Log File add. log.info('Adding %s files to corpus.', self._file_count) @property @property def get_file_ids(self, predicate=None): """Returns a list of file ids in the corpus. Arguments: predicate (dict -> bool): A predicate for selecting files based on metadata. Only file ids satisfying the predicate will be returned. """ if predicate: return (k for k in self.file_metadata.keys() if predicate(file_metadata[k])) else: return self.file_metadata.keys() def get_file_text(self, file_id): """Returns the tagged text of the file given by its ID.""" if not self.file_metadata.get(file_id): return None with open(self.file_metadata[file_id]['location'], 'r') as f: return f.read() def file_modified(self, file_id): """Returns true if the file's MD5 hash has changes since it was added to the corpus. """ if not self.file_metadata.get(file_id): return None md5 = get_file_md5(self.file_metadata[file_id]['location']) return md5 != self.file_metadata[file_id]['MD5'] def get_file_metadata(self, file_id): """Returns the text of the file associated with the given file_id.""" return self.file_metadata.get(file_id) def get_id_for_file(self, filename): """Returns the id of the given file in the corpus or None if it is not present. """ for k, v in self.file_metadata.items(): if v['location'] == os.path.abspath(filename): return k return None def files(self, meta_filter=None, exclude_modified=False): """Returns an iterator over the metadata and text of each file in the corpus. """ meta_filter = meta_filter or _default_filter for x in self.get_file_ids(): if (meta_filter(self.get_file_metadata(x)) and not (exclude_modified and self.file_modified(x))): yield (self.get_file_metadata(x), self.get_file_text(x)) def execute_queries( self, queries, definitions=None, meta_filter=None, exclude_modified=False): """Runs the given queries on the corpus asynchronously. Arguments: queries ([Query]): The queries to run. definitions (dict): A dictionary defining query terms. meta_filter (dict -> bool): A function taking file meta data and returning whether the file should be queried. exclude_modified (bool): Whether to exclude modified files from the query. Returns: [Result]: An iterator producing the results of the query. """ log = logging.getLogger('uweclang.corpus.manager') results = [] # Get filtered files from corpus. try: files = self.files( meta_filter=meta_filter, exclude_modified=exclude_modified) except Exception as e: raise CorpusException(e) try: log.debug('Executing query batch.') for index, (meta, tagged) in enumerate(files): # Extract TaggedToken list from file. text = list(chain.from_iterable(uweclang.read_tagged_string(tagged))) # Execute search. for i, query in enumerate(queries): log.debug('Running query #%d on file #%d', i, index) res = query.match(text, source_id=index, definitions=definitions) if res: results.append(res) return chain.from_iterable(results) except Exception as e: raise QueryExecutionError(e) def execute_queries_async( self, queries, definitions=None, meta_filter=None, exclude_modified=False): """Runs the given queries on the corpus asynchronously. Arguments: queries ([Query]): The queries to run. definitions (dict): A dictionary defining query terms. meta_filter (dict -> bool): A function taking file meta data and returning whether the file should be queried. exclude_modified (bool): Whether to exclude modified files from the query. Returns: [Result]: An iterator producing the results of the query. """ log = logging.getLogger('uweclang.corpus.manager') results = [] # Get filtered files from corpus. try: files = self.files( meta_filter=meta_filter, exclude_modified=exclude_modified) except Exception as e: raise CorpusException(e) status = { 'completed' : 0, 'total': 0, } # Dictionary needed since `nonlocal` is not in Python 2.7. log.debug('Executing query batch (async.)') # Function for searching a single file. # Worker function for running a file search. @asyncio.coroutine # Create asynchronous task list. loop = asyncio.get_event_loop() tasks = [] for index, (meta, tagged) in enumerate(files): log.debug('Added task %d', index) tasks.append(asyncio.ensure_future(worker(meta, tagged, index))) # Run tasks. status['total'] = len(tasks) log.info('Starting %d tasks.', status['total']) data = loop.run_until_complete(asyncio.gather(*tuple(tasks))) # Shutdown event loop and logger. loop.close() logging.shutdown() results = (task.result() for task in tasks if task.result()) return chain.from_iterable(results)
33.144092
85
0.589949
"""UWEC Language Tools manager module Provides functions for defining and managing a corpus. """ # Python 3 forward compatability imports. from __future__ import print_function from __future__ import division from __future__ import absolute_import from __future__ import unicode_literals import sys import os import hashlib import uweclang.batch from itertools import chain # Import async module. import trollius as asyncio from trollius import From # Setup logger. import logging logging.getLogger(__name__).addHandler(logging.NullHandler()) def _default_filter(meta_data): """The default meta data filter which accepts all files. """ return True def default_metadata_function(filename): """A function producing a dictionary of metadata for a given file. This is the default implementation producing the file name, location, extension, and file size. Arguments: filename (str): The name of the file. Returns: None: If the file path is invalid. (dict): A dictionary containing the metadata. """ if not (filename and os.path.isfile(filename)): return None metadata = dict() # Collect basic metadata: metadata['filename'] = os.path.basename(filename) metadata['location'] = os.path.abspath(filename) ext = uweclang.split_ext(filename) metadata['base'] = ext[0] metadata['extension'] = ext[1] metadata['size'] = os.path.getsize(filename) # Get word count: # with open(os.path.abspath(filename), 'r') as f: # words = 0 # buf_size = 1024 * 1024 # read_f = f.read # loop optimization # buf = read_f(buf_size) # while buf: # try: # words += buf.count('/') # buf = read_f(buf_size) # except UnicodeDecodeError as e: # pass # Skip decode error? metadata['word_count'] = 0#words return metadata def get_file_md5(filename): """Returns the MD5 hash of the given file. """ block_size = 65536 hasher = hashlib.md5() with open(filename, 'rb') as f: buf = f.read(block_size) while len(buf) > 0: hasher.update(buf) buf = f.read(block_size) return hasher.hexdigest() class Corpus(object): """A corpus object for managing a collection of tagged text files. Attributes: file_metadata (dict): A dictionary containing corpus meta data for files indexed by ID. """ def __init__(self, search_locations=[], extensions=None, recursive=False, meta_op=default_metadata_function): # Save metadata function. self._meta_op = meta_op self.file_metadata = dict() self._current_id = 0 self._file_count = 0 self._word_count = 0 self.add_files(search_locations, extensions=extensions, recursive=recursive) def add_files(self, search_locations, extensions=None, recursive=False): """Searches for files in the given locations and adds them to the corpus. Arguments: search_locations ([str]): A list of files and directories to search. extensions ([str]): The file extensions to find in directories. Defaults to None, which will find all files. recursive: (bool): Whether to search directories recursively. Note: Files given in search_locations that do not have the specified extensions will be included in the output. The extensions argument only effects files in the directories given. """ log = logging.getLogger('uweclang.corpus.manager') files = uweclang.get_files(search_locations, extensions=extensions, recursive=recursive) self._file_count += files[1] for f in files[0]: log.debug('Adding file %s', str(f)) # Get file meta data: self.file_metadata[self._current_id] = self._meta_op(f) meta = self.file_metadata[self._current_id] meta['corpus_id'] = self._current_id # meta['MD5'] = get_file_md5(f) # Get file count: self._word_count += meta['word_count'] # Set next file ID: self._current_id += 1 # Log File add. log.info('Adding %s files to corpus.', self._file_count) @property def word_count(self): return self._word_count @property def file_count(self): return self._file_count def get_file_ids(self, predicate=None): """Returns a list of file ids in the corpus. Arguments: predicate (dict -> bool): A predicate for selecting files based on metadata. Only file ids satisfying the predicate will be returned. """ if predicate: return (k for k in self.file_metadata.keys() if predicate(file_metadata[k])) else: return self.file_metadata.keys() def get_file_text(self, file_id): """Returns the tagged text of the file given by its ID.""" if not self.file_metadata.get(file_id): return None with open(self.file_metadata[file_id]['location'], 'r') as f: return f.read() def file_modified(self, file_id): """Returns true if the file's MD5 hash has changes since it was added to the corpus. """ if not self.file_metadata.get(file_id): return None md5 = get_file_md5(self.file_metadata[file_id]['location']) return md5 != self.file_metadata[file_id]['MD5'] def get_file_metadata(self, file_id): """Returns the text of the file associated with the given file_id.""" return self.file_metadata.get(file_id) def get_id_for_file(self, filename): """Returns the id of the given file in the corpus or None if it is not present. """ for k, v in self.file_metadata.items(): if v['location'] == os.path.abspath(filename): return k return None def files(self, meta_filter=None, exclude_modified=False): """Returns an iterator over the metadata and text of each file in the corpus. """ meta_filter = meta_filter or _default_filter for x in self.get_file_ids(): if (meta_filter(self.get_file_metadata(x)) and not (exclude_modified and self.file_modified(x))): yield (self.get_file_metadata(x), self.get_file_text(x)) def execute_queries( self, queries, definitions=None, meta_filter=None, exclude_modified=False): """Runs the given queries on the corpus asynchronously. Arguments: queries ([Query]): The queries to run. definitions (dict): A dictionary defining query terms. meta_filter (dict -> bool): A function taking file meta data and returning whether the file should be queried. exclude_modified (bool): Whether to exclude modified files from the query. Returns: [Result]: An iterator producing the results of the query. """ log = logging.getLogger('uweclang.corpus.manager') results = [] # Get filtered files from corpus. try: files = self.files( meta_filter=meta_filter, exclude_modified=exclude_modified) except Exception as e: raise CorpusException(e) try: log.debug('Executing query batch.') for index, (meta, tagged) in enumerate(files): # Extract TaggedToken list from file. text = list(chain.from_iterable(uweclang.read_tagged_string(tagged))) # Execute search. for i, query in enumerate(queries): log.debug('Running query #%d on file #%d', i, index) res = query.match(text, source_id=index, definitions=definitions) if res: results.append(res) return chain.from_iterable(results) except Exception as e: raise QueryExecutionError(e) def execute_queries_async( self, queries, definitions=None, meta_filter=None, exclude_modified=False): """Runs the given queries on the corpus asynchronously. Arguments: queries ([Query]): The queries to run. definitions (dict): A dictionary defining query terms. meta_filter (dict -> bool): A function taking file meta data and returning whether the file should be queried. exclude_modified (bool): Whether to exclude modified files from the query. Returns: [Result]: An iterator producing the results of the query. """ log = logging.getLogger('uweclang.corpus.manager') results = [] # Get filtered files from corpus. try: files = self.files( meta_filter=meta_filter, exclude_modified=exclude_modified) except Exception as e: raise CorpusException(e) status = { 'completed' : 0, 'total': 0, } # Dictionary needed since `nonlocal` is not in Python 2.7. log.debug('Executing query batch (async.)') # Function for searching a single file. def query_file(meta, tagged, index): results = [] # Extract TaggedToken list from file. text = list(chain.from_iterable(uweclang.read_tagged_string(tagged))) # Execute search. try: for i, query in enumerate(queries): res = query.match(text, source_id=index, definitions=definitions) if res: results.extend(res) except Exception as e: raise QueryExecutionError(e) # Update status variables. status['completed'] += 1 log.debug('Completed file %d', index) percent = int(status['completed'] / status['total'] * 100) log.info('%d%% complete', percent) return results # Worker function for running a file search. @asyncio.coroutine def worker(meta, tagged, index): log.debug('Starting file %d', index) return loop.run_in_executor(None, query_file, meta, tagged, index) # Create asynchronous task list. loop = asyncio.get_event_loop() tasks = [] for index, (meta, tagged) in enumerate(files): log.debug('Added task %d', index) tasks.append(asyncio.ensure_future(worker(meta, tagged, index))) # Run tasks. status['total'] = len(tasks) log.info('Starting %d tasks.', status['total']) data = loop.run_until_complete(asyncio.gather(*tuple(tasks))) # Shutdown event loop and logger. loop.close() logging.shutdown() results = (task.result() for task in tasks if task.result()) return chain.from_iterable(results)
1,461
0
138
75dfa67ec64313cca39da2e97c93a3e2e3458650
4,731
py
Python
galaxy/python/GalaxySpectrumVVDS.py
AndresSixtos/pyeBOSS
4750908c8bc409633bef8f790133e3a1f3f0c9e4
[ "CC0-1.0" ]
1
2017-05-23T13:03:27.000Z
2017-05-23T13:03:27.000Z
galaxy/python/GalaxySpectrumVVDS.py
AndresSixtos/pyeBOSS
4750908c8bc409633bef8f790133e3a1f3f0c9e4
[ "CC0-1.0" ]
null
null
null
galaxy/python/GalaxySpectrumVVDS.py
AndresSixtos/pyeBOSS
4750908c8bc409633bef8f790133e3a1f3f0c9e4
[ "CC0-1.0" ]
2
2017-09-26T11:17:30.000Z
2021-09-14T06:09:18.000Z
""" .. class:: GalaxySpectrumVVDS .. moduleauthor:: Johan Comparat <johan.comparat__at__gmail.com> The class GalaxySpectrumVVDS is dedicated to handling VVDS spectra """ from os.path import join import os import numpy as n import astropy.io.fits as fits import glob import matplotlib matplotlib.use('pdf') import matplotlib.pyplot as p from LineFittingLibrary import * lfl = LineFittingLibrary() from filterList import * from lineListAir import * class GalaxySpectrumVVDS: """ Loads the environement proper to the vvds survey. Two modes of operation : flux calibration or line fitting :param catalog_entry: an entry of the vvds catalog :param calibration: if the class is loaded with intention of flux calibrating the vvds data. :param lineFits: if the class is loaded with intention of fitting line fluxes on the vvds spectra. """ def openObservedSpectrum(self): """ reads a VVDS pectrum returns the wavelength, the flux and the error on the flux and two arrays for masking purpose """ spL=glob.glob(join(self.vvds_spectra_dir,"sc_*" + str(self.catalog_entry['NUM']) + "*atm_clean.fits")) #print spL if len(spL)==1 : specFileName=spL[0] spectraHDU=fits.open(specFileName) wl=spectraHDU[0].header['CRVAL1'] + spectraHDU[0].header['CDELT1'] * n.arange(2,spectraHDU[0].header['NAXIS1']+2) fl=spectraHDU[0].data[0] noiseFileName=glob.glob(join(self.vvds_spectra_dir,"sc_*"+str(self.catalog_entry['NUM'])+"*noise.fits"))[0] noiseHDU=fits.open(noiseFileName) flErr=noiseHDU[0].data[0] self.wavelength,self.fluxl,self.fluxlErr=wl,fl,flErr else : self.wavelength,self.fluxl,self.fluxlErr= [-1,-1.],[-1,-1.],[-1,-1.] def plotFit(self, outputFigureNameRoot, ymin = 1e-19, ymax = 1e-17): """ Plots the spectrum and the line fits in a few figures """ ok = (self.fluxl >0 ) & (self.fluxl > 1.2* self.fluxlErr) p.figure(1,(12,4)) p.axes([0.1,0.2,0.85,0.75]) p.errorbar(self.wavelength[ok],self.fluxl[ok]/self.catalog_entry['fo'],yerr = self.fluxlErr[ok]/self.catalog_entry['fo'], linewidth=1, alpha= 0.4, label='spectrum') p.xlabel('wavelength [A]') p.ylabel(r'f$_\lambda$ [erg cm$^{-2}$ s$^{-1}$ A$^{-1}$]') p.yscale('log') p.ylim((ymin, ymax)) gl = p.legend(loc=0,fontsize=12) gl.set_frame_on(False) p.savefig( outputFigureNameRoot + "-all.png" ) p.clf() a0_1 = (1+self.catalog_entry['Z'])*O2_3727 a0_2 = (1+self.catalog_entry['Z'])*O2_3729 continu= self.catalog_entry['O2_3728_continu'] aas =n.arange(self.catalog_entry['O2_3728_a0']-70, self.catalog_entry['O2_3728_a0']+70,0.1) flMod=lambda aa,sigma,F0,sh :continu+ lfl.gaussianLineNC(aa,sigma,(1-sh)*F0,a0_1)+lfl.gaussianLineNC(aa,sigma,sh*F0,a0_2) model = flMod(aas, self.catalog_entry['O2_3728_sigma'], self.catalog_entry['O2_3728_flux'],0.58 )# self.catalog_entry['O2_3728_share']) p.figure(2,(4,4)) p.axes([0.21,0.2,0.78,0.7]) p.errorbar(self.wavelength,self.fluxl/self.catalog_entry['fo'],yerr = self.fluxlErr/self.catalog_entry['fo']) p.plot(aas, model/self.catalog_entry['fo'],'g',label='model', lw=2) p.xlabel('wavelength [A]') p.ylabel(r'f$_\lambda$ [erg cm$^{-2}$ s$^{-1}$ A$^{-1}$]') p.yscale('log') p.ylim((ymin, ymax)) p.xlim(( self.catalog_entry['O2_3728_a0']-100, self.catalog_entry['O2_3728_a0']+100)) gl = p.legend(loc=0,fontsize=12) gl.set_frame_on(False) p.title('[OII] 3727') p.savefig( outputFigureNameRoot + "-O2_3728.png") p.clf() a0 = self.catalog_entry['O3_5007_a0'] continu= self.catalog_entry['O3_5007_continu'] aas =n.arange(self.catalog_entry['O3_5007_a0']-70, self.catalog_entry['O3_5007_a0']+70,0.1) flMod=lambda aa,sigma,F0: lfl.gaussianLine(aa,sigma,F0,a0,continu) model = flMod(aas, self.catalog_entry['O3_5007_sigma'], self.catalog_entry['O3_5007_flux']) p.figure(2,(4,4)) p.axes([0.21,0.2,0.78,0.7]) p.errorbar(self.wavelength,self.fluxl/self.catalog_entry['fo'],yerr = self.fluxlErr/self.catalog_entry['fo']) p.plot(aas, model/self.catalog_entry['fo'],'g',label='model', lw =2) p.xlabel('wavelength [A]') p.ylabel(r'f$_\lambda$ [erg cm$^{-2}$ s$^{-1}$ A$^{-1}$]') p.yscale('log') p.ylim((ymin, ymax)) p.xlim(( self.catalog_entry['O3_5007_a0']-100, self.catalog_entry['O3_5007_a0']+100)) gl = p.legend(loc=0,fontsize=12) gl.set_frame_on(False) p.title('[OIII] 5007') p.savefig( outputFigureNameRoot + "-O3_5007.png") p.clf()
39.756303
166
0.695413
""" .. class:: GalaxySpectrumVVDS .. moduleauthor:: Johan Comparat <johan.comparat__at__gmail.com> The class GalaxySpectrumVVDS is dedicated to handling VVDS spectra """ from os.path import join import os import numpy as n import astropy.io.fits as fits import glob import matplotlib matplotlib.use('pdf') import matplotlib.pyplot as p from LineFittingLibrary import * lfl = LineFittingLibrary() from filterList import * from lineListAir import * class GalaxySpectrumVVDS: """ Loads the environement proper to the vvds survey. Two modes of operation : flux calibration or line fitting :param catalog_entry: an entry of the vvds catalog :param calibration: if the class is loaded with intention of flux calibrating the vvds data. :param lineFits: if the class is loaded with intention of fitting line fluxes on the vvds spectra. """ def __init__(self,catalog_entry,lineFits=False): self.catalog_entry=catalog_entry self.database_dir = os.environ['DATA_DIR'] self.vvds_dir = join(self.database_dir,"VVDS") self.vvds_catalog_dir = join(self.vvds_dir,"catalogs") self.vvds_spectra_dir = join(self.vvds_dir,"spectra") def openObservedSpectrum(self): """ reads a VVDS pectrum returns the wavelength, the flux and the error on the flux and two arrays for masking purpose """ spL=glob.glob(join(self.vvds_spectra_dir,"sc_*" + str(self.catalog_entry['NUM']) + "*atm_clean.fits")) #print spL if len(spL)==1 : specFileName=spL[0] spectraHDU=fits.open(specFileName) wl=spectraHDU[0].header['CRVAL1'] + spectraHDU[0].header['CDELT1'] * n.arange(2,spectraHDU[0].header['NAXIS1']+2) fl=spectraHDU[0].data[0] noiseFileName=glob.glob(join(self.vvds_spectra_dir,"sc_*"+str(self.catalog_entry['NUM'])+"*noise.fits"))[0] noiseHDU=fits.open(noiseFileName) flErr=noiseHDU[0].data[0] self.wavelength,self.fluxl,self.fluxlErr=wl,fl,flErr else : self.wavelength,self.fluxl,self.fluxlErr= [-1,-1.],[-1,-1.],[-1,-1.] def plotFit(self, outputFigureNameRoot, ymin = 1e-19, ymax = 1e-17): """ Plots the spectrum and the line fits in a few figures """ ok = (self.fluxl >0 ) & (self.fluxl > 1.2* self.fluxlErr) p.figure(1,(12,4)) p.axes([0.1,0.2,0.85,0.75]) p.errorbar(self.wavelength[ok],self.fluxl[ok]/self.catalog_entry['fo'],yerr = self.fluxlErr[ok]/self.catalog_entry['fo'], linewidth=1, alpha= 0.4, label='spectrum') p.xlabel('wavelength [A]') p.ylabel(r'f$_\lambda$ [erg cm$^{-2}$ s$^{-1}$ A$^{-1}$]') p.yscale('log') p.ylim((ymin, ymax)) gl = p.legend(loc=0,fontsize=12) gl.set_frame_on(False) p.savefig( outputFigureNameRoot + "-all.png" ) p.clf() a0_1 = (1+self.catalog_entry['Z'])*O2_3727 a0_2 = (1+self.catalog_entry['Z'])*O2_3729 continu= self.catalog_entry['O2_3728_continu'] aas =n.arange(self.catalog_entry['O2_3728_a0']-70, self.catalog_entry['O2_3728_a0']+70,0.1) flMod=lambda aa,sigma,F0,sh :continu+ lfl.gaussianLineNC(aa,sigma,(1-sh)*F0,a0_1)+lfl.gaussianLineNC(aa,sigma,sh*F0,a0_2) model = flMod(aas, self.catalog_entry['O2_3728_sigma'], self.catalog_entry['O2_3728_flux'],0.58 )# self.catalog_entry['O2_3728_share']) p.figure(2,(4,4)) p.axes([0.21,0.2,0.78,0.7]) p.errorbar(self.wavelength,self.fluxl/self.catalog_entry['fo'],yerr = self.fluxlErr/self.catalog_entry['fo']) p.plot(aas, model/self.catalog_entry['fo'],'g',label='model', lw=2) p.xlabel('wavelength [A]') p.ylabel(r'f$_\lambda$ [erg cm$^{-2}$ s$^{-1}$ A$^{-1}$]') p.yscale('log') p.ylim((ymin, ymax)) p.xlim(( self.catalog_entry['O2_3728_a0']-100, self.catalog_entry['O2_3728_a0']+100)) gl = p.legend(loc=0,fontsize=12) gl.set_frame_on(False) p.title('[OII] 3727') p.savefig( outputFigureNameRoot + "-O2_3728.png") p.clf() a0 = self.catalog_entry['O3_5007_a0'] continu= self.catalog_entry['O3_5007_continu'] aas =n.arange(self.catalog_entry['O3_5007_a0']-70, self.catalog_entry['O3_5007_a0']+70,0.1) flMod=lambda aa,sigma,F0: lfl.gaussianLine(aa,sigma,F0,a0,continu) model = flMod(aas, self.catalog_entry['O3_5007_sigma'], self.catalog_entry['O3_5007_flux']) p.figure(2,(4,4)) p.axes([0.21,0.2,0.78,0.7]) p.errorbar(self.wavelength,self.fluxl/self.catalog_entry['fo'],yerr = self.fluxlErr/self.catalog_entry['fo']) p.plot(aas, model/self.catalog_entry['fo'],'g',label='model', lw =2) p.xlabel('wavelength [A]') p.ylabel(r'f$_\lambda$ [erg cm$^{-2}$ s$^{-1}$ A$^{-1}$]') p.yscale('log') p.ylim((ymin, ymax)) p.xlim(( self.catalog_entry['O3_5007_a0']-100, self.catalog_entry['O3_5007_a0']+100)) gl = p.legend(loc=0,fontsize=12) gl.set_frame_on(False) p.title('[OIII] 5007') p.savefig( outputFigureNameRoot + "-O3_5007.png") p.clf()
269
0
23
4d85537526d1f1be42b55ee7c3665cfaba14c3d0
460
py
Python
setup.py
EBjerrum/RAscore
d7430abeeb4246bcd9d2314e5ca9e00963dfb7ba
[ "MIT" ]
null
null
null
setup.py
EBjerrum/RAscore
d7430abeeb4246bcd9d2314e5ca9e00963dfb7ba
[ "MIT" ]
null
null
null
setup.py
EBjerrum/RAscore
d7430abeeb4246bcd9d2314e5ca9e00963dfb7ba
[ "MIT" ]
null
null
null
import setuptools setuptools.setup( name="RAscore", # Replace with your own username version="2020.9", author="Reymond Group/Molecular AI AstraZeneca", author_email="amol.thakkar@dcb.unibe.ch", license="MIT", description="Computation of retrosynthetic accessibility from machine learening of CASP predictions", url="https://github.com/reymond-group/RAscore", packages=setuptools.find_packages(), python_requires='>=3.7', )
32.857143
105
0.728261
import setuptools setuptools.setup( name="RAscore", # Replace with your own username version="2020.9", author="Reymond Group/Molecular AI AstraZeneca", author_email="amol.thakkar@dcb.unibe.ch", license="MIT", description="Computation of retrosynthetic accessibility from machine learening of CASP predictions", url="https://github.com/reymond-group/RAscore", packages=setuptools.find_packages(), python_requires='>=3.7', )
0
0
0
8ad32c038b411b3dc200c3cd070929e827a76ab5
3,559
py
Python
tests/epyccel/test_epyccel_complex_func.py
dina-fouad/pyccel
f4d919e673b400442b9c7b81212b6fbef749c7b7
[ "MIT" ]
206
2018-06-28T00:28:47.000Z
2022-03-29T05:17:03.000Z
tests/epyccel/test_epyccel_complex_func.py
dina-fouad/pyccel
f4d919e673b400442b9c7b81212b6fbef749c7b7
[ "MIT" ]
670
2018-07-23T11:02:24.000Z
2022-03-30T07:28:05.000Z
tests/epyccel/test_epyccel_complex_func.py
dina-fouad/pyccel
f4d919e673b400442b9c7b81212b6fbef749c7b7
[ "MIT" ]
19
2019-09-19T06:01:00.000Z
2022-03-29T05:17:06.000Z
# pylint: disable=missing-function-docstring, missing-module-docstring/ import numpy as np import pytest from numpy.random import rand, randint import modules.complex_func as mod from pyccel.epyccel import epyccel @pytest.mark.parametrize("f", [ mod.create_complex_literal__int_int, mod.create_complex_literal__int_float, mod.create_complex_literal__int_complex, mod.create_complex_literal__float_int, mod.create_complex_literal__float_float, mod.create_complex_literal__float_complex, mod.create_complex_literal__complex_int, mod.create_complex_literal__complex_float, mod.create_complex_literal__complex_complex, mod.cast_complex_literal] )
31.776786
71
0.676595
# pylint: disable=missing-function-docstring, missing-module-docstring/ import numpy as np import pytest from numpy.random import rand, randint import modules.complex_func as mod from pyccel.epyccel import epyccel @pytest.mark.parametrize("f", [ mod.create_complex_literal__int_int, mod.create_complex_literal__int_float, mod.create_complex_literal__int_complex, mod.create_complex_literal__float_int, mod.create_complex_literal__float_float, mod.create_complex_literal__float_complex, mod.create_complex_literal__complex_int, mod.create_complex_literal__complex_float, mod.create_complex_literal__complex_complex, mod.cast_complex_literal] ) def test_create_complex_literal(f, language): f_epyc = epyccel(f, language = language) assert f_epyc() == f() def test_create_complex_var__int_int(language): f = mod.create_complex_var__int_int f_epyc = epyccel(f, language = language) a = randint(100) b = randint(100) assert f_epyc(a,b) == f(a,b) def test_create_complex_var__int_complex(language): f = mod.create_complex_var__int_complex f_epyc = epyccel(f, language = language) a = randint(100) b = complex(randint(100), randint(100)) assert f_epyc(a,b) == f(a,b) def test_create_complex_var__complex_float(language): f = mod.create_complex_var__complex_float f_epyc = epyccel(f, language = language) a = complex(randint(100), randint(100)) b = rand()*100 assert f_epyc(a,b) == f(a,b) def test_create_complex_var__complex_complex(language): f = mod.create_complex_var__complex_complex f_epyc = epyccel(f, language = language) a = complex(randint(100), randint(100)) b = complex(randint(100), randint(100)) assert f_epyc(a,b) == f(a,b) def test_create_complex__int_int(language): f = mod.create_complex__int_int f_epyc = epyccel(f, language = language) a = randint(100) assert f_epyc(a) == f(a) def test_create_complex_0__int_int(language): f = mod.create_complex_0__int_int f_epyc = epyccel(f, language = language) a = randint(100) assert f_epyc(a) == f(a) def test_create_complex__float_float(language): f = mod.create_complex__float_float f_epyc = epyccel(f, language = language) a = rand()*100 assert f_epyc(a) == f(a) def test_create_complex_0__float_float(language): f = mod.create_complex_0__float_float f_epyc = epyccel(f, language = language) a = rand()*100 assert f_epyc(a) == f(a) def test_create_complex__complex_complex(language): f = mod.create_complex__complex_complex f_epyc = epyccel(f, language = language) a = complex(randint(100), randint(100)) assert f_epyc(a) == f(a) def test_cast_complex_1(language): f = mod.cast_complex_1 f_epyc = epyccel(f, language = language) a = np.complex64(complex(randint(100), randint(100))) assert np.isclose(f_epyc(a), f(a), rtol = 1e-7, atol = 1e-8) def test_cast_complex_2(language): f = mod.cast_complex_2 f_epyc = epyccel(f, language = language) a = np.complex128(complex(randint(100), randint(100))) assert f_epyc(a) == f(a) def test_cast_float_complex(language): f = mod.cast_float_complex f_epyc = epyccel(f, language = language) a = rand()*100 b = complex(randint(100), randint(100)) assert f_epyc(a,b) == f(a,b)
2,372
0
298
edbc7186a89a966ff7d588e9b0e0a99d5c18903d
1,180
py
Python
setup.py
glanyx/segachan
b7694cc44e7ac0a261d8f3412347c50b8026fd6f
[ "MIT" ]
null
null
null
setup.py
glanyx/segachan
b7694cc44e7ac0a261d8f3412347c50b8026fd6f
[ "MIT" ]
null
null
null
setup.py
glanyx/segachan
b7694cc44e7ac0a261d8f3412347c50b8026fd6f
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- from setuptools import setup, find_packages from sweeperbot._version import __version__ with open("README.rst") as readme_file: readme = readme_file.read() with open("HISTORY.rst") as history_file: history = history_file.read() setup( name="sweeperbot", version=__version__, description="Test", long_description=readme + "\n\n" + history, author="Glanyx", author_email="mikekornet@live.co.uk", url="https://github.com/glanyx/segachan/", entry_points={"console_scripts": ["sweeperbot=sweeperbot.launch:main"]}, include_package_data=True, license="GNU General Public License v3", zip_safe=False, keywords=[ "sweeperbot", "sweeper", "bot", "discord", "benedict", "benedict 9940", "segachan", ], classifiers=[ "Development Status :: 2- Beta", "Intended Audience :: Developers", "License :: OSI Approved :: GNU General Public License v3 (GPLv3)", "Natural Language :: English", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.7", ], )
27.44186
76
0.622881
#!/usr/bin/env python # -*- coding: utf-8 -*- from setuptools import setup, find_packages from sweeperbot._version import __version__ with open("README.rst") as readme_file: readme = readme_file.read() with open("HISTORY.rst") as history_file: history = history_file.read() setup( name="sweeperbot", version=__version__, description="Test", long_description=readme + "\n\n" + history, author="Glanyx", author_email="mikekornet@live.co.uk", url="https://github.com/glanyx/segachan/", entry_points={"console_scripts": ["sweeperbot=sweeperbot.launch:main"]}, include_package_data=True, license="GNU General Public License v3", zip_safe=False, keywords=[ "sweeperbot", "sweeper", "bot", "discord", "benedict", "benedict 9940", "segachan", ], classifiers=[ "Development Status :: 2- Beta", "Intended Audience :: Developers", "License :: OSI Approved :: GNU General Public License v3 (GPLv3)", "Natural Language :: English", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.7", ], )
0
0
0
ed7a72592c78b45f52182233b37b4c42c9305353
65,295
py
Python
myigbot.py
Afafabdb/MyIGBot
43a5c24993598d6827a735e620acb2a41e9fbbd0
[ "MIT" ]
91
2020-11-14T15:13:06.000Z
2021-07-27T18:14:45.000Z
myigbot.py
Afafabdb/MyIGBot
43a5c24993598d6827a735e620acb2a41e9fbbd0
[ "MIT" ]
25
2020-11-16T21:52:39.000Z
2021-05-04T20:53:24.000Z
myigbot.py
Afafabdb/MyIGBot
43a5c24993598d6827a735e620acb2a41e9fbbd0
[ "MIT" ]
18
2020-11-17T14:30:32.000Z
2021-07-16T22:23:21.000Z
import requests import os from datetime import datetime import json from bs4 import BeautifulSoup as bs import time import random import string
48.510401
448
0.524665
import requests import os from datetime import datetime import json from bs4 import BeautifulSoup as bs import time import random import string class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKCYAN = '\033[96m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' class MyIGBot: def __init__(self, username, password, use_cookie = True, proxy=None): self.username = username self.password = password self.use_cookie = use_cookie self.proxy = proxy self.path = os.getcwd() if use_cookie == False or os.path.exists(self.path+f'//cookie_{self.username}.bot') == False: link = 'https://www.instagram.com/' login_url = 'https://www.instagram.com/accounts/login/ajax/' time_now = int(datetime.now().timestamp()) response = requests.get(link, proxies=self.proxy) try: csrf = response.cookies['csrftoken'] except: letters = string.ascii_lowercase csrf = ''.join(random.choice(letters) for i in range(8)) payload = { 'username': self.username, 'enc_password': f'#PWD_INSTAGRAM_BROWSER:0:{time_now}:{self.password}', 'queryParams': {}, 'optIntoOneTap': 'false' } login_header = { "User-Agent": "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/77.0.3865.120 Safari/537.36", "X-Requested-With": "XMLHttpRequest", "Referer": "https://www.instagram.com/accounts/login/", "x-csrftoken": csrf } login_response = requests.post(login_url, data=payload, headers=login_header, proxies=self.proxy) json_data = json.loads(login_response.text) cookies = login_response.cookies cookie_jar = cookies.get_dict() try: self.csrf_token = cookie_jar['csrftoken'] except: self.csrf_token = csrf try: if json_data["authenticated"]: pass else: print(bcolors.FAIL+"[โœ—] Login Failed!"+bcolors.ENDC, login_response.text) quit() except KeyError: try: if json_data["two_factor_required"]: self.ig_nrcb = cookie_jar['ig_nrcb'] self.ig_did = cookie_jar['ig_did'] self.mid = cookie_jar['mid'] otp = input(bcolors.OKBLUE+'[!] Two Factor Auth. Detected! Enter Code Here: '+bcolors.ENDC) twofactor_url = 'https://www.instagram.com/accounts/login/ajax/two_factor/' twofactor_payload = { 'username': self.username, 'verificationCode': otp, 'identifier': json_data["two_factor_info"]["two_factor_identifier"], 'queryParams': {} } twofactor_header = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "en-US,en;q=0.9", "content-type": "application/x-www-form-urlencoded", "cookie": 'ig_did='+self.ig_did+'; ig_nrcb='+self.ig_nrcb+'; csrftoken='+self.csrf_token+'; mid='+self.mid, "origin": "https://www.instagram.com", "referer": "https://www.instagram.com/accounts/login/two_factor?next=%2F", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-origin", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.111 Safari/537.36", "x-csrftoken": self.csrf_token, "x-ig-app-id": "936619743392459", "x-ig-www-claim": "0", "x-instagram-ajax": "00c4537694a4", "x-requested-with": "XMLHttpRequest" } login_response = requests.post(twofactor_url, data=twofactor_payload, headers=twofactor_header, proxies=self.proxy) try: if login_response.headers['Set-Cookie'] != 0: pass except: try: if json_data["message"]=="checkpoint_required": self.ig_nrcb = cookie_jar['ig_nrcb'] self.ig_did = cookie_jar['ig_did'] self.mid = cookie_jar['mid'] url='https://www.instagram.com'+json_data['checkpoint_url'] header = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "en-US,en;q=0.9", "content-type": "application/x-www-form-urlencoded", "cookie": 'ig_did='+self.ig_did+'; ig_nrcb='+self.ig_nrcb+'; csrftoken='+self.csrf_token+'; mid='+self.mid, "origin": "https://www.instagram.com", "referer": 'https://instagram.com'+json_data['checkpoint_url'], "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-origin", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.111 Safari/537.36", "x-csrftoken": self.csrf_token, "x-ig-app-id": "936619743392459", "x-ig-www-claim": "0", "x-instagram-ajax": "e8e20d8ba618", "x-requested-with": "XMLHttpRequest" } code=input(bcolors.OKBLUE+json.loads(requests.post(url, headers=header, data={'choice': '1'}).text, proxies=self.proxy)['extraData']['content'][1]['text']+' > '+bcolors.ENDC) if json.loads(requests.post(url, headers=header, data={'security_code': code}).text, proxies=self.proxy)['type']=='CHALLENGE_REDIRECTION': login_response = requests.post(login_url, data=payload, headers=login_header, proxies=self.proxy) else: print(bcolors.FAIL+'[โœ—] Login Failed!'+bcolors.ENDC) quit() except: print(bcolors.FAIL+'[โœ—] Login Failed!'+bcolors.ENDC) quit() except KeyError: try: if json_data["message"]=="checkpoint_required": self.ig_nrcb = cookie_jar['ig_nrcb'] self.ig_did = cookie_jar['ig_did'] self.mid = cookie_jar['mid'] url='https://www.instagram.com'+json_data['checkpoint_url'] header = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "en-US,en;q=0.9", "content-type": "application/x-www-form-urlencoded", "cookie": 'ig_did='+self.ig_did+'; ig_nrcb='+self.ig_nrcb+'; csrftoken='+self.csrf_token+'; mid='+self.mid, "origin": "https://www.instagram.com", "referer": 'https://instagram.com'+json_data['checkpoint_url'], "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-origin", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.111 Safari/537.36", "x-csrftoken": self.csrf_token, "x-ig-app-id": "936619743392459", "x-ig-www-claim": "0", "x-instagram-ajax": "e8e20d8ba618", "x-requested-with": "XMLHttpRequest" } code=input(bcolors.OKBLUE+json.loads(requests.post(url, headers=header, data={'choice': '1'}).text, proxies=self.proxy)['extraData']['content'][1]['text']+' > '+bcolors.ENDC) if json.loads(requests.post(url, headers=header, data={'security_code': code}).text, proxies=self.proxy)['type']=='CHALLENGE_REDIRECTION': login_response = requests.post(login_url, data=payload, headers=login_header, proxies=self.proxy) else: print(bcolors.FAIL+'[โœ—] Login Failed!'+bcolors.ENDC) quit() except: print(bcolors.FAIL+'[โœ—] Login Failed!'+bcolors.ENDC) quit() self.sessionid = login_response.headers['Set-Cookie'].split('sessionid=')[1].split(';')[0] self.userId = login_response.headers['Set-Cookie'].split('ds_user_id=')[1].split(';')[0] self.cookie = "sessionid=" + self.sessionid + "; csrftoken=" + self.csrf_token + "; ds_user_id=" + self.userId + ";" create_cookie = open(self.path+f'//cookie_{self.username}.bot', 'w+', encoding='utf-8') create_cookie.write(self.cookie) create_cookie.close() self.session = requests.session() cookie_obj = requests.cookies.create_cookie( name='sessionid', secure=True, value=self.sessionid) self.session.cookies.set_cookie(cookie_obj) elif os.path.exists(self.path+f'//cookie_{self.username}.bot'): try: read_cookie = open(self.path+f'//cookie_{self.username}.bot', 'r', encoding='utf-8') self.cookie = read_cookie.read() read_cookie.close() homelink = 'https://www.instagram.com/op/' self.session = requests.session() self.sessionid = self.cookie.split('=')[1].split(';')[0] self.csrf_token = self.cookie.split('=')[2].split(';')[0] cookie_obj = requests.cookies.create_cookie( name='sessionid', secure=True, value=self.sessionid) self.session.cookies.set_cookie(cookie_obj) login_response = self.session.get(homelink, proxies=self.proxy) time.sleep(1) soup = bs(login_response.text, 'html.parser') soup.find("strong", {"class": "-cx-PRIVATE-NavBar__username -cx-PRIVATE-NavBar__username__"}).get_text() except AttributeError: print(bcolors.FAIL+"[โœ—] Login Failed! Cookie file is corupted!"+bcolors.ENDC) os.remove(self.path+f'//cookie_{self.username}.bot') print(bcolors.WARNING+"[-] Deleted Corupted Cookie File! Try Again!"+bcolors.ENDC) quit() def already_liked(self, post_link): if post_link.find('/tv/') != -1: post_link = post_link.replace('/tv/', '/p/') try: post_link = post_link.replace(post_link.split('/p/')[1].split('/')[1], '') except: pass resp = self.session.get(post_link, proxies=self.proxy) time.sleep(1) soup = bs(resp.text, 'html.parser') scripts = soup.find_all('script') data_script = str(scripts[15]) time.sleep(1) try: shortcode = post_link.split('/p/')[1].replace('/', '') data_script = data_script.replace( f'''<script type="text/javascript">window.__additionalDataLoaded('/p/{shortcode}/',''', '') except: shortcode = post_link.split('/tv/')[1].replace('/', '') data_script = data_script.replace( f'''<script type="text/javascript">window.__additionalDataLoaded('/tv/{shortcode}/',''', '') data_object = data_script.replace(");</script>", '') data_json = json.loads(data_object) liked = data_json["graphql"]["shortcode_media"]["viewer_has_liked"] return bool(liked) def like(self, post_link): if post_link.find('/tv/') != -1: post_link = post_link.replace('/tv/', '/p/') try: post_link = post_link.replace(post_link.split('/p/')[1].split('/')[1], '') except: pass try: if self.already_liked(post_link) == False: resp = self.session.get(post_link, proxies=self.proxy) time.sleep(1) soup = bs(resp.text, 'html.parser') scripts = soup.find_all('script') data_script = str(scripts[15]) time.sleep(1) try: shortcode = post_link.split('/p/')[1].replace('/', '') data_script = data_script.replace( f'''<script type="text/javascript">window.__additionalDataLoaded('/p/{shortcode}/',''', '') except: shortcode = post_link.split('/tv/')[1].replace('/', '') data_script = data_script.replace( f'''<script type="text/javascript">window.__additionalDataLoaded('/tv/{shortcode}/',''', '') data_object = data_script.replace(");</script>", '') data_json = json.loads(data_object) id_post = data_json["graphql"]["shortcode_media"]["id"] url_post = f"https://www.instagram.com/web/likes/{id_post}/like/" headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "en-US,en;q=0.9", "content-length": "0", "content-type": "application/x-www-form-urlencoded", "cookie": self.cookie, "origin": "https://www.instagram.com", "referer": post_link, "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-origin", "user-agent": "Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.111 Safari/537.36", "x-csrftoken": self.csrf_token, "x-ig-app-id": "936619743392459", "x-ig-www-claim": "hmac.AR3dC7naiVtTKkwrEY0hwTO9zj4kLxfvf4Srvp3wFyoZFqSx", "x-instagram-ajax": "d3d3aea32e75", "x-requested-with": "XMLHttpRequest" } response = requests.request("POST", url_post, headers=headers, proxies=self.proxy) if response.status_code != 200: return response.status_code else: return 208 except: return 403 return 200 def unlike(self, post_link): if post_link.find('/tv/') != -1: post_link = post_link.replace('/tv/', '/p/') try: post_link = post_link.replace(post_link.split('/p/')[1].split('/')[1], '') except: pass try: if self.already_liked(post_link) == True: resp = self.session.get(post_link, proxies=self.proxy) time.sleep(1) soup = bs(resp.text, 'html.parser') scripts = soup.find_all('script') data_script = str(scripts[15]) time.sleep(1) try: shortcode = post_link.split('/p/')[1].replace('/', '') data_script = data_script.replace( f'''<script type="text/javascript">window.__additionalDataLoaded('/p/{shortcode}/',''', '') except: shortcode = post_link.split('/tv/')[1].replace('/', '') data_script = data_script.replace( f'''<script type="text/javascript">window.__additionalDataLoaded('/tv/{shortcode}/',''', '') data_object = data_script.replace(");</script>", '') data_json = json.loads(data_object) id_post = data_json["graphql"]["shortcode_media"]["id"] url_post = f"https://www.instagram.com/web/likes/{id_post}/unlike/" headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "en-US,en;q=0.9", "content-length": "0", "content-type": "application/x-www-form-urlencoded", "cookie": self.cookie, "origin": "https://www.instagram.com", "referer": post_link, "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-origin", "user-agent": "Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.111 Safari/537.36", "x-csrftoken": self.csrf_token, "x-ig-app-id": "936619743392459", "x-ig-www-claim": "hmac.AR3dC7naiVtTKkwrEY0hwTO9zj4kLxfvf4Srvp3wFyoZFqSx", "x-instagram-ajax": "d3d3aea32e75", "x-requested-with": "XMLHttpRequest" } response = requests.request("POST", url_post, headers=headers, proxies=self.proxy) if response.status_code != 200: return response.status_code else: return 208 except: return 403 return 200 def like_recent(self, username): resp = self.session.get('https://www.instagram.com/'+username+'/', proxies=self.proxy) time.sleep(1) soup = bs(resp.text, 'html.parser') scripts = soup.find_all('script') try: data_script = str(scripts[4]) time.sleep(1) data_script = data_script.replace( '''<script type="text/javascript">window._sharedData = ''', '') data_object = data_script.replace(";</script>", '') data_json = json.loads(data_object) except: data_script = str(scripts[3]) time.sleep(1) data_script = data_script.replace( '''<script type="text/javascript">window._sharedData = ''', '') data_object = data_script.replace(";</script>", '') data_json = json.loads(data_object) try: shortcode = data_json["entry_data"]["ProfilePage"][0]["graphql"]['user']["edge_owner_to_timeline_media"]["edges"][0]["node"]["shortcode"] return self.like('https://www.instagram.com/p/'+shortcode+'/') except IndexError: return 404 except KeyError: return 404 def comment(self, post_link, comment_text): if post_link.find('/tv/') != -1: post_link = post_link.replace('/tv/', '/p/') try: post_link = post_link.replace(post_link.split('/p/')[1].split('/')[1], '') except: pass try: resp = self.session.get(post_link, proxies=self.proxy) time.sleep(1) soup = bs(resp.text, 'html.parser') scripts = soup.find_all('script') data_script = str(scripts[15]) time.sleep(1) try: shortcode = post_link.split('/p/')[1].replace('/', '') data_script = data_script.replace( f'''<script type="text/javascript">window.__additionalDataLoaded('/p/{shortcode}/',''', '') except: shortcode = post_link.split('/tv/')[1].replace('/', '') data_script = data_script.replace( f'''<script type="text/javascript">window.__additionalDataLoaded('/tv/{shortcode}/',''', '') data_object = data_script.replace(");</script>", '') data_json = json.loads(data_object) id_post = data_json["graphql"]["shortcode_media"]["id"] url_post = f"https://www.instagram.com/web/comments/{id_post}/add/" headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "en-US,en;q=0.9", "content-length": "39", "content-type": "application/x-www-form-urlencoded", "cookie": self.cookie, "origin": "https://www.instagram.com", "referer": post_link, "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-origin", "user-agent": "Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.111 Safari/537.36", "x-csrftoken": self.csrf_token, "x-ig-app-id": "936619743392459", "x-ig-www-claim": "hmac.AR3dC7naiVtTKkwrEY0hwTO9zj4kLxfvf4Srvp3wFyoZFvZV", "x-instagram-ajax": "d3d3aea32e75", "x-requested-with": "XMLHttpRequest" } response = requests.request("POST", url_post, headers=headers, data=f"comment_text={comment_text}&replied_to_comment_id=".encode('utf-8'), proxies=self.proxy) if response.status_code != 200: return response.status_code except: return 403 return 200 def comment_recent(self, username, comment_text): resp = self.session.get('https://www.instagram.com/'+username+'/', proxies=self.proxy) time.sleep(1) soup = bs(resp.text, 'html.parser') scripts = soup.find_all('script') try: data_script = str(scripts[4]) time.sleep(1) data_script = data_script.replace( '''<script type="text/javascript">window._sharedData = ''', '') data_object = data_script.replace(";</script>", '') data_json = json.loads(data_object) except: data_script = str(scripts[3]) time.sleep(1) data_script = data_script.replace( '''<script type="text/javascript">window._sharedData = ''', '') data_object = data_script.replace(";</script>", '') data_json = json.loads(data_object) try: shortcode = data_json["entry_data"]["ProfilePage"][0]["graphql"]['user']["edge_owner_to_timeline_media"]["edges"][0]["node"]["shortcode"] return self.comment('https://www.instagram.com/p/'+shortcode+'/', comment_text) except IndexError: return 404 except KeyError: return 404 def already_followed(self, username): resp = self.session.get('https://www.instagram.com/'+username+'/', proxies=self.proxy) time.sleep(1) soup = bs(resp.text, 'html.parser') scripts = soup.find_all('script') try: data_script = str(scripts[4]) time.sleep(1) data_script = data_script.replace( '''<script type="text/javascript">window._sharedData = ''', '') data_object = data_script.replace(";</script>", '') data_json = json.loads(data_object) except: data_script = str(scripts[3]) time.sleep(1) data_script = data_script.replace( '''<script type="text/javascript">window._sharedData = ''', '') data_object = data_script.replace(";</script>", '') data_json = json.loads(data_object) followed = data_json["entry_data"]["ProfilePage"][0]["graphql"]['user']['followed_by_viewer'] return bool(followed) def follow(self, username): try: if self.already_followed(username) == False: resp = self.session.get('https://www.instagram.com/'+username+'/', proxies=self.proxy) time.sleep(1) soup = bs(resp.text, 'html.parser') scripts = soup.find_all('script') try: data_script = str(scripts[4]) time.sleep(1) data_script = data_script.replace( '''<script type="text/javascript">window._sharedData = ''', '') data_object = data_script.replace(";</script>", '') data_json = json.loads(data_object) except: data_script = str(scripts[3]) time.sleep(1) data_script = data_script.replace( '''<script type="text/javascript">window._sharedData = ''', '') data_object = data_script.replace(";</script>", '') data_json = json.loads(data_object) id_page = data_json["entry_data"]["ProfilePage"][0]["graphql"]['user']['id'] url_page = f"https://www.instagram.com/web/friendships/{id_page}/follow/" headers = { 'accept': '*/*', 'accept-encoding': 'gzip, deflate, br', 'accept-language': 'en-US,en;q=0.9', 'content-length': '0', 'content-type': 'application/x-www-form-urlencoded', 'cookie': self.cookie, "origin": "https://www.instagram.com", "referer": f"https://www.instagram.com/{username}/", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-origin", "user-agent": "Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.111 Safari/537.36", "x-csrftoken": self.csrf_token, "x-ig-app-id": "936619743392459", "x-ig-www-claim": "hmac.AR3dC7naiVtTKkwrEY0hwTO9zj4kLxfvf4Srvp3wFyoZFvZV", "x-instagram-ajax": "d3d3aea32e75", "x-requested-with": "XMLHttpRequest" } response = requests.request("POST", url_page, headers=headers, proxies=self.proxy) if response.status_code == 200: return 200 else: return response.status_code else: return 208 except KeyError: return 404 def unfollow(self, username): try: if self.already_followed(username) == True: resp = self.session.get('https://www.instagram.com/'+username+'/', proxies=self.proxy) time.sleep(1) soup = bs(resp.text, 'html.parser') scripts = soup.find_all('script') try: data_script = str(scripts[4]) time.sleep(1) data_script = data_script.replace( '''<script type="text/javascript">window._sharedData = ''', '') data_object = data_script.replace(";</script>", '') data_json = json.loads(data_object) except: data_script = str(scripts[3]) time.sleep(1) data_script = data_script.replace( '''<script type="text/javascript">window._sharedData = ''', '') data_object = data_script.replace(";</script>", '') data_json = json.loads(data_object) id_page = data_json["entry_data"]["ProfilePage"][0]["graphql"]['user']['id'] url_page = f"https://www.instagram.com/web/friendships/{id_page}/unfollow/" headers = { 'accept': '*/*', 'accept-encoding': 'gzip, deflate, br', 'accept-language': 'en-US,en;q=0.9', 'content-length': '0', 'content-type': 'application/x-www-form-urlencoded', 'cookie': self.cookie, "origin": "https://www.instagram.com", "referer": f"https://www.instagram.com/{username}/", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-origin", "user-agent": "Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.111 Safari/537.36", "x-csrftoken": self.csrf_token, "x-ig-app-id": "936619743392459", "x-ig-www-claim": "hmac.AR3dC7naiVtTKkwrEY0hwTO9zj4kLxfvf4Srvp3wFyoZFvZV", "x-instagram-ajax": "d3d3aea32e75", "x-requested-with": "XMLHttpRequest" } response = requests.request("POST", url_page, headers=headers, proxies=self.proxy) if response.status_code == 200: return 200 else: return response.status_code else: return 208 except KeyError: return 404 def story_view(self, username): try: resp = self.session.get('https://www.instagram.com/'+username+'/', proxies=self.proxy) time.sleep(1) soup = bs(resp.text, 'html.parser') scripts = soup.find_all('script') try: data_script = str(scripts[4]) time.sleep(1) data_script = data_script.replace( '''<script type="text/javascript">window._sharedData = ''', '') data_object = data_script.replace(";</script>", '') data_json = json.loads(data_object) except: try: data_script = str(scripts[3]) time.sleep(1) data_script = data_script.replace( '''<script type="text/javascript">window._sharedData = ''', '') data_object = data_script.replace(";</script>", '') data_json = json.loads(data_object) except: return 404 page_id = data_json["entry_data"]["ProfilePage"][0]["graphql"]['user']['id'] surl = f'https://www.instagram.com/graphql/query/?query_hash=c9c56db64beb4c9dea2d17740d0259d9&variables=%7B%22reel_ids%22%3A%5B%22{page_id}%22%5D%2C%22tag_names%22%3A%5B%5D%2C%22location_ids%22%3A%5B%5D%2C%22highlight_reel_ids%22%3A%5B%5D%2C%22precomposed_overlay%22%3Afalse%2C%22show_story_viewer_list%22%3Atrue%2C%22story_viewer_fetch_count%22%3A50%2C%22story_viewer_cursor%22%3A%22%22%2C%22stories_video_dash_manifest%22%3Afalse%7D' resp = self.session.get(surl, proxies=self.proxy) time.sleep(1) soup = bs(resp.text, 'html.parser') data_json = json.loads(str(soup)) story_count = len(data_json["data"]["reels_media"][0]["items"]) for i in range(0, story_count): id_story = data_json["data"]["reels_media"][0]["items"][i]['id'] taken_at_timestamp = data_json["data"]["reels_media"][0]["items"][i]['taken_at_timestamp'] stories_page = f"https://www.instagram.com/stories/reel/seen" headers = { 'accept': '*/*', 'accept-encoding': 'gzip, deflate, br', 'accept-language': 'en-US,en;q=0.9', 'content-length': '127', 'content-type': 'application/x-www-form-urlencoded', 'cookie': self.cookie, "origin": "https://www.instagram.com", "referer": f"https://www.instagram.com/stories/{username}/{id_story}/", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-origin", "user-agent": "Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.111 Safari/537.36", "x-csrftoken": self.csrf_token, "x-ig-app-id": "936619743392459", "x-ig-www-claim": "hmac.AR3dC7naiVtTKkwrEY0hwTO9zj4kLxfvf4Srvp3wFyoZFvZV", "x-instagram-ajax": "d3d3aea32e75", "x-requested-with": "XMLHttpRequest" } data = { 'reelMediaId': id_story, 'reelMediaOwnerId': page_id, 'reelId': page_id, 'reelMediaTakenAt': taken_at_timestamp, 'viewSeenAt': taken_at_timestamp } requests.request("POST", stories_page, headers=headers, data=data, proxies=self.proxy) except IndexError: return 404 except KeyError: return 404 return 200 def upload_post(self, image_path, caption=''): micro_time = int(datetime.now().timestamp()) headers = { "content-type": "image / jpg", "content-length": "1", "X-Entity-Name": f"fb_uploader_{micro_time}", "Offset": "0", "User-Agent": "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/77.0.3865.120 Safari/537.36", "x-entity-length": "1", "X-Instagram-Rupload-Params": f'{{"media_type": 1, "upload_id": {micro_time}, "upload_media_height": 1080, "upload_media_width": 1080}}', "x-csrftoken": self.csrf_token, "x-ig-app-id": "1217981644879628", "cookie": self.cookie } upload_response = requests.post(f'https://www.instagram.com/rupload_igphoto/fb_uploader_{micro_time}', data=open(image_path, "rb"), headers=headers, proxies=self.proxy) json_data = json.loads(upload_response.text) upload_id = json_data['upload_id'] if json_data["status"] == "ok": url = "https://www.instagram.com/create/configure/" payload = 'upload_id=' + upload_id + '&caption=' + caption + '&usertags=&custom_accessibility_caption=&retry_timeout=' headers = { 'authority': 'www.instagram.com', 'x-ig-www-claim': 'hmac.AR2-43UfYbG2ZZLxh-BQ8N0rqGa-hESkcmxat2RqMAXejXE3', 'x-instagram-ajax': 'adb961e446b7-hot', 'content-type': 'application/x-www-form-urlencoded', 'accept': '*/*', 'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/85.0.4183.121 Safari/537.36', 'x-requested-with': 'XMLHttpRequest', 'x-csrftoken': self.csrf_token, 'x-ig-app-id': '1217981644879628', 'origin': 'https://www.instagram.com', 'sec-fetch-site': 'same-origin', 'sec-fetch-mode': 'cors', 'sec-fetch-dest': 'empty', 'referer': 'https://www.instagram.com/create/details/', 'accept-language': 'en-US,en;q=0.9,fa-IR;q=0.8,fa;q=0.7', 'cookie': self.cookie } response = requests.request("POST", url, headers=headers, data=payload, proxies=self.proxy) json_data = json.loads(response.text) if json_data["status"] == "ok": return 200 else: return 400 def upload_story(self, image_path): micro_time = int(datetime.now().timestamp()) headers = { "content-type": "image / jpg", "content-length": "1", "X-Entity-Name": f"fb_uploader_{micro_time}", "Offset": "0", "User-Agent": "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/77.0.3865.120 Safari/537.36", "x-entity-length": "1", "X-Instagram-Rupload-Params": f'{{"media_type": 1, "upload_id": {micro_time}, "upload_media_height": 1080, "upload_media_width": 1080}}', "x-csrftoken": self.csrf_token, "x-ig-app-id": "1217981644879628", "cookie": self.cookie } upload_response = requests.post(f'https://www.instagram.com/rupload_igphoto/fb_uploader_{micro_time}', data=open(image_path, "rb"), headers=headers, proxies=self.proxy) json_data = json.loads(upload_response.text) upload_id = json_data['upload_id'] if json_data["status"] == "ok": url = "https://www.instagram.com/create/configure_to_story/" payload = 'upload_id=' + upload_id + '&caption=&usertags=&custom_accessibility_caption=&retry_timeout=' headers = { 'authority': 'www.instagram.com', 'x-ig-www-claim': 'hmac.AR2-43UfYbG2ZZLxh-BQ8N0rqGa-hESkcmxat2RqMAXejXE3', 'x-instagram-ajax': 'adb961e446b7-hot', 'content-type': 'application/x-www-form-urlencoded', 'accept': '*/*', 'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/85.0.4183.121 Safari/537.36', 'x-requested-with': 'XMLHttpRequest', 'x-csrftoken': self.csrf_token, 'x-ig-app-id': '1217981644879628', 'origin': 'https://www.instagram.com', 'sec-fetch-site': 'same-origin', 'sec-fetch-mode': 'cors', 'sec-fetch-dest': 'empty', 'referer': 'https://www.instagram.com/create/details/', 'accept-language': 'en-US,en;q=0.9,fa-IR;q=0.8,fa;q=0.7', 'cookie': self.cookie } response = requests.request("POST", url, headers=headers, data=payload, proxies=self.proxy) json_data = json.loads(response.text) if json_data["status"] == "ok": return 200 else: return 400 def hashtag_posts(self, hashtag, limit=20): headers = self._get_headers() response = self.session.get(f'https://www.instagram.com/graphql/query/?query_hash=9b498c08113f1e09617a1703c22b2f32&variables=%7B%22tag_name%22%3A%22{hashtag}%22%2C%22first%22%3A{limit}%7D', headers=headers, proxies=self.proxy).text post_count = len(json.loads(response)['data']['hashtag']['edge_hashtag_to_media']['edges']) if limit > post_count: limit = post_count links=[] for i in range(0, limit): links.append('https://instagram.com/p/'+json.loads(response)['data']['hashtag']['edge_hashtag_to_media']['edges'][i]['node']['shortcode']) return links def location_posts(self, location_url, limit=20): id_location = location_url.split('/locations/')[1].split('/')[0] headers = self._get_headers() response = self.session.get(f'https://www.instagram.com/graphql/query/?query_hash=36bd0f2bf5911908de389b8ceaa3be6d&variables=%7B%22id%22%3A%22{id_location}%22%2C%22first%22%3A{limit}%7D', headers=headers, proxies=self.proxy).text post_count = len(json.loads(response)['data']['location']['edge_location_to_media']['edges']) if limit > post_count: limit = post_count links=[] for i in range(0, limit): links.append('https://instagram.com/p/'+json.loads(response)['data']['location']['edge_location_to_media']['edges'][i]['node']['shortcode']) return links def user_posts_count(self, username): headers = self._get_headers() response = self.session.get(f'https://www.instagram.com/{username}/?__a=1', headers=headers, proxies=self.proxy).text post_count = json.loads(response)['graphql']['user']['edge_owner_to_timeline_media']['count'] return post_count def user_followers_count(self, username): headers = self._get_headers() response = self.session.get(f'https://www.instagram.com/{username}/?__a=1', headers=headers, proxies=self.proxy).text followers_count = json.loads(response)['graphql']['user']['edge_followed_by']['count'] return followers_count def user_follow_count(self, username): headers = self._get_headers() response = self.session.get(f'https://www.instagram.com/{username}/?__a=1', headers=headers, proxies=self.proxy).text follow_count = json.loads(response)['graphql']['user']['edge_follow']['count'] return follow_count def like_count(self, post_link): if post_link.find('/tv/') != -1: post_link = post_link.replace('/tv/', '/p/') try: post_link = post_link.replace(post_link.split('/p/')[1].split('/')[1], '') except: pass headers = self._get_headers() if post_link[-1] == '/': post_link = post_link[:-1] response = self.session.get(f'{post_link}/?__a=1', headers=headers, proxies=self.proxy).text like_count = json.loads(response)['graphql']['shortcode_media']['edge_media_preview_like']['count'] return like_count def comment_count(self, post_link): if post_link.find('/tv/') != -1: post_link = post_link.replace('/tv/', '/p/') try: post_link = post_link.replace(post_link.split('/p/')[1].split('/')[1], '') except: pass headers = self._get_headers() if post_link[-1] == '/': post_link = post_link[:-1] response = self.session.get(f'{post_link}/?__a=1', headers=headers, proxies=self.proxy).text comment_count = json.loads(response)['graphql']['shortcode_media']['edge_media_preview_comment']['count'] return comment_count def user_posts(self, username, limit=50): posts_have = self.user_posts_count(username) if posts_have < limit: limit=posts_have limit_k=limit headers = self._get_headers() response = self.session.get(f'https://www.instagram.com/{username}/?__a=1', headers=headers, proxies=self.proxy).text user_id = json.loads(response)['graphql']['user']['id'] links=[] response = self.session.get(f'https://www.instagram.com/graphql/query/?query_hash=003056d32c2554def87228bc3fd9668a&variables=%7B%22id%22%3A%22{user_id}%22%2C%22first%22%3A{limit}%7D', headers=headers, proxies=self.proxy).text post_count = len(json.loads(response)['data']['user']['edge_owner_to_timeline_media']['edges']) if limit > post_count: limit = post_count for i in range(0, limit): links.append('https://instagram.com/p/'+json.loads(response)['data']['user']['edge_owner_to_timeline_media']['edges'][i]['node']['shortcode']) if limit_k > 50: limit = limit_k - 50 limit_k = limit while limit_k > 0: try: after = json.loads(response)['data']['user']['edge_owner_to_timeline_media']['page_info']['end_cursor'] response = self.session.get(f'https://www.instagram.com/graphql/query/?query_hash=003056d32c2554def87228bc3fd9668a&variables=%7B%22id%22%3A%22{user_id}%22%2C%22first%22%3A50%2C%22after%22%3A%22{after.replace("==","")}%3D%3D%22%7D', headers=headers, proxies=self.proxy).text post_count = len(json.loads(response)['data']['user']['edge_owner_to_timeline_media']['edges']) if limit > post_count: limit = post_count limit_k -= limit for i in range(0, limit): links.append('https://instagram.com/p/'+json.loads(response)['data']['user']['edge_owner_to_timeline_media']['edges'][i]['node']['shortcode']) limit = limit_k except: break return links def user_follows(self, username, limit=49): followed = self.user_follow_count(username) if followed < limit: limit=followed limit_k=limit headers = self._get_headers() response = self.session.get(f'https://www.instagram.com/{username}/?__a=1', headers=headers, proxies=self.proxy).text user_id = json.loads(response)['graphql']['user']['id'] usernames=[] response = self.session.get(f'https://www.instagram.com/graphql/query/?query_hash=d04b0a864b4b54837c0d870b0e77e076&variables=%7B%22id%22%3A%22{user_id}%22%2C%22first%22%3A{limit}%7D', headers=headers, proxies=self.proxy).text follow_count = len(json.loads(response)['data']['user']['edge_follow']['edges']) if limit > follow_count: limit = follow_count for i in range(0, limit): usernames.append(json.loads(response)['data']['user']['edge_follow']['edges'][i]['node']['username']) if limit_k > 49: limit = limit_k - 49 limit_k = limit while limit_k > 0: try: after = json.loads(response)['data']['user']['edge_follow']['page_info']['end_cursor'] response = self.session.get(f'https://www.instagram.com/graphql/query/?query_hash=d04b0a864b4b54837c0d870b0e77e076&variables=%7B%22id%22%3A%22{user_id}%22%2C%22first%22%3A50%2C%22after%22%3A%22{after.replace("==","")}%3D%3D%22%7D', headers=headers, proxies=self.proxy).text follow_count = len(json.loads(response)['data']['user']['edge_follow']['edges']) if limit > follow_count: limit = follow_count limit_k -= limit for i in range(0, limit): usernames.append(json.loads(response)['data']['user']['edge_follow']['edges'][i]['node']['username']) limit = limit_k except: break return usernames def user_followers(self, username, limit=49): follower = self.user_followers_count(username) if follower < limit: limit=follower limit_k=limit headers = self._get_headers() response = self.session.get(f'https://www.instagram.com/{username}/?__a=1', headers=headers, proxies=self.proxy).text user_id = json.loads(response)['graphql']['user']['id'] usernames=[] response = self.session.get(f'https://www.instagram.com/graphql/query/?query_hash=c76146de99bb02f6415203be841dd25a&variables=%7B%22id%22%3A%22{user_id}%22%2C%22first%22%3A{limit}%7D', headers=headers, proxies=self.proxy).text follower_count = len(json.loads(response)['data']['user']['edge_followed_by']['edges']) if limit > follower_count: limit = follower_count for i in range(0, limit): usernames.append(json.loads(response)['data']['user']['edge_followed_by']['edges'][i]['node']['username']) if limit_k > 49: limit = limit_k - 49 limit_k = limit while limit_k > 0: try: after = json.loads(response)['data']['user']['edge_followed_by']['page_info']['end_cursor'] response = self.session.get(f'https://www.instagram.com/graphql/query/?query_hash=c76146de99bb02f6415203be841dd25a&variables=%7B%22id%22%3A%22{user_id}%22%2C%22first%22%3A50%2C%22after%22%3A%22{after.replace("==","")}%3D%3D%22%7D', headers=headers, proxies=self.proxy).text follower_count = len(json.loads(response)['data']['user']['edge_followed_by']['edges']) if limit > follower_count: limit = follower_count limit_k -= limit for i in range(0, limit): usernames.append(json.loads(response)['data']['user']['edge_followed_by']['edges'][i]['node']['username']) limit = limit_k except: break return usernames def post_likers(self, post_link, limit=50): if post_link.find('/tv/') != -1: post_link = post_link.replace('/tv/', '/p/') try: post_link = post_link.replace(post_link.split('/p/')[1].split('/')[1], '') except: pass likers = self.like_count(post_link) if likers < limit: limit=likers limit_k=limit headers = self._get_headers() shortcode = post_link.split('/p/')[1].replace('/', '') usernames=[] response = self.session.get(f'https://www.instagram.com/graphql/query/?query_hash=d5d763b1e2acf209d62d22d184488e57&variables=%7B%22shortcode%22%3A%22{shortcode}%22%2C%22first%22%3A{limit}%7D', headers=headers, proxies=self.proxy).text like_count = len(json.loads(response)['data']['shortcode_media']['edge_liked_by']['edges']) if limit > like_count: limit = like_count for i in range(0, limit): usernames.append(json.loads(response)['data']['shortcode_media']['edge_liked_by']['edges'][i]['node']['username']) if limit_k > 50: limit = limit_k - 50 limit_k = limit while limit_k > 0: try: after = json.loads(response)['data']['shortcode_media']['edge_liked_by']['page_info']['end_cursor'] response = self.session.get(f'https://www.instagram.com/graphql/query/?query_hash=d5d763b1e2acf209d62d22d184488e57&variables=%7B%22shortcode%22%3A%22{shortcode}%22%2C%22first%22%3A50%2C%22after%22%3A%22{after.replace("==","")}%3D%3D%22%7D', headers=headers, proxies=self.proxy).text like_count = len(json.loads(response)['data']['shortcode_media']['edge_liked_by']['edges']) if limit > like_count: limit = like_count limit_k -= limit for i in range(0, limit): usernames.append(json.loads(response)['data']['shortcode_media']['edge_liked_by']['edges'][i]['node']['username']) limit = limit_k except: break return usernames def post_commenters(self, post_link, limit=50): if post_link.find('/tv/') != -1: post_link = post_link.replace('/tv/', '/p/') try: post_link = post_link.replace(post_link.split('/p/')[1].split('/')[1], '') except: pass commenters = self.comment_count(post_link) if commenters < limit: limit=commenters limit_k=limit headers = self._get_headers() shortcode = post_link.split('/p/')[1].replace('/', '') usernames=[] response = self.session.get(f'https://www.instagram.com/graphql/query/?query_hash=bc3296d1ce80a24b1b6e40b1e72903f5&variables=%7B%22shortcode%22%3A%22{shortcode}%22%2C%22first%22%3A{limit}%7D', headers=headers, proxies=self.proxy).text comment_count = len(json.loads(response)['data']['shortcode_media']['edge_media_to_parent_comment']['edges']) if limit > comment_count: limit = comment_count for i in range(0, limit): usernames.append(json.loads(response)['data']['shortcode_media']['edge_media_to_parent_comment']['edges'][i]['node']['owner']['username']) if limit_k > 50: limit = limit_k - 50 limit_k = limit while limit_k > 0: try: response = self.session.get('https://www.instagram.com/graphql/query/?query_hash=bc3296d1ce80a24b1b6e40b1e72903f5&variables={%22shortcode%22:%22'+shortcode+'%22,%22first%22:50,%22after%22:'+json.dumps(json.loads(response)['data']['shortcode_media']['edge_media_to_parent_comment']['page_info']['end_cursor'])+'}', headers=headers, proxies=self.proxy).text comment_count = len(json.loads(response)['data']['shortcode_media']['edge_media_to_parent_comment']['edges']) if limit > comment_count: limit = comment_count limit_k -= limit for i in range(0, limit): usernames.append(json.loads(response)['data']['shortcode_media']['edge_media_to_parent_comment']['edges'][i]['node']['owner']['username']) limit = limit_k except: break return usernames def feed_posts(self): headers = self._get_headers() response = self.session.get('https://www.instagram.com/graphql/query/?query_hash=c699b185975935ae2a457f24075de8c7', headers=headers, proxies=self.proxy).text post_count = len(json.loads(response)['data']['user']['edge_web_feed_timeline']['edges']) feed_posts = [] for i in range(0, post_count): feed_posts.append('https://instagram.com/p/'+json.loads(response)['data']['user']['edge_web_feed_timeline']['edges'][i]['node']['shortcode']) return feed_posts def post_owner(self, post_link): if post_link.find('/tv/') != -1: post_link = post_link.replace('/tv/', '/p/') try: post_link = post_link.replace(post_link.split('/p/')[1].split('/')[1], '') except: pass headers = self._get_headers() if post_link[-1] == '/': post_link = post_link[:-1] response = self.session.get(f'{post_link}/?__a=1', headers=headers, proxies=self.proxy).text owner = json.loads(response)['graphql']['shortcode_media']['owner']['username'] return owner def post_caption(self, post_link): if post_link.find('/tv/') != -1: post_link = post_link.replace('/tv/', '/p/') try: post_link = post_link.replace(post_link.split('/p/')[1].split('/')[1], '') except: pass headers = self._get_headers() if post_link[-1] == '/': post_link = post_link[:-1] response = self.session.get(f'{post_link}/?__a=1', headers=headers, proxies=self.proxy).text caption = json.loads(response)['graphql']['shortcode_media']['edge_media_to_caption']['edges'][0]['node']['text'] return caption def post_location(self, post_link): if post_link.find('/tv/') != -1: post_link = post_link.replace('/tv/', '/p/') try: post_link = post_link.replace(post_link.split('/p/')[1].split('/')[1], '') except: pass headers = self._get_headers() if post_link[-1] == '/': post_link = post_link[:-1] response = self.session.get(f'{post_link}/?__a=1', headers=headers, proxies=self.proxy).text location = {"id": json.loads(response)['graphql']['shortcode_media']['location']['id'], "name": json.loads(response)['graphql']['shortcode_media']['location']['name']} return location def post_hashtags(self, post_link): if post_link.find('/tv/') != -1: post_link = post_link.replace('/tv/', '/p/') try: post_link = post_link.replace(post_link.split('/p/')[1].split('/')[1], '') except: pass hashtag_filter = self.post_caption(post_link).replace('\n', ' ').split() hashtags=[] for hashtag in hashtag_filter: if hashtag.startswith('#'): hashtags.append(hashtag) return hashtags def post_tagged_user(self, post_link): if post_link.find('/tv/') != -1: post_link = post_link.replace('/tv/', '/p/') try: post_link = post_link.replace(post_link.split('/p/')[1].split('/')[1], '') except: pass headers = self._get_headers() if post_link[-1] == '/': post_link = post_link[:-1] tagged_users = [] try: response = self.session.get(f'{post_link}/?__a=1', headers=headers, proxies=self.proxy).text tag_count = len(json.loads(response)['graphql']['shortcode_media']['edge_sidecar_to_children']['edges'][0]['node']['edge_media_to_tagged_user']['edges']) for i in range(0, tag_count): tagged_users.append(json.loads(response)['graphql']['shortcode_media']['edge_sidecar_to_children']['edges'][0]['node']['edge_media_to_tagged_user']['edges'][i]['node']['user']['username']) except: try: response = self.session.get(f'{post_link}/?__a=1', headers=headers, proxies=self.proxy).text tag_count = len(json.loads(response)['graphql']['shortcode_media']['edge_media_to_tagged_user']['edges']) for i in range(0, tag_count): tagged_users.append(json.loads(response)['graphql']['shortcode_media']['edge_media_to_tagged_user']['edges'][i]['node']['user']['username']) except: pass return tagged_users def post_time(self, post_link): if post_link.find('/tv/') != -1: post_link = post_link.replace('/tv/', '/p/') try: post_link = post_link.replace(post_link.split('/p/')[1].split('/')[1], '') except: pass headers = self._get_headers() if post_link[-1] == '/': post_link = post_link[:-1] response = self.session.get(f'{post_link}/?__a=1', headers=headers, proxies=self.proxy).text time = {"timestamp": json.loads(response)['graphql']['shortcode_media']['taken_at_timestamp'], "datetime": str(datetime.fromtimestamp(json.loads(response)['graphql']['shortcode_media']['taken_at_timestamp']))} return time def post_type(self, post_link): if post_link.find('/tv/') != -1: post_link = post_link.replace('/tv/', '/p/') try: post_link = post_link.replace(post_link.split('/p/')[1].split('/')[1], '') except: pass headers = self._get_headers() if post_link[-1] == '/': post_link = post_link[:-1] response = self.session.get(f'{post_link}/?__a=1', headers=headers, proxies=self.proxy).text if bool(json.loads(response)['graphql']['shortcode_media']['is_video']): post_type='video' else: post_type='picture' return post_type def video_views_count(self, post_link): if post_link.find('/tv/') != -1: post_link = post_link.replace('/tv/', '/p/') try: post_link = post_link.replace(post_link.split('/p/')[1].split('/')[1], '') except: pass if self.post_type(post_link) == 'video': headers = self._get_headers() if post_link[-1] == '/': post_link = post_link[:-1] response = self.session.get(f'{post_link}/?__a=1', headers=headers, proxies=self.proxy).text view_count = json.loads(response)['graphql']['shortcode_media']['video_view_count'] return view_count def followed_by_me(self, username): headers = self._get_headers() response = self.session.get(f'https://www.instagram.com/{username}/?__a=1', headers=headers, proxies=self.proxy).text followed_by_viewer = bool(json.loads(response)['graphql']['user']['followed_by_viewer']) return followed_by_viewer def follows_me(self, username): headers = self._get_headers() response = self.session.get(f'https://www.instagram.com/{username}/?__a=1', headers=headers, proxies=self.proxy).text follows_viewer = bool(json.loads(response)['graphql']['user']['follows_viewer']) return follows_viewer def user_external_url(self, username): headers = self._get_headers() response = self.session.get(f'https://www.instagram.com/{username}/?__a=1', headers=headers, proxies=self.proxy).text url = json.loads(response)['graphql']['user']['external_url'] return url def verified_user(self, username): headers = self._get_headers() response = self.session.get(f'https://www.instagram.com/{username}/?__a=1', headers=headers, proxies=self.proxy).text is_verified = bool(json.loads(response)['graphql']['user']['is_verified']) return is_verified def private_user(self, username): headers = self._get_headers() response = self.session.get(f'https://www.instagram.com/{username}/?__a=1', headers=headers, proxies=self.proxy).text is_private = bool(json.loads(response)['graphql']['user']['is_private']) return is_private def user_bio(self, username): headers = self._get_headers() response = self.session.get(f'https://www.instagram.com/{username}/?__a=1', headers=headers, proxies=self.proxy).text bio = json.loads(response)['graphql']['user']['biography'] return bio def user_dp(self, username): headers = self._get_headers() response = self.session.get(f'https://www.instagram.com/{username}/?__a=1', headers=headers, proxies=self.proxy).text dp_url = json.loads(response)['graphql']['user']['profile_pic_url_hd'] return dp_url def _get_headers(self, options=None): if options is None: options = dict() headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "en-US,en;q=0.9", "content-length": "0", "content-type": "application/x-www-form-urlencoded", "cookie": self.cookie, "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-origin", "user-agent": "Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.111 Safari/537.36", "x-csrftoken": self.csrf_token, "x-ig-app-id": "936619743392459", "x-ig-www-claim": "hmac.AR3dC7naiVtTKkwrEY0hwTO9zj4kLxfvf4Srvp3wFyoZFqSx", "x-instagram-ajax": "d3d3aea32e75", "x-requested-with": "XMLHttpRequest" } for key, value in options.items(): headers[key] = value return headers
63,636
207
1,294
7f9cb787068686be642ce592396f41b89b8d5767
545
py
Python
app/test/test1.py
saint816/fishbook
80a4b563a05086c85eb347286d28bb0e6258ff1c
[ "MIT" ]
null
null
null
app/test/test1.py
saint816/fishbook
80a4b563a05086c85eb347286d28bb0e6258ff1c
[ "MIT" ]
null
null
null
app/test/test1.py
saint816/fishbook
80a4b563a05086c85eb347286d28bb0e6258ff1c
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ ------------------------------------------------- File Name๏ผš test1 Description : ๅคš็บฟ็จ‹ๅฎž็Žฐ Author : pengsheng date๏ผš 2019-04-20 ------------------------------------------------- """ import threading new_thread = threading.Thread(target=worker, name='new_thread') new_thread.start() # ๆ›ดๅŠ ๅ……ๅˆ†ๅˆฉ็”จCPU็š„ๆ€ง่ƒฝไผ˜ๅŠฟ(็บฟ็จ‹ๆ‰ง่กŒๆ˜ฏๅผ‚ๆญฅ็š„) # ๅผ‚ๆญฅ็ผ–็จ‹ๅคš็”จไบŽ่งฃๅ†ณๆ€ง่ƒฝ้—ฎ้ข˜,ไธ€่ˆฌ้—ฎ้ข˜่ƒฝๅคŸ็”จๅŒๆญฅๅฐฑ็”จๅŒๆญฅ t = threading.current_thread() print(t.getName())
21.8
63
0.53578
# -*- coding: utf-8 -*- """ ------------------------------------------------- File Name๏ผš test1 Description : ๅคš็บฟ็จ‹ๅฎž็Žฐ Author : pengsheng date๏ผš 2019-04-20 ------------------------------------------------- """ import threading def worker(): print('i am thread') t = threading.current_thread() print(t.getName()) new_thread = threading.Thread(target=worker, name='new_thread') new_thread.start() # ๆ›ดๅŠ ๅ……ๅˆ†ๅˆฉ็”จCPU็š„ๆ€ง่ƒฝไผ˜ๅŠฟ(็บฟ็จ‹ๆ‰ง่กŒๆ˜ฏๅผ‚ๆญฅ็š„) # ๅผ‚ๆญฅ็ผ–็จ‹ๅคš็”จไบŽ่งฃๅ†ณๆ€ง่ƒฝ้—ฎ้ข˜,ไธ€่ˆฌ้—ฎ้ข˜่ƒฝๅคŸ็”จๅŒๆญฅๅฐฑ็”จๅŒๆญฅ t = threading.current_thread() print(t.getName())
75
0
23
535a5f8a51e655f145cc0b06696fd8a683da4409
221
py
Python
__init__.py
klonuo/SublimeJEDI
ee58759cbbfbd052bd0a972b85b1666e0e1cb6e9
[ "MIT" ]
1
2016-09-20T20:50:53.000Z
2016-09-20T20:50:53.000Z
__init__.py
klonuo/SublimeJEDI
ee58759cbbfbd052bd0a972b85b1666e0e1cb6e9
[ "MIT" ]
null
null
null
__init__.py
klonuo/SublimeJEDI
ee58759cbbfbd052bd0a972b85b1666e0e1cb6e9
[ "MIT" ]
null
null
null
# fix absolute imports on ST3 # TODO: remove #import sys #import os #sys.path.insert(0, os.path.abspath(os.path.dirname(__file__))) try: from sublime_jedi import * except ImportError: from .sublime_jedi import *
20.090909
63
0.733032
# fix absolute imports on ST3 # TODO: remove #import sys #import os #sys.path.insert(0, os.path.abspath(os.path.dirname(__file__))) try: from sublime_jedi import * except ImportError: from .sublime_jedi import *
0
0
0
667544762c302b9391cb48414210868246d7d11a
9,969
py
Python
oras/content/file.py
vsoch/oras-python
45374c6187b98f171f85dffd75a31877b6ec12ce
[ "MIT" ]
1
2021-12-06T08:54:51.000Z
2021-12-06T08:54:51.000Z
oras/content/file.py
vsoch/oras-python
45374c6187b98f171f85dffd75a31877b6ec12ce
[ "MIT" ]
1
2021-11-28T18:59:21.000Z
2021-11-28T18:59:21.000Z
oras/content/file.py
vsoch/oras-python
45374c6187b98f171f85dffd75a31877b6ec12ce
[ "MIT" ]
null
null
null
__author__ = "Vanessa Sochat" __copyright__ = "Copyright 2021, Vanessa Sochat" __license__ = "MPL 2.0" import os import time import tarfile import tempfile import time from oras.logger import logger import oras.utils as utils import oras.defaults as defaults from .const import TempFilePattern, AnnotationUnpack, AnnotationDigest from .utils import resolve_name, tar_directory from .readerat import sizeReaderAt from .utils import tar_directory from .opts import CdWriterOpts, WithOutputHash from .iowriter import IoContentWriter import opencontainers.image.v1.annotations as annotations import opencontainers.image.v1.descriptor as descriptor class FileStore: """ A FileStore provides content from the file system """ def map_path(self, name, path): """ Map a name to a path """ path = self.resolve_path(path) self.path_map[name] = path return path def resolve_path(self, name): """ Return the path by name """ path = self.path_map.get(name) if path or (path and os.path.isabs(path)): return path return os.path.join(self.root, path) def set(self, desc): """ Save a descriptor to the map. """ self.descriptor[desc.Digest.value] = desc def add(self, name, media_type, path): """ Add a file reference """ path = path or name path = self.map_path(name, path) if os.path.isdir(path): desc = self.descriptor_from_dir(name, media_type, path) elif os.path.isfile(path): desc = self.descriptor_from_file(media_type, path) else: logger.exit("%s is not a valid path." % path) desc.Annotations[annotations.AnnotationTitle] = name self.set(desc) return desc def descriptor_from_file(self, media_type, path): """ Get a descriptor from file. """ if not os.path.exists(path): logger.exit("%s does not exist." % path) try: digest = utils.get_file_hash(path) except: logger.exit("Cannot calculate digest for %s" % path) if not media_type: media_type = defaults.DefaultBlobMediaType stat = os.stat(path) return descriptor.Descriptor(mediaType=media_type, digest=digest, size=stat.st_size) def descriptor_from_dir(self, name, media_type, root): """ Get a descriptor from a director """ name = self.map_path(name, tmpfie) # Compress directory to tmpfile tar = tar_directory(root, name, strip_times=self.reproducible) # Get digest digest = "sha256:%s" % utils.get_file_hash(tar) # generate descriptor if not media_type: media_type = defaults.DefaultBlobMediaType info = os.stat(tar) # Question: what is the difference between AnnotationDigest and digest? annotations = {"AnnotationDigest": digest, "AnnotationUnpack": True} return descriptor.Descriptor(mediaType=media_type, digest=digest,size=info.st_size, annotations=annotations) def temp_file(self): """ Create and store a temporary file """ filen = tempfile.NamedTemporaryFile(prefix=TempFilePattern) self.tmp_files[filen.name] = filen return filen def close(self): """Close frees up resources used by the file store """ for name, filen in self.tmp_files.items(): filen.close() if os.path.exists(name): os.remove(name) def set(self, desc): """ Set an OCI descriptor """ self.descriptor[desc.Digest] = desc def get(desc): """ Get an OCI descriptor """ value = self.descriptor.get(desc.Digest) if not value: return descriptor.Descriptor() return value def reader_at(self, desc): """ReaderAt provides contents """ desc = self.get(desc) if not desc: sys.exit("Could not find descriptor.") name = resolve_name(desc) if not name: sys.exit("Cannot resolve name for %s" % desc) path = self.resolve_path(name) fileo = open(path, 'r') return sizeReaderAt(fileo, desc.size) def writer(self, opts): """Writer begins or resumes the active writer identified by desc """ wopts = CdWriterOpts() wopts.update(opts) desc = wopts.Desc name = resolve_name(desc) # if we were not told to ignore NoName, then return an error if not name and not self.ignore_no_name: sys.exit("Cannot resolve name for %s" % desc) elif not name and self.ignore_no_name: # just return a nil writer - we do not want to calculate the hash, so just use # whatever was passed in the descriptor return IoContentWriter(WithOutputHash(desc.Digest) path = self.resolve_write_path(name) filen, after_commit = self.create_write_path(path, desc, name) now = time.time() # STOPPED HERE need to find content.Status status = status: content.Status{ Ref: name, Total: desc.Size, StartedAt: now, UpdatedAt: now, }, return FileWriter(store=self, fileh=filen, desc=desc, status=status, after_commit=after_commit) def resolve_write_path(self, name): """Resolve the write path """ path = self.resolve_path(name) if not self.allow_path_traversal_on_write: base = os.path.abspath(self.root) target = os.path.abspath(path) rel = os.path.relpath(base, target) if rel.startswith("../") or rel == "..": return "" if self.disable_overwrite: print("NEED TO CHECK OVERWRITE") # TODO what do we want to check here, if writable? #if os.stat(path) # if _, err := os.Stat(path); err == nil { # return "", ErrOverwriteDisallowed # } else if !os.IsNotExist(err) { # return "", err return path def create_write_path(self, path, desc, prefix): """ Create a write path? """ value = desc.Annotations.get(AnnotationUnpack) if not value: os.makedirs(os.path.dirname(path)) with open(path, 'w') as fd: pass return filen, None os.makedirs(path) filen = tempfile.mkstemp()[1] checksum = desc.Annotations.get(AnnotationDigest) return filen, after_commit class FileWriter: def __init__(self, store, fileh, desc, status, after_commit, digester=None): self.store = store # *FileStore self.file = fileh # *os.File self.desc = desc # ocispec.Descriptor self.status = status # content.Status self.after_commit = after_commit # func() self.digester = digester or digest.Canonical.Digester() # TODO what is this? func (w *fileWriter) Status() (content.Status, error) { return w.status, nil } // Digest returns the current digest of the content, up to the current write. // // Cannot be called concurrently with `Write`. func (w *fileWriter) Digest() digest.Digest { return w.digester.Digest() } // Write p to the transaction. func (w *fileWriter) Write(p []byte) (n int, err error) { n, err = w.file.Write(p) w.digester.Hash().Write(p[:n]) w.status.Offset += int64(len(p)) w.status.UpdatedAt = time.Now() return n, err } func (w *fileWriter) Commit(ctx context.Context, size int64, expected digest.Digest, opts ...content.Opt) error { var base content.Info for _, opt := range opts { if err := opt(&base); err != nil { return err } } if w.file == nil { return errors.Wrap(errdefs.ErrFailedPrecondition, "cannot commit on closed writer") } file := w.file w.file = nil if err := file.Sync(); err != nil { file.Close() return errors.Wrap(err, "sync failed") } fileInfo, err := file.Stat() if err != nil { file.Close() return errors.Wrap(err, "stat failed") } if err := file.Close(); err != nil { return errors.Wrap(err, "failed to close file") } if size > 0 && size != fileInfo.Size() { return errors.Wrapf(errdefs.ErrFailedPrecondition, "unexpected commit size %d, expected %d", fileInfo.Size(), size) } if dgst := w.digester.Digest(); expected != "" && expected != dgst { return errors.Wrapf(errdefs.ErrFailedPrecondition, "unexpected commit digest %s, expected %s", dgst, expected) } w.store.set(w.desc) if w.afterCommit != nil { return w.afterCommit() } return nil } // Close the writer, flushing any unwritten data and leaving the progress in // tact. func (w *fileWriter) Close() error { if w.file == nil { return nil } w.file.Sync() err := w.file.Close() w.file = nil return err } func (w *fileWriter) Truncate(size int64) error { if size != 0 { return ErrUnsupportedSize } w.status.Offset = 0 w.digester.Hash().Reset() if _, err := w.file.Seek(0, io.SeekStart); err != nil { return err } return w.file.Truncate(0) }
28.812139
117
0.611395
__author__ = "Vanessa Sochat" __copyright__ = "Copyright 2021, Vanessa Sochat" __license__ = "MPL 2.0" import os import time import tarfile import tempfile import time from oras.logger import logger import oras.utils as utils import oras.defaults as defaults from .const import TempFilePattern, AnnotationUnpack, AnnotationDigest from .utils import resolve_name, tar_directory from .readerat import sizeReaderAt from .utils import tar_directory from .opts import CdWriterOpts, WithOutputHash from .iowriter import IoContentWriter import opencontainers.image.v1.annotations as annotations import opencontainers.image.v1.descriptor as descriptor class FileStore: """ A FileStore provides content from the file system """ def __init__(self, **kwargs): self.root = kwargs.get("root") self.descriptor = kwargs.get('descriptor', {}) self.path_map = kwargs.get("path_map", {}) self.tmp_files = kwargs.get("tmp_files", {}) self.ignore_no_name = kwargs.get("ignore_no_name", False) self.disable_overwrite = kwargs.get("disable_overwrite", False) self.allow_path_traversal_on_write = kwargs.get("allow_path_traversal_on_write", False) self.reproducible = kwargs.get("reproducible", False) def map_path(self, name, path): """ Map a name to a path """ path = self.resolve_path(path) self.path_map[name] = path return path def resolve_path(self, name): """ Return the path by name """ path = self.path_map.get(name) if path or (path and os.path.isabs(path)): return path return os.path.join(self.root, path) def set(self, desc): """ Save a descriptor to the map. """ self.descriptor[desc.Digest.value] = desc def add(self, name, media_type, path): """ Add a file reference """ path = path or name path = self.map_path(name, path) if os.path.isdir(path): desc = self.descriptor_from_dir(name, media_type, path) elif os.path.isfile(path): desc = self.descriptor_from_file(media_type, path) else: logger.exit("%s is not a valid path." % path) desc.Annotations[annotations.AnnotationTitle] = name self.set(desc) return desc def descriptor_from_file(self, media_type, path): """ Get a descriptor from file. """ if not os.path.exists(path): logger.exit("%s does not exist." % path) try: digest = utils.get_file_hash(path) except: logger.exit("Cannot calculate digest for %s" % path) if not media_type: media_type = defaults.DefaultBlobMediaType stat = os.stat(path) return descriptor.Descriptor(mediaType=media_type, digest=digest, size=stat.st_size) def descriptor_from_dir(self, name, media_type, root): """ Get a descriptor from a director """ name = self.map_path(name, tmpfie) # Compress directory to tmpfile tar = tar_directory(root, name, strip_times=self.reproducible) # Get digest digest = "sha256:%s" % utils.get_file_hash(tar) # generate descriptor if not media_type: media_type = defaults.DefaultBlobMediaType info = os.stat(tar) # Question: what is the difference between AnnotationDigest and digest? annotations = {"AnnotationDigest": digest, "AnnotationUnpack": True} return descriptor.Descriptor(mediaType=media_type, digest=digest,size=info.st_size, annotations=annotations) def temp_file(self): """ Create and store a temporary file """ filen = tempfile.NamedTemporaryFile(prefix=TempFilePattern) self.tmp_files[filen.name] = filen return filen def close(self): """Close frees up resources used by the file store """ for name, filen in self.tmp_files.items(): filen.close() if os.path.exists(name): os.remove(name) def set(self, desc): """ Set an OCI descriptor """ self.descriptor[desc.Digest] = desc def get(desc): """ Get an OCI descriptor """ value = self.descriptor.get(desc.Digest) if not value: return descriptor.Descriptor() return value def reader_at(self, desc): """ReaderAt provides contents """ desc = self.get(desc) if not desc: sys.exit("Could not find descriptor.") name = resolve_name(desc) if not name: sys.exit("Cannot resolve name for %s" % desc) path = self.resolve_path(name) fileo = open(path, 'r') return sizeReaderAt(fileo, desc.size) def writer(self, opts): """Writer begins or resumes the active writer identified by desc """ wopts = CdWriterOpts() wopts.update(opts) desc = wopts.Desc name = resolve_name(desc) # if we were not told to ignore NoName, then return an error if not name and not self.ignore_no_name: sys.exit("Cannot resolve name for %s" % desc) elif not name and self.ignore_no_name: # just return a nil writer - we do not want to calculate the hash, so just use # whatever was passed in the descriptor return IoContentWriter(WithOutputHash(desc.Digest) path = self.resolve_write_path(name) filen, after_commit = self.create_write_path(path, desc, name) now = time.time() # STOPPED HERE need to find content.Status status = status: content.Status{ Ref: name, Total: desc.Size, StartedAt: now, UpdatedAt: now, }, return FileWriter(store=self, fileh=filen, desc=desc, status=status, after_commit=after_commit) def resolve_write_path(self, name): """Resolve the write path """ path = self.resolve_path(name) if not self.allow_path_traversal_on_write: base = os.path.abspath(self.root) target = os.path.abspath(path) rel = os.path.relpath(base, target) if rel.startswith("../") or rel == "..": return "" if self.disable_overwrite: print("NEED TO CHECK OVERWRITE") # TODO what do we want to check here, if writable? #if os.stat(path) # if _, err := os.Stat(path); err == nil { # return "", ErrOverwriteDisallowed # } else if !os.IsNotExist(err) { # return "", err return path def create_write_path(self, path, desc, prefix): """ Create a write path? """ value = desc.Annotations.get(AnnotationUnpack) if not value: os.makedirs(os.path.dirname(path)) with open(path, 'w') as fd: pass return filen, None os.makedirs(path) filen = tempfile.mkstemp()[1] checksum = desc.Annotations.get(AnnotationDigest) def after_commit(): return extract_tar_gzip(path, prefix, filen, checksum) return filen, after_commit class FileWriter: def __init__(self, store, fileh, desc, status, after_commit, digester=None): self.store = store # *FileStore self.file = fileh # *os.File self.desc = desc # ocispec.Descriptor self.status = status # content.Status self.after_commit = after_commit # func() self.digester = digester or digest.Canonical.Digester() # TODO what is this? func (w *fileWriter) Status() (content.Status, error) { return w.status, nil } // Digest returns the current digest of the content, up to the current write. // // Cannot be called concurrently with `Write`. func (w *fileWriter) Digest() digest.Digest { return w.digester.Digest() } // Write p to the transaction. func (w *fileWriter) Write(p []byte) (n int, err error) { n, err = w.file.Write(p) w.digester.Hash().Write(p[:n]) w.status.Offset += int64(len(p)) w.status.UpdatedAt = time.Now() return n, err } func (w *fileWriter) Commit(ctx context.Context, size int64, expected digest.Digest, opts ...content.Opt) error { var base content.Info for _, opt := range opts { if err := opt(&base); err != nil { return err } } if w.file == nil { return errors.Wrap(errdefs.ErrFailedPrecondition, "cannot commit on closed writer") } file := w.file w.file = nil if err := file.Sync(); err != nil { file.Close() return errors.Wrap(err, "sync failed") } fileInfo, err := file.Stat() if err != nil { file.Close() return errors.Wrap(err, "stat failed") } if err := file.Close(); err != nil { return errors.Wrap(err, "failed to close file") } if size > 0 && size != fileInfo.Size() { return errors.Wrapf(errdefs.ErrFailedPrecondition, "unexpected commit size %d, expected %d", fileInfo.Size(), size) } if dgst := w.digester.Digest(); expected != "" && expected != dgst { return errors.Wrapf(errdefs.ErrFailedPrecondition, "unexpected commit digest %s, expected %s", dgst, expected) } w.store.set(w.desc) if w.afterCommit != nil { return w.afterCommit() } return nil } // Close the writer, flushing any unwritten data and leaving the progress in // tact. func (w *fileWriter) Close() error { if w.file == nil { return nil } w.file.Sync() err := w.file.Close() w.file = nil return err } func (w *fileWriter) Truncate(size int64) error { if size != 0 { return ErrUnsupportedSize } w.status.Offset = 0 w.digester.Hash().Reset() if _, err := w.file.Seek(0, io.SeekStart); err != nil { return err } return w.file.Truncate(0) }
568
0
65
230b134009ad25e00f5dd4e42fe32cc5038b7a5c
4,180
py
Python
time_series_experiments/nbeats/blocks/_base.py
vikua/time-series-experiments
2f9d3fa842866c39c8c1a9906c8c5d4870a6f7da
[ "MIT" ]
null
null
null
time_series_experiments/nbeats/blocks/_base.py
vikua/time-series-experiments
2f9d3fa842866c39c8c1a9906c8c5d4870a6f7da
[ "MIT" ]
4
2020-10-11T15:14:48.000Z
2022-02-10T02:28:07.000Z
time_series_experiments/nbeats/blocks/_base.py
vikua/time-series-experiments
2f9d3fa842866c39c8c1a9906c8c5d4870a6f7da
[ "MIT" ]
null
null
null
from tensorflow import keras from tensorflow.keras import backend as K
34.262295
88
0.583493
from tensorflow import keras from tensorflow.keras import backend as K class Block(keras.layers.Layer): def __init__( self, units, theta_units, layers=4, stack_id=0, activation="relu", kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, kernel_constraint=None, bias_constraint=None, **kwargs ): super(Block, self).__init__(**kwargs) self.units = units self.theta_units = theta_units self.layers = layers self.stack_id = stack_id self.activation = keras.activations.get(activation) self.kernel_initializer = kernel_initializer self.bias_initializer = bias_initializer self.kernel_regularizer = kernel_regularizer self.bias_regularizer = bias_regularizer self.kernel_constraint = kernel_constraint self.bias_constraint = bias_constraint self.weigts = {} self.biases = {} self.theta_b_W = None self.theta_f_W = None def build(self, input_shape): super(Block, self).build(input_shape) input_dim = input_shape[-1] for i in range(self.layers): W = self.add_weight( name="W_stack_{}_layer_{}".format(self.stack_id, i), shape=(input_dim, self.units), initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint, trainable=True, ) b = self.add_weight( name="b_stack_{}_layer_{}".format(self.stack_id, i), shape=(self.units,), initializer=self.bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint, trainable=True, ) self.weigts[i] = W self.biases[i] = b input_dim = self.units self.theta_b_W = self.add_weight( name="stack_{}_theta_b_W".format(self.stack_id), shape=(self.units, self.theta_units), initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint, trainable=True, ) self.theta_f_W = self.add_weight( name="stack_{}_theta_f_W".format(self.stack_id), shape=(self.units, self.theta_units), initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint, trainable=True, ) def call(self, inputs): outputs = inputs for i in range(self.layers): outputs = K.dot(outputs, self.weigts[i]) outputs = K.bias_add(outputs, self.biases[i], data_format="channels_last") outputs = self.activation(outputs) theta_b_output = K.dot(outputs, self.theta_b_W) theta_f_output = K.dot(outputs, self.theta_f_W) return theta_b_output, theta_f_output def get_config(self): config = super(Block, self).get_config() config.update( { "stack_id": self.stack_id, "units": self.units, "layers": self.layers, "activation": keras.activations.serialize(self.activation), "kernel_initializer": keras.initializers.serialize( self.kernel_initializer ), "bias_initializer": keras.initializers.serialize(self.bias_initializer), "kernel_regularizer": keras.regularizers.serialize( self.kernel_regularizer ), "bias_regularizer": keras.regularizers.serialize(self.bias_regularizer), "kernel_constraint": keras.constraints.serialize( self.kernel_constraint ), "bias_constraint": keras.constraints.serialize(self.bias_constraint), } ) return config
3,967
11
130
0f501a353e1da1c5ed4afdd4c955cf72bd3a1124
5,069
py
Python
cail/utils.py
Stanford-ILIAD/Confidence-Aware-Imitation-Learning
1d8af0e4ab87a025885133a2384d5a937329b2f5
[ "MIT" ]
16
2021-10-30T15:19:37.000Z
2022-03-23T12:57:49.000Z
cail/utils.py
syzhang092218-source/Confidence-Aware-Imitation-Learning
1d8af0e4ab87a025885133a2384d5a937329b2f5
[ "MIT" ]
null
null
null
cail/utils.py
syzhang092218-source/Confidence-Aware-Imitation-Learning
1d8af0e4ab87a025885133a2384d5a937329b2f5
[ "MIT" ]
2
2021-11-29T11:28:16.000Z
2022-03-06T14:12:47.000Z
import numpy as np import torch import torch.nn as nn import time from tqdm import tqdm from .buffer import Buffer from .algo.base import Expert from .env import NormalizedEnv def soft_update(target, source, tau): """Soft update for SAC""" for t, s in zip(target.parameters(), source.parameters()): t.data.mul_(1.0 - tau) t.data.add_(tau * s.data) def disable_gradient(network: nn.Module): """Disable the gradients of parameters in the network""" for param in network.parameters(): param.requires_grad = False def add_random_noise(action, std): """Add random noise to the action""" action += np.random.randn(*action.shape) * std return action.clip(-1.0, 1.0) def collect_demo( env: NormalizedEnv, algo: Expert, buffer_size: int, device: torch.device, std: float, p_rand: float, seed: int = 0 ): """ Collect demonstrations using the well-trained policy Parameters ---------- env: NormalizedEnv environment to collect demonstrations algo: Expert well-trained algorithm used to collect demonstrations buffer_size: int size of the buffer, also the number of s-a pairs in the demonstrations device: torch.device cpu or cuda std: float standard deviation add to the policy p_rand: float with probability of p_rand, the policy will act randomly seed: int random seed Returns ------- buffer: Buffer buffer of demonstrations mean_return: float average episode reward """ env.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) buffer = Buffer( buffer_size=buffer_size, state_shape=env.observation_space.shape, action_shape=env.action_space.shape, device=device ) total_return = 0.0 num_steps = [] num_episodes = 0 state = env.reset() t = 0 episode_return = 0.0 episode_steps = 0 for _ in tqdm(range(1, buffer_size + 1)): t += 1 if np.random.rand() < p_rand: action = env.action_space.sample() else: action = algo.exploit(state) action = add_random_noise(action, std) next_state, reward, done, _ = env.step(action) mask = True if t == env.max_episode_steps else done buffer.append(state, action, reward, mask, next_state) episode_return += reward episode_steps += 1 if done or t == env.max_episode_steps: num_episodes += 1 total_return += episode_return state = env.reset() t = 0 episode_return = 0.0 num_steps.append(episode_steps) episode_steps = 0 state = next_state mean_return = total_return / num_episodes print(f'Mean return of the expert is {mean_return}') print(f'Max episode steps is {np.max(num_steps)}') print(f'Min episode steps is {np.min(num_steps)}') return buffer, mean_return def evaluation( env: NormalizedEnv, algo: Expert, episodes: int, render: bool, seed: int = 0, delay: float = 0.03 ): """ Evaluate the well-trained policy Parameters ---------- env: NormalizedEnv environment to evaluate the policy algo: Expert well-trained policy to be evaluated episodes: int number of episodes used in evaluation render: bool render the environment or not seed: int random seed delay: float number of seconds to delay while rendering, in case the agent moves too fast Returns ------- mean_return: float average episode reward """ env.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) total_return = 0.0 num_episodes = 0 num_steps = [] state = env.reset() t = 0 episode_return = 0.0 episode_steps = 0 while num_episodes < episodes: t += 1 action = algo.exploit(state) next_state, reward, done, _ = env.step(action) episode_return += reward episode_steps += 1 state = next_state if render: env.render() time.sleep(delay) if done or t == env.max_episode_steps: num_episodes += 1 total_return += episode_return state = env.reset() t = 0 episode_return = 0.0 num_steps.append(episode_steps) episode_steps = 0 mean_return = total_return / num_episodes print(f'Mean return of the policy is {mean_return}') print(f'Max episode steps is {np.max(num_steps)}') print(f'Min episode steps is {np.min(num_steps)}') return mean_return
25.994872
85
0.583547
import numpy as np import torch import torch.nn as nn import time from tqdm import tqdm from .buffer import Buffer from .algo.base import Expert from .env import NormalizedEnv def soft_update(target, source, tau): """Soft update for SAC""" for t, s in zip(target.parameters(), source.parameters()): t.data.mul_(1.0 - tau) t.data.add_(tau * s.data) def disable_gradient(network: nn.Module): """Disable the gradients of parameters in the network""" for param in network.parameters(): param.requires_grad = False def add_random_noise(action, std): """Add random noise to the action""" action += np.random.randn(*action.shape) * std return action.clip(-1.0, 1.0) def collect_demo( env: NormalizedEnv, algo: Expert, buffer_size: int, device: torch.device, std: float, p_rand: float, seed: int = 0 ): """ Collect demonstrations using the well-trained policy Parameters ---------- env: NormalizedEnv environment to collect demonstrations algo: Expert well-trained algorithm used to collect demonstrations buffer_size: int size of the buffer, also the number of s-a pairs in the demonstrations device: torch.device cpu or cuda std: float standard deviation add to the policy p_rand: float with probability of p_rand, the policy will act randomly seed: int random seed Returns ------- buffer: Buffer buffer of demonstrations mean_return: float average episode reward """ env.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) buffer = Buffer( buffer_size=buffer_size, state_shape=env.observation_space.shape, action_shape=env.action_space.shape, device=device ) total_return = 0.0 num_steps = [] num_episodes = 0 state = env.reset() t = 0 episode_return = 0.0 episode_steps = 0 for _ in tqdm(range(1, buffer_size + 1)): t += 1 if np.random.rand() < p_rand: action = env.action_space.sample() else: action = algo.exploit(state) action = add_random_noise(action, std) next_state, reward, done, _ = env.step(action) mask = True if t == env.max_episode_steps else done buffer.append(state, action, reward, mask, next_state) episode_return += reward episode_steps += 1 if done or t == env.max_episode_steps: num_episodes += 1 total_return += episode_return state = env.reset() t = 0 episode_return = 0.0 num_steps.append(episode_steps) episode_steps = 0 state = next_state mean_return = total_return / num_episodes print(f'Mean return of the expert is {mean_return}') print(f'Max episode steps is {np.max(num_steps)}') print(f'Min episode steps is {np.min(num_steps)}') return buffer, mean_return def evaluation( env: NormalizedEnv, algo: Expert, episodes: int, render: bool, seed: int = 0, delay: float = 0.03 ): """ Evaluate the well-trained policy Parameters ---------- env: NormalizedEnv environment to evaluate the policy algo: Expert well-trained policy to be evaluated episodes: int number of episodes used in evaluation render: bool render the environment or not seed: int random seed delay: float number of seconds to delay while rendering, in case the agent moves too fast Returns ------- mean_return: float average episode reward """ env.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) total_return = 0.0 num_episodes = 0 num_steps = [] state = env.reset() t = 0 episode_return = 0.0 episode_steps = 0 while num_episodes < episodes: t += 1 action = algo.exploit(state) next_state, reward, done, _ = env.step(action) episode_return += reward episode_steps += 1 state = next_state if render: env.render() time.sleep(delay) if done or t == env.max_episode_steps: num_episodes += 1 total_return += episode_return state = env.reset() t = 0 episode_return = 0.0 num_steps.append(episode_steps) episode_steps = 0 mean_return = total_return / num_episodes print(f'Mean return of the policy is {mean_return}') print(f'Max episode steps is {np.max(num_steps)}') print(f'Min episode steps is {np.min(num_steps)}') return mean_return
0
0
0
83cf34bf170321319bfa3699b032ea060d189625
4,204
py
Python
tf_quant_finance/experimental/pricing_platform/framework/rate_instruments/forward_rate_agreement/forward_rate_agreement_test.py
DevarakondaV/tf-quant-finance
4502b843ca138c2ae8ad77978a2cf52fa38dbbe5
[ "Apache-2.0" ]
1
2021-04-22T15:48:38.000Z
2021-04-22T15:48:38.000Z
tf_quant_finance/experimental/pricing_platform/framework/rate_instruments/forward_rate_agreement/forward_rate_agreement_test.py
dsdinter/tf-quant-finance
b2b27e682cc091d251a53515fef96b14812acb1c
[ "Apache-2.0" ]
null
null
null
tf_quant_finance/experimental/pricing_platform/framework/rate_instruments/forward_rate_agreement/forward_rate_agreement_test.py
dsdinter/tf-quant-finance
b2b27e682cc091d251a53515fef96b14812acb1c
[ "Apache-2.0" ]
1
2021-01-30T09:32:16.000Z
2021-01-30T09:32:16.000Z
# Lint as: python3 # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for forward rate agreement.""" import numpy as np import tensorflow.compat.v2 as tf import tf_quant_finance as tff from tensorflow.python.framework import test_util # pylint: disable=g-direct-tensorflow-import framework = tff.experimental.pricing_platform.framework business_days = framework.core.business_days currencies = framework.core.currencies daycount_conventions = framework.core.daycount_conventions interpolation_method = framework.core.interpolation_method instrument_protos = tff.experimental.pricing_platform.instrument_protos date_pb2 = instrument_protos.date decimal_pb2 = instrument_protos.decimal period_pb2 = instrument_protos.period fra_pb2 = instrument_protos.forward_rate_agreement rate_instruments = tff.experimental.pricing_platform.framework.rate_instruments forward_rate_agreement = rate_instruments.forward_rate_agreement market_data = tff.experimental.pricing_platform.framework.market_data DayCountConventions = daycount_conventions.DayCountConventions BusinessDayConvention = business_days.BusinessDayConvention RateIndex = instrument_protos.rate_indices.RateIndex Currency = currencies.Currency @test_util.run_all_in_graph_and_eager_modes if __name__ == "__main__": tf.test.main()
41.623762
95
0.74215
# Lint as: python3 # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for forward rate agreement.""" import numpy as np import tensorflow.compat.v2 as tf import tf_quant_finance as tff from tensorflow.python.framework import test_util # pylint: disable=g-direct-tensorflow-import framework = tff.experimental.pricing_platform.framework business_days = framework.core.business_days currencies = framework.core.currencies daycount_conventions = framework.core.daycount_conventions interpolation_method = framework.core.interpolation_method instrument_protos = tff.experimental.pricing_platform.instrument_protos date_pb2 = instrument_protos.date decimal_pb2 = instrument_protos.decimal period_pb2 = instrument_protos.period fra_pb2 = instrument_protos.forward_rate_agreement rate_instruments = tff.experimental.pricing_platform.framework.rate_instruments forward_rate_agreement = rate_instruments.forward_rate_agreement market_data = tff.experimental.pricing_platform.framework.market_data DayCountConventions = daycount_conventions.DayCountConventions BusinessDayConvention = business_days.BusinessDayConvention RateIndex = instrument_protos.rate_indices.RateIndex Currency = currencies.Currency @test_util.run_all_in_graph_and_eager_modes class ForwardRateAgreementTest(tf.test.TestCase): def test_from_proto_price(self): fra_1 = fra_pb2.ForwardRateAgreement( short_position=True, fixing_date=date_pb2.Date(year=2021, month=5, day=21), currency=Currency.USD(), fixed_rate=decimal_pb2.Decimal(nanos=31340000), notional_amount=decimal_pb2.Decimal(units=10000), daycount_convention=DayCountConventions.ACTUAL_360(), business_day_convention=BusinessDayConvention.MODIFIED_FOLLOWING(), floating_rate_term=fra_pb2.FloatingRateTerm( floating_rate_type=RateIndex(type="LIBOR_3M"), term=period_pb2.Period(type="MONTH", amount=3)), settlement_days=2) fra_2 = fra_pb2.ForwardRateAgreement( short_position=False, fixing_date=date_pb2.Date(year=2021, month=5, day=21), currency=Currency.USD(), fixed_rate=decimal_pb2.Decimal(nanos=31340000), notional_amount=decimal_pb2.Decimal(units=10000), daycount_convention=DayCountConventions.ACTUAL_365(), business_day_convention=BusinessDayConvention.MODIFIED_FOLLOWING(), floating_rate_term=fra_pb2.FloatingRateTerm( floating_rate_type=RateIndex(type="LIBOR_3M"), term=period_pb2.Period(type="MONTH", amount=3)), settlement_days=2) date = [[2021, 2, 8], [2022, 2, 8], [2023, 2, 8], [2025, 2, 8], [2027, 2, 8], [2030, 2, 8], [2050, 2, 8]] discount = [0.97197441, 0.94022746, 0.91074031, 0.85495089, 0.8013675, 0.72494879, 0.37602059] market_data_dict = {"USD": { "risk_free_curve": {"dates": date, "discounts": discount}, "LIBOR_3M": {"dates": date, "discounts": discount},}} valuation_date = [(2020, 2, 8)] market = market_data.MarketDataDict(valuation_date, market_data_dict) fra_portfolio = forward_rate_agreement.ForwardRateAgreement.from_protos( [fra_1, fra_2, fra_1]) with self.subTest("Batching"): self.assertLen(fra_portfolio, 2) price1 = fra_portfolio[0].price(market) expected1 = np.array([4.05463257, 4.05463257]) with self.subTest("PriceBatch"): self.assertAllClose(price1, expected1) price2 = fra_portfolio[1].price(market) expected2 = np.array([-5.10228969]) with self.subTest("PriceSingle"): self.assertAllClose(price2, expected2) if __name__ == "__main__": tf.test.main()
2,302
28
47
24437d77fe7c0ec9561b24914a72b35bfd70e5ea
7,035
py
Python
.template_simulation/collect_charges.py
lukaselflein/sarah_folderstructure
a725271db3d8b5b28b24918b3daf0942fa04dcd8
[ "MIT" ]
null
null
null
.template_simulation/collect_charges.py
lukaselflein/sarah_folderstructure
a725271db3d8b5b28b24918b3daf0942fa04dcd8
[ "MIT" ]
28
2019-03-29T13:34:57.000Z
2019-07-04T09:27:07.000Z
.template_simulation/collect_charges.py
lukaselflein/sarah_folderstructure
a725271db3d8b5b28b24918b3daf0942fa04dcd8
[ "MIT" ]
null
null
null
""" Extract charges obtained via HORTON and Bader. Copyright 2019 Simulation Lab University of Freiburg Author: Lukas Elflein <elfleinl@cs.uni-freiburg.de> """ import os import pandas as pd def create_dir(path='./plotting'): """Create new folder for pictures if it does not exist yet.""" if os.path.isdir(path): return path os.makedirs(path) return path def collect_bader(): """Find charges and put them in one dataframe.""" # Initialize collection data frame coll_df = None # Crawl the directory structure for subdir, dirs, files in sorted(os.walk('./')): # Exclude template folders from search if 'template' in subdir or 'exclude' in subdir: continue # Select the folders with cost function if 'bader_charges' in subdir: print('Moving to {}'.format(subdir)) # Extract timestamp time = os.path.split(subdir)[0].replace('./', '').replace('_ps_snapshot', '') time = int(time) # Use the first charge file to come across as a template df = pd.read_csv(os.path.join(subdir, 'bader_charges.csv'), sep=r',\s*', engine='python') df['timestamp'] = time if coll_df is None: coll_df = df else: coll_df = coll_df.append(df) # The table still contains redundant hydrogen atoms: 1CD3... 2CB3 # Delete everything containing '1C' or '2C' # print(coll_df[coll_df.atom.str.contains(r'[1-2]C')]) coll_df = coll_df.drop(coll_df[coll_df.atom.str.contains(r'[1-2]C')].index) print('All collected. Transforming wide to long format ...') # Transform the wide format into a long format version (for easier plotting) coll_df = coll_df.rename({'q': 'bader'}, axis=1) coll_df = pd.melt(coll_df, id_vars=['atom', 'residue', 'timestamp'], value_vars=['bader']) coll_df = coll_df.rename({'value': 'charge', 'variable': 'Calculation Variant'}, axis=1) return coll_df def collect_horton(): """Find charges and put them in one dataframe.""" # Initialize collection data frame coll_df = None # Crawl the directory structure for subdir, dirs, files in sorted(os.walk('./')): # Exclude template folders from search if 'template' in subdir or 'exclude' in subdir or 'sweep' in subdir: continue # Select the folders with cost function if 'horton_cost_function' in subdir: print('Moving to {}'.format(subdir)) # Extract timestamp time = os.path.split(subdir)[0].replace('./', '').replace('_ps_snapshot', '') time = time.replace('/4_horton_cost_function', '') time = int(time) # Use the first charge file to come across as a template df = pd.read_csv(os.path.join(subdir, 'fitted_point_charges.csv')) df['timestamp'] = time if coll_df is None: coll_df = df else: coll_df = coll_df.append(df) print('All collected. Transforming wide to long format ...') # Transform the wide format into a long format version (for easier plotting) coll_df = coll_df.rename({'q': 'constrained', 'q_unconstrained': 'unconstrained'}, axis=1) coll_df = pd.melt(coll_df, id_vars=['atom', 'residue', 'timestamp'], value_vars=['constrained', 'unconstrained']) coll_df = coll_df.rename({'value': 'charge', 'variable': 'Calculation Variant'}, axis=1) return coll_df def extract_init_charges(rtp_path, df): """Extract charges from rtp file""" atom_names = df.atom.unique() residuum_names = df.residue.unique() charges = pd.DataFrame() with open(rtp_path, 'r') as rtp_file: print('Successfully loaded topolgy file {}'.format(rtp_path)) rtp_text = rtp_file.readlines() current_residuum = None for line in rtp_text: # atom names are only unique inside one residuum # Thus, specify which res we are currently in for residuum in residuum_names: if residuum in line: current_residuum = residuum break # Now, we can look up the atom name in the charge table. # First, select the lines with exactly one atom name for atom_name in atom_names: # Select lines with at least one atom name if atom_name in line[0:7]: second_entry = line[8:18].replace('+', '') second_entry = second_entry.replace('-', '').strip() # Select lines with no atom name in second column if not second_entry in atom_names: q_value = float(line[24:34].strip(' ')) charges = charges.append({'atom': atom_name, 'residue': current_residuum, 'q_init': q_value}, ignore_index=True) return charges def collect_average(): """Put averaged charegs in a dataframe.""" # Read charges from averaged cost function input_path = './horton_charges/fitted_point_charges.csv' avg_df = pd.read_csv(input_path) # Rename columns for consistency avg_df = avg_df.rename({'q': 'averaged cost function'}, axis=1) # Transform to long format avg_df = pd.melt(avg_df, id_vars=['atom', 'residue'], value_vars=['averaged cost function']) avg_df = avg_df.rename({'value': 'charge', 'variable': 'Calculation Variant'}, axis=1) return avg_df def main(): """Collect charges and save them to .csv file""" # Collect averaged charges avg_df = collect_average() print(avg_df.loc[avg_df.atom == 'NA2']) # Collect all horton charges print('Collecting HORTON charges ...') horton_df = collect_horton() print(horton_df.loc[horton_df.atom == 'NA2']) # Collect all bader charges print('Collecting Bader charges ...') bader_df = collect_bader() # Paste everything into single dataframe print('Combining different charges into one table ... ') constr_df = horton_df.loc[horton_df['Calculation Variant'] == 'constrained'] unconstr_df = horton_df.loc[horton_df['Calculation Variant'] == 'unconstrained'] collect_df = avg_df collect_df = collect_df.append(constr_df, sort=False) collect_df = collect_df.append(unconstr_df, sort=False) collect_df = collect_df.append(bader_df, sort=False) create_dir(path='./plotting') collect_df.to_csv('./plotting/all_charges.csv') if __name__ == '__main__': main()
39.971591
102
0.585785
""" Extract charges obtained via HORTON and Bader. Copyright 2019 Simulation Lab University of Freiburg Author: Lukas Elflein <elfleinl@cs.uni-freiburg.de> """ import os import pandas as pd def create_dir(path='./plotting'): """Create new folder for pictures if it does not exist yet.""" if os.path.isdir(path): return path os.makedirs(path) return path def collect_bader(): """Find charges and put them in one dataframe.""" # Initialize collection data frame coll_df = None # Crawl the directory structure for subdir, dirs, files in sorted(os.walk('./')): # Exclude template folders from search if 'template' in subdir or 'exclude' in subdir: continue # Select the folders with cost function if 'bader_charges' in subdir: print('Moving to {}'.format(subdir)) # Extract timestamp time = os.path.split(subdir)[0].replace('./', '').replace('_ps_snapshot', '') time = int(time) # Use the first charge file to come across as a template df = pd.read_csv(os.path.join(subdir, 'bader_charges.csv'), sep=r',\s*', engine='python') df['timestamp'] = time if coll_df is None: coll_df = df else: coll_df = coll_df.append(df) # The table still contains redundant hydrogen atoms: 1CD3... 2CB3 # Delete everything containing '1C' or '2C' # print(coll_df[coll_df.atom.str.contains(r'[1-2]C')]) coll_df = coll_df.drop(coll_df[coll_df.atom.str.contains(r'[1-2]C')].index) print('All collected. Transforming wide to long format ...') # Transform the wide format into a long format version (for easier plotting) coll_df = coll_df.rename({'q': 'bader'}, axis=1) coll_df = pd.melt(coll_df, id_vars=['atom', 'residue', 'timestamp'], value_vars=['bader']) coll_df = coll_df.rename({'value': 'charge', 'variable': 'Calculation Variant'}, axis=1) return coll_df def collect_horton(): """Find charges and put them in one dataframe.""" # Initialize collection data frame coll_df = None # Crawl the directory structure for subdir, dirs, files in sorted(os.walk('./')): # Exclude template folders from search if 'template' in subdir or 'exclude' in subdir or 'sweep' in subdir: continue # Select the folders with cost function if 'horton_cost_function' in subdir: print('Moving to {}'.format(subdir)) # Extract timestamp time = os.path.split(subdir)[0].replace('./', '').replace('_ps_snapshot', '') time = time.replace('/4_horton_cost_function', '') time = int(time) # Use the first charge file to come across as a template df = pd.read_csv(os.path.join(subdir, 'fitted_point_charges.csv')) df['timestamp'] = time if coll_df is None: coll_df = df else: coll_df = coll_df.append(df) print('All collected. Transforming wide to long format ...') # Transform the wide format into a long format version (for easier plotting) coll_df = coll_df.rename({'q': 'constrained', 'q_unconstrained': 'unconstrained'}, axis=1) coll_df = pd.melt(coll_df, id_vars=['atom', 'residue', 'timestamp'], value_vars=['constrained', 'unconstrained']) coll_df = coll_df.rename({'value': 'charge', 'variable': 'Calculation Variant'}, axis=1) return coll_df def extract_init_charges(rtp_path, df): """Extract charges from rtp file""" atom_names = df.atom.unique() residuum_names = df.residue.unique() charges = pd.DataFrame() with open(rtp_path, 'r') as rtp_file: print('Successfully loaded topolgy file {}'.format(rtp_path)) rtp_text = rtp_file.readlines() current_residuum = None for line in rtp_text: # atom names are only unique inside one residuum # Thus, specify which res we are currently in for residuum in residuum_names: if residuum in line: current_residuum = residuum break # Now, we can look up the atom name in the charge table. # First, select the lines with exactly one atom name for atom_name in atom_names: # Select lines with at least one atom name if atom_name in line[0:7]: second_entry = line[8:18].replace('+', '') second_entry = second_entry.replace('-', '').strip() # Select lines with no atom name in second column if not second_entry in atom_names: q_value = float(line[24:34].strip(' ')) charges = charges.append({'atom': atom_name, 'residue': current_residuum, 'q_init': q_value}, ignore_index=True) return charges def collect_average(): """Put averaged charegs in a dataframe.""" # Read charges from averaged cost function input_path = './horton_charges/fitted_point_charges.csv' avg_df = pd.read_csv(input_path) # Rename columns for consistency avg_df = avg_df.rename({'q': 'averaged cost function'}, axis=1) # Transform to long format avg_df = pd.melt(avg_df, id_vars=['atom', 'residue'], value_vars=['averaged cost function']) avg_df = avg_df.rename({'value': 'charge', 'variable': 'Calculation Variant'}, axis=1) return avg_df def main(): """Collect charges and save them to .csv file""" # Collect averaged charges avg_df = collect_average() print(avg_df.loc[avg_df.atom == 'NA2']) # Collect all horton charges print('Collecting HORTON charges ...') horton_df = collect_horton() print(horton_df.loc[horton_df.atom == 'NA2']) # Collect all bader charges print('Collecting Bader charges ...') bader_df = collect_bader() # Paste everything into single dataframe print('Combining different charges into one table ... ') constr_df = horton_df.loc[horton_df['Calculation Variant'] == 'constrained'] unconstr_df = horton_df.loc[horton_df['Calculation Variant'] == 'unconstrained'] collect_df = avg_df collect_df = collect_df.append(constr_df, sort=False) collect_df = collect_df.append(unconstr_df, sort=False) collect_df = collect_df.append(bader_df, sort=False) create_dir(path='./plotting') collect_df.to_csv('./plotting/all_charges.csv') if __name__ == '__main__': main()
0
0
0
453864fe3cdf4c08c938afaf223db5f6a52e6a03
8,391
py
Python
main.py
foorschtbar/speedtest_ookla-to-influxdb
901b69fe57f314150a8383e2db2814f3dc7a5674
[ "MIT" ]
null
null
null
main.py
foorschtbar/speedtest_ookla-to-influxdb
901b69fe57f314150a8383e2db2814f3dc7a5674
[ "MIT" ]
null
null
null
main.py
foorschtbar/speedtest_ookla-to-influxdb
901b69fe57f314150a8383e2db2814f3dc7a5674
[ "MIT" ]
null
null
null
import os import time import json import datetime import subprocess from pythonping import ping from influxdb_client import InfluxDBClient from influxdb_client.client.write_api import SYNCHRONOUS from multiprocessing import Process # InfluxDB Settings NAMESPACE = os.getenv('NAMESPACE', 'None') DB_URL = os.getenv('INFLUX_DB_URL', 'http://localhost') DB_TOKEN = os.getenv('INFLUX_DB_TOKEN', 'my-token') DB_ORG = os.getenv('INFLUX_DB_ORG', 'my-org') DB_BUCKET = os.getenv('INFLUX_DB_BUCKET', 'my-bucket') DB_TAGS = os.getenv('INFLUX_DB_TAGS', None) PING_TARGETS = os.getenv('PING_TARGETS', '1.1.1.1, 8.8.8.8') # Speedtest Settings # Time between tests (in minutes, converts to seconds). TEST_INTERVAL = int(os.getenv('SPEEDTEST_INTERVAL', '5')) * 60 # Time before retrying a failed Speedtest (in minutes, converts to seconds). TEST_FAIL_INTERVAL = int(os.getenv('SPEEDTEST_FAIL_INTERVAL', '5')) * 60 # Specific server ID SERVER_ID = os.getenv('SPEEDTEST_SERVER_ID', '') # Time between ping tests (in seconds). PING_INTERVAL = int(os.getenv('PING_INTERVAL', '5')) with InfluxDBClient(url=DB_URL, token=DB_TOKEN, org=DB_ORG) as client: write_api = client.write_api(write_options=SYNCHRONOUS) pass # time.sleep(TEST_FAIL_INTERVAL) if __name__ == '__main__': print('Speedtest CLI data logger to InfluxDB started...') main()
36.324675
474
0.546538
import os import time import json import datetime import subprocess from pythonping import ping from influxdb_client import InfluxDBClient from influxdb_client.client.write_api import SYNCHRONOUS from multiprocessing import Process # InfluxDB Settings NAMESPACE = os.getenv('NAMESPACE', 'None') DB_URL = os.getenv('INFLUX_DB_URL', 'http://localhost') DB_TOKEN = os.getenv('INFLUX_DB_TOKEN', 'my-token') DB_ORG = os.getenv('INFLUX_DB_ORG', 'my-org') DB_BUCKET = os.getenv('INFLUX_DB_BUCKET', 'my-bucket') DB_TAGS = os.getenv('INFLUX_DB_TAGS', None) PING_TARGETS = os.getenv('PING_TARGETS', '1.1.1.1, 8.8.8.8') # Speedtest Settings # Time between tests (in minutes, converts to seconds). TEST_INTERVAL = int(os.getenv('SPEEDTEST_INTERVAL', '5')) * 60 # Time before retrying a failed Speedtest (in minutes, converts to seconds). TEST_FAIL_INTERVAL = int(os.getenv('SPEEDTEST_FAIL_INTERVAL', '5')) * 60 # Specific server ID SERVER_ID = os.getenv('SPEEDTEST_SERVER_ID', '') # Time between ping tests (in seconds). PING_INTERVAL = int(os.getenv('PING_INTERVAL', '5')) with InfluxDBClient(url=DB_URL, token=DB_TOKEN, org=DB_ORG) as client: write_api = client.write_api(write_options=SYNCHRONOUS) pass def init_db(): pass def pkt_loss(data): if 'packetLoss' in data.keys(): return int(data['packetLoss']) else: return 0 def tag_selection(data): tags = DB_TAGS options = {} # tag_switch takes in _data and attaches CLIoutput to more readable ids tag_switch = { 'namespace': NAMESPACE, 'isp': data['isp'], 'interface': data['interface']['name'], 'internal_ip': data['interface']['internalIp'], 'interface_mac': data['interface']['macAddr'], 'vpn_enabled': (False if data['interface']['isVpn'] == 'false' else True), 'external_ip': data['interface']['externalIp'], 'server_id': data['server']['id'], 'server_name': data['server']['name'], 'server_location': data['server']['location'], 'server_country': data['server']['country'], 'server_host': data['server']['host'], 'server_port': data['server']['port'], 'server_ip': data['server']['ip'], 'speedtest_id': data['result']['id'], 'speedtest_url': data['result']['url'] } if tags is None: tags = 'namespace' elif '*' in tags: return tag_switch else: tags = 'namespace, ' + tags tags = tags.split(',') for tag in tags: # split the tag string, strip and add selected tags to {options} with corresponding tag_switch data tag = tag.strip() options[tag] = tag_switch[tag] return options def format_for_influx(data): # There is additional data in the speedtest-cli output but it is likely not necessary to store. influx_data = [ { 'measurement': 'ping', 'time': data['timestamp'], 'fields': { 'jitter': data['ping']['jitter'], 'latency': data['ping']['latency'] } }, { 'measurement': 'download', 'time': data['timestamp'], 'fields': { # Byte to Megabit 'bandwidth': data['download']['bandwidth'] / 125000, 'bytes': data['download']['bytes'], 'elapsed': data['download']['elapsed'] } }, { 'measurement': 'upload', 'time': data['timestamp'], 'fields': { # Byte to Megabit 'bandwidth': data['upload']['bandwidth'] / 125000, 'bytes': data['upload']['bytes'], 'elapsed': data['upload']['elapsed'] } }, { 'measurement': 'packetLoss', 'time': data['timestamp'], 'fields': { 'packetLoss': pkt_loss(data) } }, { 'measurement': 'speeds', 'time': data['timestamp'], 'fields': { 'jitter': data['ping']['jitter'], 'latency': data['ping']['latency'], 'packetLoss': pkt_loss(data), # Byte to Megabit 'bandwidth_down': data['download']['bandwidth'] / 125000, 'bytes_down': data['download']['bytes'], 'elapsed_down': data['download']['elapsed'], # Byte to Megabit 'bandwidth_up': data['upload']['bandwidth'] / 125000, 'bytes_up': data['upload']['bytes'], 'elapsed_up': data['upload']['elapsed'] } } ] tags = tag_selection(data) if tags is not None: for measurement in influx_data: measurement['tags'] = tags return influx_data def speedtest(): if not SERVER_ID: speedtest = subprocess.run( ["speedtest", "--accept-license", "--accept-gdpr", "-f", "json"], capture_output=True) print("Automatic server choice") else: speedtest = subprocess.run( ["speedtest", "--accept-license", "--accept-gdpr", "-f", "json", "--server-id=" + SERVER_ID], capture_output=True) print("Manual server choice : ID = " + SERVER_ID) if speedtest.returncode == 0: # Speedtest was successful. print("Speedtest Successful :") data_json = json.loads(speedtest.stdout) print("time: " + str(data_json['timestamp']) + " - ping: " + str(data_json['ping']['latency']) + " ms - download: " + str(data_json['download']['bandwidth']/125000) + " Mb/s - upload: " + str(data_json['upload']['bandwidth'] / 125000) + " Mb/s - isp: " + data_json['isp'] + " - ext. IP: " + data_json['interface']['externalIp'] + " - server id: " + str(data_json['server']['id']) + " (" + data_json['server']['name'] + " @ " + data_json['server']['location'] + ")") data = format_for_influx(data_json) try: write_api.write(bucket=DB_BUCKET, record=data) print("Speedtest data written to DB successfully") except InfluxDBError as e: print("Speedtest data write failed.") else: # Speedtest failed. print("Speedtest Failed :") print(speedtest.stderr) print(speedtest.stdout) # time.sleep(TEST_FAIL_INTERVAL) def pingtest(): timestamp = datetime.datetime.utcnow() for target in PING_TARGETS.split(','): target = target.strip() pingtest = ping(target, verbose=False, timeout=1, count=1, size=128) data = [ { 'measurement': 'pings', 'time': timestamp, 'tags': { 'namespace': NAMESPACE, 'target' : target }, 'fields': { 'success' : int(pingtest._responses[0].error_message is None), 'rtt': float(0 if pingtest._responses[0].error_message is not None else pingtest.rtt_avg_ms) } } ] try: write_api.write(bucket=DB_BUCKET, record=data) print("Ping data written to DB successfully") except InfluxDBError as e: print("Ping data write failed.") def main(): pPing = Process(target=pingtest) pSpeed = Process(target=speedtest) init_db() # Setup the database if it does not already exist. loopcount = 0 while (1): # Run a Speedtest and send the results to influxDB indefinitely. if loopcount == 0 or loopcount % PING_INTERVAL == 0: if pPing.is_alive(): pPing.terminate() pPing = Process(target=pingtest) pPing.start() if loopcount == 0 or loopcount % TEST_INTERVAL == 0: if pSpeed.is_alive(): pSpeed.terminate() pSpeed = Process(target=speedtest) pSpeed.start() if loopcount % ( PING_INTERVAL * TEST_INTERVAL ) == 0: loopcount = 0 time.sleep(1) loopcount += 1 if __name__ == '__main__': print('Speedtest CLI data logger to InfluxDB started...') main()
6,815
0
175
0fd7d1fa2baad176d6e5962f6138008014fa633a
2,444
py
Python
Cnc-Calculators-V.2/Moduler/ra.py
UniQueKakarot/Redesigned_Cnc-Calculators
0ec83234444ecb5765b14bf77782f99e432b5473
[ "MIT" ]
null
null
null
Cnc-Calculators-V.2/Moduler/ra.py
UniQueKakarot/Redesigned_Cnc-Calculators
0ec83234444ecb5765b14bf77782f99e432b5473
[ "MIT" ]
1
2021-06-02T00:32:00.000Z
2021-06-02T00:32:00.000Z
Cnc-Calculators-V.2/Moduler/ra.py
UniQueKakarot/Redesigned_Cnc-Calculators
0ec83234444ecb5765b14bf77782f99e432b5473
[ "MIT" ]
null
null
null
""" This module contains the RA calculator """ from kivy.uix.gridlayout import GridLayout from kivy.lang import Builder from kivy.properties import StringProperty from Moduler.customwidgets import MyLabel from Moduler.customwidgets import MyTextInput from Moduler.datasaving import SurfaceRaData Builder.load_string( """ <BoxLayout>: orientation: 'horizontal' <MyTextInput>: <Ra>: feed: feed nr: nr cols: 1 padding: 10 spacing: 10 BoxLayout: size_hint_y: None height: "40dp" Label: text: "Feedrate: " MyTextInput: id: feed hint_text: "mm/o" multiline: False write_tab: False on_text_validate: root.calc() BoxLayout: size_hint_y: None height: "40dp" Label: text: "Nose Radius: " MyTextInput: id: nr hint_text: "mm" multiline: False write_tab: False on_text_validate: root.calc() BoxLayout: size_hint_y: None height: "40dp" Button: text: "Calculate!" on_press: root.calc() BoxLayout: #size_hint_y: None #height: "200dp" Label: BoxLayout: size_hint_y: None height: "40dp" MyLabel: text: "Ra: " bcolor: [1, 1, 1, 0.15] MyLabel: text: root.surface_ra bcolor: [1, 1, 1, 0.15] """ ) class Ra(GridLayout): """ Main class for the RA module """ surface_ra = StringProperty() def calc(self): """ Calculating RA """ try: feed = self.feed.text feed = feed.replace(',', '.') feed = float(feed) except ValueError: pass try: nose_radius = self.nr.text nose_radius = nose_radius.replace(',', '.') nose_radius = float(nose_radius) except ValueError: pass try: result = ((feed**2) / (nose_radius*24)) * 1000 result = round(result, 2) except(TypeError, ZeroDivisionError): result = "Please input values" self.surface_ra = str(result) SurfaceRaData("Database.xlsx").filesave(self.feed.text, self.nr.text, result)
21.068966
63
0.51473
""" This module contains the RA calculator """ from kivy.uix.gridlayout import GridLayout from kivy.lang import Builder from kivy.properties import StringProperty from Moduler.customwidgets import MyLabel from Moduler.customwidgets import MyTextInput from Moduler.datasaving import SurfaceRaData Builder.load_string( """ <BoxLayout>: orientation: 'horizontal' <MyTextInput>: <Ra>: feed: feed nr: nr cols: 1 padding: 10 spacing: 10 BoxLayout: size_hint_y: None height: "40dp" Label: text: "Feedrate: " MyTextInput: id: feed hint_text: "mm/o" multiline: False write_tab: False on_text_validate: root.calc() BoxLayout: size_hint_y: None height: "40dp" Label: text: "Nose Radius: " MyTextInput: id: nr hint_text: "mm" multiline: False write_tab: False on_text_validate: root.calc() BoxLayout: size_hint_y: None height: "40dp" Button: text: "Calculate!" on_press: root.calc() BoxLayout: #size_hint_y: None #height: "200dp" Label: BoxLayout: size_hint_y: None height: "40dp" MyLabel: text: "Ra: " bcolor: [1, 1, 1, 0.15] MyLabel: text: root.surface_ra bcolor: [1, 1, 1, 0.15] """ ) class Ra(GridLayout): """ Main class for the RA module """ surface_ra = StringProperty() def calc(self): """ Calculating RA """ try: feed = self.feed.text feed = feed.replace(',', '.') feed = float(feed) except ValueError: pass try: nose_radius = self.nr.text nose_radius = nose_radius.replace(',', '.') nose_radius = float(nose_radius) except ValueError: pass try: result = ((feed**2) / (nose_radius*24)) * 1000 result = round(result, 2) except(TypeError, ZeroDivisionError): result = "Please input values" self.surface_ra = str(result) SurfaceRaData("Database.xlsx").filesave(self.feed.text, self.nr.text, result)
0
0
0
babbc8cc7067faba7f4cecd9fb2dba005c06f6f1
209
py
Python
nhdpy/__init__.py
jsta/nhdpy
38f52a68907e4d838715c77b18e61450eb775c72
[ "MIT" ]
null
null
null
nhdpy/__init__.py
jsta/nhdpy
38f52a68907e4d838715c77b18e61450eb775c72
[ "MIT" ]
8
2020-11-12T16:42:23.000Z
2021-03-04T19:00:09.000Z
nhdpy/__init__.py
jsta/nhdpy
38f52a68907e4d838715c77b18e61450eb775c72
[ "MIT" ]
null
null
null
"""Top-level package for nhdpy.""" __author__ = """Jemma Stachelek""" __email__ = 'stachel2@msu.edu' __version__ = '0.1.0' from .nhdpy import nhd_get from .nhdpy import nhd_list from .nhdpy import nhd_load
19
34
0.727273
"""Top-level package for nhdpy.""" __author__ = """Jemma Stachelek""" __email__ = 'stachel2@msu.edu' __version__ = '0.1.0' from .nhdpy import nhd_get from .nhdpy import nhd_list from .nhdpy import nhd_load
0
0
0
df287b191ac5a2dd737815fd551244686d241923
25,180
py
Python
mmdet/core/loss/losses.py
ShegnkaiWu/IoU-aware-single-stage-object-detector-for-accurate-localization
67b8955eb59137590dbadc6aac45529ae9459e4a
[ "Apache-2.0" ]
62
2020-04-15T09:01:23.000Z
2022-02-24T04:27:52.000Z
mmdet/core/loss/losses.py
ShegnkaiWu/IoU-aware-single-stage-object-detector-for-accurate-localization
67b8955eb59137590dbadc6aac45529ae9459e4a
[ "Apache-2.0" ]
10
2020-04-15T09:05:19.000Z
2022-01-04T08:05:59.000Z
mmdet/core/loss/losses.py
ShegnkaiWu/IoU-aware-single-stage-object-detector-for-accurate-localization
67b8955eb59137590dbadc6aac45529ae9459e4a
[ "Apache-2.0" ]
10
2020-04-28T06:58:09.000Z
2021-11-18T00:57:34.000Z
# TODO merge naive and weighted loss. import numpy as np import torch import torch.nn.functional as F from ..bbox import bbox_overlaps from ...ops import sigmoid_focal_loss from ..bbox.transforms import delta2bbox # added by Shengkai Wu # implement iou_balanced cross entropy loss. def iou_balanced_cross_entropy(pred, label, weight, iou, eta = 1.5, avg_factor=None, reduce=True): """ iou_balanced cross entropy loss to make the training process to focus more on positives with higher iou. :param pred: tesnor of shape (batch*num_samples, num_class) :param label: tensor of shape (batch*num_samples), store gt labels such as 0, 1, 2, 80 for corresponding class(0 represent background). :param weight: tensor of shape (batch*num_samples), 1 for all the elements; :param iou: tensor of shape (batch*num_samples), iou between predicted boxes and corresponding ground truth boxes for positives and 0 for negatives. :param eta: control to which extent the training process focuses on the positives with high iou. :param avg_factor: :param reduce: :return: """ # avg_factor = batch*num_samples # if avg_factor is None: # avg_factor = max(torch.sum(weight > 0).float().item(), 1.) raw1 = F.cross_entropy(pred, label, reduction='none') target = iou.new_zeros(iou.size(0)) # target_1 = iou.new_zeros(iou.size(0)) # the way to get the indexes of positive example may be wrong; is it right? # pos_inds_1 = label > 0 # target_1[pos_inds_1] = 1 # modify the way to get the indexes pos_inds = (label > 0).nonzero().view(-1) # pos_inds = (label >= 1).nonzero().view(-1) target[pos_inds] = 1.0 # pos_inds_test = target.nonzero().view(-1) method_1 = True normalization = True method_2 = False threshold = 0.66 # threshold = torch.min(iou[pos_inds]).item() method_3 = False target = target.type_as(pred) if method_1: if normalization: iou_weights = (1 - target) + (target * iou).pow(eta) # normalized to keep the sum of loss for positive examples unchanged; raw2 = raw1*iou_weights normalizer = (raw1 * target).sum() / ((raw2 * target).sum() + 1e-6) normalized_iou_weights = (1 - target) + (target * iou).pow(eta) * normalizer normalized_iou_weights = normalized_iou_weights.detach() raw = raw1*normalized_iou_weights else: weight_pos = 1.8 iou_weights = (1 - target) + (target * iou).pow(eta)*weight_pos iou_weights = iou_weights.detach() raw = raw1*iou_weights elif method_2: iou_weights = (1 - target) + (target*(1 + (iou - threshold))).pow(eta) iou_weights = iou_weights.detach() raw = raw1 * iou_weights elif method_3: ones_weight = iou.new_ones(iou.size(0)) iou_weights_1 = torch.where(iou > threshold, 1.0 + (iou - threshold), ones_weight) # iou_weights = (1 - target) + (target * iou_weights_1).pow(eta) iou_weights = (1 - target) + target * iou_weights_1 iou_weights = iou_weights.detach() raw = raw1 * iou_weights # raw = (raw1 * iou_weights +raw1)/2 # print('test_loss') if avg_factor is None: # avg_factor = max(torch.sum(normalized_iou_weights).float().item(), 1.) avg_factor = max(torch.sum(weight > 0).float().item(), 1.) if reduce: return torch.sum(raw * weight)[None] / avg_factor else: return raw * weight / avg_factor def consistent_loss(pred, label, weight, iou, avg_factor=None, reduce=True): """ :param pred: tesnor of shape (batch*num_samples, num_class) :param label: tensor of shape (batch*num_samples), store gt labels such as 0, 1, 2, 80 for corresponding class(0 represent background). :param weight: tensor of shape (batch*num_samples), 1 for all the elements; :param iou: tensor of shape (batch*num_samples), iou between proposals and corresponding ground truth boxes for positives and 0 for negatives. :param avg_factor: :param reduce: :return: """ if avg_factor is None: avg_factor = max(torch.sum(weight > 0).float().item(), 1.) raw1 = F.cross_entropy(pred, label, reduction='none') target = iou.new_zeros(iou.size(0)) pos_inds = (label > 0).nonzero().view(-1) target[pos_inds] = 1.0 threshold = 0.5 ones_weight = iou.new_ones(iou.size(0)) iou_weights_1 = torch.where(iou > threshold, 1.0 + (iou - threshold), ones_weight) iou_weights = (1 - target) + target * iou_weights_1 iou_weights = iou_weights.detach() raw = raw1 * iou_weights if reduce: return torch.sum(raw * weight)[None] / avg_factor else: return raw * weight / avg_factor def iou_balanced_binary_cross_entropy(pred, label, weight, iou, eta = 1.5, avg_factor=None, reduce=True): """ :param pred: tensor of shape (num_examples, 1) :param label: tensor of shape (num_examples, 1) :param weight: tensor of shape (num_examples, 1) :param iou: tensor of shape (num_examples), containing the iou for all the regressed positive examples. :param eta: :param avg_factor: :return: """ if pred.dim() != label.dim(): label, weight = _expand_binary_labels(label, weight, pred.size(-1)) if avg_factor is None: avg_factor = max(torch.sum(weight > 0).float().item(), 1.) raw1 = F.binary_cross_entropy_with_logits(pred, label.float(),reduction='none') target = label.new_zeros(label.size()) # target_1 = iou.new_zeros(iou.size(0)) # the way to get the indexes of positive example may be wrong; is it wright? # pos_inds_1 = label > 0 # target_1[pos_inds_1] = 1 # modify the way to get the indexes # label_squeeze = torch.squeeze(label) # pos_inds = (label > 0).nonzero().view(-1) # print('the size of label is ', label.size()) pos_inds = (label > 0).nonzero() # print('the size of label_squeeze is ', label_squeeze.size()) target[pos_inds] = 1 # print('the num of positive examples is', torch.sum(target)) # print('the num of positive examples for target_1 is', torch.sum(target_1)) normalization = True if normalization: target = target.type_as(pred) iou = iou.unsqueeze(-1) # print('the size of target is ', target.size()) # print('the size of iou is ', iou.size()) # print('the size of iou_1 is ', iou_1.size()) iou_weights = (1 - target) + (target * iou).pow(eta) # print('the size of iou_weights is ', iou_weights.size()) # print('the size of raw1 is ', raw1.size()) # iou_weights.unsqueeze(1) # normalized to keep the sum of loss for positive examples unchanged; raw2 = raw1 * iou_weights normalizer = (raw1 * target).sum() / ((raw2 * target).sum() + 1e-6) normalized_iou_weights = (1 - target) + (target * iou).pow(eta) * normalizer normalized_iou_weights = normalized_iou_weights.detach() raw = raw1 * normalized_iou_weights else: target = target.type_as(pred) weight_pos = 1.8 iou_weights = (1 - target) + (target * iou).pow(eta) * weight_pos iou_weights = iou_weights.detach() raw = raw1 * iou_weights if reduce: return torch.sum(raw * weight)[None] / avg_factor else: return raw * weight / avg_factor # return F.binary_cross_entropy_with_logits( # pred, label.float(), weight.float(), # reduction='sum')[None] / avg_factor # Known from the definition of weight in file anchor_target.py, # all the elements of tensor 'weight' are 1. # added by Shengkai Wu # The focal loss is only computed for negative examples, and the standard binary cross # entropy loss is computed for the positive examples. This is designed to investigate # whether hard example mining for positive examples is beneficial for the performance. def weighted_sigmoid_focal_loss(pred, target, weight, gamma=2.0, alpha=0.25, avg_factor=None, num_classes=80): """ note that :param pred: tensor of shape (batch*A*width*height, num_class) :param target: tensor of shape (batch*A*width*height, num_class), only the element for the positive labels are 1. :param weight: tensor of shape (batch*A*width*height, num_class), 1 for pos and neg, 0 for the others :param gamma: :param alpha: :param avg_factor: :param num_classes: :return: """ if avg_factor is None: avg_factor = torch.sum(weight > 0).float().item() / num_classes + 1e-6 return py_sigmoid_focal_loss( pred, target, weight, gamma=gamma, alpha=alpha, reduction='sum')[None] / avg_factor # added by Shengkai Wu # iou-balanced classification loss is designed to strengthen the correlation between classificaiton and # localization task. The goal is to make that the detections with high IOU with the ground truth boxes also have # high classification scores. def iou_balanced_sigmoid_focal_loss(pred, target, weight, iou, gamma=2.0, alpha=0.25, eta=1.5, avg_factor=None, num_classes=80): """ :param pred: tensor of shape (batch*A*width*height, num_class) :param target: tensor of shape (batch*A*width*height, num_class), only the positive label is assigned 1, 0 for others. :param weight: tensor of shape (batch*A*width*height, num_class), 1 for pos and neg, 0 for the others. :param iou: tensor of shape (batch*A*width*height), store the iou between predicted boxes and its corresponding ground truth boxes for the positives and the iou between the predicted boxes and anchors for negatives. :param gamma: :param alpha: :param eta: control the suppression for the positives of low iou. :param avg_factor: num_positive_samples. If None, :param num_classes: :return: """ # if avg_factor is None: # avg_factor = torch.sum(target).float().item() + 1e-6 # use_diff_thr = True # pred_sigmoid = pred.sigmoid() target = target.type_as(pred) loss1 = py_sigmoid_focal_loss( pred, target, weight, gamma=gamma, alpha=alpha, reduction='none') IoU_balanced_Cls = True threshold = 0.5 if IoU_balanced_Cls: # compute the normalized weights so that the loss produced by the positive examples # doesn't change. iou_expanded = iou.view(-1, 1).expand(-1, target.size()[1]) iou_weights = (1 - target) + (target * iou_expanded).pow(eta) # iou_weights = iou_weights.detach() loss2 = loss1*iou_weights normalizer = (loss1*target).sum()/((loss2*target).sum()+1e-6) # normalizer = 2.1 normalized_iou_weights = (1-target) + (target*iou_expanded).pow(eta)*normalizer normalized_iou_weights = normalized_iou_weights.detach() loss = loss1*normalized_iou_weights # print('test') else: # consistent loss iou_expanded = iou.view(-1, 1).expand(-1, target.size()[1]) ones_weight = iou_expanded.new_ones(iou_expanded.size()) # print('ones_weight.size() is ', ones_weight.size()) iou_weights_1 = torch.where(iou_expanded > threshold, 1.0 + (iou_expanded - threshold), ones_weight) # iou_weights = (1 - target) + (target * iou_weights_1).pow(eta) iou_weights = (1 - target) + target * iou_weights_1 iou_weights = iou_weights.detach() # loss = loss1 * iou_weights balance_factor = 0.6 loss = loss1*balance_factor + loss1 * iou_weights*(1-balance_factor) return torch.sum(loss)[None] / avg_factor # Known from the definition of weight in file anchor_target.py, # the elements of tensor 'weight' for positive proposals are one. # added by Shengkai Wu # implement the focal loss for localization task. def weighted_iou_balanced_smoothl1(pred, target, iou, weight, beta=1.0, delta=1.5, avg_factor=None): """ :param pred: tensor of shape (batch*A*width*height, 4) or (batch*num_pos, 4) :param target: tensor of shape (batch*A*width*height, 4), store the parametrized coordinates of target boxes for the positive anchors and other values are set to be 0. Or tensor of shape (batch*num_pos, 4) :param iou: tensor of shape (batch*A*width*height)Or tensor of shape (batch*num_pos), store the iou between predicted boxes and its corresponding groundtruth boxes for the positives and the iou between the predicted boxes and anchors for negatives. :param weight: tensor of shape (batch*A*width*height, 4), only the weights for positive anchors are set to be 1 and other values are set to be 0. Or tensor of shape (batch*num_pos, 4), all the elements are 1. :param beta: :param delta: control the suppression for the outliers. :param avg_factor: :return: """ # the pred and target are transformed to image domain and represented by top-left and bottom-right corners. assert pred.size() == target.size() and target.numel() > 0 # ignore the positive examples of which the iou after regression is smaller # than 0.5; ignore_outliers = False iou_threshold = 0.5 if ignore_outliers: filter = iou.new_zeros(iou.size()) filter_extend = filter.view(-1, 1).expand(-1, 4) ind = (iou >= iou_threshold).nonzero() filter[ind] = 1 iou = iou * filter iou_expanded = iou.view(-1, 1).expand(-1, 4) iou_weight = weight * iou_expanded.pow(delta) iou_weight = iou_weight.detach() if avg_factor is None: avg_factor = torch.sum(weight > 0).float().item() / 4 + 1e-6 loss1 = smooth_l1_loss(pred, target, beta, reduction='none') loss2 = loss1*iou_weight # loss2 = loss1 *filter_extend return torch.sum(loss2)[None] / avg_factor def weighted_iou_regression_loss(iou_pred, iou_target, weight, avg_factor=None): """ :param iou_pred: tensor of shape (batch*A*width*height) or (batch*num_pos) :param iou_target: tensor of shape (batch*A*width*height)Or tensor of shape (batch*num_pos), store the iou between predicted boxes and its corresponding groundtruth boxes for the positives and the iou between the predicted boxes and anchors for negatives. :param weight: tensor of shape (batch*A*width*height) or (batch*num_pos), 1 for positives and 0 for negatives and neutrals. :param avg_factor: :return: """ # iou_pred_sigmoid = iou_pred.sigmoid() # iou_target = iou_target.detach() # L2 loss. # loss = torch.pow((iou_pred_sigmoid - iou_target), 2)*weight # Binary cross-entropy loss for the positive examples loss = F.binary_cross_entropy_with_logits(iou_pred, iou_target, reduction='none')* weight return torch.sum(loss)[None] / avg_factor def bounded_iou_loss(pred, target, beta=0.2, eps=1e-3, reduction='mean'): """Improving Object Localization with Fitness NMS and Bounded IoU Loss, https://arxiv.org/abs/1711.00164. Args: pred (tensor): Predicted bboxes. target (tensor): Target bboxes. beta (float): beta parameter in smoothl1. eps (float): eps to avoid NaN. reduction (str): Reduction type. """ pred_ctrx = (pred[:, 0] + pred[:, 2]) * 0.5 pred_ctry = (pred[:, 1] + pred[:, 3]) * 0.5 pred_w = pred[:, 2] - pred[:, 0] + 1 pred_h = pred[:, 3] - pred[:, 1] + 1 with torch.no_grad(): target_ctrx = (target[:, 0] + target[:, 2]) * 0.5 target_ctry = (target[:, 1] + target[:, 3]) * 0.5 target_w = target[:, 2] - target[:, 0] + 1 target_h = target[:, 3] - target[:, 1] + 1 dx = target_ctrx - pred_ctrx dy = target_ctry - pred_ctry loss_dx = 1 - torch.max( (target_w - 2 * dx.abs()) / (target_w + 2 * dx.abs() + eps), torch.zeros_like(dx)) loss_dy = 1 - torch.max( (target_h - 2 * dy.abs()) / (target_h + 2 * dy.abs() + eps), torch.zeros_like(dy)) loss_dw = 1 - torch.min(target_w / (pred_w + eps), pred_w / (target_w + eps)) loss_dh = 1 - torch.min(target_h / (pred_h + eps), pred_h / (target_h + eps)) loss_comb = torch.stack([loss_dx, loss_dy, loss_dw, loss_dh], dim=-1).view(loss_dx.size(0), -1) loss = torch.where(loss_comb < beta, 0.5 * loss_comb * loss_comb / beta, loss_comb - 0.5 * beta) reduction_enum = F._Reduction.get_enum(reduction) # none: 0, mean:1, sum: 2 if reduction_enum == 0: return loss elif reduction_enum == 1: return loss.sum() / pred.numel() elif reduction_enum == 2: return loss.sum() def accuracy(pred, target, topk=1): """ :param pred: (batch*num_sample, C) :param target: (batch*num_sample) :param topk: :return: """ if isinstance(topk, int): topk = (topk, ) return_single = True else: return_single = False maxk = max(topk) _, pred_label = pred.topk(maxk, 1, True, True) # (batch*num_sample, 1) pred_label = pred_label.t() # (1, batch*num_sample) correct = pred_label.eq(target.view(1, -1).expand_as(pred_label)) # (1, batch*num_sample) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / pred.size(0))) return res[0] if return_single else res
38.918083
127
0.61668
# TODO merge naive and weighted loss. import numpy as np import torch import torch.nn.functional as F from ..bbox import bbox_overlaps from ...ops import sigmoid_focal_loss from ..bbox.transforms import delta2bbox def weighted_nll_loss(pred, label, weight, avg_factor=None): if avg_factor is None: avg_factor = max(torch.sum(weight > 0).float().item(), 1.) raw = F.nll_loss(pred, label, reduction='none') return torch.sum(raw * weight)[None] / avg_factor def weighted_cross_entropy(pred, label, weight, avg_factor=None, reduce=True): if avg_factor is None: avg_factor = max(torch.sum(weight > 0).float().item(), 1.) raw = F.cross_entropy(pred, label, reduction='none') if reduce: return torch.sum(raw * weight)[None] / avg_factor else: return raw * weight / avg_factor # added by Shengkai Wu # implement iou_balanced cross entropy loss. def iou_balanced_cross_entropy(pred, label, weight, iou, eta = 1.5, avg_factor=None, reduce=True): """ iou_balanced cross entropy loss to make the training process to focus more on positives with higher iou. :param pred: tesnor of shape (batch*num_samples, num_class) :param label: tensor of shape (batch*num_samples), store gt labels such as 0, 1, 2, 80 for corresponding class(0 represent background). :param weight: tensor of shape (batch*num_samples), 1 for all the elements; :param iou: tensor of shape (batch*num_samples), iou between predicted boxes and corresponding ground truth boxes for positives and 0 for negatives. :param eta: control to which extent the training process focuses on the positives with high iou. :param avg_factor: :param reduce: :return: """ # avg_factor = batch*num_samples # if avg_factor is None: # avg_factor = max(torch.sum(weight > 0).float().item(), 1.) raw1 = F.cross_entropy(pred, label, reduction='none') target = iou.new_zeros(iou.size(0)) # target_1 = iou.new_zeros(iou.size(0)) # the way to get the indexes of positive example may be wrong; is it right? # pos_inds_1 = label > 0 # target_1[pos_inds_1] = 1 # modify the way to get the indexes pos_inds = (label > 0).nonzero().view(-1) # pos_inds = (label >= 1).nonzero().view(-1) target[pos_inds] = 1.0 # pos_inds_test = target.nonzero().view(-1) method_1 = True normalization = True method_2 = False threshold = 0.66 # threshold = torch.min(iou[pos_inds]).item() method_3 = False target = target.type_as(pred) if method_1: if normalization: iou_weights = (1 - target) + (target * iou).pow(eta) # normalized to keep the sum of loss for positive examples unchanged; raw2 = raw1*iou_weights normalizer = (raw1 * target).sum() / ((raw2 * target).sum() + 1e-6) normalized_iou_weights = (1 - target) + (target * iou).pow(eta) * normalizer normalized_iou_weights = normalized_iou_weights.detach() raw = raw1*normalized_iou_weights else: weight_pos = 1.8 iou_weights = (1 - target) + (target * iou).pow(eta)*weight_pos iou_weights = iou_weights.detach() raw = raw1*iou_weights elif method_2: iou_weights = (1 - target) + (target*(1 + (iou - threshold))).pow(eta) iou_weights = iou_weights.detach() raw = raw1 * iou_weights elif method_3: ones_weight = iou.new_ones(iou.size(0)) iou_weights_1 = torch.where(iou > threshold, 1.0 + (iou - threshold), ones_weight) # iou_weights = (1 - target) + (target * iou_weights_1).pow(eta) iou_weights = (1 - target) + target * iou_weights_1 iou_weights = iou_weights.detach() raw = raw1 * iou_weights # raw = (raw1 * iou_weights +raw1)/2 # print('test_loss') if avg_factor is None: # avg_factor = max(torch.sum(normalized_iou_weights).float().item(), 1.) avg_factor = max(torch.sum(weight > 0).float().item(), 1.) if reduce: return torch.sum(raw * weight)[None] / avg_factor else: return raw * weight / avg_factor def consistent_loss(pred, label, weight, iou, avg_factor=None, reduce=True): """ :param pred: tesnor of shape (batch*num_samples, num_class) :param label: tensor of shape (batch*num_samples), store gt labels such as 0, 1, 2, 80 for corresponding class(0 represent background). :param weight: tensor of shape (batch*num_samples), 1 for all the elements; :param iou: tensor of shape (batch*num_samples), iou between proposals and corresponding ground truth boxes for positives and 0 for negatives. :param avg_factor: :param reduce: :return: """ if avg_factor is None: avg_factor = max(torch.sum(weight > 0).float().item(), 1.) raw1 = F.cross_entropy(pred, label, reduction='none') target = iou.new_zeros(iou.size(0)) pos_inds = (label > 0).nonzero().view(-1) target[pos_inds] = 1.0 threshold = 0.5 ones_weight = iou.new_ones(iou.size(0)) iou_weights_1 = torch.where(iou > threshold, 1.0 + (iou - threshold), ones_weight) iou_weights = (1 - target) + target * iou_weights_1 iou_weights = iou_weights.detach() raw = raw1 * iou_weights if reduce: return torch.sum(raw * weight)[None] / avg_factor else: return raw * weight / avg_factor def weighted_binary_cross_entropy(pred, label, weight, avg_factor=None): if pred.dim() != label.dim(): label, weight = _expand_binary_labels(label, weight, pred.size(-1)) if avg_factor is None: avg_factor = max(torch.sum(weight > 0).float().item(), 1.) # print('test') return F.binary_cross_entropy_with_logits( pred, label.float(), weight.float(), reduction='sum')[None] / avg_factor def iou_balanced_binary_cross_entropy(pred, label, weight, iou, eta = 1.5, avg_factor=None, reduce=True): """ :param pred: tensor of shape (num_examples, 1) :param label: tensor of shape (num_examples, 1) :param weight: tensor of shape (num_examples, 1) :param iou: tensor of shape (num_examples), containing the iou for all the regressed positive examples. :param eta: :param avg_factor: :return: """ if pred.dim() != label.dim(): label, weight = _expand_binary_labels(label, weight, pred.size(-1)) if avg_factor is None: avg_factor = max(torch.sum(weight > 0).float().item(), 1.) raw1 = F.binary_cross_entropy_with_logits(pred, label.float(),reduction='none') target = label.new_zeros(label.size()) # target_1 = iou.new_zeros(iou.size(0)) # the way to get the indexes of positive example may be wrong; is it wright? # pos_inds_1 = label > 0 # target_1[pos_inds_1] = 1 # modify the way to get the indexes # label_squeeze = torch.squeeze(label) # pos_inds = (label > 0).nonzero().view(-1) # print('the size of label is ', label.size()) pos_inds = (label > 0).nonzero() # print('the size of label_squeeze is ', label_squeeze.size()) target[pos_inds] = 1 # print('the num of positive examples is', torch.sum(target)) # print('the num of positive examples for target_1 is', torch.sum(target_1)) normalization = True if normalization: target = target.type_as(pred) iou = iou.unsqueeze(-1) # print('the size of target is ', target.size()) # print('the size of iou is ', iou.size()) # print('the size of iou_1 is ', iou_1.size()) iou_weights = (1 - target) + (target * iou).pow(eta) # print('the size of iou_weights is ', iou_weights.size()) # print('the size of raw1 is ', raw1.size()) # iou_weights.unsqueeze(1) # normalized to keep the sum of loss for positive examples unchanged; raw2 = raw1 * iou_weights normalizer = (raw1 * target).sum() / ((raw2 * target).sum() + 1e-6) normalized_iou_weights = (1 - target) + (target * iou).pow(eta) * normalizer normalized_iou_weights = normalized_iou_weights.detach() raw = raw1 * normalized_iou_weights else: target = target.type_as(pred) weight_pos = 1.8 iou_weights = (1 - target) + (target * iou).pow(eta) * weight_pos iou_weights = iou_weights.detach() raw = raw1 * iou_weights if reduce: return torch.sum(raw * weight)[None] / avg_factor else: return raw * weight / avg_factor # return F.binary_cross_entropy_with_logits( # pred, label.float(), weight.float(), # reduction='sum')[None] / avg_factor # Known from the definition of weight in file anchor_target.py, # all the elements of tensor 'weight' are 1. def py_sigmoid_focal_loss(pred, target, weight, gamma=2.0, alpha=0.25, reduction='mean'): pred_sigmoid = pred.sigmoid() target = target.type_as(pred) pt = (1 - pred_sigmoid) * target + pred_sigmoid * (1 - target) weight = (alpha * target + (1 - alpha) * (1 - target)) * weight weight = weight * pt.pow(gamma) loss = F.binary_cross_entropy_with_logits( pred, target, reduction='none') * weight # the value of reduction_enum is decided by arg 'reduction' # none: 0, mean:1, sum: 2 reduction_enum = F._Reduction.get_enum(reduction) if reduction_enum == 0: return loss elif reduction_enum == 1: return loss.mean() elif reduction_enum == 2: return loss.sum() # added by Shengkai Wu # The focal loss is only computed for negative examples, and the standard binary cross # entropy loss is computed for the positive examples. This is designed to investigate # whether hard example mining for positive examples is beneficial for the performance. def py_sigmoid_focal_loss_for_negatives(pred, target, weight, gamma=2.0, alpha=0.25, reduction='mean'): pred_sigmoid = pred.sigmoid() target = target.type_as(pred) pt = target + pred_sigmoid * (1 - target) weight = (alpha*target + (1 - alpha) * (1 - target)) * weight weight = weight * pt.pow(gamma) loss = F.binary_cross_entropy_with_logits(pred, target, reduction='none') * weight # the value of reduction_enum is decided by arg 'reduction' # none: 0, mean:1, sum: 2 # print("only compute the focal loss for negative examples") reduction_enum = F._Reduction.get_enum(reduction) if reduction_enum == 0: return loss elif reduction_enum == 1: return loss.mean() elif reduction_enum == 2: return loss.sum() def weighted_sigmoid_focal_loss(pred, target, weight, gamma=2.0, alpha=0.25, avg_factor=None, num_classes=80): """ note that :param pred: tensor of shape (batch*A*width*height, num_class) :param target: tensor of shape (batch*A*width*height, num_class), only the element for the positive labels are 1. :param weight: tensor of shape (batch*A*width*height, num_class), 1 for pos and neg, 0 for the others :param gamma: :param alpha: :param avg_factor: :param num_classes: :return: """ if avg_factor is None: avg_factor = torch.sum(weight > 0).float().item() / num_classes + 1e-6 return py_sigmoid_focal_loss( pred, target, weight, gamma=gamma, alpha=alpha, reduction='sum')[None] / avg_factor # added by Shengkai Wu # iou-balanced classification loss is designed to strengthen the correlation between classificaiton and # localization task. The goal is to make that the detections with high IOU with the ground truth boxes also have # high classification scores. def iou_balanced_sigmoid_focal_loss(pred, target, weight, iou, gamma=2.0, alpha=0.25, eta=1.5, avg_factor=None, num_classes=80): """ :param pred: tensor of shape (batch*A*width*height, num_class) :param target: tensor of shape (batch*A*width*height, num_class), only the positive label is assigned 1, 0 for others. :param weight: tensor of shape (batch*A*width*height, num_class), 1 for pos and neg, 0 for the others. :param iou: tensor of shape (batch*A*width*height), store the iou between predicted boxes and its corresponding ground truth boxes for the positives and the iou between the predicted boxes and anchors for negatives. :param gamma: :param alpha: :param eta: control the suppression for the positives of low iou. :param avg_factor: num_positive_samples. If None, :param num_classes: :return: """ # if avg_factor is None: # avg_factor = torch.sum(target).float().item() + 1e-6 # use_diff_thr = True # pred_sigmoid = pred.sigmoid() target = target.type_as(pred) loss1 = py_sigmoid_focal_loss( pred, target, weight, gamma=gamma, alpha=alpha, reduction='none') IoU_balanced_Cls = True threshold = 0.5 if IoU_balanced_Cls: # compute the normalized weights so that the loss produced by the positive examples # doesn't change. iou_expanded = iou.view(-1, 1).expand(-1, target.size()[1]) iou_weights = (1 - target) + (target * iou_expanded).pow(eta) # iou_weights = iou_weights.detach() loss2 = loss1*iou_weights normalizer = (loss1*target).sum()/((loss2*target).sum()+1e-6) # normalizer = 2.1 normalized_iou_weights = (1-target) + (target*iou_expanded).pow(eta)*normalizer normalized_iou_weights = normalized_iou_weights.detach() loss = loss1*normalized_iou_weights # print('test') else: # consistent loss iou_expanded = iou.view(-1, 1).expand(-1, target.size()[1]) ones_weight = iou_expanded.new_ones(iou_expanded.size()) # print('ones_weight.size() is ', ones_weight.size()) iou_weights_1 = torch.where(iou_expanded > threshold, 1.0 + (iou_expanded - threshold), ones_weight) # iou_weights = (1 - target) + (target * iou_weights_1).pow(eta) iou_weights = (1 - target) + target * iou_weights_1 iou_weights = iou_weights.detach() # loss = loss1 * iou_weights balance_factor = 0.6 loss = loss1*balance_factor + loss1 * iou_weights*(1-balance_factor) return torch.sum(loss)[None] / avg_factor def mask_cross_entropy(pred, target, label): num_rois = pred.size()[0] inds = torch.arange(0, num_rois, dtype=torch.long, device=pred.device) pred_slice = pred[inds, label].squeeze(1) return F.binary_cross_entropy_with_logits( pred_slice, target, reduction='mean')[None] def smooth_l1_loss(pred, target, beta=1.0, reduction='mean'): assert beta > 0 assert pred.size() == target.size() and target.numel() > 0 diff = torch.abs(pred - target) loss = torch.where(diff < beta, 0.5 * diff * diff / beta, diff - 0.5 * beta) # the value of reduction_enum is decided by arg 'reduction' # none: 0, mean:1, sum: 2 reduction_enum = F._Reduction.get_enum(reduction) if reduction_enum == 0: return loss elif reduction_enum == 1: return loss.sum() / pred.numel() elif reduction_enum == 2: return loss.sum() # Known from the definition of weight in file anchor_target.py, # the elements of tensor 'weight' for positive proposals are one. def weighted_smoothl1(pred, target, weight, beta=1.0, avg_factor=None): if avg_factor is None: avg_factor = torch.sum(weight > 0).float().item() / 4 + 1e-6 loss = smooth_l1_loss(pred, target, beta, reduction='none') # print('the size of pred is ', pred.size()) # print('the size of target is ', target.size()) # print('the size of weight is', weight.size()) return torch.sum(loss * weight)[None] / avg_factor # added by Shengkai Wu # implement the focal loss for localization task. def weighted_iou_balanced_smoothl1(pred, target, iou, weight, beta=1.0, delta=1.5, avg_factor=None): """ :param pred: tensor of shape (batch*A*width*height, 4) or (batch*num_pos, 4) :param target: tensor of shape (batch*A*width*height, 4), store the parametrized coordinates of target boxes for the positive anchors and other values are set to be 0. Or tensor of shape (batch*num_pos, 4) :param iou: tensor of shape (batch*A*width*height)Or tensor of shape (batch*num_pos), store the iou between predicted boxes and its corresponding groundtruth boxes for the positives and the iou between the predicted boxes and anchors for negatives. :param weight: tensor of shape (batch*A*width*height, 4), only the weights for positive anchors are set to be 1 and other values are set to be 0. Or tensor of shape (batch*num_pos, 4), all the elements are 1. :param beta: :param delta: control the suppression for the outliers. :param avg_factor: :return: """ # the pred and target are transformed to image domain and represented by top-left and bottom-right corners. assert pred.size() == target.size() and target.numel() > 0 # ignore the positive examples of which the iou after regression is smaller # than 0.5; ignore_outliers = False iou_threshold = 0.5 if ignore_outliers: filter = iou.new_zeros(iou.size()) filter_extend = filter.view(-1, 1).expand(-1, 4) ind = (iou >= iou_threshold).nonzero() filter[ind] = 1 iou = iou * filter iou_expanded = iou.view(-1, 1).expand(-1, 4) iou_weight = weight * iou_expanded.pow(delta) iou_weight = iou_weight.detach() if avg_factor is None: avg_factor = torch.sum(weight > 0).float().item() / 4 + 1e-6 loss1 = smooth_l1_loss(pred, target, beta, reduction='none') loss2 = loss1*iou_weight # loss2 = loss1 *filter_extend return torch.sum(loss2)[None] / avg_factor def weighted_iou_regression_loss(iou_pred, iou_target, weight, avg_factor=None): """ :param iou_pred: tensor of shape (batch*A*width*height) or (batch*num_pos) :param iou_target: tensor of shape (batch*A*width*height)Or tensor of shape (batch*num_pos), store the iou between predicted boxes and its corresponding groundtruth boxes for the positives and the iou between the predicted boxes and anchors for negatives. :param weight: tensor of shape (batch*A*width*height) or (batch*num_pos), 1 for positives and 0 for negatives and neutrals. :param avg_factor: :return: """ # iou_pred_sigmoid = iou_pred.sigmoid() # iou_target = iou_target.detach() # L2 loss. # loss = torch.pow((iou_pred_sigmoid - iou_target), 2)*weight # Binary cross-entropy loss for the positive examples loss = F.binary_cross_entropy_with_logits(iou_pred, iou_target, reduction='none')* weight return torch.sum(loss)[None] / avg_factor def balanced_l1_loss(pred, target, beta=1.0, alpha=0.5, gamma=1.5, reduction='none'): assert beta > 0 assert pred.size() == target.size() and target.numel() > 0 diff = torch.abs(pred - target) b = np.e**(gamma / alpha) - 1 loss = torch.where( diff < beta, alpha / b * (b * diff + 1) * torch.log(b * diff / beta + 1) - alpha * diff, gamma * diff + gamma / b - alpha * beta) reduction_enum = F._Reduction.get_enum(reduction) # none: 0, elementwise_mean:1, sum: 2 if reduction_enum == 0: return loss elif reduction_enum == 1: return loss.sum() / pred.numel() elif reduction_enum == 2: return loss.sum() return loss def weighted_balanced_l1_loss(pred, target, weight, beta=1.0, alpha=0.5, gamma=1.5, avg_factor=None): if avg_factor is None: avg_factor = torch.sum(weight > 0).float().item() / 4 + 1e-6 loss = balanced_l1_loss(pred, target, beta, alpha, gamma, reduction='none') return torch.sum(loss * weight)[None] / avg_factor def bounded_iou_loss(pred, target, beta=0.2, eps=1e-3, reduction='mean'): """Improving Object Localization with Fitness NMS and Bounded IoU Loss, https://arxiv.org/abs/1711.00164. Args: pred (tensor): Predicted bboxes. target (tensor): Target bboxes. beta (float): beta parameter in smoothl1. eps (float): eps to avoid NaN. reduction (str): Reduction type. """ pred_ctrx = (pred[:, 0] + pred[:, 2]) * 0.5 pred_ctry = (pred[:, 1] + pred[:, 3]) * 0.5 pred_w = pred[:, 2] - pred[:, 0] + 1 pred_h = pred[:, 3] - pred[:, 1] + 1 with torch.no_grad(): target_ctrx = (target[:, 0] + target[:, 2]) * 0.5 target_ctry = (target[:, 1] + target[:, 3]) * 0.5 target_w = target[:, 2] - target[:, 0] + 1 target_h = target[:, 3] - target[:, 1] + 1 dx = target_ctrx - pred_ctrx dy = target_ctry - pred_ctry loss_dx = 1 - torch.max( (target_w - 2 * dx.abs()) / (target_w + 2 * dx.abs() + eps), torch.zeros_like(dx)) loss_dy = 1 - torch.max( (target_h - 2 * dy.abs()) / (target_h + 2 * dy.abs() + eps), torch.zeros_like(dy)) loss_dw = 1 - torch.min(target_w / (pred_w + eps), pred_w / (target_w + eps)) loss_dh = 1 - torch.min(target_h / (pred_h + eps), pred_h / (target_h + eps)) loss_comb = torch.stack([loss_dx, loss_dy, loss_dw, loss_dh], dim=-1).view(loss_dx.size(0), -1) loss = torch.where(loss_comb < beta, 0.5 * loss_comb * loss_comb / beta, loss_comb - 0.5 * beta) reduction_enum = F._Reduction.get_enum(reduction) # none: 0, mean:1, sum: 2 if reduction_enum == 0: return loss elif reduction_enum == 1: return loss.sum() / pred.numel() elif reduction_enum == 2: return loss.sum() def weighted_iou_loss(pred, target, weight, style='naive', beta=0.2, eps=1e-3, avg_factor=None): if style not in ['bounded', 'naive']: raise ValueError('Only support bounded iou loss and naive iou loss.') inds = torch.nonzero(weight[:, 0] > 0) if avg_factor is None: avg_factor = inds.numel() + 1e-6 if inds.numel() > 0: inds = inds.squeeze(1) else: return (pred * weight).sum()[None] / avg_factor if style == 'bounded': loss = bounded_iou_loss( pred[inds], target[inds], beta=beta, eps=eps, reduction='sum') else: loss = iou_loss(pred[inds], target[inds], reduction='sum') loss = loss[None] / avg_factor return loss def accuracy(pred, target, topk=1): """ :param pred: (batch*num_sample, C) :param target: (batch*num_sample) :param topk: :return: """ if isinstance(topk, int): topk = (topk, ) return_single = True else: return_single = False maxk = max(topk) _, pred_label = pred.topk(maxk, 1, True, True) # (batch*num_sample, 1) pred_label = pred_label.t() # (1, batch*num_sample) correct = pred_label.eq(target.view(1, -1).expand_as(pred_label)) # (1, batch*num_sample) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / pred.size(0))) return res[0] if return_single else res def _expand_binary_labels(labels, label_weights, label_channels): bin_labels = labels.new_full((labels.size(0), label_channels), 0) inds = torch.nonzero(labels >= 1).squeeze() if inds.numel() > 0: bin_labels[inds, labels[inds] - 1] = 1 bin_label_weights = label_weights.view(-1, 1).expand( label_weights.size(0), label_channels) return bin_labels, bin_label_weights def iou_loss(pred_bboxes, target_bboxes, reduction='mean'): ious = bbox_overlaps(pred_bboxes, target_bboxes, is_aligned=True) loss = -ious.log() reduction_enum = F._Reduction.get_enum(reduction) if reduction_enum == 0: return loss elif reduction_enum == 1: return loss.mean() elif reduction_enum == 2: return loss.sum()
6,879
0
296